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Abstract

Teaching machines to process and understand sequence data is a critical component for advanced

artificial intelligence (AI) systems. In many AI applications, including natural language under-

standing, drug discovery, and autonomous vehicles, sequences of various data types are used to

learn and execute certain tasks. There has been extensive progress towards building machine

learning models for processing sequence data. However, most of these models were mainly used

for classification or prediction tasks. Until recently, sequence models lacked the ability to become

creative, or to accurately learn the statistical distribution of the given data and generate new data

following this distribution. They also lacked a common sense understanding of the sequences, like

natural language, where malicious inputs could easily confuse a highly accurate classification model.

With the advent of deep learning as the dominant approach for efficient learning from large

amounts of data, there has been a growing interest into building sophisticated deep models to

process and understand sequences. Nonetheless, employing deep learning to build AI systems for

previously described applications faces two difficulties: sequence generation, and adversarial at-

tacks on sequence models, which are the focus of this thesis. Recently, there have been increasing

efforts to build deep models for sequence generation following the success of Generative Adversarial

Networks (GANs) and Variational Autoencoders (VAEs) in computer vision tasks. However, ap-

plying these models for sequence generation faced several difficulties, where the outputs are mainly

uncontrolled and randomized, and there is a lack of output diversity compared to the original

data. Specifically, there are two main challenges that emerge in generation tasks of deep sequen-

tial models; (1) the difficulty to capture various modes of underlying data distribution, known as

“mode-collapse”, which leads to low diversity outputs generated only from few learned modes, and

(2) the lack of mechanisms to control generated outputs, hindering the controlled generation of

sequences where the user can control the model’s output to obtain data with desired properties or

attributes. In addition, despite the success of deep learning in terms of accuracy metrics, research

has shown that common deep learning models can be easily fooled by adversarial examples, which

are malicious inputs that look like the training data, but slightly perturbed, in a way imperceptible

to humans. A deep model could be attacked with such adversarial examples models, potentially

causing significant impairment to the model’s performance when deployed in the real-world. On

the other side, Generating such adversarial examples can be used to improve the models robustness,



by augmenting the training set with the generated adversarial examples. Nonetheless, generating

adversarial examples for sequences like natural language suffers from high computational complex-

ity and number of accesses needed to the attacked model, known as the number of queries. For

an adversarial attacking agent, reduced number of queries to the target model is desired to avoid

suspicion towards its activity. This thesis aims to address these three challenges in deep sequence

models: generative models diversity , controlled generation, and generating adversarial attacks.

First, we discuss our work on the mode-collapsing problem of sequence GANs, and present

our framework that employs both maximum likelihood estimation with standard GAN objective

to overcome the mode collapsing issue. We prove that our framework approximates the true

underlying data distribution, and apply the framework to natural language generation task, where

we empirically show that it achieves higher diversity scores compared to the baseline.

Second, we discuss our work on controlled sequence generation, named OptiGAN, where we

extend our previously proposed framework by incorporating rewards signal using reinforcement

learning to maximise desired domain rewards. OptiGAN is the first GAN-based generative model

for sequences that addresses the diversity issue in a principled approach. We apply OptiGAN to

two discrete and real-valued data generation tasks; natural language and air-combat trajectory

generation. We show that our model outperformed the baseline with up to 20% improvement in

the quality score, and up to 12% improvement in the diversity score. We thus show that our

model is able to achieve better desired scores than standard GAN and Reinforcement Learning

(RL) baselines, while not sacrificing output diversity, illustrating the potential usefulness of our

framework in advanced controlled generation tasks.

Finally, we propose a novel framework, Explain2Attack, as an efficient framework to generate

adversarial examples for natural language models. Explain2Attack employs interpretable models

across different domains to efficiently learn how to attack the target model. Our method achieves

or out-performs state-of-the-art methods in adversarial attack rates, yet with reduced number of

queries. With a set of experiments on different natural language sentiment classification models,

our method achieves up to 11.9% reduction in number of queries. Additionally, we show that attack

rates and number of queries can further be improved by utilizing the target model information.

This thesis contributes novel models and algorithms to key challenges and advances knowledge

in deep sequence modeling, which broadly impacts many important real-world applications.
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Chapter 1

Introduction

1.1 Motivations

Teaching machines to process and understand sequence data is a critical component for ad-

vanced artificial intelligence systems. In many artificial intelligence applications, including

natural language understanding, drug discovery, and autonomous vehicles, sequences of var-

ious data types are used to learn and execute certain tasks. For example, natural language

and speech are sequences of words or utterances, in robot motion planning, a trajectory is

an action sequence learned from experiences or sensory data. Drugs or materials are de-

signed from chemical graph structures represented as sequences, and music is composed of

a sequence of sound keynotes.

There has been extensive progress towards building machine learning models for process-

ing sequence data. However, most of these models were mainly used for classification or

prediction tasks. Until recently, sequence models lacked the ability to become creative, or to

accurately learn the given data statistical distribution and generate new similar data. They

also lacked a common sense understanding of the sequences, like natural language, where

malicious input could easily confuse a highly accurate classification model. Hence, in order

for artificial intelligence agents to be able to carry out advanced tasks, building such lacking

capabilities is crucial, and will have a significant impact to many real-world applications.

In the last decade, deep learning has become the dominant approach for efficient learning

from large amounts of data. Along with this success, more sophisticated deep models have

been developed for various tasks. Nonetheless, employing deep learning to build AI systems

1
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for previously described applications faces two difficulties; density estimation, and deep

models robustness, which are the focus of this thesis.

The problem of density estimation is concerned with learning the underlying data dis-

tribution. Once a data distribution is estimated by an appropriate model, it can then be

used to generate new samples that resemble the original data distribution. Deep gener-

ative models like Variational Autoencoders (VAE) (Kingma and Welling, 2013) or

Generative Adversarial Networks (GAN) (Goodfellow et al., 2014a) are deep density

estimators, that can be used to generate new data in advanced applications like drug dis-

covery and natural language generation. Although deep generative models were successfully

used for various computer vision tasks, its application for sequence generation remains a

challenge, specially for discrete data like natural language.

Moreover, despite the success of deep learning in terms of accuracy metrics, research has

shown that common deep learning models can be easily fooled by malicious input that looks

like the training data (Goodfellow et al., 2014b), but slightly perturbed, in a way imper-

ceptible to humans. These perturbed inputs are called adversarial examples, which can

be used to attack trained models, causing significant deterioration to the model’s perfor-

mance. Needless to say, deploying such models in real-world applications without enough

understanding of its behaviour is an issue of critical concern. For instance, a computer vision

system of a self-driving car can be easily fooled by a slight corruption in the input frame, or

an unusual visual pattern of a human dress or an object. Such vulnerability can easily lead

to confused decisions by the car’s system, and eventually to fatal accidents. Interestingly,

researchers have found that the better we understand how a model is vulnerable to different

attacks, the better we can increase its robustness. For instance, augmenting generated ad-

versarial examples in the training data can improve robustness of models (Goodfellow et al.,

2014b). Therefore, evaluating and improving the robustness of deep learning models against

adversarial inputs is essential for many real-world applications.

My thesis aims to address these deep learning difficulties and shortcomings for sequence

data, and to advance deep learning models towards aforementioned real-world applications.

Specifically, my thesis addresses three topics; generative models diversity, controlled gener-

ation, and generating adversarial attacks on sequence models.

� Generative Models Diversity. Deep generative models like Generative Adversarial
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Networks (GAN) suffer from a well-known problem of mode-collapse (Goodfellow,

2016), which causes GANs be incapable of generating diverse outputs when learning

from data with underlying multi-modal distribution. When mode-collapse happens

during training, GANs fail to learn many different modes of underlying data distri-

bution, and only learns few modes. For real-world applications like natural language

generation or drug discovery, diverse outputs are desired to help convey human-like

conversation, or explore different useful drug leads for lab experiments. Existing GAN

sequence generative models like SeqGAN and MaskGAN (Yu et al., 2017; Fedus et al.,

2018) suffer from the same mode-collpase problem, and do not offer a principled ap-

proach to overcome it. This part of the thesis addresses the diversity problem in

sequence GANs.

� Controlled Generation for Sequence Models. Existing generative models mainly

generate sequences to closely mimic the training data, without much control on what

the desired output from the model should be. Therefore, these models have been mainly

used for artistic or entertainment applications. For certain real-world applications, such

as natural language generation (Hu et al., 2017), material or drug design (De Cao and

Kipf, 2018; Guimaraes et al., 2017; Putin et al., 2018; Polykovskiy et al., 2018), or

autonomous motion planning, we are not only interested in generating data similar to

the real ones, but we need them to have specific useful properties or attributes. The

main challenge that hinders the application of generative models in such domains is the

absence of mechanisms to optimize the generated outputs according to certain metrics

or useful properties. In this part of the thesis, we address the controlled generation

issue of sequence GANs, where we seek to introduce a useful mechanism to optimize

the generative model towards generating outputs with desired properties.

� Adversarial Attacks on Sequence Models. As previously discussed, training ro-

bust deep learning models for downstream tasks is a critical challenge. Equally chal-

lenging is finding those adversarial examples that most severely damage the model’s

performance. In a typical adversarial attack setting, the model attacked with malicious

input is called the target model, while the algorithm that generates the adversarial ex-

amples is called the attacker. In general, attacks using adversarial examples can be

crafted in either white-box or black-box settings. In white-box attacks, the attacker
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has access to the target model parameters, and the gradient of these parameters is used

to craft adversarial examples (Belinkov and Glass, 2018; Wang et al., 2019; Yang et al.,

2019; Sato et al., 2018). On the other hand, black-box attacks do not have access to

the model parameters (Kuleshov et al., 2018; Gao et al., 2018; Jin et al., 2019), but

only to its outputs. In this part of the thesis, we address the problem of generating

natural language processing (NLP) adversarial attacks, and we focus on the black-box

setting, since in practice, this is the more probable scenario for AI systems deployed

in the real-world.

1.2 Aims, Approaches and Contributions

1.2.1 Aims

The fundamental aims of this dissertation are to advance the knowledge in sequence genera-

tive modeling and adversarial attacks on sequence models. In particular, there are two main

objectives:

� Developing new models to address diversity and controlled generation problems in un-

supervised sequence generation.

� Developing new algorithms to tackle the problem of generating adversarial attacks on

natural language models.

1.2.2 Approaches

The different approaches we propose towards achieving the presented objectives above fall

into three topics. Below we describe briefly these topics and the proposed approaches.

1.2.2.1 Adversarial Autoregressive Network (ARN) for Diverse Sequence Gen-

eration

Existing GANs for sequence generation (Yu et al., 2017; Fedus et al., 2018) suffer from the

mode-collapse issue. Because of this problem, the GAN generator model tends to generate

samples that lack diversity, learned from few modes of training data, ignoring other modes

that were missed during training. There are different reasons that contribute to this problem
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(Goodfellow, 2016), including; i) the problem of catastrophic forgetting, a well-known prob-

lem of deep neural networks, where the network tends to forget previously learned tasks, ii)

the GAN training procedure, and iii) the nature of GAN objective function used in prac-

tice. In this part of the thesis, we address the problem of diversity and mode-collapse from

the angle of GAN objective function. In details, we change the standard GAN objective

to maximize the log-likelihood of data and minimize the Jensen-Shanon divergence between

data and model distributions, simultaneously. This way, we encourage a balance between

the “mode-seeking” behaviour of GAN and the “mode-covering” behavior of maximum like-

lihood estimation.

Furthermore, in order to incorporate compressed latent representation in the generative

model, we introduce a latent variable at the first token, and maximize its variational lower

bound. Incorporating a latent space in the generative model allows learning high level

representations from the input into a smaller more abstract latent space. This can be later

helpful in controlling the generation process through changing/fixing specific factors of the

latent space according to the desired outcome . While our work is demonstrated with discrete

data, it can be straightforwardly adopted for continuous data.

1.2.2.2 Goal-Oriented Sequence Models for Controlled Generation

To realize the full potential of generative models in real-world applications, generative mod-

els need to have mechanisms to optimize the generated outputs according to certain metrics

or useful properties. In this part of the thesis, we aim to incorporate a controlling mech-

anism that allow controlled generation for sequence GANs. We propose to incorporate an

optimisation mechanism that can be given explicit scores or metrics that need to be opti-

mized by the generative model. This capability can be then used in applications like natural

language generation or autonomous vehicles to allow the generative model to achieve the

best possible scores for natural language realism or motion trajectory safety or maneuvering

advantage. One of the well-established frameworks to achieve for this purpose is Rein-

forcement Learning (RL). RL is sequential decision optimisation framework, that can

learn suitable policies to maximize desired domain rewards. However, through various ex-

periments, we show that applying pure RL techniques or RL-based GANs (Yu et al., 2017;

Fedus et al., 2018) for sequence generation suffers from severe mode-collapse problem, that
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makes the optimisation framework moves away from the true data distribution. To address

this key problem, we extend our model from first part (ARN) by incorporating an additional

RL optimisation objective. This reward is intended to be chosen by the user to encourage

model optimisation towards certain properties or attributes, according to the desired task of

the model. By combining both GAN and RL in a simple and general framework, we achieve

both the addition of a controlling mechanism to the generative model, while preserving the

training of the sequence GAN to stay close to the true data distribution. We name our

proposed framework OptiGAN.

We demonstrate the performance of OptiGAN through comprehensive experiments in

two applications: text generation (discrete data) and air combat trajectory generation (real-

valued data). For text generation task, we aim to generate sentences resembling real sen-

tences in a given text corpus, while optimizing the BLEU (Papineni et al., 2002) score for

obtaining better quality natural language sentences. For aircraft trajectory generation task,

we aim to generate a trajectory plan for air-combat maneuver scenario between two aircraft

and a certain engagement score, which reflects the tactical quality of aircraft trajectories in

an air combat.

1.2.2.3 Black-Box Adversarial Attacks on Sequence Models

In this part of the thesis, we address the problem of generating attack on natural language

classification task in the black-box setting. Typical classification models such as deep neural

networks (DNN) output a probability distribution of their input belonging to each target

class. Usually, the final label of the model is decided to be the one with the maximum

probability. Hence, a classification model could be fooled if the confidence of the output

probability is affected by a malicious input, switching the maximum probability to another

incorrect target class. The key strategy used to generate adversarial text in existing methods

is to try to replace few important words in an input sentence with synonyms such that its

meaning remains the same. The classification model is then queried with these perturbed

sentences to find out which ones successfully change the output label. Existing state-of-the-

art models have different ways to search for most important words to replace (Jin et al., 2019;

Ren et al., 2019; Gao et al., 2018), but the common intuition is to compute the importance

score for each word as a function of the probability output of target model. This means
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that, for each word in a sentence, they query the target model to retrieve an importance

score for this particular word. This word by word querying of the target model is costly in

both computational complexity and number of queries. For real world scenarios, the number

of queries is critical, where less queries are desired to avoid suspicion towards an attacking

agent.

We propose a more efficient approach to the word importance ranking problem. In-

stead of searching for important words to be perturbed by querying the target model, we

use interpretable models across domains to learn word importance scores. The key idea

is to replace the need to querying the target model by learning a similar substitute model

with similar domain data. Then, this trained substitute model can be used to generate

word importance scores for the targeted model. Therefore, our novel framework, named

Explain2Attack, potentially eliminates a significant query and running time complexity from

the attacking procedure. We conduct extensive experiments on attacking state-of-the-art

models using novel framework, where we designed set of experiments to evaluate the query

efficiency and quality of the framework compared to the competitor baseline.

1.2.3 Summary of Contributions

This thesis contributes novel learning methods through extensive experiments to key issues

in deep sequence modeling:

� We propose a new generative framework for sequence data called Adversarial Auto-

regressive Networks (ARN) to address the problem of low output diversity in sequence

GANs. By changing the training objective of standard GANs in a principled way, we

prove that ARN approximates the true underlying data distribution. In natural lan-

guage generation task, we conducted experiments to compare ARN to existing GAN

sequence generation baseline, and we empirically show that ARN achieves higher di-

versity scores compared to the baseline.

� Unlike existing unsupervised sequence generation GANs for discrete data, ARN in-

corporates a latent space through variational lower bound on the first token. This

capability helps make ARN useful for applications where high level representations

from the data can be learned. These learned representations can then be used for

controlling the generated outputs through changing/fixing specific factors of the latent
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space according to the desired outcome (e.g. generating natural language sentences

with a certain sentiment or tense, or generating chemical molecules that contain de-

sired properties).

� We propose a novel deep generative model, OptiGAN, that employs reinforcement

learning as a control mechanism to maximize desired domain rewards. OptiGAN is

specifically useful for controlled generation applications, where the model is required

to maximize certain score or metric for its generated output (e.g. generating a chem-

ical molecule with high solubility, activity and ease of synthesis). OptiGAN benefits

from the diversity improvement used in our first model, Adversarial Auto-regressive

Networks (ARN), where it is trained with the same improved objective function. Via

comprehensive experiments in two different tasks, we evaluate both the diversity and

optimized scores of generated outputs from OptiGAN against other sequence gener-

ative models. We found that OptiGAN achieves higher scores than baseline models

aided by the RL component, while preserving the diversity of generated outputs.

� To the best of our knowledge, OptiGAN is the first GAN controlled generative model

for sequences that addresses the diversity issue in a principled approach. OptiGAN

combines the benefits of GAN and RL policy learning, while avoiding their mode-

collapse and high variance drawbacks.

� With comprehensive studies, we empirically show that if only pure RL is applied to

maximize a score of interest, that the realism of the output might be sacrificed for the

sake of superficially obtaining higher scores. For instance, in the case of text generation,

the model was able to cheat the selected quality score by generating sentences in which

few words are repeated all the time. This shows that combining a GAN-based objective

with RL encourages the optimisation procedure of RL to stay close to the true data

distribution.

� We propose a novel adversarial attacks framework, Explain2Attack, an efficient frame-

work to generate black-box adversarial attacks on natural language models. Ex-

plain2Attack is able to achieve or out-perform state-of-the-art methods in attack rates,

yet with reduced number of queries, where the number of queries is of critical concern

for an attacking agent. Moreover, our framework scales significantly better in terms
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of queries with the length of input sequences. To the best of our knowledge, Ex-

plain2Attack is the first framework that learns word importance scores, instead of

searching for them using traditional expensive procedures. Our framework advances

the state-of-the-art in this area, where computationally expensive word ranking pro-

cedures are not needed any more to generate successful adversarial attacks.

1.3 Thesis Structure

The remaining part of this thesis is structured as follows:

� Chapter 2: Background. We briefly present the essential background that lays the

foundations for all our work in this thesis.

� Chapter 3: Adversarial Autoregressive Networks. In this chapter, we discuss our work

on the first topic to address diversity issue in generative sequence models.

� Chapter 4: Goal-Oriented Controlled Generation. We discuss our work on controlled

generation for sequence models using reinforcement learning.

� Chapter 5: Adversarial Attacks via Cross-Domain Interpretability. We present our

work on learning substitute models and generating adversarial attacks on natural lan-

guage classification models in a black-box setting.

� Chapter 6: Learning Adversarial Attacks with Target Model Guidance. We extend our

work in Chapter 5 to employ target model outputs to improve substitute learning and

adversarial attacks on natural language models.

� Chapter 7: Conclusions and Future Work. Finally, we summarize all scientific contri-

butions of this thesis as well as potential future directions.



Chapter 2

Background

In this chapter we provide fundamental concepts behind our work. First, we describe basic

probability and information theory concepts commonly used in machine learning. Second,

we provide the basic background on deep learning, generative and sequence models relevant

to the thesis. Third, we provide an overview of reinforcement learning fundamental concepts

and approaches relevant to work in Chapter 4. Finally, we provide a formal introduction to

adversarial examples relevant to Chapter 5.

2.1 Basic Mathematical Concepts

2.1.1 Probability

A divergence in statistics between two probability distributions P and Q quantifies the

information difference between them. We define below the common divergences in machine

learning that are used throughout the thesis.

Definition 1 (Kullback-Leibler divergence). Given a random variable X and two probabil-

ity density functions (or two probability mass functions) p (X) and q (X), the Kullback-

Leibler divergence of the distribution Q from the reference distribution P is defined as:

KL (P ‖ Q) ,
∑
x∈X

p(x) log
p (x)

q (x)
= Ep

[
log

p (x)

q (x)

]
.

From the definition, we can see that KL divergence is asymmetric.

10
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Definition 2 (Reverse KL divergence). For two probability distributions P and Q, the

Reverse KL divergence is defined as:

RKL(P ‖ Q) ,
∑
x∈X

q(x) log
q (x)

p (x)
.

It is easy to see that KL(P ‖ Q) 6= RKL(P ‖ Q). In many machine learning algorithms,

either KL or RKL are used as the optimisation objective, where one distribution is the

empirical data distribution, and the other is the model distribution that is desired to be

learned .

Definition 3 (Jensen-Shannon divergence). The Jensen Shannon divergence between two

distributions P and Q is defined as:

JS(P ‖ Q) ,
1

2
KL

(
P ‖ 1

2
(P +Q)

)
+

1

2
KL

(
Q ‖ 1

2
(P +Q)

)
.

Lemma 4 (Jensen’s inequality). If p is a p.d.f and f is a convex function, then we have

Ep [f (x)] ≥ f (Ep [x]).

If f is concave, we have Ep [f (x)] ≤ f (Ep [x]).

The equality holds if and only if f is not strictly convex or X is constant.

A proof of Lemma 4 can be found in the solutions to Problems 6.1 (when p is a p.m.f)

and 7.5 (when p is a p.d.f) in (Steele, 2004).

2.1.2 Information Theory

Definition 5 (Shannon Entropy). For a discrete random variable X whose p.m.f is p (X),

the Shannon entropy is defined as:

H(X) , −Ep [log p (x)] = −
∑
x

p (x) log p (x) .

The differential entropy (loosely considered as the continuous counterpart of Shannon

entropy) of continuous random variable X following p.d.f f(X) is defined as:

H(X) , −Ef [log f (x)] = −
∫
f (x) log f (x) dx.



2.1. BASIC MATHEMATICAL CONCEPTS 12

Definition 6 (The Joint Entropy). For two discrete random variables X, Y , the joint entropy

is:

H(X, Y ) , −
∑
x

∑
y

p(x, y) log p(x, y).

Entropy is additive for independent random variables:

H(X, Y ) = H(X) +H(Y ) iff p(x, y) = p(x)p(y).

The conditional entropy of X given Y defined as:

H(X | Y ) , −
∑
y

p(y)

[∑
x

p(x | y) log
p(x, y)

p(y)

]

= −
∑
x

∑
y

p(x, y) log
p(x, y)

p(y)
,

which measures the average uncertainty that remains about x when y is known.

Lemma 7 (Chain rule for entropy). The joint entropy, conditional entropy and marginal

entropy are related by:

H(X, Y ) = H(X) +H(Y | X) = H(Y ) +H(X | Y ),

which means that the uncertainty of X and Y is the uncertainty of X plus the uncertainty

of Y given X.

Definition 8 (Mutual Information). The mutual information between X and Y is defined

as:

I(X;Y ) , H(X)−H(X | Y ),

and satisfies both equality I(X;Y ) = I(Y ;X), and non-negativity I(X;Y ) ≥ 0 properties.

It measures the average reduction in uncertainty about x that results from learning the value

of y; or vice versa, the average amount of information that x conveys about y.

The mutual information between X and Y , is also defined as the KL divergence of the

product of their marginal distributions from their actual joint distribution:

I(X;Y ) , KL
(
p(x, y) ‖ p(x) · p(y)

)
.
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Similarly, the mutual information among n random variables X1, X2, . . . Xn is

I(X1;X2; . . . ;Xn) , KL

(
p (x1, x2, . . . xn) ‖

n∏
i=1

p (xi)

)
,

which is the divergence of the product distribution from the joint distribution.

It is also easy to show that:

I(X;Y ) = H(X) +H(Y )−H(X, Y )

= H(X)−H(X | Y )

= H(Y )−H(Y | X).

Figure 2.1 shows how the total entropy H(X, Y ) of a joint ensemble can be broken down.

Figure 2.1: The relationship between mutual information, marginal entropy, conditional
entropy and mutual entropy.

2.1.3 Maximum Likelihood Estimation (MLE)

Maximum likelihood is a fundamental principle in machine learning that allows to learn

a probability distribution that approximately estimates the empirical distribution of some

training data. Formally, given a dataset D = {x1, x2, . . . , xN} consisting of a set of N

data points x, we can define a model with probability distribution Pmodel, parameterized by

some parameters θ, that approximately estimates the empirical data probability distribution

Pdata. We then refer to the likelihood as the probability that the model assigns to training

the dataset D. Maximum likelihood simply means to find the optimal parameters θ∗ for
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Pmodel that maximize its likelihood on the training data :

θ∗ = argmax
θ

N∏
i=1

pmodel (xi; θ) .

Because of the numerical problems of decimal operations in digital computers, such as

underflow resulting from multiplying together several very small probabilities, this compu-

tation is easier to do in the log space. The likelihood computed in the log space is called the

log-likelihood , where a sum is computed rather than a product over probabilities, which is

less prone to numerical problems:

θ∗ = argmax
θ

N∑
i=1

log pmodel (xi; θ) .

Since the maximisation procedure does not change when the cost function is multiplied

by a constant, the inner optimisation function can be divided by the number of points N , and

it then becomes an expectation with respect to the empirical data distribution Pdata (under

the assumption that the data points are independent and identically distributed (i.i.d.)):

θ∗ = argmax
θ

1

N

N∑
i=1

log pmodel (xi; θ) = argmax
θ

E
x∼pdata

[log pmodel (x; θ)] . (2.1)

Lemma 9. Maximizing Maximum Likelihood corresponds to Minimizing KL Divergence be-

tween Pdata and Pmodel

Proof. Minimizing the KL divergence between Pdata and Pmodel is expressed as :

θ∗KL = argmin
θ

KL (Pdata ‖ Pmodel)

= argmin
θ

Ex∼Pdata

[
log

pdata(x)

pmodel(x; θ)

]
= argmin

θ
Ex∼Pdata

[log pdata (x)− log pmodel (x; θ)]

= argmin
θ

Ex∼Pdata
[log pdata (x)]− Ex∼Pdata

[log pmodel (x; θ)]

= argmin
θ

H (Pdata)− Ex∼Pdata
[log pmodel (x; θ)] ,
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where that the last line contains the empirical distribution entropy H(Pdata), which does not

depend on the parameters θ being optimized. Hence, the entropy term can be discarded and

the optimal parameters under KL minimisation becomes:

θ∗KL = argmin
θ

− Ex∼Pdata
[log pmodel (x; θ)]

= argmax
θ

Ex∼Pdata
[log pmodel (x; θ)] ,

which is the same as the maximum likelihood estimation in Eq.(2.1).

2.2 Deep Learning

In the last decade, deep learning has become the dominant approach for effectively learning

from data in real-world applications on large scale. This is due to the nature of neural

networks as universal function approximators (Hornik et al., 1989), which means that

given two independent variables x and y related with some arbitrary unknown function

f(x), there always exists a neural network fθ is parameterized by some parameters θ that

can closely approximate f . The closeness of this approximation depends on the probability

distribution of the data and the architecture and depth of the neural network.

Recently there has been increased research activity to discover the most suitable net-

work architectures for different data types. For example, Convolutional Neural Network

(CNN) (Fukushima and Miyake, 1982; LeCun et al., 2015) is the standard state-of-the-art

architecture for computer vision tasks, while auto-regressive and recurrent architectures like

Recurrent Neural Networks (RNN) (Rumelhart et al., 1986; LeCun et al., 2015; Hochre-

iter and Schmidhuber, 1997) are most suitable for sequential and time series tasks such as

Natural Language Processing (NLP). Attention mechanisms used in the recent Transformer

(Vaswani et al., 2017) architectures are increasingly successful in both sequential and vision

tasks. In this section, we briefly describe the main deep neural network architectures and

models commonly used for generative and sequential tasks.
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2.2.1 Deep Generative Models

Deep generative models learn both observed and target variables, by estimating a joint

probability distribution over these variables. For input data x and associated set of labels y,

a generative model learns the joint probability distribution p(x, y) which allows the model

to generate new data that follow the same distribution of training data. Generally, in

unsupervised deep generative models, input data x serves as both the observed and target

variables for the model.

There are mainly two different types of deep generative models, where they differ in the

way the estimate data probability density:

� Explicit tractable density models. These models try to explicitly maximize the

log-likelihood of the data probability density function (Uria et al., 2016; Germain et al.,

2015) . Deep neural autoregressive models like PixelRNN, PixelCNN, and WaveNet

(Van Oord et al., 2016; Oord et al., 2016b;a) are recent successful examples of this

type of models for sequential data. These models are flexible and powerful in the sense

that they can model conditional relations on the level of components of individual

data points, where each component can be conditionally defined given the previous

components. However, these models do not incorporate latent variable learning, which

allows learning higher representations of the data, that can be later used to control the

generation process to produce specific desired features.

� Approximate and implicit density models. These models like Variational Au-

toencoders (VAE) (Kingma and Welling, 2014) and Generative Adversarial Networks

(GAN) (Goodfellow et al., 2014a) try to approximate to the log-likelihood of the den-

sity function or indirectly estimate the probability distribution instead of explicitly

targeting to estimate it. Unlike explicit density models, GANs and VAEs employ la-

tent variables or noise space that can capture underlying meaningful representations

of the data. GANs are particularly very efficient for high dimensional data like images

(Zhang et al., 2019; Brock et al., 2019; Hoang et al., 2018; Radford et al., 2015), and

provide very good sample quality compared to other generative models.

In this thesis, we mainly focus on the second family of generative models, like GANs and

VAEs, where we can leverage the latent representation space for the sake of introducing a
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richer and controllable mechanism for sequence generation.

2.2.1.1 Autoregressive and Recurrent Sequence Models

Neural autoregressive models are generative neural networks in which training and sampling

are done in an autoregressive process. Autoregression means that during training or sam-

pling, the current output is used as an input for the network to train or compute the next

output, and this process continues starting from the first sample till the last sample in the

sequence. Recently, neural autoregressive models received increased focus and several new

models were introduced (Germain et al., 2015; Van Oord et al., 2016) that led to state-of-

the-art performance in many tasks including image and speech generation (Van Oord et al.,

2016; Oord et al., 2016b;a).

The basic idea of autoregressive modeling is the conditional modeling of data. The model

predicts the current output conditioned on past outputs. The joint probability of an input

sequence X of length T can be described using the chain rule as:

p (X) = p (x1, ... , xT )

= p (x1) p (x2|x1) ... p (xT |x1:T−1)

= p (x1)
T∏
t=2

p (xt|x1: t−1) ,

where xt is the token at time t of the sequence X. In this setting, the data likelihood is

described by the product of conditionals p(xt |x1, ..., xt−1) of all input data. This way each

data point follows a conditional distribution over previous points in the chosen order.

Because of the complexity of modeling all these conditional probabilities for every point,

some autoregressive models might use an additional learning signal called the “hidden-state”

(h) . The hidden state is used to approximate lossy history of previous points, thus the

likelihood under an autoregressive model becomes:

p(X) = p (x1) p (x2|h1) ... p (xT |ht−1)

ht = f (ht−1, xt) ,
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where f is a differentiable function, and h0 is an initial state. This allows the network to

model the sequential dependencies between data tokens. The training procedure is done

sequentially by showing the network the inputs in order starting from the first point to the

last. The network then captures the conditional distributions of the inputs inside its internal

hidden layers structure. The Recurrent Neural Networks (RNNs) and Long-Short Term

Memory (LSTMs) (Rumelhart et al., 1986; LeCun et al., 2015; Hochreiter and Schmidhuber,

1997) are standard examples of autoregressive models with recurrent connections. In this

thesis, we mainly use recurrent models for developing the deep sequence models as they are

simple to understand, well-established and easy to use compared to recent non-recurrent

models. However, as we will discuss later in Chapters 3 and 4, our developed frameworks

are general and can be adapted for use with other non-recurrent architectures.

Recurrent Neural Networks (RNNs)

Recurrent neural networks (RNNs) (Rumelhart et al., 1986; LeCun et al., 2015) are feedfor-

ward neural networks with the addition of hidden layer connections that connect adjacent

time steps, introducing a notion of time or sequence to the model. Figure 2.2 shows this

architecture folded in time, where at time t, nodes with recurrent connections receive in-

put from the current data point xt and also from hidden node values ht−1 in the network’s

previous state.

Figure 2.2: A recurrent neural network, folded in time. Uand W are the weight matrices for
input to hidden and recurrent hidden to hidden respectively
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The output yt at each time t is calculated given the hidden node values ht at time

t. Input xt−1 at time t − 1 can influence the output at time t and later by through the

recurrent connections. The forward pass for the hidden layer in a simple recurrent neural

network is:

ht = σ (Wht−1 + Uxt)

yt = tanh (V ht) ,

where U is the matrix of weights between the input and the hidden layer, W is the matrix

of recurrent weights between the hidden layer and itself at adjacent time steps, and V is the

matrix of weights between hidden layer and output. The network can be interpreted as a

deep network with one layer per time step and shared weights across time steps. It is then

clear that the unfolded network can be trained across many time steps using backpropagation

through time (BPTT) (Werbos, 1990).

Learning with recurrent networks has long been considered to be difficult because of the

challenge of learning long-range dependencies, as described in (Bengio et al., 1994; Hochreiter

et al.). The problems of vanishing and exploding gradients occur when backpropagating

errors across many time steps, where the gradient value either diminishes to a very small

value or explodes to a very large value during training.

Long-Short Term Memory (LSTM)

Long Short-Term Memory, or LSTM (Hochreiter and Schmidhuber, 1997), was introduced

in order to overcome the problem of vanishing gradients. This model resembles a standard

recurrent neural network with a hidden layer, but each ordinary node in the hidden layer is

replaced by a memory cell as shown in Figure 2.3. Each memory cell contains a node with a

self-connected recurrent edge of fixed weight one, ensuring that the gradient can pass across

many time steps without vanishing or exploding.
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Figure 2.3: The Long-Short Term Memory (LSTM) cell. (Géron, 2017)

The term “long short-term memory” comes from the following intuition. Simple recurrent

neural networks have long-term memory in the form of weights. The weights change slowly

during training, encoding general knowledge about the data. They also have short-term

memory in the form of temporary activations, which pass from each node to successive

nodes. The LSTM model introduces an intermediate type of storage via the memory cell. A

memory cell is a composite unit, built from simpler nodes in a specific connectivity pattern,

with the novel inclusion of multiplicative nodes, represented in diagrams by symbol ⊗. The

key to LSTMs is the cell state, the horizontal line running through the top of the diagram.

The cell state can be seen as a conveyor belt. It runs straight down the entire chain, with only

some minor linear interactions, which makes it’s very easy for information to just flow along

it unchanged. This gives LSTM the ability to remove or add information to the cell state,

carefully regulated by structures called gates. LSTM networks have been shown to learn

long-term dependencies more easily than the simple recurrent architectures on sequence

processing tasks with state-of-the-art performance (Graves, 2012; 2013; Sutskever et al.,

2014).

2.2.1.2 Latent Space Models

Generative Adversarial Networks (GAN) The basic idea of Generative Adversarial

Networks (GAN) (Goodfellow et al., 2014a) is the adversarial training between two players,

as shown in Figure 2.4. The goal of the first player, the generator G , is to get very good at
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generating data that is very close to the real data that comes from real distribution pd(x).

The goal of the second player, the discriminator D, is to distinguish real data from fake data

generated by the generator. The standard GAN objective to optimize is the minimax game

between D and G:

min
G

max
D

(
E

x∼pd
[logD (x)] + E

z∼pz
[log (1−D (G (z)))]

)
, (2.2)

where z is the random noise input to G, and pz is the prior distribution of the z. After the

training is finished, the generator is used to generate data from any random input z.

Figure 2.4: The GAN Model. G is the generator, and D is the discriminator

Variational Autoencoders (VAE) Variational Autoencoders (VAEs) (Kingma and Welling,

2014) approximate the maximum log-likelihood and can be trained using gradient descent.

VAEs are trained to maximize a variational lower bound L on log-likelihood:

L(x ; θ) = E
z∼q(z|x)

[log pmodel(x|z)]−KL (q(z|x) ‖ pmodel(z)) ,

where q(z|x) is a posterior and pmodel(z) is a prior distribution for the latent variable z. The

first term is the data reconstruction likelihood. The second term works a regularizer to make
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q(z|x) and pmodel(z) close to each other. pmodel(z) can be chosen as N (0, I). pmodel(x|z) is

the decoder, modeled as a neural network that resembles reconstruction of x from z sampled

from the learned q(z|x).

The latent variable The variable z is called a “latent” variable or code because it can

capture implicit high level information or representations from the data. Such represen-

tations might be the face rotation on one dimension of the latent variable, while another

dimension might capture the emotional expression as shown in Figure 2.5. Such latent vari-

able space is useful for controlling the output of the decoder towards specific attributes like

certain rotation and emotion by navigating or interpolating through the multi-dimensional

space of z.

Figure 2.5: Latent space representation learned by VAE. Each image corresponds to a differ-
ent choice of code z on a 2-D uniform grid. (Left) The 2-D map of the faces. One dimension
that has been discovered (horizontal) mostly corresponds to a rotation of the face, while the
other (vertical) corresponds to the emotional expression. (Right) The 2-D learned latent
map of MNIST. (Goodfellow et al., 2016)

2.2.2 Sequential Deep Generative Models

Deep generative models including variational autoencoders and generative adversarial net-

works where successfully used for many computer vision tasks and with visual data like
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images (Radford et al., 2015; Gulrajani et al., 2017; Zhang et al., 2019; Razavi et al., 2019).

However, less attention was directed towards using VAEs and GANs for sequential data.

To begin with, the architecture for these networks depended mainly on feed-forward lay-

ers like convolutional layers, which are originally designed for computer vision tasks, and

do not necessarily perform well on sequence data. Sequence data like natural language or

time series data have an additional inter-dependency between data points across time steps.

Therefore, an appropriate type of layers like recurrent or attentional layers can be a more

suitable building block for sequential generative models. In addition, for the particular case

of discrete sequence data like natural language, applying standard VAEs and GANs faced

major difficulties regarding gradient computation through the network parts and hyperpa-

rameters tuning. These shortcomings motivated research into developing sequential variants

of VAEs and GANs that can be reliably used with sequence data including natural language

or chemical and biological sequences.

With the increased attention for developing better sequential generative models, differ-

ent approaches have been developed to achieve this goal. In general, the current sequential

generative models are either based on the variational approximation principle of VAE or on

adversarial training framework of GAN. Models based on variational approximation (Chung

et al., 2015; Le et al., 2018a; Fraccaro et al., 2016; Roberts et al., 2018) are mainly based

on recurrent autoregressive models like Long Short-Term Memory (LSTM) (Hochreiter and

Schmidhuber, 1997), incorporated into VAE training framework. These models were applied

to many sequence generating tasks including handwriting and music generation. However,

training VAE based models with autoregressive networks suffers from the problem of “pos-

terior collapse” (He et al., 2019), where the latent variables are often ignored, especially

when trained for discrete data like text (Bowman et al., 2016). In addition, the utilisation

of learned latent space for controlled reconstruction is relatively less studied for sequential

data.

Sequential GAN-based models, on the other hand, and can be grouped into two main

approaches; policy gradient models and fully differentiable models. The first group of models

makes use of reinforcement learning techniques like policy gradients (Williams, 1992) (see

Section 2.3.4). In these models (Yu et al., 2017; Fedus et al., 2018), the discriminator network

is disconnected from the generator network, while policy gradients are used to estimate a

reward gradient from the discriminator back to the generator. The main issues with these
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techniques is that they are susceptible to training difficulties of standard policy gradients

methods including high variance and less sample inefficiency. In addition, they do not

incorporate latent space learning, hence it does not allow learning higher representations

of the data that can be later used to control the generation process to produce specific

desired features. The other group of models employs a fully differentiable GAN network

(Nie et al., 2019; Chen et al., 2018b; Zhang et al., 2017; Kusner and Hernández-Lobato,

2016). These models make use of Gumbel-Softmax trick (Jang et al., 2016b; Maddison

et al., 2016b) to overcome the non-differentiability problem for discrete data, which allows

the back-propagation from the discriminator back to the generator.

As we will explain later in Section 3.2.2, GAN-based models usually suffer from the

“mode-collapsing” problem, which causes GAN to be incapable of generating diverse samples

from the given latent codes. Although there were some empirical efforts to address this

problem in some of these models (Chen et al., 2018b; Nie et al., 2019), the mode-collapsing

issue has not been addressed yet in a principled way in these sequential models.

2.2.2.1 Controlled Sequence Generation

In many applications, we are not only interested in generating data similar to the real

ones, but we need the outputs to have specific useful properties or attributes. For example,

in molecular or drug design, certain desired useful properties in the outputs include high

solubility and ease of synthesis (De Cao and Kipf, 2018; Guimaraes et al., 2017; Putin et al.,

2018; Polykovskiy et al., 2018). In music generation, we might want the music to have specific

pitch or tempo, or in text applications, the user might be interested in generating sentences

according certain sentiment or tense (Hu et al., 2017). Therefore, generative models need to

incorporate a mechanism to control the outputs of the generator towards achieving certain

desired score or including useful properties. Several methods has been developed to solve

this problem, where they can mainly categorized under two approaches: control by utilizing

the latent variable space, or through incorporation of goal function optimisation.

Controlling through the Latent Space Latent space can be utilized as a controlling

space. In such latent variable models, the learned space can learn meaningful hidden repre-

sentations of the data (Radford et al., 2015). These representations might represent specific

attributes learned from the data, like rotation(angle), age(young/old), emotional expression
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or sentiment (sad/happy), or tense (past/present). This way, by navigating through the

space of each learned attribute, an output with specific desired attributes can be generated.

The more this learned latent space is “disentangled” into distinct meaningful factors, the

more the generation can be fully controlled. This happens when each factor (a dimension or

group of dimensions of the latent variable) is responsible for a specific meaningful attribute

of the data. A similar process is shown in Figure 2.5. However, this perfect disentangling

is challenging to achieve, since often the learned variable is less perfectly disentangled along

its dimensions, and might not be easily interpretable.

Controlling by Goal Optimisation Generation can also be controlled by optimizing

desired user-defined objectives. This way, the model is encouraged to be trained to best

achieve these desired objectives. For example, reinforcement learning techniques like policy

gradients (Williams, 1992) can be incorporated into the model as an optimisation mechanism.

This allows using objectives like BLEU (Papineni et al., 2002) score for text generation or

molecular diversity reward (Putin et al., 2018) to encourage diverse molecules output in drug

design.

However, most of the previous work address the controlled generation problem either

through using RL or by learning leveraging latent space, but not both in a combined frame-

work. This prohibits benefiting from both modes of control in a unified model. Recently,

MolGAN (De Cao and Kipf, 2018) combined the benefits of latent space GAN with RL for

drug molecular generation. Although chemical molecules can be represented as sequences,

MolGAN processes them as graphs, not sequences, where the generator generates graphs of

chemical molecules from input noise. In Chapter 4 we will describe this model in details and

discuss the differences to our work regarding sequence generation.
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2.3 Reinforcement Learning (RL)

Reinforcement learning is a general framework for solving sequential decision making prob-

lems. Most of RL problems in recent literature are mathematically formalized following the

finite Markov Decision Processes (MDPs), which involves an agent interacting with an en-

vironment over time steps through actions, state transitions, and rewards feedback. In this

section we introduce the key elements of MDPs: the returns, value functions, and Bellman

equations, as well as the main approaches to solve RL problems under this formulation.

2.3.1 Finite Markov Decision Processes (MDPs)

MDPs are meant to be a straightforward framing of the problem of learning from interaction

to achieve a goal. The learner and decision maker is called the agent . The thing it interacts

with, comprising everything outside the agent, is called the environment . These interact

continually, the agent selecting actions and the environment responding to these actions and

presenting new situations to the agent. The environment also gives rise to rewards, special

numerical values that the agent seeks to maximize over time through its choice of actions.

Figure 2.6: Agent-environment interaction in RL.

More specifically, the agent and environment interact at each of a sequence of discrete

time steps, t = 0, 1, 2, 3, . . . . At each time step t, the agent receives some representation of

the environment’s state, St ∈ S, and on that basis selects an action, At ∈ A. One time step

later, in part as a consequence of its action, the agent receives a numerical reward, Rt+1 ∈ R,

and finds itself in a new state, St+1.
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Thus the interaction sequence can be fully described by one episode (also known as

“trial” or “trajectory”) and the sequence ends at the terminal state ST :

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . , RT , ST .

This control setting was first proposed by (Bellman, 1957) and later extended to learning

by (Barto et al., 1983). Comprehensive treatment of reinforcement learning fundamentals

are provided by (Sutton and Barto, 2018).

Definition 10. A discrete time stochastic control process has the Markov property if :

� p (St+1 | St, At, . . . , S0, A0) = p (St+1 | St, At), and

� p (Rt | St, At, . . . , S0, A0) = p (Rt | St, At),

where p(.) is a probability. All states in a MDP has “Markov” property, which means that

the future of the process only depends on the current state, and the agent has no interest

in looking at the full history. That is, the future and the past are conditionally independent

given the present.

Definition 11 (Markov Decision Process (MDP)). A Markov Decision Process (Bellman,

1957) is a discrete time stochastic control process that is a 5 -tuple (S,A, P, R, γ) where:

� S is the state space,

� A is the action space,

� P : S × A → [0, 1] is the transition probability function P (St+1 = s′ | St = s, At = a)

(set of conditional transition probabilities between states), meaning the probability of

transitioning into state s′ if you start in state s and take action a,

� R : S × A × S → R is the reward function Rt = R (St = s, At = a, St+1 = s′), where

R is a continuous set of possible rewards,

� γ ∈ [0, 1) is a discount factor.

The system is fully observable in an MDP, which means that what the agents observes from

the environment is the state of the environment itself St. At each time step t, the probability
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of moving to St+1 is given by the state transition function P (St+1 | St, At) and the reward

is given by a bounded reward function R (St, At, St+1) ∈ R. This is illustrated in Figure 2.7.

𝑅(𝑆0, 𝐴0, 𝑆1) 𝑅1 𝑅(𝑆1, 𝐴1, 𝑆2) 𝑅2

𝑆1𝑆0

𝐴0 𝐴1

…  𝑆2

Figure 2.7: An illustration of a MDP. At each step, the agent takes an action that changes
its state in the environment and provides a reward.

Definition 12 (Policy). The policy is the agent’s behavior function π, that tells us which

action to take in state s. It is a mapping from state s to action a and can be either

deterministic or stochastic. In the stochastic case it is defined as:

π (a|s) = Pπ (At = a|St = s) .

Definition 13 (Return). The return is the total sum of discounted rewards going forward

starting from time step t. Formally:

Gt , Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + · · · =
T∑

k=t+1

γk−t−1Rk, (2.3)

for all time steps t < T , even if termination occurs at t + 1, where we define GT = 0. In

recursive form, Gt can be re-written as:

Gt = Rt+1 + γGt+1. (2.4)

The discounting factor γ ∈ [0, 1) penalizes the rewards in the future. According to the nature

of the problem at hand, the user might choose to give less or more weight to future rewards.

This happens through tuning the value of γ.
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2.3.2 Bellman Equations

Definition 14 (State-Value function Vπ). The state-value function Vπ measures the good-

ness of a state or how rewarding a state is by a prediction of future rewards. The state-value

of a state St = s is the expected return at time t:

Vπ(s) , E
π

[Gt | St = s] = E
π

[
T∑

k=t+1

γk−t−1Rk | St = s

]
, for all s ∈ S. (2.5)

Definition 15 (State-Action function Qπ). The state-action function Qπ measures the

goodness of taking an action a while being in state s, or how rewarding is it to take action a

in state s by a predicting future rewards. The state-action of an action At = a and state

St = s is the expected return at time t:

Qπ(s, a) , E
π

[Gt | St = s, At = a] = E
π

[
T∑

k=t+1

γk−t−1Rk | St = s, At = a

]
. (2.6)

We can recover the state-value from the action-value using:

Vπ(s) =
∑
a∈A

π(a|s)Qπ(s, a). (2.7)

Definition 16 (Bellman equation for Vπ). The Bellman equation for Vπ is a recursive formula

that expresses the relationship between the value of a state Vπ(s) and the values of its

successor states Vπ(s′) as:

Vπ(s) = Eπ [Gt | St = s]

= Eπ [Rt+1 + γGt+1 | St = s] from 2.4

=
∑
a∈A

π(a | s)
∑
s′∈S

∑
r∈R

P (s′, r | s, a) [r + γEπ [Gt+1 | St+1 = s′]]

=
∑
a

π(a | s)
∑
s′,r

P (s′, r | s, a) [r + γVπ (s′)]

= E
a∼π
s′∼P

[Rt+1 + γVπ (St+1 = s′) | St = s] , (2.8)

where s′ denotes the state obtained or transitioned into from s after taking action a.

Definition 17 (Bellman equation for Qπ). Similarly, the Bellman equation for a state-action
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pair Qπ is defined as:

Qπ(s, a) = Eπ[Gt|St = s, At = a]

=
∑
s′∈S

∑
r∈R

P (s′, r | s, a) [r + γEπ [Gt+1 | St+1 = s′]]

=
∑
s′∈S

∑
r∈R

P (s′, r | s, a) [r + γVπ (s′)] from 2.5

=
∑
s′,r

P (s′, r | s, a)

[
r + γ

∑
a′

π(a′ | s′)Qπ(s′, a′)

]

= E
s′∼P

[
Rt+1 + γ E

a′∼π
[Qπ(St+1 = s′, At+1 = a′)]

]
. from 2.7 (2.9)

2.3.3 Main Approaches

Reinforcement learning systems differ in approaches to optimize and solve based on the avail-

able information in the MDP about the environment, or the model . A model is something

that mimics the behavior of the environment, or more generally, that allows inferences to be

made about how the environment will behave (like predicting the next state and reward given

the current state and action). Reinforcement learning spans the spectrum from low-level,

trial-and-error learning to high-level, deliberative planning. Therefore, problems solved by

RL systems mainly fall in two main categories:

� model-based: in which a model of the environment is known, and is used for planning,

or deciding on a course of action by considering possible future situations before they

are actually experienced.

� model-free : where that model of the environment is not available, and the system

cannot think about how their environments will change in response to a single action.

Therefore, these methods are explicitly trial-and-error learners, as almost the opposite

of planning. The tic-tac-toe player is model-free in this sense with respect to its

opponent: it has no model of its opponent of any kind. Model-free methods rely on

interaction with the environment to learn an approximate model of the environment by

trial and error. For example, generating samples of state transitions and rewards, where

these samples are then used to estimate state-action value functions. Because a model

of the MDP is not known, the agent has to explore the MDP to obtain information.
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This induces an exploration-exploitation trade-off which has to be balanced to obtain

an optimal policy.

Figure 2.8: Relations between main RL methods

Because models have to be reasonably accurate to be useful, model-free methods can have

advantages over more complex methods when the real bottleneck in solving a problem is the

difficulty of constructing a sufficiently accurate environment model. Model-free methods

are also important building blocks for model-based methods. Figure 2.8 illustrates a higher

overview taxonomy of different RL methods. Although there are many algorithms that train

model-free RL agents, there are mainly two categories:

� Value Learning (Q-learning). Methods in this approach approximate the optimal

action-value function Q∗(s, a) by learning an approximation Qθ(s, a). A classic example

of this approach is Q-Learning and Deep Q-Learning (DQN) (Mnih et al., 2013), which

uses a neural network to learn a approximate Qθ(s, a) by optimizing parameters θ.

This optimisation is usually performed off-policy, which means that each update can

use trajectories collected by a different behavior policy, rather than that produced by

the target policy. Q-learning methods indirectly optimize for the agent performance

by learning a value Qθ that is then used for obtaining the optimal target policy. There

are many failure modes for this kind of learning, so it tends to be less stable. However,

Q-learning methods are substantially more sample efficient, because they can reuse

data more effectively than policy optimisation techniques.
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� Policy Optimisation. In this approach, methods represent a policy explicitly as

πθ(a|s) where they optimize the parameters θ by gradient ascent on a performance

objective J(πθ). Examples include Asynchronous Advantage Actor-Critic (A3C) (Mnih

et al., 2016) and Proximal Policy Optimisation (PPO) (Schulman et al., 2017). The

primary strength of policy optimisation methods is that they directly optimize the

policy. This tends to make them stable and reliable, yet they tend to require more

samples compared to value learning approaches.

Combined Policy Optimisation and Q-Learning. Recently, there has been growing

interest in policy optimisation methods because of its explicit optimisation for the agent’s

policy. However, given the strengths and weaknesses of the two main approaches of RL,

there can be a useful trade-off that carefully combine both approaches. An example of

this category is Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015), which

extends the discrete space DQN to continuous space within a policy optimisation framework.

Out of these different model-free approaches, we are mainly interested in the policy

optimisation, since it is relevant and suitable for the kind of problems we address. In the

following section, we describe the main method used in policy optimisation approach, named

Policy Gradients (PG).

2.3.4 Policy Gradients

Policy gradients (PG) are the group of methods that solve RL problems by direct optimisa-

tion of the policy. This can be done by parameterizing the policy π with parameters θ and

directly optimizing these parameters to maximize the expected future returns. The objective

function is be defined as:

J(πθ) = E
τ∼πθ

[Gt(τ)] , (2.10)

where τ is a trajectory, or an episode of T states and actions, and Gt(τ) =
∑T

k=t+1 γ
k−t−1Rk

is the accumulative future reward over the trajectory at time step t. Then, we would like to

optimize the policy π by gradient ascent:

θk+1 = θk + α∇θJ(πθ).

The gradient of policy performance, ∇θJ(πθ), is called the policy gradient. The proba-
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bility of a trajectory τ = (S0, A0, ..., ST−1, AT−1, RT ) given that actions come from πθ is:

p (τ ; θ) = ρ0(S0)
T−1∏
t=0

P (St+1 | St, At)πθ (At | St) , (2.11)

following the derivation in Appendix B, we find that the gradient ascent update can be

computed by:

∇θJ(πθ) = E
τ∼πθ

[
Gt(τ)

T−1∑
t=0

∇θ log πθ (At | St)

]
. (2.12)

More generally, the policy gradient update can be written as:

∇θJ(πθ) = E
τ∼πθ

[
Φt

T−1∑
t=0

∇θ log πθ (At | St)

]
, (2.13)

where Φt could be one of many function choices for exact or estimated future returns. In

the next section, we discuss in details this general form and the different choices for Φt.

2.3.4.1 REINFORCE Algorithm

A well-known policy gradients algorithm is REINFORCE, which relies on estimating returns

by Monte-Carlo methods (MC) to find the optimal policy π. The algorithm uses episode

samples to update the policy parameter θ. Therefore, Gt is measured from real sample

trajectories and used to update the policy πθ using policy gradient Eq. (2.12). Algorithm 1

describes REINFORCE procedure.

Algorithm 1: REINFORCE algorithm

Initialize the policy parameters θ at random
Generate a trajectory (an episode) on policy
πθ : S0, A0, R1, S1, A1, . . . , ST−1, AT−1, RT .

for each step of episode t = 0, 1, . . . , T − 1 do

Gt ←
∑T

k=t+1 γ
k−t−1Rk

Update πθ parameters by: θ ← θ + αGt∇θ log πθ(At|St; θ)
end
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2.3.5 Reducing Policy Gradients Variance

In practice, REINFORCE suffers from high variance for gradient estimates due to Monte

Carlo sampling. As we will see later in Chapter 4, this variance affects the performance of

deep learning models that are trained to learn the policy π to a specific task. By analyzing

the variance of the policy gradients we find that it is proportional to the sum of cumu-

lative returns of the chosen trajectories (please refer to (Takeshi, 2017) for more detailed

derivation):

Var (∇θJ (πθ)) = Var

(
Eτ

[
Gt(τ)

T−1∑
t=0

∇θ log πθ(At | St)

])

= Var

(
Eτ

[
T−1∑
t=0

∇θ log πθ(At | St)Gt(τ)

])

≈
T−1∑
t=0

Eτ
[(
∇θ log πθ(At | St)Gt(τ)

)2]

≈
T−1∑
t=0

Eτ
[(
∇θ log πθ(At | St)

)2]
Eτ
[
Gt(τ)2

]
. (2.14)

From Eq.(2.14) we find that the term Eτ [Gt(τ)2] might cause an increase in the variance

since it follows the randomness of the sampled trajectory τ from a stochastic policy π and

the corresponding rewards. This means that if during training the samples trajectory yielded

very highly positive or negative rewards, then the variance would increase.

One of the ways to reduce this variance is to subtract an arbitrary baseline b(St) from

the returns Gt(τ). The main intuition is that if an agent gets the rewards/return that it

expected, it should “feel” neutral about it (getting a zero value in the
(
Gt(τ)− b(St)

)
term,

thus zero gradient). Formally, this subtraction does not change the original policy gradients

expectation since it is an unbiased estimate of the policy gradient.

∇θJ(πθ) = E
τ∼πθ

[
(Gt(τ)− b(St))

T−1∑
t=0

∇θ log πθ(At | St)

]
. (2.15)

Lemma 18. The policy gradient with baseline b(St) is an unbiased estimate of the standard

policy gradient

Proof. For all probability distributions:
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∫
x

πθ(x) = 1.

Take the gradient of both sides of the normalisation condition:

∇θ

∫
x

πθ(x) = ∇θ1 = 0.

Use the log derivative trick to get:

0 = ∇θ

∫
x

πθ(x) =

∫
x

∇θπθ(x) =

∫
x

πθ(x)∇θ log πθ(x)

∴ 0 = E
x∼πθ

[∇θ log πθ(x)] .

Substituting x with At | St:

E
at∼πθ

[∇θ log πθ(At | St)] = 0.

For any function b (which we call a baseline) which only depends on state St:

E
at∼πθ

[∇θ log πθ(At | St) b(St)] = 0. (2.16)

From Eq. (2.12) and rearranging we can write:

∇θJ(πθ) = E
τ∼πθ

[(
Gt(τ)− b(St)

) T−1∑
t=0

∇θ log πθ(At | St)

]
.

Where we can see that the expectation for the last equation will still be equal to the

original policy gradient expectation using Eq. (2.16).

Similarly, the variance for the REINFORCE with baseline b(St) can be approximated

following (2.14) as:

Var (∇θJbaseline (πθ)) ≈
T−1∑
t=0

Eτ
[
(∇θ log πθ(At | St)) 2

]
Eτ
[
(Gt(τ)− b(St))2

]
, (2.17)

where we can see that the new term Eτ
[
(Gt(τ)− b(St))2

]
allows for choosing a value for
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b(St) that can reduce the variance. For example, choosing b(St) to be the expected value of

Gt(τ) is the optimal choice. In fact, practitioners usually try to make b(St) ≈ E [Gt(τ)] to

approximate the expected return starting at time t. As previously mentioned in (2.13), the

general equation for REINFORCE can be generalized as :

∇θJ(πθ) = E
τ∼πθ

[
Φt

T−1∑
t=0

∇θ log πθ(At | St)

]
.

Under this general formulation, Φt might be one of the following functions:

1. Gt(τ), the cumulative rewards at time t

2. Gt(τ)− b(st), where b(st) can be:

(a) 1
N

∑
NGt(τN), the sample mean of N trajectory rollouts returns at time t.

(b) Vπ(st), the state-value function at time t. In practice, Vπ can be learned through

a neural network Vφ that is trained concurrently with the policy network training

πθ.

3. Qπ(st, at), the state-action value function.

4. Aπ(st, at) = Qπ(st, at) − Vπ(st), where Aπ(st, at) is called the advantage function. In

this general form, the advantage function can be chosen among a family of estimators

(Schulman et al., 2016) according to the method used to learn the state-value function.

2.4 Adversarial Examples

With the emergence of deep learning as an efficient learning technology for large data, a

fundamental issue of this type of learning has been discovered, which is the deep learning

models vulnerability to adversarial examples . Adversarial examples are malicious inputs

(e.g. images in the case of image classification model) that look like the original training

data, but slightly perturbed to cause an imperceptible change from the human perspective.

Researchers have found (Szegedy et al., 2013; Goodfellow et al., 2014b) that deep neural

networks easily misclassify these perturbed images that look indistinguishable to “normal”

images to the human eye. Consequently, the same phenomena has been found to be true

for other types of input data including sequences or natural language. This behaviour has
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important implications for safety and security if deep neural networks are to be deployed in

the real world (e.g., in autonomous driving where images come from a camera sensor).

Formally, for a certain classification task, a deep neural network model fθ is parameterized

by θ. Given a data point x and a corresponding label y, we want to find an optimal θ so

that fθ(x) produces probabilities for all classes from its output layer, where the maximal

component corresponds to the correct class index from y. Adversarial examples, denoted as

x̃, can be written as x̃ = x+ η, where η is a small perturbation that causes an imperceptible

change to the image, as judged by the human eye. Yet, despite the small perturbation, fθ(x̃)

may behave very differently from fθ(x), and place the highest output class probability to

the wrong class.

2.4.1 Crafting an Imperceptible Attack

In order to craft an imperceptible attack, an appropriate value for η needs to be computed.

According to (Goodfellow et al., 2014b), the appropriate value for η should be bounded by

‖η‖∞ < ε, and ε > 0 is small enough to be discarded by the data source (e.g. the smallest

precision of possible image features in digital images). The effect of choosing η can be shown

on a simple weight-input dot product:

wᵀx̃ = wᵀx+ wᵀη

= wᵀx+ wᵀε · sign(w),

where w is a weight vector, sign(w) is the sign (−1 or +1) of the weight vector w, and

x̃ = x + η is an adversarial example. The main intuition here is that when using the

perturbed input x + η the weights of fθ are grown by a value that should not cause a

change to output class label on its own, but only with high input dimensions. By choosing

η = ε · sign(·), (Goodfellow et al., 2014b) used this intuition to find a cheap and reliable

method for generating adversarial examples called Fast Gradient Sign Method (FGSM):

1. Let J(θ, x, y) denote the cost (or loss) of training the neural network model.

2. The optimal perturbation η based on the gradients is η = ε · sign (∇xJ (θ, x, y)). Then
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to produce an adversarial example x̃, use this equation:

x̃ = x+ ε · sign (∇xJ (θ, x, y)) .

FGSM was the first simple method to craft adversarial examples for image classifiers. Since

then, more advanced and general methods where developed like Projected Gradient Descent

(PGD) (Madry et al., 2018), where instead of computing the perturbation in only one step

as FGSM, a maximisation procedure is used to find the best possible perturbation x̃ around

point x that achieves the highest loss:

max
‖x̃−x‖∞≤ε

J (θ, x̃) .

Methods like FGSM and PGD are known as “white-box attacks”, where they can “look-

into” the model internals and have access to its parameters θ to compute the gradient with

respect to input x. However, in a practical setting, the more probable scenario is that fθ

will be deployed as a trained black-box function. This means that other types of methods

are needed to deal with these practical scenarios.

2.4.2 Types of Adversarial Attacks

In general, attacks using adversarial examples are either white-box or black-box attacks:

� White-box attacks. The attacker has access to the target model parameters θ,

where computing the gradients of these parameters is possible, and are used to craft

adversarial examples (Goodfellow et al., 2014b; Madry et al., 2018).

� Black-box attacks. The attacker has no (or little) information about the model

parameters. In particular, it does not has access to the model parameters (Papernot

et al., 2017). This disallows the computation of gradients of a loss function. However,

the attacker can still query the model by providing the data to the model and then

receiving its probability or label outputs. From there the attacker might decide to

compute approximate or substitute gradients to craft the adversarial example.



Chapter 3

Adversarial Autoregressive Networks

Generating realistic sequences is a central task in many machine learning applications, in-

cluding natural language generation and molecular and drug design. There has been consid-

erable progress in developing deep generative models for sequence generation tasks, where

a GAN framework is used to train the generative model. However, due to the underlying

issue of “mode-collapse” in GANs, the lack of output diversity remains a main hurdle for

the current models. Mode-collapsing happens when the GAN generator fails to learn many

different modes of underlying data distribution, and only learns few data modes, leading to

less-diverse outputs generated from only these modes. One of the reasons for this issue is

the “mode-seeking” behaviour of the standard GAN objective. In this chapter, we propose

a GAN-based generic framework to address the problem of mode-collapse. Specifically, we

change the standard GAN objective to maximize the log-likelihood of data and minimize

the Jensen-Shanon divergence between data and model distributions, simultaneously. This

way, we encourage a balance between the “mode-seeking” behaviour of GAN and the “mode-

covering” behavior of maximum likelihood estimation. In order to incorporate compressed

latent representation in the generative model, we introduce a latent variable at the first

token, and maximize its variational lower bound. We experiment our model with text gen-

eration task and show that it can generate realistic text with high diversity compared to the

baseline. 1

1The work in this chapter was published in the Third Workshop on Bayesian Deep Learning, NeurIPS
2018 (Hossam et al., 2018).
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3.1 Introduction

Recently, applying generative models like Generative Adversarial Networks (GAN) for se-

quence generation received an increasing attention. There has been a growing effort to

develop GAN-based sequence generative models for different applications including natural

language generation (Yu et al., 2017; Fedus et al., 2018) and molecular or drug generation

(Guimaraes et al., 2017). Nonetheless, the underlying techniques used in these models cause

specific training and generation problems.

Recent sequential GAN-based models can be grouped into two main approaches; rein-

forcement learning models and fully differentiable models. The first group of models makes

use of reinforcement learning techniques like policy gradients (please refer to Section 2.3.4

for details). In these models (Yu et al., 2017; Fedus et al., 2018), the discriminator network

is disconnected from the generator network, while policy gradients are used to estimate a

reward gradient from the discriminator back to the generator. The main issues with these

techniques is that they are susceptible to training difficulties of standard policy gradients

methods including high variance and less sample efficiency. The other group of models em-

ploys a fully differentiable GAN network (Nie et al., 2019; Chen et al., 2018b; Zhang et al.,

2017; Kusner and Hernández-Lobato, 2016). These models employ the Gumbel-Softmax trick

(Jang et al., 2016b; Maddison et al., 2016b) to overcome the non-differentiability problem for

discrete data, which allows backpropagating the learning gradient from the discriminator to

the generator. Nonetheless, these models are susceptible to a well-known problem of GANs,

which is lack of diverse outputs due to “mode-collapse”.

Mode-collapse issue causes GANs to be incapable of generating diverse samples from the

given latent values (as we will explain in details in Section 3.2.2). This issue happens when

the generator fails to learn many different modes of underlying data distribution, and instead,

is able to only learn few modes of data. Therefore, during inference time, the generator tends

to generate samples from only those learned modes, ignoring other modes that were missed

during training. There are different reasons that contribute to this problem (Goodfellow,

2016), including; i) the problem of catastrophic forgetting, a well-known problem of deep

neural networks, where the network tends to forget previously learned tasks, ii) the GAN

training procedure, and iii) the nature of GAN objective function used in practice.

In this chapter we address the problem of diversity and mode collapse from the angle of
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GAN objective function. In details, we change the standard GAN objective to maximize the

log-likelihood of data and minimize the Jensen-Shanon divergence between data and model

distributions, simultaneously. This way, we encourage a balance between the “mode-seeking”

behaviour of GAN and the “mode-covering” behavior of maximum likelihood estimation.

Furthermore, in order to incorporate compressed latent representation in the generative

model, we introduce a latent variable at the first token, and maximize its variational lower

bound. Incorporating a latent space in the generative model allows learning high level

representations from the input into a smaller more abstract latent space. This can be later

helpful in controlling the generation process through changing/fixing specific factors of the

latent space according to the desired outcome (see sections 2.2.1.2 and 2.2.2.1). While our

work is demonstrated with discrete data, it can be straightforwardly adopted for continuous

data.

In this chapter we propose a new framework called Adversarial Auto-regressive Networks

(ARN). The main highlights of our model include: (i) the capability of generating sen-

tences from latent noise space; (ii) using standard back-propagation from with relaxation

the discriminator instead of using reinforcement learning techniques with their associated

problems; (iii) addressing the mode-collapse issue and achieving high diversity scores on

natural language generation task.

In the following section we will present the technical background needed for this chapter,

and in Section 3.3 we describe in details our proposed framework.

3.2 Background

3.2.1 Generative Adversarial Networks (GAN)

We briefly summarize here the basic idea of Generative Adversarial Networks (GAN) (Good-

fellow et al., 2014a) (for full details, please refer to Section 2.2.1.2). GANs use adversarial

training between two players to learn the probability density distribution of input data. The

goal of the first player, the generator G, is to get good at generating data that is close to

the real data distribution pd(x). The goal of the second player, the discriminator D, is to

distinguish real data from fake data generated by the generator. Formally, the standard
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GAN objective to optimize is the following minimax game between D and G:

min
G

max
D

(
E

x∼pd
[logD (x)] + E

z∼pz
[log (1−D (G (z)))]

)
, (3.1)

where z is the random noise input to G and pz is the prior distribution of the z. After the

training is finished, the generator is used to generate data from any random input z.

3.2.2 Mode Collapse

In practice, GANs usually suffer from “mode-collapse” problem (Metz et al., 2016; Poole

et al., 2016; Hoang et al., 2018), where the generator learns to map several different noise z

values to the same output point, relying on few modes learned from the true data distribution

pdata(x). This causes GANs to be incapable of generating diverse samples from the given

input noise.

When mode collapse occurs in images for example, the generator makes multiple images

that contain the same color or texture themes, or multiple images containing different views

of the same object. The mode collapse problem is illustrated in Figure 3.1, where we see

that rather than converging to a distribution containing all of the modes in the training set,

the generator only ever produces a single mode at a time, cycling between different modes

as the discriminator learns to reject each one (Metz et al., 2016).

Figure 3.1: Mode collapse problem on a 2-D mixture of Gaussians data. The top row shows
the true data distribution pdata(x). The bottom row shows different distributions learned
over epochs as the GAN is trained. (Metz et al., 2016)
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One possible reason for this issue is that basic GAN objective resemble minimisation

of reverse Kullback–Leibler divergence RKL(Pdata ‖ Pmodel) between the data and model

distributions. Minimizing reverse KL divergence has a mode-seeking behavior, in which it

tries to minimize the divergence by seeking few modes of the data to match it. In contrast,

the Kullback–Leibler divergence KL(Pdata ‖ Pmodel) have mode-covering behavior, that try

to optimize the model distribution in all areas of the data distribution, not only around few

modes. Figure 3.2 shows the behavior of minimizing KL versus reverse KL divergences.

Figure 3.2: Behavior of minimizing KL divergence (left) and reverse KL divergence (right).
(Goodfellow, 2016)

3.3 Proposed Framework

We describe in this section our proposed framework, Adversarial Autoregressive Networks

(ARN) to overcome the mode collapse problem in sequence GANs. Adversarial Autoregres-

sive Networks (ARN) consist of a recurrent autoregressive generator, like LSTM (Hochreiter

and Schmidhuber, 1997) (see Section 2.2.1.1), trained in a GAN framework. We further

incorporate a latent space that can be utilized in future applications to control the sequence

generation by employing a variational autoencoder at the first token, x1. Here, we derive and

demonstrate the basic principles behind ARNs using recurrent autoregressive architectures,
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but the same basic principles can be adapted for using other non-recurrent architectures.

Figure 3.3 illustrates an overview of the main components of ARNs.

Autoregressive GeneratorG

…
…

DiscriminatorD

…

VAE

Data

fake real

Figure 3.3: Proposed Adversarial Autoregressive Network

3.3.1 Model Definition

A sampleX in our setting is defined as a sequence of T tokens denoted byX = {x1, x2, ..., xT},

where we assume that all samples have length T . The general architecture of our proposed

framework is shown in Figure 3.3, while that of the recurrent generator G is depicted in

Figure 3.4.

Figure 3.4: Training inputs and outputs for the recurrent generator G. The input is fit to
a shifted output by one step, in order for G to learn to predict the next token given the
current one. EOS is a special token for the end of the sequence.
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For a recurrent autoregressive model G with parameters θ, the log-likelihood can be written

as:

log pG(X | θ) =
T∑
t=2

log pG(xt|ht−1, θ) + log pG(x1 | θ). (3.2)

This is the default neural recurrent model formulation. Now we start introducing an ad-

versarial learning framework for this model by introducing a latent variable z to the model,

where we rewrite log p(x1 | θ) as marginalisation over the z where KL is Kullback–Leibler

divergence, q(z | x1, φ) is an approximation of the posterior p (z | x1, θ) and p(z) is a prior

distribution to z. We can then write log pG(X | θ) in terms of a lower bound (similar to

original VAE (Kingma and Welling, 2013) derivation) as:

log pG(X | θ) >
T∑
t=2

log pG(xt|ht−1, θ)−KL(q(z | x1, φ) ‖ p(z))

+Eq(z|x1,φ)[log pG(x1| z, θ)], (3.3)

which has the same tightness of a VAE lower bound.

We propose to incorporate adversarial learning to the sequential model in a principled way.

One generator G (z) and one discriminator D (X) are employed to create a game like in GAN

while the task of the discriminator is to discriminate true data and fake data and the task

of the generator is to generate fake data that maximally make the discriminator confused.

In addition, the generator G is already available which departs from a noise z ∼ pz, uses the

conditional distribution p (x1 | z, θ) to generate x1, and follows the autoregressive model to

consecutively generate x2:T . We come with the following minimax problem:

max
G

min
D

(
E

X∼pd
[log pG (X | θ)]− E

X∼pd
[log D (X)]− E

z∼pz
[log (1−D (G (z)))]

)
, (3.4)

where the generator G consists of the decoder p (x1 | z, θ), the autoregressive model, hence

G is parameterized by (θ, φ), and log pG (X | θ) is substituted by its lower bound in Eq.

(3.3). We can theoretically prove that the minimax problem in Eq. (3.4) is equivalent to

the following optimisation problem:

min
G

KL (Pd ||PG) + JS (Pd ||PG) , (3.5)
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where JS is Jensen-Shannon divergence and PG is the generative model distribution (see

the proof in Appendix A). The optimisation problem in Eq. (3.5) reveals that at the Nash

equilibrium point the generative distribution PG is exactly the data distribution Pd, thus

overcoming the mode-collapse issue caused by original GAN formulation.

To train our model, we alternatively update G and D with relevant terms. We note that

in the optimisation for updating G regarding log pG (X | θ), we maximize its lower bound in

Eq. (3.3) instead of the likelihood function.

3.3.2 Training

Likewise standard GAN models, to train ARN, we alternatively update the discriminator

and generator using gradient ascent for these objective functions:

Update D:

max
D

(
E

X∼pd
[logD (X)] + E

z∼pz
[log (1−D (G (z)))]

)
. (3.6)

Update G:

max
G

(
E

X∼pd
[log p (X | θ)]− E

z∼pz
[log (1−D (G (z)))]

)
or equivalently, max

G

(
E

X∼pd
[log p (X | θ)] + E

z∼pz
[log D (G (z))]

)
. (3.7)

3.3.3 Relaxed argmax using Gumbel-Softmax

In order to overcome the non-differentiability of discrete data in our model, we use the

Gumbel Softmax discrete relaxation (Jang et al., 2016a; Maddison et al., 2016a) between

the variational decoder pg(x1 | z) and the autoregressive network pG(xt | ht−1, θ) :

yi =
exp ((log πi + gi) /τ)∑k
j=1 exp ((log πj + gi) /τ)

for i = 1, ..., k.

where yi is the ith output of the Gumbel-Softmax layer, corresponding to the probability of

the ith word in the vocabulary of size k. πi and πj are the un-normalized outputs from the

last hidden layer, τ is the temperature parameter, and gi and gj both come from distribution

Gumbel(0,1). We use temperature annealing schedule for τ from 1.0 to 0.5 as in (Jang et al.,

2016a).
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3.3.4 Overall Training and Inference

Putting all previous components together, ARN is trained in a similar fashion to a stan-

dard GAN, except with the diversity improved objective (Eq. 3.4) containing maximum

log-likelihood through the generator pG(X2:T | ·) and VAE encoder and decoder at x1;

q(z | x1) and pg(x1 | z) respectively. For inference, the generator G is used to generate a

sequence starting either from a normal noise znoise ∼ N(0, I) or from a real first token code

zreal ∼ N(µφ, σφ | x1). Therefore, it is easy to change any GAN sequence model into ARN

framework, since it has the same end-to-end training fashion as GAN. In algorithms 2 and

3 we summarize the overall training and inference procedures of ARN.

Algorithm 2: ARN Training

Input: A sequence dataset X =
{
X1, X2, ..., XN

}
Output: A trained generator Gθ,φ = {pGθ , qφ}
Initialize pGθ , qφ, and Dψ with random parameters θ, φ, and ψ
for i← 1 to n epochs do

Sample a batch of sequences XB =
{
X1, X2, ..., XB

}
Update pGθ and qφ via Eq. (3.7)
Update Dψ via Eq. (3.6)

Algorithm 3: ARN Inference

Input: A trained generator Gθ,φ = {pGθ , qφ}
Output: A generated sequences batch

{
X̃1, X̃2, ..., X̃B

}
1 Sample a noise batch as znoise ∼ N(0, I) or from a first token x1 of a test-set sample

x1 ∈ Xm
test as zreal ∼ N(µφ, σφ | x1)

2 Get a first token batch x̃1 ∼ pGθ(x1 | z)
3 Recurrently (greedy) sample a batch of sequences x̃2:T ∼ pGθ(X2:T | x̃1)
4 return

{
X̃1 = {x̃11, x̃12:T} , X̃2 = {x̃21, x̃22:T} , . . . , X̃B =

{
x̃B1 , x̃

B
2:T

}}

3.4 Experiments

To evaluate the performance of ARN with discrete sequential data, we apply the framework

to natural language text generation task. We choose three common datasets: IMDB movie

reviews dataset, MS-COCO, and EMNLP2017 WMT News. We then evaluate the perfor-

mance through three different scores; BLEU score for text quality, Diversity score for text
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diversity, and FC score for the percentage of the learned features of the overall true data

features. The motivation is to measure the overall effectiveness in both the quality and di-

versity of our approach. Below we describe in details the implementation, evaluation scores,

and discuss the experimental results.

Datasets and Implementation

� The IMDB movie reviews dataset (Maas et al., 2011b; Maas, 2011) consists of

50,000 reviews extracted from IMDB website. The training set is divided into two

groups; positive, negative (12,500 reviews each), and the testing set is 12,500 positive

and negative each. In all of our experiments, we use sentence length of 20 words and

vocabulary size of 10,000. We use 500 dimensional embedding vectors, and 500 units

hidden layer for LSTM Generator and 350 units for VAE.

� The MS-COCO image captions dataset (Chen et al., 2015) includes 3,826 unique

words with the maximum sentence length of 10 words. Both the training and test data

contain 7680 text sentences.

� The EMNLP2017 WMT News dataset (Guo et al., 2018) consists of 5,030 unique

words with the maximum sentence length of 20, and we only use first 10,000 sentences

from (Nie et al., 2019). Training set contains 6,988 sentences and test data contains

2,996 sentences.

Evaluation Metrics

We evaluate both the quality and diversity of the generated sentences. To evaluate quality,

we use BLEU score (Papineni et al., 2002), which is commonly used in machine translation

to compare the quality of candidate translations compared to the ground-truth reference.

To evaluate the diversity, we use two n-gram based scores inspired by (Fedus et al., 2018),

namely the Diversity and “Feature Coverage (FC )” scores.

BLEU Score for each sentence computes the ratio of n-grams generated from the model

that matches with a true ground truth, called reference sentences and is defined as follows:

BLEU−N =

N∏
n=1

(
precisionn =

Count ( Model generated n-grams ∩Xtest ref n-grams)

Count ( Model generated n-grams)

)weight(n)

,



3.4. EXPERIMENTS 49

where N is the final n-gram version of the score (usually from 2 to 5), and weight(n) is the

weight for the current n-gram inside the product. Usually, weight(n) = 1
N
,∀n ∈ {1, 2, . . . , N}

for the cumulative BLEU score. However, in our setup, we used the individual BLEU score,

where weight(n) = 1{n = N}.

Diversity Score We define the diversity as the ability to generate sentences with diverse

n-grams that are not necessarily found in the test set. We measure this by computing the

percentage of unique n-grams generated by the model relative to the number of all n-grams

generated by the model. The score is defined for n-grams as follows:

Diversity-n =
Count(Unique model generated n-grams)

Count( model generated n-grams)
.

Feature Coverage (FC ) Score The FC score is used to measure how well the model

covers all features (n-grams) of the data. The score is computed as the percentage of unique

n-grams generated by the model that is found in the test set, relative to the number of all

n-grams generated by the model. The score is defined for n-grams as follows:

FC-n =
Count ( Unique model generated N-grams ∩Xtest ref n-grams)

Count ( model generated n-grams)
.

It is important to notice that FC score does not necessarily correlate with BLEU score,

as it computes only the percentages of “unique” n-grams that match with the test set.

This means that unlike BLEU score, FC score is affected by the diversity of the generated

sentences, where the higher the unique n-grams count, the higher the FC score, and vice

versa. Sentences can be generated from our model in two ways; by starting from a real first

word through the decoder, or from noise input through z.

Baseline

We compare our model to SeqGAN (Yu et al., 2017), which is a well-known baseline for

sequential generative models that uses a discriminator as a reward signal for training the

generator in reinforcement learning framework. The main difference of our framework to

SeqGAN is that the latter updates the generator using the reinforcement learning algorithm

REINFORCE (Williams, 1992) (for full details on REINFORCE and reinforcement learning

(RL), please refer to Section 2.3.4). This significantly increases the variance of the generator

gradient updates and the final trained generator, which makes SeqGAN both slow to train
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and produces high variance generator. Most of the other text generator models in the

literature are based on SeqGAN’s REINFORCE updates although with different variations

(Fedus et al., 2018; Guo et al., 2018). Since we implement a simple text generation model

based on proposed ARN framework, we therefore compare mainly with SeqGAN, where it

is the original architecture that inspired and resembles the main characteristics of other

REINFORCE-based models.

Table 3.1: BLEU, FC and Diversity scores for IMDB Reviews dataset

BLEU-2 ↑ BLEU-3 FC-2 ↑ FC-3 Diversity-2 ↑ Diversity-3

SeqGAN 84.48 51.97 9.77 10.10 19.70 47.18
ARN (x1 from data) (Ours) 81.30 46.74 12.24 12.40 24.01 51.38
ARN (x1 from noise) (Ours) 81.04 46.19 12.32 12.45 24.35 52.06

Table 3.2: BLEU, FC and Diversity scores for MS-COCO dataset

BLEU-2 ↑ BLEU-3 FC-2 ↑ FC-3 Diversity-2 ↑ Diversity-3

SeqGAN 70.36 41.40 2.25 2.37 5.80 11.84
ARN (x1 from data) (Ours) 70.01 40.12 4.01 4.29 15.22 28.79
ARN (x1 from noise) (Ours) 69.94 40.17 4.01 4.28 15.38 29.08

Table 3.3: BLEU, FC and Diversity scores for the small EMNLP dataset

BLEU-2 ↑ BLEU-3 FC-2 ↑ FC-3 Diversity-2 ↑ Diversity-3

SeqGAN 60.52 20.11 5.61 3.29 19.03 42.41
ARN (x1 from data) (Ours) 61.38 21.82 5.76 3.68 23.71 49.56
ARN (x1 from noise) (Ours) 60.75 21.30 5.77 3.65 23.95 49.68

Discussion

In Tables 3.1, 3.2 and 3.3 we report 2-grams and 3-grams of each evaluation score on the three

datasets. We can see that both ARN outperforms the baseline in both “Feature-Coverage”

and the Diversity score. This suggests that our model is capable of learning the same overall

features (n-grams) of the data, yet it is also able to generate more diverse samples out of

these learned features. We show samples generated from ARN on both IMDB and MS-

COCO datasets in tables 3.4 and 3.6, and from SeqGAN in Table 3.5. We can see that ARN

samples are more diverse and do not suffer repetition like the samples from SeqGAN.
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Table 3.4: Generated sample sentences of ARN trained on IMDB dataset

Our Model (starting from decoded x1)

i had more interest for this movie . even though they rightly watched it once . it’s neither entertaining nor

he just watched this show , one of the funniest moments of <UNK> or plot . i watched this and

victor is a zombie documentary of its own hype that <UNK> puzzles on many of my favorites . and every

i couldn’t relate to this movie for the first time only because time i watched the director whose friend i

Our Model (starting from noise z)

first movie was a letdown of a film . the first 30 minutes of it was ok , until i

this movie is not only horrible as a bad movie , not because it has been based on history .

probably don’t know i am a fan of horror movies , it was a little while ago and i think

another is one of the worst movies , ranking up there . the script is <UNK> by the film’s predecessor

the first review that i can’t figure out what’s a <UNK> about this film when it came out in 1972

this most awaited movie and it seems to be the worst film ever . good plot , the storyline was

holy movie is just fun . it’s not to do justice . the first monkey meets this hoping to be

this film grabbed the attention to the plot with standard <UNK> , and this never even saw a story with

what i saw this episode too , i thought it was awesome for several great actors . <br / science

although movie <UNK> if not to forget with a british tradition . i understand why the ideas presented well enough

this 1985 cult film " animal " was a <UNK> of a couple tells the most of youth , but

this disappointing . . . richard murray was a landmark in many two so far , such a pretentious crap

people misguided . i found way almost no battlestar <UNK> to complain about this movie ( and like a <UNK>

this superbly finished the <UNK> , i was very excited about martin carter and scott he ran the tv series

this movie is really very sweet here . it reminded me of the dvd both brought us that devil’s <UNK>

if just watched this movie when i was around 15 years ago and although it looks like it was boring

Table 3.5: Generated samples from SeqGAN on MS-COCO dataset. Mode-collapse occurred
by repeating the sentences, showing how the model lacks output diversity (best seen in color).

Sample sentences

the outside of a bus station is fairly empty .
man in motorcycle leathers standing next to street next to
woman with umbrella on a rainy day , near a
the outside of a bus station is fairly empty .
the outside of a bus station is fairly empty .
a person dressed as a giraffe carrying a bullhorn .
a his and her sink set in a bathroom .
woman with umbrella on a rainy day , near a
a computer desk with a cup of coffee , ,
a his and her sink set in a bathroom .
motorcyclists driving on a passing field people and some people
a computer desk with a cup of coffee , ,
woman with umbrella on a rainy day , near a
woman with umbrella on a rainy day , near a
a person dressed as a giraffe carrying a bullhorn .
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Table 3.6: Low/average BLEU samples from ARN on MS-COCO dataset

BLEU-3 Sample sentences

00.00% a woman putting on a lipstick holding a sharp knife
00.00% a sleek kitchen includes walnut cabinets and shiny black counters
00.00% a chinese street showing business signs hanging over the store
00.00% people young women are washing two motorcycles with hoses .
00.00% a modern flatscreen television sits upon a nostalgic console model
12.50% several small kitchen contains a refrigerator and small counter .
12.50% a blurry image with lights and cars in the background
12.50% a bathroom wih a big mirror and a tv attached
25.00% a colorful vegetable salad is in a green bowl .
25.00% the bathroom has a pink tub and pink toilet .
25.00% ta knife is standing up in a cutting board .
37.50% a small efficiency apartment with a dark wooden table .
37.50% a black cat is staring directly into the camera .
37.50% this extravagant dessert on a plate overlooking the water .
50.00% a herd of sheep passing by people behind barriers .
50.00% a stainless steel toilet with a little pink bunny inside
50.00% a black and silver motorcycle parked in the road .

To qualitatively evaluate the “quality” of this diverse output, we show generated samples

for ARN on MS-COCO model with average or low BLEU scores in Table 3.6. We can see that

low BLEU sentences generally still have grammatical structure and sometimes semantically

meaningful, suggesting that the model does not learn random or gibberish modes when they

do not match directly with data.

While the BLEU scores for the IMDB and MS-COCO are lower than the baseline, yet the

FC and Diversity scores are higher. For text generation tasks, BLEU is computed relative to

the whole test corpus. This means that BLEU score can increase significantly at the expense

of output diversity, when few generated sentences match highly with test corpus but are

repeated very frequently. Therefore, we see that it is essential that text generative models

are evaluated for both quality and diversity in a unified manner (Fedus et al., 2018).

3.5 Summary

In this chapter we presented a sequence generative framework, Adversarial Auto-regressive

Networks (ARN), to address the problem of low output diversity in GANs. The motivation

behind this is that a useful sequence generative model needs to capture the underlying data
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distribution accurately enough in order to generate diverse outputs.

To address the diversity issue in sequence GANs and alleviate the mode collapse problem,

the proposed ARN framework combines GAN and MLE training. The motivation is to com-

bine the standard GAN “mode-seeking” behaviour with MLE “mode-covering” behaviour.

This way, the generator is encouraged to balance both behaviors, and trying to cover other

modes of underlying data distribution, and not being trapped around only few modes. In

details, we change the standard GAN objective to minimize KL divergence between data

and model distributions, and minimize the Jensen-Shanon divergence, simultaneously.

In addition, we incorporated a compressed latent representation by introducing a latent

variable at the first token, and maximizing its variational lower bound (Eq. 3.3). This can

be helpful in future applications in controlling the generation process through the chang-

ing/fixing specific factors of the latent space according to the desired outcomes.

In order to evaluate our framework, we applied ARN for natural language generation

task. Using three quality and diversity scores, we found that ARN generated grammatically

and semantically meaningful sentences, and outperformed the chosen baseline SeqGAN, that

depends on RL policy gradients in diversity and feature coverage scores:

� For diversity score, ARN outperforms SeqGAN by more than 18% difference (Table

3.2).

� In order to measure how close the learned diversity is to the data distribution (and

not just incoherent randomness), we compute the Feature-Coverage (FC) score. ARN

outperforms on FC score with absolute 2% scores higher than the baseline, thus demon-

strating that learned diversity comes from the data distribution, and produces diverse

and coherent sentences (Tables 3.4 and 3.6).

� We demonstrated ARN with discrete data, yet it can also be straightforwardly adapted

for continuous data, as we show later in Chapter 4.

In conclusion, the proposed framework in this chapter represents our initial steps into de-

veloping useful generative models for sequence generation. By applying to text generation

task, our experiments show that ARN can learn better diverse features from discrete in-

put like text compared to the baseline. After addressing the diversity issue of GANs, we
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look forward to incorporating critical features in ARN that enable real-world applications in

different domains.

This can be achieved in two possible ways; i) leveraging the latent space in a fine con-

trolled way to capture disentangled factors of variation from input distribution, thus allowing

the user to control the outputs according to desired selected factors (such as controlling tense

or sentiment of the sentences), and ii) add the ability to optimize the outputs to achieve

desired attributes or properties (such as better domain expert score). In Chapter 4 we will

discuss how to extend ARN to incorporate such optimisation capability in an end-to-end

framework.



Chapter 4

Goal-Oriented Controlled Generation

Deep generative models opened the door for many potential real-world applications with its

capacity to learn complex and high dimensional data distributions. Following the success

of deep generative models with computer vision tasks, there has been growing interest in

developing deep generative models for sequence generation tasks including natural language

generation and molecular and drug design. However, current sequential generative models

mainly generate sequences to closely mimic the training data, without much control on what

the desired output from the model should be. Therefore, these models have been mainly

used for simple or artistic applications. For other real-world applications, such as material or

drug design, or autonomous motion planning, we are not only interested in generating data

similar to the real ones, but we need them to have specific useful properties or attributes.

The main challenge that hinders the application of generative models in such domains is the

absence of mechanisms to optimize the generated outputs according to certain metrics or

useful properties. In this chapter, we aim to address this key challenge, to create models that

produce high quality sequences with higher diversity, and incorporate controlling mechanisms

that allow controlled generation. We extend our previous model (ARN) (Section 3.3) by

incorporating a reward signal feedback to train the model. This reward is intended to be

chosen by the user to encourage model optimisation towards certain properties or attributes,

according to the desired task of the model. We apply the proposed framework to two different

tasks, and we show that our model is able to achieve higher desired properties than baselines,

while not sacrificing output diversity. 1

1The work in this chapter is published at The 2020 International Joint Conference on Neural Networks
(IJCNN 2020) (Hossam et al., 2020)
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4.1 Introduction

Learning to generate realistic sequences from existing data is essential to many artificial

intelligence applications, including natural language generation, drug design, robotics, and

music synthesis. In these applications, a generative model learns to generate sequences of

different data types according to each task. For instance, natural language and speech are se-

quences of words or utterances, in robot motion planning, a trajectory is an action sequence

learned from experiences or sensory data. Recently, there has been a growing interest in

deep models for sequence generation following the success of Generative Adversarial Net-

works (GANs) (Goodfellow et al., 2014a) and Variational Autoencoders (VAEs) (Kingma

and Welling, 2014) in image generation tasks (Radford et al., 2015; Gulrajani et al., 2017;

Zhang et al., 2019; Dam et al., 2019; Razavi et al., 2019).

However, realizing the full potential of these models in aforementioned applications has

many challenges, and one of these key challenges is the absence of mechanisms to optimize the

generated outputs according to certain metrics or useful properties. Most of the current work

on generative sequence models mainly learn to “resemble” the data, meaning to generate

outputs that are close to the real distribution. However, in many applications, we are not

only interested in generating data similar to the real ones, but we need them to have specific

useful properties or attributes. For example, in drug design, useful properties include high

solubility and ease of synthesis (De Cao and Kipf, 2018; Guimaraes et al., 2017; Putin et al.,

2018; Polykovskiy et al., 2018). In music generation, we might want the music to have

specific pitch or tempo, or in text applications, the user might be interested in generating

sentences according certain sentiment or tense (Hu et al., 2017). Therefore, the lack of

optimisation mechanisms in current models hinders their practical use in a wide range of

real world applications.

In this chapter, we propose a new sequential generative framework, named OptiGAN2,

that can generate sequences resembling those in a given dataset and achieving optimal scores

according to a desired goal (e.g., solubility and ease of synthesis in drug design). Our

proposed framework leverage GAN for mimicking real data and policy gradient reinforcement

learning (RL) for optimizing a score of interest. It is well-known that although GANs

can resemble real data, they face the mode collapsing problem (Goodfellow, 2016; Nguyen

2Our code is available here : https://github.com/mahossam/OptiGAN

https://github.com/mahossam/OptiGAN
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et al., 2017; Hoang et al., 2018; Le et al., 2018b; 2019), hence leading to generate less

diverse examples. We adopt the same solution we presented in Chapter 3 to this problem,

by combining maximum likelihood and GANs (see ARN model in Section 3.3). We then

leverage policy gradient RL into our model for optimizing a score of interest according to a

desired goal (see Section 4.4). When incorporating policy gradient RL to ARN framework

we observe that the variance of gradient estimation is very high, hence leading to unstable

training. To resolve this issue, we resort to the Monte Carlo rollout in (Yu et al., 2017) with

a slight modification (see Section 4.4).

We demonstrate the capacity of OptiGAN in two applications: text generation (discrete

data) and air combat trajectory generation (real-valued data). For text generation task, we

aim to generate sentences resembling real sentences in a given text corpus, while optimiz-

ing the BLEU (Papineni et al., 2002) score for obtaining better quality natural language

sentences. For aircraft trajectory generation task, we aim to generate a trajectory plan for

air-combat maneuver scenario between two aircraft and optimize the McGrew score (Mc-

Grew et al., 2010) which reflects the tactical quality of aircraft trajectories in an air combat

(McGrew et al., 2010). In both applications, we show that we can generate high quality

outputs and achieve higher scores than current related models aided by the RL component,

while preserving the diversity of generated outputs using our hybrid maximum likelihood

GAN.

The main contributions include:

� We propose OptiGAN which has the following advantages: (i) an end-to-end generative

framework with incorporated goal optimisation mechanism, (ii) general formulation

that can be used for wide variety of different goals and models, and (iii) optimizing for

desired goals without sacrificing output sample diversity.

� To the best of our knowledge, OptiGAN is the first GAN controlled generative model

for sequences that addresses the diversity issue in a principled approach. OptiGAN

combines the benefits of GAN and RL policy learning, while avoiding their mode-

collapse and high variance drawbacks.

� We investigate the problems of interest comprehensively and our findings would ad-

vance the understanding of the behavior when incorporating GAN-based models with

RL. Specifically, we empirically show that if only pure RL is applied to maximize a
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score of interest with the GAN-based objective, realistic quality of the output might be

sacrificed for the sake of superficially obtaining higher scores. For instance, in the case

of text generation, the model was able to cheat the selected quality score by generating

sentences in which few words are repeated all the time. This shows that combining a

GAN-based objective with RL encourages the optimisation process of RL to stay close

to the true data distribution.

4.2 Related work

In this section we summarize and discuss the literature review in Section 2.2.2.1 on controlled

sequence generation. Since we mainly address the controlled generation problem in this

chapter, we refer the reader for Section 2.2.2 and Chapter 3 for more general literature

review on sequence generative models.

Controlled sequence generation could be mainly achieved through two mechanisms; by

utilizing the latent variable space (Engel et al., 2019; Polykovskiy et al., 2018), or through

incorporation of desired goal optimisation (De Cao and Kipf, 2018; Putin et al., 2018). For

latent space models like VAE and GAN, the latent space can be utilized as a fine control of the

generated outputs. The benefit of such models is that they can learn meaningful compressed

representations of the data (Radford et al., 2015). These representations might represent

specific attributes learned from the data, like rotation(angle), style, age(young/old), or emo-

tional expression (sad/happy) in case of images. This way, by navigating through the space

of each learned attribute, an output with specific desired attributes can be generated.

Generation can also be controlled by optimizing desired user-defined objectives, where

the generative model is designed in such a way, that it optimizes certain environment evalua-

tion scores. Reinforcement learning (RL) techniques have been incorporated into generative

models to enable such optimisation mechanism. For example, VAE and GAN based models

have been developed for goal optimized drug design (De Cao and Kipf, 2018; Putin et al.,

2018; Polykovskiy et al., 2018), where VAE latent space or GAN augmented with reinforce-

ment learning are used for to maximize drug design scores like druglikeliness, synthesizability,

or solubility. However, as mentioned in Section 2.2.2.1, most of the previous work address

the controlled generation problem either through using RL or by leveraging latent space, but

not both in an integrated framework.
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Recently, MolGAN (De Cao and Kipf, 2018) combined the benefits of latent space GAN

with RL for drug molecular generation. The model is developed for graph generation, where

the generator generates graphs of chemical molecules from input noise, and a convolutional

discriminator network is used for the adversarial training. In addition, the model utilizes an

additional reward network to optimize the learning according to molecular rewards received

from external chemical software. However, the model is developed for graph generation, not

for sequences, as the input graphs are processed in its entirety and the model does not learn

probability dependencies in an autoregressive manner from its graph inputs. Therefore,

the neural architecture used for MolGAN’s generator is multi layer perceptrons (MLP),

which was used for simplicity and ease of training as compared to recurrent layers. A key

difference between our proposed framework and MolGAN is that we develop a framework

for sequence learning, where we use a recurrent autoregressive network for the generator,

and model the inputs as sequence of states and actions. Because of it represents inputs as

entire graphs, MolGAN lacks this sequential architecture, and uses a simplified variant of

Deep Deterministic Policy Gradient (DDPG) (please refer to Section 2.3.3) that does not

model the inputs as state-action sequential process.

4.3 Background

Below we revise basic background and concepts needed for our proposed framework; Adver-

sarial Autoregressive Networks (ARN) and policy gradients.

Adversarial Autoregressive Networks (ARN)

As previous described in Section 3.3, Adversarial Autoregressive Networks (ARN) is a se-

quential generative framework that addresses mode-collapse problem in GANs through a

modification in of the standard GAN training objective. In ARN, the standard GAN objec-

tive is changed to both maximize the log-likelihood of data and minimize the Jensen-Shanon

divergence between data and model distributions, simultaneously. For a sample X defined as

a sequence of T tokens denoted by X = [x1, x2, ..., xT ], ARN optimizes the following minimax

problem:
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max
G

min
D

(EX∼pd [log pG (X | θ)]− EX∼pd [log D (X)]− Ez∼pz [log [1−D (G (z))]]) . (4.1)

Reinforcement learning using Policy Gradients

Reinforcement learning is a general framework for sequential decision making that learns

an agent policy to maximize rewards from the environment (for full details, please refer to

Section 2.3).Policy gradients (Sutton and Barto, 2018) (please refer to Section 2.3.4) is a well-

known reinforcement learning policy learning technique, that explicitly learns the optimal

agents policy. The objective is to maximize the expected future returns over an episode of

T time steps:

J(πθ) = E
τ∼πθ

[Ut(τ)] ,

where π is the “policy” to be optimized, θ are the parameters of π, and Ut specifies the

cumulative reward of an episode at time t (please notice that here we use U as another

symbol for the returns to avoid confusion with the generator symbol G). The model is then

updated via gradient ascent with this gradient estimate:

∇θJ(πθ) = Eπ

[∑
t

Ut∇θ log π (At | St, θ)

]
, (4.2)

where At is an action chosen at time step t by the agent’s policy π given the current state

of the environment St.

4.3.1 Problems of Interest

We demonstrate the capacity of our proposed framework in two applications of interest: text

generation and air combat trajectory generation. For each application, our task is to generate

sequences that achieve two concurrent goals: i) mimicking those in a given dataset and ii)

obtaining high scores specified by an optimized goal which might be varied for specific tasks.

Text generation

We need to generate sentences that are similar to real sentences in a given text corpus and

have high quality from human justification. A well-known score used to measure the quality

of generated sentences is BLEU score (Papineni et al., 2002). Specifically, the BLEU score

for each sentence computes the ratio of n-grams generated from the model that matches with



4.3. BACKGROUND 61

a true ground truth, called reference sentences and is defined as follows:

BLEU-N =

N∏
n=1

(
precisionn =

Count( Model generated n-grams ∩Xtest ref n-grams)

Count( Model generated n-grams)

)weight(n)

,

where weight(n) is the weight for the current n-gram inside the product. We used the

common cumulative weights where weight(n) = 1
N
,∀n ∈ {1, 2, . . . , N}. In our proposed

model, beside generating realistic sentences, we also aim to maximize the BLEU score of

generated sentences. As shown later, we utilize the BLEU score as reward function in our

RL inspired framework.

Air combat trajectory generation

For air combat missions, pilots are trained to conduct certain maneuvers according the com-

bat situation they face. There are well known maneuvers that the pilots are trained on,

either defensive, offensive, or neutral. However, modeling the maneuvers through genera-

tive models could help pilots to simulate many different or novel trajectories that were not

considered before. We consider a specific air combat maneuver between two fighters called

“Stern Conversion” maneuver (Austin et al., 1990). In this maneuver, the opponent (the

red aircraft) flies in a straight and level line, and does not detect the blue aircraft, while

the blue aircraft, on the other hand, tries to get behind the opponent aircraft, in order to

increase the chance to engage it (see Fig. 4.1). The goal of the generative model in this

context is to train a generator to generate a blue aircraft trajectory given the red aircraft

trajectory.

Figure 4.1: “Stern Conversion” Flight Maneuver.

In addition to generating realistic trajectories, we also need to maximize the McGrew
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Figure 4.2: Overview of OptiGAN framework. The Reinforcement Learning (RL) component
is incorporated with sequence GAN model. The generator G is trained by combining two
losses, the GAN loss and the RL loss, LGGAN and LRL.

score (McGrew et al., 2010), which measures the score of how well the blue aircraft was

doing relative to the red aircraft in an attempt to get behind the red aircraft (please refer

to Appendix C and (McGrew et al., 2010) for more details). Due to security restrictions,

we cannot access the real trajectories sensory data. Instead, we use ACE-Zero (Ramirez

et al., 2017) air combat flight simulator to generate the training data. This simulator was

developed by domain experts to imitate the real aircraft trajectories. As demonstrated in

the experiments section, our model can generate novel trajectories with high McGrew score

close to the average scores for ACE-Zero trajectories.

4.4 Proposed Framework

Starting from the ARN framework (described in details in Section 3.3), we incorporate an

additional reward signal that allows the model to maximize desired scores/goals according

to the current task. Specifically, we incorporate policy gradients RL that allows us to train

our model end-to-end. Finally, to stabilize the training process, we apply variance reduction

techniques when training with policy gradients. The final model is named OptiGAN whose

overview architecture is shown in Fig. 4.2.
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In details, to incorporate the ability to model the data to maximize rewards from the

environment, we use policy gradients to learn a policy that maximizes the total rewards from

environment. As mentioned in Section 4.3, the learning objective to maximize the return

rewards over an episode from t = [0, 1, ..., T − 1] is:

J(πθ) = Eπ

[∑
t

Ut log π (At|St, θ)

]
.

In our model, the policy is the generator G, and the state at time t is the hidden state

of the generator ht. Thus the objective becomes:

J(πθ) = EX∼PG

[∑
t

Ut log pG (X | ht, θ)

]
.

We then use REINFORCE (Williams, 1992) algorithm (see Section 2.3.4.1) to find the

optimum parameters for policy G by gradient ascent of the gradient of J as:

∇θJ(πθ) = EX∼PG

[∑
t

Ut∇θ log pG (X | ht, θ)

]
.

The last equation is the general formulation for any task we train OptiGAN for. For each

specific task, the returns Ut is chosen appropriately according to the nature of the task. For

instance, for the text generation task, we use the BLEU score as reward value, and for the

air combat trajectory generation task, we use the McGrew score as reward value.

Training procedure. To train an OptiGAN model, we alternatively update the dis-

criminator and generator using gradient ascent for these objective functions:

� Update D:

max
D

EX∼pd [log D (X)] + Ez∼pz [log [1−D (G (z))]] .

� Update G:

max
G

(
EX∼pd [log p (X | θ)]− Ez∼pz [log [1−D (G (z | θ))]]− EX∼PG

[∑
t

Ut log pG (X | ht, θ)

])
.

(4.3)

It is worth noting that for discrete data (e.g. text), we define the likelihood pG(xi | hi) =

softmax(Wohi) where Wo is the output weight matrix. In addition, to allow end-to-end



4.4. PROPOSED FRAMEWORK 64

training, we apply Gumbel softmax relaxation (Maddison et al., 2016b; Jang et al., 2016b)

(see Section 3.3.3) for the discrete case. We fix a special start token to p(x1|z) = 0, as we

depend on Gumbel Softmax for random output sampling. For real-valued data (e.g., air

combat trajectory), we employ pG(xi | hi) = N (Wohi, σ
2) where σ is the standard deviation

parameter.

Final generator loss. Following Eq. 4.3, the final loss function to train the generator

G with adversarial training and policy gradients is:

max
G

(
ω EX∼pd log p (X | θ) + λEz∼pz logD (G (z)) + αEX∼PG

[∑
t

Ut log pG (X | ht, θ)

])
,

where ω, λ and α are hyper-parameters that control how much the effect of log-likelihood,

adversarial training and policy gradients are on the total loss.

Reducing policy gradients variance

To reduce the variance of the policy gradients and to help policy gradients converge faster

toward optimal solution, we use policy gradients with baseline (Sutton and Barto, 2018)

(Section 4.4), where the policy gradient is defined as:

∇J(θ) = Eπ

[∑
t

(Ut − b (St))∇θ log π (At | St, θ)

]

=EX∼PG

[∑
t

(Ut − b (ht))∇θ log pG (X | ht, θ)

]
,

where b (St) is a baseline, a function that can be estimated or learned during training. The

use of a baseline does not change the gradient expected value, but in practice, reduces its

variance. In our experiments, b(St) is a fixed value equivalent to the average of computed

rewards over training time.

In addition, in order to further reduce the variance of policy gradients, we use an algo-

rithm similar to the Monte Carlo rollout in (Yu et al., 2017) with a slight modification. We

generate few complete sentences at each time step t onward, and take their average as Ut at

that time step. The simple change in our case is that instead of getting the reward value

from a discriminator as in (Yu et al., 2017), we directly compute the reward according to the
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chosen score (e.g. the sum of all n-gram BLEU scores in text generation case). The detailed

algorithm for this procedure is described in Algorithm 4.

Algorithm 4: OptiGAN Monte Carlo rollout to reduce REINFORCE variance

Initialize the policy parameters θ at random
Generate a trajectory (an episode) on policy
πθ : S0, A0, R1, S1, A1, . . . , ST−1, AT−1, RT .

for each step of episode t = 0, 1, . . . , T − 1 do
for rollouts n = t+ 1, t+ 2, . . . , T − 1 do

Sample a sequence rollout X̃t+1 starting from time step n as X̃t+1 ∼ GT
t=n

Ut ←
∑T

k=t+1 γ
k−t−1Rk(X̃t+1)

Update πθ parameters by: θ ← θ + αUt∇θ log πθ(At|St; θ)
end

end

4.5 Experiments

We describe in this sections the experiments conducted on the two tasks in Section 4.3.1;

Text and air-combat trajectory generation. First we describe the baselines used for both

tasks, then we separately describe datasets, evaluation metrics, and discuss results for each

task.

Baselines

We evaluate our proposed model for both discrete (in our case, text generation) and real-

valued data (air-craft trajectory generation), summarized in Table 4.1.

Table 4.1: Comparison Baselines

Discrete Data Real-valued Data
(Text) (Trajectories)

SeqGAN*
� –

LSTM – �

OptiGAN-OnlyRL � –
OptiGAN-OnlyGAN � �

OptiGAN � �

*
SeqGAN works only with discrete data, not real-valued data

First, for text generation, we compare with three baselines:
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1. SeqGAN (Yu et al., 2017): is a well-known baseline for sequential generative models

that uses a discriminator as a reward signal for training the generator in reinforcement

learning framework.

2. OptiGAN-OnlyRL: This model is the vanilla reinforcement learning using policy

gradients. For fairness, we implement it by using our own model with GAN component

canceled, by zeroing out the GAN loss part.

3. OptiGAN-OnlyGAN: The sequence GAN with LSTM generator and discrete re-

laxation nodes, without any policy gradient component. We implement it using our

model with RL component canceled, by zeroing out the policy gradient loss.

The GAN network implementation of our model is based on RelGAN with same hyper-

paramters and temperature scheduling, but using LSTM unit instead of relational memory.

Finally, for trajectory generation, we implement two different models to compare with; LSTM

(The MLE component of our model without adversarial training) and OptiGAN-OnlyGAN

(our model without RL component), and we conduct ablation study for the effect of the RL

component.

4.5.1 Text generation

Below we describe in details the experiments for OptiGAN with discrete data on text gen-

eration task.

Evaluation Metrics

We use both BLEU score and negative log-likelihood (NLL) mentioned below to evaluate

the quality and diversity of our model.

BLEU Score As discussed in Section 4.3.1, BLEU score (Papineni et al., 2002) is a well-

known text quality score in machine translation and text generation tasks. The higher the

BLEU score is, the more the number of matching n-grams with the test set. In practice, and

as discussed later, the BLEU score can be easily cheated by repeating few matching n-grams

in one sentence, or by generating only one or a few high quality sentences from the model

after training. This situation implies low output quality or diversity from the model.
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Table 4.2: BLEU scores and NLL values on MS-COCO dataset

BLEU-2 ↑ BLEU-3 BLEU-4 BLEU-5 NLL ↓

SeqGAN 75.09± 0.84 51.58± 1.06 32.06± 0.98 20.03± 0.68 0.830± 0.176

OptiGAN-OnlyRL 79.23± 3.76 59.23± 6.21 40.65± 7.15 27.11± 6.36 0.803± 0.106

OptiGAN-OnlyGAN 75.96± 0.71 53.79± 0.99 34.34± 0.86 21.51± 0.56 0.735 ± 0.080

OptiGAN (RL+GAN) 76.55 ± 0.72 54.28± 1.01 34.84± 0.86 22.06± 0.59 0.739± 0.080

OptiGAN (MLE+RL+GAN) 76.42± 0.70 54.40 ± 0.99 35.06 ± 0.90 22.25 ± 0.66 0.737± 0.082

Table 4.3: BLEU scores and NLL values on EMNLP News 2017 Dataset

BLEU-2 ↑ BLEU-3 BLEU-4 BLEU-5 NLL ↓

SeqGAN 76.05 ± 1.67 47.60± 1.51 23.88± 0.88 12.05± 0.40 2.359± 0.272

OptiGAN-OnlyRL 79.16± 2.18 53.57± 4.00 31.26± 4.66 16.67± 3.14 2.267± 0.154

OptiGAN-OnlyGAN 73.15± 2.35 48.00± 1.32 26.12± 1.00 13.77± 0.71 2.234± 0.152

OptiGAN (RL+GAN) 74.32± 1.96 48.93 ± 1.20 26.99 ± 0.95 14.47 ± 0.66 2.225 ± 0.134

OptiGAN (MLE+RL+GAN) 74.03± 1.69 48.73± 1.08 26.64± 1.07 14.05± 0.79 2.226± 0.148

Negative Log-Likelihood (NLL) We use the negative log-likelihood of the generator

(Nie et al., 2019) to measure diversity, defined as:

NLLgen = −Ex1:T∼Pd logPGθ (x1, · · · , xT ) ,

where Pd and PGθ are the real data and generated data distributions, respectively. The lower

the value, the closer the model distribution is to the empirical data distribution.

Datasets

Two text datasets were used in our experiments for text generation are

� The MS-COCO image captions dataset (Chen et al., 2015) includes 4,682 unique

words with the maximum sentence length 37. Both the training and test data contain

10,000 text sentences.

� The EMNLP2017 WMT News dataset (Guo et al., 2018) consists of 5,119 unique

words with the maximum sentence length 49 after using first 10,000 sentences from (Nie

et al., 2019). Both the training and test data contain 10,000 sentences.
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Implementation and results

For MS-COCO dataset, we use policy gradient baseline value b (st) = 2.5 and α = 2.0 for

both Vanilla-RL and our model. The number of Mone Carlo samples we use during training

is 3. For EMNLP News, we use b (st) = 2 and 5 Monte Carlo samples. In all experiments,

we use gradient clipping value of 10.0 for the generator. In Tables 4.2 and 4.3 we report the

means and standard deviations of test BLEU scores and training negative likelihoods values

of our model compared to other baselines.

In Tables 4.2 and 4.3 we can see that, except for the OptiGAN-OnlyRL case, our model

outperforms the baselines in BLEU scores on MS-COCO dataset and all but BLEU-2 for

EMNLP News dataset. Our model also achieves a competitive NLL value with the best

model, OptiGAN-OnlyGAN. This means that our model does not sacrifice the diversity

of generated output when optimizing for the given score. We find that SeqGAN suffers

the worst NLL score, even when compared to OptiGAN-OnlyRL. Since SeqGAN modified

generator objective does not encourage matching the model distribution to data distribution,

it can be susceptible to diversity loss. On the other hand, GANs that use Gumbel-Softmax

to keep the standard generator objective, like ours, are more able to match the model to

data distribution.

In the case of OptiGAN-OnlyRL, we find that pure reinforcement learning can achieve a

higher BLEU score than other models (with very high variance). However, it has worse NLL

values, which means it has worse diversity than our model. Fig. 4.3 shows that OptiGAN-

OnlyRL fails to converge to low NLL, unlike our model, which has competitive NLL values

with OptiGAN-OnlyGAN.

Qualitative Evaluation. To qualitatively evaluate the sentences from our model, we

first show generated sentences, and compare the output with pure reinforcement learning

baseline. In Table 4.4 we show generated sentences of OptiGAN, where we can see that

the sentences generally look meaningful, structured and diverse, showing the capacity of

OptiGAN in generating good and diverse sentences.

Although pure RL policy gradients baseline OptiGAN-OnlyRL can reach high BLEU

scores, yet the sentences mostly are not realistic compared to our model. We show in Table

4.5 sentences from OptiGAN-OnlyRL, where we find that many of the generated sentences

are unrealistic repetitions of certain n-grams in the test set. In the case of MS-COCO
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Figure 4.3: NLL values on MS-COCO Dataset. Unlike SeqGAN, OptiGAN does not sacrifice
output diversity.

dataset, the generated sentences lengths are shorter than the average length of the dataset.

This behavior possibly means that in the absence of the GAN objective part of the loss,

pure reinforcement learning does not have incentive to generate sentences close to the real

data distribution. In this case, the model only has to achieve high BLEU score to reduce

the optimisation loss.

4.5.2 Air-Combat Trajectory Generation

Below we describe in details the experiments for OptiGAN with real-valued data on trajec-

tory generation task.

Evaluation metrics

We use the McGrew score(McGrew et al., 2010) which measures how good is the aircraft

positioned in an attempt to get behind the other aircraft. McGrew score is well-known by

domain experts in air-combat maneuvers.

Dataset

For trajectory generation task, we used simulated data from ACE-Zero simulator (Ramirez

et al., 2017). We created simulated trajectory data for the Stern Conversion maneuver

(Austin et al., 1990) (Fig. 4.1) with two fighters; the blue and the red. We created 6,000
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Table 4.4: Generated sample sentences from our model

Samples from MS-COCO

a roadside vendor sells food to passersby on there are two multitcolored towels .

an older man sitting at a kitchen with stainless steel appliances .

a woman standing in a field with mountains in the view of a field and a bus stop .

a clean bathroom with a blue toilet .

a group of people is watching buses next to a tall building .

a woman in a white shirt and jeans walking up a air gondola wears a

costume decorations in a red jacket hides building

three small dogs under a towel rack .

a bathroom with a toilet and a large mirror

a city street with cars vehicles parked on the ground .

a large passenger jet flying through the air flying a kite and an airport .

Samples from EMNLP News

people had gone in a few weeks ago , it ’ s really very quiet tonight to do .

she is me but it ’ s a concept , the girls can build high strength .

i ’ ve got a shock for their parents law to the same offence .

they ’ re going to acknowledge that their football leader will be able to get

every most republicans .

a tory source said : ’ the 22 fall in the family in all of the newcastle day .

at cbs, that is more difficult, this is that the social stuff isn’t quite any tribute for britain

it ’ s a safe model from making a book of the first lady who had to respond .

Table 4.5: Sentences from OptiGAN-OnlyRL. Pure RL looses structure with BLEU rewards,
repeating certain n-grams

the party has pledged a plate coach and don ’ t think it was good to the real head .

and i ’ ve been - it ’ i ’ i ’ i have that thing a couple to hear the end but i ’ m , “

it ’ s really people were going to do , ’ it ’ he work .
i ’ d like , when i ’ d like to give them to that it , there , and it ’ ll happen looking to

doubt that everybody challenges ...

if i ’ ve got no evidence , it ’ s it ’ i expect ’ there ’ he ’ he ’ it ’ he ’ it ’ out , and

information it ’ it ’ ...

’ i ’ i ’ it ’ we ’ i think i ’ we spent a escape i ’ i ’ ve been on the ...
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trajectories under this scenario 3.Each trajectory contains 16 featuresfor each of the two

fighters.

Implementation and results

In all of our experiments, we use 40 simulation time steps (tokens) for each fighter trajectory.

We use 256 units hidden layer for LSTM unit with 2 hidden layers. For the VAE part of the

model, we use 12 hidden units and latent dimension of size 10. We pretrained the generator

for 80 epochs before starting the adversarial and policy gradients training. In all experiments

we set σ = 0 for sampling xt. We can see from the generated trajectories is that the model

is able to capture the correct behaviour, were the blue trajectory tries to get behind the red

aircraft.

Table 4.6: Blue Fighter Engagement Scores (McGrew Score)

λ α McGrew Score

SeqGAN* N/A
LSTM – – 6.21
OptiGAN-OnlyGAN 1.0 – 7.34
OptiGAN 0.2 0.75 8.41
ACE0 Simulator Dataset – – 8.53

*
SeqGAN works only with discrete data, not real-valued data

Table 4.7: Effect of hyper-parameter λ for GAN-Only training

λ McGrew Score

OptiGAN-OnlyGAN
1.0 7.34
0.2 6.79

Score Optimisation. We want the generated trajectories to be more optimized towards

better engagement position against the red fighter. The desired outcome is a higher McGrew

score, which means better engagement positions along the generated trajectory. We evaluate

the effect of using policy gradients on the McGrew score of the blue aircraft and show the

results in Table 4.6. In all experiments, we use γ = 0.9.

We compare with three baselines, Our model for real-valued data without adversarial

training or policy gradients (LSTM), GAN without policy gradients (OptiGAN-OnlyGAN),

and the average McGrew score of the training data (from the simulator). For all baselines,

3All trajectory data is available at https://bit.ly/33k1AkT

https://bit.ly/33k1AkT
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we generate 6,000 trajectories for evaluation. We can see that full OptiGAN model with the

policy gradients achieves higher McGrew scores than other baselines, and closest to the real

physics simulator. Although the GAN without policy gradients was able to achieve a slightly

less score, the policy gradient model was run with the small value λ = 0.2. This means that

the adversarial training did not contribute to the high score achieved by policy gradients

model, rather, it was mainly the effect of policy gradients. As shown in Table 4.7, GAN

with no PG model with λ = 0.2 did not achieve the same score as the one with λ = 1.0.

Qualitative Evaluation. To qualitatively evaluate the generated trajectories from our

model, we show three different output categories form our model; i) free, ii) conditional and

iii) novel trajectories. First, we train the model to generate “free” trajectories, in which the

model freely generates both red and blue trajectories, without any input trajectory condition.

In Fig. 4.4 we show free trajectories compared to real trajectories. It can be observed that

the model can generate trajectories resembling the same behaviour in the real data.

Figure 4.4: Samples of the training data and generated trajectories from the model. Top
row: samples from the training trajectories in 2D position plane. Bottom row: generated
trajectories from the trained model (McGrew score = 6.03 ).

Conditional Trajectories . Second, we develop a conditional variant of our model,
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Figure 4.5: Samples of the training data and generated trajectories from the conditional
model. Top row: samples from the training trajectories in 2D position plane. Bottom row:
generated trajectories from the trained model.

where we want the model to be able to generate a trajectory for the blue aircraft given

an input red trajectory. We show samples of the conditional trajectories in Figure 4.5,

where we can see that the generated blue trajectory has a very close visual behaviour to the

corresponding real blue training trajectory (for each column, the top is a training trajectory,

and the conditional output is in the bottom). This shows that the model was able to correctly

capture the true blue behaviour based on the true red input. In a real-world scenario, the

conditional model can be used in real-time to suggest the best course of action for the blue

aircraft given the current and past trajectory of the red aircraft.

Novel Trajectories . Finally, we want to try to discover novel blue aircraft behaviour,

in the sense that the output trajectory resembles a behaviour that does not exist in training

data. We show trajectories that exhibit novel behaviour generated by the model in Figure

4.6. These trajectories are not seen in the training data, in the sense that, the characteristics

and shape of the trajectories are different. For example, in Figure 4.6, the scenario is set

up in a way that the red flies straight to the South, and the blue flies North, but needs to

turn around to tail the red. In the dataset, the shape of the blue trajectory in this scenario

is consistent, where the first part of the flight (going North before the turn to the East) is

always concave to the East. While in the generated trajectory, this first part is convex to
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Figure 4.6: Examples of novel behaviour generated by the model different from training
data. Top row: samples from the training data. Bottom row: Generated data from model

the East, and the convexity ends just before the turn. Such novel trajectories are potentially

important for air combat scenarios, where usually fighters are trained for specific common

scenarios, while in some situations, exploration of novel maneuvers might be important to

achieve better combat effectiveness and increase the chance of successful outcomes.
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4.6 Summary

In this chapter we addressed the problem of controlled generation in sequential generative

models, in order to enable real-world use of generative models in different applications,

including autonomous motion planning and drug or material design. In order to add this

ability to sequence generative models, we extended our previous model (ARN) in Chapter 3

to include goal optimized generation mechanism in a new framework, named OptiGAN.

OptiGAN combines the diversity encouraged GAN framework in (ARN) with reinforce-

ment learning (RL), since using RL methods like policy gradients allows maximizing accumu-

lative future rewards. This way, OptiGAN can both learn the underlying data distribution

through ARN objective, and gives the user a control mechanism that maximizes desired

properties/goals. The final generator objective is combined MLE and GAN optimisation,

and maximisation of the future rewards using REINFORCE policy gradients.

As a general framework, we conducted experiments on two tasks; text generation as dis-

crete data, and air-craft trajectory generation as real-valued data. Our experiments show

that OptiGAN can learn a distribution close the to the empirical (true) one, while achieving

better desired scores compared the baselines. We conducted both quantitative and qualita-

tive experiments to evaluate both discrete and real-valued tasks. We summarize the following

findings:

� For text generation task, in the quantitative evaluation, the model achieved up to 3%

higher absolute BLEU-4 scores over the baseline on MS-COCO dataset, and up to

3.11% on EMNLP dataset, as well as 20 relative improvement on BLEU-5, and with

lower variance (Tables 4.2 and 4.3). OptiGAN also achieved equivalent or second best

diversity over the baselines, where the diversity using NLL measure was improved by

12% and 6% over the RL baseline (SeqGAN) on MS-COCO and EMNLP datasets,

respectively.

� Compared to relevant RL baselines like SeqGAN, OptiGAN outperformed in both

desired scores and diversity, with much lower variance (around 50% decrease), requiring

much less number of MC samples (reducing from 16 to less than 5 samples, an average

of 75% decrease), and being faster to train.

� In the qualitative evaluation of text generation, we found that pure RL can sacrifice
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sentence structure and coherence, tending to repeat certain tokens, in order to maxi-

mize the desired score. Thus, pure RL has no incentive to stay close to the empirical

distribution if GAN term is not used in the loss, and tends to cheat the desired score

by different means.

� For air-combat trajectory generation task, quantitative results showed that the model

generated trajectories with higher engagement scores, compared to using only GAN

objective without the RL objective (4.6). Qualitatively, we showed that a conditional

variant of the model is able to generate proper maneuver trajectories based on a given

input target trajectory. Finally, we showed the potential of discovering novel trajectory

behaviours for real-world applications.

The comprehensive experiments we conducted showed that OptiGAN successfully addressed

the lack of controlled or custom optimized generation in sequence generative models. Com-

pared to RL baselines, the framework was significantly successful in learning the true data

distribution, using ARN GAN-based objective. Our work in this chapter is one of the early

models to address both the controlled generation and diversity of outputs in the sequential

setting.

In order to further improve OptiGAN efficiency and simplicity, we look forward to over-

coming the current limitations of our work. There are mainly two main limitations; first, the

lack of leaned latent space for the discrete data. While the real-valued variant of OptiGAN

in this chapter included a learned latent space, the specific implementation for discrete text

data did not. A sufficiently disentangled latent space is an important feature for generative

models that can be leveraged as a further fine control over outputs. Second, OptiGAN is

currently sensitive to hyperparameters tuning, mainly in the policy gradients part, like the

baseline computation for variance reduction.

In future work, we plan to address the limitations of the current OptiGAN framework.

Specifically, we plan to i) make policy gradients baseline value learnable instead of using

a fixed value, ii) improve the quality of real-valued outputs (e.g. trajectories) by adding

realistic physical constraints from the domain, and extending to multi-agents setting, and

iii) finally, we further look to incorporate disentangled latent space in the discrete case,

which can be leveraged as a fine control over the generation process through disentangled

factors of the data.



Chapter 5

Adversarial Attacks via Cross-Domain

Interpretability

Training robust deep learning models for downstream tasks is a critical challenge. Research

has shown that common down-stream models can be easily fooled with adversarial examples

that look like the training data, but slightly perturbed, in a way imperceptible to humans.

Understanding the behaviour of natural language models under these attacks is crucial to

improve their robustness. For example, a prominent approach to defend deep learning models

against malicious inputs is to find a set of adversarial examples that fool the classifier,

and augment the training set with these examples to improve the model’s generalisation.

While early adversarial attack methods were “white-box”, meaning they had access to model

parameters, more interest started to grow for “black-box” attacks. In the black-box attack

setting, the attacker has no access to the model parameters, and can only “query” the

target model by providing the data to the model and then receiving its probability or label

outputs to craft a successful attack. Nonetheless, current black-box state-of-the-art models

are costly in both computational complexity and the number of queries needed to craft

successful adversarial examples. For real world scenarios, the number of queries is critical,

where less queries are desired to avoid detection or suspicion towards an attacking agent.

In this chapter, we propose Explain2Attack, a query efficient black-box adversarial attack

on text classification tasks. Instead of searching for important words to be perturbed by

querying the target model, Explain2Attack employs an interpretable substitute model from

a similar domain to learn word importance scores. Our framework either achieves or out-

77
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performs attack rates of the state-of-the-art models, yet with lower queries cost and higher

efficiency. 1

5.1 Introduction

Achieving robustness for deep learning models against malicious inputs is a critical challenge.

As previously discussed in Section (2.4), research has shown that common downstream deep

learning models can be easily fooled with malicious inputs that look like the training data,

but slightly perturbed, in a way imperceptible to humans. These perturbed inputs are

called adversarial examples, which can be used to attack trained models, causing significant

deterioration to down-stream task performance. There has been plenty of work on generating

adversarial examples for different types of data, including images and text. The motivation

behind is that the better we understand how a model is vulnerable to different attacks, the

better we can increase its robustness. For instance, augmenting crafted adversarial examples

in the training data can improve robustness of the models towards adversarial examples and

improve its generalisation (Goodfellow et al., 2014b).

In general, attacks using adversarial examples can be crafted in either white-box or black-

box settings. In white-box attacks, the attacker has access to the target model parameters,

and the gradient of these parameters is used to craft adversarial examples (Belinkov and

Glass, 2018; Wang et al., 2019; Yang et al., 2019; Sato et al., 2018). On the other hand,

black-box attacks do not have access to the model parameters (Kuleshov et al., 2018; Gao

et al., 2018; Jin et al., 2019), but only to its outputs. In this chapter, we are interested in

black-box attacks, since, in practice, this is a more probable scenario for AI-systems deployed

in the real-world.

Specifically, we consider in this chapter black-box attacks on natural language classifi-

cation task. Typical classification models such as deep neural networks (DNN) output a

probability distribution of their input belonging to each target class. Usually, the final label

of the model is decided to be the one with the maximum probability. Hence, a classification

model could be fooled if the confidence of the output probability is affected by a malicious

input, switching the maximum probability to another incorrect target class.

1The work in this chapter was published at the 25th International Conference on Pattern Recognition
(ICPR 2020)
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We formulate the problem of crafting adversarial text attacks as a black-box conditional

generation problem under language constraints, where preserving both the semantics (mean-

ing) and syntax (structure) of a given input sentence after perturbation is challenging. The

key strategy used to craft adversarial text in existing methods is to try to replace few words

in an input sentence with synonyms such that its meaning remains the same. The classifica-

tion model is then queried with these perturbed sentences to find out which ones successfully

change the output label. Existing state-of-the-art models have different ways to search for

most important words to replace, but the common intuition is to compute the importance

score for each word as a function of the probability output of target model (see Section 5.3

for further details). Since existing approaches rely on word by word querying of the target

model, they are costly in both computational complexity and number of queries. For real

world scenarios, the number of queries is critical, where fewer queries are desired to avoid

detection or suspicion towards an attacking agent.

In this chapter, we propose Explain2Attack 2, a black-box adversarial attack method on

text classification, that employs cross-domain interpretability to learn word importance for

crafting adversarial examples. The key idea is to replace the need to querying the target

model by learning a similar substitute model with similar domain data, that can then be used

to generate word importance scores for the targeted model. The advantages of our model

are: (i) less costly in computational complexity and number of queries, (ii) achieves or out-

performs state-of-the-art methods in attack rates, yet with fewer number of queries, and (iii)

scales significantly better in terms of queries needed for word importance computation with

the length of input sequences.

5.2 Background

Here we formally define the adversarial examples problem in the natural language domain,

and the details regarding adversarial crafting process (Please refer to Section (2.4) for an

overview on the general problem of adversarial examples). We discuss related work in details

compared to our work in Section (5.3).

2Code is available at: https://github.com/mahossam/Explain2Attack

https://github.com/mahossam/Explain2Attack
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Figure 5.1: The standard procedure to craft a natural language adversarial example

5.2.1 Adversarial Examples in Natural Language

Let D be a dataset of N sentences and corresponding labels D = {X ,Y}, where X =

{X1, X2, ..., XN} is a corpus of N sentences, and Y = {Y1, Y2, ..., YN} is the collection of the

class labels of M possible text classes. A pre-trained target model F : X → Y is the classifier

model we want to attack. F maps the input space X to the label space Y . Starting from an

original sentence X ∈ X , a valid adversarial example Xadv could be crafted such that:

F (Xadv) 6= F (X), andSim(Xadv, X) ≥ ε, (5.1)

where Sim : X ×X → (0, 1) is a similarity function and ε is the minimum desired similarity

between the original and adversarial examples. In the case of natural language, this is usually

a combination of semantic and syntactic similarity (Jin et al., 2019; Vijayaraghavan and Roy,

2019). An example of the detailed procedure to craft a natural language adversarial example

is shown if Figure 5.1. Below we describe in details the main steps of the procedure.
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Crafting Adversarial Examples

To craft an adversarial example for a given sentence X ∈ X , the common strategy to

follow is : i) selecting the most important words/tokens to replace from the input sentence,

then ii) searching for synonyms to replace the most important words such that the changed

sentence changes the classification label of the target model, iii) Finally, in order for the final

adversarial example to be plausible and imperceptible to humans, the semantic similarity

between the original candidate sentence and the final one need to very high (semantically

close to each other) measured by some sentence similarity function Sim(·, ·).

Word Importance Ranking

Since the search space for all possible word placements to attack sentence X is large, most

black-box attacks use a word importance ranking criteria, that helps prioritize which words

in X to replace first. In details, let Iwi be a score to measure the influence of a word wi ∈ X

towards the model output probability FY (X) of the predicted label Y . Different black-box

methods vary on how to compute Iwi for each word in a sentence, as discussed later in Section

5.3. However, they share the same need for the probability output of the classifier for class

label Y , where Iwi is computed as a function of these probability outputs:

Iwi = ScoreFunction(FY (X)). (5.2)

Word Replacement with Synonyms

After word ranking is done, word replacement step begins. In this step, the algorithm takes

candidate words by order of importance, and replaces the current word by chosen synonyms

till the target model label is changed. The candidate sentence Xadv with changed words is

considered a valid adversarial example if it passes the condition in Eq.(5.1). After all word

replacements are tried, if Xadv still could not change the label, then we assume that no

adversarial example can be crafted from sentence X.
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5.3 Related Work

There has been recent work on adversarial text attacks (Belinkov and Glass, 2018; Wang

et al., 2019; Kuleshov et al., 2018; Yang et al., 2019; Sato et al., 2018; Gao et al., 2018; Ren

et al., 2019; Jin et al., 2019) . The main challenges for natural language adversarial attacks

are the discrete nature of inputs, where defining meaningful perturbations is not straight

forward, and the search space and complexity for black-box attack methods.

Specifically for black-box text attacks, several methods (Jin et al., 2019; Ren et al., 2019;

Gao et al., 2018) have been developed that share similar general framework, where the attack

starts by selecting the most important words/tokens to replace from a candidate sentence,

followed by searching for some word replacement that can flip the classification label of the

target model. However, some methods followed the heuristic optimisation approach, for ex-

ample, (Alzantot et al., 2018) used a genetic algorithm to find the best sentence perturbation

that fools the classifier.

Most of the aforementioned black-box methods use the word selection/replacement strat-

egy. For instance, PWWS (Ren et al., 2019) proposes computing a word saliency score using

output probabilities of the target model, while (Gao et al., 2018) computes sequential impor-

tance score based on forward and backward RNN probabilities at the current word position

in the sentence. TextFooler (Jin et al., 2019) is a recent strong baseline for text attacks,

where the method uses a modified procedure for word ranking that increases the ranking

in label disagreement case. BERT-Attack and BAE-Attack (Li et al., 2020; Garg and Ra-

makrishnan, 2020) both improve on TextFooler synonym replacement by using a pretrained

language model to generate suitable substitute words based on the surrounding context.

This achieved higher attack rates and the number of queries is reduced.

Our approach differs from previous work in solving the word ranking problem. Unlike

other methods, instead of depending on the target model for word importance ranking, we

learn word importance scores. The main differences of our approach compared existing ones

are: i) word ranking has no dependence on the target model output, thus more efficient in the

number of queries, ii) unlike existing methods, our approach is scalable for word importance

computation with increasing sentence lengths, since computing the scores is not dependent

on word by word query of the target model. This makes our approach more efficient, scalable,

and less computationally expensive compared to existing methods. Moreover, our general
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approach can benefit from further query reduction in the synonym replacement phase by

incorporating the pretrained language model technique in BERT-Attack and BAE-Attack.

5.4 Proposed Framework

We propose a more efficient word ranking and selection model that alleviates the need for

output probabilities for word ranking, hence, is more efficient in the number of needed

queries of target model. Our approach is to build an interpretable substitute model that can

closely resemble the target model behaviour on the attacked data domain. Then, using the

interpretability capability of the substitute model, we can produce importance scores that

can benefit our attack task.

In order to adapt our setup to work in a black-box setting, where we do not have access to

attacked training data, we rely on the domain adaption capacity of deep models. Potentially,

there is a similarity of language sentences representing a certain linguistic concept. For

example, the words and semantic structures of the reviews for a restaurant and a movie can

be usually similar, except that the subjects/objects of the reviews are different. Therefore,

if a model is trained to capture such high-level features, the knowledge of the model can be

transferred between datasets. This means that, if we do not have access to target model

training dataset, we still can train a close enough substitute model on a similar dataset. In

practice, deep learning models exhibit domain transfer capacity, where a model trained on

certain data, can still behave well on other similar data that have similar high level features.

Thus, attacks produced for the proposed substitute model (Papernot et al., 2017) can also

be used to efficiently attack the original target model as long as they both are trained from

similar domains. In Figure 5.2 we show the overview of our method.

In details, consider a target model F trained on some target training dataset Dtrain
t ={

X train
t ,Ytrain

t

}
and testing set Dtest

t = {X test
t ,Ytest

t }. Instead of querying target model F (·)

with context around each word in sentences from X test
t , we consider learning a substitute

interpretable model that can provide importance scores for given words. For this purpose,

we leverage a framework extended from (Chen et al., 2018a) to train the substitute model.
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Figure 5.2: Overview of Explain2Attack Framework.

Interpretable Substitute Model

In the black-box attacks setup, we do not have access to target training data Dtrain
t . There-

fore, in order to train a substitute model that can generate importance scores during attack,

we need to look for another dataset that is close enough to the target model dataset. We call

such a dataset the substitute dataset, Db = {Xb,Yb}. We then use Db to train the substitute

model we call SUB.

Our goal from training SUB is to learn a network (called the selector) that can select

the most important features from the input X ∈ Xb to let another network, the substitute

classifier, correctly predict the corresponding label Y ∈ Yb. In details, inspired by (Chen

et al., 2018a), for a substitute pair (X, Y ) ∼ Db, our goal is to learn a selector network E(X)

that selects the most important subset of k features from X that is sufficient for substitute

classifier Fb(.) to correctly predict Y . After substitute training is finished, Fb(.) can be

discarded, since we are only interested in the selector E(X).

Formally, for a given positive integer k, let ρk be the set of all possible subsets of size k:

ρk =
{
S ⊂ 2d : |S| = k

}
.
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We denote the selected k features indices as S, which and are drawn from the probability

distribution P , the output of the selector E(X):

S ∼ P (S|x) = E(X),

where S ∈ ρk. Lastly, we denote the corresponding selected features sub-vector from X

as XS ∈ Rk. The choice of the number of explaining features k can be tuned as a hyper-

parameter. The learning objective is to find E that maximizes the mutual information

I (XS;Y ):

max
E

I (XS;Y ) subject to S ∼ E(X). (5.3)

Maximizing a variational lower bound

Since a direct solution to the Problem 5.3 is not tractable, an approximate solution can be

found using a lower bound on the mutual information (Section 2.1.2). Starting from 5.3,

I (XS;Y ) can be expressed as:

I (XS, Y ) = E
[
log

Pb (XS, Y )

P (XS) Pb(Y )

]
= E

[
log

Pb (Y | XS)

P (Y )

]
= E [logPb (Y | XS)] + Const.

= EXES|XEY |XS [logPb (Y | XS)] + Const,

where Pb(Y ) is the empirical distribution of the labels from Db. Since it is not possible to

compute expectations under Pb (Y | XS), a variational approximate distribution QS (Y | XS)

can be used for the optimisation, where:

EY |XS [logPb (Y | XS)] ≥ EY |XS [logQS (Y | XS)] .

This way, the maximisation in 5.3 can be carried out on the variational approximate:

max
E,Q

E [logQS (Y | XS)] such that S ∼ E(X). (5.4)

In the attack step, in order to generate word importance scores from the trained SUB,

we take the logit output of the last layer of E(X) before the k selection process S ∼ E(X).

This way we obtain importance score vector I ∈ Rd that has the same dimensions of the
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input.

The selector E takes the form of a multilayer deep convolutional neural network. In order

for E to select k features from X, a Gumbel-Softmax layer (Jang et al., 2016a) is used to

generate k indices (please refer to the basic formulation described in Section 3.3.3).

Adversarial Examples via Cross-Domain Interpretability

At inference time, when crafting the adversarial attacks, we do inference on SUB using the

target testing set Dtest
t . This is the standard setup for black-box attack, where Dtest

t is used

as starting point and slightly perturbed to craft valid adversarial examples. As described

earlier, because of the domain adaption capacity of deep learning models, the closer the

substitute domain is to the target, the better the generated scores will be for the original

target model.

Implementation

Our attack method is inspired by the framework proposed in (Jin et al., 2019). However, we

modified the behaviour so that we alleviate the need for querying F (·) for word ranking, since

our proposed method relies on interpretability architecture for this purpose. We name our

framework Explain2Attack. In Algorithms 5 and 6 we describe in details how our algorithm

works.

Algorithm 5: Train Substitute Model SUB

Input: Substitute training corpus Xb = {X1, X2, ..., XN} of N sentences, and
corresponding class labels Yb = {Y1, Y2, ..., YN}

Output: Trained substitute model SUB with selector network E
for each mini batch Bs ∈ {Xb,Yb} do

Update parameters of SUB model to find E that maximizes objective in Eq.
(5.4)

end

We follow Algorithm 5 to train the substitute model SUB using Db. After that, selector

E from SUB can be used in algorithm 6 for crafting adversarial examples.

The procedure to craft adversarial examples is described in Algorithm 6. The algorithm

starts from an input sentence Xtest
t and terminates either after successfully finding a per-

turbed adversarial example Xadv that changes the label Y test
t , or if no such perturbation is
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Algorithm 6: Explain2Attack: Crafting Text Adversarial Examples

Function Explain2Attack :

Input: Target test sentence example Xtest
t ∈ X test

t , where

Xtest
t = {w1, w2, . . . , wn}, the corresponding ground truth label Y test

t ,

target model F , sentence similarity function Sim(·, ·), sentence similarity

threshold ε, word embeddings Emb over the vocabulary Vocab

Output: Perturbed Adversarial example Xadv

1 Initialization: Xadv ← Xtest
t

2 for each word index i in X test
t do

3 Retrieve word importance score Iwi = Get Word Score(Xtest
t , i)

4 end

5 W ← Sorted list of words in wi ∈ X in descending order of importance score Iwi

6 for each word wj ∈ W do

7 Candidates ← {}
Extract top M synonyms of wj from Vocab by highest cosine similarity:

8 Synms(wj)←
{

v ∈ Vocab :∣∣∣{v′ ∈ Vocab : CosSim
(
Embwj , Embv

)
> CosSim

(
Embwj , Embv′

)}∣∣∣ < M
}

9 for each synonym cm ∈ Synms(wj) do

10 X ′m ← Replace wj with cm in Xadv

11 Add X ′m to Candidates

12 end

13 if ∃X ′ ∈ Candidates s.t. F (X ′) 6= Y test
t and Sim (X test

t , X ′) ≥ ε then

14 Xadv ← argmax
X′∈Candidates

Sim (Xtest
t , X ′)

15 return Xadv

16 else if FY (Xadv) > min
X′∈Candidates

FY (X ′) then

17 Xadv ← argmin
X′∈Candidates

FY (X ′)

18 end

19 end

20 return None

Function Get Word Score(Xt, i):

word score = Elogits(Xt)i
return word score

found. In details, the algorithm proceeds by inferring from E word scores for every word in

Xtest
t . These scores are sorted, called W , and then the algorithm tries to replace word by word
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to find validXadv. For each word wj inW , a set of topM synonyms are extracted from the vo-

cabulary (Vocab) based on the embedding cosine similarity CosSim(Embwj , Embword∈Vocab)

as in (Jin et al., 2019). Then a set of the candidate adversarial sentences (Candidates) is

created by replacing wj with each extracted synonym.

At the current word wj, the algorithm first checks if perturbing wj in Xadv using the

set of synonyms in Candidates can change Y test
t . If one or more such synonym are found,

the one which achieves the highest similarity Sim (Xtest
t , X ′) to original sentence is picked,

and the algorithm terminates. Otherwise, if no synonym is found that can change Y test
t ,

the algorithm needs to choose the synonym perturbation that yields the weakest (minimum)

target model probability FY (X ′) before moving on to the next word wj+1.

Semantic Similarity Check Sim
(
Xtest

t , X ′). Following (Jin et al., 2019), we use

the Universal Sentence Encoder (USE) to encode the original and the adversarial candidate

sentences into a high dimensional vector space, and use their cosine similarity score the

semantic similarity between Xtest
t and X ′.

5.5 Experiments

We report here the results of our method on text classification tasks. We apply our framework

to several sentiment classification datasets with WordCNN, WordLSTM and BERT (Devlin

et al., 2018) target models. However, our model can be applied to other classification models

or datasets with a proper choice of substitute datasets . We compare our results to TextFooler

(Jin et al., 2019), a state-of-the-art baseline for black-box text attack on the chosen target

models. Below we describe the datasets, metrics and discuss the results. In Table 5.1 we

report the datasets we used in our experiment with their statistics.

Datasets

� IMDB and MR: Movie reviews for sentiment classification (Maas et al., 2011a; Pang

and Lee, 2005). The reviews have binary labels, either positive or negative.

� Amazon MR: Amazon polarity (binary) user reviews on movies, extracted from the

larger Amazon reviews polarity dataset 3.

3https://www.kaggle.com/bittlingmayer/amazonreviews

https://www.kaggle.com/bittlingmayer/amazonreviews
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� Yelp Polarity Reviews: Sentiment classification on positive and negative businesses

reviews (Zhang et al., 2015). We mainly use this dataset as a substitute dataset when

attacking other models.

In all of the datasets except Amazon MR, we follow the data preprocessing and partitioning

in (Jin et al., 2019).

Table 5.1: Statistic of Used Datasets

Dataset Train Test Avg. Length

IMDB 25K 25K 215
MR 9K 1K 20

Amazon MR 25K 25K 100
Yelp 560K 38K 152

Metrics

We evaluate our method using the following metrics:

� After-attack accuracy (Adv Acc): We report for each model the original clean

accuracy Clean Acc of the target model on the test set. Then we report the accuracy

of the target model against crafted adversarial examples Adv Acc. The lower is this

better, where the larger the gap between these two accuracies means more successful

the attack method. Through-out discussion, when we refer to “attack rate”, we mean

the gap (Clean Acc− Adv Acc).

� Average number of queries (Avg Queries): We report the average number of

queries needed to find successful adversarial example per input sentence. The lower is

better, where fewer number of queries is one of the main desired goals of our method.

This is an absolute measure of the number of queries regardless of the achieved after-

attack accuracy.

� Query Efficiency (QE): Since more successful attacks need more queries in black-

box setting, we cannot rely only on Avg Queries for evaluating the performance of

our method. We need to measure the true benefit in reduction of number of queries,

and make sure that it is not reduced because of sacrificing attack rate. This is the
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Table 5.2: After-Attack Accuracies, Queries and Query Efficiency

Classifier BERT WordCNN WordLSTM

Target Model IMDB MR IMDB MR Amazon MR IMDB MR Amazon MR

Clean Acc. 92.18 89.97 87.32 79.85 90.14 88.78 81.82 91.30

Adv Acc. ↓
TextFooler (Jin et al., 2019) 11.88 13.59 0.60 1.50 3.92 0.04 2.06 2.15

(Substitute Data) (Yelp) (Amazon MR) (Yelp) (IMDB) (Amazon MR) (IMDB)

Explain2Attack (ours) 11.32 13.34 0.61 1.31 3.97 0.06 2.27 2.38

Avg Queries ↓ TextFooler 980.5 181.6 444 112.8 378.7 500.2 117.5 392.7

Explain2Attack 873.5 184.07 404.5 108.7 349.4 440.5 114.2 369.3

Query Efficiency

(QE)
↑ TextFooler 0.082 0.421 0.195 0.695 0.228 0.177 0.679 0.227

Explain2Attack 0.093 0.416 0.214 0.723 0.247 0.201 0.697 0.241

motivation behind Query Efficiency (QE), the ratio of successful attacks per query

QE = Clean Acc−Adv Acc
Avg Queries

. The higher is better. This means that QE measures the

percentage of successful attacks per single query, hence the true query efficiency related

to the attack rate.

� Perturbation Query Cost (PQC): The number of queries needed per perturbed

word PQC = Avg Queries
Pertureb Words

. The lower is better. PQC measures the cost in terms of

queries needed for a useful word perturbation that contributes towards label change.

Results and Discussion

The main focus in evaluating the performance of our method is the number of queries, both

as absolute measure and its efficiency relative to the achieved attack rate. These two aspects

of evaluation are critical to measuring the true gains we get from our approach.

First, in Table 5.2, we compare after-attack accuracies and corresponding average number

of queries to the baseline. For each target model and dataset, we report the best substitute

dataset that yielded the best result. Across all but one case, we find that our method either

achieves or out-performs attack rates of the baseline, yet with lower number of queries. The

gains in terms of the number of queries differ according to the different datasets. We discuss

this in details later in this section.

Lastly, it is important to study the cases where our method achieves a lower number of

queries but does not achieve higher attack rate than the baseline. In the black-box setting,

higher attack rate is related to the number of queries, since there is a cost of a certain

number of queries for every word perturbation. This means that lower number of queries is

only beneficial if it improves or preserves the attack rate. Therefore, in order to measure the

true efficiency of our method in terms of queries per successful attack, we report in Table
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Table 5.3: Effect of Sentence Length on Number of Queries

Target Dataset IMDB Amazon MR MR

Classifier BERT CNN LSTM CNN LSTM BERT CNN LSTM

Average Sentence Length 215 100 20

Avg Queries ↓ TextFooler 980.5 444 500.2 378.7 392.7 112.8 117.5 181.6

Explain2Attack 873.5 404.5 440.5 349.4 369.3 108.7 114.2 184.07

Difference 106.5 39.5 59.7 29.3 23.4 4.1 3.3 -3.0

5.2 Query Efficiency ratio QE . We find that when our method has fewer number of queries,

it has better QE ratio, even if the attack rate is not better than the baseline. This implies

that the lower number of queries achieved comes from true efficiency of our method, not

because of the corresponding drop in attack rate.

Effect of Sentence Length In the case of MR dataset in Table 5.2, we find that the

reduction in the number of queries is the lowest among other datasets. By comparing the

statistics of the datasets (Table 5.1) with the results in Table 5.2, we find a correlation

between the dataset average sentence length and the corresponding reduction in attack

queries. The longer the sentences are, the more reduction our method achieves in number

of queries. We summarize this finding in Table 5.3. This effect is in agreement with our

design goals, since unlike other existing methods, our method does not perform word by word

ranking through target model querying. Hence, with longer input sentences, the reduction

in the number of queries is improved by our method. This is a key advantage of our method

in terms of scalability to datasets with longer sentences.

Query Cost of Perturbed Words Another important measure is the number of queries

needed for every word perturbation; Perturbation Query Cost (PQC). We are interested

in this measure in order to understand the added cost of queries if the model requires more

words to be perturbed to find a successful attack. In Table 5.4 we report PQC against

the baseline. In addition, we report both the maximum and average number of perturbed

words needed for successful adversarial attack. Results show that our method outperforms

the baseline in PQC measure, meaning that our method scales better with the number of

perturbations needed for successful attacks.
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Table 5.4: Perturbation Query Cost (PQC)

Classifier BERT WordCNN WordLSTM

Target Model IMDB MR IMDB MR Amazon MR IMDB MR Amazon MR

Max Perturbed Words

TextFooler 222 20 56 14 35 89 13 75

(Substitute Data) (Yelp) (Amazon MR) (Yelp) (IMDB) (Amazon MR) (IMDB)

Explain2Attack 127 20 54.3 11 41.7 84.7 13.8 68

Avg. Perturbed Words
TextFooler 18.7 4.2 5.8 2.3 5.0 7.6 2.5 7.0

Explain2Attack 22 4.8 9.1 2.8 6.5 11.3 2.9 8.7

Perturbation Query Cost

(PQC)
↓ TextFooler 52.5 43.5 76.6 49.0 76.3 65.8 47.0 56.4

Explain2Attack 39.7 38.6 44.5 38.8 53.8 39.2 39.2 42.2

Table 5.5: Adversarial Examples Sentences. Perturbed Words are Highlighted

Label Sentence

Original (0=Negative) the film lapses too often into sugary sentiment and withholds delivery on the pell mell pyrotechnics
its punchy style promises

Adversarial (1=Positive) the film lapses too often into sugary emotions and withholds delivery on the pell mell pyrotechnics
its punchy style promises

Original (1=Positive) the movie sticks much closer to hornby ’s drop dead confessional tone than the film version of high fidelity did
Adversarial (0=Negative) the movie sticks much closer to hornby ’s drop dead confessional tone than the film version of high faithful did

Original (0=Negative) i’m not exactly sure what this movie thinks it is about
Adversarial (1=Positive) i’m not exactly sure what this cinematography concepts it is about

Original (1=Positive) the performances of the four main actresses bring their characters to life a little melodramatic
, but with enough hope to keep you engaged

Adversarial (0=Negative) the performances of the four underlying actresses bring their characters to life a littlest melodramatic
, but with enough wanting to keep you engaged

Qualitative Assessment We show in Table 5.5 examples of successful adversarial exam-

ples from our method. We find that the language semantic is preserved, and that the choice

of perturbed words resembles important keywords that contribute to the original label.

Transferability Conditions In all of our experiments, we used the standard L2X (Chen

et al., 2018a) architecture as the choice for the substitute architecture. However, we found

that changing the substitute architecture affects attack rates. This finding is similar to

(Demontis et al., 2019; Madry et al., 2018) where attack performance is found to be related

to the model’s architecture and complexity. We further look to study in details why and

when attacks transfer well between substitute and target models. However, we leave such

comprehensive study for future work.
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5.6 Summary

In this chapter, we proposed a general framework that employs interpretability across do-

mains for crafting black-box text adversarial attacks. We consider the problem of conditional

generation of adversarial sentences from a given input sentence, where the goal is to perturb

the input while preserving its semantics and structure. In a typical the black-box setting,

the main challenge we address is the query and computation cost of adversarial sentences.

The main intuition is to learn word ranking that most probably impacts the target model

instead of searching for it expensively.

Most of the existing methods depend on heavily querying the target model to choose

which words to perturb with replacement synonyms. We proposed a novel approach to

address this problem through domain transfer capacity, named Explain2Attack, in order to

reduce the number of queries needed, and increase the computational efficiency. Specifically,

we train an interpretable substitute model on a substitute dataset, with no need for the

target dataset. The substitute model learns word importance scores for the word ranking on

the substitute domain. After the substitute training, the substitute model is then used in

the word ranking step in the target domain to generate word importance scores, with fewer

number of queries and higher efficiency.

To evaluate the performance of Explain2Attack, we utilize common metrics including

number of queries and successful attack rates. In addition, we propose two new metrics:

Query Efficiency ratio (QE ) and Perturbation Query Cost (PQC). Both measure the true

effectiveness of attack methods in terms of number of queries per successful attack or per

word perturbation.

� Our method either achieves or out-performs attack rates of the baseline, yet with lower

number of queries. [In Table 5.2, on IMDB dataset, 11.9%, 11.7% and 8.7% reductions

in number of queries are achieved compared to the baseline (measured on attacks per

query unit (QE)), with BERT, LSTM, and CNN models respectively.]

� With lower number of queries, our method has better Query Efficiency ratio (QE ),

even when the attack rate is lower than the baseline. Hence, fewer queries achieved

come from inherent query efficiency of our method.

� A key advantage of our method is that it is more scalable for word importance com-
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putation with the input length, since it does not perform word by word ranking. The

longer the sentences are, the more reduction our method achieves in needed queries.

Table 5.3 shows 13%, 7% and 6% improvements in queries reduction when input length

increased from 20 to 215 words, on LSTM, BERT, and CNN models, respectively.

In addition, to measure the queries efficiency relative to the number of perturbed words, we

propose Perturbation Query Cost (PQC). PQC is the number of queries needed for every

word perturbation. In Table 5.4, on IMDB dataset, our method needs 26, 32 and 12 fewer

queries per word perturbation than the baseline. Results show that our method scales better

with the number of perturbations needed for successful attacks.

Through extensive experiments, we show that our proposed framework either achieves

or out-performs attack rates of the state-of-the-art baseline, yet with lower queries cost

and higher efficiency. However, our work has some limitations. First, the framework needs

probability outputs from the target model. Although most current natural language attack

methods have the same limitation, other attack methods on other types of data like images

have alleviated this limitation (Papernot et al., 2017). Second, the synonym ranking and

replacement procedure requires a significant number of queries to the target model. We find

that this part is responsible for the most queries needed for a successful attack. Therefore,

changing this procedure is very important for any further improvement to our framework.

Finally, the choice of the substitute domain data is mainly dependent on human experience

and experiments. For a real-world usage of our framework, simplifying or automating the

choice of the substitute domain is useful.

For future work, we plan to overcome the limitations of our current framework. Specifi-

cally, we plan to i) train the selector network to directly attack the target classifier through

a reward signal feedback, in order to improve attack rate, ii) study and formalize trans-

ferability conditions from substitute to target domains, and provide guides for the suitable

choice of substitute models and domains, and iii) further reduce dependence on target model

by choosing replacement synonyms through a pretrained language model (Li et al., 2020).

Therefore, we can further reduce the need for target model probabilities.



Chapter 6

Learning Adversarial Attacks with

Target Model Guidance

In the previous chapter, we introduced a learning approach for adversarial attacks on natural

language classification models. The key idea was to replace the query-expensive search for

important words ranking with a substitute model that can learn the word ranking. We

thus showed that effective word ranking is possible without the need to extensively query

the target model during each attack. In that black-box setting, it was desired to limit the

access to the target model and data as much as possible, and thus the learning did not

benefit from the target model’s information, since no access to the target data was possible

and with limited access to its outputs. Therefore, the learning could only be performed on

another dataset, which we call the substitute domain dataset. As shown in the previous

chapter, this framework achieved comparable attack rates to the baseline with fewer queries.

Nonetheless, it is generally desirable to perform the word ranking learning directly on the

target data domain, and to benefit from the target model’s output information as a learning

signal for the substitute model, in order to generate better adversarial examples. In this

chapter, we investigate different methods to incorporate such learning signal from the target

classifier. Through a preliminary set of experiments, we show that the proposed methods

can improve both attack rates and average number of queries. Finally, we provide potential

future directions for further improvements.
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6.1 Introduction

Most of the existing black-box attack methods on natural language models directly query

the target model to rank sentence words for replacement. This procedure is expensive in

terms of number of queries needed to the target model, and the number of queries increases

with the increased input length. In addition, the increased number of queries to the target

classifier is not desirable in black-box settings, where it can raise the suspicion towards the

attacking agent. To address this issue, we presented Explain2Attack in Chapter 5, where an

interpretable model is trained to learn good word ranking for synonym replacement.

In Explain2Attack model, two main network components are trained; the substitute clas-

sifier Fb, and the selector network E . The substitute classifier Fb is trained as a substi-

tute for the target classifier with the cross-entropy loss on the substitute data and labels

Db = {Xb,Yb}, while the selector E is the main component we are interested in to select

the important words, and its parameters are updated to minimize the same loss for Fb .

Under this architecture, Explain2Attack was able to achieve comparable attack rates to the

baseline while reducing the computational and query complexity.

However, the word ranking step in Explain2Attack was trained on the substitute dataset

and classifier, which are both different from the target classifier and the target dataset. The

substitute training was designed in this way in order to limit the access to the target model’s

through extensive queries, and to the training dataset Dtrain
t . The key intuition is that as

long as the chosen dataset for the substitute training dataset Db comes from a similar domain

to the target training dataset, then the learned word ranking model should perform good

enough on test sentences from the target dataset.

Although this setting leads to competitive attack rates and reduced queries if satisfied, it

is still a restriction on the substitute training procedure. Additionally, in some scenarios, the

access to target model’s data might be possible or available. Thus, by relaxing restrictions on

the access to possible target model information (both outputs and data domain), we might

be able to achieve better attack rates with a marginal overhead of additional queries used for

the substitute training. It is therefore desirable to perform the substitute learning directly

using the target model outputs or data domain, in order to leverage all possible information

to generate better adversarial examples and achieve better queries efficiency in terms of the

average number of queries per attack.
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In this chapter, we propose two modifications to Explain2Attack to better train the

selector network while benefiting from the target classifier output information according to

the availability of the target test set. Specifically, we do not use the labels used for selector

training in Chapter 5, which came from the substitute dataset Yb. Instead, we replace them

with output predictions from the target classifier under two settings: i) the target model

is given the substitute dataset sentences Xb, or ii) the target model is given the target

test set X test
t . In the following sections, we describe in details the two modifications and

their intuitions, and provide experimental results for different natural language classification

target models and datasets. Finally we provide discussion and insights for this research

problem and potential future directions.

6.2 Method

In order to employ the target model predictions in the substitute model training, we consider

two black–box settings: first, substitute training without access to the target test set, and

second, substitute training with access to the target test set.

In details, we first revise the original setting of Explain2Attack from Chapter 5: let a

target model Ftarget be trained on some target training dataset Dtrain
t =

{
X train
t ,Ytrain

t

}
and

testing set Dtest
t = {X test

t ,Ytest
t }. We then train a substitute model, SUB, to learn the word

importance scores. SUB is trained using a dataset that is close enough to the target model

dataset called the substitute dataset, Db = {Xb,Yb}. The substitute model itself contains two

sub-networks called the substitute classifier Fb and the selector network Eθ. After training,

performing inference on the selector network Eθ(X) using input sentences yields the desired

word importance scores for these sentences. During the substitute training procedure, the

substitute classifier Fb is trained to correctly predict the label Y ∈ Yb from an input sentence

Xs ∼ Eθ(X), where X ∈ Xb, and Xs is the most important selected k words for some input

X. After substitute training is finished, Fb(.) can be discarded, since we are only interested

in the selector E(X).

To this end, we change the original setting of Explain2Attack to incorporate the target

classifier predictions outputs in the selector network training. Specifically, we want to replace

the labels Yb that come from the substitute dataset Db with output labels or probabilities

from the target classifier Ftarget. This way, the training of Fb, and most importantly, the
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selector Eθ, will be trained such that it learns or imitates the behaviour of the target classifier.

This requires querying the target model Ftarget

(
X̃
)

with some input X̃ to return target

classifier predictions. The choice of the inputs to the target model X̃ allows to different

settings: i) We either choose X̃ to come from the substitute dataset Xb, or ii) from the

target test-set sentences X test
t . Below we describe both settings in details and the possible

use cases for both.

6.2.1 Substitute training without access to the target test set

In this setting, we use the target model’s predictions to come from substitute sentences input

Xb ∈ Xb instead of using the substitute dataset labels Yb. We use the prediction probabilities

from Ftarget for the substitute training, where the loss function for training both Fb and Eθ
becomes:

Lsubs domain (Fb, Ytarget) = E
Xb∈Db

[∥∥Fbφ(Eθ(Xb))− Ftarget(Xb)
∥∥2
2

]
, (6.1)

where Db is the substitute dataset, Fb (Eθ (·)) is the substitute classifier output, and Ytarget

is the output of the target classifier Ftarget, both containing the probabilities for all available

classes. This loss is the mean square error between the substitute classifier and the target

classifier outputs. The purpose of this loss function is to train the substitute classifier such

that its real-valued output predictions (the classes probabilities) are optimized to resemble

the target classifier prediction outputs. Therefore, the selector network is trained to help the

substitute classifier resemble the target classifier behavior. Fig. (6.1a) shows the substitute

training procedure under this setting. This settings is suitable when the target test set in

not known for the attacker, which is the common scenario of black-box attacks on pretrained

models.

6.2.2 Substitute training with access to the target test set

In this setting, we use the target model’s outputs to come from a part of the target test

set Xtest
t ∈ X test

t . The rationale behind this setting is that we consider the cases when

the attacker happens to have access to the target dataset, or that the user of the target

model gets to choose the training dataset, yet does not have access to the final target model
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Figure 6.1: Overview of Explain2Attack L2X training with Target Guidance via a) the
substitute sentences, or b) the target test set.

parameters. Similar to the previous setting, we use the probability outputs from Ftarget for

the substitute training, where the loss function becomes:

Ltarget domain (Fb, Ytarget) = E
Xb∈Db, Xtest

t ∈X test
t

[∥∥Fbφ(Eθ(Xb))− Ftarget

(
Xtest
t

)∥∥2
2

]
. (6.2)

Fig. (6.1b) shows the substitute training procedure under this setting.

6.3 Experiments and Discussion

We apply the new approach to employ target classifier predictions on sentiment classification

task using WordCNN and WordLSTM target classifiers. For all of the experiments, we used

the same datasets, substitute datasets, and target classifier parameters and hyperparameters

that were used in Chapter 5.

To evaluate the performance of the two proposed methods described above, we report the

adversarial accuracy (Adv Acc), the average number of queries (Adv Queries), and query

efficiency, and compare with the original Explain2Attack reported in Chapter 5. In detail,
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in tables 6.1 and 6.2 we report the results for incorporating the target model predictions for

training Explain2Attack selector without access to the target test set and with access to it,

respectively. For both Adv Acc and Adv Queries, the lower number is the better, indicated

by the ↓ symbol, while for Query Efficiency, the higher ↑ is the better .

For the first method, we use the exact setup as in section 5.5 for the experiments, except

that the substitute labels Yb were replaced with the target classifier predictions from the

substitute sentences, and Eq. (6.1) was used for training the selector. For the second

method, Yb were replaced with the target classifier predictions from the target test set, and

Eq. (6.2) was used to train the selector. For the set of experiments in Table 6.2, only a

small portion of the test set was used during the selector training, where 5000 out of 25,000

sentences were used.

For the set of experiments in Table 6.1, the first method was used to attack the target

classifier. We can see that in three out of four experiments, that the attack rate was improved

compared to the original baseline. Although the improvement is generally marginal, yet it

demonstrates the added benefit of incorporating the target model predictions in the training

process. Moreover, we find that the average number of queries needed was also improved in

these three cases, and consequently, the query efficiency was improved.

Table 6.1: Performance metrics for Explain2Attack selector trained with target model pre-
dictions given substitute dataset sentences.

Classifier WordCNN WordLSTM

Target Model IMDB Amazon MR IMDB Amazon MR

Clean Acc. 87.32 90.16 88.78 91.44

Adv Acc. ↓
(Substitute Data) (Yelp) (IMDB) (Amazon MR) (IMDB)

Explain2Attack 0.59 4.12 0.05 2.51
Explain2Attack-Ftarget(Xb) 0.57 4.11 0.08 2.37

Avg Queries ↓ Explain2Attack 402.5 351.7 440.2 368.7
Explain2Attack-Ftarget(Xb) 345.6 337.8 652.7 336.0

Query Efficiency

(QE)
↑ Explain2Attack 0.215 0.245 0.202 0.241

Explain2Attack-Ftarget(Xb) 0.251 0.255 0.136 0.265

The improvement of the average number of queries is of particular interest in our setting,

as it relates to the quality of word importance ranking learned during substitute training.

Specifically, the baselines TextFooler (Jin et al., 2019) and the original Explain2Attack

(Section 5.4) both perform the following procedure for generating an adversarial example;

they perturb word by word, in order, from the more to less important words (as described
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Table 6.2: Performance metrics for the selector trained with target predictions given target
test set sentences (5K out of 25K target test sentences used).

Classifier WordCNN WordLSTM

Target Model IMDB Amazon MR IMDB Amazon MR

Clean Acc. 87.32 90.16 88.78 91.44

Adv Acc. ↓
(Substitute Data) (Yelp) (IMDB) (Amazon MR) (IMDB)

Explain2Attack 0.59 4.12 0.05 2.51
Explain2Attack-Ftarget

(
Xtest
t

)
0.56 4.05 0.05 2.34

Avg Queries ↓ Explain2Attack 402.5 351.7 440.2 368.7
Explain2Attack-Ftarget

(
Xtest
t

)
382.6 352.2 444.4 357.2

Query Efficiency

(QE)
↑ Explain2Attack 0.215 0.245 0.202 0.241

Explain2Attack-Ftarget

(
Xtest
t

)
0.227 0.244 0.200 0.249

in Algorithm 6). In each of these perturbations, the target classifier is queried to check if its

prediction label was changed. Therefore, the correctness of word ranking plays a key role in

the total number of words that need to be perturbed, and consequently, the total number of

queries. This means that the more important the selected words are to the target classifier,

the fewer total words will be needed to be perturbed in order to change the final classification

label. Thus, fewer queries will be needed. By looking on the results in tables 6.1 and 6.2, we

can see that for most of the experiments, there is a consistent improvement in the number of

queries. This observation suggests that the employing target model predictions encouraged

the selector to learn more accurate word ranking according to its importance to the target

classifier. Although there is some overhead of queries involved in training the selector in the

first place, the later reduction in average queries needed per single attack might be of more

value with the increased number of attacks.

In addition, we find that the overhead needed for substitute training queries can be

reduced in the second method, where the target test set is used for output predictions from

the target classifier. As we see in Table 6.2, the selector was trained only on 5000 test set

sentences, out of the total 25,000 sentences in the test set. This also suggests that having

access to the target test set might have an additional benefit on both attack rates and the

number of queries.

Under this particular setting of the target test set availability, we study the effect of

the target set portion size used for the selector training, using 5000, 10,000, 15,000, and

20,000 samples out of the whole test set size of 25,000 samples. We perform the same set of

experiments in Table 6.2 on these portions sizes and report the adversarial accuracies and

average queries for all combinations of target models and datasets in Figures (6.2) and (6.3)
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Figure 6.2: Adversarial Accuracies for Explain2Attack with the selector trained on a portion of the target

test set. Each category represents the portion of the data used out of 25K samples. All combinations of

target models and datasets are reported (lower is better ↓).

compared to the original Expalin2Attack. For every target model and dataset combination,

we can see that there is an improvement either in the adversarial accuracy (lower accuracy),

or in the average number of queries (fewer queries), or both. Notably, we find that the best

improvements happen mostly happen when the number of used samples is less than or equal

to 15,000. This suggests either that there is a limit to the number of target test set samples

that can be useful for the selector training, or that this behavior is just a special case on

these selected datasets, and there might be a more general consistent behavior under other

datasets with different sizes.

Similarly, we believe that the number of substitute dataset samples used in the first

method for training the selector might have an impact on both attack rates and the number

of queries. We look further to investigate the impact of both target and substitute dataset

sizes on the overall performance by choosing more datasets with different sizes, yet we leave

this comprehensive study for future work.
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Figure 6.3: Average Queries for Explain2Attack with the selector trained on a portion of the target test

set. Each category represents the portion of the data used out of 25K samples. All combinations of target

models and datasets are reported (lower is better ↓).

6.4 Conclusion

In this chapter, we presented two methods to incorporate the target classifier output in-

formation in the process of training Explain2Attack’s substitute model. Specifically, we

proposed to replace the substitute labels from the original Explain2Attack with target clas-

sifier outputs during the substitute selector network training. The intuition is to encourage

the selector network to better learn the behaviour of the target classifier through its outputs,

thus learning more accurate word importance ranking. The experiments show that on most

of the selected datasets, there was an improvement in both attack rates and the average

number of queries per attack.

This study represents an initial step towards improving natural language adversarial

attacks in terms of efficiency and attack rates. In the future, we plan to i) further leverage the

target classifier information by augmenting the substitute training set with the intermediate

adversarial candidates and their target classifier outputs, and ii) investigate the effect of

mixing different substitute and target datasets and their sizes on the overall performance.



Chapter 7

Conclusions and Future Directions

7.1 Contributions

The fundamental aim of this thesis is to advance knowledge in sequence generative models

and adversarial examples for sequential models. To achieve this goal, it has contributed

novel models and algorithms with comprehensive empirical studies to three different tasks;

diverse sequence generation, controlled sequence generation, and natural language adversar-

ial attacks. First, for diverse sequence generation, we developed a principled GAN-based

generative model to overcome the mode-collapse issue that causes loss of output diversity,

an issue that was not addressed in a principled approach before in unsupervised GAN-based

sequence models. Secondly, we proposed a novel unsupervised generative model for goal-

oriented sequence generation, where the user can specify desired scores or measures to be

maximized by the generative model. Lastly, in order to overcome the high complexity of

generating adversarial attacks on natural language models, we proposed a novel method

using interpretable substitutes across domains. The contributions of each part as well as

potential future directions are presented below.

In the first part of the thesis, we presented a sequence generative framework, Adversarial

Auto-regressive Networks (ARN), to address the problem of low output diversity in GANs.

The motivation behind this is that for sequence generative models to become useful in real-

world applications, it needs to capture the underlying data distribution accurately enough

in order to generate diverse outputs. We proposed to achieve this by changing the train-

ing objective of standard GAN to combine the standard GAN “mode-seeking” behaviour

104
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with maximum likelihood estimation (MLE) “mode-covering” behaviour. Specifically, we

minimize KL divergence between data and model distributions, and minimize the Jensen-

Shanon divergence, simultaneously. We theoretically prove that ARN approximates the true

underlying data distribution.

In a natural language generation task, we conducted experiments to compare ARN to

SeqGAN, a well-known sequence generative model. We empirically showed that ARN gen-

erated grammatically and semantically meaningful sentences, and outperformed SeqGAN in

diversity and feature coverage scores. Moreover, unlike many existing unsupervised sequence

generation GANs like SeqGAN, ARN incorporates a compressed latent space representation,

which is learned by maximizing a variational lower bound on the first token. This capability

makes ARN highly useful for applications where high level representations from the data

can be learned. These learned representations can then be used for controlling/guiding the

generation process through changing/fixing specific factors of the latent space according to

the desired outcomes.

In the second part of the thesis, we proposed OptiGAN, a novel GAN-based model for

controlled sequence generation that employs reinforcement learning as a control mechanism

to maximize desired domain rewards. OptiGAN is specifically useful for goal-oriented gener-

ation applications, where the model is required to maximize certain goals, scores or metrics

for its generated output (e.g. generating a chemical molecule with high solubility, activity

and ease of synthesis). This type of generative models can be used in different real-world

applications, including autonomous motion planning and drug or material design.

OptiGAN combines the diversity encouraged GAN framework in (ARN) with Reinforce-

ment Learning (RL), since using RL methods like policy gradients allows maximizing ac-

cumulative future rewards. The final generator objective is a combined MLE and GAN

optimisation, and maximisation of the future rewards using REINFORCE policy gradients.

To the best of our knowledge, OptiGAN is the first GAN-based controlled generative model

for sequences that addresses the diversity issue in a principled approach, where it combines

the benefits of GAN and RL policy learning, while avoiding their mode-collapse and high

variance drawbacks.

By conducting comprehensive experiments in two different tasks; text generation and air-

craft trajectory generation, we evaluate both the diversity and optimized scores of generated

outputs from OptiGAN against other sequence generative models. We found that OptiGAN
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achieves higher scores than baseline models based on desired scores to be maximized, while

preserving the diversity of generated outputs. Additionally, we empirically show that if only

pure RL is applied to maximize a score of interest, that the realism of the output might

be sacrificed for the sake of superficially obtaining higher scores. Hence we conclude that

combining a GAN-based objective with RL encourages the optimisation procedure of RL to

stay close to the true data distribution.

In the third part of the thesis, we proposed a novel adversarial attacks framework, Ex-

plain2Attack, an efficient framework to generate black-box adversarial attacks on natural

language models. In a typical black-box setting, the main challenge we address is the query

and computation cost of adversarial sentences, where the number of queries is of critical

concern for an attacking agent. Most of the existing methods depend on heavily querying

the target model to choose which words to perturb with replacement synonyms. Instead, we

proposed a novel approach to address this problem through interpretability across domains,

in order to reduce the number of queries needed, and increase the computational efficiency.

The main intuition is to learn word ranking that most probably impacts the target model in-

stead of searching for it expensively. Specifically, we train an interpretable substitute model

on a substitute dataset, where the substitute model learns word importance scores for the

word ranking on the substitute domain. The substitute model is then used in the word

ranking step in the target domain to generate word importance scores.

To show the efficiency of Explain2Attack, we conducted extensive experiments and in-

troduced two new evaluation metrics to measure the practical advantage of query reduction

compared to the attack rate. Our method is able to achieve or out-perform state-of-the-art

methods in attack rates, yet with reduced number of queries. Another key advantage of

our framework is that it significantly scales better with the input length, since it does not

perform word by word ranking. In Chapter 6, we further proposed to improve the attack

rates and number of queries by employing target model output predictions in the substitute

training, and validated with a preliminary set of experiments the improvements in both at-

tack rates and the average number of queries. To the best of our knowledge, Explain2Attack

is the first framework to learn word importance scores, instead of searching for it using

traditional expensive procedures. Our framework advances the state-of-the-art in this area,

where expensive word ranking procedures are not needed any more to generate successful

adversarial attacks.
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7.2 Future Directions

This dissertation broadly covers many topics in deep sequence modeling, with broad impact

on this crucial research field, and wider impact on many related applications. There are many

potential future directions that could be pursued, among which two promising directions are

discussed below.

The first direction is in goal-oriented controlled sequence generation via disentangled

representations. By connecting the latent representations capacity in Chapter 3 with goal-

oriented generation in Chapter 4, an advanced controlled generative model could be devel-

oped. In the existing literature, controlled generation is either addressed through factorized

disentangled latent space, or through reward optimisation mechanism. However, it is not ad-

dressed through both approaches in the same model. A disentangled generative model could

be realized by disentangling the latent space into distinct meaningful latent sub-spaces in

an unsupervised or semi-supervised way, where each sub-space is responsible for a certain

attribute or factor of variation from the training data (Khemakhem et al., 2020). Given this

disentangled latent space, an advanced version of our model in Chapter 4 can then address

controlled generation in a unified disentangled goal-oriented framework. An example use-

case would be that the user wants to generate a sequence that contains a certain attribute,

yet achieves the best score on another factor of variation (e.g. to generate a specific style

of classical music (Mozart or Bach style) yet with highly happy rhythm). Therefore, if this

capability is achieved, it could have a significant impact on certain real-world applications

and industries, including chemical engineering, drug discovery, and advanced manufacturing.

The second direction is direct cost-efficient black-box adversarial attacks on natural lan-

guage, where the query cost and attack rates can be further improved in different ways. First,

synonym ranking and replacement procedure in our method and other existing methods re-

quires significant number of queries to the target model. This part is responsible for the

most queries needed for a successful attack. Therefore, a potential solution to this problem

it to choose replacement synonyms through a pretrained language model (Li et al., 2020).

Moreover, our word ranking learning through a substitute model can be further fine-tuned

to directly attack the target model. Building on the initial work presented in Chapter 6, the

substitute training and word ranking might be further improved by utilizing the interme-

diate perturbed sentences during adversarial candidate search, and using them to augment
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the substitute training set. Given these enhancements, black-box adversarial models could

move towards less dependence on target model probability output during attacks, with only

initial substitute training or intermediate word replacement decisions remain dependent on

target outputs predictions. More importantly, these improved attack methods could be used

to augment downstream models with adversarial examples as training data to improve its

robustness, which is one of the key goals of generating adversarial examples.



Appendices

A Final objective function in Eq. (3.5)

Proof. Consider this optimisation problem:

max
G

min
D

[
EX∼pd [log pG (X | θ)]− (1)

EX∼pd [log D (X)]− Ez∼pz [log [1−D (G (z))]]

]
.

Given a generator G, the optimal D∗ (G) is determined as:

D∗G (X) =
pd (X)

pG (X) + pd (X)
,

where pG (X) is the distribution induced from G (X) where X ∼ pd (X).

Substituting D∗G back to Eq. (1), we obtain the following optimisation problem regarding

G:

max
G

(Epd [log pG (X)]− JS (Pd‖PG)) . (2)

The objective function in Eq. (2) can be written as

Epd [log pG (X)]− JS (Pd‖PG)

= −JS (Pd‖PG)−KL (Pd‖PG)− Epd [log pd (X)]

= −JS (Pd‖PG)−KL (Pd‖PG) + const.

Therefore, the optimisation problem in Eq. (2) is equivalent to:

min
G

[JS (Pd‖PG) +KL (Pd‖PG)] .
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At the Nash equilibrium point of this game, we hence obtain: pG (X) = pd (X).

B Policy Gradient Theorem

Proof. The probability p(τ | θ) of a trajectory τ = (S0, A0, ..., ST−1, AT−1, RT ) given that

actions come from πθ is expressed as:

p(τ | θ) = ρ0(S0)
T−1∏
t=0

P (St+1 | St, At)πθ(At | St). (3)

We can derive the basic policy gradients update starting from Eq. (2.10) as:

∇θJ(πθ) = ∇θ E
τ∼πθ

[Gt(τ)]

= ∇θ
∫

p(τ | θ)Gt(τ) dτ

=

∫
∇θ(p(τ | θ)Gt(τ)) dτ

=

∫
(Gt(τ)∇θp(τ | θ) + p(τ | θ)∇θGt(τ)) dτ chain rule

=

∫
Gt(τ)∇θp(τ | θ) dτ ∇θGt(τ)=0

=

∫
Gt(τ)p(τ | θ)∇θp(τ | θ)

p(τ | θ)
dτ

=

∫
Gt(τ)p(τ | θ)∇θ log p(τ | θ) dτ

=

∫
Gt(τ)p(τ | θ)∇θ

[
log ρ0(S0) +

T−1∑
t=0

(
logP (St+1|St, At) + log πθ(At|St)

)]
dτ using (3)

=

∫
Gt(τ)p(τ | θ)

[
((((((∇θ log ρ0(S0) +

T−1∑
t=0

(
((((((((((
∇θ logP (St+1|St, At) +∇θ log πθ(At|St)

)]
dτ ∇θρ0,∇θP=0

=

∫
Gt(τ)p(τ | θ)

T−1∑
t=0

∇θ log πθ(At|St) dτ

= E
τ∼πθ

[
Gt(τ)

T−1∑
t=0

∇θ log πθ(At|St)

]
,

where Gt(τ), ρ0 and P do not depend on θ.

C The McGrew Score

Contact Range

The relative 3D Euclidean distance/range in meters between aircraft 1 and 2:
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R12 =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2,

where that R12 = R21 .

Aspect Angle and Antenna Train Angle

As shown in Figure 1, Aspect Angle (AA) is the angle of aircraft 1 relative to aircraft 2’s tail

and Antenna Train Angle (ATA), also known as Bearing Angle (BA) is the angle aircraft 2

makes relative to the aircraft’s nose.

Figure 1: Relative angle definitions Aspect angle AA and Antenna Train Angle ATA between
Blue and Red

McGrew Scoring

McGrew (McGrew et al., 2010) used a specific system to keep score of how well an aircraft was

doing relative to another aircraft in an attempt to get behind the other aircraft. McGrew’s

scoring system has two components; an angular component and a range component. It

makes use of the range R12 as well as the aspect angle AA and antenna train angle ATA to

calculate the score. It also makes use of a number of adjustable hyper parameters.

McGrew’s Angular Score AM

McGrew’s angular score is given by the following equation where AA and ATA are specified

in degrees.
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AM =
1

2

[(
1− AA

180◦

)
+

(
1− ATA

180◦

)]
.

Note that in the ideal case where AA = 0 and ATA = 0 , the maximum angular score is

MA = 1.

McGrew Range Score RM

The second component of McGrew’s scoring system is the range score. The range is scored

is defined as follows:

RM = exp

(
−|R−Rd|
k × 180◦

)
,

where R is current range between the two aircraft, Rd is the desired range and k is a hyper-

parameter scaling factor. This means that the score is range dependent and is highest when

it is closest to the desired range Rd . The values of Rd and k need to be determined for the

exact application.

The value of k determines how wide the function peak around Rd is. The larger the k

the larger the spread. The smaller the value of k the narrower the peak and hence a higher

score can only be achieved by being very close to the desired range. In ACE Zero the default

value of k = 5 is used.

McGrew Score SM

Finally, the total SM is given by the range score multiplied by the angular score:

SM = AMRM =
1

2

[(
1− AA

180◦

)
+

(
1− ATA

180◦

)]
exp

(
−|R−Rd|
k × 180◦

)
.
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