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Summary

The datasets of large-eddy simulation of under-expanded supersonic imping-

ing jets funded by the Australian Research Council are summarised in this docu-

ment.

The interested reader is referred to the listed publication for further detail of

the datasets and analysis performed to the date.

The datasets are available for collaboration based projects. Please contact either Dr
Shahram Karami or Professor Julio Soria for further discussion.
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1 Computational details

A parallel C++ code, named ECNSS (Explicit Compressible Navier Stokes Solver),
solves for density, momentum and total energy in cylindrical coordinates with a
hybrid solver employing a sixth-order central finite difference scheme for the smooth
regions and a fifth-order weighted essentially non-oscillatory (WENO) scheme with
local Lax-Friedrichs flux splitting in the discontinuous regions. Temporal integration
is performed using a fourth-order five-step Runge-Kutta scheme. When operated as
an LES code, the subgrid scale terms are computed using Germano’s dynamic model.
Further details of the numerical method and validation can be found in Ref [PUB-3].

2 Configurations and available datasets

Table 1 summarises the six cases used in the publications outlined in previous section.

Table 1: Datset of the large-eddy simulations of under-expanded supersonic imping-
ing jets.

Case ID A B C D E F
Computational domain 5d × 12d × 2π 2d × 12d × 2π 2d × 12d × 2π

(Lx × Lr × Lθ) & 0.6d × 11.48d × 2π
Computational grids 608 × 632 × 96 480 × 432 × 96 480 × 432 × 96

(Nx ×Nr ×Nθ) & 192 × 368 × 96
Nozzle-to-wall distance 5d 2d

(h/d)
Nozzle pressure ratio 2.6 3.4 4.2 3.4

(NPR)
Reynolds number (Red) 50,000
Nozzle thickness (t/d) 12 12 12 12 0.016 0.016

(t/d) ( Infinite) & upper & sponge
Total time period (T/tre f ) 200 400 200 200 200 200

Total dataset size (TB) 8.0 21.0 8.0 5.0 5.0 5.0

The simulations are run for 204.8 acoustic time units (tre f = tao/d, where t is time,
and ao is the speed of sound) following the transient period. The transient period is
approximately 50 acoustic time units during which the initial conditions are translated
out of the computational domain. Subsequently, the three-dimensional flow fields are
stored every 0.05 acoustic time units, which yields 4096 three-dimensional snapshots.
It should be noted that the equations and all dependent and independent variables
are non-dimensionalised with respect to the nozzle diameter (d), the speed of sound
(ao) and the reference viscosity which is taken to be at atmospheric conditions.
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Flow visualisation of these datasets are available either on YouTube Channel of
LTRAC or YouTube Channel of Dr Shahram Karami

3 Structure and format of the datasets

The datasets are archived on Monash University Research Data Storage.
The datasets are organised in different folders based on the parameters of the LES

with a name format of:
Data LES NPRXX hYY tZZZ

where ’XX’ is the NPR times 10, ’YY’ is the nozzle to wall distance times 10 and
’WW’ is the lip thickness times 1000 with ’000’ refers to infinite lipped (t/d = 12) nozzle
cases. The three-dimensional fields of density, density weighted velocity vector and
total energy are written using parallel HDF5 libraries in files named ’Block.***.h5’ and
located in Output sub-directory in each of the cases’ main directory. A Python script
to read output ’*.h5’ files are also provided on the main directory of the datasets.
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