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Abstract

In spatial database, there are a plethora of queries focusing on various problems. Reverse approx-

imate queries are one kind of query which shows the influence of the query point. This kind of

query is similar to reverse queries. The main difference between reverse queries, such as reverse k

nearest neighbor (RkNN) queries or spatial reverse top-k (SRTk) queries, and reverse approximate

queries is the value k. Because of the value k, many point of interests who are influenced by query

point may not be returned as results. Reverse approximate queries relax the strict requirement of k

and use a factor x. With this modification, the influence of the query point becomes more precise.

Hence, we focus on the reverse approximate queries, including the reverse approximate nearest

neighbour (RANN) queries and the spatial reverse approximate top (SRAT) queries.

RkNN queries, which can retrieve all the objects that consider the query as their k most in-

fluential objects, have been studied extensively for many years. Given a set of users U, a set of

facilities F and a value k, a facility f is said to be influential to a user u if f is one of the k closest

facilities to u. An interesting phenomenon has been found that sometimes even if f is not a k

closest facility regarding to u, it is very close to u and should also be included in the results. This

shows that RkNN does not return the best results. As a complement to the RkNN query, RANN

queries consider a relaxed definition of influence, where a user u is influenced not only by its

closest facility, but also by every other facility that is almost as close to u as its closest facility. In

this situation, if there is a cluster of facilities near u, they can all influence u. In this thesis, we

study the RANN query on road network. Existing RANN techniques and algorithms only work

for queries on Euclidean space and are not directly applicable for RANN queries on road network.

We propose pruning techniques that utilize a Network Voronoi Diagram (NVD) to efficiently solve

ii



RANN queries on road network. We conduct extensive experiments on different real-world data

sets and demonstrate that our algorithm is significantly better than the competitor.

In addition to the snapshot RANN query, we extend the query to a moving environment, where

the facilities remaining static and some users move continuously. Our topic is called continuous

reverse approximate nearest neighbor (RANN) query on road network. The state-of-the-art tech-

niques about continuous RANN only focus on Euclidean space and cannot be used to perform

queries on the road network. We propose two efficient ways to utilize a safe zone and influence

zone to monitor moving RANN. Finally, we conduct an extensive experiments on different real

data sets and demonstrate that our algorithm is significantly better than the competitor.

Finally, a new query called the spatial reverse approximate top (SRAT) query is proposed,

which is a totally new concept on which there is no existing research. For a user u, the top-k

facilities are the facilities where the scores are computed using different criteria such as distance

from the user, rating, price etc. The facilities, which are in the top-k results of different users, have

influence on these users. The spatial reverse top-k query returns all the users that can be influenced

by the query point. The SRTk query considers more conditions and is more useful in the real world

compared to the RkNN query. As the existence of k value, some unexpected results will inevitably

be generated. To avoid unreasonable SRTk result, the spatial reverse approximate top (SRAT)

query is introduced. We propose a novel way to process the SRAT query efficiently using R*-tree

and a Voronoi diagram index. At last, a systematic experimental study that adopts both synthetic

and real-world data sets is conducted and the results prove our algorithm is considerably faster

than the competitor.
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Chapter 1

Introduction

1.1 Overview

With advancements in technology, online map applications have become an essential part of daily

life. Many companies such as Google, Apple provide map services or navigation services. Behind

the advancement of map applications, various spatial queries play a major role. For example, if a

user is traveling to attend a friend’s wedding and he wants to have a short break and buy a coffee,

using the map application makes it easy to find the nearest coffee shop in relation to his current

location and it returns the shortest path to it. So, the user is able to reach his destination with the

least cost not only in terms of time. The background mechanism on which a map application relies

on to search for a target that has the shortest distance to his position is a kind of spatial query called

k nearest neighbor query (kNN) [26, 84, 5, 8]. In terms of the kNN query, it returns k closest point

of interests from a user’s location. Nevertheless, only retrieving the k nearest targets is not good

enough in some complicated situations. For example, the government plans to build a new park in

which nearby residents can exercise. The new location requires all adjacent users to consider this

park as their nearest one and this park should not have intersecting influence areas with other parks

so that more residents can benefit from this plan. Under this circumstance, finding the influential

area for the existing park is of great significance. A query that can handle this task is called the

reverse k nearest neighbour (RkNN) [106, 57, 81, 52] query.

The RkNN query and its variations [75, 7, 82, 99, 47, 19] have been studied extensively as it

can has many applications in decision support, location-based services, profile-based marketing

1
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etc. Unlike the traditional kNN queries which find the k nearest facilities or points of interest with

respect to users, RkNN changes the query perspective from users to facilities and is more helpful

in conducting information analysis. Formally, given a set of users U, a set of facilities F, an integer

k and a query facility q, an RkNN query returns every user u ∈ U which considers q as one of its

k closest facilities. Consider an example of a supermarket that is launching a promotional deal as

shown in Fig 1.1. The manager of this supermarket wants to know which potential customers are

possibly interested in the deal. Assuming that distance is the only factor that affects customers’

decisions, the supermarket may issue an RkNN query to find all the potential customers. Po-

tential customers are those who consider the supermarket as one of their k closest supermarkets.

Assuming k = 2, R2NN of f1 are u1, u2 because f2 is among the two closest facilities for these

users, i.e. R2NN( f1) = {u1, u2}. Similarly, R2NN( f2) = {u2}, R2NN( f3) = {u1, u3, u4, u5} and

R2NN( f4) = {u3, u4, u5}.

Figure 1.1: Example of RkNN

Even though RkNN is an excellent query and has a plethora of applications, it has some draw-

backs. As argued in [37, 38], RkNN has a strict k value to limit the influence of facilities which

may cause some users to fall out of the final query outcome set, whereas these users should be

influenced by the query point. As shown in Fig. 1.1, the RkNN query may fail to retrieve all po-

tential customers of the supermarket issuing the query. For example, assuming f1 issues a RkNN

query with k = 2. Customers u4 and u5 are not part of the query answers, since their two closest

supermarkets are f4 and f3. Hence, based on the RkNN query, u4 and u5 are not potential cus-

tomers of f1. However, this may be unreasonable. Assume the distance between u5 to f4, f3 and

f1 are 5, 30 and 31 kms respectively. It is believed that u5 who is travelling 30 kms to reach f3

normally does not mind travelling 1 or 2 kms further to reach the next closest supermarket (i.e f1).
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Such a customer may not be captured by the RkNN query and thus is not considered as a potential

customer of f1. In such situations, the reverse approximate nearest neighbour (RANN) query can

be used as a complement for the RkNN query.

The RANN query was firstly studied on Euclidean space [37] (from this point onward, we refer

to this as Euclidean RANN). This study was extended in [38] to continuously monitor the RANNs

of queries. The use of the Euclidean RANN query will not be appropriate in a real-life data set,

since it uses Euclidean distance which corresponds to the straight-line distance between vertices

in the graph, which cannot reflect the actual distance between customers and the supermarket.

The actual distance between them is reflected by the shortest path distance on the road network.

Because of the natural difference between Euclidean space and the road network space, a new

algorithm which has a better adaptability in the real world such as helping the supermarket to

identify its potential customers accurately, needs to be proposed to answer the RANN query. For

this reason, we study the RANN query on the road network space.

Figure 1.2: Example of Moving queries

With the rapid development of technology, the position locators are becoming cheaper and

have been installed in a variety of devices in our daily life, such as mobile phones, cars, comput-

ers, etc. With the increased use of position locators, the popularity of location-based services is

significantly increasing. Consequently, the algorithms for processing geo-tagged data that support

location-based services are receiving significant attention from researchers. Many people extend

the spatial query from the stationary environment to the moving environment [41, 105, 93, 94] as

the moving queries can have more convenient functional usage in the real world. For instance, a

user is allowed to drive with the navigator or cellphone which provides current location informa-

tion and the distance to destination. All the devices would perform spatial queries continuously
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[70], with position data updated at each timestamp. This algorithm usage in practical life is of

great importance and meaning.

In real-world applications, the moving queries are monitored continuously when a map or

location-based application is running. Consider an example where a person who is traveling to a

destination in a car needs to find a gas station, the traveller needs to be continuously informed as

to the nearest gas station position and the minimum travel cost. The use of a static query is not

helpful since it only gives a snapshot of the results for a particular time when the query is issued.

Fig. 1.2 illustrates this situation. In this figure, a driver moves along the road from p1 to p4. Four

gas stations denoted as GAS 1, GAS 2, GAS 3 and GAS 4 are depicted in the figure. p1, p2, p3 and p4

show the position of the driver in four different timestamps. At the beginning, when the driver is

at p1 and they issues a nearest neighbor query to find the nearest gas station, the query will return

GAS 1. After the driver moves to the next position p2, its nearest gas station becomes GAS 2. With

the driver’s movement, the distance to the nearest gas station is changing. If the driver still follows

the initial result after moving to p4, they will need to travel a long distance back to reach GAS 1

which is not the nearest gas station to the driver at the current timestamp. The query result needs to

be continuously monitored and updated so that it always returns a correct result to the user rather

than legacy ones.

Figure 1.3: Example of SRTk queries

All the previously mentioned queries only take advantage of the distance as the determined

conditions for the importance of a result point, such as finding the nearest supermarket or restau-

rant and looking for potentially influenced customers. Nevertheless, for different users, the re-

quirement of examining a point of interest could be various. Sometimes, distance may not be the

first priority for users. For example, a user may wish to find a restaurant that has cheap food and
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good ratings, while they accept they may need to drive a long way. In this context, distance-based

queries are not suitable and some alternative queries such as top-k query [42, 61, 76, 77] can be

used. For the top-k query, a score function is used to calculate a value for each point of interest

i.e. restaurant. All the criteria are adopted in the calculation process of the score function. In the

score function, each attribute is computed with a weight and the total weight of all attributes is 1.

For example, in Fig 1.3, three restaurants and three users are given. Assuming each restaurant has

a price attribute and the weight of price is same to the weight of distance from users to facilities,

which is denoted as w[price] = w[distance] = 0.5 and w[price] + w[distance] = 1. The distance

between a facility fi and a user ui is denoted as dist(ui, fi). The score of a user ui regarding a facil-

ity fi is denoted as score(ui, fi) and score(ui, fi) = w[price]× fi(price) + w[distance]×dist(ui, fi).

The facilities that have the k smallest scores will be returned as the result. Hence, in Fig 1.3,

according to the distance between users and facilities and the price value, the top-1 result of each

user can be obtained, i.e top-1(u1) = { f1}, top-1(u2) = { f2} and top-1(u3) = { f3}. Similarly, the

top-2 result of each user can also be obtained, i.e top-2(u1) = { f1, f2}, top-2(u2) = { f2, f3} and

top-2(u3) = { f2, f3}.

Since many conditions can be considered together to decide the ultimate result, a score function-

based query is much more accurate and practical than a distance-based query. The same as the

RkNN query coming from the kNN query, the top-k query has also been extended to the reverse

top-k (RTk) [21, 25, 34, 46, 89, 90, 91, 92, 111] query for a better information analysis of facility

influence. However, in traditional RTk queries, the attributes of each facility for all users are the

same. In our research, distance is also an important condition that needs to be involved. Because

distance is different for each user with respect to the same facility, traditional RTk algorithms can-

not work properly. In [109], the spatial reverse top-k (SRTk) queries have been studied and this

query can be used to analyse the overall influence (including distance) of a facility with respect

to the surrounding users. Considering the example in Fig. 1.3, if the restaurants want to know the

influence of both food price and distance for potential customers, they can issue a SRTk query. In

this case, two conditions including the distance to a restaurant and price of a restaurant are used in

the score function. Assuming the weight of price and distance are same and the sum of all weights

is 1, then w[price] = w[distance] = 0.5. If k = 2, then we can find the spatial reverse top-2 result

of f2 is u1, u2 and u3 i.e. S RT2( f2) = u1, u2, u3. To be more specific, all users can be the potential

customers of restaurant f2. Similarly, we can get S RT2( f1) = u1 and S RT2( f3) = u2, u3.
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However, we found an interesting phenomenon that is unreasonable. Seeing u2, it can only

be influenced by both f2 and f3, whereas the scores for all three facilities regarding u2 are very

close - score(u2, f1) = 0.5 × 4 + 0.5 × 210 = 107, score(u2, f2) = 0.5 × 2 + 0.5 × 200 = 101

and score(u2, f3) = 0.5 × 50 + 0.5 × 160 = 105. Specifically, the similar score means the overall

importance of all criteria is almost identical to u2. Thus, u2 should also be influenced by f1. In

addition to this, u3 also needs attention. In the spatial reverse top-2 result, u3 belongs to the set of

S RT2( f2) and S RT2( f3). If we calculate the score of u3 for all facilities, we can see score(u3, f1) =

0.5 × 4 + 0.5 × 400 = 202, score(u3, f2) = 0.5 × 2 + 0.5 × 350 = 176 and score(u3, f3) =

0.5 × 50 + 0.5 × 2 = 26, which shows a big gap between score(u3, f3) and score(u3, f2). In this

case, it is believed that u3 would not think f2 as a potential option. As we can see, with the

strict use of k value, some illogical results could be generated but these are meaningless to the

end users when issuing spatial reverse top-k query. Therefore, we propose a new query called the

spatial reverse approximate top (SRAT) query, with the k value being relaxed. By using the SRAT

query in the same scenario, the result will become S RAT ( f1) = u1, u2, S RAT ( f2) = u1, u2 and

S RAT ( f3) = u2, u3. In this result, all the irrational results can be removed and the users will not

be misled in some cases.

This chapter is organized as follows. Section 1.2 gives a short introduction of all the reverse

approximate queries in spatial databases. The next section briefly illustrates the major challenges

in this PhD project followed by the objectives in section 1.3. The contributions that we made to

meet our objectives are listed in section 1.4. Finally, the organization of this PhD thesis is outlined

in section 1.5.

1.2 Reverse Approximate Queries In Spatial Databases

In this section, we introduce some reverse approximate queries in spatial databases, including the

snapshot and continuous RANN queries on road network and SRAT queries in Euclidean space.

1.2.1 Snapshot RANN Queries On Road Network

Given a graph G representing a road network that contains a set of facilities F and a set of users

U, a query facility q and a value of x > 1, RANN query returns every user u ∈ U for which
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dist(u, q) < x · NNdist(u, f ′) where dist(u, q) denotes the shortest path distance between u and q

and NNdist(u, f ′) denotes the shortest path distance between u and its closest facility f ′.

1.2.2 Continuous RANN Queries On Road Network

In terms of moving RANN queries, we have a client-server system that maintains many queries.

In this system, all the facilities and query points remain stationary and users may get to different

locations at each timestamp. The goal of our algorithm is to continuously update RANNs of a

given query as the users continuously change their locations. At the beginning, all RANN queries

will be processed to get the initial result based on the users’ positions. For the influence zone

method, influence zones will be generated for all facilities. If a user moves out of a queries’

influential area, the result set of that query will be updated in the system. In relation to the safe

zone method, safe zones will be created for each user. If users only move inside their safe zone,

all the query results remain unchanged. Otherwise, the query result will be updated and new safe

zones will be generated accordingly.

1.2.3 SRAT Queries In Eulicdean Space

Given a graph G representing a space that contains a set of users U, a set of facilities F, a query

facility q ∈ F and a factor value of x > 1. Each f ∈ F had d attributes (e.g. price, rating) and the

value of i-th attribute is denoted as f [i]. All the f [i] are static attributes because they remain the

same for all the users. Nevertheless, the distance between the facility and different users dist(u, f )

is different. Hence, dist(u, f ) is called a dynamic attribute for each facility f . We assume all the

attributes including both the static and dynamic ones are normalised to values between 0 and 1. For

each attribute, a weight w[i] is used to calculate the score and the sum of all w[i] is 1. Considering

a (d + 1)-dimension linear scoring function where each w[i] > 0 and
∑d+1

i=1 w[i] = 1. With these

settings, the dynamic attribute (i.e. dist(u, f )) has a weight w[d + 1] and the weights for different

static attributes f [i] are denoted as w[i], 1 ≤ i ≤ d. The total score of a facility f with respect to

a user u is noted as score(u, f ). With all the given information, we can calculate the scores using

expression score(u, f ) = w[d + 1] · dist(u, f ) +
∑d

i=1 w[i] · f [i], 1 ≤ i ≤ d. For any user u, their

top-1 facility is the facility f that has smallest score(u, f ) and we can denote it as Top1score(u).

The SRAT query returns every user u ∈ U for which score(u, q) < x · Top1score(u).
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1.3 Objectives

Because of the natural difference between Euclidean space and road network, the existing method

of the RANN query is not applicable for the real-world data set. At the same time, even though

the SRTk query is extensively studied, no research has been conducted on the SRAT query. There

are many challenges to be faced. In this section, we outline the objectives of this thesis.

1.3.1 Propose An Effective Method For RANN Query On Road Network

No research has been conducted on the RANN query using road network data and the existing

RANN query algorithm on Euclidean space cannot be used on mesh graph. Hence, in this thesis,

we create a new way to answer RANN with road network data. In the proposed method, a novel

pruning and verification approach is used to optimise the performance of the RANN query in the

road network space.

1.3.2 Propose An Efficient Algorithm To Monitoring RANN Query On Road Net-

work

To the best of our knowledge, there is no existing techniques that are designed to monitor RANN

queries on the road network. The monitoring pattern we use is the client-server mode with all

facilities remaining stationary and all users moving at different timestamps. The users’ movements

cause the RANN result to be updated at every timestamp. We propose an efficient algorithm to

resolve the moving RANN query on the road network with quick result set updating techniques.

1.3.3 Propose An Approach For SRAT Query With Good Performance

Finally, even though the SRTk query has been well studied and many useful techniques have been

devised, no research has investigated the interesting variation query, namely the spatial reverse

approximate top (SRAT) query. This is the first time that the SRAT query has been proposed

and no previous work can be referenced. In this thesis, a new definition of the SRAT query is

given. Based on this definition, we present an innovative method with good efficiency to answer

the SRAT query .
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1.4 Contributions

In this section, all the contributions made in this thesis are described. To solve all the RANN

queries on road network, we adopt the NVD to divide the graph into small pieces that can be pruned

easily. For the SRAT query, some efficient techniques using R*tree and the Voronoi diagram are

introduced.

1.4.1 Snapshot RANN Query On Road Network

To handle stationary RANN queries on road network, we exploit the special features of the road

network and analyse the inapplicability of the existing RANN methods. To improve the efficiency

of query processing, a NVD index is used to separate the whole road network graph into small

pieces. When performing snapshot RANN queries, some NVD cells can be pruned entirely ac-

cording to the pruning rules. Hence, the users inside the pruned NVD cell do not need to be

verified, saving a huge amount of query processing time. Furthermore, a systematic experiment is

conducted using real data sets to show the effectiveness of our techniques and algorithms.

This work was published in the World Wide Web Journal 2020.

1.4.2 Continuous Monitoring RANN Query On Road Network

Next, we extend our research on the RANN query on road networks to the moving environment.

Under moving settings, the position of all facilities and query points in our system remain un-

changed and at different timestamps, users can move to different locations. Therefore, at each

timestamp, the RANN result of each query could be different depending on the users’ locations.

Two approaches based one influence zone and safe zone are proposed to handle the users’ move-

ments. If users stay in their safe zone or in a facilities’ influence zone, the RANN result will remain

unaffected, otherwise we need to update the RANN result and update the moving user’s safe zone.

By using the safe zone and influence zone, the continuous queries can be executed efficiently. Last,

we design an experiment to prove that our work is much faster than the competitors.

This research has been submitted to Information Sciences 2021.
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1.4.3 SRAT Query

In terms of the SRAT query, this work is the first to propose and conduct research on this query. As

it is a new query, no previous work can be referred to. We define the details of the SRAT query and

use a facility R*-tree and a Voronoi diagram to process it. Because the SRAT query uses a score

function to take many conditions into consideration, using the pruning method from RANN which

only examines the distance is clearly insufficient. Firstly, we use a facility R*-tree to index the

coordinates and static attribute values for all facilities. Based on the SRAT definition and Voronoi

diagram, we can easily prune some facilities and find the facilities that cannot be pruned. For all

the cannot-pruned facilities, we can find their Voronoi cells and all the users in these cells can

be further verified to generate the final result set. Finally, our experiment outcome shows that our

algorithm works on both synthetic and real-world data sets, which is up to two orders of magnitude

better than the competitors and also scales significantly better.

This work is finished and it is planned to be submitted to International conference on web

information systems engineering (WISE) in 2021.

1.5 Organizations Of The Thesis

The structure of this thesis is organised as follows.

• Chapter 2 describes all the works and techniques that are related to reverse approximate

queries in spatial databases, including snapshot and continuous queries

• Chapter 3 describes our work on the snapshot reverse approximate nearest neighbour query

in the road network space, which details the new techniques and explains the experiments

• Chapter 4 studies the continuous RANN query on the road network with two novel methods

using the safe zone and influence zone.

• Chapter 5 clarifies a newly proposed query called the spatial reverse approximate top (SRAT)

query. The SRAT query uses a score function and considers not only the distance attribute

but also many other conditions such as rating, price etc. Hence, a novel method that can

handle all criteria is proposed and demonstrated comprehensively
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• Chapter 6 summarises the outcomes of our research and provides several possible directions

for future work.
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Chapter 2

Literature Review

2.1 Overview

In this chapter, a detailed literature review of all the relevant studies is presented, consisting of

a series of spatial queries. Since our topic is reverse approximate queries in spatial databases,

we examine how this concept was devised and why this kind of query is useful. In our projects,

we analyse the snapshot and continuous reverse approximate nearest neighbour (RANN) query

on road network and spatial reverse approximate top (SRAT) queries. So, we inspect the RANN-

related snapshot and continuous queries and the ranking-related queries.

To begin with, we discuss the background information of some snapshot queries like k near-

est neighbour (kNN) queries, reverse k nearest neighbour (RkNN) queries and RANN queries in

section 2.2. Subsequently, we analyse some continuous queries working on both Euclidean space

and road network space in section 2.3. Furthermore, several ranking-related queries are clarified

and evaluated in section 2.4. Various state-of-the-art algorithms are investigated in this chapter to

draw inspiration for our projects.

2.2 RANN-Related Snapshot Queries

In this section, we discuss the snapshot queries related to our research. We start with the k nearest

neighbour (kNN) queries in section 2.2.1. Next, considering a different view of kNN, RkNN

13
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queries are examined in section 2.2.2. Lastly, the RANN query is examined in section 2.2.3,

which is more accurate in computing the influence of a facility than RkNN.

2.2.1 k Nearest Neighbour Queries

In past decades, because of the rapid development of location-based technologies like the global

positioning system (GPS), undertaking analysis using these techniques and geo-location data is be-

coming increasingly valuable. Thus, finding the nearest neighbour has gained substantial attention

from researchers. The concept of the kNN query is a way to discover the k closest points of interest

regarding a query point [69, 39]. Various researchers studied this query in diverse environment set-

tings. With Euclidean space data, there are no obstacles between any two vertices and studies on

this can be found in [69, 39, 72]. Some researchers conducted investigations using road network

data [45, 50, 73, 27, 40, 51, 63], where the distance between any two objects cannot be calculated

by coordinates directly but needs to consider the exact path distance. Hence, it is possible that two

points are very close in Euclidean distance but very far in road network distance. kNN has also

been examined in indoor space and obstructed space [32, 66, 100, 114, 49, 112, 102, 58], which

adopts the variant data from both Euclidean space and road network space. We focus on the kNN

in Euclidean space and road network space, as our research only uses data in these environments.

Figure 2.1: Example of Minimum Bounding Rectangles (MBR)

For the kNN query, the most commonly used index structure is the R-tree [69, 39]. With

the R-tree index, all the points of interest are confined in different minimum bounding rectangles
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(MBR). Because of the MBR, we can prune many nodes which definitely cannot be the result.

For example, in Fig 2.1, there is a query point q and many points of interest in different MBRs.

For each MBR, we can find the minimum distance to the query point. Based on all the minimum

distances, a min-heap can be used to store all the MBRs. Every time, the top object in the min-

heap will be opened to calculate the minimum distance between q and its children MBRs or target

points. The same as the previous steps, all MBRs or target points will be added into the min-heap

again. Finally, when an object is get out from the min-heap and it is not a MBR, it is the nearest

neighbour result of q and kNN can also be generated by continuing this process.

Figure 2.2: Example of Network Voronoi Diagram (NVD)

However, when considering the road network data, the Euclidean space kNN algorithm is

unable to work properly. As the natural difference between these two data sets, the distance calcu-

lation between any two points needs to deal with the actual network path. The kNN query on the

road network was first studied by [67], using an innovative method called Incremental Euclidean

Restriction (IER). The IER method considers a Euclidean distance heuristic and retrieves the ini-

tial kNN candidates based on this distance. Then, the shortest path distance algorithm can be used

to compute how far the query point is from each candidate. In the comprehensive experiment sur-

vey conducted by [5], IER also has very good performance in relation to the kNN query and the

combination of IER and Pruned Highway Labeling (PHL) [8] can outperform most of the existing

algorithms.

In addition to IER, another outstanding kNN algorithm was introduced in [4] which is state-

of-the-art. In this paper, a Network Voronoi diagram (NVD) [29, 28, 65] is adopted to break the

whole graph into small pieces. Fig 2.2 shows an example of the NVD diagram, which contains

four facility points f1 - f4 and the area of each facility is shown with different types of lines.
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Same as the Voronoi diagram, every node inside a NVD cell considers the generator as its nearest

neighbour. Hence, when generating a NVD diagram, all the points of interest are used as the

generators. Specifically, for each query, the 1NN result can be obtained immediately after locating

the NVD cell to which the query point belongs. For instance, in Fig 2.2, if the query point resides

in the solid line area, it will consider f2 as its 1NN result. For further kNN results, all the neighbour

generators of the initial generator which contains the query point can be obtained and added into

a priority queue in accordance with the distance to query point. Finally, the kNN result can be

retrieved from the priority queue.

2.2.2 Reverse k Nearest Neighbour Queries

Before discussing the RkNN, an important fact is that RkNN query is an extension of the the

kNN query. The k nearest neighbour query is to find targets that are k closest to the query point

straightforwardly [12, 84], whereas RkNN is different. An example is shown in Fig 2.3, with four

facilities and 14 user points given. Each user can find their nearest facility using a kNN algorithm.

For example, 1NN(u1) = f1, 1NN(u2) = f1, 1NN(u3) = f1, 1NN(u8) = f2 and so forth. It is found

that many users consider the same facility as their nearest neighbour. If this facility is a restaurant

or a shopping center, the users who consider this facility as their nearest one will be willing to

visit it. This means we can change the perspective reversely and analyse how many users refer to

a facility as their nearest neighbour, which can reveal the influence of a facility. Then, a RkNN

query can be issued.

RkNN queries reflect the influence of the query point, which searches all the objects that

deem the query point as their nearest neighbour [88, 85, 74, 104, 78, 82, 56, 18, 11]. It can be

used in many situations such as finding the best location for a store in an area, so that all the

residents in this area are closest to that store. The RkNN query has attracted significant interest

since it was introduced in [52]. In [52], the query is answered by pre-computing a circle for each

object with the radius of the distance between the object and its nearest neighbour and the center

is itself. For a given query q, all circles that contain q are retrieved and their center points are

returned as the query answer. An improvement was proposed in [106], however it still relies on

pre-computation which is not applicable in dynamic environments. Significant algorithms that do

not rely on pre-computation have been introduced, such as Six-Regions [81], TPL [86], TPL++
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Figure 2.3: Example of kNN and RkNN

[107], FINCH [99], InfZone [19, 23] and SLICE [108]. All these algorithms use R-tree and

various ways of pruning to reduce the number of targets that need to be processed which enhances

the query performance.

Figure 2.4: Example of half-space pruning

In TPL [86], TPL++ [107], FINCH [99] and InfZone [19, 23], a half-spacing pruning tech-

nique is used to filter the search space. A perpendicular bisector between two facilities separates

the whole space into two halves. The users who are located in different half spaces are influenced

by different facilities. When performing the RkNN query, more bisectors can be generated to prune

more space and obtain the final result set. An example is illustrated in Fig 2.4. In Fig 2.4, three

users u1 - u3 and three facilities q, a and b are given. Two perpendiculars of all three facilities are

shown using dashed lines. Let Ha:b denotes the half space that contains facility a and Hb:a denotes

the half space that contains facility b. Any user lying in Ha:b considers a as its nearest neighbour
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since the half space is created by drawing a perpendicular line. According to this, the RNN result

of q will be u3 as this user is not in the area of Ha:q and Hb:q. When issuing RkNN, the users which

lie in at least the k intersection half space of different facilities cannot be the result of query q. In

Fig 2.4, assuming k = 2, both u1 and u3 are the RkNN result of q, whereas u2 is not as it belongs

to both Ha:q and Hb:q (the dark shaded area). In other words, a pruning area can be forged during

the half space creation process, which is the Ha:q ∩ Hb:q.

Figure 2.5: Example of Six-region pruning

Another technique, called six-regions [81], can also prune a large space. With six-regions-

based method, the whole space is segregated into six equal areas using three lines at 60◦ and the

center is the query point, such as regions P1 to P6 in Fig 2.5. In each region, the kth nearest

facility fi with respect to q can generate an arc based on the distance dist( fi, q). Any users who

have dist(u, q) > dist( fi, q) cannot be the RkNN result of q. As shown in Fig 2.5, for a query point

q, six facilities f1 to f6 and five users u1 to u5 are given. For each region, the nearest facility fi is

found and arcs are created based on the dist( fi, q). Hence, assuming k = 1, any users in the shaded

area cannot be the RNN of q. Only u4 is in the final result set, because u4 is in section P4 and

dist(u4, q) < dist( f3, q).

It has been proven that the half-space-based approach can prune more space than the six-region

method [86], however the six-region approach is computationally faster. Since the six-region

algorithm always divides the graph into 6 pieces and some space can be further pruned, a novel

method called SLICE, which changes the graph partition size to filter more space, is proposed in

[108]. In this method, the pruning area is calculated based on the vertex q and the subtended angle

between facilities and the partitioned regions. Thus, a facility not only can prune some space in
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Figure 2.6: SLICE using 6 partitions Figure 2.7: SLICE using 12 partitions

which it is located, it can also prune some extra space in other regions. As the partition number

increases, the pruning area becomes larger. For example, in Fig 2.6, the graph is separated into 6

parts. The dotted line indicates the pruning area of f using the six-region method and the shaded

area is the pruning space generated by SLICE which is bigger. Fig 2.7 demonstrates that more

partitions can produce more pruning space for the same facility f .

Several algorithms for the RkNN query on the road network have been proposed in [110, 83,

36, 6]. The most common technique adopted to solve the RkNN query is the Network Voronoi

Diagram (NVD). Different from the application in kNN query, all the generators of NVD will be

the facilities and the query point is chosen from the facility set. Using the NVD index, the RNN

result can easily be found by locating the NVD cell to which the query point belongs. For the

RkNN query, a further retrieval needs to be conducted via reaching the adjacent NVD cells.

2.2.3 Reverse Approximate Nearest Neighbour Query

The RANN query [37, 38] was introduced as the complement of the RkNN query which considers

the relative distance between objects. In the RANN query, the k value is relaxed and users can

be influenced by a cluster of facilities. Hence, the RANN query is able to generate more rational

results than the RkNN query.

The existing RANN algorithm [37] was proposed for queries on Euclidean space. It consists

of three main phases namely pruning, filtering and verification. In the pruning phase, the areas

that cannot contain query answers are identified. The authors proposed a point-based and R*-tree

entry-based pruning method to prune these areas. In the point-based pruning, given a query q, a
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multiplication factor x and an object f , a circle C f centered at c is created with radius r where

r =
x·dist(q, f )

x2−1 and c is on the line passing through q and f such that dist(q, c) > dist( f , c) and

dist(q, c) =
x2·dist(q, f )

x2−1 . It is guaranteed that any object inside this circle is not the query result.

Fig 2.8 illustrates point-based pruning. The shaded area in the circle cannot contain RANNs of q

and therefore can be pruned.

Figure 2.8: Point based pruning Figure 2.9: MBR based pruning

In the second pruning technique, a Minimum Bounding Rectangle (MBR) which represents

a facility R*-tree entry is used. Since we only know that the MBR contains facilities and no

information on the exact location of a facility (as MBR is not opened), four pruning circles using

the four corners of the MBR are created respectively. Because of the features of MBR, no matter

where a facility is located, its pruning circle regarding q will be covered by corner based pruning

circles. Therefore, the intersection area between these four MBR corner-based pruning circles

cannot contain any RANN query result. Fig 2.9 shows an example of the MBR pruning area

which is the shaded area.

In the filtering phase, objects that reside inside the pruning regions are filtered out. The data

space is partitioned into six as in the Six-Region [81] and an interval tree is used to locate the

pruning regions that overlap the partition. Users that are not filtered are stored in a list and verified

in the next phase. A circular boolean range query is used in the verification phase to identify if a

user is RANN of the query, which is based on the pruning circles presented in Fig 2.8.
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2.3 RANN-Related Continuous Queries

In the spatial database, moving queries are very popular since the work in [43]. There are a plethora

of different types of continuous queries research, including kNN query [44, 87, 115, 60, 103, 62,

113, 22], range query [16, 53, 14, 33, 97, 95] and RkNN query [19, 71, 10, 98, 101, 47, 24].

Because our project is a continuous RANN query on road network, in this section, we only focus

on various related continuous RkNN and RANN queries, using both Euclidean and road network

data sets.

2.3.1 Continuous Reverse k Nearest Neighbour Queries

The first continuous RNN query algorithm was proposed in [9]. This work is based on an assump-

tion where the position of all points changes in a linear function of time. To be more specific, the

velocity of all nodes is known in advance. Hence, the coordinates of the moving objects can be

predicted at every time stamp. A Time Parameterized R-tree (TPR) [71] is adopted as the under-

lying index structure. Later, Xia et al. [101] and Kang et al. [48] introduced continuous RNN

query algorithms without any assumption on the pattern of moving objects. These two algorithms

utilise the six-region and half-space approach respectively to prune the searching space. Only

the unpruned area is monitored which can significantly reduce the processing time. Even though

these algorithms do not rely on the assumption of the objects’ movement, they are designed for

Euclidean space and are not applicable in the road network environment.

Commonly, continuous RNN queries continuously update and report the query result to the

server and the process is significantly time-consuming. Cheema et al. [20] proposed a method

called lazy updates which reduces the execution times of the pruning phases. In this study, each

moving object is assigned an area called a safe region [68]. When a moving object is inside its safe

region, the algorithm will not be called and the query results remain unchanged. Similar to the safe

region method, another algorithm named the influence zone [19, 23] was developed. It provides

another perspective on monitoring query results by generating safe areas for query points. Given a

graph G and a query q, an influence zone can be constructed such that all nodes inside this area are

the query result of q. Hence, when a user is moving inside this influence zone of q, it will always

be a query result of q and no update is required. When a user moves into or leaves the influence
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zone of q, the query result of q and its influence zone will be recomputed. The lazy updates and

influence zone methods have only been studied on Euclidean space. However, the concept of safe

zone and influence zone provide a new path for research on queries on the road network data.

Using the notion of the safe zone, Cheema et al. [24] proposed a novel method to solve a

continuous RkNN query on the road network. They use several special nodes in the network graph

called the dead vertex to prune the nodes and construct a safe region for users. Given a node v, a

query point q and a facility point f , v is a dead vertex if the shortest distance from v to f is less

than the shortest distance from v to q. So, v cannot be the RNN result of q. An example is shown

in Fig 2.10 where a query point q, two facility points f1 and f2 and many user points are illustrated.

Point E is a dead vertex, as the distance from E to f1 is 1, while the distance from E to q is 3. So,

E cannot be the query result of q. All other user nodes that are farther from q than the dead vertex

cannot be the RNN result of q. Using this concept, the safe region of each moving object can be

generated.

Figure 2.10: Dead vertex in RkNN query [24] Figure 2.11: Influence zone [19]

Wang et al. [96] present an influence zone method to handle a moving RkNN query on the

road network. For all objects, an influence zone will be generated so that if a user moves inside a

query’s influence zone, it will always have the same result. As shown in the example in Fig 2.11,

there are three facilities q, f1 and f2 with different types of lines indicating their influence zone. If

a user point moves along the solid line, it will always be influenced by q. The movement of the

user will not change the result unless it moves out of the solid line area. A similar influence zone

based algorithm has been studied in other moving queries, such as answering kNN [54].
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Figure 2.12: Prune a single Voronoi cell

2.3.2 Continuous Reverse Approximate Nearest Neighbour Query

In the paper of Hidayat et al. [37], the concept of RANN is proposed and a novel method based

on R*-tree is used to answer the snapshot RANN query on Euclidean space. Subsequently, they

offered another innovative approach to handle a moving RANN query on Euclidean space [38].

This method uses all facilities as generators to create a Voronoi diagram that can divide the whole

graph into small segments called Voronoi cells. If each Voronoi cell can be covered by the pruning

circle produced by the query point and its generator facility, any user belonging to this Voronoi

cell cannot be the result of the query point. Fig 2.12 clarifies the relations between pruning circles

and Voronoi cells. In the graph, there is a query point q and two facilities f and f ′. According to

the RANN definition dist(u, q) ≤ x · NNdist(u, f ), pruning circles can be generated (see as c f :q

and c f ′:q). The Voronoi cell of f ′ which is the shaded area is entirely enclosed by c f ′:q. In other

words, this cell can be pruned and users belonging to this region cannot be the RANN result of q.

In contrast, the pruning circle of f has an intersection with its Voronoi cell. Thus, RANN result

users could exist in this cell so this cell cannot be pruned.

A facility R*-tree is also adopted for the pruning process. As using the pruning circle to prune

all Voronoi cells one by one is very slow, a MBR based pruning method is used to increase pruning

efficiency. For example, in Fig 2.13, given a query point q, a facility f and a Voronoi diagram

uses all facilities as generators. The Voronoi cell of f has several corner points v1 to v5. Using the

location of q and f , a pruning circle can be generated and is centered at c f . We can see in the graph

that if the distance from f to F (the intersection point of a pruning circle and the line between q and
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Figure 2.13: Prune a facility MBR

f ) is greater than the maximum distance among f to its Voronoi cell corners vi, this Voronoi cell

can be pruned. To be more specific, if dist( f , F) > maxdist( f , vi), the Voronoi cell can be pruned.

The value dist( f , F) can be calculated as dist(q, f )
x+1 . So, for any facility f , if dist(q, f )

x+1 > maxdist( f , vi),

the Voronoi cell of f is pruned. Because a R*-tree is used to index all facilities, for each MBR entry

e, we can compute its minimum distance to query q which is denoted as mindist(q, e). For facility

fi in a MBR entry e, dist(q, fi) > mindist(q, e) and the maximum value of maxdist( fi, vi) can be

found and denoted as maxMaxdist(v). Therefore, for an entry, if mindist(q,e)
x+1 > maxMaxdist(v), any

facility fi in the MBR will have dist(q, fi)
x+1 > maxdist( f , vi), which means all facilities in the MBR

can be pruned.

Figure 2.14: Example of user safe zone in RANN

After generating the initial RANN result, a safe zone technique is used to handle the movement

of all users. As shown in Fig 2.14, users could have a different range of safe zone, depending on

their positions. For each user, the safe zone radius is the distance from itself to the nearest pruning

circle like u2 and the shaded circle. If the safe zone intersects intersection with other Voronoi cells,
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only the part belonging to the cell that a user locates in is valid, such as u1 and its shaded area.

If a user moves out of its safe zone, this region will be re-computed and the query result will be

updated. Otherwise, all the queries remain unaffected.

2.4 Ranking Related Queries

In this section, a brief analysis of all the related score function based queries is given. Ranking

related queries has been studied extensively and different research has various settings such as

divergent score function definitions [17, 80, 79, 59, 35, 31].

2.4.1 Top-k Queries

The Top-k query retrieves the k objects that have minimum scores which is computed using a score

function [15, 61, 30, 64]. A wide-ranging survey is given in [42] and clarifies the commonly used

techniques for top-k query processing. The top-k algorithms assume the objects in a source can be

accessed either randomly or orderly. For a different source, the top-k algorithm may not work if

the expected access way is not allowed.

Three well-known algorithms, namely Fagin’s algorithm (FA) [31], threshold algorithm (TA)

[31, 64, 35] and no-random access(NRA) respectively [31], are used to answer top-k queries.

With the FA [31] method, the sources need to support both sorted and random access. It performs

parallel accessing on each source and returns k objects at each source. Then, the scores of all the

returned objects need to be calculated again based on random access on other sources. Finally,

the k objects with the smallest scores are returned. The TA [31, 64, 35] method also accepts

both sorted and random access. It maintains threshold values for each source and terminates the

processing when there are k objects whose scores are at most equal to the threshold values. The

NRA [31] algorithm only supports sorted access as it needs to access each source in an orderly

way to compute two score boundaries, these being the best possible score and worst possible score.
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2.4.2 Spatial Reverse Top-k Queries

Similar to the relation between kNN and RkNN queries, based on the top-k query, reverse top-k

query is introduced. In the past decade, the reverse top-k query has gained significant attention

from many researchers [21, 25, 34, 46, 111, 89, 90, 91, 92]. In these reverse top-k algorithms,

an assumption is made that each facility has a series of attributes such as rating and price and the

values of these attributes are the same for all users. However, if distance is taken into consideration

when creating the score function, the previously mentioned algorithms cannot work. Because the

distance from each user to a facility could be different, depending on their locations.

Figure 2.15: Example of hyperbola pruning

Since our project is in a spatial database, we discuss the spatial reverse top-k queries [109]

which use distance as a dynamic attribute for each facility. In [109], two methods are used to

answer spatial reverse top-k queries. One is based on the half-space pruning technique. Nev-

ertheless, with a score function, the perpendicular bisector used in the half-space pruning tech-

nique is replaced by a half hyperbola line. Given a facility f with d static attributes which is

recorded as fi, the weight of each attribute is recorded as wi and the total weights of all at-

tributes including both static and dynamic ones are 1. For every user and facility pair, a score

function score(u, f ) = w[d + 1] · dist(u, f ) +
∑d

i=1 fi · w[i] is used to calculate the total score.

Because the static attributes are the same with respect to each user, we can use fs to denote the

total static attributes’ value and fs =
∑d

i=1 fi · w[i]. So, the score function can be simplified to

score(u, f ) = w[d + 1] · dist(u, f ) + fs. By using this score function, a hyperbola pruning line

can be generated as shown in Fig 2.15. In this graph, a query point q and a facility f are given.

If qs > fs, the dashed line indicates the pruning area including all shaded areas. If qs = fs, a
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perpendicular bisector of q and f separate the whole area, with the section containing f pruned.

If qs < fs, the solid hyperbola line is generated and the light grey area is pruned by f . The greater

the value of fs than qs, the smaller the pruning area.

Figure 2.16: Example of SLICE pruning

Another method using the SLICE technique is also discussed in [109]. The key point in this

approach is also to find the critical point and distance which can be used to find the pruning

boundary in each sliced region. In the spatial reverse top-k query, using of score function, the

static attributes’ value of facility and query point need to be considered in computing the upper

and lower bound. The final pruning area example is shown in Fig 2.16. With this technique, two

phases are used in the algorithm, namely the filtering phase and the verification phase. In the

filtering phase, the users who are not in the pruning space will be returned for further checking. In

the verification phase, the candidate users are examined one by one to obtain the final result.

2.5 Conclusion

In this chapter, we presented a detailed study for the state-of-the-art algorithms for different kinds

of spatial queries. First, we discussed the kNN and RkNN algorithm because the idea of RANN

comes from RkNN and is needed to perform the kNN according to its definition. Then, we re-

view the existing RANN query in Euclidean space, which can generate a more reasonable result

set than the RkNN query. However, the Euclidean space RANN algorithm is not applicable for

road network data as Euclidean space has no connections between all the vertices. Apart from the

snapshot queries, we also examine the continuous queries algorithms on Euclidean space and road
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networks. Since with road network data, RANN is of great difference when comparing with the

RkNN and RANN on Euclidean space, new methods need to be proposed to continuously monitor

this query. Finally, the ranking related top-k and reverse top-k queries are analyzed comprehen-

sively. Since our project is in spatial databases and trying to relax the value k, we only focus on

the spatial reverse top-k query which adopts the dynamic attribute distance as one criterion when

calculating the final scores.



Chapter 3

Snapshot RANN Queries On Road

Network

3.1 Overview

With the increase of internet speed, more affordable geo-position locator and cheaper bandwidth

cost, online map applications have become an essential part in today’s human life. Many leading

and start up companies provide map or navigation service as one of their main services, such as

Google, Uber, Grab etc. Online map application service allows user to submit various spatial

queries, like shortest path query, nearest neighbor query, range query etc. All those online map

applications use road network distance which give more accurate distance information compared

to the Euclidean distance. As discussed in previous section, the RANN query has been well studied

in Euclidean space. However, the Euclidean algorithm is not applicable on road network data. In

this chapter, we are going to study the Snapshot RANN query on road network.

The rest of the chapter is structured as follows. We present problem definition and our con-

tribution in Section 3.2. Our proposed technique and algorithm are detailed in Section 3.3. An

experimental study is presented in Section 3.4 followed by conclusion in Section 3.5.

29
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3.2 Background Information

In this section, we present the background information of reverse approximate nearest neighbor

(RANN) query. This query was introduced in [37, 38] as a complement of reverse k nearest

neighbor (RkNN) query. Formally, given a set of users U, a set of facilities F, an integer k and a

query facility q, an RkNN query returns every user u ∈ U that considers q as one of its k closest

facilities. Consider the example of Fig. 3.1 and assume k = 2, R2NN of f2 are u1, u2, u3, u4 and

u5 because f2 is among the 2 closest facilities for these users, i.e. R2NN( f2) = {u1, u2, u3, u4, u5}.

Similarly, R2NN( f1) = {u2}, R2NN( f3) = {u1} and R2NN( f4) = {u3, u4, u5}.

Figure 3.1: Example of RkNN

The RkNN query has many applications in decision support, location-based service, profile-

based marketing etc. Consider an example of a supermarket that is launching a promotion deal

as shown in Fig 3.1. The supermarket wants to know which potential customers that are possibly

interested in the deal. Assuming that distance is the only factor that affects customers’ decision, the

supermarket may issue an RkNN query to find all those potential customers. Potential customers

are those who consider the supermarket as one of their k closest supermarkets.

As argued in [37, 38], RkNN query may fail to retrieve all potential customers of the query

issuing supermarket. For example, assume f1 issues a RkNN query with k = 2. Customers u4 and
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u5 are not part of the query answers, since their 2 closest supermarkets are f4 and f2. Hence, based

on RkNN query, u4 and u5 are not potential customers of f1.

However, this may not be true. Assume the distance between u5 to f4, f2 and f1 are 5, 30 and

31 Kms respectively. It is believed that u5 that is travelling 30 Kms to reach f2 normally does not

mind to travel 1 or 2 Kms farther to reach the next closest supermarket (i.e f1). Such customer

may not be captured by RkNN query and thus is not considered as a potential customer of f1. In

such circumstances, RANN query can be used as a complement for RkNN query. RANN query

was firstly studied on Euclidean space [37] (from this point onward, we refer this as Euclidean

RANN). This study was extended in [38] to continuously monitor RANNs of queries.

In the example above, the use of Euclidean RANN query will not be appropriate, since it

uses Euclidean distance which corresponds to the straight-line distance between vertices in the

graph. In the example above, it does not reflect the actual distance between customers and the

supermarket. The actual distance between them is reflected by the shortest path distance on road

network. In this case, RANN query on road network is required to help the supermarket to identify

its potential customers.

To the best of our knowledge, there is no study on RANN query on road network. The existing

Euclidean RANN algorithm works only on Euclidean space. The algorithm uses data indexing,

space pruning, user filtering and verification techniques which are not applicable on road network.

In this chapter, we propose an algorithm to efficiently answer RANN queries on road network.

In our proposed algorithm, road network is represented as a graph that is partitioned into smaller

regions according to a structure called Network Voronoi Diagram [29, 28, 65].

3.2.1 Problem Definition

Similar to Euclidean RANN query, RANN query on road network can be classified into monochro-

matic and bichromatic RANN queries. However, in this chapter we focus on bichromatic version

since it has more applications in real world scenario. In this version, objects are divided into two

categories namely facility and user. Facilities are those that provide services and users are the ones

who use the services. In the rest of this chapter, whenever it is used, RANN query corresponds to

bichromatic RANN query.
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RANN query. Given a graph G representing a road network that contains a set of facilities F and

a set of users U, a query facility q and a value of x > 1, RANN query returns every user u ∈ U for

which dist(u, q) < x× dist(u, f ′) where dist(u, q) denotes the shortest path distance between u and

q and dist(u, f ′) denotes the shortest path distance between u and its closest facility f ′.

Due to the different characteristics between Euclidean distance and network distance, existing

Euclidean RANN algorithm cannot be directly applied for RANN query on road network. Firstly,

Euclidean RANN algorithm uses branch and bound property of R*-tree. In R*-tree, objects are

grouped into rectangles based on their closeness according to their Euclidean distances. Since

Euclidean distance is not relevant in road network environment then branch and bound property

of R*tree cannot be utilized to solve RANN query on road network.

Secondly, Euclidean RANN algorithm uses pruning, filtering and verification techniques that

only work on Euclidean space. For example, RANN algorithm in [37] utilizes pruning circles

generated by facility points to prune all users that cannot be RANN of the query. Consider a query

q and a facility f in Fig 3.2, the red circle centered at C (C f ) is the pruning circle generated by f .

Assume x = 1.5, any user inside C f (e.g., u1) has Euclidean distance to q greater than x times its

Euclidean distance to its nearest facility f . In Euclidean space, it meets dist(u1, q) > x×dist(u1, f )

and hence u1 can be pruned.

Figure 3.2: Pruning circle in Euclidean RANN
algorithm [37, 38]

Figure 3.3: In-applicablity in RANN query on
road network

This pruning rule does not always hold in road network environment. Consider the same

pruning circle C f on a road network shown in Fig 3.3. User u1 is inside C f , however its shortest

path distance to q is smaller than x times its shortest path distance to its nearest facility f . In road
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network environment, it meets dist(u1, q) ≤ x × dist(u1, f ). According to the RANN definition,

u1 is RANN of q and should not be pruned even though it is inside pruning circle C f . Hence, it

is obvious that existing Euclidean RANN pruning technique is not applicable for query on road

network.

3.2.2 Contributions

Below, we summarize our contributions in this research.

• We introduce pruning techniques based on Network Voronoi Diagram to prune road seg-

ments that do not contain query answer.

• We propose an efficient algorithm that utilizes our pruning and verification techniques to

efficiently solve RANN query on road network.

• We conduct an extensive experimental study on real data sets to show the effectiveness of

our techniques and algorithms.

3.3 Answering RANN query on road network

We study RANN query in road network environment. Road network is usually represented as a

graph consist of edges that represent road segments and vertices that represent intersections and

other point of interests (POI). In this chapter, POIs include objects that provide services, such as

restaurant, school, etc (called as facility). RANN query retrieves all users that consider the query

facility as almost as close as their nearest facility.

A naive solution is to check if the shortest path distance of each user to the query point is less

than x times of the shortest path distance to its nearest facility. However, checking the shortest

path distance of every single user to the query point is computationally expensive. We propose our

solution to efficiently find RANNs of a query. Our solution consists of three phases namely pre-

processing, pruning and verification. Details of each phase is presented in the following sections.

From this point onward, any distance between two points a and b, denoted as dist(a, b), refers to

the shortest path distance between vertex a and vertex b in the observed road network graph.
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3.3.1 Pre-processing

In pre-processing phase, we partition the road network graph into small regions, each of which

containing a set of road segments that share one same nearest facility. Such structure is called

Network Voronoi Diagram (NVD) [29, 28, 65]. In Network Voronoi Diagram, the small region

is called Voronoi cell and the common shared facility point inside the cell is called the generator

point.

Given a Voronoi cell V f generated by a facility point f , all users inside V f consider f as their

closest facility. Specifically, for any user u inside V f , dist(u, f ) < dist(u, f ′) where f ′ is any other

facility in the graph. In our solution, due to the presence of Network Voronoi Diagram, a nearest

neighbor query is not required to find the nearest facility of a given user. Consider four facilities

q, f1, f2, f3 in a Network Voronoi Diagram in Fig 3.4. The nearest facility for u1, u3 and u4 is q as

they are inside the Voronoi cell generated by q. Similarly, the nearest facility of u5 is f3. In the rest

of this chapter, we use NVD to refer the discussed Network Voronoi Diagram.

For each Voronoi cell V f generated by facility point f in a NVD, we record the distances

between f to every user inside V f . All users inside V f are stored in a list sorted in descending order

according to their distances to f . The maximum user distance in each Voronoi cell is maintained

and will be used in the pruning phase. Consider the cell generated by f2 (V f2) in Fig. 3.4. In pre-

processing phase, when (V f2) is constructed, distances between u6, u7 and u8 to f2 are recorded.

These users are stored in descending order of their distances to f2. In addition, the maximum

distance is recorded as internal distance of V f2 (details will be discussed in Section 3.3.2).

3.3.2 Pruning

A straightforward approach to find RANNs of a query is to check the distance of every user in

the graph to the query point, and compare the computed distance with its distance to the generator

point of Voronoi cell where it resides. However, this approach takes O(U) where U is the total

number of users in the graph. We present our technique to prune road segments that can not

contain the query answer. Specifically, our technique ignores every Voronoi cells containing road

segments without RANNs of the given query.
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Before we present our Lemma to prune a Voronoi cell, we present the definition of internal

distance.

Definition 3.3.1. Internal distance. Let V f be a Voronoi cell generated by facility point f and U f

be a set of user points inside V f , internal distance of V f (denoted as indist(V f )) is the maximum

distance between user u ∈ U f and f , i.e., indist(V f ) = max(dist(u, f )),∀u ∈ U f .

Consider a NVD consist of a set of facilities and users in Fig. 3.4. Internal distance of V f3

is the distance between f3 and u5 since u5 is the only user in Voronoi cell generated by f3, i.e.,

indist(V f3) = dist(u5, f3). In V f2 , there are three users u6, u7 and u8. Assume dist(u7, f2) = 4,

dist(u6, f2) = 5 and dist(u8, f2) = 10, then indist(V f2) = max(dist(u7, f2), dist(u6, f2), dist(u8, f2)) =

dist(u8, f2) = 10.

Figure 3.4: NVD of four facilities (q, f1, f2, f3)

Recall that internal distance is query independent and is computed in pre-processing stage.

Hereafter, we use Voronoi cell of f to refer the Voronoi cell generated by facility point f . Now we

present our first pruning rule in Lemma 3.3.1.

Lemma 3.3.1. Given a query q, a multiplication factor x > 1 and a Voronoi cell of f V f , all users

inside V f cannot be RANN of q if dist(q, f ) − indist(V f ) > x × indist(V f ), i.e., V f can be pruned.
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Proof: For any user u inside V f , f is its closest facility and dist(u, f ) ≤ indist(V f ). Since

dist(u, q) ≥ dist(q, f ) − indist(V f ) and dist(q, f ) − indist(V f ) > x × indist(V f ), then dist(u, q) ≥

x × dist(u, f ). Hence u cannot be RANN of q and consequently V f can be safely pruned.

Consider Voronoi cell of f2 in Fig. 3.4. Let indist(V f2) = 10, x = 1.5 and dist(q, f2) = 30. All

users in V f2 (u6, u7 and u8) cannot be RANN of q since dist(q, f2) − indist(V f2) = 20 is greater

than x × indist(V f2) = 15. Hence V f2 can be safely pruned.

Lemma 3.3.1 prunes every Voronoi cell that does not contain RANNs of q. However, opening

all Voronoi cells one by one to check if it can be pruned is costly. It takes O(F) where F is the

number of facilities in the graph. We present a technique to prune all remaining Voronoi cells once

a pruned Voronoi cell is encountered. Before we present our second pruning rule, we present the

definition of maximum internal distance.

Definition 3.3.2. Maximum internal distance. Let G be a road network graph containing a set

of facilities (F) and a set of users (U), and NVD(G) be the Network Voronoi Diagram of F in

G, maximum internal distance (maxIndist) of NVD(G) is the biggest internal distance among all

Voronoi cells in NVD(G), i.e., maxIndist = max(indist(V f )),∀ f ∈ F.

Consider the example in Fig. 3.4. Assume indist(Vq), indist(V f1), indist(V f2) and indist(V f3)

are 7, 5, 10 and 7 respectively. The maximum internal distance of this Voronoi diagram is

maxIndist = max(7, 5, 10, 7) = 10. Now, we present our pruning rule in Lemma 3.3.2 to effi-

iciently prune Voronoi cells in that do not contain RANN of q.

Lemma 3.3.2. Given a query q, a multiplication factor x > 1 and Voronoi cell of a facility f ,

if dist(q, f ) − maxIndist > x × maxIndist then Voronoi cell of any other facility f ′ for which

dist(q, f ′) > dist(q, f ) can be pruned.

Proof: Since dist(q, f )−maxIndist > x×maxIndist and dist(q, f ′) > dist(q, f ) then it is obvious

that dist(q, f ′) − maxIndist > x × maxIndist and hence, according to Lemma 3.3.1, V ′f of any

other facility f ′ can be pruned.

Consider f1, f3, f2 in Fig. 3.4 above. Let x = 1.5, dist(q, f1) = 22, dist(q, f3) = 26, and

dist(q, f2) = 28. Voronoi cells are accessed in ascending order of distances between their generator

point to q. For f3, dist(q, f3) − maxIndist = 16 which is greater than x × maxIndist = 15. Hence

any other Voronoi cell V ′f for which dist(q, f ′) > dist(q, f3) can be pruned (i.e. no user in this
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Voronoi cell can be RANN of q). In this example, all remaining Voronoi cells (i.e., V f2) can be

pruned.

We use Lemma 3.3.1 and 3.3.2 to prune the road segments that do not contain RANN of

the query. Algorithm 1 presents the details of the pruning process. The algorithm initializes a

priority queue vQueue with all neighboring facilities of the query facility q (line 2). The entries in

vQueue are sorted according to their distance to q and are de-queued iteratively from the queue. If

the processed entry f is not pruned (line 6), its corresponding Voronoi cell V f is inserted into an

output setA. The algorithm terminates if the stopping condition in Lemma 3.3.2 (line 8) is met or

if vQueue becomes empty.

Algorithm 1: Pruning
1 Input: Road network graph G, corresponding Voronoi diagram V(G) and a query q
2 Output: The set of un-pruned Voronoi cellsA

1: A ← φ

2: insert each neighbor of q in vQueue
3: while vQueue is not empty do
4: de-queue a facility f
5: insert each neighbor of f in vQueue
6: if V f is not pruned then
7: insert V f inA
8: if dist(q, f ) − maxIndist > x × maxIndist then
9: break

10: return A

3.3.3 Verification

Algorithm 1 returns a set of unpruned Voronoi cells. For each unpruned cell v, each user u inside

v is verified whether u is RANN of q. Note that evaluating every single user in all unpruned cells

is highly inefficient. We present our technique in Lemma 3.3.3 to immediately identify if users

inside a Voronoi cell need not to be verified.

Lemma 3.3.3. Given a query q, a multiplication factor x > 1, Voronoi cell of a facility f (V f ) and

a set of users inside V f (U f ), for any user u ∈ U f , if dist(q, f ) − dist(u, f ) ≥ x × dist(u, f ), then

any other user u′ ∈ U f for which dist(u′, f ) ≤ dist(u, f ) cannot be RANN of q.

Proof: Based on triangle inequality, dist(q,f)-dist(u,f) ≥ dist(q, u) and similarly dist(q,f)-dist(u’,f) ≥

dist(q, u′). If dist(u′, f ) ≤ dist(u, f ), then x × dist(u, f ) ≥ x × dist(u′, f ) and it holds dist(q, u′) ≥
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dist(q,f)-dist(u’,f) ≥ dist(q,f)-dist(u,f) ≥ x × dist(u, f ) ≥ x × dist(u′, f ). Hence dist(q, u′) ≥

x × dist(u′, f ) which proves that u′ cannot be RANN of q.

Consider u6, u7 and u8 inside V f2 in Fig. 3.4. Let x = 1.5, dist(q, f2) = 28, dist(u7, f2) = 4,

dist(u6, f2) = 5 and dist(u8, f2) = 10. For u7, dist(q, f2) − dist(u7, f2) = 24 is greater than

x × dist(u7, f2) = 6. In this case, u6 and u8 whose distances to f2 are greater than dist(u7, f2) can

be ignored (they do not need to be verified as RANN of q).

Note that in the preprocessing, users in Voronoi cell of f are stored in descending order of

their distances to f . When a user in V f is verified, the algorithm will skip verifying the rest

of the users in V f if condition in Lemma 3.3.3 is fulfilled. Algorithm 2 present the details of

verification process. For every un-pruned Voronoi cell in unpruned list, a loop is initiated to

iteratively verify every user inside it (line 4). The loop stops if the algorithm encounters a user

for which Lemma 3.3.3 is applied (line 7). Algorithm 2 terminates when un-pruned list becomes

empty.

Algorithm 2: Verification
1 Input: A set of un-pruned Voronoi cellsA and a query q
2 Output: The query result RANN(q)

1: RANN(q)← φ

2: for each cell v ∈ A do
3: f ← generator facility of v
4: for each user u inside v do
5: if dist(q, u) < x × dist(u, f ) then
6: insert u in RANN(q)
7: if dist(q, f ) − dist(u, f ) ≥ x × dist(u, f ) then
8: break
9: return RANN(q)

3.4 Experiments

To the best of our knowledge, there is no algorithm to solve RANN queries on road network.

We consider a naive algorithm (NAIVE) as the competitor for our NVD based algorithm (NVD).

In NAIVE, each user is verified if it is a RANN of the query. If a user u satisfies dist(u, q) ≤

x×dist(u, fu) where fu is the nearest facility to u, then u is a RANN of q. In both algorithms, NVD

is constructed and is specifically used in NAIVE to find the nearest facility of a user. In addition,
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we implement Pruned Highway Labelling (PHL) [8] in both algorithms to get the shortest path

distance between two vertices in the graph.

All algorithms were implemented in C++ and experiments were conducted on Nectar Elastic

Cloud Computing(EC2) with 16 AMD EPYC Processor (with IBPB) and 64GB memory running

Debian Linux. We use real road networks with different network size as shown in Table 3.1 [3].

We randomly choose vertices from the graph and set them as the users. We use 8 sets of POI

extracted from Open Street Map (OSM) and set them as the facilities, as shown in Table 3.2

Table 3.1: Road Networks for snapshot RANN

Name Region No. of Vertices No. of Edges
NW-US Northwestern United States 1,089,933 2,545,544
W-US Western United States 6,262,104 15,119,284

US United States 23,947,347 57,708,624

Table 3.2: Facility Sets for snapshot RANN

Facility type Size (W-US)
Schools 27,613
Parks 20,900

Fast Food 7,547
Post Offices 5,198

Hotels 2,843
Hospitals 2,503

Universities 633
Courthouses 354

We vary the network size, number of facilities, number of users and the value of x (x is a mul-

tiplication factor) and evaluate their effect to the performance of both algorithms. The parameters

used in the experiments are shown in Table 3.3 and the default values are shown in bold. We run

100 queries and report the average CPU cost for every experiment. Each query point is selected

randomly from the facility set.

Table 3.3: Parameters of snapshot RANN

Parameter Ranges
Network size NW-US (1M), W-US (6M), US (23M)

Number of facilities Refer to Table 3.2
Number of users 150K, 200K, 300K, 500K, 1M, 2M

x 1.1, 1.5, 2, 3, 4

Effect of network size. Fig. 3.5 studies the effect of network size on both algorithms. The cost

of both algorithms increases as the network size increases. This is because in higher network size

there are more edges involved in the computation of the shortest path distance between facilities
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and users. In all data sets, our algorithm significantly outperforms the competitor. Its CPU cost is

at least 10 times better than that of NAIVE.
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Figure 3.5: Effect of network size

Effect of number of facilities. In Fig. 3.6, we study the effect of the number of facilities on

both algorithms. The cost of NAIVE is relatively stable on different number of facilities. This

is because NAIVE checks the distance of every user to one facility only (the generator facility

where the user resides) and compare it with the distance to the query point. Similarly, the cost

of NVD is also relatively stable. We believe this is due to the fact the the observed ranges are

quite low (0.3K-27.6K) so that the cost difference is not noticeable on different observed number

of facilities. In all data sets, our algorithm is at least 30 times better than NAIVE.
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Figure 3.6: Effect of number of facilities

Effect of number of users. Fig. 3.7 shows the effect of number of users on both algorithms.

The cost of both algorithms increases with the increase of the number of users. In NAIVE, more
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users in the graph causes the algorithm checks more users to verify if they are RANNs of the

queries. Similarly in NVD, the higher number of users creates more dense Voronoi cells. Thus, in

the verification phase, there are more users in the un-pruned cells that need to be evaluated. Our

algorithm is up to two orders of magnitude better than the competitor and it also scales significantly

better.
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Effect of value of x. Fig. 3.8 studies the effect of x factor on the cost of both algorithms. The cost

of NAIVE is relatively stable on different values of x. This is because NAIVE evaluates every

user in the graph regardless of the value of x. On the other hand, the cost of NVD increases with

the increase of x factor because less Voronoi cells are pruned when the value of x is bigger. The

higher value of x, the higher number of un-pruned cells and hence the higher number of users to

be verified. In all values of x, our algorithm significantly outperforms the competitor.
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3.5 Conclusion

In this project, we propose techniques and algorithm to solve RANN queries on road network. We

show that existing algorithm for RANN queries on Euclidean space is not applicable for queries

on road network. We introduce our NVD based pruning technique to reduce the computation cost

of RANN queries. Our extensive experimental study on real data sets show that our algorithm is

significantly better than the competitor.



Chapter 4

Continuous RANN Queries On Road

Network

4.1 Overview

In this chapter, we are going to discuss the Moving RANN query on road network. As happening

in contemporary world, more and more devices in our daily life have been installed with position

locators such as cellphones, cars, computers, etc. When people use their electronic devices, they

could stay at one spot or keep moving like a person is calling some while he is driving. For the

moving cases, the position locating services offered by network provider will update the users

current coordinates at different timestamp. Since there are billions mobile devices, handling the

geo-location data updating is essential. Hence, the moving queries can play a vital role to improve

the data processing efficiency and moderate the server workload. In this chapter, we study the

continuous RANN query on road network.

This chapter is organised as follows. In section 4.2, we clarify the limitation and definition

of monitoring moving RANN query on road network. In the subsequent section 4.3, two efficient

algorithms are illustrated. The first one adopts a safe zone technique while the second method

uses the influence zone technique. Both algorithms are analysed and examined in the following

experiment evaluation in section 4.4. The final section is the conclusion.

43
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4.2 Background Information

In this section, we introduce some background information of continuous monitoring RANN

queries on road network. RANN queries on Euclidean space have been studied in [37, 38] as

a complement for reverse k nearest neighbour (RkNN) query. Formally, given a set of facilities F,

a set of users U, a query facility q ∈ F and a number x > 1, every user u ∈ U is a RANN of q

if dist(u, q) ≤ x ∗ dist(u, f ), where dist(u, q) and dist(u, f ) are the shortest road network distance

from u to q and from u to f respectively.

Consider four restaurants ( f1 − f4) and five users (u1 − u5) in Fig. 4.1. If R2NN query is issued

from f3, it returns u2 and u3, which means in the context of R2NN, only those two users that are

influenced by f3. However, we argue that u3 is actually influenced by f3 as well, because u3 that

has to travel 82Km to reach its second closest facility ( f2) may be willing to travel slightly farther

(3Km) to reach its next closest facility ( f3). This example shows that influence definition used in

RkNN query only considers relative ordering of the facilities according to their distances to the

user. It ignores the actual distance between facilities and users. RANN queries was introduced

in [37, 38] as the complement of RkNN query by taking into consideration the actual distance

between facilities and users.

Figure 4.1: Example of RkNN and RANN
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To the best of our knowledge, there was no study on continuous RANN queries on road net-

work. Due to the different characteristics between Euclidean space and road network, the existing

algorithm for continuous RANN queries on Euclidean space [37, 38], cannot be directly extended

to road network environment. In this chapter, we propose two novel methods to efficiently monitor

RANN queries on road network. The first method uses safe zone approach whereas the second

method is based on influence zone.

4.2.1 Problem Definition

RANN queries can be classified into monochromatic and bi-chromatic queries. This research

focuses on bi-chromatic RANN queries, as this version has more real-world applications. Never-

theless, our techniques can be easily applied to monochromatic RANN queries. In bi-chromatic

queries setting, objects are categorized into two, namely facility and user. Facilities are the objects

that provide services such as gas stations, restaurants, supermarket etc while users are customers

that use those services. In the rest of this chapter, the RANN query always refer to bi-chromatic

RANN query whenever this terminology is mentioned.

We study continuous RANN queries in road network environment. Road network is repre-

sented as a graph consists of edges and vertices. Edges represent road segments whereas vertices

denote all intersections, dead-ends, users and points of interest (POI). POIs include all facility ob-

jects that provide services. Below we present the formal definition of continuous RANN queries.

Continuous RANN Queries. RANN query returns all users who consider the query facility as

their closest facility or almost as close to the users as their closest facility. Given a graph G

representing road network, a set of facilities F, a set of users U, a set of queries Q and a value of

x > 1, the problem of continuous RANN query is to continuously monitor the query results for

every q ∈ Q when one or more users move along G.

As mentioned in [37, 38], a user u is considered as a RANN of q if dist(u, q) < x ∗ dist(u, f ),

where dist(u, q) is the distance between user u and query facility q and dist(u, f ) is the distance

between user u and its nearest facility f . In road network graph, the distance between two points

a and b is measured as the length of the shortest path from vertex a to vertex b. From this point
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onward, we use dist(a, b) to denote the shortest path distance between vertex a and b on the

corresponding graph.

Due to the characteristics of road network which is inherently different from the Euclidean

space, the existing algorithm [38] for continuous RANN queries on Euclidean space cannot be

applied for queries on road network. For example, pruning and safe zone computation in [38]

are based on Euclidean distance which measures the distance as the straight distance between

two points. This is different from road network distance which uses the shortest path distance

between two vertices in the graph. Hence, the existing algorithm for continuous RANN queries

on Euclidean space is not applicable for continuous RANN queries on road network.

4.2.2 Contributions

Below, we summarize our contributions in this chapter.

• We propose safe zone based method and influence zone based method to efficiently monitor

continuous RANN queries on road network

• We design and implement a comprehensive experiment using real data set to demonstrate

the effectiveness of our algorithms.

4.3 Algorithms

In this section, we present our solution to efficiently monitor RANN queries on road network. Our

solution uses a client-server approach to handle moving users. The clients send queries to the

server and the server computes the initial query results and send them back to the clients. The

server maintains the location of moving users and report to the client if the RANN of its query

change.

A straightforward approach to continuously monitor RANN queries is to recompute them

when there is at least one user that changes its location. However, this approach is costly since

the server has to continuously recompute RANN of all queries. In addition, it will also incur
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considerable communication overhead because the server constantly sends the query results to all

clients.

We propose two methods to significantly reduce the computation and communication costs of

continuous RANN queries. The first method uses a safe zone that is assigned to every moving user.

Safe zone of a user u is a set of road segments such that if u moves along these segments, the RANN

of all queries remain unchanged. The second method is based on influence zone as proposed in

[19]. Influence zone is a set of road segments that is assigned to each query such that if no user

enters or leaves these road segments, the RANN of this query does not change. Both methods

utilize Network Voronoi Diagram to efficiently locate the moving users and to efficiently compute

the safe zone and the influence zone. The NVD is constructed in a pre-processing phase and is

subsequently used to compute the initial query result. Both phases are detailed in the following

sections.

4.3.1 Pre-processing

In this phase, we compute the Network Voronoi Diagram(NVD) of the observed graph to partition

it into smaller sets of road segments. Each set is called a Voronoi cell which has a facility vertex

as the generator. We use V f to denote the Voronoi cell generated by facility vertex f . Computing

NVD is independent from the queries and hence it will not affect the computation cost of our

algorithm to answer the queries.

Given a Voronoi cell V f , all users inside V f consider f as their closest facility. Specifically,

for any user u inside V f , dist(u, f ) < dist(u, f ′) where f ′ is any other facility in the graph.

Fig 4.2 shows an example of Network Voronoi Diagram. It consists of four Voronoi cells namely

Vq,V f1 ,V f2 and V f3 , which are generated by four facilities q, f1, f2 and f3 respectively. Voronoi

cell borders are indicated with two red dashes. The nearest facility for u1, u3 and u4 is q as they

are inside the Voronoi cell generated by q (Vq). Similarly, the nearest facility of u5 is f3. In the rest

of this chapter, we use NVD to denote the observed Network Voronoi Diagram.

For each Voronoi cell V f generated by facility point f , we create a list to record all nodes

inside V f and their distance to f . This list is sorted in descending order according to the distance.

Using this list, we can efficiently locate the nearest facility for each moving user. In addition, it is
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also useful to efficiently check if a given vertex belongs to a Voronoi cell. The maximum distance

within each Voronoi cell is also maintained and will be used in the subsequent pruning phase.

Figure 4.2: NVD of four facilities (q, f1, f2, f3)

Once the NVD is constructed, it is used to efficiently compute the query result and to contin-

uously monitor it. In our experiment, we use algorithms presented in [55] to utilize the NVD to

compute initial RANN of queries. The algorithms consist of pruning and verification phases to

significantly reduce the computation cost. Some pruning rules in [55] are relevant to compute the

safe zone and hence will be re-used here.

4.3.2 Safe zone based method

In this section we present our first solution which is based on safe zone approach. In this method,

a safe zone will be assigned to each user. The safe zone will be updated only when the user leaves

it.

Computing safe zone

The safe zone of a user consists of a set of road segments such that if the user moves on those

segments, it does not affect the result of all queries. A straight forward approach to compute the

safe zone for a user u is to perform road network expansion and check if each road segment on the
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graph is part of the safe zone of u. A road segment is considered to be part of the safe zone of u if

any move from u along this segment does not change the result of the queries.

Performing network expansion for each single user is computationally expensive. If the cost

to check whether a road segment is part of a safe zone is C, then the worst case complexity

for computing the safe zone is O(UQEC), where U is total users, E is the number of edges in

the observed graph and Q is the number of queries in the system. This is not to mention the

cost to update the safe zone if a new query is added to the system. We propose our techniques to

significantly reduce the cost of computing the safe zone for all users. The techniques are presented

below.

Lemma 4.3.1. Given a query q, a user u with its nearest facility f and a Voronoi cell generated

by f (V f ), if V f can be pruned, then V f is the safe zone of u with respect to q.

Proof: If V f can be pruned (according to the pruning rule in [55]), then all users inside V f are

non-result users, i.e. they are not RANNs of q. Any move from any of these non-result users u

will not make u to be the query result of q, as long as u stays in V f . Therefore, V f is the safe zone

of u with respect to query q.

Consider an example in Fig 4.2. The shaded area is the Voronoi cell for the facility f2 and it

can be pruned according to the pruning rule in [55] . Users u6, u7 and u8 can move to any position

in this area and the result of query q remains the same. The shaded area is the safe zone for u6, u7

and u8 with respect to query q.

Given a user u, we use NVD to locate the cell that contains it and use Lemma 1 in [55] to check

if the cell is pruned. Both operations can be done in O(1). With Lemma 4.3.1, when a user inside

a pruned cell is moving, as long as it stays inside its Voronoi cell, we do not need to recompute its

safe zone. This will significantly reduce the monitoring cost since computing safe zone requires

the algorithm to perform road network expansion which is computationally expensive.

Lemma 4.3.1 defines the safe zone for all users inside pruned cells. Next, we present our

technique to compute the safe zone for users that do not reside in pruned cells. A straightforward

approach to get the safe zone for such user is to access all road segments surrounding it and check

if they are safe for u. A road segment is an edge on road network graph which connects two

vertices. We use l(a, b) to denote a road segment that is represented as an edge connecting vertex

a and vertex b on the observed road network graph. Given a user u and a road segment l(a, b),
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l(a, b) is safe for u with respect to a query q if u moves along between a and b and the RANN of q

remains the same.

A simple method to check if a road segment l(a, b) is safe with respect to a query q is to do

trial and error where we repeatedly slide a user point u between a and b and check if the result

of q changes. However, this method is considerably expensive as we have to do infinite number

of trials due to infinite number of possible points between a and b, We present Lemma 4.3.2 and

Lemma 4.3.3 to efficiently check if a road segment is safe with respect to a given query.

Lemma 4.3.2. Given a query q, a facility point f , a road segment l(a, b) where a and b consider

f as their nearest facility, if a and b are RANNs of q, any point u on l(a, b) is the RANN of q and

therefore l(a, b) is a safe road segment with respect to q

Proof: If a and b are RANN of q, dist(a, q) ≤ x ·dist(a, f ) and dist(b, q) ≤ x ·dist(b, f ). Since u is

on l(a, b), the shortest path from u to q and from u to f must go through a or b. If it passes through

a, then dist(u, q) = dist(u, a) + dist(a, q) and dist(u, f ) = dist(u, a) + dist(a, f ). Since x > 1 and a

is RANN of q, then dist(u, a) + dist(a, q) ≤ x · (dist(u, a) + dist(a, f )) which completes the proof.

If the shortest path passes through b, it can be proved in the similar way

Consider a query q and a facility f in Fig 4.3. The area that can be pruned by f is shown

in dotted lines, i.e any user on these road segments cannot be RANN of q. Two vertices a and b

on l(a, b) are both RANNs of q. According to Lemma 4.3.2, any user on l(a, b) is a RANN of q.

Lemma 4.3.2 defines if a road segment is safe if both end vertices of the segment are RANNs of

q. Next, we present Lemma 4.3.3 to check if a road segment is safe if both end vertices of the

segment are not RANNs of the query.

Lemma 4.3.3. Given a query q, a facility point f , a road segment l(a, b) where a and b consider f

as their nearest facility, if a and b are not RANNs of q and it holds dist(a, f ) = dist(a, b)+dist(b, f )

or dist(b, f ) = dist(b, a) + dist(a, f ), any user u on l(a, b) is not a RANN of q and hence l(a, b) is

a safe road segment with respect to q.

Proof: If a and b are not RANNs of q, then dist(a, q) > x · dist(a, f ) and dist(b, q) > x · dist(b, f ).

Since u on l(a, b), the shortest path from u to q and from u to f must go through a or b. If it passes

through a, then dist(u, q) > dist(u, a) + dist(a, q) and dist(u, f ) = dist(u, a) + dist(a, f ). Since

x > 1 and a is not a RANN of q, then dist(u, a) + dist(a, q) > x · (dist(u, a) + dist(a, f )). It shows
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that u is not a RANN of q. If the shortest path passes through b, the lemma can be proved in the

same way.

Lemma 4.3.2 and 4.3.3 check if a road segment is safe with respect to a query q. Given a

query q and a road segment l(a, b), we check if a and b are either both RANNs or both are not

RANNs of q, and accordingly we can define if l(a, b) is a safe road segment with respect to q. To

better improve the efficiency of the method, we present Lemma 4.3.4 to quickly check if both end

vertices of a road segment are RANNs or not RANNs of a given query.

Lemma 4.3.4. Given a query point q, a facility point f and two non-facility vertices a and b which

consider f as their nearest facility, if a is RANN of q and dist(b, f ) = dist(b, a) + dist(a, f ), then b

is RANN of q. Similarly, if a is not RANN of q and dist(b, f ) = dist(b, a) + dist(a, f ), then b is not

RANN of q.

Proof: If a is RANN of q, dist(a, q) ≤ x · dist(a, f ). Since dist(b, f ) = dist(b, a) + dist(a, f ),

then dist(a, q) + dist(a, b) ≤ x · (dist(b, a) + dist(a, f )) or dist(a, q) + dist(a, b) ≤ x · dist(b, f )

because x > 1. According to the triangle inequality, dist(b, q) < dist(a, b) + dist(a, q). Hence,

dist(b, q) < x · dist(b, f ), which proves that b is also a RANN of q. In the similar way, we can

prove that if a is not a RANN of q and dist(a, f ) = dist(a, b) + dist(b, f ), then b is not a RANN of

q either.

An example is shown in Fig 4.4. Given a query point q, a facility f and two users u1 and

u2, both u1 and u2 consider f as their nearest facility. The dotted lines show the area that can be

pruned by f , i.e. any user on these lines cannot be RANN of q. For u1, dist(u1, q) < x · dist(u1, f )

and therefore it is a RANN of q. Since it also holds that dist(u2, f ) = dist(u2, u1)+dist(u1, f ), then

u2 is a RANN of q as well. However, for the other two users u3 and u4, dist(u3, f ) = dist(u3,C) +

dist(C, f ) and dist(u4, f ) = dist(u4,M) + dist(M, f ). In this example, even though u4 is RANN of

q, we cannot guarantee that u3 is also RANN of q.

Lemma 4.3.1, 4.3.2 and 4.3.4 define the safe zone for a user with respect to a given query. Let

U be the number of moving users in the system and C be the cost to compute a user’s safe zone

with respect to a query, it requires O(UC) to compute the safe zone for all users in the system. Our

observation shows that many users can actually share the same safe zone on certain conditions.
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Figure 4.3: Lemma 4.3.2 Figure 4.4: Lemma 4.3.4

We formally present this observation in Lemma 4.3.5 to significantly reduce the cost of computing

safe zone for all users in the system.

Lemma 4.3.5. Given a query point q and two users u1 and u2 inside the Voronoi cell of facility f

(V f ), if both u1 and u2 are RANNs of q or both u1 and u2 are not RANNs of q, then u1 and u2 have

a same safe zone with respect to q.

Proof: Let P f be a set of road segments in V f that can be pruned by f and Au be the safe zone

of u containing a set of safe road segments for u in V f . If u1 and u2 are both RANNs of q, then

u1 and u2 are not in P f . Hence, the safe zone of u1 and u2 are Au1 = Au2 = V f − P f . On the

other side, if u1 and u2 are not RANNs of q then both u1 and u2 are in P f and their safe zone are

Au1 = Au2 = P f .

Given the NVD of a graph and a query q, Lemma 4.3.1 - 4.3.4 can be used to compute the

safe zone of a user u with respect to q. The details of how these Lemmas are used to get the safe

zone is presented in Algorithm 3. The algorithm initializes an empty safe zone for u and gets the

Voronoi cell (V f ) that contains u. It uses NVD index built in pre-processing phase to efficiently

locate the cell. It then uses internal distance [55] to check if V f is pruned. Note that internal

distance is query independent and is computed together with NVD in the pre-processing phase. If

V f is pruned then V f is returned as the safe zone of u (line 3).

If V f is not pruned, the algorithm inserts u in a stack S . All connected vertices to u are

then retrieved and those which are inside V f are inserted to S . For each connected vertex v, the

algorithm checks if e and v are either both RANNs of q or both are not RANNs of q (line 10 and

13). Then it checks if the road segment that connects e and v (l(e, v)) is safe with respect to q. If it
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is safe, road segment l(e, v) is added to the safe zone of u (line 12). The algorithm stops when S

becomes empty.

Algorithm 3: getSafeZone(u,q)
1 Input: NVD of given graph, a query q, a user u and its closest facility f
2 Output: safe zone of u with respect to q (Au:q)

1: Au:q ← φ

2: if V f is pruned then
3: Au:q ← V f . Lemma 4.3.1
4: else
5: insert u in a stack S
6: while S is not empty do
7: pop an entry e
8: for each vertex (v) connected to e do
9: if v is inside V f then

10: if e and v are RANNs of q then . Lemma 4.3.4
11: if l(e, v) is safe then . Lemma 4.3.2
12: insert l(e, v) toAu:q
13: else if e and v are not RANNs of q then . Lemma 4.3.4
14: if l(e, v) is safe then . Lemma 4.3.3
15: insert l(e, v) toAu:q
16: insert v in S
17: return Au:q

Algorithm 3 summarizes our technique to compute a safe zone for a moving user. Now, we

are ready to present our algorithms to continuously monitor the RANNs of all queries. First, we

show how to handle a new issued query (section 2). Then, we present our algorithm to handle the

case when a new user is added to the system (Section 2). In Section 2, we present our algorithm

to handle the case when a query or a user is removed from the system. Finally, we present our

algorithm to handle the case when one or more users change their locations (Section 2).

Add query

We use the term in [38], where a facility f is marked insignificant for a query q if all nodes in the

Voronoi cell of f are not the RANN of q. Otherwise, this facility is called a significant facility for

q. For each facility f , a list called siglist f will be maintained to record all the query points that

consider f as a significant facility. In addition, for each user we also maintain a list called qlist to

record all queries for which the user is their RANN. Specifically, for each user u, qlistu stores all

queries that have u as one of their RANNs.
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We use a map to store all computed safe zone in the system. The key for entries in this map is a

pair (q, f ) where q and f are the query and facility numbers respectively. The value that is mapped

to the key is the safe zone for corresponding query and facility. Given a query q and a facility f ,

an entry of the map (q, f )−Z(q, f ) is a key-value pair that maps the key (q, f ) to the safe zone Z(q, f ).

We use (q, f ) as the key to quickly find the safe zone for all users inside V f that become RANNs

of q. We denote the map that store these entries as safemap. With safemap, Lemma 4.3.5 can be

implemented efficiently.

Algorithm 4 details our technique to handle a new issued query. When a new query point

q is added into the system, the algorithm will compute its initial RANN set. For each user u in

this set, q is added to qlistu. The algorithm locates the nearest facility ( f ) to u and insert q into

siglist f . It then checks if key (q, f ) exists in the sa f emap. If the key exists, its value Z(q, f ) is

assigned to be the safe zone of u. Otherwise, the key (q, f ) is created and Z(q, f ) is computed using

Algorithm 4.3.1. The pair of (q, f ) − Z(q, f ) is then added into the safemap.

Algorithm 4: addQuery(q)
1 Input: NVD of given graph and a query q
2 Output: updated sa f emap

1: compute RANNq

2: for each u ∈ RANNq do
3: add q to qlistu
4: get nearest facility f to u
5: add q to siglist f

6: if (q, f ) ∈ sa f emap then
7: Au:q ← Z(q, f ) . Lemma 4.3.5
8: else
9: Z(q, f ) ← getS a f eZone(u, q) . Alg 3

10: insert (q, f ) − Z(q, f ) to sa f emap

Add user

Algorithm 5 presents our technique to handle the case when a new user is added to the system.

When a user u is added, the algorithm uses NVD to find its nearest facility f . It then opens siglist f

to check if for each q ∈ siglist f , u is a RANN of q. If u is a RANN of q, the algorithm checks if

Z(q, f ) is in the safemap. If it is, Z(q, f ) is assigned as the safe zone of u, otherwise it calls Algorithm 3

to compute the safe zone of u and insert it in the sa f emap for future reference.
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If u is not a RANN of q, the Voronoi cell of f (V f ) is assigned as the safe zone of u. Likewise,

if siglist f is empty, all queries in the system consider f as insignificant facility and hence V f can

be set as the safe zone of u.

Algorithm 5: AddUser(u)
1 Input: NVD of given graph and a user u
2 Output: updated sa f emap

1: get nearest facility f to u
2: if siglist f , φ then
3: for each q ∈ siglist f do
4: if q is RANN of q then
5: if (q, f ) < sa f emap then
6: Z(q, f ) = Au:q ← getS a f eZone(u, q)
7: insert (q, f ) − Z(q, f ) to sa f emap
8: else
9: Au:q ← Z(q, f )

10: else
11: Au:q ← V f

12: else
13: Au:q ← V f

Delete a query or a user

When a query q is deleted, the algorithm checks the siglist of each facility and remove q from

the list. It also iterates over each user u and deletes q from qlistu. Finally, all safe zones in the

sa f emap that involves q will be deleted. When a user u is deleted from the system, the algorithm

opens qlistu and for each q in this list, u will be removed from RANNq.

Handling user movement

If a user u stays in its safe zone, its movement will not affect the query result. In our solution, u

only sends its location to the server when it moves out of its safe zone. When this happens, the

algorithms will first deletes u from the system, then it calls addUser(u) to add it back with its new

location.
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4.3.3 Influence zone based method

In this section, we present our second approach to continuously monitor RANN queries. This

approach is based on influence zone presented in [19]. Given a query q, influence zone of q is

a set of road segments such that every user on this segments is guaranteed to be a RANN of q.

We can continuously monitor RANNs of a query by checking its influence zone. The RANN of a

query q will not change if there is no user enters or leaves the influence zone of q. The location of

facilities in the data set does not change, and hence the influence zone of queries also remain the

same. Once influence zone of a query is set, there is no requirement to update it regardless of the

movement of the users.

Computing influence zone

The influence zone of a query q (denoted as Bq) can be computed with the similar method as used

in computing safe zone. Given a query q, we create a list (unprunedq) to store all facilities whose

Voronoi cell cannot be pruned (refer to pruning rule in [55]). For each facility f in unprunedq,

we perform road network expansion started from f . Using Lemma 4.3.2, each road segment

connected to f is iteratively checked if it can be inserted to Bq. The steps to compute influence

zone of a query are presented in Algorithm 6.

During road network expansion, it may happen that only some parts of a road segment that

can be inserted to the influence zone. In this case, we still insert the whole road segment together

with the length of the parts that belong to the influence zone. Consider an example of a query q,

a road segment l(a, b) and a point p on l(a, b). If only segment l(a, p) that belongs to Bq, then we

insert l(a, b) together with dist(a, p) to Bq. This way, when a user u moves on l(a, b), we check

dist(a, u) and compare it with dist(a, p) to verify if u is inside the Bq.

Add query or user

An influence zone is computed and assigned once during the life time of a query. Adding a new

query to the system will not affect existing queries’ influence zone. When a new query q is added
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Algorithm 6: getInfluenceZone(q)
1 Input: NVD of given graph and a query q
2 Output: influence zone of q Bq

1: Bq ← φ

2: for each facility f ∈ unprunedq do
3: insert f in a stack S
4: while S is not empty do
5: pop an entry e
6: for each user vertex (v) connected to e do
7: if v consider f as its nearest facility then
8: if q ∈ qliste and q ∈ qlistv then . Lemma 4.3.2
9: insert l(e, v) to Bq

10: else if q ∈ qliste and q < qlistv then
11: let l(e, p) be the segment belongs to Bq

12: insert l(e, v) to Bq and store dist(e, p)
13: insert v to S
14: return Bq

into the system, its RANNs are computed and a list unprunedq is populated. Then, Algorithm 6 is

called to compute the influence zone of q.

When a new user u is added, the algorithm locates the closest facility f to u. It then opens

siglist f and for each query q in siglist f , it checks if u is inside the influence zone of q (Bq). If u is

inside Bq, RANNq will be updated to include u.

Delete query or user

Deleting a query or a user in the influence zone based method is similar to the one in the safe zone

based method. When a query q is deleted from the system, qlist of each user that contains q will

be updated to remove q. Similarly, q will be deleted from siglist of facilities and the influence

zone of q will also be deleted. When a user u is deleted, the algorithm will iterate over RANN set

of all queries and remove u from them.

Handling user movement

If a user stays in the influence zone of a query q, its movement will not change the RANN of q. An

update to RANN of q is only required when there is a user that enters or leaves the influence zone

of q (Bq). When a user u leaves Bq, the algorithm will remove u from RANNq. It then checks if u

enters the influence zone of other queries. If it does, RANN set of the corresponding queries will
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be updated to include u. The influence zone of all queries remain unchanged during their lifetime

in the system.

4.4 Experiment

To the best of our knowledge, there was no work on continuous RANN queries on road net-

work. We use naive algorithm (NAIVE) as the competitor for our safe zone based algorithm

(SAFEZONE) and influence zone based algorithm (INFZONE). In NAIVE, at each timestamp,

RANN of all queries are re-computed. Any addition or deletion of query or user will also call

the algorithm to update the RANN of affected queries. In SAFEZONE and INFZONE, NVD

is constructed and is used to efficiently locate the nearest facility to a given user. We implement

Pruned Highway Labelling (PHL) [8] in both methods to get the shortest path distance between

two vertices in the graph.

Table 4.1: Road Networks for moving RANN

Name Region No. of Vertices No. of Edges
ME-US Maine United States 187,315 412,352

COL-US Colorado United States 435,666 1,042,400
NW-US Northwestern United States 1,089,933 2,545,544

Table 4.2: Facility Sets for moving RANN

Facility type Size (COL-US)
Parks 1,392

Fast Foods 717
Cafes 381
Banks 331
Hotels 252

Post Offices 186
Hospitals 148

Information 67

All algorithms are implemented in C++ running on Debian Linux on Nectar Elastic Cloud

Computing (EC2) with 16 AMD EPYC processor (with IBPB) and 64 GB memory. The real

dataset with different data size are shown in Table 4.1 [3]. Users are selected randomly from

the graph. In addition, ten sets of POIs extracted from Open Street Map (OSM) are used as the

facilities as shown in Table 4.2.
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Table 4.3: Parameters of moving RANN

Parameter Ranges

Network size ME-US (190K), COL-US (450K), NW-US (1M)

Number of facilities Refer to Table 4.2

Number of users 5K, 10K, 50K, 100K, 150K

Number of moving users (% of users) 20, 40, 60, 80, 100

Speed (km/h) 40, 60, 80, 100, 120

x (a multiplication factor) 1.1, 1.5, 2, 3, 4

We vary the network size, number of facilities, number of users, the value of x (x is a multi-

plication factor), number of moving users and the speed of moving users and evaluate their effects

on the performance of all algorithms. The parameters used in this experiment are shown in Table

4.3, with all default values set to bold. In each experiment unit, 100 query points are randomly

selected from the facility set.

Effect of network size. Fig 4.5 studies the effect of network size on all algorithms. The initial

cost of SAFEZONE and INFZONE are higher than the initial cost of NAIVE because both

algorithm compute RANN of queries as well as the initial safe zone of all users or influence zone

of all queries. On the other hand, NAIVE only computes the RANN of queries. The CPU cost

of continuous RANN monitoring on our algorithms are at least 15 times lower than the CPU cost

of NAIVE on all network size. This shows the effectiveness of both safe zone and influence zone

methods. From this point onward, we only display the monitoring cost of all algorithms.

Figure 4.5: Effect of network size
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Effect of number of facilities. In Fig 4.6, we study the effect of the number of facilities on all

algorithms. Both SAFEZONE and INFZONE significantly outperform NAIVE. The monitoring

cost of our algorithms is up to 45 times better than that on NAIVE. The monitoring cost of all

algorithms are relatively stable on all facility size.

Figure 4.6: Effect of number of facilities

Effect of number of users. Fig 4.7 shows the effect of the number of users on the performance of

all algorithms. The monitoring cost of all three algorithms increases as the increase of the number

of users. In NAIVE, the higher number of users causes the algorithm to perform more checks

to verify if the users are RANN of queries at each timestamp. Similarly, in SAFEZONE and

INFZONE, the higher number of users leads to the more dense users in each Voronoi cell which

will increase the cost of continuous monitoring. Our algorithm is up to two orders of magnitude

better than the competitor and it also scales significantly better.
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Figure 4.7: Effect of number of users

Effect of mobility. Fig 4.8 studies the effect of mobility, which corresponds to the percentage

of the users that move between two timestamps. For example, 80 percent mobility refer to the

data set where 80 percent of the total users change their locations between two timestamps. As

expected, the monitoring cost of all algorithms increases with the increase of users’ mobility.

In NAIVE, the higher number of users that are moving causes the higher number of RANN

verification at each time stamp. In SAFEZONE and INFZONE, the more moving users causes

the more users leaving their safe zone or the queries’ influence zone. Both SAFEZONE and

INFZONE significantly outperform NAIVE.

Figure 4.8: Effect of mobility

Effect of users’ speed. Fig 4.9 demonstrates the effect of users’ speed on the monitoring cost

of all algorithms. When users move faster, they will leave the safe zone and the influence zone
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faster and will cause more frequent updates in the system. Hence, the cost of SAFEZONE and

INFZONE increases with the increase of users’ speed. Nevertheless, the change of speed does not

affect the cost of NAIVE, as this method computes RANN of queries at each timestamp regardless

of the users’ speed. Both our algorithms are significantly better than NAIVE.

Figure 4.9: Effect of users’ speed

Effect of x value. Fig 4.10 studies the effect of x on the monitoring cost of all algorithms. When

the value of x increases, the size of the pruning area of a facility is getting smaller. It causes the less

number of Voronoi cells that can be pruned. For SAFEZONE and INFZONE, increasing x value

causes the increase of the number of significant facilities to be recorded for each query. During the

monitoring of RANN queries, there will be more operation to check the users inside the Voronoi

cell of those significant facilities. In all values of x, our algorithm significantly outperforms the

competitor.

Figure 4.10: Effect of x
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4.5 Conclusion

In this chapter, we propose techniques to efficiently monitor RANN of queries on road network.

We also show that existing algorithms cannot be extended for continuous RANN queries on road

network. We devise two algorithms based on the safe zone and influence zone concepts. Our

extensive experiments on real data set show the effectiveness of our algorithms.
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Chapter 5

Snapshot SRAT Queries

5.1 Overview

With the rapid development of technology, an increasing number of amenities are emerging to

make life more convenient and enjoyable. With a reverse k nearest neighbour (RkNN) query

[12, 84], all the nearby users that can be influenced by a query facility q will be returned. All

the returned users consider the query facility q to be an important facility. Hence, this query

can also be used to find the appropriate location for a new facility. Nevertheless, in RkNN, the

concept of importance is only decided by the distance between users and facilities. In general,

when people choose to access a facility, distance is not always the most significant criteria. Some

other conditions like price, food rating, environment rating and so forth can also be meaningful.

In this context, a spatial reverse top-k (SRTk) query is more advantageous. By using a given

linear scoring function, the SRTk query returns users who consider the query q as one of the top-k

facilities.

For example, given a person who is searching for restaurants, the factors that could influence

his final decision could be the distance between his location and the restaurants, the price and

the quality of the food. With these criteria, a top-k query can be issued and a scoring function

which consists of these conditions can be used. The k restaurants whose scores are smaller than

other objects will be returned as the result. If facility q is in the top-k result set, this person is

influenced by q. Fig 5.1 illustrates an example of the SRTk query. In this graph, there are three

65
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Figure 5.1: Example of SRTk query

restaurant facilities f1 to f3 and three users u1 to u3. Each facility has a price attribute. The

distance between facilities and users is shown near the solid line. Assume the weight for price

and distance are the same and denoted as w[price] = w[distance] = 0.5. Next, a score function

score(u, f ) = w[distance] × distance + w[price] × price can be used to calculate the scores for

all users with respect to different facilities. For instance, score(u1, f1) = 4 × 0.5 + 4 × 0.5 = 4,

score(u1, f2) = 12 × 0.5 + 2 × 0.5 = 7, score(u1, f3) = 365 × 0.5 + 40 × 0.5 = 202.5. Hence, the

top-1 facility for u1 is f1. Using a similar process, the top-k facilities for u1, u2 and u3 can also be

found.

After obtaining the top-k results, it is easy to identify the users who can be influenced by the

same facility which is the SRTk query result. Referring to Fig 5.1, assuming k = 1, the SRT1 query

results are srtop − 1( f1) = {u1, u2}, srtop − 1( f2) = {} and srtop − 1( f3) = {u2, u3}. There is an

interesting phenomenon in the SRT1 result. The score of u1 regarding f1 and f2 are 4 and 7 which

are very close in value, whereas the SRT1 query result of f2 does not have u1. If k = 2, the SRT2

query results are srtop − 2( f1) = {u1, u2, u3}, srtop − 2( f2) = {u1} and srtop − 2( f3) = {u2, u3}. In

this case, u3 can be influenced by both f1 and f3. Nevertheless, there is a huge gap in the scores of

u3 with respect to f1 and f3 i.e. score(u3, f1) = 185 and score(u3, f3) = 21.5. This means result f1

is redundant for u3 as this user will not consider f1 if f3 is much better.

Usually, people prefer to go to the local main street or downtown where there is a cluster of

facilities. Thus, we argue that all the restaurants that have similar scores could all be of interest

to a user and the significantly unacceptable results should be abandoned. Therefore, we propose

a spatial reverse approximate top (SRAT) query that relaxes the definition of influence, where a

parameter x (called the x factor in this thesis) is adopted. This query considers the relative gap
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between the scores of users and facilities to obtain the result. To be more specific, a SRAT query

returns every user u for which the query facility is in his approximate top facility set.

This chapter is organised as follows. In section 5.2, we analyse the limitations of SRTk query

and formally define the SRAT query. In section 5.3, a novel algorithm is proposed to handle the

SRAT query, with an optimised pruning phase and verification phase. A detailed experimental

evaluation is illustrated in section 5.4. The final section presents the conclusion.

5.2 Background Information

In this section, the motivation for conducting this project is discussed. A formal definition of the

SRAT query is given, based on a different definition of influence.

5.2.1 Limitations of the SRTk query and RANN query

To the best of our knowledge, this is the first time the SRAT query has been proposed and studied.

Thus, no algorithm is able to solve this query directly. Several similar queries have been studied

such as the SRTk query and RANN query. We examine the unique features of the SRAT query and

discuss why the solutions for SRTk query and RANN query cannot be used to answer the SRAT

query.

Figure 5.2: Hyperbola pruning technique limitation

In terms of the SRTk query, two approaches are used to prune some space to improve the

query performance. One is hyperbola-based pruning and the other is SLICE region-based pruning.



68 CHAPTER 5. SNAPSHOT SRAT QUERIES

However, according to our observations, when changing the k value to factor x, the pruning area

will be changed to a closed curve. Unlike the SRTk query pruning techniques that can prune most

of the space, the pruning for the SRAT query is much more challenging. Considering the example

shown in Fig 5.2, the dashed line shows the pruning area in the SRTk query. All users belonging

to the region in which facility f is located can be pruned. By using the definition of the SRAT

query, the dark shaded area can be pruned by f , which is a closed curve but not a circle. In the

SRAT query, the area that a facility can prune is much smaller than the SRTk query.

Figure 5.3: SLICE pruning technique limitation

When using the SLICE method, the graph is divided into small regions and more space can be

pruned. As we can see from Fig 5.3, any user in the light shaded area can be pruned in the SRTk

query. However, only a small area can be pruned using the SRAT query.

Because the RANN query only considers the distance between users and facilities, it can gen-

erate a pruning circle to decrease the searching space. Since the SRAT query is based on a score

function and the pruning area of a facility f is not a circle, the RANN algorithm query cannot be

used directly and the computation process of the SRAT query is far more complex. The RANN

algorithm uses a R*-tree and a Voronoi diagram to index all the facilities. Based on the mini-

mum distance from query q to a MBR and the maximum distance from a facility to its Voronoi

cell corner points, many Voronoi cells can be pruned straightforwardly. Regarding the Voronoi

diagram feature, all the users in a Voronoi cell consider this cell’s generator facility as the nearest

neighbour. However, in the SRAT query, not only distance is taken into consideration, but also

other attributes, which requires the top-1 facility. So, the users in a Voronoi cell may not consider

the generator facility as the top-1 facility. In short, the existing RANN method also has issues in

dealing with the SRAT query.
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5.2.2 Problem Definition

The SRAT query can be classified into monochromatic and bichromatic SRAT queries. In this

chapter, we focus on the bichromatic version since it has more applications in real-world scenarios.

In this version, objects consists of two categories of points, namely facility and user. Facilities are

amenities or places that offer services, while users are the consumers who would like to use these

services. In the rest of this chapter, the SRAT query refers to a bichromatic SRAT query.

Given a set of users U and a set of facilities F, each facility f ∈ F has d attributes, i.e., price,

ranking, and two coordinates to mark its location. Since the d attributes of each facility is same for

every user, they can be called static attributes and the i-th dimension is noted as f [i]. The distance

between a user u ∈ U and a facility f ∈ F is denoted as dist(u, f ). Because every user could have

various positions, the distance to the same facility will be different. Thus, distance is recorded as

a dynamic attribute of a facility. All the attribute values are normalised to within the range from 0

to 1. Furthermore, for each attribute, a weight value is given and denoted as w[i]. Assuming the

sum of all dynamic and static attributes weight is 1, we have
∑d+1

i=1 w[i] = 1,w[i] ≥ 0. The score

function with d + 1 dimensions for a user u with respect to f can be shown as follows.

score(u, f ) = w[d + 1] · dist(u, f ) +

d∑
i=1

w[i] · f [i] (5.1)

.

Definition 5.2.1. Spatial Approximate Top Facility. Let Top1score(u) denote the score of the

top-1 facility regarding u. Given a value of x > 1, a facility f is called a spatial approximate top

facility of u if score(u, f ) < x × Top1score(u).

Spatial Reverse Approximate Top (SRAT) query. Given a value of x > 1 and a query point q, a

SRAT query returns every user u for which score(u, q) < x×Top1score(u), i.e., returns every user

u who considers q as its spatial approximate top facility. The set of SRAT results for a query q is

denoted as S RATx(q). Note that a SRAT query is the same as a SRT1 query if x = 1. For instance,

in Fig 5.1, assuming x = 2, the SRAT of f2 are u1 and u2, i.e., S RAT2( f2) = {u1, u2}. Similarly,

S RAT2( f1) = {u1, u2} and S RAT2( f3) = {u2, u3}.
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Due to the particular characteristics of the SRAT query, the existing RANN and SRTk al-

gorithms cannot be applied directly. RANN algorithms are only based on distance, while many

other attributes of the facilities also need to be considered. For SRTk techniques, even though the

score function is utilised, factor x which will change the pruning space to a closed area cannot be

handled properly.

5.2.3 Contributions

Below, we summarise our contributions in this project.

• We complement the SRTk query by proposing a new definition that a user u is influenced by

a query q if q is one of the approximate top neighbours.

• The pruning techniques used to the solve SRTk query cannot be applied or extended to

answer SRAT query. The main reason for this is, in our problem settings, the k value is

relaxed to a x factor which means a user u cannot be influenced by two facilities that have

a big difference in terms of scores. In accordance with several non-trivial observations,

we propose an efficient algorithm that utilizes our pruning and verification techniques to

efficiently solve the SRAT query.

• We conduct an extensive experimental study on both synthetic and real data sets to show the

effectiveness of our algorithms. As this is the first time the SRAT query has been proposed,

we compare our algorithm with a naive algorithm. The experiment results show that our

approach is several orders of magnitude better than its competitor.

5.3 Answering Spatial Reverse Approximate Top (SRAT) queries

In this part, our algorithms to solve SRAT queries are elaborated. In section 5.3.1, we introduce

and explain all the terminologies and notations used in this project. Next, our pruning techniques

are demonstrated in section 5.3.2, followed by a detailed clarification of the algorithm in sec-

tion 5.3.3.
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5.3.1 Terms and notations

Before we discuss the algorithm, some terminologies and notations are clarified. In the linear

score function we used, the sum of the static attribute values is the same for all users and only

related to facilities. Hence, the Equation5.1 can be rewritten as the following one.

score(u, f ) = w[d + 1] · dist(u, f ) + fs (5.2)

.

Table 5.1: Notations used for the SRAT query algorithm

Notation Definition
f [i] i-th attribute of a facility
w[i] weight of i-th attribute

fs the static score of f (
∑d

i=1 fi · w[i])
score(u, f ) w[d + 1] · dist(u, f ) + fs

Top1score(u) the score(u, f ) where f is the top-1 facility of u
∆ f (x · fs − qs)/w[d + 1]
e an entry of the facility R*-tree

emin
s (emax

s ) minimum (maximum) static score of f in e
∆min

e (x · emin
s − qs)/w[d + 1]

∆max
e (x · emax

s − qs)/w[d + 1]
maxdist( f , v) maximum distance between generator and Voronoi cell corners

In our algorithm, a R*-tree with (d + 2) dimensions is used to index the facilities’ coordinates

and static attributes. Within the R*-tree, let e be an entry (intermediate or leaf node). The mini-

mum (resp. maximum) static value of f in e is denoted as emin
s (resp. emax

s ). Given a point p, the

maxdist(p, e) (resp. mindist(p, e)) refers to the maximum (resp. minimum) Euclidean distance be-

tween the entry e and the point p (only position coordinates are used in the distance computation).

Except for R*-tree, another index called the Voronoi diagram is used simultaneously for pruning

the space in the SRAT query. The generators of the Voronoi diagram are all the facilities. Each

Voronoi cell whose generator is f has several corner points denoted as vi. The maximum distance

between f and its Voronoi cell corner vertex is denoted as maxdist( f , v). Table 5.1 summarises

the terms and notations used throughout this chapter.
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5.3.2 Pruning techniques

Recall that a SRAT query returns every user u for which score(u, q) < x×Top1score(u), x > 1. Let

f be the top-1 facility of u and Top1dist(u, f ) denotes the distance between u and f . According

to equation 5.2, the SRAT query definition can be re-written as the following expression.

w[d + 1] · dist(u, q) + qs < x · (w[d + 1] · Top1dist(u, f ) + fs) (5.3)

.

This expression can be further converted to:

dist(u, q) − x · Top1dist(u, f ) <
x · fs − qs

w[d + 1]
(5.4)

.

Let ∆ f =
x· fs−qs
w[d+1] , a simplified expression can be generated.

dist(u, q) − x · Top1dist(u, f ) < ∆ f (5.5)

.

For each user, if it meets eq 5.5, it is the SRAT of q. Otherwise, it can be pruned by f . When

the facility f is clear by context, the ∆ f will be simplified to ∆.

Corollary 5.3.1. A user u can be pruned by a facility f , if dist(u, q) − x · Top1dist(u, f ) ≥ ∆.

Since corollary 5.3.1 cna only check users who consider f as its top-1 facility, some users who

are close to f but consider other ones as their top-1 facility are unsure. We need to find a way to

also check these users. The subsequent lemma shows how to prune a user u with facility f even

though f is not the top-1 facility of u.

Lemma 5.3.1. If a user u is in the pruning area of f and u considers another facility f ′ as its

top-1 facility, u cannot be the result of query q.
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Proof: Given a user u in the pruning area of f , according to the SRAT query definition, score(u, q) >

x · score(u, f ). Meanwhile, u considers f ′ as its top-1 facility, score(u, f ) > score(u, f ′). Then,

we can have score(u, q) > x · score(u, f ′), which means u is not the result of q. Proved.

Based on corollary 5.3.1 and lemma 5.3.1, the following corollary can be written.

Corollary 5.3.2. A user u can be pruned by a facility f , if dist(u, q) − x · dist(u, f ) ≥ ∆.

In summary, as stated in the SRAT definition, a user u cannot be the SRAT of q, if it can be

pruned by a facility f , which means dist(u, q) − x · dist(u, f ) ≥ ∆. By contrary, if and only if

dist(u, q) − x · Top1dist(u, f ) < ∆, a user u is the SRAT of q.

Figure 5.4: Example of pruning area based on the corollary 5.3.2

With inequality 5.5, a space bounded by a closed curve dist(u, q) − x · Top1dist(u, f ) = ∆ f

can be generated. Any user inside the area of this closed curve can be pruned. An example can be

found in Fig 5.4. A query point q and a facility f are given. Assuming factor x = 2, q[ranking] = 5,

f [ranking] = 4 and w[ranking] = w[distance] = 0.5. Then ∆ f = 2∗4∗0.5−5∗0.5
0.5 = 3. The lightest

shaded area in Fig 5.4 is the space which can be pruned by f when the f [ranking] = 4. If the

ranking value of f is changed to 2.5, the ∆ f = 0, generating a larger pruning area. By further

decreasing the ranking value to 1, the ∆ f = −3 and the pruning area becomes the darkest and

largest curve enclosed space. Hence, we can identify that if ∆ > 0, the pruning area is an ellipse-

like shape. If ∆ = 0, the pruning area is a circle. If ∆ < 0, the pruning area is a heart-like shape.

Let qs remain fixed, and with the increment of the static value, the pruning area of f will keep

shrinking until ∆ = dist(q, f ) and no space can be pruned by f . In this case, all the users in

the graph are the SRAT of q. This kind of facility is called a futile facility and the next lemma

identifies the futile facilities.
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Figure 5.5: Example of futile facility

Lemma 5.3.2. A facility f is a futile facility if ∆ ≥ dist( f , q).

Proof: Given a user u can locate anywhere in the data space. According to the triangular inequal-

ity, dist(u, q)−dist(u, f ) < dist( f , q). Because ∆ ≥ dist( f , q), we can get ∆ ≥ dist(u, q)−dist(u, f ).

The given x factor is always greater than 1. Hence, ∆ ≥ dist(u, q)− x · dist(u, f ), which means any

user u in the data space is the result of q. Proved.

Fig 5.5 shows an example of a futile facility. Given a query q and a facility f , the pruning area

of f is shrinking when the value of ∆ is becoming bigger. The pruning area of ∆ = 0.5 is much

larger than the pruning space of ∆ = 5. When the value of ∆ = dist( f , q), the pruning area will

decrease to nothing. To be more specific, any user u in the space is the SRAT result of q. Since

a facility R*-tree is used, according to lemma 5.3.2, more futile facilities can be identified in the

R*-tree, which generates the following lemma.

Lemma 5.3.3. Every facility f ∈ e is a futile facility if ∆min
e ≥ maxdist(e, q).

Proof: Because a R*-tree is used to index all facilities and f ∈ e, dist( f , q) ≤ maxdist(e, q) and

∆ ≥ ∆min
e . Regarding lemma 5.3.2, if ∆min

e ≥ maxdist(e, q), each facility f ∈ e has ∆ ≥ dist( f , q).

Therefore, all facilities of e are futile facilities. Proved.

In our algorithm, all futile facilities are identified and hence all the users whose top1 facility

is a futile facility are the SRAT result of q. Furthermore, a Voronoi diagram is used to separate the

whole space into small pieces, with all generators being the facilities. All the users in a Voronoi cell

consider this cell’s generator as the nearest facility but maybe not the top1 facility. As presented

in lemma 5.3.1, if a user u is in the pruning area of facility f , it cannot be the SRAT result of q.
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If a Voronoi cell is covered by the pruning area of f , any users in this Voronoi cell can be pruned.

Next, two techniques used to prune a single Voronoi cell are clarified.

Figure 5.6: Pruning area of f when ∆ < 0

Lemma 5.3.4. If ∆ > 0 and every corner vi of a Voronoi cell can be pruned, this Voronoi cell can

be pruned.

Proof: Given ∆ > 0, the generated pruning curve is a convex curve. For any user u in a Voronoi

cell with a generator f , there exist dist(vi, f ) > dist(u, f ) and dist(u, q) > dist(vi, q). Assuming vi

can be pruned, so dist(vi, q) − x · dist(vi, f ) > ∆. Thus, dist(u, q) − x · dist(u, f ) > ∆. Proved.

As shown in Fig 5.6, when ∆ < 0, the pruning area is enclosed by a non-convex curve.

With this pruning area, even all the Voronoi cell corners can be pruned, but it is still possible

to have some vertices remaining outside the pruning area. Except for checking all the corner

points, the maximum distance from the corner points to generator f can be found and denoted as

maxdist( f , v). Then, we have the following lemma.

Lemma 5.3.5. A whole Voronoi cell space whose generators is f can be pruned, if dist( f , q) −

(x + 1) · maxdist( f , v) > ∆.

Proof: Given a Voronoi cell has a generator f and the maximum distance to its corner points

is maxdist( f , v). For any user u in this Voronoi cell, dist(u, f ) ≤ maxdist( f , v) and dist(u, q) >

dist( f , q)−maxdist( f , v). Assuming dist( f , q)− (x + 1) ·maxdist( f , v) > ∆, we can get dist(u, q)−

x · dist(u, f ) > ∆. Proved.
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As all the facilities are indexed in a R*-tree, the maximum value maxdist( f , v) for all facilities

in an R*-tree entry e can be computed and denoted as maxMaxdist(e). Hence, in the facility traver-

sal process, not only can a single facility be pruned but also a R*-tree entry, which significantly

improves query performance.

Lemma 5.3.6. The Voronoi cell whose generators is f ∈ e can be pruned, if mindist(e, q) − (x +

1) · maxMaxdist(e) > ∆max
e .

Proof: Since a R*-tree is used to index all facilities and f ∈ e, dist( f , q) ≥ mindist(e, q) and

∆max
e ≥ ∆. Based on lemma 5.3.5, if mindist(e, q)− (x + 1) ·maxMaxdist(e) > ∆max

e , for every f in

e, we can get dist( f , q)− (x + 1) ·maxdist( f , v) > ∆, indicating every f ∈ e can be pruned. Proved.

After pruning the facilities, all users in the Voronoi cells which cannot be pruned need to be

verified to find the final SRAT query result. The next lemma explains how to examine and prune a

single user.

Lemma 5.3.7. For every user u in a Voronoi cell whose generator is f , if dist( f , q)−maxdist( f , v)−

x · dist(u, f ) ≥ ∆, u can be pruned.

Proof: Given a user u located in a Voronoi cell whose generator is f . Because u is inside the

Voronoi cell, dist(u, q) > dist( f , q) − maxdist( f , v). Therefore, dist(u, q) − x · dist(u, f ) ≥ ∆.

Proved.

For all the users inside a Voronoi cell, the maximum distance to the generator facility can be

obtained and denoted as maxdist(u, f ).

Lemma 5.3.8. For all the users in a Voronoi cell whose generator is f , if dist( f , q)−maxdist( f , v)−

x · maxdist(u, f ) ≥ ∆, all the users can be pruned.

Proof: Given a user u′ located in a Voronoi cell whose generator is f . Because maxdist(u, f ) >

dist(u′, f ). Similar to the proof process of lemma 5.3.7, for any user u′, dist(u′, q)−dist(u′, f ) ≥ ∆.

Proved.

5.3.3 Algorithms

With all the pruning techniques, our algorithm is formulated and explained in this section. We start

with the pre-processing part of our algorithm. The subsequent two sections are the main phases,

including pruning phase and verification phase.
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Pre-processing

In the pre-processing phase, we partition the whole space into small regions with a Voronoi dia-

gram. Each Voronoi cell has a generator point which is a facility point. As the computation to

find a user’s nearest neighbour and top-1 facility is very time-consuming compared to our main

algorithm, we deal with this part in the pre-processing stage. For each user u, we use the facility

R*-tree to search its nearest and top-1 result, and for the users in the same Voronoi cell, the distance

from the user to the generator is saved in a decreasing order. Besides, in the R*-tree, we also index

the maxMaxdist(e), emin
s and emax

s for each entry e. This is because after generating the Voronoi

diagram, the maximum distance between each generator and their corner points maxdist( f , v) is

fixed, which can be further indexed into the facility R*-tree. Static attributes are only related to

each facility. Thus, all the fs can be calculated and recorded for future usage.

Algorithm 7: Pruning
1 Input: A facility R*-tree and a query q
2 Output: The set of cannot be pruned areasA, the set of futile facilities B

1: A ← φ, B ← φ

2: insert root of facility R*-tree in a min-heap h
3: while h , φ do
4: de-heap an entry e
5: if e is an intermediate node then
6: if mindist(e, q) − (x + 1) · maxMaxdist(e) > ∆max

e then
7: continue . Lemma 5.3.6
8: else if ∆min

e ≥ maxdist(e, q) then
9: insert all f ∈ e into B . Lemma 5.3.3

10: else
11: insert children nodes of e into h
12: else
13: convert e to f
14: if dist( f , q) − (x + 1) · maxdist( f , v) > ∆ then
15: continue . Lemma 5.3.5
16: else if ∆ ≥ dist( f , q) then
17: insert f into B . Lemma 5.3.2
18: else
19: insert f intoA
20: return A, B
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Pruning

In accordance with the SRAT query definition, a straightforward way to obtain the result of a

query is to check the score of every user regarding query points and compare this with their top-1

facility score. The time complexity of this approach is O(n) where n is the total number of users

in the data set. Our technique is able to prune Voronoi regions that do not have a query answer and

identify all the futile facilities.

In the pruning phase, we traverse the facility R*-tree to prune the facility entries in the search

space, significantly optimising SRAT query performance. Algorithm 7 presents the details of our

pruning techniques. Before starting the algorithm, a min-heap h is initialised with the root of the

facility R*-tree. Entries of R*-tree are de-heaped from the heap one by one.

If e is an intermediate node of R*-tree, the minimum distance from e to query q can be com-

puted and denoted as mindist(e, q). The maximum distance generator and Voronoi cell corners are

retrieved from the R*-tree. Hence, if condition (line 6) is met, the whole entry e can be pruned

and a new entry will be de-heaped from the h. If ∆min
e ≥ maxdist(e, q) (line 8), every f ∈ e is

recognised as a futile facility and added into set B for further processing. This is because we use a

Voronoi diagram and there may be some users who consider f as the nearest neighbour but not the

top-1 facility. These users need to be verified to confirm they belong to the SRAT of q or not. If

entry e can neither be pruned nor is futile, its children entries will be added into heap h for future

looping.

If e is not a MBR but a facility, we convert e to f . For facility f , we first check whether the

Voronoi cell in which it is located can be pruned or not (line 14). If it can be pruned, the loop

continues to de-heap a new entry. Next, it is examined for a futile facility (line 16). Otherwise,

this facility f is inserted into the temporary cannot-pruned facility set. The algorithm terminates

when the heap becomes empty.

Verification

After the execution of algorithm 7, two sets of facilities are returned, namely the cannot-pruned

facility set and the futile facility set respectively. The verification of these two sets is similar, the
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Algorithm 8: Verification
1 Input: The set of cannot pruned facilitiesA
2 Output: The query result S RAT (q)

1: S RAT (q)← φ

2: for each f ∈ A do
3: if dist( f , q) − maxdist( f , v) − x · maxdist(u, f ) ≥ ∆ then
4: break . Lemma 5.3.8
5: for each user u who considers f as nearest neighbour do
6: if dist( f , q) − maxdist( f , v) − x · dist(u, f ) ≥ ∆ then
7: break . Lemma 5.3.7
8: else if dist(u, q) − x · dist(u, f ) < ∆ then
9: insert u into S RAT (q)

10: return S RAT (q)

main difference being the number of users who need to be examined. For the cannot-pruned facility

setA, each f inA will be retrieved iteratively. Since f is a generator of a Voronoi cell, every user

u inside this Voronoi cell considers f to be their nearest neighbour and the distance is denoted

as dist(u, f ). The maximum distance from u to f can be found and denoted as maxdist(u, f ). If

dist( f , q)−maxdist( f , v)−x·maxdist(u, f ) ≥ ∆ (line 3), all users in this Voronoi cell can be pruned.

Otherwise, each user u in the Voronoi cell in which f is located will be verified one by one. If

the condition meets (line 6), the rest of the users can be pruned as the distance between the users

and the generator facility is sorted in descending order. The definition of the SRAT query is used

for the final verification. As for the futile facility set, all the users who consider these facilities as

the top-1 facility are the SRAT results of q. However, some users may consider a futile facility

as the closest one but not the top-1 facility. For these users, the same verification process can be

undertaken as in algorithm 8. Algorithm 8 terminates when the facility set becomes empty.

5.4 Experiments

To the best of our knowledge, there is no existing algorithm to answer SRAT queries. We consider

to use a naive algorithm (NAIVE) as the competitor for our Voronoi based algorithm (VORONOI).

In NAIVE, we examine every user to check it is a SRAT result of the query. If a user u satisfies

score(u, q) ≤ x · score(u, f ) where f is the top-1 facility of u, u is a SRAT result of q.

All algorithms are implemented using the C++ programming language, with experiments con-

ducted on Nectar Elastic Cloud Computing(EC2) with a 16 AMD EPYC Processor (with IBPB)

and 64GB memory running Debian Linux. We use both synthetic and real data sets. The real
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facility data set consists of 1,000,000 locations in California [2]. Each facility location is assigned

up to 5 static attributes that are obtained from the House data set [1]. All the static attributes are

normalised into a range between 0 and 1, with an assumption that smaller values are preferred. The

real users’ locations are randomly chosen from the California [2] graph. In terms of the synthetic

facility data set, the facility and user locations are generated according to a uniform distribution.

The static attributes for the synthetic facilities are also produced following a uniform distribution.

Table 5.2: Experiment settings of the SRAT queries

Parameter Range
Number of facilities 1K, 5K, 10K, 50K, 100K, 200K

Number of users 1M, 2M, 5M, 8M, 10M
Number of static attributes 1, 2, 3, 4, 5

x factor 1.1, 1.5, 2, 3, 4
Distance weight 0.1, 0.3, 0.5, 0.7, 0.9

Location data distribution California, Uniform
Static data distribution House, Uniform

In our experiments, the number of facilities, the number of users, the number of static at-

tributes, the value of x and the distance weight are varied to evaluate their effect on the perfor-

mance of both algorithms. All the parameters in our experiments are displayed in Table 5.2, with

the default values labelled in bold text. We run 100 queries and report the average CPU cost for

every experiment. All the query points are selected randomly from the facility sets.

Figure 5.7: Effect of number of facilities

Effect of number of facilities. Fig 5.7 studies the effect of facility size on both algorithms. With

both synthetic and real-world data sets, the cost of the NAIVE method increases as the number

of facilities increases. The cost of the VORONOI approach keeps decreasing until the number

of facilities is 10,000 and grows gradually after that point. This is because with the increase in

facility size, no matter whether it is the NAIVE or VORONOI algorithm, more computation will

be involved, eventually leading to more time consumption. The slightly decline of the VORONOI
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method is caused by the facility pruning problem. When the number of facilities is small, each

Vornoi cell is relatively big and will induce only very few facilities to be pruned. Specifically, the

more facilities which are examined, the longer the processing time. In all data sets, our algorithm

significantly outperforms the competitor.

Figure 5.8: Effect of number of users

Effect of number of users. Fig 5.8 shows the effect of changing user data size on both algorithms.

Regarding the NAIVE method, the CPU time cost surges dramatically with the increment of users.

However, the cost of the VORONOI approach grows moderately at a very low level. This is

because a higher number of users enhances the density of the users in a Voronoi cell and more

users can be pruned in the VORONOI method. Our algorithm is up to two orders of magnitude

better than the competitor and it also scales significantly better.

Figure 5.9: Effect of number of static attributes

Effect of number of static attributes. As shown in Fig 5.9, the effect of the number of static

attributes on both the synthetic and real-world data is examined. Since in our experimental settings,

all the static attributes and dynamic attributes have the same weight, increasing the number of

static attributes will cause the total static score to rise, which facilitates the addition of the ∆ value.
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According to the SRAT definition, if ∆ ≥ dist( f , q), this f is a futile facility and has no pruning

area. Therefore, more futile facilities means more users need to be processed in the VORONOI

method. In the NAIVE approach, users need to be examined one by one, whereas the users who

consider a futile facility as the top-1 facility are identified as the SRAT result directly, decreasing

the processing time. Even though the increment of the static attributes restrains the performance

of our algorithm, VORONOI is still up to two orders of magnitude better than its competitor.

Figure 5.10: Effect of value of x

Effect of value of x. Fig 5.10 studies the effect of the x factor on the cost of both algorithms

with synthetic and real-world data sets. The cost of NAIVE is relatively stable for different values

of x because it only evaluates every user in the graph and is not sensible for the changing of x

factor. On the contrary, the cost of VORONOI increases with the increment of the x value. This

is because the bigger the x factor, the bigger the ∆ value, meaning more facilities cannot be pruned

and hence a higher number of users need to be verified. Our algorithm remarkably outperforms

the competitor with various x factor values.

Figure 5.11: Effect of distance weight
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Effect of distance weight. Fig 5.11 illustrates the effect of distance weight on the cost of both

algorithms. Because we need to change the weight of the distance, we use the default number of

static attributes which is 2 and the weight for all static attributes is (1−w[distance])
2 . For example, if

w[distance] = 0.1, all the static attribute weights are 0.45. As an increase in the distance weight

would amortize the influence of the static score, more facilities can be pruned and VORONOI

will have better performance. However, NAIVE needs to process more users. For all the values

of the distance weight, our algorithm performs significantly better than the competitor and also

scales better.

5.5 Conclusion

In this chapter, we studied the spatial reverse approximate top (SRAT) queries. This query is

proposed to supplement the spatial reverse top-k queries by relaxing the k value to a x factor.

With the SRAT query, the influence of a cluster of facilities can be investigated accurately. As

SRAT is a totally new query and no existing algorithm can answer it, we propose a novel approach

based on a Voronoi diagram and facility R*-tree to reduce the computation cost of SRAT queries.

Our extensive experimental study on both synthetic and real-world data sets demonstrates that our

algorithm is considerably better than the rival.
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Chapter 6

Final Remarks

6.1 Overview

In this thesis, we propose several efficient algorithms for reverse approximate queries in spa-

tial databases, including reverse approximate nearest neighbor (RANN) query on road network,

continuous reverse approximate nearest neighbor query on road network and spatial reverse ap-

proximate top (SRAT) query. Chapter 2 lists all the works that are related to our algorithms. We

comprehensively analyse all of them to find the reasons why they are ineffective and obtain inspi-

ration to solve our problems. In Chapters 3 and 4, the snapshot and continuous RANN is studied

with real world road network data. The following chapter illustrates our research on the snapshot

SRAT query.

This chapter is organized as follows. The following section reiterates our detailed contribu-

tions. Section 6.3 presents possible directions for future works.

6.2 Contributions

This section summarises the contributions of the thesis. We studied the snapshot and continuous

RANN on road network and the SRAT queries. All our algorithms were evaluated with real-world

and synthetic data sets. It is proven that our approaches significantly outperform their competitors.
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6.2.1 Snapshot RANN query on Road Network

In Chapter 3, we carefully exploit the special property of the road network and the RANN query.

The existing RANN algorithm only works on Euclidean space. Since processing the users one

by one in accordance with the RANN definition is extremely time-consuming, we propose an

innovative way to process a RANN query efficiently with road network data. To handle the RANN

on road network, an index called network Voronoi diagram (NVD) is used to partition the whole

graph into small pieces. With the NVD, we adopt the state-of-the-art kNN algorithm proposed

in [4] to find the k nearest NVD cells’ generator facilities and use the distance between facilities

to determine whether this cell can be pruned. With this pruning technique, a large space can be

eliminated in query processing. Only the users who belong to the NVD cells which cannot be

pruned need to be examined in the verification phase, which saves a huge amount of time. In

the extensive experiment evaluation, we test our algorithm on real-world data that has up to 20

million nodes. It is proven that our method significantly outperforms the competitors and is easily

scalable.

6.2.2 Continuous Monitoring RANN query on Road Network

In Chapter 4, we monitor the moving RANN queries on the road network. We use a client-server

mode for the whole system. In this system, all users can move at each timestamp and all facilities

remain stationary. Query points are selected from the facility vertices. The RANN query result of

all queries could be different at each timestamp because the coordinates of users could change at

any time.

In the traditional mode, users will report their locations to the server if they move at each times-

tamp, which is dramatically time-consuming and can easily cause the server to reach a bottleneck.

We proposed two approaches using the safe zone and influence zone to handle user movements.

For the safe zone method, a safe region is computed for each user in the system. When users

move inside their safe region, the RANN query result is not changed and there is no need to report

the users’ new locations to the server at each timestamp. Only when users move out of their safe

zone, their new positions will be updated in the server and new safe zones will be computed for

them. For the influence zone method, users have no safe regions but an area of influence will be
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computed for the query point. Because all the facilities remain static, after calculating the influ-

ence zone, this area is fixed and there is no need for re-creation even if users move in or out of

this influence area. If a user is in the query’s influence zone and only moves inside it, the query

result is unchanged and no updates occur. If a user moves out of the query’s influence zone, only

the query result will be updated and the influence zone does not need to be recomputed. From a

different perspective, these two approaches can significantly shorten the updating time when the

user moves. Last, we design a comprehensive experiment to prove that our work is much faster

than the competitors.

6.2.3 SRAT query

In Chapter 5, we proposed a new query called the spatial reverse approximate top (SRAT) query,

which supplement the spatial reverse top-k (SRTk) query. By relaxing the restrictions of the k

value, the SRAT query can return a more reasonable result than the SRTk query. As this is the

first time the SRAT concept has been proposed, no research has been done on this query. Recall

that the SRAT query returns every user u ∈ U for which score(u, q) < x · Top1score(u, f ) where

Top1score(u, f ) is the score between a user u and its top1 facility f .

In our algorithm, we use the R*-tree to index all the facilities. Then, we use all the facilities

as generators to create a Voronoi diagram. The Voronoi diagram is used to separate the whole

searching space into small segments. Since a score function is used in the SRAT definition and

the score function contains both the static and dynamic attributes, a pruning corollary can be

generated as dist(u, q) − x · dist(u, f ) > ∆. With this corollary, the R*-tree index and the Voronoi

diagram, many facilities can be pruned or identified as futile facilities. When a facility is pruned,

this means the Voronoi cell in which this facility is located is pruned. If a facility is a futile facility,

all the users who consider this facility as the top-1 facility will be the result of q. Hence, only the

users who reside in the Voronoi cells which cannot be pruned need to be verified using the SRAT

definition. Lastly, our experiment outcome shows that our algorithm works on both synthetic and

real-world data sets, which is up to two orders of magnitude better than the competitor and also

scales significantly better.
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6.3 Directions for Future Work

On the basis of our research, there are many aspects of reverse approximate queries in spatial

databases which have not been studied, and some ranking related queries are very interesting but

as yet, have received no attention. In this section, several possible directions for future works have

been discussed.

6.3.1 Spatial Reverse Approximate Top Queries On Road Network

As far as we know, RkNN queries have been studied extensively, whereas reverse approximate

queries in spatial databases have not received much attention. In this thesis, we have studied

several reverse approximate queries, including the reverse approximate nearest neighbour (RANN)

query and spatial reverse approximate top (SRAT) query. We proposed innovative approaches to

answer snapshot and continuous RANN queries on the road network. However, our SRAT query

research only focuses on Euclidean space. No work has been done to process SRAT queries on

the road network. Due to the natural difference between Euclidean data and road network data,

how to process a SRAT query on road network is worth considering.

6.3.2 Continuous Reverse Approximate Top Queries

Continuous queries is another main direction. As for the SRAT query, a score function is used

to compute the influence of the query point, which considers various criteria. Because this query

is score function based, the generated pruning area in a graph is not a straight line (similar to

the distance-based queries). Hence, the pruning area is an irregular shape and the computation

speed is slower. When issuing this query in the moving environment, the updating cost could be

very high and cause a bottleneck for the server. How to monitor the continuous SRAT query is a

possible direction and is worth investigating.

Meanwhile, changing the data sets to road network data could also cause the existing SRAT

algorithm to fail. When performing a continuous SRAT query on the road network, both the

pruning techniques and server information updating techniques need to be devised. Conducting a

continuous SRAT query on the road network is also difficult and needs more thought.
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6.3.3 Spatial Reverse Top-k Queries On Road Network

Spatial reverse top-k (SRTk) queries is proposed in [109] and they are well studied in Euclidean

space. Different from traditional reverse top-k queries, SRTk queries include a dynamic attribute

distance. The distance value from each user to the same facility is different. As the distance

calculation process in a road network and Euclidean space is different, conducting a SRTk query

on a road network is becoming more complex. With road network data, the existing algorithm may

not work properly and thus processing a SRTk query on the road network could be an interesting

research direction.

6.3.4 Continuous Spatial Reverse Top-k Queries

Similar to other queries, the moving environment is more applicable in the real world and process-

ing moving queries is more meaningful. Currently, only snapshot SRTk queries have been studied.

We are interested in monitoring this query in a continuous environment with both Euclidean space

data and road network data.
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[45] Christian S Jensen, Jan Kolářvr, Torben Bach Pedersen, and Igor Timko. Nearest neighbor

queries in road networks. In Proceedings of the 11th ACM international symposium on

Advances in geographic information systems, pages 1–8, 2003.

[46] Cheqing Jin, Rong Zhang, Qiangqiang Kang, Zhao Zhang, and Aoying Zhou. Probabilistic

reverse top-k queries. In International Conference on Database Systems for Advanced

Applications, pages 406–419. Springer, 2014.

[47] James M Kang, Mohamed F Mokbel, Shashi Shekhar, Tian Xia, and Donghui Zhang. Con-

tinuous evaluation of monochromatic and bichromatic reverse nearest neighbors. In 2007

IEEE 23rd International Conference on Data Engineering, pages 806–815. IEEE, 2007.

[48] James M. Kang, Mohamed F. Mokbel, Shashi Shekhar, Tian Xia, and Donghui Zhang.

Continuous evaluation of monochromatic and bichromatic reverse nearest neighbors. In

ICDE, pages 806–815, 2007.

[49] Joon-Seok Kim and Ki-Joune Li. Location k-anonymity in indoor spaces. Geoinformatica,

20(3):415–451, 2016.



96 REFERENCES

[50] Mohammad Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neighbor search for

spatial network databases. In Proceedings of the Thirtieth international conference on Very

large data bases-Volume 30, pages 840–851. VLDB Endowment, 2004.

[51] Mohammad R. Kolahdouzan and Cyrus Shahabi. Continuous k-nearest neighbor queries

in spatial network databases. In Jörg Sander and Mario A. Nascimento, editors,

Spatio-Temporal Database Management, 2nd International Workshop STDBM’04, Toronto,

Canada, August 30, 2004, pages 33–40, 2004.

[52] Flip Korn and Suresh Muthukrishnan. Influence sets based on reverse nearest neighbor

queries. In ACM Sigmod Record, volume 29, pages 201–212. ACM, 2000.

[53] Iosif Lazaridis, Kriengkrai Porkaew, and Sharad Mehrotra. Dynamic queries over mobile

objects. In International Conference on Extending Database Technology, pages 269–286.

Springer, 2002.

[54] Chuanwen Li, Yu Gu, Jianzhong Qi, Rui Zhang, and Ge Yu. Moving knn query processing

in metric space based on influential sets. Information Systems, 83:126–144, 2019.

[55] Xinyu Li, Arif Hidayat, David Taniar, and Muhammad Aamir Cheema. Reverse approxi-

mate nearest neighbor queries on road network. World Wide Web, 24(1):279–296, 2021.

[56] Xiang Lian and Lei Chen. Efficient processing of probabilistic reverse nearest neighbor

queries over uncertain data. VLDB J., 18(3):787–808, 2009.

[57] King-Ip Lin, Michael Nolen, and Congjun Yang. Applying bulk insertion techniques for dy-

namic reverse nearest neighbor problems. In Seventh International Database Engineering

and Applications Symposium, 2003. Proceedings., pages 290–297. IEEE, 2003.

[58] Hua Lu, Xin Cao, and Christian S Jensen. A foundation for efficient indoor distance-aware

query processing. In 2012 IEEE 28th International Conference on Data Engineering, pages

438–449. IEEE, 2012.

[59] Nikos Mamoulis, Man Lung Yiu, Kit Hung Cheng, and David W Cheung. Efficient top-k

aggregation of ranked inputs. ACM Transactions on Database Systems (TODS), 32(3):19–

es, 2007.



REFERENCES 97

[60] Mohamed F Mokbel, Xiaopeing Xiong, and Walid G Aref. Sina: Scalable incremental

processing of continuous queries in spatio-temporal databases. In Proceedings of the 2004

ACM SIGMOD international conference on Management of data, pages 623–634, 2004.

[61] Kyriakos Mouratidis, Spiridon Bakiras, and Dimitris Papadias. Continuous monitoring of

top-k queries over sliding windows. In Proceedings of the 2006 ACM SIGMOD interna-

tional conference on Management of data, pages 635–646, 2006.

[62] Kyriakos Mouratidis, Dimitris Papadias, and Marios Hadjieleftheriou. Conceptual parti-

tioning: An efficient method for continuous nearest neighbor monitoring. In Proceedings

of the 2005 ACM SIGMOD international conference on Management of data, pages 634–

645, 2005.

[63] Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias, and Nikos Mamoulis. Continuous

nearest neighbor monitoring in road networks. 2006.

[64] Surya Nepal and MV Ramakrishna. Query processing issues in image (multimedia)

databases. In Proceedings 15th International Conference on Data Engineering (Cat. No.

99CB36337), pages 22–29. IEEE, 1999.

[65] Sarana Nutanong, Egemen Tanin, Mohammed Eunus Ali, and Lars Kulik. Local network

voronoi diagrams. In Proceedings of the 18th SIGSPATIAL International Conference on

Advances in Geographic Information Systems, pages 109–118. ACM, 2010.

[66] Sarana Nutanong, Egemen Tanin, and Rui Zhang. Visible nearest neighbor queries. In

International Conference on Database Systems for Advanced Applications, pages 876–883.

Springer, 2007.

[67] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query processing in spatial

network databases. In Proceedings 2003 VLDB Conference, pages 802–813. Elsevier, 2003.

[68] Jianzhong Qi, Rui Zhang, Christian S Jensen, Kotagiri Ramamohanarao, and Jiayuan He.

Continuous spatial query processing: a survey of safe region based techniques. ACM Com-

puting Surveys (CSUR), 51(3):1–39, 2018.

[69] Nick Roussopoulos, Stephen Kelley, and Frederic Vincent. Nearest neighbor queries. In

Proceedings of the 1995 ACM SIGMOD international conference on Management of data,

pages 71–79, 1995.



98 REFERENCES

[70] Maytham Safar. K nearest neighbor search in navigation systems. Mobile Information

Systems, 1(3):207–224, 2005.
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Appendix A

Reverse Approximate Query Data Sets

Demo

In this appendix, we shows the details of the data sets used in our algorithms.

A.1 RANN query on road network data sample

In the snapshot and continuous RANN queries, we only use the real-world data sets. In fig A.1,

the sample data of the north west area of the USA displayed. In this data set, we have the id and

coordinates of each vertex. As our research is about RANN on road network space, there is a

graph data indicating the relations among all the edges. The sample edges data set can be seen in

fig A.2. The data contains the id of nodes and the length between these nodes. A single node can

connect to multiple points.
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Figure A.1: Sample of point coordinates data

Figure A.2: Sample of edges data



A.1. RANN QUERY ON ROAD NETWORK DATA SAMPLE 105

In our experiment, we use real road networks with different network size from website http :

//users.diag.uniroma1.it/challenge9/ [3]. The largest data set contain up to 23,947,347 vertices

and 57,708,624 edges. Except the graph data, the facility data is extracted from Open Street Map

(OSM). We compare the coordinates and find the corresponding node id in existing graph data.

The final facility list data can be found in fig A.3. And, the user data sets are randomly chosen

from the graph which has a similar format as the facility in fig A.4.

Figure A.3: Sample of real world facilities data
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Figure A.4: Sample of users data

In our second project, the continuous RANN queries require moving user data. We use the

well-know Brinkhoff data generator [13] to generate all the moving users on road network. The

sample data is shown in fig A.5. Each line of data contains a timestamp, the current coordinates

and the moving destination coordinates. The graph data used in continuous RANN is same as the

snapshot queries.
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Figure A.5: Sample of moving data

A.2 SRAT query data sample

In the third project, we proposed a new query called Spatial Reverse Approximate Top (SRAT)

query. We study this query in Euclidean space and hence there is no graph data like road network.

In the experiment, all the data is normalised to between 0 and 1. The user data is similar as before

and only contains id and coordinates like fig A.7. However, the facility data is different. As in

SRAT query, more attributes (i.e. rating, price) are considered when computing the importance or

influence of a facility, these extra attributes values are also recorded. In fig A.6, a sample facility

data with not only the coordinates but also two static attributes is shown.
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Figure A.6: Sample of facilities with static attributes data

Figure A.7: Sample of users data



Appendix B

Reverse Approximate Query Main

Logic Code Snippet

In this appendix, the main part of our algorithm code is presented.

B.1 Snapshot RANN query on road network

Generate users:

void ExperimentsCommand::generateFixNumberUsers(Graph& graph, std::size_t

numSets, std::vector<double> objDensities, const std::string&

filePathPrefix, const std::string& poiFileName, const std::string&

userFolderName, bool syntheticOrRealWorld) {

StopWatch sw;

double totalINETime, totalINEMemory;

std::string localPoiPath;

std::string localUserPath;

if (syntheticOrRealWorld) {

localPoiPath = filePathPrefix + "/obj_indexes/";

localUserPath = filePathPrefix + "/obj_indexes_users/";

} else {

localPoiPath = filePathPrefix + "/real_world_pois/";

localUserPath = filePathPrefix + "/real_world_users/";
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}

SetGenerator sg;

int numNodes = graph.getNumNodes(), setSize;

std::vector<NodeID> sampleSet;

std::vector<NodeID> queryNodeSet;

std::string objSetOutputFile;

std::string userSetOutputFile;

std::string querySetOutputFile;

int totalSets = numSets;

for (std::size_t j = 0; j < objDensities.size(); ++j) {

setSize = objDensities[j];

for (std::size_t k = 0; k < numSets; ++k) {

if (objDensities[j] != 1) {

std::string tempPoiFilPath = localPoiPath + poiFileName;

std::vector<NodeID> tempFacilityNodes =

utility::getPointSetFromFile(tempPoiFilPath);

std::cout << "number of nodes:" << numNodes << std::endl;

std::cout << "temp facilaity nodes" << tempFacilityNodes.size() <<

std::endl;

std::cout << tempFacilityNodes.size() << std::endl;

std::vector<NodeID> tempSet =

sg.generateRandomSampleSetNotInSpecifiedSet(numNodes, setSize,

tempFacilityNodes);
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sampleSet = std::vector<NodeID>(tempSet.begin(), tempSet.begin() +

setSize);

std::cout << "original sampleset size:" << sampleSet.size() <<

std::endl;

} else {

sampleSet = graph.getNodesIDsVector();

}

if (objDensities[j] != 1 || k == 0) {

userSetOutputFile = localUserPath + userFolderName +

utility::constructObjsectSetFileName(

graph.getNetworkName(),"random",objDensities[j],1,k);

utility::writeSampleSet(userSetOutputFile,

graph.getNetworkName(),"random",objDensities[j],setSize,1,sampleSet);

}

graph.resetAllObjects();

sw.reset();

sw.start();

graph.parseObjectSet(sampleSet);

sw.stop();

totalINETime += sw.getTimeUs();

totalINEMemory +=

static_cast<double>(sizeof(NodeID)*sampleSet.size())/(1024*1024);

if (objDensities[j] == 1) {

totalSets = 1;

break;

} else {

totalSets = numSets;

}
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}

double processingTimeMs = totalINETime/totalSets;

double memoryUsage = totalINEMemory/totalSets*1024; // in KB

}

std::cout << "user and query sets successfully generated for " <<

graph.getNetworkName() << std::endl;

}

Find cannot pruned facilities:

void ILBR::getKNNByNVDPHL2(Graph& graph,

ALT& alt, NVD& nvd,

unsigned int k,

NodeID queryNodeID,

std::vector<NodeID>& kNNs,

std::vector<EdgeWeight>& kNNDistances,

PrunedHighwayLabeling& phl,

std::map<NodeID, std::vector<std::pair<NodeID,

EdgeWeight>>>& maxDistPairMap,

std::set<NodeID>& noUserGeneratorSet,

int maxMaxDist,

std::set<NodeID>& cantPrunedSet,

std::map<NodeID, EdgeWeight>& cantPrunedDistMap,

NodeID& facilityQueryNodeOut)

{

int factorX = 2;

NodeID candidate = queryNodeID;

google::dense_hash_set<NodeID> neighboursAdded;

neighboursAdded.set_empty_key(constants::UNUSED_NODE_ID);

BinaryMaxHeap<EdgeWeight,NodeID> knnCandidates;

EdgeWeight spDist = 0, Dk = 0, candidateLBDist;

bool DkInfinity = true;
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BinaryMinHeap<EdgeWeight,NodeID> nvdQueue;

nvd.generateNeighbourCandidates(

alt,nvdQueue,queryNodeID,candidate,spDist,neighboursAdded);

facilityQueryNodeOut = queryNodeID;

while (nvdQueue.size() > 0 && (DkInfinity || nvdQueue.getMinKey() < Dk)) {

candidateLBDist = nvdQueue.getMinKey();

candidate = nvdQueue.extractMinElement();

if (noUserGeneratorSet.find(candidate) == noUserGeneratorSet.end()) {

EdgeWeight maxDist = maxDistPairMap[candidate][0].second;

int euclideanFq = graph.getEuclideanDistance(candidate, queryNodeID);

if (euclideanFq < maxDist) {

int realFq = phl.Query(candidate, queryNodeID);

if (realFq < maxDist) {

cantPrunedSet.insert(candidate);

cantPrunedDistMap[candidate] = realFq;

} else {

EdgeWeight shortestDist = realFq - maxDist;

if (shortestDist > factorX * maxMaxDist) {

if((realFq - maxMaxDist) > factorX * maxMaxDist) {

break;

}

} else {

if (shortestDist > factorX * maxDist) {

//can be prune

} else {

cantPrunedSet.insert(candidate);

cantPrunedDistMap[candidate] = realFq;

}

}

}
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}

else

{

EdgeWeight shortestDist = euclideanFq - maxDist;

if (shortestDist > factorX * maxMaxDist) {

if((euclideanFq - maxMaxDist) > factorX * maxMaxDist) {

break;

} else {

int realFq = phl.Query(candidate, queryNodeID);

if (realFq - maxMaxDist > factorX * maxMaxDist) {

break;

}

}

} else {

int realFq = phl.Query(candidate, queryNodeID);

shortestDist = realFq - maxDist;

if (shortestDist > factorX * maxDist) {

//can be prune

} else {

cantPrunedSet.insert(candidate);

cantPrunedDistMap[candidate] = realFq;

}

}

}

}

if (DkInfinity) {

spDist = phl.Query(queryNodeID,candidate);

knnCandidates.insert(candidate,spDist);

nvd.generateNeighbourCandidates(

alt,nvdQueue,queryNodeID,candidate,spDist,neighboursAdded);
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if (knnCandidates.size() == k) {

DkInfinity = false;

Dk = knnCandidates.getMaxKey();

}

} else if (candidateLBDist < Dk) {

spDist = phl.Query(queryNodeID,candidate);

if (spDist < Dk) {

knnCandidates.insert(candidate,spDist);

nvd.generateNeighbourCandidates(

alt,nvdQueue,queryNodeID,candidate,spDist,neighboursAdded);

knnCandidates.extractMaxElement();

Dk = knnCandidates.getMaxKey();

}

}

}

knnCandidates.populateKNNs(kNNs,kNNDistances);

}

User verification:

void test(Graph& graph, std::string altIdxFilePath, const std::string& method,

const std::string& idxFilePath, std::vector<NodeID>& queryNodes, std::size_t

numSets, std::vector<double> objDensities, std::vector<std::string>

objTypes, std::vector<int> objVariable, const std::string& filePathPrefix,

const std::string& statsOutputFile, bool verifyKNN,

std::vector<std::string>& parameterKeys, std::vector<std::string>&

parameterValues, const std::string& numLandmarks, const std::string&

landmarkType, bool queryType, const std::string& poiNvdFileName, const

std::string& userFolderName, const double factorX, const std::string&

resultFile) {

for (auto queryNodeIt = queryNodesFromFile.begin(); queryNodeIt !=

queryNodesFromFile.begin()+100; ++queryNodeIt) {

std::set<NodeID> cantPrunedSet;

std::map<NodeID, EdgeWeight> cantPrunedDistMap;

std::vector<NodeID> resultList;



116 APPENDIX B. REVERSE APPROXIMATE QUERY MAIN LOGIC CODE SNIPPET

NodeID facilityQueryNode;

ilbr.getKNNByNVDPHL2(

graph, alt,nvd,kValue,*queryNodeIt,kNNs,kNNDistances,phl,

generatorUserDistanceMap, noUserGeneratorSet, maxMaxDist, cantPrunedSet,

cantPrunedDistMap, facilityQueryNode);

resultList = generatorUserMap[facilityQueryNode];

int countCantPrunedUser = 0;

int totalForCounter = 0;

for(auto cantPruneGenerator = cantPrunedSet.begin(); cantPruneGenerator

!= cantPrunedSet.end(); ++cantPruneGenerator) {

int fq = cantPrunedDistMap[*cantPruneGenerator];

double bigR = (double)fq / (factorX - 1);

double smallR = (double)fq / (factorX + 1);

int forCounter = 0;

for (auto tempUserDisPair =

generatorUserDistanceMap[*cantPruneGenerator].begin();

tempUserDisPair !=

generatorUserDistanceMap[*cantPruneGenerator].end();

++tempUserDisPair) {

forCounter++;

NodeID userNode = tempUserDisPair->first;

EdgeWeight uf = tempUserDisPair->second;

if (fq > uf && (fq - uf > factorX * uf)) {

break;

} else if (uf >= bigR) {

resultList.push_back(userNode);

} else if (uf > smallR && uf < bigR) {

countCantPrunedUser++;

int uq = phl.Query(facilityQueryNode, userNode);

if (uq <= factorX * uf) {



B.2. CONTINUOUS RANN QUERY ON ROAD NETWORK 117

resultList.push_back(userNode);

}

}

}

totalForCounter += forCounter;

}

}

}

B.2 Continuous RANN query on road network

Add query:

void ExperimentsCommand::addQueryNewRecordDistance(ILBR &ilbr, Graph &graph, ALT

&alt, NVD &nvd, int &kValue, NodeID &queryNodeIt, std::vector<NodeID> &kNNs,

std::vector<EdgeWeight> &kNNDistances, PrunedHighwayLabeling &phl,

std::map<NodeID, std::pair<NodeID, EdgeWeight>> &generatorUserMaxDistMap,

std::set<NodeID> &noUserGeneratorSet, int &maxMaxDist, std::set<NodeID>

&cantPrunedSet, std::map<NodeID, EdgeWeight> &cantPrunedDistMap, NodeID

&facilityQueryNode, std::set<NodeID> &resultSet, std::map<NodeID,

std::set<NodeID>> &generatorUserMap, const double factorX, std::map<NodeID,

std::set<NodeID>> &voronoiCellSigSetMap, std::map<NodeID, std::set<NodeID>>

&userBelongQuerySetMap, std::map<NodeID, std::vector<std::pair<NodeID,

EdgeWeight>>> &generatorNodeDistanceMap, std::map<NodeID, std::set<NodeID>>

&generatorNodeMap, std::map<std::pair<NodeID, NodeID>,

std::map<std::pair<NodeID, NodeID>, double>>

&queryFacilityInfzoneSegmentsMap, std::map<std::pair<NodeID, NodeID>,

std::map<std::pair<NodeID, NodeID>, double>>

&queryFacilityNotInfzoneSegmentsMap

) {

getSingleNVDPHL2(ilbr, graph, alt, nvd, kValue,
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queryNodeIt, kNNs, kNNDistances,

phl, generatorUserMaxDistMap,

noUserGeneratorSet, maxMaxDist, cantPrunedSet,

cantPrunedDistMap, facilityQueryNode, resultSet,

generatorUserMap, factorX);

for (auto cantPrunedGenerator : cantPrunedSet) {

int fq = cantPrunedDistMap[cantPrunedGenerator];

double bigR = (double)fq / (factorX - 1);

double smallR = (double)fq / (factorX + 1);

std::map<std::pair<NodeID, NodeID>, double>

queryInfzoneSegmentsInOneFacility;

std::map<std::pair<NodeID, NodeID>, double>

queryNotInfzoneSegmentsInOneFacility;

std::set<NodeID> isResultNodes;

bool pruneAll = false;

for (auto tempNodeDistancePair :

generatorNodeDistanceMap[cantPrunedGenerator]) {

NodeID currentNode = tempNodeDistancePair.first;

int uf = tempNodeDistancePair.second;

if (pruneAll) {

checkConnectedNodeWhenNotResult(graph, nvd, queryNodeIt, phl,

queryInfzoneSegmentsInOneFacility,

queryNotInfzoneSegmentsInOneFacility,

isResultNodes, currentNode,

cantPrunedGenerator,

bigR, smallR, factorX, uf);



B.2. CONTINUOUS RANN QUERY ON ROAD NETWORK 119

} else if (isResultNodes.find(currentNode) != isResultNodes.end()) {

checkConnectedNodeWhenIsResult(graph, nvd, queryNodeIt, phl,

queryInfzoneSegmentsInOneFacility,

queryNotInfzoneSegmentsInOneFacility,

isResultNodes, currentNode,

cantPrunedGenerator,

bigR, smallR, factorX, uf);

} else {

if (fq > uf && (fq - uf > factorX * uf)) {

pruneAll = true;

checkConnectedNodeWhenNotResult(graph, nvd, queryNodeIt, phl,

queryInfzoneSegmentsInOneFacility,

queryNotInfzoneSegmentsInOneFacility,

isResultNodes, currentNode,

cantPrunedGenerator,

bigR, smallR, factorX, uf);

} else if (uf >= bigR) {

checkConnectedNodeWhenIsResult(graph, nvd, queryNodeIt, phl,

queryInfzoneSegmentsInOneFacility,

queryNotInfzoneSegmentsInOneFacility,

isResultNodes, currentNode,

cantPrunedGenerator,

bigR, smallR, factorX, uf);

isResultNodes.insert(currentNode);

} else if (uf > smallR && uf < bigR) {

int uq = phl.Query(queryNodeIt, currentNode);

if (uq <= uf * factorX) {

checkConnectedNodeWhenIsResult(graph, nvd, queryNodeIt, phl,

queryInfzoneSegmentsInOneFacility,

queryNotInfzoneSegmentsInOneFacility,

isResultNodes, currentNode,

cantPrunedGenerator,

bigR, smallR, factorX, uf);
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isResultNodes.insert(currentNode);

} else {

checkConnectedNodeWhenNotResult(graph, nvd, queryNodeIt,

phl,

queryInfzoneSegmentsInOneFacility,

queryNotInfzoneSegmentsInOneFacility,

isResultNodes, currentNode,

cantPrunedGenerator,

bigR, smallR, factorX, uf);

}

} else {

checkConnectedNodeWhenNotResult(graph, nvd, queryNodeIt, phl,

queryInfzoneSegmentsInOneFacility,

queryNotInfzoneSegmentsInOneFacility,

isResultNodes, currentNode,

cantPrunedGenerator,

bigR, smallR, factorX, uf);

}

}

}

queryFacilityInfzoneSegmentsMap[std::make_pair(queryNodeIt,

cantPrunedGenerator)] = queryInfzoneSegmentsInOneFacility;

voronoiCellSigSetMap[cantPrunedGenerator].insert(queryNodeIt);

}

voronoiCellSigSetMap[queryNodeIt].insert(queryNodeIt);

std::map<std::pair<NodeID, NodeID>, double> queryInfzoneSegmentsInQuery;

for (auto tempNodeDistancePair : generatorNodeDistanceMap[queryNodeIt]) {

int currentNode = tempNodeDistancePair.first;
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int uf = tempNodeDistancePair.second;

for (int i = graph.firstEdgeIndex[currentNode]; i <

graph.firstEdgeIndex[currentNode + 1]; i++) {

NodeID anotherEnd = graph.edges[i].first;

EdgeWeight anotherEndUserDist = graph.edges[i].second;

EdgeWeight anotherEndf = nvd.nodeDRIDs[anotherEnd].second;

if (nvd.drObjectIDs[nvd.nodeDRIDs[anotherEnd].first] != queryNodeIt) {

double safeDistance = (double)(anotherEndf + anotherEndUserDist -

uf) / 2;

queryInfzoneSegmentsInQuery[std::make_pair(currentNode,

anotherEnd)] = safeDistance;

} else {

queryInfzoneSegmentsInQuery[std::make_pair(currentNode,

anotherEnd)] = anotherEndUserDist;

}

}

}

queryFacilityInfzoneSegmentsMap[std::make_pair(queryNodeIt, queryNodeIt)] =

queryInfzoneSegmentsInQuery;

for (auto result : resultSet) {

userBelongQuerySetMap[result].insert(queryNodeIt);

}

}

Add user:

void ExperimentsCommand::addUser(NVD &nvd, NodeID user,
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std::map<NodeID, std::set<NodeID>> &generatorUserMap,

std::set<NodeID> &noUserGeneratorSet,

std::map<NodeID, std::set<NodeID>> &voronoiCellSigSetMap,

std::map<NodeID, std::set<NodeID>> &userBelongQuerySetMap,

std::map<std::pair<NodeID, NodeID>,

std::map<std::pair<NodeID, NodeID>, double>>

&queryFacilityInfzoneSegmentsMap,

std::map<std::pair<NodeID, NodeID>,

std::map<std::pair<NodeID, NodeID>, double>>

&queryFacilityNotInfzoneSegmentsMap

) {

NodeID nearestFacility;

EdgeWeight uf;

nvd.getNearestNeighbour(user,nearestFacility,uf);

auto it = noUserGeneratorSet.find(nearestFacility);

if (it != noUserGeneratorSet.end()) {

noUserGeneratorSet.erase(it);

}

generatorUserMap[nearestFacility].insert(user);

if (!voronoiCellSigSetMap[nearestFacility].empty()) {

for (auto queryNode : voronoiCellSigSetMap[nearestFacility]) {

std::pair<NodeID, NodeID> tempQueryFacility =

std::make_pair(queryNode, nearestFacility);

bool userIsResult = false;

for (auto itSegment =

queryFacilityInfzoneSegmentsMap[tempQueryFacility].begin();

itSegment !=

queryFacilityInfzoneSegmentsMap[tempQueryFacility].end();

itSegment++) {

if (itSegment->first.first == user) {
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userBelongQuerySetMap[user].insert(queryNode);

userIsResult = true;

userQueryMinimumSafeZoneSegmentMap[std::make_pair(user,

queryNode)] =

queryFacilityInfzoneSegmentsMap[tempQueryFacility];

break;

}

}

if (!userIsResult) {

userQueryMinimumSafeZoneSegmentMap[std::make_pair(user,

queryNode)] =

queryFacilityNotInfzoneSegmentsMap[tempQueryFacility];

}

}

}

}

Monitoring user moving:

void ExperimentsCommand::monitorMoving() {

std::vector<std::vector<MovingNode>> allMovingUsers;

readMovingNodesFromFile(movingSetFile, userNodes, graph, allMovingUsers);

for (auto &movingUserAtTimestamp : allMovingUsers) {

for (auto & tmpMovingNode : movingUserAtTimestamp) {

NodeID startNode = tmpMovingNode.getMovingNodeId();

NodeID nextNode = tmpMovingNode.getNextNodeId();

NodeID edgeStartNode;

if (movingRouteMap[startNode].empty()) {

edgeStartNode = startNode;

movingRouteMap[startNode].push_back(startNode);

} else {

edgeStartNode = movingRouteMap[startNode].back();

}
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NodeID edgeEndNode = nextNode;

NodeID edgeStartNearestFacility;

EdgeWeight edgeStartSpdist;

nvd.getNearestNeighbour(edgeStartNode,

edgeStartNearestFacility, edgeStartSpdist);

NodeID edgeEndNearestFacility;

EdgeWeight edgeEndSpdist;

nvd.getNearestNeighbour(edgeEndNode, edgeEndNearestFacility,

edgeEndSpdist);

if (nextNode != edgeStartNode) {

isResultUserQuerySafeDistanceMap.clear();

notResultUserQuerySafeDistanceMap.clear();

EdgeWeight startEndEdgeWeight = 0;

bool oneEdgeFlag = false;

std::set<NodeID> connectStartSet;

for (int i = graph.firstEdgeIndex[edgeStartNode]; i <

graph.firstEdgeIndex[edgeStartNode + 1]; i++) {

if (graph.edges[i].first == nextNode) {

oneEdgeFlag = true;

startEndEdgeWeight = graph.edges[i].second;

break;

} else {

connectStartSet.insert(graph.edges[i].first);

}

}

if (!oneEdgeFlag) {

for (int i = graph.firstEdgeIndex[nextNode]; i <

graph.firstEdgeIndex[nextNode + 1]; i++) {
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if

(!connectStartSet.insert(graph.edges[i].first).second)

{

edgeStartNode = graph.edges[i].first;

startEndEdgeWeight = graph.edges[i].second;

}

}

movingRouteMap[startNode].push_back(edgeStartNode);

}

movingRouteMap[startNode].push_back(nextNode);

if (edgeStartNearestFacility == edgeEndNearestFacility) {

for (auto tempQuery :

voronoiCellSigSetMap[edgeStartNearestFacility]) {

bool edgeStartNodeIsResult =

userBelongQuerySetMap[edgeStartNode].find(tempQuery)

!=

userBelongQuerySetMap[edgeStartNode].end();

bool edgeEndNodeIsResult =

userBelongQuerySetMap[edgeEndNode].find(tempQuery) !=

userBelongQuerySetMap[edgeEndNode].end();

std::pair<NodeID, NodeID> tempEdgeStartUserQuery =

std::make_pair(edgeStartNode, tempQuery);

std::pair<NodeID, NodeID> tempQueryEdgeStartFacility

=

std::make_pair(tempQuery, edgeStartNearestFacility);

if (startEndEdgeWeight == 0) {

continue;

}

int distanceStartEnd =

queryFacilityInfzoneSegmentsMap[tempQueryEdgeStartFacility]

[std::make_pair(edgeStartNode, edgeEndNode)];

int distanceEndStart =

queryFacilityInfzoneSegmentsMap[tempQueryEdgeStartFacility]
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[std::make_pair(edgeEndNode, edgeStartNode)];

if ((!edgeStartNodeIsResult &&

!edgeEndNodeIsResult)) {

if (distanceStartEnd != startEndEdgeWeight) {

notResultUserQuerySafeDistanceMap

[tempEdgeStartUserQuery] = distanceEndStart;

notResultUserQuerySafeDistanceMap

[std::make_pair(edgeEndNode, tempQuery)] =

distanceEndStart;

}

} else if (edgeStartNodeIsResult &&

!edgeEndNodeIsResult) {

isResultUserQuerySafeDistanceMap

[tempEdgeStartUserQuery] = distanceStartEnd;

} else if (!edgeStartNodeIsResult &&

edgeEndNodeIsResult) {

notResultUserQuerySafeDistanceMap

[tempEdgeStartUserQuery] = distanceEndStart;

}

}

} else {

std::set<NodeID> combinedSet;

combinedSet.insert(

userBelongQuerySetMap[edgeStartNode].begin(),

userBelongQuerySetMap[edgeStartNode].end());

combinedSet.insert(

voronoiCellSigSetMap[edgeEndNearestFacility].begin(),

voronoiCellSigSetMap[edgeEndNearestFacility].end());

for (auto tempQuery : combinedSet) {

bool edgeStartNodeIsResult = userBelongQuerySetMap

[edgeStartNode].find(tempQuery) !=

userBelongQuerySetMap[edgeStartNode].end();
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std::pair<NodeID, NodeID> tempEdgeStartUserQuery =

std::make_pair(edgeStartNode, tempQuery);

std::pair<NodeID, NodeID> tempQueryEdgeStartFacility

=

std::make_pair(tempQuery, edgeStartNearestFacility);

std::pair<NodeID, NodeID> tempQueryEdgeEndFacility =

std::make_pair(tempQuery, edgeEndNearestFacility);

if (edgeStartNodeIsResult) {

bool startHalfSafe =

queryFacilityInfzoneSegmentsMap

[tempQueryEdgeStartFacility]

.find(std::make_pair(edgeStartNode, edgeEndNode))

!=

queryFacilityInfzoneSegmentsMap

[tempQueryEdgeStartFacility].end();

bool endHalfSafe =

queryFacilityInfzoneSegmentsMap

[tempQueryEdgeEndFacility]

.find(std::make_pair(edgeEndNode, edgeStartNode))

!=

queryFacilityInfzoneSegmentsMap

[tempQueryEdgeEndFacility].end();

if (startHalfSafe) {

isResultUserQuerySafeDistanceMap

[tempEdgeStartUserQuery] =

queryFacilityInfzoneSegmentsMap

[tempQueryEdgeStartFacility]

[std::make_pair(edgeStartNode, edgeEndNode)];

} else if (endHalfSafe) {

notResultUserQuerySafeDistanceMap

[tempEdgeStartUserQuery] =

queryFacilityInfzoneSegmentsMap

[tempQueryEdgeStartFacility]

[std::make_pair(edgeEndNode, edgeStartNode)];

}
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} else {

if (queryFacilityInfzoneSegmentsMap

[tempQueryEdgeEndFacility]

.find(std::make_pair(edgeEndNode, edgeStartNode))

!=

queryFacilityInfzoneSegmentsMap

[tempQueryEdgeEndFacility].end()) {

notResultUserQuerySafeDistanceMap

[tempEdgeStartUserQuery] =

queryFacilityInfzoneSegmentsMap

[tempQueryEdgeEndFacility]

[std::make_pair(edgeEndNode, edgeStartNode)];

} else {

//no change

}

}

}

}

} else {

int edgeStartX;

int edgeStartY;

graph.getCoordinates(edgeStartNode, edgeStartX, edgeStartY);

double inlineX = tmpMovingNode.getCurrentX();

double inlineY = tmpMovingNode.getCurrentY();

int edgeEndX = tmpMovingNode.getNextNodeX();

int edgeEndY = tmpMovingNode.getNextNodeY();

double distStart = std::sqrt(

(edgeStartX - inlineX) * (edgeStartX - inlineX) +

(edgeStartY - inlineY) * (edgeStartY - inlineY));

double distEnd = std::sqrt(

(edgeEndX - inlineX) * (edgeEndX - inlineX) +

(edgeEndY - inlineY) * (edgeEndY - inlineY));
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for (auto temp : isResultUserQuerySafeDistanceMap) {

if (distStart < temp.second) {

//no change

} else {

queryResultSetMap[temp.first.second]

.erase(edgeStartNode);

userBelongQuerySetMap[edgeStartNode]

.erase(temp.first.second);

}

}

for (auto temp : notResultUserQuerySafeDistanceMap) {

if (distEnd > temp.second) {

//no change

} else {

queryResultSetMap[temp.first.second]

.insert(edgeEndNode);

userBelongQuerySetMap[edgeEndNode]

.insert(temp.first.second);

}

}

}

}

}

}

B.3 Spatial Reverse Approximate Top (SRAT) query

Prune MBR:

bool isMBRPruned(int qID, CNode* &currentNode, double my_xFactor, double*

&facility_static_score_table, vector<double> &weight_vector, map<int,

Query*> &queryTable)
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{

double minDist = currentNode->getRect()->getMinDist2D(queryTable[qID]->loc);

if (minDist < EPSILON) {

return false;

}

double q_static_score = facility_static_score_table[qID];

double f_max_static_score = currentNode->m_maxStaticScore;

double delta = (my_xFactor * f_max_static_score - q_static_score) /

weight_vector[0];

double m_maxVDist = currentNode->m_maxDist;

if((minDist - delta) / (my_xFactor + 1) > m_maxVDist) {

return true;

}

return false;

}

Check futile MBR:

bool isMBRAllResult(int qID, CNode* &currentNode, double my_xFactor, double*

&facility_static_score_table, vector<double> &weight_vector, map<int,

Query*> &queryTable) {

double min_delta = (my_xFactor * currentNode->m_minStaticScore -

facility_static_score_table[qID]) / weight_vector[0];

double max_q_f = currentNode->getRect()->getMaxDist(queryTable[qID]->loc);

if (min_delta >= max_q_f) {

return true;

} else {

return false;

}

}

Prune a Voronoi cell:
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bool isVoronoiCellPrunedForBasicVoronoi(int qID, int facility_ID, double*

&facility_static_score_table, double my_xFactor, vector<double>

&weight_vector, CPoint** &facilityTable, map<int, Query*> &queryTable,

VCell** &voronoiTable, double delta, double dist_q_f)

{

double q_static_score = facility_static_score_table[qID];

double f_static_score = facility_static_score_table[facility_ID];

if (delta > 0) {

for (int i = 0; i < voronoiTable[facility_ID]->fpolygon.size(); i++) {

auto corner = voronoiTable[facility_ID]->fpolygon[i];

double query_score = corner->loc->getDist2D(queryTable[qID]->loc) *

weight_vector[0] + q_static_score;

double f_score = my_xFactor * (corner->distFromQ * weight_vector[0] +

f_static_score);

if (query_score <= f_score) {

return false;

}

}

} else if (delta <= 0) {

if ((dist_q_f - delta) / (my_xFactor + 1) >=

voronoiTable[facility_ID]->maxVertex) {

return true;

}

}

return true;

}

Get cannot pruned and futile facilities:

void getPrunedAndResultFacilities(int qID, CRTree* &Ftree,

CPoint** &facilityTable,

double* &facility_static_score_table,
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map<int, Query*> &queryTable, VCell** &voronoiTable,

double my_xFactor, vector<double> &weight_vector)

{

CHeap heap;

Ftree->getRoot()->getRect()->blowHuge();

heap.insertNode(0,Ftree->getRoot());

CNode* curNode;

CHeapNode* heapNode;

int numChildren;

CEntry* child;

while(heap.getHeapSize() != 0) {

heapNode = heap.top();

curNode = (CNode*)heapNode->getData();

heap.pop();

if (curNode->m_id >= 0) {

if (isMBRPruned(qID, curNode, my_xFactor, facility_static_score_table,

weight_vector, queryTable)) {

continue;

} else if (isMBRAllResult(qID, curNode, my_xFactor,

facility_static_score_table, weight_vector, queryTable)) {

vector<CNode*> allf;

Ftree->getAllObjects(curNode, &allf);

for (auto t_node : allf) {

int fID = t_node->m_id * -1;

double dist_q_f =

facilityTable[fID]->getDist2D(queryTable[qID]->loc);

double min_q_score = (dist_q_f - curNode->m_maxDist) *

weight_vector[0] + facility_static_score_table[qID];

queryTable[qID]->all_result_f_my_obj.insert(new myobj(fID,

min_q_score));

}
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}

else {

curNode->load();

numChildren = curNode->getNumChild();

for(int i = 0; i < numChildren; i++) {

child = curNode->getEntry(i);

heap.insertNode(child->getRect()->getMinDist(queryTable[qID]->loc),

(CNode*) child);

}

}

} else {

int fID = curNode->m_id * (-1);

if (fID != qID){

double dist_q_f =

facilityTable[fID]->getDist2D(queryTable[qID]->loc);

double min_q_score = (dist_q_f - curNode->m_maxDist) *

weight_vector[0] + facility_static_score_table[qID];

double max_f_score = my_xFactor * curNode->m_maxDist *

weight_vector[0] + my_xFactor * curNode->m_maxStaticScore;

double delta = (my_xFactor * facility_static_score_table[fID] -

facility_static_score_table[qID]) / weight_vector[0];

if (min_q_score > max_f_score) {

continue;

} else if (delta >= dist_q_f) {

queryTable[qID]->all_result_f_my_obj.insert(new myobj(fID,

min_q_score));

}

else {

if (!isVoronoiCellPrunedForBasicVoronoi(qID, fID,

facility_static_score_table, my_xFactor,

weight_vector,

facilityTable, queryTable,

voronoiTable, delta,

dist_q_f)) {
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queryTable[qID]->cant_pruned_f_my_obj.insert(new myobj(fID,

min_q_score));

}

}

}

}

}

heap.clear();

}

User verification:

void useRtreeMethod(vector<CPoint*> &allUsers, map<int, Query*> &queryTable,

double my_xFactor, CPoint** &facilityTable,

double* &facility_static_score_table,

vector<double> &weight_vector, CRTree* &Ftree,

int STATIC_DIMENSION, VCell** &voronoiTable,

double max_user_nearest_not_top1_score,

double max_user_nearest_score) {

for (auto query : queryTable) {

getPrunedAndResultFacilities(query.first, Ftree, facilityTable,

facility_static_score_table,

queryTable, voronoiTable,

my_xFactor, weight_vector);

for (auto temp_f : queryTable[query.first]->cant_pruned_f_my_obj) {

int fID = temp_f->facility_id;

double min_u_q_score = temp_f->min_u_q_score;

if (min_u_q_score >= max_user_nearest_score) {

break;

}

for (auto temp: facilityTable[fID]->nearest_user_f_dist_vec) {

if (min_u_q_score >= temp.second) {
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break;

}

int uid = temp.first;

CPoint *user = allUsers[uid-1];

double user_query_score = user->getDist2D(query.second->loc) *

weight_vector[0] + facility_static_score_table[query.first];

if (user_query_score < temp.second) {

query.second->new_voronoi_rtk.insert(uid);

}

}

}

}

}
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