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Abstract 
 
Reward and avoidance learning form two important components of decision making. 
Both are two complex processes that involve assigning values to available options, 
choosing between alternatives-based preferences, assessing consequences for the 
selected choices, and learning from the outcomes to update future choices. 
However, the shared or differential neural mechanisms underlying the distinct stages 
of reward and avoidance decision processes still remains controversial. In the 
present study, using a novel probabilistic reward and avoidance learning task 
(involving a probability switch), together with neuroimaging techniques and 
computational modelling, we showed that both shared and distinct brain regions are 
involved at distinct stages including: (i) outcome, (ii) expected value and (iii) 
prediction error (PE) in reward and avoidance-based decision processes.  
 
At the outcome stage, the frontal-subcortical brain areas including the inferior 
orbitofrontal cortex (OFC), striatum, thalamus, insula, and cingulum were 
significantly activated by the outcome of reward receipt. Receiving punishment was 
found to activate the cortical and subcortical brain regions of insula (also active 
during reward) but also distinct areas including supplementary motor area (SMA) 
and dorsal striatum were activated by the outcome of getting punished.  
 
At the decision stage of expected value, the activity at the fronto-cortical brain 
regions including cingulum and superior medial frontal were found associated with 
the reward expectation. Whereas avoidance expectation recruited broader cortical 
and subcortical brain areas including not only the cingulum (also active during 
reward expectation), but also the inferior OFC, insula and dorsal striatum. 
 
At the stage of error processing, a robust PE signal was found associated with 
activity in the cortical-basal ganglia brain regions under the reward condition; 
Meanwhile the aversive PE signal covaried with the activity of the frontal-subcortical 
brain regions (shared with reward processing), and distinct regions of the dorsal 
striatum. The results demonstrate the dorsal striatum specific role for differential 
phases of avoidance processing, and existence of the dissociated computational 
processes underlying reward and avoidance decision processes. 
 
Impulsivity and compulsivity are behavioural traits underpinned by reward and 
avoidance processes that underlie many aspects of decision-making and are found 
to be aberrant is many mental health and addictive disorders. For instance, they form 
the characteristic symptoms of Obsessive-Compulsive Disorder (OCD) and 
Gambling Disorder (GD). The neural underpinnings of aspects of reward and 
avoidance learning and their relationship to expression of these clinical symptoms 
are only partially understood. The present study combined behavioural modelling 
and neuroimaging techniques to examine brain activity associated with key steps of 
reward and loss processing in OCD and GD, and its correlations with impulsivity and 
compulsivity. The findings revealed several regions of altered brain activity 
underlying the distinct stages of reward- and avoidance-related decision making 
processes in OCD and GD compared to healthy controls. The OCD group showed 
the decreased activity in the left operculum part of the inferior frontal, right Opercula 
part of the inferior frontal and right thalamus at the outcome of getting reward. OCD 
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participants also showed the increased activity in the left anterior cingulum at the 
phase of value expectation under avoidance condition. Further, the decreased 
activity in the left middle cingulum for reward expected value was found negatively 
correlated with scales of impulsivity measured by the BIS scores in participants with 
OCD. Meanwhile, participants with GD showed the decreased activity at right cuneus 
at the outcome of getting reward compared to healthy controls; Further, GD 
participants showed the increased activity at the brain region including the right 
triangular part of the inferior frontal for the error processing under avoidance 
condition. 
 
The present series of studies have demonstrated the shared and distinct neural 
architecture underpinning the different stages of reward and avoidance decision 
making processes. Application of this knowledge to the clinical scenario revealed the 
existence of aberrant reward and avoidance-based decision processes in OCD and 
GD, and the contribution of these reward and avoidance based neural processes to 
the impulsivity and compulsivity behavioural traits seen in these clinical conditions. 
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1 Introduction 

 
1.1 Reinforcement-based decision making 

1.1.1 Value-based decision making  

Every day human participants are faced with a multitude of decisions, some simple decisions 

like what to eat or drink or complex decisions like whether or not to spend three years doing 

a doctoral degree. Decision making is an essential skill to live and manage our life, and it is a 

complex process that involves assigning value to available options, choosing between 

alternatives based on preferences, assessing consequences for the selected choices, and 

learning from the outcomes of decision making to update the future choices (Engel & 

Cáceda, 2015). Facing the fundamental challenge of the need to survive, the decision 

behaviour of human participants is directed toward gaining rewards, such as food, money or 

praise (approach behaviours), and also toward avoiding punishments, such as loss, pain, or 

humiliation (avoidance behaviours) (Doherty & Pauli, 2017). Thus, the reward and 

avoidance-related learning are two important components of decision making. 

While there are always multiple choices, how do human participants make the choice 

from the alternatives? For example, consider the choice of career. Do we choose a career 

doing something that we are passionate about, for example, academia? Or, do we pursue a 

career such as economist that would be more lucrative? Obviously, everyone has his or her 

own opinion about the relative value of these particular choices, but ultimately each 

individual has an inherent desire to seek or maximize reward outcomes according to his or 

her anticipation. Also, consider the choice of committing a bad behaviour such as crime. Do 

we choose to give a try with the possibility to get punished? Evidently, we have a desire to 

avoid the unpleasant outcomes. Thus, when facing multiple decisions, humans always act in a 

manner that maximizes the prospects of obtaining the resources needed to survive and 

minimize the probability of encountering situations leading to harm (Doherty et al., 2017). 
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Specifically, the ability to decide what we want to do with our lives or to make any other 

decisions for that matter is predicated upon our knowledge of the result or value of the 

actions available (Krigolson et al., 2014). 

 

1.1.2 Reinforcement learning theory  

The problem facing decision making is the learning from the previous experience, through 

trial and error to improve the future selection. This problem is called reinforcement learning 

(RL) (Daw & Tobler, 2013; Fearing et al., 1929). Specifically, RL is an adaptive process in 

which a subject utilizes its previous experience to learn to predict reward, thus improving the 

outcomes of future choices to reach the goal of maximization of the rewards or minimization 

of the loss. The famous experiment conducted by Pavlov gave support to how organisms use 

experience to learn to predict reward. In the experiment, the dogs were exposed to repeated 

pairings whereby an initially neutral and unconditioned stimulus accompanied with reward 

such as food. Then, the dogs were found to salivate to the sound of the bell even if it was 

presented without the good, by virtue of the bell’s predictive relationship with the good (Ii, 

1927). Based on this experiment, variations of this experiment have been conducted with 

monkeys (Glimcher, 2011; Niv, 1997; Wolfram Schultz et al., 1997), and human participants 

(Niv et al., 2012).  

RL theory is widely adopted to address the fundamental questions in decision making 

– 1) how do participants acquire their preference for different actions and outcomes, and 

also 2) how do they learn from the previous experience to update the future choice? Firstly, it 

is suggested that participants acquire their preference according to the value of the selected 

action. What does the value of an action reflect? RL theory proposes that the value of an 

action is a prediction of the subsequent reward or punishment gained by selecting that action 

(Sutton & Barto, 1998). Secondly, how do we learn from the previous experience? The 
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learning is realized by trial and error, which is a process of choice selection update following 

a previous decision that leads to a reward or punishment. For example, imagine we are faced 

up with two choices – A and B. Initially, we need to make a choice ‘A’ or ‘B’, and the 

prediction of reward (or punishment) associated with each choice is zero. However, if we 

choose A and are then rewarded, we compute a prediction error (PE) – the discrepancy 

between the actual outcome and the predicted value from the selected choice. Importantly, PE 

is then used to modify the expectation value of choice A, such that over time, the value of 

choice A comes to accurately reflect the reward gained by making this choice. In contrast, if 

choosing A leads to being punished, we will generate an aversive PE to update the 

expectation value of the choice. 

To summarise the learning process after the choice is made, initially the subject      

will compute PE signals based on reward or punishments are encountered, meaning the 

discrepancies between the actual value of the reward (or punishment) and the value of the 

action. By repeating the learning and decision making, it is assumed the system is trying to 

diminish the magnitude of the PE computed at the time of reward delivery based on the 

previous experience. In another word, the predicted value of reward is gradually coming to 

approximate the actual reward value (See Figure 1-1 for schematic explanation). 

 



 8 

Figure 1-1 Scheme of learning by PE. Red: a PE exists when the reward differs from its prediction, value of the 

selected action updated. Blue: no error exists when the outcome matches the prediction, behaviour remains 

unchanged (Wolfram Schultz, 2016). 

The previous study provided empirical 

support for the prediction of RL theory through 

measuring changes in the phasic firing rate of 

dopaminergic neurons in the monkey’s substantia 

nigra (SN) in classical conditioning experiments 

(Wolfram Schultz et al., 1997). They demonstrated 

that, when monkeys are initially given a reward, 

there is an associated phasic increase in the firing 

rate of dopaminergic neurons in the substantia nigra 

pars compacta (SNpc). Further, they also observed 

that when a reward was consistently paired with a 

predictive stimulus the phasic increase in dopamine 

firing rate observed at the time of reward delivery 

diminished over time, and then a phasic increase in 

dopamine firing rate was observed again shortly after 

the onset of the predictive stimulus (See Figure 1-2). 

This pattern of results could be explained by RL 

theory specifically: Firstly, a PE was computed early in learning for unexpected rewards as 

the value of the cue state did not predict the value of the reward. Secondly, the PE at the time 

of reward was diminished with learning as the value of the cue state approached the value of 

the reward state – the difference between these states was minimising towards zero, meaning 

there was no error in prediction. Thirdly, the reward-like neural firing was observed at cue 

Figure 1-2 Changes in dopamine neurons’ 

output code for an error in the prediction of 

appetitive events. (Top) a PE signal before 

learning as a drop of fruit juice reward occurs. 

(Middle) No PE signal after learning as a drop 

of fruit juice reward occurs. (Bottom) a 

negative PE signal as no reward as expected 

(Schultz et al., 1997).  
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onset after learning, as the monkey has moved from a state with no value – the state before 

the cue – to a state with value – the state value, this is a similar concept of the expected value 

we are going to explored later in this thesis. In summary, the pattern of changes in the 

dopaminergic response to the predictive cue and the reward is in line with the RL theory, and 

the in vivo human neuroimaging study would be an important extending research area to 

further support the theory frame. Actually, using some well-designed diagrams and 

sophisticated functional magnetic resonance imaging (fMRI), similar evidence was observed 

as we’ll discuss later. 
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output code for an error in the prediction of 
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negative PE signal as no reward as expected 
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1.1.3 Reinforcement learning theory support for reward and avoidance learning 

As discussed in Chapter 1.1.1, reward and avoidance-related learning are critically important 

parts of decision making as seeking rewards and avoiding punishments is a common 

propensity of human beings. Central to such behaviour is the ability to reflect the value of 

rewarding and punishing actions, establishing predictions of when and where such rewards 

and punishments will occur and use those predictions to form the basis of decisions that guide 

actions. The RL theory has also been adopted as the main theoretical framework in designing 

experiments (a typical reinforcement learning task design see Figure 1-3) as well as 

interpreting the results (Kim et al., 2006). The example task consists of reward and avoidance 

conditions, which drive the reward and avoidance learning, respectively. 

 

Figure 1-3 The typical schematic of a RL learning task design included three conditions: Reward, Avoidance 

and Neutral; each condition has a pair of fractals with different probability of monetary reward, loss or no 

change (Kim et al., 2006). 

 

According to RL theory, the actions leading to greater predicted reward will produce a 

positive PE signal, and as the receipt of a rewarding outcome in a given context serves to 

strength associations between that context and the response performed, thus the afferent 

reward PE signal will ensure that such a response is more likely to be selected in the future. 
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This process well explains the reward-related learning (J. P. O’Doherty et al., 2003; Reynolds 

et al., 2001; Wolfram Schultz, 2018). 

While avoidance is a key characteristic of adaptive and maladaptive fear. Avoidance 

learning (AL) is one of the instrumental conditioning that an individual learns to increase the 

frequency of a response with avoidance of an aversive outcome. Contrary to the positive 

reinforcement of reward learning, the feature of AL is that it is governed by negative 

reinforcement – the absence of a stimulus motivates behavioural change (Ilango et al., 2012). 

Like reward learning, AL could also be accounted for by standard theories of reinforcement 

(Ben et al., 2004; Kim et al., 2006). Kim et al found the common neural mechanism of 

getting reward and successfully avoiding punishment (Kim et al., 2006). It was proposed that 

successfully avoiding an aversive outcome itself acts as a reward, but different with the 

positive reinforcing properties as a real “extrinsic” reward, avoidance of an aversive outcome 

could be considered to be an “intrinsic reward”. Avoidance behaviour thus is positively 

reinforced on each trial when the aversive outcome is avoided, just as receipt of reward 

reinforces behaviour during reward conditioning. In summary, a reward reinforces the action 

that causes its delivery, and a punishment - the negative reward signal, reinforces an action 

that avoids its delivery (Kenji Doya, 2008). 

 

1.1.4 Summary 

Decision making is a complex process that happens every day in our life. When facing 

multiple choices, humans always have an inherent desire to maximize the prospects of 

obtaining the resources needed to survive and minimize the probability of encountering 

situations leading to harm. Thus, the reward and avoidance-related learning forms two 

important components of decision making. RL theory is widely suggested to solve the 

problem facing the decision making – learning from the previous experience through trial and 
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error. RL theory was also suggested to provide a plausible account of reward learning and 

avoidance-related learning. 
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1.2 Neurological basis of reinforcement learning  

1.2.1 Functional anatomy of dopamine system  

As discussed in 1.1.2., the preclinical experiment provides the empirical support for 

the phasic firing rate of dopaminergic neurons encoding error signals to drive the learning. In 

humans, the majority of dopamine neurons reside in the midbrain including the substantia 

nigra (SN) and the ventral tegmental area (VTA) (Glimcher, 2011). Dopamine neurons send 

widespread projections through these nuclei to regions such as the striatum (caudate and 

putamen), the amygdala and the cerebral cortex (Glimcher, 2011) (shown in Figure 1-4).  

 

Figure 1-4 The dopaminergic system of the midbrain and its projection pathways of striatum, the amygdala and 

the cerebral cortex (Glimcher, 2011). 

 

It’s well accepted that the dopamine system is highly associated with reward. 

Dopamine neurons generate action potentials when a reward is encountered, and the higher 

the reward, the stronger the dopamine response (W Schultz et al., 1993). However, the 

dopamine response to the reward itself will be reduced when the reward is predicted. But if 

more than the predicted reward occurs, the dopamine neurons will show stronger responses. 

By contrast, their activity decreases if no, or less than predicted reward occurs. The dopamine 

response thus reflects the PE signal which affects neuronal activity in brain regions involved 
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in reward learning, including the striatum (McClure et al., 2003; J. P. O’Doherty et al., 2003; 

W Schultz et al., 1993; Wolfram Schultz, 2016), frontal cortex (W Schultz et al., 1993; 

Wolfram Schultz, 2016), and amygdala (Wolfram Schultz, 2016). Strong evidence has 

highlighted the critical role of the response in targeted area striatum for reward PE signal 

(Balleine et al., 2007).  

 Besides the well documented role of reward and reward-associated learning, the 

dopaminergic system was also reported to modulate the PE signal in aversive conditioning 

(Menon et al., 2007). Consistently, increased dopamine release was found over baseline 

during aversive learning from animal studies (Menon et al., 2007; Pezze & Feldon, 2004; 

Young, 2004). For the aversive PE signal in the brain, converging evidence has suggested 

that the aversive PE was represented in the dopamine target brain regions including striatum, 

prefrontal cortex as well as anterior cingulate cortex (Kim et al., 2006; Seymour et al., 2005, 

2009; Tom et al., 2014). The amygdala was also suggested to show activity patterns 

consistent with aversive PE according to previous animals (McHugh et al., 2014), and human 

study (Yacubian et al., 2006).  

  

1.2.2 Neurobiological basis of reinforcement-based decision making 

According to the RL theory, the reward-based decision making and adaptive choice of 

actions were realized by the following three distinct phases: firstly, evaluation, in which 

participants estimated the action value and defined how much reward value each action will 

yield. Secondly, choice selection, in which an action was chosen by comparing the action 

values of two or more alternative choices. According to RL, there is some randomness 

existed in the choices and action selection is accomplished by a ‘softmax’ decision rule 

biased toward the seemingly richest options (Daw & Doya, 2006); Thirdly, learning, in which 

participants updated the action values by the error signal of expected action values.  
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A good match between the computational RL algorithms and neurobiological process 

in the brain was significantly observed (Dayan & Balleine, 2002b; Samson et al., 2010; Sharp 

et al., 2017). Striatum and cortical areas are thought to be involved in evaluation. Through 

measurement of monkeys’ performance in a reward-based task, A previous experiment 

demonstrated the representation of action values in the striatum, which could guide action 

selection in the basal ganglia circuit (Samejima et al., 2005). The basal ganglia circuit 

including striatum has been reported to participate into the RL process and maintain value 

representations to guide actions (Daw & Doya, 2006; K Doya, 1999; Lau & Glimcher, 2009; 

Morris et al., 2006). It has been reported that neurons in the monkey caudate nucleus that 

create a spatially selective response bias depending on the expected gain (Lauwereyns et al., 

2002). Besides the basal ganglia circuit, other cortical regions, such as orbitofrontal cortex 

(OFC), medial prefrontal cortex (mPFC) and lateral intraparietal area (LIP) was found to 

involved during evaluation process (Barraclough et al., 2004; Daw & Doya, 2006; Eon & 

Schultz, 2018; Matsumoto et al., 2018; Roesch & Olson, 2018). Neurons in the dorsolateral 

prefrontal cortex (dlPFC) was found to encode the animal’s past decisions and payoffs, as 

well as the conjunction between the two, providing signals necessary to update the estimates 

of expected reward, thus PFC plays a key role in optimizing decision making strategies 

(Barraclough et al., 2004). Also, the experiment on primate has reported that neuronal 

activity in orbitofrontal cortex (OFC) represents the value of the expected reward (Roesch & 

Olson, 2018). Via recording of animal response of OFC in a delayed go-nogo task, the study 

found the OFC neurons could report reinforcers are concerned with the expectation of 

reward, and also detect reward delivery at trial end (Eon & Schultz, 2018). Further, it has 

been suggested that the lateral intraparietal area (LIP) might be another brain region involved 

in the potential action value map (Daw & Doya, 2006).  
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The purpose of action evaluation is to direct the next step of action selection among 

the multiple choices in decision making. It was suggested that there is overlap of neural 

substrates for action choice and evaluation. (Daw & Doya, 2006). Through the simultaneous 

recordings in primate prefrontal cortex and dorsal striatum during a learning task in which the 

learned associations between stimuli and actions were periodically reversed, the recent study 

has found that the time course of change in behavioural responses over trials following a 

reversal was more related to the change in prefrontal responses than to that of striatal 

response, which suggested the prefrontal regions was more likely to be controlling behaviour 

(Samejima, 2009). As the expectation value attainment is important for guiding purposeful 

behaviour, the primate study demonstrated that prefrontal cortex (PFC) is a neuronal 

substrate for working memory used to guide reward-oriented behaviour (Amemori & 

Sawaguchi, 2018). Alternatively, considering the choice evaluation in the striatum, it was 

suggested that the action selection could be in the cortico-basal ganglionic loop (Daw & 

Doya, 2006). 

Learning from the experience is through the PE, the deviation signal between the 

expectation and the actual outcome. The seminal work of Schultz et al. (Wolfram Schultz, 

2018; Wolfram Schultz et al., 1997) suggests that phasic firing of midbrain dopamine 

neurons correspond to the neural representation of PE, encoding contingency-based reward 

signals. Also, the dopaminergic projected area striatum along with the diverse connected 

areas of predominantly anterior cerebral cortex including medial prefrontal cortex and 

anterior cingulate as well as insula were the key brain area encoding for the PE signal 

(Garrison et al., 2013a). In a dissociable manner, the PE signal in the reward processing (refer 

to reward PE ) was correlated with the functional activity in ventral striatum and orbitofrontal 

cortex (Garrison et al., 2013b; Kim et al., 2006), while the aversive PE signal in the 
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avoidance learning was associated with brain responses in the amygdala-striatal regions 

(Zhang et al., 2016), and bilateral insula (Garrison et al., 2013b; Kim et al., 2006).  

 

1.2.3 Summary 

 In summary, according to the literature on animal and human studies, there are 

specific neurobiological basis involved with the different phases of decision making process: 

cortico-basal ganglia circuit are responsible for the value estimation, and the prefrontal brain 

regions are involved with the choice selection, together with the brain regions of midbrain 

dopamine neurons and its projected areas are encoding the PE signal to drive the learning. A 

good parallel relationship of the neurobiological processes in the brain and implementation of 

RL was suggested: the cortico-basal ganglia circuit from the cortex, through striatum, the 

pallidum and the thalamus is involved into the multiple reinforcement-based decision making 

stages (Kenji Doya, 2007) (see Figure 1-5). 

 

Figure 1-5 Schematic model of implementation of RL in the cortico-basal ganglia circuit. The striatum learns 

and action value functions. The action value coding striatal neurons project to dopamine neurons, which sends 

the temporal difference (TD) signal back to the striatum. The outputs of action value coding striatal neurons 

channel through the pallidum and the thalamus, where stochastic action selection may be realized (Kenji Doya, 

2007).   
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1.3 Clinical application 

1.3.1 Constructs of impulsivity and compulsivity 

Impulsivity represents a multidimensional construct, and it covers a wide range of elements 

including: 1) decreased sensitivity to negative consequences of behaviour; 2) rapid and 

unplanned reactions to stimuli before complete processing of information; 3) regardless for 

long-term undesirable consequences or outcomes (Moeller et al., 2017). The impulsive 

behaviour could be simply defined as the tendency to act prematurely without foresight and 

unduly with risk, is associated with most forms of impulse control and addictive behaviours, 

especially gambling disorder (GD) (Dalley et al., 2011). For decision making, impulsive 

choice occurs when the individual preferentially chooses an immediately available small 

reward in preference to experiencing a delay for a larger one, which is probably governed by 

factors including the decisions about relative value of rewards and the ability to inhibit 

choices made to the more immediate options (Dalley et al., 2011).  

Compulsivity on the other hand is a complicated concept referring to repetitive 

behaviours that are performed according to certain rules or in a stereotypical fashion (Berlin 

& Hollander, 2009; Grant & Kim, 2018). And it was involved with three elements: 1) the 

inability not to perform an act with the unpleasant feeling; 2) experienced loss of control in a 

habitual and stereotyped way; and 3) feeling one has to repetitive the act even under the 

perceived negative consequences (Luigjes et al., 2019). In decision making, compulsivity 

includes several behaviour characteristics, such as self-defeating repetitive behaviours and 

the diminished ability to stop or divert unwanted ideas suggesting the presence of cognitive 

and behavioural inflexibility, and also habitual responding and diminished goal-directed 

control implying excessive habit-learning or impaired reward/punishment processing (Figee 

et al., 2016). Obsessive compulsive disorder (OCD) is the representative disorder with the 

compulsive feature such as the compulsions to washing hands. 



 19 

The two constructs of impulsivity and compulsivity shared some commonalities, for 

example, Robbins et al.,(Robbins, Gillan, Smith, Wit, et al., 2012) pointed out that both of 

them may reflect failures of response inhibition or top-down cognitive control (Robbins, 

Gillan, Smith, Wit, et al., 2012). While, the two constructs of impulsivity and compulsivity 

are different in nature, in which they differ in aspects of response inhibition: compulsivity 

relates to an inability to terminate action, whereas impulsivity refers to problems initiating 

actions (Lai & Ip, 2011). Traditionally, it has been suggested that impulsivity and 

compulsivity constitute opposite ends of spectrum across dimensional disorders (Figure 1-6), 

in which disorder like GD shares the feature of impulsivity while the OCD are characterized 

by the compulsivity.  

A shift existed from impulsivity to compulsivity with a transmission from initial 

positive reinforcement to later negative reinforcement has been reported in recent studies (El-

Guebaly et al., 2012; Everitt & Robbins, 2005). With the increase of impulsive behaviour, it 

has found that participants with GD would acquire the compulsivity feature with habitual 

process (El-Guebaly et al., 2012; Fontenelle et al., 2011). On the other hand, as the 

conceptualization of a compulsive disorder, it is also suggested that OCD shares behavioural 

components of impulsivity (Abramovitch & Mckay, 2016; Fontenelle et al., 2011; Grassi et 

al., 2015). 

 



 20 

 

Figure 1-6 The impulsivity and compulsivity constructs and possible psychological mechanisms 

underlying the two constructs (Robbins, Gillan, Smith, de Wit, et al., 2012). 

 

1.3.2 Obsessive compulsive disorder 

Obsessive-compulsive disorder (OCD) is a relatively common, chronic and disabling 

neuropsychiatric disorder with an estimated prevalence between 1% and 3% of populations 

(Figee et al., 2011). It is characterized by experience of unwanted repetitive thoughts 

(obsessions) and repetitive behaviours (compulsions) (Figure 1-7). As OCD is 

conceptualized as a compulsive disorder, the portrait of OCD related to risk averse 

individuals to avoid potential punishment or harm is well received. While recent studies have 

also linked OCD to impulsivity with risky decision making and dysfunctional reward 

processing. Further, OCD is suggested to have a poor cognitive flexibility to rapidly change 

behaviour in the face of changing circumstances. I will review studies on those 

neurocognitive factors including reward processing, punishment/harm avoidance and 

behavioural inflexibility conducted on OCD populations, and their relationship with the key 

symptom of compulsivity or repetitive behaviour as well the potential impulsivity feature. 
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Figure 1-7 Theoretical basis of obsessive-compulsive behaviour. An individual with obsessive-compulsive 

disorder experiences exaggerated concerns about danger, harm or loss that result in persistent obsession. 

Further, Relief from the distress and/or anxiety associated with these obsessions leads to reinforcement of the 

behaviours, leading to repetitive, compulsive behaviour when obsessions occur (Pauls et al., 2014). 

 

Reward processing 

Compulsivity in OCD may in part be explained by dysfunctional brain reward system, 

driving the development of a maladaptive behavioural at the cost of healthy rewarding 

actions and a relative failure to switch to more adaptive, goal-directed behaviours (Figee et 

al., 2016). As reward processing is critically dependent on the cortico-basal ganglia circuit 

talked in 1.3.2, participants with OCD have been consistently found the abnormal brain 

activation within this circuit, and the compulsivity was reported to be related to this impaired 

reward processing (Figee et al., 2016). Specifically, through the implementation of a 

monetary incentive delay task, the study has found that participants with OCD displayed 

attenuated reward anticipation activity in the nucleus accumbens (NAc) compared with 

healthy controls (Figee et al., 2011).  
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Besides the NAc, the higher orbitofrontal activation (Lagemann et al., 2012), and blunted 

responsiveness of the orbitofrontal-striatal loop during reward processing were found in 

participants with OCD (P. L. Remijnse et al., 2009). The study on dopaminergic dysfunction 

of reward processing in OCD has reported the abnormally cingulate error signalling during 

this process, and the exaggerated error signal was related to the trait of self-regulating 

behaviour difficulty (Murray et al., 2017). While, the application of deep brain stimulation 

treatment for OCD has reported a normalization of anticipatory reward responses in the 

ventral striatum and reduced excessive connectivity between the NAc and prefrontal cortex 

within the brain reward circuits, which provided a further hint for the reward processing 

impairment (Figee et al., 2014). Along with the aberrant reward processing found in the 

cortico-basal ganglia circuit for participants with OCD, the increased functional connectivity 

between NAc and middle frontal gyrus cortex in OCD was found to be correlated with 

severity of repetitive behaviours (Akkermans et al., 2018). In summary, these studies provide 

neural evidence for the altered reward processing in the cortico-basal ganglia circuit for 

participants with OCD, and the correlations showed that the compulsivity feature is the 

contributing factor to the malfunction.  
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Punishment or harm avoidance 

Avoiding harm/punishment is critical for maintaining physical and mental health. However, 

excessive harm avoidance can be maladaptive, such as OCD. Also, the avoidance has been 

included in several diagnostic criteria in latest DSM-V (American Psychiatric Association, 

2013).  

 

 

Greater avoidance habits or punishment sensitivity in OCD compared to healthy 

controls was reported in a number of previous studies based on the avoidance/punishment 

related task (Eldar et al., 2016; Endrass et al., 2011; Figee et al., 2016; Gillan et al., 2014, 

2016). And these excessive avoidance habits could come from the OCD individuals’ 

engagement in compulsive behaviours as they may be less capable of noticing its self-

damaging consequences (Figee et al., 2016). Interestingly, through a pain shock paired with a 

conditioned stimulus experiment, Eldar et al. found in their study that OCD individuals had 

an imbalance of harm avoidance behaviour, which is the better learning from the shocks 

whereas the poorer learning from success in avoiding shocks. And this imbalance could be 

predicted by the striatum’s function and structure (Figure 1-8). It was concluded that the 

higher gray matter volume found in the OCD might engender this excessively persistent harm 

avoidance pattern, and failure to adjust to success in harm (Eldar et al., 2016). Besides from 

the striatum, the exhibited avoidance behaviour was found associated with the caudate 

Figure 1-8 Striatum plays a key role in harm-avoidance 

habits: its structure predicts avoidance learning style 

(red/yellow: more gray matter in active avoiders, 

blue/green: less gray matter (Hauser et al., 2020). 
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nucleus (Gillan et al., 2014, 2016), and medial prefrontal cortex (mPFC) hyper-activation in 

participants with OCD according to the functional neuroimaging studies (Kaufmann et al., 

2013). While, the decreased activation was also found in the ventral striatum in the loss 

outcome for OCD (Wh et al., 2011). Further, the increased brain activation in the anterior 

insular during the phase of loss anticipation was found in OCD compared to controls. It was 

concluded that this dysfunction may be involved in the trait of compulsivity with a 

diminished ability to foresee the negative consequences of compulsive actions (Figee et al., 

2016). For the punishment response in OCD, a more impulsive response style was 

demonstrated in OCD with failure to slow down the response after receiving punishment 

compared with controls under punishment conditions in a go/no-go task (Morein-Zamir et al., 

2013). While this sensitivity to punishment has been found positively correlated with the high 

scores of disease hoarding dimension of participants with OCD in a questionnaire study 

(Fullana et al., 2004). 

 

Cognitive and behavioural inflexibility 

The contingency related flexibility refers to the adaptation of behaviour or cognitive 

strategies by evaluating adaptive response in the face of changing environment (Figee et al., 

2016). The task like stop-signal task and reversal learning task has been used for the 

cognitive and behavioural flexibility measurement. Using the stop-signal task, the study has 

demonstrated the cognitive and behavioural inflexibility was limited to neurocognitive profile 

of OCD (Samuel et al., 2006). The reversal learning task combining with neuroimaging 

technique has further reported this cognitive flexibility deficits were related to the fronto-

striatal circuit dysfunction (Bechara et al., 2000; Chamberlain et al., 2007; Gu et al., 2008; 

Peter L Remijnse et al., 2006). 
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1.3.3 Gambling disorder 

Gambling disorder is associated with loss of control and continued gambling in spite of 

negative consequences. GD is classified as behavioural addiction in the Diagnostic and 

Statistical Manual of Mental Disorders V (DSM-V), with a lifetime prevalence of 0.5 -1% 

(Miedl et al., 2012, 2014; Petry et al., 2005; Potenza, 2008). In detail, GD is characterized by 

persistent and recurrent maladaptive patterns of gambling behaviour, and is associated with 

impaired functioning, reduced quality of life, and high rates of bankruptcy, divorce, and 

incarceration. The behaviours that characterize GD are impulsive in that they are often 

premature, poorly thought out, risky and result in long-term side effects (Lai & Ip, 2011). 

Broadly speaking, a gamble involves a decision to place a wager on an uncertain event that 

offers the potential for a larger prize, and gambling can be considered a prototypical example 

of a risky decision and represents a harmless form of entertainment for most consumers, it 

has the capacity to become dysfunctional in a minority. As GD has been also proposed to 

represent a ‘behavioural addiction’, the impairments in the impulsivity responding and risky 

decision-making was found in GD as well as alcohol-dependent group (Goudriaan et al., 

2006; Lawrence et al., 2009; Ledgerwood et al., 2012). 

 

Reward processing 

Dysfunction in reward processing has been found in GD, which is associated with loss of 

control and continued gambling in spite of negative consequences. According to a recent 

meta-analysis based on the studies of reward processing in addiction reported that individuals 

gambling addiction showed decreased striatal activation both at phases of anticipation and 

outcome compared to healthy controls (Sources et al., 2017). Not only the striatum, there are 

studies that have reported hypo-activity in other brain regions in the reward circuit in the GD 

during both the anticipation and receipt of monetary rewards. The study found that GD group 
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exhibited significantly reduced activity in the reward circuit areas including ventromedial 

prefrontal cortex (vmPFC) and ventral striatum as well insula during the phases including the 

prospect and anticipation in the task related studies (Pearlson & Potenza, 2013; Reuter et al., 

2005; Ruiter et al., 2009). And, the activity in the ventral striatum was found to be inversely 

correlated with the levels of impulsivity (Pearlson & Potenza, 2013), and the gambling 

severity (Reuter et al., 2005). Jan et al. has also reported a reduced activation of fronto-

striatal circuit of GD population implying the blunted response to reward stimuli. And the 

activation was found negatively correlated with gambling severity, thus linking the 

hypoactivation of the reward processing brain regions to disease severity (Reuter et al., 

2005). Further, the ventral striatum of problem gamblers showed an imbalance response to 

different reward types during reward anticipation and also, imbalance of response existed in 

the posterior OFC during reward outcome (Sescousse et al., 2018). While there are several 

studies found hyper-activity within those brain regions during reward processing 

(Romanczuk-seiferth et al., 2009), implying some sensitization of the reward system. Ruth et 

al., has found that problem gamblers showed stronger activation in the bilateral ventral 

striatum to 5 euro than to 1 euro trials together with more activation associated with gain-

related expected value in the reward circuit than controls, which showing GD are 

characterized by abnormally increased reward expectancy, which may render them 

overoptimistic with regard to gambling outcomes (Holst et al., 2011). GD is also considered 

as behavioural addiction as sharing the same characteristics with addiction (Janssen et al., 

2015). GD’s adherence to the disadvantageous decks for receiving higher immediate rewards 

with suffering higher overall losses were reported before in the gambling task studies 

(Goudriaan et al., 2006; Sescousse et al., 2018). The neurochemical study reported the 

speculated gambling behaviour was related to a deficiency of the mesolimbic dopaminergic 

reward system (Blum et al., 1996).  



 27 

 

Punishment or harm avoidance 

The punishment of monetary loss was found to be associated with activation of prefrontal 

cortex including OFC and inferior prefrontal sulcus (J. O’Doherty et al., 2001). GD is 

reported to be related to response preservation and diminished punishment sensitivity as 

indicated by hypoactivation of the ventrolateral prefrontal cortex when money is lost (Ruiter 

et al., 2009). During the phase of loss anticipation, GD group also exhibited significantly 

reduced activity in the vmPFC, insula and ventral striatum and ventral striatum activation 

was found to be inversely correlated with levels of impulsivity (Pearlson & Potenza, 2013). 

Neural activation in the ventromedial caudate nucleus during anticipation of loss decreased in 

participants with GD compared to OCD and healthy controls, and additionally, reduced 

activation in the anterior insula during anticipation of loss was observed in GD, which was 

intermediate between the OCD and the controls. Further, there was a significant positive 

correlation between anterior insula activity and gambling scores (Choi et al., 2012).  

 

Cognitive and behavioural inflexibility 

Problem gamblers were reported a deficiency feedback processing in the Card Playing Task 

with less likely to change from the deck after experiencing loss, reflecting a response 

inflexibility (Goudriaan et al., 2005). It was reported that the disadvantages of “Chasing one's 

losses'' might underlie the development of this inflexibility in gamblers (Linnet et al., 2006). 

Application of reversal learning task in GD found the vmPFC is implicated to be involved 

with this cognitive process (Clark et al., 2004). Further, the other study provides a 

demonstration that the impairment of vmPFC would affect this reversal learning performance 

(Fellows & Farah, 2005).  
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1.3.4 Summary 

Participants with OCD and GD have been found with aberrant decisions (Franken et 

al., 2008; Sachdev & Malhi, 2005). The OCD and GD are polar opposite representative of 

compulsive and impulsive disorder on the supervised dimensional model of impulsive-

compulsive spectrum disorders, respectively. Findings of altered reward processing (Figee et 

al., 2011; Wh et al., 2011), and harm avoidance and less sensitivity to punishment (Kaufmann 

et al., 2013; Wh et al., 2011) were found in OCD. Under the GD condition, previous studies 

have reported the impaired and risky decision making (Goudriaan et al., 2006; Lawrence et 

al., 2009; Ledgerwood et al., 2012) and diminished sensitivity in reward and punishment 

(Ruiter et al., 2009). As a typical conception of compulsive disorder, recent studies also 

suggested that OCD shares behavioural components of impulsivity (Abramovitch & Mckay, 

2016; Fontenelle et al., 2011; Grassi et al., 2015), and also based on the existed portrait of 

impulsive disorder, a compulsivity feature was suggested to be acquired in participants with 

GD with the increase of the impulsive behaviour (Fontenelle et al., 2011). The interesting 

problem is how the constructs of impulsivity/compulsivity are linked to the reward/avoidance 

processing in participants with OCD and GD.  

 

1.4 Research overview 

This dissertation specifically focuses on investigating the differences of reward and 

avoidance-based decision process at three distinct phases including outcome processing, 

value expectation and error signal processing. Behaviourally, the RL algorithm was used to 

interpret the decision making process based on the participants’ behavioural data (Dayan & 

Balleine, 2002a). The model could help specify a set of structural assumptions along with 

free parameters that can be adjusted to capture a range of behaviours such as learning 



 29 

efficiency (Dezfouli et al., 2018). Further, the neuroimaging technique could reveal the brain 

mechanism under these distinct phases.  

Using the same paradigm of behavioural modelling and neuroimaging technique, we 

examined the proposed aberrant reward and avoidance-based decision process in OCD and 

GD population. Also, we investigated the impulsivity/compulsivity constructs effect on the 

reward and avoidance-based decision process in those clinical groups. The schedule of the 

thesis chapters is as follows: 

In Chapter 2, we introduced the neuroimaging technique in this study including the 

physics of functional magnetic resonance imaging (fMRI), task design as well as imaging 

processing.  

In Chapter 3, we examined participants' behavioural response under the reward and 

avoidance condition in the learning task. the statistical analysis was carried out from the four 

measurements: 1) the response time of choice making; 2) the number of Correct and Incorrect 

choice; 3) the learning curve of Correct and Incorrect fractal choice in reward/avoidance 

condition to model the participants learning of the task; 4) one trial back – the stay ratio on 

the rewarded/punished versus the non-rewarded/not-punished trials to understand participants 

responding pattern. A Q-learning model was applied to model the participants’ trial-by-trial 

learning process. The two characteristic parameters were learning rate and inverse 

temperature parameter which showed the participants’ learning and the balance of 

exploitation versus exploration on the choice respectively.  

In Chapter 4, we examined the neural mechanism under the behavioural tendencies 

based on the chapter 3. Using event-related fMRI and computational modelling, the 

participants’ neural activity was investigated under three distinct phases: 1) outcome delivery 

and 2) expectation, as well as 3) prediction error (PE) signal processing under conditions of 

receipt and avoidance of reward and punishment compared to neutral condition. Due to the 
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probability switch in the learning task, we were supposed to see the enhanced PE signal and 

its associated brain activation. 

In Chapter 5, we investigated the proposed maladaptive and aberrant decision process 

in participants with OCD (i.e. high compulsivity) and participants with GD (i.e. high 

impulsivity). At first stage, the statistical analysis of the participants’ behavioural 

performance was carried out under the reward/avoidance condition with comparison to 

healthy controls, and four measurements were included: 1) the response time; 2) the number 

of Correct and Incorrect fractal choice; 3) the learning curve; and 4) one trial back of the stay 

ratio. Next, the RL algorithms were implemented to model the participants’ behavioural 

process in the learning task and extract the learning traits including: 1) learning rate; 2) 

inverse temperature parameter. Further, to identify the neural substrates supporting aberrant 

differences compared to healthy controls, imaging regression analysis was carried out to 

examine the brain activation in OCD and GD group compared to healthy controls at the three 

phases of decision process: 1) outcome processing; 2) expectation value; and 3) error 

processing. 

In Chapter 6, based on the findings of previous chapters, we provided a summary of 

whole project findings and suggest potential fruitful avenues forward for future studies.  
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2 A review of methodologies: neuroimaging and modelling 

2.1 Methods background 

In this chapter, we are going to review the most critical methods in this thesis - 

Functional magnetic resonance imaging (fMRI), and also computational modelling based on 

the typical reinforcement learning task introduced in Chapter 1. FMRI is a non-invasive 

neuroimaging technique that enables quantification of brain function with balance of 

temporal and spatial resolution. Over the past decades, fMRI has made substantial 

contributions to localize and understand normal human brain functions involved with various 

cognitive processes, including reward/avoidance learning. Also, fMRI has been suggested as 

a powerful diagnosis tool, which is effective and efficient in the detection and understanding 

of abnormal brain function under diverse clinical conditions. In this Chapter, we will review 

many aspects of fMRI including the underlying physics, task design and imaging processing.  

The computational modelling is nowadays widely used to interpret the task and 

extract the feature variables from the behavioural data as well as probe the computational 

processes underlying the behaviour (Calder et al., 2018). Combining fMRI technique, fitting 

the model to the experimental data could find the related neural correlates of the calculated 

computational values. We will also review the modelling application and related fMRI 

imaging processing.  

 

2.2 Physics of fMRI 

2.2.1 MR physics  

The fMRI images are obtained using the MRI scanner. During imaging scanning, the 

participant is exposed to a radiofrequency (RF) electromagnetic field pulse delivered through 

the head coil surrounding the participant’s head. The main magnetic field (B0) aligns the 

spins of protons in hydrogen atoms in the participant’s brain along its axis. Those protons 
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absorb the energy at a very specific frequency band that depends on the field strength and 

become excited. The nuclei of these protons then start the relaxation process and emit the 

energy. Different tissue types have different relaxation times, thus creating the contrast 

among gray matter, white matter and cerebrospinal fluid (CSF) in the images. Several kinds 

of relaxation that are used to create contrast in images: T1, T2, and T2*. T1 is the rate at 

which spins relax back to the main magnetic field in the direction along the external magnetic 

field, usually referring to the z-axis. T1-weighted images have values across the image 

sensitive to the differences in T1 across gray matter, white matter and CSF, and thus 

providing excellent detailed images of brain anatomy. T2 refers to how quickly the total 

magnetic component decreases after emitted by the RF pulse dissipates, which also depends 

on the tissue type in the brain. T2-weighted images also provide excellent anatomical 

structure and additional detail in some subcortical, brainstem nuclei and many brain 

pathologies. T2* is the rate of attenuation of the magnetic field stimulated by the RF pulse, 

and it depends on local inhomogeneity in magnetic susceptibility that are caused by changes 

in blood flow and oxygenation (Wager & Lindquist, 2011). Such special effect is the 

fundamental of T2*-weighted imaging method, which is sensitive to blood oxygenation 

level-depend (BOLD) signal. More details will be provided in 2.1.2 later. 

As the spin relaxes, the emitted energy is detected by the receiver coil. This energy is 

detected as a one-dimensional series of fluctuations over time. To reconstruct a three-

dimensional (3D) image from these signals, gradients magnetically changing the strength of 

the magnetic field in systematic ways across space are applied. So that the frequency and the 

phase of the signals could be detected by the receiver coil encode the location of the signal in 

the brain. Pulse sequence is one of the techniques designed to implement particular patterns 

of RF and gradient manipulations. 
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2.2.2 BOLD signals 

As mentioned above, T2*-weighted functional imaging is used to obtain measures of 

regional brain activity, thus offering a noninvasively experimental window to observe the 

human brain. The popular method uses the blood oxygenation level-depend (BOLD) signal 

based on the difference in T2* between oxygenated and deoxygenated haemoglobin (Voos & 

Pelphrey, 2013). When haemoglobin (red blood cell) is fully saturated with oxygen 

(oxyhemoglobin), it behaves as a diamagnetic substance. As neural activity increases, the 

metabolic demand for oxygen and nutrients also increase. When oxygen is extracted from the 

blood, the haemoglobin becomes paramagnetic, that creates small distortions in the B0 field 

that T2* decrease with faster decay of the signal. Increases in deoxyhemoglobin can lead to a 

decrease in BOLD signal. Such property links the local oxygen supply in the blood to the 

image contrast generated by the magnetic resonance. So the blood-oxygen-level dependent 

(BOLD) fMRI is introduced based on this concept, which is further developed into one of the 

principal imaging methods used to demonstrate regional, time-varying changes in brain 

activation (Glover, 2012). 

 Specifically, the BOLD signal changes after a stimulus e.g. visual picture, could be 

described as the hemodynamic response function (HRF). The first phase of stimulus is 

accompanied by a transient increase in deoxyhemoglobin concentration, which is called ‘dip’. 

This phenomenon is because the regional neural activation induced by stimulus consumed 

more oxygen than the supply in this area. Then, an increase in the oxy/deoxy-hemoglobin 

ratio leading to a high MR signal. This signal increase is proportional to the underlying 

neural activity. An “undershoot” is the last phase of HRF before the BOLD signal reaches      

the baseline (depicted in Figure 2-1), which is again due to the imbalance and delay between 

the blood supply and consumption. Through the BOLD images, we could indirectly detect the 
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neuronal activity by subtracting the signal during a particular task (peak of HRF) to that 

during no task condition (baseline). 

 

  

Figure 2-1 Hemodynamic Response Function (HRF) in the fMRI from a hypothetical short duration stimulus 

(red bar) (Amaro & Barker, 2006). 

2.2.3 fMRI task design 

The typical fMRI task activation experiments utilize visual, auditory or other stimuli to 

alternately induce two or more different cognitive states in the participants. Task-based fMRI 

detects neural activity based on comparison between one or more activation conditions 

relative to one or more control conditions. In another word, brain areas that significantly 

change (positively or negatively) along with the stimuli are identified as activated by the task. 

There are two types of fMRI designs: block or event-related design. 

 

2.2.4 Block design and event design 

Using a block design, the trials are arranged to alternate between the experimental and 

control conditions, with each block typically being a few tens of seconds (usually 15-30 

seconds) long. In a simple blocked design, one control condition alternates with one 

activation condition. During each block, the subject either performs a continuous task or 
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responds to serial stimuli in relatively rapid succession. Activated cortex is identified by 

block-to-block periodic BOLD signal changes that are correlated with the task paradigm. 

Advantages of blocked designs include their simplicity and power for detection of an 

activation response. In particular, blocked paradigms summate the hemodynamic response 

over multiple neural events within each block, yielding relatively high BOLD contrast-to-

noise ratio. Excessively low block frequencies are vulnerable to low-frequency noise (such as 

scanner drift) while excessively high block frequencies are vulnerable to attenuation of the 

BOLD response amplitude. A choice between 15 and 30 seconds often represents a 

reasonable compromise.  

Different from the block design (shown in Figure 2-2), the stimuli are presented 

randomly in event-related designs, which is similar as ERP (Event-Related Potential) in other 

neuroimaging methods, such as electroencephalography (EEG) or magnetoencephalography 

(MEG). The responses to trials belonging to each condition are selectively averaged and 

statistically compared. Responses can also be sorted according to the nature of the response: 

for example, correct responses can be separated from incorrect responses.  

The advantages of event related design: greater control over cognitive stimuli, 

avoidance of cognitive adaptation that may occur during extended trials, more flexible 

analysis strategies, and great power to measure the hemodynamic response. Disadvantages, 

the slow time course of the hemodynamic response complicates the implementation and 

analysis of event-related paradigms. For block design is optimum for detecting activation and 

suitable for long-lasting stimulus (e.g., pain), but an event-related design is superior when 

characterization of the amplitude or timing of the hemodynamic response is desired 

(Matthews & Jezzard, 2004). 



 44 

 

Figure 2-2 Schematic diagram of the differences in the design of blocked versus event-related fMRI designs 

(D’Esposio et al., 1999). 

 

2.2.4.1 Typical cognitive task design example 

As introduction in Chapter 1, decision making is a complex process, and 

reward/avoidance are two critically important components. Various cognitive tasks have been 

conducted in the MRI scanner to investigate the underlying brain mechanism. The 

reinforcement learning task (Kim et al., 2006), is one of the typical tasks designed to 

investigate the brain mechanism of reward learning and avoidance learning (shown in Figure 

2-3). The event-related task consists of three conditions: reward, avoidance and neutral. 

Under each condition, a specific pair of fractals was displayed, and the participants were 

required to choose one of them. Then, the chosen action was highlighted. Further, the 

outcome of the chosen action of getting reward or punishment was depicted. The specific pair 

of fractals under each condition has a higher and lower probability to get reward/punishment, 

respectively. This probability difference is to drive the participants’ learning of the task. At 

the time of performing the task, participants underwent fMRI scanning sessions. To 

investigate the brain mechanism under the distinct phases of reward/avoidance conditioning 
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compared to the neutral condition, the conditions were pseudorandomly intermixed 

throughout the sessions.  

 

Figure 2-3 The typical schematic of a RL learning task design included three conditions: Reward, 

Avoidance and Neutral; each condition has a pair of fractals with different probability of monetary reward, loss 

or no change (Kim et al., 2006). 

 

2.2.4.2 Modelling the task   

As we have introduced in Chapter 1, the RL theory has been adopted as the main      

theoretical framework to interpret the task (Kim et al., 2006). Based on the RL theory, a 

computational model (advantage learning model) has been used to interpret the reward and 

avoidance-based decision process in the task (Kim et al., 2006). The detailed description is as 

follows: 

 Advantage learning uses a temporal difference (TD) learning rule to learn value prediction of future 

reward. In temporal difference learning, the prediction 𝑉"(𝑡)  of the value 𝑉(𝑡) at any time t within a trial is 

calculated as a linear product of the weights 𝜔! and the presence or absence of a conditioned stimulus (CS) at 

time t, coded in the stimulus representation vector 𝑥!(𝑡):	 

𝑉"(𝑡) = 	∑! 𝜔!𝑥!(𝑡); 

Learning occurs by updating the predicted value of each time-point in the trial by comparing the value 

at time t+1 that at time t, leading to a PE or:  



 46 

𝛿(𝑡) = 𝑟(𝑡) + 𝛾𝑉%(𝑡 + 1) − 𝑉%(𝑡); 

Where r(t) is the reward at time t; The parameter 𝛾 is a discount factor that determines the extent to 

which rewards that arrive earlier are more important than rewards that arrive later on. Set 𝛾 = 1; the weights 𝜔! 

are then updated on a trial-by-trial basis according to the correlation between PE and the stimulus representation 

𝜔! = 	𝛼 ∑" 𝑥!(𝑡)𝛿(𝑡); 𝛼 is the learning rate. 

Assign six time points to each trial, and use each participants’ individual event history as input. Setting 

r(t) as -1, 0 or 1 to denote receipt of a reward outcome, no outcome, or an aversive outcome, respectively. On 

each trial, the CS was delivered at time point 1, the choice was made at time point 2, and the reward was 

delivered at time point 6. For the analysis, reward PEs are calculated for the specific CS that was illuminated: at 

the time of choice, where 𝑉"(𝑡) was generated based on just one of the two stimuli shown. Here, the PE signal is 

a variant of 𝛿(𝑡) known as the advantage PE signal 𝛿#(𝑡);	 

𝛿#(𝑡) = 𝑟(𝑡) + 𝛾𝑉"(𝑡 + 1) − 𝑄"(𝑡, 𝑎); 

 𝑄"(𝑡, 𝑎)	corresponds to the value of the specific chosen action at time t, and V(t) is the value of the 

state at the current time t as calculated in Equation 1 above.  

And these action values are used to determine the probability of choosing a given action using a 

logistic sigmoid:  

𝑝(𝑡, 𝑎) = 	𝜎(𝛽(𝑄"(𝑡, 𝑎) − 𝑄"(𝑡, 𝑏))); 

 where 𝛽 is an inverse temperature that determines the ferocity of the competition? This probability is 

then used to define the value of the initial state at t =1 as:  

𝑉"(1) = 	𝑝(1, 𝑎)𝑄"(1, 𝑎)+	𝑝(1, 𝑏)𝑄"(1, 𝑏); 

 

2.2.4.3 Brain targets under the task 

Combining the fMRI technique and modelling, the brain mechanism of 

reward/avoidance-related decision process has been revealed. At the outcome stage, the 

activity of the brain area medial orbitofrontal cortex (OFC) increases after receiving reward 

as well as avoiding an aversive outcome. At the expectation stage, the medial and lateral 

OFC was found correlated with expected reward value in both the reward and avoidance 
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trials. Last, the ventral striatum extending from the ventral putamen into the nucleus 

accumbens proper was found correlating with the reward PE signal derived from the model. 

While left and right insula was found significantly correlated with an aversive PE signal on 

avoidance trials.  

 

2.3 Task-based fMRI processing 

For task-based fMRI processing, it usually includes three steps: i) imaging quality 

control, ii) imaging pre-processing, and iii) post-processing. All the image processing was 

realized through the statistical parametric modulation (SPM, version 12) on Matlab v2015a 

environment on the platform of Massive 

(https://www.monash.edu/research/infrastructure/platforms-pages/massive). 

 

2.3.1 Imaging quality control 

Ensuring the quality of neuroimaging data is becoming crucial as the first step for any 

imaging analysis workflow, this process includes identify and exclude the low-quality images 

to increase the reproducibility (Fessler, Michael B.; Rudel, Lawrence L.; Brown, 2008a; 

O’connor, 2016). In the early days, manual quality control (QC) was used to entail screening 

every single image of a dataset individually. However, manual QC suffers at least two 

problems: unreliability and time-consuming nature for large datasets. Automated QC has now 

attracted great attention with the convergence of machine learning solutions (Gedamu et al., 

2008). The automated methods estimate image quality using “image quality metrics'' (IQMs) 

that quantify variably interpretable aspects of image quality (e.g., summary statistics of image 

intensities, signal-to-noise ratio, coefficient of joint variation, Euler angle, etc.). The web 

application program interface (web-API) for QC of magnetic resonance imaging data 

(MRIQC) (https://mriqc.readthedocs.io/en/latest/workflows.html) provides a unique platform 
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to perform the QC automatically. It was reported that over 50,000 and 60, 000 records of 

anatomical and functional IQMs has been collected via the platform of MRIQC (shown in 

Figure 2-4) (Esteban et al., 2019). 

 

              

Figure 2-4 The MRI quality control cases increase rapidly. Database has accumulated over 60,000 

records of IQMs for BOLD images. Records are shown after exclusion of duplicated images (Esteban et al., 

2019). 

 

MRIQC is an open-source project, which is compatible with input data formatted 

according to the Brain Imaging Data Structure (BIDS) standard (Esteban et al., 2017). It 

extracts the IQMs for each subject’s image data and generates the summary report. The tool 

was developed under several engineering principles: 1) Modularity and integrability with 

implementation of a nipype workflow to integrate modular sub-workflows that rely upon 

third party software toolboxes such as FSL and AFNI (Gorgolewski et al., 2011). 2) Minimal 

preprocessing: the workflow should be as minimal as possible to estimate the IQMs (shown 

in Figure 2-5). 3) Interoperability and standards: MRIQC is compatible with input data 
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formatted according to the BIDS standard. 4) Reliability and robustness: the software 

undergoes frequent vetting sprints by testing its robustness against data variability.  

 

 

Figure 2-5 MRIQC’s processing data flow. Images undergo a minimal processing pipeline to obtain the 

necessary corrected images and masks required for the computation of the IQMs (Esteban et al., 2017). 

The IQMs for fMRI could be grouped in four broad categories (shown in Table 2-1), 

providing a vector of 64 features per bold scan (Esteban et al., 2019). For example, the item 

DWARS measures the temporal variations by calculating the rate of change of BOLD signal 

across the entire brain at each frame of data. The FD (framewise displacement) is proposed to 

regress out instantaneous head-motion in fMRI studies (Fessler, Michael B.; Rudel, 

Lawrence L.; Brown, 2008b).  

 

Table 2-1 Summary table of image quality metrics for functional (BOLD) MRI (Esteban et al., 2019). MRIQC 

produces a vector of 64 image quality metrics (IQMs) per input BOLD scan. 

IQMs measuring temporal variations 
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tSNR 

A simplified interpretation of the original temporal SNR definition by 

Kruger et al (Krüger & Glover, 2001). We reported the median value of 

the tSNR map calculated as the average BOLD signal across time over 

stthe corresponding temporal s.d. map. 

GCOR 
Summary of time-series correlation as in (Saad et al., 2013) using AFNI 

@compute_gcor 

DVARS 

The spatial standard deviation of the data after temporal differencing. 

Indexes the rate of change of BOLD signal across the entire brain at 

each frame of data. DVARS is calculated using Nipype, after head-

motion correction.  

IQMs targeting specific artifacts 

FD 

The six-realignment displacement – proposed by Power et al (Fessler, Michael 

B.; Rudel, Lawrence L.; Brown, 2008b) to indicate instantaneous head-motion 

in fMRI studies. MRIQC reports the average FD. 

GSR 

The Ghost to Signal Ratio (Giannelli et al., 2010) estimates the mean signal in 

the areas of the image that are prone to N/2 ghosts in the phase encoding 

direction with respect to the mean signal within the brain mask. Lower values 

are better. 

DUMMY 
The number of dummy scans – A number of volumes at the beginning of the 

fMRI time-series identified as nonsteady states. 

IQMs from AFNI 

AOR 
AFNI’s outlier ratio – Mean fraction of outliers per fMRI volumes as given by 

AFNI’s 3dToutcount 

AQI AFNI’s quality index – Mean quality index as computed by AFNI’s 3dTqual 

IQMs measuring spatial information  

EFC 

The entropy-focus criterion (Atkinson et al., 1997) uses the Shannon entropy of 

voxel intensities as an indication of ghosting and blurring induced by head 

motion. Lower values are better. 
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FBER 

The foreground-background energy ratio (Atkinson et al., 1997) is calculated as 

the mean energy of image values within the head relative to the mean energy of 

image values in the air mask. Consequently, higher values are better. 

FWHM 
The full-width half-maximum (Pezzulo et al., 2013) is an estimation of the 

blurriness of the image calculated with AFNI’s 3d FWHMx. Smaller is better. 

SNR 

MRIQC includes the signal-to-noise ratio calculation proposed by 

Dietrich et al. (Dietrich et al., 2007), using the air background as noise 

reference. Additionally, for images that have undergone some noise 

reduction processing, or the more complex noise realizations of current 

parallel acquisitions, a simplified calculation using the within tissue 

variance is also provided. 

SSTATs 

Several summary statistics (mean, standard deviation, percentiles 5% and 95%, 

and kurtosis) are computed within the following regions of interest: background, 

CSF, WM and GM. 

      

 

2.3.2 Imaging preprocessing 

As the goal of fMRI study is to identify brain areas activated by the task, the 

preprocessing of fMRI data is needed to perform to remove the variability in raw data. The 

variability in raw fMRI data could be great to swamp out the small changes in the BOLD 

response induced by most cognitive tasks. Some unavoidable variability such as thermal or 

system noise couldn’t be controlled, but other sources of variability are measurable. For 

example, when a subject moves the head, the BOLD response could be sampled from each 

spatial position within the scanner and suddenly changes in a predictable manner. The 

preprocessing could remove those artefacts at certain degrees from the data. Generally, 

preprocessing steps must be performed prior to the statistical analysis of fMRI data. These 

steps have two primary goals: 1) to reverse displacements of the data in time or space that 
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may have occurred during acquisition, 2) to enhance the ability to detect spatially extended 

signals within or across participants.  

In our study, we focus on a number of common preprocessing steps. Firstly, the slice 

timing correction is used to correct for variability in the BOLD responses that are due to the 

fact that data in different slices are acquired at different times. Secondly, the realignment is to 

correct for variability due to head movement. Thirdly, the coregistration is to align the 

structural and functional data, and then the normalization is to warp the subject’s functional 

image to a standard space according to the structural information. Lastly, spatial smooth is 

done to reduce the nonsystematic high-frequency spatial noise.  

 

 

SLICE TIMING 

The fMRI data are acquired in slices using sequential 2D imaging techniques like 

single-shot echo planar imaging sequences. As the data analysis is essentially a time course 

analysis, exact timing with respects to the stimulus presentation paradigm is crucial. As a 

whole volume can be acquired within typical repetition times (TR) ranging from hundreds of 

milliseconds to several seconds, a slice acquisition delay between slices is generated. Thus, 

the delay between slices could add up to significant temporal shifts over the full volume 

between the expected and actually measured hemodynamic responses (shown in Figure 2-6). 

In order to compensate for this slice acquisition delay, the slice timing correction has been 

proposed as a necessary pre-processing step (Calhoun et al., 2000; Henson et al., 2002). To 

do the slice timing correction, the individual slice is temporally realigned to a reference slice 

based on its relative timing using an appropriate resampling method. Usually, the linear, sinc 

and cubic spline interpolation could be used. Slice timing correction was demonstrated to 
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improve the sensitivity in group statistical analysis, particularly true for event-related designs 

and task designs (Sladky et al., 2011). 

 

 

Figure 2-6 Illustration of the slice-timing problem (Sladky et al., 2011). The hemodynamic responses of the 

individual slices are acquired at different time points. Without adequate compensation, this will lead to biased 

estimators in fMRI analysis. 

 

SPATIAL REALIGNMENT (HEAD MOTION CORRECTION) 

Correcting for head motion is the critically important preprocessing step. Correction 

for head movements based on the assumption that when a subject moves his or her head, the 

brain does not change shape or size. Under this circumstance, the brain could be treated as a 

rigid body. Thus, the head movement correction then becomes a problem of rigid body 

registration. Any movement of a rigid body can be described by six parameters. When a 

person lies in the MRI scanner, the centre of any voxel could be described as a set of three 

coordinate values. Based on the coordinate system, the only possible rigid body movements 

are 1) a translation along the x axis, 2) a translation along the y axis, 3) a translation along the 

z axis, 4) a rotation about the x axis, 5) a rotation about a single parameter. Each of these 
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translations could be characterized by the distance moved along that axis and each of these 

rotations characterized by the angle of rotation. Suppose collecting BOLD responses from the 

whole brain on two separate TRs only with head movement. In order to correct for this head 

movement, the two sets of data need to be back into spatial alignment. One of the correction 

strategies is to take the data from the first TR as the standard and then perform rigid body 

movements on the data from the second TR until the BOLD responses from the two TRs 

agree as closely as possible at each coordinate point. The process is called rigid body 

registration. The goal of rigid body registration is to find the values of the six parameters of 

the equation that align the two data sets as closely as possible.  

With interleaved slice acquisition, a small head movement that moves a point in the 

brain into a neighbouring slice will cause a significant change in acquisition time. As a result, 

timing differences will accentuate the effects of head movement. To solve this problem, slice-

timing corrections are usually made before head movement corrections when interleaved 

slice acquisition is used. 

To achieve sufficient temporal and spatial resolution, echo-planar imaging (EPI) 

technique is one of the most used imaging protocols. Multiple phases encoded trajectories 

will be acquired within a single TR period. Thus, these sequences are sensitive to the main      

magnetic field (B0) because of the undesired accumulation of signal phase occurring during 

the relatively long encoding periods. In EPI sequences, this phase accumulation results in 

spatial distortions in the resulting reconstructed images. The distortions appear as geometric 

warping of the image, predominantly in the phase-encoding dimension (Elliott et al., 2004). It 

is also preferable to perform motion realignment before correction for geometric distortion. 

Applying this approach to real EPI data, greater subject motion was detected, and superior 

realignment was achieved.  
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NORMALIZATION 

 The spatial resolution of the functional data is poor with a common voxel size of 3 

mm * 3 mm * 3 mm. Whereas the voxel size in the structural image might be 0.86 mm * 0.86 

mm * 0.86 mm. The coregistration is to improve spatial localization of the functional data 

using the enhanced resolution of the structural data. Different with head movement 

correction, only the structural image and any one functional image must be aligned in the 

coregistration. Individual differences existed in the sizes and shapes of individual brains, and 

these differences make it difficult to assign a task-related activation observed in some cluster 

of voxels to a specific neuroanatomic brain structure. To address this problem, the structural 

scan of each subject needs to be registered to some standard brain with identified coordinates 

in an atlas. This process of registering a structural scan to the structural scan from some 

standard brain is called normalization.  

 The MNI atlas produced by the Montreal Neurological Institute (MNI) is commonly 

used. And the MNI atlas was created by averaging the results of high-resolution structural 

scans that were taken from 152 different brains. The origin of the coordinate system is set to 

the midpoint of the anterior commissure. The normalization will include not only the rigid 

body differences between the standard brain and the brain of typical participants, but also the 

size and shape differences. Size differences could be accommodated via a linear 

transformation, but a nonlinear transformation is almost always required to alter the shape of 

a subject’s brain to match the MNI standards. Besides the alignment differences, there will be 

intensity differences between the subject’s image and the reference image.  

  

SPATIAL SMOOTHING 

 To do the spatial smoothing, the BOLD value in each voxel is replaced by a weighted 

average of the BOLD responses in neighbouring voxels. This will essentially blur the data at 
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each TR by smoothing off peaks and filling in valleys. To do the spatial smoothing, a three-

dimensional filter is applied to the BOLD responses. For the fMRI data, the common 

measure of width is the full width at half maximum (FWHM) (shown in Figure 2-7). In 

practice, a common choice for kernel width is somewhere between 1 and 3 voxel widths. 

Such as a standard choice for the voxel size 3 mm * 3mm * 3.5 is FWHMx = FWHMy = 6 

mm and FWHMz = 7 mm. 

  

Figure 2-7 A Gaussian smoothing kernel and an illustration of its width parameter FWHM. 

 

2.3.3 Imaging post processing 

After preprocessing, the next step is to examine the research hypothesis of the 

designed experiment. The activation maps are aligned and normalized into the same space, 

which is suitable for the further voxel-based analysis to identify corresponding brain regions 

activated by the task. The most popular approach is a general linear regression (GLM) based 

method that is the foundation of the fMRI software packages (Friston et al., 1994). 

Combining with modelling, the fMRI post processing consists of several steps including 
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generating the modelling function, regression through the fMRI imaging data and finally 

statistical analysis.  

 

MODELLING FUNCTION 

Predicting the BOLD response to each stimulus event firstly is to make an assumption 

about how long the neural activation will last in brain regions that process this event. Usually, 

it is assumed that the neural activation induced by the event onset will persist for as long as 

the stimulus is visible to the participants. Alternatively, the neural activations persist until the 

participants respond with a duration equalling subject’s response time. Then, all presumed 

neural activations are modelled via a boxcar function (pulse signal). The function persists for 

the duration of fMRI data acquisition and equals 1 when neural activation is assumed to be 

present and 0 when activation is absent (example shown in Figure 2-8). The correlation 

method assumes linearity, and next in the analysis is to convolve the boxcar function with the 

canonical HRF as described in chapter 2.1.2.  
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Figure 2-8 A hypothetical example of the standard correlation-based analysis of fMRI data. The top 

panel shows the boxcar function that models the presumed neural activation elicited by the presentation of 20 

separate stimuli. The middle panel depicts the hypothetical BOLD response in the experiment in a voxel with 

task-related activity. The bottom panel shows the best-fitting predicted BOLD response that is generated by 

convolving an HRF with the boxcar function shown in the top panel. 

 

REGRESSION 

The final step is to correlate these predicted BOLD values with the observed BOLD 

response in every voxel. Voxels where this correlation is high are presumed to show task-

related activity. Correlation is typically done within the context of the familiar General 

Linear Model (GLM) that is the basis of both multiple regression and analysis-of-variance. 

As the correlation method applied to data from a single voxel at a time, thus if an experiment 

collects data from the whole brain, this analysis could easily be repeated more than 100,000 
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times to analyse all of the data collected in the experiment. The result of all these analyses is 

a value of the test statistic in every voxel that was analysed. The resulting collection of 

statistics is often called a statistical parametric map, which motivated the name of the well-

known fMRI data analysis software package, SPM.  

 

Take the introduced RL task in chapter 2.2.2 for example, the variables derived from 

the computational model are firstly transferred into the time series, thus generating a 

regressor. Carefully, the regressor has to be associated with particular time points in the 

experiment such as a PE signal occurred specifically at the time of the outcome within the 

trial. Then, this time series was convolved with the HRF (as shown in Figure 2-9) to account 

for the delay induced by the hemodynamic response. Finally, this newly generated regressor 

can be then included as a predictor variable in a single-subject fMRI design matrix through      

multiple linear regression analysis techniques. A statistical contrast on the parameter 

estimation yields a map with those brain regions related to model-derived variables (Doherty 

& Gl, 2010) (shown in Figure 2-9). 
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Figure 2-9 The flow of fMRI image processing combined with the computational model of the 

introduced RL task. Internal variables derived from the model converted into a time series and convolved with a 

HRF, thus yielding a regressor in a single-subject fMRI design matrix. This general linear model is fitted at 

each voxel in the brain, and generated a statistical map describing the degree of correlation between activity in 

a particular BOLD time series voxel and the internal variable of interest (Doherty & Gl, 2010). 

 

STATISTICAL ANALYSIS 

 Similar to the voxel-based regression analysis above, the statistical analysis is also 

conducted at voxel based. Each voxel is considered as an independent statistical test. There 

are various GLM based statistical models, including simple two sample t-test, ANOVA, 

ANCOVA, regression analysis, fully or flexible factorial analysis. In this thesis, the simple 

two-group t-test is chosen to examine the difference between the control and clinical groups. 

Similar to the traditional t-test, the statistical significance of the estimated t-value, a p value is 

defined as the chance of observing a statistical t-value or more extreme results under the null 

hypothesis. If a voxel’s p value is smaller than user defined significance level a, we can 

hence reject the null hypothesis and classify the voxel as ‘active’. To correct for the multiple 

comparison error, a family wise correction (FWE) is used at brain cluster level. The statistical 

analysis is realized on xjview (https://www.alivelearn.net/xjview/). 

 

2.4 Research gap 

2.4.1 Task design 

As introduced in Chapter 1, reward learning in the context of positive and negative one 

has been successfully described by reinforcement learning models. According to these 

models, animals learn the uncertain values of positive and negative rewards by updating their 

subjective valuations of stimuli based on their past experience with those stimuli (Sutton and 

Barto, 2015). The learning process could be dissected into several signals including outcome, 
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expected value and critical PE signal. Our understanding of the neural processes associated 

with learning about reward or avoidance of punishment is still limited by the small number of 

imaging studies delineating their distinct and/or by introducing a reward/avoidance learning 

task with probability switch approximately in the middle of the task. To switch the rewarding 

(or avoidance) probabilities of the two factorials in the task is a plausible practice to increase 

the task complexity and serve as the novelty of the task. Combined with the aforementioned 

fMRI technique, we comprehensively investigated brain regions encoding reward and 

avoidance PE signal, especially in the midbrain and cortical brain areas. 

 

2.4.2 Application to clinical condition 

Many psychiatric conditions are associated with participants’ aberrant decision 

processes. For example, people with obsessive compulsive disorder (OCD) repeat endlessly a 

behaviour such as handwashing; And people with gambling disorder (GD) often seek and 

engage in risky forms of gambling, despite explicitly acknowledging the harms that may 

follow. OCD is a relatively chronic and disabling neuropsychiatric disorder with an estimated 

prevalence between 1-3% (Figee et al., 2011), while GD is classified as a behavioural 

addiction with a lifetime prevalence of 0.5-1% (Petry et al., 2005). A high burden of 

individual and socioeconomic cost was caused by the maladaptive decision patterns in both 

clinical conditions (Fujino et al., 2018; Nestadt et al., 2018). Through the application of 

proposed reinforcement learning tasks, with a probability switch, we investigated the 

potential aberrant brain mechanism of reward and avoidance-based decision process in the 

people with OCD and GD through fMRI technique and computational modelling. Also, we 

examined how the behavioural constructs of impulsivity and compulsivity affect the reward 

and avoidance decision processes in OCD and GD.” 
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3 Investigation of reward and avoidance decision processes in healthy young adults 

through a novel probabilistic reward and avoidance learning task 

Aim: In this chapter, we are going to examine participants’ behavioural response during the 

reward/avoidance learning task through the statistical analysis as well as modelling, and the 

statistical analysis were from the three measurements: 1) the response time of choice making 

in reward/avoidance condition in comparison with neutral condition; 2) the number of 

Correct and Incorrect fractal choice as a proxy of reward and avoidance conditioning; and 3) 

the learning curve of Correct and Incorrect fractal choice in reward/avoidance condition to 

model the participants’ learning of the task. Further, A Q-learning model was applied to 

model the participants’ trial-by-trial learning process. We have tried several ways to estimate 

the values of model parameters. Firstly, the negative loglikelihood has been used with linear 

searching a pair of parameters to make the negative loglikelihood sum of each individual 

participant minimized, and then the Matlab fmincon was used to broad the searching ranges. 

Both methods were only considering the individual level optimization, and there was some 

boundary value that existed. Thus, the Bayesian model was finally used for parameter 

calculation, which considered both individual and group level effects. The two characteristic 

parameters learning rate and inverse temperature parameter were estimated, which showed 

the participants’ learning and the balance of exploitation versus exploration on the choice, 

respectively. 

 

Questions: We are interested in 1) the participants’ behavioural performance including 

response time and correct choice ratio under the reward/avoidance condition in the 

reward/avoidance learning task. 2) the participants’ learning characteristics including 

learning rate and inverse temperature parameter under the reward/avoidance condition. 3) 
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also, the potential differences of behavioural performance and learning merits between the 

reward and avoidance condition. 

 

Hypothesis: Based on the previous studies, we hypothesized: 1) Participants will show 

shorter response time in reward condition and longer in avoidance condition, compared to the 

neutral condition. 2) Participants will prefer the Correct choices significantly over the 

Incorrect in reward/avoidance condition, compared to the neutral condition. 3) Participants 

will show learning of the Correct choice, and a probability switch, as observable in their 

learning curve. 4) Through the modelling, participants will show a higher learning rate & 

inverse temperature parameter under the reward condition compared to avoidance condition. 

 

3.1 Introduction 

As discussed in previous chapters, decision making can be modelled as a process 

involved with the choice selection from the available alternatives. In order to optimize this 

process, the participants would estimate the outcome of the different options, which is based 

on reward and punishments associated with these alternatives in the past choices. Seeking 

rewards and avoiding punishments is a propensity to human participants in order to survive, 

which indicates that reward/avoidance processing and associated learning are important 

components of the decision making process. Some interesting questions raised, like: 1) how 

participants carry out the reward/avoidance associated decision making, and 2) what’s the 

similarities and differences of the behavioural sensitivity and performance in those 

reward/avoidance related learning? For how humans acquire their preferences for different 

options and outcomes in the decision making process, it is suggested that we always act in a 

manner that maximize the prospects of obtaining the resources needed to survive and 

minimize the probability of encountering situations leading to harm (Doherty et al., 2017).  
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As described in chapter 2, a specific probabilistic learning task (Kim, Shimojo, & 

Doherty, 2006) including both reward and avoidance types is set up as a typical learning 

paradigm designed to investigate the detailed decision making process. Such processes can be 

divided into mainly three distinct stages: i) outcome ii) expected value and iii) error 

processing. The action value estimation is the process of computing the subjective value of 

each option, thus to develop a preference for one option over alternatives, which is also 

referred to as formation of preferences (Verdejo-Garcia et al., 2018). The choice selection is 

the stage to allocate the response to the preferred choice, and then the learning is realized 

through the feedback processing of the outcome from the selected choice. Learning from both 

positive and negative action outcomes introduces reinforcement of obtaining reward and 

avoiding aversive behaviour, respectively. The capability of learning from successful reward 

and erroneous punishment were related to D1/D2 receptors at genetic level, respectively 

(Bravo et al., 2007; Frank & Hutchison, 2013; Haughey et al., 2007). Through the application 

of the probabilistic learning task, Kim and colleagues (Kim, Shimojo, & Doherty, 2006) 

demonstrated that successful avoidance of an aversive outcome exhibits the same properties 

as a reward. Further, they proposed that avoiding an aversive outcome is in itself an intrinsic 

reward while obtaining a reward is an extrinsic reward, both of the intrinsic and extrinsic 

reward is serving to reinforce actions during the instrumental reward and avoidance. Thus, 

punishment-based reinforcement learning processes can be modelled with similar 

computational methods as reward-based learning. Basically, the reinforcement-based learning 

is modelled as a set of actions based on trial-and-error learning, while the subject take to 

maximize rewards or minimize punishments under reward or avoidance condition, 

respectively (Samson et al., 2010). Several parameters including learning rate and inverse 

temperature parameter could reflect the learning processes. The learning rate is the parameter 

to control the velocity of participants’ update of the estimation according to the error signal – 
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which is the difference between the outcome feedback and the expectation value, and the 

higher learning rate allows for a faster change of the value (Eyal Even-Dar & Yishay 

Mansour, 2003). The inverse temperature parameter is the balance of the exploration and 

exploitation to adjust the randomness of action selection (Ishida et al., 2009).  

In short, reinforcement learning (RL) (Sutton & Barto, 1998), is an adaptive process 

in which a subject utilizes its previous experience to improve the outcomes of future choices. 

It is now widely adopted to address the fundamental question in decision making such as how 

participants acquire their preference for different actions and outcome, and also how they 

learn from the previous experience. First, what does the value of an action reflect? RL theory 

proposes that the value of an action is a rough prediction of the subsequent reward or 

punishment gained by selecting that action. Secondly, how do we learn from the previous 

experience? The learning is through the prediction error (PE) signal – the discrepancy 

between the actual value of the reward and predicted value of the reward. Central to 

obtaining rewards and avoiding punishments is the ability to represent the value of rewarding 

and punishing actions, establishing predictions of when and where such rewards and 

punishments will occur and use those predictions to form the basis of decisions that guide 

actions. For example, under reward condition, the actions leading to greater predicted reward 

will produce a positive PE signal, and as the receipt of a rewarding outcome in a given 

context serves to strength associations between that context and the response performed, thus 

the afferent reward PE signal will ensure that such a response is more likely to be selected in 

the future (O’Doherty et al., 2003; Reynolds et al., 2001; Schultz, 2018). Vice versa, the 

actions leading to the smaller predicted reward will generate a negative PE signal, which 

would weaken the associations between that context and the choice performed, thus the 

efferent reward PE signal will indicate that such a choice is less likely to be selected in the 

future.  
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To investigate reward/punishment-based learning and decision making, a novel 

probabilistic reward and avoidance learning task was used in the study. The probabilistic 

learning task has been widely used to understand the mechanisms of decision making, and the 

probability difference of getting reward/punishment of the pair of fractals would drive the 

participants’ learning (Bunney, P. E., Zink, A. N., Holm, A. A., Billington, C. J., & Kotz, 

2017; Manuscript, 2008). Successfully performing the task, participants’ learning was 

conceptually dissected into learning associates between stimuli and the rewarding or 

punishing value and specifically, switching to new associations, which implies inhibiting the 

selection of the previously rewarded/not-punished stimulus and seeking the newly 

rewarded/non-punished stimulus after contingencies have reversed (Remijnse et al., 2005). 

The PE signal is critically important for learning, and more complex (or difficult) learning 

tasks could be designed to generate a greater magnitude and more robust signal under reward 

and avoidance conditions. With the probabilistic switch implemented in the task, it could 

alternate the learning processes, and then change the related PE learning signal with more 

variations. The aim of this chapter was to examine the participants performance in the task 

through the basic behavioural statistical analysis and behavioural modelling. Then, the 

behavioural analysis (Correct choice) and behavioural modelling will act as a baseline for the 

clinical studies.  

 

3.2 Materials and Methods 

STIMULI AND TASK  

The probabilistic reward and avoidance learning task were derived from the previous learning 

task used by Kim et al., (2006). With a probability switch happening at the middle stages of 

the task, we aimed to drive participants’ further learning of the task, thus increasing the 

learning signal. Specifically, on each trial of the Probabilistic reward/avoidance learning task 
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(Figure 3-1), one of three pairs of fractal stimuli were simultaneously presented. Each pair of 

fractals signified the onset of one of three trial conditions: Reward, Avoidance and Neutral, 

whose occurrence was semi-random such that each three-trial block contains one of each 

type, and the order of these three trials were randomized. Participants underwent two ~16 

min scanning sessions, each consisting of 90 trials (30 trials per condition). The specific 

association of fractal pairs to a condition was fully randomized but counterbalanced among 

participants. Participants’ task on each trial was to choose one of the two stimuli by selecting 

the fractal to the left or right of the fixation cross via a button box (using the right hand). 

Once a fractal has been selected, depending on the condition, it increased in brightness and 

was followed by the visual feedback indicating either a reward (a picture of a Myer card with 

text above saying “you win 1 point!”), an aversive outcome (a red cross overlying a picture of 

a Myer card with text above saying “You lose 1 point!”), neutral feedback (a scrambled 

picture of a Myer card with text above saying “No change!”), or nothing (a blank screen with 

a cross hair in the centre). Participants had 2000 milliseconds to select a fractal. If not 

selected in time, a screen would be displayed with the text “response omitted”, and the trial 

would be repeated until a response registered for that fractal pair. 

In the reward trials, if participants chose the high probability action (also referred to 

here as the ‘Correct’ action), they received monetary reward with a 70% probability; on the 

other 30% of trials they received nothing. In contrast, choosing the low probability action 

(also referred to here as the Incorrect action), they received monetary reward on only 30% of 

trials; otherwise, they obtained nothing on the remaining 70% of trials. Similarly, on the 

avoidance trials, if participants chose the high probability action they received nothing on 

70% of trials, on the other 30% they received a monetary loss, whereas choice of the low 

probability action led to no outcome on only 30% of trials, while the other 70% were 

associated with receipt of the aversive outcome. A probability switch was introduced at a 



 71 

time-point between the 11th to 20th trial in the reward/avoidance trials, where the fractal 

associated with high probability was changed to the low probability and where the fractal 

associated with low probability changed to the high probability. For the neutral trials, 

participants had a 70% or 30% probability of obtaining neutral feedback; otherwise, they 

received nothing.  

Prior to the experiment, participants were given instructions that they would be 

presented with three pairs of fractals and on each trial, they had to select one of these fractals. 

Participants also had a practice session of the task before going into the MRI. During the 

task, depending on their choices they would win a point, lose a point, obtain a neutral 

outcome with no change, or receive nothing. They were not told which fractal pair was 

associated with a particular outcome neither when the probability switch was to occur. 

Participants were instructed to try to win as many points as possible and that they would 

receive a Coles/Myer voucher at the end corresponding to the amount of points they had 

accumulated.  

 

Figure 3-1 The probabilistic reward and avoidance learning task. Three conditions: reward, 

avoidance and neutral were included. The pair of fractals under each condition would be displayed for 2000 

ms, and then the selected picture would be highlighted for 3500 ms, and the related outcome would be shown 

for another 1500 ms. 
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PARTICIPANTS 

As a part of the whole project, 42 healthy controls (21F/21M, 34.03 yrs ± 11.70) have been 

recruited to perform the task. Several participants were excluded due to incomplete or invalid 

imaging data, leaving 39 healthy participants (20F/19M, 34 yrs ± 9.47) with complete 

behavioural and imaging data. Their behavioural data including the fractal choices, outcome 

and response time of each trial under reward/avoidance/neutral condition was used for this 

chapter.  

 

METHOD 

Statistical analysis 

Basic statistical analysis including two-sample t-test was carried out to compare the number 

of Correct and Incorrect choices as well as response time under each condition. Also, the 

two-sample t-tests were carried out to compare the response time across three conditions. By 

realigning the switch to a same point and separation of all trials into eight blocks, a block-

based learning curve was drawn based on the number of Correct and Incorrect choices under 

reward/avoidance condition.  

 

Behavioural modelling 

In order to investigate the participants’ internal learning traits of the task, a basic Q-learning 

model was built to describe three components including expectation value, action selection 

and prediction error. For each pair of fractal stimuli, e.g. A and B, the model estimates the 

expected value (Q) of choosing A (Qa) or B (Qb) based on the individual sequences of 

choices and outcomes. The expected value was initially set to zero, and after each trial t > 0, 

updated according to the chosen stimulus (say choice A): 𝑄$(𝑡 + 1) = 	𝑄$(𝑡) + 𝛼 ∗ 𝛿(𝑡); while 

the value for the non-chosen option stays unchanged. 𝛿(𝑡) – prediction error is the difference 
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between the actual and expected outcome, 𝛼 is the learning rate. 𝑅(𝑡)= $-1, $0, $1 according to 

the outcome under different conditions. The probability of chosen action was estimated with 

a soft-max rule, which is the standard stochastic decision rule that calculates the probability 

of taking one of a set of actions according to their associated values: 𝑃$(𝑡) =𝑒𝑥𝑝 >𝛽𝑄$(𝑡)?/{

𝑒𝑥𝑝 >𝛽𝑄$(𝑡)? +𝑒𝑥𝑝 >𝛽𝑄%(𝑡)?}. The 𝛽 is the inverse temperature parameter, which indicates how 

stochastic or exploratory the individual choices are. A low 𝛽 parameter indicates similar 

choice probabilities for all choices, which corresponds to low reward/punishment sensitivity; 

while a high 𝛽 value indicates that the choice probability is strongly driven by the expected 

value.  

Negative loglikelihood 

In order to calculate the parameters of learning rate 𝛼 and inverse temperature parameter 𝛽, 

one algorithm is to minimize the negative log-likelihood (NLL) of the sum of the observed 

choices across all trials t given the set of model parameters 𝛩: 

𝑎𝑟𝑔	D
&

"'(

− 𝑙𝑜𝑔	𝑃(𝑎(𝑡)|𝛩) 

The learning parameter distribution according to the NLL calculation is shown in Figure 3-2. 

The NLL calculation is searching a pair of parameters based on each individual. Firstly, the 

linear searching was realized through self-coded scripts on Matlab (version R2019a), as well 

as the nonlinear searching method using the Matlab function fmincon. Both estimation 

methods only consider the individual effects, and some boundary values were appeared.   
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Figure 3-2 The negative loglikelihood estimation of learning parameters 𝛼. The red box shows the 

boundary values. 
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Bayesian estimation 

In order to solve the problems of boundary values, the hierarchical bayesian method (HBM) 

was used for the model estimation. In our case, the HBM represents complex and multilevel 

data structures as shown in Figure 3-3, and it estimates the parameters of the posterior 

distribution based on a prior knowledge with evidence from data, thus offering a flexible way 

to specify multilevel structures of parameters. Bayes’ theorem is used to integrate the 

observed data and account for all the uncertainty that is present, and the results of this 

integration is the posterior distribution, also known as the updated probability estimate, as 

additional evidence on the prior distribution is acquired. The HBM makes use of two 

important concepts - hyperparameters and hyperpriors to drive the posterior distribution. The 

hyperparameters is a parameter following a prior distribution such as the 𝛼 was suggested to 

follow a Norm(𝜇!, 𝜎!) distribution. And the related 𝛍𝛂	 and 𝞼𝛂	 are the hyperpriors of 

parameter 𝛼. In our HBM, both the learning rate 𝛼 and inverse temperature parameter 𝛽	was 

followed to the normal distribution. Application of HBM to the behavioural data has 

improved the parameter estimation (Figure 3-4).  

 

Figure 3-3 The hierarchical Bayesian model. Ri,t  is the outcome value of subject i at trial t and Ci,t is the choice 

for the subject i at trial t. The subject related learning rate 𝛼! and inverse temperature parameter 𝛽! was 

suggested to follow a prior normal distribution with a mean value of 𝜇	𝑎𝑛𝑑	𝑎	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	𝛿. 

The group mean value 𝜇) and 𝜇*	as well as standard deviation value 𝜎) and 𝜎* was drawn from a normal 

distribution, Norm (0,1) and Norm (0,0.5), respectively.  
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Figure 3-4 The learning rate estimated performance from three methods. Both the NLL and fmincon had the 

boundary values, whereas the Bayesian estimation improved the estimation with the consideration of group-

level effects. 

 

Model simulation 

In order to demonstrate the feasibility of the model, simulation was carried out. The 

estimated alpha and beta parameters of the participants under the reward condition were 

entered into the simulation loop for 20 times (only 5 times were shown for the purpose of 

convenient display). When comparing the participants’ selection probability of the Correct 

choice with the simulated data, no significant differences were found (shown in Figure 3-5). 

Also, the selection pattern of Correct and Incorrect choices was shown in Figure 3-6. The 

simulation analysis was also done under avoidance condition (Figure 3-7&3-8). None of 

these comparisons showed any significant differences of these parameters across, showing 

the model is validated to simulate similar behaviours as our participants. 
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Figure 3-5 Bayesian model simulation. No significant differences were found between the participants’ 

actual selection probability of the Correct choice and the simulated data under reward condition. 

 

 

Figure 3-6 Bayesian model simulation. The selection probability of Correct and Incorrect choice from 

healthy participants, and the simulated data under reward condition. 
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Figure 3-7 Bayesian model simulation. No significant differences were found between the participants’ actual 

selection probability of the Correct choice and the simulated data under avoidance condition. 

 

  

Figure 3-8 Bayesian model simulation. The selection probability of Correct and Incorrect choice from 

healthy participants, and the simulated data under avoidance condition. 
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3.3 Results 

BASIC BEHAVIOURAL RESULTS 

Participants showed significant preferences for the Correct choice both in the reward 

(t = 4.33; p < .0001) and avoidance (t = 8.79; p <.0001) condition, compared with the 

Incorrect choice. No significant difference was found in the neutral condition (t = 0.82; p = 

0.4138) (Figure 3-9); Participants made significantly quicker response to the reward 

condition (975.3 ms ± 22.84; t = 2.51, p = 0.012) and significantly slower response to the 

avoidance condition (1133 ms ± 18.35; t = 2.58, p = 0.01). The response time to the neutral 

condition (1059 ms ± 23.07) is intermediate between the reward and avoidance condition 

(Figure 3-10). The learning curve showed that participants preferred the Correct choice in 

each block both under the reward/avoidance condition (Figure 3-11 & 3-12) before and after 

the probability switch point.  

 

Figure 3-9 Number of Correct & Incorrect choice under reward, avoidance and neutral condition. 

participants favoured the Correct choice over the incorrect choice, in both the reward (***p < 0.0001) and 

avoidance (****p < 0.0001) condition. 
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Figure 3-10 Response time under reward/avoidance/neutral condition. Participants made significantly 

quicker response to the reward condition (*p < 0.012) and significantly slower response to the avoidance 

condition (*p < 0.01) compared to the neutral condition. 

 

 
 

Figure 3-11 Learning curve under reward condition before and after probability switch. The healthy 

controls preferred the Correct choice before and after the probability switch (PS). 
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Figure 3-12 Learning curve under the avoidance condition before and after probability switch. The 

healthy controls preferred the Correct choice before and after the probability switch (PS). 

MODELLED BEHAVIOURAL RESULTS 

The learning rate under reward and avoidance condition was 0.292 +/- 0.212 and 

0.754 +/- 0.290, respectively. And the inverse temperature parameter under reward and 

avoidance condition was 9.00 +/- 2.815 and 1.630 +/- 1.056, respectively. Then, comparing 

the learning characteristics between the reward and avoidance condition, participants showed 

a significantly higher learning rate under the avoidance condition (t = 13.84, p < 0.0001), 

whereas participants showed a significantly lower inverse temperature parameter under the 

reward condition (t = 15.70, p < 0.0001) (Figure 3-13 & 3-14). Further, the parameters were 

entered into the model, and calculated the time series for expected value and prediction error 

(PE) under reward and avoidance condition (Figure 3-15, 3-16 & 3-17). 

 

Figure 3-13 The learning rate under the reward/avoidance condition. The healthy controls showed a 

significantly higher learning rate under avoidance condition compared to reward condition at ****p < 0.0001. 
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Figure 3-14 The inverse temperature parameter under the reward/avoidance condition. The healthy 

controls showed a significantly higher exploitation under reward condition compared to avoidance condition at 

****p < 0.0001. 

 

Figure 3-15 The robust time series of model-derived reward and aversive expected value. 
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Figure 3-16 The robust time series of model-derived PE signal under reward condition.  

 

Figure 3-17 The robust time series of model-derived PE signal under avoidance condition. 

 

3.4 Discussion 

In this chapter, through the application of the probabilistic reward/avoidance learning 

task, our research found that all healthy participants preferred the Correct choice under 

reward/avoidance condition to obtain reward and avoid punishments. Also, participants were 

found to respond more quickly under reward condition while slower in avoidance condition. 
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Further, the Q-learning algorithm was to model participants’ trial-by-trial learning 

performance. For the model estimation, the comparison with NLL and Matlab fmincon 

function, the Bayesian model was shown to have better performance. Thus, together with the 

Q-learning algorithm and Bayesian estimation, participants were found to have a significantly 

higher learning rate under avoidance condition compared to reward condition, as well as a 

significantly higher exploitation value under reward condition compared to avoidance 

condition.  

The reward and avoidance learning are similar processes with information acquisition 

about stimuli, actions and contexts in the environment to get as much reward (or avoid 

punishments), which are two important components of decision making. In our task, the 

learning was realized that all participants preferred the Correct choice significantly compared 

to the Incorrect choice. How were the similarities/differences of the learning traits under both 

conditions? Previous literature has indicated the participants’ difference in the ability to 

reward and avoid learning and independent processing components for these two types of 

learning (Carver et al., 1994). In our task, participants responded more quickly to the choice 

selection under the reward condition compared to the avoidance condition.  

Q-learning is the temporal difference learning algorithm which is used to solve the 

maximization of the rewards or minimization of the punishment in the learning task (Kim, 

Shimojo, & O’Doherty, 2006; Pavlicek et al., 2011). Starting with the random actions, Q-

learning learns the optimization policy during the process of action selection and outcome 

feedback. The learning rate and inverse temperature parameter are the two key parameters in 

the Q-learning model to investigate the participants' learning efficiency. Our data showed a 

higher learning rate under the avoidance condition compared to the reward condition while a 

higher inverse temperature parameter under reward condition compared to avoidance 

condition, which means the participants had a relatively lower sensitivity to the outcome 
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feedback and were highly driven by the expectation value under reward condition. At the 

same time, participants showed a higher sensitivity to the punishment feedback, thus a higher 

tendency to explore the two choices. In contrast, study from Kim et al., reported a higher 

learning rate under reward condition (Kim, Shimojo, & O’Doherty, 2006). Given that the 

probability switch is the only variance in our paradigm compared to theirs, it could be the 

reason for the discrepancy.  

The preference of Correct choice before and after the probability switch in the 

learning task could also imply an appropriate cognitive flexibility of healthy participants. The 

cognitive flexibility – the ability to redirect behaviour to a meeting changing environment 

plays a crucial role in adaptive decision making (Brusoni, 2018). One of the measurements 

for the cognitive flexibility is the reversal learning task, in which participants learn an initial 

response pattern or strategy that must then be adapted when the contingencies or 

requirements are abruptly changed (Wilson et al., 2018). Usually, the 

contingency/requirement changes are not cued, so participants must learn that a change has 

occurred through feedback on obtained outcomes. As adjusting the behaviour to the changing 

environment is the critical ability, this behavioural flexibility enables one individual to work 

efficiently to disentangle from a previous paradigm, and reconfigure a new response set to 

gain a favourable outcome (Dajani and Uddin, 2015). The cognitive flexibility was pointed 

out to be fundamental for effective decision making, and consequently an important 

determinant of the organizational ability to learn and adapt to environmental changes 

(Martinez et al., 2009). The participants with high cognitive flexibility could recognize the 

value diversity and integrate such diversity in the decision processes to explore the new 

course of actions (Laureiro-Martínez & Brusoni, 2018).  

In summary, the application of reward/avoidance learning task and statistical analysis 

showed the significant difference of response time existed under reward/avoidance condition. 
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Further, the modelling of the behavioural data showed the significant learning traits of the 

two types of learning. In our next chapter, we are going to investigate the computational 

process, and provide the neural substrates of the computational mechanism under the 

reward/avoidance-based decision processes.  
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Connecting: Through the basic behavioural and model-based analysis, the previous chapter 

has provided evidences of the healthy participants’ different response patterns and learning 

performance at two types of reward and avoidance learning. Specifically, participants 

achieved the learning with significant preference to the Correct choice compared to the 

Incorrect choice. When comparing the learning performance, they had quicker response 

under reward condition and slower under avoidance condition. Also, the participants 

showed significantly different learning rate and temperature parameter between the reward 

and avoidance condition. The behavioral findings further motivated to examine the 

underlying neural mechanisms. In this chapter, we will combine the model fitting and 

neuroimaging analysis to explore what’s the neural activations when getting different 

outcomes, thus driving participants’ learning of the task. Also, what’s the neural 

mechanisms under reward and avoidance conditions, thus causing different learning 

performance. 

 

Aim: The previous chapter has provided evidences of the healthy participants’ different 

response patterns and learning performance at both types of reward and avoidance learning 

through both the basic behavioural and model-based analysis. In this chapter, we are going to 

examine the underlying neural mechanisms through combination of model fitting and 

neuroimaging analysis. Mainly, we examine the key signals associated with reward and 

avoidance decision processes: 1) outcome, 2) expected value and 3) PE.  

 

Questions: The reward and avoidance learning include three distinct phases: outcome, 

expectation and error processing for action selection. In this chapter, we were interested in 

identifying: the neural substrates of these three distinct signals under reward and avoidance 
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learning, namely - brain circuits involved in processing the anticipation and receiving of 

reward or punishment outcomes, as well as the brain circuits that represent the processing of 

PE signal which drives the subsequent learning from the outcome. Further, how were the 

enhanced PE signal activation pattern in our learning task due to the probability switch. 

 

Hypothesis: Based on the previous studies on the neural activations of reward/avoidance 

learning-based decision process, we hypothesised: i) The common brain pattern, e.g. medial 

orbitofrontal cortex (OFC), was correlated with the rewarded outcome value and punishment 

avoidance. ii) The activity of medial and lateral OFC will be correlated with expectation 

value under reward/avoidance condition. iii) As an enhanced PE signal due to the reversal 

learning component described in Chapter 3, more significant brain activation at the 

frontostriatal circuit was found associated with the PE. Further, we expected a dissociable 

manner of PE neural correlates during reward and avoidance learning. e.g. ventral 

frontostriatal circuit were involved with reward learning whereas dorsal striatum and Insula 

were associated with punishment learning.  



 

 

 

ABSTRACT 

Reward and avoidance learning form two critical types of decision making, which involves 

assigning value to available options, choosing between alternatives based on preferences, 

assessing consequences for the selected choices, and learning from the outcomes to update 

the future choices. However, the common or distinct neural representations at separate stages 

of the two types of decision processes still need clarification. Here, 42 healthy participants 

were recruited to perform a two-session probabilistic reward and avoidance learning task 

with fMRI scanning. Together with neuroimaging techniques and computational modelling, 

we showed that both shared and distinct brain regions are involved at key stages including 

outcome, expected value and prediction error (PE) in reward and avoidance-based decision 

processes. At the outcome stage, receiving reward and punishment were both associated with 

the functional activity in the insula and cingulum, whereas the entire striatum was selectively 

active during reward only, and dorsal striatum was selectively active during punishment 

only. The cingulum was also found activated for both reward and avoidance expectation. 

Furthermore, the avoidance expectation recruited broader areas at the cortical and subcortical 

brain areas including inferior OFC, insula, and dorsal striatum. At the stage of error 

processing, due to the novel probability switch of the learning task, a robust PE signal and 

covaried with activity of the cortical and subcortical brain areas  under the reward 

condition; Meanwhile the aversive PE signal was found covaried with the activity at the 

shared frontal-subcortical brain regions and the segregated dorsal part of striatum. Our 

results demonstrate the dorsal striatum specific role for differential phases of avoidance 

processing, and existence of the dissociated computational processes underlying reward and 

avoidance decision processes. 

 



 

 

4.1 Introduction 

Decision making is a complex process that involves assigning values to available options, 

choosing between alternatives based on preferences, assessing consequences of the selected 

choices, and most importantly learning from the outcome to update future decision processes 

(Engel and Caceda, 2015). The aim of such decision making processes is to maximise 

favourable and to minimise unpleasant outcomes (Krigolson et al., 2014). Thus, the two types 

of learning - namely, reward learning and avoidance learning, form the foundational aspects 

of decision making. The common goal of most decisions is to maximize reward and minimize 

punishment, thus, one requires learning which choices are likely to lead to favourable 

outcomes (Eshel and Steinberg, 2018). This learning process can be explained using 

reinforcement learning (RL) algorithms (Sutton and Barto, 2015). According to RL, a reward 

prediction error (PE) is created to reflect the discrepancies between the actual and expected 

outcome, which is then used to adjust the expected outcome for the next decision to make 

predictions  (Kim et al., 2006; Doherty et al., 2017), and adjust future actions (Schultz, 2017).  

RL theory has been useful in providing plausible accounts for animal and human reward-

related learning and its neural underpinnings (Reynolds et al., 2001; O’Doherty et al., 2003; 

Peter and Daw, 2008; Schultz, 2018). For instance, combining the RL model with neural `, 

animal neurophysiology has shown that dopamine neurons in the midbrain encode reward 

prediction error (reward PE) during reward-learning tasks (Riaz et al., 2016; Coddington and 

Dudman, 2018). In humans, functional magnetic resonance imaging (MRI) studies 

consistently demonstrated the neural encodings of reward PE in the ventral striatum and the 

encoding of expected value in the orbitofrontal cortex (OFC) (Schultz, 2016; Howard and 

Kahnt, 2018). Specifically, the expected value signals were found to be correlated with blood 

oxygen level dependent (BOLD) signal in the medial and lateral OFC at the timing of 



 

 

decision-making, and the reward PE signals were correlated with BOLD signal in the ventral 

striatum at the timing of reward delivery (Kim et al., 2006).  

Not only for reward learning, the RL theory is also suggested to account for avoidance 

learning (Ben et al., 2004; Kim et al., 2006). Whether there are common or differential neural 

mechanisms underlying the distinct stages of reward and avoidance learning processes, 

remains controversial. For example, during performance of the RL task, and at the stage of 

outcome processing, the neural activity at medial OFC has been found to increase not only 

following receipt of reward, but also following successful avoidance of an aversive outcome 

Kim et al (2006). This is consistent with a recent meta-analysis which also demonstrated the 

OFC’s central role during the outcome of monetary reward and loss (Oldham et al., 2018a). 

These findings suggest the shared brain mechanism underlying between receiving reward and 

avoiding punishment (Kim et al., 2006). Using a similar task that focussed on broader 

patterns of brain activity, it was reported that learning to gain rewards was recruiting striatal 

brain regions at the outcome stage. In contrast, loss avoidance was associated with the 

activation of the prefrontal brain regions (Kim et al., 2014). In light of these inconsistent 

reports, further research is needed to demonstrate the neural mechanism at the outcome stage 

of obtaining reward and avoiding loss/punishment. At the stage of anticipation, of particular 

relevance is the study by Kim et al (2006) which reported the medial and lateral OFC were 

correlated with model-derived expected value under both reward and avoidance condition 

(Kim et al., 2006). However, a recent neuroimaging meta-analysis has revealed subtle 

differences exist between the neural processing of reward and punishment. That is, the medial 

OFC is activated during reward anticipation whereas the loss anticipation recruits the activity 

of ventro-lateral prefrontal regions (Dumais and Bitar, 2018).  

  As indicated earlier, PE is an essential neurophysiological signal encoding the 

discrepancy between the actual and expected outcome, which is subsequently used to guide 



 

 

predictions and adjust future actions. The neural representations of PE signal is suggested to 

correspond with the phasic firing of midbrain dopamine neurons in the animal literature 

(Schultz et al., 1997; Schultz, 2018). Further, striatal dopaminergic projection neurons along 

with its connected areas, including medial prefrontal cortex and anterior cingulate as well as 

insula, are all key brain areas involved in encoding the PE signal (Garrison et al., 2013a). 

Specifically, different to the reward PE signal, the PE signal under avoidance was found to 

correlate with functional activity in the bilateral insula in the study by Kim et al (Kim et al., 

2006). These findings were in line with the literature showing that the reward PE is correlated 

with the functional activity in ventral striatum and OFC (Kim et al., 2006; Garrison et al., 

2013b), whereas the aversive PE signal in avoidance learning is associated with functional 

activity in the amygdala-striatal regions (Zhang et al., 2016), and bilateral insula (Kim et al., 

2006; Garrison et al., 2013b). The PE signal is critically important for learning, and more 

complex (or difficult) learning tasks could be designed to generate a greater magnitude/more 

robust signal, thus helping to examine a more complete picture of neural correlates under 

reward and avoidance conditions. To this end, a previous study has incorporated a 

probabilistic switch in the task, which serves to increase the difficulty of the task, thereby 

driving the need for greater learning processes to be engaged and thus increasing PE learning 

signal (Alexandre Y. Dombrovski et al., 2011). Thus, introducing such a probabilistic switch 

could be a promising method to investigate the neurocircuitry underlying reward and 

avoidance learning.  

Our understanding of the common or differential pattern of the reward and avoidance 

decision processes is still limited by the small number of imaging studies utilising modelling 

and a probabilistic reversal switch, both of which serve to maximise our ability to 

comprehensively understand the underlying brain mechanism of computational reward and 

avoidance processing. In the present study, we introduced a probabilistic reward and 



 

 

avoidance learning task similar to that of Kim’s original task, with the addition of a 

probabilistic switch during the middle stages of the task. The addition of the switch will 

increase the overall difficulty of the task to drive the need for more learning processes (and 

thereby increase the PE signal during such learning). We combine this probabilistic switch 

task with functional MRI and model fitting, to examine the neural correlates of three distinct 

stages of reward and avoidance learning based decision making - namely, outcome, expected 

value and PE. With a probabilistic switch occurring at approximately the mid-point of the 

task, we predicted that both common and distinct brain regions will be associated with 

distinct stages of reward and avoidance decision processes. Specifically, the mOFC will be 

recruited for the outcome of receipt of reward and avoidance of punishment. Significant brain 

activations will be associated with reward PE signals in the fronto-striatal brain regions, and 

neural circuits associated with aversive PE at brain regions, such as dorsal striatum and 

insula.  

  



 

 

4.2 Materials & methods 

PARTICIPANTS 

Forty-two healthy controls have been recruited for this task. Study sample has been reported 

in previous studies (Parkes et al., 2018; Maleki et al., 2020). Inclusion criteria for healthy 

participants involved the following: age between 18-55 years, having normal to corrected 

vision, and being fluent in English. Exclusion criteria for all participants included significant 

head injury or concussion and standard MRI contraindications. Several participants were 

excluded due to incomplete or invalid imaging data, leaving 39 healthy participants 

(20F/19M, 34 yrs ± 9.47) with complete behavioural and imaging data. All participants gave 

informed consent and the study was approved by the Human Research Ethics Committee of 

Monash University. 

 

PROBABILISTIC REWARD AND AVOIDANCE LEARNING TASK 

On each trial of the Probabilistic reward/avoidance learning task (Figure 4-1 (a)), one of 

three pairs of fractal stimuli were simultaneously presented. Each pair of fractals signified the 

onset of one of three trial conditions: Reward, Avoidance and Neutral, whose occurrence was 

semi-random such that each three-trial block contains one of each type, and the order of these 

three trials were randomized. Participants underwent two ~16 min scanning sessions, each 

consisting of 90 trials (30 trials per condition). The specific association of fractal pairs to a 

condition was fully randomized but counterbalanced among participants. Participants’ task on 

each trial was to choose one of the two stimuli by selecting the fractal to the left or right of 

the fixation cross via a button box (using the right hand). Once a fractal has been selected, 

depending on the condition, it increased in brightness and was followed by the visual 

feedback indicating either a reward (a picture of a Myer card with text above saying “you win 

1 point!”), an aversive outcome (a red cross overlying a picture of a Myer card with text 



 

 

above saying “You lose 1 point!”), neutral feedback (a scrambled picture of a Myer card with 

text above saying “No change!”), or nothing (a blank screen with a cross hair in the centre). 

Participants had 2000 milliseconds to select a fractal. If not selected in time, a screen would 

be displayed with the text “response omitted”, and the trial would be repeated until a 

response registered for that fractal pair. 

In the reward trials, if participants chose the high probability action (also referred to 

here as the ‘Correct’ action), they received monetary reward with a 70% probability; on the 

other 30% of trials they received nothing. In contrast, choosing the low probability action 

(also referred to here as the Incorrect action), they received monetary reward on only 30% of 

trials; otherwise, they obtained nothing on the remaining 70% of trials. Similarly, on the 

avoidance trials, if participants chose the high probability action they received nothing on 

70% of trials, on the other 30% they received a monetary loss, whereas choice of the low 

probability action led to no outcome on only 30% of trials, while the other 70% were 

associated with receipt of the aversive outcome. A probability switch was introduced at a 

time-point between the 11th to 20th trial in the reward/avoidance trials, where the fractal 

associated with high probability was changed to the low probability and where the fractal 

associated with low probability changed to the high probability. For the neutral trials, 

participants had a 70% or 30% probability of obtaining neutral feedback; otherwise, they 

received nothing.  

Prior to the experiment, participants were given instructions that they would be 

presented with three pairs of fractals and on each trial, they had to select one of these fractals. 

Participants also had a practice session of the task before going into the MRI. During the 

task, depending on their choices they would win a point, lose a point, obtain a neutral 

outcome with no change, or receive nothing. They were not told which fractal pair was 

associated with a particular outcome neither when the probability switch was to occur. 



 

 

Participants were instructed to try to win as many points as possible and that they would 

receive a Coles/Myer voucher at the end corresponding to the amount of points they had 

accumulated.  

 

BASIC BEHAVIOURAL ANALYSIS 

Under each condition, the total number of Correct and Incorrect choices were calculated for 

each participant. Also, the response time was measured at the time of fractal pairs displayed 

until participants’ choice selection at each trial under three conditions. 

 

IMAGING PROCEDURE 

All images were acquired with 3.0-T SIEMENS MAGNETOM Skyra syngo MR D13C at 

Monash Biomedical Imaging. The functional images (fMRI) were acquired through gradient 

echo T2* weighted echo-planar images (EPI) with BOLD (blood oxygenation level 

dependent) contrast. The scanning parameters: field of view = 230 mm, 3mm by 3mm in 

plane resolution, time of repetition = 2000 ms, and time of echo = 30.0 ms. Each volume of 

fMRI images contains 34 slices with a thickness of 3.0 mm (no gap) in an ascending 

interleaved way. High resolution T1-weighted (1x1x1 mm3 resolution) were acquired with a 

standard MPRAGE sequence (time of echo = 2.07 ms, time of repetition = 2300 ms, flip 

angle = 9 degree, field of view = 256 mm).  

 

Q-LEARNING MODEL 

A basic Q-learning model (Watkins, 1995), was used to characterise participants’ 

behaviour in task. This model estimates the expected value of choosing each stimulus based 

on the previous history of choices and outcomes. The expected value of each stimulus was 



 

 

initially set to zero, and after each trial t > 0, was updated according to the chosen stimulus 

and reward feedback. The expected value of choosing stimulus 𝑎 was updated as follows, 

 𝑄$(𝑡 + 1) = 	𝑄$(𝑡) + 𝛼 ∗ 𝛿(𝑡);   

while the value for nonchosen stimulus stayed unchanged.	𝛼 is the learning rate and 𝛿(𝑡) is 

the prediction error which is the difference between the actual and expected outcome, 

           𝛿(𝑡) = 𝑅(𝑡) − 𝑄𝑎(𝑡); 

𝑅(𝑡)= $-1, $0, $1 is the reward received after choosing the stimulus. The probability of taking 

each action is based on their values, and according to the softmax rule,  

               𝑃$(𝑡) = 𝑒𝑥𝑝	>𝛽𝑄$(𝑡)?	/{𝑒𝑥𝑝	>𝛽𝑄$(𝑡)? + 𝑒𝑥𝑝	>𝛽𝑄%(𝑡)?}; 

The 𝛽 is the inverse temperature parameter with a scale from 0 to 20, which indicates how 

stochastic or exploratory the individual choices are. Lower values of 𝛽 parameter indicate 

random action selection, which corresponds to low sensitivity to stimulus values; while a 

high 𝛽	value indicates that choices are strongly driven by their expected values.  

 The hierarchical bayesian method (HBM) was used for the model and parameter 

estimation. HBM, exploits group-level parameter distributions to inform individual-level 

estimations, and compared to the individual parameter estimation methods, HBM provides 

better parameter stability and predictive accuracy (Scheibehenne and Pachur, 2015). The 

learning rate 𝛼 and inverse temperature parameter 𝛽 had a normal prior distribution Norm 

(0,1) (see supple. Fig 1 for the details of model structure). 

 

 

  



 

 

Imaging data analysis 

Pre-processing 

SPM12 (Wellcome Department of Imaging Neuroscience, Institute of Neurology, 

London, United Kingdom) was used to perform the fMRI image analysis. The pre-processing 

of EPI images commenced with the slice timing correction to the middle slice of each 

volume. Then, the realignment was applied to remove the motion artefacts. The individual 

T1-weighted image was co-registered to the mean EPI generated during realignment and then 

were normalized to the standard Montreal Neurological Institute (MNI) space based on the 6-

tissue probability map (TPM) provided by SPM. The motion-corrected and co-registered EPI 

images were normalized to MNI space using the previously calculated deformation fields and 

then spatially smoothed with a 8 mm FWHM (full width half maximum) Gaussian kernel 

(Kim et al., 2006).  

1st level analysis  

Time series describing expected values and PEs were generated for each participant 

for each trial in the experiment by entering the participants’ trial history into the learning 

model. These sequences were convolved with a hemodynamic response function and entered 

into a General Linear Model (GLM) to fit the pre-processed imaging data. The expected 

value was modelled as a boxcar function beginning at the time of fractals display till the 

outcome while the PEs modelled as a delta function at the time of outcome display. Separate 

six regressors were created for different outcomes to model activity at the time of the 

outcome: rewarded reward trial (R+), unrewarded reward trial (R-), punished avoidance trial 

(P+), non-punished avoidance trial (P-), neutral feedback trial (N+) and neutral trial without 

feedback (N-). In addition, the six scan-to-scan motion parameters produced during 

realignment were included to further remove the nuisance effect of head motion.  



 

 

Linear contrasts of regressors coefficients were computed at the individual participant 

level to enable comparison among the Reward, Avoidance and Neutral trials. The simple 

contrast [R+ - N+] was to test the brain response to rewarded outcome and the contrast [P+ - 

N+] was to examine the brain activation related to outcome of getting point loss (referred as 

aversive outcome). Further, the specific contrast [R+ + P-] - [R- + P+] was to test those of 

brain areas showing greater response to obtaining reward and avoidance aversive outcome 

compared to obtaining aversive outcome and missing reward.  

The model-derived expected value and PE were separately parametric modulated 

from outcome regressor (see supple. Fig 8-10 for time series for both signals). Then, the 

contrasts were created to examine the brain areas associated with expected value and PE 

under reward and avoidance condition. Further, the conjunction analysis of expected value, 

and PE under reward and avoidance condition were performed to examine the common 

neural correlates. Moreover, the direct comparison of expected value, and PE under both 

conditions to examine the differential regional response. 

 

Statistical analysis 

For behaviour measurements, independent two-sample t-tests were carried out to compare the 

number of Correct vs Incorrect choices under each condition. Also, the same test was used to 

compare the response time between different conditions. The statistical analysis was 

conducted and visualized using GraphPad Prism (version 8). 

For voxel-based group level statistical analysis, the contrast images from each single 

participant were taken to a one sample t-test design to examine the group effect of various 

outcome contrasts as well as expected value and PE. SPM12 is used to conduct the analysis. 

The significant level was initially set at p < 0.001 and the threshold for family wise error 



 

 

(FWE) multiple comparison correction (MCC) was set q < 0.05 with cluster size k > 100 at 

cluster level.  

 

4.3 Results 

BASIC BEHAVIOURAL RESULTS 

Participants made significantly quicker responses to the reward condition (975.3 ms ± 22.84; 

t = 2.51, p = 0.012) and significantly slower response to the avoidance condition (1133 ms ± 

18.35; t = 2.58, p = 0.01). The response time of the neutral condition (1059 ms ± 23.07) is 

intermediate between the reward and avoidance condition (Figure 4-1. (c)). Over the course 

of learning trials, participants showed significant preferences to the choice associated with 

higher probability obtaining reward points (i.e., Correct choice as shown in Figure 4-1. (d)) 

in the reward condition (t = 4.3, p < .0001; two tailed), and the choice associated with lower 

probability to get aversive outcome (i.e. in the avoidance condition (t = 8.785, p <.0001; two 

tailed). No significant difference was found in the neutral condition (t = 0.82, p = 0.4138; one 

tailed). 

 

MODELLED BEHAVIOURAL RESULTS 

Before the application of the model to the participants’ behavioural data, simulation was 

carried out to demonstrate the feasibility of the model (see supple. Fig 2-5). The learning rate 

𝛼 under reward and avoidance condition was 0.292 +/- 0.212 and 0.754 +/- 0.290, 

respectively. And the inverse temperature parameter 𝛽	under reward and avoidance condition 

was 9.00 +/- 2.815 and 1.630 +/- 1.056, respectively. Then, comparing the learning 

characteristics between the reward and avoidance condition, participants showed a 

significantly higher learning rate under the avoidance condition (t = 13.84, p < 0.0001), 



 

 

whereas participants showed a significantly lower inverse temperature parameter under the 

reward condition (t = 15.70, p < 0.0001) (see supple. Fig 6-7 for parameters distribution). 

 

Figure 4-1 (a) The probabilistic reward and avoidance learning task, which includes three types: reward, 

avoidance and neutral conditions. The pair of fractals under each condition would be displayed for 2000 ms, 

then the selected picture would be highlighted for 3500 ms, and the outcome would be shown for another 1500 

ms. (b) The drifting probability under reward (in red) and avoidance condition (in blue). (c) The response time 

under reward, avoidance and neutral condition. Significant quicker response under reward condition and 

slower under avoidance condition compared to neutral condition were found (* means p < 0.05, **** means p 

< 0.0001). (d) The number of Correct and Incorrect choice. The significant preference to the Correct choice 

were found under reward and avoidance condition (**** means p < 0.0001). 

 

 



 

 

 

IMAGING RESULTS 

Brain regions response to reward receipt and punishment avoidance 

When comparing brain responses to rewarded outcome compared to the neutral 

condition, the largest cluster with the peak at ([8, -4, 2]; t = 9.94, k = 5205) covered striatum, 

bilateral thalamus, bilateral insula and left inferior orbitofrontal (OFC). The second cluster 

peaked at the right middle cingulum ([2, 36, 30]; t = 7.22, k = 2494) covered bilateral ACC 

and bilateral superior medial frontal and the right middle cingulum ([4, -10, 32]; t = 6.59, k 

= 860) after correction (see Figure 4-2). 

 

Figure 4-2 Neural correlates of rewarded outcome. The cluster covering striatum, bilateral thalamus, bilateral 

insula and left inferior OFC, the right middle cingulum covering bilateral ACC and the right middle cingulum 

were found to have higher activation in response to the rewarded outcome (see Table 4-1 for details). 

 

When comparing brain responses to aversive outcome compared to the neutral 

condition, we observed significant activation in the right insula ([42, 22, -2]; t = 9.94, k = 

1832), left insula ([-32, 18, -10]; t = 9.11, k = 1127), right SMA ([4, 20, 58]; t = 9.08, k = 



 

 

2374) extending to right middle cingulum and the left dorsal striatum ([-10, 2, 14]; t = 4.77, k 

= 165) after correction (see Figure 4-3). 

 

Figure 4-3 Neural correlates of aversive outcome. The bilateral insula, right SMA extending to the 

right middle cingulum and the left dorsal striatum were found to have higher activation in response to the 

punished trials (see Table 4-1 for details). 

 

Table 4-1 Locations of regional response to reward/aversive outcome 

Region Peak MNI Coordinates 
Peak  

t value 

Spatial extent (in  

contiguous voxels) 

 x y z   

 R+ - N+ 

R. Caudate 8 4 -2 9.94 5205 

        L. Insula -32 20 -6 7.84  

R. Anterior cingulum 2 36 30 7.22 2494 

        R. Anterior cingulum 8 38 16 6.37  

        L. Anterior cingulum -6 32 26 5.99  



 

 

L. Precentral Gyrus -46 6 30 7.01 864 

        L. Precentral -48 -4 52 5.52  

R. Middle cingulum 4 -10 32 6.59 860 

R. Middle temporal 62 -32 -6 4.63 152 

        R. Middle temporal 54 -30 -6 3.80  

 P+ - N+ 

R. Insula 42 22 -2 9.94 1832 

        R. Insula 34 18 -8 8.84  

L. Insula -32 18 -10 9.11 1127 

        L. Insula -32 20 0 8.59  

R. Supplementary motor area  4 20 58 9.08 2374 

        R. Middle cingulum 4 36 34 8.44  

R. Middle frontal 42 8 58 6.67 1159 

        R. Precentral 48 6 50 6.10  

        R. Middle frontal 48 20 38 5.28  

L. Precentral -48 -2 52 6.20 271 

R. Caudate 8 6 14 6.03 1075 

        R. Caudate 12 8 6 5.62  

L. Caudate -10 2 14 4.77 165 

      

  *Note: R+ - N+ –Rewarded outcome – Neutral feedback; P+ - N+ – Punished outcome – Neutral feedback. 

 

Further, the contrast [R+ + P-] - [R- + P+] showed that the left putamen ([-14, 4, -10]; t 

= 7.04, k = 409), right putamen ([16, 8, -10]; t = 5.78, k = 576), left medial orbitofrontal 

(mOFC, [-10, 48, -10]; t = 5.01, k = 412), right posterior cingulate (PCC, [4, -32, 22]; t = 

5.31, k = 507), right superior temporal gyrus (sTG, [62, -34, 12], t = 5.12, k =154) and left 

inferior orbitofrontal (OFC, [-38, 36, -16]; t = 4.90, k =171) were significantly more active in 

response to receiving reward and avoiding punishment compared to receiving an aversive 

outcome and missing reward after correction; While the right insula ([32, 20, 10]; t = - 3.22, k 



 

 

= 223) were shown greater activation in response to missing reward and receiving 

punishment compared to receiving reward and avoiding punishment (see Figure 4-4). 

 

Figure 4-4 Common neural correlates of outcome under receipt of reward and avoidance of 

punishment condition. Through the contrast [R+ + P-] - [R- + P+], the ventral striatum, left mOFC and inferior 

OFC, right sTG and right PCC were found activated when receiving reward and avoiding punishment. While 

the right insula was found to have higher activation to missing reward and receiving punishment compared to 

receiving reward and avoiding punishment (see Table 4-2 for details). 



 

 

Table 4-2 Locations of common and differential regional response to reward/avoidance outcome. 

Region Peak MNI Coordinates Peak t value 
Spatial extent (in  

contiguous voxels) 

 x y z   

 [R+ + P-] > [R- + P+] 

L. Putamen -14 4 -10 7.04 409 

        L. Putamen -24 0 0 5.25  

R. Putamen 16 8 -10  5.78 576 

        R. Putamen 30 4 6 4.86  

L. Medial orbitofrontal -10 48 -10 5.01 412 

        L. Medial orbitofrontal -6 40 -8 4.63  

R. Posterior cingulate 4 -32 22 5.31 507 

        R. Posterior cingulate 8 -44 26 4.79  

R. superior temporal 62 -34 12 5.12 154 

        R. Superior temporal 64 -22 2 4.47  

L. Medial orbitofrontal -10 48 -10 5.01 412 

        L. Medial orbitofrontal -6 40 -8 4.63  

L. Inferior orbitofrontal -38 36 -16 4.90 171 

        L. Middle orbitofrontal -24 36 -12 4.20  

        L. Superior orbitofrontal -24 46 -8 3.83  

 [R+ + P-] < [R- + P+] 

R. Insula 32 20 10 -3.32 223 

      

    *Note: [R+ + P-] > [R- + P+] – [Rewarded outcome + Avoidance outcome] - [Non-rewarded outcome + Punishment outcome]. 

 
 



 

 

 
Brain regions response to reward/avoidance expected value 

The reward expected value signal was found positively correlated with the brain 

activation at the left middle temporal gyrus (mTG, [-56, -10, -12]; t = 4.62, k = 477), left 

superior medial frontal gyrus ([-2, 58, 34]; t = 3.81, k = 764), right anterior cingulate (ACC, 

[16, 38, 0]; t = 4.34, k = 539), and also the brain region peaked at ([10, -30, 26]; t = 4.42, k = 

1672) covering bilateral middle cingulum and right hippocampus at p < 0.01 after FWE 

correction (see Figure 4- 5). 

 

Figure 4-5 Neural correlates of reward expected value. The reward expected value signal was found 

positively correlated with the brain activation at the left mTG, left superior medial frontal, right anterior 

cingulate, and also the brain region including bilateral middle cingulum and right hippocampus (see Table 4-3 

for details). 
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Whereas the avoidance expected value was positively correlated with the brain region 

peaked at ([40, -4, 20]; t = 5.01, k = 241) including right putamen, left putamen ([-26, 6, 10]; 

t = 4.40, k = 108), left mOFC ([-2, 46, -14]; t = 4.60, k = 145) extending to the right mOFC, 

as well the left sTG ([-54, -4, 6]; t = 4.81, k = 171) (see Figure 4-6). Meanwhile it was found 

that avoidance expected value was negatively correlated with the left inferior OFC peaked at 

([-32, 26, -6]; t = 6.47, k = 554), right insula ([34, 26, -4]; t = 5.96, k = 765), right superior 

medial frontal ([10, 30, 44]; t = 5.46, k = 1414) including the right middle cingulum and right 

ACC, right caudate peaked at ([12, 8, 8]; t = 4.86, k = 157) and right precentral gyrus ([40, 0, 

42]; t = 4.58, k = 110) after correction (see Figure 4-7). 

 

Figure 4-6 Neural correlates of avoid expected value. The expected value under the avoidance 

condition was found positively correlated with the brain region covering right putamen, the left putamen, the 

left mOFC extending to the right mOFC, as well the left sTG (see Table 4-3 for details). 
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Figure 4-7 Neural correlates of avoid expected value. The expected value under the avoidance 

condition was found negatively correlated with the left inferior OFC, right insula, right superior medial frontal 

including the right middle cingulum and right ACC, right caudate and the right precentral gyrus (see Table 4-3 

for details). 

 

Table 4-3 Locations of regional response to reward/avoidance expected value. 

Region MNI Coordinates t value 
Spatial extent (in  

contiguous voxels) 

 x y z   

Reward expectation 

L. Middle Temporal -56 -10 -12 4.62 477 

       L. Middle Temporal -50 -6 -18 3.67  

L. Superior Frontal -2 58 34 3.81 764 

       R. Middle Frontal 20 60 36 3.69  

       L. Superior medial frontal 0 60 8 3.45  
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R. Anterior Cingulate 16 38 0 4.34 539 

R. Middle Cingulum 10 -30 26 4.42 1672 

       R. Middle Cingulum 2 -6 30 2.94  

       L. Middle Cingulum -4 -48 26 3.06  

       R. Hippocampus 36 -32 -10 2.49  

Avoid expectation 

       Positive correlation 

R. Putamen 40 -4 20 5.01 241 

L. Superior Temporal -54 -4 6 4.81 171 

        L. Postcentral -56 -12 14 3.56  

L. Medial Orbitofrontal -2 46 -14 4.60 145 

        R. Medial Orbitofrontal 4 38 -8 3.92  

L. Angular   -24 -52 28 4.42 186 

L. Putamen -26 6 10 4.40 108 

        L. Putamen -24 -8 12 4.17  

       Negative correlation 

L. Inferior Orbitofrontal -32 26 -6 6.47 554 

R. Insula 34 26 -4 5.96 765 

       R. Insula 40 22 -8 4.94  

R. Superior medial frontal 10 30 44 5.46 1414 

       R. Middle Cingulum 8 26 30 5.36  

       R. Anterior Cingulum 8 34 28 5.29  

R. Caudate 12 8 8 4.86 157 

R. Precentral 40 0 42 4.58 110 

      

 

The conjunction analysis showed that the right middle cingulum ([16, -16, 46]; t = 

3.63, k = 2225) were commonly activated by the reward and avoided expected value (see 

Figure 4-8) at p < 0.05 with FWE correction at cluster level. Further, the analysis showed 
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that the right middle frontal ([20, 60, 26]; t = 4.57, k = 292) were found higher activation for 

reward expected value compared to avoid expected value (see Figure 4-9). 

 
Figure 4-8 Common neural correlates of positive effects of reward and avoid expected value. The right 

middle cingulum was found commonly activated by the reward and avoid expected value (see Table 4-4 for 

details). 

 

 

Figure 4-9 The locations of regional response differences between reward and avoid expected value. 

The right middle frontal was found showing significantly higher activation to the reward expected value 

compared to avoid expected value (see Table 4-4 for details). 
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Table 4-4 Locations of common and differential regional response to expected value under reward and 

avoidance condition. 

Region Peak MNI Coordinates Peak t value 
Spatial extent (in  

contiguous voxels) 

 x y z   

Reward expected value & Avoid expected value 

R. Middle cingulum 16 -16 46 3.53 2225 

 Reward expected value > Avoid expected value 

R. Middle frontal 20 60 26 4.57 292 

        R. Medial superior frontal 6 58 34 3.93  

        R. Superior frontal 18 54 36 3.85  
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Brain regions response to reward/aversive PE 

The reward PE signal was found to correlate positively with the activation at several 

clusters expanding across cortical and subcortical region, the largest cluster peaking at the 

right fusiform ([30, -50, -12]; t = 12.36; k = 25828) covering the striatum, cingulate, bilateral 

insula, hippocampus, thalamus, inferior & middle frontal and sTG. And the other clusters 

including left middle occipital ([-24, -86, 18]; t = 9.09, k=2640), right superior frontal gyrus 

(sFG, [18, 60, 26]; t = 4.53, k = 277) and left supplementary motor area (SMA, [-6, 10, 54]; t 

= 4.94, k = 234) extending to right SMA (see Figure 4-10). 

 

Figure 4-10 Neural correlates of reward PE. The signal was found positively associated with the 

activity in the brain regions including right fusiform covering the striatum, cingulate, bilateral insula, 

hippocampus, thalamus, inferior & middle frontal and sTG. And the other clusters including left middle, right 

superior frontal and left SMA extending to right SMA (see Table 4-5 for details). 

 

The PE signal under avoidance condition which included an aversive outcome was 

received when unexpected and an aversive outcome was not received when expected, was 

referred as aversive PE. It was found correlated with the activity at brain regions including 
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right fusiform ([30, -52, -10]; t = 13.82, k = 3697) expanding to bilateral thalamus and left 

hippocampus, left insula ([-30, 18, -12]; t = 7.42, k = 2826), right inferior OFC ([40, 28, -27]; 

t = 7.41, k = 1709) covering right insula, bilateral caudate peaked at left side ([-8, 4, 4]; t = 

5.63, k = 183) and right side ([12, 8, 2]; t = 4.99, k = 150) respectively, right SMA peaked at 

([2, 8, 60]; t = 6.92, k = 1171) expanding to left SMA and anterior & middle cingulum, right 

mTG ([56, -40, 4]; t = 5.75, k = 405), right opercular part of the inferior frontal ([38, 10, 30]; 

t = 6.03, k = 1220) covering the right precentral and right middle frontal, and the left 

precentral peaked at ([-42, 0, 58]; t = 8.44, k = 631) (see Figure 4-11). 

 

Figure 4-11 Neural correlates of aversive PE. The activated brain regions were right fusiform, 

bilateral thalamus and left hippocampus, left insula, right inferior OFC covering right insula, bilateral caudate, 

right SMA expanding to left SMA and anterior & middle cingulum, right mTG, right opercular part of the 

inferior frontal covering the right precentral and right middle frontal, and the left precentral (see Table 4-5 for 

details). 
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Table 4-5 Locations of regional response to PE under reward/avoidance condition. 

Region MNI Coordinates t value 
Spatial extent (in  

contiguous voxels) 

 x y z   

Reward PE 

R. Fusiform 30 -52 -10 12.36 25828 

        R. Middle occipital 28 -86 16 11.45  

        L. Fusiform -32 -40 -18 9.90  

L. Supplementary motor area -6 10 54 4.94 234 

        L. Supplementary motor area 2 14 48 3.47  

R. Postcentral 50 -28 56 5.01 191 

        R. Postcentral 44 -36 62 4.75  

R. Superior frontal 18 60 26 4.53 277 

        L. Superior medial frontal 2 62 24 4.15  

      

Aversive PE 

R. Fusiform 30 -52 -10 13.82 3697 

        L. Fusiform -26 -46 -14 10.25  

L. Insula -30 18 -12 7.42 2026 

        L. Inferior orbitofrontal -36 24 -12 6.66  

        L. Opercular part of the inferior frontal -44 16 20 6.42  

R. Inferior orbitofrontal 40 28 -2 7.41 1709 

        R. Inferior orbitofrontal 40 24 -14 7.17  

        R. Insula 32 22 -14 7.02  

R. Supplementary motor area 2 8 60 6.92 1171 

       R. Supplementary motor area 6 22 56 5.57  

R. Opercular part of the inferior frontal 38 10 30 6.03 1220 

       R. Precentral 50 8 46 5.31  

R. Middle temporal 56 -40 4 5.75 405 
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       R. Superior temporal 46 -32 -2 5.62  

       R. Middle temporal 50 -20 -10 4.25  

L. Caudate -8 8 4 5.63 183 

R. Caudate 12 8 2 4.99 150 

      

 

The conjunction analysis showed that the right insula ([38, 28, -2]; t = 6.45, k = 

2457), left insula ([-32, 18, -10]; t = 5.99, k = 1611), left opercular part of the inferior frontal 

([-38, 8, 28]; t = 5.93, k = 761), right caudate ([12, 10, 2]; t = 5.27, k = 11), and left SMA ([-

4, 10, 60]; t = 4.37, k = 174) extending to the right SMA were found commonly activated for 

reward and aversive PE (see Figure 4-12). Meanwhile, the right fusiform ([30, -50, -12]; t = 

17.76, k = 33802) covering the bilateral insula, bilateral thalamus, striatum and the left 

SMA ([-4, 10, 60]; t = 6.90, k = 5754) extending to the right SMA were found higher 

activation to reward PE compared with aversive PE (see Figure 4-13). 
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Figure 4-12 Conjunction analysis of reward and aversive PE. The bilateral insula, left inferior frontal, 

right dorsal striatum and bilateral SMA were found commonly activated for reward and aversive PE (see Table 

4-6 for details).  

 

Figure 4-13 The locations of response differences between reward and aversive PE. The right fusiform 

covering the bilateral insula, bilateral thalamus, striatum and the left SMA extending to the right SMA were 

found to have higher activation to reward PE compared with aversive PE (see Table 4-6 for details). 
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Table 4-6 Locations of common and differential regional responses to PE under reward and avoidance 

condition. 

Region Peak MNI Coordinates Peak t value 
Spatial extent (in  

contiguous voxels) 

 x y z   

 Reward PE & Aversive PE 

R. Insula 38 28 -2 6.45 2457 

        R. Middle temporal 48 -36 2 5.21  

L. Insula -32 18 -10  5.99 1611 

        L. Inferior orbitofrontal -34 26 -10 5.55  

L. Opercular part of inferior frontal -38 8 28 5.93 761 

        L. Triangular part of inferior frontal -44 18 18 5.75  

L. Inferior parietal 30 -56 52 5.67 300 

L. Precentral -42 -2 54 5.53 540 

R. Caudate 12 10 2 5.27 115 

L. Inferior parietal -30 -54 50 5.05 206 

        L. Superior parietal -22 -64 54 3.37  

L. Supplementary motor area -4 10 60 4.37 174 

        R. Supplementary motor area 6 16 58 3.61  

Reward PE > Aversive PE 

R. Fusiform 30 -50 -12 17.76 33802 

        R. Middle occipital 30 -82 14 16.81  

        L. Middle occipital -26 -84 16 14.09  

L. Supplementary motor area -4 10 60 6.90 5754 

        R. Supplementary motor area 4 14 60 6.51  
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4.4 Discussion 

In this study, through a novel probabilistic reward and avoidance learning task with a switch 

mid-way through task performance, we examined the full potential neural bases at the 

outcome and anticipation phases of reward/avoidance learning in healthy controls, and 

importantly, the neural mechanism of the robust learning PE signal under reward and 

avoidance conditions. Behaviourally, the healthy participants showed a significant preference 

of the Correct choice under reward and avoidance condition. Also, the reaction time is 

significantly faster under reward condition and slower under avoidance condition compared 

to neutral condition. The results successfully replicated the findings of Kim et al (2016).  

 The imaging analysis showed that the outcome of receiving reward and getting 

punishment had a common neural substrate including cingulum and bilateral insula, but also 

the distinct neural substrates including inferior OFC, bilateral thalamus and whole striatum 

as well as dorsal striatum involved with the outcome of getting reward and punishment, 

respectively. The outcome of receiving reward and successfully avoiding punishment was 

found associated with the consistent mOFC implicated in Kim et al. study (Kim et al., 2006), 

and we also found the new candidates including posterior cingulum and dorsal striatum 

involved with this process. While, the outcome of missing reward and receiving punishment 

was found to be related to higher activations in the common brain region at right insula. At 

the stage of value anticipation, the reward and avoidance expected value had a common 

neural substrate including middle cingulum. And the expected value under avoidance 

condition recruited broader brain regions including the inferior OFC, insula and dorsal 

striatum.  

Specifically, at the phase of error processing, the reward PE signal was found 

correlated with the activity at the cortical-basal ganglia brain areas including the whole 
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striatum, cingulate, insula, hippocampus, thalamus, inferior & middle frontal and SMA. The 

aversive PE signal was found covaried with the activation at the common brain regions 

including cingulate, insula, hippocampus, thalamus, inferior frontal and SMA as well as the 

specific dorsal striatum. 

 When faced with multiple options, making a decision requires one to compute the 

values associated with the outcomes of each action. Same with our findings, previous studies 

have reported that the set of brain regions including OFC, striatum, thalamus, and cingulum 

are involved in the processing of monetary reward outcome (Oldham et al., 2018b). It has 

also been previously found that processing loss/aversive outcomes are associated with 

activation in the dorsal striatum and cingulum (Dumais and Bitar, 2018). The OFC receives 

information from the object-processing visual stream and could be activated by some primary 

reinforcers such as pleasant or painful touch (Rolls, 2000). Furthermore, the OFC is 

suggested to be critical for representing the outcomes of actions and their subsequent impact 

on the control of behaviour. The medial OFC was consistently found not only activated by 

rewarding outcomes, there is also evidence for medial OFC activation when successfully 

avoiding punishment (Kim et al., 2006). An electrophysiological study on non-human 

primates also found that OFC neurons are involved in both aversive and reward processing, 

and they encode relative preferences for reward and aversive outcomes (Hosokawa et al., 

2007). Besides the OFC, the striatum is reported to be crucial for both learning to approach 

rewarding outcomes (Lau and Glimcher, 2007), and in avoiding aversive outcomes 

(Salamone, 1994, 2002). While a distinct anatomical connectivity pattern for the dorsal and 

ventral striatum has been suggested (Voorn et al., 2004). According to the previous literature, 

the ventral striatum is reported to be more activated by reward value than loss outcome (Ino 
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et al., 2010), whereas dorsal striatum was modulated by receiving reward as well as getting 

punishment (Mattfeld et al., 2011). 

 Reward-expectation activity has been suggested as an appropriate signal for 

predicting the occurrence of rewards and thereby provides a suitable mechanism for 

influencing behaviour that leads to the acquisition of rewards (Schultz, 2000) [37]. Previous 

studies report that the ACC has strong connections with motor areas and a few direct 

connections with the sensory cortex, thus, it has been suggested to be responsible for action 

value calculation to produce a favourable outcome (Jerome et al., 2007; Philiastides et al., 

2010). A previous study reported that the activation in rostral ACC/mPFC and amygdala 

were related to increases in the level of expected reward (Marsh et al., 2007). An overlapping 

value-related activity within ventromedial prefrontal cortex was reported during anticipation 

of juice and money reward outcomes (Savage and Ramos, 2009), and the Medial frontal 

cortex was reported to encode the reward expectation (Silvetti et al., 2014). The anterior 

insula was found correlated with expected values, occurring when low reward outcomes were 

expected (Rolls et al., 2008). Further, the Basolateral amygdala projected to OFC was 

reported to enable the cue-triggered reward expectations that can motivate the execution of 

specific action plans and allow adaptive conditional responding (Lichtenberg et al., 2017). 

 In contrast to reward expectation, activation was observed in the inferior OFC, insula 

and superior medial frontal under the avoidance condition during anticipation phase in our 

study. The insula activation at the anticipation phases in avoidance condition was reported in 

a previous study (Kim et al., 2014). The anterior insula is one of the brain structures engaged 

in emotion processing related to the representation or regulation of an organism’s state 

(Damasio et al., 2000), and its role in the interoception of physiological states elicited during 

emotional experience has been reported (Palminteri et al., 2012; H and Antoine, 2013). The 
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activation of the insula suggests that the interoceptive representations of monetary outcomes 

associated with fractal selections were retrieved during the anticipation phase (Kim et al., 

2014). The dorsal striatum activation during anticipation in the avoidance trials was also 

found in a previous study (Kim et al., 2014), and thus, the dorsal striatum is involved in the 

evaluation process of the alternative choices to avoid the worst (Palminteri et al., 2012). 

Besides the previously mentioned role in outcome processing, the OFC has also been 

implicated in the evaluation of negative outcomes (Kringelbach and Radcliffe, 2005), and the 

OFC activation during anticipation of outcomes could reflect the potential negative 

consequences, even if the participants selected the action with a higher expected value. 

 The error signal in the reward condition was found to be correlated with activation of 

cortical-basal ganglia brain regions. In line with these findings, previous studies have 

suggested that the error signal is computed at midbrain dopamine neurons and a global 

reinforcement signal is emitted to other neurons in the striatum and prefrontal cortex, which 

could underlie the learning of appropriate behaviours (Schultz et al., 1997; Schultz, 2000; 

Glimcher and Bayer, 2005). Previous animal studies have found that dopamine neurons show 

phasic response to food and liquid rewards (Ljungberg et al., 1991, 1992; Schultz et al., 

1993). The striatal dopaminergic system was found to carry distinct messages by different 

means, which can be integrated differently to shape the basal ganglia responses to reward-

related events (Satoh et al., 2003). Ventral striatum is a subdivision of the basal ganglia that 

includes the nucleus accumbens, parts of the olfactory tubercle, as well as ventral and medial 

portions of the putamen and caudate nucleus (Holt et al., 1997). Using attractive faces as the 

visual stimulus, a previous study has shown that the learning process elicits a reward PE in 

the ventral striatum (Bray and O’Doherty, 2007). Similar results were found in a probabilistic 

decision task, in which activations in midbrain and ventral striatum were correlated with the 



 

126 
 
 

PE signal (Rolls et al., 2008). An overlapping of PE signal was reported during learning with 

juice and money reward in the dorsal striatum, while the PE signal was significantly stronger 

during learning with money but not juice reward in the ventral striatum (Valentin and 

Doherty, 2020). Participants were scanned using event-related fMRI while undergoing 

appetitive conditioning with a pleasant taste reward. Regression analysis revealed that 

responses in ventral striatum and OFC were significantly correlated with this error signal 

(O’Doherty et al., 2003). 

 The aversive PE is fundamental to avoidance learning, and it was found to be 

correlated with activity in the frontal-subcortical brain regions including dorsal striatum and 

insula in our study. Striatal dopamine release is reported to convey a learning signal during 

both appetitive and aversive conditions (Stelly et al., 2019). Further, striatal structure and 

function has been reported to predict individual biases in learning to avoid pain (Eldar et al., 

2016). A previous study using the Pavlovian conditioning of visual cues to elicit outcomes 

that simultaneously incorporate the chance of financial reward and loss, the striatal 

activation, especially the more posterior regions was reported to reflect the PE of loss 

(Seymour et al., 2007). In a classic fear conditioning paradigm, it was demonstrated that the 

BOLD signals in the striatum, particularly the head of the caudate nucleus, were correlated 

with aversive PE (Delgado et al., 2008). The midbrain dopamine system is suggested to be 

involved in the processing of aversive and reward PE signals (Brooks and Berns, 2013). A 

previous animal study showed that hemodynamic responses and theta oscillations recorded 

from the amygdala show activity patterns consistent with aversive PE (McHugh et al., 2014). 

The basolateral part of the amygdala was reported to encode an aversive PE that quantifies 

whether cues and outcomes were worse than expected (Michely et al., 2020). As a distinct 

pattern of PE found for studies using rewarding and aversive reinforcers, reward PE were 



 

127 
 
 

observed primarily in the striatum while aversive PE were found more widely including 

insula and habenula (Garrison et al., 2013c). Another study using juice as a stimulus reported 

that the activity of a brain network composed of the striatum, anterior insula, and anterior 

cingulate cortex covaried with the prediction of an aversive taste (Metereau et al., 2013). 

In summary, the overlapped and distinct brain regions were found involved in reward 

and avoidance-based decision processes in the present study. At the outcome stage, receiving 

reward and punishment was associated with the functional activity in common brain areas 

including the insula and cingulum, whereas there were distinct activations in relation to 

reward (whole striatum) and punishment (dorsal striatum). In addition, the cingulum was also 

activated for both reward and avoidance expectation. Avoidance expectation recruited 

broader areas at the cortical and subcortical brain areas including inferior OFC, insula, and 

dorsal striatum. At the stage of error processing, the reward PE signal was found associated 

with the activity in the cortical and subcortical areas. Meanwhile the aversive PE signal was 

covaried with the activity at the shared frontal-subcortical brain regions and the segregated 

dorsal part of striatum. The findings show that the specific dorsal striatum plays a critical 

role for differential phases of avoiding decision processes, and also supports the existence of 

dissocial computational processes in the brain for reward and punishment processing. 
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5 Neural mechanisms of stages of reward/avoidance decision processes in obsessive 

compulsive disorder and gambling disorder 

Connecting: Through the statistical analysis and modelling fitting, the previous Chapter 3 

has provided evidences of the healthy participants’ behavioural performance of reward and 

avoidance learning. And through the combination of model fitting and neuroimaging 

analysis, the Chapter 4 has provided explainable evidences of underlying neural 

mechanisms associated with keys signals of reward and avoidance learning. These solid 

findings and well-packed analysis paradigm motivated to explore the potential maladaptive 

reward and avoidance learning in OCD and GD groups. In this chapter, we will explore the 

behavioural differences of OCD and GD groups under reward and avoidance learning. 

Also, how’s the neural activation differences underlying the computational processes of 

both clinical groups compared to healthy participants. Further, we will examine whether the 

altered neural activations associated with clinical symptoms and behavioural traits. 

 

Aim: In Chapter 4, we investigated the brain mechanism of three distinct stages (i.e., 

outcome, expected value and error processing) in reward and avoidance learning in healthy 

controls. In this chapter, we extended the investigation to the proposed maladaptive and 

aberrant decision process in participants with OCD (i.e. high compulsivity) and GD (i.e. high 

impulsivity). At first stage, the statistical analysis of the participants’ behavioural 

performance was carried out under the reward/avoidance condition with comparison to 

healthy controls, and four measurements were included: 1) the response time; 2) the number 

of Correct and Incorrect fractal choice; and 3) the learning curve. Next, the RL algorithms 

were implemented to model the participants’ behavioural process in the learning task and 

extract the learning traits including: 1) learning rate; 2) inverse temperature parameter. 

Further, to identify the neural substrates supporting aberrant differences compared to healthy 
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controls, imaging regression analysis was carried out to examine the brain activation in OCD 

and GD group compared to healthy controls at the three phases of decision process: 1) 

outcome processing; 2) expectation value; and 3) error processing. 

 

Questions: Through the application of the reversal learning task, we were interested in the 

performance pattern of OCD and GD clinical population compared to the healthy controls 

group at three levels including behavioural, modelling and imaging. At the level of 

behaviour, how similar or different is performance amongst the compulsive (i.e. OCD), 

impulsive (i.e. PG) clinical groups and healthy control groups. At the level of modelling, how 

were the learning merits including learning rate and inverse temperature parameter in the 

OCD and GD compared to healthy controls? At the level of imaging, how were the brain 

activation related to outcome processing, expectation value and error processing in 

participants with OCD and GD? 

 

Hypothesis: According to the previous studies, OCD is reported to be correlated with harm 

avoidance and exaggeration of aversive events (Choi et al., 2012; Endrass et al., 2011). We 

hypothesized that: 1) participants with OCD had a significant preference to the Correct 

choice under avoidance condition. 2) participants with OCD had an aberrant activation in the 

aversive error signal circuit. Whereas GD is associated with impulsiveness and reward 

seeking (Won Kim & Grant, 2001). We hypothesized that: 1) participants with GD had a 

significant preference to the Correct choice under reward condition. 2) participants with GD 

had an aberrant activation in the reward error signal circuit. 
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5.1 Introduction 

Decision making is the essential skill to live and manage our life, while many psychiatric 

conditions are associated with participants’ aberrant decision making patterns. For example, 

participants in obsessive compulsive disorder (OCD) commonly repeat a behaviour such as 

handwashing; And participants in gambling disorder (GD), commonly seek and partake in 

risky gambling, despite explicitly acknowledging the following harms. OCD is a relatively 

chronic and disabling neuropsychiatric disorder with an estimated prevalence between 1 and 

3% of the world population (Figee et al., 2011), and GD is classified as a behavioural 

addiction with a lifetime prevalence of 0.5 -1% (Miedl et al., 2012, 2014; Petry et al., 2005; 

Potenza, 2008). A high burden of individual and socioeconomic cost was caused by the 

maladaptive DM pattern under both clinical disease (Fujino et al., 2018; Nestadt et al., 2018). 

A dimensional model of impulsive-compulsive spectrum disorder has been 

previously proposed in which impulsivity and compulsivity represents polar opposite 

psychiatric spectrum constructs that can be viewed along a continuum of compulsive and 

impulsive disorders. OCD is recognized as a typical compulsive disorder, characterized by 

the experience of unwanted repetitive thoughts (obsessions) and repetitive behaviours 

(compulsions) with overestimation of the probability of future harm to carry on the risk 

avoidance (Pauls et al., 2014). Meanwhile the GD is regarded as an impulsive disorder, 

characterized by the impulsive choice of persistent and recurrent maladaptive patterns of 

gambling behaviour with underestimation of the likelihood or severity of possible harm (Lai 

& Ip, 2011). As a typical conception of compulsive disorder, recent studies also suggested 

that OCD shares behavioural components of impulsivity (Abramovitch & Mckay, 2016; 

Fontenelle et al., 2011; Grassi et al., 2015), and also based on the existed portrait of 

impulsive disorder, a compulsivity feature was suggested to be acquired in participants with 

GD with the increase of the impulsive behaviour (Fontenelle et al., 2011). 



 

136 
 
 

Studies have been carried out to investigate the impairment in appropriate decision 

making performance including reward/avoidance learning and its related neural mechanism 

under those two clinical conditions. The enhancements of harm-avoidance or avoidance habit 

in OCD with exaggerated anticipation and avoidance of aversive outcomes has been found in 

previous studies (Gillan et al., 2016; Learning, 2011; Starcevic et al., 2011), and the 

excessive avoidance behaviour was correlated with the hyper-activation in the orbitofrontal-

striatal circuit (Gillan et al., 2016; Remijnse et al., 2006). Based on the latest conception of 

compulsive disorder mentioned above, it is also suggested that OCD shares behavioural 

components of impulsivity (Abramovitch & Mckay, 2016; Fontenelle et al., 2011; Grassi et 

al., 2015). This is supported by recent studies that reported the dysfunctional reward 

processing with altered neural activity in the brain reward circuit and risk aversion in OCD 

under the effect of impulsivity trait (Admon et al., 2012; Figee et al., 2010).  

The “reward deficiency” in GD has been demonstrated with the hyperactivity in the 

reward circuitry including striatum and prefrontal brain regions (Brevers et al., 2015; Oberg 

et al., 2011; Pro et al., 2010). Not only the increased activity found for reward processing, the 

deactivation to loss aversion in the cortico-striatal circuit has also been reported in GD 

(Gelskov et al., 2016; Genauck et al., 2017). As the core feature of GD, the levels of 

impulsivity were found inversely correlated with activity of reward and avoidance processing 

(Pearlson & Potenza, 2013), and the ability to alter choice behaviour in response to stimulus-

reward contingencies (Franken et al., 2008). It was pointed out that compulsivity should be 

also considered to investigate the deficits in decision making of GD (Ioannidis et al., 2019), 

and with the increases of the impulsive behaviour, the compulsivity feature would be 

acquired (Fontenelle et al., 2011). 

 According to these studies, OCD is usually conceptualized as a compulsive disorder 

with harm avoidance, but the possible reward processing pattern under the effects of 
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impulsivity trait remains unclear. While GD is a portrait of impulsive disorder with risky 

decision making and exaggerated reward processing, the avoidance processing pattern under 

the compulsivity feature is under investigation. Using computational modelling and 

neuroimaging techniques, our aim was to investigate I) the behavioural performance 

including number of Correct vs Incorrect choices, learning curve and response time of OCD 

and GD compared with healthy controls. Then, a model was fitted to the behavioural data of 

both clinical groups to investigate II) the parameters including the learning rate and inverse 

temperature parameter under reward and avoidance decision processes. Combining with 

neuroimaging, we further investigated if there were altered brain activations related to these 

cognitive processes. Post-hoc analysis was carried out in order to examine III) how these 

constructs of the impulsivity and compulsivity affect the reward/avoidance learning 

performance in OCD and GD. Through the investigation of the neural computational 

mechanism and brain correlates, the study could help provide a better understanding of the 

aberrant decision making process in participants with OCD and GD, and also a potential 

brain area target for treatment intervention. We hypothesized that participants with OCD 

would be associated with  an aberrant activation in the aversive error signal circuit, whereas 

participants with GD have aberrant activation in the reward error signal circuit. We also 

predicted that GD would be associated with increased impulsiveness and reward seeking 

(Won Kim & Grant, 2001). 
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5.2 Materials & Methods 

PARTICIPANTS 

Forty-two healthy controls (HC), 40 OCD and 23 GD participants were recruited in our study 

to complete a probabilistic reward and avoidance learning task while conducting the 

functional magnetic resonance imaging (fMRI) scanning. Study sample has been reported in 

previous studies (Maleki et al., 2020; Parkes et al., 2018). Inclusion criteria for all 

participants involved the following: age between 18-55 years, having normal to corrected 

vision, and being fluent in English.  

Confirmation of OCD diagnosis using the Mini-international Neuropsychiatric 

Interview (MINI) scale was an inclusion criterion for the OCD group (Lobbestael et al., 

2011). Confirmation of GD diagnosis using the Structured Clinical Interview for Axis I 

DSM-IV Disorders (SCID) scale was an additional inclusion criterion for the GD. Also, the 

primarily engaged in electronic gaming machine (EGM) gambling determined by clinical 

services was also an inclusion criteria for GD group. 

Exclusion criteria for all participants included a history of neurological diseases or 

seizures, lifetime history of psychiatric illnesses (apart from participants with OCD and GD), 

significant head injury or concussion, standard MRI contraindications, significant or 

sustained steroid use, history of alcohol abuse or dependence, and use of cannabis or other 

illicit drug use > 50 times. The additional exclusion criteria for clinical groups included 

primary diagnosis of psychiatric disorders other than OCD and GD (secondary diagnosis of 

anxiety and depression are not excluded). The diagnosis was corroborated by treatment 

services and confirmed by the MINI. 
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All participants were assessed for the severity of obsessive-compulsive symptoms 

using the OCI-R, an 18-item self-report measure that assess the distress associated with the 

obsessions and compulsions and six separate dimensions including obsessing, checking, 

neutralizing, washing, ordering, and hoarding (Foa et al., 2002). Also, the participants were 

assessed for the severity of gambling severity by the Problem Gambling Severity Index 

(PGSI) (Holtgraves, 2009), and the behavioural construct of impulsiveness by the Barratt 

Impulsiveness Scale (BIS) (Patton et al., 1995). Also, depression and anxiety symptoms were 

assessed using the Beck Depression Inventory (BID) (Wang & Gorenstein, 2013), and the 

State and Trait Anxiety Inventory (STAI), respectively (Marteau & Bekker, 1992).  

All participants gave informed consent and the study was approved by the Human 

Research Ethics Committee of Monash University. 

 

PROBABILISTIC REWARD AND AVOIDANCE LEARNING TASK 

The probabilistic reward and avoidance learning task paradigm have been referred to in the 

previous two chapters. Briefly, on each trial of the Probabilistic reward/avoidance learning 

task (Fig 1 (a)), one of three pairs of fractal stimuli were simultaneously presented. Each pair 

of fractals signified the onset of one of three trial conditions: Reward, Avoidance and 

Neutral, whose occurrence was semi-random such that each three-trial block contains one of 

each type, and the order of these three trials were randomized. The specific association of 

fractal pairs to a condition was fully randomized but counterbalanced among participants. 

Participants’ task on each trial was to choose one of the two stimuli by selecting the fractal to 

the left or right of the fixation cross via a button box (using the right hand). Once a fractal has 

been selected, depending on the condition, it increased in brightness and was followed by the 

visual feedback indicating either a reward (a picture of a Myer card with text above saying 
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“you win 1 point!”), an aversive outcome (a red cross overlying a picture of a Myer card with 

text above saying “You lose 1 point!”), neutral feedback (a scrambled picture of a Myer card 

with text above saying “No change!”), or nothing (a blank screen with a cross hair in the 

centre). Participants had 2000 milliseconds to select a fractal. If not selected in time, a screen 

would be displayed with the text “response omitted”, and the trial would be repeated until a 

response registered for that fractal pair. 

Participants underwent two ~16 min scanning sessions, each consisting of 90 trials 

(30 trials per condition). In the reward trials, if participants chose the high probability action 

(also referred to here as the Correct action), they received monetary reward with a 70% 

probability; on the other 30% of trials they received nothing. Following choice of the low 

probability action (also referred to here as the Incorrect action), they received monetary 

reward on only 30% of trials; otherwise, they obtained nothing on the remaining 70% of 

trials. Similarly, on the avoidance trials, if participants chose the high probability action they 

received nothing on 70% of trials, on the other 30% they received a monetary loss, whereas 

choice of the low probability action led to no outcome on only 30% of trials, while the other 

70% were associated with receipt of the aversive outcome. A probability switch was 

introduced at a time-point between the 11th to 20th trial in the reward/avoidance trials, where 

the fractal associated with high probability was changed to the low probability and where the 

fractal associated with low probability changed to the high probability. For the neutral trials, 

participants had a 70% or 30% probability of obtaining neutral feedback; otherwise, they 

received nothing.  

Prior to the experiment, participants were given instructions that they would be 

presented with three pairs of fractals and on each trial, they had to select one of these fractals. 

Participants also had a practice session of the task before going into the MRI. During the 

task, depending on their choices they would win a point, lose a point, obtain a neutral 
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outcome with no change, or receive nothing. They were not told which fractal pair was 

associated with a particular outcome neither when the probability switch was to occur. 

Participants were instructed to try to win as many points as possible and that they would 

receive a Coles/Myer voucher at the end corresponding to the amount of points they had 

accumulated.  

 

IMAGING PROCEDURE 

All images were acquired with 3.0-T SIEMENS MAGNETOM Skyra syngo MR D13C at 

Monash Biomedical Imaging. The functional images (fMRI) were acquired through gradient 

echo T2* weighted echo-planar images (EPI) with BOLD (blood oxygenation level 

dependent) contrast. The scanning parameters: field of view = 230 mm, 3mm by 3mm in 

plane resolution, time of repetition = 2000 ms, and time of echo = 30.0 ms. Each volume of 

fMRI images contains 34 slices with a thickness of 3.0 mm (no gap) in an ascending 

interleaved way. High resolution T1-weighted (1x1x1 mm resolution) were acquired with a 

standard MPRAGE sequence (time of echo = 2.07 ms, time of repetition = 2300 ms, flip 

angle = 9 degree, field of view = 256 mm).  

 

BEHAVIOURAL DATA ANALYSIS  

Basic behavioural analysis 

Basic statistical analysis including two-sample t-test was carried out to compare the 

behaviour outcomes, such as number of Correct and Incorrect choices as well as response 

time under each condition. By realigning the probability switches of each run to a same point 

and separation of all trials into eight blocks, a block-based learning curve was drawn based 

on the number of Correct and Incorrect choices under reward/avoidance condition. The one 

trial back measurement of the stay ratio on the reward/non-rewarded or punished/non-
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punished trials under the reward & avoidance condition respectively to see the participants’ 

choice tendency under these conditions. 

 

Q-learning model 

A basic Q-learning model (Watkins, 1995), was used to characterise participants’ behaviour 

in task. This model estimates the expected value of choosing each stimulus based on the 

previous history of choices and outcomes. The expected value of each stimulus was initially 

set to zero, and after each trial t > 0, was updated according to the chosen stimulus and 

reward feedback. The expected value of choosing stimulus 𝑎 was updated as follows, 

 𝑄$(𝑡 + 1) = 	𝑄$(𝑡) + 𝛼 ∗ 𝛿(𝑡); 

while the value for non chosen stimulus stayed unchanged.	𝛼 is the learning rate and 𝛿(𝑡) is 

the prediction error which is the difference between the actual and expected outcome, 

           𝛿(𝑡) = 𝑅(𝑡) − 𝑄𝑎(𝑡); 

𝑅(𝑡)= $-1, $0, $1 is the reward received after choosing the stimulus. The probability of taking 

each action is based on their values, and according to the softmax rule,  

               𝑃$(𝑡) = 𝑒𝑥𝑝	>𝛽𝑄$(𝑡)?	/{𝑒𝑥𝑝	>𝛽𝑄$(𝑡)? + 𝑒𝑥𝑝	>𝛽𝑄%(𝑡)?}; 

The 𝛽 is the inverse temperature parameter with a scale from 0 to 20, which indicates how 

stochastic or exploratory the individual choices are. Lower values of 𝛽 parameter indicate 

random action selection, which corresponds to low sensitivity to stimulus values; while a 

high 𝛽	value indicates that choices are strongly driven by their expected values.  

 The hierarchical bayesian method (HBM) was used for the model and parameter 

estimation. HBM, exploits group-level parameter distributions to inform individual-level 

estimations, and compared to the individual parameter estimation methods, HBM provides 

better parameter stability and predictive accuracy [25]. The learning rate 𝛼 and inverse 

temperature parameter 𝛽 had a normal prior distribution Norm (0,1), and at the same time 
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with group mean value as well as deviation value shrinkage to a normal distribution Norm 

(0,1) and Norm (0, 0.5), respectively (see supplementary file for details). 

 

IMAGING DATA ANALYSIS 

The imaging processing and processing pipeline for OCD and GD followed the mentioned 

paradigm applied to healthy control groups in Chapter 4. SPM12 (Wellcome Department of 

Imaging Neuroscience, Institute of Neurology, London, United Kingdom) was used to 

perform the fMRI image analysis. The pre-processing of EPI images commenced with the 

slice timing selecting the middle slice of each volume as reference. Then, the spatial 

realignment was applied to remove the motion artefacts. The individual T1-weighted image 

was co-registered to the mean EPI generated during realignment and then were normalized to 

the MNI space through the 6-tissue probability map (TPM) provided by SPM. The motion-

corrected and co-registered EPI images were normalized to MNI space using the previously 

calculated deformation fields and then spatially smoothed with an 8-mm FWHM (full width 

half maximum) Gaussian kernel. Time series describing expected values and PEs were 

generated for each participant for each trial in the experiment by entering the participants’ 

trial history into the learning model. These sequences were convolved with a hemodynamic 

response function and entered into a regression analysis against the fMRI data. The expected 

value was modelled as a boxcar function beginning at the time of selection response till the 

outcome delivered; while the PEs modelled as a delta function at the time of outcome 

delivered. To map the activation map, a new design was created with other regressors 

indicating different outcomes to model activity at the time of the outcome: rewarded reward 

trial (R+), unrewarded reward trial (R-), punished avoidance trial (P+), non-punished 

avoidance trial (P-), neutral feedback trial (N+) and neutral trial without feedback (N-). In 
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addition, the six scan-to-scan motion parameters produced during realignment were included 

to account for residual effects of movement.  

Linear contrasts of regressors coefficients were computed at the individual participant 

level to enable comparison among the Reward, Avoidance and Neutral trials. The results 

from each individual were taken to a random effects level by including the contrast images 

from each single participant into a one-way analysis. The simple contrast [R+ - N+] was to test 

the brain response to rewarded outcome and the contrast [P+ - N+] was to examine the brain 

activation related to aversive outcome. Further, the specific contrast [R+ + P-] - [R- + P+] was 

to test those of brain areas showing greater response to obtaining reward and avoidance 

aversive outcome compared to obtaining aversive outcome and missing reward. 

 The PE and expected value were separately parametric modulation orthogonal to the 

outcome regressor. Then, the contrasts were created to examine the brain areas associated 

with expected value and PE under reward and avoidance condition.  

 

STATISTICAL ANALYSIS 

The independent two sample t-tests were carried out to compare the number of Correct vs 

Incorrect choices under each condition for three groups participants. As well, the two-sample 

t-tests were used to test the Correct vs Incorrect choices of each block under reward and 

avoidance condition. Also, the two-sample t-test was used to compare the response time 

between different conditions. Further, the two-sample t-tests were used to compare the 

modelled parameters including learning rate and inverse temperature parameter under 

different conditions. The statistical analysis was using GraphPad Prism (version 8). 

After the first-level regression analysis through the imaging data, voxel-wise two group 

t-tests at the second level were conducted to investigate the brain activation differences 

between groups, with age and gender as covariates using SPM12. For multiple comparison 
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correction, an initial voxel-wise threshold was set at p < 0.05 with subsequent family-wise 

error corrected p-value < 0.05 at cluster level. The post-hoc analysis was applied to 

investigate the relationship between the aberrant brain activity and the disease severity, and 

scales of impulsivity and compulsivity, the mean activation value at the maladaptive brain 

regions were extracted. Then the Pearson correlation analysis was done to investigate the 

relationship, and the significant level was set at p < 0.05. Also, the correlation analysis was 

corrected for the multiple comparison correction error.  

 

5.3 Results 

Demographics and behavioural statistical analysis 

Several participants were excluded due to incomplete or invalid imaging data, leaving 39 

healthy participants (20F/19M, 34 yrs ± 9.47)), 28 OCD (14F/14M, 32.11 yrs ± 9.53) and 16 

GD (4F/12M, 35.53yrs ± 12.20) with complete behavioural and imaging data. The 

demographics and characteristics of the participants with OCD or GD is shown as in Table 5-

1. 
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Table 5-1 Characteristics of participants. 

 GD 
 (n = 16) 

OCD  
(n = 28) 

HC 
(n = 39) Statistics 

Gender, n      
    Male  12 14 19      Female 4 14 20 

Mean, years (S.D.) 35.06(3.11) 32.11(1.80) 34(1.52) F (2,80) = 0.50, p >0.05 

Education (years)     

Pre-Assess 

Barratt Impulsiveness 
Scale (BIS) (S.D.) 20.06(4.06) 24.44(3.15) 20.54(3.01) F (2, 79) = 13.90, p < 0.0001 

Day-Assess 

OCI-R-Total (S.D.) 12.63(12.45) 32.5(11.25) 5.13(5.54) F (2, 80) = 71.90, p < 0.0001 

PGSI (S.D.) 15.63(7.65) 0.21(0.69) 0(0) F (2, 80) = 140.1, p < 0.0001 
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The statistical analysis of behavioural data showed that OCD group significantly 

preferred the Correct choice both under the reward (t = 3.23; p = 0.0019) and avoidance (t = 

7.34; p < 0.0001) condition, compared with the Incorrect choice; No significant difference 

was found in the neutral condition (t = 0.60; p = 0.55); GD group only showed significant 

preference to the Correct choice under the avoidance condition (t = 4.04, p = 0.0003) (Figure 

5-1). 

 

Figure 5-1 Number of choice under reward/avoidance/neutral condition for controls, OCD and GD 

groups. OCD group showed significant preference for the Correct choice both in the reward (**p = 0.002) and 

avoidance condition (****p < 0.0001); while GD group only showed significant difference (***p = 0.0003) in 

the avoidance condition. 

 

The OCD group made significantly quicker response to the reward condition (1035 

ms ± 29.66; t = 2.254, p = 0.03) and significantly slower to the avoidance condition (1198 ms 

± 21.22; t = 2.16, p = 0.035). The response time to the neutral condition (1125 ms ± 26.53) is 

intermediate between the reward and avoidance condition; The GD group made significantly 

slower response to the avoidance condition (1158 ms ± 30.05; t = 3.157, p = 0.003) to the 

avoidance condition compared with the neutral condition (1038 ms ± 23.4). While no 

significant differences in response time was found in the reward condition (976.4 ms ± 24.65; 

t = 1.816, p = 0.07) relative to the neutral condition (Figure 5-2). 
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Figure 5-2 Response time under reward/loss/neutral condition. OCD group made significantly quicker 

response to the reward condition (*p = 0.03) and slower response (*p = 0.03) to the avoidance condition 

compared to the neutral condition. GD group showed significantly slower response to the avoidance condition 

(** p =0.003) compared to the neutral condition. 

 

The Learning curve showed that the healthy controls did learn the task and made the Correct 

choice before and after the probability switch, whereas the OCD and GD made the Correct 

choice only before the probability switch under reward condition (see Figure 5-3). Under the 

avoidance condition, all three groups of participants preferred the Correct choice before and 

after the probability switch (see Figure 5-4). 

 

 

                     Figure 5-3 Learning curve under the reward condition. 
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                        Figure 5-4 Learning curve under avoidance condition. 

 

The Q-learning estimation showed that healthy controls had a significantly higher 

learning rate compared to GD group (p = 0.038, t = 2.13) in session 1 (Figure 5-5). The 

healthy control group also had a significantly higher learning rate under avoidance condition 

in session 1 compared to OCD group (p < 0.0001, t = 6.34) as well as GD group (p < 0.0001, 

t = 12.41) (Figure 5-6). For the inverse temperature parameter, the OCD group had a 

significantly higher inverse temperature parameter compared to healthy controls in session 1 

under reward condition (p < 0.01, t = 1.02) (Figure 5-7), and also OCD had a significantly 

higher inverse temperature parameter compared to healthy controls in session 2 (p < 0.01, t = 

1.29) (Figure 5-8). 
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                    Figure 5-5 The learning rate of healthy controls, OCD and GD under reward condition. 

 
Figure 5-6 The learning rate of healthy controls, OCD and GD under avoidance condition. 
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Figure 5-7 The inverse temperature parameter of healthy controls, OCD and GD under reward 

condition. 

 
Figure 5-8 The inverse temperature parameter of healthy controls, OCD and GD under avoidance condition. 

 

Relationship between the learning parameters and the clinical measurement of disease 

severity, and the scales of impulsivity and compulsivity 

We have conducted the correlation analysis between the learning parameters and 

clinical measurement of disease severity, and the scales of impulsivity and compulsivity, no 

significant correlations were found.  

Clinical groups\Learning performance 𝑳𝒆𝒂𝒓𝒏𝒊𝒏𝒈	𝒓𝒂𝒕𝒆	𝜶 𝒕𝒆𝒎𝒑𝒆𝒓𝒂𝒕𝒖𝒓𝒆	𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓	𝜷 
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PGSI r = 0.08; p = 0.68; N = 28 r = -0.32; p = 0.10; N = 28 

BIS          r = -0.25; p = 0.21; N = 28 r = -0.21; p = 0.30; N = 28 
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OCI-R-Total r = 0.28; p = 0.15; N = 28 r = 0.096; p = 0.63; N =28 

PGSI r = -0.11; p = 0.58; N =28 r = -0.06; p = 0.77; N = 28 
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PGSI r = -0.27; p = 0.32; N = 16 r = 0.0007; p = 1.00; N = 16 

BIS r = -0.58; p = 0.018; N = 16 r = 0.31; p = 0.24; N = 16 

Avoid condition 

OCI-R-Total r = -0.075; p = 0.78; N =16 r = -0.26; p = 0.34; N = 16 

PGSI r = -0.37; p = 0.16; N = 16 r = -0.46; p = 0.075; N = 16 

BIS r = -0.42, p = 0.11; N = 16 r = -0.37, p = 0.16; N = 16 

   

 

Imaging results 

Neural response to reward receipt and punishment avoidance 

Compared to healthy controls, participants with OCD showed the decreased activity 

at left Opercula part of the inferior frontal ([-46, 10, 28]; t = 4.80, k = 7385), right Opercula 

part of the inferior frontal ([48, 14, 30]; t = 4.39, k = 5613) and right Thalamus ([6, -22, 0]; t 

= 3.80, k = 1482) at the outcome of getting reward after family wise error correction (FWE) 

(shown in Table 5-2 & Figure 5-9). And participants with OCD also showed the decreased 

activity at the brain region peaked at ([-40, -16, -18]; t = 4.12, k = 18492) at the outcome of 

missing reward after correction (shown in Figure 5-10). 
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Figure 5-9 Brain activation for receiving reward relative to neutral condition in participants with 

OCD compared to controls. The participants with OCD showed decreased activations at bilateral inferior 

frontal and right thalamus extending to right caudate (see Table 5-2 for details). 

 

 

Figure 5-10 Brain activation when missing reward relative to neutral condition in participants with 

OCD compared to controls. The participants with OCD showed decreased activations at left medial superior 

frontal and right middle temporal (see Table 5-2 for details). 
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Table 5-2 Brain regional response difference to reward/aversive outcome among participants with 

OCD compared to healthy controls.  

Region MNI Coordinates t value 
Spatial extent (in  

contiguous voxels) 

 x y z   

Reward success – neutral success 

OCD < Control 

L. Opercula part of the Inferior Frontal -46 10 28 4.80 7385 

        R. Inferior Parietal 40 -40 46 4.05  

        L. Precentral -34 -2 56 3.94  

R. Opercula part of the Inferior Frontal 48 14 30 4.39 5613 

        R. Opercula part of the Inferior Frontal 52 18 36 3.77  

        R. Opercula part of the Inferior Frontal 58 20 28 3.71  

R. Thalamus 6 -22 0 3.80 1482 

        R. Caudate 10 10 -2 3.39  

Reward unsuccess – neutral unsuccess 

OCD < Control  

L. Superior Temporal -40 -16 -18 4.12 18492 

        L. Medial Superior Frontal -4 36 34 4.00 1115 

        R. Middle Temporal 58 -20 -10 3.96 490 
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Compared to healthy controls, participants with GD showed the decreased activity at 

right Cuneus ([14, -86, 30]; t = 3.81, k = 1650), right Rolandic operculum ([48, -2 ,20]; t = 

3.73, k = 7509) and left Postcentral ([-34, -16 ,38]; t = 3.16, k = 1650) at the outcome of 

getting reward after correction. The decreased activity at left superior frontal ([-20, 26, 46]; t 

= 3.87, k = 4137), right middle cingulum ([2, -12, 40]; t = 3.59, k = 2636) for missing reward 

were found in GD compared to healthy controls (shown in Figure 5-11). Successful 

avoidance aversive outcome was found in higher activation in participants with GD 

compared to healthy controls at the left caudate ([-22, -2, 24]; t = 4.50, k = 11203). When 

receiving punishment, the decreased activity was found in participants with GD compared to 

healthy controls at right middle frontal ([24, -22, 46]; t = 3.84, k = 2359) (see Table 5-3 for 

details). 
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Figure 5-11 Brain activation of receiving reward relative to neutral condition in participants with GD 

compared to controls. The participants with GD showed decreased activations at right cuneus, left precentral 

and left postcentral (see Table 5-3 for details). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

157 
  

Table 5-3 Brain regional response difference to reward/aversive outcome among participants with GD 

compared to healthy controls. 

Region MNI Coordinates t value 
Spatial extent (in  

contiguous voxels) 

 x y z   

Reward success – neutral success 

GD < Control 

R. Cuneus 14 -86 30 3.81 1650 

R. Rolandic Operculum 48 -2 20 3.73 7509 

        R. Postcentral 64 -10 28 3.44  

        R. Rolandic Operculum 52 -10 10 3.33  

L. Postcentral -34 -16 38 3.16 1650 

        L. Postcentral -52 -8 14 3.10  

        L. Precentral -42 -10 54 2.71  

Reward unsuccess – neutral unsuccess 

GD < Control  

L. superior frontal -20 26 46 3.87 4137 

        L. Superior Frontal -14 42 38 3.77  

        L Superior Medial Frontal -6 52 18 3.65  

R. Middle cingulum 2 -12 40 3.59 2636 

        L. Middle Cingulum -10 -44 34 3.44  

        L. Posterior Cingulum -4 -40 30 3.43  

Avoidance success – neutral unsuccess 

GD > Control 

L. Caudate -22 -2 24 4.50 11203 

Avoidance unsuccess – neutral success 

GD < Control 

R. Middle Frontal 24 -22 46 3.84 2359 
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When comparing OCD and GD at the phase of outcome processing, participants with OCD 

showed the increased activity at left Postcentral ([48, -4, 18]; t = 4.28, k = 12690) for 

receiving reward (Figure 5-12), and decreased activations at left Middle occipital ([-34, -72, 

10]; t = 4.14, k = 4988) for missing reward. Participants with GD showed the increased 

activity at left Middle temporal ([-34, -66, 4]; t = 3.99, k = 3276) and left Thalamus ([14, -26, 

28]; t = 3.90, k = 2871) for avoiding loss. While participants with OCD showed the increased 

activity in right Hippocampus ([24, 6, 32]; t = 3.49, k = 5227) for receiving loss (Figure 5-

13). 
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Figure 5-12 Brain activation for receiving reward in participants with OCD compared to participants 

with GD. The participants with OCD showed increased activations at the left postcentral (see Table 5-4 for 

details). 
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Figure 5-13 Brain activation of receiving loss in participants with OCD compared to participants with 

GD. The participants with OCD showed increased activations at the brain region including right pallidum and 

left superior temporal (see Table 5-4 for details). 
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Table 5-4 Brain regional response difference to reward/aversive outcome between participants with 

OCD and GD. 

Region MNI Coordinates t value 
Spatial extent (in  

contiguous voxels) 

 x y z   

Reward success – neutral success 

        OCD > GD 

L. Postcentral 48 -4 18 4.28 12690 

      

Reward unsuccess – neutral unsuccess 

        GD > OCD 

 L. Middle Occipital -34 -72 10 4.14 4988 

              

Avoidance success – neutral unsuccess 

        GD > OCD 

L. Middle Temporal -34 -66 4 3.99 3276 

L. Thalamus 14 -26 28 3.90 2871 

Avoidance unsuccess – neutral success 

        OCD > GD 

R. Hippocampus 24 6 32 3.49 5227 
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Neural response to reward/aversive expected value 

Compared to healthy controls, OCD showed significantly lower activation at the brain 

region ([-18, 32]; t = 3.94, k = 3416), and the other region ([-8, 6, 26]; t = 3.90, k = 3980) for 

the reward expected value after correction. At the same statistical level, participants with 

OCD showed the increased activity at left anterior cingulum ([-8, 44, 10]; t = 3.89, k = 5320) 

at the phase of value expectation under avoidance condition (shown in Figure 5-14). No 

significance was found in participants with GD at the phase of value expectation under both 

reward and avoidance condition compared to healthy controls.  

 

Figure 5-14 Brain activation of avoid expected value in participants with OCD compared to controls. 

The left Anterior cingulum extending to the right anterior cingulum was found to have higher brain activation in 

OCD compared to controls at the phase of expectation under reward condition (see Table 5-5 for details). 



 

163 
  

 

Table 5-5 Brain regional response difference to reward/avoidance expected value among participants 

with OCD compared with healthy controls. 

Region MNI Coordinates t value 
Spatial extent (in  

contiguous voxels) 

 x y z   

Reward expected value 

        OCD < Control 

R. Precuneus 34 -18 32 3.94 3416 

L. Middle Cingulum -8 6 26 3.90 3980 

Avoid expected value 

        OCD > Control 

L. Anterior Cingulum -8 44 10 3.89 5320 

       R. Anterior Cingulum 8 34 8 3.80  

       L. Anterior Cingulum 0 32 -2 3.54  
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Compared to participants with OCD, GD showed significantly higher activation at the right 

Middle cingulum ([4, -12, 28]; t = 3.87, k = 9569) for the reward expected value after 

correction (see Figure 5-15). No significant differences were found between OCD and GD 

for the avoidance expected value.  

 

Figure 5-15 The brain activation of reward expected value in participants with GD compared to 

participants with OCD. The participants with GD showed the increased activity at the brain region including 

the right pallidum and left superior temporal to the reward expected value compared to participants with OCD 

(see Table 5-6 for details). 
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Table 5-6 Brain regional response difference to reward/aversive expected value between participants 

with OCD and GD. 

Region MNI Coordinates t value 
Spatial extent (in  

contiguous voxels) 

 x y z   

Reward expected value 

        GD > OCD 

R. Middle Cingulum 4 -12 28 3.87 9569 

        R. Pallidum 18 -4 -4 3.86  

        L. Superior Temporal -46 -4 -10 3.75  
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Neural response to reward/aversive prediction error 

Compared to healthy controls, participants with GD showed the decreased activity at the 

brain region right posterior cingulate peaked at ([20, -36, 40]; t = 4.09, k = 6388) and the 

brain region left precuneus peaked at ([-30, -16, 24]; t = 3.09, k = 2030) after FWE 

correction. At the meantime, the increased activations were found at right thalamus ([28, -40, 

10]; t = 4.43, k = 1042), and right middle frontal ([34, 26, 20]; t = 3.93, k = 641) for the 

aversive PE in GD compared to healthy controls (shown in Figure 5-16) at p < 0.005 with 

FWE correction at cluster level. No significant differences were found at the phase of error 

signal processing both under the reward and avoidance condition in OCD group compared to 

healthy controls. 

  

Figure 5-16 The brain activation of aversive PE in participants with GD compared to controls. The 

brain region including the right triangular part of the inferior frontal was found to have higher activation in 

GD compared to controls at the phase of error signal processing under avoidance condition (see Table 5-7 for 

details).  
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Table 5-7 Brain regional response difference to reward/avoidance prediction error among participants 

with GD compared with healthy controls. 

Region MNI Coordinates t value 
Spatial extent (in  

contiguous voxels) 

 x y z   

Reward PE 

        Healthy controls > GD 

R. Posterior Cingulate 20 -36 40 4.09 6388 

L. Precuneus  -30 -16 24 3.09 2030 

Aversive PE 

        GD > Healthy controls 

R. Thalamus 28 -40 10 4.43 1042 

R. Middle Frontal 34 26 20 3.93 641 

        R. Triangular part of the Inferior Frontal 36 18 22 3.61 - 
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Compared to GD, participants with OCD showed the increased activity at the brain region 

left Hippocampus peaked at ([-22, -44, 0]; t = 4.23, k = 5388) for reward PE. Whereas GD 

showed the increased activity at right Middle frontal peaked at ([-26, 12, 24]; t = 4.77, k = 

13560) for the aversive PE compared to participants with OCD (see Figure 5-17).  

 
Figure 5-17 The brain activation of aversive PE in participants with GD compared to participants 

with OCD. The brain region at the right middle frontal was found to have higher activation in GD compared to 

participants with OCD at the phase of error signal processing under avoidance condition (see Table 5-8 for 

details). 
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Table 5-8 Brain regional response difference to reward/aversive PE between participants with OCD and GD. 

Region MNI Coordinates t value 
Spatial extent (in  

contiguous voxels) 

 x y z   

Reward PE 

OCD > GD 

L. Hippocampus -22 -44 0 4.23 5388 

        L. Lingual 16 -34 -10 3.66  

Aversive PE 

GD > OCD 

R. Middle Frontal -26 12 24 4.77 13560 
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Relationship between the brain activation and the clinical measurement of disease severity, 

and the scales of impulsivity and compulsivity 

The Pearson correlation analysis showed that the increased activity at left anterior cingulum 

for the expected value under the avoidance condition in OCD were negatively correlated with 

the personality traits of compulsivity measured by the total OCI-R scores (r = -0.36, p = 

0.06). Further, the decreased activity at right precuneus and left middle cingulum for reward 

expected value were negatively correlated with the personality traits of impulsivity measured 

by the BIS scores at (r = -0.56, p = 0.02), and (r = 0.61, p = 0.001) respectively in OCD 

participants’ group. While the decreased activation of getting reward outcome at the left 

postcentral was positively correlated with the total OCI-R scores (r = 0.47, p = 0.06) in GD 

participants’ group. Further, the decreased activity of reward PE in GD at the right posterior 

cingulate was found negatively correlated with the BIS scores (r = -0.47, p = 0.07). Also, the 

decreased actives of reward PE in GD at the left precuneus was found negatively correlated 

with the total severity scores measured by PGSI (r = -0.48, p = 0.06) (see Table 5-9 for 

details). After c Bonferroni correction for multiple comparisons, the negative correlation 

between the decreased activity in the left middle cingulum for reward expected value and the 

impulsivity scores measured by the BIS scores remained significant in OCD participants (r = 

0.61, *p = 0.039 < 0.05).  
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Table 5-9 Relationship between the brain activation and the disease clinical measurement, and the personality 

measures of impulsivity and compulsivity without correction. 

Brain regions OCI-R PGSI BIS 

Reward success – neutral success 

OCD (N = 28) < Control (N = 39) 

L. Inferior frontal r = -0.23; p = 0.23; N = 28 r = 0.11; p = 0.58; N = 28 r = 0.08; p = 0.70; N = 28 

R. Thalamus r = -0.24; p = 0.22; N = 28 r = -0.10; p = 0.60; N = 28 r = 0.13; p = 0.51; N = 28 

R. Inferior frontal r = -0.09; p = 0.64; N = 28 r = 0.003; p = 0.99; N = 28 r = 0.18; p = 0.38; N = 28 

GD (N = 16) > Control (N = 39) 

R. Cuneus r = 0.37; p = 0.16; N = 16 r = 0.16; p = 0.55; N = 16 r = -0.31; p = 0.25, N = 16 

R. Rolandic operculum r = 0.31; p = 0.25; N = 16 r = -0.08; p = 0.76; N = 26 r = -0.31; p = 0.25; N = 16 

L. Postcentral r = 0.47; *p =0.06; N = 16 r = -0.25; p = 0.36; N = 16 r = -0.24; p = 0.36; N = 16 

Reward expected value 

OCD (N = 28) > Control (N = 39) 

R. Precuneus r = -0.11; p = 0.57; N = 28 r = 0.12; p = 0.55; N = 28 r = -0.56; *p = 0.02; N = 28 

L. Middle cingulum r = -0.10; p = 0.63; N = 28 r = 0.08; p = 0.68; N = 28 r = -0.61; **p = 0.001; N = 28 

Avoid expected value 

OCD (N = 28) > Control (N = 39) 

L. Anterior Cingulum r = -0.36; *p = 0.06; N = 28 r = -0.32; p = 0.10; N = 28 r = -0.16; p = 0.43; N = 28 

Reward PE 

GD (N =16) < Control (N = 39) 

R. Posterior cingulate r = -0.38; p = 0.14; N = 16 r = -0.17; p = 0.54; N = 16 r = -0.47; *p = 0.07; N = 16 

L. Precuneus r = -0.23, p = 0.40; N = 16 r = -0.48, *p = 0.06; N = 16 r = -0.40, p = 0.12; N = 16 

Aversive PE  

GD (N = 16) > Control (N = 39) 

R. Thalamus r = -0.37; p = 0.17; N = 16 r = 0.27; p = 0.31; N = 16  r = 0.29; p = 0.28; N = 16 

R. Middle frontal r = -0.42; p = 0.11; N = 16 r = 0.15; p = 0.58; N = 16 r = 0.22; p = 0.41; N = 16 
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5.4 Discussion 

In this chapter, we carried out the statistical analysis to investigate the learning performance 

including choice and response time among three groups of participants in the reward and 

avoidance learning task. Then, applying the Q-learning model with Bayesian estimation to 

the participants’ behavioural data, we extracted the learning characteristics including the 

learning rate and inverse temperature parameter. Further, time series of expected value and 

PE under reward and avoidance conditions derived from the model were regressed through 

the fMRI data to investigate the underlying neural mechanism. In addition, correlation 

analysis of brain activity with clinical measurements (OCI-R and BIS) was carried out to 

examine effects of impulsivity and compulsivity behavioural traits.  

 

Obsessive compulsive disorder 

As with healthy controls, OCD participants showed a significant preference towards the 

Correct choice under both reward and avoidance condition. No significant behavioural 

differences were found between the OCD and healthy controls. The OCD group showed the 

decreased activity at left and right Opercula region of the inferior frontal and right thalamus 

at the outcome of receiving reward. OCD participants also showed the increased activity in 

the left anterior cingulum during the phase of value expectation under avoidance condition. 

No significant difference of brain activity was found for error signal processing under both 

reward and avoidance condition in OCD participants compared to healthy controls.  

The conceptualization of the pathophysiology of OCD has been within the cortico-

striato-thalamo-cortico circuit. According to the model, the projection from the frontal 

regions to the striatum travels through direct and indirect pathways to the thalamus, and 

project back to the frontal regions (Moreira et al., 2017). In line with the literature, the 

decreased activity at left and right Opercular part of the inferior frontal and right thalamus 
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were found at the outcome of receiving reward in our study. The inferior frontal region has 

been reported to be associated with reward sensitivity, and higher reward sensitivity was 

associated with increased activity in the bilateral inferior frontal according to a recent fMRI 

study (Fuentes-Claramonte et al., 2016). While the inferior frontal junction was reported to 

be involved in cognitive control (Cole & Schneider, 2007), and may modulate the striatal 

response that is essential to reward-related behaviours (Delgado, 2007). The dorsal striatum 

is suggested to carry out an important role in specific action-outcome associations, and the 

activation could be modulated by the value provided by the reward feedback (Balleine et al., 

2007; Delgado, 2007). The monetary reward was found to increase the thalamic activation 

(Thut et al., 1997), and the thalamus nucleus has projections to the frontal cortex forming the 

final link in the reward circuit (Haber & Knutson, 2010).  

The available data suggest that compulsivity in OCD and addictions are related to 

impaired reward and punishment processing in the ventral striatum and associated attenuated 

dopamine release, and with negative reinforcement in limbic and anti-reward systems, which 

may at least partly explain the presence of repetitive self-defeating behaviours. Also, the 

habitual responding regardless of its consequences is an aspect of compulsivity that might be 

related to imbalances between ventral and dorsal frontostriatal recruitment (Figee et al., 

2016). The ACC is essential to the reinforcement-based decision process and implied in 

performance monitoring and cognitive control. With strong connections with motor areas but 

few direct connections with sensory cortex, the ACC was suggested to be responsible for 

action value calculation to produce a favourable outcome (Inserm & Cell, 2007; Philiastides 

et al., 2010). A previous study reported the activation in rostral ACC was related to increases 

in the level of expected reward (Marsh et al., 2008). Further, the decreased activity at left 

middle cingulum for reward expected value found negatively associated with the BIS scores 

was in line with the previously reported dysfunctional reward processing with altered brain 
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activity at the brain reward areas under the effects of impulsivity trait (Admon et al., 2012; 

Figee et al., 2010).  

 

Gambling disorder  

Different with healthy controls, GD participants were only found showing a significant 

difference to the Correct choice under the avoidance condition. At the three distinct phases of 

reward/avoidance-based decision process, GD participants showed the decreased activity at 

right Cuneus at the outcome of obtaining reward compared to healthy controls; No significant 

differences of brain activity were found at the phase of value expectation under both reward 

and avoidance condition. As well the increased activity in brain regions including the right 

triangular part of the inferior frontal for the error processing under avoidance condition was 

found for GD participants compared to healthy controls.  

 The increased activity at the inferior frontal for aversive PE was found in GD 

participants compared to healthy controls in our study. The inferior frontal has been thought 

to play a crucial role in response inhibition and behavioural impulse control (Aron et al., 

2004, 2014). A previous study found a relationship between the risk PE and activity in the 

inferior frontal, and the activation was more pronounced in risk aversive individuals during 

decision-making under uncertainty (Lu et al., 2009). Thus, the increased activity might 

suggest the improved response inhibition to the aversive events. The thalamus was suggested 

to play an important role in performance monitoring (Bellebaum et al., 2005), and mediate 

the error-related cognitive control (Hendrick et al., 2010; S.lde & Li, 2012). The increased 

activity for the aversive PE in GD participants might suggest the aberrant error-related 

cognitive control. The cingulum was one of the brain regions involved with reward 

processing.  
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Furthermore, the altered brain activity was found at distinct phases of reward and 

avoidance decision processes between the OCD and GD clinical groups. The participants 

with OCD were found higher activation at the outcome of receiving loss at right 

hippocampus compared to participants with GD. Also, the higher activation was found for the 

PE signal under reward condition in OCD participants compared to GD participants. The 

hippocampus plays an important role in memory and learning (Tamnes et al., 2014), thus, the 

altered activity found at hippocampus implied the deficits of reward and punishment 

processing in OCD. The participants with GD were found higher activation of reward 

expected value at right middle cingulum, and of aversive PE at right middle frontal compared 

to participants with OCD.  

In summary, the present study found the altered neural activity at distinct stages of 

reward and avoidance-related decision processes OCD and GD conditions, together with the 

associations of psychopathology such as impulsivity, which provided a better understanding 

of the underlying mechanisms of those two clinical conditions.   
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6 General discussion 

To achieve the goal of maximizing the rewards or minimizing the punishments, one must 

adapt their behaviours to learn from the outcome. The learning performance and brain 

mechanisms underlying those two types of learning is still under investigation. Through a 

novel probabilistic reward and avoidance learning task, we used the reinforcers of gaining 

points or losing points to guide participants’ learning processes. The basic behavioural 

analysis mapped the normal trajectory of learning in healthy participants’ during task 

performance. Then a model was used to capture the participants’ behaviour and model the 

computational processes. Combined with neuroimaging, we found the shared or distinct brain 

regions were involved with key stages of reward and avoidance-based decision processes. At 

the outcome stage, we replicated the Kim et al., (2016) findings that medial orbitofrontal 

cortex (mOFC) was activated by the outcome of obtaining reward as well as avoiding 

punishments. Other structures within the reward circuit including posterior cingulum and 

dorsal striatum were also found to be activated. Then at the stage of anticipation, the fronto-

cortical and fronto-striatal circuits were found to be activated by the reward and avoidance 

expected value, respectively. The error processing is crucial for learning, and the reward and 

aversive PE was found to be associated with the activity at the cortical-basal ganglia and 

temporo-parietal circuit, insula and dorsal striatum, respectively.  

Clinical conditions such as OCD and GD are characterized by maladaptive reward and 

avoidance-based decision-making processes. As a typical compulsive disorder, the OCD-

related behaviours driven by impulsive processes could increase with the progression and 

chronicity of the disease. On the other side, the GD-related behaviours driven by compulsive 

processes could increase. Thus, we investigated the aberrant brain mechanisms of reward and 

avoidance-based decision processes, and how the orthogonal pair of the impulsivity and 

compulsivity affect the processes. The imaging analysis showed that the OCD group was 
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found to have decreased activity in the Opercula part of the inferior frontal (bilaterally) and 

right thalamus during the outcome of obtaining reward. OCD participants also showed the 

increased activity in the left anterior cingulum at the phase of value expectation under 

avoidance condition. GD participants showed decreased activity in the right Cuneus at the 

outcome of obtaining reward compared to healthy controls. Also, the increased activity in the 

right triangular part of the inferior frontal for the error processing under avoidance condition 

was found for GD participants compared to healthy controls. The decreased activity of the 

left middle cingulum during reward expected value was to be found negatively associated 

with the BIS scores, which showed the aberrant reward processing under the effects of 

impulsivity. 

 

6.1 Reward and avoidance-based decision performance in healthy participants 

The first question is to understand the learning performance under both learning types. The 

human participants’ learning capabilities under both types were demonstrated equally well 

(Gross, 2006; Palminteri et al., 2015). Through a novel reinforcement learning task, the basic 

learning model predicts better performance on the reward learning (Kim et al., 2006a). In 

chapter 3, the analysis of the response time showed that participants showed significantly 

quicker response under the reward condition while slower under the avoidance condition. 

Further, the RL model fitted to the behavioural data has found a significantly higher learning 

rate under avoidance condition compared to reward condition. And the inverse temperature 

parameter was significantly higher under reward condition compared to avoidance condition. 

The learning rate showed how quickly the participant’s changed their choices, and the inverse 

temperature parameter showed the participants’ balance of exploration and exploitation. The 

significantly higher inverse temperature parameter found under reward condition showed that 

participants tended to exploit the trials.  
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Through a simple choice task to examine the behavioural effects of the magnitudes of 

reward and punishment in single trials, an asymmetric effect of reward and punishment on 

the choice behaviour was found in a previous study (Kubanek et al., 2017). The larger a 

reward outcome, the tendency to repeat a choice is higher. While there is no modulation of 

the effect by the magnitude of a penalty, a loss drove a uniform avoidance of the choice that 

led to the loss. One mechanistic explanation could be the reward prediction error that drives      

learning in computational models of choice behaviour, like in the RL model here, may not be 

symmetric to corresponding punishment PE terms. Moreover, the recently found 

dopaminergic neurons in monkey ventral midbrain known encoding for reward PE do not 

encode the corresponding term for punishments (Fiorillo, 2013), which suggest that there are 

different neural mechanisms underlying the error processing for reward and punishment.

 

6.2 Shared and separate neural representations of distinct stages of reward and 

avoidance-based decision performance in healthy participants 

The other question facing the reward and avoidance-based decision process is the neural 

mechanism underlying the learning processes. The same brain areas located in the medial 

orbitofrontal cortex are reported to be activated when participants received a reward or avoid 

an aversive outcome (Gross, 2006; Kim et al., 2006a). The PE signal (i.e., encoding the 

discrepancy between the expectation and actual outcome) in reward processing (refer to 

reward PE) is reported to be correlated with the functional activity in ventral striatum and 

OFC (Kim et al., 2006b; Garrison et al., 2013). The aversive PE signal in avoidance learning 

is associated with the brain activity in amygdala-striatal regions (Zhang et al., 2016), and 

bilateral insula, according to fMRI studies (Kim et al., 2006b; Garrison et al., 2013).  

Through combination of neuroimaging and modelling, we investigated the neural 

bases at separate stages of reward/avoidance-based decision processes in healthy controls 
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including outcome, expected value and PE in chapter 4 (see Table 6-1 & Figure 6-1 for 

summary). At the outcome stage, receiving reward was associated with the activity in the 

fronto-cortical circuit, whereas receiving punishment was correlated with the activity in the 

cortical and subcortical brain regions. Thus, distinct brain regions were recruited during the 

reward and punishment outcome processing. According to Kim et al., (2016), the common 

mOFC was involved with the outcome of receiving reward and successfully avoiding 

punishment. We replicated these findings in our study. The OFC is suggested to be critical 

for representing the outcomes of actions, and subsequently impact on the control of 

behaviour.  

At the stage of anticipation, the reward expected value was positively correlated with 

the activity at fronto-cortical circuit whereas the avoid expected value was negatively 

associated with the activity at the cortical and subcortical brain regions including inferior 

OFC, insula, cingulum and dorsal striatum.  

Finally, at the stage of error processing, the enhanced reward PE signal in the novel 

reversal learning task was found to be correlated with the activity in the cortical-basal 

ganglia circuit; while the aversive PE signal was covaried with the activation in the temporo-

parietal circuit, dorsal striatum and insula. Dopamine neurons (DA) is suggested to signal 

the PE signal. Specifically, the DA neurons show a rapid phasic firing increase only for 

unpredicted reward outcomes, and suppress firing when reward is omitted. Conversely, many 

DA neurons display decreased firing rates in response to aversive stimuli. Thus, DA neurons 

code the discrepancy of reward and its prediction bidirectionally. Excited by rewarding 

stimuli, it was suggested that DA neurons are also excited by aversive experience. An 

investigation of same set of DA neurons to both rewarding and aversive conditions in 

nonhuman primates found that DA neurons can be divided into two categories: a) a 

population excited by reward and inhibited by aversive stimuli, b) another population by both 
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reward and aversive events in a similar manner (Hu, 2016). Here, we found the dorsal 

striatum was activated by both the reward and aversive PE whereas ventral striatum was only 

activated by reward PE. According to the literature, the dopamine projection mesolimbic 

pathway begins in the VTA (ventral tegmental area) and projects to the ventral striatum while 

the nigrostriatal pathway begins in the SN (substantia nigra) and projects to the dorsal 

striatum (Watanabe and Narita, 2018). It might suggest that different dopamine projection 

pathways have been involved with the reward and aversive PE encoding. Also, the striatal 

dopaminergic systems were found to carry distinct messages by different means, which can 

be integrated differently to shape the basal ganglia responses to reward-related events (Morris 

et al., 2004).  

  

Table 6-1. The summary of shared and differential neural mechanisms under the three distinct stages 

of reward and avoidance decision processes (see Figure 6-1 for image view). 

 

   

1.Outcome 

  

2.Expected 
value 

  
3.Prediction 

error 

 
Shared: (Reward & Avoidance) 

mOFC, posterior cingulate and 
dorsal striatum 

 

Shared: (Reward & Avoidance) 
middle cingulum 
Differential: (Avoidance) inferior 

OFC, insula and dorsal striatum 
 

 

Shared: (Reward & Avoidance) 
cingulate, insula, hippocampus, 
thalamus, inferior & middle frontal 
gyrus, SMA 
Differential: (Reward) striatum vs 

(Avoidance) dorsal striatum 
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Figure 6-1. The summary of shared and differential neural mechanisms under the three distinct stages 

of reward and avoidance decision processes. (a) The brain regions associated with reward decision processes: 

outcome was coloured in yellow, expected value in green and PE in red. The overlap of outcome and expected 

value was shown in Overlap1, and the overlap of expected value and PE was in Overlap2. (b) The brain regions 

associated with avoidance decision processes: outcome was coloured in yellow, expected value in green and PE 

in blue. The overlap of outcome and expected value was shown in Overlap1, and the overlap of expected value 

and PE was shown in Overlap2. 

 

6.3 Maladaptive brain activations underlying distinct stages of reward and avoidance-

based decision performance in obsessive-compulsive disorder and gambling 

disorder 

Obsessive compulsive disorder (OCD) and gambling disorder (GD) were usually suggested 

along the dimensional model of impulsive-compulsive spectrum disorder in which 

impulsivity and compulsivity represents polar opposite psychiatric spectrum constructs that 

can be viewed along a continuum of compulsive and impulsive disorders (Robbins et al., 

2012) (see Figure 6-2). OCD is characterized by the experience of unwanted repetitive 

thoughts (obsessions) and repetitive behaviours (compulsions) with overestimation of the 

probability of future harm to carry on the risk avoidance (Pauls et al., 2014). Whereas the GD 

was recognised by the impulsive choices of persistent and recurrent maladaptive patterns of 
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gambling behaviour with underestimation of the likelihood or severity of possible harm (Lai 

and Ip, 2011).  

 

Figure 6-2 The schematic explanation of dimensional impulsive-compulsive spectrum disorders. The 

GD is one of the representative impulsive disorders whereas the OCD is one of the representative compulsive 

disorders (Robbins et al., 2012). 

Instead of the one-dimensional model, compulsivity and impulsivity were recently 

suggested orthogonal factors that each contribute in varying degrees toward the development 

of OCD and GD (see the Figure 6-3 for the schematic explanation) (Fontenelle et al., 2011; 

Fineberg et al., 2013). According to previous literature, the enhancements of harm-avoidance 

or avoidance habit in OCD with exaggerated anticipation and avoidance of aversive 

outcomes has been found in previous studies (Learning, 2011; Starcevic et al., 2011; Gillan et 

al., 2016), and the excessive avoidance behaviour was correlated with the hyper-activation in 

the orbitofrontal-striatal circuit (Remijnse et al., 2006; Gillan et al., 2016). As the 

conceptualization of a compulsive disorder, it is also suggested that OCD shares behavioural 

components of impulsivity (Fontenelle et al., 2011; Grassi et al., 2015; Abramovitch and 

Mckay, 2016). Recent studies have reported the dysfunctional reward processing with altered 

neural activity in the brain reward circuit and risk aversion in OCD under the effect of 

impulsivity trait (Figee et al., 2010; Admon et al., 2012). 

According to neuroimaging studies, the “reward deficiency” in GD has been 

demonstrated with the hyperactivity in the reward circuitry including striatum and prefrontal 
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brain regions (Pro et al., 2010; Oberg et al., 2011; Brevers et al., 2015). Not only the 

increased activity found for reward processing, but the deactivation to loss aversion in the 

cortico-striatal circuit has also been reported in GD (Gelskov et al., 2016; Genauck et al., 

2017). As the core feature of GD, the levels of impulsivity were found inversely correlated 

with activity of reward and avoidance processing (Pearlson and Potenza, 2013), and the 

ability to alter choice behaviour in response to stimulus-reward contingencies (Franken et al., 

2008). It was pointed out that compulsivity should be also considered to investigate the 

deficits in decision making of GD (Ioannidis et al., 2019), and with the increases of the 

impulsive behaviour, the compulsivity feature would be acquired (Fontenelle et al., 2011). 

 

Figure 6-3 The schematic explanation of reward and avoidance-based learning and decision processes 

under the effect of impulsivity and compulsivity constructs. The impulsivity and compulsivity are an 

orthogonalized pair of constructs to contribute certain degrees to affect the reward and avoidance learning in 

GD and OCD (Fineberg et al., 2013). 

In chapter 5, we examined the potential maladaptive reward and avoidance decision 

processes and the underlying neural mechanisms in OCD and GD. At the three distinct 

phases of reward/avoidance-based decision process, OCD showed the decreased activity at 

left Opercula part of the inferior frontal, right Opercula part of the inferior frontal and right 
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thalamus at the outcome of getting reward. The inferior frontal was reported to be associated 

with reward sensitivity, and higher reward sensitivity was observed increased activity in the 

bilateral inferior frontal according to a recent fMRI study (Fuentes-Claramonte et al., 2016). 

The thalamus nucleus has projections to the frontal cortex forming the final link in the reward 

circuit (Haber and Knutson, 2010). Also, OCD showed decreased activity in the left middle 

cingulum for reward expected value, and the decreased activity were negatively correlated 

with the personality traits of impulsivity measured by the BIS scores. The findings were in 

line with the aforementioned dysfunctional reward processing with altered neural activity in 

the brain reward circuit under the effect of impulsivity trait (Figee et al., 2010; Admon et al., 

2012). Participants with OCD showed the increased activity in the left anterior cingulum at 

the phase of value expectation under avoidance condition. With strong connections with 

motor areas but few direct connections with sensory cortex, the anterior cingulum was 

suggested to be responsible for action value calculation to produce a favourable outcome 

(Jerome et al., 2007; Philiastides et al., 2010).  

Participants with GD showed the decreased activity in the right Cuneus during the 

outcome stage of obtaining reward compared to healthy controls; Also, participants with GD 

showed increased activity in the brain region including the right triangular part of the 

inferior frontal cortex for error processing under avoidance condition. The inferior frontal 

has been thought to play a crucial role in response inhibition behavioural impulse control 

(Aron et al., 2004, 2014). The increased activity in the inferior frontal for PE under 

avoidance condition might suggest the improved response inhibition to aversive event. 

 

6.4 Future direction 

Through the findings of chapter 4, we found several sets of brain regions associated 

with distinct stages of reward and avoidance decision processes, however, the coupling 
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nature of those brain areas and how the coupling influenced by the changes of experimental 

manipulations remain unclear. One potential future project would be to apply dynamic causal 

modeling (DCM) to establish the experimentally induced coupling changes among these 

regions (Friston et al., 2003). Secondly, to provide more evidence of the dopamine 

functioning underlying the reward and avoidance decision process, molecular imaging 

techniques such as PET/fMRI could be a potential powerful tool (Heiss, 2009). Through our 

study, the striatum was found involved into the distinct stages of decision processes. 

Targeting the striatum, the simultaneous PET/fMRI could measure the dopamine release 

directly (Zürcher et al., 2021). Besides the Dopamine (DA) neurons, the GABAergic 

(gamma-Aminobutyric acid) neurons are also suggested to be involved with the error signal 

encoding (Hu, 2016) as a potential inhibitor. Magnetic Resonance Spectroscopy (MRS) is a 

quantitative method in the family of MRI to assess the concentration of metabolites (such as 

GABA, glutamate, glutamine, Choline, Creatine) at a certain brain region. Using such 

technology, a study reported decreased levels of GABA and Glutamine (Glx) in vmPFC has 

been found during the rewarding information than the aversive events (Padulo et al., 2016). 

Also, the Chol (choline) was suggested to be involved with the learning processes, and could 

inform when to learn (Morris et al., 2004). Recently, Li et al., demonstrated the feasibility of 

rapid, high-resolution, near whole-brain 3D MR spectroscopic imaging (MRSI), which is 

more powerful to explore metabolites concentration across the whole brain while 

concurrently collecting fMRI signals (Li et al., 2020). In other words, such sequences 

combine fMRI and MRSI together to record metabolites concentration (such as GABA and 

Glu) and neural activation (BOLD signal) simultaneously while the participant is performing 

tasks in the scanner. It will facilitate the fundamentally mechanistic understanding of these 

imaging signals we observed at neuronal or biochemical level.  
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Apart from the current paradigm and model we applied to investigate our research 

questions in chapter 4 and 5, more modified paradigms can be developed to answer more 

specific questions. For example, the probabilistic switch could be tailored according to the 

performance of the participant and an increased probabilistic switch may be introduced for an 

extra level of re-learning process. More complex models can be introduced to enrich the 

estimation at the behaviour level (e.g., one could add randomness factor or stickiness factor 

to account for such effects in the decision-making process).  

Moreover, the main goal of the thesis is to examine the neural associates of 

computational signals based on the estimated learning parameters. While, another interesting 

question was the brain architecture for predicting learning performance. It was observed that 

individuals’ resting baseline activity in motor and visual regions could predict the future 

learning rate (Tamnes et al., 2014). As we have found the different learning performance and 

neural mechanisms of reward and avoidance learning, future studies could be carried out to 

examine the brain regions for prediction both types of learning rate.  

In summary, the novel probabilistic reward and avoidance learning task offered an 

innovative way to examine the reward and avoidance-based decision processes in healthy 

participants. The learning model was then used to investigate the underlying computational 

processes. Together with the modelling and neuroimaging, the thesis found shared and 

distinct  neural representations at various stages of reward/avoidance-based decision 

processes. Specifically, at the outcome stage, the outcome of receiving reward and 

successfully avoiding punishment was found associated with the consistent mOFC implicated 

in the previous study (Kim et al., 2006). But also, the new candidates including posterior 

cingulum and dorsal striatum were found activated. Receiving reward and punishment was 

associated with the functional activity at common brain areas of insula and cingulum. And 

the cingulum was also found activated for both reward and avoidance expectation. Whereas 
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avoidance expectation recruited broader areas at the cortical and subcortical brain areas 

including inferior OFC, insula and dorsal striatum. At the stage of error processing, reward 

and aversive PE was found covaried with the activity at the shared frontal-subcortical brain 

regions including cingulate, insula, hippocampus, thalamus, inferior & middle frontal and 

SMA. Different from the whole striatum activation by reward PE, the dorsal striatum was 

specifically activated by the aversive PE. Further, application of the modelling and 

neuroimaging to the clinical populations of OCD and GD, the aberrant brain activations were 

found during these processes. Based on the newly suggested orthogonal pairs of impulsivity 

and compulsivity behavioural traits, we then examined how the impulsivity and compulsivity 

constructs affect the reward and avoidance decision processes. The whole study offered a 

clarification of the neural mechanisms underlying the reward and avoidance processes, and 

also provided a better understanding of the pathology of the aberrant reward and avoidance-

based decision making processes in OCD and GD. 
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