
New Aggregation Methods for
Multicommodity Network Flow Problems:

Theory and Applications to Locomotive
Refueling

A thesis submitted for the degree of

Doctor of Philosophy

by

Ahmad Kazemi

Supervisors:
Prof. Andreas T. Ernst

Dr. Pierre Le Bodic
Prof. Mohan Krishnamoorthy

School of Mathematics
Monash University, Australia

September, 2021

To my wonderful parents

Copyright Notice

©Ahmad Kazemi (2021).

I certify that I have made all reasonable efforts to secure copyright permissions for third-
party content included in this thesis and have not knowingly added copyright content to
my work without the owner’s permission.

Declaration

This thesis is an original work of my research and contains no material which has been
accepted for the award of any other degree or diploma at any university or equivalent
institution and that, to the best of my knowledge and belief, this thesis contains no material
previously published or written by another person, except where due reference is made in
the text of the thesis.

Signature:

Print Name: Ahmad Kazemi

Date: 07 September 2021

Acknowledgements

I would like to express my gratitude to my dear supervisors, Prof. Andreas Ernst, Dr.
Pierre Le Bodic, and Prof. Mohan Krishnamoorthy. Thank you for your invaluable support,
insights, and inspiration, which not only made this thesis possible but also helped me to
grow and enjoy my PhD.

I would also like to express my thanks to John Chan for his continuous help from the
very first day of my PhD and Dr. Asef Nazari for his insightful professional advice.

I would like to express my deepest gratitude to my family for their never-ending love
and support: my beloved parents, Tayyebe and Mostafa, my kind-hearted sister, Saeedeh,
my amazing brother, Alireza, my dear brother-in-law, Farid, and my sweet nephew, Farhan.

I would like to extend my sincere thanks to my treasured friends, Atabak Elmi, Malihe
Rezaie, Mara Antic, Fahime Saleh, Mahsa Naseri, Timothy Chan, and Flora Tourchi, whom
I met during my new life in Australia and have made me feel at home.

I would like to extend my sincere thanks to my lifelong, cherished friends, Mahmoud
Shabani, Pedram Pishvaeian, Kamyar Pakdaman, Sajjad Kazemi, Mohammad Arab, Zabih
Ghelichi, Iman Maghami, Amin Maghami, Navid Asmari, Reza Rezaee, and Amir Saa-
datjoo, whose love has never stopped by geographical barriers and are always in my heart.

This research was supported by an Australian Government Research Training Program
(RTP) Scholarship. I would also thank Australia Research Council and Pacific National Pty.
Ltd. for funding and motivating this research.

Abstract

Network flow problems appear in an extensive variety of applications in transportation,
supply chain management, logistics, communication networks, and energy systems, to
name but a few. A network structure is usually intrinsic in those problems, such as the
network of the cities and their links in a routing problem. In addition to such applications,
there exist problems that could be modelled as time- (or resource-) expanded networks
although they may not exhibit an explicit network structure, for instance, a train schedul-
ing problem over a set of stations, which adds a time dimension to the network of the
stations to represent the time-related decisions. The application of network flow problems
is significant for transportation problems as they are naturally expressed over physical
networks.

Although network models are well studied, general approaches are not efficient when
applied to special cases of large industrial problems. Particularly, while minimum-cost net-
work flow problems are “easy” to solve, they are often embedded within network design
type problems and grow very large when the need to track flow between many origin-
destination pairs requires a large number of commodities to be included. This thesis is
motivated by such a problem in rail transportation that is modelled based on a network
representation. The problem consists in optimizing the refueling operations of transconti-
nental long-haul trains by Australia’s largest railway company. The traditional approach
to reduce the fueling costs is to fill the locomotives at inexpensive stations to bypass the
more expensive stations. However, this approach is not applicable to rail networks with
long-haul operations. To overcome this issue, railway companies have started adopting
inline refueling tanks, a supplementary reservoir which can refuel locomotives during a
trip, and can be refueled, attached, detached, and swapped at any station, independently
of locomotives. This new technology offers many opportunities for railway companies, in
particular to facilitate long-haul trips and to leverage fuel cost differences. As always, new
opportunities mean new challenges, as inline tanks engender combinatorially many new
possible refueling plans. Moreover, since the inline tanks are a substantial investment, the
number of available inline tanks is limited. To tackle this, we design a first optimization
model and develop solution algorithms that determine the efficient fuel plans for a fleet of
inline tanks.

Computational experiments show that as the number of available inline tanks in-
creases, even solving the LP relaxation of the the proposed model for the fuel manage-
ment problem is significantly time-consuming. This is interesting as the same trend usually
appears in solving multicommodity network flow problems, and here, we can consider
inline tanks as commodities. Therefore, we propose novel aggregation techniques for mul-

i

ticommodity network flow problems that reduce the model size, and subsequently the
LP relaxation computing time, while minimally degrade its LP bound quality. We apply
the proposed aggregation techniques to the multicommodity fixed-charge network design
problem as it is a well-known multicommodity network flow problem with an extensive
application in transportation. These aggregation techniques result in a range of formula-
tions with different trade-off in the LP relaxation computing time and the LP bound quality.
We also apply such aggregation techniques to a variant of the real-world problem that has
motivated this thesis to develop an exact solution algorithm.

The thesis makes a number of contributions, mainly:

1. It introduces a new class of fuel management problems in rail transportation, which
is motivated by the operational issues of locomotive refueling in networks with long-
haul travels. The problem is to efficiently plan a fleet of inline refueling tanks for a
given train and locomotive schedule. We discuss the theoretical and the empirical
complexity of this problem and show that this problem is strongly NP-hard even in
its simplest form. This problem is conceptualized on a time-space network. A Mixed-
Integer Programming (MIP) model is developed based on the underlying network,
which can be viewed as an extended network design model. We apply the proposed
MIP model to a real-life case study in Australia to investigate the model results and
also evaluate the impacts of adoption of inline refueling on the ongoing operations
of the railway companies. To evaluate the MIP model for scale-up, we apply it to a
larger dataset from the USA, derived from an INFORMS railway application problem
solving competition. As commercial solvers fail to provide good-quality solutions
for large instances, we propose a heuristic algorithm that leverages a MIP solver and
provides good-quality solutions in a reasonable time.

2. When solving hard multicommodity network flow problems using an LP-based ap-
proach, the number of commodities is a driving factor in the speed at which the LP
relaxation can be solved, as it is linear in the number of constraints and variables. The
conventional approach to improve the solve time of the LP relaxation of a MIP model
that encodes such an instance is to aggregate all commodities that have the same
origin or the same destination. However, the bound of the resulting LP relaxation can
be significantly worse, which tempers the efficiency of aggregating techniques. This
thesis introduces the concept of partial aggregation of commodities that aggregates
commodities over a subset of the network instead of the conventional aggregation
over the entire underlying network. This offers a high level of control on the trade-off
between size of the aggregated MIP model and quality of its LP bound. We apply the
concept of partial aggregation to two different MIP models for the multicommodity
network design problem. We provide both theoretical results and empirical evidence

ii

for the trade-off between the level of aggregation and LP bound tightness for the
proposed models. Our computational study on benchmark instances confirms that
the trade-off between solve time and LP bound can be controlled by the level of aggre-
gation, and that choosing a good trade-off can allow the original large-scale problem
to be solved faster than without aggregation or with full aggregation.

3. It applies the concept of partial aggregations to an abstract version of the real-world
refueling problem introduced in this thesis. Partial aggregation results in formula-
tions with tight bounds for this problem as well and hence, we develop an exact
solution algorithm based on such aggregation schemes. The computational experi-
ments on this algorithm demonstrate that utilizing partial aggregations can lead to a
highly efficient for the problem investigated in this thesis, which is a variant of the
multicommodity network design problem.

This thesis contributes to both theory and practice of the field of network optimization.
It introduces a new type of network design problems with a multicommodity network
flow sub-structure and an application in rail transport. Moreover, it proposes a novel and
general approach, called partial aggregations, for a range of problems that contain a subset of
variables and constraints which make up a multi-commodity flow component, including
the industrial refueling problem that has motivated this thesis.

The main academic research outputs derived from this thesis are as follows:

1. Research paper: A. Kazemi, P. Le Bodic, A. T. Ernst, M. Krishnamoorthy. New partial
aggregations for multicommodity network flow problems: An application to the fixed-
charge network design problem, accepted and published in Computers & Operations
Research, 136, 105505, 2021.

2. Research paper: A. Kazemi, A. T. Ernst, M. Krishnamoorthy, P. Le Bodic. Locomotive
fuel management with inline refueling, accepted and published in European Journal of
Operational Research, 293, 1077-1096, 2021.

3. Abstract paper: A. Kazemi, A.T. Ernst, M. Krishnamoorthy, P. Le Bodic. Locomotive
fuel management with inline refueling, presented at The Tenth Triennial Symposium on
Transportation Analysis (TRISTAN X), Hamilton Island, Australia, June 2019.

iii

https://www.sciencedirect.com/science/article/abs/pii/S0305054821002495
https://www.sciencedirect.com/science/article/abs/pii/S0305054821002495
https://www.sciencedirect.com/science/article/abs/pii/S0305054821002495
https://doi.org/10.1016/j.ejor.2020.12.042
https://doi.org/10.1016/j.ejor.2020.12.042

Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Framework and Methodology . 3

1.3 Main Contributions and Publications . 4

1.4 Thesis Structure . 5

2 Background . 8

2.1 Mixed Integer Programming (MIP) . 8

2.1.1 Linear Programming . 8
2.1.2 MIP Modeling . 10
2.1.3 The Branch-and-Bound Algorithm (B&B) 12
2.1.4 Matheuristics . 13

2.2 Large Scale Optimization . 14

2.2.1 Row and Column Aggregation . 14
2.2.2 Column Generation . 19
2.2.3 Benders Decomposition Algorithm . 22

2.3 Multicommodity Network Flow Problems (MCF) 24

2.3.1 Multicommodity Fixed-Charge Network Design Problem 26
2.4 Fuel Management Problems . 29

3 Locomotive Fuel Management with Inline Refueling 35

3.1 Overview . 35

3.2 Problem Description . 36

3.3 Complexity of the Problem . 38

3.4 Mathematical Modeling . 44

3.4.1 Network Representation . 44

iv

CONTENTS

3.4.2 Mixed-Integer Program . 54
3.5 Extensions: The Locomotive Fuel Management Problem with Inline Refueling 56

3.5.1 Maximum Number of Assigned Inline Tanks to a Train 57
3.5.2 Maximum Number of the Locomotives Refueled Inline 57
3.5.3 Fuel Transfer Between the Tanks . 57
3.5.4 Balanced Fuel Level of Inline Tanks 58

3.6 An Australian Case Study . 59

3.6.1 Evaluating GFMIR, LFMIR, and the Restricted Models 60
3.6.2 Optimizing the Size of the Inline Tank Fleet 61
3.6.3 Safety Inventory . 62
3.6.4 Critical Paths . 63

3.7 Computational Performance . 65

3.7.1 A Simple and Efficient Heuristic . 67
3.8 Conclusions and Future Research . 71

4 Partial Aggregations for Multicommodity Network Flow Problems 75

4.1 Overview . 75

4.2 Commodity Definitions and Aggregation Levels 76

4.3 Improving the Partially-Aggregated Formulation 80

4.3.1 Partially-Aggregated Formulation with Inequality Tightening Con-
straints . 81

4.3.2 Partially-Aggregated Formulation with Equality Tightening Constraints 83
4.3.3 K-Shortest Path Aggregations . 87

4.4 Polyhedral Analysis . 88

4.5 Computational Results . 93

4.5.1 Experimental Evaluation of the LP Relaxations 95
4.5.2 Solving the MIP Model . 99

4.6 Conclusions and Future Research . 105

5 From Partial Aggregations to Solution Algorithms 107

5.1 Overview . 107

5.2 The Inline Fuel Delivery Problem . 108

5.3 Complexity of the Problem . 109

5.4 Mathematical Modeling . 111

v

CONTENTS

5.4.1 Time-space network . 111
5.4.2 The MIP model . 112

5.5 Dealing with Large Instances Using Aggregations 113

5.6 Infeasibilities Arise by (Full) Aggregation . 116

5.7 Partial Aggregations Shine . 117

5.7.1 Constructing Partial Aggregations . 118
5.7.2 Partially-Aggregated Formulations . 119
5.7.3 The Partial Aggregation-Based Algorithm (PAA) 121

5.8 Computational Results . 122

5.9 Conclusions and Future Research . 126

6 Concluding Remarks . 128

Bibliography . 133

vi

List of Figures

1.1 An example of inline refueling tanks. The picture courtesy of Pacific National
Pty. Ltd., 2018. 2

2.1 An example of the row (constraint) aggregation. Here, the constraints x1 ≤ u1

and x2 ≤ u2 are aggregated to x1 + x2 ≤ u1 + u2. While this has reduced the
number of constraints, it has increased the feasible region as shown. 15

3.1 Reduction of a 3-SAT instance . 42

3.2 A sketch of the time-space network. In the time-space network, nodes repre-
sent activities over a time period. Relevant activities are connected by arcs.
There are two types of connections: 1) movement connections that connect ac-
tivities related to movement of inline tanks and locomotives in the network.
A movement connection is not a movement itself but a logical connection
between a movement (which is represented by an activity node) and another
movement or another activity. 2) Fuel circulation connections that transfer
the fuel between different components of the problem by direct refueling at
stations or inline refueling through inline tanks. 46

3.3 A trip leg node which represents the time period of taking a trip leg. Tank
arcs represent the start and end time of the corresponding trip leg. Tank arcs
are of movement connections type. Therefore, they connect a trip leg node to
the corresponding previous (staying in the origin station) and next (staying
in the destination station) activities. Inline refueling arcs connect the trip
leg node of the inline tanks to the locomotives that haul the corresponding
train. The flow on tank arcs represents the fuel level of the locomotive or
the inline tank before and after taking the trip. The flow on inline refueling
arcs represents the amount of fuel that is transferred from the assigned inline
tanks of a train to the corresponding locomotives during the trip. 47

vii

LIST OF FIGURES

3.4 A station node for an inline tank. Tank arcs (solid arrows) represent the
movement of the inline tank that can be arriving from a trip leg, departing to
take a trip leg, and being idle at the station at the previous/next time period.
The other side of tanks arcs that are related to a trip leg, are connected to the
relevant trip leg nodes. Tank arcs representing being idle are connected to
relevant station nodes. Flow on tank arcs indicate the fuel level at the time.
Refueling arcs represent a refueling operation for the inline tank during its
stay at the station. The other side of the refueling arc is connected to the
node that represents the fuel supply of the corresponding station. Flow on
the refueling arc indicate the amount of the refueling. 48

3.5 Fuel supply nodes. All fuel in the network stems from the total supply node
and flows to station supply nodes. A station supply node represents the fuel
supply at a station. The flow on station supply arcs indicate the total fuel
purchased at the corresponding stations during the time horizon. Refueling
arcs represent the refueling operations at the stations. Therefore, the other
side of refueling arcs is connected to the corresponding stations nodes of the
locomotives and inline tanks. 49

3.6 Connection of inline refueling arcs. This represents the inline refueling con-
nections for a trip leg that is hauled by three locomotives (upper triangle
nodes with the fuel demand of D). The bottom triangle node represents the
same trip leg for inline tanks. Trip leg nodes of locomotives and inline tanks
are connected by dashed arcs that represent inline refueling. The flow on
these arcs indicates the amount of inline refueling that each locomotive re-
ceives during the trip leg. These nodes have incoming and outgoing tank
arcs as explained before, which are not shown here. 50

3.7 Network representation of an instance of the problem with 2 locomotives, 1
inline tank, 3 stations, and 3 train trip legs. Station nodes represent the time
period an entity (locomotive or inline tank) stays at a station. Trip leg nodes
represent the time period of taking a trip leg. The demand is nonzero only
for trip leg nodes of the locomotives and is equal to their fuel consumption
during the corresponding trip leg. The supply is nonzero only for the total
supply node and is equal to the total fuel consumption of all locomotives. . 51

3.8 The problem as two interrelated network problems: a network design and a
network flow problem. This figure corresponds to the illustrated example in
Figure 3.7 with fuel supply layer ignored. The design problem is to select a
subset of arcs that translates to yes/no decisions, such as an assignment or
performing a refueling operation. The flow problem is to determine the fuel
flow on the selected arcs by the design problem. 52

viii

LIST OF FIGURES

3.9 Cyclic arcs for inline tanks. In these figures, it is assumed that the first and the
last time periods of the time horizon are τ0 and τT, respectively. Other nodes
and arcs within the horizon are not shown and are as shown in previous
figures. 53

3.10 Intermediate nodes for cyclic arcs from a trip leg node. By network configu-
ration as Figure 3.9b, outgoing cyclic arcs from trip leg nodes are not related
to a specific inline tank. Hence, fuel level increase cannot be tracked on such
arcs. Intermediate hexagon nodes in this figure are added to have outgo-
ing arcs from the trip leg node, each corresponding to a specific inline tank.
Then, the outgoing arcs from the intermediate nodes can be viewed as cyclic
arcs. In this figure, outgoing arcs for intermediate node of inline tank i1 are
shown. However, cyclic arcs of other inline tanks similarly connect the corre-
sponding intermediate node to station nodes of station s1 at time period τt.
. 58

3.11 The diminishing marginal revenue of the inline tanks 62
3.12 Total fuel costs per different safety levels considering different fleet sizes . . 63
3.13 Average cost of 1 liter fuel consumption increase for different paths 64
3.14 Improvement percentage of RLFMIR with fleet size of 10 in comparison with

the fleet size of 0 on the instances of Table 3.5. The improvement percentage
is shown with respect to the average cost of one unit of consumed fuel in the
optimal solution of RLFMIR with fleet size of 0. The average cost is obtained
by dividing the optimal cost of RLFMIR with 0 inline tank by the total fuel
consumption. 68

3.15 Performance of CPLEX, GA, and SGA over different instances of RLFMIR
and LFMIR per different fleet sizes . 72

4.1 Network representation of the DA and FA formulations for an instance with
4 commodities, all originating from the square node in the figure, on a graph
with 8 nodes and 10 arcs. 77

4.2 An example dispersion based on the aggregated commodities of Figure 4.1b.
In this figure, colored arcs represent the disaggregation of the corresponding
commodity from the group on that arc. 78

4.3 An example of fully aggregated and partial aggregation network. The ex-
ample shows node i in the dispersion layer b with two incoming and two
outgoing arcs. Each arc is labeled with its corresponding commodity set. . . 82

4.4 An illustrative example for network modification for the partially-aggregated
formulation with equality tightening constraints 85

ix

LIST OF FIGURES

4.5 An example solution of PAi LP relaxation that is not feasible for PAe LP
relaxation. This figure shows the modified node i for PAe, where N−i =

{1, 2} and N+
i = {3, 4}. The dispersion b (including commodity set Kb =

{k1, k2, k3, k4}) of a partial aggregation states that K1i
b = Ki3

b = ∅, D1i
b =

Di3
b = Kb, K2i

b = Ki4
b = Kb, and D2i

b = Di4
b = ∅. A feasible solution of the

PAi LP relaxation for the flow of arcs is shown as the numbers in parenthesis
above each arc. However, this solution is infeasible for PAe because of the
flow conservation constrains for the internal nodes. 92

4.6 LP bound loss of partially-aggregated formulations versus LP bound loss of
the FA formulation, considering the DA formulation as the base 96

4.7 The trade-off between the LP bound loss and size for aggregated formula-
tions considering the DA formulation as the base. Size of a formulation is
considered as the multiplication of the number of variables and the number
of constraints it includes. 96

4.8 The trade-off between the LP bound loss and computing time for aggregated
formulations considering the DA formulation as the base 97

4.9 Structure of different formulations in terms of scaled number of variables
and constraints, considering the dimensions of the DA formulation as the base 97

4.10 LP nonzeros density versus LP solution time 98

4.11 Average scaled LP bounds of the formulations with respect to their average
computing time. Circle nodes correspond to the LP relaxation, and square
nodes correspond to the LP bound by the cutting plane algorithm. The DA
LP relaxation is considered as the base for scaling. 100

4.12 Performance profile of the formulations based on different aggregation schemes
with respect to solution time (log scale) . 104

5.1 The time-space representation of the IFD problem 111

5.2 An example time-space network for IFD, in which the AMCF model gives
solutions with “illegal” fuel teleportation. In this example, fuel in the inline
tank w1 can be transported to the inline tank w2 on the arc a4 based on the
optimal solution of AMCF. The label on each arc shows their index and a
tuple that its first entry is the demand and the second entry is the direct fuel
purchase price for that arc. 115

x

LIST OF FIGURES

5.3 An example time-space network for IFD, in which aggregating inline tanks
allows fuel transfer between inline tanks. In this example, if we aggregate
inline tanks w1 and w2 on arc a7, they can transfer fuel on this arc to reduce
the total fuel purchasing costs further. The label on each arc shows their
index and a tuple that its first entry is the demand and the second entry is
the direct fuel purchase price for that arc. 117

xi

List of Tables

3.1 Summary of the considered problems in the computational experiments . . 59
3.2 Evaluating different models on the Australia case 60
3.3 Total fuel costs per different inline tank fleet sizes and potential cost-savings.

Net weekly cost-savings are obtained by subtracting the weekly amortized
cost of the employed inline tanks from the weekly cost-savings. 61

3.4 The number of inline tanks assignment to paths during time horizon 65
3.5 Evaluating RLFMIR on instances of INFORMS 67
3.6 Comparison between the results of CPLEX and SGA for RLFMIR and LFMIR

over different instances . 70

4.1 Summary of the considered instances . 94
4.2 Effect of formulations on the performance of the CPLEX cutting plane algo-

rithm . 99
4.3 Performance of the MIP solver with default setting over different formula-

tions for all instances . 101
4.4 Performance of MIP solver with cutting plane algorithm disabled over dif-

ferent formulations for all instances . 102
4.5 Performance of MIP solver with cutting plane algorithm disabled over dif-

ferent formulations for long instances . 102
4.6 Performance of the Benders algorithm over different formulations with added

single-node cut-set constraints (4.7a) and (4.7b) for all instances 103
4.7 Performance of the Benders algorithm over different formulations with added

single-node cut-set constraints (4.7a) and (4.7b) for long instances 103

5.1 Comparing the performance of solving the IFD-MCF by the MIP solver and
using the PAA algorithm over different instance sizes of the IFD problem. . 124

5.2 The quality of obtained bounds by the PAA algorithm in the first iteration,
and comparing the required time to find those with the computing time of
the IFD-MCF root relaxation. 124

5.3 The convergence of the PAA algorithm over an instance of the IFD problem
with 75 inline tanks available. 125

xii

LIST OF TABLES

5.4 Comparing the first and the best lower bounds obtained by the PAA algorithm.126

xiii

CHAPTER 1
Introduction

1.1 Motivation

Railroad companies play a vital role in the freight transportation industry. Fuel costs consti-
tute a significant part of the operating costs of these companies. It is the second largest cost
type of the total operational costs of railroad companies in the USA (BNSF Railway, 2018;
Union Pacific Corporation, 2018) and the third largest in Australia (Asciano, 2017). The
annual fuel and fuel-related costs add up to over 2 billion dollars for the largest American
railroad companies and over 200 million dollars for the largest Australian railroad com-
panies. Therefore, even small improvements in fuel management of railroad companies
are likely to contribute to annual savings of millions of dollars (Nourbakhsh and Ouyang,
2010). Furthermore, decreased transportation costs reduces the final price of goods for the
end customers. This, in turn, makes railroad companies more competitive and could drive
further demand for their services. Consequently, improving the fuel efficiency of railroad
companies is critical.

Traditionally, locomotive fuel management consists of three interrelated problems
(Nourbakhsh and Ouyang, 2010; INFORMS Problem Solving Competition, 2010):

1. decide the stations at which fuel contracts must be entered into, so as to facilitate
refueling operations;

2. given a timetable, determining which locomotives must refuel at which particular
station; and,

1

1.1. MOTIVATION

3. the amount of fuel to purchase at a station.

The fuel management cost structure is comprised of three cost types, and each of the inter-
related problems corresponds to one. These three cost types are: (a) the fixed cost for using
a station during the time horizon, (b) the the fixed cost of each refueling operation, the
stop cost, and (c) the fuel price. Appropriate long term contracts may be entered into with
suppliers of fuel at a fixed cost per refueling operation. The appropriate (and optimal) refu-
eling choices also make use of the knowledge that fuel costs are likely to vary substantially
between stations. By filling locomotives at inexpensive stations (and by bypassing stations
at which fuel is relatively more expensive) – a strategy called tankering – the fuel purchasing
costs can be substantially reduced. Although interrelated, these three problems are usually
solved sequentially as they are together too difficult to solve with current optimization
technology for the large instances encountered in practice.

In networks that have long distances between stations (relative to the locomotive tank
capacity), the tankering strategy is likely to be of limited applicability as the tank capacity
may not allow many successive trips. Furthermore, for some long-haul trips, railroad com-
panies have to assign more locomotives than the number that pulling power requirement
of a train implies, purely because of the limited tank capacity of the locomotives. Therefore,
an alternative strategy may be required to address this challenge. One such example is the
rail network in Australia, in which the distances between the stations are long, relative to
tank capacity. In such cases, inline refueling may be the only technological option that offers
alternative refueling plans. Inline refueling is a feature offered by inline tanks and allows
the locomotives to take long-haul trips without the need to stop at the intermediate stations
to refuel. An inline tank is a large fuel reservoir which connects to the locomotives through
a pumping system and can transfer fuel to locomotives during a trip. An example of such
inline refueling tanks is provided in Figure 1.1.

Figure 1.1: An example of inline refueling tanks. The picture courtesy of Pacific National Pty. Ltd., 2018.

Inline refueling is fundamentally different from traditional auxiliary refueling options,
such as aerial refueling in the aviation industry and emergency refueling, as we will show

2

CHAPTER 1. INTRODUCTION

in this thesis. An aerial refueling operation transfers the fuel from an aircraft (tanker) to
the aircraft that is in service (receiver) during its flight, and the tanker is usually located
at a fixed base station. Emergency refueling operations are independent from each other
and more expensive than the direct refueling at the fuel stations. On other hand, inline
tanks can refuel locomotives during a trip, and can be refueled, attached, detached, and
easily swapped at any station, independently of locomotives. Therefore, this new technol-
ogy, particularly because of the possibility of switching inline tanks between locomotives
while they carry fuel, offers many opportunities for railway companies. Such opportunities
benefit the railroad companies to: (a) avoid assigning more locomotives to a train because
of tank capacity limits and reduce the locomotive ownership cost, (b) facilitate long-haul
trips and leverage fuel cost differences, (c) reduce the number of refueling operations, and
(d) close the remote fuel stations and reduce the corresponding cost.

The opportunities offered by inline refueling come with additional complexity in the
fuel management problem. Incorporating the inline refueling in the fuel management in-
crease the number of possible fuel plans combinatorially. Moreover, since the inline tanks
are a substantial investment, the number of available inline tanks is limited. Therefore, effi-
cient planning of the inline refueling requires the choice of the best among a huge number
of plans. Inline refueling links the fuel decisions of all locomotives in addition to the sta-
tion location decisions of the traditional integrated problem. In contrast to the traditional
integrated problem, multiple locomotives that operate on the same train service cannot be
solved independently. These locomotives must be jointly considered since the locomotives
that haul a train can share an inline tank. Such features together make the problem of lo-
comotive fuel management with inline refueling complex in practice and in theory, as we
will show.

1.2 Framework and Methodology

We first define and study the computational complexity of the fuel management problem
with inline refueling and show it is a strongly NP-hard problem. We adopt the Mixed-
Integer Programming (MIP) methods to tackle this problem as they have been successfully
applied to such problems. We develop the first optimization MIP model to address the loco-
motive fuel management with inline refueling. The proposed model is based on a network
representation, which is a frequent structure in transportation problems. Network opti-
mization problems appear in an extensive variety of applications in transportation, supply
chain management, logistics, communication networks, and energy systems, to name but
a few. The network structure is usually intrinsic in those problems, such as the network
of the cities and their links in a routing problem. The application of network optimiza-

3

1.3. MAIN CONTRIBUTIONS AND PUBLICATIONS

tion problems is significant for transportation problems as they are naturally expressed
over physical networks. Therefore, this thesis particularly focuses on network optimization
techniques.

Although network optimization models are well studied, general approaches are not
efficient when applied to large industrial problems. Particularly, while minimum-cost net-
work flow problems are “easy”, they are often embedded within network design type prob-
lems and grow very large when the need to track flow between many origin-destination
pairs requires a large number of commodities to be included. The proposed MIP model for
the fuel management problem is of the same type of such network optimization models
and includes a multicommodity flow substructure. A well-known large-scale optimization
method to reduce the size of large instances of such network optimization models is to
aggregate all commodities with the same origin fully over the entire network. Although the
full aggregation approach reduces a network optimization MIP model size, it significantly
degrades the quality of its linear programming relaxation. We propose novel aggregation
techniques for network optimization problems with a multicommodity substructure that
aggregate the commodities over a subset of the network. These methods significantly re-
duce the model size while minimally degrading its linear programming quality. We inves-
tigate the significance and implications of partial aggregations for: (a) quality of alternative
MIP models and their LP relaxations, (b) the performance of general MIP algorithms, and
(c) development of specialized solution algorithms.

This thesis contributes to both theory and practice of the field of network optimization.
It fills the gap in the fuel management literature by introduction and investigation of a new
class of fuel management problems. It provides both theoretical results of the complexity
of and algorithms to solve such problems and also studies the business implications of
using the proposed models and methods on the ongoing operations of the railroad compa-
nies. Furthermore, it extends the state-of-the-art large scale optimization techniques to deal
with large network optimization problems with a multicommodity flow substructure by
introducing the concept of partial aggregations. It also empirically demonstrates the effec-
tiveness of such aggregation schemes by applications to a classical network optimization
problem and a variant of the practical fuel management problem introduced.

1.3 Main Contributions and Publications

This thesis contributes to the field of network optimization and applied operations research
in several ways, through:

• The introduction of a class of fuel management problems in rail transport, the locomo-
tive fuel management problem with inline refueling (LFMIR) and its variants.

4

CHAPTER 1. INTRODUCTION

• The complexity analysis of the LFMIR problem, which shows that unlike traditional
locomotive refueling problems - which are only NP-hard if they include considera-
tions on fuel station location or fuel volume discounts - LFMIR is NP-hard even if
there are no decisions to be made about locating stations nor volume discounts.

• The development of optimization models and solution algorithms for the LFMIR
problem.

• The introduction of the concept of partial aggregations for optimization problems
with a multicommodity network flow substructure.

• The development of new formulations for the capacitated multicommodity fixed-
charge network design problem based on the concept of partial aggregations.

• The theoretical results and empirical evidence for the trade-off offered by the new
formulations in terms of their linear programming bound quality and computational
difficulty.

• The utilization of the concept of partial aggregations to develop an efficient solution
algorithm for a variant of the LFMIR problem.

The main academic research outputs derived from this thesis are provided below.

1. Research paper: A. Kazemi, P. Le Bodic, A. T. Ernst, M. Krishnamoorthy. New partial
aggregations for multicommodity network flow problems: An application to the fixed-
charge network design problem, accepted and published in Computers & Operations
Research, 136, 105505, 2021.

2. Research paper: A. Kazemi, A. T. Ernst, M. Krishnamoorthy, P. Le Bodic. Locomotive
fuel management with inline refueling, accepted and published in European Journal of
Operational Research, 293, 1077-1096, 2021.

3. Abstract paper: A. Kazemi, A.T. Ernst, M. Krishnamoorthy, P. Le Bodic. Locomotive
fuel management with inline refueling, presented at The Tenth Triennial Symposium on
Transportation Analysis (TRISTAN X), Hamilton Island, Australia, June 2019.

1.4 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2 - Background This chapter gives an overview of the methodologies and algo-
rithms adopted in this thesis as well as literature reviews on the multicommodity network
flow and fuel management problems. This chapter is divided into four sections. The first
section introduces the main modeling and algorithmic tools that are utilized in the rest of
the thesis, including, Mixed Integer Programming (MIP), Linear Programming (LP), the

5

https://www.sciencedirect.com/science/article/abs/pii/S0305054821002495
https://www.sciencedirect.com/science/article/abs/pii/S0305054821002495
https://www.sciencedirect.com/science/article/abs/pii/S0305054821002495
https://doi.org/10.1016/j.ejor.2020.12.042
https://doi.org/10.1016/j.ejor.2020.12.042

1.4. THESIS STRUCTURE

Branch-and-Bound algorithm (B&B), and Matheuristics. The second section reviews three
main large-scale optimization techniques for large LP and MIP models: aggregation tech-
niques, the column generation algorithm, and the Benders decomposition algorithm. The
third section presents the formal definition of multicommodity network flow problems,
particularly the multicommodity fixed-charge network design problem (MCND). This sec-
tion also reviews the literature of MCND with a focus on the commodity aggregations for
which we introduce novel techniques and formulations in Chapter 4. The fourth section
gives a comprehensive literature review of the fuel management problems in various trans-
portation applications. Here, we define the scope of the fuel management problem that this
thesis investigates and demonstrate its novelties in comparison with the current studies in
the field.

Chapter 3 - Locomotive Fuel Management with Inline Refueling (LFMIR) This chapter
is based on the published paper Kazemi et al. (2021a). It concentrates on the real-world
fuel management problem that motivated this work. We formally define the Locomotive
Fuel Management problem with Inline Refueling (LFMIR) and study its theoretical and
empirical complexity. We show that LFMIR is strongly NP-hard even in its simple forms
with one resource (inline tank) available. In this chapter, we conceptualize the problem by a
time-space network, and hence, propose a MIP model based on the network representation,
which can be viewed as an extended network design model. The proposed model is then
applied to two case studies from Australia and the USA to study the impacts of adopting
inline refueling on the refueling operation of railway companies. We demonstrate that
commercial solvers fail to provide good-quality solutions in a reasonable time for large
instances. Therefore, we develop a heuristic algorithm, which is able to provide good-
quality solutions in a reasonable time for industrial use.

Chapter 4 - Partial Aggregations for Multicommodity Network Flow Problems This
chapter is based on the submitted paper Kazemi et al. (2021b) and proposes novel ag-
gregation techniques for the multicommodity network flow problems that have an exten-
sive application in logistics, telecommunication, and particularly transportation networks.
When solving hard multicommodity network flow problems using an LP-based approach,
the number of commodities is a driving factor in the speed at which the LP relaxation can be
solved, as it is linear in the number of constraints and variables. The conventional aggrega-
tion approach to improve the solve time of the LP relaxation of a MIP model that encodes
such an instance is to aggregate all commodities that have the same origin or the same
destination. However, the bound of the resulting LP relaxation can significantly worsen,
which tempers the efficiency of aggregating techniques. In this chapter, we introduce the
concept of partial aggregation of commodities that aggregates commodities over a subset of
the network instead of the conventional aggregation over the entire underlying network.

6

CHAPTER 1. INTRODUCTION

This offers a high level of control on the trade-off between size of the aggregated MIP model
and quality of its LP bound. We apply the concept of partial aggregation to two different
MIP models for the multicommodity fixed-charge network design problem. Our compu-
tational study on benchmark instances confirms that the trade-off between solve time and
LP bound can be controlled by the level of aggregation, and that choosing a good trade-off
can allow us to solve the original large-scale problems faster than without aggregation or
with full aggregation.

Chapter 5 - From Partial Aggregations to Solution Algorithms In this chapter, we in-
troduce an abstract version of the LFMIR problem, which is called Inline Fuel Delivery
problem (IFD) and retains the main complexities of the LFMIR problem. We prove that
IFD is NP-hard. This chapter applies the partial aggregations proposed in Chapter 4 to the
IFD problem and develops a partial aggregation-based solution algorithm. Computational
experiments demonstrate the effectiveness of this algorithm in providing good-quality so-
lutions and also tight lower bounds in short computing times. The approach of this chapter
not only provides effective methods to solve IFD but also gives insights on the utilization of
the concept of partial aggregations to develop specialized solution algorithms for network
optimization problems with a multicommodity flow substructure.

Chapter 6 - Concluding Remarks This chapter summarizes the key results of the thesis
and outlines the most promising future research directions.

7

CHAPTER 2
Background

2.1 Mixed Integer Programming (MIP)

Mixed Integer Programming (MIP) refers to a set of modeling techniques and algorithms
that solve the optimization problems that are expressed by a linear system where a subset of
its variables is restricted to integer values. MIP models naturally fit numerous applications,
and MIP methods have been successfully applied to a wide variety of classic and applied
optimization problems. MIP methods provide powerful tools and frameworks to solve
optimization problems, including exact, heuristic, and approximation algorithms. Since
such algorithms are general-purpose tools, they may require tailoring and extensions for a
better performance over specific problems. This thesis extends some of the MIP algorithms
to solve practical problems in railroad fuel management and also a class of network flow
problems with extensive applications in transportation. This section gives an overview of
the main MIP modeling techniques and algorithms adopted in this thesis.

2.1.1 Linear Programming

Linear Programming refers to a set of modeling and solution methods that seek to optimize
a linear optimization problem (also called linear program). A linear program (LP) generally
consists of a set of decision variables with real-valued domains, a set of linear constraints
that express the relations between decision variables, and possibly an objective function
as a linear combination of decision variables. Let vector x be the set of decision variables

8

CHAPTER 2. BACKGROUND

with n elements. Matrix A ∈ Rm×n represents the coefficients of decision variables in the
constraints, where each row corresponds to a constraint. Vectors c, l, u ∈ Rn determine the
objective function coefficient, the lower bound, and the upper bound for decision variables,
respectively. The general form an LP is as the model 2.1.

minimize cTx (2.1a)

s.t.: Ax ≤ b (2.1b)

l ≤ x ≤ u (2.1c)

The main driving factor of computational difficulty of solving an LP problem is its size,
which can be stated in terms of number of variables n, number of constraints m, number
of nonzeros in the constraint matrix A, or any combination of those. Therefore, smaller
LPs have usually shorter computing times. Interior-point methods (Karmarkar, 1984), also
known as barrier methods, have polynomial complexity for solving linear programs in
terms of their size. The Simplex method (Dantzig, 1963) and its variant, Dual Simplex
(Lemke, 1954), have exponential time complexity in the LP size (Vanderbei, 2014). However,
Simplex algorithms are efficient in practice. Borgwardt (1982) and Smale (1983) show that
the expected computational complexity of Simplex is polynomial in m and n on various
distributions of random inputs. Moreover, Spielman and Teng (2004) prove the polynomial
smoothed complexity of the Simplex algorithm.

Degeneracy is another factor that makes LP algorithms slower, particularly the Simplex
algorithm. Simplex iteratively traverses on the extreme points of the polyhedron defined
by the constraints and variable bounds of an LP until the optimal solution is obtained. Each
extreme point corresponds to a feasible solution of the LP problem, say x∗. At each extreme
point, at least n constraints out of m constraints are active, which means they are satisfied
in the equality form by the solution x∗. Solutions that correspond to extreme points with
more than n active constraints are degenerate. Such solutions make the Simplex algorithm
slower as in those cases, it may cycle between solutions with a same objective function
value. Bland (1977) proposes a simple rule to avoid Simplex from infinite cycling on de-
generate solutions. Reducing the number of constraints is usually beneficial to regulate
the degeneracy of an LP (Shetty and Taylor, 1987). Therefore, reducing the size of an LP
is useful to improve its computing time as it may diminish the degeneracy, and also the
complexity of LP algorithms is dependent on the LP size.

Since linear programming provides efficient solution algorithms for linear optimiza-
tion problems, it has been hearth of many MIP algorithms, such as the Branch-and-Bound
algorithm. We specifically discuss the impacts of using different linear programs on the

9

2.1. MIXED INTEGER PROGRAMMING (MIP)

performance of the MIP algorithms in Chapter 4. See Vanderbei (2014) for a review of vari-
ous linear programming modeling and algorithmic techniques, their applications, and their
theoretical and empirical complexities.

2.1.2 MIP Modeling

In many practical applications, some of the decisions are intrinsically discrete, and hence,
the domain of corresponding decision variables are restricted to integer values. Let x and
y be the set of continuous and integer decision variables, respectively. The general form
of a MIP model, provided below, describes the relations among continuous and discrete
decision variables. In this thesis, we consider minimization optimization problems as any
maximization problem can be easily transformed to a minimization problem. Vectors l and
u determine the lower and upper bounds of the continuous variables, and Y encodes the
possible integer values for the discrete decision variables. The textbook by Williams (2013)
discusses the general principles of MIP modeling in a wide variety of applications.

minimize cTx + f Ty (2.2a)

s.t.: Ax + By ≤ b1 (2.2b)

Cx ≤ b2 (2.2c)

Dy ≤ b3 (2.2d)

l ≤ x ≤ u (2.2e)

y ∈ Y (2.2f)

Restriction of decision variables to integer values makes the problem complicated,
and MIP models are in general NP-hard to be solved (Karp, 1972). Therefore, there is not
yet an efficient general algorithm for solving MIPs in contrast to the LP problems. Two
main approaches to solve the MIP models, the branch-and-bound (Land and Doig, 1960)
and cutting plane (Gomory, 2010) algorithms, rely on solving the LP relaxation of a MIP
model, which is obtained by relaxing the integer restrictions of the MIP model. The branch-
and-bound algorithms recursively partition the problem into smaller subproblems that are
easier to solve. Such algorithms solve the LP relaxation of each subproblem to obtain a
lower/dual bound for the MIP model. Moreover, the solution of the LP relaxation of some
subproblems are integer-feasible, in which case it gives an upper bound for the original
MIP model. A branch-and-bound algorithm stops partitioning subproblems that have a
lower bound worse than the best obtained upper bound. We discuss the branch-and-bound
algorithms in details later in Section 2.1.3. Cutting plane algorithms iteratively modify the

10

CHAPTER 2. BACKGROUND

LP relaxation of a MIP model by adding constraints until an integer-feasible solution is
obtained.

In addition to exact methods, solving LP relaxations is an essential part of MIP-based
heuristics such as Relaxation Induced Neighborhood Search (RINS) (Danna et al., 2004).
RINS considers an LP relaxation solution and an upper bound and fixes the the values of
the variables that have the same value in both. Then, the resulting MIP is solved to search
for an improvement. Rounding heuristics transform the solution of the LP relaxation of a
MIP model to an integer point. However, the nearest integer point is not always a feasible
solution for the original MIP model. The optimal integer point might be also far from the
optimal solution of the LP relaxation.

Solving LP relaxations is the main component of well-known approaches for solving
MIPs as discussed. Therefore, the quality of the LP relaxation of a MIP model significantly
affects the performance of a MIP algorithm. The quality of the LP relaxation is usually
measured by its closeness to the corresponding MIP model (Bertsimas and Tsitsiklis, 1997).
A MIP model is a tight formulation, if its LP relaxation is “close” to it. Of course, there is no
standard threshold to consider a formulation as a tight formulation, and hence, the tightness
of alternative MIP models of a problem are usually compared together. The tightness is
usually measured and compared by the gap between the optimal value of a MIP model
and the optimal value of its LP relaxation. Let z∗ be the optimal objective function value of
the MIP model f , and z̄ be the optimal objective function value of its LP relaxation. Such
gap is measured as g f =

z∗−z̄
z∗ × 100. Generally, MIP models with smaller g f are considered

as tighter formulations.

Let Q be the set of feasible solutions of a MIP model, and P be the polyhedron of its
LP relaxation. Convex hull of Q, denoted by Conv.(Q), is the smallest convex polyhedron
that contains all points of the set Q. A MIP model is perfect if Conv.(Q) = P. A formulation
is a compact formulation if it includes polynomial number of constraints in terms of its
input data. In special cases, such as the assignment problem, there are compact, perfect
formulations that encode the problem (Conforti et al., 2014). However, this is not usually the
case, where only extended formulations, which have exponential number of constraints in
terms of their input data, can “perfectly” encode their corresponding problem (Nemhauser
and Wolsey, 1999). This implies that usually larger MIP models are tighter.

In summary, two important characteristics of a MIP model are its tightness and the
computing time of its LP relaxation, which is dependent on the model size. These two
characteristics are mostly confronting, which make the choice of the MIP model from a set of
alternative formulations crucial. We discuss how the interaction of these two characteristics
of various MIP models for a problem impact the performance of the MIP algorithms in
Chapter 4.

11

2.1. MIXED INTEGER PROGRAMMING (MIP)

2.1.3 The Branch-and-Bound Algorithm (B&B)

The B&B algorithm is a divide-and-conquer approach to solve MIP models (Land and Doig,
1960). This algorithm recursively partitions the problem into subproblems, which forms a
search tree that implicitly enumerates all candidate solutions of a MIP model. Each node
of the search tree is a MIP model that its solution space is a subspace of its parent node’s
solution space. The solution spaces of children nodes are an exhaustive partition of their
parent node’s solution space. Therefore, the root node of the search tree is the original MIP
model that encodes the problem. At each node, the LP relaxation of the corresponding
MIP model is solved which provides a lower bound (LB). Moreover, in the case that the
solution of this LP relaxation is integer-feasible, it is recorded as an upper bound (UB)
for the original MIP model. Upon solving the LP relaxation of a node, the node is pruned
if certain conditions are met. Otherwise, it is further partitioned into subproblems by a
branching strategy. A node is pruned if its LP relaxation is infeasible, its LP relaxation
solution is integer-feasible, or its LP relaxation optimal value is worse than the best upper
bound. Branching rules usually partition the corresponding MIP of a node based on the
domain of an integer variable that has an optimal fractional value in the corresponding
LP relaxation. The goal is to avoid such a fractional value for the selected variable in the
children nodes’ MIPs. Suppose an integer variable yb has the fractional optimal value ȳb
in the solution of a node’s LP relaxation. A typical branching rule partitions the MIP of
this node into two children nodes, where in one node the upper bound of yb is restricted to
bybc and its lower bound is restricted to dybe in the other node. The algorithm terminates
when the relative/absolute gap between the best LB and the best UB is within a given
tolerance. The best LB corresponds to the best objective function achievable based on the
LBs provided by the nodes that are not yet pruned. The best UB corresponds to the UB
with the minimum objective function value among all integer-feasible solutions.

The development of a B&B algorithm requires the design of a branching strategy and
a tree search strategy. The branching strategy determines the variable that is selected for
branching and how the corresponding MIP is partitioned into subproblems. The tree search
strategy determines the order of nodes on which the algorithm traverses the tree. Two
typical strategies are the well-known Breadth-First Search (BFS) and Depth-First Search
(DFS) strategies. Using different branching and search strategies result in different variants
of the B&B algorithm.

B&B is the algorithm at the base of all efficient MIP solvers, such as commercial solvers
CPLEX and Gurobi. Since an LP relaxation is solved at each node, its tightness and its com-
puting time significantly affect the performance of the B&B. A tight LP relaxation with short
computing time benefits the B&B algorithm to quickly reduce the gap between the upper
and lower bounds. In modern MIP solvers, B&B is usually accelerated by a number of MIP

12

CHAPTER 2. BACKGROUND

algorithms and methods, such as primal heuristics and cutting plane algorithms. Heuristics
benefit the B&B by providing (better) upper bounds, while cutting plane algorithms tighten
the LP relaxations to provide tighter lower bounds.

2.1.4 Matheuristics

Metaheuristics, such as Genetic Algorithms (García-Martínez et al., 2018), Simulated An-
nealing (Kirkpatrick, 1984), Variable Neighborhood Search (Mladenović and Hansen, 1997;
Ranjbar and Kazemi, 2018), and Ant Colony Optimization algorithm (Dorigo et al., 2006),
usually do not involve the development of a mathematical model to generate solutions.
Matheuristics extend such heuristics and Metaheuristics and hybridize the mathematical
programming methods and Metaheuristics. Matheuristics utilize a MIP solver in a heuristic
framework with the aim of providing good-quality upper bounds. They usually consider a
restricted MIP model of the original MIP model that can be solved easily by a MIP solver.
This is particularly beneficial because one can search over a large space by solving a MIP
model (Fischetti and Fischetti, 2016). Recent advancement in MIP solvers has facilitated the
development of Matheuristics.

General-purpose MIP-based heuristics are a set of Matheuristics that are widely used in
MIP solvers, such as local branching (Fischetti and Lodi, 2003), RINS, and diving heuristics
(Berthold, 2006). Given an upper bound with the values ȳ for the set of binary variables B,
the local branching method adds a local branching constraint in the form of

∆(y, ȳ) := ∑
j∈B:ȳj=0

yj + ∑
j∈B:ȳj=1

(1− yj) ≤ k.

Constraint ∆(y, ȳ) imposes that the values of the binary variables y can be at most in k
variables different from the given solution ȳ. This results in a MIP with a smaller search
space, which usually can be solved much faster the original MIP. This method is in fact a
large neighborhood search.

Chapter 3 develops a heuristic as a variant of the diving heuristic for its fuel manage-
ment problem. Diving heuristics in general explore a single path in the B&B tree to obtain
a feasible solution quickly. As its name suggests, this heuristic dives down a branch of
the B&B tree and keeps fixing the values of the integer variables. Here, the focus is more
on fixing the values of the variables rather than improving the lower bound. A diving
heuristic actually can be considered as a heuristic DFS strategy that is designed based on
the problem structure for a better performance.

13

2.2. LARGE SCALE OPTIMIZATION

2.2 Large Scale Optimization

This section presents three well-known methods for solving LP and MIP models with a
large number of variables and/or constraints. Section 2.2.1 discusses the aggregation meth-
ods which reduce the size of the model by aggregating sets of variables, constraints, or both.
While such techniques reduce the model size, they usually increase the feasible space of
a formulation. We demonstrate that the increase of the feasible space may cause that the
aggregated model generate infeasible solutions for the original problem. Therefore, we also
present aggregation/disaggregation based algorithms that utilize the aggregation methods
in an algorithmic framework to generate feasible solutions for the original problem. Sec-
tion 2.2.2 presents the column generation algorithm. The idea behind this algorithm is to
not include all the variables in the model and add them in the model only when they can
improve a solution. Section 2.2.3 discusses the Benders decomposition algorithm that is
the dual of the column generation algorithm. The Benders algorithm starts with a reduced
model that includes a subset of constraints of the original model, and iteratively adds ex-
tra constraints as required. All of these methods were originally proposed for LP models.
However, they are extended also to the MIP models as we will discuss in this section.

2.2.1 Row and Column Aggregation

The size of an optimization model in both aspects, i.e. number of variables and number of
constraints, directly affect its computing time. Aggregation techniques are useful tools to
reduce the model size to tackle the challenges of solving large-scale optimization models.
In Linear Programming and Mixed-Integer Programming, the model size can be reduced
by aggregating constraints (rows) (Zipkin, 1980a), variables (columns) (Zipkin, 1980b), or
both at the same time (Rogers et al., 1991). Aggregation techniques have been successfully
applied to a wide variety of problems in network flow optimization (Evans, 1983), mining
(Boland et al., 2009), environmental planning (Nazari et al., 2015), machine learning (Park
and Klabjan, 2016), and location analysis (Francis et al., 2008), to name but a few.

A column aggregation approach replaces a set of variables with a variable as the
weighted summation of the original variables. A row aggregation approach does the same
with a set of constraints. Moreover, these two approaches can be applied simultaneously.
An aggregated model, of course, includes less details about the problem and hence, its
feasible region is generally larger than the original model. The variables and constraints
of the aggregated model are usually called the aggregate variables and the aggregate con-
straints. For instance, consider two constraints x1 ≤ u1 and x2 ≤ u2 for the non-negative,
continuous variables x1 and x2. A row aggregation approach may aggregate these two
constraints into one aggregate constraint as x1 + x2 ≤ u1 + u2. The feasible region of the

14

CHAPTER 2. BACKGROUND

Figure 2.1: An example of the row (constraint) aggregation. Here, the constraints x1 ≤ u1 and x2 ≤ u2 are
aggregated to x1 + x2 ≤ u1 + u2. While this has reduced the number of constraints, it has increased the
feasible region as shown.

original two constraints is depicted by the gray region in Figure 2.1. As this figure shows,
the feasible region described by the aggregate constraint includes two extra regions shown
by the red color. If the model in hand is a MIP model, the aggregation may only weaken
the LP relaxation and not increase the integer solution space. If the augmented polyhe-
dron of the LP relaxation of an aggregated MIP model does not include new integer points,
the feasible solution space of the aggregated MIP model remains the same as the original
model and only its LP relaxation is weakened. This is the case for some problems such as
the multicommodity fixed-charge network design problem. Therefore, in such cases, we
can have alternative MIP formulations with the same optimal integer solution but differ-
ent LP relaxation tightness and computing times, where these two features are generally
confronting.

As shown, aggregation methods offer a trade-off between the mathematical model size
and the level of detail included (which affects the size of the feasible region). An aggregated
MIP may have more feasible solutions than its disaggregated version, and the same holds
for their LP relaxations, which leads in general to a weaker LP bound. On the other hand,
size reduction translates to shorter computing times and possibly reduced degeneracy
(Elhallaoui et al., 2008). The trade-off between quality of the bound and the time it takes to
compute it is not always beneficial to a MIP algorithm such as B&B. Indeed, aggregation
can allow nodes to be computed faster, but the weakening of the bound can lead to a much
larger B&B tree, overall requiring more compute time.

15

2.2. LARGE SCALE OPTIMIZATION

In Chapter 4, we propose novel aggregation approaches for multicommodity network
flow problems that provide much more control over this trade-off. We will show that our
new aggregation approaches can significantly reduce the model size while only minimally
degrading the quality of the LP relaxation, which benefits MIP algorithms to solve large
instances.

We now formally define the general aggregation approaches for arbitrary optimization
models. Consider the model (2.3) with m constraints and vector of n decision variables
represented by x and the parameters represented by c ∈ Rn, b ∈ Rm, and A ∈ Rm×n.

minimize cTx (2.3a)

s.t.: Ax ≤ b (2.3b)

x ≥ 0 (2.3c)

A variable aggregation scheme aggregates some variables and reduce the decision
variables vector x ∈ Rn to the aggregate decision variables vector x̃ ∈ Rñ. An aggregate
decision variable is in general a weighted summation of some of the decision variables
of the original model. For the kth aggregate variable, we can define the vector vk with n
elements, each determines the weight of corresponding decision variable of the original
model in the kth aggregate variable. Matrix V ∈ Rn×ñ, where its kth column is vk, represents
the transformation by the corresponding aggregation scheme for all variables. Therefore,
the aggregated model is as the model (2.4).

minimize cTVx̃ (2.4a)

s.t.: AVx̃ ≤ b (2.4b)

x̃ ≥ 0 (2.4c)

The goal of a constraint aggregation scheme is to aggregate m constraints of the original
model 2.3 into m̃ aggregate constraints. Each aggregate constraint is a weighted summation
of some of the constraints of the original model. Similar to variable aggregations, we define
the matrix R ∈ Rm̃×m, where its lth row is the row vector rl, to represent the corresponding
transformation of a constraint aggregation scheme. The row vector rl has m elements, each
determines the weight of the corresponding constraint from the original model in the
lth aggregate constraint. The aggregated model by such an aggregation scheme is as the
model (2.5).

16

CHAPTER 2. BACKGROUND

minimize cTx (2.5a)

s.t.: RAx ≤ Rb (2.5b)

x ≥ 0 (2.5c)

In some cases, it may be sensible to apply an extra constraint (variable) aggregation
scheme after aggregating the model by a variable (constraint) aggregation scheme. For
instance, consider example of Figure 2.1. Suppose that first, variables x1 and x2 are aggre-
gated to the variable x̃ = x1 + x2. In this case, the constraints x1 ≤ u1 and x2 ≤ u2 must
be naturally aggregated to the constraint x1 + x2 = x̃ ≤ u1 + u2. The same happens if we
first aggregate the constraints as we naturally have to aggregate variables x1 and x2 based
on the aggregate constraint x1 + x2 ≤ u1 + u2. A simultaneous variable and constraint ag-
gregation scheme is defined by two transformation matrices V and R, and the aggregated
model is the model (2.6).

minimize cTVx̃ (2.6a)

s.t.: RAVx̃ ≤ Rb (2.6b)

x̃ ≥ 0 (2.6c)

The choice of transformation matrices, V and R, significantly affect the polyhedron of
the aggregated model and subsequently, the effectiveness of the corresponding aggregation
scheme. The aggregation techniques we propose in Chapter 4 aggregate the variables
and constraints of the model simultaneously. The aggregate variables are the summation
of corresponding original variables. Hence, the V matrix entries are either 0 or 1. The
constraints of the same type for all aggregated variables are also summed up. Therefore,
the R matrix entries are also either 0 and 1. These transformation matrices are selected
based on the special structure of the multicommodity network flow problems and are
shown to be effective in reducing the model size with a small expense in degradation of
the model tightness. Moreover, such transformations ensure that the aggregated model is
a lower bound for the original model if each variable and each constraints is present in at
least on aggregate variable and one aggregate constraint, respectively.

17

2.2. LARGE SCALE OPTIMIZATION

Aggregation/disaggregation based algorithms

While aggregation techniques are useful to reduce the size of the model and obtain approx-
imate solutions, in some cases they fail to provide exact solutions to the original problem.
This is mainly because the feasible space of the aggregated problem is in general larger than
the feasible space of the original problem as explained, which means the optimal solution
of an aggregated model may be infeasible for its original model.

Aggregation/disaggregation based algorithms address this issue to obtain exact or heuristic
solutions for the original problem using an aggregated problem. Such algorithms start from
an aggregated problem and iteratively disaggregate the problem until the optimality is
proved. The optimality is proved whenever the optimal solution of the aggregated model
is feasible for the original model as the aggregated model is a lower bound/relaxation of
the original model. In the worst case, the optimality is not proved until the problem is fully
disaggregated. However, an efficient aggregation/disaggregation based algorithm usually
finds the optimal solution of the original problem in a few iterations (Boland et al., 2009).
The general framework of such algorithms consists of two main steps that are repeated
until a proof of the optimality is obtained (Litvinchev and Tsurkov, 2003):

1. Solving the aggregated problem: this step gives an approximate solution that could
be considered as a lower bound for the original problem and also could be used to
generate a feasible solution (upper bound) for the original problem.

2. Re-aggregating the problem: based on the information obtained from the first step,
this step may include re-aggregating of some variables or constraints or disaggregat-
ing some of the original variables and constraints. This translates to updating the
transformation matrices V and R in the aggregated optimization model.

This framework involves solving a sequence of aggregated problems which their to-
tal computing time to obtain the optimal solution of the original model is usually less
than the time of solving the original problem once. In general, aggregation/disaggregation
based algorithms, such as the algorithms by Evans (1983), Boland et al. (2009), Nazari et al.
(2015), and Francis et al. (2008), are not special cases of a general framework. In fact, the
development of an aggregation/disaggregation based algorithm requires the design and
implementation of problem-specific aggregation and disaggregation schemes. In Chapter 5,
we apply the concept of partial aggregations introduced in Chapter 4 to an abstracted
version of the problem introduced in Chapter 3. When such aggregation schemes are ap-
plied to this problem, the solution of the aggregated problem is not necessarily feasible for
the original problem. Therefore, we propose a solution algorithm that utilizes the partial
aggregations. The algorithm starts from a fully-aggregated model and constructs partially-
aggregated models as it progresses to obtain the optimal solution of the original problem.

18

CHAPTER 2. BACKGROUND

The computational experiments demonstrate the efficiency of the proposed algorithm in
both finding good-quality upper and lower bounds in short time and proving the optimal-
ity in comparison with solving the original disaggregated problem in a single iteration.

2.2.2 Column Generation

Recall that the Simplex algorithm traverses the extreme points of the polyhedron of an LP
problem to obtain the optimal solution. Each extreme point corresponds to a feasible solu-
tion which divides the variables into basic and non-basic variables. The set of basic variables
is called the basis. Basic variables can take any value within their domain, while nonbasic
variables are at their bounds. Traversing from an extreme point to another correspond to
changing the set of basic variables and their values. At each iteration of Simplex, one basic
variable exits from the basis and one nonbasic variable enters into it. The entering vari-
able is a variable with the negative reduced cost. The reduced cost of a variable measures
the change of objective function for one unit increase in the value of the corresponding
variable. In practice, usually most of the variables never enter the basis (Bertsimas and
Tsitsiklis, 1997). This inspires the idea of the column generation methods. The development
of column generation algorithms dates back to the seminal works by Ford and Fulkerson
(1958), Gilmore and Gomory (1961), and Appelgren (1969). Briefly, a column generation
method starts with a subset of variables and add other variables only when they are re-
quired to enter into the basis.

A typical column generation algorithm decomposes the problem into a (restricted)
master problem and a subproblem (Desrosiers and Lübbecke, 2005). The master problem is
the same as the original model but with fewer variables. The subproblem, which is called
the pricing problem, finds an entering variable. The column generation algorithm is similar
to the Simplex algorithm, except that it finds the entering variable by an optimization prob-
lem instead of the enumeration that Simplex does. Consider the LP model (2.3). The master
problem of a column generation for this model includes a subset of variables represented
by the vector x̄ and is as the model (2.7), where c̄ and Ā show the parts of the original
c and A that are related to variables x̄. Moreover, dual variables of Constraint (2.4b) are
represented by the π vector.

minimize c̄Tx (2.7a)

s.t.: Āx̄ ≤ b (π) (2.7b)

x̄ ≥ 0 (2.7c)

19

2.2. LARGE SCALE OPTIMIZATION

The pricing problem defined by the optimization problem (2.8) determines the entering
variable. The coefficient of the corresponding variable of the column a in the objective
function of the original problem is shown by c(a). An entering variable exists only if c̄∗ < 0.
Otherwise, the optimal solution of the restricted master problem is the same as the original
model, and the algorithm terminates. The pricing problem searches among all columns
a ∈ A and adds the corresponding variable (to update x̄) and column (to update c̄ and Ā)
to the restricted master problem if it has a negative reduced cost.

c̄∗ := min{c(a)− πTa|∀a ∈ A} (2.8)

The success of a column generation algorithm depends on the efficiency of the algo-
rithm that solves the optimization problem (2.8). Such algorithms must solve the pricing
problem without computing the reduced cost (c(a)− π̄Ta) for all potential columns a ∈ A.
In fact, column generation is only effectively applicable to the cases that there is an efficient
algorithm to solve the pricing problem due to the special structure of the problem, such as
the cutting stock problem (Gilmore and Gomory, 1961).

The Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition (DW) is a special case of the column generation algo-
rithm that applies to LP problems with a block diagonal structure (Dantzig and Wolfe,
1960). A block diagonal LP includes k groups of variables. Variables within in each group
are related together by a linear system separately from the variables in other groups. All
variables are linked together by a set of linking constraints. The general form of such a
model is provided as the model 2.9, where xi, ci ∈ Rni , Aij ∈ Rmi×nj , and bi ∈ Rmi . These
imply that the model (2.9) includes k groups of variables, where the ith group has ni vari-
ables that are related together by mi constraints of the form of Constraint (2.9c), and there
are m0 linking constraints of the form Constraint (2.9b) that link all variables.

minimize ∑
i∈{1,...,k}

cT
i xi (2.9a)

s.t.: ∑
i∈{1,...,k}

A0ixi = b0 (2.9b)

Aiixi = bi ∀i ∈ {1, . . . , k} (2.9c)

xi ≥ 0 ∀i ∈ {1, . . . , k} (2.9d)

20

CHAPTER 2. BACKGROUND

The DW method reformulates the model (2.9) based on Minkowski’s theorem, which
states that the polyhedron of any LP can be represented by a linear combination of its
extreme points and extreme rays. Suppose that the feasible region of Qi = {xi ∈ Rn

i :
Aiixi = bi, xi ≥ 0} is bounded and has Ni extreme points as {vi1, . . . , viNi}. Then, this
feasible region can be represented by its extreme points as Qi = {xi = ∑j∈{1,...,Ni} λijvij :
∑j∈{1,...,Ni} λij = 1 & λij ≥ 0}. Therefore, the model (2.9) is reformulated as the model (2.10).

minimize ∑
i∈{1,...,k}

∑
j∈{1,...,Ni}

λijcivij (2.10a)

s.t.: ∑
i∈{1,...,k}

∑
j∈{1,...,Ni}

λij A0ivij = b0 (2.10b)

∑
j∈{1,...,Ni}

λij = 1 ∀i ∈ {1, . . . , k} (2.10c)

λij ≥ 0 ∀i ∈ {1, . . . , k}, j ∈ {1, . . . , Ni} (2.10d)

The reformulated model (2.10) has significantly fewer constraints (m0 + k) in compar-
ison with the original model (2.9). However, it includes a huge number of variables as it
includes extreme points vij. The DW method applies a column generation algorithm to the
reformulated model to solve the original problem. In this algorithm, there is one master
problem and k subproblems. As the focus of this thesis is not on the DW method we refer
the readers to Dantzig and Wolfe (1960) and Lübbecke and Desrosiers (2005) for a detailed
description.

The Branch-and-Price algorithm

The column generation algorithms can be embedded in a B&B algorithm to solve integer
and MIP models. This generalizes the B&B method as it does not necessarily generate all
columns at the root nodes. Such generalized B&B algorithms are usually called Branch-and-
Price algorithms. The development of a Branch-and-Price algorithm requires sophisticated
branching and search strategies to ensure that no subspace of the solution is left out. More
information on Branch-and-Price algorithms can be found in Barnhart et al. (1998). More-
over, Vanderbeck (2000) discuses the extension of the DW method to the integer problems
within the Branch-and-Price algorithms.

21

2.2. LARGE SCALE OPTIMIZATION

2.2.3 Benders Decomposition Algorithm

The Benders decomposition algorithm (Benders, 1962) is a well-known algorithm to solve
large-scale optimization problems with so-called “complicating” variables. This algorithm
generally decomposes the original problem into a master (that usually includes the com-
plicating variables) and a subproblem, each can be solved much easier than the original
problem. Then, these two decomposed problems are iteratively solved. The master prob-
lem is solved to obtain solutions. Then, the obtained solutions are evaluated by solving the
subproblem and the information is fed back to the master problem in the form of cuts. The
process is iterated until the master problem with the added cuts becomes equivalent to the
original problem.

Consider the MIP model (2.11) in which y variables are the complicating variables.

minimize cTx + f Ty (2.11a)

s.t : Ax + By = b (2.11b)

x ≥ 0 (2.11c)

y ∈ Y (2.11d)

One may decompose the problem (2.11) into a master problem that includes y vari-
ables and a subproblem that includes x variables. In this case, the MIP model (2.11) be-
comes equivalent to the optimization problem (2.12). Here, the subproblem is the inner LP
problem in which y variables are fixed and is solved for x variables.

min
ȳ∈Y
{ f T ȳ + min

x≥0
{cTx : Ax = b− Bȳ}} (2.12)

Let π be the dual variables for the constraint set Ax = b− Bȳ of the inner LP problem
of (2.12). Then, the LP subproblem can be dualized as max

π
{πT(b− Bȳ) : πT A ≤ c}, and

the MIP model (2.11) becomes equivalent to the optimization problem (2.13).

min
ȳ∈Y
{ f T ȳ + max

π
{πT(b− Bȳ) : πT A ≤ c}} (2.13)

Independent from the ȳ values, the inner optimization problem of (2.13) includes a set
of extreme points E and a set of extreme rays Q. For an extreme ray rq ∈ Q, there may exist

22

CHAPTER 2. BACKGROUND

a fixed solution ȳ such that rT
q (b − Bȳ) > 0. This makes the program max

π
{πT(b − Bȳ) :

πT A ≤ c} unbounded and the primal subproblem infeasible. To avoid such infeasibilities,
we can add cuts in the form of rT

q (b− Bȳ) ≤ 0 to the master problem for all extreme rays
rq ∈ Q. Moreover, among all extreme points e ∈ E, we are looking for the extreme point that
maximizes πT

e (b− Bȳ). Having all extreme points and rays of the dual of the subproblem,
we can add all the necessary cuts into the master problem as (2.14) to obtain an equivalent
problem to the optimization model (2.11).

minimize f Ty + η (2.14a)

s.t : πT
e (b− By) ≤ η ∀e ∈ E (2.14b)

rT
q (b− By) ≤ 0 ∀q ∈ Q (2.14c)

y ∈ Y (2.14d)

Constraint sets (2.14b) and (2.14c) are usually called optimality and feasibility cuts, re-
spectively. In general, there exists an exponential number of the optimality and feasibility
cuts in the input size, which makes the MIP model (2.14) impractical for use. However, the
Benders algorithm suggests an iterative framework that adds a subset of all feasibility and
optimality cuts to obtain an equivalent model. This algorithm starts and solves a relaxed
version of the model (2.14) with no optimality and feasibility cuts (i.e. (2.14a) s.t: (2.14d))
to obtain a solution ȳ. Then, this solution is used to solve the dual of the subproblem (i.e.
max

π
{πT(b− Bȳ) : πT A ≤ c}). In the case that the subproblem is unbounded, a feasibility

cut can be added to the relaxed master model. Otherwise, an optimality cut can be added
to the relaxed master model. The relaxed master problem gives an lower bound (LB) for
the optimal solution. The objective of the subproblem plus the cost associated with the
fixed solution gives an upper bound (UB = πT(b− Bȳ) + f T ȳ) for the optimal solution.
Since there are finite number of the feasibility and optimality cuts, the algorithm converges
with a termination condition such as UB− LB < ε. Moreover, if Constraint (2.14d) implies
integrality requirements, the Benders algorithm can be applied during the progress of the
B&B algorithm. In the simplest form, it is enough to solve the subproblem to generate a
cut whenever an integer feasible is found in the B&B tree. This algorithm is referred as
Branch-and-Benders-Cut algorithm and has been widely employed for large-scale integer
optimization problems (Gendron et al., 2016; Errico et al., 2017; Moreno et al., 2019).

Since its introduction, several methods have been proposed to accelerate and improve
the Benders decomposition algorithm performance. Such methods mostly aim to improve
the problem decomposition, the solution methods for the master and subproblems, heuris-

23

2.3. MULTICOMMODITY NETWORK FLOW PROBLEMS (MCF)

tics for obtaining better upper bounds, and the cut generation. See Rahmaniani et al. (2017)
for more details. One effective acceleration technique is the Magnanti-Wong method (Mag-
nanti and Wong, 1981) to generate Pareto-optimal cuts. They define the Pareto-optimal Ben-
ders cut as a cut that is not dominated by any other Benders cut. The cut corresponding to
the vector π1 dominates the corresponding cut of the vector π0 if πT

1 (b− By) ≥ πT
0 (b− By)

for all y ∈ Y with at least one strict inequality for a point y ∈ Y. To generate Pareto-optimal
cuts, they solve the subproblem twice at each iteration. First, they solve the dual of the
subproblem as Q∗ = max

π
{πT(b− Bȳ) : πT A ≤ c}. Afterwards, an auxiliary subproblem

as max
π
{πT(b− Bŷ) : πT A ≤ c, πT(b− Bȳ) = Q∗} is solved to generate a Pareto-optimal

cut. In the auxiliary subproblem, ŷ is a core point, which is actually an interior point of the
feasible space of the original problem. Because large LP problems usually suffer from the
degeneracy, there are many cuts at each iteration of the Benders algorithm to choose from.
The Magnanti-Wong method overcomes this issue by selecting stronger cuts and has be-
came a standard method to include in Benders decomposition implementations (Jeihoonian
et al., 2016; Fontaine and Minner, 2018; Mokhtar et al., 2019).

2.3 Multicommodity Network Flow Problems (MCF)

Multicommodity network flow problems seek to route a set of commodities K between
an origin/source ok and a destination/sink sk for each k ∈ K over a network/graph G =

(N ,A), usually with the goal of routing cost minimization. MCF problems apply to and
are a useful modeling tool for a wide variety of problems in transportation, logistics, and
communication networks (Assad, 1978). A commodity might be a group of passengers
that must travel between two cities (Hane et al., 1995), a container that must be moved
between two facilities (Crainic, 2000), or a data packet that must be transshipped in a
communication network (Schwartz and Stern, 1980). To address various cost structures
in different applications, multicommodity network flow problems have been employed
together with linear objective functions, piecewise-linear objective functions (Croxton et al.,
2007), network design problems with economies of scale (Andrews et al., 2010), network
loading problem (Avella et al., 2007), and network design with nodes costs (Belotti et al.,
2007). Moreover, there are applications that can be modelled as multicommodity time-space
network although they may not exhibit an explicit network structure (Kliewer et al., 2006;
Kazemi et al., 2021a), which extends the applicably scope of these types of problems.

The multicommodity network flow problem is a fundamental problem in network
optimization, and the MCF structure is apparent in many practical and classical problems
(Ahuja et al., 2014). Transportation problems naturally appear as a MCF problem since they
occur on physical networks and involve a set of distinct commodities, passengers, or vehi-

24

CHAPTER 2. BACKGROUND

cles. For instance, Desrosiers et al. (1995) and Desaulniers et al. (1998) propose classes of
well-known MCF-based formulations for some vehicle routing and crew scheduling prob-
lems. A wide range of problems can be expressed on hypothetical networks, such as data
communication problems (Assad, 1978). Furthermore, a variety of scheduling problems can
be represented by a time-expanded network and hence, be modeled with a MCF substruc-
ture. See Árton P. Dorneles et al. (2017) and Kulkarni et al. (2018) as examples of MCF-based
formulations for scheduling problems. The first investigates a school timetabling problem,
and the latter studies a car scheduling problem. The MCF structure is often embedded in
some other classical problems such as the network design problem (Magnanti and Wong,
1984), the hub location problem (Ernst and Krishnamoorthy, 1996), the Steiner tree problem
(Wong, 1984), and the unsplittable flow problem (Barnhart et al., 2000), to name but a few.

A MCF problem becomes complicated when the commodities are interrelated, usually
by bundling constraints such as capacity constraints and/or network design decisions.
In such cases, the number of possible solutions grows exponentially with the increase in
the number of commodities since all commodities are interrelated. In the context of MIP
methods, when solving hard multicommodity network flow problems using an LP-based
approach, the number of commodities is a driving factor in the speed at which the LP
relaxation can be solved, as it is linear in the number of constraints and variables.

Various large scale optimization techniques introduced in Section 2.2 have been ap-
plied to different variants of the MCF problem. MCF problems are particularly attractive
for such techniques because of the network substructure of the problem. Therefore, these
techniques can leverage the efficiency of network optimization algorithms such as Network
Simplex (Orlin, 1997), polynomial shortest path algorithms (Gallo and Pallottino, 1988), and
the Ford–Fulkerson algorithm (for the maximum flow problem) (Ford and Fulkerson, 1956;
Edmonds and Karp, 1972) to solve the resulting subproblems with special structures.

Ford and Fulkerson (1958) propose their idea for column generation method originally
for the maximal multicommodity network flow problem, which maximizes the total flow
of a set of commodities in a capacitated directed network. Barnhart et al. (1994) develop a
tailored column generation algorithm for the MCF problem, which is particularly efficient
over instances with many commodities. Barnhart et al. (2000) propose a Branch-and-Price-
and-Cut algorithms for a MCF problem, in which flow of commodity may use a single
path. Mamer and McBride (2000) develop a column generation algorithm with a special
pricing procedure that solves a relaxed version of the original subproblem. To evaluate
their proposed algorithm, they apply it to the MCF problem.

The MCF problem has been also attractive for the development and extension of vari-
ous Benders decomposition algorithms in both practical and theoretical aspects. Geoffrion
and Graves (1974) develop a Benders decomposition algorithm for the capacitated MCF

25

2.3. MULTICOMMODITY NETWORK FLOW PROBLEMS (MCF)

problem and successfully apply it to a real-life distribution problem. Magnanti and Wong
(1981) apply their acceleration technique for the Benders algorithm to the MCF problem to
show its efficiency. The application of the Benders decomposition algorithm to the MCF
problem range widely from practical problems (see Sweeney and Tatham (1976), Oğuz
et al. (2018), and Pishvaee et al. (2014) for a few examples) to classical variants such as the
multicommodity fixed-charge network design (Costa, 2005).

This thesis focuses on and contributes to the aggregation methods for the MCF prob-
lems. The conventional aggregation approach to improve the solve time of the LP relaxation
of a MIP model that encodes an instance of MCF is to aggregate all commodities that have
the same origin or the same destination (Chouman et al., 2017). However, the bound of the
resulting LP relaxation can significantly worsen, which tempers the efficiency of aggregat-
ing techniques. Commodity aggregation has been also applied to variants of MCF. Belieres
et al. (2020) aggregate commodities to pass partial information to the master problem of
their Benders decomposition algorithm for a service network design problem. Belieres et al.
(2021) improve this algorithm by allowing the set of aggregated commodities to change
during the progress of the Benders decomposition algorithm.

In Chapter 4, we introduce the concept of partial aggregation of commodities that aggre-
gates commodities over a subset of the network instead of the conventional aggregation
over the entire underlying network. This offers a high level of control on the trade-off be-
tween size of the aggregated MIP model and quality of its LP bound. Partial aggregations
that we introduce are fundamentally different from those presented by Belieres et al. (2021).
Our proposed partial aggregations change over the underlying network. On the other hand,
their aggregation schemes consider a fixed set of commodities over the network, and it is
only the partition of commodities into the subsets that may change during iterations of the
algorithm.

2.3.1 Multicommodity Fixed-Charge Network Design Problem

To show the effectiveness of the proposed aggregation approaches, we apply these to the
Multicommodity Capacitated fixed-charge Network Design problem (MCND). However,
these approaches are not restricted to MCND and are applicable to any other problem that
can be formulated with a multicommodity network flow subproblem in its variables and
constraints. We choose MCND for three reasons. First, this problem is easy to understand,
but difficult to solve. Second, MCND is well studied, has extensive applications (Magnanti
and Wong, 1984), and is the basis for many other network design problems. Third, there
are well-established benchmark instances for MCND in the literature (Crainic et al., 2001).
Although, our aim is not to improve on the state-of-the-art for solving MCND, if that was

26

CHAPTER 2. BACKGROUND

an outcome of the work we carry out, it would indeed be beneficial. What we are looking
for, instead, is a generalized framework for solving problems that can be formulated with
a multicommodity network flow subproblem in its variables and constraints, of which the
MCND is a significant archetype.

The input of MCND is a directed graph G = (N ,A) and a set of commodities K. Each
commodity k ∈ K corresponds to a flow of dk units that must be routed from an origin
ok ∈ N to a destination sk ∈ N . For each arc (i, j) ∈ A, a capacity uij, a per-unit-of-flow
cost cij and a fixed cost fij are defined, all non-negative. The fixed cost is incurred if an arc
is used/opened for routing flow.

It is well-known in the MCND literature that all commodities with the same origin
(with the same destination) can be aggregated as one commodity with an origin and multi-
ple destinations (with multiple origins and a destination) (Chouman et al., 2017). This leads
to two formulations with the same optimal integer solution but with different LP bound
qualities: (a) a disaggregated formulation (DA) that considers commodities based on origin-
destination pairs; (b) a fully-aggregated formulation (FA) that aggregates all commodities
with the same origin into a single commodity with that origin and multiple destinations,
one per aggregated commodity. The same aggregation process can be used to instead ag-
gregate commodities that have the same destination, but, without loss of generality, we
only aggregate by origins in this thesis.

We employ the most common MIP model for MCND in the literature (Gendron et al.,
1999). This model includes a continuous flow variable xk

ij that corresponds to the amount
of flow of commodity k on the arc (i, j), and a binary variable yij that determines if the arc
(i, j) is opened. The binary input value ok

i (sk
i) is 1 if and only if the node i ∈ N is the origin

(destination) of the commodity k, and we partition the set of neighbors of a node i into
the set of successor nodes N+

i = {j ∈ N | (i, j) ∈ A}, and the set of predecessor nodes
N−i = {j ∈ N | (j, i) ∈ A}. The MCND MIP model is as follows:

Disaggregated Formulation (DA):

minimize ∑
k∈K

∑
(i,j)∈A

cijxk
ij + ∑

(i,j)∈A
fijyij (2.15a)

s.t: ∑
j∈N+

i

xk
ij − ∑

j∈N−i
xk

ji = (ok
i − sk

i)d
k ∀ k ∈ K, i ∈ N (2.15b)

∑
k∈K

xk
ij ≤ uijyij ∀ (i, j) ∈ A (2.15c)

xk
ij ≤ dkyij ∀ k ∈ K, (i, j) ∈ A (2.15d)

xk
ij ≥ 0 ∀ k ∈ K, (i, j) ∈ A (2.15e)

27

2.3. MULTICOMMODITY NETWORK FLOW PROBLEMS (MCF)

yij ∈ {0, 1} ∀ (i, j) ∈ A (2.15f)

Objective function (2.15a) minimizes the total cost, including the flow and fixed costs. Equa-
tion (2.15b) is the flow conservation constraint. Constraint (2.15c) enforces the capacity
limits of arcs. Constraint (2.15d) links the binary and continuous decision variables in a
disaggregated form of Constraint (2.15c). Constraint (2.15d) is not necessary for the valid-
ity of the MIP, however, it significantly improves the tightness of the LP relaxation bound
(Gendron et al., 1999). This constraint is called a Strong Inequality (SI) in the literature
(Chouman et al., 2017) and we adopt the same name throughout. The decision variables
and their domains are defined in Constraints (2.15e)-(2.15f). This model corresponds to the
DA formulation.

The full aggregation approach aggregates all commodities with a same origin. Suppose
that the set Ñ includes the nodes n ∈ N from which at least one commodity k ∈ K origi-
nates. For each n ∈ Ñ , the group of commodities Kn are aggregated together, where Kn =

{k ∈ K|ok
n = 1}. The FA formulation, based on the such aggregation approach, is devel-

oped on the DA formulation by: (a) summing up the flow conservation constraints (2.15b)
over k ∈ Kn for all n ∈ Ñ , (b) summing up SIs (2.15d) over over k ∈ Kn for all n ∈ Ñ and
(i, j) ∈ A, and (c) and replacing the summation of decision variables ∑k∈Kn xk

ij with a single

aggregate variable xKn
ij for all n ∈ Ñ and (i, j) ∈ A. The resulting formulation generally

includes less variables and constraints and is as the model 2.16.

Fully-Aggregated Formulation (FA):

minimize ∑
n∈Ñ

∑
(i,j)∈A

cijx
Kn
ij + ∑

(i,j)∈A
fijyij (2.16a)

s.t: ∑
j∈N+

i

xKn
ij − ∑

j∈N−i
xKn

ji = ∑
k∈Kn

(ok
i − sk

i)d
k ∀ n ∈ Ñ , i ∈ N (2.16b)

∑
n∈Ñ

xKn
ij ≤ uijyij ∀ (i, j) ∈ A (2.16c)

xKn
ij ≤ ∑

k∈Kn

dkyij ∀ n ∈ Ñ , (i, j) ∈ A (2.16d)

xKn
ij ≥ 0 ∀ n ∈ Ñ , (i, j) ∈ A (2.16e)

yij ∈ {0, 1} ∀ (i, j) ∈ A (2.16f)

Gendron et al. (1999) showed that, in practice, the LP relaxation of DA provides tight
bounds for MCND. On the other hand, FA is a smaller formulation with significantly
shorter LP relaxation computing time, but looser bounds. The DA formulation has re-

28

CHAPTER 2. BACKGROUND

ceived more attention particularly to develop MIP-based heuristics (Crainic et al., 2004;
Rodríguez-Martín and José Salazar-González, 2010; Gendron et al., 2018). The FA formula-
tion has been preferred in cutting plane algorithms by Bienstock and Günlük (1995, 1996),
Bienstock et al. (1998) and Raack et al. (2011) because of the shorter computing time of
its LP relaxation. Rardin and Wolsey (1993) studied the relationship between the aggre-
gated and the disaggregated commodity representation for the uncapacitated fixed-charge
network design with one origin and multiple destinations. The aggregated version of this
problem includes one commodity while its disaggregated version includes one commodity
per destination with nonzero demand. The authors derive an improved formulation by
adding a family of so-called “dicut” inequalities to the FA formulation that has the same
LP relaxation polyhedron as the DA formulation for this problem. These inequalities are
specific to the problem they considered. Chouman et al. (2017) are the first who evaluated
the effect of commodity representation, either disaggregated or fully-aggregated, on the
performance of a Branch-and-Bound algorithm (B&B) with a specialized cutting plane algo-
rithm. They showed that in general, the DA formulation outperforms the FA formulation
over the instances with many commodities, but the FA formulation is more effective for
instances with few commodities.

The model selection in the literature follows an “all-or-nothing” approach that em-
ploys either the DA or the FA formulation based on the application and the algorithm
considered. This approach sacrifices one aspect, LP relaxation computational difficulty or
LP relaxation bound quality, for the other aspect. In this thesis, we propose a spectrum of
formulations that lie in within the range of the DA and FA formulations in this trade-off.
This allows to select a formulation with the desired level of compromise between the model
computational difficulty and the LP bound tightness. These formulations are introduced in
Chapter 4 and are based on partial aggregations of commodities instead of a disaggregated
or a conventional fully aggregated approach.

2.4 Fuel Management Problems

Fuel management problem in its simplest form is to determine the refueling plan of a
vehicle. Such vehicle visits a set of fixed (fuel) stations during its route, and each trip leg
between those stations requires a fixed fuel consumption. A refueling plan determines
where a vehicle must refuel and how much fuel it must receive at each refueling operation.

Two types of costs are usually involved in a refueling operation: first, the fuel price
which varies across different stations, and second, a fixed cost for each refueling operation,
usually referred as stop cost. The general approach to reduce the fuel management costs,
called tankering strategy, is to refuel the vehicle at inexpensive stations as much as possible

29

2.4. FUEL MANAGEMENT PROBLEMS

to avoid the need for refueling at the expensive stations. Therefore, an optimal refueling
plan reduces the number of refueling operations as well as the refueling at expensive
stations.

The simple version of the fuel management problem may be extended in different
ways, including:

• Stochastic fuel prices: In cases where the planning horizon is long, it is sensible to
incorporate uncertainty in the fuel prices.

• Stochastic fuel consumption: Another uncertain aspect that may impact the refuel-
ing plans is the fuel consumption that can affect both optimality and feasibility of a
refueling plan.

• Speed optimization: Since the relation between speed and fuel consumption is usu-
ally non-linear, the simultaneous optimization of the speed and refueling plan of a
vehicle results in more accurate solutions. The impact of the speed optimization is
particularly significant in sea transportation.

• Weight considerations: Weight of the fuel that a vehicle carries can affect the re-
fueling plan in two aspects. First, it may affect the fuel consumption of the vehicle.
Second, high amounts of the carrying fuel can cause issues for the movement of the
vehicle, in the aviation industry for instance.

• Fuel management of a fleet of vehicles: In case of planning a fleet of vehicles, there
are usually features that interrelate the refueling plans of the vehicles, which makes
the problem complicated. We next describe such features in details.

In the context of fuel management, linking features require the simultaneous optimiza-
tion of refueling plans of all vehicles to avoid sub-optimal solutions. Considering the fuel
planning of a vehicle as a special network flow problem and a vehicle as a commodity, the
fuel management of a fleet of vehicles could be viewed as special case of the multicommod-
ity network flow problem. Linking feature are typically considerations regarding:

• Locating fuel stations: management of a fleet of vehicles sometimes involves pro-
curement of fuel at stations in advance. This could be done by contracts with fuel
suppliers at the corresponding stations or by providing fueling facilities there. Both
cases incur an additional fixed cost.

• Demand assignment: in some cases, the scheduling involves assignment of a set of
costumers to a fleet of vehicles, which converts the problem into a routing problem
with additional fueling considerations.

• Volume discounts: in some applications, such as sea transportation, it is common
that fuel contracts with suppliers offer discounts in prices based on the total volume

30

CHAPTER 2. BACKGROUND

purchased from the supplier. In such cases, simultaneous optimization of all vehicles’
fuel plans is beneficial to leverage the volume discounts.

• Fuel suppliers restrictions: ignoring fuel suppliers restrictions may result in im-
practical solutions in which the planned amount of fuel purchase is higher than the
supplier’s capability or is lower than the supplier’s minimum purchase requirement.
Simultaneous optimization of the fuel plans of the fleet of the vehicles could avoid
such solutions.

In rail transportation, the weight of the fuel a train carries is trivial in comparison with
the total weight of the train. In addition, railway companies usually make contracts with
the fuel suppliers to hedge the fuel price against the possible fluctuations. Such contracts
usually incur a fixed contract fee. Therefore, among possible extensions for the fuel manage-
ment problem in rail transport, locating fuel stations is prominent, and a typical locomotive
fuel management involves the integrated problem of fuel planning of the locomotives and
locating the fuel stations. Nourbakhsh and Ouyang (2010) are the first who studied the
integrated locomotive fuel management problem. They employ a Lagrangian relaxation
framework to optimize both fueling decisions and station location decisions and develop
a cyclic plan for a fleet of locomotives in a transportation network. They also consider
refueling capacities at refueling stations over the entire planning horizon, and emergency
refueling as an auxiliary refueling option.

A vast majority of the locomotive fuel management literature has been motivated by
the INFORMS Problem Solving Competition (2010). The problem is to simultaneously opti-
mize the location and fuel decisions of a cyclic plan of a fleet of locomotives by considering
a daily capacity for the stations. Moreover, each locomotive cannot be refueled at more
than two intermediate stations during a trip between an origin-destination. This problem
has been solved using integer programming with valid inequalities (Chiraphadhanakul
and Figueroa, 2010; Raviv and Kaspi, 2012; Vermit, 2014; Kumar and Bierlaire, 2015) and
heuristic algorithms (Ramsden, 2010; Nag and Murty, 2012; Schindl and Zufferey, 2013). Li
et al. (2014) studied another version of locomotive fuel management. Considering fuzzy
fuel prices to address uncertainty, the authors simultaneously optimize the speed and fuel
decisions of a locomotive, since the speed of the locomotive affects the fuel consumption.
However, decisions on the location of the stations are ignored. Therefore, the problem can
be solved for each locomotive separately. In a different perspective, Vaidyanathan et al.
(2008) studied the locomotive routing problem, in which the locomotives are assigned to a
given train schedule by considering fueling and service constraints. However, fuel costs are
not optimized, and they only ensure that no locomotive runs out of fuel during journeys
between the stations. They developed an aggregation-disaggregation based algorithm to
minimize the total cost of locomotives ownership and assignment.

31

2.4. FUEL MANAGEMENT PROBLEMS

The fuel management problem has also been investigated in other modes of transporta-
tion. The problem has been studied for around 40 years for the aviation industry (Darnell
and Loflin, 1977). In addition to the tank capacity, the allowed weight of the aircraft dur-
ing the take-off and landing restricts the amount of refueling. Moreover, the weight of
the aircraft affects the fuel consumption during the flight. Considering these operational
constraints, a tankering strategy, called ferrying in the aviation industry, has been inves-
tigated for a single aircraft (Teodorović, 1988; Philpott and Mudaliar, 1992; Zouein et al.,
2002; Fregnani et al., 2013) and a fleet of aircraft. Additional considerations that make the
fuel decisions of the airplanes interrelated include: (a) having volume discount strategies
(Darnell and Loflin, 1977), (b) fuel suppliers’ restrictions (Stroup, 1992), or (c) assignment
of the airplanes to scheduled flights (Kheraie and Mahmassani, 2012). Studies on military
aircraft fuel management are focused on fuel consumption optimization since they use a
special type of refueling, called aerial refueling, which involves the transfer of fuel from an
aircraft (tanker) to the aircraft that is in service (receiver) during its flight. After refueling,
the tanker returns to its base station. The fuel management problem consists of finding the
route with minimum consumption for both the receiver and tanker. Yamani (1986) stud-
ied the problem of fuel planning of a fleet of military aircraft. The integrated problem of
routing and fueling of a single military aircraft with possibility of several aerial refueling
operations is addressed by Bush (2006); Kannon et al. (2015); Ferdowsi et al. (2018). To the
best of our knowledge, the only research that studies the fuel costs for military aircraft is
by Hubert et al. (2015). They consider a single aircraft in which fuel can be ferried only for
one subsequent trip. The remaining fuel can be offloaded and sold at the destination and
aerial refueling is not available.

Fuel management for sea transportation is considered for two types of services: Liners
with fixed routes and Trampers where the set of ports visited is also optimized. Besbes and
Savin (2009) investigated the fuel management problem of a single vessel for both liners
and trampers. Zhen et al. (2017) optimized fuel plans for a single liner under stochastic fuel
price and consumption. Since the speed of ships significantly affects the fuel consumption,
the integrated problem of fuel and speed decisions of a single liner vessel is studied to
obtain additional savings (Yao et al., 2012; Sheng et al., 2014, 2015). In situations where there
is a fleet of trampers (Vilhelmsen et al., 2014; Meng et al., 2015) or where fuel suppliers
offer volume discounts (Plum et al., 2014; Wang and Meng, 2015), the fuel decisions of
different vessels are interrelated. Therefore, the fuel plans of all of the vessels should be
optimized simultaneously to avoid sub-optimal solutions. Zhen et al. (2017) addressed the
problem of fuel management of a fleet of ships when the speed, refueling, and fleet size are
optimized simultaneously with distribution-free stochastic fuel price. Reinhardt et al. (2020)
investigated the speed and fuel consumption optimization for a fleet of liners incorporating

32

CHAPTER 2. BACKGROUND

several other business constraints. De et al. (2019) studied a dynamic fuel management
problem for a fleet of liners with fluctuating fuel prices and consumption. Moreover, Wang
and Chen (2017) studied the integrated problem of speed and fuel decisions of a fleet of
liners while restricting total carbon emission. The problem of liner fuel optimization with
fixed speeds is mathematically equivalent to locomotive refueling without inline refueling.

In another application, Sundström and Binding (2010) and Hu et al. (2011) addressed
optimizing recharging decisions for a fleet of Electric Vehicles (EV) while incorporating
battery behavior and electricity supply constraints. Wang et al. (2016) studied the same
problem as the INFORMS competition but for electronic vehicles. They considered one
additional constraint which states that the amount of recharging at a station is dependent
on the time that the EV stays at the station. A mathematical model proposed by Sassi and
Oulamara (2017) lexicographically assigns a fleet of EVs to predetermined tours and opti-
mizes recharging costs with electricity supply constraints. In the context of motor vehicles,
Suzuki (2012) proposed a decision support system (DSS), which jointly optimizes routing
and refueling decisions of a motor-carrier vehicle by considering operational constraints
on the amount of fuel purchased. Suzuki et al. (2014) extends this work by incorporating
the effect of the fuel’s weight on the vehicle’s fuel consumption.

There are also studies that focus on the location of refueling stations. In these studies,
instead of considering demands as nodes, they are stated as origin-destination flows that
must pass at least one supply node during their shortest path. This approach of modeling
is firstly introduced by Hodgson (1990) and Berman et al. (1992) as Flow-Capturing mod-
els. Kuby and Lim (2005) are the first who used flow-capturing models to determine the
location of the fuel stations. Given the number of stations, they maximized the number of
the covered fuel demand flows while ensuring the vehicles do not run out of fuel during
their journey. Using flow-capturing models, Wang and Lin (2009) and MirHassani and
Ebrazi (2013) investigated the set-covering version of the fuel station location problem.
Several extensions to the basic flow-capturing models of the fuel station location problem
are addressed in the literature: (a) allowing a specified deviation from the shortest path
for refueling (Kim and Kuby, 2012), (b) capacitated fuel stations (Upchurch et al., 2009), (c)
a multi-period model (Chung and Kwon, 2015), (d) deviation-allowed flows considered
together with capacitated stations (Hosseini et al., 2017), and (e) simultaneously flow rout-
ing and station locating (Yildiz et al., 2016). Anjos et al. (2020) proposed a framework for
locating recharging stations of EVs considering the effects of new stations on EV adoption.

This thesis introduces a new class of fuel management problems in which a new link-
ing feature, inline refueling, is incorporated. As explained in Chapter 1, inline refueling
is operated by special supplementary fuel reservoirs, inline tanks. Incorporating the in-
line refueling in the fuel management offers a degree of freedom and flexibility for fuel

33

2.4. FUEL MANAGEMENT PROBLEMS

planning. Hence, it brings saving opportunities for the fuel planning with the expense of
additional complexity. We formally define and study the fuel management problem with
inline refueling considerations and develop the first optimization model for planning a
fleet of inline tanks.

To the best of our knowledge, the type of inline refueling considered in our work has
not yet been studied for any mode of transportation. Emergency refueling, aerial refueling,
and fuel offloading, which are studied in the literature, involve a form of inline refueling
but are fundamentally different. Based on Nourbakhsh and Ouyang (2010), emergency fuel
price is higher than the fuel prices in the stations. However, inline refueling is performed
with the same fuel prices as the stations, since the inline tanks are refueled at the stations.
Moreover, the emergency fuel cannot not be used by other locomotives and is limited to the
locomotive’s tank capacity. In contrast, the fuel in the inline tank can be used by different
locomotives by switching to different trains, and it has its own capacity in addition to the
locomotives’ tanks. Aerial refueling, studied for military aircraft (Yamani, 1986; Bush, 2006;
Kannon et al., 2015; Ferdowsi et al., 2018), is different from inline refueling for three rea-
sons. Firstly, the optimization is on fuel consumption, not fuel price. Secondly, it is assumed
that the tanker aircraft returns to its base station. This assumption implies that the aerial
refueling is the same as refueling at the stations with an extra cost for fuel supplied via the
tanker aircraft. Finally, the fuel received by aerial refueling can be only used by the receiver
aircraft. Hubert et al. (2015) considered fuel offloading as taking out the extra fuel from
an aircraft and selling it to the station. They considered fuel ferrying only for one extra
subsequent trip, while we do not restrict the number of trips for fuel tankering. Moreover,
they considered a single aircraft but we optimize fuel plans for a fleet of locomotives. Most
importantly, they assumed that the fuel can be sold at stations. This assumption is impos-
sible for many cases and fuel can be transferred only if another transportation unit of our
fleet can use it in future.

34

CHAPTER 3
Locomotive Fuel Management with

Inline Refueling

3.1 Overview

This chapter investigates the fuel management problem with inline refueling in the context
of rail transport. Section 3.2 defines the problem formally. Theoretical complexity of the
problem and its restricted versions is proved in Section 3.3, where we show that this prob-
lem, even in its simplest form, is strongly NP-hard even if only one inline tank is available.
Section 3.4 conceptualizes the problem as a time-space network. Therefore, the problem can
be modelled as a special case of the multicommodity network design problem based on the
time-space network conceptualization. The base model presented in Section 3.4 is extended
in Section 3.5 to incorporate the operational restrictions of locomotive refueling. Section 3.6
applies the proposed model to a case study in Australia to evaluate and investigate the
adoption of inline refueling on the operations of the railway companies. Section 3.7 eval-
uates the model for a larger dataset from the USA. As commercial solvers fail to provide
good-quality solutions, we develop a heuristic algorithm in this section which provides
good-quality solutions in a reasonable time for large instances.

This chapter contains three main contributions:

1. It introduces a new class of locomotive fuel management problems and analyzes their
theoretical and empirical complexity.

35

3.2. PROBLEM DESCRIPTION

2. It proposes a MIP model based on a time-space network representation of the prob-
lem.

3. It presents two case studies from Australia and the USA to evaluate various scenarios
and also develops a heuristic for large instances.

3.2 Problem Description

We introduce the General Fuel Management problem with Inline Refueling, GFMIR, which
seeks to minimize the total fuel-related costs when train schedules and locomotive routes
are given. A train schedule is a sequence of stations that the train visits. The input data
includes the set of stations S , the set of locomotives L, the time horizon, and the set of train
schedules during the time horizon. We derive the individual trip legs set T from all trains
schedule. Each trip leg t ∈ T defines a single trip with the fixed departure time, origin
station, arrival time, and destination station. Moreover, the corresponding train of each trip
leg is hauled by a set of assigned locomotives Lt ⊆ L. Each locomotive l ∈ L has a fixed
route and a fixed tank capacity Pl. The route of a locomotive indicates the sequence and the
time of stations that the locomotive visits during the time horizon, and is derived from the
given assignments of locomotives to train trip legs. The set of inline tanks I are similar to
locomotives in that they have a fixed capacity Pi for all i ∈ I , but the assignment of these
tanks to train trips is to be determined and optimized. The schedule is assumed to be cyclic
which requires that the same fuel tanks (inline tanks or locomotives’ tanks) must return
to the initial location with the same fuel level. The train schedules and locomotive routes
are cyclic in the given input, and only the fuel plans of locomotives must be ensured to be
cyclic. However, as the routes of inline tanks are not given as the input, both their routes
and fuel plans must be ensured to be cyclic. The cyclic requirement is due to the common
usage of cyclic schedules in railroad companies. The fuel consumption of train trip legs
is predetermined and deterministic and is equally divided between the locomotives that
haul the corresponding train. The extra weight of the tankered fuel may increase the fuel
consumption. However, since the extra weight is trivial compared to the train weight, the
extra fuel consumption due to fuel tankering is ignored as is common in fuel optimization
problems in rail transportation (Nourbakhsh and Ouyang, 2010). The extra weight could
also be modeled by a slight reduction of the technical fuel capacity.

Three cost types are incorporated in the locomotive refueling operations, namely, the
fuel purchasing cost, the refueling operation fixed cost, and the fixed cost of stations’ ser-
vices. The fuel prices CF

s vary at different stations s ∈ S . Each refueling operation of the
locomotives incurs a fixed cost CH

s which is called the stop cost. Similarly, the refueling of
inline tanks at the stations incurs the same fixed cost. Using a station s ∈ S for refueling

36

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

purposes during the time horizon incurs another fixed cost CO
s . If the company owns the

station, this fixed cost is associated with the costs of maintenance of the facilities and the
labor that are related to the refueling operation. Otherwise, it is a fixed cost to be paid to
the fuel supplier as a contract fee. In addition, it is assumed that the refueling at a station
is possible for a locomotive or an inline tank only if it waits at the station more than the
required time of a refueling operation.

We consider two options for locomotive refueling: The first option, which is studied in
the literature, is the conventional direct refueling of the locomotives at stations. The second
option, which is not studied in the literature so far, is the option of inline refueling, which
is carried out by inline tanks. This allows locomotives to travel longer distances without
having to stop at intermediate stations for refueling. Inline tanks assigned to a train are
mounted on a wagon and connect through one pumping system to all locomotives that haul
the train. Therefore, since they use same inline tanks, locomotives on the same train are not
independent (in contrast to the conventional refueling case which they can be considered
separately regardless of trains they haul). Inline refueling reduces total fuel management
costs since it enables the company to plan to buy more fuel from inexpensive stations
(and perhaps, to close down some fuel stations too). Moreover, it decreases the number
of refueling stops. However, the available inline tanks should be managed efficiently due
to limited budget to procure these inline tanks. Given a number of available inline tanks,
in addition to decisions of the traditional integrated problem, which are selecting the fuel
stations locations and refueling scheduling (where to refuel) and fuel planning (the amount
of fuel purchase) for locomotives, we also need to determine the assignment of the available
inline tanks to the train trips. This, accordingly, determines the routes of the inline tanks
during the time horizon. Furthermore, each train is hauled by one or several locomotives
collaboratively. Hence, the locomotives, among such collaborating locomotives, that use
the assigned inline tanks to the train, are to determined. Additionally, the fuel plan for
inline tanks should be optimized in a manner similar to that of the locomotives.

In practice there are a number of other restrictions that need to be considered, leading
to different variants of the basic problem. These considerations include limiting the number
of locomotives that may be refueled from an inline tank, limited number of inline tanks
per train trip, balancing requirements between inline tanks used on the same trip, and
restrictions on the transfer of fuel from inline tanks to locomotives and between inline
tanks both during trips and at the stations. However, as we shall see in the next section,
the problem is already hard even when considering only the most basic model of inline
refueling. Such extra considerations are incorporated in the proposed model in Section 3.5.

Since the GFMIR problem is complicated, as we will show theoretically and empiri-
cally, we limit it to deterministic input. Although several parameters of the problems, such

37

3.3. COMPLEXITY OF THE PROBLEM

as the fuel price and the fuel consumption, are intrinsically uncertain, the limitation to
deterministic input is quite reasonable indeed. We consider a weekly or fortnightly time
horizon, which is common in the railroad industry for train and locomotive planning. Rail-
road companies usually hedge fuel prices over months, and hence, considering a fixed,
deterministic fuel price over two weeks aligns with the practice. Moreover, uncertain fuel
consumption can be handled with a small cost by considering safety fuel levels as we will
show. The limitation to deterministic input allows us to study the proposed models and
algorithms in various scenarios, which provides a basis to extend the proposed models
and algorithms to more sophisticated cases, including the GFMIR problems with uncertain
parameters.

3.3 Complexity of the Problem

In this section, we prove that GFMIR is NP-hard. Moreover, we demonstrate that the re-
stricted version of the problem, in which we ignore the decisions related to selecting the
fuel stations locations and the decisions related to where to refuel, is also NP-hard. This
is interesting, as the restricted problem is simply a minimum-cost network flow problem
to which inline tanks have been added. Clearly, the fuel management problem with inline
refueling is a generalization of the problem set in the INFORMS Problem Solving Compe-
tition (2010), which has been proved to be NP-hard by Raviv and Kaspi (2012). Therefore,
the locomotive fuel management problem with inline refueling is NP-hard:

Corollary 3.3.1 (Proposition 1 Raviv and Kaspi (2012)). GFMIR is NP-hard.

Next, we consider the restricted version of GFMIR by ignoring the decisions related to
selecting the fuel stations locations (hence all stations are considered opened) and where to
refuel (no fixed costs for stops). Moreover, we consider three other simplifications from the
problem described in Section 3.2 to obtain the simplified problem RGFMIR1 for the com-
plexity proof. The simplifications are: (a) dropping cyclicity requirement for locomotives
and inline tank, (b) initial fuel level of locomotives and inline tanks are fixed to full capacity
as the given input, and (c) initial location of inline tanks are fixed based on the given input.
Subsequent to the complexity proof of RGFMIR1, we cancel these three relaxations for the
problem and show that the resulting problem is still NP-hard. Finally, we prove that the
restricted problem is NP-hard even if one inline tank is available.

Problem 3.3.1 (RGFMIR1). Input: A directed graph G = (V, A) in which nodes correspond to
the stations with fuel price c(v), a set L of locomotives with tank capacity Pl for all l ∈ L, a set I of
inline tanks with capacity Pi and the initial location v(i) for all i ∈ I. All locomotives and inline
tanks start with full capacity. A set T of train trip legs, where a trip t ∈ T is defined as an arc at with
departure time α(t), arrival time ω(t), and the set H(t) ⊆ L which determines the locomotives that

38

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

haul the train. Based on the information of all train trip legs, each locomotive l visits a sequence of
stations Ql in time order Ωl, and hauls the corresponding trains for a sequence of trip legs Tl. The
consumption Dt denotes the fuel consumption of each locomotive that hauls the corresponding train
of trip leg t.

Solution:

• Assignment of each inline tank i ∈ I to a set of train trip legs Ti ⊆ T which translates to the
sequence of stations Qi it visits in time order Ωi.

• For each trip leg that inline tank i is assigned to, i.e. for all t ∈ Ti, a set of locomotives At
i ⊆ Ht

that connect to and use this inline tank during the trip. On the other hand, set At
l indicates

the inline tanks that are connected to locomotive l during trip leg t. Inline tanks assigned
to a same train are mounted on a wagon and connected to the selected locomotives through
a shared pumping system. Therefore, with It denoting the inline tanks assigned to the trip
leg t, we have either At

l = It (locomotive l is connected to the pumping system) or At
l = ∅

(locomotive l is not connected to the pumping system) for all l ∈ Ht.

• Fuel purchase plan for each locomotive l as Φq
l that determines the amount of fuel purchased

for this locomotive at the qth station it visits for all q ∈ Ql.

• Fuel purchase plan for each inline tank i as Φq
i that determines the amount of fuel purchased

for this inline tank at the qth station it visits for all q ∈ Qi.

• Inline refueling plan for each inline tank i as Ψlt
i that indicates the amounts of fuel transferred

from inline tank i to locomotive l during trip t for all t ∈ Ti, l ∈ At
i .

• Let Tq
l (Tq

i) denote the trip legs that locomotive l (inline tank i) has taken to arrive at its
qth station in its sequence Ql (Qi). Fuel purchase and inline refueling plans determine the
fuel level of each locomotive l over the sequence of stations it visits as f q

l = Pl + ∑
q
j=1 Φj

l −
∑t∈Tq

l
Dt + ∑i∈At

l
∑t∈Tq

l
Ψlt

i : ∀q ∈ Ql and the fuel level of each inline tank i over the

sequence of stations it visits as f q
i = Pi + ∑

q
j=1 Φj

i −∑l∈At
i
∑t∈Tq

i
Ψlt

i : ∀q ∈ Qi.

• The assignments, fuel purchase plans, and inline refueling plans must be with the minimum
cost while the fuel level of the locomotives and inline tanks is always non-negative and does
not violate their corresponding capacity.

Theorem 3.3.1. RGFMIR1, which is the restricted version of GFMIR, is strongly NP-hard.

Proof. This is a reduction from the classic 3-SAT problem where there is an inline tank per
Boolean variable, and it is assigned one of two possible routes, meaning TRUE of FALSE.
Each clause will require one inline tank to be feasible.

Consider an instance of 3-SAT with n Boolean variables v1, . . . , vn and m clauses, i.e.,

39

3.3. COMPLEXITY OF THE PROBLEM

c1 ∧ c2 ∧ · · · ∧ cm, each of which contains three literals, i.e., ci = (li1 ∨ li2 ∨ li3), where each
literal is a Boolean variable vk or its negation. Moreover, σ(j, v) returns the index of the
clause of the jth appearance of variable v in the clauses (assuming clauses are ordered with
respect to their index number). π(i, v) shows the location of variable v in clause ci as a literal
(assuming literals within a clause are ordered by their index). σ(j, v) and π(i, v) distinguish
the appearance of a variable vk and its negation v̄k. ηk and η̄k represents the number of
times variable vk and its negation has appeared in the clauses, respectively. Without loss of
generality, we suppose that each variable appears in each clause at most once and appears
in at least one clause.

In order to reduce the 3-SAT instance, we construct the RGFMIR1 instance as follows.
In the reduced instance, all trains are hauled by exactly one locomotive. Therefore, trains
are not discussed since each trip leg can be viewed as a separate train which does not affect
the inline tanks assignments. We present different gadgets in the reduction that each makes
a part of the reduced instance and have different characteristics.

• Clause locomotives: for each clause, there is a clause locomotive with capacity 2
that takes three trips, each corresponding to a literal. Specifically, locomotive i, cor-
responding to clause ci, takes three trips {ti1, ti2, ti3}, each consuming one unit of
fuel (Dtij = 1 : ∀j ∈ {1, 2, 3}). Locomotive i over trip tij departs station Sj

i at time

α(tij) = 10i + 2j and arrives at station Sj+1
i at time ω(tij) = 10i + 2j + 1. The fuel

price at all such stations is 1 (c(Sj
i) = 1 : ∀j ∈ {1, 2, 3, 4}).

• Literal connection locomotives: these locomotives sequentially link the presences of
a variable in the clauses (separately for each variable and its negation). This leads
to the set of literal connection locomotives Lvk where |Lvk | = ηk − 1 for variable
vk and the set of literal connection locomotives Lv̄k where |Lv̄k | = η̄k − 1 for vari-
able v̄k. Locomotive j ∈ Lvk with the capacity of 2 takes two trips tjk

1 and tjk
2 , each

consuming one unit of fuel. Trip tjk
1 departs station Sπ(σ(j,vk),vk)+1

σ(j,vk)
at time α(tjk

1) =

10σ(j, vk) + 2π(σ(j, vk), vk) + 1 and arrives at station Svk
j at time ω(tjk

1) = 10σ(j, vk) +

2π(σ(j, vk), vk)+ 2. Trip tjk
2 departs station Svk

j at time α(tjk
2) = 10σ(j, vk)+ 2π(σ(j, vk),

vk) + 3 and arrives at station Sπ(σ(j+1,vk),vk)
σ(j+1,vk)

at time ω(tjk
2) = 10σ(j + 1, vk) + 2π(σ(j +

1, vk), vk). Fuel price at station Svk
j is zero. Literal connection locomotives for variable

v̄k are added similarly.

• Inline tanks: There are n inline tanks, each corresponding to a Boolean variable. Each
inline tank k ∈ {1, . . . , n} is initially located at station S0

k with the capacity of one unit
of fuel (Pk = 1). Fuel price at station S0

k is zero.

40

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

• Boolean assignment locomotives: there are two locomotives with the capacity of 1 unit
of fuel per Boolean variable k as l0

k and l̄0
k . Locomotive l0

k takes one trip t0
k , consuming

one unit of fuel. Trip t0
k departs station S0

k at time α(tk
1) = 0 and arrives at station

Sπ(σ(1,vk),vk)
σ(1,vk)

at time ω(t0
k) = 10σ(1, vk) + 2π(σ(1, vk), vk). This locomotive essentially

links the initial location of inline tank k to the trip corresponding to the first presence
of the variable vk in the clause locomotives’ trips. Similarly, trip t̄0

k of locomotive l̄0
k

links the initial location of inline tank k to the trip corresponding to the first presence
of the variable v̄k in the clause locomotives’ trips. As we will show, the assignment of
inline tank k to locomotive l0

k (l̄0
k) translates to setting vk = 1 (v̄k = 1).

• Terminal locomotives: to ensure that inline tank assigned to a variable is not freely
switched between trips related to different variables, we introduce terminal loco-
motives. There is one terminal locomotive per each Boolean variable k, n terminal
locomotives in total. A terminal locomotive with the capacity of 1, corresponding to
the kth binary variable, takes two trips tkm

1 and tkm
2 , each trip consuming 1 unit of fuel.

Trip tkm
1 departs station Skm

1 at time α(tkm
1) = max{10σ(ηk, vk) + 2π(σ(ηk, vk), vk) +

1, 10σ(η̄k, v̄k) + 2π(σ(η̄k, v̄k) + 1} + 10 and arrives at station Skm
2 at time ω(tkm

1) =

α(tkm
1) + 1. Trip tkm

2 departs station Skm
2 at time α(tkm

2) = ω(tkm
1) and arrives at station

Skm
3 at time ω(tkm

2) = α(tkm
2) + 1. Fuel price at stations Skm

1 , Skm
2 , and Skm

3 is equal to 1.

• Terminal connection locomotives: per each Boolean variable k, there is one terminal
connection locomotive for vk and one for v̄k. Such locomotives link the last presence of
variables vk and v̄k to the corresponding terminal locomotive of kth Boolean variable.
The connection are made with the same logic as literal connection locomotives (a lo-
comotive with the capacity of 2 taking 2 trips consuming 1 unit of fuel that pass from
an intermediate station with the fuel price of zero, and with appropriate time sched-
ule that arrive to the corresponding station before the relevant terminal locomotive
leaves).

Figure 3.1 shows the reduction of an instance of 3-SAT as (v1 ∨ v2 ∨ v̄4) ∧ (v2 ∨ v3 ∨
v̄4)∧ (v̄1 ∨ v2 ∨ v̄3). In this figure, each arrow indicates a locomotive of the types mentioned
before that may pass some intermediate stations. The sequence of locomotives that visit a
same station is shown on a same node that the preceding locomotive is an incoming arc
to that node and the subsequent locomotive is an outgoing arc to the same node. Clause
and terminal locomotives are shown in colors black and blue, respectively. Other types of
locomotives are shown in red and shown only for the ones that correspond to variable v2

to have a clear figure. Inline tanks are located at the red square nodes on the left side of the
figure. The fuel price of stations with nonzero price, are labeled above the corresponding
node. The dotted line represent the time that a locomotive stays in a station idle.

41

3.3. COMPLEXITY OF THE PROBLEM

v4

v3

v2

v1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1
v1

1 1
v2

1 1
v3

1 1
v4

v1 v2 v̄4

v2 v3 v̄4

v̄1 v̄2 v3

Figure 3.1: Reduction of a 3-SAT instance

Considering this reduction, an instance of 3-SAT is satisfiable if and only if there is an
optimal solution with total cost of zero for its corresponding instance of RGFMIR1. Clearly,
when an instance of 3-SAT is satisfiable, we can translate the solution of the 3-SAT instance
to assignments of inline tanks to the corresponding trips to have the total cost of zero.

Conversely, assignments of inline tanks to trips corresponds to setting a variable to
TRUE (vk = 1) or FALSE (v̄k = 1). These assignments are equivalent to a solution of 3-
SAT because of the three reasons. First, the inline tanks cannot be swapped between trips
that correspond to the TRUE and FALSE value of the same variable since there is no link
between the TRUE and FALSE values of the same variable. Second, the inline tanks cannot
be swapped between trips that correspond to different variables without incurring cost to
the fuel plan. Because the schedule of such trips are mutually exclusive. Also, between each
two successive trips there is a non-zero idle time. Therefore, if an inline tank is swapped
from a trip corresponding to a literal to a trip corresponding to another literal, it cannot
be swapped back, which results in at least one gadget (terminal locomotives) having a
cost greater than zero. Third, locomotives that correspond to each clause cannot take all
trips with cost of zero unless an inline tank can be assigned to them at least once, which is
equivalent to saying the clause is satisfied. Hence, by finding a fuel plan with cost of zero
we can construct a satisfiable solution for the 3-SAT instance.

In addition, RGFMIR1 is in the class NP since every solution for this problem is a flow
in the network for which it can be certified in polynomial time whether all of the demands
are satisfied or not. Furthermore, the reduction is polynomial with respect to the number
of variables and clauses. Therefore, RGFMIR1 is strongly NP-hard.

RGFMIR1 is a simplified version of the problem described in Section 3.2. We consid-
ered three relaxations at the beginning of this section to obtain a simplified problem for the
complexity proof. Next, we undo such relaxations step by step and show RGFMIR1 with
those considerations is also strongly NP-hard.

Corollary 3.3.2. The variant of RGFMIR1, in which the fuel plan of the locomotives and the inline

42

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

tanks must be cyclic, is strongly NP-hard.

It is enough to consider an extra trip for each locomotive in the reduction of the proof
of Theorem 3.3.1 to ensure the cyclic plan of the locomotives. The destination of this extra
trip is the initial location of the locomotive and consumes no fuel.

For the inline tanks, we assume that the final destination of terminal node that corre-
spond to inline tank k (corresponding to kth variable) is station S0

k .Furthermore, by consid-
ering cyclic schedules, determining the initial fuel level of the locomotives and the inline
tanks can be incorporated in the problem.

Corollary 3.3.3. The variant of RGFMIR1, in which the initial location of inline tanks is not fixed
as a given input, is strongly NP-hard.

By this generalisation, it is not ensured that the optimal solution of the problem has
exactly one inline tank assigned to each variable. However, we ensure that exactly one
inline tank arrive to station S0

k for all k ∈ {1, . . . , n}. To do this, we consider a locomotive
schedule per each inline tank that needs an assignment of an inline tank to allow a zero
cost solution (similar to clause locomotives). These schedules start at the same time, so one
inline tank cannot be assigned to more than one of them. The locomotive corresponding to
inline tank k terminates to station S0

k .

Considering Corollaries 3.3.2 and 3.3.3 and the proof of Theorem 3.3.1. RGFMIR2,
which is described in Corollary 3.3.4 is also NP-hard since we can consider Corollaries 3.3.2
and 3.3.3 at the same time in the reduction. In the rest of this chapter, “restricted problem”
refers to RGFMIR2.

Corollary 3.3.4 (RGFMIR2). This problem which is based on RGFMIR1 while considering cyclic
schedules for the locomotives and the inline tanks and assuming that the initial location of the inline
tanks and initial fuel levels are not fixed as the given input is strongly NP-hard.

Finally, we prove that RGFMIR1 and its variants are NP-hard even if there is only one
inline tank available. In the reduction, instead of considering n inline tanks, each located
initially at station S0

k for all k ∈ {1, . . . , n}, consider one inline tank initially located at station
S0

1. Then, the terminal locomotive k is connected to station S0
k+1 by a locomotive similar

to literal connection locomotives, and time schedules are adjusted accordingly. Since the
resulting connections are acyclic, we can create train schedules that correspond to those
connections. Moreover, this construction can be used along with the gadgets that have been
introduced for Corollaries 3.3.2 and 3.3.3.

Corollary 3.3.5. RGFMIR1 and RGFMIR2 are strongly NP-hard even if only one inline tank is
available.

43

3.4. MATHEMATICAL MODELING

3.4 Mathematical Modeling

We model GFMIR on a time-space network which determines the location of fuel stations,
the fuel plans of the locomotives and the inline tanks, and the assignments and the routes
of the inline tanks. In this section, first we define a time-space network to capture all
considerations of the problem. Time-space networks have been successfully employed
for various transportation applications (Kliewer et al., 2006; Steinzen et al., 2010; Guedes
and Borenstein, 2018). In contrast to the traditional locomotive fuel management problem,
GFMIR involves routing decisions for inline tanks. Time-space networks have been utilized
for routing problems due to their advantages in modeling possible connections between
trips. A time-space network connects all trips related to a same location with a timeline
instead of explicitly pairing all possible combinations of trips. Next, a Mixed-Integer model
is proposed based on this network. In the proposed model in this section, we do not include
the details of a specific railroad application. The aim is to develop a general model that can
be applied to different rail companies.

3.4.1 Network Representation

In this section, we conceptualize the GFMIR problem as a time-space network. Compo-
nents of this network represent and relate activities that are involved in fuel management
operations: (a) opening/closing fuel stations, (b) direct refueling to locomotives and inline
tanks at fuel stations, (c) movement and fuel level of inline tanks, where movements are
determined by their assignments to train trip legs, (d) inline refueling to locomotives by
the assigned inline tanks to the corresponding train, and (e) movement and fuel plan of
locomotives. In contrast to inline tanks, movement of locomotives is a given input.

In the proposed network, nodes correspond to a locomotive or an inline tank staying
at a station over a time period, taking a trip leg, or operation of a fuel station during the
time horizon. On the other hand, arcs represent a specific instant of time that an activity
starts/ends or a refueling operation. Flow on arcs indicate the amount of fuel at that time,
which can be the fuel level of a locomotive or an inline tank at the time or the amount of fuel
transfer by a refueling operation. Arcs connect relevant activities and are of two types: First,
movement connections that join the sequence of trips and idle periods of a locomotive or an
inline tank during the time horizon. Second, fuel circulation connections that can be direct
refueling at a fuel station or inline refueling. Movement connections are based on the time
sequence and location match of activities of a locomotive or an inline tank. Direct refueling
arcs connect a fuel station to the node representing a time period that an inline tank or a
locomotive stays at that station. Inline refueling connects the nodes representing the same
trip for a locomotive and the inline tanks. Since each node corresponds to a locomotive,

44

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

an inline tank, train trip legs, or fuel stations, the time-space network can be viewed as
different layers. Each layer corresponds to a specific entity, for instance a locomotive, and
includes only the corresponding nodes. Different layers are connected by fuel circulation
connections. However, there is only one commodity, fuel, flowing in the network.

Figure 3.2 sketches the general structure of the time-space network. Figure 3.2a illus-
trates the movement connections for a simple example. Suppose three activities {j− 1, j, j +
1} are defined for a locomotive (or an inline tank). Note that the logic for representing
the activities of the locomotives and inline tanks are the same as their activities are either
staying at a station during a time period or taking a trip between two stations during a
time period. These activities correspond to staying at station sk during time period τj−1,
taking a trip from station sk to station sl during time period τj, and staying at station sl
over time period τj+1, respectively. Moreover, these time periods imply that the activities
occur as the sequence {j− 1, j, j + 1}. Therefore, two arcs are added to show the sequence.
By this illustration, flow on the arc from j− 1 to j indicates the fuel level of the locomotive
(or the inline tank) before taking trip leg j, and the arc from j to j + 1 indicates its fuel
level after taking trip leg j. Fuel circulation connections join different layers between fuel
stations, inline tanks, train trip legs, and locomotives. Figure 3.2b illustrates the general
relation between layers. Supply of fuel is at fuel stations, whereas locomotives demand
fuel. Fuel can be transferred to locomotives directly from stations or through inline tanks.
The routes of inline tanks are determined by their assignments to train trip legs. Then,
the assigned inline tanks to each train trip leg are able to perform inline refueling to the
corresponding locomotives through the added inline refueling connections between trains
and locomotives layers. Movement connections are within each layer and are not shown in
the general sketch. The rest of this section explains the different node and arc types that are
introduced to capture different operations in fuel management. Moreover, refueling refers
to direct refueling at the fuel stations which we distinguish from inline refueling.

Trip leg nodes:

Trip leg nodes represent scheduled time period of taking a trip. For each trip leg, there is
a trip leg node for each locomotive that hauls the train and one node for all inline tanks.
An example of a trip node for a locomotive and for inline tanks are shown in Figure 3.3.
The solid arcs, called Tank Arcs from here on, are the movement connections that join the
trip leg node to the nodes representing previous (staying at the origin station during the
previous time period) and next (staying at the destination station during the next time
period) activities. We will next discuss the nodes that represent staying at the stations for a
time period. As is shown in Figure 3.3a, the trip node of a locomotive has only one incoming
tank arc and one outgoing tank arc. Moreover, this node has a demand which is equal to

45

3.4. MATHEMATICAL MODELING

j− 1

j

j + 1

τj−1 τj τj+1

sk

sl

(a) Movement connections for a simple example. A
locomotive (or an inline tank) undertakes three activ-
ities in a sequence: staying at station sk during time
period τj−1 (activity j− 1), taking a trip from sk to sl
during time period τj (activity j), and staying at sta-
tion sl during time period τj+1 (activity j + 1). Nodes
correspond to activities. Arcs link relevant activities
and hence, an arc represents the instant of time when
one activity in one period ends and the next activity
in the next period begins. Flow on these arcs show
the fuel level of the corresponding locomotive (or in-
line tank) at the time the corresponding activity of
the origin node of such an arc ends (or equivalently,
at the time the corresponding activity of the destina-
tion node of such an arc starts).

Fuel stations
(fuel supply)

Locomotives
(fuel demand)

Trains

Inline tanks

Locomotives

direct refueling

Inline tanks

direct refueling

Inline tanks

assignments

to trains

Inline refueling

by assigned

inline tanks

(b) Fuel circulation connections. Each layer includes some nodes and move-
ment connections within itself that are not shown in this figure. Fuel circu-
lation connections transfer the fuel between the layers by connecting the
relevant nodes in two layers. The relation between trains and inline tanks
layers is two-way. When an inline tank is assigned to a train, it travels
along the train path. After decoupling that inline tank from the correspond-
ing train, it stays at a station which is represented in the relevant layer of
the inline tank as a node.

Figure 3.2: A sketch of the time-space network. In the time-space network, nodes represent activities over
a time period. Relevant activities are connected by arcs. There are two types of connections: 1) movement
connections that connect activities related to movement of inline tanks and locomotives in the network. A
movement connection is not a movement itself but a logical connection between a movement (which is
represented by an activity node) and another movement or another activity. 2) Fuel circulation connections
that transfer the fuel between different components of the problem by direct refueling at stations or inline
refueling through inline tanks.

the fuel consumption of the locomotive during the corresponding trip. However, based on
Figure 3.3b, the node of the inline tanks have several incoming and several outgoing tank
arcs. That is because only one node is considered for all of the inline tanks for each trip leg.
Therefore, the number of the incoming tank arcs and the number of the outgoing tank arcs
are equal to the number of the inline tanks. Moreover, the outgoing dashed arcs, which we
call as Inline Refueling Arcs, represent the inline refueling of the locomotives that haul the
corresponding train by the assigned inline tanks. Hence, the number of the inline refueling
arcs is equal to the number of locomotives that haul the train on the corresponding trip leg.

46

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

D

(a) A trip leg node for a locomotive.
Tank arcs of the locomotives are
distinguished from the tank arcs
of the inline tanks with the green
color as the route of locomotives is
a given input and indicate a fixed
route. The fuel demand D shows
the fuel consumption of the loco-
motive during the trip.

D

(b) A trip leg node for the inline
tanks. Since inline tanks are at-
tached as one wagon to trains, one
trip leg node is considered for all
inline tanks to represent the trip
of the assigned inline tanks along
with the train.

tank arc for locomotives
tank arc for inline tanks
inline refueling arc

Figure 3.3: A trip leg node which represents the time period of taking a trip leg. Tank arcs represent the
start and end time of the corresponding trip leg. Tank arcs are of movement connections type. Therefore,
they connect a trip leg node to the corresponding previous (staying in the origin station) and next (staying
in the destination station) activities. Inline refueling arcs connect the trip leg node of the inline tanks to
the locomotives that haul the corresponding train. The flow on tank arcs represents the fuel level of the
locomotive or the inline tank before and after taking the trip. The flow on inline refueling arcs represents the
amount of fuel that is transferred from the assigned inline tanks of a train to the corresponding locomotives
during the trip.

Station nodes:

Station nodes represent the stay of a locomotive or an inline tank during a time period
as an activity. Previous and next activities of a stay can be taking a trip leg or staying at
the same station during another time period. The relevant activities are connected by tank
arcs. Arriving at (departing from) the corresponding station is indicated by an incoming
(outgoing) tank arc, the other side of which is connected to the relevant trip leg node. Being
idle is represented by a tank arc that connects two station nodes of the same station with
different time periods. The flow on tanks arcs indicate the fuel level of the corresponding
locomotive or inline tank at the time. A station node is split into two successive nodes.
Refueling can be done only at the first node. The second node is the time period that
the inline tank or the locomotive dwell at the station, and its duration is less than the
required time of refueling. The refueling time is assumed to be predetermined and fixed.
The refueling of the locomotive or the inline tank during its stay at the station is shown
by the Refueling Arcs as the dotted arrow in Figure 3.4, which is connected to the refueling-
allowed node. The other side of the refueling arcs is connected to the node that represent
the fuel supply of the corresponding station, which we will discuss next. The flow on the
refueling arc states the amount of refueling. The two divided nodes are connected by a
linking arc to conserve the fuel flow.

The time period of each station node starts from the moment that the first incoming arc

47

3.4. MATHEMATICAL MODELING

arrives to the station and continues until the outgoing arcs depart the station. The outgoing
arcs depart the station at the same time while the incoming arcs arrive at the station at
different times during the corresponding time period of the node. Therefore, the station
is divided into two successive nodes based on the start time of the node, the end time of
the node, and the required refueling time. Figure 3.4 shows an example of a station node
for an inline tank. In this figure, it is assumed that the outgoing arcs a5 and a6 depart at
time 3:00 PM and the required refueling time is 30 minutes. Arc a0 indicate that the inline
tank has been idle at the station at the previous time period. Moreover, arcs a1, a2, and a3

arrive to the station at time 1:00 PM, 2:00 PM, and 2:45 PM, respectively. Therefore, the time
period of the node is from 1:00 until 3:00. The first node – in which refueling is allowed –
is from 1:00 to 2:30, and the second node represents the remaining time. Since arcs a0, a1

and a2 arrives before 2:30, they are connected to the refueling allowed node. While, the
arc a3, arriving at 2:45, is connected to the refueling disallowed node, which means that if
this route is selected for the inline tank, we cannot refuel it at this station. Moreover, arc a4

connects the two nodes of the station. Station nodes of the locomotives are simpler because
the route of the locomotives is predetermined. Therefore, there is only one incoming tank
arc, one outgoing tank arc, and possibly a refueling arc.

Time period:[1:00, 2:30] Time period:(2:30, 3:00]

Arc a4: linking

Arc a1 : trip arrival
Arc a0: being idle

Arc a 2:
trip

arriv
al

Refuelin
g arc

Arc a 3:
trip

arriv
al

Arc a5: being idle
Arc a6 : trip departure

Figure 3.4: A station node for an inline tank. Tank arcs (solid arrows) represent the movement of the inline
tank that can be arriving from a trip leg, departing to take a trip leg, and being idle at the station at the
previous/next time period. The other side of tanks arcs that are related to a trip leg, are connected to the
relevant trip leg nodes. Tank arcs representing being idle are connected to relevant station nodes. Flow on
tank arcs indicate the fuel level at the time. Refueling arcs represent a refueling operation for the inline tank
during its stay at the station. The other side of the refueling arc is connected to the node that represents the
fuel supply of the corresponding station. Flow on the refueling arc indicate the amount of the refueling.

Fuel supply nodes:

All fuel flowing in the time-space network stems from one node, the total fuel supply node.
The supply of this node is equal to the total fuel consumption of all locomotives during the
time horizon. The fuel flows into the network through intermediate nodes, station supply

48

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

nodes. Each station supply node represents the fuel supply at a station. Therefore, the flow
on the arc between the total fuel supply node and each station supply node indicates the
total fuel purchased at the corresponding station during the time horizon. Moreover, such
arcs capture the decisions on opening/closing the fuel stations. These arcs are called Station
Supply Arcs from here on and shown by double-lined arrows in Figure 3.5. Refueling arcs
connect the fuel supply nodes to the relevant station nodes of the locomotives and inline
tanks, which represents a refueling operation for the corresponding locomotive or inline
tank at the respective station. The connection of supply nodes is illustrated in Figure 3.5.

s1

s2

sS

etc.

total supply node
station supply
node
refueling arc
station supply arc

Figure 3.5: Fuel supply nodes. All fuel in the network stems from the total supply node and flows to station
supply nodes. A station supply node represents the fuel supply at a station. The flow on station supply
arcs indicate the total fuel purchased at the corresponding stations during the time horizon. Refueling arcs
represent the refueling operations at the stations. Therefore, the other side of refueling arcs is connected to
the corresponding stations nodes of the locomotives and inline tanks.

Inline refueling arcs:

After assigning the inline tanks to a trip leg of a train, it is required to determine which
locomotives (of the locomotives that haul the train) are refueled by the assigned inline
tanks. Suppose that three locomotives haul a train during a trip. In Figure 3.6, the bottom
triangle represents the corresponding trip leg node for the inline tanks, and the upper
triangles represent the trip node for the corresponding locomotives. The trip nodes of
the locomotives and trip node of the inline tanks are connected through the dashed arcs,
which we call Inline Refueling Arcs from here on. The inline refueling arcs determine which
locomotives are refueled by the inline tanks as well as the amount of inline refueling.

49

3.4. MATHEMATICAL MODELING

D

DD D

Figure 3.6: Connection of inline refueling arcs. This represents the inline refueling connections for a trip leg
that is hauled by three locomotives (upper triangle nodes with the fuel demand of D). The bottom triangle
node represents the same trip leg for inline tanks. Trip leg nodes of locomotives and inline tanks are connected
by dashed arcs that represent inline refueling. The flow on these arcs indicates the amount of inline refueling
that each locomotive receives during the trip leg. These nodes have incoming and outgoing tank arcs as
explained before, which are not shown here.

Network of the problem:

Figure 3.7 illustrates the time-space network for a small example, consisting of 3 stations, 2
locomotives l1 and l2, and one inline tank i1. Three trips legs, represented by colored triangle
trip leg nodes, are taken by these two locomotives. The red trip leg is done by locomotives
l1 and l2 collaboratively. Each layer of the network includes nodes and arcs related to
a component. Refueling arcs (dotted arrows) and inline refueling arcs (dashed arrows)
connect the relevant nodes of two layers. The connection between the inline tank i1 layer
and trip leg nodes layer represent the assignment of this inline tank to the corresponding
train of each trip leg. For each extra inline tank becoming available, the same layer as the
inline tank i1 layer will be added to the time-space network. However, there is no need to
add another similar layer to trip leg nodes layer. This is because all assigned inline tanks
to a train are attached to a train as one wagon with a shared pumping system.

The problem represented by the time-space network can be viewed as two interrelated
network design and network flow problems. Network design problem selects a subset
of arcs to determine routes of inline tanks, refueling scheduling decisions, stations open-
ing/closing decisions, and inline refueling decisions. Locomotive routes are given input.
Therefore, the arcs that determine their routes are fixed by the input and distinguished
from other arcs by the green color in figures. Once a subset of arcs is selected, the network
flow problem determines the circulation of the fuel flow in the network which translates to
fuel plans of the locomotives, inline tanks, and fuel stations. These two problems are shown
in Figure 3.8 for the illustrated instance of Figure 3.7. Refueling arcs in this figure originate
from the fuel supply layer that is not shown here. The design problem in Figure 3.8a selects
a subset of arcs. For the locomotives, the problem is to select which refueling operations to
be operated (by dotted arrows) and when to receive inline refueling (by dashed arrows).

50

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

Inline tank i1 layer

s1

s2

s3

τ1 τ2
τ4 τ5

τ8

Inline tanks’ trip leg nodes layer

τ3
τ6 τ7

Locomotive l2 layer

τ3
τ7

s1

s2

s3

τ1 τ2
τ4 τ5

τ8

Locomotive l1 layer

τ3
τ6

s1

s2

s3

τ1 τ2
τ4 τ5

τ8

Fuel supply layer

s1

s2

s3

si station i
τi time period i

station node

trip leg node

station supply node

total supply node
tank arc for inline tanks
tank arc for locomotives
refueling arc
inline refueling arc
station supply arc

Figure 3.7: Network representation of an instance of the problem with 2 locomotives, 1 inline tank, 3 stations,
and 3 train trip legs. Station nodes represent the time period an entity (locomotive or inline tank) stays at
a station. Trip leg nodes represent the time period of taking a trip leg. The demand is nonzero only for trip
leg nodes of the locomotives and is equal to their fuel consumption during the corresponding trip leg. The
supply is nonzero only for the total supply node and is equal to the total fuel consumption of all locomotives.

For the inline tank i1, the problem is to select the refueling operations, which train trip legs
to be assigned to and operate inline refueling. An example of the selected arcs is shown
in Figure 3.8b. Based the selected arcs, locomotive l1 is refueled at station s2 during time
period τ1 and receives fuel from the assigned inline tanks during its second trip. Locomo-
tive l2 receive fuel from the inline tanks during its first trip and is refueled at station s1

during time period τ4. Inline tank i1 travels from station s2 to station s1 and then from
station s1 to station s3 along with the corresponding trains it is assigned to. During these
trips, it delivers fuel to locomotives l2 and l1, respectively. Similarly, if a station is decided
to be open during the time horizon, its corresponding supply arc (shown in Figure 3.7) is
included in the selected arcs. The network flow problem determines the fuel flow on the
selected arcs to satisfy the demand of locomotives. Next, we explain how the time-space
network incorporates the cyclicity requirements.

Cyclic arcs of locomotives:

The cyclic plan requires that for each locomotive starting from a station, a locomotive of
the same type (with the same capacity) returns to that station at the end of the time horizon.
The returned locomotive might be a different locomotive. However, its fuel level at the end
of time horizon must be same as the initial fuel level of the locomotive that has started from

51

3.4. MATHEMATICAL MODELING

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

s1

s2

s3

s1

s2

s3

s1

s2

s3
l1

l2

i1

(a) Network of the design problem

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

s1

s2

s3

s1

s2

s3

s1

s2

s3
l1

l2

i1

(b) Network of the flow problem

Figure 3.8: The problem as two interrelated network problems: a network design and a network flow problem.
This figure corresponds to the illustrated example in Figure 3.7 with fuel supply layer ignored. The design
problem is to select a subset of arcs that translates to yes/no decisions, such as an assignment or performing
a refueling operation. The flow problem is to determine the fuel flow on the selected arcs by the design
problem.

there.Suppose that the fuel level of locomotive l at the end of time horizon must be same
as the fuel level of locomotive l′ at the start of time horizon. This implies that the last node
of locomotive l must be linked to the initial node of locomotive l′ by a tank arc. Such arcs
for all locomotives can handle the cyclic flow of the fuel in the locomotives tanks.

Cyclic arcs of inline tanks:

Since the refueling plan must be cyclic, the fuel level of the inline tanks should be also
cyclic. On the other hand, the final location of the inline tanks might not be same as their
initial location. Therefore, similar to locomotives, the fuel level of an inline tank at a station
at the end of the time horizon should be equal to the the fuel level of the inline tank that
has been at that station initially. For the locomotives, we could determine the pairs of the
locomotives that are related to cyclic fuel level. However, since the inline tank routes are
not predetermined, these pairs for inline tanks should be determined by the mathematical
model. In order to incorporate the cyclic flow of the tanks, it is necessary to connect the
final node of a station of a tank to its pair with an arc. However, since the final location
and also the pairs of the inline tanks are not predetermined, all the possible combinations
should be connected. The final node of an inline tank, corresponding to station s, should
be connected to the initial nodes of all inline tanks that correspond to the station s. An

52

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

example is illustrated in Figure 3.9a with three stations and three inline tanks. In this figure,
only the outgoing cyclic arcs of inline tank i1 are shown. However, the cyclic arcs for the
other inline tanks would be the same. Moreover, arcs with the same color are related to the
same station.

In addition to the cyclic arcs between the station nodes, the cyclic arcs between a trip
leg node which arrives at its destination after the end time of time horizon and the station
nodes should be considered. Suppose that the first time period of the time horizon is τ0.
Moreover, the time horizon ends at time T, and a trip leg arrives at its destination at time
T + t. In such case, the outgoing arcs from the trip leg node should be connected to the
corresponding station node of time period τt instead of time period τT+t. Although the
number of outgoing tank arcs from the trip leg node is same as other trip leg nodes, we
consider these arcs as cyclic arcs since the continuation of the route is in the next cycle
and can be done by another inline tank. An example is illustrated in Figure 3.9b. The
aforementioned two arc types are called as Cyclic Arcs from here on.

i3
s1

s2

s3

i2
s1

s2

s3

i1
s1

s2

s3

τ0 τT

(a) Cyclic arcs from the station nodes. The last and the first nodes
corresponding to the same stations are connected to capture the
cyclicity of fuel plans. Cyclic arcs are shown only for inline tank i1.
However, they are similarly connected for other inline tanks.

i3
s1

s2

s3

i2
s1

s2

s3

i1
s1

s2

s3

τ0 τTτt τs

(b) Cyclic arcs from a trip leg node. The trip leg, represented by
the triangle, is a trip that happens at time period τs. However, it ar-
rives at s1 at time T + t which is after the time horizon end. There-
fore, it is connected to stations nodes representing time period τt
to capture the cyclicity of fuel plans.

Figure 3.9: Cyclic arcs for inline tanks. In these figures, it is assumed that the first and the last time periods of
the time horizon are τ0 and τT , respectively. Other nodes and arcs within the horizon are not shown and are
as shown in previous figures.

53

3.4. MATHEMATICAL MODELING

3.4.2 Mixed-Integer Program

In this section, we present a mixed integer program for GFMIR. This is based on the network
definitions provided in Section 3.4.1. Given the locomotive routes and train schedules,
fuel consumption of trip legs, fuel prices at different stations, and capacities of inline and
locomotives tanks, this model gives the optimal fuel station locations, fuel plans of the
locomotives and the inline tanks, and the routes and the assignment of the inline tanks. The
following notation is adopted for the modeling. The capacity of the arcs, corresponding
to inline tank, is equal to the inline tank capacity. Similarly, the arcs that are related to
locomotives have the capacity equal to their tanks capacity. The station opening arcs has a
capacity of the total fuel consumption of the scheduled trains.

Sets and indices

S Set of stations,
I Set of inline tanks,
T Set of train trip legs,
V Set of nodes of the network,
VSI Set of station nodes that are related to inline tanks,
VTI Set of trip leg nodes that are related to inline tanks,
VQI Set of inline trip leg nodes which have outgoing cyclic arcs,
VS Set of refueling-allowed nodes of stations,
VT Set of train trip leg nodes,
A Set of arcs of the network,
Âv Set of outgoing arcs of node v,
Ǎv Set of incoming arcs of node v,
ÂK

v Set of outgoing tank arcs of node v,
ǍK

v Set of incoming tank arcs of node v,
AQ

i Set of cyclic arcs that terminate to a station node of inline tank i,
AD Set of design arcs,
AC

v Set of outgoing inline refueling arcs of node v which connect inline tanks to
locomotives,

AR
s Set of refueling arcs that correspond to station s,

ǎK
iv Incoming tank arc to node v which is related to inline tank i,

âK
iv Outgoing tank arc from node v which is related to inline tank i,

aR
v Refueling arc of node v,

aO
s Arc that corresponds to opening station s during the time horizon.

54

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

Parameters

CO
s Fixed cost of operating station s during the time horizon ($ per entire time horizon per

station),
CH

v Stop cost at the corresponding station of node v ($ per refueling stop),
CF

v Fuel price at the corresponding station of node v ($ per unit of fuel),
Pa Capacity of the fuel flow on arc a (unit of fuel),
Dv Fuel demand of node v (unit of fuel),
Sv Fuel supply of node v (unit of fuel).

Decision variables
ua The amount of fuel on arc a (unit of fuel);
xa 1, if arc a is used, 0 otherwise;

Set of design arcsAD includes all arcs for which a binary decision variable xa is defined.
The arcs related to the routes of the locomotives are not included in this set because they are
predetermined. The objective function (3.1) minimizes the total refueling costs and contains
three parts. The first term is the total fuel purchasing costs. The second term is related to
the stop costs, and the last part states the total fixed costs of operating the stations.

Min ∑
v∈VS

CF
v uaR

v
+ ∑

v∈VS

CH
v xaR

v
+ ∑

s∈S
CO

s xaO
s

(3.1)

The constraints set is composed of three different parts. The first part, is related to the
network design, is as follows. This part of the model includes only the binary variables.

∑
a∈ÂK

v

xa = ∑
a∈ǍK

v

xa ∀v ∈ VSI ∪ VQI (3.2)

xâK
iv
= xǎK

iv
∀v ∈ VTI \ VQI , i ∈ I (3.3)

∑
a∈AQ

i

xa = 1 ∀i ∈ I (3.4)

xa ≤ ∑
a′∈ǍK

v

xa′ ∀v ∈ VTI , a ∈ AC
v (3.5)

xa ≤ xaO
s

∀s ∈ S , a ∈ AR
s (3.6)

xa ∈ {0, 1} ∀a ∈ AD (3.7)

Constraints (3.2) to (3.4) assure the flow conservation and the cyclic plan of the inline tanks.
Particularly, Equation (3.2) assures that if an inline tank enters the station node v, it will
leave the node. Similarly, Equation (3.3) ensures the flow conservation of the tanks in the

55

3.5. EXTENSIONS: THE LOCOMOTIVE FUEL MANAGEMENT PROBLEM WITH
INLINE REFUELING

trip nodes of the inline tanks. Note that the trip nodes that have outgoing cyclic arcs have
been incorporated in Constraint (3.2) since at these stations it is not required to find the
route of the tanks and only the flow conservation must be respected. Equation (3.4) assures
that each tank is assigned to exactly one station for the next cycle. Constraint (3.5) deter-
mines which locomotives use the assigned inline tanks. The locomotive can use fuel of the
inline tank, only if the tank is assigned to the corresponding train. Finally, Constraint (3.6)
states that we are allowed to refuel only in the stations that are open during the time
horizon. Constraint (3.7) defines the binary decision variables.

The second part of the mathematical formulation is related to the flow continuous
variables and the flow conservation constraint. The set of constraints are as follows:

∑
a∈Âv

ua = ∑
a∈Ǎv

ua − Dv + Sv ∀v ∈ V (3.8)

0 ≤ ua ≤ Pa ∀a ∈ A (3.9)

Equation (3.8) represents the flow conservation constraints for all nodes. This constraint is
applied for all types of the nodes. Each node has its own incoming and outgoing arc types.
For instance, an inline trip leg node has several incoming and outgoing tank arcs and sev-
eral outgoing inline refueling arcs. While, a locomotive trip leg node has an incoming tank
arc, an outgoing tank arc, an incoming inline refueling arc, and a demand. Moreover, the
node demand Dv is nonzero for only the locomotives trip leg nodes, and the node supply
Sv is nonzero only for the total supply node and is equal to the total fuel consumption of
all trains. The decision variable ua is bounded in Constraint (3.9).

The third and the last part of the model contains the capacity constraint (3.10) that
links the binary and the continuous variables, which assures that flow can take a value
greater than zero only if the corresponding arc is selected, and it is less than its capacity.

ua ≤ Paxa ∀a ∈ AD (3.10)

3.5 Extensions: The Locomotive Fuel Management Problem
with Inline Refueling

The GFMIR model proposed in Section 3.4 presents a general version of the problem which
considers the routing and cyclic scheduling constrains of using inline tanks as well as
generic restrictions of the refueling operation. However, from an operational point of view,
the solution of the general version of the problem might not be practicable in real railroad
applications, since it ignores some operational issues. In this section, some operational

56

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

issues in the railroad industry are stated. These issues lead to a number of additional
constraints that need to be added to the model described above. The Locomotive Fuel Man-
agement problem with Inline Refueling, referred to as LFMIR, consists of the GFMIR together
with the additional constraints presented in this section.

3.5.1 Maximum Number of Assigned Inline Tanks to a Train

In practice, the total number of inline tanks assigned to a train must not be greater than a
specified number M. In real railroad cases, at most two inline tanks can be connected to
trains M = 2. Thus, Constraint (3.11) should be added to the formulation. This constraint
ensures that at most two tanks are assigned to a train trip leg.

∑
a∈ǍK

v

xa ≤ M ∀v ∈ VTI (3.11)

3.5.2 Maximum Number of the Locomotives Refueled Inline

Inline tanks are connected to a train by being mounted on a wagon. The train may be
hauled by one or several locomotives. One practical constraint is that the total number of
the locomotives that can be connected to the wagon, which inline tanks are mounted on, is
limited to N. Constraint (3.12) incorporates this restriction. In real railroad cases, at most
four locomotives can be connected to and refueled by the assigned inline tanks.

∑
a∈AC

v

xa ≤ N ∀v ∈ VTI (3.12)

3.5.3 Fuel Transfer Between the Tanks

In practice, no fuel can be transferred between inline tanks. However, this happens in the
optimal solution of GFMIR. Thus, Constraint (3.13) should be added to the formulation.
This ensures that the fuel level of the inline tank is not increased after making the trip which
prevents the fuel transfer between the tanks.

uâK
iv
≤ uǎK

iv
∀v ∈ VTI , i ∈ I (3.13)

Adding Constraint (3.13) is not enough to prevent the fuel transfer because the indices of
the inline tanks might be changed at the trip nodes that have outgoing cyclic arcs. There-
fore, Constraint (3.13) is not valid for such nodes. In order to solve this issue, the network
representation should be modified as follows. Instead of connecting the cyclic arcs from a

57

3.5. EXTENSIONS: THE LOCOMOTIVE FUEL MANAGEMENT PROBLEM WITH
INLINE REFUELING

trip node to station nodes, an intermediate node per each inline tank should be added (see
Figure 3.10).

i3
s1

s2

s3

i2
s1

s2

s3

i1
s1

s2

s3

τ0 τTτt τs

i1

i2

i3

Figure 3.10: Intermediate nodes for cyclic arcs from a trip leg node. By network configuration as Figure 3.9b,
outgoing cyclic arcs from trip leg nodes are not related to a specific inline tank. Hence, fuel level increase
cannot be tracked on such arcs. Intermediate hexagon nodes in this figure are added to have outgoing
arcs from the trip leg node, each corresponding to a specific inline tank. Then, the outgoing arcs from the
intermediate nodes can be viewed as cyclic arcs. In this figure, outgoing arcs for intermediate node of inline
tank i1 are shown. However, cyclic arcs of other inline tanks similarly connect the corresponding intermediate
node to station nodes of station s1 at time period τt.

In Figure 3.10, a trip leg node, which arrives to its destination after time horizon, is
shown. Instead of connecting the outgoing arcs of the trip leg node to the stations, the out-
going arc of each inline tank is connected to its corresponding intermediate node (hexagon
nodes). Subsequently, since it is possible that fuel level of each inline tank be equal to fuel
level of another inline tank at next cycle, there are |I| outgoing arcs from each intermediate
node which connect it to the corresponding station node of all tanks. Figure 3.10 illustrates
the intermediate nodes for the trip node of Figure 3.9b and its corresponding arcs. Finally,
this trip leg node will be treated same as other trip nodes. Moreover, Constraint (3.2) should
be applied for the intermediate nodes, and the arcs between the intermediate nodes and
stations are of cyclic arc type.

3.5.4 Balanced Fuel Level of Inline Tanks

If two tanks are assigned to a train at the same time, the difference of their fuel levels after
the trip must be within a specified tolerance. This is required to have balanced load in the

58

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

inline tanks to prevent potential derailments. Moreover, the pumping system consumes
fuel from the tanks in a manner that their fuel levels remain balanced. Let σ be the allowed
tolerance of the fuel levels. Constraint (3.14) ensures that if two tanks are assigned to a trip
leg at the same time, their final fuel level will be balanced within the tolerance. Moreover,
if σ = 0, the condition (i 6= j) should be changed to (i < j).

uâK
iv
− uâK

jv
≤ PâK

iv
(2− xâK

iv
− xâK

jv
) + σ ∀v ∈ VTI , i, j ∈ I|(i 6= j) (3.14)

3.6 An Australian Case Study

In this section, the proposed model is applied to an Australian case study and analysed
in terms of the effectiveness of the inline refuelling wagons as a means to saving costs.
In the next section this data set and a set of standard data sets from the USA are used
to test the computational effectiveness of solving these instances with a MIP solver. The
Australian instance is based on a real schedule of a fleet of trains. The goal is to evaluate
the adoption of the inline refueling technology on the ongoing operation of the respective
railroad company. The Australian rail network is an example of a sparse network with long
distances between the origins and destinations. Both GFMIR and LFMIR models and their
restricted versions are studied in this section. The summary of the considered problems in
this section is shown in Table 3.1. Furthermore, some managerial insights and sensitivity
analyses are provided for the case studies. The focus of the computational experiments
in this chapter is purely on the new element introduced in this thesis, the use of inline
refueling. All computational experiments are run on a cluster with 4 Xeon-E5-2667-v3 cores
and 32 GB RAM using CPLEX 12.8.0 via a Python API.

Table 3.1: Summary of the considered problems in the computational experiments

Problem Description
GFMIR A variation of the INFORMS Competition Problem (2010) to which the

planning of inline tanks is added
RGFMIR The restricted problem of GFMIR in which the decisions related to

selecting the fuel stations locations and the decisions related to
scheduling the refueling operations are ignored (defined in
Corollary 3.3.4 as RGFMIR2)

LFMIR GFMIR with the extensions introduced in Section 3.5
RLFMIR RGFMIR with the extensions introduced in Section 3.5

The Australian case study consists of 115 schedules of trains which travel between
8 stations during one week. Each train schedule between an origin and a destination is

59

3.6. AN AUSTRALIAN CASE STUDY

composed of one or several trip legs that pass through the intermediate stations. The con-
sidered case includes 218 trip legs. Fuel prices at stations ranges from $1.0742 to $1.3674 per
liter. Trains are hauled by one or several locomotives. There are a total of 133 locomotives.
In order to have a comparison, a Basic Strategy, which mimics the current practice of the
company, is defined. In the Basic Strategy, locomotives are refueled at each station with just
enough fuel to reach the next station on their trip. Employing Basic Strategy on the trains
and locomotives schedules of the Australia case results in a weekly total cost of $2,895,616.

In this section, first, proposed models are compared on the Australia case. Then, the
optimal size of the inline tank fleet is investigated. Based on the optimal size of the inline
tank fleet, sensitivity analyses and managerial insights are provided.

3.6.1 Evaluating GFMIR, LFMIR, and the Restricted Models

We evaluate the proposed models on the Australia case by considering different inline tank
fleet sizes. In particular, we show that the rail models provide feasible solutions for the real
application in the railroad industry at the little expense of complexity in comparison with
the general models. The summary of the results are presented in Table 3.2. Computing time
is limited to 12 hours for all experiments. In this table, the number of variables, binaries,
constraints, and nonzeros are reported based on the reduced MIP of CPLEX.

Table 3.2: Evaluating different models on the Australia case

Fleet
size

Model Total
costs
($)

Optimality
gap (%)

Columns Binaries Rows nonzeros Root
relaxation
time (sec)

0 RGFMIR & RLFMIR 2,771,871 0.00 630 0 300 1,259 0.00
GFMIR & LFMIR 2,929,409 0.00 2,138 843 1,327 4,398 0.01

5 RGFMIR 2,754,200 0.03 11,366 4,234 10,060 36,805 0.49
RLFMIR 2,754,226 0.03 11,382 4,234 16,026 58,038 0.41
GFMIR 2,863,528 0.27 13,824 6,312 14,206 46,141 0.42
LFMIR 2,864,657 0.33 13,939 6,312 20,187 67,298 0.93

10 RGFMIR 2,747,222 0.01 22,986 9,454 19,462 79,701 0.72
RLFMIR 2,747,858 0.02 23,212 9,454 41,971 164,558 1.49
GFMIR 2,842,364 0.97 26,634 12,622 25,783 93,384 1.19
LFMIR 2,845,254 1.19 26,859 12,622 48,312 178,178 1.50

The solutions in Table 3.2 are not optimal for any of the models with different inline
tank fleet sizes except when there are no inline tanks. For these cases, optimal solutions are
obtained in less than 1 second. As is shown in Table 3.2, using RLFMIR and LFMIR instead
of RGFMIR and GFMIR brings trivial additional costs and complexity. On the other hand,
the solutions of RGFMIR and GFMIR include several locomotive-refueling infeasibilities.
For instance, fuel is transferred between inline tanks in the solution of RGFMIR and GFMIR

60

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

several times. This cannot happen in the real locomotive fuel management. Moreover,
optimality gaps of the obtained solutions by CPLEX for RLFMIR are small. Therefore,
RLFMIR is used in our analysis to provide business insights. All the results in the rest of
this section are based on the solutions with a small optimality gap (at most 0.05%).

3.6.2 Optimizing the Size of the Inline Tank Fleet

The railroad company that this case emanates from is in the process of trialling this new
technology with an intention of phasing in the adoption of this technology over the next
few years. Therefore, in this section, we first demonstrate that the proposed model results
in significant cost-saving in comparison with the ‘Basic Strategy’. Furthermore, marginal
weekly savings of inline tanks are provided, which assists decision-makers to determine
the inline tank fleet size. As mentioned previously, RLFMIR is employed for analyzing.

Table 3.3 provides weekly total costs, potential weekly cost-saving, and net cost-saving
for different strategies. Net weekly cost-saving is obtained by subtracting the weekly amor-
tized cost of the employed inline tanks from the weekly savings. The Basic Strategy re-
sembles the current practice of the company. The other strategies are employing RLFMIR
with the different inline tank fleet sizes. Based on Table 3.3, with no inline tanks, RLFMIR
brings significant cost-savings. Moreover, adding inline tanks still contribute to additional
savings. In particular, with fleet size of 10, it brings $147, 758 weekly cost-saving ($144, 488
net weekly cost-saving), which $24, 014 ($20, 294) of it is direct consequence of using 10
inline tanks through RLFMIR.

Table 3.3: Total fuel costs per different inline tank fleet sizes and potential cost-savings. Net weekly cost-
savings are obtained by subtracting the weekly amortized cost of the employed inline tanks from the weekly
cost-savings.

Strategy Fleet size Weekly total fuel costs Weekly cost-saving Net weekly cost-saving

Basic Strategy - $2,895,616 - -

0 $2,771,871 $123,744 $123,744
5 $2,754,226 $141,390 $139,755

RLFMIR 10 $2,747,858 $147,758 $144,488
15 $2,747,071 $148,545 $143,640

To determine the number of inline tanks to purchase, we compute the net marginal
revenue of adding each inline tank. Considering the weekly amortized cost of each inline
tank as $327, we repeatedly solve RLFMIR by increasing the fleet size from 0 to 15 inline
tanks and report the net marginal weekly cost-saving at each step. Figure 3.11 shows the net
marginal revenue of adding the wth inline tank. As shown in the Figure 3.11, the optimal
fleet size is 10, as employing more inline tanks does not contribute to actual savings. Any

61

3.6. AN AUSTRALIAN CASE STUDY

actual capital investment decision should of course be tested on a variety of potential future
schedules, however the results give an indication that the use of multiple inline tanks for
the types of operations seen in Australia with large distances between stations.

1 2 3 4 5 6 7 8 9 101112131415
−500

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

The inline tank fleet size

W
ee

kl
y

ne
tm

ar
gi

na
lr

ev
en

ue
($

)

Figure 3.11: The diminishing marginal revenue of the inline tanks

3.6.3 Safety Inventory

A common practice in transportation companies is to always preserve a safety inventory of
fuel to avoid running out of fuel due to the unpredictable increases in the fuel consumption.
Studying the effects of safety level is analogous to sensitivity analysis on the tank capacity
of locomotives. In this section, we examine different scenarios in which 0, 5, 15, and 20
percentage of the locomotives’ tanks are considered as safety level. Figure 3.12 shows the
total weekly fuel costs per different safety inventories where each line represents different
inline tank fleet size. According to the results, apart from the fact that RLFMIR decreases
the costs at the different safety levels, it reduces the cost of imposing a robustness constraint
in the form of safety inventory. As the safety level increases, the total fuel costs increases.
However, with more inline tanks, the slope of cost increase reduces. For the fleet size of 0,
the weekly total costs increase by $19, 191 when the safety level increases from 0% to 20% of
tank capacity. With 10 available inline tanks, the total costs increase by $3, 377 over the same
increase in the safety level. This is because inline tanks increase the flexibility of refueling
operations, which can benefit the company in situations where there is a restriction such as
safety fuel level and smaller locomotives’ tank capacity.

62

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

0% 5% 10% 15% 20%

2,745,000

2,755,000

2,765,000

2,775,000

2,785,000

2,795,000

Safety fuel level in percentage of the tank capacity

To
ta

lw
ee

kl
y

fu
el

co
st

s
($

) 0 Inline tank
5 Inline tanks

10 Inline tanks
15 Inline tanks

Figure 3.12: Total fuel costs per different safety levels considering different fleet sizes

3.6.4 Critical Paths

The case of Australia includes 218 trip legs, however, they repeat on 16 paths. From the
transportation cost point of view, each path has a different importance since the fuel prices
vary at the stations. Therefore, providing the cost incurred by an increase in the fuel con-
sumption on the paths can benefit the locomotive drivers and the operators to identify
critical paths and exert fuel-efficient behaviors to avoid consumption increase on the criti-
cal paths. Each constraint in (3.8) that is related to a locomotive trip node corresponds to the
fuel consumption during a trip leg. Hence the dual variables of such constraints represent
the cost of one liter fuel consumption increase on the corresponding path. In this section,
we consider two scenarios where there are no inline tanks and 10 inline tanks available.
RLFMIR with no inline tanks available does not include any binary variables and the dual
variables can be obtained easily. However, with 10 inline tanks, it is a MIP and the dual
variables cannot be obtained as the case of the fleet size of 0. In order to acquire the dual
variables for RLFMIR with 10 inline tanks, we fix the binary variables based on the final
solution to obtain a linear program (LP). However, the dual variables of the obtained LP
are not the dual variables of the original MIP. We claim that they are an upper bound for
the dual variables of the original MIP. This is because the problem stays feasible after one
liter fuel consumption increase on a path. Therefore, the obtained LP is equivalent to the
problem of fuel planning while considering a fixed plan for the inline tanks. Therefore, the
dual variable of the corresponding constraint of the obtained LP represents the shadow
price of one liter fuel consumption increase on the corresponding path while a fixed plan is
considered for the inline tanks. However, the total costs might be decreased additionally by

63

3.6. AN AUSTRALIAN CASE STUDY

improving inline tanks’ plans. Hence, the actual cost of one liter fuel consumption increase
on a trip leg is at most equal to the dual variable of the corresponding constraint of the
optimal solution of the obtained LP.

The cost of fuel consumption increase of all trips for both fleet sizes is determined
as mentioned, and the average cost of one liter fuel consumption increase on each path
is reported in Figure 3.13. For the fleet size of 0, the four paths with the highest costs, P5,

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10P11P12P13P14P15P16
1

1.05

1.1

1.15

1.2

1.25

Path

C
os

to
f1

lit
er

co
ns

um
pt

io
n

in
cr

ea
se

($
)

0 inline tank
10 inline tanks

Figure 3.13: Average cost of 1 liter fuel consumption increase for different paths

P6, P7, and P13, are related to the paths that originate from or terminate to the station
Cook, which for fuel is the most expensive station. However, the fuel price at the origin and
destination is not the only decisive factor since the least-costly path is the path P10, which
corresponds to path between Sydney and Melbourne while neither of them is the cheapest
station. In fact, the fuel prices at the neighbor stations of the origin and the destination of a
path also affect it to be a critical path.

As is shown in Figure 3.13, RLFMIR with the fleet size of 10 reduces the cost of the
consumption increase on 12 paths. For other 4 paths, P4, P10, P15, and P16, the cost of
the consumption increase is not changed by adding 10 inline tanks. This is because inline
refueling is not performed on these paths during the time horizon according to the solution
of RLFMIR with 10 inline tanks. Table 3.4 presents the number of the assignments of inline
tanks to the trips on each path. Although inline tanks are assigned once to a trip on path P16,
it is not used for inline refueling, but only to relocate the tank. According to Table 3.4, no
inline tank is assigned to trips on path P14. However, the cost of the consumption increase

64

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

on this path with 10 inline tanks is reduced in comparison with no inline tanks. This is
because inline tanks are utilized on neighbor stations as we mentioned before. The cost
reduction is particularly significant for the four most-costly paths of 0 fleet size scenario.
This is because we have to refuel locomotives at Cook, the most expensive station, based
on results of RLFMIR with fleet size of 0. However, results of RLFMIR with fleet size
of 10 suggest all locomotives can pass the Cook station without the need to refuel. The
improvement on the four most-costly paths are 11.09% on P5, 10.87% on P13, 7.94% on
P7, and 7.63% on P6. On the average, RLFMIR with fleet size of 10 improves the cost of
consumption increase 3.56% in comparison with the fleet size of 0. These results imply
that in addition to cost-savings, RLFMIR is able to improve the robustness of the railroad
companies against the unpredictable events.

Table 3.4: The number of inline tanks assignment to paths during time horizon

Path 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of assignments 3 4 1 0 21 11 21 24 4 0 24 4 11 0 0 1

3.7 Computational Performance

In this section we focus on the computational effectiveness of obtaining solutions to this
problem using an integer programming solver. The second data set we use in this section is
from the INFORMS Problem Solving Competition (2010) that is focused on the locomotive
fuel management problem without inline refueling. Unlike the Australian instance, the
INFORMS data set is based on a simplification of the real operations to test the ability of
the model to scale-up. Particularly the INFORMS case study that contains larger instances
is very challenging. Since the MIP of the large instances proves intractable for CPLEX, we
propose a heuristic to tackle such instances.

The case study of INFORMS includes 2996 train schedules that includes 5264 trip legs.
The trains are hauled by 214 identical locomotives between 73 stations during a two-week
time horizon. It is assumed each train is hauled by exactly one locomotive. The fuel prices
vary between $2.90 and $3.56 per gallon. The train schedules are stated in days. However,
this time unit is not useful to plan inline tanks since inline tanks may be assigned to trains
that are running at the same time on a day. Hence, the time unit must be transformed to an
appropriate time unit (hours in this case).

In order to fill in the missing time information, there are restrictions to ensure that the
transformed arrival and departure times are consistent with the original times and also
the trips’ precedences are respected. However, the choice of times affects the number of

65

3.7. COMPUTATIONAL PERFORMANCE

the opportunities where an inline tank can be switched between two trains, which subse-
quently has an impact on the total potential cost-savings. Inline tank switching is possible
whenever a train arrives to a station before the next train departs the same station. Thus
the selection of times affects the switch opportunity between two trains that arrive at and
depart from the same station on the same day. The other opportunities for switching tanks
are implied by the original times in days. Since each locomotive’s trips are interconnected,
considering a switch opportunity between two particular trips might destroy the switch
opportunities for the subsequent or previous trips. Therefore, an optimization model is
employed to select the times. We consider two extreme cases in which the switch opportu-
nities are minimized and are maximized which are called Minimal Connectivity and Maximal
Connectivity, respectively. The number of possible switches, reported as Connectivity of an
instance, includes the possibility of switching an inline tank between two trains on the
same day, whether they are hauled by the same or the different locomotives.

For the INFORMS data set, CPLEX is not able to provide satisfactory solutions in rea-
sonable computing time even for RLFMIR. Therefore, we divide the original INFORMS
data set into eight separate instances based on the locomotives included in each. We sep-
arately evaluate the benefits of the proposed models on the divided instances of the IN-
FORMS case.

Similar to the Australia case, RLFMIR is considered for the INFORMS case to provide
economic analyses. The details of the instances and the corresponding results of RLFMIR
are reported in Table 3.5. The optimal fleet size of 10 for these instances is obtained by a
similar approach as described for the Australia case in Section 3.6. In the first part of the
table, the details of the instances are described. The row Trip legs shows the total number
of the trip legs of the trains of the instances. The row Stations presents the number of the
distinct stations that all locomotives pass during the time horizon. The average of the fuel
prices at corresponding distinct stations to each instance is reported in the row Fuel price
average. The row Total consumption presents the total fuel consumption of the locomotives
during the time horizon in gallons. We generate both minimal and maximal connectivity
cases for each instance and the number of connectivity of each case is reported in the row
Connectivity. The second part of Table 3.5 reports the total costs of RLFMIR by considering
both connectivity cases. When there is no inline tank available, the connectivity does not
affect the solution. Therefore, for fleet size of 0, only one case is reported. The results of
RLFMIR with no inline tanks are optimal while the solutions of RLFMIR with fleet size of
10 for all instances are not optimal but with less than 0.52% optimality gaps in 4 hours of
computing time.

As is shown in Table 3.5, significant cost savings are achievable by using RLFMIR with
10 inline tanks. This demonstrates the effectiveness of RLFMIR on the different instances.

66

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

On average, RLFMIR with fleet size of 10 contributes $32,243 of fortnightly cost-savings
in comparison with the fleet size of 0, which implies 98.5% rate of return on investing on
10 inline tanks. Furthermore, the least cost saving is $15,218 which related to the minimal
connectivity case of the instance 4. However, even for this instance the rate of return is
45.4%. These benefits are in comparison with RLFMIR with 0 tank available, which is the
current modeling tool in the literature. It is obvious that the minimal case always has higher
total costs in comparison with the maximal case of the same instance since there are more
opportunities to utilize the inline tanks in the maximal case.

Table 3.5: Evaluating RLFMIR on instances of INFORMS

Instance 1 2 3 4 5 6 7 8
Locomotives 27 27 27 27 27 27 27 25

Trip legs 1,071 903 518 574 476 448 658 616
Stations 37 23 20 22 20 14 28 25

Fuel price average 3.159 3.143 3.103 3.095 3.096 3.110 3.196 3.107
Total consumption 715,939 614,999 346,430 402,829 302,379 317,030 478,828 417,088

Connectivity Min 1,987 2,177 487 913 593 539 890 824
Max 2,805 3,292 1,102 1,595 1,157 1,488 1,297 1,258

0 tanks 2,156,015 1,849,770 1,031,585 1,186,023 909,403 988,833 1,480,914 1,260,578

10 tanks Min 2,119,094 1,805,035 1,012,456 1,170,805 891,625 943,922 1,454,347 1,231,754
Max 2,101,406 1,797,314 1,005,648 1,169,801 890,322 940,133 1,446,420 1,230,272

Figure 3.14 depicts the percentage of the improvement of RLFMIR with fleet size of 10
in comparison with the fleet size of 0 on the instances of Table 3.5 with respect to the cost of
one unit of consumed fuel in the optimal solution of RLFMIR with fleet size of 0. The cost of
one unit of consumed fuel is obtained by dividing the total costs in the optimal solution of
RLFMIR by the total fuel consumption. The label of each point represents the corresponding
instance. Apart from the connectivity, other characteristics of an instance affect the potential
cost-savings of using inline tanks. As is shown in Figure 3.14, except from the instance 7,
there is an implied relation between the percentage of cost improvement and the cost of
one unit of consumed fuel of RLFMIR with fleet size of 0. The effectiveness of employing
inline tanks, particularly increases as the cost of one unit fuel consumption in the optimal
solution of RLFMIR with fleet size of 0 increases. The average of the fuel prices of the
corresponding stations of the instance 7 is higher than the other instances. Hence, there are
less opportunities to buy fuel from the inexpensive stations to tanker and transfer by the
inline tanks.

3.7.1 A Simple and Efficient Heuristic

To apply the LFMIR model to large industrial cases, practitioners need to obtain good-
quality solutions in short computing times. This accelerates scenario analysis which bene-

67

3.7. COMPUTATIONAL PERFORMANCE

2.9 2.95 3 3.05 3.1
0

1

2

3

4

5

1

2

3
4

5

6

7
8

1
2

3

4
5

6

78

Average cost of one unit fuel consumption in RLFMIR with fleet size of 0

Im
pr

ov
em

en
tp

er
ce

nt
ag

e Maximal connectivity
Minimal connectivity

Figure 3.14: Improvement percentage of RLFMIR with fleet size of 10 in comparison with the fleet size of 0
on the instances of Table 3.5. The improvement percentage is shown with respect to the average cost of one
unit of consumed fuel in the optimal solution of RLFMIR with fleet size of 0. The average cost is obtained by
dividing the optimal cost of RLFMIR with 0 inline tank by the total fuel consumption.

fits the decision makers and also facilitates the further extensions of the LFMIR models to
include additional practical assumptions. Particularly, since solving industrial cases using
exact methods usually takes more than 10 hours, it is unrealistic to be able to solve more
complicated versions of the problem or to try multiple scenarios without the use of heuris-
tics. Hence, the development of efficient heuristic algorithms plays an essential role for this
class of problems.

Numerical experiments we carry out in this section show a surprising trend in the
solution by CPLEX as the size of the problem grows. As the number of available inline
tank increases, the optimal cost must decrease. However, because the complexity of the
problem also increases, CPLEX fails to find these better solutions, and in fact the quality of
the solutions found by CPLEX degrades. Therefore we have developed a heuristic to tackle
the large instances. The main computational difficulties arise from the time-consuming
LP relaxations of the large instances, and, we suspect, from the symmetry between inline
tanks.

Although the problem is strongly NP-hard, CPLEX is able to provide close-to-optimal
solutions in a reasonable time for two variants of the problem even for the large instances:
(a) RLFMIR with one inline tank available, and (b) LFMIR with no inline tank available. For
instance, for LFMIR with 0 tanks, a solution with 0.06% optimality gap is found within 10
minutes. This solution is the same as the best-known solution for the INFORMS Problem
Solving Competition (2010). The heuristic we propose iteratively solves one of these two

68

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

variants at each step.

As a baseline, we first implement a Greedy Algorithm (GA). At every iteration, GA
myopically optimizes the route and fuel plan of one inline tank by solving a RLFMIR with
one inline tank available. Its route and fuel plan are fixed in subsequent iterations, and the
demand of the locomotives that receive fuel from this inline tank is updated accordingly.
GA terminates when all inline tanks are routed. Finally, if we wish to further optimize the
location and refueling scheduling decisions, we can solve LFMIR with fixed routes. This
method performs quite poorly in some cases, hence we will not analyze in detail.

Our contribution is a Semi-Greedy Algorithm (SGA), that similarly optimizes the
decisions of one inline tank at each step. However, after optimizing the route and fuel plan
of an inline tank, in subsequent iterations only its route is fixed, but not its fuel plans. So, at
iteration i, the routes of tanks 0, . . . i− 1 are fixed, the route of tank i is variable, and all fuel
plans are variable. The rationale for this design decision is that the fuel plans are modeled
with continuous variables, while the routes require discrete variables. As a result, the size
of the MIP model increases as the algorithm progresses, but the difficulty of solving it with
CPLEX does not change significantly as the number of discrete variables is constant at every
iteration. Similar to GA, LFMIR with fixed routes for inline tanks is solved to optimize the
location and refueling scheduling decisions. SGA is a form of diving heuristic (Berthold,
2006) in which branching is made to fix the path of one inline tank at a time.

GA and SGA are implemented in Python 3.6 with CPLEX 12.8.0. The computing time
for each single-tank RLFMIR is limited to 5 minutes. In our experiments, CPLEX is not able
to reach optimality within this time limit, but the solutions have small optimality gaps (less
than 0.5%). If we additionally attempt to polish those solutions with LFMIR, this last step
is limited to 10 minutes. The results are compared with the solutions provided for the MIP
of RLFMIR and LFMIR by CPLEX in 12 hours of computing time limit. The summary of
results is presented in Table 3.6 and Figure 3.15.

Three data sets are considered here: (1) the Australia case, (2) the complete INFORMS
data set with the maximal connectivity (with connectivity of 46,954), and (3) the complete
INFORMS data set with the minimal connectivity (with connectivity of 23,655). In Table 3.6,
Gap shows the optimality gap, obtained as Solution−LowerBound(LB)

Solution ∗ 100. Column Imp. shows
the relative improvement of SGA over CPLEX (in %). Therefore, positive (negative) values
imply that the solution by SGA is better (worse) than the solution by CPLEX. Computing
times are given in seconds in the column Time. For all instances provided in Table 3.6,
CPLEX and also all steps of the SGA reach the time limit.

The Australia case is a smaller data set, thus CPLEX is able to provide good-quality
solutions for RLFMIR even with 20 inline tanks available. However, the optimality gap for

69

3.7. COMPUTATIONAL PERFORMANCE

Table 3.6: Comparison between the results of CPLEX and SGA for RLFMIR and LFMIR over different instances

Data set Problem Fleet CPLEX SGA
size Solution

($)
Gap
(%)

Time Solution
($)

Gap
(%)

Imp.
(%)

Time

Australia RLFMIR 5 2,754,226 0.03% 43,200 2,754,899 0.06% -0.02% 1,500
10 2,747,858 0.02% 43,200 2,748,019 0.03% -0.01% 3,000
15 2,747,071 0.01% 43,200 2,747,239 0.02% -0.01% 4,500
20 2,747,024 0.01% 43,200 2,746,881 0.01% 0.01% 6,000

LFMIR 5 2,864,657 0.33% 43,200 2,889,426 1.19% -0.86% 2,100
10 2,845,254 1.19% 43,200 2,854,441 1.50% -0.32% 3,600
15 2,841,341 1.43% 43,200 2,837,235 1.29% 0.14% 5,100
20 2,879,781 3.05% 43,200 2,829,420 1.32% 1.75% 6,600

INFORMS- RLFMIR 5 10,651,524 0.16% 43,200 10,646,390 0.11% 0.05% 1,500
Maximal 10 11,318,609 6.71% 43,200 10,577,810 0.18% 6.54% 3,000

connectivity 15 11,318,609 7.06% 43,200 10,545,277 0.24% 6.83% 4,500
20 11,318,609 7.22% 43,200 10,526,525 0.24% 7.00% 6,000

LFMIR 5 11,400,377 4.10% 43,200 11,117,041 1.65% 2.49% 2,100
10 11,777,571 8.42% 43,200 11,016,056 2.09% 6.47% 3,600
15 11,777,126 8.98% 43,200 10,934,527 1.97% 7.15% 5,100
20 11,781,455 9.32% 43,200 10,879,023 1.80% 7.66% 6,600

INFORMS- RLFMIR 5 10,789,407 0.12% 43,200 10,785,550 0.08% 0.04% 1,500
Minimal 10 11,318,609 5.30% 43,200 10,741,822 0.21% 5.10% 3,000

connectivity 15 11,318,609 5.67% 43,200 10,706,063 0.28% 5.41% 4,500
20 11,318,609 5.99% 43,200 10,685,521 0.42% 5.59% 6,000

LFMIR 5 11,381,321 2.63% 43,200 11,321,142 2.11% 0.53% 2,100
10 11,758,345 6.19% 43,200 11,281,141 2.22% 4.06% 3,600
15 11,758,345 6.73% 43,200 11,224,272 2.29% 4.54% 5,100
20 11,784,929 7.38% 43,200 11,204,890 2.59% 4.92% 6,600

LFMIR increases with the increase in the fleet size. The best solution costs found by CPLEX,
GA, and SGA for varying fleet sizes in the Australia case is presented in Figures 3.15a
and 3.15b. We know that the optimal cost decreases as the number of available inline tanks
increases, and the solutions found by CPLEX and SGA for RLFMIR follow this trend, except
for LFMIR, where the solutions found by CPLEX worsen for 15 tanks and more. On the
other hand, GA and SGA continue to provide better solutions as the fleet size increases.
Note that SGA is also significantly faster than CPLEX, as shown in Table 3.6.

Looking now at the larger INFORMS data set, SGA always provides better solutions
than CPLEX, and much more efficiently. The optimality gap of the solutions by CPLEX for
both RLFMIR and LFMIR is more than 5% for both connectivity cases, except for the cases
with 5 inline tanks. However, SGA is able to provide solutions with small optimality gap (at
most 0.42%) for RLFMIR for all fleet sizes tested. Moreover, the solutions by SGA for LFMIR
are on average 4.73% better in comparison with the solutions by CPLEX. Importantly, the
best solutions (w.r.t. cost) found by CPLEX are for 5 inline tanks. This means that CPLEX’s

70

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

heuristics are unable to detect and exploit the fact that a solution with 5 tanks can readily
be extended to arbitrarily many tanks at a cost no higher.

This phenomenon is illustrated in Figures 3.15c to 3.15f. The solution costs found
by GA, SGA and CPLEX are plotted, together with two other values that help interpret
the performance of CPLEX. The first one is Basic strategy, corresponding to heuristic fuel
planning as explained in Section 3.6. In this heuristic, at each stop, locomotives are refueled
with just enough fuel to reach the next station on their trip. The second one, reported as
no-tank, is the total cost without inline tanks, corresponding to the optimal fuel purchases
found using the best modeling approach currently available in the literature. Notice that
for RLFMIR with more than 5 inline tanks, CPLEX almost always produces a solution with
the same cost as the Basic Strategy. In contrast, GA and SGA keep finding solution with
smaller costs as the fleet size increases, and SGA always produces better solution than GA.
The conclusion of our numerical experiments is that SGA is currently the most time- and
cost-efficient approach for large instances such as the INFORMS ones.

3.8 Conclusions and Future Research

This thesis introduces a new class of models to study and solve existing fuel management
problems in railways with the option of inline refueling. First, the problem and also its
restricted version are proved to be strongly NP-Hard. The restricted problem includes only
the decisions related to inline tanks and ignores the location and refueling scheduling deci-
sions. We prove that the restricted problem is strongly NP-Hard even when only one inline
tank is available. We propose a MIP model based on a time-space network with generic
refueling constraints. As the focus of this chapter is on rail transport, we propose extensions
to capture the operational constraints of inline refueling in the railroad application. The
model can be utilized to determine fuel plans of locomotives and inline tanks, location of
fuel stations, and assignment of inline tanks.

We computationally test the effectiveness of the proposed models on two real case
studies, from Australia and the USA, respectively. The results demonstrate the effectiveness
of employing the models and deliver significant cost-savings. The Australian case study is
used to evaluate the impact of adoption of the inline tanks on the operations of the railroad
companies. Based on the potential cost-savings of RLFMIR and the price of inline tanks,
we were able to determine the optimal size of the inline tank fleet. Therefore, apart from
fuel plans and inline tanks management, the model may be used for the decision to invest
in an inline tank fleet.

Furthermore, we assess the use of inline refueling to handle unpredictable events. We
show that RLFMIR allows fuel safety levels to be increased at a lower cost. Using dual

71

3.8. CONCLUSIONS AND FUTURE RESEARCH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Inline tank fleet size

2.7475

2.7500

2.7525

2.7550

2.7575

2.7600

2.7625

2.7650

To
ta

l c
os

ts
 ($

)

1e6
CPLEX
GA
SGA

(a) Data set: Australia, Problem: RLFMIR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Inline tank fleet size

2.84

2.86

2.88

2.90

2.92

To
ta

l c
os

ts
 ($

)

1e6
CPLEX
GA
SGA

(b) Data set: Australia, Problem: LFMIR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Inline tank fleet size

1.05

1.06

1.07

1.08

1.09

1.10

1.11

1.12

1.13

To
ta

l c
os

ts
 ($

)

1e7
Basic strategy
No-tank
CPLEX
GA
SGA

(c) Data set: INFORMS (Maximal connectivity), Problem: RLFMIR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Inline tank fleet size

1.10

1.12

1.14

1.16

1.18

1.20
To

ta
l c

os
ts

 ($
)

1e7
Basic strategy
No-tank
CPLEX
GA
SGA

(d) Data set: INFORMS (Maximal connectivity), Problem: LFMIR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Inline tank fleet size

1.07

1.08

1.09

1.10

1.11

1.12

1.13

To
ta

l c
os

ts
 ($

)

1e7
Basic strategy
No-tank
CPLEX
GA
SGA

(e) Data set: INFORMS (Minimal connectivity), Problem: RLFMIR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Inline tank fleet size

1.12

1.14

1.16

1.18

1.20

To
ta

l c
os

ts
 ($

)

1e7
Basic strategy
No-tank
CPLEX
GA
SGA

(f) Data set: INFORMS (Minimal connectivity), Problem: LFMIR

Figure 3.15: Performance of CPLEX, GA, and SGA over different instances of RLFMIR and LFMIR per different
fleet sizes

variables of the model, we provide the shadow prices of fuel consumption increase on
the paths and identify the critical paths. We indicate that the fuel prices at the origins and
the destinations are not the only factor that affect the shadow price. Moreover, we show
that using inline tanks along with RLFMIR increases the robustness to uncertainties in fuel
consumption. In order to verify the advantages of the proposed models, we apply them to
an instance from an INFORMS problem solving competition. We show that our proposed
models are able to contribute to additional savings in comparison with optimization models

72

CHAPTER 3. LOCOMOTIVE FUEL MANAGEMENT WITH INLINE REFUELING

that were developed to solve these instances. Different instances are derived from the
INFORMS data set and it is shown that for all instances, investing in inline tanks and using
the fuel plans given by our model (RLFMIR) results in significant cost savings. Moreover,
we identify the cases with more potential savings for employing the inline tanks. RLFMIR
contributes to more savings in situations where the cost of one unit of consumed fuel is high
in the optimal solution of RLFMIR with the fleet size of 0. Furthermore, we demonstrate the
complexities of solving the large instances by one commercial solver. The general-purpose
solver fails to assist practitioners to perform scenario analyses and planning since the
solution by CPLEX implies an unexpected increasing trend as more resource (inline tank)
becomes available. We resolve this issue by proposing a semi-greedy heuristic that is able
to provide good quality solutions for all instances.

Future research on this topic could consider extensions of the models, uncertainty, and
applications to other modes of transportation. One possible direction is to integrate the fuel
management problem with other planning processes of rail businesses. In particular, fuel
management of the locomotives is closely connected to train scheduling, since the weight
and the speed of the trains determine the fuel consumption. Moreover, fuel management
determines if a schedule is feasible regarding the fuel requirements. Hence, an integrated
problem could bring additional cost-savings and also avoids infeasible plans. Another di-
rection is to consider uncertainty in the data such as fuel prices, which can be valuable for
strategic or tactical decisions. To determine the inline tank fleet size, we assume that fuel
prices and train schedules do not change during the life of the inline tanks. However, train
schedules change in smaller time periods. Moreover, although companies often hedge fuel
prices with contracts, this is again for much shorter periods than the lifetime of inline tanks.
Stochastic programming would therefore benefit the proposed models to determine the
fleet size efficiently. Since the fuel plan is determined for one or two weeks, it is reasonable
to assume that fuel price is deterministic and constant for this period. However, the fuel
consumption during trip changes because of the weather condition, the drivers’ behavior,
and other unpredictable events. Hence, considering fuel consumption as a random variable
would results in more robust fuel plans. Models and algorithms presented in this chapter
provide a basis for modeling and solving the problems with such uncertain problems. For
instance, the GFMIR and LFMIR models can be used to determine recourse actions in a two-
stage stochastic optimization model that decides for strategic decisions such as location of
long-term fuel stations and/or inline tanks fleet size. The proposed models and algorithms
can be directly used to handle uncertain fuel price and consumption. Considering the aver-
age fuel price in the input data reflects the fuel price uncertainty in the optimization model
as minimizing expected costs is the same as minimizing LFMIR/GFMIR using the mean
fuel prices. As we show in Section 3.6.3, LFMIR provides practical fuel plans to combat

73

3.8. CONCLUSIONS AND FUTURE RESEARCH

unpredictable fuel consumption increases with a small cost by considering safety inventory.
The third direction is adapting the proposed model for other modes of transportation in
which there are similar auxiliary fuel reservoirs same as inline tanks. One particular ap-
plication could be hydrogen-powered locomotives for which hydrogen gas tanks can be
switched between locomotives likewise the inline tanks (Marin et al., 2010).

Computational results in this chapter show that the B&B algorithm implemented in
commercial solvers performs weakly. This is particularly because of the long computing
time of the corresponding LP relaxations of the large instances. The LP relaxation size and
computing time increases linearly in the number of available inline tanks. The same trend
appears when solving the large instances of the multicommodity network flow problems.
This motivates the next chapter of the thesis, which proposes new aggregation schemes for
multicommodity network flow problems to handle large instances. In Chapter 5, we apply
such schemes to an abstract version of the LFMIR problem introduced in this chapter.

74

CHAPTER 4
Partial Aggregations for Multicommodity

Network Flow Problems

4.1 Overview

This chapter proposes novel aggregation techniques for the multicommodity network flow
problems which have extensive applications in optimization problems, particularly in trans-
portation. In Section 4.2, we begin by introducing a new representation of commodities
as dispersions which allow us to construct partial aggregations. These concepts are then ap-
plied to the multicommodity capacitated fixed-charge network design problem, whose
disaggregated formulation (DA) and fully-aggregated formulation (FA) are presented in
Section 2.3.1, to obtain a partially-aggregated formulation (PA). Section 4.3 improves the
PA formulations by three approaches, equality and inequality tightening constrains and a
heuristic to judiciously construct the partial aggregations. Section 4.4 studies the polyhedra
of the LP relaxations of the proposed formulations and compares them with the existing
formulations in the literature. In Section 4.5, we perform an extensive computational study
on a set of benchmark instances to empirically compare the LP relaxations and also the
impact of different formulations on the performance of the MIP algorithms.

This chapter contains four main contributions:

1. It introduces new commodity representations for the multicommodity network flow
problems that make the partial aggregations possible.

75

4.2. COMMODITY DEFINITIONS AND AGGREGATION LEVELS

2. It proposes a base partially-aggregated formulations for the multicommodity capaci-
tated fixed-charge network design problem and improves it by three approaches.

3. It studies the polyhedra of the LP relaxations of the proposed formulations and their
relation with the polyhedra of the LP relaxation of two existing formulations in the
literature.

4. It empirically investigates the LP relaxations of the proposed formulations and the
performance of the MIP algorithms over the proposed formulations for a set of bench-
mark instances.

4.2 Commodity Definitions and Aggregation Levels

Recall that in the input, each commodity k ∈ K is defined by three attributes; an origin
ok, a destination sk, and a demand of dk. The representation of commodities in the DA
formulation is congruous with the definition of commodities in the input. In particular,
there is a one-to-one mapping between commodities of the input and commodities in the
DA formulation. However, this need not be the case, as illustrated in the FA formulation, in
which a “commodity” is an aggregation of the input commodities that share the same origin.

Alternative commodity definitions actually correspond to different network structures
that represent the problem. This results in various sizes of the MIP model that encodes the
problem since the nodes and arcs of the network correspond to constraints and variables
of the MIP model. These MIPs have the same optimal integer solution but different LP
relaxations. In the DA formulation, the flow conservation constraints (2.15b) describe the
routes of each commodity on the graph G independently from other commodities. This
means that the DA formulation essentially considers a hypothetical network layer for each
commodity. This hypothetical layer is a copy of the original graph G on which the demand
of its corresponding commodity flow. On the other hand, in the FA formulation, all layers
related to the aggregated commodities are merged into a single layer on which the total
demand of the aggregated commodities flow. Figure 4.1 shows the network representations
of the DA and FA formulations for an instance with 4 commodities. In this instance, the
original graph G consists of 8 nodes and 10 arcs, and all commodities are originated from
the square node. Figure 4.1a shows the network representation of the DA formulation. In
this figure, the opaque nodes represent the origin and destination of the corresponding
commodity of each layer. As there are 4 commodities, network representation of the DA
formulation includes 4 layers. These layers are merged into one layer by the FA formulation
as shown in Figure 4.1b. This layer includes an origin (square) node for the aggregated
commodities and four opaque (circle) nodes as destinations of the aggregated commodities.

76

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

k1

k2

k3

k4

(a) Implied network by the DA formulation

{k1 , k2 , k3 , k4 }

(b) Implied network by the FA formulation

Figure 4.1: Network representation of the DA and FA formulations for an instance with 4 commodities, all
originating from the square node in the figure, on a graph with 8 nodes and 10 arcs.

In this section, we introduce new commodity definitions that give a control on the ag-
gregation level that could range from the disaggregated approach to the fully aggregated
approach. This enables us to develop a spectrum of formulations that fill in the gap be-
tween the DA and the FA formulations in terms of the trade-off between the computational
difficulty and bound quality of the LP relaxation of a formulation. The intention of our ap-
proach is to allow groups of commodities to start in an aggregated form at a shared origin
and to be disaggregated as they move towards their individual destination. Therefore, the
set of commodities included in a same group varies over the network. For this purpose
we define a dispersion of commodities. A dispersion is defined as a set of commodities and
specifies how each of its commodities is aggregated on each arc.

Definition 1 (dispersion). A dispersion b of commodities on a directed graph G = (N ,A)
is defined by the following information:

1. A set Kb ⊆ K of commodities that share the common origin ob ∈ N .

2. The set of destination nodes Sb ⊆ N (Sb = {sk : k ∈ Kb}).
3. On each arc (i, j) ∈ A, a partition of Kb into a subset Kij

b of commodities aggregated

on that arc and its complement Dij
b of commodities which are disaggregated on that

arc.

A dispersion is essentially similar to a fully-aggregated commodity but with disaggre-
gation of some commodities on some arcs. Suppose a commodity is disaggregated from the

77

4.2. COMMODITY DEFINITIONS AND AGGREGATION LEVELS

group on the arc (i, j). Such disaggregation is represented by adding an extra arc with the
same origin and destination as the arc (i, j) but exclusive to the flow of the disaggregated
commodity. Therefore, the network representation of a dispersion is similar to the network
representation of a fully-aggregated commodity but with some extra arcs dedicated to the
flow of the separated/disaggregated commodities, and there is one network layer for a dis-
persion. Figure 4.2 shows an example dispersion based on the fully-aggregated commodity
shown in Figure 4.1b. In this figure, extra arcs that represent the flow of the disaggregated
commodities are shown in colors. We will discuss the selection of such arcs for the com-
modities in Section 4.3.3. Black arcs correspond to the flow of the commodities that are not
disaggregated from the group on that arc.

{k1, k2, k3, k4}

Figure 4.2: An example dispersion based on the aggregated commodities of Figure 4.1b. In this figure, colored
arcs represent the disaggregation of the corresponding commodity from the group on that arc.

To represent an instance of the problem by dispersions, we have to define a set of
dispersions in which there is at least one dispersion that includes each commodity. This
ensures that all possible flow assignments of each commodity to all arcs of the network are
covered. We next define partial aggregations in which there is a unique dispersion for each
commodity.

Definition 2 (partial aggregation). A partial aggregation for the MCND with G = (N ,A),
original commodities K and demand dk, consists of a set B of dispersions, where for every
commodity k ∈ K there exists a unique b ∈ B such that k ∈ Kb.

As defined in Definitions 1 and 2, partial aggregations must satisfy three conditions:
(a) aggregated commodities must always share a common origin, (b) each commodity
belongs to a single dispersion, and (c) a commodity is either disaggregated on an arc or
it is grouped with others of the group (that are also not disaggregated on this arc). An
alternative definition is to consider dispersions based on same destinations or a mixed
approach in which some dispersions include commodities with a same origin and others
include commodities with a same destination. It should be noted that these definitions

78

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

could of course be extended in a natural way to allow different types of dispersions and
aggregations.

Conventional disaggregation and full aggregation are special cases of partial aggrega-
tions:

DA The original, fully disaggregated version (as a special partial aggregation case) is de-
fined by B, where |B| = |K|, each dispersion b ∈ B includes only one commodity
Kb = {kb}, and ∪b∈BKb = K. Therefore, Sb = {i ∈ N | skb

i = 1}, |Sb| = 1 for all
b ∈ B, and Kij

b = ∅ & Dij
b = {kb} : ∀b ∈ B, (i, j) ∈ A.

FA Let Ñ be the set of nodes from which at least one commodity originates. The fully
aggregated version is defined by B, where |B| = |Ñ | and ∪b∈B{ob} = Ñ . Therefore,
Sb = {i ∈ N | ∃k ∈ K : sk

i = 1, ok = ob} for all b ∈ B, and Kij
b = Sb & Dij

b = ∅ :
∀b ∈ B, (i, j) ∈ A.

The network implied by DA has one complete replica of graph G for each commodity
k ∈ K, which results in a network with |K| layers. The network implied by FA has one
complete replica of graph G for each dispersion n ∈ Ñ , which results in a network with |Ñ |
layers. In both cases, each layer is an exact copy of the graph G. However, the network layer
that represents a dispersion includes some extra arcs that correspond to the disaggregation
of commodities on those arcs. In particular, such a layer includes: (a) a complete copy of
the nodes of graph G, (b) one copy of arc (i, j) ∈ A for which Kij

b 6= ∅, and (c) one copy of

arc (i, j) ∈ A for each k ∈ Dij
b to represent disaggregated arcs. An example network layer

corresponding to a dispersion is shown in Figure 4.2. Here we define a network layer that
represent a dispersion as dispersion layer.

Definition 3 (dispersion layer). A dispersion layer that represents a dispersion b includes
a set of nodes Cb := N and a set of arcsAij

b for each (i, j) ∈ A. Each arc a ∈ Aij
b corresponds

to a commodity set of the set G ij
b = Kij

b ∪ {{k} | k ∈ Dij
b } by a one-to-one mapping. Each set

D ∈ G ij
b implies that in the dispersion layer corresponding to dispersion b there is a copy

of arc (i, j) that corresponds to the commodity set D.

A partial aggregation consists of a set of dispersions. Similarly, the network implied by
a partial aggregation, called partial aggregation network, is a set of dispersion layers, where
each layer corresponds to a dispersion b ∈ B. A partial aggregation network that corre-
sponds to to the partial aggregation B includes |B| layers. A partial aggregation network
has |B||N | nodes and ∑b∈B ∑(i,j)∈A |G ij

b | arcs. The DA and FA networks have respectively
|K||N | and |Ñ ||N | nodes and |K||A| and |Ñ ||A| arcs.

To have a formulation incorporating a partial aggregation and its corresponding partial
aggregation network, we can now modify the DA formulation (2.15a)–(2.15f) by

79

4.3. IMPROVING THE PARTIALLY-AGGREGATED FORMULATION

1. Summing (2.15b) over k ∈ Kb for all b ∈ B, i ∈ Cb, resulting in |B||N | constraints.

2. Summing (2.15d) over k ∈ D for all (i, j) ∈ A, b ∈ B, D ∈ G ij
b , resulting in between

|A||B| and |A||K| constraints.

3. Replacing any sum over variables xk
ij in the constraints of the resulting model by a new

variable xD
ij = ∑k∈D xk

ij that corresponds to aggregated flow of a set of commodities

D ∈ G ij
b for some (i, j) ∈ A and b ∈ B.

This gives a new formulation that in general has both fewer constraints and fewer variables
than DA.

Partially-Aggregated Formulation (PA):

min ∑
(i,j)∈A

cij ∑
b∈B

∑
D∈G ij

b

xD
ij + ∑

(i,j)∈A
fijyij (4.1a)

s.t : ∑
j∈N+

i

∑
D∈G ij

b

xD
ij − ∑

j∈N−i
∑

D∈G ji
b

xD
ji = ∑

k∈Kb

(ok
i − sk

i)d
k ∀b ∈ B, i ∈ Cb (4.1b)

∑
b∈B

∑
D∈G ij

b

xD
ij ≤ uijyij ∀ (i, j) ∈ A (4.1c)

xD
ij ≤

(
∑

k∈D
dk

)
yij ∀ (i, j) ∈ A, b ∈ B, D ∈ G ij

b

(4.1d)

xD
ij ≥ 0 ∀ (i, j) ∈ A, b ∈ B, D ∈ G ij

b
(4.1e)

yij ∈ {0, 1} ∀ (i, j) ∈ A (4.1f)

In the PA formulation, equation (4.1b) conserves the aggregated flow of commodities in
a same dispersion at each node of the network, whether they are disaggregated from the
group or not. Note that if ∑k∈D dk > uij for D ∈ G ij

b , as normally happens in the FA
formulation, then the SI constraints (4.1d) become redundant.

4.3 Improving the Partially-Aggregated Formulation

While (partial) aggregation makes the MIP model smaller, it weakens the formulation in
terms of the LP relaxation bound. To combat this we employ two strategies that are dis-
cussed in this section, namely (a) adding tightening constraints and (b) making judicious
choices about which commodities to aggregate/disaggregate for each arc. If the coefficient

80

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

of variable yij in the corresponding SI (4.1d) is large enough, the structure of a dispersion
layer allows a commodity to flow on arc (i, j) on the aggregated arc even if this commodity
has been disaggregated on arc (i, j). The tightening constraints we introduce in this section
prevent the commodities from flowing on such arcs. We employ two approaches for this.
The first approach in Section 4.3.1 adds a type of inequalities that are similar to flow conser-
vation constraints. The second approach in Section 4.3.2 modifies the partial aggregation
network by adding some artificial nodes and arcs that translates to more constraints and
variables. However, the extra constraints can be expressed as equality flow conservation
constraints, which both tighten the bound and, in practice, speed-up the computation of
the LP. In Section 4.3.3, we propose a heuristic that uses a K-shortest paths algorithm to
construct dispersions of the commodities and form a partial aggregation that provides a
good trade-off between model size and LP bound. Here we are particularly interested in
dispersions where the disaggregated arcs for each commodity form a connected network
leading to the destination node of that commodity.

4.3.1 Partially-Aggregated Formulation with Inequality Tightening Con-
straints

We start with an example that shows a fractional solution of the LP relaxation of the PA
formulation, and propose valid inequalities that can cut it. The example is shown for the
incoming and outgoing flow of the node i in Figure 4.3a. This node is part of the larger
network of the problem, but the other parts are not shown as this node is enough to illus-
trate the example. This node has two incoming arcs from nodes 1 and 2, and two outgoing
arcs to nodes 3 and 4. Consider the dispersion b of commodities Kb = {k1, k2, k3}. Origin
and destination nodes of commodities of set Kb are not shown in this figure. However, in
our examples we consider feasible solutions that flow of some commodities of this set pass
the node i as an intermediate node. In this figure, we assume that all commodities of Kb
are grouped together on these arcs, therefore G1i

b = G2i
b = G i3

b = G i4
b = Kb and there is

no disaggregated arc. As mentioned in Section 4.2, each arc of the network corresponds
to a commodity set. In Figure 4.3, the corresponding commodity set to each arc is labeled
on it. In Figure 4.3a, commodities are grouped on all arcs shown, and hence, all arcs corre-
spond to the commodity set Kb. Now, suppose that we disaggregate the commodity k1 on
arcs (1, i) and (i, 3). Such disaggregation requires the network to have two additional arcs,
shown in blue in Figure 4.3b.

As the flow conservation constraint (4.1b) considers all commodity sets G ij
b related to a

dispersion on an arc in one equation. Therefore, the flow of the disaggregated commodity
k may flow on the arc that is related to the commodity set Kij

b even if k /∈ Kij
b , in case the

81

4.3. IMPROVING THE PARTIALLY-AGGREGATED FORMULATION

i

1

2

3

4

K
b

K b

K b

K
b

(a) Node i in case of aggregating all commodities Kb on the arcs
related to this node

i

1

2

3

4

K
b \ {k1 }

{k1 }

K b

K b
\ {k 1}

{k 1}

K
b

(b) Node i in case of disaggregating the commodity k1 on arcs (1, i)
and (i, 3)

Figure 4.3: An example of fully aggregated and partial aggregation network. The example shows node i in
the dispersion layer b with two incoming and two outgoing arcs. Each arc is labeled with its corresponding
commodity set.

coefficient for variable yij in the corresponding SI constraint (4.1d) of Kij
b is large enough,

which degrades the LP bound. For instance, in Figure 4.3b the flow of commodity k1 can
arrive to node i by the blue arc (1, i) and leave it by the black arc (i, 3). However, the related
commodity set of the black arc (i, 3) does not include commodity k1. Let dk1 = 1. Consider
Example 4.3.1 which is a feasible flow for the PA formulation over node i.

Example 4.3.1. This is an example feasible solution for the PA formulation for the flow on incoming
and outgoing arcs of node i in Figure 4.3b: x{k1}

1i = xKb\{k1}
i3 = 1 and flow on other incoming and

outgoing arcs of node i equals to zero.

Although Example 4.3.1 is a feasible solution for the PA, we want to prevent such flows
as this flow arrives at node i by an arc dedicated to k1. However, it leaves node i by an arc
related to a commodity set that does not include k1. To prevent such flow assignments we
add two inequalities (4.1g) and (4.1h).

∑
j∈N+

i

∑
D∈G ij

b :k∈D

xD
ij − ∑

j∈N−i
∑

D∈G ji
b :D={k}

xD
ji ≥ (ok

i − sk
i)d

k ∀ b ∈ B, k ∈ Kb, i ∈ Cb (4.1g)

∑
j∈N+

i

∑
D∈G ij

b :D={k}
xD

ij − ∑
j∈N−i

∑
D∈G ji

b :k∈D

xD
ji ≤ (ok

i − sk
i)d

k ∀ b ∈ B, k ∈ Kb, i ∈ Cb (4.1h)

Intuitively, Constraint (4.1g), called forward labeling inequality, states that any flow that ar-
rives at node i labelled as commodity k (i.e. with a xD

ij variable where D = {k}) must
leave either as commodity k or as an aggregated commodity that includes k. Example 4.3.1
violates this constraint, as in this case, the left-hand side of this of constraint is −1 while
its right-hand side is zero. Constraint (4.1h), called backward labeling inequality, creates the
symmetric requirement on arriving arcs for an individual commodity k leaving node i. A

82

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

feasible solution of the PA formulation for this instance as xKb\{k1}
1i = x{k1}

i3 = 1 and the
flow on other incoming and outgoing arcs as zero violates Constraint (4.1h). In the rest of
the thesis, we consider (4.1a)-(4.1h) as the partially aggregated formulation with forward and
backward labeling inequalities, and refer to it as PAi.

4.3.2 Partially-Aggregated Formulation with Equality Tightening Con-
straints

In this section, we present another approach to tackle the issue raised in Section 4.3.1 for the
PA formulation. In this approach, instead of adding inequalities, we modify the partial ag-
gregation network to differentiate the incoming flow to a node labeled as a disaggregated
commodity from the aggregated incoming flow. Consider the node i of the dispersion
layer b with some incoming and outgoing arcs (aggregated and disaggregated). We add
some artificial nodes and arcs in this node to be able to differentiate the flow of disaggre-
gated commodities. As this approach adds extra nodes and arcs to the partial aggregation
network, its corresponding MIP would be larger than the MIP of PAi for a same partial ag-
gregation B. However, its merit is that the added constraints are equality flow conservation
constraints which keeps the multicommodity network structure of the problem.

As formulated, there is one flow conservation constraint per dispersion layer and per
node. This means that a node of a dispersion layer does not differentiate the incoming
and outgoing flow by the disaggregated arcs from the incoming and outgoing flow by the
aggregated arcs, which implies that the flow of one commodity can be routed on arcs that
do not represent that commodity. Here we propose to decompose every node into a small
gadget that will track which commodity can arrive and leave on which arc, and restrict the
possibilities of incorrect routing.

As an example, consider the node i in the dispersion layer b shown in Figure 4.4a.
Dispersion b includes 4 commodities as Kb = {k1, k2, k3, k4}. Node i is part of a larger
network, but other nodes are not shown as this node is enough to show the examples we
intend. Moreover, origin and destination nodes of commodities of set Kb are not shown in
this figure. Node i in the original graph G has two incoming arcs (1, i) and (2, i) and two
outgoing arcs (i, 3) and (i, 4). Commodity k1 is disaggregated from the group on arcs (1, i)
and (2, i). Commodity k2 is disaggregated from the group on arcs (2, i), (i, 3), and (i, 4). The
original node i in the partial aggregation network is shown in Figure 4.4a. One possible
incorrect flow route for this example is a flow arriving at node i by the red arc between
nodes 2 and i which corresponds to the commodity k2, but leaving the node by the black
arc between nodes i and 3 which does not include commodity k2 in its corresponding set.

The gadget we propose to tackle the raised issue considers the node i as a larger node

83

4.3. IMPROVING THE PARTIALLY-AGGREGATED FORMULATION

that itself includes a set of some artificial nodes, where each of such nodes correspond to
a specific commodity set. We define the group of artificial nodes for each node and their
connection as in fact a network modification that adds artificial nodes and arcs inside a
node of a dispersion layer. For each node i and dispersion layer b, we create three groups
of artificial nodes:

• in-flow aggregated nodes: one node for each distinct commodity set that incoming
aggregated arcs of node i represent. For node i in Figure 4.4a, we add two in-flow
aggregated nodes, one corresponds to the commodity set Kb \ {k1} and the other one
corresponds to the commodity set {k3, k4}.

• intermediate nodes: a node for each commodity k ∈ Kb that has at least one incident
disaggregated arc to node i and one node for the rest of commodities of dispersion
b. For node i in Figure 4.4a, we add three intermediate nodes. Two nodes are added
because two commodities, k1 and k2, have incident disaggregated arcs to node i. The
third node is added to represent the rest of commodities of set Kb, i.e. {k3, k4}.

• out-flow aggregated nodes: one node for each distinct commodity set that outgoing
aggregated arcs of node i represent. For node i in Figure 4.4a, we add one out-flow
aggregated node as both outgoing aggregated arcs correspond to the same commodity
set, i.e. Kb \ k2.

Then, there is an artificial arc from any in-flow aggregated node to any intermediate node
if and only if they represent at least one common commodity. Similarly, there is an artifi-
cial arc from any intermediate node to any out-flow aggregated node if and only if they
represent at least one common commodity. Such artificial arcs facilitate the modeling as
they describe the relation of artificial nodes added. They have no flow cost or opening cost,
hence their flow are not present in the objective function and there is no associated binary
variable as they are always open. Original arcs of the partial aggregation network remain
same. However, they must be connected to the relevant artificial node. Disaggregated arcs
connect to the intermediate node of the corresponding disaggregated commodity. Incom-
ing (outgoing) aggregated arcs connect to the corresponding in-flow (out-flow) aggregated
node. Node i in Figure 4.4a is modified and illustrated as the larger rectangular node in Fig-
ure 4.4b, where artificial nodes and arcs are shown by dashed circles and arrows. Moreover,
each group of artificial nodes inside the node i is shown in a dotted ellipse for clarity.

Specifically, consider the following sets for each b ∈ B and i ∈ Cb.

Li
b Set of commodities of dispersion b that have at least one incident disaggregated

arc to node i. For node i in Figure 4.4, we have Li
b = {k1, k2}.

Mi
b Set of commodity sets that each added intermediate node for node i of dispersion

b represents. For node i in Figure 4.4, we haveMi
b = {{k1}, {k2}, {k3, k4}}.

84

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

i

1

2

3

4

{k1 }K
b \ {k1 }
{k 1}

{k 2}

{k 3, k
4}

{k 2}

K b
\ {k 2}

{k2 }
K

b \ {k2 }

(a) Node i of dispersion layer b. Node i in the original graph G has two incoming arcs and two outgoing arcs. Dispersion b includes
commodities Kb = {k1, k2, k3, k4}. Commodity k1 is disaggregated on arcs (1, i) and (2, i). Commodity k2 is disaggregated on arcs
(2, i), (i, 3), and (i, 4). The corresponding commodity set of each arc is labeled on it.

k1

k2

k3 , k4

k2 , k3 , k4

k3 , k4

k1 , k3 , k4

1

2

3

4

{k1}

{k 1}

{k2}

K
b \ k1

{k3 , k4 }

{k2}

{k2}

K b
\ k 2

K b \ k 2

in-flow aggregated nodes

intermediate nodes

out-flow aggregated node(s)

node i
(b) Modified node i as the larger rectangular node with added artificial nodes and arcs shown by dashed circles and arrows.

Figure 4.4: An illustrative example for network modification for the partially-aggregated formulation with
equality tightening constraints

Ť i
b Set of distinct commodity sets that each incoming aggregated arc of node i corre-

sponds to. For node i of Figure 4.4, we have Ť i
b = {{k2, k3, k4}, {k3, k4}}.

T̂ i
b Set of distinct commodity sets that each outgoing aggregated arc of node i corre-

sponds to. For node i of Figure 4.4, we have T̂ i
b = {{k1, k3, k4}}.

85

4.3. IMPROVING THE PARTIALLY-AGGREGATED FORMULATION

Formally, these sets for the node i of the dispersion layer b are obtained by equa-
tions (4.2a)-(4.2d). Artificial nodes and arcs are added inside the node i of the dispersion
layer b only if Li

b 6= ∅.

Li
b = {k ∈ Kb | ∃ (j, i) ∈ N−i : k ∈ D ji

b or ∃ (i.j) ∈ N+
i : k ∈ Dij

b } (4.2a)

Mi
b = {{k} | k ∈ Li

b} ∪ {Kb \ Li
b} (4.2b)

Ť i
b = {Cik

b ⊆ Kb | k = 1, . . . , |Ť i
b |, Cik

b 6= ∅}
such that: ∪C∈Ť i

b
C = ∪j∈N−i {K

ji
b } and C ∩ D = ∅ ∀ C 6= D ∈ Ť i

b (4.2c)

T̂ i
b = {Cik

b ⊆ Kb | k = 1, . . . , |T̂ i
b |, Cik

b 6= ∅}
such that: ∪C∈T̂ i

b
C = ∪j∈N+

i
{Kij

b } and C ∩ D = ∅ ∀ C 6= D ∈ T̂ i
b (4.2d)

Consider Example 4.3.2 which is a feasible flow for the PA formulation over node i.
Similar to Example 4.3.1, we want to prevent such flows as Example 4.3.2.

Example 4.3.2. This is an example feasible solution for the PA formulation for the flow on incoming
and outgoing arcs of node i in Figure 4.4: x{k3,k4}

2i = x{k2}
i3 = 1 and flow on other incoming and

outgoing arcs of node i equals to zero.

By having such modification on the partial aggregation network, it is enough to add
flow conservation constraints for the added artificial nodes to tackle the issue raised in
Section 4.3.1. The modified network structure labels a commodity that arrives at a node
by a disaggregated arc and thus excludes flow on an aggregated arc that does not include
that specific commodity. Specifically, equations (4.3a)-(4.3c) defines such flow conservation
constraints. Here, we define the flow on artificial arcs by z variables as constraints (4.3d)
and (4.3e). ∑

j∈N+
i :D∩Dij

b 6=∅

xD
ij − ∑

j∈N−i :D∩D ji
b 6=∅

xD
ji

+

 ∑
C∈T̂ i

b :D∩C 6=∅

zib
DC − ∑

C∈Ť i
b :D∩C 6=∅

zib
CD

 = ∑
k∈D

(ok
i − sk

i)d
k

∀b ∈ B, i ∈ Cb, D ∈ Mi
b : Li

b 6= ∅ (4.3a)

∑
D∈Mi

b :C∩D 6=∅

zib
CD − ∑

j∈N−i :C=Kji
b

xC
ji = 0 ∀b ∈ B, i ∈ Cb, C ∈ Ť i

b : Li
b 6= ∅ (4.3b)

86

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

∑
j∈N+

i :C=Kij
b

xC
ij − ∑

D∈Mi
b :C∩D 6=∅

zib
DC = 0 ∀b ∈ B, i ∈ Cb, C ∈ T̂ i

b : Li
b 6= ∅ (4.3c)

zib
CD ≥ 0 ∀b ∈ B, i ∈ Cb, C ∈ Ť i

b , D ∈ Mi
b : C ∩ D 6= ∅ & Li

b 6= ∅ (4.3d)

zib
DC ≥ 0 ∀b ∈ B, i ∈ Cb, C ∈ T̂ i

b , D ∈ Mi
b : C ∩ D 6= ∅ & Li

b 6= ∅ (4.3e)

Equation (4.3a) represents the flow conservation constraint for artificial intermediate
nodes. The first part determines the net outgoing flow by the disaggregated arcs. The sec-
ond part determines the net outgoing flow by the artificial arcs. The total outgoing flow
must respect the corresponding demand at the node i for the corresponding commodity
set that an intermediate node represents. Equation (4.3b) shows the flow conservation
constraint for artificial in-flow aggregated nodes. The outgoing flow for such arcs is on
artificial arcs and the incoming flow is on original aggregated arcs of the partial aggrega-
tion network. Equation (4.3c) shows the flow conservation constraint for artificial out-flow
aggregated nodes. The outgoing flow for such arcs is on original aggregated arcs of the
partial aggregation network and the incoming flow is on artificial arcs. Decision variable
z is defined for the flow on an artificial arc where ever an artificial arc is added based on
constraints (4.3d) and (4.3e). Constraints (4.3a)-(4.3e) are added if node i of dispersion b
is required to be modified, i.e. Li

b 6= ∅. In the rest of the thesis, we consider (4.1a)-(4.1f)
and (4.3a)-(4.3e) as the partially aggregated formulation with equality tightening constraints, and
refer to it as PAe. Example 4.3.2 is not feasible for Constraints (4.3a)-(4.3e) as those flow
conservation constraints for the modified node i do not link the flows x{k3,k4}

2i and x{k2}
i3 .

4.3.3 K-Shortest Path Aggregations

The choices to cluster commodities can significantly affect the LP bound of a partially-
aggregated formulation. In this section, we present a heuristic that employs a K-shortest
path algorithm to effectively cluster the commodities. Based on Definition 1, a dispersion
aggregates a set of commodities, but it disaggregates each commodity from the group on
a subset of arcs. Therefore, to construct a dispersion of a set of commodities, it is enough
to determine a subset of arcs that each commodity of the considered set is disaggregated
on. We call the subset of arcs on which the commodity k is disaggregated from the corre-
sponding group as critical arcs and represent it by Ak. Given Ak for all k ∈ Kb, sets Kij

b and

Dij
b of dispersion b of the commodity set Kb are obtained as Dij

b = {k ∈ Kb | (i, j) ∈ Ak}
and Kij

b = Kb \ Dij
b for all (i, j) ∈ A.

We determine the set of critical arcs of commodity k by solving a K-shortest path prob-

lem from its origin ok to its destination sk considering the surrogate cost of c̃ij = cij +
fij
uij

for

87

4.4. POLYHEDRAL ANALYSIS

all arcs (i, j) ∈ A. Disaggregating commodity k on arc (i, j) translates to keeping the corre-
sponding SI of the DA formulation in the partially-aggregated formulation. The surrogate
cost c̃ij incorporates the variable cost, fixed cost, and capacity of an arc simultaneously, and
results in keeping impactful SIs that tighten the partially-aggregated formulation. Such
surrogate cost has been also utilized in other solution algorithms for MCND. Gendron
et al. (2018) uses c̃ij as the initial values for their slope scaling heuristic. Yaghini et al. (2013)
uses c̃ij to determine the set of variables that exist in the initial step of their column gen-

eration based heuristic. We have also examined two other cost structures as cij +
fij

dk and

cij +
fij

mink∈Kb
dk . However, c̃ij appears to be significantly more promising, and therefore other

cost structures are not considered in the rest of this chapter. The details of the heuristic is
explained in Algorithm 1. This algorithm essentially considers the arcs that construct K
shortest paths from origin to destination of the commodity k as the set of its critical arcsAk,
and forms the dispersions and the partial aggregation accordingly. We use the algorithm
by Yen (1971) for finding K shortest paths between an origin and a destination.

Algorithm 1: K-shortest path aggregation
Input: G = (N ,A), set of commodities K, and the number of shortest paths
considered K

Output: A partial aggregation B which is a set of dispersions
for b ∈ N do
Kb = {k ∈ K | ok = b}
for k ∈ Kb do
Ak = Set of arcs included in K shortest paths from origin ok to destination sk

considering the cost c̃ij for each arc
end
for (i, j) ∈ A do
Dij

b = {k ∈ Kb | (i, j) ∈ Ak}
Kij

b = Kb \ Dij
b

end
Add the dispersion b to the set B

end

4.4 Polyhedral Analysis

This section compares the polyhedra of the LP relaxations of the DA, PAe, PAi, PA, and
FA formulations. We consider the LP relaxations of these formulation which are obtained

88

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

by relaxing constraints (2.15f) and (4.1f) to 0 ≤ yij ≤ 1. In the each of Theorems 4.4.1-4.4.4
we compare the strength of the LP relaxation of two formulations. To prove one of these
two is stronger than the other, we show that there always exists a mapping that transforms
an arbitrary feasible solution of the LP relaxation of the stronger formulation to a feasible
solution for the LP relaxation of the weaker formulation. However, there exists fractional
solutions to the weaker formulation that are not feasible for the stronger formulation.

Theorem 4.4.1. The DA formulation is stronger than the PAe formulaion.

Proof. Let (x̄k
ij, ȳij) be an arbitrary solution of the LP relaxation of the DA formulation

defined by (2.15b)-(2.15f). The following mapping transforms this solution to the solution
(xD

ij , yij, zib
CD) for the LP relaxation of PAe formulation defined by (4.1b)-(4.1f) and (4.3a)-

(4.3e).

xD
ij := ∑

k∈D
x̄k

ij ∀ (i, j) ∈ A, b ∈ B, D ∈ G ij
b (4.4a)

yij = ȳij ∀ (i, j) ∈ A (4.4b)

zib
CD = ∑

j∈N−i
∑

k∈C∩D
x̄k

ji ∀b ∈ B, i ∈ Cb, C ∈ Ť i
b , D ∈ Mi

b : C ∩ D 6= ∅ & Li
b 6= ∅ (4.4c)

zib
DC = ∑

j∈N+
i

∑
k∈D∩C

x̄k
ij ∀b ∈ B, i ∈ Cb, C ∈ T̂ i

b , D ∈ Mi
b : C ∩ D 6= ∅ & Li

b 6= ∅ (4.4d)

We now prove that the transformed solution (xD
ij , yij, zib

CD) obtained by mapping (4.4a)-
(4.4d) is feasible for LP relaxation of PAe. For a node related to the dispersion layer b,
the flow conservation constraint (4.1b) of PAe is just a summation of flow conversation
constraints (2.15b) of DA over k ∈ Kb. The capacity constraint (4.1c) is feasible over the
transformed solution since ∑b∈B ∑D∈G ij

b
xD

ij = ∑k∈K x̄k
ij ≤ uijȳij = uijyij ∀(i, j) ∈ A. Strong

inequality (4.1d) is just a summation of SIs (2.15d) over k ∈ D, and therefore feasible for
the transformed solution.

We then show that the transformed solution is feasible for constraints (4.3a)-(4.3c).
Constraint (4.3a) defines a flow conservation constraint for each artificial intermediate node
(setMi

b) that is added to the network. Based on equations (4.4c) and (4.4d), Constraint (4.3a)
in fact conserves the flow of commodities of set D at node i. Therefore, it is just a summation
of Constraint (2.15b) over the commodities of the corresponding commodity set D.

Since the setMi
b partition the commodity set Kb, in Constraint (4.3b) we have:

∑
D∈Mi

b :C∩D 6=∅

zib
CD = ∑

j∈N−i
∑
k∈C

x̄k
ji.

89

4.4. POLYHEDRAL ANALYSIS

On other hand, ∑j∈N−i :C=Kji
b

xC
ji = ∑j∈N−i ∑k∈C x̄k

ji based on equation (4.4a). Therefore,

Constraint (4.3b) is satisfied by the transformed solution. In a similar way, Constraint (4.3c)
can be proved to be satisfied by the transformed solution.

Now we show an example where a solution of the PAe LP relaxation is not feasible
for the DA LP relaxation. Consider an example that the commodity k1 is aggregated with
some other commodities into the set C on arc (i, j). Moreover, uij > ∑k∈C dk. A feasible
solution for PAe could be flowing only the demand of k1 on arc (i, j) that translates to
xC

ij = dk1 . In this case, a feasible value for yij is dk1

∑k∈C dk based on the corresponding SI and

capacity constraint. However, this solution (x̄k1
ij = dk1 , ȳij =

dk1

∑k∈C dk) is not feasible for the
LP relaxation of DA as it violates the corresponding SI of the commodity k1 on arc (i, j).

Therefore, the DA formulation is stronger than the PAe formulation because of two
reasons: first, there always exists a mapping that transforms an arbitrary solution of the LP
relaxation of the DA formulation to a solution for the LP relaxation of the PAe formulation.
Second, there exists feasible solutions for the LP relaxation of the PAe formulation that are
not projectable to the LP relaxation of the DA formulation.

Theorem 4.4.2. The PAe formulation is stronger than the PAi formulaion, where both formulations
are based on a same partial aggregation B.

Proof. Let (x̄D
ij , ȳij, z̄ib

CD) be an arbitrary solution of the LP relaxation of the PAe formulation
defined by (4.1b)-(4.1f) and (4.3a)-(4.3e). A feasible solution (xD

ij , yij) for the LP relaxation of
PAi formulation defined by (4.1b)-(4.1f), (4.1g), and (4.1h) can be obtained by the mapping
xD

ij := x̄D
ij and yij := ȳij.

Constraints (4.1b)-(4.1f) are common in both formulations. Therefore, we just prove
that a solution by LP relaxation of PAe also satisfies constraints (4.1g) and (4.1h). Con-
sider the commodity k and its corresponding dispersion b over node i where {k} ∈ Mi

b.
Therefore, as in a partial aggregation the commodity k on the arc (i, j) is either aggre-
gated with some other commodities or disaggregated, i.e. only one of two statements
(k ∈ Kij

b ⇒ ∃!D ∈ G ij
b : k ∈ D) or (k ∈ Dij

b ⇒ ∃!D ∈ G ij
b : D = {k}) is correct for all

(i, j) ∈ A, we have:

∑
j∈N+

i :D∩Dij
b 6=∅

xD
ij = ∑

j∈N+
i

∑
D∈G ij

b :D={k}
xD

ij (4.5a)

∑
j∈N−i :D∩D ji

b 6=∅

xD
ji = ∑

j∈N−i
∑

D∈G ji
b :D={k}

xD
ji (4.5b)

Furthermore, based on equation (4.2d) and considering D = {k}, we have {C ∈ T̂ i
b :

90

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

D ∩ C 6= ∅} = {Kij
b : ∀j ∈ N+

i | k ∈ Kij
b }. Moreover, equation (4.3c) implies that zib

DC ≤
∑j∈N+

i :C=Kij
b

xC
ij for all C ∈ T̂ i

b . Therefore, we have:

∑
C∈T̂ i

b :D∩C 6=∅

zib
DC ≤ ∑

j∈N+
i :k∈Kij

b

x
Kij

b
ij (4.5c)

From Definition 3 we have G ij
b = Kij

b ∪ {{k} | k ∈ Dij
b }. Moreover, zib

CD ≥ 0. Having
these in mind and also statements (4.5a)-(4.5c), flow conservation constraint (4.3a) of PAe
implies the inequality (4.1g) of PAi. Therefore, any arbitrary solution of PAe satisfies Con-
straint (4.1g) of the PAi formulation. Similar approach can prove that the feasibility of
solutions of PAe for Constraint (4.1h) of PAi. Clearly, when {k} /∈ Mi

b, constraints (4.1g)
and (4.1h) are redundant regarding flow conservation constraint (4.1b).

Now we show an example where a solution of the PAi LP relaxation that is not feasible
for the PAe LP relaxation. Consider an example that dispersion b of the commodity set
Kb = {k1, k2, k3, k4} over node i, where N−i = {1, 2} and N+

i = {3, 4}. All commodities
of Kb are disaggregated on arcs (1, i) and (i, 3), i.e. K1i

b = Ki3
b = ∅ and D1i

b = Di3
b = Kb.

However, they are all aggregated on two other arcs, i.e.K2i
b = Ki4

b = Kb andD2i
b = Di4

b = ∅.

A feasible solution by PAi for this example is (x{k1}
1i = x{k2}

1i = 1, x{k3}
1i = x{k4}

1i = 0,

x{k1}
i3 = x{k2}

i3 = 0, x{k3}
i3 = x{k4}

i3 = 1, xKb
2i = xKb

i4 = 1). However, this solution is infeasible
for the additional flow conservation constraints (4.3a)-(4.3c) of the PAe formulation as
shown in the modified node i in Figure 4.5. In this figure, the flow on each is arc is labeled
on it inside the parenthesis. Considering a flow conservation constraint for each internal
node, the solution shown on the arcs is not feasible for PAe LP relaxation. Therefore, the
PAe formulation is stronger than the PAi formulation.

Theorem 4.4.3. The PAi formulation is stronger than the PA formulation, where both formulations
are based on a same partial aggregation B.

Proof. PA formulation could be obtained from PAi by dropping constraints(4.1g) and (4.1h).
Therefore, any feasible solution of PAi is also feasible for PA formulation.

Now we show an example where a solution of the PA LP relaxation that is not feasible
for the PAi LP relaxation. Consider node i in Figure 4.3b and its corresponding partial
aggregation. A feasible solution for PA LP relaxation over this partial aggregation over
node i is xKb\{k1}

1i = dk1 and x{k1}
i3 = dk1 . However, this solution violates the corresponding

Constraint 4.1g in the PAi LP relaxation.

Therefore, the PAi formulation is stronger than the PA formulation.

91

4.4. POLYHEDRAL ANALYSIS

k1

k2

k3

k4

Kb Kb

1

2

3

4

{k1}, (1
)

{k2}, (1)
{k3}, (0)
{k4}, (0)

{k1}, (0)
{k2}, (0)

{k3}, (1)

{k4}, (
1)

K
b , (1) K b,

(1)

Figure 4.5: An example solution of PAi LP relaxation that is not feasible for PAe LP relaxation. This figure
shows the modified node i for PAe, where N−i = {1, 2} and N+

i = {3, 4}. The dispersion b (including
commodity set Kb = {k1, k2, k3, k4}) of a partial aggregation states that K1i

b = Ki3
b = ∅, D1i

b = Di3
b = Kb,

K2i
b = Ki4

b = Kb, andD2i
b = Di4

b = ∅. A feasible solution of the PAi LP relaxation for the flow of arcs is shown
as the numbers in parenthesis above each arc. However, this solution is infeasible for PAe because of the flow
conservation constrains for the internal nodes.

Theorem 4.4.4. The PA formulation is stronger than the FA formulation.

Proof. Let (x̄D
ij , ȳij) be an arbitrary solution of the LP relaxation of the PA formulation for

an arbitrary partial aggregation Bp. The following mapping transforms this solution to
the solution (xD

ij , yij) for the LP relaxation of FA formulation based on a full aggregation

B f = Ñ as explained in Section 4.2.

xKn
ij := ∑

b∈Bp :ob=n
∑

D∈G ij
b

x̄D
ij ∀ (i, j) ∈ A, n ∈ B f (4.6a)

yij = ȳij ∀ (i, j) ∈ A (4.6b)

The solution obtained by mappings (4.6a) and (4.6b) is feasible for the FA formulation.
The flow conservation constraint of FA is a summation of flow conservation constraints
of dispersion with the same origin. The capacity constraint in both cases is the same since
the flow of all commodities are included in one inequality for each arc. Similar to the flow
conservation constraints, SIs of the FA formulation are summation of the SIs of relevant
dispersions with the same origin. Hence, an arbitrary solution of PA formulation is always

92

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

feasible for the FA formulation as the FA formulation is obtained by aggregating some of
the PA constraints.

Now we show an example where a solution of the DA LP relaxation that is not feasible
for the PA LP relaxation. Consider an example of a partial aggregation that two commodi-
ties k1 and k2 are not aggregated on the arc (i, j). Moreover, dk1 + dk2 > uij, but dk1 < uij and
dk2 < uij. As in the FA formulation these commodities are aggregated together, a feasible

solution is x{k1,k2}
ij = dk1 and yij =

dk1
uij

. However, this solution is not feasible for the PA
formulation based on its SIs for the arc (i, j).

Therefore, the PA formulation is stronger than the FA formulation.

Theorems 4.4.1-4.4.4 imply a hierarchy of formulations in terms of LP relaxation
strength. In this hierarchy, the DA formulation is the strongest formulation and the FA
formulation is the weakest. Partially-aggregated formulations lie in between these two
extreme cases. Moreover, as each commodity is included in one unique dispersion, we
have ∑b∈B ∑D∈G ij

b
xD

ij = ∑k∈K xk
ij which shows that the objective function of the partially-

aggregated formulations is equivalent to the objective function of the DA formulation.
Therefore, we can conclude Corollary 4.4.1.

Corollary 4.4.1. PA, PAi, and PAe formulations are valid bounds for MCND.

4.5 Computational Results

In this section we perform two sets of computational experiments to evaluate the proposed
formulations. The first set of experiments investigates the LP relaxations of these formula-
tions in terms of tightness and computing time. The second set of experiments compares
the mixed-integer programming algorithms over the formulations. All computational ex-
periments are run on a cluster with 4 Xeon-Gold-6150 cores and 8 GB RAM using CPLEX
12.10.0 via a Python API as LP and MIP solver. Default settings are always selected unless
otherwise specified.

Computational experiments are conducted on 196 publicly available instances for
MCND, called Canad instances. These instances were generated by Crainic et al. (2001)
and used as benchmark instances by subsequent papers to evaluate different solution algo-
rithms and relaxations. These instances cover a diverse range of number of commodities,
capacity tightness, network density, and significance of fixed cost over the flow cost. The
details of the instances can be found in Crainic et al. (2001). These instances are divided into
three classes. Class C includes 31 large instances with dense networks and many commodi-
ties. Class C+ includes 12 instances with sparser networks and few commodities. Class R

93

4.5. COMPUTATIONAL RESULTS

includes 153 small and medium size instances with dense networks but a smaller ratio of
the number of commodities per number of nodes in comparison with the C class.

Table 4.1 gives a summary of instances considered. In three instances of the C+ class,
each node is the origin of at most one commodity. Therefore, we ignore these three instances
as all formulations are the same for such cases. As the formulations mainly affect the
computing time of the LP relaxations, we distinguish a set of instances as long instances. A
long instance is an instance that the computing time of its DA LP relaxation is longer than
10 seconds by the solver.

Table 4.1: Summary of the considered instances

Class C C+ R

#instances 31 9 153
#long instances 11 0 7

#nodes {20,30} {25,100} {10,20}
#arcs {230,300,520,700} {100,400} {35,60,85,120,220,320}

#commodities {40,100,200,400} {10,30} {10,25,40,50,100,200}

Arc density 70% 11% 63%
Commodity density 31% 2% 31%

Commodity/node ratio 7.3 0.6 4.3
FA reduction 78% 24% 67%

The first part of Table 4.1 shows the number of total and long instances of each class.
It also describes the possible values for the number of nodes, arcs, and commodities of
instances in each class. The second part reports the average value of some characteristics
of instances in each group. Arc density expresses how many of the possible arcs exist in an
instance as |A|

|N |(|N |−1) . Commodity density presents the same notion for the commodities as
|K|

|N |(|N |−1) . The Commodity/node ratio is the average number of commodities that originate

from a node. FA reduction states the average reduction of the number of commodities in
percentage across all instances by transforming the DA formulation (|K| commodities) to
the FA formulation (|Ñ | commodities). FA reduction gives an indication of possible size
reduction for an instance by a commodity aggregation scheme. As the numbers in Table 4.1
suggest, there is more opportunity on average to reduce the size of the instances of C and
C+ classes by commodity aggregations.

As we use Algorithm 1 in the rest of the thesis to obtain partially-aggregated formu-
lations, we refer to PAi and PAe as PAi-K and PAe-K to develop and compare different
formulations with respect to the number of shortest paths (K) used to construct dispersion
of commodities.

94

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

4.5.1 Experimental Evaluation of the LP Relaxations

In this section we evaluate the LP relaxation of the proposed formulations. LP relaxations
are obtained by relaxing Constraint (2.15f) to 0 ≤ yij ≤ 1. First, we investigate the LP
relaxations in terms of solution time, size, and LP bound by solving the LP model by CPLEX
LP solver. Afterwards, the performance of the CPLEX cutting plane algorithm at the root
node over the formulations is studied. In both cases, results indicate that formulations
based on partial aggregation are on a Pareto frontier for the trade-off between the LP
bound strength and the LP solution time. In our tests, the DA and FA formulation, which
can be seen as extreme versions of both PAi-K and PAe-K, were compared against various
forms of partial aggregation. These partial aggregations were created using the heuristic
Algorithm 1 using the K shortest paths solutions for K ∈ {1, . . . , 5, 10}, giving rise to 12
partially aggregated formulations PAe-1,. . .,PAe-10 and PAi-1,. . .,PAi-10.

Figures 4.6-4.8 presents the results for solving the LP relaxations using CPLEX with de-
fault settings. In these figures, the LP bound of fully- and partially-aggregated formulations
are compared with the LP bound of the DA formulation.

Bound loss measures the percentage of the LP optimal value decrease in a formulation
with respect to the LP optimal value of the DA formulation. Figure 4.6 compares the bound
loss of the partially-aggregated formulations against the bound loss of the fully-aggregated
formulation over all instances. The y-axis value of a point shows the bound loss of the
corresponding formulation over an instance, whereas the x-axis value of this point repre-
sents the bound loss of the FA formulation over the corresponding instance. The results
demonstrate the effectiveness of partially-aggregation formulations as their bound loss is
significantly less than the bound loss of the FA formulation, even when considering just
one shortest path to construct the partial aggregations.

Figures 4.7 and 4.8 indicate the trade-off between the bound loss and the LP size/comp-
uting time. Size reduction is quantified over both dimensions, rows and columns, as the
percentage change in the multiplication of the number of variables and the number of con-
straints of a formulation in comparison with the DA formulation. Similarly, time reduction
is with respect to the computing time of the DA LP relaxation. These figures indicate that
the size and solution time reduction of the partially-aggregated formulations are a substan-
tial fraction of those achieved by the FA formulation. The time reduction is particularly
significant over long instances. The average computing time of DA LP relaxation over long
instances is 61.71 seconds. For instance, using the PAe-5 formulation reduces the average
computing time by 85.6% to 8.92 seconds in the expense of 1.2% bound loss on average.
On the other hand, the FA formulation reduces the computing time by 99.5% but with a
significant bound loss (17.3% on average).

95

4.5. COMPUTATIONAL RESULTS

0 5 10 15 20 25

FA LP relaxation bound loss (%)

0

5

10

15

20

25

PA
LP

re
la

xa
tio

n
bo

un
d

lo
ss

(%
)

PAe-1
PAe-2
PAe-3
PAe-4
PAe-5
PAe-10
PAi-1
PAi-2
PAi-3
PAi-4
PAi-5
PAi-10

Figure 4.6: LP bound loss of partially-aggregated formulations versus LP bound loss of the FA formulation,
considering the DA formulation as the base

30 40 50 60 70 80

Average LP relaxation size reduction (%)

0

2

4

6

8

10

A
ve

ra
ge

LP
re

la
xa

tio
n

bo
un

d
lo

ss
(%

) FA
PAe-1
PAe-2
PAe-3
PAe-4
PAe-5
PAe-10
PAi-1
PAi-2
PAi-3
PAi-4
PAi-5
PAi-10

Figure 4.7: The trade-off between the LP bound loss and size for aggregated formulations considering the DA
formulation as the base. Size of a formulation is considered as the multiplication of the number of variables
and the number of constraints it includes.

Figure 4.9 depicts the average scaled number of variables, flow conservation con-
straints, and strong inequalities for all formulations considering the dimensions of the
DA formulation as the base. Only the partial formulations constructed using 5 shortest
paths are shown in this figure. However, the trend can be inferred for other values. More-
over, Constraints (4.1g) and (4.1h) are considered as flow conservation constraints for PAi-5.
Partial formulations include more flow conservation constraints, particularly PAe-5. How-
ever, the number of strong inequalities and the number of variables are reduced leading

96

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

0 20 40 60 80 100

Average LP relaxation computing time reduction (%)

0

2

4

6

8

10
A

ve
ra

ge
LP

re
la

xa
tio

n
bo

un
d

lo
ss

(%
) FA

PAe-1
PAe-2
PAe-3
PAe-4
PAe-5
PAe-10
PAi-1
PAi-2
PAi-3
PAi-4
PAi-5
PAi-10

Figure 4.8: The trade-off between the LP bound loss and computing time for aggregated formulations consid-
ering the DA formulation as the base

to faster LP solve times. Mostly, strong inequalities make a difference in a formulation in
terms of the LB bound and computing time. In fact, without any SI, the LP bound of all
formulations are the same, and their computing time are in the same order. The number of
SIs in the partial formulations (with the ratio of 0.41) is slightly more than the number of
SIs in the FA formulation (with the ratio of 0.34). This implies an average of 59% reduction
in the number of SIs by partial formulations and 66% reduction by the FA formulation.
However, the slightly more SIs leads to significant error bound reduction as shown earlier.

Variables Flow conservation constraints Strong inequalities
0.0

0.5

1.0

1.5

2.0

S
ca

le
d

av
ai

la
bl

e
nu

m
be

r

DA
FA
PAe-5
PAi-5

Figure 4.9: Structure of different formulations in terms of scaled number of variables and constraints, consid-
ering the dimensions of the DA formulation as the base

Because of the artificial nodes and arcs, the size of the PAe-K formulation is generally

97

4.5. COMPUTATIONAL RESULTS

larger than the PAi-K formulation. However, the larger size does not translate to longer
computing time as seen in Figure 4.8. The shorter computing time of PAe-K despite a larger
size is due to different structures of PAe-K and PAi-K. The PAe-K formulation, in contrast
to PAi-K, keeps the multicommodity network flow structure as it adds only equality flow
conservation constraint. Another characteristic that affects the LP solution times is the
density of nonzeros in the formulations. Figure 4.10 illustrates the average nonzero density
of each formulation with respect to the average solution time over all instances. Nonzero
density is obtained by dividing the number of nonzeros by the size of the LP as the number
of constraints multiplied by the number of constraints. In general, the nonzero density of
PAe-K is less than the nonzero density of PAi-K which benefits the LP solution time.

0 1 2 3 4 5 6 7

Average LP relaxation computing time (seconds)

0.15

0.20

0.25

0.30

0.35

A
ve

ra
ge

no
nz

er
o

de
ns

ity
(%

)

DA
FA
PAe-1
PAe-2
PAe-3
PAe-4
PAe-5
PAe-10
PAi-1
PAi-2
PAi-3
PAi-4
PAi-5

Figure 4.10: LP nonzeros density versus LP solution time

The strength of the lower bound is significantly impacted by the addition of cuts during
the MIP solution process. To assess the effect of this, Table 4.2 presents the summary results
of the CPLEX cutting plane algorithm over all formulations. The results are obtained by
restricting the CPLEX to 0 node of B&B tree. Moreover, the best-known solutions are given
as the initial incumbent to reduce the effect of heuristics on the computing times. Bound
losses are with respect to the DA LP relaxation. Therefore, negative bound losses in the
cutting plane algorithm column implies that the LP bound is improved in comparison with
the DA LP relaxation. Based on Table 4.2, the significant bound loss of FA LP relaxation is
compensated by the cutting plane algorithm. The DA formulation gives the best bound by
using the cutting plane algorithm, however, by a remarkably higher computational effort.
It is interesting that the partially- and fully-aggregated formulations, by using the cutting
plane algorithm, are able to provide better bounds in comparison with the DA LP relaxation
in almost half computing time. Figure 4.11 displays the data from Table 4.2 in a graphical

98

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

form by showing the average scaled LP bound for each formulation, considering the LP
relaxation of DA formulation as the base. As Figure 4.11 shows that in both cases, the LP
bound and the LP bound by the cutting plane algorithm, there are partial formulations
that are on the Pareto frontier for the trade-off between the LP bound and the computing
time. The cutting plane algorithm is significantly faster over aggregated formulations in
comparison with the DA formulation.

Table 4.2: Effect of formulations on the performance of the CPLEX cutting plane algorithm

Formulation LP relaxation Cutting plane algorithm

Time Bound loss Time Bound loss #Cuts

DA 6.9 0.00% 19.8 -1.28% 56
FA 0.1 11.25% 3.2 -0.89% 289

PAe-1 0.4 3.87% 2.8 -0.68% 355
PAe-2 0.7 2.16% 3.1 -0.66% 279
PAe-3 0.9 1.39% 3.3 -0.76% 230
PAe-4 1.2 0.97% 3.9 -0.86% 202
PAe-5 1.3 0.73% 4.3 -0.93% 177

PAe-10 2.4 0.32% 6.2 -1.08% 120

PAi-1 0.4 4.03% 2.8 -0.83% 242
PAi-2 0.8 2.42% 3.4 -0.88% 213
PAi-3 1.3 1.65% 4.2 -0.94% 194
PAi-4 2.0 1.21% 5.0 -0.95% 178
PAi-5 3.0 0.96% 5.8 -1.01% 166

PAi-10 6.6 0.47% 10.3 -1.12% 134

4.5.2 Solving the MIP Model

In this section we investigate the performance of the mixed-integer programming algo-
rithms over the proposed formulations. In particular, we examine the CPLEX MIP solver
with default settings, with cutting plane algorithm disabled, and using automatic Benders
decomposition algorithm to demonstrate the impact of partial aggregations on various MIP
algorithms. The tightness and computing time of a formulation’s LP relaxation impact the
performance of the B&B algorithm. Additionally, the CPLEX heuristics’ and the cutting
plane algorithm’s performance and the strength of Benders cuts vary over the proposed
formulations. We consider the FA and the DA formulations as existing models in the lit-
erature. Among the partial formulations, we employ PAe-5 and PAi-5 as they possess a
satisfactory trade-off between the LP bound and computing time.

The computing time for each instance is limited to 1 hour. In Tables 4.3-4.7, instances
are divided into three groups: easy, medium, and difficult instances. Easy instances are in-

99

4.5. COMPUTATIONAL RESULTS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Average LP relaxation computing time (seconds)

0.90

0.92

0.94

0.96

0.98

1.00

A
ve

ra
ge

sc
al

ed
LP

re
la

xa
tio

n
bo

un
d

DA
FA
PAe-1
PAe-2
PAe-3
PAe-4
PAe-5
PAe-10
PAi-1
PAi-2
PAi-3
PAi-4
PAi-5
PAi-10

Figure 4.11: Average scaled LP bounds of the formulations with respect to their average computing time.
Circle nodes correspond to the LP relaxation, and square nodes correspond to the LP bound by the cutting
plane algorithm. The DA LP relaxation is considered as the base for scaling.

stances that all formulations have been able to prove optimality for within the time limit.
Medium instances are instances for which some but not all formulations have proved opti-
mality for. The other instances are classified as difficult. Note that the division of instances
into the three groups and identifying the best solutions are based on the comparisons
among the formulations under the corresponding settings of each table separately. There-
fore, the difficulty classification of instances and the best solutions vary across tables. All
numbers are reported as averages across instances in each group. The numbers in the
parenthesis show the number of instances for each group. The notation used in the tables
are as follows: Time: solution time, #n: the number of explored nodes in the B&B tree, #B:
the number of instances for which the best solution is obtained by the corresponding for-
mulation, #O: the number of instances where the corresponding formulation has been able
to prove optimality within the time limit, B%: gap from the best solution, G%: optimality
gap for the instances where their optimality has not been proven in the time limit.

Table 4.3 reports the average performance of the CPLEX default MIP solver over the
formulations per each instance class and overall. According to these results, the FA for-
mulation outperforms other formulations over all instance groups and classes, in terms of
proving the optimality and finding good-quality, feasible solutions. Analysis of the CPLEX
logs shows that the heuristics perform better over the FA formulation. Moreover, although

100

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

the FA formulation suffers from a weak LP bound, the cutting plane algorithm resolves
this issue. These results are very surprising given that the latest study by Chouman et al.
(2017) showed that the DA formulation outperforms the FA formulation. The DA formu-
lation proves the optimality of easy instances in slightly shorter times than the partial
formulations. However, the partial formulations perform better over the difficult instances,
particularly to obtain good-quality solutions in comparison with the DA formulation. More-
over, this better performance is intenser for the large instances with many commodities, the
C class. As the trend for long instances is similar, the results are not reported separately.

Table 4.3: Performance of the MIP solver with default setting over different formulations for all instances

Instance type DA FA PAe-5 PAi-5
Time #n Time #n Time #n Time #n

Easy - C (12) 423.8 5,043 310.8 15,449 364.2 5977 545.9 11518
Easy - C+ (8) 219.6 1,846 207.7 1,881 298.4 2,151 223.9 1,759
Easy - R (131) 119.3 1,843 87.0 4,891 149.2 3,443 151.1 3,703
Easy - all (151) 148.8 2,097 111.1 5,570 174.2 3,576 186.3 4,221

#B #O G% #B #O G% #B #O G% #B #O G%
Medium - C (3) 3 1 0.22% 3 1 0.47% 3 1 0.54% 2 0 0.64%
Medium - R (5) 4 3 0.40% 4 3 1.23% 5 1 0.71% 4 1 0.93%
Medium - all (8) 7 4 0.31% 7 4 0.84% 8 2 0.65% 6 1 0.81%

#B B% G% #B B% G% #B B% G% #B B% G%
Difficult - C

(16)
3 2.40% 3.54% 11 0.02% 1.40% 2 0.21% 1.77% 7 0.10% 1.87%

Difficult - C+
(1)

0 1.59% 5.77% 0 0.57% 4.57% 0 1.24% 5.30% 1 0.00% 4.10%

Difficult - R
(17)

6 0.21% 2.20% 9 0.06% 1.95% 3 0.17% 2.32% 3 0.14% 2.40%

Difficult- all (34) 9 1.28% 2.94% 20 0.06% 1.76% 5 0.22% 2.15% 11 0.12% 2.20%

As Table 4.3 shows, the cutting plane algorithm plays a significant role in the per-
formance of the MIP solver over a formulation. Therefore, to investigate the impact of
the trade-off between the LP bound and computing time on the B&B tree, we disable the
CPLEX cutting plane algorithm. Based on Table 4.4, the partial formulations outperforms
the DA and FA formulations in general. PAi-5 performs better over easy instances, while
PAe-5 provides smaller optimality gaps over medium and difficult instances. Although
heuristics are still able to provide good-quality solutions for the FA formulation, the opti-
mality gaps are significantly poorer due to its weak LP bound. Table 4.5 presents the results
over long instances. The superiority of the partial formulations is more significant over the
large instances with many commodities (C class) and also long instances.

Benders decomposition algorithms have been successfully applied to MCND and
its extensions as an effective solution algorithm (Costa, 2005; Costa et al., 2007; Zetina
et al., 2019). In the next set of experiments, we evaluate the performance of the Benders

101

4.5. COMPUTATIONAL RESULTS

Table 4.4: Performance of MIP solver with cutting plane algorithm disabled over different formulations for
all instances

Instance type DA FA PAe-5 PAi-5
Time #n Time #n Time #n Time #n

Easy - C (7) 1.2 1,115 341.1 1,017,368 1.1 989 1.4 1564
Easy - C+ (6) 1.9 2,176 2.2 4,309 2.8 2,403 2.3 2,402
Easy - R (102) 41.7 2,326 98.3 242,590 35.0 2,718 21.4 3,918
Easy - all (115) 37.2 2,244 108.0 277,318 31.3 2,596 19.1 3,695

#B #O G% #B #O G% #B #O G% #B #O G%
Medium - C (4) 4 4 – 4 0 10.22% 4 4 – 4 2 0.83%
Medium - R (33) 32 32 0.60% 31 0 7.53% 33 27 1.23% 33 24 2.53%
Medium - all (37) 36 36 0.60% 35 0 7.83% 37 31 1.23% 37 26 2.22%

#B B% G% #B B% G% #B B% G% #B B% G%
Difficult - C (20) 7 1.91% 2.97% 8 0.14% 12.56% 9 0.09% 1.60% 11 0.07% 2.35%
Difficult - C+ (3) 2 0.10% 3.10% 3 0.00% 3.96% 2 0.34% 3.96% 2 0.29% 3.87%
Difficult - R (18) 6 0.17% 2.28% 7 0.11% 10.86% 6 0.12% 2.83% 10 0.07% 3.53%
Difficult - all (41) 15 1.02% 2.67% 18 0.12% 11.18% 17 0.13% 2.32% 23 0.08% 2.98%

Table 4.5: Performance of MIP solver with cutting plane algorithm disabled over different formulations for
long instances

Instance type DA FA PAe-5 PAi-5
#B #O G% #B #O G% #B #O G% #B #O G%

Medium - R (2) 1 1 0.60% 2 0 10.46% 2 0 1.09% 2 1 4.59%
#B B% G% #B B% G% #B B% G% #B B% G%

Difficult - C (11) 3 3.35% 4.27% 3 0.19% 13.20% 5 0.12% 1.73% 4 0.05% 2.46%
Difficult - R (5) 0 0.30% 2.66% 1 0.15% 12.14% 1 0.12% 2.82% 3 0.11% 3.76%

Difficult - all (16) 3 2.40% 3.77% 4 0.18% 12.87% 6 0.12% 2.07% 7 0.07% 2.87%

decomposition algorithm over the proposed formulations. We use the CPLEX automatic
Benders decomposition algorithm. Our aim is to provide indicative results on the effects of
different level of aggregations on the performance of the Benders algorithm. To solve the
problem of course specialized Benders algorithms would be more efficient. All settings are
left at their default, except the presolve which is disabled. According to our experiments,
the presolve destroys the special structure of the formulations and increases the LP solution
time. Moreover, we add single-node cut-set constraints for the source and sink nodes to
assist the feasibility of the master problem as it starts with only the constraint set (2.15f).
The added constraints are as (4.7a) and (4.7b). These constraints improve the performance
of the Benders algorithm over all formulations on average.

∑
j∈N+

i

uijyij ≥ ∑
k∈K:ok=i

dk ∀i ∈ N (4.7a)

102

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

∑
j∈N−i

ujiyji ≥ ∑
k∈K:sk=i

dk ∀i ∈ N (4.7b)

Table 4.6 displays the summary results for the performance of the Benders algorithm over
all formulations. The DA formulation outperforms other formulations on average. How-
ever, the PAe-5 formulation has still the best performance on the difficult instances of C
class in terms of the quality of the solutions and the optimality gaps. The trend differs over
the long instances as Table 4.7. Over these instances, the PAe-5 performs the best in terms
of all of the criteria. Moreover, the PAi-5 outperforms the DA and FA formulations. This
particularly emphasizes the effectiveness of the formulations based on partial aggregations
as their impact is more significant over long instances to reduce the LP computing time.
The results indicate that the subproblems of the partial formulations benefits from shorter
computing times, yet generate strong Benders cuts.

Table 4.6: Performance of the Benders algorithm over different formulations with added single-node cut-set
constraints (4.7a) and (4.7b) for all instances

Instance type DA FA PAe-5 PAi-5
Time #n Time #n Time #n Time #n

Easy - C+ (5) 137.7 210,528 540.4 539,608 191.3 255,806 433.6 375,894
Easy - R (75) 28.5 11,424 130.3 115,893 39.6 21,475 39.3 17,111
Easy - all (80) 35.3 23,868 156.0 142,375 49.1 36,121 63.9 39,535

#B #O G% #B #O G% #B #O G% #B #O G%
Medium - C (8) 8 8 – 1 0 5.42% 7 7 0.27% 7 7 0.57%
Medium - C+

(1)
1 1 – 1 0 0.43% 1 1 – 1 1 –

Medium - R (29) 29 29 – 0 0 9.52% 26 24 1.66% 24 23 1.52%
Medium - all (36) 38 38 – 2 0 8.42% 34 32 1.43% 32 31 1.39%

#B B% O% #B B% O% #B B% O% #B B% O%
Difficult - C (23) 13 3.67% 6.54% 0 5.69% 23.59% 4 0.73% 5.43% 6 1.03% 6.33%
Difficult - C+ (3) 1 0.14% 11.13% 1 6.89% 16.74% 0 5.06% 14.52% 1 6.68% 15.71%
Difficult - R (49) 28 0.63% 5.61% 0 4.70% 21.69% 16 0.90% 7.36% 7 1.32% 8.19%
Difficult - all (75) 42 1.54% 6.11% 1 5.09% 22.08% 20 1.01% 7.06% 14 1.45% 7.92%

Table 4.7: Performance of the Benders algorithm over different formulations with added single-node cut-set
constraints (4.7a) and (4.7b) for long instances

Instance type DA FA PAe-5 PAi-5
#B B% O% #B B% O% #B B% O% #B B% O%

Difficult - C (11) 4 7.66% 9.84% 0 6.05% 23.81% 2 0.51% 5.67% 5 0.60% 6.28%
Difficult - R (7) 0 2.58% 8.89% 0 6.29% 27.89% 5 0.58% 8.38% 2 2.53% 10.93%

Difficult - all (18) 4 5.68% 9.47% 0 6.14% 25.40% 7 0.54% 6.72% 7 1.35% 8.09%

The summary of the results on solving the MIP model is presented as performance
profiles in Figure 4.12. Such performance profiles are proposed by Dolan and Moré (2002)

103

4.5. COMPUTATIONAL RESULTS

100 101 102 103

Multiple of the fastest solution time

5

10

15

20

25

30

35

40

%
of

in
st

an
ce

s
so

lv
ed

(a) Class C

100 101 102 103

Multiple of the fastest solution time

10

20

30

40

50

60

70

80

90

%
of

in
st

an
ce

s
so

lv
ed

(b) Class C+

100 101 102 103 104

Multiple of the fastest solution time

0

20

40

60

80

%
of

in
st

an
ce

s
so

lv
ed

(c) Class R

100 101 102 103 104

Multiple of the fastest solution time

0

10

20

30

40

50

60

70

80

%
of

in
st

an
ce

s
so

lv
ed

(d) All instances

−0.04 −0.02 0.00 0.02 0.04

−0.04

−0.02

0.00

0.02

0.04

DA:default
PAe-5:default
PAi-5:default
FA:default

DA:no cut
PAe-5:no cut
PAi-5:no cut
FA:no cut

DA:Benders
PAe-5:Benders
PAi-5:Benders
FA:Benders

Figure 4.12: Performance profile of the formulations based on different aggregation schemes with respect to
solution time (log scale)

to evaluate and compare optimization solvers. A performance profile shows the percentage
of instances solved to the optimality within the multiple time of the fastest solution time of
each instance. Performance profiles are reported per instance class and overall. Generally,
the default setting performs better as expected. For the class C of instances, the PAe-5 for-
mulation performs the best. This formulation proves the most percentage of these instances
in less time in comparison with other formulations. Moreover, it solves more instances in
the fastest time in comparison with other formulations. In other words, PAe-5 using CPLEX
with the default settings is able to prove the optimality of almost 50% of instances, which
their optimality is proven in the time limit, in the fastest time. This is particularly inter-

104

CHAPTER 4. PARTIAL AGGREGATIONS FOR MULTICOMMODITY NETWORK FLOW
PROBLEMS

esting since this class of instances include large instances with many commodities, and
partial aggregation is effective on such instances. The trend for other instance classes and
average indicate the superiority of the FA formulation by using CPLEX with the default
settings as discussed before. Benders decomposition and FA with cutting plane algorithm
disabled performs poorly in comparison with other formulations. However, our goal for
Benders decomposition experiments is to study the impacts of aggregation schemes on
its performance and not to compare against state-of-the-art technology. While the cutting
plane algorithm significantly improves the performance of the FA formulation, the DA
formulation with cutting plane algorithm disabled performs better than the DA with de-
fault settings. In general, in shorter computing times, the DA with cutting plane algorithm
disabled perform better than the PAe-5 with the default setting. However, the performance
profile of the PAe-5 with the default setting surpasses the DA with cutting plane algorithm
disabled as the time passes.

4.6 Conclusions and Future Research

This chapter introduces new commodity representations for multicommodity network flow
problems. Such commodity representations are utilized to aggregate constraints and vari-
ables in the MIP model partially instead of the conventional full aggregation. We apply the
proposed partial aggregations to the multicommodity fixed-charge network design prob-
lem to show the implications of this approach. However, they are applicable to any other
problem that can be formulated with a multicommodity network flow subproblem, and for
which there exist an alternative fully-aggregated formulation. We propose two variants of
MIP formulations based on this partial aggregation concept and a heuristic algorithm for
constructing partial aggregations of various sizes. These MIPs are proven to provide valid
lower bounds for MCND which are tighter than the fully aggregated formulation. The
proposed MIPs and their LP relaxations are evaluated empirically through an extensive
computational study on benchmark instances. The results indicate that the partial formula-
tions have significantly shorter computing times in comparison with the DA formulation
with only small loss in the LP bound in contrast to the FA formulation. The proposed for-
mulations have dimensions in between the dimensions of the DA and FA formulations.
Furthermore, the proposed models form a Pareto frontier for the trade-off between the LP
bound and computing time, whether only the LP relaxation is solved or a cutting plane
algorithm is employed. We investigate the performance of the mixed-integer programming
algorithms over the formulations. The PAe-5 formulation is particularly effective for the
large instances with many commodities and long instances. In addition, the proper trade-
off between the LP bound and computing time benefits the partial formulations in the B&B

105

4.6. CONCLUSIONS AND FUTURE RESEARCH

algorithm. The partial formulations are also beneficial for long instances using a Benders
decomposition algorithm since the reduced sub-problems have shorter computing times
yet generate effective cuts.

We propose three possible directions for future research. First, partially-aggregated
formulations can be employed to develop specialized solution algorithms. Particularly, our
early experiments show that the Benders decomposition algorithm performs well over the
partial formulations for the long instances and large instances with many commodities.
The second direction is to develop valid cuts for the partial formulations. The DA and FA
formulations have been extensively studied to develop efficient cutting plane algorithms.
Similarly, cutting plane algorithms would be beneficial to solvers using partial aggregations.
The third direction is to apply this partial aggregation approach to other multicommod-
ity network flow problems and study the implications. The extensions are particularly
straightforward for the problems where there is no commodity-specific attribute over the
underlying network. As an example of such research directions, next chapter demonstrates
that how utilizing partial aggregations leads to the development of an efficient solution
algorithm for a problem with the multicommodity network flow substructure. The problem
studied is an abstract version of the LFMIR problem.

106

CHAPTER 5
From Partial Aggregations to Solution

Algorithms

5.1 Overview

This chapter demonstrates that partial aggregations can be used to develop efficient al-
gorithms for large network optimization problems with a multicommodity network flow
substructure. It applies the concept of partial aggregations introduced in Chapter 4 to a
variant of the locomotive fuel management problem (LFMIR) defined in Chapter 3. In
Section 5.2, we define an abstracted version of LFMIR, called Inline Fuel Delivery prob-
lem (IFD),which retains the main complexities arising from incorporating the inline tank
planning in the fuel management problem. We prove that this problem is also NP-hard in
Section 5.3. IFD is modelled based on a multicommodity network flow representation in
Section 5.4. We propose an aggregated formulation for IFD and improve it in Section 5.5.
However, unlike the MCND problem, when applying aggregations to this problem, one
may need to deal with the cases that the solution is infeasible. We discuss such cases in
Section 5.6. In Section 5.7, we propose partial aggregations and formulations for IFD and
employ them to develop an exact solution algorithm for the IFD problem. Computational
experiments in Section 5.8 confirm the efficiency of the proposed algorithm in providing
good-quality upper and lower bounds in short computing times in comparison with solv-
ing the disaggregated MIP model by a MIP solver.

107

5.2. THE INLINE FUEL DELIVERY PROBLEM

The approach presented in this chapter provides an example of the use of partial
aggregations in an algorithmic approach to:

1. Provide guides to generate good-quality upper bounds when the solution of the
(partially-) aggregated formulation is infeasible for the original problem, and

2. Employ the concept of partial aggregations to develop efficient, specialized solution
algorithms.

5.2 The Inline Fuel Delivery Problem

This section introduces an abstracted version of the LFMIR problem, called the inline fuel
delivery problem, IFD. Our motivation is to define a problem that retains the main com-
plexity driving factor of LFMIR while it is easy to understand how the proposed algorithm
performs and tackles this complexity. The main complexity factor of LFMIR is the huge
number of switch opportunities for inline tanks between the locomotives which expands
the solution space combinatorially. We design the IFD problem in a way that includes
this feature as we will show. Moreover, the operational details are dropped to study the
performance of the proposed algorithm for tackling this feature.

IFD seeks to minimize the total fuel purchasing costs. The main restriction is that
sufficient fuel must be supplied to all locomotives. The given information includes the set
of stations S , the set of locomotives L, and the set of inline tanksW . Each locomotive ` ∈ L
makes a single trip from its origin station ol to its destination station dl, which requires Dl
gallons/litres of fuel, which can be purchased from its origin station at price Cl ($ per unit
of fuel), or (in part) provided by an inline tank. The departure time αl and the arrival time
ωl of the trip of each locomotive are given and fixed. At the beginning of the time horizon,
each inline tank w ∈ W starts from the initial station sw and can be refueled only once at
this initial station at price Cw ($ per unit of fuel). The fuel capacity of each inline tanks is
limited to P.

The required fuel of a locomotive can be supplied directly from its origin station, from
the assigned inline tanks to it during the trip, or any combination of both. The inline tanks
assigned to a locomotive travel along with it from the origin station of the locomotive to
its destination. Fuel cannot be transferred between inline tanks at the stations or during
the trips. The number of inline tanks per locomotive is not limited. Moreover, it is not
required that the plan of inline tanks be cyclic. Given all required information, IFD consists
in determining the minimum-cost assignment of inline tanks to locomotives and the fuel
plan of the inline tanks. The fuel plan of each inline tank is the initial refueling amount
and the amount of fuel delivery by it to the assigned locomotives. Having the fuel delivery

108

CHAPTER 5. FROM PARTIAL AGGREGATIONS TO SOLUTION ALGORITHMS

amounts by the inline tanks, one can determine the minimum amount of fuel to purchase
for each locomotive at its origin station.

5.3 Complexity of the Problem

In this section, we study the theoretical complexity of the IFD problem. The proof is a
reduction from 3-Partition, which decides whether it is possible to partition a multiset of
integer numbers into 3 subsets (or k subsets in general) of equal sum. This problem is
proven to be weakly NP-hard when k = 2 (Karp, 1972) and strongly NP-hard when k ≥ 3
(Garey and Johnson, 1979).

Theorem 5.3.1. The IFD problem is weakly NP-hard when there are two inline tanks available and
is strongly NP-hard when there are at least three inline tanks available.

Proof. Consider an instance of the k-way number partition decision problem with the mul-
tiset S = {a1, a2, . . . , an}, where ∑n

i=1 ai = kT. The problem is to answer if it is possible to
partition S into k subsets, each with sum of T.

In order to reduce the partition instance, we consider different gadgets in the reduction
that each makes a part of the reduced instance and have different characteristics as the
following:

• Integer locomotives: there is one locomotive for each number ai in the multiset S.
For each locomotive i ∈ {1, . . . , n}, we have Di = ai, Ci = 1, αi = 2i − 1, ωi =

2i, oi = si, and di = si+1. Therefore, the set of integer locomotives L includes n
locomotives such that their trip times are mutually exclusive. Moreover, the stations
visited by these locomotives, in the order of the indices, make a sequence in the form
of (s1, s2, . . . , sn+1).

• Decimal locomotives: there are k− 1 locomotives per each number ai in the multiset
S, each have the same characteristic as their corresponding integer locomotive in the
set L, except the fuel consumption/demand which is equal to 1/n. Formally, there
are k− 1 decimal locomotives for each i ∈ L, where Dj

i =
1
n , Cj

i = Ci, α
j
i = αi, ω

j
i =

ωi, oj
i = oi, and dj

i = di for each j ∈ {1, . . . , k − 1}. Therefore, in total there are
n(k− 1) locomotives in the set of decimal locomotives L̄.

• The free locomotive: there is one locomotive l0 that makes a trip from the free station
s0, in which fuel price is equal to zero. This locomotives leaves s0 at the time zero and
arrives at the station s1 one time unit later. Formally, we have D0 = 0, C0 = 0, α0 =

0, ω0 = 1, o0 = s0, and d0 = s1.

• Inline tanks: there are k inline tanks, all initially located at the station s0 and each has

109

5.3. COMPLEXITY OF THE PROBLEM

the capacity of P = T + n−1
n .

Considering this reduction, we show that an instance of the k-way number partition
decision problem is satisfiable if and only if there is an optimal solution with total cost of
zero for its corresponding instance of IFD. Here, we consider each inline tank as a subset
that includes corresponding numbers of the “integer locomotives” which receive fuel from
that inline tank.

The total fuel consumption of all locomotives in the reduced instance is equal to kT +

k − 1 and the total capacity of the inline tanks is equal to kT + k n−1
n . Since kT + k n−1

n >

kT + k− 1 and inline tanks can be refueled initially with the cost of zero, there is enough
capacity in the available inline tanks to deliver free fuel to all locomotives. In particular,
when an instance of the k-way number partition decision problem is satisfiable, we can
translate the numbers in each subset to assignments of an inline tank to the corresponding
integer locomotives. Moreover, the corresponding inline tank of a subset is assigned to the
relevant decimal locomotives, when the corresponding number of an integer locomotive is
not included in that subset.

Conversely, assignments of inline tanks to integer locomotives correspond to including
the corresponding number in the subset that is represented by each inline tank. These
assignments, if having the total cost of zero, are equivalent to a solution of the k-way
number partition decision problem because of the two reasons. First, to have the cost of
zero, exactly one inline tank must be assigned to each locomotive, whether an integer or
a decimal locomotive. Therefore, each number is included in exactly one subset. Second,
since one inline tank is assigned to each integer locomotive and the inline tanks capacity is
T + n−1

n , each inline tank can deliver at most T units of fuel to integer locomotives. Here, all
fuel demand is covered by the inline tanks, and hence, each inline tank delivers exactly T
units of fuel to integer locomotives, which translates to the sum of T for the corresponding
subsets.

In addition, the IFD problem is in the class NP since every solution for this problem can
be certified in polynomial time whether all of the demands are satisfied or not. Furthermore,
the reduction is polynomial with respect to n and k. Therefore, the IFD problem is weakly
NP-hard with 2 inline tanks available and is strongly NP-hard with at least 3 inline tanks
available.

110

CHAPTER 5. FROM PARTIAL AGGREGATIONS TO SOLUTION ALGORITHMS

5.4 Mathematical Modeling

In this section a MIP model is proposed for the IFD problem. We first conceptualize the
problem as a time-expanded network. Then, a MIP model, with an underlying multicom-
modity network flow structure, is proposed.

5.4.1 Time-space network

We propose a time-space network for the IFD problem in this section. As the IFD problem
is an abstracted version of the LFMIR problem, its network representation is simpler than
the network proposed in Section 3.4.1. The IFD network conceptualizes the movement of
inline tanks, which are of two types: (a) staying at a station for a time period, (b) making a
trip along with a locomotive.

Nodes of the proposed network correspond to stations at different event times, where
each event time corresponds to an event (a locomotive arrival or departure) related to that
station. Formally, nodes corresponds to pairs (i, tij), where i ∈ S , tij ∈ Ti, and Ti is the set
of all event times of the station i and Ti = {0} ∪ {αl : ol = i, l ∈ L} ∪ {wl : dl, l ∈ L}.

Arcs of the proposed network represent the two types of movements by idle arcs and
trip arcs. An idle arc connects two consecutive nodes of a station, (i, tij)→ (i, tij+1), which
represents that an inline tank stays at station i during time period [tij, tij+1]. Each trip by a
locomotive is represented by a trip arc. A trip arc that represents the trip of locomotive l
connects the node that represents the departure time of l from the origin ol to the node that
represents the arrival time of l to the destination dl, i.e. (ol, αl)→ (dl, ωl). Trip arcs have a
demand equal to the fuel consumption of the corresponding locomotive. Note that as this
network corresponds to trains schedules and also we drop the cyclicity requirement in IFD,
the proposed time-space network is an acyclic directed network.

An example of such time-space network is shown in Figure 5.1. The solid black nodes
represent the initial location of the inline tanks. This network represents 3 stations (s1, s2

and s3), 4 locomotive trips (l1, . . . , l4), and 2 inline tanks (w1 and w2).

s1

s2

s3

w2

w1

l1 l2

l4l3

Figure 5.1: The time-space representation of the IFD problem

111

5.4. MATHEMATICAL MODELING

5.4.2 The MIP model

Fuel cannot be transferred between inline tanks, either at stations or during trips. Therefore,
to develop the MIP model, we consider each inline tank as a distinct commodity. This results
in a multicommodity type formulation, which in fact replicates the proposed time-space
network in Section 5.4.1 for each inline tank. The following notation and decision variables
are adopted for the proposed MIP.

Sets and parameters

A Set of arcs of the time-space network
Ã Set of trips arcs of the time-space network
Ov Set of outgoing arcs of node v in the time-space network
Iv Set of incoming arcs of node v in the time-space network

V Set of nodes of the time-space network with at least one outgoing
arc

W Set of available inline tanks
αw

v A binary parameter; 1 if node v corresponds to the initial location of
the inline tank w, 0 otherwise

Da Fuel demand of trip arc a
Ca Price of direct fuel purchase for demand of trip arc a
Cw Fuel price at the initial location of inline tank w
P Inline tank fuel capacity

Decision variables
xw

a 1, if inline tank w is assigned to arc a, 0 otherwise
uw

a The amount of fuel delivery to arc a by inline tank w
ra The amount of direct fuel purchase for the demand of arc a
rw The amount of initial refueling of inline tank w

The proposed MultiCommodity Formulation for IFD (IFD-MCF) is as follows.

(IFD-MCF) Min ∑
w∈W

Cwrw + ∑
a∈Ã

Cara (5.1a)

s.t : ∑
a∈Ov

xw
a − ∑

a∈Iv

xw
a = αw

v ∀w ∈ W , v ∈ V (5.1b)

uw
a ≤ Daxw

a ∀w ∈ W , a ∈ Ã (5.1c)

∑
w∈W

uw
a + ra = Da ∀a ∈ Ã (5.1d)

112

CHAPTER 5. FROM PARTIAL AGGREGATIONS TO SOLUTION ALGORITHMS

∑
a∈Ã

uw
a = rw ∀w ∈ W (5.1e)

0 ≤ rw ≤ P ∀w ∈ W (5.1f)

0 ≤ ra ≤ Da ∀a ∈ Ã (5.1g)

0 ≤ uw
a ≤ Da ∀w ∈ W , a ∈ Ã (5.1h)

xw
a ∈ {0, 1} ∀w ∈ W , a ∈ A (5.1i)

The objective function (5.1a) minimizes the total fuel purchasing cost. Constraint (5.1b)
assigns a set of feasible arcs to each inline tank. The assignments of an inline tank accord-
ingly determine its route. Constraint (5.1c) ensures that fuel is delivered only to the arcs
that the inline tank passes. Constraint (5.1d) guarantees that the fuel demand of all arcs
are satisfied. Fuel can be supplied by two sources: the assigned inline tanks (∑ uw

a) and
direct purchase from the origin station (ra). Constraint (5.1e) states that total fuel delivery
by an inline tank is equal to its initial refueling amount. Decision variables are defined in
(5.1f)–(5.1i).

5.5 Dealing with Large Instances Using Aggregations

IFD-MCF becomes intractable for large instances of IFD, and as we will show, commercial
solvers fail to solve or even find good-quality solutions for IFC-MCF over large instances.
Aggregation methods may be useful to deal with such large instances. As discussed in
Chapter 4, the common approach for commodity aggregation is to aggregate commodities,
inline tanks in this case, with the same origin or with the same destination. Here, we prefer
the destination-based aggregation as it results in one commodity/dispersion in total. This is
because inline tanks do not have a predetermined destination, and hence, we can consider
a dummy destination node as the shared destination for all inline tanks.

To obtain the aggregated formulation of IFD-MCF based on the destination-based
approach, AMCF, we can modify IFD-MCF by:

1. Summing (5.1b) over w ∈ W for all v ∈ V , decreasing the number of flow conserva-
tion constraints by the factor of |W|.

2. Summing (5.1c) over w ∈ W for all a ∈ Ã, decreasing the number of such linking
constraints by the factor of |W|.

3. Summing the constraint set (5.1e) into one constraint.

We then replace the common expressions ∑w∈W xw
a and ∑w∈uw

a
uw

a with na and va, respec-
tively, which represent the aggregate variables. The variable na shows the number of inline

113

5.5. DEALING WITH LARGE INSTANCES USING AGGREGATIONS

tanks assigned to the arc a, and the variable va determines the total fuel delivery by inline
tanks to the arc a. The resulting AMCF model is provided below.

(AMCF) Min ∑
w∈W

Cwrw + ∑
a∈Ã

Cara (5.2a)

s.t : ∑
a∈Ov

na − ∑
a∈Iv

na = ∑
w∈W

αw
v ∀v ∈ V (5.2b)

va ≤ Dana ∀a ∈ Ã (5.2c)

va + ra = Da ∀a ∈ Ã (5.2d)

∑
a∈Ã

va = ∑
w∈W

rw (5.2e)

0 ≤ rw ≤ P ∀w ∈ W (5.2f)

0 ≤ ra ≤ Da ∀a ∈ Ã (5.2g)

0 ≤ va ≤ Da ∀a ∈ Ã (5.2h)

na ∈ {0, 1, . . . , |W|} ∀w ∈ W , a ∈ A (5.2i)

The AMCF model reduces the number of variables and the number of constraints of
the IFD-MCF model approximately by the factor of |W|. However, the AMCF model is
weak and fails to provide tight lower bounds for IFD-MCF. A main reason of the weakness
of AMCF is that it allows that the fuel of inline tanks be transported to some arcs of the
network without transporting the inline tanks, which carry that fuel, to such arcs. We show
an example of such “illegal” fuel teleportations on a small instance. Consider an instance
of IFD, which its corresponding time-space network is shown in Figure 5.2. This example
includes 4 trips that correspond to arcs a1, . . . , a4. The fuel demand of direct fuel purchase
price for corresponding trips of arcs a1, . . . , a4 are respectively as: D1 = 10 & C1 = 0, D2 =

10 & C2 = 0, D3 = 10 & C3 = 1, and D4 = 10 & C4 = 1. The fuel demand and direct fuel
purchase price for each arc are shown on their labels in Figure 5.2. There are two inline
tanks, w1 and w2, initially located at the stations s1 and s5 with the capacity of P = 10. Both
inline tanks are initially located at stations with the fuel price of 0. Therefore, they can be
initially refueled with the price of 0.

The optimal solution for AMCF over the network of Figure 5.2 is as: na1 = na2 =

na3 = na4 = 1, rw1 = 10, rw2 = 10, va3 = 10, va4 = 10, ra1 = 10, ra2 = 10 and other
variables equal to zero with the total cost of $0. However, this solution is infeasible for the
IFD problem. It implies that the fuel in inline tank w1 is delivered to the arc a4 through a
fuel teleportation to this arc while it is impossible for this inline tank to reach the arc a4

114

CHAPTER 5. FROM PARTIAL AGGREGATIONS TO SOLUTION ALGORITHMS

s1

s2

s3

s4

s5

w1

w2

a1 : [10, 0]

a2 : [10, 0]
a3 : [10, 1]

a4 : [10, 1]

Figure 5.2: An example time-space network for IFD, in which the AMCF model gives solutions with “illegal”
fuel teleportation. In this example, fuel in the inline tank w1 can be transported to the inline tank w2 on the
arc a4 based on the optimal solution of AMCF. The label on each arc shows their index and a tuple that its
first entry is the demand and the second entry is the direct fuel purchase price for that arc.

based on its initial location and the time-space network.

We can avoid such illegal fuel teleportations in AMCF by considering an origin-based
aggregation approach. However, this increases the size of model linearly in the number of
stations from which inline tanks originate. Here, we propose an alternative approach to
avoid illegal fuel teleportations. We add new variables and constraints to trace the total fuel
flow in the inline tanks throughout the network. This is in addition to tracing of the number
of inline tanks that the AMCF model does by the flow conservation constraints (5.2b).
By this approach, the size of model does not increase significantly, yet avoids illegal fuel
teleportations. Let fa be the decision variable that determines the total fuel in the inline
tanks on the arc a. The aggregated model that incorporates the inline tanks fuel tracing,
called ANF in the rest of thesis, is provided below.

(ANF) Min ∑
w∈W

Cwrw + ∑
a∈Ã

Cara (5.3a)

s.t : ∑
a∈Ov

na − ∑
a∈Iv

na = ∑
w∈W

αw
v ∀v ∈ V (5.3b)

fa ≤ Pna ∀a ∈ A (5.3c)

∑
a∈Ov

fa − ∑
a∈Iv

fa + ∑
a∈Ĩv

va = ∑
w∈W

αw
v rw ∀v ∈ V (5.3d)

va ≤ fa ∀a ∈ Ã (5.3e)

va + ra = Da ∀a ∈ Ã (5.3f)

na ∈ {0, 1, . . . , |W|} ∀a ∈ A (5.3g)

115

5.6. INFEASIBILITIES ARISE BY (FULL) AGGREGATION

0 ≤ fa ≤ |W|P ∀a ∈ A (5.3h)

0 ≤ va, ra ≤ Da ∀a ∈ Ã (5.3i)

0 ≤ rw ≤ P ∀w ∈ W (5.3j)

Objective function (5.3a) minimizes the total fuel purchasing costs same as the objective
function (5.1a). Flow conservation constraint (5.3b) determines the total number of inline
tanks assigned to each arc of the network. Constraint (5.3c) limits the total fuel in the inline
tanks on an arc to the total capacity of the available inline tanks on that arc. Constraint (5.3h)
conserves the fuel flow in the inline tanks. This constraint also incorporates the loss of
fuel flow that is delivered to locomotives. Constraint (5.3e) states that the total amount
of fuel delivery to an arc is limited to the available fuel in the inline tanks on that arc.
Constraint (5.3f) ensures the demand satisfaction, either by delivery by inline tanks (va)
or by direct fuel purchase from the origin station (ra). Decision variables are defined and
bounded in constraints (5.3g)-(5.3j).

The only dimension of ANF that grows with an increase in the number of available
inline tanks, is the number of rw variables, as the constraints and other variables are stated
per each node or each arc of the time-space network once. Therefore, the ANF model is
stronger than the AMCF model with a little computational expense, and we employ the
ANF model as the aggregated model for IFD in the next sections.

5.6 Infeasibilities Arise by (Full) Aggregation

Although aggregations significantly reduce the model size for the IFD problem, unlike the
MCND problem, the solution of the aggregated model is not always feasible for the original
problem. The infeasibilities arise because of the possibility of fuel transfer between inline
tanks in the AFN solution. Here, we distinguish between the fuel transfer and the fuel
teleportation that is discussed in Section 5.5. Fuel transfer occurs when two inline tanks on
the same arc of the network transfer fuel between each other, while, fuel teleportation is
the transportation of the fuel of an inline tank to an arc of the network that is not visited by
that inline tank. In this section, we discuss the cases in which fuel transfer may occur.

IFD-MCF considers each inline tank as a distinct commodity. Therefore, commodity
aggregation in this case translates to aggregating inline tanks. Aggregating a group of
inline tanks on an arc of the time-space network implies that: (a) the capacity of aggregated
inline tanks is accumulated as one inline tank with a larger capacity, and (b) the fuel in the
aggregated inline tanks are combined into the larger inline tank. These implications allow
the fuel transfer between aggregated inline tanks, which is prohibited in the original IFD

116

CHAPTER 5. FROM PARTIAL AGGREGATIONS TO SOLUTION ALGORITHMS

problem.

As an example, consider the time-space network shown in Figure 5.3. In this example,
the fuel price at the station s1 is 0, while it is equal to 1 at other stations. There are 6 trips in
total that correspond to arcs a1, . . . , a6, and the arc a7 is an idle arc. The fuel demand and
direct fuel purchase price for the corresponding trips of arcs a1, . . . , a6 are respectively as:
D1 = 10 & C1 = 0, D2 = 10 & C2 = 0, D3 = 10 & C3 = 1, D4 = 10 & C4 = 1, D5 =

15 & C5 = 1, and D6 = 5 & C6 = 1. The fuel demand and direct fuel purchase price for
each arc are shown on their labels in Figure 5.3. There are two inline tanks, w1 and w2, both
initially located at the station s1 with the capacity of P = 20.

s1

s2

s3

s4

w1, w2

a1 : [10, 0]

a
2 : [10, 0]

a3 : [10, 0]

a4
: [1

0, 0]
a7 : [0, 1]

a5
: [1

5, 1]

a6 : [5, 1]

Figure 5.3: An example time-space network for IFD, in which aggregating inline tanks allows fuel transfer
between inline tanks. In this example, if we aggregate inline tanks w1 and w2 on arc a7, they can transfer fuel
on this arc to reduce the total fuel purchasing costs further. The label on each arc shows their index and a
tuple that its first entry is the demand and the second entry is the direct fuel purchase price for that arc.

An optimal solution for IFD-MCF over the network of Figure 5.3 is as: rw1 = 20, rw2 =

20, uw1
a3 = 10, uw1

a5 = 10, uw2
a4 = 10, uw2

a6 = 5, ra1 = 10, ra2 = 10, ra5 = 5, and other variables
equal to zero with the total cost of $5. This means that when inline tanks w1 and w2 arrive
at the origin node of arc a7, the fuel level of each of them is equal to 10. If we aggregate
these two inline tanks on arc a7, they can transfer fuel on this arc to have a fuel level of 15
for the inline tank w1 and a fuel level of 5 for the inline tanks w2. Therefore, the optimal
solution in the aggregated case changes to uw1

a5 = 15 and ra5 = 0 with the total cost of $0.

5.7 Partial Aggregations Shine

The possibility of fuel transfer between the aggregated inline tanks may result in infeasible
solutions for the IFD problem. Therefore, aggregated formulations cannot be directly used
to obtain upper bounds for the original problem. Moreover, the disaggregated formulation,

117

5.7. PARTIAL AGGREGATIONS SHINE

i.e. the IFD-MCF model, is intractable for large IFD instances. These indicate that the partial
aggregation may be useful for IFD as formulations based on partial aggregations usually
offer a trade-off for the advantages of the disaggregated and the fully-aggregated models.
In this section, we propose partial aggregation schemes for IFD and utilize them to develop
a solution algorithm. Section 5.7.1 proposes tailored partial aggregations for IFD based on
the characteristics of the underlying time-space network. Section 5.7.2 modifies the ANF
formulation to incorporate such partial aggregations. Section 5.7.3 develops a solution
algorithm using the proposed partial aggregation scheme and formulation.

5.7.1 Constructing Partial Aggregations

Recall from Chapter 4 that a partial aggregation of commodities consists of a set of disper-
sions, where for every commodity there is a dispersion that includes that commodity. Here,
we adopt the destination-based aggregation and consider the inline tanks as commodities.
Therefore, the partial aggregation B for IFD in fact includes only one dispersion b. As per
Definition 1 in Section 4.2, we define the dispersion b for an instance of IFD as:

1. Set of commodities Kb =W that share a common destination.

2. The set of destination nodes Nb includes only a dummy node as the destination for
all inline tanks.

3. On each arc a ∈ A, the set ofW is partitioned into a subset Ka
b of inline tanks aggre-

gated on that arc and its complement Da
b which are disaggregated on that arc.

We now discuss the method to construct the dispersion b, which is in fact determining
the subsets Ka

b and Da
b for each arc a ∈ A. To construct the partial aggregations, instead of

the shortest path approach for the MCND problem, we propose a Time-Based Aggregation
approach (TBA) here as the time plays an important role in the underlying network of
IFD. Intuitively, TBA disaggregates the inline tanks on incident arcs of their reachable
nodes within a disaggregation time period [0, t] and keeps them aggregated on others arcs to
construct a partial aggregation. Let nw be the node of the time-space network that represents
the initial location of the inline tank w, i.e. nw = (sw, 0). Formally, TBA disaggregates an
inline tank w on all incoming and outgoing arcs of the node i = (si, ti) where 0 ≤ ti ≤ t
and there is a path from the node nw to the node i.

Suppose that inline tank w is disaggregated on a set of arcs Aw based on TBA over
the disaggregation time period [0, t]. The trip arcs in the set Aw are shown by the set Ãw.
Since TBA disaggregates the inline tanks based on the corresponding times of the nodes, it
partitions the nodes of the network into three subsets for each inline tank:

1. Set of disaggregated nodes Vw, where the inline tank w is disaggregated on their incom-

118

CHAPTER 5. FROM PARTIAL AGGREGATIONS TO SOLUTION ALGORITHMS

ing and also their outgoing arcs, i.e. Vw = {i = (si, ti) ∈ V|ti ≤ t & there is a path
from nw to i}.

2. Set of semi-disaggregated nodes V̄w, where the inline tank w is disaggregated only on
their incoming arcs, i.e. V̄w = {i = (si, ti) ∈ V|ti > t & ∃a ∈ Ii where origin of a ∈
Vw}.

3. Set of aggregated nodes which includes other nodes than the disaggregated and the
semi-disaggregated nodes, i.e. V \ {Vw ∪ V̄w}.

For any partial aggregation by TBA, nw ∈ Vw for all inline tanks w ∈ W . Therefore,
each inline tank first travels between its disaggregated nodes and then exits its set of disag-
gregated nodes by traversing to one of its semi-disaggregated or aggregated nodes. Since
the time-space network of IFD is an acyclic directed network, an inline tank cannot return
to set of its disaggregated nodes once it exits them. Hence, to incorporate the TBA partial
aggregations and develop a partially-aggregated formulations, we are not required to add
the tightening constraints introduced in Chapter 4.

5.7.2 Partially-Aggregated Formulations

To incorporate a TBA partial aggregation, it is enough to create new variables that corre-
spond to the disaggregated arcs Aw of each inline tank w ∈ W , and add and modify the
relevant constraints. We define following parameters to modify the AFN model.

βw
v A binary parameter; 1 if v ∈ Vw, 0 otherwise,

γw
a A binary parameter; 1 if a ∈ Aw, 0 otherwise.

The steps to modify the AFN model to incorporate a partial aggregation obtained by
TBA for the disaggregation time period [0, t] includes:

1. Create new decision variables defined as the constraint set 5.4 for each w ∈ W . The
purpose of these variables is the same as the purpose of na, fa, and va variables, but
for individual inline tanks.

xw
a ∈ {0, 1} ∀a ∈ Aw (5.4a)

0 ≤ f w
a ≤ P ∀a ∈ Aw (5.4b)

0 ≤ vw
a ≤ Da ∀a ∈ Ãw (5.4c)

2. Modify the flow conservation constraint (5.3b) to the equation (5.5). This ensures
that inline tanks visit the aggregated or semi-aggregated nodes after they exit their

119

5.7. PARTIAL AGGREGATIONS SHINE

disaggregated nodes.

∑
a∈Ov

na − ∑
a∈Iv

na − ∑
w∈W :v∈V̄w

∑
a∈Iv

xw
a = ∑

w∈W
αw

v (1− βw
v) ∀v ∈ V (5.5)

3. Modify the flow conservation constraint (5.3d) to the equation (5.6). This ensures that
the fuel of inline tanks flow to the aggregated or semi-aggregated nodes after they
exit their disaggregated nodes.

∑
a∈Ov

fa − ∑
a∈Iv

fa + ∑
a∈Ĩv

va − ∑
w∈W :v∈V̄w

∑
a∈Iv

f w
a + ∑

w∈W :v∈V̄w
∑

a∈Ĩv

vw
a

= ∑
w∈W

αw
v (1− βw

v)rw ∀v ∈ V (5.6)

4. Modify the demand satisfaction constraint (5.3f) to the equation (5.7). This incorpo-
rates the fuel delivery of individual inline tanks to their disaggregated arcs.(

∑
w∈W :a∈Ãw

vw
a

)
+ va + ra = Da ∀a ∈ Ã (5.7)

5. Add the required flow conversation and linking constraints for the new variables as
the constraint set (5.8) to ensure feasible (partial) paths and flows for inline tanks
within their disaggregated nodes.

∑
a∈Ov

xw
a − ∑

a∈Iv

xw
a = αw

v βw
v ∀w ∈ W , v ∈ Vw (5.8a)

f w
a ≤ Pnw

a ∀w ∈ W , a ∈ Aw (5.8b)

∑
a∈Ov

f w
a − ∑

a∈Iv

f w
a + ∑

a∈Ĩv

vw
a = αw

v βw
v rw ∀w ∈ W , v ∈ Vw (5.8c)

vw
a ≤ f w

a ∀w ∈ W , a ∈ Ãw (5.8d)

The fully-aggregated model (5.3) does not provide information for the path of indi-
vidual inline tanks and only gives the total number of inline tanks on each arc through na

variables. However, as constraints (5.5) and (5.8a) indicate, the partially-aggregated formu-
lation provides information for the path of individual arcs on their disaggregated arcs by
xw

a variables. These information gives the path of inline tanks over a subset of network,
and we call them partial paths. Such partial paths provides feasible solutions for the original
problem over a subset of the network.

120

CHAPTER 5. FROM PARTIAL AGGREGATIONS TO SOLUTION ALGORITHMS

5.7.3 The Partial Aggregation-Based Algorithm (PAA)

This section develops a partial aggregation-based algorithm for the IFD problem. The PAA
algorithm consists of four successive steps that are iterated until the termination condition
is met.

In the first step, the PAA algorithm solves an aggregated model (ANF) which gives a
lower bound on IFD and also a guide for finding upper bounds. The ANF model that PAA
solves is the fully aggregated model (5.3) at the first iteration. However, as it progresses
it modifies the ANF model to incorporate the partial aggregations that it constructs in the
fourth step. The guide that this step provides is the total number of inline tanks assigned to
each arc and possibly partial paths provided by the partially-aggregated models.

In the second step, inline tanks are greedily routed, one by one, based on the guide
provided in the first step. Here, a fast algorithm to route the inline tanks is useful as we have
a guide to route them. Our initial experiments show that the computing time of IFD-MCF
instances with one inline tank available is fast and usually less than 0.5 seconds. Therefore,
we employ the GA algorithm introduced in Section 3.7.1 but with using the provided guide
by the first step. Recall that at every iteration, GA myopically optimizes the route and fuel
plan of one inline tank by solving a IFD-MCF model with one inline tank available. An
inline tank is routed based on the available partial path for it and the number of inline tanks
on the arcs provided by the guide. The route and fuel plan of that inline tank are fixed in
subsequent iterations, and the demand of the locomotives that receive fuel from this inline
tank as well as the number of inline tanks on the arcs in the guide are updated accordingly.
GA terminates when all inline tanks are routed.

Once routes of inline tanks are determined, fuel deliveries of all inline tanks are simul-
taneously optimized by solving an easy LP problem in the third step, which provides a
feasible solution to IFD.

The fourth step constructs a partial aggregation by TBA for the disaggregation time
period [0, t]. The size of the disaggregation time period t is equal to τ percent of the time
horizon at the first iteration, and increases by τ percent of the time horizon at each sub-
sequent iteration, where τ is a user-defined parameter. Then, the ANF model is modified
based on such a partial aggregation. An overview of PAA is given in Algorithm 2. The time
horizon of an IFD instance is shown by T and is equal to maxl∈L ωl.

As the PAA algorithm progresses, the disaggregation time period size t for construct-
ing partial aggregations increases, which expands the span of the disaggregated arcs and
nodes. This implies that the ANF model becomes closer to the original disaggregated model
as t increases at each iteration. Therefore, unless the time limit is reached, the PAA algo-
rithm is an exact algorithm that is able to prove the optimality of the original IFD problem.

121

5.8. COMPUTATIONAL RESULTS

Algorithm 2: The PAA algorithm
Input: W , G = (A,V), the optimality gap tolerance ε, Timelimit, τ, and T
Output: Routes and fuel plans for all inline tanks and locomotives
Initialization: Develop the fully-aggreagated ANF model as (5.3), and t = τ × T
while Timelimit is not reached and UB−LB

UB > ε do
Step 1: Solve ANF to obtain a lower bound, LB, and the guide for routing inline
tanks

Step 2: Route inline tanks greedily based on the guide obtained in Step 1
Step 3: Optimize the fuel delivery of inline tanks simultaneously to obtain an upper
bound, UB

Step 4: Construct a partial aggregation by TBA for the disaggregation time period
[0, t] and modify the ANF model accordingly, and update t := t + τ × T

end

However, we demonstrate in the next section that, in practice, only a few iterations are
sufficient to achieve a lower bound that is equal to the optimal value of the LP relaxation
of IFD-MCF. As ANF gets modified by the progress of PAA, its lower bound may increase
and also the obtained partial paths becomes longer, which means the guide provides more
accurate information for the greedy algorithm to route inline tanks.

5.8 Computational Results

In this section, we perform a set of computational experiments to evaluate the efficiency of
the PAA algorithm in providing good-quality lower and upper bounds. We use the dataset
from the INFORMS Problem Solving Competition (2010), which is described in Section 3.7.
Recall that this dataset is a large instance of the refueling problem that includes 2996 train
schedules with 5264 trip legs. As in the IFD problem, it is assumed that each locomotive
makes a single trip, we consider that each trip leg is made by a distinct locomotive, resulting
in a total of 5264 locomotives with a single trip. Fuel prices range from $2.90 to $3.56 per
gallon, and the total consumption of all locomotives is 3,595,522 gallons. We adjust the fuel
prices so they range from $0.00 to $0.66 so that the objective function does not include the
constant part and hence, the results and optimality gaps distinguish the performance of
different solution approaches better. We consider 8 different sizes of the problem where the
number of available inline tanks vary from 25 to 200.

We consider two solution approaches for the IFD problem in our experiments, solving
the IFD-MCF model by Gurobi and using the PAA algorithm. The PAA algorithm requires
two user-specified parameters, the optimality gap tolerance (ε) and the percentage of in-

122

CHAPTER 5. FROM PARTIAL AGGREGATIONS TO SOLUTION ALGORITHMS

crease in the disaggregation time period in each step (τ). We consider a same optimality
gap tolerance as the default Gurobi setting, i.e. ε = 0.01%, and based on our initial exper-
iments, we set the parameter τ to 4%. We choose a small tolerance gap because of two
reasons: first, our goal is to propose an exact method. Second, the objective function reports
the weekly costs, and hence, even a slight reduction in the objective function translates to
annual savings worth thousands of dollars. All computational experiments are run on a
cluster with 4 Xeon-Gold-6150 cores and 16 GB RAM using Gurobi 9.1 via a Python API as
the LP and the MIP solver. Default Gurobi settings are always selected. The PAA algorithm
is also implemented in Python 3.6. A time limit of 12 hours (43,200 seconds) is considered
for both approaches.

Table 5.1 gives a summary of the performance of these two approaches over 8 instances.
For each approach, the best upper bound (UB), the best lower bound (LB), the optimality
gap (Gap=UB−LB

UB ∗ 100), and the total computing time in seconds (Time) are reported. For
all instances, the lower bound obtained by the PAA algorithm is the same as the lower
bound by the IFD-MCF model. Note that these lower bounds are the same as the optimal
value of the LP relaxation of the IFD-MCF model for all instances. For instances with 25,
50, and 75 inline tanks available, the PAA algorithm proves the optimality significantly
faster. Although for instances with 100 and 125 inline tanks available, the solution by the
PAA algorithm has a slightly larger optimality gap, the solutions are close to optimality.
Moreover, the PAA algorithm finds such solutions in significantly shorter times as we will
show later in this section. The performance of Gurobi is particularly weak over instances
with 150 and more inline tanks available, where it fails to provide any feasible solution in 12
hours. However, the PAA algorithm provides solutions with almost 1% gap within the time
limit. In summary, these results demonstrate the efficiency of the PAA algorithm, which
is mainly because it solves the fully- and partially-aggregated formulations which require
shorter computing times. As the results suggest, solving the aggregated formulations gives
tight lower bounds and also reliable guides to find good-quality upper bounds.

The PAA algorithm is not only efficient in proving optimality, but also it provides
good-quality lower and upper bounds in short computing times as shown in Table 5.2. This
table reports the upper and lower bounds and the gap between those, obtained in the first
iteration of the PAA algorithm. The time that PAA takes to find these bounds is reported
in the column Time. For comparison, the computing time of the IFD-MCF root relaxation
for the same instance is shown in the last column. As Table 5.2 shows, the PAA algorithm
generates bounds with a small gap in short times, much faster that just solving the root
relaxation of IFD-MCF. Note that the gap shown here is between the bounds reported in the
table, and the actual optimality gap of the upper bound is even smaller. Moreover, the PAA
algorithm improves the first obtained upper and lower bounds for all instances (except

123

5.8. COMPUTATIONAL RESULTS

Table 5.1: Comparing the performance of solving the IFD-MCF by the MIP solver and using the PAA algorithm
over different instance sizes of the IFD problem.

Size IFD-MCF PAA

UB LB Gap Time UB LB Gap Time

25 830,224.9 830,224.9 0.00% 437.1 830,224.9 830,224.9 0.00% 18.8
50 767,318.7 767,284.0 0.00% 2129.7 767,320.8 767,284.0 0.00% 173.5
75 720,559.7 720,496.8 0.01% 25306.2 720,559.7 720,496.8 0.01% 692.1

100 692,179.7 692,179.7 0.00% 28409.5 693,453.4 692,179.7 0.18% 43200
125 665,624.2 665,273.0 0.05% 43200 670,367.2 665,273.0 0.76% 43200
150 – 6461,56.3 – 43200 651,042.5 646,156.3 0.75% 43200
175 – 626,997.6 – 43200 634,009.2 626,997.6 1.11% 43200
200 – 603,428.5 – 43200 610,239.4 603,428.5 1.12% 43200

with 25 inline tanks which its optimality is proved in the first iteration) as the comparison
between the corresponding figures in Tables 5.1 and 5.2 indicate. This demonstrates that
constructing partial aggregations in the next iterations of the PAA algorithm is effective in
both improving the lower bound and providing better guides to generate an upper bound.

Table 5.2: The quality of obtained bounds by the PAA algorithm in the first iteration, and comparing the
required time to find those with the computing time of the IFD-MCF root relaxation.

Size UB LB GAP Time IFD-MCF root relaxation time

25 830,224.9 830,224.9 0.00% 18.8 416.4
50 768,882.9 767,284.0 0.21% 49.3 1683.2
75 723,852.7 719,561.5 0.59% 61.3 12,777.4

100 694,832.8 690,915.4 0.56% 93.2 12,888.0
125 672,017.1 663,896.8 1.21% 132.9 1588.7
150 654,349.5 644,594.9 1.49% 95.5 2296.3
175 634,057.5 624,839.2 1.45% 104.5 2776.3
200 613,009.7 601,559.2 1.87% 131.2 3216.3

We now demonstrate that progress of the PAA algorithm by increasing the disaggrega-
tion time period size improves both lower and upper bounds by showing its performance
over an instance. Table 5.3 reports the progress of the PAA algorithm over an instance of
IFD with 75 inline tanks. Here, column Total time shows the total elapsed time by PAA up
to the corresponding iteration. The time taken by each step of PAA at the corresponding
iteration of each row is shown in the last four columns of the table. The column D% reports
the percentage of the time-space network on which inline tanks are disaggregated. As the
table shows, the algorithm converges when inline tanks are disaggregated on 19.1% of the

124

CHAPTER 5. FROM PARTIAL AGGREGATIONS TO SOLUTION ALGORITHMS

network at the iteration 6. Based on the times reported in the last four columns, the time
required by all steps remain almost the same except the first step. This is expected because
as the algorithm progresses, the number of variables and constraints of the AFN model
increases. The convergence of PAA is due to improvement in both the upper bound and the
lower bound. The lower bound is improved because the disaggregated period increases as
the algorithm progresses and hence, AFN becomes a more accurate estimate of the original
problem. The increase in the disaggregated period results in creating more xw

a variables in
AFN that describes a partial path for individual inline tanks. Subsequently, longer partial
paths by added xw

a variables in the AFN model benefits the greedy algorithm in the second
step for generating better paths.

Table 5.3: The convergence of the PAA algorithm over an instance of the IFD problem with 75 inline tanks
available.

Iter. D% Total time UB LB Gap Time of each step

Step 1 Step 2 Step 3 Step 4

1 0.0% 61.3 723,852.7 719,561.5 0.59% 22.0 38.7 0.7 0.0
2 3.8% 129.3 723,707.8 719,561.5 0.57% 25.8 41.7 0.4 0.0
3 7.6% 188.5 723,209.6 719,950.9 0.45% 16.4 42.2 0.6 0.0
4 11.4% 283.6 723,209.6 720,496.8 0.38% 50.0 44.5 0.6 0.0
5 15.3% 481.1 722,064.4 720,496.8 0.22% 152.1 44.9 0.4 0.1
6 19.1% 692.1 720,559.7 720,496.8 0.01% 169.5 41.0 0.4 0.2

To show the effectiveness of the PAA algorithm in providing lower bounds as tight
as the IFD-MCF formulation during its progress, we compare the initial lower bound the
best lower bound obtained by the PAA algorithm in Table 5.4. The first lower bound and
the best lower bound obtained by PAA are shown in the second and third columns, re-
spectively. The improvement from the first lower bound to the best lower bound is shown
in the column Improvement in percentage. The iteration at which the best lower bound is
shown in the column Iteration. The column D% expresses the percentage of the network
on which inline tanks are disaggregated at such iteration, and the last column reports the
computing time of the corresponding AFN model. The best lower bound is achieved at
the first iteration with the fully-aggregated formulation for instances with 25 and 50 inline
tanks . However, the best lower bound is achieved at the subsequent iterations with the
partially-aggregated formulation for larger instances. The best lower bound obtained by
PAA for all instances is the same as the optimal value of the LP relaxation of the correspond-
ing IFD-MCF formulation. Note that the optimal value of the LP relaxation of IFD-MCF is
usually same as its optimal integer solution as shown for instances in Table 5.1.

125

5.9. CONCLUSIONS AND FUTURE RESEARCH

Table 5.4: Comparing the first and the best lower bounds obtained by the PAA algorithm.

Size Initial LB Best LB Improvement Iteration D% ANF time

25 830,224.9 830,224.9 0.00% 1 0.0% 8.0
50 767,284.0 767,284.0 0.00% 1 0.0% 23.8
75 719,561.5 720,496.8 0.13% 4 11.4% 50.0
100 690,915.4 692,179.7 0.18% 9 30.5% 4319.7
125 663,896.8 665,273.0 0.21% 6 19.1% 1063.8
150 644,594.9 646,156.3 0.24% 4 11.4% 74.2
175 624,839.2 626,997.6 0.35% 7 22.9% 14,187.4
200 601,559.2 610,239.4 1.44% 5 15.3% 1044.5

5.9 Conclusions and Future Research

The IFD problem includes a multicommodity network flow substructure, and its large
instances become intractable for current technology. Therefore, this chapter applies the
concept of partial aggregations introduced in Chapter 4 to tackle large instances of IFD. We
first define the IFD problem as an abstracted version of the LFMIR problem, which retains
the main complexity of incorporating the inline tanks planning in the fuel management of
locomotives, i.e. the combinatorial number of switch opportunities of inline tanks between
locomotives. We prove that IFD is also NP-hard. We discuss the infeasibilities arise by
aggregating inline tanks in this problem. Therefore, the partial aggregations can be used
to obtain lower bounds in this case. On the other hand, the solution of the aggregated
model provides a good guide to obtain upper bounds for the original problem. Based on
these insights, we develop a solution algorithm that utilizes the partial aggregations for
this problem. Our computational experiments on a set of standard instances demonstrate
the efficiency of the proposed algorithm in providing tight lower bounds and good-quality
upper bounds in much shorter times in comparison with just solving the disaggregated
MIP model with a MIP solver.

The approach taken in this chapter gives insights on: (a) adopting appropriate methods
to construct partial aggregations based on the problem structure. Since the underlying time-
space network of the IFD problem is an acyclic graph, we proposed a time-based approach
to construct partial aggregation which their corresponding formulations do not require the
tightening constraints introduced in Chapter 4. (b) Utilizing the solutions by the partially-
aggregated formulations to generate feasible upper bounds for the disaggregated problem,
when the aggregated formulation may give infeasible solutions for the original problem.
(c) Developing solution algorithms that utilize partial aggregations. As we demonstrated
here, such algorithms usually converge with partially-aggregated formulations without the

126

CHAPTER 5. FROM PARTIAL AGGREGATIONS TO SOLUTION ALGORITHMS

need for returning to the original disaggregated model. One potential direction to extend
this work is to apply this approach to problems with a similar structure, such as the vehicle
scheduling problems that are usually modelled on a time-space network. Moreover, the
PAA algorithm can be further improved by proposing smarter aggregation schemes that
consider other aspects, such as the obtained solutions in the previous iterations, in addition
to time considerations. Developing better heuristics to transform the guide provided by
the aggregated models to a feasible solution for the original problem may also benefit the
PAA algorithm to converge faster. The IFD problem includes the main complexities of the
LFMIR problem. Therefore, the PAA algorithm could be extended to the LFMIR problem as
another future research direction. As we show, the PAA algorithm is able to tackle the main
complexity factor of IFD and subsequently, the LFMIR problem. However, the algorithm
would require additional gadgets for operational constraints such as cyclic requirements.

127

CHAPTER 6
Concluding Remarks

This thesis is motivated by refueling challenges of railroad companies and introduces a
new class of fuel management problems to tackle such challenges. The problem is to op-
timally plan a fleet of inline refueling wagons for a fleet of locomotives and trains during
the time horizon. Inline refueling facilitates the fuel tankering for long-haul trips, which
in turn reduces direct and indirect fueling costs. As such problems lie in the scope of net-
work optimization, this thesis proposes general methods to handle large instances of mul-
ticommodity network flow problems. Such problems are important in the field of network
optimization as they apply to a wide range of problems in various applications, including
the fuel management problems that are subject of this thesis. Fuel management problems
that this thesis studies incorporate the inline refueling planning into the conventional lo-
comotive fuel management problems, which brings opportunities for cost reduction and
also further complexity. We define and study the Locomotive Fuel Management with In-
line Refueling (LFMIR) in Chapter 3 to address the inline refueling planning. Chapter 4
introduces the concept of partial aggregation for a broad range of network optimization
problems that contain a subset of variables and constraints which make up a multicommod-
ity flow component. Chapter 5 applies this concept to a variant of the fuel management
problem. The thesis contributes to both theory and practice of network optimization, with
results on the business implications of adopting inline refueling as well as new methods to
deal with large multicommodity network flow problems.

To study the logistical implications of inline refueling, we conceptualize the LFMIR

128

CHAPTER 6. CONCLUDING REMARKS

problem on a time-space network based on which we develop a MIP model. The proposed
MIP model provides fuel plans for locomotives and inline tanks operations and can be also
utilized for strategic decisions such as inline tank fleet sizing and locating fuel stations.
We apply this model to two case studies from Australia and the USA and show potential
cost savings. Furthermore, we investigate the impacts of inline refueling on the ongoing
operations of the railroad companies and show that employing inline refueling: (a) reduces
the cost of imposing the safety fuel inventory as a robustness constraint, and (b) reduces the
marginal cost of fuel consumption increase on different paths. Based on the parameters of
the given datasets, we identify the cases for which inline refueling leads to greater savings.

Chapter 3 shows both the theoretical and empirical complexity of the LFMIR problem.
We prove that the LFMIR is strongly NP-hard even in its simplest form and with only one
inline tank available. Moreover, computational experiments on large instances demonstrate
the difficulty of solving the problem in practice. As the number of available inline tanks
increases, CPLEX, surprisingly, produces worse solutions. Therefore, we develop the SGA
algorithm that generates good-quality solutions for large instances in a reasonable time.

Computational experiments show that as the number of available inline tanks in-
creases, even solving the LP relaxation of the LFMIR MIP model is significantly time-
consuming. This is interesting as the same trend appears in solving multicommodity net-
work flow problems, and here, we can consider inline tanks as commodities. Therefore, we
introduce new commodity representations, dispersions, for network optimization problems
with a multicommodity flow substructure. The introduction of dispersions allows us to
propose novel aggregation schemes, partial aggregations, that aggregate the commodities
over a subset of the network instead of conventional full aggregation or disaggregation
of commodities over the entire network. The LP relaxation of disaggregated formulations
usually provides tight bounds but with a long computing time. On the other hand, the
LP relaxation of fully-aggregated formulations has a short computing time but gives loose
bounds. Partial aggregations provide formulations with short LP relaxation computing
time and yet tight bounds.

We apply the partial aggregations to Multicommodity fixed-charge Capacitated Net-
work Design problem (MCND), which is an archetypal network optimization problem with
a multicommodity flow substructure. We develop a heuristic to construct partial aggrega-
tions and propose two MIP models for MCND. We compare these new partially-aggregated
formulations with the existing formulations in the literature and prove that they are valid
bounds for MCND. An extensive computational study on a set of benchmark instances
demonstrates that the partially-aggregated formulations are on the Pareto frontier for the
trade-off between LP relaxation computing time and bound tightness. This offers a high
level of control over this trade-off and can be leveraged in MIP algorithms. We show that

129

the partially-aggregated formulations benefit the MIP algorithms, particularly B&B and
Benders decomposition, over large instances of MCND with many commodities.

Chapter 5 applies the concept of partial aggregation to an abstracted version of the
LFMIR problem. We define the Inline Fuel Delivery problem (IFD) which retains the main
complexities arising from inline refueling considerations and prove that this problem is
also strongly NP-hard. We discuss the infeasibilities that emerge by aggregating inline
tanks in this problem. Therefore, partially aggregated formulations for this problem cannot
directly generate feasible upper bounds, but still provide tight lower bounds. We employ
the partially-aggregated formulations for this problem to develop the partial aggregation-
based algorithm (PAA). This algorithm uses the solution of the partially-aggregated formu-
lations as a lower bound and also as a guide to generate feasible upper bounds. Moreover,
it iteratively expands the scope of the corresponding partial aggregation until it converges
to the optimality. Computational experiments verify the efficiency of the PAA algorithm in
providing tight lower bounds and good-quality upper bounds in comparison with directly
solving the disaggregated formulation for this problem.

We outline two main directions for future research: extending the LFMIR problem
to include additional considerations and further development on the concept of partial
aggregation. The first direction expands the practical aspects of the research work of this
thesis, and the latter develops on the theoretical works.

We propose the following potential future research avenues to extend the locomotive
fuel management problem studied in this thesis:

• The LFMIR problem ignores the uncertainty in the parameters of the problem. How-
ever, some parameters of the problem, such as the fuel consumption and the fuel
prices, involve randomness. Randomness of some parameters such as the fuel con-
sumption can be handled with the proposed models, for instance, by introducing a
fuel safety level for the locomotives to avoid infeasible solutions due to the fuel con-
sumption increase. In the case of existence of more uncertain parameters, addressing
such parameters in the LFMIR may result in more practical fuel plans.

• The refueling operations of rail companies are closely related to other business proce-
dures, particularly train scheduling. The integration of locomotive fuel management
and train scheduling problems benefits the rail companies to further reduce the oper-
ational costs.

• The LFMIR problem can be applied to other modes of transportation that involve
similar refueling options as inline refueling. One example of such transportation
modes are the hydrogen-powered locomotives on which hydrogen gas tanks can
be switched. The operational restrictions of such transportation modes may require

130

CHAPTER 6. CONCLUDING REMARKS

modifications in the proposed models and methods proposed in this thesis.

Multicommodity network flow problem is a classical network optimization problem.
Moreover, it arises in a wide variety of applications in transportation, logistics, telecommu-
nication, and energy systems. Therefore, there are many promising research directions to
utilize and apply the concept of partial aggregation, including:

• As our computational experiments showed, partially-aggregated formulations ben-
efit the MIP algorithms, especially over large instances with many commodities.
Therefore, such formulations can be used to develop specialized solution algorithms.
Computational experiments showed the remarkable performance of the partially-
aggregated formulations when the Benders decomposition algorithm is employed.
Hence, development of a tailored Benders decomposition algorithm that unifies these
formulations and their offered trade-off between the LP relaxation computational
difficulty and bound tightness is a potential future research direction.

• The disaggregated and the fully-aggregated formulations for MCND have been ex-
tensively studied in the literature and several efficient cutting planes algorithms are
developed for these formulations. Moreover, as we showed in Chapter 4, such al-
gorithms significantly improve the performance of the B&B algorithm over those
formulations. Although some of the proposed cutting plane algorithms are appli-
cable to the partially-aggregated formulations, proposing new valid cuts for these
formulations can further improve the performance of the B&B algorithm.

• In this thesis, we construct partial aggregations in advance of using the MIP algo-
rithms, and they are fixed throughout the progress of the corresponding algorithm.
Another approach is to adaptively construct partial aggregations based on the infor-
mation obtained during the algorithm progress. One such example is to construct
partial aggregations based on the fractional values of integer variables in the nodes
of the B&B tree.

• Partial aggregation can be applied to other problems with a multicommodity network
flow substructure. The application is particularly straightforward for the cases in
which there is no commodity-specific attribute over the underlying network.

The PAA algorithm is a typical example of a solution algorithm that utilizes partial
aggregations. We outline two future research directions for this algorithm:

• The PAA algorithm can be further improved in two ways: (a) using better heuristics
to transform the guide provided by the aggregated formulation to a feasible solution,
and (b) construing smarter partial aggregations that use the information obtained
during the progress of PAA.

• The PAA algorithm can be applied to problems with a similar structure, which re-

131

quires a tailored constructive algorithm for partial aggregations and possibly a heuris-
tic to generate or transform solutions.

While some of the future research suggested here might be interesting, this thesis has
laid the groundwork for all of this by defining a new class of optimization problems in the
context of railways’ fuel management and developing a novel modeling approach based
on the partial aggregation that opens up new algorithmic options for many other types of
network problems.

132

Bibliography

[1] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (2014). Network Flows: theory, algorithms, and applications.
Pearson.

[2] Andrews, M., Antonakopoulos, S., and Zhang, L. (2010). Minimum-cost network design with
(dis)economies of scale. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages
585–592.

[3] Anjos, M. F., Gendron, B., and Joyce-Moniz, M. (2020). Increasing electric vehicle adoption through
the optimal deployment of fast-charging stations for local and long-distance travel. European Journal of
Operational Research, 285(1):263 – 278.

[4] Appelgren, L. H. (1969). A column generation algorithm for a ship scheduling problem. Transportation
Science, 3(1):53–68.

[5] Asciano (2017). 2017 Annual Report. Technical report, Asacanio Limited, Melbourne, Victoria.

[6] Assad, A. A. (1978). Multicommodity network flows—a survey. Networks, 8(1):37–91.

[7] Avella, P., Mattia, S., and Sassano, A. (2007). Metric inequalities and the network loading problem. Discrete
Optimization, 4(1):103 – 114. Mixed Integer Programming.

[8] Barnhart, C., Hane, C. A., Johnson, E. L., and Sigismondi, G. (1994). A column generation and partitioning
approach for multi-commodity flow problems. Telecommunication Systems, 3(3):239–258.

[9] Barnhart, C., Hane, C. A., and Vance, P. H. (2000). Using branch-and-price-and-cut to solve origin-
destination integer multicommodity flow problems. Operations Research, 48(2):318–326.

[10] Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., and Vance, P. H. (1998). Branch-
and-price: Column generation for solving huge integer programs. Operations Research, 46(3):316–329.

[11] Belieres, S., Hewitt, M., Jozefowiez, N., and Semet, F. (2021). Meta partial benders decomposition for the
logistics service network design problem. European Journal of Operational Research.

[12] Belieres, S., Hewitt, M., Jozefowiez, N., Semet, F., and Van Woensel, T. (2020). A benders decomposition-
based approach for logistics service network design. European Journal of Operational Research, 286(2):523–
537.

[13] Belotti, P., Malucelli, F., and Brunetta, L. (2007). Multicommodity network design with discrete node
costs. Networks, 49(1):90–99.

133

BIBLIOGRAPHY

[14] Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Nu-
merische Mathematik, 4(1):238–252.

[15] Berman, O., Larson, R. C., and Fouska, N. (1992). Optimal Location of Discretionary Service Facilities.
Transportation Science, 26(3):201–211.

[16] Berthold, T. (2006). Primal Heuristics for Mixed Integer Programs. PhD thesis, Technische Universitat
Berlin.

[17] Bertsimas, D. and Tsitsiklis, J. N. (1997). Introduction to linear optimization. Athena Scientific.

[18] Besbes, O. and Savin, S. (2009). Going Bunkers: The Joint Route Selection and Refueling Problem.
Manufacturing & Service Operations Management, 11(4):694–711.

[19] Bienstock, D., Chopra, S., Günlük, O., and Tsai, C.-Y. (1998). Minimum cost capacity installation for
multicommodity network flows. Mathematical Programming, 81(2):177–199.

[20] Bienstock, D. and Günlük, O. (1995). Computational experience with a difficult mixedinteger multicom-
modity flow problem. Mathematical Programming, 68(1-3):213–237.

[21] Bienstock, D. and Günlük, O. (1996). Capacitated network design—polyhedral structure and computa-
tion. INFORMS Journal on Computing, 8(3):243–259.

[22] Bland, R. G. (1977). New finite pivoting rules for the simplex method. Mathematics of Operations Research,
2(2):103–107.

[23] BNSF Railway (2018). Annual Report 2017 on Form 10-K. Technical report, BNSF Railway Company,
Fort Worth, Texas.

[24] Boland, N., Dumitrescu, I., Froyland, G., and Gleixner, A. M. (2009). Lp-based disaggregation approaches
to solving the open pit mining production scheduling problem with block processing selectivity. Computers
& Operations Research, 36(4):1064 – 1089.

[25] Borgwardt, K. H. (1982). The average number of pivot steps required by the simplex-method is polyno-
mial. Zeitschrift für Operations Research, 26(1):157–177.

[26] Bush, B. A. (2006). Analysis of Fuel Consumption for an Aircraft Deployment with Multiple Aerial Refuelings.
PhD thesis, North Carolina State University.

[27] Chiraphadhanakul, V. and Figueroa, C. (2010). 2010 RAS problem solving competition: A locomotive
refueling problem. Technical report, Operations Research Center, Massachusetts Institute of Technology,
Cambridge.

[28] Chouman, M., Crainic, T. G., and Gendron, B. (2017). Commodity representations and cut-set-based
inequalities for multicommodity capacitated fixed-charge network design. Transportation Science, 51(2):650–
667.

[29] Chung, S. H. and Kwon, C. (2015). Multi-period planning for electric car charging station locations: A
case of Korean expressways. European Journal of Operational Research, 242(2):677–687.

[30] Conforti, M., Cornuejols, G., and Zambelli, G. (2014). Integer programming. Springer.

[31] Costa, A. M. (2005). A survey on benders decomposition applied to fixed-charge network design
problems. Computers & Operations Research, 32(6):1429 – 1450.

[32] Costa, A. M., Cordeau, J.-F., and Gendron, B. (2007). Benders, metric and cutset inequalities for multi-

134

BIBLIOGRAPHY

commodity capacitated network design. Computational Optimization and Applications, 42(3):371–392.

[33] Crainic, T. G. (2000). Service network design in freight transportation. European Journal of Operational
Research, 122(2):272–288.

[34] Crainic, T. G., Frangioni, A., and Gendron, B. (2001). Bundle-based relaxation methods for multicommod-
ity capacitated fixed charge network design. Discrete Applied Mathematics, 112(1):73 – 99. Combinatorial
Optimization Symposium, Selected Papers.

[35] Crainic, T. G., Gendron, B., and Hernu, G. (2004). A slope scaling/lagrangean perturbation heuristic
with long-term memory for multicommodity capacitated fixed-charge network design. Journal of Heuristics,
10(5):525–545.

[36] Croxton, K. L., Gendron, B., and Magnanti, T. L. (2007). Variable disaggregation in network flow prob-
lems with piecewise linear costs. Operations Research, 55(1):146–157.

[37] Danna, E., Rothberg, E., and Pape, C. L. (2004). Exploring relaxation induced neighborhoods to improve
mip solutions. Mathematical Programming, 102(1):71–90.

[38] Dantzig, G. B. (1963). Linear programming and extensions. Princeton University Press.

[39] Dantzig, G. B. and Wolfe, P. (1960). Decomposition principle for linear programs. Operations Research,
8(1):101–111.

[40] Darnell, D. W. and Loflin, C. (1977). National Airlines Fuel Management and Allocation Model. Interfaces,
7(2):1–16.

[41] De, A., Choudhary, A., Turkay, M., and K. Tiwari, M. (2019). Bunkering policies for a fuel bunker
management problem for liner shipping networks. European Journal of Operational Research.

[42] Desaulniers, G., Desrosiers, J., loachim, I., Solomon, M. M., Soumis, F., and Villeneuve, D. (1998). A
Unified Framework for Deterministic Time Constrained Vehicle Routing and Crew Scheduling Problems, pages
57–93. Springer US, Boston, MA.

[43] Desrosiers, J., Dumas, Y., Solomon, M. M., and Soumis, F. (1995). Chapter 2 time constrained routing
and scheduling. In Network Routing, volume 8 of Handbooks in Operations Research and Management Science,
pages 35–139. Elsevier.

[44] Desrosiers, J. and Lübbecke, M. E. (2005). A Primer in Column Generation, pages 1–32. Springer US,
Boston, MA.

[45] Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles.
Mathematical Programming, 91(2):201–213.

[46] Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence
Magazine, 1(4):28–39.

[47] Edmonds, J. and Karp, R. M. (1972). Theoretical improvements in algorithmic efficiency for network
flow problems. J. ACM, 19(2):248–264.

[48] Elhallaoui, I., Metrane, A., Soumis, F., and Desaulniers, G. (2008). Multi-phase dynamic constraint
aggregation for set partitioning type problems. Mathematical Programming, 123(2):345–370.

[49] Ernst, A. T. and Krishnamoorthy, M. (1996). Efficient algorithms for the uncapacitated single allocation
p-hub median problem. Location Science, 4(3):139–154. Hub Location.

135

BIBLIOGRAPHY

[50] Errico, F., Crainic, T. G., Malucelli, F., and Nonato, M. (2017). A benders decomposition approach for the
symmetric tsp with generalized latency arising in the design of semiflexible transit systems. Transportation
Science, 51(2):706–722.

[51] Evans, J. R. (1983). A network decomposition/aggregation procedure for a class of multicommodity
transportation problems. Networks, 13(2):197–205.

[52] Ferdowsi, F., Reza, H., and Maleki, S. (2018). Air refueling tanker allocation based on a multi-objective
zero-one integer programming model. Operational Research, pages 1–26.

[53] Fischetti, M. and Fischetti, M. (2016). Matheuristics, pages 1–33. Springer International Publishing, Cham.

[54] Fischetti, M. and Lodi, A. (2003). Local branching. Mathematical Programming, 98(1-3):23–47.

[55] Fontaine, P. and Minner, S. (2018). Benders decomposition for the hazmat transport network design
problem. European Journal of Operational Research, 267(3):996–1002.

[56] Ford, L. R. and Fulkerson, D. R. (1956). Maximal flow through a network. Canadian Journal of Mathematics,
8:399–404.

[57] Ford, L. R. and Fulkerson, D. R. (1958). A suggested computation for maximal multi-commodity network
flows. Management Science, 5:97–101.

[58] Francis, R. L., Lowe, T. J., Rayco, M. B., and Tamir, A. (2008). Aggregation error for location models:
survey and analysis. Annals of Operations Research, 167(1):171–208.

[59] Fregnani, J. A. T. G., Müller, C., and Correia, A. R. (2013). A fuel tankering model applied to a domestic
airline network. Journal of Advanced Transportation, 47(4):386–398.

[60] Gallo, G. and Pallottino, S. (1988). Shortest path algorithms. Annals of Operations Research, 13(1):1–79.

[61] García-Martínez, C., Rodriguez, F. J., and Lozano, M. (2018). Genetic algorithms. Handbook of Heuristics,
page 431–464.

[62] Garey, M. R. and Johnson, D. S. (1979). Computers And Intractability A Guide To The Theory Of Np-
Completeness. Freeman & Company, New York.

[63] Gendron, B., Crainic, T. G., and Frangioni, A. (1999). Multicommodity Capacitated Network Design, pages
1–19. Springer US, Boston, MA.

[64] Gendron, B., Hanafi, S., and Todosijević, R. (2018). Matheuristics based on iterative linear program-
ming and slope scaling for multicommodity capacitated fixed charge network design. European Journal of
Operational Research, 268(1):70 – 81.

[65] Gendron, B., Scutellà, M. G., Garroppo, R. G., Nencioni, G., and Tavanti, L. (2016). A branch-and-benders-
cut method for nonlinear power design in green wireless local area networks. European Journal of Operational
Research, 255(1):151–162.

[66] Geoffrion, A. M. and Graves, G. W. (1974). Multicommodity distribution system design by benders
decomposition. Management Science, 20(5):822–844.

[67] Gilmore, P. C. and Gomory, R. E. (1961). A linear programming approach to the cutting-stock problem.
Operations Research, 9(6):849–859.

[68] Gomory, R. E. (2010). Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for
the Mixed Integer Problem, pages 77–103. Springer Berlin Heidelberg, Berlin, Heidelberg.

136

BIBLIOGRAPHY

[69] Guedes, P. C. and Borenstein, D. (2018). Real-time multi-depot vehicle type rescheduling problem.
Transportation Research Part B: Methodological, 108:217 – 234.

[70] Hane, C. A., Barnhart, C., Johnson, E. L., Marsten, R. E., Nemhauser, G. L., and Sigismondi, G. (1995).
The fleet assignment problem: Solving a large-scale integer program. Mathematical Programming, 70(1-
3):211–232.

[71] Hodgson, M. J. (1990). A Flow-Capturing Location-Allocation Model. Geographical Analysis, 22(3):270–
279.

[72] Hosseini, M., MirHassani, S. A., and Hooshmand, F. (2017). Deviation-flow refueling location problem
with capacitated facilities: Model and algorithm. Transportation Research Part D: Transport and Environment,
54(March 2014):269–281.

[73] Hu, J., You, S., and Østergaard, J. (2011). Optimal charging schedule of an electric vehicle fleet. In 2011
International Universities’ Power Engineering Conference, pages 5–10, Soest, Germany.

[74] Hubert, T., Guo, C., Mouton, C. A., and Powers, J. D. (2015). Tankering Fuel on U.S. Air Force Transport
Aircraft An Assessment of Cost Savings. Technical report, RAND Corporation, Santa Monica,California.

[75] INFORMS Problem Solving Competition (2010). Railway Applications Section (RAS) of INFORMS.
Institute for Operations Research and the Management Sciences, Hanover, MD.

[76] Jeihoonian, M., Kazemi Zanjani, M., and Gendreau, M. (2016). Accelerating benders decomposition for
closed-loop supply chain network design: Case of used durable products with different quality levels.
European Journal of Operational Research, 251(3):830–845.

[77] Kannon, T. E., Nurre, S. G., Lunday, B. J., and Hill, R. R. (2015). The aircraft routing problem with
refueling. Optimization Letters, 9(8):1609–1624.

[78] Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Combinatorica,
4(4):373–395.

[79] Karp, R. M. (1972). Reducibility among Combinatorial Problems, pages 85–103. Springer US, Boston, MA.

[80] Kazemi, A., Ernst, A. T., Krishnamoorthy, M., and Le Bodic, P. (2021a). Locomotive fuel management
with inline refueling. European Journal of Operational Research, 293(3):1077–1096.

[81] Kazemi, A., Le Bodic, P., Ernst, A. T., and Krishnamoorthy, M. (2021b). New partial aggregations for
multicommodity network flow problems: An application to the fixed-charge network design problem.
Computers & Operations Research, 136:105505.

[82] Kheraie, A. Z. and Mahmassani, H. S. (2012). Leveraging Fuel Cost Differences in Aircraft Routing by
Considering Fuel Ferrying Strategies. Transportation Research Record: Journal of the Transportation Research
Board, 2300(1):139–146.

[83] Kim, J. G. and Kuby, M. (2012). The deviation-flow refueling location model for optimizing a network
of refueling stations. International Journal of Hydrogen Energy, 37(6):5406–5420.

[84] Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal of Statistical
Physics, 34(5-6):975–986.

[85] Kliewer, N., Mellouli, T., and Suhl, L. (2006). A time–space network based exact optimization model for
multi-depot bus scheduling. European Journal of Operational Research, 175(3):1616 – 1627.

[86] Kuby, M. and Lim, S. (2005). The flow-refueling location problem for alternative-fuel vehicles. Socio-

137

BIBLIOGRAPHY

Economic Planning Sciences, 39(2):125–145.

[87] Kulkarni, S., Krishnamoorthy, M., Ranade, A., Ernst, A. T., and Patil, R. (2018). A new formulation and
a column generation-based heuristic for the multiple depot vehicle scheduling problem. Transportation
Research Part B: Methodological, 118:457–487.

[88] Kumar, V. P. and Bierlaire, M. (2015). Optimizing Fueling Decisions for Locomotives in Railroad Net-
works. Transportation Science, 49(1):149–159.

[89] Land, A. H. and Doig, A. G. (1960). An automatic method of solving discrete programming problems.
Econometrica, 28(3):497–520.

[90] Lemke, C. E. (1954). The dual method of solving the linear programming problem. Naval Research
Logistics Quarterly, 1(1):36–47.

[91] Li, X., Chien, C. F., Yang, L., and Gao, Z. (2014). The train fueling cost minimization problem with fuzzy
fuel prices. Flexible Services and Manufacturing Journal, 26(1-2):249–267.

[92] Litvinchev, I. and Tsurkov, V. (2003). Iterative Aggregation-Decomposition in Optimization Problems, pages
61–161. Springer US, Boston, MA.

[93] Lübbecke, M. E. and Desrosiers, J. (2005). Selected topics in column generation. Operations Research,
53(6):1007–1023.

[94] Magnanti, T. L. and Wong, R. T. (1981). Accelerating benders decomposition: Algorithmic enhancement
and model selection criteria. Operations Research, 29(3):464–484.

[95] Magnanti, T. L. and Wong, R. T. (1984). Network design and transportation planning: Models and
algorithms. Transportation Science, 18(1):1–55.

[96] Mamer, J. W. and McBride, R. D. (2000). A decomposition-based pricing procedure for large-scale linear
programs: An application to the linear multicommodity flow problem. Management Science, 46(5):693–709.

[97] Marin, G., Naterer, G., and Gabriel, K. (2010). Rail transportation by hydrogen vs. electrification – case
study for ontario canada, i: Propulsion and storage. International Journal of Hydrogen Energy, 35(12):6084 –
6096.

[98] Meng, Q., Wang, S., and Lee, C. Y. (2015). A tailored branch-and-price approach for a joint tramp ship
routing and bunkering problem. Transportation Research Part B: Methodological, 72:1–19.

[99] MirHassani, S. A. and Ebrazi, R. (2013). A Flexible Reformulation of the Refueling Station Location
Problem. Transportation Science, 47(4):617–628.

[100] Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research,
24(11):1097–1100.

[101] Mokhtar, H., Krishnamoorthy, M., and Ernst, A. T. (2019). The 2-allocation p-hub median problem and
a modified benders decomposition method for solving hub location problems. Computers & Operations
Research, 104:375–393.

[102] Moreno, A., Munari, P., and Alem, D. (2019). A branch-and-benders-cut algorithm for the crew schedul-
ing and routing problem in road restoration. European Journal of Operational Research, 275(1):16–34.

[103] Nag, B. and Murty, K. G. (2012). Diesel locomotive fueling problem (LFP) in railroad operations.
OPSEARCH.

138

BIBLIOGRAPHY

[104] Nazari, A., Ernst, A., Dunstall, S., Bryan, B., Connor, J., Nolan, M., and Stock, F. (2015). Combined aggre-
gation and column generation for land-use trade-off optimisation. In Denzer, R., Argent, R. M., Schimak,
G., and Hřebíček, J., editors, Environmental Software Systems. Infrastructures, Services and Applications, pages
455–466, Cham. Springer International Publishing.

[105] Nemhauser, G. L. and Wolsey, L. A. (1999). Integer and combinatorial optimization. John Wiley & Sons.

[106] Nourbakhsh, S. M. and Ouyang, Y. (2010). Optimal fueling strategies for locomotive fleets in railroad
networks. Transportation Research Part B: Methodological, 44(8-9):1104–1114.

[107] Orlin, J. B. (1997). A polynomial time primal network simplex algorithm for minimum cost flows.
Mathematical Programming, 78(2):109–129.

[108] Oğuz, M., Bektaş, T., and Bennell, J. A. (2018). Multicommodity flows and benders decomposition for
restricted continuous location problems. European Journal of Operational Research, 266(3):851–863.

[109] Park, Y. W. and Klabjan, D. (2016). An aggregate and iterative disaggregate algorithm with proven
optimality in machine learning. Machine Learning, 105(2):199–232.

[110] Philpott, A. B. and Mudaliar, S. K. (1992). Constrained Fuel Tankering on a Transportation Network.
In New Zealand Operational Research 1992 Conference, pages 271–278, Christchurch, New Zealand.

[111] Pishvaee, M., Razmi, J., and Torabi, S. (2014). An accelerated benders decomposition algorithm for
sustainable supply chain network design under uncertainty: A case study of medical needle and syringe
supply chain. Transportation Research Part E: Logistics and Transportation Review, 67:14–38.

[112] Plum, C. E. M., Jensen, P. N., and Pisinger, D. (2014). Bunker purchasing with contracts. Maritime
Economics and Logistics, 16(4):418–435.

[113] Raack, C., Koster, A. M., Orlowski, S., and Wessäly, R. (2011). On cut-based inequalities for capacitated
network design polyhedra. Networks, 57(2):141–156.

[114] Rahmaniani, R., Crainic, T. G., Gendreau, M., and Rei, W. (2017). The benders decomposition algorithm:
A literature review. European Journal of Operational Research, 259(3):801–817.

[115] Ramsden, E. (2010). RAS Problem Solving Competition 2010. Technical report, Lattice Semiconductor
Corporation.

[116] Ranjbar, M. and Kazemi, A. (2018). A generalized variable neighborhood search algorithm for the
talent scheduling problem. Computers & Industrial Engineering, 126:673–680.

[117] Rardin, R. L. and Wolsey, L. A. (1993). Valid inequalities and projecting the multicommodity extended
formulation for uncapacitated fixed charge network flow problems. European Journal of Operational Research,
71(1):95 – 109.

[118] Raviv, T. and Kaspi, M. (2012). The locomotive fleet fueling problem. Operations Research Letters,
40(1):39–45.

[119] Reinhardt, L. B., Pisinger, D., Sigurd, M. M., and Ahmt, J. (2020). Speed optimizations for liner networks
with business constraints. European Journal of Operational Research, 285(3):1127 – 1140.

[120] Rodríguez-Martín, I. and José Salazar-González, J. (2010). A local branching heuristic for the capac-
itated fixed-charge network design problem. Computers & Operations Research, 37(3):575 – 581. Hybrid
Metaheuristics.

[121] Rogers, D. F., Plante, R. D., Wong, R. T., and Evans, J. R. (1991). Aggregation and disaggregation

139

BIBLIOGRAPHY

techniques and methodology in optimization. Operations Research, 39(4):553–582.

[122] Sassi, O. and Oulamara, A. (2017). Electric vehicle scheduling and optimal charging problem: complex-
ity, exact and heuristic approaches. International Journal of Production Research, 55(2):519–535.

[123] Schindl, D. and Zufferey, N. (2013). Solution Methods for Fuel Supply of Trains. INFOR: Information
Systems and Operational Research, 51(1):23–30.

[124] Schwartz, M. and Stern, T. (1980). Routing techniques used in computer communication networks.
IEEE Transactions on Communications, 28(4):539–552.

[125] Sheng, X., Chew, E. P., and Lee, L. H. (2015). (s, S) policy model for liner shipping refueling and sailing
speed optimization problem. Transportation Research Part E: Logistics and Transportation Review, 76:76–92.

[126] Sheng, X., Lee, L. H., and Chew, E. P. (2014). Dynamic determination of vessel speed and selection of
bunkering ports for liner shipping under stochastic environment. OR Spectrum, 36(2):455–480.

[127] Shetty, C. and Taylor, R. W. (1987). Solving large-scale linear programs by aggregation. Computers &
Operations Research, 14(5):385–393.

[128] Smale, S. (1983). On the average number of steps of the simplex method of linear programming.
Mathematical Programming, 27(3):241–262.

[129] Spielman, D. A. and Teng, S.-H. (2004). Smoothed analysis of algorithms: Why the simplex algorithm
usually takes polynomial time. J. ACM, 51(3):385–463.

[130] Steinzen, I., Gintner, V., Suhl, L., and Kliewer, N. (2010). A time-space network approach for the inte-
grated vehicle- and crew-scheduling problem with multiple depots. Transportation Science, 44(3):367–382.

[131] Stroup, J. S. (1992). A Fuel Management Model for the Airline Industry. Operations Research, 40(2):229–
237.

[132] Sundström, O. and Binding, C. (2010). Optimization Methods to Plan the Charging of Electric Vehi-
cle Fleets. In 2010 International Conference on Control Communication and Power Engineering, pages 28–29,
Chennai, India.

[133] Suzuki, Y. (2012). A decision support system of vehicle routing and refueling for motor carriers with
time-sensitive demands. Decision Support Systems, 54(1):758–767.

[134] Suzuki, Y., Montabon, F., and Lu, S. H. (2014). DSS of vehicle refueling: A new enhanced approach
with fuel weight considerations. Decision Support Systems, 68:15–25.

[135] Sweeney, D. J. and Tatham, R. L. (1976). An improved long-run model for multiple warehouse location.
Management Science, 22(7):748–758.

[136] Teodorović, D. (1988). Strategy for the purchase of fuel on an airline network. Transportation Planning
and Technology, 12(1):39–44.

[137] Union Pacific Corporation (2018). Annual Report 2017 on Form 10-K. Technical report, Union Pacific
Corporation, Omaha, Nebraska.

[138] Upchurch, C., Kuby, M., and Lim, S. (2009). A model for location of capacitated alternative-fuel stations.
Geographical Analysis, 41(1):127–148.

[139] Vaidyanathan, B., Ahuja, R. K., and Orlin, J. B. (2008). The Locomotive Routing Problem. Transportation
Science, 42(4).

140

BIBLIOGRAPHY

[140] Vanderbeck, F. (2000). On dantzig-wolfe decomposition in integer programming and ways to perform
branching in a branch-and-price algorithm. Operations Research, 48(1):111–128.

[141] Vanderbei, R. J. (2014). Linear Programming Foundations and Extensions. Springer US.

[142] Vermit, A. K. (2014). Strategic placement of telemetry units and locomotive fuel planning. PhD thesis,
University of Iowa.

[143] Vilhelmsen, C., Lusby, R., and Larsen, J. (2014). Tramp ship routing and scheduling with integrated
bunker optimization. EURO Journal on Transportation and Logistics, 3(2):143–175.

[144] Wang, C. and Chen, J. (2017). Strategies of refueling, sailing speed and ship deployment of container-
ships in the low-carbon background. Computers and Industrial Engineering, 114(September):142–150.

[145] Wang, I. L., Wang, Y., and Lin, P. C. (2016). Optimal recharging strategies for electric vehicle fleets with
duration constraints. Transportation Research Part C: Emerging Technologies, 69:242–254.

[146] Wang, S. and Meng, Q. (2015). Robust bunker management for liner shipping networks. European
Journal of Operational Research, 243(3):789–797.

[147] Wang, Y.-W. and Lin, C.-C. (2009). Locating road-vehicle refueling stations. Transportation Research Part
E: Logistics and Transportation Review, 45(5):821–829.

[148] Williams, H. P. (2013). Model building in mathematical programming. Wiley.

[149] Wong, R. T. (1984). A dual ascent approach for steiner tree problems on a directed graph. Mathematical
Programming, 28(3):271–287.

[150] Yaghini, M., Rahbar, M., and Karimi, M. (2013). A hybrid simulated annealing and column generation
approach for capacitated multicommodity network design. Journal of the Operational Research Society,
64(7):1010–1020.

[151] Yamani, A. (1986). Analysis of an air transportation system. PhD thesis, University of Florida.

[152] Yao, Z., Ng, S. H., and Lee, L. H. (2012). A study on bunker fuel management for the shipping liner
services. Computers and Operations Research, 39(5):1160–1172.

[153] Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. Management Science, 17(11):712–716.

[154] Yildiz, B., Arslan, O., and Karasan, O. E. (2016). A branch and price approach for routing and refueling
station location model. European Journal of Operational Research, 248(3):815 – 826.

[155] Zetina, C. A., Contreras, I., and Cordeau, J.-F. (2019). Exact algorithms based on benders decomposition
for multicommodity uncapacitated fixed-charge network design. Computers & Operations Research, 111:311
– 324.

[156] Zhen, L., Wang, S., and Zhuge, D. (2017). Dynamic programming for optimal ship refueling decision.
Transportation Research Part E: Logistics and Transportation Review, 100(December 2015):63–74.

[157] Zipkin, P. H. (1980a). Bounds for row-aggregation in linear programming. Operations Research, 28(4):903–
916.

[158] Zipkin, P. H. (1980b). Bounds on the effect of aggregating variables in linear programs. Operations
Research, 28(2):403–418.

[159] Zouein, P. P., Abillama, W. R., and Tohme, E. (2002). A multiple period capacitated inventory model

141

BIBLIOGRAPHY

for airline fuel management: A case study. Journal of the Operational Research Society, 53(4):379–386.

[160] Árton P. Dorneles, de Araújo, O. C., and Buriol, L. S. (2017). A column generation approach to high
school timetabling modeled as a multicommodity flow problem. European Journal of Operational Research,
256(3):685–695.

142

	Introduction
	Motivation
	Framework and Methodology
	Main Contributions and Publications
	Thesis Structure

	Background
	Mixed Integer Programming (MIP)
	Linear Programming
	MIP Modeling
	The Branch-and-Bound Algorithm (B&B)
	Matheuristics

	Large Scale Optimization
	Row and Column Aggregation
	Column Generation
	Benders Decomposition Algorithm

	Multicommodity Network Flow Problems (MCF)
	Multicommodity Fixed-Charge Network Design Problem

	Fuel Management Problems

	Locomotive Fuel Management with Inline Refueling
	Overview
	Problem Description
	Complexity of the Problem
	Mathematical Modeling
	Network Representation
	Mixed-Integer Program

	Extensions: The Locomotive Fuel Management Problem with Inline Refueling
	Maximum Number of Assigned Inline Tanks to a Train
	Maximum Number of the Locomotives Refueled Inline
	Fuel Transfer Between the Tanks
	Balanced Fuel Level of Inline Tanks

	An Australian Case Study
	Evaluating GFMIR, LFMIR, and the Restricted Models
	Optimizing the Size of the Inline Tank Fleet
	Safety Inventory
	Critical Paths

	Computational Performance
	A Simple and Efficient Heuristic

	Conclusions and Future Research

	Partial Aggregations for Multicommodity Network Flow Problems
	Overview
	Commodity Definitions and Aggregation Levels
	Improving the Partially-Aggregated Formulation
	Partially-Aggregated Formulation with Inequality Tightening Constraints
	Partially-Aggregated Formulation with Equality Tightening Constraints
	K-Shortest Path Aggregations

	Polyhedral Analysis
	Computational Results
	Experimental Evaluation of the LP Relaxations
	Solving the MIP Model

	Conclusions and Future Research

	From Partial Aggregations to Solution Algorithms
	Overview
	The Inline Fuel Delivery Problem
	Complexity of the Problem
	Mathematical Modeling
	Time-space network
	The MIP model

	Dealing with Large Instances Using Aggregations
	Infeasibilities Arise by (Full) Aggregation
	Partial Aggregations Shine
	Constructing Partial Aggregations
	Partially-Aggregated Formulations
	The Partial Aggregation-Based Algorithm (PAA)

	Computational Results
	Conclusions and Future Research

	Concluding Remarks
	Bibliography

