
Complex Question Answering over

Large-scale Knowledge Bases

Yuncheng Hua

Doctor of Philosophy

A thesis submitted for the degree of
Doctor of Philosophy (4319)

(JOINT PHD WITH SOUTHEAST UNIVERSITY - INTERNATIONAL) at

Monash University in 2021

Clayton School of Information Technology

Copyright notice

©Yuncheng Hua (2021) Except as provided in the Copyright Act 1968, this thesis may not be
reproduced in any form without the written permission of the author.

I certify that I have made all reasonable efforts to secure copyright permissions for third-party
content included in this thesis and have not knowingly added copyright content to my work
without the owner’s permission.

i

Abstract

Many large-scale knowledge bases have been created to collect and organize factual knowledge.

As KBs’ scale expands, the effective retrieval of useful information from KBs has become an

important problem. Knowledge Base Question Answering (KBQA), a method that automati-

cally answers natural language questions (NLQ) raised by users, has become a natural way to

understand users’ intentions and retrieve relevant knowledge in KBs. To make KBQA more

applicable in real-life settings, researchers have turned attention from simple questions into com-

plex questions to meet users’ increasingly complex needs. Compared with simple questions—a

type of questions that refer to a single fact stored in a KB, complex questions often require

logical, quantitative, and comparative reasoning over a series of KB triples. Therefore, Com-

plex question-answering (CQA) has been a research hot-spot that attracts significant attention

lately.

A compelling approach to CQA is interpreting the natural-language questions as a sequence

of actions, which can then be directly executed on the KB to yield the answer, aka the neural

program induction (NPI) approach. Such a programmer-interpreter approach, however, suffers

from the sparse reward and the data inefficiency problems. The NPI approach also exhibits

uneven performance when the questions have different types, harboring inherently different

characteristics, e.g., level of difficulty.

This research proposes a complex question answering framework that is effective across

a range of questions using a modest number of training samples. Our framework consists

of a neural generator that transforms a NLQ into a sequence of primitive actions. Given a

generated sequence, a symbolic executor executes the corresponding query on the knowledge

graph to yield the answer. We equip our model with a memory buffer that stores high-reward

promising programs to mitigate the sparse reward problem. Also, we encourage the model to

ii

explore unseen space while keeping the past promising trials in the memory to improve the

data efficiency. We propose a meta-reinforcement learning framework for program induction

to tackle the potential distributional bias in questions to be answered. Our method could

quickly and effectively adapt the meta-learned programmer to new questions based on the

most similar questions retrieved from the training data. To find the most similar questions,

we present a novel method that automatically learns a retrieval model alternately with the

programmer from the weak supervision, i.e., the system’s performance with respect to the

produced answers. To validate the system’s effectiveness, we conducted experiments on two

datasets: CQA, a recent large-scale complex question answering dataset, and WebQuestionsSP,

a multi-hop question answering dataset. On both datasets, our model outperformed the state-

of-the-art models. Notably, on CQA, our model achieved better performance on the questions

with higher complexity while only using approximately 1% of the total training samples.

iii

Publications During Enrolment

1. Hua, Y., Li, Y., Qi, G., Wu, W., Zhang, J. and Qi, D. Less is more: Data-efficient

complex question answering over knowledge bases. In Journal of Web Semantics, 2020,

65, p.100612.

2. Hua, Y., Li, Y., Haffari, G., Qi, G. and Wu, T. Few-shot Complex Knowledge Base

Question Answering via Meta Reinforcement Learning. In 2020 Conference on Empirical

Methods in Natural Language Processing, EMNLP 2020, November 16-20, 2020, Proceed-

ings, pages 5827-5837.

3. Hua, Y., Li, Y., Haffari, G., Qi, G. and Wu, W. Retrieve, Program, Repeat: Com-

plex Knowledge Base Question Answering via Alternate Meta-learning. In Twenty-Ninth

International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim In-

ternational Conference on Artificial Intelligence, IJCAI-PRICAI-20, Yokohama, Japan,

January 7-15, 2021, Proceedings, pages 3679-3686.

iv

Thesis Including Published Works

Declaration

In accordance with Monash University Doctorate Regulation 17.2 Doctor of Philosophy and

Research Master’s regulations the following declarations are made:

I hereby declare that this thesis contains no material which has been accepted for the award

of any other degree or diploma at any university or equivalent institution and that, to the best

of my knowledge and belief, this thesis contains no material previously published or written by

another person, except where due reference is made in the text of the thesis.

This thesis includes three original papers published in peer reviewed journals and conferences.

The core theme of the thesis is ‘Complex Question Answering over Large-scale Knowledge

Bases’. The ideas, development and writing up of all the papers in the thesis were the principal

responsibility of myself, the student, working within the Faculty of Information Technology and

Monash University-Southeast University Joint Research Institute under the supervisions of Dr.

Yuan-Fang Li and Prof. Guilin Qi.

The inclusion of co-authors reflects the fact that the work came from active collaboration

between researchers and acknowledges input into team-based research.

In the case of Chapter 3, Chapter 4 and Chapter 5, my contribution to the work involved the

following:

v

Thesis
Chapter

Publication Title

Status
(published,
in press,

accepted or

returned for

revision,

submitted)

Nature and % of
student
contribution

Co-author name(s)
Nature and % of
Co-author’s contribution*

Co-
author(s),
Monash
student
Y/N*

3

Less is more:
Data-efficient complex
question answering
over knowledge bases

Published

Conceptualisation,
implementing
models,
conducting
experiments,
formal analysis,
investigation and
manuscript
writing, 70%

1. Yuan-Fang Li,
Conceptualisation,
supervision and
manuscript writing,
10%

2. Guilin Qi,
Conceptualisation,
supervision and
manuscript writing,
5%

3. Wei Wu,
Implementing models
and conducting
experiments, 5%

4. Jingyao Zhang,
Implementing models,
5%

5. Daiqing Qi,
Conducting
experiments, 5%

1. No

2. No

3. No

4. No

5. No

4

Few-shot Complex
Knowledge Base
Question Answering
via Meta
Reinforcement
Learning

Published

Conceptualisation,
implementing
models,
conducting
experiments,
formal analysis,
investigation and
manuscript
writing, 70%

1. Yuan-Fang Li,
Conceptualisation,
supervision and
manuscript writing,
15%

2. Gholamreza Haffari,
Conceptualisation, 5%

3. Guilin Qi,
Conceptualisation and
supervision, 5%

4. Tongtong Wu,
Conceptualisation, 5%

1. No

2. No

3. No

4. No

vi

5

Retrieve, Program,
Repeat: Complex
Knowledge Base
Question Answering
via Alternate
Meta-learning

Published

Conceptualisation,
implementing
models,
conducting
experiments,
formal analysis,
investigation and
manuscript
writing, 70%

1. Yuan-Fang Li,
Conceptualisation,
supervision and
manuscript writing,
10%

2. Gholamreza Haffari,
Conceptualisation and
manuscript writing,
10%

3. Guilin Qi,
Conceptualisation and
supervision 5%

4. Wei Wu,
Implementing models
and conducting
experiments, 5%

1. No

2. No

3. No

4. No

I have not renumbered the sections of submitted or published papers in order to generate a

consistent presentation within the thesis.

Student signature: Date: 22 July 2021

The undersigned hereby certify that the above declaration correctly reflects the nature and

extent of the student’s and co-authors’ contributions to this work. In instances where I am not

the responsible author I have consulted with the responsible author to agree on the respective

contributions of the authors.

Main Supervisor signature: Date: 22 July 2021

vii

Acknowledgements

Doing a Ph.D. is like climbing a mountain—as we stood at the bottom of the mountain staring

up at the summit, we recognized and felt all the fear, inadequacy, and doubt stirring inside

us, but still chose to climb the mountain to achieve our goal—to bridge the gaps in a specific

research area. Therefore, accepting right where we are, we started our journey, climbing our

mountains. We learned as much as we could to make steps towards the summit. But, sometimes,

we fell, backtracked, or got lost. We got tired. Our view got cloudy, and our legs got sore.

The obstacles standing in the way of our success seemed to have exhausted our patience and

confidence. At this very moment, the people who stood by us, those people we can trust, came

to us to catch us before we fell. ‘Keep climbing,’ they said, ‘for the path ahead but also for

your climb so far.’ Once again, we got back to work with a renewed gratitude for the moments

we did feel the sunshine along our way. Finally, we reached the summit. We have accomplished

a thing once upon a time we barely dared to dream. Looking down, we finally saw that all

our obstacles were not setbacks but merely switchbacks getting us to our goal in the exact way

we were meant to get there. We looked around and found that what we pursued is not the

summit we are standing atop now, but the journey that witnessed our discovering, insisting,

and becoming. We appreciate the people who stood beside us and assisted us with the correct

path up the mountain. They provided the advice and encouragement necessary to get us over

hurdles and gave us the energy and motivation to keep going forward.

My first and foremost thank goes to my supervisor Dr. Yuan-Fang Li who has supported

me during the past two years and influenced me in many ways. He is an amiable man with

wisdom and earnestness. His research insights always enlightened me with bright ideas, and

his rigorous attitude and persistence to innovations stimulated my enthusiasm for scientific

viii

research and inspired me to fight my way for my Ph.D. study. I thank him for his support

of many insightful discussions that helped me understand my research problems and for his

patience in going through all my drafts of my papers. He provided valuable suggestions for the

problems that I encountered in my research and everyday life. I will benefit from what I have

learned from him, not only for a Ph.D. degree but also for the rest of my life. He is not just

a mentor to me—moreover, I regard him as a friend, as a noble person that I always trust,

admire, and salute. I will never forget those days that we discussed the research ideas, wrote

the papers together until late at night, and definitely, went hiking. I am deeply grateful to him.

I would also like to thank Dr. Gholamreza Haffari and Prof. Guilin Qi for steering me

through my research journey and guiding me to become a better person. I greatly value the

opportunity and experience to work with them. They are always there to respond to my

questions or requests and consistently provide me with their best knowledge to enlighten me

with ideas, suggest ways to hone my research skills and remind me of possible fallacies. I

also deeply appreciate that they dedicated their time to read through my papers, comment on

them, and help me edit them line by line so that they would be good enough to be accepted

and published. I could not have done this work without these wise people being on my side.

I’d also like to thank the great collaborators, co-authors, and colleagues I’ve had the priv-

ilege of working with during my Ph.D. Thank you, Dr. Vishwajeet Kumar. Without your

brilliant insights, we could not have published our paper. You are the only foreign friend I

have ever made, and I will always remember the trips we went on, the games we played, the

swimming we had, and surely, the Indian food you cooked for me. I would also appreciate

all the people coauthoring with me, including Tongtong Wu, Yongrui Chen, Jingyao Zhang,

Wei Wu, Daiqing Qi, and Yuhao Zhang. Your contributions further strengthened the technical

quality and literary presentation of our paper.

I want to thank my roommates, lab-mates, my friends, and my colleagues at the Faculty

of Information Technology during my study at Monash University, who are at different times

and different organizations making my working days such a delight and having a good laugh

together: Li Ji, Lin Wang, Lingling Shen, Guodong Ma, Ying Yang, Yifei Hu, Jishan Giti,

Moataz Mahmoud, Maurice Ntahobari, Paula Bria, and Bhagya Gayathri Hettige. Thank Dr.

ix

Bhagya, for your generous sharing of the materials relevant to writing a Ph.D. thesis. I’d also

like to thank all the people with whom I have been working together at the lab in Southeast

University: Weizhuo Li, Huan Gao, Tianxing Wu, Sheng Bi, Yiming Tan, and Nan Hu. Thank

you for all those wonderful days we had together!

I would like to thank my panel members, Dr. Li Li, Dr. Lan Du, and Dr. Gholamreza

Haffari, for serving on my thesis committee and providing many useful comments on the thesis.

Their insights on my research work have helped me to extend my study and explore new research

directions.

I would like to express my deepest gratitude to my family and close friends who check up

on me periodically to see how I was doing in a country that is so distant from them. They

consistently cared about my work and life when even I could not spend much time with them

during this busy period. I always felt both warm and powerful whenever we connected, as

they demonstrated their great faith in me and the importance of this work. This dissertation,

and this incredible journey, could not have been accomplished without their constant love and

support. Especially, I am grateful to my parents. They always stand by me, support me, and

love me, regardless of my successes or failures. I appreciate my parents for bringing me up to

become a better person and achieve my dreams. Last but not least, my deepest love is reserved

for my wife, Renee Zheng, for her constant support, encouragement, and patience. This is as

much her journey as mine, and I will spend the rest of my life grateful for her earnestness and

endless love.

There were so many people in my life who impacted me that it would not be possible to list

all of them here. I hope you can recognize yourself when reading these lines. Even so far away,

you are so close to me.

x

Contents

Abstract ii

Publications During Enrolment iv

Thesis including published works declaration v

Acknowledgements viii

1 Introduction 1

1.1 Research Questions . 5

1.2 Motivation . 5

1.2.1 RQ1: How to design a CQA framework by only using denotations while
alleviate the sparse reward and data inefficiency problems that inherently
lie in the conventional NPI models? . 6

1.2.2 RQ2: How to learn an adaptive model to precisely answer each novel
question instead of using a fixed global optimal model, aka one-size-fits-
all model, to solve the CQA task? . 8

1.2.3 RQ3: How to design an optimal retriever to find the most appropriate
instances for the target question? . 8

1.3 Thesis Outline . 10

2 Literature Review 12

2.1 KB and KBQA . 12

2.2 Tasks in KBQA . 17

2.2.1 Definition of KBQA . 17

2.2.2 Subtasks in KBQA . 18

xi

2.3 Logical Form . 20

2.3.1 Query Languages . 21

2.3.2 Custom-defined Actions . 23

2.4 KBQA Approaches . 25

2.4.1 Information Retrieval-based Methods . 25

2.4.2 Template-based Methods . 29

2.4.3 Neural Semantic Parsing-based Methods 31

2.5 Summary . 45

3 Neural-Symbolic Complex Question Answering Over Knowledge Bases 47

3.1 Introduction . 50

3.2 Related Work . 53

3.3 Approach . 53

3.3.1 Primitive Actions . 53

3.3.2 Semantic Parser . 54

3.3.3 Neural Generator . 55

3.3.4 Symbolic Executor . 56

3.3.5 Training Paradigm . 56

3.4 Experiments . 58

3.4.1 Model Description . 59

3.4.2 Training . 59

3.4.3 Results On CQA . 60

3.4.4 Results On WebQuestionsSP . 61

3.4.5 Model Analysis . 61

3.4.6 Sample Size Analysis . 61

3.5 Qualitative Analysis . 62

3.5.1 Sample Cases . 62

3.5.2 Error Analysis . 62

xii

3.6 Conclusion . 64

4 Complex Knowledge Base Question Answering via Meta Reinforcement Learn-
ing 66

4.1 Introduction . 69

4.2 Approach . 70

4.2.1 Overview of the Framework . 71

4.2.2 Programmer and Interpreter . 71

4.2.3 Meta Training and Testing . 72

4.2.4 Question Retriever . 73

4.3 Experiments . 73

4.3.1 Model Comparisons . 74

4.3.2 Model Analysis . 75

4.3.3 Case Study . 76

4.4 Related Work . 76

4.5 Conclusion . 77

5 Complex Knowledge Base Question Answering via Alternate Meta-learning 80

5.1 Introduction . 83

5.2 Methodology . 84

5.2.1 Method Overview . 84

5.2.2 Model Objectives . 85

5.2.3 Filter Softmax . 87

5.3 Evaluation . 87

5.3.1 Implementation Details . 87

5.3.2 Performance Evaluation . 88

5.4 Related Work . 89

5.5 Conclusion . 89

6 Conclusion and Future Work 91

xiii

6.1 Conclusions . 91

6.2 Future Research Plans . 94

6.2.1 Complex Sequential Question Answering 94

6.2.2 A Retriever with Hierarchical Structure 94

6.2.3 Investigation of Support Set Construction 95

Bibliography 96

xiv

List of Figures

1.1 A running example illustrating the task of complex question answering and the
relevant KB snippet. 2

2.1 An example of a knowledge card about Shanghai, returned from the Google engine. 15

2.2 An example of a NLQ and the corresponding programs that CIPITR maps into. 24

xv

Chapter 1

Introduction

Knowledge bases (KB) have quickly become an indispensable information source for research

and practice in recent years. A great amount of effort has been invested into curating large

KBs such as Freebase [1], DBPedia [2] and Wikidata [3]. Knowledge base question answering

(KBQA) [4, 5, 6, 7, 8, 9], the task of interpreting natural-language questions as logical forms

(such as SPARQL) which could be directly executed on a KB, has attracted substantial research

interest as it is an accessible, natural way of retrieving information from KBs.

KBQA includes simple questions that retrieve answers from single-hop triples (“what is

Donald Trump’s nationality”) [4, 6], multi-hop questions that infer answers over triple chains

of at least 2 hops under specific constraints (“who is the president of the European Union

2012”) [10, 11], and complex questions that involve set operations (“how many rivers flow

through India and China”) [12]. In particular, complex question answering (CQA) [13], the

subject of this research, focuses on aggregation and multi-hop questions, is a sophisticated

KBQA task in which a sequence of discrete actions—e.g., set intersection and union, counting,

comparison—needs to be executed to derive the answer.

CQA is typically cast as a semantic parsing problem, whereby natural-language questions

are transformed into appropriate structural queries (sequences of discrete actions). Such queries

are then executed on the KB to compute the answer. Consider the complex question “How

many rivers flow through India and China?” as a motivating example. Fig. 1.1 shows an

incomplete sub-graph relevant to this question. To answer this question, all entities whose type

1

is “river” and link to the entity “China” with edge “flow” will first need to be retrieved from

the KB to form the candidate set SA. Meanwhile, the candidate set SB will also be formed to

represent those rivers that flow through India. After obtaining the intersection of SA and SB,

the number of elements in the intersection can finally be identified as the correct answer to the

question. It can be seen that a diverse set of operations, including selection, intersection, and

counting operations, need to be sequentially predicted and executed on the KB.

Figure 1.1: A running example illustrating the task of complex question answering and the
relevant KB snippet. The first row shows the transformation of a natural language question
into the corresponding logic form. The second row illustrates the snippet of the underlying KB,
which is relevant to the query. The third row indicates the set operations required to answer
the question.

Sequence-to-sequence (seq2seq) models learn to map natural language utterances to exe-

cutable programs and are thus good model choices for the CQA task. However, under the

supervised training setup, such models require substantial amounts of annotations, i.e., manu-

ally annotated programs, to train effectively. For practical KBQA applications, gold annotated

programs are expensive to obtain, and thus most of the complex questions are not paired with

the annotations [12]. Reinforcement learning (RL) is an effective method for training KBQA

2

models [11, 14] as it does not require annotations but only denotations (i.e., answers) as weak

supervision signals. By marrying two powerful ideas—representing natural language utter-

ances with continuously distributed vectors and executing symbolic programs for reasoning—

Neural Program Induction (NPI) models are proposed to solve the CQA problem under the RL

paradigm. However, NPI-based KBQA methods face several significant challenges.

Sparse reward. Neural-symbolic models, the models that take the NPI approach, have

been proposed for the CQA task [11, 12, 14]. In the RL context, questions of the same pattern

could be regarded as one single task, while programs trying to solve these similar questions

are considered trials. Instead of using the gold annotations, neural-symbolic models employ

rewards, i.e., comparisons between the predicted answer and the ground-truth answer as the

distant supervision signal to train the policy [11, 14]. Usually, a positive reward could only

be given at the end of a long sequence of correct actions. However, in the initial stage of

model training, most of the trials sampled from the sub-optimal policy attain small or zero

rewards [15]. Thus, this sparse reward problem in the CQA task is a major challenge that

current neural-symbolic models face.

Data inefficiency. Furthermore, due to the sparse supervision signals, such models are

often data inefficient, which means many trials are required to solve a particular task [16].

Being trained from scratch, RL models often need thousands of trials to learn a simple task,

no matter what policy is employed to search programs.

When faced with a large number of questions, training such models would consume an

enormous amount of time. One way to increase data efficiency is to acquire task-related prior

knowledge to constrain the search space. However, in most cases, such prior knowledge is

unavailable unless manual labeling is employed. Hence, the data inefficiency problem often

makes models expensive to train and thus infeasible/impractical. Liang et al. [11] proposed the

Neural Symbolic Machine (NSM) that maintains and replays one pseudo-gold trial that yields

the highest reward for each training sample. When using RL to optimize the policy, NSM

assigns a deterministic probability to the best trial found so far to improve the training data

efficiency. However, in NSM, the best trial to be replayed might be a spurious program, i.e., an

incorrect program that happens to output the correct answer. Under such circumstances, NSM

3

would be misguided by the spurious programs since such programs could not be generalized to

other questions of the same pattern. Besides, NSM only harnesses the accuracy of the predicted

answers to measure the reward, hence also suffers from the sparse reward problem.

One-size-fits-all. The conventional approach to CQA is to train one model to fit the entire

training set and then use it for answering all complex questions at the test time. However, such

a one-size-fits-all strategy is sub-optimal as the test questions may have diversity due to their

inherently different characteristics [17]. For instance, in the CQA dataset, the samples could

be categorized into seven different types, e.g., those capturing logical/comparative/quantitative

reasoning. The length and complexity of questions in one group are likely to differ from those

in other groups. Therefore, action sequences relevant to different groups may have significant

deviations. It is hard to learn a one-size-fits-all model that could adapt to varied types of

questions. An exception is [18], where it proposes a few-shot learning approach, i.e., S2A,

to solve the CQA problem with a retriever and a meta-learner. The retriever selects similar

instances from the training dataset to form tasks, and the meta-learner is trained on these tasks

to learn how to quickly adapt to a new task created by the target question of interest at the

test time. However, Guo et al. [18] use teacher forcing within the learning by demonstration

approach, which suffers from the drawback that the demonstrations are often hard to collect.

Also, the retriever is trained independently of the meta-learner. Thus, the result of the meta-

learner answering the questions is irrelevant to the retriever. Therefore it is hard to evaluate the

quality of the support set that the retriever establishes for each new question and consequently

tricky to measure the retriever’s impact on answering the questions. If the samples found by

the retriever are not similar to the new question as expected, the meta-learner will be misguided

by the deviated examples and thus learns a model that is not suitable for the current task.

In the following section, we present the research questions (RQ) to define our research study

to develop a neural-symbolic framework to solve the CQA task while addressing the challenges

mentioned in the literature review.

4

1.1 Research Questions

In this research study, we formulate the following RQs with the primary focus of effectively

learning a CQA model that could precisely answer the complex questions.

RQ1: How to design a CQA framework by only using denotations while alleviating the sparse

reward and data inefficiency problems that inherently lie in the conventional NPI models?

To mitigate the problem, we present an RL architecture that incorporates curriculum learn-

ing and memory-buffer.

RQ2: How to learn an adaptive model to precisely answer each novel question instead of

using a fixed global optimal model, aka one-size-fits-all model, to solve the CQA task?

To solve the problem, we propose a meta reinforcement learning (meta-RL), where the model

adapts to the target question by trials and the corresponding reward signals on the retrieved

instances that form the task.

RQ3: How to design an optimal retriever to find the most appropriate instances for the target

question?

We propose a new learning algorithm that jointly optimizes the retriever and the adaptive

CQA model to address the problem.

1.2 Motivation

This section provides a detailed introduction to each research question’s motivation and how

we addressed each question.

5

1.2.1 RQ1: How to design a CQA framework by only using deno-

tations while alleviate the sparse reward and data inefficiency

problems that inherently lie in the conventional NPI models?

Due to the difficulty of collecting annotations, the existing CQA dataset [13] only contains

the denotations for each question. The literature takes one approach to deal with the missing

annotations, which aims to transform learning a model for CQA into learning by demonstration,

aka imitation learning, where a pseudo-gold action sequence is produced for the questions in

the training set [19]. This is done by employing a blind search algorithm, i.e., breadth-first

search (BFS), to find a sequence of actions whose execution would yield the correct answer.

This pseudo-gold annotation is then used to train the programmer using teacher forcing, aka

behaviour cloning. However, BFS inevitably produces a single annotation and is ignorant to

many other plausible annotations yielding the correct answer.

To alleviate this issue, following the previous literature [11, 20], we propose a framework

Neural-Symbolic Complex Question Answering (NS-CQA) that is based on RL to make use of

the search policy prescribed by the programmer. Not only this addresses the limitation on the 1-

to-1 mapping between the questions and annotations, but also it enjoys a better computational

footprint compared to BFS as the RL policy amounts to an informed search.

Moreover, instead of recording one trial for each question, we maintain a memory buffer

to store the promising trials, i.e., the action sequences that lead to the correct answer or gain

high rewards. On the one hand, in our work, we aim to converge a behavior policy to a target

optimal policy. Thus we need to measure how similar/important the generated trials are to

trials that the target policy may have made. We design a reward bonus, proximity, to favor

these “similar/important” trials. On the other hand, to avoid overfitting the spurious trials,

we also encourage the policy to explore in undiscovered search space, i.e., the space beyond

the imitation of the pseudo-gold annotations. Therefore, we design another reward bonus,

novelty, to the generated action sequences that are “different” from the trials stored in the

memory buffer.

6

To adaptively control the exploration-exploitation trade-off, we employ a curriculum learn-

ing [21] scheme to dynamically change the influence of the two reward bonuses, namely the

proximity and the novelty. Mainly, given a question, we define the proximity for the predicted

trial as the highest similarity between the predicted trial and all the trials in the memory buffer.

Novelty is also defined through similarity. We consider a trial is novel if it is not similar to all

the trials in the memory buffer. At the initial stage, since the policy is sub-optimal and the

trials generated by the policy are generally infeasible, we prefer more novelty for exploration.

We gradually increase the proportion of proximity and reduce the influence of novelty during

the later training epochs. At the final stage of the training, the proportion of proximity in the

reward bonus will rise to 100%. Such a delicately designed curriculum method can significantly

improve the learning quality and efficiency [22].

Besides, to alleviate the sparse reward problem, an adaptive reward function (ARF) is

proposed. ARF encourages the model with partial reward and adapts the reward computing

to different question types. We sum up the reward bonus with the adaptive reward to make

our RL model learn from the combined reward. With this modification, we reshape the sparse

rewards into dense rewards and enable any failed experience to have a nonnegative reward, thus

alleviate the sparse reward problem.

Furthermore, by incorporating a memory buffer, which maintains off-policy samples, into

the policy gradient framework, we improve the sample efficiency of the REINFORCE

algorithm in our work [16]. We encourage the model to generate trials similar to the trials in

the memory buffer using the proximity bonus. Therefore the high-reward trials could be re-

sampled frequently to avoid being forgotten in the training process. Since a group of question

shares the same pattern, a sequence of the same actions could solve such questions. Once we

improve sample efficiency, we reduce the trials needed for training. Therefore, using a minimal

subset of training samples, our model can produce competitive results.

To sum up, we proposed a novel RL-based CQA framework in our research study, proving

to outperform the existing state-of-the-art CQA models.

7

1.2.2 RQ2: How to learn an adaptive model to precisely answer each

novel question instead of using a fixed global optimal model,

aka one-size-fits-all model, to solve the CQA task?

Since a one-size-fits-all strategy is sub-optimal as the test questions may have diversity due

to their inherently different characteristics [17], we propose a framework that could adaptively

form a set of parameters, which is optimal for the current new question, via online learning.

We present a meta-RL approach for CQA (MRL-CQA), where the model adapts to the target

question by trials and the corresponding reward signals on the retrieved instances. In the meta-

learning stage, our approach learns an RL policy across the tasks for both (i) collecting trial

trajectories for effective learning and (ii) learning to adapt programmer by effectively combining

the collected trajectories.

The purpose of the meta-RL approach is to change the training goal of the one-size-fits-

all NPI model, that is, to find an optimal initialization parameter instead of finding a global

optimal parameter to fit all training samples. By doing so, the model can adaptively generate

unique parameters for each task based on the optimal initialization parameters, thus accurately

answering the questions, improving the model effect, and quickly learning and adapting to new

tasks. Thus, the tasks generated from a tiny (less than 1%) portion of the training data are

sufficient for training the meta learner.

As a deliverable in this research component, we improve the RL-based CQA framework with

meta-learning.

1.2.3 RQ3: How to design an optimal retriever to find the most

appropriate instances for the target question?

To automatically learn the optimal retriever and find the most similar instances for meta-

learning, we propose MetA Retrieval Learning (MARL), a new learning algorithm that jointly

optimizes retriever and programmer in two stages.

8

In the first stage, we fix the retriever’s parameter and employ it to select the top-N sim-

ilar questions (secondary questions) to a given target question (primary question). The trial

trajectories, along with the corresponding rewards for answering each secondary question, are

used to adapt the programmer to the current primary question. The feedback on how correctly

the adaptive programmer answers the primary question is used to update the programmer’s

weights.

In the second stage, we fix the programmer’s parameter and optimize the retriever. The

general programmer first outputs an answer and gain a reward to the primary question without

using any secondary questions. Then we sample M different sets of secondary questions follow-

ing the retriever policy and employ the question sets to learn M different programmers. Each

specific programmer will generate an answer to the primary question and gain some reward.

We consider the difference between the reward yielded by the general programmer and the re-

ward gained by each adapted programmer as the contribution of employing the corresponding

support set. Thus, the reward difference provides the training signal to optimize the retriever’s

policy: a positive difference increases the probability that a set of secondary questions is chosen,

and a negative difference lowers the probability.

We train the programmer and the retriever alternatively until the models converge. Note

that in our method, the training of the retriever is done in a weakly-supervised manner. The

retriever is optimized to find better support sets according to the programmer’s performance

of answering primary questions, rather than employing teacher forcing. Since one support

set generates one adaptive programmer, we employ the feedback obtained by evaluating the

adaptive programmer as a weak supervision signal to optimize the retriever. Therefore we

encourage the retriever to find the support set leading to a superior programmer that gains

more reward. At the same time, the programmer is optimized alongside the retriever.

Therefore, we design a meta-learning based approach that could optimize the retriever and

meta-learner alternately to learn a KBQA system applicable to questions with diversity.

9

1.3 Thesis Outline

The rest of this document is sectioned into five chapters. Chapter 2 is devoted to a summary of

the related previous literature in the area of research. In the following chapters 3, 4, and 5, our

research contributions are presented in the published research articles. Chapter 6 concludes the

thesis with remarks on our research work and discusses the potential future research directions.

A brief overview of each chapter is provided as follows.

Chapter 2: In Chapter 2, we review the literature relevant to our research study. This

chapter builds a solid foundation for our research study by formally defining the terminologies

and concepts related to the KBQA task. This chapter also explores several branches of works

that adopt different algorithms and frameworks to solve the KBQA task. More importantly,

we analyze the challenges encountered in the approaches that focus on the KBQA problem.

Chapter 3: In this chapter, we present our proposed RL-based model, NS-CQA, which mod-

els the CQA task as a neural-symbolic learning task. NS-CQA is trained to learn a policy that

could produce programs mapping to the input natural language questions (NLQ) with distant

supervisions, i.e., the program execution results. Meanwhile, NS-CQA attempts to alleviate the

challenges in the previous NPI models, including sparse reward and data inefficiency problems.

Chapter 4: This chapter discusses the contribution of our research study in solving the one-

size-fits-all problem. When complex questions vary widely, the state-of-the-art methods are

often hard to find a set of optimal parameters for all questions. Instead, we aim to find a set of

the initial parameters by which multiple sets of parameters could be adaptively generated for

answering multiple questions, respectively. We achieve this target by integrating our neural-

symbolic model with a meta-learning method, proposing MRL-CQA.

Chapter 5: MARL is an extension of the previous research work, MRL-CQA, which optimizes

the retriever along with the meta learner. In this work, we verify that the quality of the support

10

set used for meta-learning influences the whole system’s performance. Therefore, we design a

method to train the retriever to produce better support sets under the weak-supervised learning

paradigm, dispensing with the need for retriever annotations. Moreover, we manage to unify

the retriever and the meta learner optimization into a single learning process.

Chapter 6: The final chapter summarises the research conducted so far by highlighting the

main contributions of each research component. Also, at the current stage of the research, we

identify limitations in our research study and discuss several exciting future research directions

branching from our research work.

11

Chapter 2

Literature Review

This section introduces the concepts necessary for understanding the field of Knowledge Base

Question Answering (KBQA) in detail, including a formal definition of Knowledge Base (KB),

a definition of KBQA tasks, a description of logical form, and an introduction of the several

lines of approaches applied to KBQA tasks. At the end of this chapter, we summarize what we

have achieved in designing our KBQA model.

2.1 KB and KBQA

Web search has been going through a significant change—from simple document retrieval to

natural language question answering [23]. Instead of searching for documents that match

requested keywords, users seek a solution that could directly return precise answers to their

questions. Therefore, a search needs to understand the intention of users’ NLQs fully and

selects relevant facts to infer the answers [24]. To achieve this, researchers make an effort

to design a data infrastructure, i.e., KB (which is also called knowledge graph, i.e., KG1), to

store and manage the ever-growing knowledge in a structured format, and thus ease question

answering [25]. Therefore, compared with document retrieval, KBs offer a structured format

more readable for the machine and provide a more natural way of interacting with knowledge

regarding a particular domain or a general domain [26].

1The phrases knowledge graph or knowledge base are often used interchangeably in this thesis, following the
previous literature.

12

KB consists of millions of entities denoting the subjects of interest in a specific domain,

and thousands of relations2 denoting the interactions between these entities. KB could also

be viewed as a way of structuring facts in a multi-relational graph form where entities are

viewed as nodes and relations between these entities are represented as edges. In KB, each

fact is represented in triple format, i.e., (head entity, relation, tail entity)3, indicating that two

entities are connected by a specific labeled edge, aka a relation [27]. For example, Beijing and

China can be entities corresponding to the real-world city of Beijing, and the country China

respectively. Moreover, capital of is a relation between the above two entities denoting that

Beijing is the capital of China. Therefore, the entities and the relation compose a triple (Beijing,

capital of, China). Other than entities, a relation can also link an entity with an attribute value

(i.e. a date, a number, a string, etc.), denoting as a string literal [28]. For instance, the entity

Beijing could be connected via a relation population to a integer value 21,705,000 indicating that the

current population of Beijing is 21,705,000 in real world. Figure 1.1 depicts a snippet of an example

KB representing the facts relevant to the above instances.

In this research study, E = {e1, ..., ene} denotes the set of entities, L is the set of string literals,

and R = {r1, ..., rnr} represents the set of relations connecting two entities or linking an entity with

a literal value. We denote the set of all the possible ordered combination of the elements of E , L, and

R as E × R × (E ∪ L), where the first position in a combination could be entities of E , the second

position could be instantiated with relations in R, and the third position could be elements of E or

L. Among all these random combinations, some of them are feasible and meaningful. We thus define

a triple t ∈ E ×R× (E ∪ L) to describe a fact involving a head entity, a relation, and a tail entity or

a string literal, representing a piece of knowledge in the real-world settings, and therefore describe a

KB K as a subset of E ×R× (E ∪ L).

KBs integrate heterogeneous data and information on the Web into a consistent, unified formal

knowledge representation, making the complicated information easier to understand and represented

by machines. Therefore, KBs organize the knowledge on the Web in a unified way and express the

massive information on the Internet in a form that is more in line with human cognition and under-

standing, making the relevant knowledge more closely connected, and facilitating people to obtain and

trace the required knowledge [29]. In recent years, as the foundation of knowledge interconnection,

2The words predicate or property are often used interchangeably with relations in this thesis, following the
previous literature.

3In some work, the head and tail entity are represented as subject and object entity respectively.

13

many high-quality knowledge bases covering a large amount of knowledge have been constructed, which

provides strong support for knowledge search and has become the infrastructure of Internet cognitive

intelligence services. Since Wikipedia4 is the largest shared knowledge resource database established

by the collective intelligence, many researchers have built huge knowledge bases based on Wikipedia

knowledge, such as DBPedia [2, 30]—extracting knowledge items from Wikipedia to build an ontology,

YAGO [31]—combining the conceptual topology of word network in WordNet [32] with the entities in

Wikipedia, Freebase [1]—the structured KB constructed based on Wikipedia, and Wikidata [3]—the

KB treating the extracted knowledge on the Wikipedia pages as the information source. Besides, a

great amount of effort has been invested into curating large KBs with information source other than

Wikipedia, such as NELL [33], BabelNet [34], Microsoft Concept Graph [35], and ConceptNet [36]. In

practice, the KBs have been successfully applied to many real-world applications, including semantic

parsing [4, 37], named entity disambiguation [38, 39], information extraction [40, 41], and question

answering [25, 42].

Google formally proposed KB on May 17th, 2012 [43] as the semantic enhancement of Google’s

search engine to enable searching for more than literal strings, which are real-world objects. In

other words, Google’s original intention of proposing KB is to improve the quality of search engines,

provide users with fine-grained knowledge and meet the increasing information needs of users. The

traditional searching method is that the search engine uses keyword matching technology to return a

list of candidate coarse-grained web pages containing keywords in the users’ questions. Then the users

select the most relevant web pages from these candidates and recognize the information they need.

The semantic searching functions, combined with KB (such as Google’s search engine), have certain

“associative ability”, which could provide relatively fine-grained answers. Such searching functions

return the entities and concepts associated with search terms to users in the form of “knowledge

card” [44] according to the KB’s structure and the query’s intention. As shown in figure 2.1, when a

user enters the keyword ”Shanghai” in Google to search, the search engine will return a knowledge card

containing the relevant information of “Shanghai”, instead of just returning the web page containing

the search keyword “Shanghai”. However, the knowledge card returns to the user is still about the

information searched based on keyword matching and does not possess the ability to “understand”

the problem. Moreover, the KB often contains many triples, and the topological relationships among

the triples are complex. Due to the complex structure, it poses a great challenge for the common uses

to access the huge KB.

4https://en.wikipedia.org/wiki/Main Page

14

Figure 2.1: An example of a knowledge card about Shanghai, returned from the Google engine.

Large KBs constitute the underlying data storage foundation and information source of various

applications. Therefore, the ability to query the information stored in the knowledge base through

the natural language interface is of practical importance [45]. To lower the threshold for users to

search KBs and return the relevant information inquired by users accurately, KBQA—an advanced

information retrieval method that bridges the interface between human users and machine intelligence

for information exchange, has been proposed by researchers [46]. The purpose of the QA system is

to understand the questions put forward by users and to transform natural language questions into

standard structured queries. By executing structured queries on KBs, information such as related

entities and attribute values in KBs can be obtained, which can be returned to users as answers to

questions to facilitate users to obtain desired knowledge. QA systems hide the details of question

comprehension, knowledge retrieval, and logical reasoning and thus provide a simple interface to the

users. Therefore, in practice, users only need to pose NLQs to get fine-grained and accurate answers.

15

Based on the rapid development of artificial intelligence, KBQA is a new technology that can

quickly acquire the knowledge that users need, thus attracting wide attention in academic and indus-

trial circles and becoming a hot issue in recent years [4, 5, 7]. At present, KBQA has become one of

the important driving forces to promote human-computer interaction and Internet semantic search,

and it also plays a powerful role in many practical, intelligent applications. First of all, KBQA can

provide users with a more natural way than keyword search to interact, especially for those users who

are not familiar with information technology [47]. Therefore, KBQA provides an interactive interface

for information systems that can greatly improve usability [48]. Secondly, the KBQA system can

effectively accelerate the search process in that users can directly get the correct answers to ques-

tions [49]. In fact, this avoids a lot of manual work needed to identify related documents and locate

correct information in a document. One of the most well-known KBQA systems is IBM Watson [50],

which is famous for winning the game show “Jeopardy” in 2011. Since then, IBM Watson, as an

effective QA technology, has become the basic component of business intelligence [51]. In real-world

scenarios, the QA functions are also used to provide medical care decision support based on clinical

literature [52]. In addition, in other fields, the QA systems aiming at practical application have been

proposed. For example, KBQA has been used in education [53] and information technology security

fields [49]. In these fields, a QA system with corresponding professional knowledge can provide better

services to users. Besides, many dialogue systems and QA systems have introduced KBQA to meet

users’ complex information needs and improve the QA experience. The typical applications include

IBM Watson system, Microsoft Cortana, Baidu’s Xiaodu robot, Google Search, Bing search, Google

Assistant, Siri Voice Assistant, AliMe, and other dialogue assistants [54, 55].

To sum up, on the one hand, KBQA has become an interface for users to retrieve KB knowledge;

on the other hand, it has practical application value in many human-machine dialogue/question an-

swering systems. However, due to the complex characteristics of the NLQs, it is challenging to solve

the KBQA task, especially the CQA task. How to design an effective QA method for complex ques-

tions, understand the intention of the NLQs raised by users, and accurately retrieve the fine-grained

knowledge inquired by users from the underlying KB is a subject with important practical significance

and research value.

16

2.2 Tasks in KBQA

Although useful in organizing data, KBs are tough for users to access due to the complex underlying

structure. Several structured query languages [4, 56, 57] and custom-defined actions [11, 19, 58] have

been proposed for accessing the structured data in KBs. However, using them requires a certain

familiarity with the facts maintained in KBs as well as an in-depth understanding of the syntax and

semantics of the logical forms [24, 59, 60]. Neither of these an average user can be assumed to possess.

To expand the applicability across broader users, a new research direction known as KBQA [4, 5, 6, 7, 8]

is proposed. KBQA is users raising NLQs in their own terminology and receiving concise answers from

KBs. Using KBs as a knowledge source, the approaches for KBQA usually model the KBQA task

as an interpretation of natural-language questions as logical forms that could be directly executed on

KBs [61]. Therefore, determining how to translate NLQs to logical forms automatically is the core

goal of the KBQA task, which has attracted substantial research attention lately [62, 63, 64, 65].

2.2.1 Definition of KBQA

The approaches to KBQA, especially the state-of-the-art ones, employ a semantic parsing framework

to accomplish the KBQA tasks [66, 67, 68, 69, 70]. The semantic parsing framework aims to translate

a NLQ into logical forms that could be executed on KB to get the answer [61, 71, 72]. In this research

study, the logical form is denoted as annotation. In contrast, the logical form’s execution result or the

answer for the question is referred to denotation [73].

Therefore, we define the KBQA task as follows. We denote KB as K, a NLQ as q, and the set of

all possible answers as A. A involves the union of three sets, each refers to one answer type: (i) the set

of entities E and string literals L in K (for example the answers to “capital of China” and “population

of Beijing”), (ii) the numerical results of the aggregation functions including COUNT or SUM (answer

to “how many rivers flow through China”), and (iii) the Boolean value set {True, False} that is for

true/false questions (answer to “is Beijing in China”). We thus define the task of KBQA as to yield

the correct answer ans ∈ A corresponding to the given question q.

To answer the given question q correctly, in this research study, we aim to conduct semantic

parsing, that is, mapping q into a logical form τ . Each logical form τ consists of a sequence of actions

17

{a1, ..., at} (τ = {a1, ..., at}), where the action token ai could be: (i) arithmetic/logic aggregation

functions available in the query languages or custom-defined functions (refer to 2.3.2), (ii) KB artifacts

that used to insert in the functions, and (iii) the numeric tokens appear in the question (for instance

“10” in the question “what countries have more rivers than 10”). Let T be the set of logical forms

constructed by combining all possible action tokens. The semantic parsing task aims to select the

logical form τ from T (τ ∈ T) that could lead to the ground-truth answer ansg and fully express

the meaning of the question q. The latter constraint is important because some logical forms might

coincidentally output the correct answer ansg but could not cover the full meaning of the query q.

We refer to these incorrect logical forms as spurious logical forms [73, 74]. For instance, when facing

the utterance “Which musical ensembles were formed at Belfast?”, the expected logical form should

be “Select(Belfast, location, musical ensemble)”. However, the logical form “Select(Belfast, location,

musical ensemble), Inter(Belfast, location, musical ensemble)” could also yield the desired answer.

If we analyze the second logical form, we could find that the second action, ‘Inter’ is unnecessary to

this question. We view this logical form as a typical spurious problem since it cannot represent the

original meaning of the question. Therefore, we aim to design a semantic parsing framework by which

the correct logical form τ that yields the gold answer ansg and fully conveys the meaning of question

q could be successfully selected from the set T.

2.2.2 Subtasks in KBQA

Other than the performance of the semantic parser, the accuracy of the relevant QA subtasks including

entity linking and predicate recognition also affect the KBQA systems [12]. The goal of the subtasks is

to analyze the question to clarify what objects the question refers to, and identify the relations between

these objects. To accomplish this goal, the KBQA systems often resort to relevant methods to detect

the entity, type, and predicate mentions in the questions, and map them into their counterparts in

KB [75]. KBQA systems always implement independent components to solve the above subtasks

respectively and arrange them into a KBQA pipeline [76, 77, 78].

Entity linking is the task of identifying which entity in KG is referred to the entity mention, i.e., a

certain phrase or a span of words in question q. The task of entity linking is normally divided into two

steps. Take the question “what is the country that Indus River flows through” as an example question,

the first step is to detect the entity mention in q, as to detect “Indus River” in the example. Entity

mention detection could be regarded as a classification problem in which a word would be classified

18

into positive class if it is a part of an entity span, or negative class indicating the word dose not belong

to of an entity mention [79]. Or it can be viewed as a sequence tagging problem where all tokens in

the question will be tagged with sequential labels to indicate whether a token belongs to the entity

mention or not [80]. Even assuming that the entity mentions in the question have been accurately

detected, considering the size of KB, the ambiguity of entity names still make it a challenge to pick

the correct entity from a large number of candidates. The larger the size of the KB is, the higher

the possibility that different entities will share a same name [81]. Then, the second step of entity

linking is to ground the entity spans to their corresponding entities in a KB. In the above example,

we need to link the mention “Indus River” to the entity “Indus” in the KB. When comparing the

surface forms are not enough to disambiguate the entity mention to the target entity, it is essential

to consider the contextual tokens surrounding the entity mentions. Also, as the size of KB keeps

increasing, the number of the entities becomes too large to establish the lexical mappings. Therefore

the statistical entity linking approaches are required to generalize to entities that are unseen in the

training corpus. A series of KBQA systems introduce methods that are specifically targeted at solving

the entity linking task. For instance, DBpedia Spotlight [82] is devoted to mine DBpedia’s entities

and S-Mart [83] is proposed for Freebase. Zhu et al. [84] apply the Wikipedia Miner tool5 [85] to

identify the entity mentions in the questions and return the entity linking results over Wikipedia.

Predicate recognition aims to determine the predicates that are used to compose the logical

forms. By mapping the certain phrases in the natural utterance to the corresponding KB’s predicates,

predicate recognition task bridges the gap between the natural expression and KB vocabulary. In

our example question “What is the capital city of the country that Indus River flows through?”, the

predicate “capital” is referred to the pattern “what is the capital city of”, which consists of noun and

verb phrases. However, it remains nontrivial to conduct this task since a predicate could refer to

various natural language expressions, while these expressions are often very different from the surface

forms of the predicate [81]. For instance, the relation “population” can be expressed as “what is

the population of”, “how many people live in”, “what is the number of people in”, etc. It can be

seen that in some cases, even though the surface form of the predicate “population” is not explicitly

mentioned in the question, the corresponding predicate still needs to be correctly inferred. This makes

demands on the generalization ability of the KBQA system when solving the predicate recognition

task. Therefore, attempts have been made to employ specialized models to solve the task in several

KBQA systems. For instance, Berant et al. [4] make a coarse mapping between the predicates and

5http://wikipedia-miner.cms.waikato.ac.nz/

19

natural language phrases, then use a bridging operation to generate additional predicates based on

the adjacent predicates. Yih et al. [8] apply a convolutional network to match relations and questions.

Yu et al. [9] propose a KBQA system that uses deep residual bidirectional LSTMs to match questions

to relation names with word-level and character-level.

Several modern systems attempt to develop a single model to solve entity linking and predicate

recognition tasks jointly. To answer complex questions over a KB, Ansari et al. [14] propose a query

annotator to conduct joint entity, relation, and type linking in an unsupervised setting. Knowledge

Embedding based Question Answering (KEQA) [81] proposes a KG embedding framework to jointly

infer the head entity and predicate. KEQA projects the NLQ into entity and predicate embedding

representations respectively, then retrieves the fact in the KG whose embedding is the closet to the

entity and predicate embedding. Also, in broader natural language processing (NLP) spectrum, there

also exist methods to solve the two tasks concurrently. Entity and Relation Linker (EARL) [86] models

entity linking and relation linking as a Generalised Travelling Salesman Problem (GTSP) task, and uses

GTSP approximate algorithm to solve the task. Yuan et al. [87] develop Relation-specific attention

network (RSAN) to extract entity and relation jointly. RSAN utilizes attention mechanism to form

specific representation of the question for each relation and apply sequence labeling to identify entities.

2.3 Logical Form

The task of answering a complex NLQ is to learn to map the question into a logical form that could

be executed directly on a structured knowledge base to compute the answer [73]. The core part of the

QA task is to design a semantic parser to translate the questions into logical forms [88]. The logical

form could be well-defined query languages, including Prolog [56, 89], SQL [90], graph queries [91],

FunQL [92], SPARQL [93], Lambda Calculus (λ-calculus) [94], Dependency-Based Compositional

Semantics (DCS) [66], and Lambda Dependency-Based Compositional Semantics (λ-DCS) [95], or

other custom-defined actions6 which are built upon the query languages to simplify query form, reduce

redundancy, and supply generalization ability.

6The words action, action sequence, or sequence of actions, are often used interchangeably with program in
this thesis, following the previous literature.

20

2.3.1 Query Languages

The query languages are formally defined in a context-free grammar (CFG), and can be used for

complex fact retrieval involving logical operations (i.e., disjunction, conjunction, and negation), ag-

gregation functions (including grouping, counting, and comparing), filtering under certain conditions,

as well as other ranking mechanisms [68]. Let’s have a brief look at the following representative query

languages.

SPARQL, a recursive acronym for SPARQL Protocol and RDF Query Language7, is a standard

query language to search and explore data stored in Resource Description Framework (RDF)—that

is, a general data model that uses triples, where each is made of 3 resources of the form (subject,

predicate, object), to represent data and compose a KG [96]. When retrieving triples on such a graph,

the basic block for constructing relevant SPARQL queries is called basic graph pattern (BGP) [97]. A

BGP consists of a set of RDF triples in which the query variables might lie at the subject, predicate, or

object positions. By integrating with filters, optionals, expressions, aggregations, unions, differences,

or ordering, BGP can expand into more complex graph patterns and form a SPARQL query. The

result of the SPARQL query is defined as the multiple KG resources (i.e., entities, relations, or literals)

that could map to the variables in the SPARQL when conducting graph pattern matching—that is,

matching the graph pattern of the SPARQL query against the KG [98]. The example below shows

a SPARQL query to answer the NLQ “What is the capital city of the country that Indus River flows

through?” over the example KB in figure 1.1. The corresponding SPARQL query is:

SELECT DISTINCT ? u r i

WHERE

{

dbr : Indus dbo : f low ?x .

?x dbo : c a p i t a l ? u r i .

}

The query consists of two parts: the SELECT clause indicates the variables to list after executing

the query, and the WHERE clause describes which triples to pull from the KB when querying8. The

WHERE clause does this with one or more triple patterns, which like triples but some positions are

7https://www.w3.org/2009/sparql/wiki/Main Page
8https://www.w3.org/TR/sparql11-query/

21

substituted with variables as wildcards. Like the above example shows, in the WHERE clause, the

object position in the first triple pattern is replaced with the variable ?x. Therefore, this triple pattern

will match against triples in the example KB whose predicate is the flow property, whose subject is

Indus and whose object is anything at all, since this triple pattern has a variable that is named ?x.

The query processor therefore assigns the object value to the ?x variable, looks for the triples that

match the second triple pattern, and views the objects in the retrieved triples as the answers. By

executing the SPARQL query against the example KB in figure 1.1, the result is Beijing.

λ-calculus is a formal function abstraction invented based on Church’s Thesis [99]. This formalism

defines the notion of computable function and has provided a solid theoretical basis for the func-

tional programming languages [100]. λ-calculus acts as a well-defined, machine-interpretable mean-

ing representation in some semantic parsing tasks [101]. More specifically, in the KBQA task, λ-

calculus is introduced as a formal query language expression [8, 61]. The central part in λ-calculus

is that of “expression”, which applies function to the variable argument that is marked with the

Greek letter λ, and get a value [102]. The example of the question “What is the capital city of the

country that Indus River flows through?” could be mapped into the following λ-calculus expression:

λx.capital(λy.flow(Indus, y), x)9. This expression contains the following parts: constants, which can

be entities (Indus) or functions (flow); variables, the placeholders for the entities or numbers (x

and y); lambda expressions, which represents functions acting on variables or constants (for example

λy.flow(Indus, y) stands for the objects that Indus River flows through). Though SPARQL and λ-

calculus have well-established grammars to express NLQs, the key of such expression is to understand

the meaning of the question. Most existing methods typically rely on compositional grammar, such

as compositional combination grammar (CCG) [103], to conduct question understanding. To train

the parser, such methods require manually annotated combination grammars, which are relatively

expensive to collect. Moreover, this mechanism assumes a fixed and predefined lexicon, limiting its

capability of scalability when answering questions over a large-scale KB [24]. To overcome this chal-

lenge, another formal language called DCS is proposed in [66]. It provides a tree structure named

DCS tree to construct logical forms, making parsing and learning more convenient. Unlike DCS, the

formal language λ-DCS [95] is not restricted to the tree-structure, making it more expressive. Also,

by removing the use of variables and making quantifiers implicit, λ-DCS could provide more compact

logical forms than λ-calculus. λ-DCS has been applied to KBQA [4].

9https://plato.stanford.edu/entries/lambda-calculus/

22

2.3.2 Custom-defined Actions

Although query languages have been provided for accessing KBs, only experienced researchers who

have been familiar with the grammar know how to utilize them [24]. The complex grammar and

structure of the query languages make it an obstacle for ordinary users to use. Furthermore, most

of these logical query languages are implemented in a subset of first-order logic [104]. However,

the verbosity and the syntactic limitation make first-order logic hard to use [105]. Such practical

drawback of the query languages (such as SPARQL and λ-calculus) usually leads to structurally and

syntactically overcomplex expressions [68]. Some researchers built domain-specific actions based on

query Languages to simplify the query format, reduce verbosity, and adapt to different QA tasks to

tackle these challenges.

Neural Symbolic Machines (NSM) [11] proposes and implements a set of functions in high level

programming language for semantic parsing. The generalizability, compositionality and scalability

of the functions makes them adapt to varying input sizes more easily. The functions take several

arguments (the argument could be entity or relation in KB, or a variable) as input, return a list of

entities as execution result, and assign the entity list to a new variable. By employing such custom-

defined functions, NSM could compose the programs necessary for semantic parsing, which equals to

a subset of λ-calculus [8]. For example, the mathematical definition of a function is as follows: (Hop

r p)⇒ {e2|e1 ∈ r, (e1, p, e2) ∈ K}. The object entities in the triples whose subject is one of the entities

in set r and whose predicate is p are obtained as the result of executing this function. The result is

saved in a new variable for further use.

Complex Imperative Program Induction from Terminal Rewards (CIPITR) [58] presents twenty

operators to conduct complex sequential question answering over a large scale KB. By inserting the

previously instantiated variables or KB artifacts (entities, relations, and types in KB) into the opera-

tors as arguments, a sequence of operators could form a program like logical forms executable on the

KB. At each step the model executes the program and saves the result to memory for use in subse-

quent steps. For instance, figure 2.2 illustrates how CIPITR maps the query “How many countries

have more rivers than China?” into a sequence of actions as designed. Following CIPITR, Stable

Sparse Reward based Programmer (SSRP) [14] implements seven operators to build programs for

answering simple, logical, and quantitative queries. SSRP selects a sequence of operators, which are

invoked with intermediate variables as their arguments, to produce the desired programs for question

23

answering.

Figure 2.2: An example of a NLQ and the corresponding programs that CIPITR maps into.

To answer sequential questions over a large-scale KB, Dialog-to-Action (D2A) [19] designs a set

of actions for generating logical forms executable on KB. In their design, the actions are named from

A1 to A21. Each action contains three parts: semantic category (set, num, or bool), function symbol

(find, count, union, etc.), and a list of arguments. In some cases, the function symbol could be omitted.

The argument could be a semantic category, a constant, or an action subsequences. The function of the

actions could be categorized into four groups: A1-A3 (to start the logical form), A4-A15 (to operate

on sets), A16-A18 (to instantiate KB artifacts or numbers that appear in the query), and A19-A21

(to duplicate a previously generated action subsequence). For example, D2A uses A1 to denote the

operation “start→ set”, starting the logical form with the semantic category set; expresses action A4

as “set→ find(set, r)”, representing the set of entities that connect entity e with relation r; describes

the action A15 as “set→ {e}” to connect set with entity e. Therefore, D2A maps the question “Who

is the president of the United States” to a formal representation “A1, A4, A15, eUS , rpres” where

eUS and rpres represent the entity United States and the relation president of respectively. Using the

similar grammar of the actions defined in D2A, sequence-to-action (S2A) [18], Multi-task Smantic

Parsing (MaSP) [69], and a weakly supervised KBQA approach [70] propose several sets of logical

forms for complex conversational question answering over KB. Following the action definition in D2A,

these methods adapt the actions to the certain complex question answering datasets and solve the

question answering tasks.

Other than the KBQA task, there are some lines of works that induce the programs from natural

language. Neuro-Symbolic Program Synthesis (NSPS) [106] learns to construct programs with a

Domain-Specific Language (DSL). Rothe et al. [107] propose a set of well-formed programs based on

λ-calculus and LISP [108], and synthesize human questions with the programs. Guu et al. [74] make a

formal definition of the program tokens used in the SCONE domain10 and transform natural language

10https://nlp.stanford.edu/projects/scone

24

utterances into executable programs by using the defined tokens. Neural Programmer [20] induces

programs with a set of arithmetic and logic operations to conduct question answering over tables.

A reinforcement learning—based visual question answering method [67], a semantic parser [109] for

Cornell Natural Language for Visual Reasoning corpus (CNLVR) [110], and Neural-Symbolic approach

for Visual Question Answering (NS-VQA) [111], all develop a set of logic operations (which could be

extended with set operators and lambda abstraction [109]) for visual question answering task. These

three approaches generate a program sequence from the operations to parse the NLQs and execute

the programs sequentially.

2.4 KBQA Approaches

The current work synthesizes and extends three mainstream frameworks for KBQA: Information

Retrieval-based (IR), template-based, and Neural Semantic Parsing-based (NSP). IR-based approaches

represent the questions and candidate answers as low-dimensional vectors. Ranking the candidate

answers by matching score or classifying the candidates into positive or negative classes, IR-based

methods obtain the answers. Template-based methods resort to predefined templates and artificial

rules to conduct semantic parsing and guide the mapping of questions into structured queries. They

play a critical role in the KBQA task, simplifying the semantic parsing of questions and decomposing

the query utterances. Templates could be devised manually or learned automatically. At the other

end of the spectrum, NSP-based research works leverage neural networks for semantic parsing. They

use neural models with trainable parameters to construct a semantic parser that fits the given training

corpus. A carefully designed neural network architecture and suitable training paradigm are crucial

for NSP-based methods to achieve optimal models.

2.4.1 Information Retrieval-based Methods

The IR-based branch first detects the topic entity mentioned in a NLQ and links it to the KB, then

extracts the subgraph centered at the topic entity. The extracted subgraph consists of the neighbor

nodes within a certain distance (normally a few hops of relations) from the top entity in the KB, where

the neighbors in the subgraph are considered the candidate answers. Thus, the IR-based approaches

extract features for both the input question and the neighbor nodes in the subgraph, then select the

25

node among the candidate answers via computing the semantic distance between the question and

the candidates. The selected node is treated as the final result of the question. To construct features,

several feature engineering approaches and some representation learning methods are introduced.

Yao et al. [5] extract a topic graph in a KB to cover the nodes that are a few hops away from

the detected topic entity, viewing the nodes in the topic graph as candidate answers to the input

question. They use directed relations and properties as node features for each node in the topic graph.

On the other hand, Yao et al. construct a dependency tree for parsing the question, then converting

the dependency tree into a question feature graph using the manual-defined rules. They concatenate

nodes and edges in the question feature graph to extract question features and further combine them

with the node features in the topic graph to produce millions of final features. Also, they run IBM

alignment Model 1 [112] to construct relation mappings, i.e., aligning a question with the most likely

relation in a KB by mining the corpus ClueWeb11. The mappings between the relations in the topic

graph and the phrases in the question are also treated as features added to the final features. Finally,

a classifier (trained under a machine learning paradigm) uses the final features to determine whether

a candidate node in the topic graph is the answer or not.

Methods based on feature engineering are often dependent on pre-defined heuristic rules to extract

features, causing limited coverage and may impairing the generalizability. In contrast, representation

learning-based methods could project the input questions and candidate answers into the same vector

space and convert the KBQA task into a ranking task—the candidate answer that is closest to the

question in the vector space is returned as a result. Moreover, to handle complex questions, several

methods design frameworks dedicating to multi-hop reasoning.

Bordes et al. [25] first employ representation learning in KBQA task. They first detect the topic

entity in a NLQ and then transform the NLQ into a low-dimensional embedding by summing the

word vector of each question token. Bordes et al. treat the entities within two hops from the topic

entity as candidate answers and thus encode a candidate answer by summing the vectors from three

aspects: the candidate answer entity itself, the path between the candidate and the topic entity, and

all the entities in KB that connect to the candidate answer entity. They calculate the dot product

of a candidate answer’s embedding and the question’s embedding and thus use the dot products to

distinguish the ground-truth answer entities from non-answer entities with the help of a margin-based

ranking loss function.

11http://lemurproject.org/clueweb09/

26

Several sophisticated deep neural networks are leveraged to better represent the questions, KB

subgraphs, or candidate answers. Dong et al. [113] propose multi-column convolutional neural networks

(MCCNNs) to construct representations for questions from three aspects, i.e., answer path, answer

context, and answer type. MCCNNs use three convolutional neural networks to map a NLQ into

three different question embeddings and then embed a candidate answer by three vectors, considering

different aspects, namely answer path (the path between the topic entity and the candidate entity in

KB), answer context (the 1-hop entities and relations connecting to the answer path), and answer type

(the type embedding matrix derived from Freebase [1]). Dong et al. then compute the dot products

(multiply the three question embeddings with candidate answer vectors, respectively) and add the

three dot products together to yield a final score. The final score is used to distinguish answer entities

from other non-related entities. MCCNNs capture more semantic information in that the networks

consider three different aspects to analyze the candidate answer entities, taking full advantage of

contextual information in the underlying KB.

The above representation learning-based methods focus on the representation of the candidate

answers. In contrast, Hao et al. [114] highlight the representation of the questions. They propose

a cross-attention-based neural network to generate question representations with regard to varying

candidate answers dynamically. Hao et al. encode candidate answers by four vectors, inspecting the

candidates from four aspects: answer entity, answer path, answer type, and answer context. They

leverage the attention mechanism to learn the correlation (aka attention weight) between each question

token and each answer vector and use the attention weights to generate question representations

corresponding to various candidate answer entities dynamically. The similarity scores (i.e., inner

products) between the dynamic question representations and the candidate answer representations

are used for recognizing the gold answers.

Previous methods don’t design a specific method to treat complex questions. Instead, they resort to

a unified framework to answer simple and complex questions simultaneously. Modern KBQA systems

attempt to design a multi-hop reasoning framework specialized to handle complex questions.

Saxena et al. propose EmbedKGQA [115], a KG embedding method that performs well in an-

swering multi-hop questions over sparse KBs. EmbedKGQA employs a tensor factorization approach,

aka ComplEx [116], to project the relations and entities in a KB into a complex space, and utilizes

a feed-forward neural network (which is built upon RoBERTa [117]) to embed a NLQ. It then adds

the detected topic entity’s embedding and the question’s embedding together and finds the closet

27

entity in the complex space as the returned answer. In this process, EmbedKGQA learns the question

embedding by optimizing the feed-forward neural network’s parameters.

Also, memory network is another important branch of representation learning-based methods.

Memory networks are integrated frameworks devoted to storing knowledge with a long-term mem-

ory component, making them intrinsically suitable for multi-step reasoning [118]. Memory networks

correspond to a sequential reasoning architecture, wherein the writable memory component is used

to store and manage long-term facts related to the knowledge in a specific domain (for example, KB

triples) [7, 119]. The networks accept a natural language utterance as the input and perform step-

wise reasoning by iteratively update the representation of the input by attending to the facts stored

in memory. At the last step, the final representation is used to predict the answers to accomplish

reasoning.

Miller et al. [120] propose Key Value-Memory networks (KV-MemNN) to bridge the gap between

structured knowledge source (for instance, a KB) and unstructured information source (i.e., reading

documents) and perform question answering. KV-MemNN designs a key-value structured memory

component. The model could use keys to address the facts in memory relevant to the input question

and return the corresponding values for stepwise reasoning. Therefore, the knowledge from different

sources could be encoded in the same memory. In contrast, the key and value are encoded in different

ways, where the key’s patterns are designed to facilitate matching the question while the value’s

features are learned in a way that helps it match the answers. When performing reasoning, KV-

MemNN learns to retrieve memories relevant to the input question by key hashing and then computes

a normalized relevance weight for each retrieved memory by the inner product between the key and the

question representation. Viewing the relevance weights as the weights of the corresponding values, KV-

MemNN makes a weighted sum of values, indicating an intermediate reasoning state. The intermediate

reasoning state is used to update the question representation. The question representation is repeatedly

updated, and the final state is used to predict the answers.

Furthermore, Chen et al. [121] extend the memory network by considering the interaction between

the questions and the KB triples. They design a bidirectional attentive memory network (BAM-net)

model, using the attention mechanism to measure the correlation (aka attention weights) between

a question and relevant KB triples. The attention weights are thus utilized to update the question

representations, retrieving the facts more precisely.

28

Most relevant to our work, Saha et al. [13] propose a CQA model that combines Hierarchical

Recurrent Encoder-Decoder (HRED) with a KV-MemNN and predicts the answer by attending to

the stored memory. The model first encodes an input sentence with the contextual information into

a vector and then utilizes the KV-MemNN to iteratively update the sentence’s representation by

retrieving and attending the most relevant facts stored in the memory. Then the retrieved memory is

decoded to select an answer from all the candidate words as the returned result to the input question.

To sum up, IR-based methods do not rely on hand-crafted rules to analyze the questions and

can be trained end-to-end. However, they cannot effectively perform complex question answering

and always produce uninterpretable answers—the models could not explain how the answers are

generated, making them weak in interpretability. Therefore, our research study focuses on designing

an interpretable method and can solve complex questions.

2.4.2 Template-based Methods

Template-based methods conduct semantic parsing by mapping the question constituents to corre-

sponding components in query templates. Such methods assume that an input utterance could be

paired with a query template to express the query’s intention. Usually, the KB artifacts that appear

in the question are extracted and inserted into the certain placeholders in the template to gener-

ate a logical form. By executing the logical form, the answer is derived. Therefore, the semantic

parsing task is simplified as mapping the questions into templates and filling the templates with the

extracted KB artifacts. A benefit of the template-based methods is that the templates’ construction is

traceable. The templates could explain how the answers are generated, therefore making the answers

interpretable.

Berant et al. [4] establish a lexicon to align the natural language phrases with predicates in a

KB, then propose a bridging operation to generate additional predicates by synthesizing adjacent

predicates. After that, they construct derivations recursively with predicates recognized by the lexicon,

the synthesized predicates, and several composition rules. They then train the semantic parser to

maximize the probability of generating the correct logical form over all possible derivations. Aqqu [122]

proposes three templates to parse the questions. It identifies entities and relations mapped to the

input utterance by literal matching, distant-supervised extraction, or supervised recognition. Then it

instantiates placeholders of the three templates with the identified KB artifacts to generate matched

29

query candidates. Based on hand-crafted features, Aqqu ranks the candidates to disambiguate entities

and relations jointly. The candidate with the highest-ranking score is finally returned as the structural

query that maps the given question. Zhu et al. [84] propose a KBQA system to construct a KB

subgraph corresponding to the question. They parse the given questions to construct constituent

trees and propose several hand-crafted topological patterns that capture the relationship between the

arguments in constituent trees. Then, they detect the entities that a question links to and traverse

the paths starting at the detected entities according to the topological patterns. The path with the

highest-ranking score is returned as the one leading to the answer node. Hu et al. [123] propose a

semantic query graph to match the intention of a question and obtain the answers by mapping the

semantic query graph with a suitable subgraph of a KG. To establish the query graph, they propose a

relation-first framework to extract the relations that appear in the questions and view the relations as

edges in the corresponding semantic query graph. A node-first framework is proposed first to anchor

the entities or types to the nodes, then connect them with edges to form the query graph. After

building the query graph, they attempt to find a subgraph of the relevant KG that best matches the

semantic query graph to resolve the ambiguity of phrase linking (link natural language phrases to

entities/relations in KG) and query graph structure jointly.

The KBQA systems that resort to hand-crafted templates could accurately derive the correct

answer and explicitly explain generating the answer when the given question conforms to predefined

question patterns. However, such systems might yield wrong answers when meeting the questions that

are represented in patterns different from the predefined templates. Such a problem makes the systems

have limited coverage on questions. Besides, the hand-crafted templates are time-consuming to design,

which impair the generalization ability of the KBQA systems. To design a system that can be fit in

more different domains, several strategies that could learn templates from corpus automatically or

semi-automatically are presented.

QUINT [124] is a KBQA system that could automatically learn the templates from question-answer

pairs (QA pair). QUINT detects entities in a question and extracts a query template, i.e., a subgraph

from the KG that only contains the detected entities and the relations between them. QUINT also

constructs a question template, a dependency parse tree built based on the dependency parse of the

question. Therefore, QUINT assumes each query template could be paired with a question template.

During inferring, QUINT first builds a parser tree and derives the mapped query template, then

instantiates the query template with KB artifacts to generate multiple candidate queries. Ranking

30

the candidate queries with a random forest classifier, QUINT chooses the highest-ranking query to

yield the answer. Other than QUINT, Zheng et al. [125] also propose a method that automatically

builds many templates to convey the intention of the input query. Zheng et al. assume each triple in

KG could be mapped to multiple natural language patterns in a text corpus and thus build a set of

predefined binary templates by the mappings. To represent the meaning of the question, several binary

templates are automatically selected from the template set and assembled to generate a complicated

template, i.e., a semantic dependency graph. The semantic dependency graph is thus translated into

the structured query to obtain the answer. Instead of aligning utterance with the graph structure, Cui

et al. [126] automatically learn 27 million templates over 2782 intents from the QA pairs in corpora to

solve binary factoid questions (BFQ) and complex questions that are composed of BFQs. In the offline

procedure, Cui et al. change the semantic parsing problem into a probability estimation task where an

expectation-maximization (EM) algorithm is applied to estimate parameters in a probabilistic model.

This statistical model is used to compute the probability distribution of the predicates mapped to a

template. In the online procedure, they decompose the complex question into a series of BFQs, derive

the templates corresponding to BFQs, use the probabilistic model learned in the offline procedureto

infer the relevant predicates, and thus obtain the answers.

Though the methods based on templates possess high interpretability, a practically robust premise

for such methods to conduct question answering is sufficient well-defined rules or templates constructed

manually or automatically. Such a premise limits the coverage of these methods, which makes them

difficult to transfer to different corpora. Therefore, our research study aims to design a method that

gets rid of the predefined templates and can be trained end-to-end with full supervision or weak

supervision, which applies to more KBQA tasks.

2.4.3 Neural Semantic Parsing-based Methods

Compared with traditional IR-based or template-based methods, instead of using hand-crafted rules

or templates, NSP-based methods conduct semantic parsing to translate the NLQs into executable

logical forms by harnessing a deep neural network. The generalizability and scalability of the neural

networks make NSP-based more effective in performing CQA. These methods usually map the NLQs

into abstract meaning representation (e.g., query graphs and trees) and further convert them into

structured queries mentioned in 2.3.

31

The NSP-based methods are trained in an end-to-end manner, where backpropagation learning is

employed for calculating the gradient of a loss function with respect to each weight in a neural network

model. The gradients are then used by an optimization algorithm (normally stochastic gradient descent

(SGD) or its variant optimization algorithm) to update the model’s weights for minimizing a target loss

function of a predictive model on a given training dataset. The NSP-based methods are task-oriented—

designing a specific predictive model for a certain semantic parsing task and choosing a particular loss

function accordingly. Also, the given training data leads to two learning paradigms: supervised

learning (aka imitation learning, behavior cloning, or teacher forcing)—where a dataset provides pairs

of NLQs and annotated logical forms for training, and weak-supervised learning (aka distant-supervised

learning)—where pairs of NLQs and corresponding ground-truth answers are supplied for optimizing

the neural semantic parsers.

Query Graph. A branch of NSP-based methods resorts to query graphs to express a question’s

intention, while attempting to align the question’s semantic relation topological structures with a

subgraph in a KB.

Reddy et al. [127] propose GraphParser to perform semantic parsing to query Freebase with natural

language utterance, where neither annotations nor denotations are required. GraphParser attempts to

represent a question’s meaning and depict the question’s structure by constructing a semantic graph,

which could be mapped to KB, converting the QA task into a graph matching problem. GraphParser

employs CCG parser [128] to obtain the semantic parse of a NLQ and transform it into an ungrounded

graph. The ungrounded graph is mapped to all possible grounded graphs in Freebase by replacing the

uncertain edges and nodes in the ungrounded graph with the relevant KB artifacts. Each grounded

graph corresponds to a unique structured query, which could lead to a predicted answer. The com-

parison between the predicted answers and the ground-truth answers is treated as a weak supervision

signal to train a beam search procedure to recognize the best grounded graph.

Inspired by CCG, Yih et al. [8] propose Staged Query Graph Generation (STAGG) to construct

query graphs, which could directly map to structure queries, aka λ-calculus. STAGG leverages a core

inferential chain as the core part of a query graph and expands the inferential chain to multiple query

graphs by adopting heuristic rules. Viewing the detected topic entity as the root, STAGG explores

the paths in KB that link to the topic entity within one hop or two hops (when the middle existential

32

variable can be grounded to a CVT node12) and treat such paths as candidate core inferential chains.

STAGG then employs a Siamese neural network [129] (which is constructed on a convolutional neural

network (CNN) framework [130, 131]) to identify the core inferential chain among all the candidates

by the semantic similarity between a candidate chain and the NLQ. After the core inferential chain is

determined, the constraint nodes are attached to the core inferential chain to expand the query graph.

At each step, STAGG chooses an action to enlarge the query graph and construct features to rank the

graph’s state. The high-ranking query graphs are saved for the next step, and other infeasible query

graphs are filtered out. At the last step, the final query graph is returned for producing the structured

query. STAGG employs a one-layer neural network model built on lambda-rank [132] to construct the

ranker for filtering query graphs.

Bao et al. [133] extend the framework of STAGG by covering six more complex constraints, propos-

ing Multiple Constraint Query Graph (MultiCG). The additional complex constraints include multi-

entity (more than one entity appear in the question), type constraint (the answer should belong to a

type), explicit temporal constraint (the answer should satisfy a temporal requirement), implicit tem-

poral constraint (a question contains implicit temporal expressions), ordinal constraint (the answer

should go following a certain ranking), and aggregation constraint (need executing the aggregation

operations on a set to obtain the answer). By adding such constraints, MultiCG is more suitable for

solving complex questions.

Yu et al. [9] propose a framework dedicated to detecting the relations that appear in a NLQ

to enhance the KBQA performance. They design a Hierarchical Residual BiLSTM (HR-BiLSTM)

model to detect relations, where a residual learning method is employed to augment the bidirectional

hierarchical LSTM network. Yu et al. first detect the topic entity in a NLQ and treat all relation paths

related to the topic entity as candidate relation paths. They compare the semantic similarity between

the question and all the candidate relation paths from two different granularity, namely relation-level

(a phrase of the relation is treated as an input element to the LSTM network) and word-level (every

single word of a relation phrase is viewed as an input element). The two different representations

are combined to represent the relation paths, while the output of another LSTM network is used

to represent questions. The relation path that has the highest cosine similarity with the question

representation is returned to obtain answers.

12A compound value type (CVT) node is a kind of artificial nodes in Resource Description Framework (RDF)
to hold a complex relationship and maintain N-ary facts.

33

Previous methods concentrate on constructing query graphs by solving entity linking and defining

constraint attaching rules, while another line of approaches places more emphasis on designing effective

score functions. Luo et al. [134] consider the representation of the questions and query graphs from

two aspects: local and global perspectives. They employ a staged generation method to construct

candidate query graphs for a NLQ and split the query graphs into several semantic components.

They also produce a semantic parse for the question by adopting dependency parsing and extract

the dependency path from the wh-word to the question’s entity mention in the parse as the local

representation of the question. A bidirectional GRU accepts the tokens in the dependency path as the

input sequence to generate output vectors. The output vectors are combined by using a max-pooling

operation to produce the local representation of a question. Meanwhile, the entire question is fed to

another bidirectional GRU to produce global representation. The local and global representations are

added together to produce the final representation of the question. On the other hand, the query

graph’s different semantic components are encoded in the same way as a question’s representation.

Finally, the cosine similarity between the question’s and query graph’s final representations is used

to rank the candidate query graphs. The graph with the highest ranking score will be used to yield

answers.

The method that converts the ungrounded query graphs into grounded query graphs might mislead

the semantic parsing. Instead, Maheshwari et al. [135] propose an alternative approach to conduct

semantic parsing. They first analyze a NLQ and generate a list of possible query graphs according to

the KB’s topological structure, then rank the query graphs with regard to the NLQ. They propose a

slot matching model to rank the candidate query graphs considering the structure of query graphs.

Maheshwari et al. employ an attention mechanism to compute different representations of a NLQ

according to different predicates in candidate query graphs. Therefore, the question’s representation

is used to rank the query graphs.

It can be found that detecting the topic entity in a NLQ plays a critical role in previous query

graph-based approaches. These approaches usually do not achieve satisfying performance on the

questions with no explicit topic entity included. To solve this problem, Hu et al. [136] propose a

State-Transition Framework (STF), combining the aforementioned GraphParser and STAGG. In the

beginning, STF detects all entities, relations, and types that appear in a NLQ and initializes a graph.

STF then selects one of the predefined atomic operations, namely connect, merge, expand, and fold,

to expand the graph by attaching the detected nodes. Also, the edges are mapped to KB relations

34

by using a CNN-based relation matching model. Every action will update the graph and change its

state, and a reward function is used to measure each state. The query graphs with the higher scores

will be saved for further updating, while the ones having lower scores will be eliminated. The final

high-ranking query graph is used to produce answers.

STAGG is limited to a small range since it only explores the paths within a fixed hops, making

it difficult to solve multi-hop questions with more hops. Some researchers propose frameworks that

generate query graphs iteratively. Bhutani et al. [137] align several partial queries with a complex

query graph by using STAGG, and use a augmented pointer networks [138] to synthesize the partial

queries.

Encoder-Decoder Method. Other than query graphs, several methods resort to trees or high-

level programming languages to express NLQs. Dong et al. [101] use an attention mechanism to

augment the encoder-decoder model to convert the semantic parsing task into a Sequence-to-Sequence

(Seq2Seq) problem. Seq2Seq model takes a NLQ as input, and decode the corresponding logical form

as output. Moreover, they propose a Seq-to-Tree model, using a hierarchical tree-structured decoder

in the framework, to capture the hierarchical structure of logical forms.

Instead of using a conventional sequence encode, Xu et al. [139] propose an encoder-decoder

framework considering the syntactic information. They employ a syntactic graph to represent word

order, dependency, and constituency of a NLQ and use a graph encoder to encode the syntactic graph’s

information. They propose a Graph-to-Seq model, where the graph encoder accepts the syntactic graph

as input, and the recurrent neural network (which is augmented by an attention mechanism) decodes

the corresponding logical forms.

Chen et al. [140] attempt to leverage graph transformer [141] to represent the query graph when

solving the multi-hop question answering problem. They pre-define three graph-level operators in

their work, including adding a vertex, selecting a vertex, and adding an edge, as the basic operations

to construct an abstract query graph (AQG). They design a graph-transformer-based model to predict

the graph-level operations at each time step and generate the AQG by sequentially performing the

predicted operations. The AQG is thus used as a constraint to generate the query graph that fully

conveys the intention of the input question and leads to the answers.

Most relevant to our research study are two state-of-the-art techniques on complex KBQA: D2A [19]

35

and Multi-task Semantic Parsing (MaSP) [69]. D2A deploys an encoder-decoder neural network model

for a sequence to sequence mapping, i.e., reformulating NLQs into logic forms, which are then exe-

cuted on KBs to compute answers. Furthermore, D2A incorporates dialog memory management in

generating logical forms to enable replication of previously generated action subsequence. It labels all

training samples with pseudo-gold actions and trains the model by imitation learning. MaSP jointly

optimizes two modules to solve the CQA task, i.e., entity linker (the module used to disambiguate the

KB artifacts that the natural language phrases in questions could map to) and semantic parser (the

module for composing action sequences corresponding to the input question) based on a multi-task

learning architecture, relying on annotations to demonstrate the desired behaviors. MaSP constructs

an encoder-decoder framework by leveraging Transformer—the network that employs a multi-head at-

tention mechanism with additive positional encoding [142]—except only two stacked layers are used in

designing the network. By employing a two-layer Transformer model, MaSP models the dependencies

between tokens and represents the tokens with contextual information.

It is worth noting that D2A and MaSP aim to answer context-dependent questions, where each

question is part of a multiple-round conversation. Different from them, in this research study, we

consider answering the single-turn questions.

It could be found that Transformer-based approaches are verified to be effective in some CQA tasks.

It is worth noting that, in the design of our work, the Seq2Seq model is constructed based on the

LSTM model. The Transformer, which may have a better effect in some experimental scenarios [142],

is not used in our work. In our work, the dimensions of word embedding and LSTM hidden unit are

set to 50 and 128, respectively, and the maximum number of parameters of our model is 1.2 million.

However, if Transformer is used, even if only its basic structure is used, there are still 12 layers, 12

multi-heads, and 768-dimensional hidden units in its neural network.The number of parameters in

Transformer is about 110 million [143, 144], which is nearly 100 times the parameters of the model

designed in our work. Since only a small number of samples are used in our work, and a relatively

weaker distant supervision signal (reward signal) is adopted, the model’s parameters are harder to

optimize. Under such circumstances, the model per se is not easy to converge. Once there are more

parameters to train, the model is more difficult to optimize. Therefore, following Occam’s razor [145],

we choose the LSTM model to build a programmer instead of using Transformer.

The methods based on Encoder-Decoder framework have shown great success in several KBQA

tasks without relying on hand-crafted templates or rules. However, they achieve state-of-the-art

36

performance when a large number of annotations are available for training. The availability of such

large training data has generally been a prerequisite in these methods, presenting a challenge in the

KBQA scenarios where annotated labels are expensive to collect.

Reinforcement Learning Method. To alleviate the dependence on annotated labels, Lan et

al. [146] propose an RL-based framework to answer complex questions with constraints as well as

multiple hops of relations. Lan et al. use a staged query graph generation method to construct a

query graph to express questions’ intention and find the answers in a KB. They define three types

of actions to construct the query graph, i.e., extend, connect, and aggregate actions. They train

a policy network under the RL paradigm to decide a stepwise action at each step—to execute the

extend, connect or aggregate action to grow the query graph with one edge or one node. At each

step, they rank all candidate query graphs by using a 7-dimensional feature vector and keep the most

feasible ones for predicting answers. The F1 score of the predicted answers concerning the ground

truth answers is treated as the reward signal to train the policy network.

Also, several modern approaches attempt to train the model with denotations, i.e., the ground-

truth answers, as weak supervision.

When answering multi-hop questions over KG, it is non-trivial for the QA systems to link the topic

entity in a question with the KG and further find the correct path which starts with the topic entity and

leads to the answer entity in KG. In certain scenarios, since only question-answer pairs are available,

the above problems could be even harder while the topic entities and paths are not annotated. To

overcome such challenges, Zhang et al. [147] propose a variational reasoning network (VRN), an end-

to-end architecture that handles topic entity recognition and multi-hop path reasoning simultaneously.

Treating the topic entity as a latent variable, VRN constructs two probabilistic components to model

the process of topic entity recognition and path reasoning respectively. Since the values of the latent

variables are discrete, Zhang et al. employ the REINFORCE algorithm to train the VRN end-to-end

by treating the probabilities derived from the two probabilistic components as reward signals.

To handle multi-hop questions, Das et al. [148] reduce the question answering process to a finite

horizon sequential decision making problem and employ a neural reinforcement learning approach

to learn to navigate the KG to find the desired paths that lead to the answer to a question. The

approach treats the chosen relation in KG as the action and the entity links to the chosen relation as

the observation and deploys a LSTM network to encode the action and observation to construct the

37

history embedding. The history representation is thus used to compute a probability distribution over

all the possible relations to determine the subsequent action. Therefore, Das et al. treat the LSTM

network as the policy network and employ the REINFORCE algorithm to optimize the policy network

by assigning the policy with a positive terminal reward when the final location is the correct answer.

Similarly, Lin et al. [149] also formulate the multi-hop question answering problem as a ‘walk-based

query answering’, namely learning to walk towards the correct answer following the appropriate path

in the KG. An on-policy RL algorithm, i.e., REINFORCE is often adopted in the walk-based QA

framework to encourage the policy network to walk through the paths that could lead to correct an-

swers. However, Lin et al. find that the spurious paths—the incorrect paths that accidentally reached

the correct answers—would mislead the policy network and further impair the policy’s performance.

To alleviate the spurious problem, they first adopt the KG embedding models to compute a soft re-

ward instead of a binary reward to measure the feasibility of the entity visited in the current time

step. Also, Lin et al. propose an action dropout method to randomly mask certain outgoing edges of

the currently visited entity to decrease the possibility of sampling a spurious path. By combining the

soft reward and action dropout mechanisms, the walk-based QA system could alleviate the spurious

problem and outperform existing path-based KGQA models.

Instead of attempting to find the correct paths to the answers, REINFORCE algorithm could also

be used in the NPI approaches, where two powerful ideas are married: deep learning for representing

the natural language utterances and symbolic program execution for logic reasoning. Liang et al. [11]

propose NSM, a Seq2Seq model learned with RL. NSM deals with multi-hop questions with two

components: the programmer and the computer. The programmer devotes itself to generating logical

forms for each question while the computer executes the logical forms to obtain answers. By employing

an EM-like mechanism, NSM iteratively finds the pseudo-gold trials for the training questions. In the

RL training process, NSM assigns the pseudo-gold trials with a deterministic probability to anchor

the model to the high-reward trials. Then NSM uses a comparison of the computed answers and the

ground-truth answers, i.e., the F1 score of the answers, as weak supervision to train the programmer.

In the CQA problem setup, CIPITR [58] translates a natural-language complex question into a

multi-step executable program using the NPI technique. CIPITR is the state-of-the-art method for

complex question answering tasks. CIPITR does not require gold annotations and can learn from

auxiliary rewards, KB schema, and inferred answer types. It employs high-level constraints and

additional auxiliary rewards to alleviate the sparse reward problem. By using pre-defined high-level

38

constraints, CIPITR restricts the model to search for possible actions that are semantically correct.

Besides, it rewards the model with additional feedback when the generated answers have the same

type of ground-truth answers.

Another NPI-based model, SSRP [14] is proposed to solve complex question answering task. SSRP

utilizes an unsupervised joint Entity, Relation, Type (ERT) linking method to identify all the candidate

KB artifacts in the queries, then feeds the candidate KB artifacts into an NPI model along with the gold

answers. To alleviate the sparse reward problem caused by the noisy ERT linking results, SSRP designs

a noise-resiliency wrapper over an NPI model by introducing the concept of a reference programmer.

The reference programmer shares the same architecture with the current programmer but uses older

version parameters. By comparing the programs and the corresponding rewards obtained by the

reference programmer with the current programmer, SSRP controls the extent of backpropagation

in training the programmer. Therefore, the programmer could be updated in a more stable fashion,

crippling noise and mitigating the sparse reward problem.

Other than REINFORCE algorithm, other lines of RL algorithms could also be applied in the CQA

tasks. Stepwise Reasoning Network (SRN) [150] is a neural model based on RL proposed to solve the

multi-relation questions over a knowledge graph. SRN formulates the multi-relation question answering

problem as a sequential decision problem. The model selects the next action among the candidate

actions (consisting of the relations and entities linked to the currently visited entity) at each step. Since

the delayed and sparse reward problems are shown to arise from previous RL-based models using non-

potential-based rewards, in addition to the final answers, SRN thus employs a potential-based reward

shaping strategy to produce additional training rewards to guide the policy when making decisions.

In SRN, the potential-based rewards correspond to distance-based and subgoal-based heuristics.

In a similar vein, Qiu et al. [151] extend the traditional Markov Decision Process (MDP) [152]

framework to solve the multi-hop question answering over knowledge bases. Qiu et al. convert the

QA process into a stepwise decision procedure by designing a Director-Actor-Critic framework. In

this framework, the Director selects a high-level strategy (decide the type of triple to be formed),

the Actor sequentially performs low-level actions (i.e., triple generation), and the Critic computes the

semantic similarity between the newly generated triple and the input question. The hierarchical RL

algorithm is employed in the Director-Actor-Critic framework. The sequentially generated triples are

used to construct a query graph to translate to executable logical forms directly.

39

Wang et al. [153] also employ deep reinforcement learning (DRL) based algorithm to tackle multi-

step question answering problems. They propose a multi-step coarse to fine question answering

(MSCQA) system to handle documents of various lengths. MSCQA consists of three modules, namely

sentence selection module, which is used to select sentences from the relevant documents, sub-context

generation module, used to remove the spurious predicted answers from the document context, and an-

swer generation module—used to generate answers from the selected sentences. Furthermore, MSCQA

defines three actions, each corresponds to one of the three modules respectively, in the DRL frame-

work. MSCQA, therefore, employs the actor-critic-based algorithm to construct the DRL framework,

where two neural networks are built to model the actor and the critic. In the DRL framework, the

actor network is trained to predict the next step’s action by taking the current step’s state as the

input, while the critic network learns to evaluate the gained value by performing such action.

It is worth noting that compared with other variants of the policy gradient method, existing

DRL-based CQA approaches tend to utilize the REINFORCE algorithm when constructing the DRL

framework. This inclination is because most QA systems reduce the CQA task to a sequence gen-

eration problem where the input is the question, and the output is the corresponding logic forms,

meaning representations, or structural queries. Under such circumstances, REINFORCE algorithm,

an important policy-gradient reinforcement learning algorithm, is suitable for training the sequence

generation model since the algorithm has shown the effectiveness for a variety of sequence generation

tasks [154, 155, 156]. Following the previous works, we also introduce the REINFORCE algorithm

into our work.

Meta Learning Method. The conventional approach to KBQA is to train one model to fit the

entire training set and then use it for answering all complex questions at the test time. However, such a

one-size-fits-all strategy is sub-optimal as the test questions may have diversity due to their inherently

different characteristics [17]. In some scenarios, the structure, length, difficulty, data distribution,

and other characteristics of the questions are quite different. It is often difficult to find a set of

the global optimal parameters for the neural network, and it is hard to fit them into the training

samples. The QA models might have inconsistent performance if they use a set of parameters to

answer different types of questions. The QA models will always have better performance on certain

types of questions while performing poorly on other types of questions. Therefore, the researchers

introduced the meta-learning method, which changed the optimization goal of the neural network

from finding a set of global optimal parameters to finding a set of optimal initial parameters. When

40

answering new questions, specific parameters suitable for current queries were dynamically generated

on the fly with a small number of samples. Multiple sets of parameters could be adaptively generated

for multiple types of questions to answer questions accurately. Therefore, meta-learning is introduced

to solve the one-size-fits-all problem.

Meta-learning, aka learning-to-learn, aims to make learning a new task more effective based on the

inductive biases that are meta-learned in learning similar tasks in the past [157, 158]. Meta-learning

is a popular framework for learning an algorithm over a distribution of tasks. The algorithm could

produce an adaptive model that performs well on a previously unseen task by learning with limited

data sampled from this task [159]. Conventional deep neural networks have shown great success in

many applications by being trained with large amounts of labeled data. Still, they tend to struggle

when required to adapt quickly to an unseen task with a small amount of training data [160]. Moreover,

another challenge of standard deep neural networks resides in learning new tasks incrementally on the

fly without forgetting or distorting the previously learned knowledge [161]. Therefore, the monolithic,

one-size-fits-all neural networks trained under supervised-learning (i.e., imitation Learning) or weak-

supervised learning paradigms (aka RL) always exhibit low performance when training under a limited

amount of samples or adapting to varying tasks [160]. In contrast, humans possess the cognitive

ability of continuous learning, i.e., rapidly learning new concepts from a few samples by exploiting

the prior knowledge and accumulated experience (aka the inductive bias [162]) of previously learned

concepts [163], which is the ability that distinguishes human cognition from machine intelligence.

Humans could extract the inductive bias from the seen tasks and thus apply it to unseen tasks [164].

For example, people can acquaint themselves with a novel object by observing a few images of that

object [165, 166], or learn how to play the Atari game of Frostbite much more quickly [163] than

double-dueling-DQN model [167]. In response, meta-learning is proposed to mimic the capacities that

distinguish human intelligence from the monolithic neural networks [168], which could extract generic

knowledge over the seen tasks and apply it to solve unseen tasks [169, 170].

Meta-learning seeks to search for a high-level strategy that generalizes the previously acquired

knowledge to the novel but similar tasks while capturing the specific essence of the novel task [171].

To accomplish this, recent meta-learning approaches design a meta-learner to find the high-level strat-

egy [160]. Instead of being trained to fit a single task—generalizing to unseen data points sampled

from this task’s data distribution, the meta-learner is trained to discover a rule that generalizes to a

broader scope—a distribution of related tasks. Generally, meta-learning can be viewed as constructing

41

a high-level strategy h by learning from a distribution of tasks Dtr. For instance, in a one-shot learning

setting, Dtr denotes a set of labeled samples categorized into C groups, and h corresponds to a C-way

classifier.

A variety of approaches have been proposed for meta-learning. A branch of these methods formu-

lates the meta-learning problem as a two-level framework: a base-level model performing learning the

task-specific patterns and a meta-level model acquiring the generic knowledge across tasks [172, 173].

When facing a novel task, the base-level model utilizes the generic knowledge to generalize to the

novel task. This line of meta-learning algorithms either integrates the base and meta-level models in

a single learner [174], or encodes the high-level strategy in the weights of an additional neural network

(for example a LSTM network [175, 176], an RNN network [158], or RL-based policy [177]).

Another branch of the approaches is to learn the optimal initialization of a network’s parameters,

and thus finetune the parameters when testing a new task [178]. Model-Agnostic Meta-Learning

(MAML) [179] is an important thread of this branch of approaches. Observing the initial weights have

a substantial effect on models’ performance, MAML converts the meta-learning problem into an initial

parameter optimization problem—MAML learns a task-agnostic model initialization representing the

common patterns across a distribution of tasks, and finetunes the model to adapt to a novel task by a

fixed number of gradient descent steps from this initialization. MAML formulates the meta-learning

in an episodic manner, wherein an algorithm is trained to minimize the loss of a query sample q by

adapting to the support set sq, which consists of samples extracted from the data distribution of the

task that q belongs to. Suppose the initial parameters of the model to be learned is θ, MAML first

evaluates the loss Lsq on the support set sq, and then updates θ using gradient descent generated by

Lsq ,

θ′ = θ − α∂Lsq
∂θ

(2.1)

where α is step size that could be defined as a hyperparameter or meta-learned.

MAML then updates the initial parameters θ to minimize the loss Lq incurred on the query sample

q by using the adaptive parameters θ′,

θ = θ − β∂Lq
∂θ

(2.2)

where β is the step size for updating θ.

42

In 2.2, the derivative could be expanded using the chain rule:

∂Lq
∂θ

=
∂Lq
∂θ′

∂θ′

∂θ
=
∂Lq
∂θ′

∂(θ − α∂Lsq∂θ)

∂θ
=
∂Lq
∂θ′

(I − α∂
2Lsq
∂θ2

) (2.3)

In 2.3, it can be found that the MAML meta-gradient update involves computing a gradient through

a gradient, i.e., Hessian-vector products, to update the initial parameters, which plays a critical role

in sensible gradient-based learning. It is worth noting that empirical studies in [159] indicate that

using an approximation to first-order derivatives for meta-gradient update (ignoring second-order

derivatives and only considering first-order derivatives) could achieve a competitive performance on

several benchmarks and is more convenient for implementation.

Therefore, Reptile [180], as a first-order meta-learning algorithm, is adopted in several meta-

learning settings to replace MAML. MAML has a simplified architecture since it does not require

an additional network or framework for meta-learning, and thus is the focus of this research study.

In Reptile, suppose the initial parameters is θ, the task used in meta learning is τ , and the loss on

the task τ is Lτ . The function SGD(·) is used to compute the gradient on loss Lτ and update the

parameters starting from θ,

Wτ = SGD(Lτ , θ, k) (2.4)

where k denotes the function has performed k gradient steps.

Reptile then update the initial parameters θ as:

θ ← θ + ε(Wτ − θ) (2.5)

where ε denotes the step size for updating θ.

The equation 2.5 is inspired by the following heuristic idea: suppose W∗τ is a set of theoretical

optimal parameters to solve the task τ , then the objective of the algorithm Reptile is to find a

parameter θ in the parameter space that is the closest to one certain optimal parameter in the set

W∗τ . Therefore, the objective function is designed as:

min
θ

1

2
D(θ,W∗τ)2 (2.6)

In the equation 2.6, D(θ,W∗τ)2 denotes the squared Euclidean distance between a single point

43

θ and a set of points W∗τ . The gradient of the squared Euclidean distance D(θ,W∗τ)2 is the vector

2(θ − p), where p is the closest point in W∗τ to θ. To minimize equation 2.6, the gradient could be

computed as:

∇θ[
1

2
D(θ,W∗τ)2] = θ − p (2.7)

The parameter θ could be updated after performing a stochastic gradient update on a task τ as:

θ ← θ − ε∇θ[
1

2
D(θ,W∗τ)2] = θ − ε(θ − p) = θ + ε(p− θ) (2.8)

In the equation 2.8, we use Wτ to approximate p, i.e., the point inW∗τ that is the closet to θ. Therefore

we could derive the equation 2.5 by replacing p in the equation 2.8 with Wτ . Reptile reduces the

computational cost, and it is verified to achieve the same effect as MAML in many practical tasks.

Therefore it can replace MAML in many scenarios.

In the NLP spectrum, MAML has been employed in many different works, including training

neural machine translation (NMT) systems for low-resource languages [181], learning personalized

chatbots [182], and learning a neural semantic parser with limited rules while neither annotations nor

denotations are used [183].

More relevant to this research study, in question answering settings, Huang et al. [17] propose a

relevance function to find similar samples to form a pseudo-task for each WikiSQL [184] question.

Subsequently, they reduce a supervised learning problem into a meta-learning problem and employ

MAML to adapt the programmer to each pseudo-task. More closely related to our work, Guo et

al. [18] propose Sequence-to-Action (S2A) by using MAML to solve CQA problems. They label all

the examples in the training set with pseudo-gold annotations, then train an encoder-decoder model

to retrieve relevant samples and a Seq2Seq based semantic parser to generate actions based on the

annotations. Based on the retriever’s similar samples, S2A establishes a meta-learning task for each

question and thus employs MAML to finetune the programmer. It is worth noting that S2A aims

to answer conversational questions, while in this study, we consider answering single-turn questions.

Also, unlike S2A, we introduce a Meta-RL approach in this research study, which uses RL to train an

NPI model without annotating questions in advance.

Although the above NSP-based methods can enlarge the coverage of questions, the availability of

sufficient gold logical forms has generally been a prerequisite in training a neural semantic parser. Also,

44

the one-size-fits-all problem impairs the existing methods’ performance when faced with the KBQA

questions that vary vastly. Therefore, in this research study, we aim to design a model that could be

trained without the restriction of the gold annotations, alleviate the sparse reward and data-inefficiency

problems that inherently exist in the RL-based methods, and could solve the one-size-fits-all problem.

2.5 Summary

To sum up, in this research study, we aim to solve the CQA task that automatically finds precisely the

piece of information in a KB to answer complex questions raised by users. To accomplish this task, we

need to (i) understand the NLQs raised by users, (ii) retrieve relevant facts in KB, and (iii) conduct

logical or arithmetic reasoning over the retrieved facts to infer the answers. It is worth noting that

the KBQA subtasks, i.e., Entity Linking and Predicate recognition are necessary for understanding

the questions’ intention, where the accuracy of these tasks have a significant influence on the perfor-

mance of the entire CQA system. Modern CQA systems either incorporate independent components

specifically designed for KBQA subtasks into their pipeline framework or combine the subtasks and

the answer-inference process into a unifying deep learning framework. Moreover, there are several

branches in question answering, including IR-based, template-based, and NSP-based approaches. IR-

based methods project the questions and candidate answers into the same vector space and treat the

answer inference process as a classification or ranking task. However, there exists a gap between the

natural language utterances and the returned answers in IR-based methods in that it is hard to explain

why users receive such answers. In contrast, template-based methods bridge this gap by introducing

templates, a custom-defined pattern representing a query’s structure and intention, simplifying the

semantic parsing of input utterances. Template-based methods map a question into templates and

then translate the templates into structured queries to obtain answers. Though template-based meth-

ods can generate interpretable answers, such methods are highly dependent on pre-defined templates,

resulting in limited coverage. To improve CQA models’ generalizability, as a critical branch of CQA,

NSP-based approaches design a neural network to conduct semantic parsing for answering a question.

This line of approaches generally achieve better performance than other branches; however, they still

face a number of challenges, including the limitation of manual annotation and the one-size-fits-all

problem.

It can be found that though existing work could achieve competitive results in answering complex

45

questions, there remain several major challenges that need to be handled. Therefore, we propose our

approach that develops a neural-symbolic framework to solve the CQA task while addressing these

challenges. To handle complex questions and improve interpretability, we leverage the NPI method.

To design a CQA framework by only using denotations while alleviating the sparse reward and data

inefficiency problems that inherently lie in the conventional NPI models, our research study presents

an RL architecture that incorporates curriculum learning and memory-buffer. Furthermore, to learn

an adaptive model to precisely answer each novel question instead of using a one-size-fits-all model,

we upgrade the RL model into a meta reinforcement learning (meta-RL) framework, where the model

is trained to adapt to the target question quickly. To improve the meta-RL model’s performance, we

design an optimal retriever to find the most appropriate instances for the target question. To unify

the retriever and the meta learner’s learning process, we propose a new learning algorithm that jointly

optimizes both models. The specific details of our approach will be described in the following chapters.

46

Chapter 3

Neural-Symbolic Complex Question

Answering Over Knowledge Bases

KBQA automatically answers users’ NLQs by understanding the queries, exploring KB facts, and

returning the relevant facts as answers. The simple question is a type of questions that refer to

a single fact, for instance, a triple (China, capital, Beijing) could be used for answering the query

“What is the Capital of China?”. However, in practice, people tend to formulate questions with more

complexity—the complex questions that are not limited to a single triple—to meet their ever-growing

information needs. Therefore, the task of retrieving answers based on more than one triple in a KB,

aka CQA, is an active research area and attracts significant attention recently.

In comparison with simple questions, complex questions typically involve aggregating information

from multiple KB facts, conducting logical reasoning or arithmetic operations in order to infer the

answers. Specifically, this kind of questions includes the following types: (i) questions need sequential

(multi-hop) reasoning over a chain of triples, e.g., “What university did president of the United States

graduate from?”, (ii) questions with certain constraints, e.g., “Who is the president of the European

Union 2012?”, and (iii) questions require arithmetic processing, e.g., “How many countries have

more rivers than China?”. To cope with these complex questions, a structured query that correctly

assembles multiple functions is required and is the main subject of this research study.

To circumvent the CQA problem, several IR-based KBQA systems are proposed. Such retrieval

models are either dependent on traditional lexical term-based search—which performs phrasal match-

47

ing instead of understanding the meaning of user queries [5], or dense representation method—which

projects queries and KB nodes into a vector space and finds the most aligned vector with a given

question vector to complete the answer retrieval [25, 81, 113]. However, the IR-based methods lack

interpretability because they cannot explain the answer inference process; therefore, they cannot be

applied in specific settings where explanations are required.

In contrast, numerous template-based works [124, 126] rely on parsing a question to construct

templates that reflect the syntactic structure in the utterance and represent the question intention.

These methods decompose a complex question into multiple simple subquestions, map the subquestions

into pre-defined templates according to artificial rules, and instantiate the templates with KB artifacts

identified in the question [125]. However, such template-driven approaches have strict limitations in

coverage because they cannot handle the questions whose structure and format differ from the training

samples in a given dataset.

To improve generalizability, the end-to-end models, including feed-forward [185] and encoder-

decoder networks [101, 139] are introduced to produce logical forms for each input question. Being

built upon the imitation learning paradigm, these methods either depend on given semantic parse

labels [10] or pseudo-gold annotations that collected by a brute-force search method [19, 69] to train

the networks. However, it is widely believed that collecting such task-specific annotations can be a

time-consuming task [186].

Instead of using the behavior cloning method, several state-of-the-art NPI-based KBQA sys-

tems [14, 58] use final answers as weak supervision to train the end-to-end models in the cases that

only NLQs and the corresponding answers are available. These end-to-end models learn to compose

a sequence of tokens that forms the logical form by generating one token at a time, conditioning on

previously generated tokens or intermediate execution results [11]. Such methods divide the genera-

tion process into multiple steps and use the information already at hand to choose a valid subsequent

token iteratively. Therefore, the search space of the logical forms would grow exponentially with each

step and blow up to a very large size eventually [14, 187]. Such a huge search space makes NPI models

suffer from sparse reward problem, where out of all possible programs induced by a model, only a

tiny set of them could yield non-zero rewards for training. Also, a data-inefficiency problem—that

excessive trials are needed for training the model to fit a particular question—arises from the search

space’s exponential size.

48

To solve the above challenges in the CQA task, our proposed CQA system should:

1. use custom-defined actions to generate logical forms for answering a complex question,

2. explain the process of answer inference,

3. solve the questions independent of pre-defined templates or rules,

4. be trained end-to-end without using annotations,

5. augment the sparse extrinsic reward, and

6. improve the sample efficiency.

The relevant CQA methods have been deeply analyzed in the attached research paper’s literature

study. Since existing CQA systems that satisfy all the aforementioned requirements are not prevalent,

a novel NPI-based CQA method is proposed. Conducting experiments on several CQA datasets, our

method is proved to outperform the existing state-of-the-art CQA approaches. We name the model as

Neural-Symbolic Complex Question Answering (NS-CQA). This research work has been published

in the Journal of Web Semantics 2020. The complete version of the manuscript is attached in the

subsequent pages.

Hua, Y., Li, Y., Qi, G., Wu, W., Zhang, J. and Qi, D. Less is more: Data-efficient complex question

answering over knowledge bases. In Journal of Web Semantics, 2020, 65, p.100612.

49

Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents on the
WorldWideWeb

journal homepage: www.elsevier.com/locate/websem

Less ismore: Data-efficient complex question answering over
knowledge bases
Yuncheng Hua a,d, Yuan-Fang Li b, Guilin Qi a,c,∗, Wei Wu a, Jingyao Zhang a, Daiqing Qi a
a School of Computer Science and Engineering, Southeast University, Nanjing, China
b Faculty of Information Technology, Monash University, Melbourne, Australia
c Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China
d Southeast University-Monash University Joint Research Institute, Suzhou, China

a r t i c l e i n f o

Article history:
Received 3 October 2019
Received in revised form 4 May 2020
Accepted 2 September 2020
Available online 16 October 2020

Keywords:
Knowledge base
Complex question answering
Data-efficient
Neural-symbolic model
Reinforcement learning

a b s t r a c t

Question answering is an effective method for obtaining information from knowledge bases (KB). In
this paper, we propose the Neural-Symbolic Complex Question Answering (NS-CQA) model, a data-
efficient reinforcement learning framework for complex question answering by using only a modest
number of training samples. Our framework consists of a neural generator and a symbolic executor
that, respectively, transforms a natural-language question into a sequence of primitive actions, and
executes them over the knowledge base to compute the answer. We carefully formulate a set of
primitive symbolic actions that allows us to not only simplify our neural network design but also
accelerate model convergence. To reduce search space, we employ the copy and masking mechanisms
in our encoder–decoder architecture to drastically reduce the decoder output vocabulary and improve
model generalizability. We equip our model with a memory buffer that stores high-reward promising
programs. Besides, we propose an adaptive reward function. By comparing the generated trial with the
trials stored in the memory buffer, we derive the curriculum-guided reward bonus, i.e., the proximity
and the novelty. To mitigate the sparse reward problem, we combine the adaptive reward and the
reward bonus, reshaping the sparse reward into dense feedback. Also, we encourage the model to
generate new trials to avoid imitating the spurious trials while making the model remember the past
high-reward trials to improve data efficiency. Our NS-CQA model is evaluated on two datasets: CQA,
a recent large-scale complex question answering dataset, and WebQuestionsSP, a multi-hop question
answering dataset. On both datasets, our model outperforms the state-of-the-art models. Notably, on
CQA, NS-CQA performs well on questions with higher complexity, while only using approximately 1%
of the total training samples.

© 2020 Published by Elsevier B.V.

1. Introduction

Knowledge base question answering (KBQA) [1–5] is an active
research area that has attracted significant attention. KBQA aims
at interpreting natural-language questions as logical forms, action
sequences, or programs, which could be directly executed on a
knowledge base (KB) to yield the answers.

Many techniques have been proposed for answering single-
hop or multi-hop questions over a knowledge base. Neural
network-based methods [1–5] represent the state-of-the-art in
KBQA. More recently, complex knowledge base question answer-
ing (CQA) [6] has been proposed as a more challenging task.
Complex question answering, the subject of this paper, focuses

∗ Corresponding author.
E-mail addresses: devinhua@seu.edu.cn (Y. Hua), yuanfang.li@monash.edu

(Y.-F. Li), gqi@seu.edu.cn (G. Qi), wuwei@seu.edu.cn (W. Wu), zjyao@seu.edu.cn
(J. Zhang), daiqing_qi@seu.edu.cn (D. Qi).

on aggregation and multi-hop questions, in which a sequence of
discrete operations – e.g., set conjunction, counting, comparison,
intersection, and union – needs to be executed to derive the
answer.

Complex question answering is typically cast as a semantic
parsing problem, whereby natural-language questions are trans-
formed into appropriate structural queries (sequences of discrete
actions). Such queries are then executed on the knowledge base
to compute the answer. Consider the complex question ‘‘How
many rivers flow through India and China?’’ as a motivating
example. Fig. 1 shows an incomplete sub-graph relevant to this
question. To answer this question, all entities whose type is
‘‘river’’ and link to the entity ‘‘China’’ with edge ‘‘flow’’ will first
need to be retrieved from the KB to form the candidate set SA.
Meanwhile, the candidate set SB will also be formed to represent
those rivers that flow through India. After obtaining the inter-
section of SA and SB, the number of elements in the intersection
can finally be identified as the correct answer to the question. It

https://doi.org/10.1016/j.websem.2020.100612
1570-8268/© 2020 Published by Elsevier B.V.

50

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

Fig. 1. An example illustrating the task of complex question answering.

can be seen that a diverse set of operations, including selection,
intersection, and counting operations need to be sequentially
predicted and executed on the KB.

Sequence-to-sequence (seq2seq) models learn to map natural
language utterances to executable programs, and are thus good
model choices for the complex question answering task. How-
ever, under the supervised training setup, such models require
substantial amounts of annotations, i.e., manually annotated pro-
grams, to effectively train. For practical KBQA applications, gold
annotated programs are expensive to obtain, thus most of the
complex questions are not paired with the annotations [7]. Re-
inforcement learning (RL) is an effective method for training
KBQA models [8,9] as it does not require annotations, but only
denotations (i.e. answers) as weak supervision signals. However,
RL-based KBQA methods face a number of significant challenges.

Sparse reward. Neural-symbolic models that are optimized
through RL have been proposed for the complex question answer-
ing task [7–9]. In the RL context, questions of the same pattern
could be regarded as one single task, while programs trying
to solve these similar questions are considered trials. Instead
of using the gold annotations, neural-symbolic models employ
rewards, i.e., comparisons between the predicted answer and the
ground-truth answer as the distant supervision signal to train
the policy [8,9]. Usually, a positive reward could only be given
at the end of a long sequence of correct actions. However, in
the initial stage of model training, most of the trials sampled
from the sub-optimal policy attain small or zero rewards [10].
We randomly selected 100 questions from a complex question
answering dataset, and manually inspect the generated trials. We
found that more than 96.5% of the generated trials led to wrong
answers and got zero reward. Thus, this sparse reward problem
in the complex question answering task is a major challenge that
current neural-symbolic models face.

Complex Imperative Program Induction from Terminal Re-
wards (CIPITR) [7] is the state-of-the-art method for the complex
question answering task. It employs high-level constraints and
additional auxiliary rewards to alleviate the sparse reward prob-
lem. By using pre-defined high-level constraints, CIPITR restricts
the model to search for possible actions that are semantically
correct. Besides, it rewards the model by the additional feedback
when the generated answers have the same type of ground-
truth answers. However, on the one hand, defining the high-level
constraints comes at the cost of manual analysis to guide the
model’s decoding process, which is tedious and expensive. On the
other hand, CIPITR only harnesses the type of predicted answers

as the auxiliary reward, which makes many failed experience
still only have a zero reward. At the initial stage of training,
most of the programs generated by CIPITR fail to yield expected
answers and gain zero rewards, thus most of the programs do
not contribute to model optimization. Thus, the sparse reward
problem remains a challenge for CIPITR.

Data inefficiency. Furthermore, due to the sparse supervision
signals, such models are often data inefficient, which means
many trials are required to solve a particular task [11]. Being
trained from scratch, RL models often need thousands of trials
to learn a simple task, no matter what policy is employed to
search programs. When faced with a large number of questions,
training such models would consume an enormous amount of
time. One way to increase data efficiency is to acquire task-
related prior knowledge to constrain the search space. However,
in most cases, such prior knowledge is unavailable unless manual
labeling is employed. Hence, the data inefficiency problem often
makes models expensive to train and thus infeasible/impractical.
Liang et al. [8] proposed the Neural Symbolic Machine (NSM)
that maintains and replays one pseudo-gold trial that yields the
highest reward for each training sample. When using RL to opti-
mize the policy, NSM assigns a deterministic probability to the
best trial found so far to improve the training data efficiency.
However, in NSM, the best trial to be replayed might be a spurious
program, i.e., an incorrect program that happens to output the
correct answer. Under such circumstances, NSM would be mis-
guided by the spurious programs since such programs could not
be generalized to other questions of the same pattern. Besides,
NSM only harnesses the accuracy of the predicted answers to
measure the reward, hence also suffers from the sparse reward
problem.

Large search space. Large KBs, like Wikidata [12] or Free-
base [13], contain comprehensive knowledge and are suitable to
be sources for complex question answering. The KBs with smaller
size usually embrace a limited number of facts, thus are insuf-
ficient to yield the required answers. To answer the questions,
searching for KB artifacts (entities, classes, and predicates in KB)
that are related to the questions is a crucial step. However, large
KBs often lead to vast search space. Given a sequence of actions, at
each step of its execution, both the operator and the parameters,
i.e., KB artifact, used in action need to be correct. To produce the
correct result, the actions in the sequence also need to follow
a particular order. With the above factors combined, searching
desired action sequences would consume a considerable amount
of time and memory, which makes the training process slow and
expensive. How to design a set of simple yet effective actions that
could reduce the search space remains a challenge.

In this paper, we propose a Neural-Symbolic Complex Ques-
tion Answering framework, NS-CQA. It trains a policy to generate
the desired programs from the comparison between the gen-
erated answer and the ground-truth result. We incorporate a
memory buffer, design an adaptive reward function, and propose
a curriculum-guided reward bonus to improve the model.

To reduce search space, we use a combination of simple
yet effective techniques to reduce model complexity, increase
generalizability, and expedite training convergence. We employ
the widely-used masking technique to allow the model to handle
unseen KB artifacts effectively. In conjunction, the copy mech-
anism [14] is also employed to reduce the size of the decoder
output vocabulary drastically. Accordingly, the decoder output
vocabulary only needs to contain the primitive actions and a
handful of masks, instead of the entire KB. Also, we carefully
craft a set of primitive actions that are necessary for the complex
question answering task and simplify the query form to reduce
the search space. Our primitive actions free the model from
the need for maintaining expensive and sophisticated memory

2

51

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

Fig. 2. Overview of the proposed NS-CQA model.

modules. On the contrary, the model maintains the intermediate
results in a simple key–value dictionary. The model can directly
compute the final answer to a question by executing a correct
sequence of primitive actions.

Different from previous neural-symbolic models for the com-
plex question answering task, our NS-CQA framework is designed
to augment the sparse extrinsic reward by a dense intrinsic
reward and exploit trials efficiently.

Instead of using the manually defined high-level constraints
as in CIPITR, we employ a random search algorithm to find a
few pseudo-gold annotations that lead to correct answers. The
pseudo-gold annotations are used as supervision signals to pre-
train the model, which could guide the model to filter out in-
feasible action sequences. Consequently, in the initial training
stage, we mitigate the cold start issue by using the pseudo-gold
annotations as demonstration data to pre-train our model.

Moreover, instead of recording one trial for each question, we
maintain a memory buffer to store the promising trials, i.e., the
action sequences that lead to the correct answer or gain high
rewards. In our work, on the one hand, we aim to converge
a behavior policy to a target optimal policy. Thus we need to
measure how similar/important the generated trials are to tri-
als that the target policy may have made. We design a reward
bonus, proximity, to favor these ‘‘similar/important’’ trials. On
the other hand, to avoid overfitting the spurious trials, we also
encourage the policy to explore in undiscovered search space,
i.e., the space that is beyond the imitation of the pseudo-gold
annotations. Therefore, we design another reward bonus, novelty,
to the generated action sequences that are ‘‘different’’ from the
trials stored in the memory buffer.

To adaptively control the exploration–exploitation trade-off,
we employ a curriculum learning [15] scheme to dynamically
change the influence of the two reward bonuses, namely the
proximity and the novelty. Particularly, given a question, we de-
fine the proximity for the predicted trial as the highest similarity
between the predicted trial and all the trials in the memory
buffer. Novelty is also defined through similarity. We consider
a trial is novel if it is not similar to all the trials in the mem-
ory buffer. At the initial stage, since the policy is sub-optimal
and the trials generated by the policy are generally infeasible,
we prefer more novelty for exploration. We gradually increase
the proportion of proximity and reduce the influence of novelty
during the later training epochs. At the final stage of the training,

the proportion of proximity in the reward bonus will rise to 100%.
Such a delicately designed curriculum method can significantly
improve the learning quality and efficiency [16].

Besides, to alleviate the sparse reward problem, an adaptive
reward function (ARF) is proposed. ARF encourages the model
with partial reward and adapts the reward computing to different
question types. We sum up the reward bonus with the adaptive
reward to make our RL model learn from the combined reward.
With this modification, we reshape the sparse rewards into dense
rewards and enable any failed experience to have a nonnegative
reward, thus alleviate the sparse reward problem.

Furthermore, by incorporating a memory buffer, which main-
tains off-policy samples, into the policy gradient framework, we
improve the sample efficiency of the REINFORCE algorithm in
our work [11]. We encourage the model to generate trials that are
similar to the trials in the memory buffer by using the proxim-
ity bonus. Therefore the high-reward trials could be re-sampled
frequently to avoid being forgotten in the training process. Since
a group of question shares the same pattern, a sequence of
the same actions could solve such questions. Once we improve
sample efficiency, we reduce the trials needed for training. There-
fore, using a minimal subset of training samples, our model can
produce competitive results.

Overall, the main contributions in this paper can be summa-
rized as follows.

1. A neural-symbolic approach that is augmented by memory
buffer and is designed for complex question answering. In
our method, for each question, we resort to the previous
promising trials stored in the memory to assist our model
in replaying and generating feasible action sequences.

2. A curriculum-learning scheme that adaptively combines
novelty and proximity to balance the exploration-
exploitation trade-off for the model. We treat the combina-
tion of the novelty and proximity as a bonus to the reward,
therefore alleviate the sparse reward and data inefficiency
problems.

3. Several simple yet effective techniques are proposed to
reduce search space, improve model generalizability, and
accelerate convergence. In our work, the masking method
and the copy mechanism are incorporated in Seq2Seq
learning to avoid searching over a large action space. Also,
a set of primitive actions is carefully designed to solve com-
plex questions by executing actions sequentially, avoiding
the maintenance of complex memory modules.

3

52

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

Our experiments on a large complex question answering
dataset [6] and a relatively smaller multi-hop dataset WebQues-
tionsSP [17] show that NS-CQA outperforms all the recent, state-
of-the-art models. Moreover, NS-CQA performs well on the ques-
tions with higher complexity, demonstrating the effectiveness of
our method.

The rest of this paper is organized as follows. Related works
are introduced in Section 2. Our NS-CQA framework is described
in Section 3. Section 4 describes the experiments and evaluation
results. In Section 5, we perform some qualitative analysis, show-
ing positive examples and typical errors. We conclude our work
in Section 6.

2. Related work

The NS-CQA model is inspired by two lines of work: semantic
parsing and neural-symbolic systems. Semantic parsing mainly
focuses on reformulating natural language questions into logic
forms, which are then executed on knowledge bases (KBs) to
compute answers [18–20]. More recent approaches employ so-
phisticated deep learning models to search entities and predicates
that are most relevant to the question [21–23].

Many of these works tackle simple one-hop questions that are
answerable by a single triple. Others address the multi-hop task,
in which answers are entities that can be retrieved by a path of
connected triples. In both cases, a model only retrieves entities as
answers in a fixed search space, i.e., the KB. Our model addresses
a more challenging problem, where answers come from a much
larger search space, involving not only entities in the KB but also
their logical combinations and aggregations (numbers).

The complex KBQA dataset, such as CQA [6], requires the
execution of discrete actions rather than merely searching for
entities in KB. Memory network [4,24–26] is used to store facts
in KB and makes it possible to solve complex questions. Luo et al.
[27] encodes complex questions into vectors to represent the se-
mantics and structure of the input sentence contemporaneously,
by which the similarity between the question and the graph could
be computed. Dialog-to-Action (D2A) [28] incorporates dialog
memory management in generating logical forms that would be
executed on a large KBs to answer complex questions. It labels all
training samples with pseudo-gold actions and trains the model
by imitation learning. It is worth noting that D2A aims to answer
context-dependent questions, where each question is part of a
multiple-round conversation. On the other hand, in this paper,
we consider answering the single-turn questions. Therefore we
do not include D2A as a baseline method in the evaluation as it
is not directly comparable to our problem setup. The semantic
parsing approaches mentioned so far all require the annotation
of the entire training dataset to learn the models. Different from
these approaches, our model can be learned from a small number
of pseudo-gold annotations only.

Some recent studies in KBQA focus on semi-supervised learn-
ing, in which models are trained solely on denotations, e.g., the
execution results of queries, the state of the final time step, etc.
In [1], a semantic parser is trained by learning from question–
answer pairs rather than annotated logical forms to query the
knowledge graph. Furthermore, the parser could be trained with-
out manual annotations or question–answer pairs by treating
denotations of natural language questions and related KB queries
as weak-supervision [29]. Similarly, queries automatically gen-
erated from knowledge graph triples and paraphrased questions
without answers are used in weak-supervision to train subgraph
embedding models [30]. To fully understand the intention of
questions, STAGG [5] is proposed to generate a staged query
graph and directly map the graph into λ-calculus.

Neural-symbolic models integrate neural networks with logic-
based symbolic executors to conduct non-differentiable compu-
tations. Neural Turing Machines (NTMs) [31] pioneer the neural-
symbolic methods, in which REINFORCE is employed to train
the model in the RL Neural Turing Machines (RL-NTMs) [32].
When answering natural language questions on relational tables,
some approaches [33,34] predict discrete symbolic operations by
neural networks and obtain answers by executing them. Guu
et al. [35] marry RL and maximum marginal likelihood (MML) to
avert the spurious problems. The neural-symbolic visual question
answering (NS-VQA) system [36] combines deep representation
learning and symbolic program execution to solve visual question
answering problems over a synthetic image dataset.

Most relevant to this work are two state-of-the-art techniques
on complex KBQA: Neural Symbolic Machines (NSM) [8] and
CIPITR [37]. NSM deals with multi-hop questions in theWebQues-
tionsSP dataset [17] with two components: the programmer and
the computer. By employing an EM-like mechanism, NSM itera-
tively finds the pseudo-gold trials for the training questions. NSM
then assigns the pseudo-gold trials with a deterministic proba-
bility, therefore, to anchor the model to the high-reward trials.
In a similar vein, CIPITR translates a natural-language complex
question into a multi-step executable program using the Neural
Program Induction (NPI) technique. CIPITR does not require gold
annotations and can learn from auxiliary rewards, KB schema, and
inferred answer types.

Our neural-symbolic model is different from them in that we
augment our RL-based model with a memory buffer to record
the successful trials. With the help of the memory buffer, we
could compute the extra reward bonus to encourage the model
to generate new trials, imitate successful trials, and reshape the
sparse reward to provide dense feedback. As can be seen in Ta-
ble 3, our NS-CQA model outperforms all the baseline models, and
the performance difference is prominent on the more complex
categories of questions. Also, in Table 4, we can find that NS-CQA
is better than other baseline models. The superiority of NS-CQA
in both the datasets verified the effectiveness and generalization
ability of the model.

3. NS-CQA: A complex question answering approach

In our work, the complex question answering problem is re-
garded as a semantic parsing task: given a complex question q
consisting of tokens (w1, . . . , wm), the model generates a prim-
itive action sequence (a1, . . . , aq), and execute the sequence on
the KB K to yield the answer a.

This section outlines our NS-CQA approach to the complex
question answering problem. We first describe the set of primi-
tive actions in Section 3.1. Given a complex question, the semantic
parser (Section 3.2) recognizes KB artifacts that are relevant to
the question. By combining the question and the output of the
parser, the neural generator (Section 3.3) transforms the query
into a sequence of primitive actions.

The symbolic executor (Section 3.4) executes the actions on the
KB to obtain an answer. Overall, we employ RL to directly opti-
mize the generator through a policy gradient on the answer pre-
dicted by the executor (Section 3.5). The high-level architecture
of our model is depicted in Fig. 2.

3.1. Primitive actions

We propose a set of primitive actions based on the subset
of SPARQL queries that are necessary for the current complex
question answering task and simplify the query form to reduce
the search space. Our actions are designed to be simple, dispens-
ing with SPARQL features, including namespaces, etc. It also does

4

53

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

Table 1
Demonstration of how intermediate result evolves when executing actions sequentially.

Question1:
Which country
has maximum
number of
rivers?

Actions Action1: Action2: Action3:
SelectAll (country, flow, river) ArgMax EOQ

Retrieved
Key–Value
Pairs

{China:{Indus, Satluj}}

/ /{India:{Indus, Satluj, Godavari}}
{Russia:{Volga, Moskva, Neva, Ob}}
{USA:{Mississippi, Colorado, Rio Grande}}

Dictionary

{China:{Indus, Satluj}} {Russia:{Volga,
Moskva, Neva,
Ob}}

{Russia:{Volga,
Moskva, Neva,
Ob}}

{India:{Indus, Satluj, Godavari}}
{Russia:{Volga, Moskva, Neva,Ob}}
{USA:{Mississippi, Colorado, Rio Grande}}

Question2:
What rivers
flow in India
but not China?

Actions Action1: Action2: Action3:
Select (India, flow, river) Diff (China, flow, river) EOQ

Retrieved
Key–Value
Pairs

{India:{Indus, Satluj, Godavari}} {China:{Indus, Satluj}} /

Dictionary {India:{Indus, Satluj, Godavari}} {India:{Godavari}} {India:{Godavari}}

not support certain SPARQL features, including OPTIONAL, FILTER,
etc. Since our actions belong to a subset of SPARQL’s operators,
the complexity of our actions follows that of SPARQL. The main
contributions of this paper relate to the neural generator of these
programs. Thus we leave the study of operator complexity to
future research.

Unlike NSM [8], which introduces the variables to save the in-
termediate results, we employ a key–value memory to maintain
the intermediate result. NSM adds a new intermediate variable
into the decoder vocabulary after an action is executed, thus en-
ables the decoder to generate the new variable in later decoding
steps. Consequently, NSM dynamically increases the size of the
decoder vocabulary in the decoding process. On the contrary,
with the help of the memory, our model does not need to refer to
previous intermediate variables, thus fix the size of the decoder
vocabulary to simplify the model.

We use two components, i.e., an operator and a list of vari-
ables, to compose the primitive actions. After analyzing different
types of complex problems, we design 17 operators in this work,
which are described in Table 2. Besides, the key–value dictionary
D is designed to store intermediate results. Keys in D refer to
entities present in the question or specific special symbol, and
the values are the obtained elements related to it. Before the
execution of the whole action sequence, D is initialized as empty.
When executing an action, the model will generate an interme-
diate result based on content in D, which is the result derived
from the last action. Then the generated intermediate result will
be further stored in D to update it. The contents of updated D are
then preserved for later use.

For instance, when dealing with the question ‘‘Which country
has maximum number of rivers?’’, the desired output actions
should be ‘‘SelectAll(country, flow, river), ArgMax, EOQ’’. The first
action has an operator SelectAll, a relation variable flow and two
type variables, i.e., country and river, while no entity variable is
found in this action. Note that the second action only has one
operator ArgMax, and so does the third action EOQ. By performing
the first action, we retrieve KB to find all entities belong to type
‘country’ as keys. Meanwhile, we set the river-type entities linked
with country-type entities by relation ‘flow’ as values. Like what
is demonstrated in Table 1 (the retrieved results presented in the
table are not consistent with the actual KB while are only for
demonstration), one country-type entity is USA where the linked
river-type objects are {Mississippi, Colorado, Rio Grande}. The re-
trieved key–value pairs (the key is one country-type entity and
value is a set of river-type entities) are then stored in dictionary
D as the intermediate result of this action. After that, the second
action is executed to find the key whose mapped value has most
elements. In could be found in Table 1 Russia has most elements

thus Russia:{Volga, Moskva, Neva, Ob} is then kept in D and other
key–value pairs are removed. Then we update D and view this
key–value pair as the intermediate result of the second action.
When encountered with EOQ, the model outputs the final result
in D.

To simplify the action sequence, we design particular ac-
tions (GreaterThan, LessThan, Inter, Union, and Diff) as relatively
‘high-level’ actions that need multiple set operations to perform.
Though such design will enhance the difficulty of symbolic ex-
ecutor, on the other hand, it could reduce the complexity of the
neural generator. Since the bottleneck of our model lies in the
difficulty of training generator, we make a compromise between
executor and generator.

Take the question ‘‘What rivers flow in India but not China?’’
as an example. The reference action sequence should be ‘‘Se-
lect(India, flow, river), Diff(China, flow, river), EOQ’’. After executing
the first action, a set of rivers flowing in India is stored in D as
the value of the key India. As showed in Table 1, such key–value
pair is India:{Indus, Satluj, Godavari}. When executing the second
action ‘‘Diff(China, flow, river)’’, all river entities linked to China by
relation flow are first retrieved from the KB. Then based on the
key–value pair stored in D, the entities indexed to India but not
China will be kept as the updated value of the key India. In this
case is India:{Godavari}. Then the key–value pair in D is updated
accordingly. Upon encountering the action EOQ, the key–value
pair stored in D is returned as the final answer to this question.

As described above, the model executes all the actions in
sequence. With the help of a key–value dictionary D, the inter-
mediate result of the current action is recorded and preserved for
later use. The model could perform the following actions based on
the result stored in D, and the new result would further update D.
Therefore, the design of D makes executing actions sequentially
possible.

3.2. Semantic parser

Given a natural language question, the parser first recognizes
entity mentions (for example India) and class mentions (for ex-
ample river) [38]. A Bidirectional-LSTM-CRF model is employed
to label the entity/type mentions [39]. The parser then links them
with the corresponding entities and types in KB. At first, the
parser tries to retrieve the entity/type candidates related to men-
tions by computing the literal similarities. Besides, the description
of the candidates and the question are embedded into vectors
to get semantic similarity. The literal and semantic similarities
are thus integrated to rank the entity/type candidates, while the
ones have the highest score is selected as linked entities/types.
Subsequently, the entity/class mentions in the query are replaced

5

54

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

Table 2
The set of primitive actions. K represents the knowledge base, e, e1, e2, . . . represent entities, r represents a relation, t represents
a type, and D represents a key–value dictionary which stores intermediate results.
ID Action Retrieved Key–Value Pairs Output

A1 Select(e, r, t) {e2|e2 ∈ t, (e, r, e2) ∈ K} D = D ∪ {e : {e2}}

A2 SelectAll(et, r, t) {e2|e1 ∈ et, e2 ∈ t, (e1, r, e2) ∈ K} D = D ∪ {e1 : {e2}}

A3 Bool(e) value = 1 if e ∈ D ; otherwise value = 0 D = {bool : value}

A4 ArgMin {e1|e1 ∈ D, ∃(e1 : {e2}) ∈ D,∀e′ : (e′ : {e′2}) ∈ D, |{e2}| ≤ |{e′2}|} D = {e1 : {e2}}

A5 ArgMax {e1|e1 ∈ D, ∃(e1 : {e2}) ∈ D,∀e′ : (e′ : {e′2}) ∈ D, |{e2}| ≥ |{e′2}|} D = {e1 : {e2}}

A6 GreaterThan(e) {e1|e1 ∈ D, ∃(e1 : {e2}) ∈ D, ∃e′2 : (e : {e
′

2}) ∈ D, |{e2}| ≥ |{e′2}|} D = {e1 : {e2}}

A7 LessThan(e) {e1|e1 ∈ D, ∃(e1 : {e2}) ∈ D, ∃e′2 : (e : {e
′

2}) ∈ D, |{e2}| ≤ |{e′2}|} D = {e1 : {e2}}

A8 Inter(e, r, t) {e2|e2 ∈ t, (e, r, e2) ∈ K} D = D ∩ {e : {e2}}

A9 Union(e, r, t) {e2|e2 ∈ t, (e, r, e2) ∈ K} D = D ∪ {e : {e2}}

A10 Diff (e, r, t) {e2|e2 ∈ t, (e, r, e2) ∈ K} D = D − {e : {e2}}

A11 Count Card(D) = |{e|e ∈ D, ∃(e : {e2}) ∈ D}| D = {num : Card(D)}

A12 AtLeast(n) {e|e ∈ D, ∃(e : {e2}) ∈ D, |{e2}| ≥ n} D = {e : {e2}}

A13 AtMost(n) {e|e ∈ D, ∃(e : {e2}) ∈ D, |{e2}| ≤ n} D = {e : {e2}}

A14 EqualsTo(n) {e|e ∈ D, ∃(e : {e2}) ∈ D, |{e2}| = n} D = {e : {e2}}

A15 GetKeys {e|e ∈ D, ∃(e : {e2}) ∈ D} D = {key : {e}}

A16 Almost(n) {e|e ∈ D, ∃(e : {e2}) ∈ D, ||{e2}|−n| ⩽ α} where α is predefined D = {e : {e2}}

A17 EOQ End of sequence D

with wild-card characters to generate patterns. We employ a
convolutional Seq2Seq model [40] to transform the generated
patterns to corresponding relations.

3.3. Neural generator

Our generator is an attention-based Seq2Seq model
augmented with the copy and masking mechanisms. Given a
question with tokens (w1, . . . , wm), the generator predicts tokens
(a1, . . . , aq). The input of the model is the original complex ques-
tion concatenated with KB artifacts generated by the semantic
parser, and the output is the tokens of a sequence of actions. In
our work, the output at each time step is a single token which is
used to compose actions with adjacent output tokens.

For a vanilla Seq2Seq model, all the KB artifacts corresponding
to all questions will need to be collected in advance to make the
vocabulary large enough to cover all questions. Let N represent
the maximum number of actions in sequences. Since we have de-
signed 17 different operators in our work, and each of operators
can take up to three arguments (see Table 2 for details), in the
worst case, the vocabulary size of the decoder is O(17N

∗ |E|2N ∗
|P|N), where |E| and |P| denote the number of entities (including
types) and predicates in the KB K respectively. Given a large KB
such as Freebase, |E| and |P| can be very large. Such a vocabulary
size would be prohibitively large for the decoder, making it highly
unlikely to generate the correct token, thus negatively affecting
the rate of convergence.

By incorporating the masking mechanism, the names of KB
artifacts used for compose actions are replaced with masks such
as <ENTITY1>, <TYPE1> and <PREDICATE1>. Thus, an action
sequence consisted of N actions will be masked into the follow-
ing form: A(1)(⟨E1⟩, ⟨P1⟩, ⟨E2⟩), . . . , A(N)(⟨E2N−1⟩, ⟨PN⟩, ⟨E2N⟩). For
instance, the action sequence ‘Select(India, flow, river), Diff(China,
flow, river), EOQ’ is used to solve the problem ’What rivers flow in
India but not China?’. After masking, the real names of artifacts
in actions are substituted with masks, and the action sequence
is changed into ‘Select(ENTITY1, PREDICATE1, TYPE1), Diff(ENTITY2,
PREDICATE1, TYPE1), EOQ’. The mappings between the actual
names and masks are recorded in our model, which will be later
used to recover the exact names of KB artifacts in actions when
being executed. Given the maximum number of actions N , with

the masking mechanism, the decoder vocabulary size is reduced
to O(17N

∗(2N)2N ∗NN), where (2N)≪ |E| and N ≪ |P|. As action
sequences are typically not long (i.e., N ≤ 5 in our observation),
this represents orders of magnitude reduction in vocabulary size.

Also, we could alleviate the Out Of Vocabulary (OOV) problem
with the help of the masking mechanism. OOV words refer to
unknown KB artifacts that appear in the testing questions but not
included in the output vocabulary and would make the generated
action incomplete. When facing a question with unseen KB ar-
tifacts, the model is not able to predict such objects since they
are out of the output vocabulary. However, when employing the
masking mechanism, all the KB artifacts are translated into masks,
thus enabling the model to select masks from relatively fixed
output vocabulary. Like the above example presented, the KB
artifacts ‘India’ and ‘China’ are replaced with the mask ‘ENTITY1’
and ‘ENTITY2’. Thus our model only needs to generate the masked
tokens instead of the real names of the KB artifacts, which will
mitigate the OOV problem. In consequence, the model could form
the actions more precisely.

To further decrease search space, the copy mechanism is also
incorporated. The copy mechanism replicates all masked symbols
in the input sequence to form the output, instead of letting the
decoder generate them from the decoder vocabulary. As a result,
the decoder only needs to generate primitive actions, further
reducing vocabulary size to O(17N).

The benefits of our design are twofold. (1) The much-reduced
vocabulary makes convergence faster, as the generator is only
concerned about generating correct primitive actions, but not
names of artifacts from the KB. (2) Solve questions with unfore-
seen KB artifacts by directly masking and copying them from the
input question when generating an action sequence.

Encoder. The encoder is a bidirectional LSTM that takes a ques-
tion of variable length as input and generates an encoder vector
ei at each time step i.

ei, hi = LSTM(φE(xi), hi−1). (1)

Here φE is word embedding of token E. (ei, hi) is the output and
hidden vector of the ith time step when encoding. The dimension
of ei and hi are set as the same in this work. ei is the concatenation
of the forward (eFi) and backward (eBi) output vector and hi is

6

55

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

the encoder hidden vector. The output vectors (e1, . . . , eT) is
regarded as a short-term memory M , which is saved to use in
copy mode.

Decoder. Our decoder of NS-CQA predicts output tokens follow-
ing a mixed probability of two models, namely generate-mode
and copy-mode, where the former generates tokens from the
fixed output vocabulary and the latter copies words from the
input tokens. Furthermore, when updating the hidden state at
time step t , in addition to the word embedding of predicted word
at time t − 1, the location-based attention information is also
utilized.

By incorporating the copy mechanism, the generated actions
might be chosen from the output vocabulary or input tokens.
We assume a fixed output vocabulary Voutput = {v1, . . . , vN},
where Voutput contains operators and related arguments in action
sequence. In addition to that, all the unique words from input
tokens x = {x1, . . . , xT } constitute another set X whereby some
OOV words could be ‘copied’ when such words are contained in
X but not in Voutput . Therefore, the vocabulary unique to input
tokens x is: Vx = Voutput ∪ X .

The generate-mode predicts output token at from the output
vocabulary Voutput . Like traditional Seq2Seq model, the decoder
is another LSTM model that generates a hidden vector qt from
the previous output token at−1. Previous step’s hidden vector
qt−1 is fed to an attention layer to obtain a context vector c t
as a weighted sum of the encoded states. Current step’s qt is
generated via:

qt = LSTM(qt−1, [φD(at−1), c t]) (2)

Here φD is the word embedding of input token at−1. The dimen-
sion of qt is set as dq, and the attention weight matrix is trainable.
The hidden vector qt is used to compute the score of target word
vi in Voutput as:

ψg (at = vi) = v⊤i W oqt , vi ∈ Voutput (3)

where W o is trainable matrix and vi is the vector of word vi.
In copy-mode, the score of ‘‘copying’’ word xj from input

tokens {x1, . . . , xT } is computed as:

ψc(at = xj) = σ (ejW cqt), xj ∈ {x1, . . . , xT } (4)

where W c ∈ Rdq×dq , σ is a non-linear activation function and,
hidden encoder vectors {e1, . . . , eT } in short-term memory M are
used to map the input tokens {x1, . . . , xT } respectively.

Finally, given the hidden vector qt at time t and short-term
memory M , the output token at is generated following a mixed
probability as follows:

p(at |qt , at−1,M) = pcg (at |qt , at−1,M) (5)

where pg and pc indicate the generate-mode and copy-mode
respectively. They are calculated as follows:

pcg =

{
1
Z e
ψg (at), at ∈ Voutput

1
ZΣj:xj=at e

ψc (at), at ∈ X
(6)

where Z is the normalization term and is computed as: Z =
Σv∈Voutput e

ψg (v) +Σx∈X eψc (x).
At time step t , word embedding of previous output token

at−1 and the location-based attention information are both em-
ployed to update the hidden state. at−1 will be represented as
[φD(at−1); rqt−1], where φD(at−1) is the word embedding of at−1
and rqt−1 is the weighted sum of hidden states {e1, . . . , eT } in M .

Vector rqt−1 is calculated as:

rqt−1 = Σ
T
τ=1ρtτ eτ (7)

ρtτ =

{ 1
K pcg (xτ |qt−1, at−1,M), xτ = at−1
0, otherwise

(8)

where K is the normalization term which is Στ ′:xτ ′=at−1pcg
(xτ ′ |qt−1, at−1,M), considering there might be input tokens lo-
cated at different positions which equal to at−1. ρtτ is viewed as
location-based attention in our work.

3.4. Symbolic executor

A symbolic executor is implemented as a collection of de-
terministic, generic functional modules to execute the primitive
actions, which have a one-to-one correspondence with the func-
tional modules. The symbolic executor first analyzes the output
tokens produced by neural generator, and would assemble the
actions one by one. Given an action sequence that begins with
the first action, the symbolic executor executes the actions in
order, on the intermediate result of the previous one. As dis-
cussed in Section 3.1, this is only possible due to our carefully
designed primitive actions. Otherwise, complex memory mecha-
nisms would need to be incorporated to maintain intermediate
answers [8,28]. Upon encountering the action EOQ , the result
from the last execution step will be returned as the final answer.

3.5. Training paradigm

As the symbolic executor executes non-differentiable oper-
ations against a KB, it is difficult to utilize end-to-end back-
propagation to optimize the neural generator. Therefore, we
adopt the following two-step procedure to train the generator. By
using a breadth-first-search (BFS) algorithm, we generate pseudo-
gold action sequences for a tiny subset of questions. In BFS, we
assemble all the operators and KG artifacts found in question to
form candidate action sequences in a brute-force way. We then
execute the candidate action sequences to find the ones that yield
the right answer and view them as pseudo-gold action sequences.
Using these pairs of questions and action sequences, we pre-train
the model by Teacher Forcing.

We then employ RL to fine-tune the generator on another set
of question–answer pairs. The symbolic executor executes the
predicted action sequence to output an answer and yield a reward
for RL. The reward is the similarity between the output answer
and the gold answer.

As shown in Algorithm 1, our method works as follows. The
training starts with an empty memory buffer, and at every epoch,
for each sample, the generated trials that gain high reward will
be stored in the memory. For each question, we first use a search
algorithm, i.e., greedy-decoding, to generate a trial. We execute
the trial and compute a reward rgreedy, which is set as the reward
threshold. Then we employ a beam search method to generate
a set of candidate trials for the question and compute their re-
wards. At every epoch, we compare the generated trials with the
trials in memory to determine the reward bonus, aka proximity
and novelty, and further add the reward bonus to the adaptive
reward. A candidate trial is added into the memory buffer if its
reward is higher than rgreedy. We utilize the augmented reward to
train the policy under the RL setting.

The memory buffer stores a limited set of trials for the training
questions. Once the memory buffer is full, we substitute a random
trial with the current new trial. This strategy enables the memory
buffer to maintain relatively fresher trials, but would not always
abandon the older ones.

The main components of our training paradigm, namely the RL
method, the adaptive reward, and the curriculum reward bonus,
are described in the rest of this section.

7

56

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

Algorithm 1: Training NS-CQA
Input: Training dataset Qtrain, initial policy θ , memory

buffer M , reward function R(·), learning rate η1
Output: The learned policy θ∗

1 Randomly initialize θ
2 M ← ∅
3 while not converged do
4 Sample batch of data Qbatch ∼ Qtrain
5 L← 0
6 for q ∈ Qbatch do
7 Get one trial tgreedy by greedy-decoding
8 Compute adaptive reward rgreedy
9 Compute cumulative reward R(q, tgreedy)

10 Sample K trials: tk ∼ π (t|q; θ)
11 for each trial tk do
12 Compute adaptive reward rtk
13 Compute cumulative reward R(q, tk)
14 Update memory: add tk to M if rtk > rgreedy
15 end
16 L = 1

K

∑K
k=1[R(q, tk)− R(q, tgreedy)]log(pθ (tk))

17 L← L+ L
18 end
19 Compute adapted parameters: θ ← θ + η1∇θL
20 end
21 Return The learned policy θ∗ ← θ

Reinforcement learning. In this step, REINFORCE [41] is used
to finetune the neural generator. Typically, the three notions
mentioned in RL are action, state, and reward, respectively. In our
scenario, at each step, action as a fundamental concept in RL is a
token produced by a neural generator used to form an executable
action sequence. What needs to be clarified is that when related
to RL, the concept of actions refers to the tokens of a trial. Since
the complex question answering environment is deterministic,
we define the state as the question combined with the generated
tokens so far. Meanwhile, the reward is the same as the notion
in RL.

In our work, the state, action and reward at time step t are
denoted as st , at and rt respectively. Given a question q, the
state of time step t is defined by q and the action sequence so
far: st = (q, a0:t−1), and the action tokens are generated by the
generator. At the last step of decoding T , the entire sequence of
actions is generated. The symbolic executor will then execute the
action sequence to produce an output answer anso. Therefore the
reward is computed only after the last step of decoding when anso
is output. We design a Adaptive Reward Function (ARF), which
is the adaptive comparison of the output answer anso and the
gold answer ansg . Furthermore, we employ a curriculum-guided
Reward Bonus (CRB), which comprises proximity and novelty, to
assign non-zero rewards for actions that do not yield correct an-
swers. Specifically, the cumulative reward of an action sequence
a0:T is the sum of CRB and ARF:

R(q, a0:T) = CRB+ ARF (anso, ansg) (9)

Then R(q, a0:T) is sent back to update parameters of the neu-
ral generator through a REINFORCE objective as the supervision
signal.

Adaptive reward. Though the search space is significantly re-
duced to O(17N) after the masking and copy mechanisms are
incorporated, the length of action sequence, which is N , would
be fairly long when solving a relatively more complex question. In
that case, O(17N), the size of the search space, is still huge which

makes it hard for the model to find correct action sequences when
gold annotations are unavailable.

Moreover, since the reward used to train the model could
only be obtained after a sequence of actions is executed, the
execution of actions is regarded as a part of training. Suppose a
large amount of candidate action sequences (normally more than
50) are generated, their execution would consume a large amount
of time since it involves searching triples in KB, performing set
operations and discrete reasoning. To reduce the training time,
we limit our NS-CQA model to form only 5∼20 candidate ac-
tion sequences with a smaller beam size. With the huge search
space and small beam size, the sparsity of the reward becomes a
problem. Of all the candidate action sequences that are predicted,
very few of them could output correct answers and be positively
rewarded while most of them do not produce any reward. Under
such circumstances, without the notion of partial reward, the
neural generator would suffer from high variance and instability.
Therefore the generator would be inclined to be trapped in local
optima and not generalize well on data never seen before.

Furthermore, different categories of questions entail different
answer types. The reward function should be adaptive to the
diverse answer types which could measure the degree of cor-
rectness of predicted answers more precisely. In other words,
the reward function should encourage the generator to generate
action sequences with the correct answer type while punishing
the model if the predicted answer type is incorrect.

In the complex question answering scenario, the possible
types of answers are integers, sets of entities and Boolean val-
ues. To measure the answer correctness more accurately and
adaptively, and to compute partial reward to alleviate the sparse
reward problem, we define our adaptive reward function ARF .
ARF computes reward based on different answer types using
the function Sim between the output answer anso and the gold
answer ansg .

Sim(anso, ansg) =

⎧⎨⎩ 1− |ansg−anso|
|ansg+anso+ε|

, integer
Edit(ansg , anso), Boolean
F1(ansg , anso), set

(10)

The edit-score is used to measure the accuracy of the output
provided the answer type is Boolean, while the F1-score is used
as a reward when answer is a set of entities. When the answer
type is Boolean, the expected output is a list of Boolean value,
for instance as what is presented in Table 6, the expected an-
swer of the question ‘‘s Alda Pereira-Lemaitre a citizen of France
and Emmelsbull-Horsbull?’’ is [True, False]. Regard each Boolean
value as a single element in a list, the edit (Levenshtein) distance
is used to compute the similarity between two lists, i.e., output
answer list, and gold answer list. Thus the similarity is calculated
as follows:

Edit(ansg , anso) = 1−
Levenshtein(ansg , anso)

max(|ansg |, |anso|)
(11)

On the other hand, suppose the type of answer is a set of entities,
F1-score is computed as:

F1(ansg , anso) = 2∗
precision ∗ recall
precision+ recall

= 2∗

|ansg∩anso|
|anso|

∗
|ansg∩anso|
|ansg |

|ansg∩anso|
|anso|

+
|ansg∩anso|
|ansg |

(12)

If the answer type is incorrect or the action sequence is semanti-
cally invalid, reward is set as 0. On the other hand, if the answer
type is the same as the gold answer, partial reward is granted.
We then defined ARF as follows:

ARF (anso, ansg) = Rtype ∗ (W1 +W2 ∗ Sim(anso, ansg)) (13)

In our work, ε, W1 and W2 are predefined hyper-parameters
and set as 0.001, 0.2 and 0.8 respectively. If the type of predicted
answer is correct, Rtype is set as 1, otherwise 0.

8

57

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

Curriculum-guided reward bonus. In many RL settings, the re-
ward is positive only when a trial, i.e., a long sequence of actions
generated by a policy, could yield the correct result. At the initial
stage, since the policy is not yet fully-trained, out of all the
generated trials, the rate of successful trials is rare. Thus, there
is an insufficient number of collected successful trials for training
the RL model, which causes the sparse reward problem.

Besides, the suboptimal policy will not explore the search
space effectively since many sampled trials could be repeated.
Moreover, the policy will forget the rare successful trials easily
since the trials may not be re-sampled frequently. These factors
often lead to the data inefficiency problem.

To solve the above problems, we design two reward bonuses
to learn from failed trials. We introduce a memory buffer to
record the high-reward trials for each training sample. We com-
pare a generated trial with those stored in the memory buffer
to see how similar it is to the recorded trials. Therefore we give
proximity bonus to a generated trial even if it fails to yield the
correct answer. By doing this, we could encourage the policy
to re-sample the high-reward trials and accordingly reduce the
frequency of generating infeasible trials. Also, we give novelty
bonus to the generated trials that differ from the trials in the
memory buffer. The novelty bonus encourages the policy to gen-
erate different trials, thus avoid being trapped by spurious ones.
Once the reward is augment with the above two bonuses, the
corresponding failed experience is assigned with a nonnegative
reward and can contribute to learning the policy.

To balance proximity and novelty, we employ a curriculum-
learning method to regulate their trade-off dynamically. In the
earlier epochs, higher novelty can help the policy to explore
unseen areas and generate more diverse trials. However, in the
later epochs, such novelty will bring more noise (often as spurious
trials) into training and distract the policy. At the later stage of
training, the policy has gained sufficient knowledge about the
tasks and is able to generate high-reward, promising trials. There-
fore, proximity becomes more critical since it will encourage
the policy to proceed towards the correct trials and to focus on
learning how to generate promising trials.

Given a question q, suppose the high-reward trials tq1 , . . . , t
q
m

have already been stored in the memory buffer M . For one gen-
erated trial t , we compute the reward bonus CRB as:

CRB = α(λFprox(t,M)+ (1− λ)Fnovel(t,M)), (14)

where α ∈ [0, 1] is the weight of the reward bonus and depen-
dent on the scale of the task rewards. The term Fprox reflects the
proximity of the trial t to the recorded trials in memory M while
Fnovel measures the novelty of t . The value of λ controls their
relative proportion, which is adjusted by the curriculum learning
method.

We compute the similarity between the generated trial t with
one trial tqi in M by edit distance, which is:

si = Edit(t, tqi) (15)

Thus we define the proximity Fprox as the highest similarity
between the trial t and all the trials tq1 , . . . , t

q
m in the memory

buffer, which is:

Fprox(t,M) = max
1⩽i⩽m

(si) (16)

The term novelty Fnovel measures the diversity of the trial t
from the trials tq1 , . . . , t

q
m. We assign a high novelty to a generated

trial if it is different from the trials in M , thus we define the
novelty as:

Fnovel(t,M) = β −
1
m
Σm

i=1si, (17)

where β ∈ [0, 1] is used to measure the diversity and is depen-
dent on the scale of the similarity.

We employ a curriculum learning scheme to adaptively
change the weight λ in Formula (14). We start from learning
to generate novel trials with large diversity, and gradually focus
on re-sampling the trials which have high proximity to the
desired successful trials stored in the memory buffer. This method
is achieved by progressively increasing the weight λ, which is
exponentially increased λ with the training epochs:

λ = min{1, (1+ η)γ λ0}, (18)

where η ∈ [0, 1] is the learning pace which controls the curricu-
lum learning, γ represents the number of the epochs that have
been trained, and λ0 is the initial weight of λ.

In our work, α, β , η, and λ0 are hyper-parameters which are
defined as 0.1, 1.0, 0.08, and 0.1, respectively in our work.

REINFORCE. At each time step, the output token generated by
agent is decided by a certain policy (which is the generator in our
work), and the probability that one token a is chosen is computed
as below, where θ denotes model parameters:

πθ (q, a) = Pθ (at = a|q, a0:t−1) (19)

Thus, the probability of an entire action sequence a0:T is given
by:

Pθ (a0:T |q) =
T∏

t=1

Pθ (at |q, a0:t−1) (20)

In (9), we define the cumulative reward R(q, a0:T). Our objec-
tive is to maximize the expected cumulative reward. Therefore
we use the policy gradient method such as the REINFORCE algo-
rithm to finetune the generator. The objective and gradient are:

JRL(θ) =
∑
q

EPθ (a0:T |q)[R(q, a0:T)]

∇θ JRL(θ) =
∑
q

∑
a0:T

Pθ (a0:T |q) · [R(q, a0:T)

− B(q)] · ∇θ logPθ (a0:T |q)

(21)

B(q) = R(q, â0:T) is a baseline that reduces the variance of the
gradient estimation without introducing bias. In our work, the
baseline is set as what is used in the self-critical sequence training
(SCST) [42]. Also, Monte Carlo integration is employed to approxi-
mate the expectation over all possible trials in the policy gradient
method [41]. The training method is presented in Algorithm 1.

4. Experiments

We evaluated our model NS-CQA on a large-scale complex
question answering dataset (CQA) [6], and a challenging multi-
hop question answering dataset WebQuestionsSP [17].

The CQA dataset is generated from the facts stored in Wiki-
data [12], consisting of 944 K QA pairs for training and 100 K/156
K QA pairs for validation and test, respectively. The CQA dataset
is characterized by the challenging nature of the questions. To
answer them, discrete aggregation operators such as set union,
intersection, min, max, counting, etc. are required (see Table 2 for
more details). The CQA questions are organized into seven cate-
gories, as shown in Table 3. Some of these categories (e.g., Simple
Question) have entities as answers, while others have numbers
(e.g., Quantitative (Count)) or Boolean values (e.g., Verification
(Boolean)) as answers. We used ‘accuracy’ as the evaluation met-
ric for categories whose answer type is ‘Verification’, ‘Quantitative
(Count)’, and ‘Comparative (Count)’; and ‘F1 measure’ for other
types of questions. However, to simplify the presentation and

9

58

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

stay consistent with literature [7,9], we denote ‘accuracy’ as ‘F1
measure’ in Table 3. Hence, the model performance was evaluated
on the F1 measure in this paper. Furthermore, we computed the
micro F1 and macro F1 scores for all the models based on the
F1-scores of the seven question categories.

In our analysis of the CQA dataset, we found that the seven cat-
egories of questions vary substantially in complexity. We found
that ‘Simple’ is the simplest that only requires two actions to
answer a question, whereas ‘Logical Reasoning’ is more difficult
that requires three actions. Categories ‘Verification’, ‘Quantitative
Reasoning’, and ‘Comparative Reasoning’ are the next in the order
of difficulty, which need 3–4 actions to answer. The most difficult
categories are ‘Quantitative (Count)’ and ‘Comparative (Count)’,
needing 4–5 actions to yield an answer. Saha et al. [7] drew
a similar conclusion through manual inspection of these seven
question categories.

The WebQuestionsSP dataset collects multi-hop questions,
i.e., the questions require a chain of KB triples to answer, via the
Google Suggest API. In comparison to the CQA dataset, WebQues-
tionsSP can be considered easier as it only contains multi-hop
questions, and the answers are (sets of) entities only. It consists
of 3098 question–answer pairs for training and 1639 questions
for testing. We utilized the same evaluation metrics employed
by [6,8], the F-1 measure, to evaluate model performance on the
testing questions.

4.1. Model description

Our model is evaluated against three baseline models:
HRED+KVmem [6], NSM [8] and CIPITR [7]. We used the open-
source code of HRED+KVmem and CIPITR to train the models
and present the best result we obtained. As the code of NSM
has not been made available, we re-implemented it and further
incorporated the copy and masking techniques we proposed.
HRED+KVmem does not use beam search, while CIPITR, NSM, and
our model all do for predicting action sequences. When inferring
the testing samples, we used the top beam [7], i.e., the predicted
program with the highest probability in the beam, to yield the
answer.

HRED+KVmem [6] is the baseline model proposed together with
the CQA dataset [6], which combines a hierarchical
encoder–decoder with a key–value memory network. The
model first encodes the current sentence with context into
a vector, whereby a memory network retrieves the most
related memory. Then the retrieved memory is decoded to
predict an answer from candidate words. HRED+KVmem
was designed specifically for the CQA dataset, thus was not
included in our experiments on WebQuestionsSP.

NSM [8] is an encoder–decoder based model which is trained by
weak-supervision, i.e., the answers to the questions. NSM
first employs an Expectation-Maximization-like (EM-like)
method to find pseudo-gold programs that attain the best
reward. It iteratively uses the current policy to find the
best programs and then maximizes the probability of gen-
erating such programs to optimize the policy. Then NSM
replays one pseudo-gold trial that yields the highest reward
for each training sample when employing REINFORCE to
train the policy. It assigns a deterministic probability to the
best trial found so far to improve the training data effi-
ciency. NSM was at first proposed to solve the problems in
WebQuestionsSP, and we reimplemented it to also handle
the CQA dataset.

As presented in 3.1, unlike NSM, we do not refer to the in-
termediate variables when generating the tokens of a trial.

Therefore it is unnecessary to incorporate the key-variable
memory, which is used to maintain and refer to interme-
diate program variables in our work. We thus removed the
key-variable memory component in the seq2seq model in
our reimplementation of NSM.

CIPITR [7] employs an NPI technique that does not require gold
annotations. Instead, it relies on auxiliary awards, KB
schema, and inferred answer types to train an NPI model.
CIPITR transforms complex questions into neural programs
and outputs the answer by executing them. It designs
high-level constraints to guide the programmer to produce
semantically plausible programs for a question. The aux-
iliary reward is designed to mitigate the extreme reward
sparsity and further used to train the CIPITR model. CIPITR
is designed to handle the KBQA problems proposed in both
CQA and WebQuestionsSP.

4.2. Training

The NS-CQA model was implemented in PyTorch with the
model parameters randomly initialized.1 The Adam optimizer is
applied to update gradients defined in Formula (21). We used
the fixed GloVe [39] word vectors to represent each token in
input sequences and set each unique, unseen word a same fixed
random vector. We set a learning rate of 0.001, a mini-batch
size of 32 samples to pre-train the Seq2Seq model with pseudo-
gold annotations. On average, after about 70 epochs, the Seq2Seq
model would converge. Then we trained the REINFORCE model
with a learning rate of 1e-4 and a mini-batch size of 8 on the
pre-trained Seq2Seq model until accuracy on the validation set
converged (at around 30 epochs).

As solving the entity linking problem is beyond the scope of
this work, we separately trained an entity/class/relation linker.
When training the NS-CQA model, the predicted
entity/class/relation annotations along with the pseudo-gold ac-
tion sequence (which are generated by a BFS algorithm) were
used. The entity/class/relation annotations predicted by the re-
spective linker were used when conducting experiments on the
test dataset.

Incorporating the copy and masking mechanisms, our full
model took a total of at most 3700 min to train 100 epochs (70
epochs for the Seq2Seq model and 30 epochs for REINFORCE) till
convergence. Most of the time was spent on RL training, which is
over 3633 min. In constraints, when we tried to train CIPITR [7],
the model required over 24 h to complete one epoch of training
while the max number of epochs is also set as 30.

Training with annotations would make the model learn to
search in a relatively more accurate space, thus converging faster.
However, the limited availability of annotations remains a bottle-
neck for model training in many CQA tasks. On the other hand,
training without annotations but with denotations solely makes
model convergence harder.

We married the two ideas together: training with a small
number of annotations and then the denotations. First, we au-
tomatically produced pseudo-gold annotations for a small set
(e.g., less than 1% of the entire CQA training dataset) of questions.
The pseudo-gold annotations were utilized to pre-train the model
to constrain the search space. After that, the model was further
trained with only denotations.

1 To encourage reproductivity, we have released the source code at https:
//github.com/DevinJake/NS-CQA.

10

59

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

Table 3
Performance comparison (measured in F1) of the four methods on the CQA test set. Best results for each category is bolded, and
second best is underlined.
Method HRED+KVmem CIPITR-All CIPITR-Sep NSM Vanilla PG NS-CQA

Simple question 41.40% 41.62% 94.89% 88.33% 85.13% 84.25% 88.83%
Logical reasoning 37.56% 21.31% 85.33% 81.20% 70.46% 68.37% 81.23%
Quantitative reasoning 0.89% 5.65% 33.27% 41.89% 47.96% 56.06% 56.28%
Comparative reasoning 1.63% 1.67% 9.60% 64.06% 54.92% 67.79% 65.87%

Verification (Boolean) 27.28% 30.86% 61.39% 60.38% 75.53% 83.87% 84.66%
Quantitative (Count) 17.80% 37.23% 48.40% 61.84% 66.81% 75.69% 76.96%
Comparative (Count) 9.60% 0.36% 0.99% 39.00% 34.25% 43.00% 43.25%
Overall macro F1 19.45% 19.82% 47.70% 62.39% 62.15% 68.43% 71.01%
Overall micro F1 31.18% 31.52% 73.31% 76.01% 74.14% 76.56% 80.80%

4.3. Results on CQA

Table 3 summarizes the performance in F1 of the four models
on the full test set of CQA.

It must be pointed out that CIPITR [7] separately trained
one single model for each of the seven question categories. We
denote the model learned in this way as CIPITR-Sep. In testing,
CIPITR-Sep obtained test results of each category by employing
the corresponding tuned model [7]. In practical use, when trying
to solve a complex question more precisely, CIPITR-Sep has to
first trigger a classifier to recognize the question category. Only
after acquiring the question categories information could CIPITR-
Sep know which model to select to answer the question. If the
number of question categories is increased, CIPITR-Sep needs to
train more models, which will impede the system from general-
izing to unseen instances. Besides, CIPITR also trained one single
model over all categories of training examples and used this single
model to answer all questions. We denote this single model as
CIPITR-All. Therefore, we separately present the performance of
these two variations of CIPITR in Table 3. On the other hand,
we tuned NS-CQA on all categories of questions with one set of
model parameters. Our model is designed to adapt appropriately
to various categories of questions with one model, thus only
needs to be trained once.

We also compared our full model, NS-CQA, with several model
variants to understand the effect of our techniques presented in
this work. Specifically, Vanilla is an imitation-learning model that
was trained with pseudo-gold annotations. PG denotes the RL
model that was optimized by the Policy Gradient algorithm based
on the pre-trained model Vanilla. NS-CQA means the RL model
that is equipped with all the techniques proposed in this work,
notably the memory buffer and the reward bonus.

In Table 3, several important observations can be made.

1. Over the entire test set, our full model NS-CQA achieves the
best overall performance of 71.01% and 80.80% for macro
and micro F1, respectively, outperforming all the baseline
models. The performance advantage on macro F1 over the
four baselines is especially pronounced, by 51.56, 51.19,
23.31, and 8.62 percentage points over HRED+KVmem,
CIPITR-All, CIPITR-Sep, and NSM respectively. Also, NS-CQA
improves over the micro F1 performance of HRED+KVmem,
CIPITR-All, CIPITR-Sep, and NSM by 49.62%, 49.28%, 7.49%,
and 4.79%. Moreover, our model achieves best or second-
best in all the nine items being evaluated (the seven cat-
egories, plus overall macro F1, and overall micro F1). The
improvement is mainly due to the techniques presented
in this work. We introduce masking and copy mechanisms
to reduce the search space effectively and carefully design
a set of primitive actions to simplify the trials, therefore
enable the model to efficiently find the optimal trials. We
also augment the RL model with a memory buffer, whereby
the model could circumvent the spurious challenge, and
remember the high-reward trials to re-sample them.

2. Out of the seven categories, our full model NS-CQA
achieves the best performance in four categories: Quantita-
tive Reasoning, Verification (Boolean), Quantitative
(Count), and Comparative (Count), and second best in the
rest three. In the hardest categories, Quantitative (Count)
and Comparative (Count), NS-CQA is substantially superior
over the four baseline models, and outperforms our PG
model. Since the length of the questions in the hardest
categories is usually higher than in the other categories,
it is always hard to find correct trials. Under such circum-
stances, the memory buffer could make the model search
in unknown space while keeping the previous high-reward
trials in mind, which makes the model easier to train. This
is the main reason that NS-CQA performs the best in the
hardest categories.

3. CIPITR-Sep achieves the best performance in two easy cat-
egories, including the largest type, Simple Question. For
the harder categories, it performs poorly compared to our
model. Also, CIPITR-All, the single model that is trained
over all categories of questions, performs much worse in
all the categories than CIPITR-Sep, which learns a different
model separately for each question category. For CIPITR-
Sep, the results reported for each category are obtained
from the model explicitly tuned for that category. A pos-
sible reason for CIPITR-All’s significant performance degra-
dation is that the model tends to forget the previously
appeared high-reward trials when many infeasible trials
are generated. Besides, the imbalanced classes of questions
also deteriorates the performance of the model. Differ-
ent from CIPITR, our model is designed to remember the
high-reward trials when training.

4. NSM and NS-CQA both produce competitive results. The
copy mechanism, masking method, and our carefully-
defined primitive actions presented in this work were
used in both models when we implemented them. By
comparing the overall macro and micro F-1 score, it could
be observed that NSM performed the best in all the four
baseline models. This helps to validate the effectiveness of
our proposed techniques. However, NSM is worse than NS-
CQA in all categories, especially in the harder ones. Since
NSM records one promising trial for each question, it might
be faced with the spurious problem. Different from NSM,
we design a memory buffer for recording all successful
trials to circumvent this problem. Also, NSM only considers
the correctness of the predicted answers when measuring
the reward, hence suffers from the sparse reward problem.
Unlike NSM, our NS-CQA model augments the reward with
proximity and novelty to mitigate this problem. These two
factors make our model superior to the NSM model in all
question categories.

5. Both of our model variants perform competitively. In Ta-
ble 3, it can be seen that the PG model, which was equipped
with RL, performed better than the Vanilla model in five

11

60

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

Table 4
Performance comparison (measured in F1) of the four
methods on the WebQuestionsSP test set. Best results is
bolded.
Method F1 measure

CIPITR-All 43.88%
NSM 70.61%
PG 70.72%
NS-CQA 72.04%

categories, but did not perform well in the two easy cat-
egories, Simple and Logical Reasoning. We analyzed the
degeneration and found that for these two types of ques-
tions, usually, each question has only one correct sequence
of actions. When training with PG, some noisy spurious
trials were introduced by beam search and thus degraded
the model’s performance. Our full model is better than the
PG model in six of the seven categories and substantially
improved performance in the Logical Reasoning category.
We compared the trials generated by the full model and the
PG model, and found that many noisy trials are removed
with the help of the memory buffer. That is the main reason
for the improvement in the Logical Reasoning category.
However, we also found that the full model performed
worse than PG in Comparative Reasoning, which will be
further investigated in the future.

The above results demonstrate the effectiveness of our tech-
nique. It is worth noting that our model is trained on only 1% of
the training samples, whereas the baseline models use the entire
training set. Besides, our approach uses one model to solve all
questions, while CIPITR-Sep trains seven separate models to solve
the seven categories of questions. Thus our model is virtually
compared with seven individually training models used in CIPITR-
Sep. However, our model still achieves best performance overall
as well as in five of the seven categories.

4.4. Results on WebQuestionsSP

Table 4 summarizes the performance in the F1 measure of the
four models on the full test set of WebQuestionsSP.

Similar to the CQA dataset, CIPITR also divided questions into
five categories, and then separately train one model for each
category. However, since the category information is not provided
in the WebQuestionsSP dataset, we did not classify the questions
and trained one single model, CIPITR-All, for all the training
samples by using its open-source code.

From Table 4, we can observe that NS-CQA can indeed learn
the rules behind the multi-hop inference process directly from
the distance supervision provided by the question–answer pairs.
Without manually pre-defined constraints, our model could learn
basic rules from the pseudo-gold annotations, and further com-
plete the rules by employing RL.

NS-CQA performed the best in the four models and signifi-
cantly outperformed the CIPITR-All. The main reason is that it is
hard for CIPITR-All to learn one set of parameters that fits the
different samples.

Also, by introducing the masking and copy mechanism, NSM
could achieve a performance competitive to our models PG and
NS-CQA. By employing memory buffer, our NS-CQA model can
alleviate the sparse reward problem and avert being trapped by
spurious trials, which makes the model more robust, therefore
achieving the best performance.

Furthermore, NS-CQA achieves the best result on both the CQA
and WebQuestionsSP datasets, which attests to the effectiveness
and the generalizability of our method.

Table 5
Ablation study on the CQA test set, showing the macro
F1 score drop by removing each main component, or by
learning from a subset of the training set. The Vanilla
model has macro F1 of 62.15% as shown in Table 3.
Feature Macro F1

Vanilla 62.15%
Masking −37.10%
Copy −11.52%
Attention −4.30%

1000-training −5.78%
2000-training −4.09%

4.5. Model analysis

To study how the different components influence the perfor-
mance of our seq2seq model, i.e., Vanilla, we conduct an ablation
experiment as follows. Each of the main components: attention,
copy mechanism, and masking method, is removed one at a time
from the full seq2seq model to study how its removal affects
model performance. We also study the effect of smaller training
samples on performance, by using 1 K and 2 K samples for
training, instead of 10 K used in the full model.

Table 5 summarizes performance degradation on the CQA test
set, where the Vanilla model achieves a macro F1 score of 62.15%.
It can be seen that the removal of masking produces the largest
drop in performance, of 37.10%. Masking method significantly
decreases the search space by replacing all the entity, relation and
type names with wildcard tokens. This result demonstrates that
although a simple approach, masking proves to be valuable for
the CQA task.

When the copy mechanism is removed, performance
decreases by 11.52%. This is consistent with our expectation since
masking has already considerably decreased the search space, the
improvements that copy mechanism could makes is relatively
limited. Lastly, when training on fewer samples labeled with
pseudo-gold actions, the model under-fits.

When training on even smaller datasets, the performance
degradation is not as severe as we expected. With as a training
set as small as 1000, our model is able to generalize well, only
suffering a 5.78% drop on a test set of 15.6 K. With a training
set of 2000 samples, our model suffers a modest 4.09% drop in
performance. This study further demonstrates the robustness and
generalizability of our model.

4.6. Sample size analysis

In this subsection, we analyze the effect of training samples
of different sizes on our PG module. Since the WebQuestionsSP
consists of a limited number of questions, it is hard to conduct the
sample size analysis on it. Instead, we trained our model by using
different CQA subsets to make a comparison. Specifically, given
the same pre-trained model, we train the NS-CQA model on 0.2%,
0.4%, 0.6%, 0.8%, 1.0%, and 1.2% of total 944 K training samples.
Note that the evaluation results of the full model presented in
Section 4.3 are obtained from 1.0% of training data and the entire
test set (i.e., 156 K). For experiments described in this subsection,
evaluation is performed on a subset of the full test set that is
10% of its size (i.e., 15.6 K). Training of the REINFORCE model
is stopped at 30 epochs, which is when all models have been
observed to converge.

We first study the effect on model performance. Fig. 3 plots
the macro F1 values of the seven categories of questions as well as
the overall performance. With the increase in training data size,
a general upward trend in macro F1 values can be observed, with
the category Simple Question being the exception. For the overall

12

61

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

test set, we can observe that the macro F1 value plateaus at 1.0%
and does not increase when training data is expanded to 1.2%.

For Simple Question, the output actions are relatively the ‘sim-
plest’. In most cases, one ‘Select’ action is needed to solve a ques-
tion. Consequently, with the help of methods to decrease search
space and better use data, after pre-training, the model over-
fits on the Simple Question type rapidly. Therefore the perfor-
mance of answering Simple Question fluctuates with the change
of training sample size.

On the other hand, for the other categories, it could be found
that the model can use data efficiently and obtain the best result
by training on only 1% samples.

More samples might help the model on some question cat-
egories, but more training time is consumed. The training time
of the REINFORCE module is plotted in Fig. 4. As can be seen,
there is a significant increase in training time when training data
increases from 1.0% to 1.2%. Together with the trend of the macro
F1 value, as shown in Fig. 3, we can empirically determine the
best trade-off between model performance and training efficiency
at 1.0%.

5. Qualitative analysis

In this section, we analyze the quality of our NS-CQA model in
more detail. We first present some success cases where NS-CQA
can predict the action sequence that produces correct answers. A
detailed analysis of typical errors is then performed, which sheds
light on the areas that can be further investigated.

5.1. Sample cases

In Table 6, we present some example questions from different
categories that our model NS-CQA can correctly predict action
sequences.

We can inspect the complexity of the CQA problem from these
instances. As is demonstrated in the table, Simple and Logical
questions are simplest to answer since commonly, only 2–3 ac-
tions are needed. The following four categories, i.e., Quantitative,
Comparative, Verification, and Quantitative Count, are relatively
more difficult types with around 3–4 operations. For instance, the
Verification question ‘‘Is Alda Pereira-Lemaitre a citizen of France
and Emmelsbüll-Horsbüll?’’ has an answer ‘‘YES and NO respec-
tively’’. Answering this question involves selecting all countries
which Alda Pereira-Lemaitre is a citizen of, and verifying whether
France and Emmelsbüll-Horsbüll is in this set respectively. The
last type, Comparative Count, is the most complex for questions
of which will be transformed into more than five actions.

Evident from the Quantitative Count and the Comparative
Count questions in the last two rows of the table, answering CQA
questions involve discrete actions. In the case of the question
‘‘How many assemblies or courts have control over the jurisdic-
tion of the Free Hanseatic City of Bremen?’’, the set operation
Union is required. In the case of the question ‘‘How many art
genres express more number of human or concepts than floral
painting?’’, numerical operations (GreaterThan and Count) are
required.

These example questions attest to the challenging nature of
the CQA dataset and the capability of our NS-CQA model.

5.2. Error analysis

To analyze the limitations of our NS-CQA model, 200 samples
in each category that produce incorrect answers are randomly
selected from the test dataset. In summary, a large number of
errors can be categorized into one of the following five classes.

5.2.1. Linking problem
Since different entities/types might have the same surface

name, in addition to literal similarity, the embedding of the
description of entities/types and the embedding of question is
employed to compute semantic similarity in our approach. When
mapping the predicates to queries, a state-of-the-art convolu-
tional sequence to sequence (Seq2Seq) learning model [40] im-
plemented in fairSeq [43] is used. Even so, some linking problems
remain.

Example:. ‘‘Where are around the same number of geographic
locations located on as Big Salmon Range?’’.

When our model is answering the above question, the relation
‘located on street’ is wrongly linked to the question instead of the
correct relation ‘located on terrain feature’. This type of errors
can be addressed by learning better semantic meaning of the
entities/types/relations from the context in the knowledge graph.

5.2.2. Infeasible action
NS-CQA occasionally produces meaningless and repetitive ac-

tions which are semantically incorrect. For instance, some actions
are predicted to union the same set, which is reluctant. In some
cases, two repeated ‘Count’ actions are predicted.

Example:. ‘‘What social groups had Canada and Austria as their
member?’’

When our model is solving the above question, it predicts the
following action sequence:

Select (Canada, member of, social group)
Bool (Austria)
EOQ

The operator ‘Bool’ is invalid since in this question the ex-
pected answer type is entities but not Boolean values. Semantic-
based constraints could be employed to make the model produce
feasible actions.

5.2.3. Spurious problem
In our approach, the pseudo-gold action sequences are gener-

ated by a BFS algorithm. Therefore corresponding to each ques-
tion, multiple possible sequences may evaluate to the same ex-
pected results. Among these sequences, there might be some
spurious action sequences. When training the model with such
action sequences, the model may be misled and produce incorrect
actions.

Example:. ‘‘Which musical ensembles were formed at Belfast?’’
Our model transforms the above question into the following

action sequence:

Select(Belfast, location, musical ensemble)
Inter(Belfast, location, musical ensemble)
EOQ

The second action ‘Inter’ is unnecessary to this question. Rule-
based constraints could be incorporated to restrict the search
process to meaningful actions.

5.2.4. Order of arguments
To decide the order of the entities/types in the actions is a

difficult problem. For actions ‘Select’, ‘Inter’, ‘Diff’, and ‘Union’, the
order of the arguments is decided by the following rule: the first
argument in a triple pattern is related to the entity, and the last
argument is associated with the type. In most cases, a sequence
of entities/types in actions follows the order they appear in the
question. Though our model is also trained to handle the situation
that the sequence of entities/types does not appear in the same
order, in some cases, the model is confused about which order to
follow.

13

62

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

Fig. 3. Changes in macro F1 values with varying percentages of training data for the PG module.

Fig. 4. Changes in training time (in seconds) with varying percentages of training data.

Example:. ‘‘Is Bernhard II, Duke of Saxe-Jena a child of William,
Duke of Saxe-Weimar?’’

Our model transforms the above question into the following
action sequence:

Select (Bernhard II. Duke of Saxe-Jena, child, common name)

Bool (William. Duke of Saxe-Weimar)

EOQ

However, the correct action sequence should be the following.
As can be seen, the order of the two entities is wrong in the
predicted sequence.

Select (William. Duke of Saxe-Weimar, child, common name)

Bool (Bernhard II. Duke of Saxe-Jena)

EOQ

In future work, we will investigate whether incorporating
more positional information can help alleviate this problem.

5.2.5. Approximation-related problem
The action ‘Almost’ is used to find the set of entities whose

number is approximately the same as a given value, and such

operation appears in the following four categories of questions:
Quantitative Reasoning, Quantitative Count, Comparative Reason-
ing, and Comparative Count. The questions involving the ‘Almost’
action account for 4% of the total test dataset. When solving
such questions, the range of the approximate interval is naturally
vague. We define the following ad-hoc rule to address this vague-
ness: suppose we are required to find the value around N , when
N is no larger than 5, the interval is [N − 1,N + 1]; when N is
more significant than 5, the range is [N−5,N+5]. In some cases,
this rule works, but in others not.

Example:. ‘‘Which political territories have diplomatic relations
with approximately 14 administrative territories?’’

The following action sequence could be produced to solve such
questions:

SelectAll (political territorial entity, diplomatic relation, ad-
ministrative territorial entity)

Almost (14)

EOQ

Following our rule, the approximate interval here should be [9,
19]. However, the correct answer (political territorial entities)
may have several administrative territories outside this range.

14

63

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

Table 6
Examples of action sequences correctly predicted by NS-CQA for different types of questions.
Q. type Question KB artifacts Action sequence Answer
Simple Which administrative

territory is Danilo Ribeiro
an inhabitant of?

E1: Danilo Ribeiro
R1: country of citizenship
T1: administrative territory

Select (E1, R1, T1)
EOQ

Brazil

Logical Which administrative
territories are twin towns
of London but not Bern?

E1: London
E2: Bern
R1: twinned adm. body
T1: administrative territory

Select (E1, R1, T1)
Diff (E2, R1, T1)
EOQ

Sylhet, Tokyo, Podgorica,
Phnom Penh, Delhi, Los
Angeles, Sofia, New
Delhi, . . .

Quantitative Which sports teams have
min number of stadia or
architectural structures as
their home venue?

R1: home venue
T1: sports team
T2: stadium
T3: architectural structure

SelectAll (T1, R1, T2)
SelectAll (T1, R1, T3)
ArgMin ()
EOQ

Detroit Tigers,
Drbak-Frogn IL, Club
Sport Emelec, Chunichi
Dragons, . . .

Comparative Which buildings are a part
of lesser number of
architectural structures
and universities than
Midtown Tower?

E1: Midtown Tower
R1: part of
T1: building
T2: architectural structure
T3: university

SelectAll (T1, R1, T2)
SelectAll (T1, R1, T3)
LessThan (E1)
EOQ

Amsterdam Centraal,
Hospital de Sant Pau,
Budapest Western
Railway Terminal, El
Castillo, . . .

Verification Is Alda Pereira-Lemaitre a
citizen of France and
Emmelsb‘̀ull-Horsb’́ull?

E1: Alda Pereira-Lemaitre
E2: France
E3: Emmelsb‘̀ull-Horsb’́ull
R1: country of citizenship
T1: administrative territory

Select (E1, R1, T1)
Bool (E2)
Bool (E3)
EOQ

YES and NO respectively

Quantitative Count How many assemblies or
courts have control over
the jurisdiction of Free
Hanseatic City of Bremen?

E1: Bremen
R1: applies to jurisdiction
T1: deliberative assembly
T2: court

Select (E1, R1, T1)
Union (E1, R1, T2)
Count ()
EOQ

2

Comparative Count How many art genres
express more number of
human or concepts than
floral painting?

E1: floral painting
R1: depicts
T1: art genre
T2: human
T3: concept

SelectAll (T1, R1, T2)
SelectAll (T1, R1, T3)
GreaterThan (E1)
Count ()
EOQ

8

Thus, the unfixed approximate interval may impair the perfor-
mance of our model. We can manually tweak the rule of deciding
the approximate interval. However, we emphasize that our model
aims to show a robust framework to solve complex questions, but
not to guess rules for approximation.

6. Conclusion

Answering complex questions on KBs is a challenging prob-
lem as it requires a model to perform discrete operations over
KBs. State-of-the-art techniques combine neural networks and
symbolic execution to address this problem. While practical, the
challenges of these techniques reside in data-inefficiency, reward
sparsity, and ample search space.

In this paper, we propose a data-efficient neural-symbolic
model for complex KBQA that combines simple yet effective
techniques, addressing some of the above deficiencies.

Firstly, we augment the model with a memory buffer. When
the memory buffer maintains the generated successful trials for
each training question, it will guide the model to replay and re-
sample the promising trials more frequently, thus mitigating the
data-inefficiency problem.

Secondly, by comparing the generated trials with the trials
stored in the memory, we assign a bonus to the reward, which
is the combination of proximity and novelty. Also, we propose
an adaptive reward function. The reward bonus and the adaptive
reward reshape the sparse reward into dense feedback that can
efficiently guide policy optimization. Employing the curriculum-
learning scheme, we gradually increase the proportion of prox-
imity while decreasing the weight of novelty. By doing this, we
encourage the model to find new trials while remembering the
past successful trials.

Thirdly, we incorporate the copy and masking mechanisms in
the model, and carefully design a set of primitive actions, to dras-
tically reduce the size of the decoder output vocabulary by orders

of magnitude. This significant reduction improves not only train-
ing efficiency but also model generalizability. Also, our actions
free the model from the need to maintain complex intermediate
memory modules, thus simplifies network design.

We conduct experiments on two challenging datasets on com-
plex question answering. In comparison with three state-of-the-
art techniques, our model achieves the best performance and
significantly outperforming them in both the datasets.

CRediT authorship contribution statement

Yuncheng Hua: Conceptualization, Methodology, Software,
Validation, Investigation, Writing - original draft. Yuan-Fang Li:
Conceptualization, Writing - original draft, Writing - review &
editing, Supervision. Guilin Qi: Writing - review & editing, Su-
pervision, Project administration, Funding acquisition. Wei Wu:
Software, Validation, Data curation. Jingyao Zhang: Software,
Data curation. Daiqing Qi: Software, Data curation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was partially supported by the National Key Re-
search and Development Program of China under grants
(2018YFC0830200), the Natural Science Foundation of China
grants (U1736204, 61602259), the Judicial Big Data Research
Centre, China, School of Law at Southeast University, China, and
the project no. 31511120201 and 31510040201.

15

64

Y. Hua, Y.-F. Li, G. Qi et al. Web Semantics: Science, Services and Agents on the World Wide Web 65 (2020) 100612

References

[1] J. Berant, A. Chou, R. Frostig, P. Liang, Semantic parsing on freebase
from question-answer pairs, in: Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, 2013, pp. 1533–1544.

[2] X. Yao, B. Van Durme, Information extraction over structured data: Ques-
tion answering with freebase, in: Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers),
Vol. 1, 2014, pp. 956–966.

[3] W.-t. Yih, X. He, C. Meek, Semantic parsing for single-relation question
answering, in: Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers), Vol. 2, 2014, pp.
643–648.

[4] A. Bordes, N. Usunier, S. Chopra, J. Weston, Large-scale simple question
answering with memory networks, 2015, arXiv preprint arXiv:1506.02075.

[5] W.-t. Yih, M.-W. Chang, X. He, J. Gao, Semantic parsing via staged query
graph generation: Question answering with knowledge base, in: Proceed-
ings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Vol. 1, 2015, pp. 1321–1331.

[6] A. Saha, V. Pahuja, M.M. Khapra, K. Sankaranarayanan, S. Chandar, Complex
sequential question answering: Towards learning to converse over linked
question answer pairs with a knowledge graph, in: Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[7] A. Saha, G.A. Ansari, A. Laddha, K. Sankaranarayanan, S. Chakrabarti,
Complex program induction for querying knowledge bases in the absence
of gold programs, Trans. Assoc. Comput. Linguist. 7 (2019) 185–200.

[8] C. Liang, J. Berant, Q. Le, K.D. Forbus, N. Lao, Neural symbolic machines:
Learning semantic parsers on freebase with weak supervision, in: Pro-
ceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Vol. 1, 2017, pp. 23–33.

[9] G.A. Ansari, A. Saha, V. Kumar, M. Bhambhani, K. Sankaranarayanan, S.
Chakrabarti, Neural program induction for KBQA without gold programs
or query annotations, in: Proceedings of the 28th International Joint
Conference on Artificial Intelligence, AAAI Press, 2019, pp. 4890–4896.

[10] N. Savinov, A. Raichuk, D. Vincent, R. Marinier, M. Pollefeys, T.P. Lillicrap,
S. Gelly, Episodic curiosity through reachability, in: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, la, USA,
May 6–9, 2019, OpenReview.net, 2019, URL https://openreview.net/forum?
id=SkeK3s0qKQ.

[11] C. Liang, M. Norouzi, J. Berant, Q.V. Le, N. Lao, Memory augmented policy
optimization for program synthesis and semantic parsing, in: Advances in
Neural Information Processing Systems, 2018, pp. 9994–10006.

[12] D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowledgebase,
Commun. ACM 57 (10) (2014) 78–85.

[13] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a col-
laboratively created graph database for structuring human knowledge,
in: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, 2008, pp. 1247–1250.

[14] J. Gu, Z. Lu, H. Li, V.O. Li, Incorporating copying mechanism in sequence-
to-sequence learning, in: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1,
2016, pp. 1631–1640.

[15] Y. Bengio, J. Louradour, R. Collobert, J. Weston, Curriculum learning, in:
Proceedings of the 26th Annual International Conference on Machine
Learning, ICML’09, 2009, pp. 41–48.

[16] M. Fang, T. Zhou, Y. Du, L. Han, Z. Zhang, Curriculum-guided hindsight
experience replay, in: Advances in Neural Information Processing Systems,
2019, pp. 12602–12613.

[17] W.-t. Yih, M. Richardson, C. Meek, M.-W. Chang, J. Suh, The value of
semantic parse labeling for knowledge base question answering, in: Pro-
ceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), Vol. 2, 2016, pp. 201–206.

[18] J. Lehmann, T. Furche, G. Grasso, A.-C.N. Ngomo, C. Schallhart, A. Sellers, C.
Unger, L. Buhmann, D. Gerber, K. Hoffner, et al., DEQA: deep web extrac-
tion for question answering, in: International Semantic Web Conference,
Springer, 2012, pp. 131–147.

[19] J. Bao, N. Duan, M. Zhou, T. Zhao, Knowledge-based question answering as
machine translation, in: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1,
2014, pp. 967–976.

[20] S. Hu, L. Zou, X. Zhang, A state-transition framework to answer complex
questions over knowledge base, in: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, 2018, pp. 2098–2108.

[21] L. Dong, F. Wei, M. Zhou, K. Xu, Question answering over freebase with
multi-column convolutional neural networks, in: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), Vol. 1, 2015, pp. 260–269.

[22] X. He, D. Golub, Character-level question answering with attention, in:
Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, 2016, pp. 1598–1607.

[23] D. Lukovnikov, A. Fischer, J. Lehmann, S. Auer, Neural network-based
question answering over knowledge graphs on word and character level,
in: Proceedings of the 26th International Conference on World Wide Web,
International World Wide Web Conferences Steering Committee, 2017, pp.
1211–1220.

[24] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V.
Zhong, R. Paulus, R. Socher, Ask me anything: Dynamic memory networks
for natural language processing, in: International Conference on Machine
Learning, 2016, pp. 1378–1387.

[25] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, J. Weston, Key-value
memory networks for directly reading documents, in: Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing,
2016, pp. 1400–1409.

[26] K. Xu, Y. Lai, Y. Feng, Z. Wang, Enhancing key-value memory neural
networks for knowledge based question answering, in: Proceedings of the
2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), 2019, pp. 2937–2947.

[27] K. Luo, F. Lin, X. Luo, K. Zhu, Knowledge base question answering via en-
coding of complex query graphs, in: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, 2018, pp. 2185–2194.

[28] D. Guo, D. Tang, N. Duan, M. Zhou, J. Yin, Dialog-to-action: Conversational
question answering over a large-scale knowledge base, in: Advances in
Neural Information Processing Systems, 2018, pp. 2946–2955.

[29] S. Reddy, M. Lapata, M. Steedman, Large-scale semantic parsing without
question-answer pairs, Trans. Assoc. Comput. Linguist. 2 (2014) 377–392.

[30] A. Bordes, J. Weston, N. Usunier, Open question answering with weakly
supervised embedding models, in: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer, 2014, pp.
165–180.

[31] A. Graves, G. Wayne, I. Danihelka, Neural turing machines, 2014, arXiv
preprint arXiv:1410.5401.

[32] W. Zaremba, I. Sutskever, Reinforcement learning neural turing machines-
revised, 2015, arXiv preprint arXiv:1505.00521.

[33] A. Neelakantan, Q.V. Le, I. Sutskever, Neural programmer: Inducing latent
programs with gradient descent, 2015, arXiv preprint arXiv:1511.04834.

[34] P. Pasupat, P. Liang, Compositional semantic parsing on semi-structured
tables, in: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), Vol. 1, 2015, pp.
1470–1480.

[35] K. Guu, P. Pasupat, E. Liu, P. Liang, From language to programs: Bridging re-
inforcement learning and maximum marginal likelihood, in: Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Vol. 1, 2017, pp. 1051–1062.

[36] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, J. Tenenbaum, Neural-symbolic
vqa: Disentangling reasoning from vision and language understanding, in:
Advances in Neural Information Processing Systems, 2018, pp. 1039–1050.

[37] A. Saha, G.A. Ansari, A. Laddha, K. Sankaranarayanan, S. Chakrabarti,
Complex program induction for querying knowledge bases in the absence
of gold programs, Trans. Assoc. Comput. Linguist. 7 (2019) 185–200.

[38] Z. Huang, W. Xu, K. Yu, Bidirectional LSTM-CRF models for sequence
tagging, 2015, arXiv preprint arXiv:1508.01991.

[39] W. Yin, M. Yu, B. Xiang, B. Zhou, H. Schütze, Simple question answering by
attentive convolutional neural network, in: Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics: Technical
Papers, 2016, pp. 1746–1756.

[40] J. Gehring, M. Auli, D. Grangier, D. Yarats, Y.N. Dauphin, Convolutional
sequence to sequence learning, in: Proceedings of the 34th International
Conference on Machine Learning, Vol. 70, JMLR. org, 2017, pp. 1243–1252.

[41] R.J. Williams, Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning, Mach. Learn. 8 (3–4) (1992) 229–256.

[42] S.J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, V. Goel, Self-critical sequence
training for image captioning, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 7008–7024.

[43] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, M. Auli,
fairseq: A fast, extensible toolkit for sequence modeling, in: Proceedings
of NAACL-HLT 2019: Demonstrations, 2019.

16

65

Chapter 4

Complex Knowledge Base Question

Answering via Meta Reinforcement

Learning

In Chapter 3, we have introduced a novel NPI-based method that alleviates several challenges that

inherently lie in existing NPI-based CQA systems. Like previous work, we trained a monolithic model,

i.e., a model that uses one set of parameters to fit all training samples to answer questions in the given

dataset. Though proved to have better performance than other state-of-the-art models, our model still

faces a problem. The process of finding a global, optimal set of parameter values that perform well on

a wide range of different questions is arduous. When conducting experiments, we found that the mono-

lithic model always behaved well on some types of questions while achieved a much worse performance

on other questions, leading to uneven performance. Therefore, using a monolithic, one-size-fits-all

model may not be the best strategy for the CQA task, as the questions and their corresponding logi-

cal forms in the given dataset could vary widely. For instance, comparing the two examples “What is

China’s capital?” and “How many countries have more rivers than China?”, the different length and

pattern of the questions could lead to corresponding programs with a substantial variety of structures

(“Select(China, capital, city)” and “Select(China, flow, river), Count(), SelectAll(country, flow, river),

GreaterThan(China), Count()”, respectively).

Since a one-size-fits-all model is not perfectly applicable to certain cases where the style and

format of the questions vary vastly, an alternative training paradigm is introduced: instead of finding

66

an optimal set of model parameters, learning multiple sets of parameters could be more effective,

where each set is used exclusively for a particular task—a group of questions that share a quite similar

pattern. To accomplish this, we change our objective: from finding the global optimal parameters

to learning the optimal initial parameters, by which multiple sets of parameters could be generated

adaptively for varied tasks.

Meta-learning, aka learning-to-learn, aims to train a model to learn the generic knowledge across a

variety of tasks [161], such that the model could quickly adapt to a new task using only a few training

samples of that task. A popular approach is to train a meta-learner to learn a high-level strategy

generalizes across many different tasks and use the meta-learner to update the model’s parameters

for a novel task [160]. Previous work on the meta-learning frames the meta-learner in a single neural

network [188, 189], increasing the number of parameters to train.

In contrast, instead of retraining a new neural network to control the update of the model’s

weights—which needs to optimize additional parameters—MAML [179], a meta-learning based ap-

proach is proposed to simplify the design of meta-learner. MAML views meta-learner as model’s

initial parameters, representing the generic knowledge applicable to multiple changing tasks. In their

work, well-learned initial parameters enable the model to generalize a novel task by fine-tuning the

initial parameters from a small number of similar tasks on the fly. MAML divides the meta-learning

process into two stages: (i) meta-training, which retrieves (normally using a retriever) a support set

(tasks similar to a given new task) to learn the task-specific parameters based on the initial param-

eters, and (ii) meta-testing, that updates the initial parameters based on evaluating the task-specific

parameters.

Considering simplicity, several methods have extended the MAML framework for solving the one-

size-fits-all problem in several semantic parsing tasks. Huang et al. [17] build a framework on MAML

to solve a semantic parsing task, where a NLQ needs to be translated into a SQL query to access

relational databases. To construct support sets for meta-training, Huang et al. design a relevance

function that takes SQL query’s format and question length into consideration. Similarly, Guo et

al. [18] propose a MAML-based framework to solve a conversational question answering task, i.e.,

answering context-dependent questions based on a KB, where each question is part of a dialog. Guo

et al. design a context-aware retriever that incorporates the conversational history to retrieve samples

close to a given task in the latent space. Particularly, the retriever is trained using a supervised learning

paradigm, where annotations are necessary for evaluation. However, both tasks’ settings are different

67

from ours in that we consider answering single-turn (instead of multiple-round) questions over a KB

(rather than a relational database). Also, in our problem setup, the annotations are unavailable in

the given dataset, making it impossible to train the retriever under the supervised learning paradigm.

Accordingly, we need to design a retriever in accordance with our CQA problem and thus build a

meta-learning-based question answering framework to solve the CQA task.

In our work, we build a CQA framework upon MAML to accomplish the following objectives:

1. Design an unsupervised retriever to find similar questions as a support set.

2. Employ meta-learning to optimize the meta-learner, aka CQA model’s initial parameters.

3. Use execution results of the logical forms as rewards to update initial parameters and finetune

the task-specific parameters under a weak-supervised learning paradigm.

Therefore, we propose a Meta-Reinforcement Learning (Meta-RL) framework that acquires knowl-

edge from similar tasks for fast adaptation to a novel task and updates the model’s weights with policy

gradients. We name it as Meta-RL approach for Complex Question Answering (MRL-CQA). This

research work has been published in the 2020 Conference on Empirical Methods in Natural Language

Processing, EMNLP 2020. The complete version of the manuscript is attached in the subsequent

pages.

Hua, Y., Li, Y., Haffari, G., Qi, G. and Wu, T. Few-shot Complex Knowledge Base Question

Answering via Meta Reinforcement Learning. In 2020 Conference on Empirical Methods in Natural

Language Processing, EMNLP 2020, November 16-20, 2020, Proceedings, pages 5827-5837.

68

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 5827–5837,
November 16–20, 2020. c©2020 Association for Computational Linguistics

5827

Few-Shot Complex Knowledge Base Question Answering
via Meta Reinforcement Learning

Yuncheng Hua†,§, Yuan-Fang Li♦, Gholamreza Haffari♦, Guilin Qi†,‡∗and Tongtong Wu†
†School of Computer Science and Engineering, Southeast University, China

♦Faculty of Information Technology, Monash University, Australia
§Southeast University-Monash University Joint Research Institute, China

‡Key Laboratory of Computer Network and Information Integration, Southeast University
†{devinhua, gqi, wutong8023}@seu.edu.cn

♦{yuanfang.li, gholamreza.haffari}@monash.edu

Abstract

Complex question-answering (CQA) involves
answering complex natural-language ques-
tions on a knowledge base (KB). However, the
conventional neural program induction (NPI)
approach exhibits uneven performance when
the questions have different types, harboring
inherently different characteristics, e.g., dif-
ficulty level. This paper proposes a meta-
reinforcement learning approach to program
induction in CQA to tackle the potential distri-
butional bias in questions. Our method quickly
and effectively adapts the meta-learned pro-
grammer to new questions based on the most
similar questions retrieved from the training
data. The meta-learned policy is then used
to learn a good programming policy, utilizing
the trial trajectories and their rewards for simi-
lar questions in the support set. Our method
achieves state-of-the-art performance on the
CQA dataset (Saha et al., 2018) while using
only five trial trajectories for the top-5 re-
trieved questions in each support set, and meta-
training on tasks constructed from only 1% of
the training set. We have released our code at
https://github.com/DevinJake/MRL-CQA.

1 Introduction

Knowledge-base question-answering (KBQA) in-
terrogates a knowledge-base (KB) (Yin et al., 2016;
Yu et al., 2017; Jin et al., 2019) by interpreting
natural-language questions as logical forms (anno-
tations), which can be directly executed on the KB
to yield answers (denotations) (Pasupat and Liang,
2016). KBQA includes simple questions that re-
trieve answers from single-hop triples (“what is
Donald Trump’s nationality”) (Berant et al., 2013;
Yih et al., 2014), multi-hop questions that infer an-
swers over triple chains of at least 2 hops under
specific constraints (“who is the president of the
European Union 2012”) (Yih et al., 2016; Liang

∗Corresponding Author.

et al., 2017), and complex questions that involve set
operations (“how many rivers flow through India
and China”) (Saha et al., 2019). In particular, com-
plex question answering (CQA) (Saha et al., 2018)
is a sophisticated KBQA task in which a sequence
of discrete actions—e.g., set intersection and union,
counting, comparison—needs to be executed, and
is the subject of this paper.

Consider the complex question “How many
rivers flow through India and China?”. We first
form a set of entities whose type is river and flow in
China from the KB. We then form another set for
rivers that flow through India. The answer is then gen-
erated by counting the entities in the intersection of
the two sets. More concretely, the question is trans-
formed into the action sequence “Select (China, flow,
river), Intersection (India, flow, river), Count”, which is
executed on the KB to yield the answer. As such,
the CQA task results in a massive search space be-
yond just entities in the KB and includes (lists of)
Boolean values and integers. Multi-hop questions
only require the join operator. In contrast, CQA
requires various types of additional symbolic rea-
soning, e.g., logical, comparative, and quantitative
reasoning (Shen et al., 2019; Ansari et al., 2019),
where a more diverse array of complex queries is
involved (Saha et al., 2019). The massive search
space and complex queries make CQA consider-
ably challenging and more complicated than multi-
hop question answering.

Due to the difficulty of collecting annotations,
the existing CQA dataset (Saha et al., 2018) only
contains the denotations for each question. The
literature takes two approaches to deal with the
missing annotations. The first approach aims to
transform learning a CQA model into learning
by demonstration, aka imitation learning, where
a pseudo-gold action sequence is produced for the
questions in the training set (Guo et al., 2018). This
is done by employing a blind search algorithm, i.e.,

69

5828

breadth-first search (BFS), to find a sequence of
actions whose execution would yield the correct
answer. This pseudo-gold annotation is then used
to train the programmer using teacher forcing, aka
behaviour cloning. However, BFS inevitably pro-
duces a single annotation and is ignorant to many
other plausible annotations yielding the correct an-
swer. To alleviate this issue, a second approach was
proposed based on reinforcement learning (RL) to
use the search policy prescribed by the program-
mer (Hua et al., 2020; Neelakantan et al., 2016;
Liang et al., 2017). Compared to BFS which is a
blind search algorithm, the RL-trained programmer
can be regarded as an informed search algorithm
for target programs. Therefore, the RL policy not
only addresses the limitation of the 1-to-1 mapping
between the questions and annotations, but also
produces reasonable programs faster than BFS.

The conventional approach to CQA is to train
one model to fit the entire training set, and then
use it for answering all complex questions at the
test time. However, such a one-size-fits-all strat-
egy is sub-optimal as the test questions may have
diversity due to their inherently different charac-
teristics (Huang et al., 2018). For instance, in the
CQA dataset, the samples could be categorized
into seven different types, e.g., those capturing
logical/comparative/quantitative reasoning. The
length and complexity of questions in one group are
likely to differ from those in other groups. There-
fore, action sequences relevant to different groups
may have significant deviations, and it is hard to
learn a one-size-fits-all model that could adapt to
varied types of questions. An exception is (Guo
et al., 2019), which proposes a few-shot learning
approach, i.e., S2A, to solve the CQA problem
with a retriever and a meta-learner. The retriever
selects similar instances from the training dataset
to form tasks, and the meta-learner is trained on
these tasks to learn how to quickly adapt to a new
task created by the target question of interest at the
test time. However, Guo et al. (2019) make use of
teacher forcing within the learning by demonstra-
tion approach, which suffers from the aforemen-
tioned drawbacks. Also, though S2A is the most
similar to ours, the tasks are very different. S2A
aims to answer context-dependent questions, where
each question is part of a multiple-turn conversa-
tion. On the contrary, we consider the different
task where the questions are single-turn and have
no context. Thus, a novel challenge arises in re-

trieving accurate support sets without conversation-
based context information.

In this paper, we propose a Meta-RL approach
for CQA (MRL-CQA), where the model adapts to
the target question by trials and the correspond-
ing reward signals on the retrieved instances. In
the meta-learning stage, our approach learns a RL
policy across the tasks for both (i) collecting trial
trajectories for effective learning, and (ii) learning
to adapt programmer by effectively combining the
collected trajectories.

The accumulated general knowledge acquired
during meta-learning enables the model to gener-
alize over varied tasks instead of fitting the distri-
bution of data points from a single task. Thus, the
tasks generated from tiny (less than 1%) portion
of the training data are sufficient for meta learner
to acquire the general knowledge. Our method
achieves state-of-the-art performance on the CQA
dataset with overall macro and micro F1 scores of
66.25% and 77.71%, respectively.

2 Meta-RL for Complex Question
Answering

The problem we study in this paper is transform-
ing a complex natural-language question into a
sequence of actions, i.e., a sequence-to-sequence
learning task. By executing the actions, relevant
triples are fetched from the KB, from which the
answer to the question is induced. We tackle this
problem with few-shot meta reinforcement learn-
ing to decrease the reliance on data annotation and
increase the accuracy for different questions.

Let q denote the input sequence, including the
complex question and the KB artifacts, i.e., entities,
relations, and types in KB that are relevant to the
problem. Let τ denotes the output sequence, i.e.,
an action sequence that the agent generates to an-
swer the question. Let R(τ |q) ∈ [0, 1] denotes the
partial reward feedback that tells whether or not the
action sequence yields the correct answer. To sim-
plify the notation, we denote the reward function by
R(τ). The training objective is to maximize the ex-
pected reward by optimizing the parameter θ of the
policy π(τ |q;θ), i.e., improving the accuracy of
the policy in answering unseen questions. For the
test, the agent needs to generate an action sequence
τ ∗ for the input sequence using a search algorithm,
e.g., greedy decoding, which is then executed on
KB to get the answer.

70

5829

Figure 1: The high-level architecture of our approach.

2.1 Overview of the Framework

Our framework for few-shot learning of CQA is
illustrated in Figure 1. In our framework, we view
each new training question as the test sample of a
pseudo task, and we aim to learn a specific model
devoted to solving the task. When faced with a
question qmeta, we first employ the retriever to
find top-N samples sqmeta in the training dataset,
which are the most similar to qmeta. We consider
sqmeta as meta-training data used to learn a par-
ticular model, and view the question qmeta as the
meta-testing data to evaluate the model. Therefore,
meta-training data sqmeta and meta-testing data
qmeta form a pseudo task T pse.

In the meta-training step (Step 1 in Figure 1), the
action sequences that correspond to sqmeta will
be generated based on the current parameter θ of
the programmer. The interpreter executes the ac-
tion sequences and evaluates the generated answers
to produce rewards. The rewards lead to gradient
updates that finetune the current model to get a
task-specific programmer with the parameter of
θ′. After that, in the meta-testing step (Step 2 in
Figure 1), the actions of qmeta are produced based
on θ′ and are evaluated to update θ. The train-
ing approach is depicted in Algorithm 1. In both
the meta-training and meta-testing steps, REIN-
FORCE (Williams, 1992) is used to optimize the
programmer.

Similarly, in the inference phase, we consider
each test question as a new individual task. We
retrieve top-N data points from the training dataset
to form the meta-training data. Instead of applying
the general programmer with θ directly, the meta-
training data is used to finetune a specific parameter
θ′ that fits the test question and infer the output.

2.2 Programmer and Interpreter
Programmer Our programmer is a sequence-to-
sequence (Seq2Seq) model. Given the input se-
quence q with tokens (w1, . . . , wM), the program-
mer produces actions (a1, . . . , aT). The input se-
quence is the original complex question concate-
nated with the KB artifacts appear in the query, and
the output is the words or tokens. The output at
each time step is a single token.

In the programmer, the encoder is a Long Short
Term Memory (LSTM) network that takes a ques-
tion of variable length as input and generates an
encoder output vector ei at each time step i as:
(ei,hi) = LSTM [φE(wi),hi−1]. Here φE(wi)
is word embedding of token wi, and (ei,hi) is the
output and hidden vector of the i-th time step. The
dimension of ei and hi are set as the same.

Our decoder of the programmer is another
attention-based LSTM model that selects output
token at from the output vocabulary Voutput. The
decoder generates a hidden vector gt from the
previous output token at−1. The previous step’s
hidden vector gt−1 is fed to an attention layer to
obtain a context vector ct as a weighted sum of
the encoded states using the standard attention
mechanism. The current step’s gt is generated via
gt = LSTM{gt−1, [φD(at−1), ct]}, where φD is
the word embedding of input token at−1. The de-
coder state gt is used to compute the score of the
target word v ∈ Voutput as,

π(at = v|a<t, q) = softmax(W · gt + b)v (1)

where W and b are trainable parameters, and a<t
denotes all tokens generated before the time step t.
We view all the weights in the programmer as the
parameter θ, thus we have the probability that the
programmer produces an action sequence τ with
tokens {a1, ..., aT } as,

π(τ |q; θ) =

T∏

t=1

π(at = v|a<t, q). (2)

When adapting the policy to a target question, our
programmer outputs action sequences following
the distribution computed by equation 2. By treat-
ing decoding as a stochastic process, the program-
mer performs random sampling from the probabil-
ity distribution of action sequences to increase the
output sequences’ diversity.

Interpreter After the programmer generates the
entire sequence of actions, the interpreter executes

71

5830

the sequence to produce an answer. It compares the
predicted answer with the ground-truth answer and
outputs a partial reward. If the type of the output
answer is different from that of the ground-truth
answer, the action sequence that generates this an-
swer will be given a reward of 0. Otherwise, to
alleviate the sparse reward problem, the interpreter
takes the Jaccard score of the output answer set
and the ground-truth answer set as the partial re-
ward, and sends it back to update parameters of the
programmer as the supervision signal.

2.3 Meta Training and Testing

We formulate training of the programmer in a RL
setting, where an agent interacts with an environ-
ment in discrete time steps. At each time step t, the
agent produces an action (in our case a word/token)
at sampled from the policy π(at|a<t, q;θ), where
a<t denotes the sequence generated by the agent
from step 1 to t − 1, and q is the input sequence.
The policy of the agent is the programmer, i.e.,
LSTM-attention model M with parameter θ. The
natural-language question concatenated with the
KB artifacts will be fed into the encoder as an in-
put, and a sequence of actions is output from the
decoder. In our work, we regard each action se-
quence produced by the model as one trajectory.
The action sequence is therefore executed to yield
a generated answer, and the similarity between the
output answer with the ground-truth answer is then
computed. The environment considers the similar-
ity as the reward R corresponding to the trajectory
τ and gives it back to the agent. In standard RL, the
parameter of the policy θ is updated to maximize
the expected reward, Eτ∼π(τ |q;θ)[R(τ)].

In our work, answering each question in the train-
ing dataset is considered as an individual task, and
a model adaptive to a new task is learned from the
support set questions. To make the meta-learned
model generalize to all unseen tasks, we sample
the tasks following the distribution of tasks in the
training dataset. We first sample a small subset
of the questions Qmeta from the training dataset
and expand the questions into tasks Tmeta through
retrieving the top-N samples, then extract a batch
of tasks T ′ from Tmeta under the distribution of
tasks in Tmeta to update parameters.

To fully use the training dataset and decrease
training time, we study how to train a competitive
model by using as few training samples as possible.
As we view CQA as a RL problem under few-shot

learning conditions, we make use of Meta-RL tech-
niques (Finn et al., 2017) to adapt the programmer
to a new task with a few training samples. Meta-RL
aims to meta-learn an agent that can rapidly learn
the optimal policy for a new task T . It amounts to
learn optimized θ∗ using K trial trajectories and
the rewards for the support set of a new task.

We use the gradient-based meta-learning method
to solve the Meta-RL problem such that we can
obtain the optimal policy for a given task after
performing a few steps of vanilla policy gradient
(VPG) (Williams, 1992; Sutton et al., 2000). We
divide the meta-learning process into two steps to
solve a task, namely the meta-training step and the
meta-testing step. Suppose we are trying to solve
the pseudo-task Tpse, which consists of N meta-
training questions sqmeta that are the most similar
to the meta-testing sample qmeta. The model first
generatesK trajectories for each question in sqmeta

based on θ. The reward of each trajectory is given
by the environment and then subsequently used to
compute θ′ adapted to task Tpse, as

θ′ ← θ + η1∇θ
∑

q∈sqmeta

Eτ∼π(τ |q;θ)[R(τ)] (3)

During meta-testing, another K ′ trajectories corre-
sponding to question qmeta are further produced
by θ′. The reward of K ′ trajectories are considered
as the evaluation of the adapted policy θ′ for the
given task Tpse; thus we have the objective,

J(θ′) def
= Eτ ′∼π(τ ′|qmeta;θ′)[R(τ ′)] (4)

The parameter of the generic policy θ are then
trained by maximising the objective J(θ′),

θ ← θ + η2∇θJ(θ′) (5)

In each VPG step, since we have N samples in
sqmeta , we use N policy gradient adaptation steps
to update θ′. Meanwhile, we use one policy gradi-
ent step to optimize θ based on the evaluation of
θ′. Monte Carlo integration is used as the approx-
imation strategy in VPG (Guu et al., 2017). We
summarise the meta-learning approach in Alg.1.

When making inferences, for each question qtest,
the retriever creates a pseudo-task, similar to the
meta-learning process. The top-N similar ques-
tions to qtest form the support set sqtest , and are
used to obtain the adapted model θ∗

′
, starting from

the meta learned policy θ∗. The adapted model is
then used to generate the program and compute the
target question’s final answer.

72

5831

Algorithm 1: Meta-RL (training time)
Input: Dataset Qtrain, step size η1, η2
Output: Meta-learned policy θ∗

1 Randomly initialize θ
2 Randomly sample Qmeta ∼ Qtrain
3 Expand Qmeta → Tmeta
4 while not done do
5 Sample a batch of tasks T ′ ∼ Tmeta
6 for Tpse ∈ T ′ do
7 L ← 0
8 for each question q ∈ sqmeta do
9 Sample K trajectories:

τk ∼ π(τ |q;θ)
10 L ←

L+ 1
K

∑K
k=1R(τk)logpθ(τk)

11 θ′ ← θ + η1∇θL
12 Sample K ′ trajectories:

τk′ ∼ π(τ |qmeta;θ′)
13 Jqmeta(θ′)←

1
K′

∑K′
k′=1R(τk′)logpθ′(τk′)

14 θ ← θ + η2∇θ
∑
Tpse∈T ′ Jqmeta(θ′)

15 Return The meta-learned policy θ∗ ← θ

2.4 Question Retriever

We propose an unsupervised retriever that finds,
from the training dataset, relevant support samples
for the tasks in both the training and test phases.
We propose a relevance function that measures the
similarity between two questions in two aspects:
(1) the number of KB artifacts (i.e., entities, rela-
tions, and types) in the questions and (2) question
semantic similarity.

If the two questions have the same number of
KB artifacts, the structure of their correspond-
ing action sequences are more likely to be resem-
bled. We calculate the similarity in terms of the
number of entities of two questions q1 and q2 by
sime(q1, q2) = 1 − |qe(q1)−qe(q2)|

max(qe(q1),qe(q2))
. The func-

tion qe(q) counts the number of entities in the
question. Similarly, we compute the similarities in
terms of relations and types in the same way with
simr(q1, q2) and simt(q1, q2) respectively. The
KB artifact similarity sima(q1, q2) is computed by
the product of the above three similarities.

For two questions, the more common words they
have, the more semantically similar they are. Based
on this intuition, we propose a semantic similarity
function based on Jaccard similarity in an unsu-

pervised way. Suppose there is a set of i words
{w1

1, ..., w
i
1} in q1 and j words {w1

2, ..., w
j
2} in q2,

and word similarity sim(wi, wj) is calculating us-
ing the Cosine similarity.

For each word in q1, we first collect the word
pairs from the words in q2, whose highest similarity
exceeds a pre-defined threshold value. We denote
with semint(q1, q2) the sum of similarity values
of the word pairs:

semint(q1, q2) =
i∑

m=1

(
j

max
n=1

(sim(wm1 , w
n
2)))

(6)
After removing this set of highly similar words

from the two questions, we denote the remaining
tokens as {wremain1 } and {wremain2 }, which repre-
sent the different parts of the two questions. We
sum up the embeddings of the words in {wremain1 }
as wremain

1 , and compute wremain
2 in the same way.

The function semdiff (q1, q2) measures how dif-
ferent q1 and q2 are:

semdiff (q1, q2) = max(|{wremain1 }|, |{wremain2 }|)
∗(1− sim(wremain

1 ,wremain
2)),

(7)
where |{w}| returns the cardinality of the set {w}.

We define the semantic similarity be-
tween q1 and q2 as: sims(q1, q2) =

semint(q1,q2)
semint(q1,q2)+semdiff (q1,q2)

, and therefore
calculate the similarity between q1 and q2 with
sima(q1, q2) ∗ sims(q1, q2).

3 Experiments

In this section, we present the empirical evaluation
of our MRL-CQA framework.

Dataset. We evaluated our model on the large-
scale CQA (Complex Question Answering)
dataset (Saha et al., 2018). Generated from the
Wikidata KB (Vrandecic and Krötzsch, 2014),
CQA contains 944K/100K/156K QA pairs for train-
ing, validation, and testing, respectively. In the
CQA dataset, each QA pair consists of a complex,
natural-language question and the corresponding
ground-truth answer (i.e., denotation). We note that
annotations, i.e., gold action sequences related to
the questions, are not given in the CQA dataset.
The CQA questions are organized into seven cat-
egories of different characteristics, as shown in
the Table 1. Some categories have entities as an-
swers (e.g., “Simple Question”), while others have
(lists of) numbers (e.g., “Quantitative (Count)”)

73

5832

or Booleans (e.g., “Verification (Boolean)”) as an-
swers. The size of different categories in CQA
is uneven. The number of instances in each cate-
gory in the training set is 462K, 93K, 99K, 43K,
41K, 122K, and 42K for Simple Question, Logical
Reasoning, Quantitative Reasoning, Verification
(Boolean), Comparative Reasoning, Quantitative
(Count), and Comparative (Count), respectively.

Based on the length of the induced programs
and performance of the best models, we further
organized the seven categories into two groups:
easy—the first four categories, and hard—the last
three types, in Table 1. We used the same evalua-
tion metrics employed in the original paper (Saha
et al., 2018), the F1 measure, to evaluate models.

Training Configuration. In the CQA dataset,
since the annotated action sequence are not pro-
vided, we randomly sampled 1% of the training set
(approx. 10K out of 944K training samples) and
followed (Guo et al., 2019) to annotate them with
pseudo-gold action sequences by using a BFS algo-
rithm. We denoted the 1% questions and relevant
pseudo-gold action sequences as Qpre. The Qpre
was used to train the LSTM-based programmer,
which was further optimized through the Policy
Gradient (PG) algorithm (Williams, 1992; Sutton
et al., 2000) with another 1% unannotated ques-
tions from the training set. We denoted this model
by PG, which is also a model variant proposed
in (Hua et al., 2020). We trained the meta learner
on another 2K training samples (Qmeta in Alg.1),
representing only approx. 0.2% of the training set.
This meta learner is our full model: MRL-CQA.

In our work, we chose the attention-based LSTM
model instead of the Transformer (Vaswani et al.,
2017) to design the programmer. We set the sizes
of embedding and hidden units in our LSTM model
as 50 and 128 respectively, thus the maximum num-
ber of the parameters in our model is about 1.2M.
However, the base model of the Transformer (12
layers, 12 heads, and 768 hidden units) has 110M
parameters (Wolf et al., 2019), which are much
more than those of our model. Given the small size
of the training samples and the weak supervision
signal (reward in our work), it is harder to train the
model with more parameters. Therefore we chose
LSTM rather than the Transformer.

We implemented our model in PyTorch and em-
ployed the Reptile meta-learning algorithm to op-
timize the meta-learned policy (Nichol and Schul-
man, 2018). The weights of the model and the

word embeddings were randomly initialized and
further updated within the process of training. In
meta-learning, we set η1 = 1e−4 (Equation 3) and
η2 = 0.1 (Equation 5). We set N = 5 and thresh-
old value at 0.85 when forming the support set. For
each question, we generate five action sequences
to output the answers. The Adam optimizer is used
in RL to maximizes the expected reward.

Among the baseline models, we ran the open-
source code of KVmem (Saha et al., 2018) and
CIPITR (Saha et al., 2019) to train the model. As
the code of NSM (Liang et al., 2017) has not been
made available, we re-implemented it and incor-
porated our programmer to predict programs, and
employed the reinforcement learning settings in
NSM to optimize the programmer. When inferring
the testing samples, we used the top beam, i.e., the
predicted program with the highest probability in
the beam to yield the answers. We presented the
best result we got to compare the baseline models.

3.1 Model Comparisons

We evaluated our model, MRL-CQA, against three
baseline methods on the CQA dataset: KVmem,
NSM, and CIPITR. It must be pointed out that
CIPITR separately trained one single model for
each of the seven question categories. We denote
the model learned in this way as CIP-Sep. CIPITR
also trained one single model over all categories
of training instances and used this single model to
answer all questions. We denote this single model
as CIP-All. We separately present the performance
of these two variations of CIPITR in Table 1. On
the contrary, we tuned MRL-CQA on all categories
of questions with one set of model parameters.

Table 1 summarizes the performance in F1 of
the six models on the test set of CQA, organised
into seven question categories. We note that the
first four categories (first four rows in Table 1) are
relatively simple, and the last three (middle three
rows) are more challenging. We also report the
overall macro and micro F1 values (last two rows).

As can be seen, our MRL-CQA model achieves
the overall best macro and micro F1 values, achiev-
ing state-of-the-art results of 66.25% and 77.71%,
respectively. MRL-CQA also achieves the best or
second-best performance in six out of the seven
categories. Of the three hardest categories (the last
three types in Table 1), MRL-CQA delivers the best
performance in all three types. This validates the ef-
fectiveness of our meta-learning-based approach in

74

5833

Table 1: Performance comparison (measured in F1) of the seven methods on the CQA test set. For each category,
best result is bolded and second-best result is underlined.

Question category KVmem NSM CIP-All CIP-Sep PG MRL-CQA

Simple Question 41.40% 88.83% 41.62% 94.89% 85.20% 88.37%
Logical Reasoning 37.56% 80.21% 21.31% 85.33% 78.23% 80.27%
Quantitative Reasoning 0.89% 36.68% 5.65% 33.27% 44.22% 45.06%
Verification (Boolean) 27.28% 58.06% 30.86% 61.39% 84.42% 85.62%

Comparative Reasoning 1.63% 59.45% 1.67% 9.60% 59.43% 62.09%
Quantitative (Count) 17.80% 58.14% 37.23% 48.40% 61.80% 62.00%
Comparative (Count) 9.60% 32.50% 0.36% 0.99% 38.53% 40.33%

Overall macro F1 19.45% 59.12% 19.82% 47.70% 64.55% 66.25%
Overall micro F1 31.18% 74.68% 31.52% 73.31% 75.40% 77.71%

effectively learning task-specific knowledge. Note
that the two categories that MRL-CQA performs
the best, Comparative Reasoning and Comparative
(Count), both account for less than 5% of the train-
ing set, which further demonstrates our model’s
excellent adaptability.

Also, our RL-based programmer PG achieves
second-best result in overall macro and micro F1,
with about 2% difference below MRL-CQA. More-
over, PG achieves second-best in four categories.
Such strong performance indicates the effective-
ness of our CQA framework.

Besides the above main result, several important
observations can be made from Table 1.

1. CIP-Sep got the best result in two categories,
i.e., “Simple Question” and “Logical Reasoning”.
However, it performed poorly for the three hard cat-
egories. Consequently, the overall macro F1 value
of CIP-Sep is substantially lower than both PG and
MRL-CQA. Note that CIP-Sep trained a different
model separately for each of the seven question
categories. The results reported for each category
were obtained from the models tuned specifically
for each category (Saha et al., 2019), which neces-
sitated a classifier to be trained first to recognize
the question categories. Thus, CIP-Sep needs to
re-train the models to adapt to new/changed cate-
gories, which impedes it from generalizing to un-
seen instances. However, we tuned our models
on all questions with one set of model parameters,
disregarding the question category information.

2. As presented in Table 1, CIP-All, the model
that trained over all types of the questions, per-
formed much worse in all the categories than CIP-
Sep. A possible reason for CIP-All’s significant
performance degradation is that it is hard for such

a one-size-fits-all model to find the weights that fit
the training data when the examples vary widely.
Besides, the imbalanced classes of questions also
deteriorate the performance of the model. Different
from CIPITR, MRL-CQA is designed to adapt ap-
propriately to various categories of questions with
one model, thus only needs to be trained once.

3. Our programmer and carefully-defined primi-
tive actions presented in this work were used in our
re-implementation of NSM. In the hard categories,
by comparing the F1 scores of PG and MRL-CQA,
it could be observed that NSM performed compet-
itively. Furthermore, NSM performed the second
best in “Simple Question” and “Comparative Rea-
soning” categories. This helps to validate the ef-
fectiveness of our proposed techniques. However,
NSM is worse than MRL-CQA in six out of the
seven categories. This verifies the adaptability of
our model, which can quickly adapt to new tasks
by employing the learned task-specific knowledge.

Note that our model was trained only on 1%
of the training set, whereas the baseline models
use the entire training set. Besides, our method
trains one model to solve all questions, while CIP-
Sep trains seven models, one for each category
of problems. Thus our model is compared with
seven individually trained models in CIPITR but
still achieves the best overall performance, demon-
strating the effectiveness of our technique.

3.2 Model Analysis

We conduct an ablation experiment to study the
effect of meta-learning. We also study the effect
of smaller training samples by comparing MRL-
CQA’s performance trained on 500 and 1K samples,
against 2K used in the full model.

75

5834

Table 2: Ablation study on the test set on macro F1
score change with different sizes of training samples.

Feature Overall macro F1

PG 75.40%

MRL-CQA
500-training +0.01%
1,000-training +0.58%
2,000-training +2.31%

Table 2 summarizes the ablation study result.
Trained on 500 samples only, MRL-CQA slightly
improves performance by 0.01 percentage points
compared to PG. When training sample increases
to 1K, MRL-CQA outperforms PG by 0.58 percent-
age points. The full MRL-CQA model, trained on
2K samples, achieves a performance improvement
over PG of 2.31 percentage points. These results
demonstrate the ability to design a specific model
for answering each question precisely, which is
afforded by meta-learning.

3.3 Case Study

We provide a case study of different types of ques-
tions that MRL-CQA could answer, but our RL-
based model, aka PG, could not solve. The com-
parison is given in Table 3, which lists the action
sequences and the corresponding results these two
models predicted when answering the same ques-
tions. We highlight the different parts of the action
sequences that the two models generated.

For example, when answering the Logical Rea-
soning question in Table 3, PG was confused about
what relations should be used to form feasible ac-
tions. It could be seen that PG failed to distinguish
the two different relations for the two actions and
thus produced a wrong answer.

Similarly, when answering the Verification ques-
tion in Table 3, PG also yielded an infeasible action
sequence. After forming a set of political territories
that Hermine Mospointner is a citizen of, the bool ac-
tion should be used to judge whether Valdeobispo
and Austria are within the set. It can be seen that
PG missed one action: Bool (Austria).

The different optimization goals lead to the dif-
ferent results of the two models. PG, as a typical
one-size-fits-all model, aims to estimate the glob-
ally optimal parameters by fitting itself to the train-
ing samples. Such a model extracts the information
from the training data to update model parameters,

applies the parameters to the new samples without
modification thereafter. Therefore, when facing a
wide variety of questions, it is hard for the model to
find a set of parameters that fits all samples. Under
the circumstances, like what is presented in Table 3,
such a one-size-fits-all model could not handle the
questions well.

However, our MRL-CQA model aims to learn
general knowledge across tasks and fix the knowl-
edge into the initial parameters. We thus learn a
model that can subsequently adapt the initial pa-
rameters to each new given question and specialize
the adapted parameters to the particular domain of
the new questions. Therefore, with the help of the
adapted parameters, MRL-CQA can answer each
new question more precisely than PG.

4 Related Work

Imitation Learning. Imitation Learning aims to
learn the policy based on the expert’s demonstra-
tion by supervised learning. Saha et al. (2018)
propose a CQA model that combines Hierarchical
Recurrent Encoder-Decoder (HRED) with a Key-
Value memory (KVmem) network and predicts the
answer by attending on the stored memory. Guo
et al. (2018) present a Dialog-to-Action (D2A)
approach to answer complex questions by learn-
ing from the annotated programs. D2A employs
a deterministic BFS procedure to label questions
with pseudo-gold actions and trains an encoder-
decoder model to generate programs by manag-
ing dialog memory. Multi-task Semantic Pars-
ing (MaSP) (Shen et al., 2019) jointly optimizes
two modules to solve the CQA task, i.e., entity
linker and semantic parser, relying on annotations
to demonstrate the desired behaviors. Different
from the above approaches, our model performs
better while removing the need for annotations.

Neural Program Induction (NPI). NPI is a
paradigm for mapping questions into executable
programs by employing neural models. Neural-
Symbolic Machines (NSM) (Liang et al., 2017)
is proposed to answer the multi-hop questions.
NSM annotates the questions and then anchors
the model to the high-reward programs by as-
signing them with a deterministic probability.
Neural-Symbolic Complex Question Answering
(NS-CQA) model (Hua et al., 2020) augments the
NPI approach with a memory buffer to alleviate
the sparse reward and data inefficiency problems
appear in the CQA task. Complex Imperative

76

5835

Table 3: A comparison of the action sequences and results that PG (the second column) and MRL-CQA (the third
column) yield when answering the same questions.

An Example of Logical Reasoning Question
Question Information PG MRL-CQA
Question: Which occupations are the
professions of Sergio Piacentini or were
a position held by Antoinette Sandbach?

Action sequence: Action sequence:
Select (Sergio Piacentini, position held,
occupation)

Select (Sergio Piacentini, occupation of,
occupation)

Union (Antoinette Sandbach, posi-
tion held, occupation)

Union (Antoinette Sandbach, posi-
tion held, occupation)

Ground-truth answer: Execution result: Execution result:
Member of the National Assembly for
Wales,

Member of the National Assembly for
Wales

Member of the National Assembly for
Wales,

association football manager, association football manager,
association football player association football player

An Example of Verification (Boolean) Question
Question Information PG MRL-CQA
Question: Is Hermine Mospointner a
civilian of Valdeobispo and Austria?

Action sequence: Action sequence:
Select (Hermine Mospointner, coun-
try of citizenship, political territory)

Select (Hermine Mospointner, coun-
try of citizenship, political territory)

Bool (Valdeobispo) Bool (Valdeobispo)
Bool (Austria)

Ground-truth answer: Execution result: Execution result:
False and True False False and True

Program Induction from Terminal Rewards (CIP-
ITR) (Saha et al., 2019) relies on auxiliary awards,
KB schema, and inferred answer types for training
an NPI model to solve the CQA task. However,
CIPITR separately trains one model for each cate-
gory of questions with a different difficulty level.
Compared with the NPI models, our model can
flexibly adapt to the question under processing.

Meta-learning. Meta-learning, aka learning-
to-learn, aims to make learning a new task more
effective based on the inductive biases that are
meta-learned in learning similar tasks in the past.
Huang et al. (2018) use MAML to learn a Seq2Seq
model to convert questions in WikiSQL into SQL
queries. More closely related to our work, Guo et
al. (2019) propose Sequence-to-Action (S2A) by
using MAML to solve CQA problems. They label
all the examples in training set with pseudo-gold
annotations, then train an encoder-decoder model
to retrieve relevant samples and a Seq2Seq based
semantic parser to generate actions based on the
annotations. Unlike S2A, we introduce a Meta-RL
approach, which uses RL to train an NPI model
without annotating questions in advance.

5 Conclusion

CQA refers to answering complex natural language
questions on a KB. In this paper, we propose
a meta-learning method to NPI in CQA, which
quickly adapts the programmer to unseen ques-
tions to tackle the potential distributional bias in

questions. We take a meta-reinforcement learn-
ing approach to effectively adapt the meta-learned
programmer to new questions based on the most
similar questions retrieved. To effectively create
the support sets, we propose an unsupervised re-
triever to find the questions that are structurally and
semantically similar to the new questions from the
training dataset. When evaluated on the large-scale
complex question answering dataset, CQA, our
proposed approach achieves state-of-the-art perfor-
mance with overall macro and micro F1 score of
66.25% and 77.71%, respectively.

In the future, we plan to improve MRL-CQA by
designing a retriever that could be optimized jointly
with the programmer under the meta-learning
paradigm, instead of manually pre-defining a static
relevance function. Other potential directions of re-
search could be toward learning to cluster questions
into fine-grained groups and assign each group a
set of specific initial parameters, making the model
finetune the parameters more precisely.

Acknowledgments

This work was partially supported by the Na-
tional Key Research and Development Program
of China under grants (2018YFC0830200), the
Natural Science Foundation of China grants
(U1736204, 61602259), Australian Research Coun-
cil (DP190100006), the Judicial Big Data Research
Centre, School of Law at Southeast University, and
the project no. 31511120201 and 31510040201.

77

5836

References
Ghulam Ahmed Ansari, Amrita Saha, Vishwajeet Ku-

mar, Mohan Bhambhani, Karthik Sankaranarayanan,
and Soumen Chakrabarti. 2019. Neural program in-
duction for kbqa without gold programs or query an-
notations. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, pages
4890–4896. AAAI Press.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
pages 1126–1135. JMLR. org.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and
Jian Yin. 2018. Dialog-to-action: conversational
question answering over a large-scale knowledge
base. In Advances in Neural Information Process-
ing Systems, pages 2942–2951.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and
Jian Yin. 2019. Coupling retrieval and meta-
learning for context-dependent semantic parsing. In
Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, ACL 2019, Flo-
rence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers, pages 855–866. Association for Com-
putational Linguistics.

Kelvin Guu, Panupong Pasupat, Evan Liu, and Percy
Liang. 2017. From language to programs: Bridg-
ing reinforcement learning and maximum marginal
likelihood. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 1051–
1062.

Yuncheng Hua, Yuan-Fang Li, Guilin Qi, Wei Wu,
Jingyao Zhang, and Daiqing Qi. 2020. Less is
more: Data-efficient complex question answering
over knowledge bases. Journal of Web Semantics,
Accepted.

Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-
tau Yih, and Xiaodong He. 2018. Natural language
to structured query generation via meta-learning. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 732–738.

Hailong Jin, Chengjiang Li, Jing Zhang, Lei Hou,
Juanzi Li, and Peng Zhang. 2019. XLORE2: large-
scale cross-lingual knowledge graph construction
and application. Data Intell., 1(1):77–98.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D For-
bus, and Ni Lao. 2017. Neural symbolic machines:

Learning semantic parsers on freebase with weak su-
pervision. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 23–33.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever.
2016. Neural programmer: Inducing latent pro-
grams with gradient descent. In 4th International
Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Con-
ference Track Proceedings.

Alex Nichol and John Schulman. 2018. Reptile: a
scalable metalearning algorithm. arXiv preprint
arXiv:1803.02999, 2.

Panupong Pasupat and Percy Liang. 2016. Inferring
logical forms from denotations. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics.

Amrita Saha, Ghulam Ahmed Ansari, Abhishek
Laddha, Karthik Sankaranarayanan, and Soumen
Chakrabarti. 2019. Complex program induction for
querying knowledge bases in the absence of gold
programs. Transactions of the Association for Com-
putational Linguistics, 7:185–200.

Amrita Saha, Vardaan Pahuja, Mitesh M Khapra,
Karthik Sankaranarayanan, and Sarath Chandar.
2018. Complex sequential question answering: To-
wards learning to converse over linked question an-
swer pairs with a knowledge graph. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Tao Shen, Xiubo Geng, Tao QIN, Daya Guo, Duyu
Tang, Nan Duan, Guodong Long, and Daxin Jiang.
2019. Multi-task learning for conversational ques-
tion answering over a large-scale knowledge base.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2442–
2451, Hong Kong, China. Association for Computa-
tional Linguistics.

Richard S Sutton, David A McAllester, Satinder P
Singh, and Yishay Mansour. 2000. Policy gradient
methods for reinforcement learning with function ap-
proximation. In Advances in neural information pro-
cessing systems, pages 1057–1063.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Denny Vrandecic and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commun.
ACM, 57:78–85.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

78

5837

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation question
answering. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), volume 2, pages 643–648.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, and
Hinrich Schütze. 2016. Simple question answering
by attentive convolutional neural network. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 1746–1756.

Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos
Santos, Bing Xiang, and Bowen Zhou. 2017. Im-
proved neural relation detection for knowledge base
question answering. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1,
pages 571–581.

79

Chapter 5

Complex Knowledge Base Question

Answering via Alternate Meta-learning

In Chapter 4, instead of using a monolithic, one-size-fits-all model, we present a novel Meta-RL

framework, which adaptively generates multiple models for multiple groups of complex questions to

solve the CQA task. The key idea underlying a meta-learning algorithm is to train a model that

could quickly adapt to a new task by learning from a small number of samples that belong to this

new task [179]. Unlike other few-shot learning tasks such as the few-shot image recognition tasks on

the Omniglot [190] and MiniImagenet [178] datasets, in the semantic parsing setting, such a notion of

“support set”, which denotes a group of similar samples representing each novel task, is not provided

in the dataset. Therefore, the meta-learning framework is faced with a challenge when applying to

semantic parsing problems, including the CQA problem: the support sets are not available in the

given dataset, making it impossible to train a meta-learner [17]. To address the above challenge in the

CQA task, the notion of retriever is introduced to construct support sets to conduct meta-learning. In

meta-learning process, each training question in the dataset is viewed as a “test sample” of a unique

pseudo-task, and the K samples which are most relevant to this test sample—that are selected from

the training corpus by the retriever with the help of a relevance function—are treated as “training

samples”, aka support set, for this specific pseudo-task [17, 191]. The objective of meta-learning is

then to deliver a model that could minimize the loss incurred on the test sample of a pseudo-task by

training with the corresponding support set. Therefore, the retriever’s design, which is used to form

the support sets, is crucial for a meta-learning framework.

80

Recently, numerous prior works have designed non-learned retrievers to handle support set collec-

tion problems in semantic parsing tasks. Huang et al. [17] train a classifier to predict the question’s

type by using the bag-of-words features of the questions. Then they pick the samples belonging to the

same type as the training samples while having the same length. Unlike this work, Guo et al. [18] learn

a retriever independent of manual-defined relevance function. Guo et al. first employ a Brute-Force

search algorithm to pair the given training questions with corresponding pseudo-gold annotations,

and then utilize the question-annotation pairs to train an encoder-decoder model, where a question is

encoded into a latent vector that could produce the relevant annotation by the decoder. Then they

could retrieve the samples within a short distance from the test sample in the latent vector space.

Both approaches rely on annotated labels for learning a retriever, making them inapplicable to the

settings where the annotations are inaccessible. In contrast, as depicted in Chapter 4, we formulate the

retriever under an unsupervised learning setup avoiding the necessity of annotations. We propose an

unsupervised relevance function for computing the similarity between the candidate training samples

and the test sample. We measure the similarity in two aspects: (i) structural similarity by comparing

the number of KB artifacts and (ii) lexical similarity using neural word embedding.

Though these above approaches can have the desirable effect of retrieving relevant samples, the

retrievers are non-learned, i.e., fixed when conduct meta-learning. The retrievers would not update in

training the meta-learner, being trained independently of the meta-learner. Therefore, it is hard to

investigate the effect of support set construction for the problem of meta-learning and thus difficult

to measure the retriever’s performance. Instead, we design a novel meta-learning framework that the

retriever could be trained along with the meta-learner. The result of the meta-learner answering the

test sample could be used as a weak supervision signal for training the retriever.

This chapter investigates the role that support-set construction plays in meta-learning and provides

some insights into retriever training. We empirically demonstrate the performance improvement of the

high-quality support sets constructed with our learned retriever. Particularly, we design a retriever

that can be trained:

1. jointly with the meta-learner and

2. using weak supervisions instead of annotations.

Therefore, we extend the Meta-RL framework described in Chapter 4 by proposing a novel re-

triever. We name it as MetA Retrieval Learning (MARL). This research work has been published

81

in the Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific

Rim International Conference on Artificial Intelligence, IJCAI-PRICAI-20. The complete version of

the manuscript is attached in the subsequent pages.

Hua, Y., Li, Y., Haffari, G., Qi, G. and Wu, W. Retrieve, Program, Repeat: Complex Knowledge

Base Question Answering via Alternate Meta-learning. In Twenty-Ninth International Joint Con-

ference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial

Intelligence, IJCAI-PRICAI-20, Yokohama, Japan, January 7-15, 2021, Proceedings, pages 3679-3686.

82

Retrieve, Program, Repeat: Complex Knowledge Base Question Answering via
Alternate Meta-learning

Yuncheng Hua1,3 , Yuan-Fang Li2 , Gholamreza Haffari2 , Guilin Qi1,4∗ and Wei Wu1

1School of Computer Science and Engineering, Southeast University, Nanjing, China
2Faculty of Information Technology, Monash University, Melbourne, Australia

3Southeast University-Monash University Joint Research Institute, Suzhou, China
4Key Laboratory of Computer Network and Information Integration, Southeast University, China

{devinhua, gqi, wuwei}@seu.edu.cn, {yuanfang.li, gholamreza.haffari}@monash.edu

Abstract
A compelling approach to complex question an-
swering is to convert the question to a sequence of
actions, which can then be executed on the knowl-
edge base to yield the answer, aka the programmer-
interpreter approach. Use similar training ques-
tions to the test question, meta-learning enables the
programmer to adapt to unseen questions to tackle
potential distributional biases quickly. However,
this comes at the cost of manually labeling simi-
lar questions to learn a retrieval model, which is
tedious and expensive. In this paper, we present a
novel method that automatically learns a retrieval
model alternately with the programmer from weak
supervision, i.e., the system’s performance with re-
spect to the produced answers. To the best of our
knowledge, this is the first attempt to train the re-
trieval model with the programmer jointly. Our
system leads to state-of-the-art performance on a
large-scale task for complex question answering
over knowledge bases. We have released our code
at https://github.com/DevinJake/MARL.

1 Introduction
Complex question answering (CQA) over knowledge base
(KB) aims to map natural-language questions to logical forms
(annotations), i.e., programs or action sequences, which can
be directly executed on the KB to yield answers (denota-
tions) [Berant et al., 2013; Shen et al., 2019]. Different from
other forms of KBQA, such as multi-hop question answer-
ing, CQA requires discrete aggregation actions, such as set
intersection/union, counting, and min/max, to yield answers,
which can be entities in the KB as well as numbers.

Taking one dataset CQA [Saha et al., 2018] as an exam-
ple, the questions are organized into seven categories, and
the questions in the different categories vary substantially in
length and complexity. For instance, as shown in Figure 1,
the question in the ‘Simple’ category only requires one ‘se-
lect’ action to answer, while the question in the ‘Quantitative
Count’ category requires the execution of the sequence of ac-
tions ‘select’, ‘intersection’ and ‘count’ to obtain the answer.

∗Contact Author

Figure 1: Two questions of different types in the CQA dataset.

Standard KBQA approaches [Berant et al., 2013; Yih et al.,
2014; Bordes et al., 2015; Yu et al., 2017; Guo et al., 2018;
Saha et al., 2018; Ansari et al., 2019] adopt imitation learn-
ing, memory network, or RL, and they typically train one
model that fits the entire training dataset and use it to answer
all questions. Such a one-size-fits-all model aims to learn the
generic knowledge across the questions in the training phase
and use the knowledge to predict action sequences for each
test question in the inference phase. However, when the train-
ing questions vary widely, less common knowledge will be
shared across them. Thus the increase in the diversity of the
questions is associated with a reduction in the generic knowl-
edge. It would be challenging for the one-size-fits-all model
to produce optimal logical forms for each instance.

Several methods have recently been proposed to address
this challenge. Complex Imperative Program Induction from
Terminal Rewards (CIPITR) [Saha et al., 2019] takes a neu-
ral program induction (NPI) approach and proposes to train
different independent models, one for each category of CQA
questions. Essentially, CIPITR aims to learn a one-size-fits-
all model for each question type instead of granting the model

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3679

83

the ability to transfer from one question type to another.
S2A [Guo et al., 2019] attempts to address this challenge

with a method based on a meta-learning method [Schmid-
huber, 1992], employing Model Agnostic Meta-Learning
(MAML) [Finn et al., 2017] specifically. S2A puts forward
a retriever and a meta-learner. It first collects annotations for
each question in the training set and trains a retriever to find
questions with similar annotations. Subsequently, in train-
ing the meta-learner, when faced with a new question, the
already-trained retriever finds samples from the training set
that are similar to the new question and regards these samples
as a support set. The meta-learner views the new question
along with the support set as a new task and then learns a
specific model adaptive to the task.

However, S2A is faced with two difficulties. Firstly, as it
employs a teacher forcing approach in the process of train-
ing the retriever, it places a burden on collecting annotations
for each question. Secondly, the retriever is trained inde-
pendently of the meta-learner. Thus, the result of the meta-
learner answering the questions is irrelevant to the retriever.
Therefore it is hard to evaluate the quality of the support set
that the retriever establishes for each new question and con-
sequently tricky to measure the impact of the retriever on an-
swering the questions. If the samples found by the retriever
are not similar to the new question as expected, the meta-
learner will be misguided by the deviated examples and thus
learns a model that is not suitable for the current task.

Furthermore, though the approach taken by S2A is the
most similar to ours, the tasks differ significantly. S2A aims
to answer context-dependent questions, where each question
is part of a multiple-round conversation. Hence, the context-
aware retriever proposed in S2A considers the relevant con-
versation. On the contrary, however, in this paper, we con-
sider the setup where the questions are single-round and di-
rectly answerable from the KB. Thus, a novel challenge arises
in retrieving accurate support sets without conversation-based
context information.

In this work, to address the above problems, we propose
MetA Retrieval Learning (MARL), a new learning algorithm
that jointly optimizes retriever and programmer in two stages.

In the first stage, we fix the parameter of the retriever and
employ it to select the top-N similar questions (secondary
questions) to a given target question (primary question). The
trial trajectories, along with the corresponding rewards for
answering each secondary question, are used to adapt the pro-
grammer to the current primary question. The feedback on
how correctly the adaptive programmer answers the primary
question is used to update the weights of the programmer.

In the second stage, we fix the parameter of the program-
mer and optimize the retriever. The general programmer first
outputs an answer and gain a reward to the primary question
without using any secondary questions. Then we sample M
different sets of secondary questions following the retriever
policy and employ the question sets to learn M different pro-
grammers. Each specific programmer will generate an an-
swer to the primary question and gain some reward. We con-
sider the difference between the reward yielded by the general
programmer and the reward gained by each adapted program-
mer as the contribution of employing the corresponding sup-

port set. Thus, the reward difference provides the training sig-
nal to optimize the policy of the retriever: positive difference
increases the probability that a set of secondary questions is
chosen, and a negative difference lowers the probability.

We train the programmer and the retriever alternatively un-
til the models converge. Note that in our method, the training
of the retriever is done in a weakly-supervised manner. The
retriever is optimized to find better support sets according to
the programmer’s performance of answering primary ques-
tions, rather than employing teacher forcing. Since one sup-
port set generates one adaptive programmer, we employ the
feedback obtained by evaluating the adaptive programmer as
a weak supervision signal to optimize the retriever. Therefore
we encourage the retriever to find the support set that leads to
a superior programmer that gains more reward. At the same
time, the programmer is optimized alongside the retriever.

We evaluate our method on CQA [Saha et al., 2018], a
large-scale complex question answering dataset. MARL out-
performs standard imitation learning or RL-based methods
and achieves new state-of-the-art results with overall micro
and macro F1 score. Notably, MARL uses only 1% of the
training data to form the tasks for meta-learning and achieve
competitive results.

2 Alternate Meta-learning for Complex
Question Answering over Knowledge Bases

We now introduce our method for combining weakly-
supervised retriever and meta-learning to solve the CQA
task, which we call MARL.

In this paper, we consider each new complex question in
the training dataset as one primary question and view answer-
ing one primary question as an individual task. To solve an
unseen task effectively, we aim to build a unique programmer
for each task. Thus we harness the retriever to find the top-N
most similar questions as the secondary questions, and pro-
pose a meta reinforcement learning approach to rapidly adapt
the programmer to the primary question with the support of
the secondary questions.

2.1 Method Overview
The goal of MARL is to train the retriever to find the optimal
secondary questions for the programmer, which, when faced
with a new primary question, can quickly adapt the program-
mer to the unseen question and effectively improve QA per-
formance. To accomplish this goal, we train two networks
jointly: (1) an encoder-decoder network, which is viewed
as the programmer, that transforms questions into programs;
and (2) a retriever network, which finds the secondary ques-
tions, i.e., the N questions that are the most analogous to the
primary question.

We denote the encoder-decoder network as a policy
π(τ |qi;θ) with parameter θ, and the retriever network as a
policy π(qci

|qpri;φ) with parameter φ. Both networks take
questions as the input, while the output of the programmer
network is the programs that can be directly executed on
the KB to generate answers, and the production of the re-
triever network is the probability distribution over all candi-
date training samples. For the retriever network, the N sam-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3680

84

Figure 2: (a). Illustration of the two stages in the training process of
MARL. (b) Illustration of the filter softmax.

ples that have the highest probabilities are selected as sec-
ondary questions for a given primary question. Both the pa-
rameters θ and φ are optimized by the rewards, which are the
comparison between the generated answers and the ground-
truth answers.

In the training process, when the primary question and the
corresponding secondary questions are similar (i.e., with ana-
logical structures and semantic meanings), the programmer
will be guided more effectively in finding the optimal direc-
tion of parameter update. On the contrary, if the secondary
questions are randomly extracted from the training set, they
might share a little commonality with the primary question
and consequently yield disparate action sequences. Since
only a small amount of samples are used to finetune the adap-
tive model, such dissimilar instances will lead the program-
mer on a noisier (more random) path for gradient update.

In the retriever network, we thus cluster the training sam-
ples into several groups based on the question type and use a
vector ψ to record group membership of each question. For
each primary question, based on ψ, a unique filter F will
be generated to determine the possible questions as candi-
date secondary questions by filtering out irrelevant questions.
Given the primary question qpri, the retriever network com-
putes the probability of choosing a candidate question qci

as
a secondary question by applying a filter softmax function,
which could be denoted as

π(qci
|qpri;ψ,φ) (1)

Following the probability, we sample a set of secondary
questions and denote them as sqpri , which is used to support
adapting the programmer for the primary question qpri.

2.2 Model Objectives
We consider two types of knowledge that can contribute to the
answering of a new question: the task-specific knowledge,
which is the particular features shared with a small number
of similar questions that inform what the current task is; and
the task-agnostic knowledge, which is the generic features

shared across different tasks. If similar questions are accu-
rately selected, the model could effectively exploit the partic-
ular features among these questions and acquire task-specific
knowledge to recognize the new task. If the generic features
are suitable for many tasks, the model could rapidly adapt it-
self to a new task and produce satisfactory results for the task
by conducting only a small number of gradient updates. We
employ a retriever to find similar questions for acquiring the
task-specific knowledge and train a generic policy to accumu-
late task-agnostic knowledge.

In our method, the performance of answering a new ques-
tion is represented by the reward feedback on whether the
question is correctly answered. It is hard to disentangle the
contribution of the two types of knowledge. In other words,
it is difficult to determine which factor is the reason for gen-
erating a correct answer, the task-specific knowledge gained
from similar questions, or the task-agnostic knowledge ac-
quired from the well-learned generic policy.

As shown in Figure 2(a), we split the training process in
each epoch into two independent stages and train the pro-
grammer and the retriever alternately. In the first stage, we
fix the parameter φ of the retriever network and employ it to
select secondary questions to optimize the parameter θ of the
programmer. The target of the first stage is to encourage the
model to learn the generic knowledge that is broadly appli-
cable to all tasks by updating θ. In the second stage, we fix
the parameter θ of the programmer and update the retriever
network by computing its gradients with respect to the pro-
grammer’s output. We compare the results of answering the
same primary question with or without using the retriever and
consider the difference between the results as the indication
of how the retriever contributes to solving the primary ques-
tion. Such differences are used to train the retriever to find
the optimal set of secondary questions (the support set). Both
networks are trained iteratively until convergence.

The training approach is depicted in Algorithm 1.
In the first stage (lines 4–12 in Algorithm 1) of each epoch,

we propose a meta reinforcement learning (meta-RL) ap-
proach to update θ, i.e. the programmer. We use the gradient-
based meta-learning method to solve the meta-RL problem
such that we can obtain the optimal policy for a given task
after performing a few steps of vanilla policy gradient (VPG)
with the task. We employ Monte Carlo integration (MC) as
the approximation strategy in the Policy Gradient.

The meta-learning process is divided into two steps to solve
a task, namely the meta-training step and the meta-test step.
Suppose we are trying to answer the primary question qpri,
N secondary questions sqpri will be first found by the re-
triever network, and we consider qpri together with sqpri as a
pseudo-task Tpse. During meta-training, the meta-RL model
first generates K trajectories for each question in sqpri based
on parameter θ. The reward of each trajectory is given by the
environment and subsequently used to adapt θ′ to task Tpse
as follows:

θ′ ← θ + η1∇θ
∑

qi∈sqpri

Eτ∼π(τ |qi;θ)[R(τ)] (2)

In the meta-test step, another K trajectories corresponding
to the primary question qpri are further produced by θ′. The

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3681

85

reward produced by the new trajectories is considered as the
evaluation of the adapted policy θ′ for the given task Tpse;
thus, we have the following objective:

Jqpri
(θ′)

def
= Eτ ′∼π(τ ′|qpri;θ′)[R(τ ′)] (3)

The parameter of the generic policy θ are then trained by
maximizing the objective J(θ′),

θ ← θ + η2∇θJqpri
(θ′) (4)

In each VPG step, since we have N samples in sqpri , we
use N policy gradient adaptation steps to update θ′. Mean-
while, we use one policy gradient step to optimize θ based on
the evaluation of θ′. We denote the optimized parameter of
the programmer θ∗.

In the second stage (lines 13–25 in Algorithm 1) of each
epoch, we propose a reinforcement learning approach to up-
date φ, i.e. the retriever. The primary questions that we want
to solve are the same as the data used in the first stage. When
answering the primary question qpri, we first generate a tra-
jectory based on parameter θ∗ that has been optimized in the
first stage as:

τ ∗ ← decode(π(τ |qpri;θ∗)) (5)

and further, obtain the reward R(τ ∗) by executing the trajec-
tory.

We then employ the retriever to compute the probability
of selecting one candidate question as a secondary question.
From this distribution, we sample N secondary questions to
form a support set, rather than directly choosing the N ques-
tions with the highest probability. The probability of sam-
pling a set of questions sqpri is:

P (sqpri) =
∏

qci
∈sqpri

π(qci
|qpri,ψ;φ) (6)

We could repeat sampling several times and acquire dif-
ferent support sets. Employ one set sqpri

m from these sup-
port sets, as what we have done in the first stage, we get the
adapted θ∗

′
m:

θ∗
′
m ← θ∗ + η1∇θ∗

∑

qi∈s
qpri
m

Eτ∼π(τ |qi;θ∗)[R(τ)] (7)

Then we generate a new trajectory under θ∗
′
m for the pri-

mary question:

τ ∗
′

m ← decode(π(τ |qpri;θ∗
′
m)) (8)

and also compute the reward for this trajectory as R(τ ∗
′

m).
We regard the difference betweenR(τ ∗) andR(τ ∗

′
m) as the

contribution of the support set sqpri
m , which is used to learn

the task-specific knowledge from the questions in sqpri
m .

The retriever network is then updated by encouraging the
particular support sets to be chosen such that, if the policy
θ is adapted to the current task by using these support sets,
the reward of answering the primary question would be max-
imized. Therefore, we harness the difference as the reward
and have the objective:

Jqpri
(φ)

def
= E

s
qpri
m ∼P (sqpri)

[R(τ ∗
′

m)−R(τ ∗)] (9)

Algorithm 1: The MARL algorithm
Input: Training dataset Qtrain, step size η1, η2, η3
Output: The learned θ∗ and φ∗

1 Initialize groups vector ψ
2 Randomly initialize θ and φ
3 while not converged do
4 foreach training iteration do
5 Sample a batch of primary questions

Qpri ∼ Qtrain
6 foreach qpri ∈ Qpri do
7 Retrieve sqpri with φ and ψ
8 L =

∑
qi∈sqpri Eτ∼π(τ |qi;θ)[R(τ)]

9 Get adapted parameters: θ′ ← θ + η1∇θL
10 Jqpri

(θ′)
def
= Eτ ′∼π(τ ′|qpri;θ′)[R(τ ′)]

11 Update θ ← θ + η2∇θ
∑
qpri∈Qpri

Jqpri
(θ′)

12 θ∗ ← θ
13 foreach training iteration do
14 Sample a batch of primary questions

Qpri ∼ Qtrain
15 foreach qpri ∈ Qpri do
16 τ ∗ ← decode(π(τ |qpri;θ∗))
17 Compute reward R(τ ∗)
18 Sample support setsM with φ and ψ
19 foreach sqpri

m ∈M do
20 θ∗

′
m ← θ∗ +
η1∇θ∗

∑
qi∈s

qpri
m

Eτ∼π(τ |qi;θ∗)R(τ)

21 τ ∗
′

m ← decode(π(τ |qpri;θ∗
′
m))

22 Compute reward R(τ ∗
′

m)

23 Jqpri
(φ)

def
=

E
s

qpri
m ∼P (sqpri)

[R(τ ∗
′

m)−R(τ ∗)]

24 Update φ← φ+ η3∇φ
∑
qpri∈Qpri

Jqpri(φ)

25 φ∗ ← φ

26 Return The learned θ∗ and φ∗

The parameter of the retriever network φ are then updated
by maximizing the objective J(φ) as:

φ← φ+ η3∇φJ(φ) (10)

However, it is often infeasible to compute the gradient in
Equation (9) because it involves taking an expectation over
all possible sampled support sets. Hence, in practice, we em-
ploy Monte Carlo integration to approximate the expectation,
which is:

∆MC =
1

M

∑

s
qpri
m ∈M

[R(τ ∗
′

m)−R(τ ∗)− C]∇log(P (sqpri
m))

(11)
where M is a collection of M sets of secondary questions
retrieved to support the primary question qpri, and C is a
baseline with a constant value to reduce the variance of the
estimate without altering its expectation.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3682

86

2.3 Filter Softmax
As mentioned before, we categorize the instances in the train-
ing set based on the question type and employ a vector ψ to
record the type information of the questions. For each ques-
tion type, based on ψ, a filter F will be created to make
the retriever only consider questions of the same type when
searching for secondary questions for a primary question of
that type. The filter value is set to zero for all instances that
do not have the same type of a given question [Liu et al.,
2019]. For example, as shown in Figure 2(b), assume we have
a dataset with two question types y = [A,B], and we arrange
the dataset to group the same type questions together. Thus
we have a ψ = [2, 3] to indicate that two questions belong
to type A and three questions from type B. In this case, the
filter is set as F = [1, 1, 0, 0, 0] for the primary question of
type A and F = [0, 0, 1, 1, 1] for type B. Applying the filter
to the softmax function would mask the irrelevant questions,
which have types different from the primary question. This
allows the retriever to reduce the search space and increase
the probability of finding expected questions. The filter soft-
max function produces the following probability:

p(qci
|qpri) =

esim(qpri,qci
) � Fi∑

i′(e
sim(qpri,qc′

i
) � Fi′)

, (12)

where p(qci
) represents the probability that the candidate

question qci
is selected as one of the secondary questions for

the primary question qpri, and sim(qpri, qci
) is the semantic

similarity between them. Besides, Fi is the binary value in
the filter F that recognizes whether question qci

has the same
type as qpri or not, and� represents element-wise multiplica-
tion. In our work, Deep Structured Semantic Model (DSSM)
method [Huang et al., 2013] is employed to compute the sim-
ilarity between two questions.

3 Evaluation
We evaluated our MARL model on the CQA dataset [Saha et
al., 2018]. CQA is a large-scale complex question answering
dataset containing 944K/100K/156K question-answer pairs
for training/validation/test. CQA divides itself into seven cat-
egories based on the nature of answers, e.g., entities as an-
swers in the ‘Simple Question’ category and numbers in the
category ‘Quantitative (Count)’. We used ‘accuracy’ as the
evaluation metric for questions whose type is ‘Verification’,
‘Quantitative (Count)’, and ‘Comparative (Count)’; and ‘F1
measure’ to other kinds of questions. However, to simplify
the presentation and stay consistent with literature [Saha et
al., 2019; Ansari et al., 2019], we denote ‘accuracy’ as ‘F1
measure’ in Table 1. Hence, the model performance is evalu-
ated on the F1 measure in this paper. Furthermore, we com-
pute the micro F1 and macro F1 scores for all the models
based on the F1-scores of the seven question types.

Also, in our analysis of the CQA dataset, we found that the
seven types of questions vary substantially in complexity. We
discovered that ‘Simple’ is the simplest that only requires two
actions to answer a question, whereas ‘Logical Reasoning’ is
more difficult that requires three actions. Categories ‘Verifi-
cation’ and ‘Quantitative Reasoning’ are the next in the order

of difficulty, which need 3–4 actions to answer. The most dif-
ficult categories are ‘Comparative Reasoning’, ‘Quantitative
(Count)’, and ‘Comparative (Count)’, needing 4–5 actions to
yield an answer. Saha et al. [2019] drew a similar conclusion
in the manual inspection of these seven question categories.

3.1 Implementation Details
In the CQA dataset, we randomly sampled approximately
1% of the training set (10,353 out of 944K training samples)
and annotated them with pseudo-gold action sequences with
a breadth-first-search (BFS) algorithm [Guo et al., 2018]. We
denote this dataset asQpre. We trained a BiLSTM-based pro-
grammer withQpre, and further optimized it through RL with
another 1% unannotated questions from the training set. We
note this RL-based model is a one-size-fits-all model and de-
note it as Vanilla. We randomly selected another 2,072 sam-
ples from the 944K training questions to establish pseudo-
tasks for meta-learning, which represented only approx. 0.2%
of the training set. This model that jointly learns the program-
mer along with the retriever by employing MAML is our full
model and is denoted MARL.

We implemented the MARL model in PyTorch with all the
weights initialized randomly. We randomly initialized the
word embeddings to represent the tokens in questions and
output action sequences. We updated the word embeddings
within the process of training the Vanilla model and fixed
them when training our MARL model. Therefore the primary
and the candidate questions in the training dataset were rep-
resented as the sum of the vector for each token. The DSSM
model took such representation of the questions as the input
to compute the semantic similarity between the questions.

In the programmer learning stage, we employed Rep-
tile [Nichol and Schulman, 2018] for fast and simple imple-
mentation of MAML while avoiding the significant expense
of computing second-order derivatives. We set η1 = 1e-4
when adapting the model to each new task, and set η2 = 0.1
to optimize θ with the gradient update derived from the meta-
test data. The reward that the adaptive programmer gained
was used to update the retriever parameter φ through the Ad-
aBound optimizer [Luo et al., 2019] in which the learning
rate η3 was initially set to 1e-3 and the final (SGD) learning
rate was set to 0.1.

When finding the top-N support set, we set N = 5. For
each question, we generated five action sequences to output
the answers and rewards. Adam optimizer was applied in RL
to maximize the expected reward.

In the retriever learning stage, we employed the REIN-
FORCE model to optimize the non-differentiable objective
directly. The baseline C used in REINFORCE was set with
a constant value of 1e-3 to reduce the variance. We sampled
M = 5 different sets of the secondary questions and got one
unique adaptive programmer for each set with the same meta-
learning configuration in the programmer learning stage.

As solving the entity linking problem is beyond the scope
of this work, we separately trained an entity/class/relation
linker, achieving an accuracy of 99.97%, 91.93%, and
94.29%, respectively. When training the MARL model, the
predicted entity/class/relation annotations, along with natu-
ral language questions, were used as the input sequence.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3683

87

Question category KVmem CIPITR-All CIPITR-Sep Vanilla Random Jaccard MARL
Simple Question (462K) 41.40% 41.62% 94.89% 84.67% 85.22% 86.07% 88.06%
Logical Reasoning (93K) 37.56% 21.31% 85.33% 76.58% 78.87% 78.89% 79.43%
Quantitative Reasoning (99K) 0.89% 5.65% 33.27% 47.20% 48.11% 48.21% 49.93%
Verification (Boolean) (43K) 27.28% 30.86% 61.39% 81.94% 85.04% 85.24% 85.83%
Comparative Reasoning (41K) 1.63% 1.67% 9.60% 58.05% 61.96% 63.07% 64.10%
Quantitative (Count) (122K) 17.80% 37.23% 48.40% 60.36% 60.04% 60.47% 60.89%
Comparative (Count) (42K) 9.60% 0.36% 0.99% 39.25% 38.50% 39.50% 40.50%
Overall macro F1 19.45% 19.82% 47.70% 64.01% 65.39% 65.92% 66.96%
Overall micro F1 31.18% 31.52% 73.31% 74.72% 75.69% 76.31% 77.71%

Table 1: Performance comparison (measured in F1) on the CQA test set. For each category, best result is bolded and second-best result is
underlined. The number of instances in each category in the training set is also given next to the category name.

Feature Overall micro F1
Vanilla 74.72%

MARL (random retriever) +0.97%
MARL (Jaccard retriever) +1.59%
MARL (full model) +2.99%

Table 2: Ablation study on the test set on macro F1 score change
with the addition of meta-learning and different retrievers. Full
model (MARL) has micro F1 of 77.71% as shown in Table 1.

We trained the MARL model with the batch size of 1 and
stopped training when the accuracy on the validation set con-
verged (at around 30 epochs). We release the source code at
https://github.com/DevinJake/MARL to facilitate replication.

3.2 Performance Evaluation
We compared our model with two baseline methods on the
CQA task: KVmem [Saha et al., 2018] and CIPITR [Saha
et al., 2019]. Saha et al. [2018] propose KVmem, a baseline
CQA model that combines Hierarchical Recurrent Encoder-
Decoder (HRED) with a Key-Value memory (KVmem) net-
work. The KVmem model retrieves the most related memory
to predict the answer from candidate words by attending on
the encoded vectors stored in the memory.

CIPITR [Saha et al., 2019] takes a further step that em-
ploys the NPI approach to solving the CQA task without an-
notations. CIPITR designs high-level constraints to guide the
programmer to produce semantically plausible programs for
a question. It is worth noting that CIPITR separately trains
a separate model for each of the seven question categories,
and selects the corresponding model to answer questions of
the relevant type. We denote the model learned in this way
as CIPITR-Sep. Besides, CIPITR also trains one single
model over all types of training examples and uses this single
model to answer all questions. We denote this single model
as CIPITR-All.

Also, we compared our full model, MARL, with several
model variants to understand the effect of our retriever and
meta-learner. Specifically, Vanilla is a BiLSTM-based model
further optimized with reinforcement learning. Both Random
and Jaccard are MAML-based models with different retriev-

ers. Random denotes the model with a retriever that ran-
domly selects questions within the same category. Jaccard
means the model with a non-learning retriever that makes use
of Jaccard similarity on question words.

We ran the open-source code of KVmem and CIPITR to
train the model and presented the best result we got. KVmem
does not have any beam search, and both CIPITR and our
model employ beam search for predicting the action se-
quences. When inferring the testing samples, we used the
top beam [Saha et al., 2019], i.e., the predicted program with
the highest probability in the beam to yield the answer.

Table 1 below summarizes the results. We can make a num-
ber of important observations.

1. Our full model MARL achieves the best overall per-
formance of 66.96% and 77.71% for macro and micro
F1, respectively, outperforming all the baseline models
KVmem, CIPITR-All, and CIPITR-Sep. The perfor-
mance advantage on macro F1 over the three baselines is
especially pronounced (47.51, 47.14, and 19.26 percent-
age points over KVmem, CIPITR-All, and CIPITR-Sep
respectively). This is mainly due to the severe imbal-
ance of the CQA dataset. As Table 1 shows, almost 49%
(462K/944K) of the CQA training set belongs to the
Simple Question category, while four other categories
only account for 10% or less each. Given such a large
distributional bias, KVmem and CIPITR are unable to
learn task-specific knowledge adequately.

2. MARL achieves the best or second-best performance in
all the seven categories. Of the three hardest categories
(middle part of Table 1), MARL delivers the best per-
formance in all three types. This validates the effective-
ness of our meta-learning-based approach in effectively
learning task-specific knowledge. Note that the two cat-
egories that MARL performs the best, Comparative Rea-
soning and Comparative (Count), both account for less
than 5% of the training set, which further demonstrates
MARL’s excellent adaptability.

3. CIPITR-Sep achieves the best performance in two easy
categories, including the largest type, Simple Question.
For the three hard categories, it performs poorly com-
pared to other models. This further demonstrates the
limitation of coarse-grained adaptation.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3684

88

4. CIPITR-All, the model that trains over all types of the
questions, performs much worse in all the categories
than CIPITR-Sep, which learns a different model sep-
arately for each question category. For CIPITR-Sep, the
results reported for each category are obtained from the
models explicitly tuned for that category. A possible rea-
son for CIPITR-All’s significant performance degrada-
tion is that it is hard for such a one-size-fits-all model
to find the weights that fit the training data when the ex-
amples vary widely. Besides, the imbalanced classes of
questions also deteriorate the performance of the model.
Different from CIPITR, our model is designed to adapt
appropriately to various categories of questions with one
model, thus only needs to be trained once.

5. In general, our MAML-based model variants, Ran-
dom, Jaccard, and MARL, outperform their non-MAML
counterpart, Vanilla, which demonstrates the advantage
of our method in learning task-specific knowledge.

We also conducted an ablation study to examine the effec-
tiveness of the retriever. Table 2 presents the result of the ab-
lation study. As can be seen, the random retriever slightly im-
proves performance over the base model Vanilla by 0.97 per-
centage points, and the fixed retriever Jaccard improves upon
Vanilla by 1.59 percentage points. Our full model achieves a
2.99 percentage point improvement over Vanilla. We can ob-
serve that the full model improves the overall micro F1 score
by 1.40 percentage points compared with the fixed retriever
Jaccard. The performance disparity between the full model
and the Jaccard retriever can be attributed to our joint train-
ing strategy, in which our full model alternately optimizes the
programmer and the retriever. On the contrary, less optimally,
the Jaccard retriever is separately trained before training the
programmer. These results demonstrate the effectiveness of
our meta-learning approach as well as the power of our model
that jointly optimizes the retriever with the programmer.

4 Related Work
CQA. A behavior cloning based method, Dialog-to-Action
(D2A) [Guo et al., 2018], is proposed to answer complex
questions by learning from the annotated programs. D2A em-
ploys a BFS algorithm to annotate the questions with the cor-
responding action sequences, and use the annotations to train
the programmer. On the other hand, the NPI based meth-
ods, i.e., Neural-Symbolic Machines (NSM) [Liang et al.,
2017], CIPITR [Saha et al., 2019], and Stable Sparse Reward
based Programmer (SSRP)[Ansari et al., 2019], employ the
yielded answers as the distant-supervision to learn a program-
mer. NSM is proposed to answer the multi-hop questions. It
first annotates the questions with the pseudo-gold programs
and then assigns the annotated programs with a deterministic
probability, therefore, to anchor the model to the high-reward
programs. CIPITR and SSRP both aim to alleviate the sparse
reward problem that appears in conventional NPI approaches
and employ high-level constraints to guide the programmer
to produce semantically plausible programs. Except for CIP-
ITR, the NPI approaches learn a one-size-fits-all model for
the entire dataset. However, CIPITR learns a one-size-fits-
all model for each question type instead of empowering the

model to learn to transfer from one question type to another.
Different from learning a one-size-fits-all model, we aim to
learn a model that quickly discovers the knowledge specific
to a new task, and employ the acquired knowledge to adapt
the programmer to the new task.

Meta-Learning. The Meta-learning approaches utilize the
inductive biases, which are meta-learned in learning similar
tasks to make the model learn the new task quickly. To make
the model sensitive to the new task, one popular direction of
meta-learning is to train a meta-learner to learn how to update
the parameters of the underlying model [Li and Malik, 2017;
Ha et al., 2017], which has been investigated in MAML [Finn
et al., 2017]. In semantic parsing tasks, Huang et al [2018]
propose a relevance function to find similar samples to form a
pseudo-task for each WikiSQL question. Subsequently, they
reduce a supervised learning problem into a meta-learning
problem and employ MAML to adapt the programmer to each
pseudo-task. Likewise, S2A [Guo et al., 2019] separately
trains the retriever and the programmer by using the pseudo-
gold annotations. Based on the similar samples found by the
retriever, S2A establishes a meta-learning task for each ques-
tion and thus employs MAML to finetune the programmer.
Unlike them, we propose a MAML-based approach that trains
the retriever and the programmer jointly. It is worth noting
that S2A aims to answer conversational questions while we
consider answering single-turn questions. Therefore we do
not include S2A as a baseline method in the evaluation as it
is not directly comparable to our problem setup.

5 Conclusion
In this paper, we presented a novel method for complex ques-
tion answering over knowledge bases. In a meta-learning
framework, our model jointly and alternately optimized a re-
triever, which learned to select questions, and a programmer,
which learned to adapt to the selected secondary questions to
produce an answer to a given primary question. Our model
was capable of quickly adapting to new questions as it could
learn from similar questions. Moreover, it did so from weak
supervision signals, the model’s performance on question an-
swering. Thus, our model addressed several essential chal-
lenges facing existing methods, namely the significant distri-
butional biases present in the dataset and the high cost asso-
ciated with manual labeling of similar questions. Our evalu-
ation against a number of state-of-the-art models showed the
superiority of our model on the large-scale complex question
answering dataset CQA. In the future, we plan to extend our
model to other domains and tasks that require the manual con-
struction of support sets.

Acknowledgments
Research presented in this paper was partially supported by
the National Key Research and Development Program of
China under grants (2017YFB1002801, 2018YFC0830200),
the Natural Science Foundation of China grants (U1736204,
61602259), Australian Research Council (DP190100006),
the Judicial Big Data Research Centre, School of Law at
Southeast University, and the project no. 31511120201 and
31510040201.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3685

89

References
[Ansari et al., 2019] Ghulam Ahmed Ansari, Amrita Saha,

Vishwajeet Kumar, Mohan Bhambhani, Karthik Sankara-
narayanan, and Soumen Chakrabarti. Neural program in-
duction for kbqa without gold programs or query annota-
tions. In Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence, pages 4890–4896. AAAI
Press, 2019.

[Berant et al., 2013] Jonathan Berant, Andrew Chou, Roy
Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language
Processing, pages 1533–1544, 2013.

[Bordes et al., 2015] Antoine Bordes, Nicolas Usunier,
Sumit Chopra, and Jason Weston. Large-scale simple
question answering with memory networks. arXiv
preprint arXiv:1506.02075, 2015.

[Finn et al., 2017] Chelsea Finn, Pieter Abbeel, and Sergey
Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1126–
1135. JMLR. org, 2017.

[Guo et al., 2018] Daya Guo, Duyu Tang, Nan Duan, Ming
Zhou, and Jian Yin. Dialog-to-action: conversational ques-
tion answering over a large-scale knowledge base. In Ad-
vances in Neural Information Processing Systems, pages
2942–2951, 2018.

[Guo et al., 2019] Daya Guo, Duyu Tang, Nan Duan, Ming
Zhou, and Jian Yin. Coupling retrieval and meta-
learning for context-dependent semantic parsing. In Anna
Korhonen, David R. Traum, and Lluı́s Màrquez, edi-
tors, Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Papers,
pages 855–866. Association for Computational Linguis-
tics, 2019.

[Ha et al., 2017] David Ha, Andrew M. Dai, and Quoc V.
Le. Hypernetworks. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. Open-
Review.net, 2017.

[Huang et al., 2013] Po-Sen Huang, Xiaodong He, Jianfeng
Gao, Li Deng, Alex Acero, and Larry Heck. Learning deep
structured semantic models for web search using click-
through data. In Proceedings of the 22nd ACM interna-
tional conference on Information & Knowledge Manage-
ment, pages 2333–2338, 2013.

[Huang et al., 2018] Po-Sen Huang, Chenglong Wang,
Rishabh Singh, Wen-tau Yih, and Xiaodong He. Natural
language to structured query generation via meta-learning.
In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2
(Short Papers), pages 732–738, 2018.

[Li and Malik, 2017] Ke Li and Jitendra Malik. Learning to
optimize neural nets. CoRR, abs/1703.00441, 2017.

[Liang et al., 2017] Chen Liang, Jonathan Berant, Quoc Le,
Kenneth D Forbus, and Ni Lao. Neural symbolic ma-
chines: Learning semantic parsers on freebase with weak
supervision. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), volume 1, pages 23–33, 2017.

[Liu et al., 2019] Shikun Liu, Andrew Davison, and Edward
Johns. Self-supervised generalisation with meta auxiliary
learning. In Advances in Neural Information Processing
Systems, pages 1677–1687, 2019.

[Luo et al., 2019] Liangchen Luo, Yuanhao Xiong, Yan Liu,
and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019.

[Nichol and Schulman, 2018] Alex Nichol and John Schul-
man. Reptile: a scalable metalearning algorithm. arXiv
preprint arXiv:1803.02999, 2:2, 2018.

[Saha et al., 2018] Amrita Saha, Vardaan Pahuja, Mitesh M
Khapra, Karthik Sankaranarayanan, and Sarath Chandar.
Complex sequential question answering: Towards learn-
ing to converse over linked question answer pairs with a
knowledge graph. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[Saha et al., 2019] Amrita Saha, Ghulam Ahmed Ansari,
Abhishek Laddha, Karthik Sankaranarayanan, and
Soumen Chakrabarti. Complex program induction for
querying knowledge bases in the absence of gold pro-
grams. Transactions of the Association for Computational
Linguistics, 7:185–200, 2019.

[Schmidhuber, 1992] Jürgen Schmidhuber. Learning to con-
trol fast-weight memories: An alternative to dynamic re-
current networks. Neural Computation, 4(1):131–139,
1992.

[Shen et al., 2019] Tao Shen, Xiubo Geng, Tao QIN, Daya
Guo, Duyu Tang, Nan Duan, Guodong Long, and Daxin
Jiang. Multi-task learning for conversational question an-
swering over a large-scale knowledge base. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 2442–2451, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics.

[Yih et al., 2014] Wen-tau Yih, Xiaodong He, and Christo-
pher Meek. Semantic parsing for single-relation question
answering. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 2:
Short Papers), volume 2, pages 643–648, 2014.

[Yu et al., 2017] Mo Yu, Wenpeng Yin, Kazi Saidul Hasan,
Cicero dos Santos, Bing Xiang, and Bowen Zhou. Im-
proved neural relation detection for knowledge base ques-
tion answering. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), volume 1, pages 571–581, 2017.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3686

90

Chapter 6

Conclusion and Future Work

6.1 Conclusions

A KB is a collection of atomic facts about the real world in triples (head, relation, tail) and can be

constructed as a big graph. KBs provide an effective data structure for organizing huge amounts of

high-quality knowledge and have become an important information source supporting various real-

world applications, such as chatbots, search engines, decision support systems, etc. Though formal

query languages (such as SPARQL) are considered a standard way to access KB, it is not easy for

practical use since they require specialized knowledge of the KB’s schema and the language’s syn-

tax. To bridge the gap between NLQs and structured KBs, a natural language interface hiding the

complexity of KB structure and formal language’s grammar—KBQA, has attracted significant atten-

tion from academicians and practitioners recently. A KBQA system automatically answers the NLQs

posed by users with a direct result, which is obtained by retrieving one or multiple relevant facts

from the underlying KB. To express the users’ complex information needs, KBQA has evolved from

simple questions (the questions that could be answered by using a single fact) to complex questions

(the questions that require reasoning over a series of facts to yield the right answers). Therefore,

CQA is defined in contrast to simple KBQA, necessitating functional operations on multiple facts

across a KB, such as comparison, aggregation, and sorting. Previously proposed approaches to CQA

formulate it as an information retrieval task, which produces unexplainable answers, or attempt to

employ templates and heuristic rules to express questions’ intention and generate answers, which has

limited coverage. Also, NSP-based methods formalize the input questions into logical forms with the

91

help of neural networks, where the supervised learning methods are faced with a high cost for data

annotations, and the weak supervised learning paradigm needs to solve the sparse reward problem.

Furthermore, the one-size-fits-all neural network models often achieve uneven performance on a wide

variety of questions.

This thesis presented our deep learning-based models, which mitigated the above challenges in

answering complex questions over large-scale KBs. Specifically, this work is built on a Meta-RL

framework and focuses on three sub-problems:

• How to design an NPI-based CQA model that alleviates the sparse reward and data-inefficiency

problems?

• How to construct a meta-learning framework to adaptively generates multiple sets of parameters

for multiple different tasks?

• How to unify the process of training a retriever and a meta learner into a single deep learning

framework when conducting meta-learning?

Our first study, presented in Chapter 3, developed a solution for the first of these problems and

proposed a novel framework, NS-CQA, for training a CQA model only using the final answer as

weak supervision. We designed a set of primitive actions for logical, arithmetic, and aggregation

operations required for answering complex questions and proposed an encoder-decoder network to

translate the input NLQs into action sequences. We employed a reinforcement learning algorithm to

train the network, where the comparison between the execution result of the produced action sequence

and the ground-truth answer was used as the weak supervision signals for parameter optimization.

Therefore, we married two powerful ideas: continuous representations for language understanding and

discrete symbolic program execution for inference. We augmented our RL-based framework with a

memory buffer to record promising trials that lead to correct results, addressing the sparse reward and

data-inefficiency challenges. By employing a curriculum learning method, we leveraged the trials in

the memory buffer to compute the bonus. With the help of the bonus, the model was encouraged to

explore the unseen trials in the early stage of the training, and simulated successful trials in the later

period. Our empirical studies across two diverse CQA datasets demonstrated that NS-CQA could

achieve better performance than other state-of-the-art RL-based CQA approaches.

In Chapter 4, we solved the second problem by extending our RL-based model to a Meta-RL

92

framework, aka MRL-CQA, where a meta-learner was introduced to finetune the CQA model to

adapt to varying tasks. We divided the meta-learning process into two steps, i.e., meta-training and

meta-testing steps. In the meta-training step, we designed an unsupervised relevance function to

construct a support set and finetune the meta-learner, aka the model’s initial parameters, to gener-

atethe task-specific parameters to adapt to the support set. In the meta-testing step, we evaluated

the task-specific parameters on the meta-testing data to compute a meta-gradient, which involves a

gradient through a gradient and are thus used for updating the initial parameters. We performed

the gradient descent optimization algorithm used in our RL-based model to update model parame-

ters in both steps. We thus found a set of initial parameters that are sensitive enough where only a

few gradient steps on a novel task would lead to a set of task-specific parameters. Empirical studies

over a large-scale CQA dataset indicate that our proposed approach is effective as it outperforms

state-of-the-art methods significantly. The case study showed that compared with our one-size-fits-all

model presented in Chapter 3, MRL-CQA could produce more feasible actions and thus alleviate

the ambiguity problems that NS-CQA was faced with.

Finally, in Chapter 5, we upgraded the unsupervised retriever proposed in Chapter 4 to resolve the

last problem, presenting MARL. We split the meta-learning process in each training epoch into two

stages: training the meta-learner and retriever. In the first stage, we froze the retriever’s parameters

and performed meta-optimization over the meta-learner, aka the model’s initial parameters, as we

did in Chapter 4. In the second stage, we fixed the meta-learner and employed an RL approach to

optimize the retriever. The retriever sampled M different support sets for the same novel task and

generate M sets of task-specific parameters based on the fixed initial parameters. Under the RL

paradigm, the retriever was encouraged to produce a high-quality support set, leading to better task-

specific parameters and thus obtaining higher rewards. We trained the meta-learner and the retriever

alternately until convergence. Therefore, we proposed a retriever that did not rely on the hand-crafted

relevance function and could be trained along with the meta-learner. Empirical studies not only

showed that MARL outperformed other state-of-the-art CQA models (especially our meta-learning

based model, MRL-CQA) but also shed light on the role that support sets played in meta-learning.

93

6.2 Future Research Plans

Our deep learning-based CQA models have proven to achieve state-of-the-art performance in several

CQA datasets, showing the current research direction has potential for future high-demand information

needs. Consequently, we outline a new setting for integrating our models and future directions for

addressing new challenges arising from recent developments.

6.2.1 Complex Sequential Question Answering

Our models focus on answering a single-round question, where no context information is considered

in answering the current question. In contrast, the Complex Sequential Question Answering (CSQA)

over KBs is a different problem setup, where each context-aware question to be answered is part of

a multiple-turn conversation. The conversational, natural language question is required to attend

to the conversation context when retrieving relevant facts in a KB. Different from answering single-

round questions, the ellipsis and co-reference phenomena are frequently encountered in the CSQA

task. Therefore, we need to propose a CSQA framework that can: (i) resolve ellipsis or coreference

phenomena in conversations by leveraging contextual information, including historical KB artifacts

that have been identified in previous utterances, previously generated action sequences, and the ob-

tained intermediate results, (ii) parse the input questions into correct programs, and (iii) reason over

the retrieved KB facts to achieve answers. Moreover, in the meta-learning paradigm, a context-aware

retriever is needed to construct support sets, where the context environment has been taken into

consideration. Our future work will extend our proposed models to adapt to the context-dependent

setting and explore the frameworks that are more suited to the CSQA task.

6.2.2 A Retriever with Hierarchical Structure

As depicted in Chapter 5, we employed a filter in the retriever to only consider questions of the

same type as a meta-testing example when searching for support sets. With the help of the filter, we

partitioned the search space into multiple smaller linear subspaces. However, even we have employed

the filtering mechanism, we practically searched the support sets with a linear search that sequentially

checks each question of a certain subspace. Therefore, the search space is still too huge. The large

94

search space will reduce the searching efficiency, making the retriever hard to converge. We will

continue to explore new ways of designing the retriever to reduce search space and accelerate searching

speed. Compared with the linear data structure, the tree is a hierarchical way to structure data in a

multidimensional space. Current studies have already employed tree-based algorithms for the nearest

neighbor search. For instance, the ball-tree and the KD tree algorithm have been used for spatial

division of data points, allocating the data points into certain regions. For exact nearest-neighbor

searches, compared with the linear search, trees can yield great accelerations. Therefore, the ball-tree

and KD tree are better alternatives due to their speed and efficiency. Our future work will incorporate

the tree-based search algorithms into the framework to design a retriever with a hierarchical structure.

6.2.3 Investigation of Support Set Construction

As described in Chapter 5, we carried out the correlation analysis concerning the influence of separate

support set qualities on the performance of meta-learning, demonstrating that the support set with

higher quality, i.e., more relevant to the meta-testing data, could improve meta-learning performance.

Since our work has discovered the correlation between support sets and meta-learning performance,

we can continue to explore the mechanism behind this phenomenon by more closely investigating

the effect of support set in meta-learning, attempting to provide some insights into the observations.

Meta-learning is highly dependent on episodic training, where a model is trained to adapt to a novel

task by learning the specific knowledge from the support set. As a result, we can mine the support

sets’ characteristic to answer a series of questions, including:

• Will the supporting questions more similar to a query example be more helpful to generate

task-specific parameters?

• What kind of supporting questions will allow the meta-gradients to happen in the right direction

for fast-learning?

• Will the reduction of support set diversity (for instance reduce the candidate samples used for

constructing support sets) always result in adverse effects for meat-learning?

We believe that it is worthwhile to continue investigating the efficacy of support set construction in

improving the meta-learning performance, and understand the nature of the phenomenon to pave the

way for future work.

95

Bibliography

[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a collaboratively
created graph database for structuring human knowledge,” in Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pp. 1247–1250, AcM, 2008.

[2] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann,
“DBpedia-a crystallization point for the web of data,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 7, no. 3, pp. 154–165, 2009.

[3] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez, and D. Vrandečić, “Introducing Wikidata to
the Linked Data web,” in International Semantic Web Conference, pp. 50–65, Springer, 2014.

[4] J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on freebase from question-
answer pairs,” in Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1533–1544, 2013.

[5] X. Yao and B. Van Durme, “Information extraction over structured data: Question answering
with freebase,” in Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), vol. 1, pp. 956–966, 2014.

[6] W.-t. Yih, X. He, and C. Meek, “Semantic parsing for single-relation question answering,”
in Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), vol. 2, pp. 643–648, 2014.

[7] A. Bordes, N. Usunier, S. Chopra, and J. Weston, “Large-scale simple question answering with
memory networks,” arXiv preprint arXiv:1506.02075, 2015.

[8] W.-t. Yih, M.-W. Chang, X. He, and J. Gao, “Semantic parsing via staged query graph gen-
eration: Question answering with knowledge base,” in Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), vol. 1, pp. 1321–1331, 2015.

[9] M. Yu, W. Yin, K. S. Hasan, C. dos Santos, B. Xiang, and B. Zhou, “Improved neural relation
detection for knowledge base question answering,” in Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 571–581,
2017.

[10] W.-t. Yih, M. Richardson, C. Meek, M.-W. Chang, and J. Suh, “The value of semantic parse
labeling for knowledge base question answering,” in Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp. 201–206,
2016.

[11] C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao, “Neural symbolic machines: Learning
semantic parsers on freebase with weak supervision,” in Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 23–33,
2017.

[12] A. Saha, G. A. Ansari, A. Laddha, K. Sankaranarayanan, and S. Chakrabarti, “Complex pro-
gram induction for querying knowledge bases in the absence of gold programs,” Transactions of
the Association for Computational Linguistics, vol. 7, pp. 185–200, 2019.

[13] A. Saha, V. Pahuja, M. M. Khapra, K. Sankaranarayanan, and S. Chandar, “Complex sequential
question answering: Towards learning to converse over linked question answer pairs with a
knowledge graph,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

96

[14] G. A. Ansari, A. Saha, V. Kumar, M. Bhambhani, K. Sankaranarayanan, and S. Chakrabarti,
“Neural program induction for kbqa without gold programs or query annotations,” in Proceedings
of the 28th International Joint Conference on Artificial Intelligence, pp. 4890–4896, AAAI Press,
2019.

[15] N. Savinov, A. Raichuk, D. Vincent, R. Marinier, M. Pollefeys, T. P. Lillicrap, and S. Gelly,
“Episodic curiosity through reachability,” in 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, OpenReview.net, 2019.

[16] C. Liang, M. Norouzi, J. Berant, Q. V. Le, and N. Lao, “Memory augmented policy optimization
for program synthesis and semantic parsing,” in Advances in Neural Information Processing
Systems, pp. 9994–10006, 2018.

[17] P.-S. Huang, C. Wang, R. Singh, W.-t. Yih, and X. He, “Natural language to structured query
generation via meta-learning,” in Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pp. 732–738, 2018.

[18] D. Guo, D. Tang, N. Duan, M. Zhou, and J. Yin, “Coupling retrieval and meta-learning for
context-dependent semantic parsing,” in Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1:
Long Papers (A. Korhonen, D. R. Traum, and L. Màrquez, eds.), pp. 855–866, Association for
Computational Linguistics, 2019.

[19] D. Guo, D. Tang, N. Duan, M. Zhou, and J. Yin, “Dialog-to-action: Conversational question
answering over a large-scale knowledge base,” in Advances in Neural Information Processing
Systems, pp. 2946–2955, 2018.

[20] A. Neelakantan, Q. V. Le, and I. Sutskever, “Neural programmer: Inducing latent programs
with gradient descent,” in 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings (Y. Bengio and
Y. LeCun, eds.), 2016.

[21] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Proceedings of
the 26th annual international conference on machine learning (ICML’09), pp. 41–48, 2009.

[22] M. Fang, T. Zhou, Y. Du, L. Han, and Z. Zhang, “Curriculum-guided hindsight experience
replay,” in Advances in Neural Information Processing Systems, pp. 12602–12613, 2019.

[23] O. Etzioni, “Search needs a shake-up,” Nat., vol. 476, no. 7358, pp. 25–26, 2011.

[24] K. Liu, J. Zhao, S. He, and Y. Zhang, “Question answering over knowledge bases,” IEEE Intell.
Syst., vol. 30, no. 5, pp. 26–35, 2015.

[25] A. Bordes, S. Chopra, and J. Weston, “Question answering with subgraph embeddings,” in Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of
the ACL (A. Moschitti, B. Pang, and W. Daelemans, eds.), pp. 615–620, ACL, 2014.

[26] W. Wu, Z. Zhu, G. Zhang, S. Kang, and P. Liu, “A reasoning enhance network for muti-relation
question answering,” Applied Intelligence, pp. 1–10, 2021.

[27] M. Bakhshi, M. Nematbakhsh, M. Mohsenzadeh, and A. M. Rahmani, “Data-driven construc-
tion of SPARQL queries by approximate question graph alignment in question answering over
knowledge graphs,” Expert Syst. Appl., vol. 146, p. 113205, 2020.

97

[28] A. Kristiadi, M. A. Khan, D. Lukovnikov, J. Lehmann, and A. Fischer, “Incorporating literals
into knowledge graph embeddings,” in The Semantic Web - ISWC 2019 - 18th International
Semantic Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part I
(C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek, I. F. Cruz, A. Hogan, J. Song, M. Lefrançois,
and F. Gandon, eds.), vol. 11778 of Lecture Notes in Computer Science, pp. 347–363, Springer,
2019.

[29] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S. Slat-
tery, “Learning to construct knowledge bases from the world wide web,” Artificial intelligence,
vol. 118, no. 1-2, pp. 69–113, 2000.

[30] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. Van Kleef, S. Auer, et al., “Dbpedia–a large-scale, multilingual knowledge base
extracted from wikipedia,” Semantic web, vol. 6, no. 2, pp. 167–195, 2015.

[31] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic knowledge,” in Pro-
ceedings of the 16th international conference on World Wide Web, pp. 697–706, 2007.

[32] G. A. Miller, WordNet: An electronic lexical database. MIT press, 1998.

[33] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and T. M. Mitchell, “Toward an
architecture for never-ending language learning,” in Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010
(M. Fox and D. Poole, eds.), AAAI Press, 2010.

[34] R. Navigli and S. P. Ponzetto, “Babelnet: The automatic construction, evaluation and ap-
plication of a wide-coverage multilingual semantic network,” Artificial Intelligence, vol. 193,
pp. 217–250, 2012.

[35] L. Ji, Y. Wang, B. Shi, D. Zhang, Z. Wang, and J. Yan, “Microsoft concept graph: Mining
semantic concepts for short text understanding,” Data Intelligence, vol. 1, no. 3, pp. 238–270,
2019.

[36] R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5: An open multilingual graph of general knowl-
edge,” in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA (S. P. Singh and S. Markovitch, eds.), pp. 4444–4451,
AAAI Press, 2017.

[37] L. P. Heck, D. Hakkani-Tür, and G. Tür, “Leveraging knowledge graphs for web-scale unsuper-
vised semantic parsing,” in INTERSPEECH 2013, 14th Annual Conference of the International
Speech Communication Association, Lyon, France, August 25-29, 2013 (F. Bimbot, C. Cerisara,
C. Fougeron, G. Gravier, L. Lamel, F. Pellegrino, and P. Perrier, eds.), pp. 1594–1598, ISCA,
2013.

[38] D. Damljanovic and K. Bontcheva, “Named entity disambiguation using linked data,” in Pro-
ceedings of the 9th Extended Semantic Web Conference, pp. 231–240, 2012.

[39] Z. Zheng, X. Si, F. Li, E. Y. Chang, and X. Zhu, “Entity disambiguation with freebase,” in
2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent
Technology, vol. 1, pp. 82–89, IEEE, 2012.

[40] R. Hoffmann, C. Zhang, X. Ling, L. Zettlemoyer, and D. S. Weld, “Knowledge-based weak
supervision for information extraction of overlapping relations,” in Proceedings of the 49th annual
meeting of the association for computational linguistics: human language technologies, pp. 541–
550, 2011.

98

[41] J. Daiber, M. Jakob, C. Hokamp, and P. N. Mendes, “Improving efficiency and accuracy in
multilingual entity extraction,” in Proceedings of the 9th International Conference on Semantic
Systems, pp. 121–124, 2013.

[42] A. Bordes, J. Weston, and N. Usunier, “Open question answering with weakly supervised em-
bedding models,” in Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part
I (T. Calders, F. Esposito, E. Hüllermeier, and R. Meo, eds.), vol. 8724 of Lecture Notes in
Computer Science, pp. 165–180, Springer, 2014.

[43] L. Ehrlinger and W. Wöß, “Towards a definition of knowledge graphs.,” SEMANTiCS (Posters,
Demos, SuCCESS), vol. 48, no. 1-4, p. 2, 2016.

[44] H. Wang, Z. Fang, and T. Ruan, “Kcf. js: a javascript library for knowledge cards fusion,” in
Proceedings of the 25th International Conference Companion on World Wide Web, pp. 267–270,
2016.

[45] R. Das, M. Zaheer, D. Thai, A. Godbole, E. Perez, J.-Y. Lee, L. Tan, L. Polymenakos, and
A. McCallum, “Case-based reasoning for natural language queries over knowledge bases,” arXiv
preprint arXiv:2104.08762, 2021.

[46] L. Hirschman and R. Gaizauskas, “Natural language question answering: the view from here,”
natural language engineering, vol. 7, no. 4, pp. 275–300, 2001.

[47] S. Vodanovich, D. Sundaram, and M. Myers, “Research commentary—digital natives and ubiq-
uitous information systems,” Information Systems Research, vol. 21, no. 4, pp. 711–723, 2010.

[48] D. Radev, W. Fan, H. Qi, H. Wu, and A. Grewal, “Probabilistic question answering on the web,”
in Proceedings of the 11th international conference on World Wide Web, pp. 408–419, 2002.

[49] D. Roussinov and J. A. Robles-Flores, “Applying question answering technology to locating
malevolent online content,” Decision Support Systems, vol. 43, no. 4, pp. 1404–1418, 2007.

[50] D. A. Ferrucci, “Introduction to “this is watson”,” IBM Journal of Research and Development,
vol. 56, no. 3.4, pp. 1–1, 2012.

[51] B. Kratzwald and S. Feuerriegel, “Putting question-answering systems into practice: Transfer
learning for efficient domain customization,” ACM Transactions on Management Information
Systems (TMIS), vol. 9, no. 4, pp. 1–20, 2019.

[52] Y. Cao, F. Liu, P. Simpson, L. Antieau, A. Bennett, J. J. Cimino, J. Ely, and H. Yu, “Askhermes:
An online question answering system for complex clinical questions,” Journal of biomedical
informatics, vol. 44, no. 2, pp. 277–288, 2011.

[53] J. Cao and J. F. Nunamaker, “Question answering on lecture videos: a multifaceted approach,”
in Proceedings of the 2004 Joint ACM/IEEE Conference on Digital Libraries, 2004., pp. 214–
215, IEEE, 2004.

[54] F.-L. Li, W. Chen, Q. Huang, and Y. Guo, “Alime kbqa: Question answering over structured
knowledge for e-commerce customer service,” in China Conference on Knowledge Graph and
Semantic Computing, pp. 136–148, Springer, 2019.

[55] B. Fu, Y. Qiu, C. Tang, Y. Li, H. Yu, and J. Sun, “A survey on complex question answering
over knowledge base: Recent advances and challenges,” arXiv preprint arXiv:2007.13069, 2020.

99

[56] R. J. Kate and R. J. Mooney, “Using string-kernels for learning semantic parsers,” in ACL
2006, 21st International Conference on Computational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, Proceedings of the Conference, Sydney, Australia,
17-21 July 2006 (N. Calzolari, C. Cardie, and P. Isabelle, eds.), The Association for Computer
Linguistics, 2006.

[57] J. Cheng, S. Reddy, V. Saraswat, and M. Lapata, “Learning an executable neural semantic
parser,” Computational Linguistics, vol. 45, no. 1, pp. 59–94, 2019.

[58] A. Saha, G. A. Ansari, A. Laddha, K. Sankaranarayanan, and S. Chakrabarti, “Complex pro-
gram induction for querying knowledge bases in the absence of gold programs,” Transactions of
the Association for Computational Linguistics, vol. 7, pp. 185–200, 2019.

[59] Y. Zhang, K. Liu, S. He, G. Ji, Z. Liu, H. Wu, and J. Zhao, “Question answering
over knowledge base with neural attention combining global knowledge information,” CoRR,
vol. abs/1606.00979, 2016.

[60] X. Yin, D. Gromann, and S. Rudolph, “Neural machine translating from natural language to
sparql,” Future Generation Computer Systems, vol. 117, pp. 510–519, 2019.

[61] P. Trivedi, G. Maheshwari, M. Dubey, and J. Lehmann, “Lc-quad: A corpus for complex question
answering over knowledge graphs,” in International Semantic Web Conference, pp. 210–218,
Springer, 2017.

[62] C. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo, D. Gerber, and P. Cimiano,
“Template-based question answering over rdf data,” in Proceedings of the 21st international
conference on World Wide Web, pp. 639–648, 2012.

[63] S. Shekarpour, A.-C. Ngonga Ngomo, and S. Auer, “Question answering on interlinked data,”
in Proceedings of the 22nd international conference on World Wide Web, pp. 1145–1156, 2013.

[64] M. Yahya, K. Berberich, S. Elbassuoni, and G. Weikum, “Robust question answering over the
web of linked data,” in Proceedings of the 22nd ACM international conference on Information
& Knowledge Management, pp. 1107–1116, 2013.

[65] J. Bao, N. Duan, M. Zhou, and T. Zhao, “Knowledge-based question answering as machine
translation,” in Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), vol. 1, pp. 967–976, 2014.

[66] P. Liang, M. I. Jordan, and D. Klein, “Learning dependency-based compositional semantics,” in
The 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA (D. Lin,
Y. Matsumoto, and R. Mihalcea, eds.), pp. 590–599, The Association for Computer Linguistics,
2011.

[67] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman, L. Fei-Fei, C. L. Zitnick, and R. B.
Girshick, “Inferring and executing programs for visual reasoning,” in IEEE International Con-
ference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pp. 3008–3017,
IEEE Computer Society, 2017.

[68] N. Chakraborty, D. Lukovnikov, G. Maheshwari, P. Trivedi, J. Lehmann, and A. Fischer, “In-
troduction to neural network based approaches for question answering over knowledge graphs,”
CoRR, vol. abs/1907.09361, 2019.

[69] T. Shen, X. Geng, T. Qin, D. Guo, D. Tang, N. Duan, G. Long, and D. Jiang, “Multi-task
learning for conversational question answering over a large-scale knowledge base,” in Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th

100

International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019 (K. Inui, J. Jiang, V. Ng, and X. Wan, eds.), pp. 2442–2451,
Association for Computational Linguistics, 2019.

[70] T. Shen, X. Geng, G. Long, J. Jiang, C. Zhang, and D. Jiang, “Effective search of logical
forms for weakly supervised knowledge-based question answering,” in Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020 (C. Bessiere, ed.),
pp. 2227–2233, ijcai.org, 2020.

[71] O. Goldman, V. Latcinnik, E. Nave, A. Globerson, and J. Berant, “Weakly supervised semantic
parsing with abstract examples,” in Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 1809–1819, 2018.

[72] A. Kamath and R. Das, “A survey on semantic parsing,” in 1st Conference on Automated
Knowledge Base Construction, AKBC 2019, Amherst, MA, USA, May 20-22, 2019, 2019.

[73] P. Pasupat and P. Liang, “Inferring logical forms from denotations,” in Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers, The Association for Computer Linguistics, 2016.

[74] K. Guu, P. Pasupat, E. Z. Liu, and P. Liang, “From language to programs: Bridging reinforce-
ment learning and maximum marginal likelihood,” in Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers (R. Barzilay and M. Kan, eds.), pp. 1051–1062, Association
for Computational Linguistics, 2017.

[75] S. Vakulenko, J. D. Fernandez Garcia, A. Polleres, M. de Rijke, and M. Cochez, “Message
passing for complex question answering over knowledge graphs,” in Proceedings of the 28th acm
international conference on information and knowledge management, pp. 1431–1440, 2019.

[76] Ó. Ferrández, C. Spurk, M. Kouylekov, I. Dornescu, S. Ferrández, M. Negri, R. Izquierdo,
D. Tomás, C. Orasan, G. Neumann, et al., “The qall-me framework: A specifiable-domain
multilingual question answering architecture,” Journal of web semantics, vol. 9, no. 2, pp. 137–
145, 2011.

[77] J.-D. Kim, C. Unger, A.-C. N. Ngomo, A. Freitas, Y. G. Hahm, J. Kim, G.-H. Choi, J.-U.
Kim, R. Usbeck, M.-G. Kang, et al., “Okbqa: an open collaboration framework for develop-
ment of natural language question-answering over knowledge bases,” in 2017 ISWC Posters
and Demonstrations and Industry Tracks, ISWC-P and D-Industry 2017, Semantic Web Science
Association, 2017.

[78] K. Singh, A. Both, A. Sethupat, and S. Shekarpour, “Frankenstein: A platform enabling reuse of
question answering components,” in European Semantic Web Conference, pp. 624–638, Springer,
2018.

[79] H. Isozaki and H. Kazawa, “Efficient support vector classifiers for named entity recognition,” in
COLING 2002: The 19th International Conference on Computational Linguistics, 2002.

[80] Z. Huang, W. Xu, and K. Yu, “Bidirectional LSTM-CRF models for sequence tagging,” arXiv
preprint arXiv:1508.01991, 2015.

[81] X. Huang, J. Zhang, D. Li, and P. Li, “Knowledge graph embedding based question answering,”
in Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining,
pp. 105–113, 2019.

[82] P. N. Mendes, M. Jakob, A. Garćıa-Silva, and C. Bizer, “Dbpedia spotlight: shedding light on
the web of documents,” in Proceedings of the 7th international conference on semantic systems,
pp. 1–8, 2011.

101

[83] Y. Yang and M.-W. Chang, “S-mart: Novel tree-based structured learning algorithms applied to
tweet entity linking,” in Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 504–513, 2015.

[84] C. Zhu, K. Ren, X. Liu, H. Wang, Y. Tian, and Y. Yu, “A graph traversal based approach to
answer non-aggregation questions over dbpedia,” in Semantic Technology - 5th Joint Interna-
tional Conference, JIST 2015, Yichang, China, November 11-13, 2015, Revised Selected Papers
(G. Qi, K. Kozaki, J. Z. Pan, and S. Yu, eds.), vol. 9544 of Lecture Notes in Computer Science,
pp. 219–234, Springer, 2015.

[85] D. Milne and I. H. Witten, “An open-source toolkit for mining wikipedia,” Artificial Intelligence,
vol. 194, pp. 222–239, 2013.

[86] M. Dubey, D. Banerjee, D. Chaudhuri, and J. Lehmann, “Earl: joint entity and relation linking
for question answering over knowledge graphs,” in International Semantic Web Conference,
pp. 108–126, Springer, 2018.

[87] Y. Yuan, X. Zhou, S. Pan, Q. Zhu, Z. Song, and L. Guo, “A relation-specific attention network for
joint entity and relation extraction,” in International Joint Conference on Artificial Intelligence
2020, pp. 4054–4060, Association for the Advancement of Artificial Intelligence (AAAI), 2020.

[88] P. Liang, M. I. Jordan, and D. Klein, “Learning dependency-based compositional semantics,”
Comput. Linguistics, vol. 39, no. 2, pp. 389–446, 2013.

[89] J. M. Zelle and R. J. Mooney, “Learning to parse database queries using inductive logic program-
ming,” in Proceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth
Innovative Applications of Artificial Intelligence Conference, AAAI 96, IAAI 96, Portland, Ore-
gon, USA, August 4-8, 1996, Volume 2 (W. J. Clancey and D. S. Weld, eds.), pp. 1050–1055,
AAAI Press / The MIT Press, 1996.

[90] I. Androutsopoulos, G. Ritchie, and P. Thanisch, “Masque/sql: An efficient and portable natural
language query interface for relational databases,” Database technical paper, Department of AI,
University of Edinburgh, 1993.

[91] F. Holzschuher and R. Peinl, “Performance of graph query languages: comparison of cypher,
gremlin and native access in neo4j,” in Joint 2013 EDBT/ICDT Conferences, EDBT/ICDT ’13,
Genoa, Italy, March 22, 2013, Workshop Proceedings (G. Guerrini, ed.), pp. 195–204, ACM,
2013.

[92] R. J. Kate, Y. W. Wong, and R. J. Mooney, “Learning to transform natural to formal languages,”
in Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth
Innovative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Penn-
sylvania, USA (M. M. Veloso and S. Kambhampati, eds.), pp. 1062–1068, AAAI Press / The
MIT Press, 2005.

[93] J. Pérez, M. Arenas, and C. Gutiérrez, “Semantics and complexity of SPARQL,” ACM Trans.
Database Syst., vol. 34, no. 3, pp. 16:1–16:45, 2009.

[94] H. P. Barendregt and E. Barendsen, “Introduction to lambda calculus,” Nieuw Archief voor
Wiskunde, vol. 4, no. 2, pp. 337–372, 1984.

[95] P. Liang, “Lambda dependency-based compositional semantics,” CoRR, vol. abs/1309.4408,
2013.

[96] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so far,” Int. J. Semantic Web
Inf. Syst., vol. 5, no. 3, pp. 1–22, 2009.

102

[97] O. Hartig, “An introduction to SPARQL and queries over linked data,” in Web Engineering
- 12th International Conference, ICWE 2012, Berlin, Germany, July 23-27, 2012. Proceedings
(M. Brambilla, T. Tokuda, and R. Tolksdorf, eds.), vol. 7387 of Lecture Notes in Computer
Science, pp. 506–507, Springer, 2012.

[98] S. Ferré, “SQUALL: the expressiveness of SPARQL 1.1 made available as a controlled natural
language,” Data Knowl. Eng., vol. 94, pp. 163–188, 2014.

[99] A. Church, “An unsolvable problem of elementary number theory,” American journal of math-
ematics, vol. 58, no. 2, pp. 345–363, 1936.

[100] Z. Csörnyei and G. Dévai, “An introduction to the lambda calculus,” in Central European
Functional Programming School, Second Summer School, CEFP 2007, Cluj-Napoca, Romania,
June 23-30, 2007, Revised Selected Lectures (Z. Horváth, R. Plasmeijer, A. Soós, and V. Zsók,
eds.), vol. 5161 of Lecture Notes in Computer Science, pp. 87–111, Springer, 2007.

[101] L. Dong and M. Lapata, “Language to logical form with neural attention,” in Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 33–43, 2016.

[102] R. Rojas, “A tutorial introduction to the lambda calculus,” CoRR, vol. abs/1503.09060, 2015.

[103] T. Kwiatkowski, L. S. Zettlemoyer, S. Goldwater, and M. Steedman, “Lexical generalization in
CCG grammar induction for semantic parsing,” in Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2011, 27-31 July 2011, John McIntyre
Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the ACL,
pp. 1512–1523, ACL, 2011.

[104] R. J. Brachman and H. J. Levesque, Knowledge Representation and Reasoning. Elsevier, 2004.

[105] M. Benedikt, “An insider’s guide to logic in telecommunications data,” in 20th IEEE Symposium
on Logic in Computer Science (LICS 2005), 26-29 June 2005, Chicago, IL, USA, Proceedings,
pp. 104–105, IEEE Computer Society, 2005.

[106] E. Parisotto, A. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli, “Neuro-symbolic program
synthesis,” in 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, OpenReview.net, 2017.

[107] A. Rothe, B. M. Lake, and T. M. Gureckis, “Question asking as program generation,” in Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural Informa-
tion Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA (I. Guyon, U. von
Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, eds.),
pp. 1046–1055, 2017.

[108] J. R. Anderson, R. Farrell, and R. Sauers, “Learning to program in lisp,” Cognitive Science,
vol. 8, no. 2, pp. 87–129, 1984.

[109] O. Goldman, V. Latcinnik, E. Nave, A. Globerson, and J. Berant, “Weakly supervised semantic
parsing with abstract examples,” in Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1:
Long Papers (I. Gurevych and Y. Miyao, eds.), pp. 1809–1819, Association for Computational
Linguistics, 2018.

[110] A. Suhr, M. Lewis, J. Yeh, and Y. Artzi, “A corpus of natural language for visual reasoning,”
in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,
ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 2: Short Papers (R. Barzilay and
M. Kan, eds.), pp. 217–223, Association for Computational Linguistics, 2017.

103

[111] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. Tenenbaum, “Neural-symbolic VQA:
disentangling reasoning from vision and language understanding,” in Advances in Neural In-
formation Processing Systems 31: Annual Conference on Neural Information Processing Sys-
tems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada (S. Bengio, H. M. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), pp. 1039–1050, 2018.

[112] P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, and R. L. Mercer, “The mathematics of
statistical machine translation: Parameter estimation,” Computational linguistics, vol. 19, no. 2,
pp. 263–311, 1993.

[113] L. Dong, F. Wei, M. Zhou, and K. Xu, “Question answering over freebase with multi-column
convolutional neural networks,” in Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), vol. 1, pp. 260–269, 2015.

[114] Y. Hao, Y. Zhang, K. Liu, S. He, Z. Liu, H. Wu, and J. Zhao, “An end-to-end model for question
answering over knowledge base with cross-attention combining global knowledge,” in Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 221–231, 2017.

[115] A. Saxena, A. Tripathi, and P. Talukdar, “Improving multi-hop question answering over knowl-
edge graphs using knowledge base embeddings,” in Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 4498–4507, 2020.

[116] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, “Complex embeddings for simple
link prediction,” in International Conference on Machine Learning, pp. 2071–2080, PMLR, 2016.

[117] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[118] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “Weakly supervised memory networks,”
CoRR, vol. abs/1503.08895, 2015.

[119] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” in 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

[120] A. Miller, A. Fisch, J. Dodge, A.-H. Karimi, A. Bordes, and J. Weston, “Key-value memory
networks for directly reading documents,” in Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pp. 1400–1409, 2016.

[121] Y. Chen, L. Wu, and M. J. Zaki, “Bidirectional attentive memory networks for question an-
swering over knowledge bases,” in Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pp. 2913–2923, 2019.

[122] H. Bast and E. Haussmann, “More accurate question answering on freebase,” in Proceedings of
the 24th ACM International Conference on Information and Knowledge Management, CIKM
2015, Melbourne, VIC, Australia, October 19 - 23, 2015 (J. Bailey, A. Moffat, C. C. Aggarwal,
M. de Rijke, R. Kumar, V. Murdock, T. K. Sellis, and J. X. Yu, eds.), pp. 1431–1440, ACM,
2015.

[123] S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao, “Answering natural language questions by
subgraph matching over knowledge graphs,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 5,
pp. 824–837, 2018.

104

[124] A. Abujabal, M. Yahya, M. Riedewald, and G. Weikum, “Automated template generation for
question answering over knowledge graphs,” in Proceedings of the 26th International Conference
on World Wide Web, WWW 2017, Perth, Australia, April 3-7, 2017 (R. Barrett, R. Cummings,
E. Agichtein, and E. Gabrilovich, eds.), pp. 1191–1200, ACM, 2017.

[125] W. Zheng, J. X. Yu, L. Zou, and H. Cheng, “Question answering over knowledge graphs: Ques-
tion understanding via template decomposition,” Proc. VLDB Endow., vol. 11, no. 11, pp. 1373–
1386, 2018.

[126] W. Cui, Y. Xiao, H. Wang, Y. Song, S. Hwang, and W. Wang, “KBQA: learning question
answering over QA corpora and knowledge bases,” Proc. VLDB Endow., vol. 10, no. 5, pp. 565–
576, 2017.

[127] S. Reddy, M. Lapata, and M. Steedman, “Large-scale semantic parsing without question-answer
pairs,” Transactions of the Association for Computational Linguistics, vol. 2, pp. 377–392, 2014.

[128] S. Clark and J. R. Curran, “Wide-coverage efficient statistical parsing with ccg and log-linear
models,” Computational Linguistics, vol. 33, no. 4, pp. 493–552, 2007.

[129] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using
a” siamese” time delay neural network,” Advances in neural information processing systems,
pp. 737–737, 1994.

[130] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, “A latent semantic model with convolutional-
pooling structure for information retrieval,” in Proceedings of the 23rd ACM international con-
ference on conference on information and knowledge management, pp. 101–110, 2014.

[131] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, “Learning semantic representations using con-
volutional neural networks for web search,” in Proceedings of the 23rd international conference
on world wide web, pp. 373–374, 2014.

[132] C. J. Burges, “From ranknet to lambdarank to lambdamart: An overview,” Learning, vol. 11,
no. 23-581, p. 81, 2010.

[133] J. Bao, N. Duan, Z. Yan, M. Zhou, and T. Zhao, “Constraint-based question answering with
knowledge graph,” in Proceedings of COLING 2016, the 26th International Conference on Com-
putational Linguistics: Technical Papers, pp. 2503–2514, 2016.

[134] K. Luo, F. Lin, X. Luo, and K. Zhu, “Knowledge base question answering via encoding of
complex query graphs,” in Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 2185–2194, 2018.

[135] G. Maheshwari, P. Trivedi, D. Lukovnikov, N. Chakraborty, A. Fischer, and J. Lehmann, “Learn-
ing to rank query graphs for complex question answering over knowledge graphs,” in Interna-
tional semantic web conference, pp. 487–504, Springer, 2019.

[136] S. Hu, L. Zou, and X. Zhang, “A state-transition framework to answer complex questions over
knowledge base,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 2098–2108, 2018.

[137] N. Bhutani, X. Zheng, and H. Jagadish, “Learning to answer complex questions over knowledge
bases with query composition,” in Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, pp. 739–748, 2019.

[138] A. Talmor and J. Berant, “The web as a knowledge-base for answering complex questions,”
in Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 641–
651, 2018.

105

[139] K. Xu, L. Wu, Z. Wang, M. Yu, L. Chen, and V. Sheinin, “Exploiting rich syntactic information
for semantic parsing with graph-to-sequence model,” in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 918–924, 2018.

[140] Y. Chen, H. Li, Y. Hua, and G. Qi, “Formal query building with query structure prediction for
complex question answering over knowledge base.,” in IJCAI, pp. 3751–3758, 2020.

[141] R. Koncel-Kedziorski, D. Bekal, Y. Luan, M. Lapata, and H. Hajishirzi, “Text generation from
knowledge graphs with graph transformers,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 2284–2293, 2019.

[142] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems,
pp. 5998–6008, 2017.

[143] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, et al., “Huggingface’s transformers: State-of-the-art natural language processing,”
arXiv preprint arXiv:1910.03771, 2019.

[144] T. Wolf, J. Chaumond, L. Debut, V. Sanh, C. Delangue, A. Moi, P. Cistac, M. Funtowicz,
J. Davison, S. Shleifer, et al., “Transformers: State-of-the-art natural language processing,”
in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, pp. 38–45, 2020.

[145] C. E. Rasmussen and Z. Ghahramani, “Occam’s razor,” Advances in neural information pro-
cessing systems, pp. 294–300, 2001.

[146] Y. Lan and J. Jiang, “Query graph generation for answering multi-hop complex questions from
knowledge bases,” in Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2020, Online, July 5-10, 2020 (D. Jurafsky, J. Chai, N. Schluter, and
J. R. Tetreault, eds.), pp. 969–974, Association for Computational Linguistics, 2020.

[147] Y. Zhang, H. Dai, Z. Kozareva, A. J. Smola, and L. Song, “Variational reasoning for question
answering with knowledge graph,” in Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018 (S. A. McIlraith and K. Q.
Weinberger, eds.), pp. 6069–6076, AAAI Press, 2018.

[148] R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar, A. Krishnamurthy, A. Smola, and
A. McCallum, “Go for a walk and arrive at the answer: Reasoning over paths in knowledge
bases using reinforcement learning,” in International Conference on Learning Representations,
2018.

[149] X. V. Lin, R. Socher, and C. Xiong, “Multi-hop knowledge graph reasoning with reward shap-
ing,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process-
ing, Brussels, Belgium, October 31 - November 4, 2018 (E. Riloff, D. Chiang, J. Hockenmaier,
and J. Tsujii, eds.), pp. 3243–3253, Association for Computational Linguistics, 2018.

[150] Y. Qiu, Y. Wang, X. Jin, and K. Zhang, “Stepwise reasoning for multi-relation question an-
swering over knowledge graph with weak supervision,” in Proceedings of the 13th International
Conference on Web Search and Data Mining, pp. 474–482, 2020.

[151] Y. Qiu, K. Zhang, Y. Wang, X. Jin, L. Bai, S. Guan, and X. Cheng, “Hierarchical query graph
generation for complex question answering over knowledge graph,” in Proceedings of the 29th
ACM International Conference on Information & Knowledge Management, pp. 1285–1294, 2020.

106

[152] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A framework for tempo-
ral abstraction in reinforcement learning,” Artificial intelligence, vol. 112, no. 1-2, pp. 181–211,
1999.

[153] Y. Wang and H. Jin, “A deep reinforcement learning based multi-step coarse to fine question
answering (mscqa) system,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 7224–7232, 2019.

[154] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for abstractive summarization,” in
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings, OpenReview.net, 2018.

[155] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, “Self-critical sequence training
for image captioning,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 1179–1195, IEEE Computer Society,
2017.

[156] L. Song, Z. Wang, and W. Hamza, “A unified query-based generative model for question gener-
ation and question answering,” CoRR, vol. abs/1709.01058, 2017.

[157] K. Li and J. Malik, “Learning to optimize neural nets,” CoRR, vol. abs/1703.00441, 2017.

[158] D. Ha, A. M. Dai, and Q. V. Le, “Hypernetworks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,
OpenReview.net, 2017.

[159] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,” CoRR,
vol. abs/1803.02999, 2018.

[160] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural attentive meta-learner,”
in 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings, OpenReview.net, 2018.

[161] T. Munkhdalai and H. Yu, “Meta networks,” in Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017 (D. Precup and
Y. W. Teh, eds.), vol. 70 of Proceedings of Machine Learning Research, pp. 2554–2563, PMLR,
2017.

[162] J. Baxter, “A model of inductive bias learning,” J. Artif. Intell. Res., vol. 12, pp. 149–198, 2000.

[163] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept learning through
probabilistic program induction,” Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

[164] H. Ye, X. Sheng, and D. Zhan, “Few-shot learning with adaptively initialized task optimizer: a
practical meta-learning approach,” Mach. Learn., vol. 109, no. 3, pp. 643–664, 2020.

[165] L. A. Schmidt, Meaning and compositionality as statistical induction of categories and con-
straints. PhD thesis, Massachusetts Institute of Technology, 2009.

[166] R. Salakhutdinov, J. Tenenbaum, and A. Torralba, “One-shot learning with a hierarchical non-
parametric bayesian model,” in Proceedings of ICML Workshop on Unsupervised and Transfer
Learning, pp. 195–206, JMLR Workshop and Conference Proceedings, 2012.

[167] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas, “Dueling net-
work architectures for deep reinforcement learning,” in Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016
(M. Balcan and K. Q. Weinberger, eds.), vol. 48 of JMLR Workshop and Conference Proceed-
ings, pp. 1995–2003, JMLR.org, 2016.

107

[168] H. F. Harlow, “The formation of learning sets.,” Psychological review, vol. 56, no. 1, p. 51, 1949.

[169] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-learning,” Artificial intelligence
review, vol. 18, no. 2, pp. 77–95, 2002.

[170] A. Maurer, M. Pontil, and B. Romera-Paredes, “The benefit of multitask representation learn-
ing,” Journal of Machine Learning Research, vol. 17, no. 81, pp. 1–32, 2016.

[171] W. Chao, H. Ye, D. Zhan, M. E. Campbell, and K. Q. Weinberger, “Revisiting meta-learning
as supervised learning,” CoRR, vol. abs/2002.00573, 2020.

[172] T. M. Mitchell and S. Thrun, “Explanation-based neural network learning for robot control,”
in Advances in Neural Information Processing Systems 5, [NIPS Conference, Denver, Colorado,
USA, November 30 - December 3, 1992] (S. J. Hanson, J. D. Cowan, and C. L. Giles, eds.),
pp. 287–294, Morgan Kaufmann, 1992.

[173] R. Vilalta and Y. Drissi, “A perspective view and survey of meta-learning,” Artif. Intell. Rev.,
vol. 18, no. 2, pp. 77–95, 2002.

[174] J. Schmidhuber, “Evolutionary principles in self-referential learning, or on learning how to
learn,” Ph. D. dissertation, 1987.

[175] S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to learn using gradient descent,” in
International Conference on Artificial Neural Networks, pp. 87–94, Springer, 2001.

[176] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman, D. Pfau, T. Schaul, and
N. de Freitas, “Learning to learn by gradient descent by gradient descent,” in Advances in
Neural Information Processing Systems 29: Annual Conference on Neural Information Process-
ing Systems 2016, December 5-10, 2016, Barcelona, Spain (D. D. Lee, M. Sugiyama, U. von
Luxburg, I. Guyon, and R. Garnett, eds.), pp. 3981–3989, 2016.

[177] K. Li and J. Malik, “Learning to optimize,” in 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,
OpenReview.net, 2017.

[178] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” in 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, OpenReview.net, 2017.

[179] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation of deep
networks,” in Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017 (D. Precup and Y. W. Teh, eds.), vol. 70 of
Proceedings of Machine Learning Research, pp. 1126–1135, PMLR, 2017.

[180] A. Nichol and J. Schulman, “Reptile: a scalable metalearning algorithm,” arXiv preprint
arXiv:1803.02999, vol. 2, no. 2, p. 1, 2018.

[181] J. Gu, Y. Wang, Y. Chen, V. O. K. Li, and K. Cho, “Meta-learning for low-resource neural
machine translation,” in Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4, 2018 (E. Riloff, D. Chiang,
J. Hockenmaier, and J. Tsujii, eds.), pp. 3622–3631, Association for Computational Linguistics,
2018.

[182] A. Madotto, Z. Lin, C.-S. Wu, and P. Fung, “Personalizing dialogue agents via meta-learning,”
in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 5454–5459, 2019.

108

[183] Y. Sun, D. Tang, N. Duan, Y. Gong, X. Feng, B. Qin, and D. Jiang, “Neural semantic parsing
in low-resource settings with back-translation and meta-learning,” in The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,
pp. 8960–8967, AAAI Press, 2020.

[184] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating structured queries from natural
language using reinforcement learning,” CoRR, vol. abs/1709.00103, 2017.

[185] P. Pasupat and P. Liang, “Compositional semantic parsing on semi-structured tables,” in Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
vol. 1, pp. 1470–1480, 2015.

[186] J. Clarke, D. Goldwasser, M.-W. Chang, and D. Roth, “Driving semantic parsing from the
world’s response,” in Proceedings of the fourteenth conference on computational natural language
learning, pp. 18–27, 2010.

[187] W. Xiong, X. L. Li, S. Iyer, J. Du, P. S. H. Lewis, W. Y. Wang, Y. Mehdad, W. Yih, S. Riedel,
D. Kiela, and B. Oguz, “Answering complex open-domain questions with multi-hop dense re-
trieval,” CoRR, vol. abs/2009.12756, 2020.

[188] S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei, “On the optimization of a synaptic learning
rule,” in Optimality in Artificial and Biological Neural Networks, vol. 2, 1992.

[189] J. Schmidhuber, “Learning to control fast-weight memories: An alternative to dynamic recurrent
networks,” Neural Computation, vol. 4, no. 1, pp. 131–139, 1992.

[190] B. M. Lake, R. Salakhutdinov, J. Gross, and J. B. Tenenbaum, “One shot learning of simple
visual concepts,” in Proceedings of the 33th Annual Meeting of the Cognitive Science Society,
CogSci 2011, Boston, Massachusetts, USA, July 20-23, 2011 (L. A. Carlson, C. Hölscher, and
T. F. Shipley, eds.), cognitivesciencesociety.org, 2011.

[191] A. Setlur, O. Li, and V. Smith, “Is support set diversity necessary for meta-learning?,” CoRR,
vol. abs/2011.14048, 2020.

109

	Abstract
	Publications During Enrolment
	Thesis including published works declaration
	Acknowledgements
	Introduction
	Research Questions
	Motivation
	RQ1: How to design a CQA framework by only using denotations while alleviate the sparse reward and data inefficiency problems that inherently lie in the conventional NPI models?
	RQ2: How to learn an adaptive model to precisely answer each novel question instead of using a fixed global optimal model, aka one-size-fits-all model, to solve the CQA task?
	RQ3: How to design an optimal retriever to find the most appropriate instances for the target question?

	Thesis Outline

	Literature Review
	KB and KBQA
	Tasks in KBQA
	Definition of KBQA
	Subtasks in KBQA

	Logical Form
	Query Languages
	Custom-defined Actions

	KBQA Approaches
	Information Retrieval-based Methods
	Template-based Methods
	Neural Semantic Parsing-based Methods

	Summary

	Neural-Symbolic Complex Question Answering Over Knowledge Bases
	Introduction
	Related Work
	Approach
	Primitive Actions
	Semantic Parser
	Neural Generator
	Symbolic Executor
	Training Paradigm

	Experiments
	Model Description
	Training
	Results On CQA
	Results On WebQuestionsSP
	Model Analysis
	Sample Size Analysis

	Qualitative Analysis
	Sample Cases
	Error Analysis

	Conclusion

	Complex Knowledge Base Question Answering via Meta Reinforcement Learning
	Introduction
	Approach
	Overview of the Framework
	Programmer and Interpreter
	Meta Training and Testing
	Question Retriever

	Experiments
	Model Comparisons
	Model Analysis
	Case Study

	Related Work
	Conclusion

	Complex Knowledge Base Question Answering via Alternate Meta-learning
	Introduction
	Methodology
	Method Overview
	Model Objectives
	Filter Softmax

	Evaluation
	Implementation Details
	Performance Evaluation

	Related Work
	Conclusion

	Conclusion and Future Work
	Conclusions
	Future Research Plans
	Complex Sequential Question Answering
	A Retriever with Hierarchical Structure
	Investigation of Support Set Construction

	Bibliography

