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Abstract

Among different biometric modalities, face is becoming a hot research topic due to its distinc-

tive advantages, such as non-intrusive, friendliness, contact-less, and convenience. Nowadays,

face recognition system has been widely deployed by banks, stores, and transportation services

providers. The prevalence of face recognition technology brings convenience to the public. How-

ever, security issues have drawn extensive attention recently, such as the security risk of the

biometric templates stored in the system directly. It is reported that the face images can be re-

constructed easily from the raw face features. Biometric template protection (BTP) techniques

have been proposed to alleviate those issues by transforming the conventional biometric features

into a protected template. However, the introduction of BTP transformations usually leads to

performance degradation.

Besides the trade-off between performance and security, BTP approaches such as biometric

cryptosystems also lead to a user-unfriendly experience. Popular biometric cryptosystem ap-

proaches such as fuzzy vaults can be considered as an instance of a 1-to-1 match or verification

system which returns correct secret (yes) or null (no). In such approaches, the user must input

both identity credentials and biometrics, hence compromises the convenience of biometrics.

On the other hand, most face recognition systems’ accuracy is evaluated on a closed-set

protocol, assuming that all probe samples are registered in the gallery. While in practice,

the accuracy usually drops significantly in open-set settings when probe samples may not be

enrolled. Currently, it is still a big challenge to have an accurate open-set face recognition

system.

In this thesis, in order to protect the face features extracted from deep models, a learning-

based Index-of-Max (LIoM) hashing has been proposed. LIoM is utilized to hash the face fea-

tures into compact hash codes in integer/binary form; hence matching can be easily performed

by the Hamming distance in a highly efficient manner. Furthermore, since LIoM hashing trans-

forms the original facial features non-invertibly, the privacy of users can also be preserved. In

order to achieve better performance under open-set settings, several techniques are explored,

such as Extreme-Value-Machine, feature fusion, and score-level fusion. A large-scale 1-to-N face

searching system has been built based on LIoM, and its performance has been evaluated.

To build face cryptosystems that only need biometric input, a sole-input face cryptosystem

for identification (FCI) is proposed. The FCI composes an open-set 1-to-N search subsystem

and a 1-to-1 match chaff-less fuzzy vault (CFV) subsystem. The first subsystem stores N facial

features protected by LIoM hashing and enhanced by a fusion module for searching accuracy.

When a face image of the user is presented, the subsystem returns top k match scores, and

thus the corresponding vaults in the CFV subsystem will be activated. The 1-to-1 matching

occurs among k vaults alongside the query face, and an identifier associated with the user will
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be retrieved from the correct matched vault. We demonstrated that the coupling of the LIoM

hashing and the CFV avoids the risks of Chaff-points in conventional fuzzy vault. Meanwhile,

user privacy, unlinkability, and cancellability have been achieved. Finally, the FCI system is

evaluated under three large-scale public unconstrained face datasets, namely LFW, VGG2, and

IJB-C, with respect to its accuracy, computation cost, template protection criteria, and security.
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Chapter 1

Introduction

Can you prove who you are? This is a typical and critical question asked in so many situations.

Personal identification is required by a wide variety of applications such as bank counter, customs

check, smartphone unlocking, or email login. There are a lot of ways you can prove your identity.

You can generally prove your identity by 1) what you have, such as the badge, credit card, ID

card, or passport. 2) what you know, such as PIN, passwords. However, the aforementioned

methods require you to remember some numbers/words in your mind or take a physical card

with you all the time, which can cause inconvenience in today’s rapid life. The traditional

password or ID card is far from meeting the needs of reliability and safety because a password

is easy to be lapsed in memory [4] and a card is easy to be lost, stolen, guessed, or forgery.

One alternative way to alleviate the above issues is biometrics, or in other words, identi-

fication based on who you are. According to Morris’s definition in 1875, biometrics refers to

the combination of ancient Greek “bios” (life) and “metron” (measure), which indicates the

biological measurements that are bind strongly to the individual identity. Biometrics can be

classified as physical and behavioral biometric according to the measurement and statistical

analysis characteristics. The biometrics used for recognition systems are normally unique (i.e.,

the characteristics of any two people should be different), robust (i.e., the features do not change

with time), collectible (i.e., the feature can be quantitatively collected), natural(i.e., all people

comes with such traits, instead of artificially generated) and reliable (e.g., high credibility and

the high accuracy).

1



Chapter 1 Introduction 2

Among various biometric modalities, face is one of the most popular biometric traits (along

with fingerprint and iris) used in biometric recognition. This is because that face recognition

(FR) has its special advantages:

• Non-intrusive. FR can be easily deployed without disturbing people’s normal behavior.

Users do not need to press the sensor like fingerprints or align their eyes with the iris

scanner like iris recognition.

• Convenience. In general, a common camera can be used to collect facial images without

the need for special complicated equipment. Image acquisition can be made in seconds.

• Friendliness. FR is human compliant, International Civil Aviation Organization (ICAO)

compliant. The method of recognizing a person’s face is consistent with human minds,

and both humans and machines can use face images to identify a person. Fingerprints,

iris, or finger-vein can not be recognized by a human being without participating in special

training.

• Contact-less. To collect fingerprints, the system generally requires a finger to contact

the collection device, which is neither hygienic nor easy. While there is no direct contact

with the device in the face image acquisition process.

• Scalability. FR’s employment can lead to many practical applications, such as applica-

tion control, face image search, credit card, terrorist identification, etc.

• Accuracy. FR can achieve high accuracy while preserving extra information such as age,

gender, emotion, etc.

Face recognition system has been deployed by many companies and organizations due to

its advantages. Chinese e-commerce firm Alibaba and affiliate payment software Alipay demon-

strated the “Smile to Pay” system in 2015. In 2016, a mobile application named “MasterCard

Identity Check” is released by MasterCard to let customers confirm a payment using their face.

In 2018, AirAsia unveiled an FR system, namely “FACES”, Malaysia’s first airport facial recog-

nition system, and deployed in the airport to help passengers to board by the self-boarding

gate. Currently, FR has been widely deployed by banks, stores, and transportation services

provider [5].

A conventional face recognition system is a typical pattern recognition system that is com-

posed of preprocessing, feature extractor, and matcher modules. From an operation point of
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Figure 1.1: Two face recognition working modes.

(adopted from [1])

view, face recognition technology can be used either to verify who they claim to be (1-to-1

match or verification/authentication) or to automatically identify the N subjects enrolled in a

system (1-to-N match or identification), as shown in Figure 1.1 (a) and (b), respectively. For

verification mode, an identifier1 such as ID, name, etc., is required alongside face biometric for

identity claim, whereas identification demands solely face input. Some of the practical usage

examples are listed in Table 1.1. In reality, border control, criminal watching, and surveillance

systems are usually designed as identification systems, while passport checking, access control,

and attendance checking use authentication.

Table 1.1: Examples of FR system.

Scenario Application case

Identification

Border control
Criminal watch list
Conference ID admin
Surveillance camera

Authentication

Passport checking
Building access control
Attendence admin
Bank customer authentication

The identification can be further divided into open-set and closed-set identification [6].

Closed-set assumes that all query subjects are enrolled or registered in the gallery, while open-

set contains unknown identities not enrolled in the gallery. Currently, a lot of FR researches

focus on the closed-set protocol, however, the closed-set assumption cannot be true in the real

world for most FR systems. Instead, unknown identities can be included in the probes, and

1identifier and secret are used interchangeably in this thesis.
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Figure 1.2: The differences of closed-set and open-set face identification.
Three sub-types of probes can appear in the probe set, including 1) Known probe (S), subjects include
in the gallery; 2) Known unknown probe (K), subjects used for training but not include in the gallery;
3) Unknown unknown probe (U), subjects neither in training set nor gallery. Samples are from LFW

dataset.

thus the FR system should be able to reject/ignore those queries. Figure 1.2 illustrates the

difference between closed-set and open-set face recognition.

Employing the subject’s biometrics as an identity credential typically results in improved

comfort and convenience. However, except for answering the question “Can you prove who you

are?”, another problem is also critical to raise out: ”Can others masquerade you?’ Suppose a

person’s biometric template stored in the database is intercepted or stolen by an attacker. In that

case, the attacker might reconstruct the biometric traits based on the compromised template,

then masquerade or monitor that person. This will lead to severe security and privacy risks.

Considering that biometrics are strongly associated with the owner, they cannot be changed

when compromised, thus aggravating security and privacy concerns.

It is highly demanding to have a secure and privacy-preserving biometric system. Biomet-

ric template protection (BTP) schemes are invented to tackle the above issues [7–10]. BTP

schemes permanently keep the enrolled biometric data as secret by performing a non-invertible

transformation to protect the original data. The emerging BTP schemes can be broadly divided

into feature transformation (also known as cancellable biometrics) and biometric cryptosystems.

Cancellable biometrics can be sub-categorized as salting and non-invertible transform according

to the transformation function’s characteristics. The salting scheme is similar to the traditional

salting algorithm in cryptography, which concatenates a random salt r with a secret k, then
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Figure 1.3: Two biometric template protection categories.

stores the hash H(r + k) in the database, where H(·) is a hashing function. A protected bio-

metric template (pseudonymous identifier (PI)/auxiliary data (AD)) is extracted in a biometric

salting scheme by integrating a user-specific key such as a password or random numbers with

the biometric data. Non-invertible transformation schemes employ a one-way transformation

function to generate the protected template or PI2, thus grants the irreversibility of a biometric

system even if any parameter of the transformation function is revealed.

On the other hand, Biometric Cryptosystem (BC) mainly includes two approaches: (1)

key generation, which generates a key from the biometric feature data; (2) key binding, which

secures a key (e.g., PIN, private keys, public keys, a hash of message for digital signature, etc.)

using the biometric feature, and the key can only be released if the biometric query sample is

the right original person. Besides template protection purposes, BC is also used to serve for the

secret (keys) management purpose. The BC technique guarantees the biometric applications

can be deployed under privacy-preserving and secure policies, such as the EU General Data

Protection Regulation (GDPR) [11].

A typical biometric cryptosystem accepts both identifier (ID, for instance) and biometrics.

The ID is meant to retrieve the encrypted data of a specific subject, and then biometric is used

to reclaim the secret embedded in the encrypted data. Therefore, the biometric cryptosystem

can be considered as an instance of a 1-to-1 match or verification system; in a sense, the system

returns correct secret (yes) or null (no).

Even though there are many BTP schemes, it is still unsatisfactory to achieve a balance

between performance and security. Several critical criteria are defined in the ISO/IEC 24745

2The terms PI and AD and “protected template” are used interchangeably in this thesis, as they are the secure
form of plaintext biometric templates.
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standard [12] on BTP: irreversibility, revocability, and unlinkability. Revocability requires the

system can issue new protected templates to replace the compromised ones. Unlinkability

requires that infer any information by matching two protected templates from two different

applications is computationally impossible. Irreversibility means that the retrieving of the

original biometric data from stored biometric templates should be computationally infeasible.

Meanwhile, the employing of BTP should preserve the matching accuracy performance compared

to that of before-transformed counterparts.

1.1 Problem Statement

Thanks to the technological advancements in imaging devices, FR applications have been de-

ployed in many places. However, due to the privacy and security issues discussed above, the

FR application is still far from secure and reliable.

Face template security: Deep face feature is invertible. Despite the deep face feature is

showing excellent accuracy in the face recognition task, its vulnerability in terms of privacy and

security is of great concern to the public. In [13], a neighborly de-convolutional neural network

(NbNet) is designed to reconstruct face images from their deep face features successfully. When

a face template is stolen, permanent compromise is inevitable since biometric characteristics

are largely immutable. Furthermore, the same unprotected biometric source enrolled in mul-

tiple databases for different applications is completely correlated. An adversary can perform

cross-match to track and potentially monitor personal activities if one biometric template is

compromised [14, 15].

Limitation of identifier-based biometric cryptosystem: Currently, the most typical

biometric cryptosystem requires both identifier (e.g., ID) and biometrics. More specifically, the

ID is utilized to retrieve the corresponding encrypted data of a specific subject. Then biometric

is used to decode the secret embedded in the encrypted data retrieved from the previous step.

Such a biometric cryptosystem is less user-friendly since an identifier has to present in such a

verification process. The biometric cryptosystems with the identifier are accompanied by a high

risk of identity loss, such as losing the id, token, etc.

Low accuracy of open-set FR: Closed-set face identification assumes all probe samples

used in the query stage are registered in the gallery. On the contrary, open-set face identification

includes identities that may not be enrolled in the gallery. The system should reject or ignore
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the corresponding unknown identities in the query [16]. Currently, it is still a big challenge to

have an accurate open-set FR system.

1.2 Research Question

This thesis’s main research question is: How can we develop an identifier-free biometric

cryptosystem? The main question is subdivided into several sub-questions listed:

1. How to design a face BTP technique to meet those desired requirements?

Designing a proper BTP scheme is still a big challenging task. Take one latest proposed

BTP scheme Index-of-Max (IoM) hashing [17] as an example. IoM transforms the features

into integers or a subspace, which can also be represented as a binary form for efficient

matching speed. Despite theoretical advantages, the IoM hash codes must be long enough

to achieve high accuracy performance and high reliability [17]. However, long hash code

with higher accuracy will lead to more information leakage, thus cause privacy risks.

Having a satisfied BTP technique that can preserve or improve the accuracy while ensuring

security remains to be a big challenge.

2. How to design an identifier-free cryptosystem? Conventional biometric cryptosys-

tem, which is designed for verification (1-to-1 matching) settings, is limited to certain usage

cases. An identifier-free cryptosystem can alleviate such limitations and brings convenience

to users. Besides, the security of traditional fuzzy vault is based on uniform mixing of

user biometric data points and Chaff points, which will lead to high compromising risks

[18–20]. An identifier-free cryptosystem with higher security is demanded.

3. How to achieve high accuracy for the open-set system? It is reported that the

accuracy of FR usually drops in open-set settings [21]. How to improve the accuracy of

the open-set protocol for a given BTP enabled FR system is still a big challenge.

1.3 Research Objectives

In this project, the below-listed objectives have been achieved to tackle the formulated research

questions:
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1. Design learning-based hashing scheme to improve accuracy performance while gaining

strong privacy-preserving capability.

2. Build an identifier-free cryptosystem.

3. Study various techniques to improve the system accuracy.

1.4 Contribution Overview

This is a new research topic since no study is available to integrate both identification and ver-

ification systems in one body and incorporate biometric cryptosystem and template protection

technologies.

In this thesis, a secure face cryptosystem without an identifier is proposed. The system

integrates cancellable biometrics enabled 1-to-N search module that returns the top k id wherein

one of them is associated with the claimant. They serve as an identifier to the next biometric

cryptosystem (1-to-1) module. Therefore, the templates in the system are securely protected

by the template protection technologies. The whole system is further fueled by machine learn-

ing technology to enable better accuracy, performance, and efficiency. The system has been

evaluated in terms of verification performance, efficiency, security, and privacy.

The overall contribution can be summarized as:

1. To protect and compress deep learned face features, a learning-based Index-of-Max (LIoM)

hashing is proposed. The LIoM transformed face features into a compact code vector.

LIoM is a one-way locality-sensitive-hashing inherited from the random IoM [17], the

major distinction between LIoM and IoM is the projection matrices, where the former

are learned from training data based on a specifically designed loss function to ensure

that samples from the same identity can produce similar hash codes. An AdaBoost-based

sequential learning mechanism is also introduced to boot the performance.

2. To address the limitation of the conventional fuzzy vault, a chaff-less fuzzy vault (CFV)

is proposed by coupling LIoM. CFV inherits classical fuzzy vault as a secret-biometric

binding scheme via a finite field polynomial, and the security is based on computation

hardness of polynomial reconstruction. LIoM hash codes are utilized in CFV as (ordered)

point set instead of unordered point set in the conventional fuzzy vault. Besides, a Chaff

set is not required for genuine set concealment in the proposed CFV.
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3. To alleviate the limitation of the verification-based biometric cryptosystem, a novel identifier-

free facial cryptosystem for identification (FCI) that only requires sole face as input for

identifier retrieval is designed. The FCI is composed of a 1-to-N search subsystem and a

CFV subsystem. Such an identifier-free face cryptosystem will benefit the face recognition

systems and strengthen security and privacy protection.

4. It is worth highlighting that LIoM, CFV can work independently. For instance, CFV

can be deployed by incorporating with other integer or binary-based features; the 1-to-

N search subsystem can also be deployed independently if there are no secret binding

demands in real settings. Besides, though the thesis adopts face as the demonstration

biometric modality, the proposed LIoM, CFV, and FCI can also be applied to different

biometric modalities such as fingerprint, iris and etc.

5. A systematic study is performed for a large-scale face identification problem in both open

and closed-set evaluation protocols. The security of the proposed system is also evaluated

and analyzed.

1.5 Practical Usage

Unlike other biometrics, face recognition application is versatile. It can be employed on not

only identity management, but also other applications, such as entertainment, targeted adver-

tisement, forensic, healthcare, etc. Therefore, face template protection is essential, and it is one

of the essential parts in protecting security leakage and privacy intrusion of face systems.

The research outcome of this thesis can be applied to both secure face template protected

verification and identification systems. On the other hand, it can also be used in key man-

agement system. The development of secure face verification and identification technology is

expected to strongly impact and complement face recognition industry. This research will di-

rectly beneficial to the face recognition vendors who oblige to heighten the security and privacy

protection of their products or systems. With this, the technology will further impact the

downstream industry such as mobile devices, health care, consumer electronic, cloud service,

and military etc. which require secure identity management.
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1.6 Organization

The remaining chapters of this thesis are organized as follows:

Chapter 2 gives a literature review of deep model based face feature extractor, cancellable

biometrics, biometric cryptosystem, and closed-set/open-set face identification. Since features

extracted from deep models are utilized in this research, several state-of-the-arts face repre-

sentation techniques based on deep learning are reviewed. The latest cancellable biometrics

proposed on the face are also reviewed.

In chapter 3, a learning-based locality-sensitive hashing, namely learning-based Index-of-

Max (LIoM), is proposed to protect the biometric template. A face identification (1-to-N search)

system is built based on LIoM. Specifically, we utilized deep neural networks to extract discrim-

inative face features; then, the deep features are compressed and secured by the proposed LIoM.

Along with LIoM, we also explore several fusion strategies to improve performance.

In chapter 4, the LIoM and face identification system proposed in chapter 3 are tested on

large-scale unconstrained face datasets with a closed-set/open-set face identification protocol.

In addition, template protection criteria are also evaluated.

Chapter 5 is another key chapter. This chapter demonstrates a face cryptosystem for

identification (FCI) where only sole input biometric is needed. The FCI composes a 1-to-N

search subsystem from Chapter 3 and a 1-to-1 match chaff-less fuzzy vault (CFV) subsystem.

The first subsystem stores N facial features protected by LIoM hashing and enhanced by a

fusion module for searching accuracy. When a face image of the user is presented, the subsystem

returns top k match scores, and thus, the corresponding vaults in the CFV subsystem will be

activated. The 1-to-1 matching occurs among k vaults alongside query face, and an identifier

associated with the user will be retrieved from the correct matched vault. The FCI system

is evaluated under large-scale public unconstrained face datasets with respect to its accuracy

and computation cost. Besides, it is also proved that the proposed system can prevent several

high-risk attacks.

Chapter 6 discusses the future directions of this research and concludes the thesis.



Chapter 2

Literature Review and Background

Study

Normally features used for face recognition can be divided into two main categories, i.e., hand-

craft and deep model based features. This chapter aims to review existing deep model based

feature extractors due to its high performance achieved recently.The most recent works of face

feature protection schemes such as cancellable biometrics and biometric cryptosystem are being

discussed. Finally, closed-set and related works of open-set face identification are reviewed.

2.1 Deep Learning based Face Feature Extraction

With the rapid developments in GPU hardware, big data, and novel algorithms, deep FR

techniques have fostered numerous startups with practical applications in the recent five years.

An FR module consists of data preprocessing (augmentation and normalization), deep feature

extraction, and similarity comparison. This thesis focuses on the latest deep feature extraction

since we merely utilize deep face features in this thesis. We refer the readers interested in

face alignment, detection, anti-spoofing, data preprocessing, database development, and feature

classification methods of deep learning based face recognition to comprehensive survey papers

such as [22] and [23].

Face Recognition is slightly different from other object classification tasks due to the par-

ticularity of faces: Numerous face images of large amounts of people make obtaining all classes

for training impractical. Intra-personal variations could be more extensive than inter-personal

11
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differences due to different poses, illuminations, expressions, ages, and occlusions. Therefore,

deep neural networks have not only been introduced but also adjusted for FR from two aspects.

More extensive face databases are collected from the data aspect, and images are preprocessed

to improve learning ability. The other is from the algorithm aspect, for which novel architectures

and loss functions are designed to promote discrimination and generalization capability.

Face recognition algorithm is a very long-standing research in computer vision since 1964 [24].

Face recognition technology evolves from geometry [24], subspace representation (e.g. eigen-

face [25]), local descriptor ( e.g, local binary pattern (LBP) [26]), shallow learning and more

recently, deep learning approach [27]. The deep learning approach is especially exciting as it

brings a remarkable quality leap to the overall face recognition technology [22].

In 2014, DeepFace [28] and DeepID [29] achieved state-of-the-art verification accuracy in

LFW, for the first time surpassing humankind performance in the unconstrained scenario. Since

then, deep-learning-based approaches became a hot research topic and achieved transcendental

feature invariance progressively through nonlinear filters’ stacking. Existing deep network ar-

chitectures, such as convolutional neural networks (CNNs), deep belief networks (DBNs) [30],

and stacked autoencoders (SAEs) [31], normally simulate the human brain perception process

and can represent high-level abstractions by multiple layers of nonlinear transformations.

For deep feature extraction techniques, network architecture and loss function play a crucial

role in determining its eventual performance. A lot of CNN architectures have been proposed

and show excellence in the ImageNet challenge, such as AlexNet, VGGNet, GoogleNet, and

ResNet [32–35]. In FR those architectures are widely used and have a deep influence on the

current state-of-the-art deep FR systems, such as AlexNet based DeepFace, GoogleNet based

FaceNet, and ResNet-based SphereFace.

Although a good CNN architecture can achieve a better performance, another factor, i.e.,

loss function design, is more important for deep feature embedding. The most common loss

function in object recognition is softmax, which tries to encourage features’ separability. How-

ever, softmax loss does not show good performance for the FR system since intra-variations

could be larger than inter-differences of face images. Many works focus on creating novel loss

functions to make features not only more separable but also discriminative. In general, they

can be divided into three major categories (also see Table 2.1):
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Table 2.1: Latest deep models of three loss types.

Loss Types Description Latest deep models

Softmax loss and its varia-
tions

Directly using softmax loss or
modifying it to improve per-
formance

NormFace [36]

Euclidean-distance-based
loss

Compressing intra-variance
and enlarging inter-variance
based on Euclidean distance

Facenet [37],Deepid3 [38]

Angular/cosine-margin-
based loss

Learning discriminative face
features in terms of angular
similarity

Arcface [39],Cosface [40]

• Euclidean-distance-based loss: compressing intra-variance and enlarging inter-variance

based on Euclidean distance.

• Angular/cosine-margin-based loss: learning discriminative face features in terms of an-

gular similarity, leading to potentially larger angular/cosine separability between learned

features.

• Softmax loss and its variations: directly using softmax loss or modifying it to improve

performance, e.g., L2 normalization on features or weights as well as noise injection.

In this project, we shall focus on deep features generated from Google FaceNet [37] and

InsightFace (also known as ArcFace) [39], which will be discussed in the section 3.4.1.

2.2 Cancellable Biometrics

Cancellable biometrics protects the user’s biometric data by employing features distortion trans-

formation function (usually, it is a one-way transform). If the transformed biometric template

is compromised, a new template can be generated from the same user by employing different

transformation function parameters. In this section, several relevant schemes for cancellable

face templates are reviewed. The summary of the cancellable biometrics reported on face is

shown in Table 2.2.

Random projection (RP) is a process of projecting feature vectors from n dimensions to

m (n� m) dimensions (n� m) in the Euclidean space by using random matrices [41]. RP is

based on Johnson-Lindenstrauss lemma (J-L lemma) [42] which proves that points from a high-

dimensional space can be embedded into low-dimensional space while preserving the distance
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approximately. The orthogonal projection matrix is one projection f proved and proposed

in [43]. Briefly, Gram-Schmidt orthogonalization is performed on a n × m random matrix to

generate a matrix R ∈ Rn×m. Then, the feature vector x ∈ Rn is projected onto y ∈ Rm as

y =
√
n/mRTx. Specifically, the projection matrix R could be generated easily from Gaussian

distributed sequences which are proven to have the characteristic of orthogonality [44].

BioHashing, an instance of RP, is a well-known scheme of salting-based generic cancellable

biometrics scheme which is applied to face images [45]. Generally, BioHashing is a two-factor

BTP technique based on user-specific token and biometric features and followed by a discretiza-

tion procedure. The n bit BioHash code c of a biometric feature vector x ∈ RN is computed

as c = Sgn(
∑
xbi − τ), where Sgn(·) is a signum function, and τ is an empirically determined

threshold, bi ∈ RN and bi ∈ RN , i = 1, . . . , n(n ≤) is orthogonal pseudo-random vector. The

Hamming distance is computed between two hash codes to indicate the similarity between two

biometric vectors. A new template for the identical biometric feature vector can be re-issued by

replacing it using newly generated pseudo-random numbers. However, BioHashing impractically

assumes that the pseudo-random numbers would never be compromised, which is impractical,

and hence there are high risks for BioHashing under key-stolen scenario [46].

A hybrid approach for face template protection was proposed in [47] based on random

projection, class distribution preserving transform, and hash function. Specifically, face features

are firstly transformed by a cancelable transformation such as random projection. Next, a

discriminability enhancement transform is applied to improve the accuracy performance, and a

binary template will be generated after the transform. Finally, a biometric cryptosystem such

as a hash function is employed to protect the template.

Random permutation is another common approach to generate cancellable biometric tem-

plate [48, 49].The feature vector is permutated with a randomly generated key. In [48], for

example, permutation matrix is used as a parameterized transformation function in [48] to

generate cancellable face templates. In [49], the principal component analysis (PCA) and in-

dependent component analysis (ICA) coefficients are extracted from face images and permuted

by ID-specific parameters. And then, a feature level fusion is performed to generate the can-

cellable face templates. As for random permutation, the permutation key is assumed to be

securely stored, which is impractical. If the key is stolen, the face template would be vulnera-

ble for attackers. However, authentication accuracy is preserved since permutations are merely

rearranging the feature vector.
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Bloom filter is another generic transformation function been applied to handle face tem-

plate [50]. In the bloom filter scheme, the biometric feature is mapped to a bit array b with

several independent hashing functions, where b is a bit-array of length n. b ∈ [0, 1]n. Specifically,

k(k � n)independent hash functions denoted as by h1, h2, . . . , hk are pre-defined first. Each

element of a data set S is hashed by using those the hash functions and the resulting hash result

is derived as k indices. Finally, set all k indices of the bit-array b to unity. At the verification

stage, the bit-array of the query element y is matched with the stored template by hamming

distance to indicate the similarity between two biometric data.

The work in [51] proposes a cancellable scheme for iris indexing based on Bloom-filter and

search trees, and the scheme can also be applied to face images. In this scheme, the IrisCode is

first randomly permutated, and Bloom-filter is applied to generate binary hash code as the PI.

The enrolled templates are organized into tree-based search structures. Specifically, N enrolled

templates are split evenly and assigned to T trees firstly; next, each node of a tree is created

through a union of templates, i.e., the binary OR of all the subsequent children nodes. The root

node of a tree is computed by ORing all the templates assigned to this tree. A small portion of

all the constructed trees is pre-selected in the retrieval stage by comparing the probe and root

nodes. The searching is done on the selected trees in a binary search manner by matching the

probe with the tree’s nodes and choosing the path with the best score. When a leaf is reached,

a final comparison will be made to make the final decision.

Index-of-Max (IoM) is a new recently proposed ranking-based locality sensitive hashing

technique for template protection [17], and then recording the indices of the maximum value is

output as the hash code (A detailed explanation in section 3.3.3 ).

Deep Table-based Hashing (DTH) [52] is an instance of LSH based CB schemes for face

templates. The DTH employs an end-to-end trained CNN to generate binary hash code from

the raw face image directly. A new PI can be re-issued by re-shuffling the hash table associated

with the network. While the DTH is shown to offer high accuracy, it is unrealistic and insecure

as the entire network is trained directly from the enrollees’ face images.

SecureFace [53] proposes a randomized CNN, which can generate a binary PI directly based

on the face image input and user-specific key (SD) for verification. The network is trained

independently from the enrollee’s face images to avoid the security issue mentioned above. The

highlight of the SecureFace is that it rectifies the SD management issue by securing the SD

with the fuzzy commitment [54], where the latter is primarily designed for secret protection.
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Table 2.2: Summary of selected cancellable biometrics on face.

Reference Technique Dataset Result Drawbacks
[45] BioHashing FERET[55] EER=0.002 information leakage

under key compro-
mised

[49] Random permuta-
tion

AR face[56] - security depends on
key

[57] Random projection
(RP)

AR face EER=10.9 performance degra-
dation

[58] Random projection ORL[59], GT[60] EER=0 performance degra-
dation

[61] BioHashing Eigen-face[62] EER=0 (stolen to-
ken)

information leakage
under key compro-
mised

[50] Bloom filter DDMB[63] EER=5.50 fragile to brute force
attack

[51] Bloom filter index-
ing

DDMB EER=5.50 fragile to brute force
attack

[17] Ranking based RP FVC2002DB1[64] EER=0.22 long hash codes re-
quired

[47] Hybrid approach FERET EER=8.55 complicate imple-
mentation

[52] Deep Table-based
Hashing

YouTube Faces[65],
FaceScrub[66]

EER=.0048(72-bit) overlap identity
training

[53] Randomized CNN
and Secure Sketch

CFP[67] GAR (%) @
(FAR=0.1%)=96.87

deep based complex
system

However, the matching performance could be affected due to the complicated interaction of

cancellable transformation and fuzzy commitment.

2.3 Biometric Cryptosystem

Traditional cryptography guarantees to communicate in a manner that meets the following

objectives - confidentiality, data integrity, authentication, and non-repudiation. Conventional

cryptography technology utilizes keys, such as identification cards or licenses, instead of a per-

son for authentication. The cryptography system can only be secure under a large size secret

key situation. In addition, such a long secret key can easily vanish in the human mind. Hence

a simple password is often employed to encrypt the public keys. This will cause a potential

risk of attack on the password to retrieve the public keys. Concerning the drawbacks, biometric

authentication is an ideal option to build a reliable and comfortable key management system.

Both biometrics and cryptography are complementary for modern key management applica-

tions. Thus the integration of them lead to the new schemes: Biometric cryptosystems (BC) or

Biometric Encryption. Generally, a BC:
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• Encrypt the original templates to a helper data (Auxilary Data)

• Apply error-correcting coding methods to handle intra-class variance

• Require input in finite fields

According to the utilization or generation of the key, BC can be classified as key generation

and key binding. BC either binds a key to a biometric or generates a key from the biometric

and stores the help data in the database instead of the biometric data. Retrieving the key

or the original biometric data should be computationally hard based on the help data, which

means there is no or limited information leakage about the key and biometrics from the helper

data. In BC, the key is released or reconstructed only if the right person’s biometric data do

the verification. Several popular BC schemes are proposed in the literature, such as fuzzy vault

and fuzzy commitment under the key binding group, secure sketch, and fuzzy extractor under

the key generation group.

Fuzzy Commitment

The fuzzy commitment scheme [54] is motivated by cryptographic bit commitment. In

traditional cryptographic bit commitment, a sender usually commits an encrypted message to

the receiver. Assume a stock market broker Alice and investors Bob as an example [68], Alice

wants to convince Bob that her investment strategy can achieve a good profit rate:

Bob said: ”Choose five stocks for me, please. If they are profitable, I will go with you.”

Alice said: ”If I choose five stocks for you, you can invest in them instead of paying me,

that’s unfair. Why don’t I show you the stock list I chose last month?”

Bob: ”How do I know that you didn’t change last month’s stock list? I can only trust the

stock list you selected now because you can not change them. Before we sign the contract, I will

not deploy your stock list. Believe me!”

Alice: ”I would rather tell you the stock I chose last month. I won’t change, believe me.”

Alice wants to commit a prediction to Bob but does not reveal her prediction until some

time later. On the other hand, Bob wants to make sure that she hasn’t changed the prediction

content after Alice sends the prediction to him. Usually, the cryptographic bit commitment can

be implemented by using asymmetric passwords.



Chapter 2 Literature Review and Background Study 18

First, Bob generates a random bit string R and sends it to Alice. Then Alice generates

a message consisting of bits b she wants to promise (b may actually be a few bits) and a

random string of Bob (R). She encrypts it with a random key K and sends the result, denotes

enc(b+R,K), back to Bob. enc(b+R,K) is the promise which Bob can’t decrypt. When Alice

decides to release her message (the stock list), Alice sends a key to Bob. Then Bob decrypts

the message to reveal the bit. He can verify the validity of the message by matching his random

string.

However, biometric data is stochastic, which is hard to integrate with the bit commitment.

For example, the same individual’s biometric data has a large intra-class variation and may

vary in different acquisition sessions due to noise or other environmental conditions. Tradition

cryptography can not be simply applied to encrypt the biometric data.

To eliminate the noise and intra-class variations, Error Correction Code (ECC), which is

based on error-tolerant mechanisms, can be employed with biometric data. ECCs consists of

a set of codewords C, where each codeword c ∈ C is an n-bit sequence and wherein the k-bit

messages m ∈ M(n > k) are mapped information. The n − k bits, namely parity bits, can be

utilized to restore the corrupted codeword.

The idea of bit comment can be employed in biometric cryptosystem context with the help

of ECCs. Juels and Wattenberg proposed a fuzzy commitment scheme in 1999 [54], which is an

extension of bit commitment and based on ECCs and fuzzy biometric data. The fuzzy commit-

ment scheme consists of two steps. i.e., commitment and de-commitment. In the commitment

step, given a biometric vector ω, a set of n bit codewords C, select a codeword c ∈ C, where C

is a set of n bit codewords generated from certain ECCs, and the length of c and ω are equal.

The difference between the biometric and the codeword is defined as δ = ω − c, then the com-

mitment will be: {hash(c), δ}, where the hash(·) usually is a one-way hashing function. Since

the hash(·) is a one-way hashing, the commitment {hash(c), δ} will not leak any information

about the biometric data.In the de-commitment step, given a input biometric data denoted as

ω′, calculate a codeword c′ from the commitment, i.e., c′ = ω′− δ = ω′−ω+ c. The codeword c′

can be restored as the original c by the EEC system if the distance between ω′ and ω is smaller

than a certain threshold, i.e., dist(ω′ − ω) < θ , where θ is a threshold, dist(·) is a distance

function, such as Hamming distance.

Different biometric modalities can be used in fuzzy commitment, such as iris [69], face [70–

72], fingerprint [73] and etc. Commonly the biometric feature used in fuzzy commitment is
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represented in binary vector, and the δ will be calculated as δ = ω ⊕ c where ⊕ is XOR.

The theoretical soundness of fuzzy commitment stems from its error tolerance mechanism

that is intended to address biometric variation. The security relies on the reconstruction com-

plexity of codeword c. However, in reality, it is often challenging to find the perfect ECCs, and

it is challenging to validate the security over the non-uniformity of binary biometrics. Fuzzy

commitment is commonly associated with iris biometrics [69] as it is represented in binary string

form, e.g., IrisCode [74] and it is well recognized as the most discriminative biometrics. For

face biometrics, the challenge to apply fuzzy commitment (or known as helper data scheme,

HDS by some authors [75]) is that face biometrics has significant intra-class variation than iris.

This makes ECC design becomes more challenging. Furthermore, template conversion from

real-value vector or matrix (vectorial biometrics) to binary form is a non-trivial problem [76],

as it may cause severe information loss [77]. Several attempts on this challenge are [75, 78–80]

where most of the works focus on face features design and quantization.

Fuzzy Vault

To overcome the drawbacks of fuzzy commitment, a new BC scheme, namely fuzzy vault,

is proposed for unordered biometrics by Jules [81]. The fuzzy vault consists of two steps (see

Figure 2.1): vault encryption and decryption. In the encryption step, Alice stores the secret

K in a vault and locks it with the unordered set A. In the decryption step, Bob can unlock

the same vault with an unordered set B to access the secret K if most elements in A and B

have coincided together. Specifically, given a secret K, a secret sharing polynomial P (x) is

constructed over a finite field less than k degree by encoding the K as the coefficients. Then the

projection P (A) of the unordered biometric feature set A is computed on the polynomial P to

obtain a finite point set (A,P (A)) and are collectively known as genuine set G where ‖G‖ = t.

At last randomly generated points (chaff points), denoted as , (a, b) ∈ C where ‖C‖ = c � t,

are generated. The union set of G and C forms a vault V where ‖V ‖ = n.

During decryption or secret retrieval, given an unordered biometric feature set B as the

query, if enough elements of A and B are overlapped, the polynomial P can be reconstructed

based on the feature set B by Lagrange interpolation and then obtain key K by using error

correction code technology. However, if only a small proportion of elements have coincided, it

will be difficult to reconstruct P , so K cannot be obtained. This algorithm’s security is based

on polynomial reconstruction because it works with unordered sets, so it is especially suitable
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Figure 2.1: Diagram of fuzzy vault.

for unordered biometric data such as fingerprint minutiae and can tolerate errors between data

sets.

For key retrieval performance, the success rate is often related to the intra-class variation of

the biometric feature and the correction capacity of Error Detection (such as cyclic redundancy

check CRC)/Correction Code (error correction code ECC). It will be difficult to find a suitable

ECC which has enough error correction capacity due to the large intra-variation. Besides

that [82–85] reported that secret retrieve rate is strong negatively correlated with the security.

The security of the fuzzy vault is based on several assumptions: 1 ) uniform mixing of G

and C where c � t, which implies separating genuine set from chaff set in the vault would

be difficult if not impossible; 2) small intra-class variations of A and A′ to ensure they are

sufficiently close for reconstruction and 3 ) computation hardness separating G from V provided

t �
√

(p− 1)n. In practice, it is usually hard to generate a Chaff set that meets the first

assumption [18–20]. In addition, the intra-class variation of biometrics is usually large especially

for face biometric. This impacts severely on secret retrieval performance, and it is also reported

that poor retrieval rate affects security negatively [86, 87]. That is to say: poor biometrics can

reduce the attack complexity of the fuzzy vault. The third assumption can also be violated

simply by the brute attack. The brute-force attack on fuzzy vault can utilize list-decoding to

enumerate valid solutions, thus permit secret recovery from the errors well beyond the barrier

[88] . In [18, 19] the brute-force is launched and only 232 to 235 iterations are required to

reconstruct the secret. Due to the low polynomial order constraints p < 10 attributed to the
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Table 2.3: Summary of fuzzy commitment and fuzzy vault.

BCs Description Related References Remark

Fuzzy commitment Bit commitment +
biometrics

[69–73] Security relies on the
reconstruction com-
plexity of codeword c

Fuzzy vault Polynomial construc-
tion and reconstruc-
tion

[18, 82–85] Security relies on
polynomial recon-
struction.

Figure 2.2: Close and Open Set Face Identification (1-to-N Match) System.

scarcity of minutiae and the limited number of chaff points, the fuzzy vault is fragile under

brute-force attack [89]. A summary of BCs is shown in Table 2.3.

2.4 Closed-set and Open-set Face Identification

Unlike the face verification task, which is only restricted to one-to-one matching, face identifi-

cation, or 1-to-N matching where N is the number of subjects in the gallery, it is a much more

challenging problem when N turns huge. Face identification can be further divided into closed-

set and open-set problems as depicted in Figure 2.2 where the latter is a much less explored

subject.

Many works envisioned to solve closed-set face identification problem have been around for

years [90–92]. The US National Institute of Standards and Technology (NIST) releases its face

recognition internal benchmark every several years. Both research labs and commercial vendors

participated in the NIST contest. A lot of FR algorithms are reported to be able to achieve
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excellent accuracy. According to the Multiple Biometric Evaluation (MBE) report in 2010 [93],

three top-ranked Commercial Off the Shelf (COTS) can reach 82%-92% accuracy rate when

matching the face probe against a gallery with 1.6 million identities.

However, the same COTS system failed to preserve the accuracy rate on a closed-set identi-

fication task with images from the Labeled Faces in the Wild (LFW) [94, 95]. Though the gallery

only contains few thousand identities, the rank-1 accuracy of the COTS system deteriorated to

about 56% [94]. Best-Rowden et al. [95] showed that simple thresholding of a COTS algorithm

works perfectly for verification but does not provide satisfactory open-set identification perfor-

mance. This suggests that a lot of algorithms may not reach good accuracy performance under

the unconstrained situation in spite they can show good performance in constrained situations,

the unconstrained task remains to be solved.

On the other hand, open-set face identification receives attention gradually. The open-set

FR research has been recognized for over a decade so far [96]. The typical exploration is carried

out on LFW, due to the bias of the LFW standard evaluation protocol, which doesn’t utilize

all information of the dataset and also include the open-set situation. To establish a better

large-scale evaluation protocol, Liao et al. [21] proposes a protocol that utilize all face images in

the LFW dataset under closed-set verification and open-set identification scenarios. However,

in [21], several state-of-art FR algorithms were evaluated with open-set identification protocol,

and it proves that the open-set FR is still a challenge for large galleries. Another new protocols

for open-set unconstrained face identification has been also proposed by [95].

To tackle the open-set face identification problem, a number of studies [21, 38, 95, 97–102]

explores to introduce a similarity score as the rejection threshold. However, the thresholding

solution can only work well under verification, while a satisfactory performance on open-set face

identification can not be achieved [95] .

Another line of research exploits a one-class classifier to filter out the imposter and only

permit those enrolled for matching. This, in turn, changes the open-set to closed-set setup

where the latter is known to be simpler and yield better performance. One-class support vector

machine (SVM) is a common option [103–105] as it looks promising to train a classifier with

only enrolled subject data. However, one-class SVM is not scalable since one-class SVM can

not be trained on a large dataset, and the training time is costly. Santos et al. explored five

different methods in [106] to filter out the imposter in a probe. Among those methods, one is

focusing on discriminating faces between the known and background sets, while the remaining
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methods focus on identification responses. However, neither of them can attain good accuracy

performance in a large gallery.

A formal definition of the open-set problem is outlined by Bendale et al. [107]. Apart from

that, an algorithm that can reject a query as an outlier when it is too far from the training

sample, namely Nearest Non-Outlier (NNO) was proposed in their work. NNO is an algorithm

that can update the model continuously with additional unseen objects, and it is unnecessary

to retrain the model. The query will be classified as unknown if all training classes reject the

probe.

More recently,a lightweight classifier based on the extreme value machine (EVM) [108] [16]

is proposed. EVM is established to obtain a probability of sample inclusion of each probe sample

with respect to a gallery. Based on the statistical extreme value theory (EVT) calibrations over

margin distributions, EVM can be applied to varying data bandwidths and also show superior

performance on open-set protocol compared with thresholded similarity methods. Besides that,

[16] also outlined a refined open-set face identification protocol on LFW that considered known

probes, known unknown probes and unknown unknown probes.

Another task that pretty close to the face identification problem is face search (retrieval)

in the social media [109, 110]. However, face search differs from face identification in the

background set, which is included in the gallery without a label or identity. The inclusion of

massive background images complicates the searching problem. The gallery that comprises the

union of known identities and background set can go up to a multi-million scale. Early studies

on face search problems primarily focused on faces captured under constrained conditions and

of a small scale, e.g., the FERET dataset [55]. However, due to the growing need for strong face

recognition capability in the social media context, ongoing research is focused on large-scale

in-the-wild datasets.

In [111], Wu et al. propose a face inverted indexing system based on a component-based

local face representation. The aligned face images are split into small blocks based on the facial

landmarks. Then each block is quantized into a visual word by an identity-based quantization

scheme. The candidate images corresponding to the face probe are retrieved from the inverted

index of visual words. Furthermore, by leveraging human attributes, Chen et al. improved the

search performance [112].
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Table 2.4: The list of works on Face Search and Face Retrieval.

Probe Gallery
Dataset Protocol

#Images #Subjects #Images #Subjects
Wu et al. [111] 220 N/A 1M+ N/A LFW + web facesa Close

Chen et al. [112]
120 12 13,113 5749 LFW + Pubfig Close
4300 43 54,497 200 LFW + Pubfig Close

Miller et al. [113] 4000 80 1M+ N/A FaceScrub + Yahoo Close
Yi et al. [114] 1195 N/A 201,196 N/A FERET+ web faces Close
Yan et al. [115] 16,028 N/A 116,028 N/A FRGC + web faces Close

Klare et al. [116]
840 840 840 840 LFW Close
25,000 25,000 25000 25000 PCSO Close

Best et al. [95] 10,900 5153 3143 596 LFW Close + Open
Liao et al. [21] 8,707 4249 1000 1000 LFW Close + Open

Wang et al. [101]
7,370 5507 80M+ N/A LFW + web faces Close + Open
14,868 4500 80M+ N/A IJB-A + web faces Close + Open

Recently, a multi-million scale face search system is developed by [101]. In their work, which

is the largest face search experiment conducted to date, the gallery encompasses 80+ million

images mixed with known subjects and background sets where the former is just a small fraction

of the total gallery. The system adopts deep facial features extracted from a Convolutional

Neural Network (CNN) and followed by product quantization for features compression. A

simple re-ranking algorithm based on the score level fusion and COTS is incorporated to gain

better performance.

A summary of the work on face search and retrieval is summarized in Table 2.4.



Chapter 3

Face Identification System with

Learning-based Index-of-Max

Hashing

In this chapter, to protect face features, the learning-based Index-of-Max (LIoM) hashing is

proposed. To be specific, the existing random IoM hashing is advanced to a data-driven based

hashing technique, where the hashed face code can be made compact and matching can be easily

performed by the Hamming distance, which can offer highly efficient matching. Text, a face

identification system with LIoM is developed. Besides, several fusion strategies are explored to

address the open-set face identification problem.

3.1 Introduction

Over the past years, face recognition has become prevalent in the interest of surveillance and

convenience. Face recognition systems can work under 1-to-1 match mode and 1-to-N match

(identification) mode. The identification FR can further be divided into closed-set and open-set

identification. All probes are enrolled in the gallery in closed-set settings, while some probes not

enrolled in open-set settings [117]. Research on closed-set identification has been commonplace

for a few decades, whereas open-set face identification has been gaining attention only recently,

since it is a more practical scenario for face identification [117].

25
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On another hand, there is a public concern about the privacy risks when the face template

stored in the gallery is compromised [118]. For instance, if an attacker can intercept a person’s

face template, it might be used to impersonate that person (e.g. [119], [120]). This will raise

severe security and privacy risks. Considering that biometrics are strongly associated with the

owner, and thus cannot be changed when compromised, these concerns are aggravated.

Therefore, to design a practical open-set face identification (1-to-N matching) system, the

system should fulfill the following essential properties:

1. The system must be able to differentiate between the identities enrolled in the gallery and

unknown identities.

2. Once the system decides that the probe is not an imposter, the system is capable of de-

termining the identity of a subject, where a top k ranked list retrieved from the gallery

may suffice to identify the subject. The value of k is application-dependent. For instance,

k = 1 is required for access control applications and perhaps k = 200 for forensic, surveil-

lance and watch list applications. Conventionally, a system that uses k = 1 is called an

identification system.

3. The face feature representation and matcher are to be as simple as possible for speedy

matching yet still give a high accuracy performance for large-scale identification.

4. The face features should be protected without jeopardizing the original system perfor-

mance. This demands non-invertible transformation on the face representation, yet the

original face features information should be largely preserved to avoid performance dete-

rioration.

Besides that, the facial images may be acquired from the unconstrained environment or “in

the wild” [94], where the pose, lighting, expression, age, image resolution can be varied widely

and occlusion may occur. The face identification system should be able to achieve satisfactorily

accurate performance in the unconstrained environment. This induces more difficulties in the

system design.

In this chapter, we address the above challenges by utilizing a deep neural network to

extract discriminative face features, then the deep features are compressed and secured by the

learning-based locality sensitive hashing method, namely learning-based Index-of-Max (LIoM),
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whose ancestor random IoM [17] was designed for biometric template protection. The hashed

face code is compact enough and enables a simple matcher to be used for matching.

3.2 Motivations and Contributions

In this chapter, we aim to explore the large-scale open-set face identification problem in-the-

wild. Our pipeline is composed of a deep neural network-based face feature extractor, a feature

hashing module and a fusion module, which are meant to address the massive numbers of face

images that are acquired under the unconstrained environment, privacy-protected facial features

compression, and the open-set evaluation, respectively. For more realistic and comprehensive

evaluation, we follow a new open-set evaluation protocol suggested by [117], wherein the probe

samples can be categorized into three types: known, known unknown, and unknown unknown

(detailed in section 4.1.2.1, chapter 4).

The open-set protocol employed corresponds to a lot of scenarios in real life. For instance,

a surveillance camera that can capture people and compare their faces with the watch-list of

criminals (known probes) in the database was deployed at a concert given by Jacky Cheung

in China, and snagged many fugitives1. The singer Jacky Cheung and his staff were not on

the watch-list but could be detected by the cameras regularly, and would not be recognized as

criminals. Thus, this group of people can be regarded as known unknown probes when training

the model, since they are not people of interest for the system. As for the normal audience

not on the criminal list, they needed to be ignored by the system, and were taken as unknown

unknown probes. Apart from that, we also evaluate the system based on the closed-set protocol

[117] for benchmarking.

The main contributions of this scheme in this chapter are as follows:

1. A systematic study is performed for a large-scale face identification problem in both open

and closed-set evaluation protocols. For the former, a more practical scenario that includes

three types of probes is considered.

2. A supervised learning-based IoM (LIoM) hashing for deep facial feature protection and

compression is presented. The LIoM is shown to be able to deliver a more accurate

1https://www.washingtonpost.com/news/innovations/wp/2018/05/22/facial-recognition-cameras-lead-to-
arrest-of-a-man-wanted-for-allegedly-stealing-17000-worth-of-potatoes/
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performance with less hashed code than for random IoM hashing, especially when LIoM

is trained by the same group of identities.

3. Several feature-level and score-level fusion strategies for the face identification problem

are explored.

3.3 Preliminary

In this subsection, three hashing concepts upon which LIoM is based, namely Locality-Sensitive-

Hashing, Winner-Take-All hashing, and index-of-max hashing are presented.

3.3.1 Locality Sensitive Hashing (LSH)

LSH is different from conventional and cryptographic hashing. In traditional hashing, even one

single bit difference will lead to completely different hash codes. In contrast, the LSH aims to

map similar items into the same ”buckets” with a maximized probability. LSH can be used to

reduce the dimensionality of the high-dimensional data by projecting the original data into a

much smaller number of ”buckets” [121] (Figure 3.1).

The LSH family H is defined as follows:

Definition 3.1 (Locality Sensitive Hashing [122]). A LSH is a probability distribution on a

familyH of hash functions such thatPh∈H [h (X) = h (Y )] = S(X,Y ). With a similarity function

S define on the collection of object X and Y .

The key ingredient of LSH is the hashing of object collection X and Y by means of multiple

hash functions hi. The use of hi enables decent approximation of the pair-wise distance of

X and Y in terms of collision probability. LSH ensures that X and Y with high similarity

renders higher probability of collision in the hashed domain; on the contrary, the data points

far apart each other result a lower probability of hash collision. Specifically, given the LSH

family H = {hi : Rd → S} which maps data points from Rd to a bucket s ∈ S, and the

similarity function d(·), the LSH family satisfies the following conditions for any two given

points X,Y ∈ Rd:

Ph∈H(h(X) = h(Y )) ≤ γ, if d(X,Y ) < α

Ph∈H(h(X) = h(Y )) ≥ δ, if d(X,Y ) > β
(3.1)
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Figure 3.1: Locality sensitive hashing (From [3]).

where δ > γ.

3.3.2 Winner-Take-All Hashing

Winner-Take-All Hashing (WTA) is one instance of LSH proposed in [123]. In WTA hashing, the

partial order statistics-based embedding is computed from the input data as the final hash codes.

As a non-linear transformation based on implicit order, WTA can tolerate certain numerical

perturbations and preserve the matched items’ similarity after the transformation. A diagram

of the WTA hashing is shown in Figure 3.2. The overall WTA hashing procedure can be

summarized into five steps:

1. Perform H random permutations on the input vector with dimension d, x ∈ Rd .

2. Select the first k items of the permuted x.

3. Choose the largest element within the k items.

4. Record the corresponding index values in bits.

5. Step 1 – step 4 is repeated m times, yielding in a hash code of length m, which can be

compactly represented using m · log2 k bits.
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Winner-Take-All Hashing

Figure 3.2: Winner-Take-All Hashing.

(Credit to Dr. Jin Zhe)

3.3.3 Index-of-Max (IoM) Hashing

IoM hashing, inspired by WTA, is a means of generic cancellable biometrics that can be perceived

as a special instance of LSH portray in def. 3.1. In general, IoM embeds the biometric features

onto the rank space. In rank space, the similarity functions S of LSH is characterized by the

rank correlation of indices recorded from the maximum values (top-ranked) of two transformed

biometric features. The rank representation nature of IoM hashed features empower strong

concealment to biometric features. While as an LSH instance, the accuracy performance of

biometric features can be largely preserved after hashing. This trait can be justified through

below lemma and its connection with LSH.

Lemma 3.2 ([124]). For u,v ∈ Rd be the unit vector ‖u‖ = ‖v‖ = 1 at angle θ. Let ρ = u ·v =

cos θ and r1, . . . , rq be a sequences of iid standard Gaussian random vectors, the probability for

u and v be not separated by r1, . . . , rq is designated as kq(u,v). The Taylor series expansion

kq(u,v) =
∞∑
i=0

ai(q)ρ
i (3.2)

of kq(u,v) around ρ = 0 converges for all ρ in the range of |ρ| ≤ 1. The coefficients ai(q)

are non-zero and their sum converges to 1. The first three coefficients can be expressed as

a0(q) = 1
q , a1(q) =

h21(q)
q−1 , and a2(q) =

qh22(q)
(q−1)(q−2) , where hi(q) is the expectation of φi (xmax)

where φi(·) be the normalized Hermite polynomials and xmax is the maximum entry of q iid

standard Gaussian random variables.
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Remark 3.3. Let H : Sd−1 → {1, . . . , q}m, for u and v ∈ Sd−1 and

H(u) = [arg maxj=1...q

〈
w1
ju
〉
, . . . , arg maxj=1...q

〈
wm
j u
〉

] where{
wi
j ∈ Rd | i = 1 . . . ,m, j = 1, . . . , q

}
∼ N (0, Id). The expectation can be estimated as:

E

(
1

m

m∑
i=1

1hi(u)=hi(v)

)
= P

{
arg max

j=1...q

〈
wl
ju
〉

= arg max
j=1...q

〈
wl
jv
〉}

(3.3)

where h ∈ H. As m becomes large, kq(u,v) can be approximated by:

P
{

arg max
j=1...q

〈
wi
ju
〉

= arg max
j=1...q

〈
wi
jv
〉}
≈ kq(u,v) (3.4)

Hence, h(u) = maxj=1...q

〈
wi
ju
〉

resembles the LSH where the similarity function S(·, ·) =

kq(u,v) ∈ R [125, 126].

The method to generate IoM hashed code can be condensed into a two-step procedure as

follows and its pseudo code is given in Algorithm 1:

1. For a feature vector x ∈ Rd, generate a set of random matrices Ri ∈ Rd×q, i = 1, . . . ,m

where each entry in the matrix is drawn from standard Gaussian distribution N (0, 1).

2. Perform yi = Rix ∈ Rq, i = 1, . . . ,m which is equivalent to linear random projection [38].

3. For each yi ∈ Rq, determine the maximum value and record its index value, hi ∈ [1 q].

Thus, a set of IoM hashed code can be obtained by repeating the step 2 and 3 and yield

h = {hi|i = i, . . . ,m}.

Given enrolled and query biometric vectors as x and x′, respectively. The similarity function

of IoM hashing is given as S (x,x′) = 1
q +

∑∞
i=1 ai(q)(cos θ) where cos θ = x·x′

‖x‖‖x′‖ and ai(q) is

the coefficient that satisfies 1
q +

∑∞
i=1 ai(q) = 1. Operationally, since the entries of IoM hashed

vector are integers, the matching score is mere the total number of collisions (number of matched

entries) of T and T ′ and normalized by m. Therefore, the similarity function S (x,x′) for IoM

hashing is simply normalized Hamming distance over a finite field, a variant of Jaccard similarity

coefficient.
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Algorithm 1 IoM Hashing

Input:
Feature vector x with d dimensions, number of Gaussian random matrices m and the number
of Gaussian random projection vector q.

Output:
Hashed code T = {ti∈ U|i = 1, . . . ,m}

1: Generate m Gaussian random matrices Wi= (wi
1, . . .,w

i
q), i = 1, 2 . . . ,m.

2: Initialize ith hashed code ti=0
3: Perform random projection and record the maximum index in the projected feature vector.

4: for k = 1: m do
5: xk = Wkx
6: Find xkj = max

(
xk
)
, j = 1, . . . , q

7: Then ti = j (j refers the index of xk
)

8: end for
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Query (Online)

Enrolled DB

Input image
Face detection

and alignment

Feature

extractor

Hashed compact

face codes 

1010100

1101010

Input image
Face detection
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Hashed compact

face codes 

Top-k

candidates 

Matcher

1 vs N search

: one-way hashing

Figure 3.3: Face identification module.

(adopted from [1])

3.4 Face Identification Framework

This section outlines a face identification structure, which devised to accelerate the matching

while achieving decent accuracy. Figure 3.3 illustrates the system consisting of three parts: i)

face feature extraction with deep neural networks for the N gallery samples (offline) as well as

for the probe samples (online); ii) face code hashing by means of learning based IoM hashing

that transforms the deep face vector into a compact hash codes and iii) fusion and matching

that compares the probe against the gallery samples simply with Hamming matcher retrieve

the top-k most similar candidates (k << N).

3.4.1 Deep Face Feature Extraction

The face feature extractor is essential to extract a robust and discriminative feature representa-

tion. This is especially crucial for a large-scale face identification system in the unconstrained
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environment. In this work, we adopt two pre-trained convolution neural networks dedicated

to face recognition, namely FaceNet [37] and InsightFace (also known as ArcFace) [39] (see

Table 3.1.We refer deep features as the features that extracted by deep neural networks.

ArcFace loss, which is proposed in [39], is an improved softmax classification loss where

the weight vector of jth identity wj is L2 normalized. Specifically, target logit (activation of

the output layer before applying softmax function) of the identification branch is re-defined as

wT
j zi = ‖wj‖ ‖zi‖ cos θj where zi is the L2 normalized embedding features of the ith sample,

belonging to the jth identity. The normalization of the embedding features and weights makes

the predictions only rely on the angle between zi and wj , denoted as θj . The prediction of yi

th identity is now mere θyi dependence. The ArcFace loss is defined as:

LArcFace = − 1

B

B∑
i=1

log
es(cos(θyi+β))

es(cos(θyi+β)) +
∑N

j=1,j 6=yi e
s cos θj

(3.5)

where B is the batch size, β is an angular margin introduced to force the classification boundary

closer to that specific weight vector, and s is a feature rescaling factor. In this manner, the

learned embedding features are thus distributed on a hypersphere with a radius of s. With

InsightFace pre-trained with MS-Celeb-1M, a face vector with size 512 can be obtained2.

Triplet loss in FaceNet is proposed by Google Inc meant for face verification, identification

and clustering. Triplet loss takes in a triplet of deep features, (a, p,m), where (a, p) have similar

product labels and (a, n) have dissimilar product labels and tunes the network so that distance

between anchor (a) and positive (p), d(a, p) to be less than the distance between the anchor (a)

and negative (n), d(a, k), by at least distance margin m. To be specific, the triplet loss function

is defined as follows:

LTriplet(a, p, n) = max(0,m− d(a, p)− d(a, n)) (3.6)

The key idea of FaceNet is mapping the facial images to Euclidean (L2) space through

convolutional neural networks. Unlike other CNN, FaceNet does not follow the common ap-

proach in extracting face features from CNN, such as taking the layer before the output layer

as features but perform end-to-end learning from input image space to feature space directly.

The spatial coding is then used for recognition and verification. The features learned in this

way are highly compact with size 128 or 256. . In this work, a face vector extracted by the

2Official implementation (https://github.com/deepinsight/insightface) is adopted in this study.
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Table 3.1: Deep features used in this study.

Deep Features Architecture Loss Function Input Images
Output
Embedding
Size

Training

FaceNet Inception-Resnet-v1 SoftMax loss 160x160 256 MS-Celeb-1M

ArcFace/Insight Face LResNet50E-IR
Additive Margin
Softmax

112x112 512 MS-Celeb-1M

MS-Celeb-1M [127] pretrained FaceNet with embedding size 256 is utilized. In our research, we

adopt David’s open-source implementation of FaceNet and its pre-trained model3.

In this thesis, all facial images are first aligned by MTCNN [128] and then cropped to

160x160 for FaceNet and 112x112 for InsightFace. Images that cannot be aligned will be dis-

carded.

3.4.2 Learning based Index-of-Max hashing

As described in section 3.3.3, simply speaking, IoM hashing encodes a feature vector x as the

index of the random subspace Ri ∈ Rd×q that generates the largest projected value. The IoM

hashing exploits the ranking order among random projected values instead of feature values.

Due to the characteristic advantage, the generated IoM hash codes can be resistant to the noise

of the biometric. In addition, it also show resilience to the scaling of the biometric vector. At

last, IoM hashing is a non-linear projection which grants the security to the biometric system.

Despite theoretical soundness, the IoM hashing often require long enough hash code to

achieve similar accuracy performance as its original counterpart. For instance, as reported

in [17], a fingerprint vector with size 299 requires 600 hash codes or above to achieve similar

accuracy performance with a suitable value of q. This is attributed to IoM hashing relying

on random projection, which is not optimized according to the characteristic of the feature

vectors. Therefore, it is judicious to replace the random subspace projection with a supervised

learning mechanism from the feature vectors [129]. This makes IoM hashing be transformed

from data-agnostic to data-driven algorithm, in which we coined learning-based IoM hashing

or LIoM hashing. To be specific, a single IoM hashed code can be compactly formulated as a

function projection matrix W as:

h(x;W ) = arg max
1≤i≤q

wTi x ∈ R (3.7)

3https://github.com/davidsandberg/facenet
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where wi ∈ Rd, i = 1, 2...q ,and W = [w1, w2, . . . , wq]
T ∈ Rd×q. wi is one projection metric

which used to perform subspace projection. In this sense, random IoM hashing is a special

case of the LIoM where R ∈ Rd×q is now replaced with W . Based on such a generalization, a

optimized projection, or subspace can be tackle by learning strategy, while the final goal can be

regarded as finding the hash functions characterized by the projections W as in (3.7).

Suppose T = {xi ∈ Rd}Mi=1 be the set of m deep face vectors and S = {sij ∈ {0, 1}}Mi,jbe

the set of pair-wise similarity matrix where sij = 1 signifies pair (xi, xj) is similar to each other,

while sij = 0 signifies nonmatched pair. The similarity matrix S can be generated by labels

or by measuring the distance between two vectors (e.g. Cosine distance). In our program, the

label similarity matrix approach is adopted. Given sij of each training pair, an error function

induced by a hash function h(x;W ) (or simply h for brevity), can be defined as:

ε(hi, hj , sij) =


I(hi 6= hj), sij = 1

I(hi = hj), sij = 0

(3.8)

where I(·) is an indicator function. The objective of the learning is to find a W which can

minimize the accumulation errors over T:

ε(W ) =
∑
sij∈S

ε(hi, hj , sij) (3.9)

By introducing the constraint, (3.7) can be written as

h(x;W ) = argmax
P

pTWx ∈ R

subject to p ∈ {0, 1}q, 1T p = 1,

(3.10)

where the constraints enforce that only one entry of non-zero is existed in the hash code h

while the remaining are entry of 0. Following (3.10 and 3.8) can be rewritten in a matrix form

accordingly,

ε(W ) =
∑
sij=1

(1− pTi pj) +
∑
sij=0

(pTi pj)

=
∑
sij∈S

(1− 2sij)p
T
i pj + const

= trace(PAP T ) + const

(3.11)
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where P = [p1, . . . , pM ] is the q ×M matrix, A is M ×Mmatrix and aij = 1− 2sij ∈ A , const

is a constant. Unfortunately, since P is non-convex and highly discontinuous with respect to

W , (3.11) is difficult to optimize. As a remedy, (3.10) can be conveniently approximated by

integrating with softmax function ,

h(x;W ) ≈ SoftMax(Wx) (3.12)

where SoftMax(z) is a q-dimensional vector:

softmax(z)j =
ezj∑q
i=1 e

zk
for j = 1, . . . , q (3.13)

It is easy to attest that the softmax function approximations alters the constraints of pi only

while leaving the error function (3.11) unaffected. Note that the (3.11) can be interpreted

probabilistically with the softmax approximation. In what follows, the probability of generating

same hash code, i.e., same index of the maximum dimension from Wxi and Wxj (equivalently

hi and hj) is

πij ≡ Pr(hi = hj |W,xi, xj)
q∑

k=1

pikpjk = pTi pj (3.14)

where pik and pjk are the kth element of pi and pj , respectively. By introducing the probability,

the expected error for two hash codes from pair (xi, xj) is:

E[εij ] =


1− πij , sij = 1

πij , sij = 0

(3.15)

where εij is short for ε(hi, hj , sij) which defined in (3.8). According to above discussion, the

(3.11) can become the expected cumulative error over T . In a nutshell, the overall objective

reduces to solving the following problem,

min
M

∑
i,j

aijπij = trace(PAP T ) (3.16)

By introducing softmax approximation, we convert the objective function (3.11) to a continuous

function of W , despite the problem remains non-convex. To search the local minima, one can

adopt standard gradient descent algorithms. Since full T can be huge, computing the gradient

over T could be prohibitive, hence mini-batch stochastic gradient decent algorithm is opted
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instead. Specifically, the gradient of πij can be computed as:

−∆Wπij ∝ [(pTi pj)pi − pi � pj ]xTi + [(pTj pi)pj − pj � pi]xTj (3.17)

where � is the point-wise product.The mini-batch update rules can be written as:

W ←W + η[Pdiag(P Ts P )− Ps � P ]XT (3.18)

where η is the learning rate and diag(·) returns diagonal matrix with the elements of the

vector on the main diagonal. X = [x1, x2, . . . , xM ] is the d × M training data matrix,P =

[p1, p2, . . . , pM ] is a q×M matrix containing the softmax vectors of each training vector and

Ps = PA. After W is found, (3.7) is used to compute the hash code, which ranks from 0 to

q − 1.

Since each hash code is learned independently with Algorithm 2, the entire m hash codes

could be suboptimal. This is due to different random initial solutions leading to the same optimal

point, resulting in redundant hash codes. In order to maximize the information contained among

m hash codes, the hash functions could be learned sequentially so each hash function can offer

complementary information to previous ones [130]. The crux of sequential learning is each

hash code can be perceived as a weak classifier that assigns similarity labels to an input pair.

The obtained ensemble classifier is related to the Hamming distance between hashing codes.

Formally, each weak classifier corresponding to the lth code is

siml(xi, xj) = 1−Hm(h(xi;Wi), h(xj ;Wj)) (3.19)

where Hm(·) is the bitwise Hamming distance. Then, the Hamming distance of two hash codes

with size m can be seen as the vote of an ensemble of m weak classifiers on them. The AdaBoost-

based sequential learning algorithm is shown in Algorithm 3. Specifically, a sampling weight

ω
(l)
ij is assigned to each training pair and is updated before training each new hash function.

The projection matrix W is updated in the similar fashion as in (3.18) but weighted by ω
(l)
ij .

When all the hash functions have been trained, the voting results of the related week classifiers

are fused with a weighted combination

siml(xi, xj) =
m∑
l=1

Φl(1−Hm(h(xi;Wi), h(xj ;Wj)) (3.20)

where Φl are the weighted training error of the lth hash function.
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Algorithm 2 Learning IoM (LIoM)

Input:
Deep face vectors X, pair-wise similarity matrix S, subspace dimension q.

Output:
LIoM projections matrix W .

1: Initialization: Random W drawn from zero-mean unit-variance Gaussian distribution.
2: repeat
3: Randomly select a training batch Xb and obtain the batchwise label matrix Sb accordingly

4: Set A = λE − (λ+ 1)Sb /* E is a matrix of ones. */
5: Compute P by applying the softmax function to each column of WXb

6: Set Ps = PAT

7: Update W according to (3.18)
8: until Convergence

Algorithm 3 Sequential learning IoM

Input:
Deep face vectors X, pair-wise similarity matrix S,length hash code m, subspace dimension
q.

Output:
LIoM projections N

1: Initialization: Set the weight ωij of all pairs to one
2: for l = 1 to m do
3: Solve W using Algorithm 2
4: Compute hash codes for all samples by IoM hashing
5: Calculate the weighted error εl where εl = ε(W )

M where ε(W ) is defined in (3.9)

6: Evaluate φl = ln(1−εlεl
)

7: Update the weighting coefficients using ωlij = ωlij exp(φl ∈ (hi, hj , sij))
8: Normalize ωij
9: end for

Similar to IoM hashing, the similarity score between two hash codes hx and hy generated

by the LIoM hashing can be computed as the ratio of the total number of collisions of two hash

codes (the number of matched entries) divided by the total number of entries, which in turn can

be represented as the Jaccard similarity s(x,y) = J (hx,hy) =
|hx∩hy |
|hx|+|hy | . Note that the hash

code hx and hy can also be stored in binary string form and hence s(x,y) = 1−Hm (hx,hy) ,

where HmO is the bitwise Hamming distance. In this sense, the Hamming distance is regarded

as a special case of the Jaccard distance in Hamming space.

In a nutshell, the projection matrices employed in the IoM hashing are generated randomly.

In contrast, the projection matrices in LIoM are learned from the gradient descent algorithm,

which can deliver a set of optimal ranking subspaces, and hence improve the accuracy over

random IoM hashing. While the proposed LIoM is inspired by [129], it has several distinctions

as follows:
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1) The LIoM hashing transforms deep face features into binary (with only single modality)

representation, while the LSRH hashing in [129] aims to transform multimodal (i.e. images and

text) data sources into a common subspace (cross-modalities), typically in Hamming space, by

exploiting a rank correlation measure.

2) Biometric data is private. LIoM hashing, inherited from random IoM hashing, can

protect face templates and retains the original system performance. In contrast, the LSRH

hashing in [129] deals with the image retrieval task with publicly available data generally.

3) The LIoM hashing is compact enough to satisfy the efficiency concern on the large-scale

open-set face identification problem.

3.4.3 Fusion Strategy

For large-scale face identification, expecting good accuracy of performance with the sole use of

hash code is not realistic. Fusion is one popular direction to boost the accuracy (e.g. [131, 132]).

While a simple matcher is favored for speedy matching, we introduce and explore several fusion

strategies for 1-to-N matching. In this thesis, three samples (LIoM hash codes or simply the

hash vector for brevity) per subject are stored in the gallery to achieve better retrieval accuracy,

and three fusion options are devised based on the score level and feature-level fusion techniques.

Specifically, the first option is designed based on the score-level fusion, while option 2 is devised

based on the fusion of hash codes (feature-level fusion) and option 3 is invented based on the

fusion of deep face vectors (see Figure 3.4).

Suppose g, p, t to be a face image in the gallery G, probe P and training-set T respectively.

Two deep face vectors of that person, i.e. I∗ and F∗, are derived based on InsightFace and

FaceNet, respectively and ∗ ∈ {g, p, t}. The face vectors are transformed by LIoM hashing, i.e.

h(I∗) and h(F ∗).

Option 1: Given a probe face sample p and its corresponding hash codes h(Ip) and h(Fp),

two matching scores can be obtained via SIp,g=1- Hm(h (Ip) , h(Ig)), S
F
p,g = 1− Hm(h (Fp) , h(F g)),

where Hm(·) is the Hamming distance. Finally, two sets of scores can be fused via one of the

following score fusion rules:

1. Sp,g = mean
(
SIp,g, S

F
p,g

)
2. Sp,g = max

(
SIp,g, S

F
p,g

)
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Figure 3.4: Different fusion strategies.

(adopted from [1])

where mean(·) and max(·) are the averaging and maximum operations, respectively.

Apart from the above simple score fusion rules, we also incorporate a more sophisticated

outlier (an imposter in the open-set identification context) modeling approach – Extreme Value

Machine (EVM) [108] to the fusion rule. EVM is essentially a non-linear kernel-free classifier

that is designed based on the statistical extreme value theory (EVT) [133]. The EVM fits an

EVT distribution per hash vector over several of the nearest fractional radial distances to hash

vectors from other classes, and uses a statistical rejection model to model the probability of

sample inclusion on the resulting cumulative distribution function. Taking a fixed number of

hash vectors and distribution pairs per class that optimally summarize each class of interest

yields a compact probabilistic representation of each class in terms of extreme vectors (EVs).

For the open-set face identification problem, EVM is tailored to a similarity function Ψ

by letting each hash vector be associated with an identity. In this thesis, Ψ is modeled by two

different strategies, i.e. individually and deep model-wise. Generally, the resultant probability

of sample inclusion that probe p is associated with gallery g is given by:

Ψ(g, p; k, λ) = e
−
(
s∗p,g
λ

)k
(3.21)

where k, λ are the shape and scale parameters of the Weibull distribution, S∗p,g is the similarity
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score between two face samples which can be SFp,g or SIp,g. These parameters can be estimated

individually or by the model. To train the Weibull distribution and estimate the parameters of

each g in the gallery individually, the distance between g and T ′ is computed as

distg =
{

0.5× d
(
g,T ′

)
| t′ 6= g; t′ ∈ T ′

}
(3.22)

for all training samples in T ′, where d (g,T ′) = 1−Hm (h(g), h (t′))) for each t′ ∈ T ′ · T ′ is a

subset of T by excluding the same subject g. A Weibull distribution is fitted to the low tail of

dist g for the subject g :

distg,τ = {d | d ∈ distg ∧d < θτ} with θτ = max
θ
|{d | d ∈ distg ∧d < θ}| = τ (3.23)

where the tail size τ represents a hyperparameter of EVM (τ = 500 in this thesis ). By modeling

the distribution individually, each subject in the gallery will be associated with a set of unique

distribution parameters.

Apart from modeling the distribution individually, the Weibull distribution parameters can

also be estimated easily model-wise, which only takes account of a different deep model. To

train the model, the distances between each g in the gallery G and all the training subjects g

are computed and collected at one time:

dist mdl = {0.5× d(g, t) | T 6= g;T ∈ T; g ∈ G} (3.24)

for all training samples, and all gallery samples, except that the distances between the same

subjects are excluded. The Weibull distribution is fitted to the low tail of dist mdl :

dist mdl,τ = {d | d ∈ dist mdl ∧ d < θτ} with θτ = max
θ
|{d | d ∈ distmdl ∧d < θ}| = τ (3.25)

By modeling the distribution deep model-wise, only two sets of distribution parameters are

generated, i.e. one for FaceNet and another for InsightFace.

Overall, we denote the final similarity between g and p as Ψind

(
S∗p,g

)
based on the EVM

model trained individually for each subject, and Ψmdl

(
S∗p,g

)
based op the EVM model trained

by the corresponding deep model. The fusion strategies of option 1 incorporated with EVM can

be devised as follows:
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3. Sp,g = mean
(

Ψmdl(S
I
p,g),Ψmdl(S

F
p,g)
)

4. Sp,g = max
(

Ψmdl(S
I
p,g),Ψmdl(S

F
p,g)
)

5. Sp,g = mean
(

Ψind(SIp,g),Ψind(SFp,g)
)

6. Sp,g = max
(

Ψind(SIp,g),Ψind(SFp,g)
)

Option 2: The gallery hash codes derived from deep face vectors are fused at feature level

with one of the four following rules:

1. hg = concatenate(h(Ig), h(F g))

2. hg = elementwise max(h(Ig), h(F g))

3. hg = elementwise min(h(Ig), h(F g))

4. hg = elementwise mod(h(Ig), h(F g))

The probe p is also submitted to the same process, i.e. LIoM transformed and feature-level

fusion, denoted as hp, matched with hg via Sp,g = 1− Hm(hg, hp).

Option 3: The deep face features Ig and Fg are normalized and concatenated directly

and then transformed with LIoM, denoted as hg = h(concatenate (Ig, Fg)). The probe pair P

is also submitted to the same process to generate the hash code hp and matched with hg via

Sp,g = 1− Hm(hg, hp).

3.5 Chapter Conclusion

This chapter addressed several challenges of large-scale unconstrained face identification or the

1-to-N face matching problem. In particular, we considered open-set identification that consists

of three kinds of probes, namely known, known unknown and unknown unknown probes. We

utilized deep neural networks to extract face features and transform them to protected hash

code via learning-based Index-of-Max (LIoM) hashing for privacy protection. The hash code

is compact enough and matching can be simply carried out via the Hamming distance. To

compensate the performance degradation due to LIoM hashing, several fusion strategies have

been introduced to restore its original counterpart performance.



Chapter 4

Evaluation and Analysis of the

Learning-based Index-of-Max

Hashing

In this chapter, the large scale closed-set and open-set protocols are utilized to evaluate the

LIoM’s performance. Three large unconstrained face datasets of increasing complexity: LFW,

VGG2 and the IJB-C dataset, are adopted in this study. Besides, other aspects such as storage,

matching efficiency, and template protection criteria are also analysed.

4.1 Performance Evaluation

We present a comprehensive evaluation for the proposed LIoM hashing in this section. Our

experiments are conducted on the LFW [94], VGGFace2 [134] and IARPA Janus Benchmark-C

(IJB-C) [135] datasets (see Table 4.1).

LFW is the first dataset that was designed to study the large-scale unconstrained face

recognition problem. The dataset contains 13,233 face images with 5,749 subjects collected

from the web. Each face is labeled with the subject name. 1,680 subjects have two or more

distinct images and the rest only have one image. The only constraint on these faces is that

they were detected by the Viola–Jones face detector.

43
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Table 4.1: Databases used in this project.

Datasets Characteristics We use

LFW (2007)
• First database for unconstrained face recognition.
• 5k+subject, 10k images.
• Collected from the web by the Viola-Jones face detector.

13,233 images, 5749 subjects

IJB-C (2018)

• For unconstrained face recognition and detection.
• Emphasis on occlusion and diversity of subject occupation

and geographic origin with the goal of improving representation
of the global population.

• IJB-C dataset is significantly more challenging.

131,967 images, 3530 subjects

VGG2 (2018)

• For unconstrained face recognition and detection.
• 9131subjects (train: 8631, test: 500), 3.31 million images.

• Downloaded from Google Image Search, large variations
in pose, age, illumination, ethnicity, and profession.

train:8631*50 test:500*50

VGGFace2 is another large-scale dataset for unconstrained face recognition and was pub-

lished in 2018. Images are downloaded from Google Image Search and have large variations

in pose, age, illumination, ethnicity and profession. There are 9,131 subjects with 3.31 million

images in this dataset.

The IJB-C face dataset is also a very recent dataset dedicated to unconstrained face recog-

nition and detection. It improves upon the previous public domain IJB-B dataset, with a larger

dataset size and an emphasis on occlusion and diversity of the subjects’ occupation and geo-

graphic origin. Therefore, IJB-C is significantly more challenging compared to many existing

public face datasets. IJB-C has 31,967 images with 3530 subjects.

In this section, we present the experiments in the following order. First, we evaluate the

learning-based IoM, followed by closed-set and open-set identification experiments. We com-

pare the identification performance without LIoM hashing, i.e. uncompressed and unprotected

face feature representation, deep face features with the LIoM hashing but without fusion, and

with both LIoM hashing and fusion. This is to distinguish how the LIoM hashing and fusion

contribute to the face identification in terms of accuracy of performance and time cost. Finally,

the accuracy of our proposed system is compared with the latest state-of-the-art techniques.

4.1.1 Learning-based IoM Hashing

To verify the accuracy of the LIoM hashing performance, several evaluations have been carried

out with the LFW and VGG2 datasets. The experiments are conducted based on the veri-

fication protocol and 1-to-N matching protocol, where the equal error rate (ERR) and mean

average precision (mAP) are respectively adopted as performance metrics. For comprehensive
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Table 4.2: Dataset configuration for identity-dependent evaluation.

Dataset Sample Number

VGG2(1000 subjects)
1st - 10th 11th – 20th 21st - 30th 31st – 40th 41st – 50th
Training Probe Gallery

comparison, deep face vectors from FaceNet (baseline), random IoM and LIoM hash codes are

compared.

Since LIoM hashing is a supervised model, we assess its performance under three scenarios:

(1) Identity-dependent scenario: the LIoM hashing is trained and tested by the same

subject samples, which means the images in the training and testing sets come from the same

subjects but are not overlapped.

(2) Identity-independent scenario: the images in the training and testing sets come

from different subjects and there is no overlapping between the sets, although all the images

come from the same dataset.

(3) Dataset-independent scenario: the training and testing sets come from different

subjects from different datasets.

To create the training and testing datasets for the identity-dependent scenario, we select

the first 1000 subjects with 50 images per subject from VGG2, then the first 10 images of

each subject are used for LIoM hashing training and the remainder for testing. Since deep face

features and random IoM hashing are learning-free, they are evaluated solely with the testing

set (Table 4.2).

To generate the evaluation dataset for the identity-independent scenario, we select the first

4000 subjects and 50 images per subject from VGG2, then the first 2 images of each subject are

chosen as the training set. Then, another 4000 subjects and 50 images per subject are selected,

and the first 2 images of each subject are chosen as the testing set (Table 4.3). Testing for the

dataset-independent scenario is done by LFW.

The EER is calculated based on the following protocol:

• In the testing set, each sample of a subject is matched against the remaining samples

of the same subject to compute the genuine scores by the Hamming distance, and this

process is repeated for all subjects. In practice, a random number of samples are selected

to compute the score, since using all the samples will lead to a huge number of scores.
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Table 4.3: Datasets configuration for identity-independent and dataset-independent evalua-
tion.

Dataset Remark

Training samples First 4000 subjects of VGG2, 2 images per subject,
yielding 8000 testing samples in total.

Identity-independent testing samples Remaining 4000 subjects of VGG2, 50 images per sub-
ject, yielding 200,000 testing samples in total.

Dataset-independent testing samples Pairs (probe and gallery) generated following LFW
protocol.

Based on the collected genuine scores, the false acceptance rates (FARs) can be computed

with respect to various predefined threshold values.

• The first sample of each subject is matched against the first sample of the remaining

subjects to compute the imposter score by the Hamming distance, then the second sample

is matched against the second sample of the remaining subjects and so on. In practice, a

random number of subjects are selected to compute the score since using all the subjects

will lead to a huge number of scores. Based on the collected imposter scores, the false

rejection rates (FRRs) can be computed with respect to various predefined threshold

values. The specific numbers of scores generated under different scenarios are shown in

Table 4.4.

• EER can be estimated when FAR = FRR.

mAP is a widely used metric for search system evaluation [101]. Unlike EER which only

consider the number of correctly matched items while the rank of retrieved items is ignored,

mAP takes the ranks into account. Given a set of n face probes i.e. Q = {qi}ni=1 and a galley

set with N subjects, the average precision of qi is defined as:

avgP (qi) =
∑
j

P (qi, j) ∗ [R (qi, j)−R (qi, j − 1)] (4.1)

where P (qi, j) is the precision at the j-th position for qi and R (qi, j) is the recall rate at the

j-th position for qi. The mean Average Precision (mAP) of the entire probe set Q is:

mAP(Q) = mean
(
avgP

(
xiq
))
, i = 1, 2 . . . , n (4.2)

From Figure 4.1, Figure 4.2 and Figure 4.3, we observe that LIoM hashing can improve the

verification performance under different scenarios. In general,
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Table 4.4: Number of matching scores under different scenarios.

Scenarios EER mAP

Identity-dependent Genuine scores: C2
40 × 1000 = 780k

Imposter scores: C2
200 × 40 = 796k,

200 subjects taken randomly from
1k subjects

30× 10/2× 1000 = 150k

Identity-independent Genuine scores: C2
25×4000 = 1200k,

25 samples taken randomly from 50
samples for each subject. Imposter
scores:C2

400 × 10 = 798k, 400 sub-
jects taken randomly from 4k sub-
jects

4k samples taken randomly
are matched with another ran-
domly taken 4k samples to
generate 4000k scores

Dataset-independent Genuine scores: 3k, Imposter scores:
3k. The testing is performed accord-
ing to LFW official pairs.

4k samples taken randomly
are matched with all 12k sam-
ples to generate 48000k scores

• LIoM hashing significantly outperforms random IoM hashing under the identity-dependent

scenario. However, the advantage is not as significant under the identity-independent

scenario and the dataset-independent scenario. This could be because LIoM hashing is

less capable when generalizing an identity that is not seen in the training data.

• LIoM hashing demonstrates better accuracy of performance than random-IoM under the

identity-independent and dataset-independent scenarios, although this is not as significant

as under the identity-dependent scenario.

• LIoM hashing requires less hash code than random IoM to achieve the same accuracy of

performance for all scenarios. For instance, the former manages to reach EER=5% at

m = 60, while the latter needs m = 140 or more in the identity-dependent scenario.

• LIoM hashing can preserve deep face features better than random IoM hashing in all

scenarios.

For the 1-to-N matching circumstance, LIoM hashing also outperforms random IoM hash-

ing under the identity-dependent scenario, especially for small m. However, random IoM is

comparable under the identity-independent and dataset-independent scenarios, as illustrated

in Figure 4.2 and Figure 4.3. In the subsequent experiments, we choose m =100 and q =16

for experiments as they are sufficient to preserve the performance accuracy and for speedy

matching.
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Figure 4.1: Performance comparisons under identity-dependent scenario.

(adopted from [1])
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Figure 4.2: Performance comparisons under identity-independent scenario.

(adopted from [1])
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Figure 4.3: Performance comparisons under database-independent scenario.

(adopted from [1])
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Table 4.5: Risk of different situations.

Model Result
Probe Class

Known Known unknown Unknown unknown

Positive Identified no risk Identified certain risk Identified uncertain risk

Negative Unidentified no risk Unidentified risk Unidentified uncertain risk

4.1.2 Open-set and Closed-set Identification

4.1.2.1 Database Configuration

The subjects in the dataset are classified into three classes according to the characteristic of the

subject:

• Known-subjects who are enrolled in the gallery, e.g. the fugitive on the watch-list.

• Known unknown-subjects used for LIoM training but not included in the gallery, e.g.

the staff at the concert.

• Unknown unknown-subjects in neither the training set nor the gallery, e.g. the normal

audience.

For biometric identification system, it is crucial to determine a probe is not in the gallery.Take

door access systems as an instance, the biometric system should identify the imposters who is

not in the authorized list and issue a warning. The unknown unknown implies an uncertain risk

for the system, while know unknown is a certain risk, different situations have different kind of

risks that is summarized in Table 4.5 inspired from [136]). While how to manage those risks is

still a non-trivial task for the biometric systems (e.g. detect the uncertain risk).

Accordingly, based on the LFW dataset, subjects who have more than three face samples

are named Known; subjects who have two or three samples are called Known unknown and

finally Unknown unknown is dedicated to the subjects who only have one sample (Table 4.6).

Based on the above subject classes, we divide the considered datasets into training, gallery and

four types of probe: Closed-set probe C, open-set probes O1, O2 and O3. The closed-set C

is used for closed-set identification as well as verification evaluation, while the open-set probes

O1, O2 and O3 are used for open-set identification evaluation.

Specifically, as for the LIoM training set, three samples of each Known subject and one

sample of each Known unknown subject are adopted randomly. In what follows, three samples
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Figure 4.4: LFW configuration for face identification evaluation.

(adopted from [1])

of each Known subject are enrolled randomly as the gallery set. It is worth noting that our

protocol of LFW is originated from [117], while in this work randomness is introduced instead

of taking a fixed order of samples to avoid bias.

The closed-set probe C consists of the remaining images S of the Known subjects after

excluding the gallery images. The open-set O1 contains the same images as in probe set C

(S) and images K from known unknowns, where K are images from known unknowns after

excluding the training images. The open-set O2 consists of probe C (S) and all images from

unknown unknowns U. Finally, open-set O3 consists of images from known, known unknown

and unknown unknown subjects, denoted as O3 = (S ∪K ∪U). The probe sets C, O1, O2 and

O3 are illustrated in Table 4.7 and Figure 4.4.

For VGG2 and IJB-C, their respective dataset configurations can be found in Table 4.8,

Table 4.9, Table 4.10, and Table 4.11.
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Table 4.6: Division of subjects in LFW according to knowns, known unknowns and unknown
unknowns sets.

Set Selection Criteria Subjects Images

Knowns 4≤ subjects’ images 610 6,733

Known unknowns 2≤ subjects’ images
≤3

1,070 2,431

Unknown unknowns
(U)

Subjects’ images=1 4,069 4,069

Table 4.7: Division of subjects in LFW according to training, gallery and probes sets.

Description Images

Training Taking 3 images of knowns + 1 image of known unknowns randomly 2,900

Gallery Taking 3 images of knowns randomly 1,830

Probe C C=S 4,903

Probe O1 O1 =S∪K 6,264

Probe O2 O2 =S∪U 8,972

Probe O3 O3 =S∪K∪U 10,333

Table 4.8: Division of subjects in VGG2 according to knowns, known unknowns and unknown
unknowns.

Subject Set Selection Criteria Identities Images

Knowns 1st – 2000th subject 2000 100,000

Known unknowns 2001st – 4000th sub-
ject

2000 100,000

Unknown unknowns
(U)

4001st – 6000th sub-
ject

2000 100,000

Table 4.9: Division of subjects in VGG2 according to training, gallery and probes.

Description Images

Training set 2 random images of knowns + 1 random image of known unknowns 6000

Gallery set 3 random images of knowns 6000

Probe C C=S, S is generated by collecting 3 images of remaining knowns randomly 6000

Probe O1 O1 =S∪K (K consists of 3 random images of known unknowns) 12k

Probe O2 O2 =S∪U (U consists of 1st images of unknown unknowns) 8k

Probe O3 O3 =S∪K∪U 14k

Table 4.10: Division of subjects in IJB-C according to knowns, known unknowns and unknown
unknowns.

Subject Class Selection Criteria Subjects Images

Knowns 30≤ subjects’ images 1,797 106,737

Known unknowns 16≤ subjects’ images ¡ 30 755 16,517

Unknown unknowns (U) 1≤ subjects’ images ≤15 978 8,713
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Table 4.11: Division of subjects in IJB-C according to training, gallery and probes.

Dataset Name Description Images

Training set 3 random images of knowns + 1 random image of known unknowns 4,349

Gallery set 3 random images of knowns 3,594

Probe C Remaining images of knowns (represented as S) 5,391

Probe O1 O1 =S∪K (K is not part of the training set known unknowns) 7,656

Probe O2 O2 =S∪U 8,290

Probe O3 O3 =S∪K∪U 10,555
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4.1.2.2 Performance Metrics

In this thesis, we adopt a cumulative matching characteristic (CMC) curve [137] and the detec-

tion and identification rate (DIR) [138, 139] to measure the performance accuracy for closed-set

and open-set face identification evaluations, respectively.

The CMC plots the identification rate, a.k.a. the recognition rate, with respect to a given

rank in the closed-set. It illustrates the relative number of probes that have reached at least

rank k. Specifically, given a gallery with N samples, q testings are performed by matching the

probe with all the gallery, and the targeted gallery samples are sorted according to the matching

score in descending order, denoted as r = (r1, r2. . . , rN ), then the identification rate at the

rank k is computed as

CMC(k) =
1

N

q∑
i=1

 1, ri ≤ k

0, ri > k
(4.3)

DIR curves plot the identification rates with respect to the false alarm rates in an open-set

[139]. Given a probe which consists of known subjects, denoted as P k, and unknown subjects

denoted as P uk, the matching score between a probe p and a gallery g is computed as s(p, g).

Then the DIR is given by

DIR(θ, k) =
|{s(p, g) | s(p, g) ≥ θ, rank(p) ≤ k}|

|P k|
(4.4)

where θ is a threshold and k is the identification rank. When the similarity of an unknown

probe to any of the gallery subjects is higher than θ, a false alarm is issued

FAR(θ) =

∣∣{s(p, g), ∀p ∈ P uk, s(p, g) ≥ θ
}∣∣

|P uk|
(4.5)

4.1.2.3 Unprotected Identification System Performance

In this subsection, we present the baseline (without using a protection method, i.e. LIoM

hashing) identification performance by using sole deep face vectors and their feature level fusion

(by concatenation) extracted from FaceNet and InsightFace. The results on LFW, VGG2 and

IJB-C are shown in Table 4.12 in terms of the identification rate (IR) at rank one (CMC with

only rank one is taken) and the DIR at FAR=0.1% and FAR=1%. From all the closed-set
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Table 4.12: Unprotected closed-set & open-set system performance in LFW, VGG2 and IJB-
C.

DB
IR@
rank=1

DIR@
FAR=0.1%
(O1)

DIR@
FAR=0.1%
(O2)

DIR@
FAR=0.1%
(O3)

DIR@F
AR=1%
(O1)

DIR@
FAR=1%
(O2)

DIR@
FAR=1%
(O3)

LFW
FaceNet 98.95 40.38 38.24 38.79 88.48 85.56 86.65
InsightFace 99.80 48.42 88.10 88.10 99.48 99.51 99.51
Fused 99.85 45.31 90.66 90.66 99.48 99.40 99.40

VGG2
FaceNet 89.38 47.71 46.81 47.89 71.14 69.51 70.78
InsightFace 96.42 85.22 82.96 85.84 93.99 93.83 93.95
Fused 99.29 97.11 96.57 97.05 98.14 98.05 98.10

IJB-C
FaceNet 75.73 16.76 11.44 11.40 35.91 26.25 27.64
InsightFace 72.42 30.92 24.78 26.40 42.30 39.15 38.71
Fused 79.81 43.47 41.72 40.47 58.61 54.05 53.61

experiments, we find that InsightFace is generally more accurate than FaceNet, and their fusion

outperforms individual InsightFace and FaceNet by a large margin, except for a few cases with

comparable performance to InsightFace.

For the LFW open-set evaluation, fusion features do not always show better performance

but are comparable with InsightFace in certain circumstances. Nevertheless, IJB-C and VGG2

favor fusion features and are shown to outperform InsightFace in all cases. In short, it is

recommended to use fusion features rather than InsightFace and FaceNet individually.

4.1.2.4 Parameters Tuning

Before we proceed to present the protection systems’ performance, the system’s parameters are

set first. The main parameters of the 1-to-N matching module are the candidate size top-k and

LIoM parameters, i.e. m and q. From section 4.1.1, the parameters are set to m = 100 and

q = 16. To find the best top-k, a top-k screening is run on the LFW closed-set protocol, and

the mAP of the corresponding top-k candidate size is recorded in Figure 4.5(a).

As shown in Figure 4.5(a), when k becomes large, the mAP becomes stable, but large k

indicates that more subsequent processing will be performed. Therefore, we opt for k = 50 since

the performance is still sufficiently good while remaining efficient. From Figure 4.5(b), we find

that the matching performance is reasonably good when m is set as 100.
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(a) (b)

Figure 4.5: mAP vs k and mAP vs LIoM length m on fusion feature of LFW (closed-set).

(adopted from [1])

Table 4.13: Protected closed-set & open-set system performance without fusion strategy in
LFW.

IR@
rank=1

DIR@
FAR=0.1%
(O1)

DIR@
FAR=0.1%
(O2)

DIR@
FAR=0.1%
(O3)

DIR@F
AR=1%
(O1)

DIR@
FAR=1%
(O2)

DIR@
FAR=1%
(O3)

FaceNet
Original 98.95 40.38 38.24 38.79 88.48 85.56 86.65
Random IoM 97.53 35.86 35.11 36.51 81.20 79.56 79.56
LIoM 97.44 39.78 34.43 37.14 77.01 78.10 78.10

InsightFace
Original 99.80 48.42 88.10 88.10 99.48 99.51 99.51
Random IoM 99.14 59.53 89.03 89.03 97.63 97.63 97.63
LIoM 99.18 54.19 85.63 82.97 97.57 97.75 97.75

4.1.2.5 Protected System Performance without Fusion Strategy

In this subsection, the performance of the protected system is explored on LFW. Firstly, the

closed-set and open-set performance metrics are computed on the original deep features gener-

ated by different deep models, i.e. InsightFace and FaceNet, and then LIoM and random IoM’s

accuracy of performance are analyzed. The results suggest that LIoM can significantly improve

the accuracy compared with random IoM in closed-set settings, as depicted in Figure 4.6 and

Figure 4.7.

As shown in Table 4.13, when the deep features are hashed, the performance accuracy will

be degraded as a trade-off between compact representation for fast matching with the Hamming

distance. To be specific, the LIoM hashed code is of 400 (m logq2 = 100 log162 ) bits, while the

FaceNet and InsightFace feature length in floating points are of 256 (256x32 bits) and 512

(512x32 bits), respectively. However, when LIoM with InsightFace is applied, the performance

can be largely restored in the closed-set system.
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(a)
(b)

(c)
(d)

Figure 4.6: Protected identification system performance on LFW with InsightFace where (a)
is for closed-set evaluation and (b), (c), (d) are for open-set evaluation.

(adopted from [1])
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(a)
(b)

(c)
(d)

Figure 4.7: Protected identification system performance on LFW with FaceNet where (a) is
for closed-set evaluation and (b), (c), (d) are for open-set evaluation.

(adopted from [1])
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Table 4.14: Protected closed-set & open-set system performance with fusion strategy in LFW.

Option
IR@
rank=1

DIR@
FAR=0.1%
(O1)

DIR@
FAR=0.1%
(O2)

DIR@
FAR=0.1%
(O3)

DIR@F
AR=1%
(O1)

DIR@
FAR=1%
(O2)

DIR@
FAR=1%
(O3)

1

Avg 99.67 59.60 80.40 80.58 97.79 97.72 97.70
Max 99.15 46.92 46.14 47.43 83.06 84.30 83.81
Model EVM (Avg) 97.93 44.62 47.01 47.01 81.46 82.50 82.50
Model EVM (Max) 97.92 44.62 47.01 47.01 81.46 82.50 82.50
Identity EVM (Avg) 99.47 55.86 78.20 78.31 97.81 97.83 97.82
Identity EVM (Max) 99.38 48.98 44.81 45.98 85.25 85.90 85.90

2

Concatenate 99.75 53.57 77.28 77.28 97.98 97.99 97.99
Mean 98.88 61.05 72.18 72.84 94.31 94.22 94.55
Max 98.93 61.46 82.16 82.16 94.54 94.79 95.04
Min 98.88 61.05 72.18 72.84 94.31 94.22 94.55

3 - 99.47 49.64 72.78 76.19 96.85 97.49 97.34

Table 4.15: Protected closed-set & open-set system performance with fusion strategy in
VGG2.

Option
IR@
rank=1

DIR@
FAR=0.1%
(O1)

DIR@
FAR=0.1%
(O2)

DIR@
FAR=0.1%
(O3)

DIR@F
AR=1%
(O1)

DIR@
FAR=1%
(O2)

DIR@
FAR=1%
(O3)

1

Avg 98.94 90.26 87.86 89.75 95.72 95.62 95.79
Max 96.16 49.49 41.76 49.20 75.49 73.44 73.66
Model EVM (Avg) 83.24 35.83 35.10 36.45 57.77 57.16 57.70
Model EVM (Max) 83.15 35.83 35.10 36.45 57.77 57.16 57.70
Identity EVM (Avg) 94.50 87.60 87.15 87.72 91.85 91.89 91.89
Identity EVM (Max) 97.13 50.12 47.13 49.81 78.36 76.10 77.84

2

Concatenate 99.03 91.67 89.46 91.13 96.03 95.93 95.96
Mean 95.10 77.25 74.89 77.25 86.13 86.85 86.85
Max 94.92 75.97 76.16 75.22 86.94 85.72 86.18
Min 95.10 77.25 74.89 77.25 86.13 86.85 86.85

3 - 96.83 89.69 87.48 89.69 93.87 93.23 93.51

4.1.2.6 Protected System Performance with Fusion Strategy

As presented in section 3.4.3, three fusion options are employed on LFW, VGG2 and IJB-C,

depicted in Figure 4.8, Figure 4.9 and Figure 4.10, respectively. In these evaluations, we apply

LIoM with m = 100 and q = 16. As observed from Table 4.14, Table 4.15 and Table 4.16, for

LFW, the average score and identity-EVM of the average score of option 1 show the best overall

performance, which is consistent with what [117] reported, and followed by the concatenation

method in option 2. However, both model-EVM and identity-EVM on VGG2 and IJB-C do

not excel as in LFW but score fusion on average in option 1 shows consistently good accuracy.

Nevertheless, the concatenation in option 2 performs well in VGG2 and IJB-C after score fusion

in option 1.

To better demonstrate the separability of the scores fused by average, the distributions of

genuine and imposter similarity scores are shown in Figure 4.11. It can be seen that the fused

score in Figure 4.11 (c) can achieve lower variance.
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(f)

Figure 4.8: Accuracy of performance on LFW score with IoM hashing (protection+fusion).

(adopted from [1])
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(f)

Figure 4.9: Accuracy of performance on VGG2 score with IoM hashing).

(adopted from [1])
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(f)

Figure 4.10: Accuracy of performance on IJB-C score with IoM hashing).

(adopted from [1])
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Table 4.16: Protected closed-set & open-set system performance with fusion strategy in IJB-C.

Option
IR@
rank=1

DIR@
FAR=0.1%
(O1)

DIR@
FAR=0.1%
(O2)

DIR@
FAR=0.1%
(O3)

DIR@F
AR=1%
(O1)

DIR@
FAR=1%
(O2)

DIR@
FAR=1%
(O3)

1

Avg 80.55 43.65 33.80 33.31 56.80 48.01 49.09
Max 75.10 21.23 15.89 16.09 37.90 28.09 31.14
Model EVM (Avg) 73.34 19.67 12.58 13.71 36.67 27.06 29.52
Model EVM (Max) 73.34 19.67 12.58 13.71 36.67 27.06 29.52
Identity EVM (Avg) 54.38 35.74 32.05 32.31 47.43 43.70 42.76
Identity EVM (Max) 66.17 23.70 22.10 21.36 42.99 34.20 36.01

2

Concatenate 80.57 40.29 31.30 32.63 56.11 47.02 47.75
Mean 69.44 34.49 31.21 31.07 44.73 41.71 40.44
Max 69.71 32.47 28.70 28.28 46.53 40.60 39.81
Min 69.44 34.49 31.21 31.07 44.73 41.71 40.44

3 - 67.85 32.85 32.49 31.57 47.18 44.60 43.62

(a) InsightFace + LIoM (b) FaceNet + LIoM

(c) Score fusion by average

Figure 4.11: Similarity score distribution on LFW.
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Figure 4.12: Illustration of face search in open-set 1 (LFW, O1).
The images of the first column are probes, the right 10 images are gallery search result. The first row of
the gallery result is from FaceNet, while the second and third are from InsightFace and Feature Fusion
Face respectively. The first two probes are genuine probe, while the last one is imposters. Best view in

color.

4.1.2.7 Visual Evaluation of the system

To illustrate the effect of fusion to 1-to-N match performance, some return exemplars (id) are

depicted in Figure 4.12. The images of the first column are probes, the right 10 images are

gallery search result. The first row of the gallery result is from FaceNet, while the second and

third are from InsightFace and Feature Fusion Face respectively. Due to high discriminative of

FaceNet and InsightFace features, at most time the top three retrieved images would be the

target probe. In these images we pick up some cases while fusion may help to improve the

search result.

To evaluate how well the genuine and imposter scores are separated, d prime (d′) is utilized

to measure the separability. The larger the value of d′, the more separable the two distributions,

and the better the detection performance [140]. In our setting, d′= 5.11 when FAR=1%, while
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Figure 4.13: Genuine and imposter score distribution on LFW.

(adopted from [2])

for the original deep feature, d′ = 5.32 when FAR =1%. To better demonstrate the separability,

the distributions of genuine and imposter similarity scores are shown in Figure 4.13.

4.1.2.8 Time Cost of the System

Time efficiency is another important concern associated with face identification systems. To

investigate the time efficiency of the proposed system, the enroll time (deep feature extraction

and hashing), 1-to-N matching time, including fusion operation as well as training time, are

recorded for LIoM on FaceNet deep face vectors. The machine we use for simulation is equipped

with MATLAB Ver. 2018b, Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz and 16GB RAM. In

this simulation, the open-set protocol as discussed in section 4.1.2.1 is followed. 1830 gallery

images, 2900 training set images and 4903 probe C images are used to evaluate the average

processing time. Both random IoM and LIoM are fixed at 100 (400bit) of length.
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Table 4.17: Average time of processing in training, enrollment and matching on FaceNet face
vector.

Deep Face Vector Random IoM Learning IoM

Training time – – 147.078 s

Enroll time – 0.017 ms 0.021 ms

Matching time 0.176 ms 0.130 ms 0.148 ms

EER (identity-dependent) 1.25% 2.01% 0.59%

mAP (identity-dependent) 0.9833 0.9627 0.9944

The timing readings are tabulated in Table 4.17. The enroll time for one face image takes

only around 0.02 ms. The training time of LIoM depends on the training set and hash code

size, and it is observed to be quite lengthy. However, the training process is offline and would

not affect the system’s efficiency. Compared with the original unprotected deep face vector,

the matching time of random IoM and LIoM is much less, reduced by around 25%. This is

because the matching of the former is done by cosine distance, while the IoM and LIoM hash

code matching is done by the Hamming distance, which is simpler and can be optimized in

hardware.

4.1.2.9 Summary

To sum up, we conduct a cross-performance comparison for an unprotected system, a protected

system without fusion and with fusion with their respective best performing settings. The

identification rate at rank 1 for the closed-set protocol and DIR@DIR@1% for the open-set

protocol are used as performance metrics.

From Table 4.18, Table 4.19 and Table 4.20, we notice the following:

1. The deep face vector with feature level fusion (corresponding to option 3 in section 3.4.3)

performs pretty well in LFW and VGG2 in both closed- and open-set protocols. However, the

performances on IJB-C are not satisfactory, especially in the open-set protocol.

2. When the deep face vector is transformed by IoM hashing, performance degradation is

inevitable. The deterioration on LFW and VGG2 with the closed-set protocol is not significant,

but on IJB-C it is apparent. Different levels of degradation are observed for the open-set

protocol depending on the combinations of known, known unknown and unknown unknown

probes. However, LIoM hashing is essential for template protection as well as speedy matching

compared to the use of deep face vectors only.
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Table 4.18: Comparison of unprotected, protected without and with fusion strategies closed-
set identification systems in terms of IR(%)@1 performance.

DB Unprotected with Deep Features Fusion
Protected with learning IoM

without fusion

(InsightFace)
with fusion

LFW 99.85 99.18
99.67

(Opt 1 - Avg)

VGG2 99.29 96.42
99.03

(Opt 2 - Concatenate)

IJB-C 79.81 72.41
80.55

(Opt 1 - Avg)

Table 4.19: Comparison of unprotected, protected without and with fusion strategies open-set
identification system in terms of DIR(%)@FAR=1%.

DB
Unprotected with

Deep Features Fusion
Protected with learning IoM

without fusion

(InsightFace)
with fusion

O1 O2 O3 O1 O2 O3 O1 O2 O3

LFW 99.48 99.40 99.40 97.57 97.75 97.75

97.81

(Identity

EVM-Avg)

97.83

(Identity

EVM-Avg)

97.82 (Model

EVM-Avg)

VGG2 98.14 98.05 98.10 84.83 84.12 84.83
95.72

(Opt 1 - Avg)
95.62 (Opt 1 - Avg)

95.79

(Opt 1 - Avg)

IJB-C 58.61 54.05 53.61 33.24 30.78 30.73
56.80

(Opt 1 - Avg)

48.01

(Opt 1 - Avg)

49.09

(Opt 1 - Avg)

3. Nevertheless, the performance, as in the unprotected system, can be largely restored,

especially for LFW and VGG2, when the fusion method is applied to the protected system,

while still enjoying speedy matching. In general, we can observe that plain averaging in option

1 (see section 3.4.3) is the best fusion method, followed by the EVM approach and concatenation

approach in option 2 in our experiments.

4. IJB-C remains a difficult dataset on which to achieve good performance, especially under

the open-set identification protocol, relative to LFW and VGG2, due to the large variation in

the nature of the face images.



Chapter 4 Evaluation and Analysis of LIoM hashing 67

Table 4.20: Comparison of unprotected, protected without and with fusion strategies open-set
identification system in terms of DIR(%)@FAR=0.1%.

DB
Unprotected with

Deep Features Fusion
Protected with learning IoM

without fusion

(InsightFace)
with fusion

O1 O2 O3 O1 O2 O3 O1 O2 O3

LFW 99.85 45.31 90.66 99.18 54.19 85.63
59.60

(Opt 1 - Avg)

80.40

(Opt 1 - Avg)

80.58

(Opt 1 - Avg)

VGG2 97.11 96.57 97.05 75.29 63.25 73.11
90.26

(Opt 1 - Avg)

87.76

(Opt 1 - Avg)

89.75

(Opt 1 - Avg)

IJB-C 43.47 41.72 40.47 21.78 20.08 20.56
43.65

(Opt 1 - Avg)

33.80

(Opt 1 - Avg)

33.31

(Opt 1 - Avg)

4.1.3 State-of-the-Art Comparison

In this section, we provide a comparison of our proposed methods with the state of the art. Since

VGG2 and IJB-C are very new, we only compare with those works that were conducted under

the LFW dataset under LFW standard [94] and BLUFR verification and open-set identification

protocols [21], as tabulated in Table 4.21. It is noted that the proposed method performs

comparably to the state of the art in terms of accuracy of performance. However, it is significant

that most of the works in Table 4.21 do not consider time efficiency on identification, face features

storage complexity and protection issues.

In Table 4.22, a comprehensive comparison of the matching accuracy, storage, matching

time and template protection based on FaceNet is provided. The comparison suggests that

LIoM can achieve reasonably good accuracy of performance, with less storage space, and a

higher matching speed compared with the deep facial features.

4.2 Unlinkability and Revocability Analysis of LIoM Hashing

Despite LIoM hashing is used for face features compression and protection, it plays the same role

as random IoM for biometric template protection (BTP). The BTP should meet four essential

criteria, i.e. performance, non-invertibility, unlikability and revocability [12]. The performance

criterion requires accuracy performance preservation before and after the hashing, which have

been evaluated in section 4.1.1. Since LIoM hashing is inherited from the random IoM where the

major distinction is the projection matrices of the former are generated from training data while
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Table 4.21: Accuracy comparison with state of the art.

Scheme
LFW standard
protocol

BLUFR VR@
FAR=0.1%

BLUFR DIR@
Rank = 1,
FAR = 1%

Baidu [141] 99.77% 99.41% 92.09%

Facebook [142] 98.37% - -

Light CNN [143] 99.33% 98.88% 92.29%

HighDimLBP [21] - 41.66% 18.07%

CASIA [144] 96.13% 80.26% 28.90%

Centerloss [145] 99.28% 93.35% [143] 67.86% [143]

Range Loss [146] 98.63% 92.10% 63.69%

FaceSearchAtScale [147] 98.2% 89.8% 55.9%

NormFace [36] - 95.83% 77.18%

TypicFace [148] 99.32% 97.82% 85.71%

Customized weighted constraint [149] 99.12% 94.79% 73.69%

FaceNet [37] 99.63% 98.14% 68.12%

InsightFace [39] 99.85% 99.70% 98.05%

Proposed method

LIoM - InsightFace 99.72% 98.99% 78.88%

Random IoM - InsightFace 99.69% 98.57% 90.13%

LIoM - FaceNet 99.84% 98.88% 70.84%

Random IoM -FaceNet 99.83% 95.74% 61.45%

Random IoM - Feature Fusion 99.93% 99.25% 89.56%

LIoM - Feature Fusion 99.95% 99.69% 88.78%

Table 4.22: Summary of the proposed method performance on FaceNet.

Deep Face Vector Random IoM Learning IoM

Matching accuracy 99.63% 99.83% 99.84%

Storage 256*32 bits 400bits 400bits

Matching time 0.176 ms 0.130 ms 0.148 ms

Template protection × X X

the hashing process remains identical as in random IoM, we leave non-invertibility analysis for

LIoM hashing and refer readers to [17] for further reading. This section focuses on unlinkability

and revocability evaluations as they are associated with projection matrices used in the IoM

hashing approach. All the experiments are carried out under the VGG2 dataset.

4.2.1 Unlinkability Evaluation

The unlinkability criterion demands that the LIoM hashed face code vector should not be

differentiated whether they are generated from the same subject’s deep face vector. This is to

prevent matching across different applications (cross-matching). For LIoM hashing, this can be

done by using application-specific seeds to initiate projection matrix W in algorithm 2 and 3,
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so the generated face code vectors are unique despite W are trained from the same training

pool. Another vital reason for the face code vector to satisfy this property is that in the CFV,

each subject has to generate two independent LIoM hashed face codes as genuine entries for

polynomial projection and as keys for encryption (See section 5.4, chapter 5).

For evaluation, we follow a protocol that outlined by [15]. The experiments are executed

with m=100 and q=16 for both LIoM hashing and random IoM hashing that transformed

from FaceNet features. The cross-matching attack can be launched by comparing the face code

vectors generated from the same person in different applications (different W in LIoM hashing).

Under this attack, an adversary is assumed familiar with the LIoM hashing algorithm and holds

the face code vectors of different applications. The adversary can exploit the matching score

distributions of face code vectors to learn the face code vector is from the same person. Here

we refer matching score of the same subject in different applications as mated score, while

the matching score from different subjects in different applications is referred as non-mated

scores.

To address the resistance to cross-matching attack, two different measures for the linkability

are defined in [15], namely Local measure D↔(s) ∈ [0, 1] and Global measure Dsys
↔ . The D↔(s)

evaluates the linkability for each specific linkage score s in a score-wise level. Given a score

sk, D↔ (sk) = 1 means the adversary can decide which face code vector is from the same person

with almost all certainty while D↔ (sk) = 0 indicates it is hard to determine which two face

code vectors are from the same person for this particular score sk. Dsys
↔ ∈ [0, 1] evaluates

the unlinkability of the whole system and can be used as a benchmark for different systems

independently of the score. Dsys
↔ = 1 indicates the system is fully linkable for all scores of the

mated subjects, while Dsys
↔ = 0 suggests the system is fully unlinkable for all scores.

The unlinkability of LIoM hashing in our research is evaluated on identity-dependent set-

tings. To simulate the different face code vectors in different applications, the first sample of

each subject is selected firstly, denoted ui where i = 1, . . . , 1000. Next, each sample is trans-

formed into face code vector with 10 different W, which represent 10 applications, denoted as

hji = h
(
ui; W

j
)
, where j = 1, . . . , 10. The mated scores and non-mated scores are computed

among those templates and their distributions are illustrated in Figure 4.14. It is proved that

both LIoM and random IoM hashing can achieve good unlinkability where the Dsys
↔ can achieve

0.006 and 0.004 respectively. Our result proves that LIoM can achieve unlinkability by using

application-specific seeds to initiate algorithm 2 and 3 .
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(a) Learning IoM (b) Random IoM

Figure 4.14: Unlinkability of LIoM and random IoM hashing under VGG2.

4.2.2 Revocability Evaluation

Unlike unlinkability, revocability indicates the capability of revoking a compromised face code

vector. It should be computationally easy to generate numerous distinctive face code vectors

whenever required. In our scheme, a large number of face code vectors can be generated by

different random seeds.

To evaluate the revocability of LIoM hashing, a user-specific key scenario is considered. This

means each subject should has his specific projection matrix W (seed), hence only one subject’s

face code vector needs to be revoked when the face code vector is compromised. The revocability

property of LIoM hashing can be examined through the distributions of Mated-imposter scores,

Genuine scores, and Imposter scores. In one system, genuine scores are generated by matching

face code vectors from the same subject while imposter scores are computed by matching face

code vectors from different subjects. The mated-imposter scores are generated by matching

template from the same user but different specific projection matrices W to simulate face code

vector replacement. The experiments are carried out with m=100 and q=16 for both LIoM

hashing and random IoM hashing that transformed from FaceNet features.

As shown in Figure 4.15(a), the distribution of imposter and mated-imposter scores are

overlapped largely, which suggest that there is no difference between the face code vectors

generated from same individual face or different individual face by different W. Thus, the revo-

cability property is justified. The distribution curves from random IoM shown in Figure 4.15(b)

also vindicate the revocability of random IoM hashing due to the overlapping distribution of

mated-imposter and imposter scores.
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(a) Learning IoM (b) Random IoM

Figure 4.15: Revocability of LIoM and random IoM Hashing under VGG2.

4.3 Chapter Conclusion

In this chapter, we evaluated our systems with three large public unconstrained face databases,

namely LFW, VGG2 and IJB-C. Good results can be achieved on LFW and VGG2, the perfor-

mance on IJB-C, which is the most challenging dataset by far today, was not satisfactory under

the open-set setting.

We also compared the accuracy of our secured method against the latest state-of-the-

art methods and other aspects such as storage, matching efficiency, and template protection.

The result demonstrates the usefulness of using LIoM as a compact hashing algorithm. The

benefits of the proposed approach were showcased as an open-set face identification system

based on LIoM. It can achieve economic storage and an efficient matching speed, while adding

an additional layer of template protection.



Chapter 5

Secure Chaff-less Fuzzy Vault for

Face Identification System

In the this chapter, a brief introduction of the biometric cryptosystem is discussed first. Followed

by the motivations of this chapter. Subsequently, a chaff-less fuzzy vault based on LIoM is

described in details. Based on the chaff-less fuzzy vault, a large-scale face identification based

on LIoM and the chaff-less fuzzy vault is designed. The system protects both the secret and

the face template, and the user simply needs to present his or her face to retrieve the identifier.

Finally a security analysis based on several attacks is discussed.

5.1 Introduction

Biometric cryptosystems (BCs) [150, 151] are one category of biometric template protection

techniques. These systems can be divided into two categories: key binding and key generation.

In the former, the biometric data is bound to a key (secret) to generate helper data (HD)

during enrollment. The secret, for example, a random string generated during enrollment, can

be treated as an identifier of the user. The HD should not leak information about the biometric

or secret and is stored as public information. When a genuine probe biometric is present, the

secret is retrieved, but this should be infeasible for an adversary. In key generation schemes,

the HD is generated directly from biometric data. At the time of the query, a random key or

identifier is generated on the fly, based on the probe biometric and the HD. Fuzzy commitment

72
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[54] and fuzzy vaults [81] are two representative techniques used in key binding schemes, while

fuzzy extraction [152] and FE-SViT [153] are typical schemes for key generation.

Although a BC works in verification/authentication mode, it differs from a conventional bio-

metric verification/authentication system since the latter uses a system threshold to determine

the similarity of the template and probe features, thus validating the identity of the claimant,

while a BC delivers an exact identifier that is bound to or based directly on biometrics. Hence,

in addition to being used as the normal means of identity verification, the identifier also can be

used as a cryptographic key for encryption/decryption. BCs have been implemented by GenKey,

a company based in the Netherlands, for elections and in the digital healthcare sector, mainly

in emerging economies [154]. The most notable BC deployment of face biometrics thus far is its

application for watch-list purposes in the self-exclusion program of most Ontario gaming sites

[155].

To the best of our knowledge, BC was solely designed for use in verification (authentication)

rather than identification. The primary difference between verification and identification is that

the latter makes a claim to identity by performing a one-to-many search, whereas the former

authenticates this identity claim using one-to-one matching. More specifically, a user is required

to present identity credentials (e.g., ID, PIN) to support his or her claim to identity at the time

of the query, and the corresponding HD is then retrieved based on these credentials. Next, the

secret (identifier) is retrieved from the HD based on the corresponding face data. However, face

identification is preferred over authentication in some circumstances, and the question of how

to adapt BC for identification is, therefore, a non-trivial problem. For a BC that operates in

identification mode, the user is only required to present his or her biometric data. The system

is then expected to retrieve the correct identifier associated with the user and fail otherwise (for

an adversary).

5.2 Motivations and Contributions

This chapter aims to propose a novel facial cryptosystem for identification where only a sole

facial image is required for input. In such a setting, the system is expected to retrieve the correct

identifier (secret bind to biometrics) that is associated with the user and fail otherwise for an

adversary. To address this challenge, a chaff-less fuzzy vault scheme based on LIoM hashing is

proposed.
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To be precise, the system composes of a 1-to-N search subsystem and a 1-to-1 match CFV

subsystem. The first subsystem stores N facial features that are protected by the LIoM hashing

in which we coined face code vector. When a face code vector of the user is presented, the

first subsystem returns top k(<< N) match scores, and thus the corresponding k vaults in the

CFV subsystem will be activated. The 1-to-1 matching occurs among k vaults alongside query

face code vector, and an identifier associated with the user will be retrieved from the correct

matched vault.

Apart from the above, we consider a challenging scenario where the facial images are taken

from the unconstraint environment and the number of subjects is large in the gallery. We again

adopt two deep convolutional neural networks, namely FaceNet and InsightFace, as a means

for facial feature extractor. These powerful networks effectively alleviate face intra-class prob-

lems that directly impact searching and identifier retrieval in the first and second subsystems,

respectively. In order to further enhance the performance, a biometric fusion module proposed

in Chapter 3 is introduced to the first subsystem.

LIoM hashing is inherited from the random IoM hashing [17] where the latter is a biometric

template protection method to protect the biometric template from being inverted while pre-

serves the original template (before hash) accuracy performance. However, random IoM hashing

is data-agnostic, and hence the size has to be sufficiently large to achieve decent accuracy per-

formance. The LIoM hashing proposed in Chapter 3 is meant to resolve these issues where

a data-driven supervised learning mechanism is utilized for better performance and feature

compaction.

Chaff-less fuzzy vault (CFV) is proposed as a variant of fuzzy vault meant to address the

uniform mixing genuine and chaff set problem, which has long plagued the fuzzy vault design.

The CFV takes the best part of fuzzy vault and fuzzy commitment to eliminate the need for a

chaff set for genuine data concealment. By coupling with the LIoM hashing, vectorial biometrics

such as face biometrics can be applied to fuzzy vault seamlessly, and security can also be greatly

enhanced. The security of CFV is based on computation hardness of polynomial reconstruction.

Unlike conventional fuzzy vault, the CFV treats LIoM hash face code vectors as (ordered) point

set where they are naturally in the finite field representation, while the fuzzy vault is meant for

unordered point sets that required quantization. This eliminates the risk of information loss

due to quantization. Another major distinction of the CFV from the fuzzy vault is that the

chaff set is not required for genuine set concealment.
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Besides, combining the 1-to-N searching module in Chapter 3, we propose a face cryp-

tosystem for identification (FCI) system where only sole input biometric is needed. The FCI

composes of a 1-to-N search subsystem and a 1-to-1 match CFV subsystem. The first subsystem

stores N facial features protected by a learning-based Index-of-Max hashing and enhanced by a

fusion module for searching accuracy. When a face image of the user is presented, the subsystem

returns top k match scores, and thus the corresponding vaults in the CFV subsystem will be

activated. The 1-to-1 matching occurs among k vaults alongside query face, and an identifier

associated with the user will be retrieved from the correct matched vault.

In summary, the main contributions of this scheme are as follows:

1. A novel facial cryptosystem for identification (FCI) is outlined.

2. A chaff-less fuzzy vault for facial biometrics is proposed.

3. To improve the overall system accuracy, two deep learning-based facial feature extrac-

tor is adapted to generate two feature vectors for each face instance, and several fusion

mechanisms are introduced.

4. Three large unconstrained face datasets of increasing complexity: LFW dataset, VGG2,

and the IJB-C dataset are adopted in this study.

5.3 Overview of the Facial Cryptosystem for Identification

The FCI composes of 1-to-N search and chaff-less fuzzy vault (CFV) subsystems. In the first

subsystem, the input facial images are first detected, aligned by the MTCNN proposed in [128]

and cropped to a canonical size. Face features are extracted by pre-trained networks, i.e.,

FaceNet or/and InsightFace (see section 3.4.1). The face features are transformed into a face

code vector by means of LIoM hashing. This enables the face features to be compressed and

protected. During query time, the face code vector (probe) is matched with N hashed galleries

via Hamming matcher. The N matching scores are then sorted, and the top k scores are taken.

To boost the matching accuracy, a fusion module is introduced to the 1-to-N subsystem (see

chapter 3, section 3.4.3). In the CFV subsystem, the corresponding k vaults are activated, and

k rounds of 1-to-1 matching are carried out alongside the probe face code vector. Finally, an

identifier of the probe user will be retrieved from the matched vault via polynomial interpolation.
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Figure 5.1: Overview of the face cryptosystem for identification system architecture.
1○ is the face code vector generation by means of IoM hashing; 2○ is the 1-to-N searching module

which returns top k scores. A fusion module is introduced to the 1-to-N subsystem; 3○ is the 1-to-1
matching module, where the corresponding k vaults are activated and k rounds of 1-to-1 matching are

carried out alongside probe face code vector to release the identifier. (adopted from [2])

Note identifier and secret use interchangeably. The pipeline of the proposed FCI is shown in

Figure 5.1.

5.4 Chaff-less Fuzzy Vault

Suppose Ψ = Λ(x; W) ∈ [1 q]m, ϕ = Λ(x; U) ∈ [1 q]m be the enrolled face code vectors that

generated from a user and the LIoM projection matrices W 6= U, where Λ() is a LIoM hashing

generator. This implies both Ψ and ϕ are independent and unlinkable and it can be done by

initiated the algorithm 2 with distinctive seeds for W and U . Given a finite field polynomial

P (·) ∈ Fpq of p − 1 order where the secret (identifier) K is encoded as coefficients of P (·) and

q is the subspace dimension of LIoM, Ψ is projected onto P (Ψ) and an ordered genuine set

G = [(ψi, P (ψi)) |i = 1, . . . ,m] where ψi ∈ Ψ can be acquired. To conceal G,XOR encryption

is adopted to encrypt P (Ψ) with ϕ yield a vault, V = [ϕi ⊕ P (ψi) |i = 1, . . . ,m] where ϕi ∈ ϕ.
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Figure 5.2: Chaff-less Facial Fuzzy Vault Illustration.

(adopted from [2])

This mechanism resembles fuzzy commitment where ϕ and Ψ corresponds to binary biomet-

rics and encoded secret (codeword), respectively. Similar to fuzzy commitment where codeword

is hashed, the CFV owns H = hash (ϕi ‖vi‖ ψi) where vi ∈ V, hash(·) is a cryptographic hash

function such as SHA-family function and || denotes concatenation operator. However, in the

CFV, the secret is embedded in the polynomial, biometric features is protected by LIoM hashing

and the SHA-hashed entity contains {ϕ,v,Ψ}, which is in contrast to the fuzzy commitment

where the secret is merely encoded with the ECC, biometric left unprotected and hashed code-

word, respectively. In addition, the CFV merely applies polynomial interpolation to address

the intra-class variation problem. This eliminates many issues caused by the ECC in fuzzy

commitment [150].

During secret (identifier) retrieval, a query pair (ϕ′,Ψ′) is generated with their respec-

tive U and W from a given biometric vector x′. The vault v can be unlocked by comparing

H = hash (ϕi ‖vi‖ψi) and H′ = hash (ϕ′i ‖vi‖ ψ′i) via a filtering algorithm in the element-wise

manner. If a sufficiently large number of elements say t(≤ m) from H and H′ are matched,

decryption i.e. (ϕi ⊕ P (ψi))⊕ ϕ′i would succeed and P (ψi) is output or fails otherwise. Upon

success decryption, one construct an unlocking set u = [(ψi, P (ψi)) |i = 1, . . . , t] ⊆ G where

t ≥ k, the identifier can be retrieved via polynomial interpolation. A high-level overview of the

CFV is illustrated in Figure 5.2.

The detail steps of enrollment and identifier retrieval is given as follows:
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Identifier Binding (Enrollment):

Given deep face vector x ∈ Rd, identifier K, LIoM projection matrices U and W, face code

vector with size m, subspace dimension q, a finite field polynomial P (·) ∈ Fpq with p− 1 order

and a one-way hash function: {0, 1}∗ → {0, 1}`:

1. Encode K as the coefficients of P (·)

2. Generate Ψ = Λ(x; W) and ϕ = Λ(x; U)

3. Perform polynomial projection P (ψi) , i = 1, . . . ,m where ψi ∈ Ψ

4. Encrypt P (ψi) with ϕi ∈ ϕ to generate a vault V = [ϕi ⊕ P (ψi) |i = 1, . . . ,m]

5. Generate H = hash (ϕi ‖vi‖ψi) where vi ∈ V

6. Store U,W,V and H as public helper data.

Identifier Retrieval:

Given query deep face vector x′ ∈ Rd, helper data, face code vector size m and hash function

hash.

1. Generate Ψ′ = Λ (x′,W) and ϕ′ = Λ (x′,U)

2. Compute H′ = hash (ϕ′i ‖vi‖ψ′i) , i = 1, . . . ,m where ψi ∈ Ψ and ϕi ∈ ϕ

3. Run Algorithm 4 with H and H′,Ψ,ϕ′ and V to acquire U = [(ψi, P (ψi)) |i = 1, . . . , t]

where t is the number of match entries in V. Note that Unique( U ) in Algorithm 3 is a

function that warrants only unique genuine pairs present in U . A failure signal will issue

if t ≤ p

4. Execute polynomial reconstruction with u.

In step 4, the secret can be retrieved via Lagrange interpolation if p ≤ t ≤ m. since there

will be at most q(< t) unique elements only in u since (ψi, P (ψi)) ∈ [1, q] × [1, q], Unique (u)

is required to prevent unnecessary computation overhead on polynomial interpolation. On the

other hand, H is crucial for the CFV to perform a conditional check to ensure only relevant

vi ∈ V can be decrypted. This can be perceived as a kind of error-checking mechanism in the

CFV. Besides that, H warrant data integrity of vault V. This is because if any alteration occurs
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Algorithm 4 Genuine Pairs Filtering

Input:
H,ψ′,ϕ′,V

Output:
unlocking set U

1: Initialization: u← ∅,H′ = hash (ϕ′i ‖vi‖ψ′i)
2: for i = 1 to m do
3: /* ki ∈ H, k′i ∈ H ′ */
4: if ki = k′i then
5: P (ψi) = (ϕi ⊕ P (ψi))⊕ ϕi′ /* Decryption */
6: U ← U ∪ (ψi, P (ψi)) /* Collect unlocking set */
7: end if
8: end for
9: u← Unique (U)

in V, the decryption will fail. Lastly, H facilitates polynomial interpolation by ensuring that

only genuine pairs are found in U , and hence the identifier can be retrieved simply with a single

step of polynomial reconstruction rather than iterative decoding that practiced by ordinary

fuzzy vault scheme.

It is worth highlighting that the proposed CFV can work with either random version and

learning-based version of IoM hashing since both LIoM and random IoM can produce integer/bi-

nary templates. Adopting random IoM will avoid training and system complications. Besides,

other hashing which can produce integer/binary templates can also be adopted in CFV; hence

the deployment of CFV shall depend on different biometric modalities and hashing techniques.

5.5 Performance Evaluation

Since there are three samples per subject stored in the gallery for a given probe, the secret would

be retrieved successfully when matched with the corresponding genuine samples. If more than

one sample in the gallery of the same subject is matched successfully, the system outputs an

accepting signal and releases the mode of the retrieved secret. An example for this circumstance

is illustrated in Table 5.1. In this example, Gik refers to kth subject’s ith (i = 1, 2, 3) template

in the gallery while P is a probe. The result will be mode(G1
1,G

2
1,G

3
1) .

In this chapter, identical datasets and protocols in chapter 4 are adopted. From subsection

4.1.2.6 in chapter 4, we notice either score fusion by averaging or feature fusion by concatenation

offers the overall best performance. However, two LIoM face code vectors, where each code

vector is the resulting of fused features, are required for the CFV. Hence, we opt for feature
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Table 5.1: An example of secret retrieval matching with gallery.

Gallery
Probe G1 . . . . . .

G1
1 G2

1 G3
1 . . . Gik

Subject P X X × . . . ×
Retrieval Result mode(G1

1,G
2
1,G

3
1) → user G1

fusion in implementation as it incurs less computation overhead than that of score fusion for

the FCI.

5.5.1 Performance Metrics

In the CFV subsystem, for a given probe P , the k vaults V that associated to the gallery

in the search subsystem will be activated and followed by decryption for each V. A unique,

genuine entry will be unlocked upon successful decryption and then followed by polynomial

reconstruction. Therefore, we enumerate four possible cases as follows:

Case 1. Identifier is correctly retrieved when P and his/her associated vault is presented.

Case 2. Identifier is incorrectly retrieved when P and his/her associated vault are pre-

sented.

Case 3. Identifier is correctly retrieved despite P, and vault are not associated.

Case 4. Failure of identifier retrieval due to unsuccessful decryption. Specifically, the

unsuccessful decision is given when the number of match entries in V is not more than p, i.e.,

t ≤ p as stated in step 3 in Identifier Retrieval process (section 5.4).

Note case 2 and case 3 are analogous to false rejection and false acceptance in the ordinary

biometric systems, respectively. Case 4 is unique in our context since it may happen to genuine

subjects and imposter.

Suppose there are Q probes, and based on the four cases above, three performance metrics

with respect to p can be defined to evaluate the identifier retrieval rate:

1. True Identify Rate, TIR(p) = #Correct Retrieval
Q for case 1.

2. Misidentify Rate, MIR(p) = #Incorrect Retrieval
Q for case 2 and 3.

3. Failure Identify Rate, FIR(p) = =#Fail Retrieval
Q for case 4.
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(a) FaceNet (b) InsightFace

Figure 5.3: IR (%) vs k of LIoM hashing on the LFW: (a) FaceNet; (b) InsightFace.

(adopted from [2])

Apart from the three metrics above, we further define an indicator, namely TIR@MIR. In

the FCI, the TIR is expected to be high for correct identifier retrieval and otherwise for MIR.

This is because an adversary can exploit MIR to launch zero effort false accept attack (will be

detailed in section 5.6).

5.5.2 Parameter Tuning for 1-to-N Searching

The key parameters for the CFV subsystem include polynomial order p − 1, m, and q from

LIoM hashing. From section 4.1.2.4 in chapter 4, we find that the performance of searching is

reasonably good for LIoM hashing with m = 100 and q = 16. As indicated in chapter 4, the

LIoM hashing performance could be critical for identifier retrieval, we choose a larger m and q

where m = 200 and q = 32 and p is tuned from 5 to 32.

Another parameter for 1-to-N searching subsystem is top-k candidate size. The k value can

be inferred from the CMC curve by referring to the IR at different rank k. From the CMC that

based on the LFW shown in Figure 5.3, the IR improves and level off when k increases. We opt

for k=50 for subsequent experiments as overly large k indicates higher computation overhead

in the CFV.
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Table 5.2: TIR@0.1%MIR of FCI key retrieval (%).

Close-set Open-set O1 Open-set O2 Open-set O3

LFW 98.57 74.53 52.04 44.20

VGG2 98.92 48.93 73.68 42.10

IJB-C 43.02 30.30 25.11 19.72

5.5.3 Secret Retrieval Performance

To have an evaluation of the FCI, the secret retrieval experiment is carried out on LFW, VGG2

and IJB-C to record the accuracy performance metrics (Figure 5.4, Figure 5.5, and Figure 5.6).

As we can expect, when p is small, more probes will be retrieved successfully, and some of

them may be retrieved with a wrong key, thus lead to higher MIR. When p becomes larger,

fewer probes will pass the key retrieval process, and the MIR will decrease gradually. The

TIR@0.1%MIR is recorded in Table 5.2.

We can find that close-set is easy to achieve a good accuracy performance, except IJB-C

dataset, which is more challenging due to its characteristic. However, it is still hard to achieve

a good performance in the open-set protocol, which remains a big challenge.

Since MIR is a critical factor for the system, we can choose a p that makes MIR ≈ 0.1%

and TIR is the largest among all p. As anticipated, for small p, it is easier to satisfy vault

unlocking subject to t ≤ p, where t is the number of unlocked genuine entries from vault V.

Thus, high TIR and low FIR can be anticipated. Unfortunately, this may lead to higher MIR in

return as the probability for an imposter to succeed increases due to the lower bar of collecting

unique genuine entries for polynomial reconstruction. On the contrary, vault unlocking becomes

difficult for large p and thus suppresses MIR as well as TIR, but heightens FIR in return. For

instance, from Figure 5.4 (a) and Figure 5.4 (c), we observe that TIR decreases to 10% from

p = 5 to p = 25, while MIR drops from 0.27% to 0%. It is also noted that the identifier

retrieval performance is directly related to the discrimination of face code vectors (difficulty of

face dataset) as indicated by the TIR@0.1MIR in Table 5.2.

In summary, the entire FCI system’s identifier retrieval performance is regulated by four

system parameters, namely top-k candidate size that returned by search subsystem, polynomial

order p − 1 as well as m and q from LIoM hashing. Note that m and q can be set differently

for two subsystems as they just depend on the number and size of projection matrices of LIoM

hashing. In practice, we recommend choosing small m with a suitable q for the first subsystem

due to searching time concern at the expense of loss of discrimination. However, k value can be
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Figure 5.4: Key retrieval performance of LFW by fusion.

tuned to compensate for the effect of m and q. On the other hand, m can be set larger alongside

q for the CFV to increase the success probability of decryption. Finally, p is the most critical
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Figure 5.5: Key retrieval performance of VGG2 by fusion.

to determining the eventual performance of the FCI.
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Figure 5.6: Key retrieval performance of IJB-C by fusion.
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Table 5.3: Summary of Identifier Retrieval Time Cost of one probe with p = 10 and p = 15.

Gallery images Probes images Average time
(s) per probe
(p=10)

Average time
(s) per probe
(p=15)

LFW 1830 4903 0.12 0.11

VGG2 6000 6000 0.19 0.19

IJB-C 3594 5391 0.05 0.04

5.5.4 Computation Efficiency

Computation efficiency is another key performance factor for the FCI system aside from accu-

racy. To record the time cost, the total computation time in second, which includes both search

and the CFV subsystems, for all probes in LFW are first recorded. Machine and Software used

in the evaluation are as follows:

• Matlab version R2017b, 64-bit.

• Win10 Enterprise 1709.

• Intel i7-6700 CPU @ 3.40GHz, RAM 16GB.

The average time for one probe can be acquired by dividing the total time with total probes

number 4903 in LFW. From Figure 5.7, we note the time cost decreases with respect to the

increment of p. This is due to the successful probability decryption becoming lower for large

p, polynomial reconstruction, which is the most time-consuming, would not occur. Specifically,

failure alarm will be issued when t ≤ p, as stated in step 3 of Identifier Retrieval in section 5.4. To

reconstruct the polynomial, at least p matched entries should be found. When p becomes larger,

it will be hard for the system to collect sufficient match entries for polynomial reconstruction.

However, the system will only process the queries when t > p, otherwise retrieval will be halted

to save processing time.

On average, we can see that only around 0.1 seconds is needed to retrieve the identifier

among 1830 samples in the gallery. A summary of the time cost can be found in Table 5.3. In

summary, it is crucial to find a balance point for polynomial order p, which can lead to decent

performance with a reasonable waiting time.
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Figure 5.7: Identifier Retrieval Time Cost for One Probe against p on LFW.

(adopted from [2])

5.6 Security Analysis for the CFV

Despite the FCI system composed of two subsystems, the search subsystem’s security relies on

LIoM hashing, which has been analyzed and presented in [17] and section 4.2. Therefore, we

shall focus on the security of the CFV in this section. Specifically, the CFV security will be

analyzed based on the four major attacks targeted to fuzzy vault and its variants. To do so, we

first formalize the security model of the CFV.

5.6.1 Security Model

Ideally, the security of the CFV can be simply reduced to the computational hardness in seeking

q out of m matches via a filtering procedure (algorithm 4) in the vault. This analysis is based

on the random oracle model over a uniformly random enrolled x and query face features x′. The

security can be assured by choosing a large {q, m} that satisfies performance-security-efficient

trade-off.

However, the above assumption is impractical as real biometric features can never be uni-

formly random. To resolve this issue, the security is characterized by the similarity of x and x′

or S (x,x′) more precisely, which follows certain non-uniform distribution. Formally, we adopt

a random error model that outlined in [152], whereby the probability of matches is captured by
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α2 and 1 − α2 for mismatches probability where α2 = S (x,x′)2 that developed in section 5.4.

This induces another issue in which the estimation of α can only be meaningful based on the

massive biometric samples. To alleviate this problem, we adopt the maximum match probability

notion, denoted as Pmax
MI

. Formally, Pmax
MI

= max {Pi|i = 1, . . . ,MI} where Pi is the imposter

matching score and MI is the total number of imposter scores, which can be obtained when

EER is computed (section 4.1.2.7). This enables us to demonstrate security over a moderate

sample size that considers the non-uniform nature of biometric features.

5.6.2 Sneak Key Inversion (SKI) Attack

The SKI Attack [156] is a scenario where the adversary merely guesses the secret that bond

to the biometric cryptosystems unlock the vault and eventually recover biometric data via the

broken vault. An effective security measure to resist the SKI attack bound within the exhausting

guesses of the secret. In our context, the secret (identifier to be exact) is typically encoded as

the coefficients of the finite field polynomial with order p - 1 with a total of log (β)p bits, where

β is a prime number. In our experiment, the p varies from 5 to 32 and β =13, hence the guessing

complexity range is of 135 bits to 1332 bits, which is sufficient to withstand the SKI attack on

many occasions. Moreover, the deep face features in the FCI is protected by LIoM hashing,

hence serve another layer of protection against SKI attack.

5.6.3 Surreptitious Key Inversion (SuKI) Attack

Unlike the SKI attack that depends on the guessing of secret to break the biometric cryptosys-

tem, SuKI attack [156] exploits the compromised secret directly for the same purpose. In our

context, the revelation of the identifier may lead to the disclosure of genuine set, G from the

CFV vault V. However, the genuine entries are encrypted in the vault thus disclosure is highly

unlikely.

Similar to the SKI, the face features are also protected by the LIoM hashing. Here, we

assume the adversary manages to retrieve the face code vectors and he/she knows well the

hashing algorithm as well as the corresponding parameters e.g. q and m and projection matrices

W and U. We note that the LIoM hashing converts the deep face feature into the integer indices,

which has no clue to guess the actual face vector information directly from the stolen LIoM

hashed face code vector.
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5.6.4 Brute-force Attack

The brute-force attack on the CFV involves an adversary attempting to guess the genuine set

G = [(ψi, P (ψi)) |i = 1, . . . ,m] directly, so that he or she can retrieve the identifier indirectly

or guess the secret directly.

A secret K ∈ Fpr is encoded as the coefficients of P (·) with polynomial order p − 1. The

complexity of an attack that involves guessing the secret depends on the secret space, the

polynomial order p, and r. We use r = 8, p = 16 as an example, which means that the secret

is encoded in 8 bits with polynomial order 16, and the complexity of guessing the secret (the

polynomial coefficients) is
(
28
)p

= 2128. A larger value of p increases the guessing complexity

and guarantees resistance to this attack.

To guess the genuine set G, the adversary must enumerate a minimum q of ψi randomly.

Given Hi = hash (ϕi ‖vi‖ψi) , where ϕi ∈ Fq and ϕ̂i ∈ Fq, the adversary needs to find a collision

on a hash subject to Hi = H′i after q2 trials. To retrieve the secret, at least p collisions are

needed, and hence the attack complexity is q2∗p = 162∗p = 28∗p. When p = 16, the guessing

complexity is 2128, which provides resistance to attacks involving guessing G.

5.6.5 MisIdentify Attack

MisIdentify attack (MIA) refers to a scenario where an adversary can repeatedly attempt to

verify H with the biometric instances from the compromised or public face databases. In this

circumstance, the adversary is expected to retrieve the identifier with the probability equal to

nonzero MIR. The MIA is equivalent to the False Accept Attack (also known as dictionary

attack) in the normal fuzzy vault schemes and biometric systems. Besides that, the adversary

can utilize an artificial template generator alone to launch MIA. Yet, it is also possible for

the adversary who possesses sufficient computation power, allow him or her to launch MIA by

sampling the face features randomly according to certain distribution. From this perspective,

the MIA complexity can be formulated in terms of α2 =
(
Pmax
MI

)2
that presented in the robust-

ness analysis of the CFV (Section 5.4). Hence, MIA complexity in bit over MI is defined as

MI
(
m, δ, Pmax

MI

)
= − log

(
P
(
t(
Pmax
MI

) ≥ dδme
))

where t(Pmax
M ) ∼ Bin

(
m,
(
Pmax
MI

)2)
With same setting used in section 5.6.4, the maximum MIA complexity is estimated as 37

bits with p = 28. This is considerably low but the complexity can be improved by decreasing
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m or simply set MIR=0% by adjusting p (please refer section 5.5.4) at the expense of scarifying

identifier retrieval rate. It is also noted Pmax
MI

, which is directly linked to the face feature

discrimination plays a vital role in MIA. The higher discriminative of face features, the lower

Pmax
MI

can be acquired and thus contribute to higher MIA complexity. Unlike the brute-force

attack, the MIA is independent from q. Increasing q would not contribute to better MIA

security, and we deem the MIA is a much stronger attack that could serve as the lower bound

to brute-force attack via a considerably large q.

5.7 Chapter Conclusion

In this chapter, a facial cryptosystem for identification (FCI) that only requires sole face as

input for identifier retrieval is proposed. The FCI is composed of 1-to-N search subsystem and

a chaff-less fuzzy vault (CFV) subsystem. To warrant sufficient discrimination on face features

for decent accuracy performance, face feature extractors by means of deep neural networks and

biometric fusion modules have been adopted. In response to searching efficiency and security of

the FCI, the first subsystem employs LIoM hashing for deep learned face features compression

and protection. The LIoM transformed face features is a compact code vector, which satisfies

irreversibility, unlinkability, and revocability criteria for biometric template protection. We

couple LIoM hashing with a novel fuzzy vault variant, i.e., CFV, which can achieve reasonably

good identifier retrieval accuracy on LFW, VGG2, and IJB-C large-scale unconstrained face

benchmark databases. It is worth noting that there is a strong correlation between accuracy

performance and security of the FCI, or the CFV to be precise, and face feature discrimination.

Therefore, it is a future work to improve face feature discrimination.



Chapter 6

Conclusions and Futures

In this chapter, a summary of this thesis is given, and some future directions are also discussed

based on the current work.

6.1 Conclusion

Face recognition technology is growing rapidly in the interest of convenience and surveillance,

and it might transform everything from policing to the way people interact every day with

banks, stores, and transportation services. Face recognition is also now becoming one of the

standard phone unlock machinery in mobile phones1. As FR becomes prevalent in daily life,

more and more concerns about the privacy and security risks are rising. Biometric template

attack is one of the risks associated with the biometric system that needs to be addressed.

Though some template protection techniques are invented to protect the biometric template,

there still has some limitations, such as inconvenience caused by the extra use of identifiers in

the biometric cryptosystem. Besides, the accuracy under open-set settings will usually drop in

most FR systems. This thesis has systematic research to address the challenges regarding the

FR system’s privacy and security and proposed several algorithms and systems. In summary,

the main work and contribution of this thesis are list as below:

BTP is a critical compartment for the secure FR system to protect the biometric features.

Existing BTP schemes usually suffer from performance degradation and other issues. In the lat-

est proposed BTP scheme IoM hashing, the IoM hash codes must be long enough to achieve high

1Use Face ID on your iPhone or iPad Pro, https://support.apple.com/en-us/HT208109

91
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accuracy performance and high reliability [17]. To address the biometric template protection

issue, i.e., the performance degradation and compact integer template demanding, a learning

based hashing, namely LIoM, is proposed. As discussed in chapter 3, both LIoM and random

IoM exploit the ranking order among random projected values instead of feature values and are

resistant to biometric noise. While the projection matrices employed in the IoM hashing are

generated randomly, in LIoM, it is learned from the gradient descent algorithm. Specifically,

to avoid the non-convex discontinuous optimization problem, the hashing function is relaxed

(or approximated) by a designed SoftMax function, then a loss function, which ensures paired

samples can generate similar hash codes, is utilized to learn the projection matrix based on the

mini-batch update rules. The AdaBoost-based sequential learning algorithm is adopted to boost

the performance further. The proposed LIoM can deliver a set of optimal ranking subspaces and

improve the accuracy over random IoM hashing. LIoM hashing also achieves a more compact

hash code which requires less storage and computation power.

Another challenge of FR is the performance degradation in the large-scale open-set iden-

tification settings. Based on the LIoM hashing, a BTP based 1-to-N searching FR system is

implemented and evaluated in chapter 3 and chapter 4. We follow a new open-set evaluation

protocol, and wherein the probes are categorized into known, known unknown, and unknown

unknown. The conventional closed-set protocol is also adopted for benchmarking the proposed

system. To improve the performance, several feature-level and score-level fusion strategies for

the face identification problem are explored. The proposed system is evaluated based on three

large unconstrained face datasets: LFW, VGG2, and the IJB-C dataset. The results validate

that performance degradation is inevitable when the deep face vector is transformed by IoM

hashing, while LIoM hashing can achieve better performance compared with random IoM. The

LIoM can also contribute to template protection as well as speedy matching compared to the

use of deep face vectors only. The deep face vector with feature level fusion and score fusion by

average can improve the accuracy significantly.

Apart from the 1-to-N face identification application, biometrics are usually utilized in key

management systems, which can bind a secret to the biometric data and generate the final

protected template (Help Data, or PI in general). Such a system normally is designed for

verification (1-to-1 matching) settings, and input of both biometric data and an associate ID

are required. To address such limitation, an identifier-free face cryptosystem for identification

(FCI) with higher security is proposed in chapter 5. The proposed identifier-free cryptosystem

only requires sole face as input to retrieve the protected identifier. Specifically, to achieve
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the identifier-free face cryptosystem, by mere giving a sole face image, we integrated an LIoM

hashing empowered open-set 1-to-N match module, which releases top k matched id, to be used

as an identifier upon correct match and a CFV enabled 1-to-1 match module for secret retrieval.

We utilized deep face features generated from FaceNet and InsightFace networks to cope with

the system’s accuracy and matching speed demands. Learning-based IoM, which can be trained

based on the labeled data set, protects the face features. Random IoM can be considered as

a special case of the learning based IoM. The learning-based IoM converted the long deep face

feature vector into a compact binary code with mere 400 bits for speedy matching with a simple

hamming matcher without significant performance drop when coupled with fusion methods at

1-to-N matching module.

6.2 Future work

However, there still exist some problems that need to be addressed. Some possible future

research directions are discussed below.

6.2.1 Discriminative Features

Applying biometric template protection can lead to performance degradation unavoidably. How

to preserve the accuracy while ensuring the privacy and security of users and systems still

remains to be a big challenge. One possible solution is to generate high discriminative features

from biometric input.

In this study, we found that a robust and discriminative feature representation is quite

essential for the system performance, especially in a large-scale unconstrained environment

setting. More stable LIoM hash codes can be generated with a robust and discriminative

feature representation, and better accuracy can be achieved subsequently. Hence works on

features discrimination shall be one of the direction which can promote the development of

BTP.
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6.2.2 Integrate LIoM to Deep Neural Network

The proposed LIoM can be regarded as an instance of projection operation, and it is natural to

be portrayed as a one-hidden-layer network. The next promising work is to design an end-to-

end LIoM deep hashing network, which takes face images as the input and outputs hash codes

directly. This will reduce the system complexity and improve performance in the same time.

6.2.3 Apply FCI to Other Biometric Features

It is worth to highlight that other deep face features can also be adopted in the proposed

scheme, as far as the face features are in fixed-length vector format. On the other hand, the

proposed system is only implemented on the face, while other biometric modalities, such as

iris and fingerprint, can also be adopted. In practise, as far as the features extracted from the

corresponding biometric modalities are in fixed-length vector format, such biometric modalities

then could be considered applicable to FCI.

However, it may be hard to generate fixed-length features for some modalities. For example,

the most popular fingerprint descriptor, i.e., Minutia cylinder-code (MCC) [157], is size-variant.

To utilize FCI on such size-variant features, extra processing such as [158] can be introduced to

generate fixed-length features.

6.3 A Cat-and-Mouse Game

The security of the biometric system is just a game between “mouse” and “cat”. With the

development of technology, adversaries may gain more opportunities to attack the biometric

system. There is no absolute secure system, while such biometric systems’ security research

shall persist and not be stopped. The research from the perspective of adversaries and attacks

may be regarded as one of the preventive countermeasures.

In summary, it is endless for research work on security and privacy-preserving biometrics. In

the future, the above-discussed directions shall be explored, and more studies will be conducted.
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[139] Sébastien Marcel. Beat–biometrics evaluation and testing. Biometric technology today,

2013(1):5–7, 2013.

[140] Neil A Macmillan and C Douglas Creelman. Detection theory: A user’s guide. Psychology

press, 2004.

[141] Jingtuo Liu, Yafeng Deng, Tao Bai, Zhengping Wei, and Chang Huang. Targeting ultimate

accuracy: Face recognition via deep embedding. arXiv preprint arXiv:1506.07310, 2015.

[142] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Web-scale training for

face identification. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 2746–2754, 2015.

[143] Xiang Wu, Ran He, Zhenan Sun, and Tieniu Tan. A light cnn for deep face representation

with noisy labels. IEEE Transactions on Information Forensics and Security, 13(11):

2884–2896, 2018.

[144] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Learning face representation from

scratch. arXiv preprint arXiv:1411.7923, 2014.

[145] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning

approach for deep face recognition. In European conference on computer vision, pages

499–515. Springer, 2016.

[146] Xiao Zhang, Zhiyuan Fang, Yandong Wen, Zhifeng Li, and Yu Qiao. Range loss for deep

face recognition with long-tailed training data. In Proceedings of the IEEE International

Conference on Computer Vision, pages 5409–5418, 2017.

https://www.pmi.org/learning/library/characterizing-unknown-unknowns-6077
https://www.pmi.org/learning/library/characterizing-unknown-unknowns-6077


Bibliography 110

[147] Dayong Wang, Charles Otto, and Anil K Jain. Face search at scale. IEEE transactions

on pattern analysis and machine intelligence, 39(6):1122–1136, 2016.

[148] Lei Li, Heng Luo, Lei Zhang, Qing Xu, and Hao Ning. Typicface: Dynamic margin

cosine loss for deep face recognition. In Pacific Rim International Conference on Artificial

Intelligence, pages 710–718. Springer, 2018.

[149] Monica MY Zhang, Kun Shang, and Huaming Wu. Learning deep discriminative face

features by customized weighted constraint. Neurocomputing, 332:71–79, 2019.

[150] Christian Rathgeb and Andreas Uhl. A survey on biometric cryptosystems and cancelable

biometrics. EURASIP Journal on Information Security, 2011(1):3, 2011.

[151] Kai Xi and Jiankun Hu. Bio-cryptography. In Handbook of Information and Communi-

cation Security, pages 129–157. Springer, 2010.

[152] Y Dodis, L Reyzin, and A Smith Fuzzy Extractors. How to generate strong keys from

biometrics and other noisy, data april 13. EUROCRYPT, 2004.

[153] Kai Xi, Jiankun Hu, and BVK Vijaya Kumar. Fe-svit: A svit-based fuzzy extractor

framework. ACM Transactions on Embedded Computing Systems (TECS), 15(4):1–24,

2016.

[154] David Bissessar, Carlisle Adams, and Alex Stoianov. Privacy, security and convenience:

biometric encryption for smartphone-based electronic travel documents. In Recent ad-

vances in computational intelligence in defense and security, pages 339–366. Springer,

2016.

[155] Ann Cavoukian, Michelle Chibba, and Alex Stoianov. Advances in biometric encryp-

tion: Taking privacy by design from academic research to deployment. Review of Policy

Research, 29(1):37–61, 2012.

[156] Walter J Scheirer and Terrance E Boult. Cracking fuzzy vaults and biometric encryption.

In 2007 Biometrics Symposium, pages 1–6. IEEE, 2007.

[157] Raffaele Cappelli, Matteo Ferrara, and Davide Maltoni. Minutia cylinder-code: A new

representation and matching technique for fingerprint recognition. IEEE transactions on

pattern analysis and machine intelligence, 32(12):2128–2141, 2010.



Bibliography 111

[158] Zhe Jin, Meng-Hui Lim, Andrew Beng Jin Teoh, Bok-Min Goi, and Yong Haur Tay.

Generating fixed-length representation from minutiae using kernel methods for fingerprint

authentication. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(10):

1415–1428, 2016.


	Copyright notice
	Abstract
	Declaration
	Publications during enrolment
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Problem Statement
	1.2 Research Question
	1.3 Research Objectives
	1.4 Contribution Overview
	1.5 Practical Usage
	1.6 Organization

	2 Literature Review and Background Study
	2.1 Deep Learning based Face Feature Extraction
	2.2 Cancellable Biometrics
	2.3 Biometric Cryptosystem
	2.4 Closed-set and Open-set Face Identification

	3 Face Identification System with Learning-based Index-of-Max Hashing
	3.1 Introduction
	3.2 Motivations and Contributions
	3.3 Preliminary
	3.3.1 Locality Sensitive Hashing (LSH)
	3.3.2 Winner-Take-All Hashing
	3.3.3 Index-of-Max (IoM) Hashing

	3.4 Face Identification Framework
	3.4.1 Deep Face Feature Extraction
	3.4.2 Learning based Index-of-Max hashing
	3.4.3 Fusion Strategy

	3.5 Chapter Conclusion

	4 Evaluation and Analysis of the Learning-based Index-of-Max Hashing
	4.1 Performance Evaluation
	4.1.1 Learning-based IoM Hashing
	4.1.2 Open-set and Closed-set Identification
	4.1.2.1 Database Configuration 
	4.1.2.2 Performance Metrics
	4.1.2.3 Unprotected Identification System Performance
	4.1.2.4 Parameters Tuning
	4.1.2.5 Protected System Performance without Fusion Strategy
	4.1.2.6 Protected System Performance with Fusion Strategy
	4.1.2.7 Visual Evaluation of the system 
	4.1.2.8 Time Cost of the System 
	4.1.2.9 Summary

	4.1.3 State-of-the-Art Comparison

	4.2 Unlinkability and Revocability Analysis of LIoM Hashing
	4.2.1 Unlinkability Evaluation
	4.2.2 Revocability Evaluation

	4.3 Chapter Conclusion

	5 Secure Chaff-less Fuzzy Vault for Face Identification System
	5.1 Introduction
	5.2 Motivations and Contributions
	5.3 Overview of the Facial Cryptosystem for Identification
	5.4 Chaff-less Fuzzy Vault 
	5.5 Performance Evaluation
	5.5.1 Performance Metrics
	5.5.2 Parameter Tuning for 1-to-N Searching
	5.5.3 Secret Retrieval Performance
	5.5.4 Computation Efficiency

	5.6 Security Analysis for the CFV 
	5.6.1 Security Model
	5.6.2 Sneak Key Inversion (SKI) Attack
	5.6.3 Surreptitious Key Inversion (SuKI) Attack
	5.6.4 Brute-force Attack
	5.6.5 MisIdentify Attack

	5.7 Chapter Conclusion

	6 Conclusions and Futures
	6.1 Conclusion
	6.2 Future work
	6.2.1 Discriminative Features
	6.2.2 Integrate LIoM to Deep Neural Network
	6.2.3 Apply FCI to Other Biometric Features

	6.3 A Cat-and-Mouse Game

	Bibliography

