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Abstract

It is a central theme in group theory to classify (finite) groups up to isomorphism. Of particu-
lar interest is the classification of all groups of a given order n; this has started with the work
of Cayley and the introduction of axiomatically defined groups. Since then a vast amount of
literature has emerged, dealing with groups of special orders or order types (that is, orders
that factorise into a particular form, such as n = pq for distinct primes p and q). The aim
of this thesis is to investigate groups whose orders factorise into at most four primes. Theo-
retical classifications exist in the literature, but most expositions are lengthy and it is difficult
to extract results. In this thesis we elaborate a new self-contained and independent deter-
mination of the isomorphism class representatives for these groups, presented in a unified
and modern language; we derive explicit counting formulas and explicit group presentations.
Importantly, our results lead to efficient construction algorithms for these groups, which we
implement as a software package SOTGrps for the computer algebra system GAP. Our package
extends the SmallGroups library of GAP and provides an identification functionality as well as
a “construction-by-ID” method; this leads to a dynamic database of groups (where groups can
be efficiently constructed on demand) and a practical isomorphism test. The approach used in
this thesis can be extended to other order types. As an example, we include a new classification
for the groups of order p4q; this order type is also available in SOTGrps. Some results of this
thesis also appear in the joint work (see [20]).
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”You boil it in sawdust: you salt it in glue:
You condense it with locusts and tape:

Still keeping one principal object in view—
To preserve its symmetrical shape.”

—Lewis Carroll (1876)
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Notation

G, H, N, R, X, Ω, . . . groups, rings, sets, etc

Symn symmetric group on {1, 2, . . . , n}

Altn alternating group on {1, 2, . . . , n}

N non-negative integers

Z integers

Zn integers {0, . . . , n− 1}

Cn abstract multiplicative cyclic group of order n

GF(pn) Galois field of order pn, where p is a prime.

GL(V) group of all nonsingular linear transformations of the vector space V
over a field F

GLn(F) general linear group of all invertible n× n matrices with coefficients in a
field F

GLn(pk) general linear group GLn(F) where F ∼= GF(pk)

In the n× n multiplicative identity matrix

Dn dihedral group of size 2n

QDn quasidihedral group of size n

R∗ group of units of a unital ring R

[g, h] commutator g−1h−1gh

[G, H] subgroup generated by the set of all commutators {[g, h] : g ∈ G, h ∈ H}

[G, G] = G′ derived subgroup (commutator subgroup) of G

Z(G) = ζ(G) centre of G

G(n) the n-th term of the derived series of G, where G(0) = G and
G(i) = [G(i−1), G(i−1)] for i ≥ 1

ζi(G) the i-th term in the upper central series of G, where ζ0(G) = 1 and
ζi(G)/ζi+1(G) = Z(G/ζi−1(G)) for i ≥ 1
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Notation Notation

γi(G) the i-th term in the lower central series of G, where γ0(G) = G and
γi(G) = [γi−1(G), G] for i ≥ 1

Aut(G) automorphism group of G

Inn(G) inner automorphism group of G

G nφ H, G n H semidirect product with a normal subgroup identified with H and the
quotient isomorphic to G; G acts on H via ϕ : G → Aut(H)

StabG(X), StabG(x) stabiliser of a set X or an element x under the action of G

FixΩ(G), FixΩ(g) set of fixed points in a set Ω under the action of G or of g ∈ G

NG(H) normaliser of H ≤ G in G

CG(H) centraliser of H ≤ G in G

Sylp(G) complete set of Sylow p-subgroups of G

Op(G) intersection of all Sylow p-subgroup of G

Φ(G) Frattini subgroup of G

F(G) Fitting subgroup of G

∆y
x divisibility Kronecker delta function for integers x and y where ∆y

x = 1 if
y | x and ∆y

x = 0 otherwise

5
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Chapter 1

Introduction

Group theory has ubiquitous applications in the study of mathematics as well as other subjects
of science, including particle and quantum physics, crystallography, and molecular chemistry.
In many of these areas, the theory of groups is applied to obtain information of the symmetry
of an object, which benefits from a priori knowledge of the different structures of groups.

1.1 Groups of small order type

Following Cayley’s classification [17] of all groups of order at most 6, the determination of a
complete and irredundant list of groups of a given order up to isomorphism makes one of the
oldest and most studied problems in finite group theory. A generalisation of this problem is
to classify finite groups with a given order type given by a formula of the prime factorisation,
which defines an infinite set of orders. As an example, for each positive integer n ≤ 7 the
groups of order pn for all primes p have been explicitly classified (see [28, 31, 36, 41]) by a list
of parametrised presentations. The p-group generation algorithm developed by Newman [39]
and O’Brien [40] can be used for the construction of these groups. In this thesis, we focus on
groups of small order types, namely, orders with a short prime factorisation and we derive a use-
ful algorithm for the construction and enumeration for these groups. More specifically, we ex-
plicitly determine the isomorphism class representatives for all groups whose orders factorise
into at most four (not necessarily distinct) primes and briefly discuss possible generalisations
to more order types, such as order p4q, where p and q are distinct primes.

A general approach to the determination of finite groups of a given order involves two steps:
first construct a list of groups that contains each isomorphism type at least once, then reduce
the list to isomorphism class representatives. Thanks to the Jordan–Hölder theorem and the
classification of finite simple groups, the first step can be achieved by iterating group exten-
sions with simple factors to construct nonsimple groups. The quest of finding all extensions of
a given group N by a given group G is known as the extension problem of groups, formulated by
Hölder. However, the process of iterated extensions often produces a redundant list. Thus, the
predominant difficulty lies in the second step to determine the isomorphism classes of these
extensions. This step is sometimes referred to as solving the isomorphism problem. In practice,
another difficulty of listing the isomorphism representatives can be caused by the immensity
of the list size. For example, Besche, Eick, and O’Brien [7] found in 2001 that there are 49 487
365 422 groups (up to isomorphism) of order 210. In fact, a closed formula for the number of
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1.1. Groups of small order type Chapter 1. Introduction

isomorphism types of groups of a given order is a closely related problem to the classification
of finite groups; for more details we refer to the book of Blackburn et al. [11].

The classification of groups of some small order types appeared in many publications (for ex-
ample, see [15, 18, 25, 31, 37, 51]), but the results are scattered over the literature and many of
them are presented with terminology different from what is commonly seen today. It is also
known that some papers contain erroneous classifications, which is unsurprising given that
many of the early works involved a lot of technical (hand) calculations and case distinctions.
Such factors often make it challenging to set a comprehensive overview on this topic. For
this reason, this thesis reviews and integrates relevant literature to present an overview of the
known results in a modern, unified language. More than just a revision of existing results, this
integration complements our new results and makes this thesis a self-contained exposition of
groups of some small order types. In particular, we give an explicit list of isomorphism class
representatives for groups whose orders factorise into at most four primes. Our enumeration
results for these groups follow from the explicit construction of the isomorphism class repre-
sentatives. Moreover, our approach to studying these groups can be extended to more order
types, such as pnq, pnq2 for larger n and orders that are cubefree. Many results regarding orders
with short prime factorisation length exist in the literature: Cole and Glover [18] determined
groups whose orders are products of three primes; the enumeration of the isomorphism types
of groups of order that factorises into at most four primes or of order pnq for n ≤ 5 is known
(see [24, 25, 37]); a construction function and an isomorphism test for cubefree groups arise
from [19] and [22]. However, these works do not naturally give rise to an efficient identifica-
tion function; that is, a function that determines the isomorphism type of a given group. On the
other hand, our explicit determination of the isomorphism class representatives directly leads
to an identification function. Furthermore, this function also relatively efficiently determines
whether two groups (of order that we are concerned with in this thesis) are isomorphic. As
many applications benefit from this information, such an identification function not only con-
tributes to new results in computational group theory, but also contributes to other scientific
areas where finite group theory applies.

We briefly comment on how the collaboration and joint paper [20] came about. As outlined
above, the original aim of this MPhil thesis was to inspect existing classifications of groups
of small order type, to write down a new compact comprehensive account using modern lan-
guage of computational group theory, and to develop independent construction algorithms
and implementations for the computer algebra system GAP. After we have achieved this re-
vised classification, it turned out that we not only had the tools for an efficient construction
algorithm, but also for a practical group identification routine. In particular, our explicit lists
of group presentations also led to counting formulas for the isomorphism types of groups of
a fixed small order type. In 2017, Bettina Eick has published an arXiv article [24] on the enu-
meration of groups of order n ∈ {p2q, p2q2, p3q, p2qr} and posed a research question asking for
an explicit classification of these groups. This has been achieved by our work, and so we con-
templated publishing our results. However, most of our construction proofs go hand in hand
with proving an enumeration formula, so our paper would have had a significant overlap
with Eick’s preprint [24]. We decided that it would be most appropriate if we would publish
all these results in a joint paper [20]. In turn, the work on this publication has led to a more ef-
ficient presentation of our original classification results, which is why some parts of this thesis
now employ methods described in [20, 24].
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1.2. Computational results Chapter 1. Introduction

1.2 Computational results

Many studies in group theory involve extensive calculations. For example, the aforementioned
project of constructing all groups of order up to 2000 would be impractical were it not for some
specialised computer performances. The area of computational group theory has advanced
significantly with the assistance of computer algebra systems, such as GAP [27] and MAGMA
[12]. These programmes provide efficient tools to carry out sophisticated calculations with
groups and many other algebraic objects. Arguably, they lay the foundation for much recent
research in computational algebra and have gained high popularity in the research commu-
nity. For this thesis, we use GAP to generate and verify our computational results. Thanks
to Besche, Eick, and O’Brien [49], a dynamic database of finite groups called the SmallGroups
Library has been created and made available in both GAP and MAGMA, and is under ongoing
development. A main result of this thesis is to extend the functionalities of GAP’s SmallGroups
Library to construct, enumerate, and identify the isomorphism types of groups of small order
type by a new package called SOTGrps.1 More specifically, given an order n that factorises into
at most four primes or is of the form p4q, we provide an algorithm to construct an ordered list
Ln of all isomorphism representatives of the groups of order n. We also give an enumeration
function that determines |Ln| without creating Ln. Moreover, we provide an identification
function: for a given group G, it determines the group ID (n, i) such that n = |G| and G is
isomorphic to the i-th group in Ln; this group ID is an isomorphism invariant: two groups are
isomorphic if and only if they have the same group ID.2 We comment on the functionality of
our implementations and development of the SOTGrps package in GAP at the end of the thesis.

1.3 Structure of the thesis

This thesis consists of three parts. The first part sets up the background theory, where we re-
view some definitions and fundamental results of group extensions. We also underline a few
specific results on the classification of split extensions, which are crucial to our later discussion
in Part II. For convenience and ease of reference, we collect a number of general group theory
definitions and preliminary results and present them in Appendix A. Although we employ
different methods for the construction of groups of different order types, the overarching ap-
proach is via group extension. We observe that most of the order types discussed in this thesis
define solvable groups. For example, all finite p-groups are solvable, all groups of order paqb

are solvable by a celebrated result of Burnside[14], and all groups of odd order are solvable
by the famous odd-order theorem of Feit and Thompson [26]. Finite solvable groups have
polycyclic presentations. Such presentations of groups allow us to employ efficient methods
to study and construct group extensions computationally. We briefly recall the definitions and
show an example of computations with polycyclic presentations in Chapter 3. In Chapter 4, we
recall some results on automorphism groups and derive counting formulas for the conjugacy
classes of certain subgroups in some low-dimensional general linear groups over finite fields.
In conjunction with this, we introduce some notations that impose a canonical ordering of the
lists of isomorphism class representatives that are constructed in Part II. Such a canonical or-
dering allows us to attach to each group a group ID, and is the key ingredient that leads to an
identification function. This will be discussed in more detail in Part III.

1Short for “groups of small order types”; the SOTGrps package is available at github.com/xpan-eileen/sotgrps_
gap_pkg.

2Throughout the thesis, by ID we implicitly mean the ordering of our construction in SOTGrps unless otherwise
specified. It is noteworthy that this ordering is likely to differ from what is available in GAP’s SmallGroups Library
due to different methods and approaches used to construct the groups.
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1.4. Historical background Chapter 1. Introduction

To be more specific, in Part II we explicitly determine the isomorphism representatives for
groups whose orders factorise into at most four primes. As mentioned before, these groups
have been discussed in many papers, but we collate and present the results in this self-contained
exposition. We divide our discussion of these groups into three chapters. In Chapter 5, we re-
view the known results of p-groups of order dividing p4 and we present a summary of results
using methods and notations in line with what we establish in Part I. Chapter 6 is dedicated to
the groups of order paqb with a, b ≥ 1 and a + b ≤ 4. For these groups, we make case distinc-
tions by the existence of normal Sylow p- and q-subgroups, and the isomorphism types of these
Sylow subgroups. We devote Chapter 7 to squarefree groups with at most four prime factors
and the groups of order p2qr, where p, q, r are distinct primes. We recall the Burnside–Hölder–
Zassenhaus theorem [43, (10.1.10)] on groups whose Sylow subgroups are all cyclic, and apply
the results to construct and identify the squarefree groups. For these groups, we make case
distinction on the sizes of the centres and the derived subgroups. We observe that all groups
discussed in Part II are solvable except for Alt5, which has order 60. This group makes a special
case of the groups of order p2qr, and the remaining groups of such order type are all solvable
with an abelian Fitting subgroup. We make a case distinction on the isomorphism types of the
Fitting subgroups for the construction of such groups. We give polycyclic presentations for all
relevant solvable groups. For each order type we also provide a brief historical summary of
known results; see also Section 1.4 for further background.

In Part III we comment on the computational aspects and the development of the SOTGrps
package. In particular, we compare the performance of the SOTGrps package with the existing
functionalities in GAP and comment on the accuracy and efficiency of our algorithm. We give
a brief discussion on potential further studies. For instance, we may generalise our results to
more order types such as pnq, pnq2, and cubefree orders. Indeed, we derive a complete list
of explicit isomorphism representatives for groups of order p4q, which in combination with
Chapter 6 makes most of the enumeration results of Eick and Moede [25] constructive. More-
over, we discuss how to extend the isomorphism test in SOTGrps (namely, the identification
functionality) to an explicit isomorphism construction.

In conclusion, the main results of this thesis are the following:

1. A new concise and self-contained description of the determination of groups of order
n ∈ {pq, p2q, p2q2, p3q, pqr, pqrs, p2qr} with p, q, r, s distinct primes, see Chapters 6 and 7.

2. New compact group presentations describing these groups, see Tables 6.1, 6.2, 6.3, 6.4,
7.1, 7.2, 7.3, and Notations 4.1.1, 4.2.1, 4.2.6.

3. New efficient construction and identification algorithms for these groups implemented
for the computer algebra system GAP, see Section 8.2.

Lastly, we remark that in this thesis we try to be consistent with terminology and notation that
are commonly seen, but sometimes it is inevitable to introduce some nonstandard ones for easy
reference and better readability.

1.4 Historical background

In the following and throughout this thesis, let p, q, r, s denote primes. We classify orders that
factorise into at most four primes into four types: prime powers dividing p4, products of pre-
cisely two prime powers, products of precisely three prime powers, and products of precisely
four primes.

10



1.4. Historical background Chapter 1. Introduction

Besche, Eick, and O’Brien [6] provided a historical background of the determination of small
groups; here we present a summary for the history of p-group construction. We refer to [6] for
further references.

• 1854: Cayley determined the groups of order p.

• 1882: Netto determined the groups of order p2.

• 1893: Cole and Glover, Young, and Hölder independently classified the groups of order
p3 and p4.

• 1898: Bagnera determined the groups of order p5, but his initial work contained errors for
order 25 and 35, the former of which was pointed out by Miller, and corrected by Bagnera
in 1899.

• 1904: Potron attempted to list the isomorphism representatives for the groups of odd
order p4.

• 1927: Bender pointed out the errors of in the list for groups of order 35 in Bagnera’s
results and gave a list of groups of order dividing p5 for odd primes. His list for order 35

was also incomplete for one maximal-class group was missing, which was included by
Blackburn in 1958.

• 1930s–1960s: Hall and Senior first independently and then collaboratively worked to give
a list of the 2-groups of order up to 64.

• 1958: Blackburn initiated the study of p-groups of maximal class, and gave a complete
classification of 2- and 3-groups of maximal class.

• 1969: James gave a list for the isomorphism types of groups of order 35.

• 1980: James gave a list of groups of order p6 for odd p.

• 1990: O’Brien and Newman derived an algorithm, the p-group generation algorithm,
for constructing p-groups up to isomorphism. In the same year, James, Newman, and
O’Brien determined the groups of order 27.

• 2005: O’Brien and Vaughan-Lee determined the number of isomorphism types of groups
of order p7 for odd p, and gave a list of the groups of order 37 and 57 using the p-group
generation algorithm.

For groups of order paqb with p, q distinct primes, the following are recorded in the literature.
For further background and reference, see [6] and [37].

• 1893: Cole and Glover, and Hölder independently determined groups of order pq, p2q.

• 1902: La Vavasseur determined groups of order p2q2.

• 1903: La Vavasseur determined groups of order 16p for odd prime p.

• 1909: Tripp determined groups of order p3q2.

• 1919: Nyhlén determined groups of order 16p2 and 8p3 for odd prime p.

• 1934: Lunn and Senior determined groups of 16p and 32p.

11



1.4. Historical background Chapter 1. Introduction

• 1982: For positive integers a, b such that a, b 6= 5 and a + b ≤ 6, Laue enumerated the
isomorphism types of groups of order paqb for odd primes, and determined all groups of
order 96. There are some errors in Laue’s results for the special cases where p = 2 and
q = 3 for groups of order p3q and p4q, which are pointed out in [24].

• 1977: Western determined the groups of order p3q. In the summary section [51, Sec-
tion 26], a group is missing for the case q ≡ 1 mod p, but it is included in [51, Section 13];
this is pointed out in [24].

• 2001: Besche and Eick [5] gave an algorithmic description of the construction of groups
of order pnq.

• 2018: Eick and Moede [25] enumerated the groups of order pnq for n ≤ 5.

The remaining order types pqr, pqrs, and p2qr (with p, q, r, s pairwise distinct) often appear in
the discussion of squarefree and cubefree orders in the literature. A brief timeline is as follows.

• 1893: Hölder [31] determined groups of order pqr.

• 1895: Hölder [32] classified groups of squarefree order.

• 1906: Glenn [29] considered groups of order p2qr but his work contains a few errors,
some of which are pointed out in [24].

• 1982: Laue [37] enumerated the isomorphism types of groups of order p2qr without nor-
mal Sylow subgroups.

• 2005: Dietrich and Eick [19] developed a construction algorithm for groups of cubefree
order.

• 2007: Slattery [16] developed an algorithm for the construction and identification of
squarefree groups.

• 2011: Qiao and Li [42] gave structural characterisation for groups of cubefree order.

• 2017: Eick [24] enumerated the isomorphism types of groups of order p2qr.

• 2020: Dietrich and Wilson [22] developed an isomorphism test algorithm for cubefree
groups.

• 2021: Dietrich and Low [21] generalised [16] to groups whose Sylow subgroups are cyclic
(C-groups), and developed an algorithm for the construction and identification of C-
groups.

12



Chapter 2

Group extensions and cohomology

The Jordan–Hölder theorem on finite groups allows us to study a finite group via its composi-
tion series. Informally speaking, we can decompose a finite group into smaller building blocks
and study the group in terms of its normal subgroups, quotients, and how they interact. On
the other hand, if one knows how to build larger groups from small groups, then it is possi-
ble to survey all nonsimple finite groups inductively with information of smaller groups. In
particular, the extension problem asks for all possible ways one can reconstruct a group with in-
formation of a normal subgroup and the corresponding quotient. In light of the Jordan–Hölder
theorem, one can enumerate and classify finite nonsimple groups of a given order by solving
the extension problem and the isomorphism problem at each point of the composition series.

In this chapter, we recall some relevant results about group extensions and cohomology groups,
which are important and useful for our later investigation of groups of some small order types.
Unless otherwise specified, all groups we consider are finite. For further background, we refer
to [43, Chapter 11], [44, Chapter 9], and [45, Chapter 7].

Definition 2.0.1. Let N and G be groups. A group E is an extension of N by G if E has a normal
subgroup M ∼= N with quotient E/M ∼= G.

The group Sym3, for example, has a cyclic normal subgroup Alt3 ∼= C3 with cyclic quotient
Sym3/Alt3 ∼= C2, so Sym3 is an extension of C3 by C2. In particular, such an extension is an
example of metacyclic extensions. On the other hand, the direct product C3×C2 ∼= C6 is also an
extension of C3 by C2, but nonisomorphic to Sym3. In general, any direct product G× N is an
extension of N by G, as well as an extension of G by N.

In the context of Definition 2.0.1, since we can embed N into E and identify G with the cor-
responding quotient, we lose no generality by considering N as a subgroup of E. By abuse
of language, we use the term group extension for both the short exact sequence induced by
E/N ∼= G and the extension group E.

We now introduce some notation and present some results regarding group extensions of
abelian groups, which are crucial in later chapters. Suppose G acts on N via ϕ : G → Aut(N).
Then for each g ∈ G and n ∈ N we denote the image of n under the automorphism ϕ(g) by
nϕ(g); often we simply write ng = nϕ(g) when the action ϕ is implicit. If N is abelian, then this
furnishes N with the structure of a G-module. Conversely, if N is a G-module, then N is an
abelian group such that G acts on N via some induced homomorphism ϕ : G → Aut(N). Al-
though the additive notation is commonly used to describe a module, in this thesis we use the
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2.1. Cohomology of groups Chapter 2. Group extensions and cohomology

multiplicative notation for a G-module N, for it is more convenient when describing extensions
by group presentations.

With said setting, suppose a group E contains a normal subgroup N and G = E/N. For the
natural projection π : E → G, we choose a transversal map τ : G → E with τ(1) = 1, such that
π ◦ τ is the identity map on G, with T = τ(G) a left transversal of N in E. In the following,
for a fixed choice of τ, we denote tg = τ(g) for g ∈ G. Since E =

⊔
t∈T tN is a disjoint union,

every x ∈ E can be written uniquely as x = tgn for tg ∈ T and n ∈ N. Since N is abelian, the
conjugation action κ : E→ Aut(N) satisfies that N ≤ Ker κ, thus induces a well-defined action
of E/N on N. This corresponds to the homomorphism ϕ : G → Aut(N) given by ng = t−1

g ntg
for all g ∈ G and n ∈ N. Observe that π(tg) = g ∈ G for all g ∈ G, thus π(tgh) = π(tg)π(th).
Since Ker π = N, we have tghngh = tgth for a unique ngh ∈ N. Therefore, we can construct a
well-defined map γ : G× G → N by γ(g, h) = t−1

gh tgth = ngh.

Moreover, suppose a, b ∈ N and g, h ∈ G, then there exist tg, th, tgh ∈ G such that ath = thah

and tghγ(g, h) = tgth, it follows that

tgathb = tgtht−1
h athb = tghγ(g, h)ahb. (2.0.1)

For a fixed transversal T, since every e ∈ E can be written uniquely as tga for some tg ∈ T and
a ∈ N, the associativity of E shows that

γ(g, h)kγ(gh, k) = γ(h, k)γ(g, hk) (2.0.2)

for all g, h, k ∈ G. This describes an important identity of the map γ : G × G → N, related to
so-called “2-cocycles” in the context of group cohomology, which we discuss in more detail in
the following section.

Remark 2.0.2. If N is nonabelian, then the conjugation action of E → Aut(N) does not induce
an action of G → Aut(N), but an “outer action” G → Aut(N)/Inn(N) ∼= Out(N). In the
context of cohomology, the classification of equivalence classes of these extensions becomes
much more complicated, but we will see in Section 2.4 that there are many results we can apply
to classify the isomorphism classes in some special cases. For the purpose of this thesis, we
thus restrict our attention to group extensions of abelian normal subgroups when we discuss
their cohomology. We refer to [13, Chapter IV Section 6] for more details in regards to the
cohomology of group extensions of nonabelian normal subgroups.

2.1 Cohomology of groups

There are many different ways to define group cohomology, arising from various contexts. In
this thesis, we are only concerned with the 1- and 2-cohomology groups, which are closely re-
lated to group extensions. However, to acknowledge that concepts from homological algebra
naturally and greatly contribute to the understanding of group extensions, we briefly digress to
put this into a broader context by including a description of n-th cohomology groups. The fol-
lowing definition arises from the context of (co)chain complexes; it is an adaptation of Brown’s
discussion in [13, pp. 4–5]. For further discussion on group extensions and the relevant homo-
logical machinery, we refer to [13, 30, 44].

14



2.1. Cohomology of groups Chapter 2. Group extensions and cohomology

Definition 2.1.1. Let G be a group and let N be a G-module. Define C̃0(G, N) = N, and for
n ≥ 1, write C̃n(G, N) for the set of all maps from Gn to N with component-wise multiplication;
that is, if ω, υ ∈ C̃n(G, N), then ωυ is defined by

(ωυ)(x1, . . . , xn) = ω(x1, . . . , xn)υ(x1, . . . , xn), ∀xi ∈ G.

With this multiplication, C̃n(G, N) is an abelian group, where elements are called n-cochains.
An n-cochain ω ∈ C̃n(G, N) is normalised if ω(x1, x2, . . . , xn) = 1 whenever xi = 1 for any
i ∈ {1, . . . , n}. Denote the subgroup of C̃n(G, N) consisting of all normalised cochains by
Cn(G, N). For n ≥ 0, define ∂n : C̃n(G, N)→ C̃n+1(G, N) by

(∂n(ω))(x1, . . . , xn+1) = ω(x1, . . . , xn)
xn+1 ·ω(x1, . . . , xn)

(−1)n+1

·
n

∏
i=1

ω(x1, . . . , xi−1, xixi+1, xi+1, . . . , xn+1)
(−1)i

.

One defines Z̃n(G, N) = Ker ∂n as the group of n-cocycles of G with coefficients in N with re-
spect to the G-module structure of N, and Zn(G, N) is the subgroup of all normalised n-cocycles.
For n ≥ 1, the image B̃n = Im ∂n−1 is the group of n-coboundaries; Bn(G, N) the group of
all normalised n-coboundaries, and B̃0(G, N) = 1. A straightforward calculation shows that
Z̃n(G, N)/B̃n(G, N) ∼= Zn(G, N)/Bn(G, N). The n-th cohomology group of G with coefficients in
N is defined by

Hn(G, N) = Zn(G, N)/Bn(G, N).

It is sometimes customary to write Hn
ϕ(G, N) to highlight the G-action on N, but in this thesis

we often drop the subscripts when there is no ambiguity of the G-module structure. Since
we only consider normalised cocycles in our discussions, we often also drop the adjective
“normalised”.

Note that Zn(G, N) is not empty for it always contains the trivial map. For the case n = 2,
the cocycles are precisely maps γ : G× G → N that satisfy the relation in (2.0.2). In particular,
this characterisation of 2-cocycles defined by (2.0.2) is called the cocycle identity. In addition, if
γ(g, 1) = (1, g) = 1, then γ is exactly a normalised 2-cocycle. Since (2.0.2) is a consequence
of (2.0.1) in tandem with associativity of the multiplication in E, one can obtain an alternative
definition of 2-cocycles and 2-coboundaries by generalising (2.0.1). For example, the following
is adapted from Rotman’s definition in [44, p. 504].

Definition 2.1.2. Let G be a group with a G-module N, and let E be an extension of N by G. A
function γ : G× G → N is a 2-cocycle if there exists a transversal map τ : G → E such that

γ(g, h) = τ(g)τ(h)τ(gh)−1

for all g, h ∈ G; such a 2-cocycle is sometimes denoted by γτ. A function β : G × G → N is a
2-coboundary if there exists a map f : G → N such that f (1) = 1 and

β(g, h) = f (gh)−1 f (g)h f (h)

for all g, h ∈ G; such a 2-coboundary is sometimes denoted by β f .

Since N is abelian, a direct computation shows that Z2(G, N) is an abelian group under mul-
tiplication (γδ)(g, h) = γ(g, h)δ(g, h) for all γ, δ ∈ Z2(G, N) and g, h ∈ G. Further, Defi-
nition 2.1.2 gives the construction of a 2-cocycle using a transversal map from the quotient
G = E/N to E, where N is furnished with a G-module structure. Conversely, every 2-cocycle
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2.1. Cohomology of groups Chapter 2. Group extensions and cohomology

defines an extension of N by G, as shown by the following well-known result; see also [43,
pp. 316–317] and [44, Theorem 9.9].

Theorem 2.1.3 ([43], pp. 316–317, [44], Theorem 9.9). Let G be a group with a G-module N. For a
2-cocycle γ ∈ Z2(G, N), let

Eγ = {(g, n) : g ∈ G, n ∈ N}

with multiplication
(g, n)(h, m) =

(
gh, nhmγ(g, h)

)
,

for all (g, n), (h, m) ∈ Eγ. Then the following statements hold.

(i) Eγ is a group.

(ii) If E is an extension of N by G, then there exists a 2-cocycle γ ∈ Z2(G, N) such that E ∼= Eγ.

Proof. (i) First note that Eγ is closed under this multiplication by construction. A direct cal-
culation shows that 1Eγ = (1G, 1N), and for every (g, n) ∈ Eγ, there exists a unique inverse

(g, n)−1 =
(

g−1, (n−1)(g−1)
(
γ(g, g−1)

)−1
)
∈ Eγ. Associativity of the multiplication follows

from the defining property of the 2-cocycle γ.
(ii) Let τ : G → E be a transversal map, write T = Im τ and tg = τ(g). Let γ : G× G → N be
the 2-cocycle defined by γ(g, h) = t−1

gh tgth. Now consider the map α : E → Eγ, α(tga) = (g, a):
it is well-defined and injective by the uniqueness of tg ∈ T and a ∈ N in expressing x = tga for
any x ∈ E; it is surjective by construction. It follows from (2.0.1) and the definition of α that

α((tga)(thb)) = α(tghγ(g, h)ahb) = (gh, ahbγ(g, h)) = α(tga)α(thb),

which shows that α is a homomorphism. In conclusion, α is an isomorphism.

From Theorem 2.1.3 it immediately follows that given a group G and a G-module N, every
extension E of N by G is isomorphic to Eγ for some γ ∈ Z2(G, N), where Eγ is as described
in Theorem 2.1.3. Note that in this construction, if γ is the trivial map, then Eγ = G n N is a
semidirect product of G and N.

Remark 2.1.4. In this thesis, when we write G nϕ N for a semidirect of N by G, we usually
consider the underlying set to be G× N with multiplication (g, n)(h, m) = (gh, nϕ(h)m), where
nϕ(h) denotes h acting on n via ϕ : G → Aut(N). When there is no ambiguity of the G-action on
N, we often write G n N with multiplication (g, n)(h, m) = (gh, nhm). Similar to that we write
ng for (ϕ(g))(n), we generalise this superscript notation further to avoid clustered brackets.
For example, since Aut(N) naturally acts on N, for a given α ∈ Aut(N), we use nα and α(n)
intechangeably for the image of n under α; for α, α′ ∈ Aut(N), we often write nα′α for (α ◦ α′)(n)
in line with the multiplication of Aut(N) defined by α′α = α ◦ α′.

Definition 2.1.5. Let G be a group, N be a G-module, and E be an extension of N by G. If there
exists a left transversal T ⊆ E of N that is a group isomorphic to G, then E is a split extension of
N by G, and the subgroup T is a complement of N in E.

Equivalently, an extension E splits over N by G if there exists a transversal map τ : G → E
that is a group homomorphism. For a semidirect product G n N, the map g 7→ (g, 1) is such a
transversal homomorphism. Conversely, suppose an extension E splits via a homomorphism
τ : G → E, then for the natural projection π : E → G, the transversal T = τ(G) of N in E
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forms a group. Moreover, since every element in E can be then written uniquely in the form
tgn for some tg ∈ T and n ∈ N, a direct computation shows that E is isomorphic to a semidi-
rect product G n N = {(g, n) : g ∈ G, n ∈ N} where the G-action on N is induced by a fixed
isomorphism T ∼= G and the conjugation of T on N. In conclusion, an extension of N by G
splits if and only if it is isomorphic to a semidirect product G n N. Moreover, it is known that
the set of complements of N in E = G n N is in bijection with the group of 1-cocycles, namely,
Z1(G, N) (see [43, (11.1.2)]). We recall the definition of 1-cocycle in the following.

Definition 2.1.6. Let G be a group with a G-module N. Then a map θ : G → N satisfying that
θ(1) = 1 and

θ(gh) = θ(g)hθ(h)

for all g, h ∈ G, is a normalised 1-cocycle (1-cocycles are also known as derivations). The set
Z1(G, N) of all such maps with multiplication (θξ)(g) = θ(g)ξ(g) is an abelian group.

Let E = G n N as above. Then G ∼= {(g, 1) : g ∈ G} is a complement of N in E. For every
θ ∈ Z1(G, N), a straightforward calculation shows that

(g, θ(g)) (h, θ(h)) =
(

gh, θ(g)hθ(h)
)
= (gh, θ(gh)),

and
Gθ = {(g, θ(g)) : g ∈ G} ∼= G

is a complement of N in E. It is known [43, (11.1.2)] that all complements of N in E = G n N
can be constructed this way.

2.2 Equivalent extensions and 2-cohomology

We now investigate the so-called equivalence classes of extensions of N by G.

Theorem 2.1.3 shows that every extension E of an abelian N E E with quotient G = G/N
is isomorphic to a group Eγ for some γ ∈ Z2(G, N). Recall that it involves a choice of the
transversal of N in E in constructing the 2-cocycle. It is known that two 2-cocycles defined
by different choices of transversals differ by a 2-coboundary. To verify this, let τ, τ′ : G → E
be two transversal maps with τ(1) = τ′(1) = 1, and abbreviate sg = τ′(g) and tg = τ(g).
Since π(tg) = g = π(sg), where π : E → N is the natural projection, there is a unique ng ∈ N
such that sg = tgng. This gives rise to a well-defined map f : G → N, g 7→ ng with f (1) = 1.
Define γ, γ′ : G × G → N to be the corresponding 2-cocycles such that γ(g, h) = t−1

gh tgth and

γ′(g, h) = s−1
gh sgsh, respectively. Then for all g, h ∈ G:

γ′(g, h) = s−1
gh sgsh =

(
tghngh

)−1 tgngthnh = n−1
gh t−1

gh tgngthnh

= n−1
gh t−1

gh tgthnh
gnh = n−1

gh γ(g, h)nh
gnh = n−1

gh nh
gnhγ(g, h) = β f (g, h)γ(g, h),

where β f = f (gh)−1 f (g)h f (h) ∈ B2(G, N); this shows that γ′ = γβ f .

Conversely, if γ and γ′ differ by an element in B2(G, N), then they define what is called equiv-
alent extension.
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Definition 2.2.1. Let G be a group with a G-module N. Two extensions 1→ N
i1−→ E1

π1−→ G → 1

and 1→ N i2−→ E2
π2−→ G → 1 are equivalent if there exists an isomorphism α : E1 → E2 that ren-

ders the following diagram commutative.

1 N E1 G 1

1 N E2 G 1.

=

i1

α

π1

=

i2 π2

By the Five Lemma [44, Proposition 2.72], any homomorphism α that renders the diagram
commutative is an isomorphism. Further, it follows from Theorem 2.1.3 that every such ex-
tension is isomorphic to Eγ for some γ ∈ Z2(G, N). We observe the following; see also [44,
Proposition 9.12].

Theorem 2.2.2. Let G be a group with a G-module N, and let γ, δ ∈ Z2(G, N) be 2-cocycles. Two
extensions Eγ and Eδ of N by G are equivalent if and only if γ ≡ δ mod B2(G, N).

Proof. Let i1 : N → Eγ and i2 : N → Eδ be the natural inclusions, and let π1 : Eγ → G and
π2 : Eδ → G be the natural projections. Suppose there exists an isomorphism α : Eγ → Eδ such
that the diagram is commutative; that is,

α ◦ i1(n) = α((1, n)) = i2(n) = (1, n) ∈ Eδ,

and
π1((g, n)) = g = π2 ◦ α((g, n)) ∈ G

for all g ∈ G, n ∈ N. Since G = Eγ/N, for every g ∈ G there exists some mg ∈ N such
that α((g, 1)) = (g, mg). It follows that α((g, n)) = (g, nmg) for any (g, n) ∈ Eγ since α is a
homomorphism and (g, n) = (g, 1)(1, n). Thus, α induces a well-defined map f : G → N given
by f (g) = mg. Moreover, for all (g, a), (h, b) ∈ Eγ, we have

α
(
(gh, ahbγ(g, h)

)
= α ((g, a)(h, b)) = α((g, a))α((h, b)) = (g, amg)(h, bmh).

That is,
(

gh, ahbγ(g, h)mgh
)
=
(

gh, (amg)h(bmh)δ(g, h)
)
, from which we deduce that

ahbγ(g, h)mgh = (amg)h(bmh)δ(g, h). Since N is abelian, it follows that

γ(g, h)mgh = mh
gmhδ(g, h),

or equivalently, γ(g, h) = m−1
gh mh

gmhδ(g, h) = β f (g, h)δ(g, h). By definition, the map β f is a
2-coboundary. Hence, γ ≡ δ mod B2(G, N).

Conversely, suppose γ ≡ δ mod B2(G, N). Then by definition there exists a map f : G → N
with f (1) = 1 and f (g) = mg such that γ = β f δ, where β f (g, h) = m−1

gh mh
gmh for all g, h,∈ G.

Define α : Eγ → Eδ by
α((g, a)) = (g, amg).

Since α((1, a)) = (1, a) and π2 ◦ α((g, a)) = π2((g, amg)) = g, it follows that α renders the
diagram commutative. Moreover, it is straightforward to check that α is a homomorphism
with the relation γ(g, h) = m−1

gh mh
gmhδ(g, h) and the fact that N is abelian. By the Five Lemma,

α is an isomorphism as desired.
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Corollary 2.2.3. Let G be a group and N be a G-module. If β ∈ Z2(G, N), then the extension Eβ of N
by G splits if and only if β ∈ B2(G, N); all split extensions of N by G are equivalent.

Proof. An extension Eβ of N by G is a split extension if and only if it is isomorphic to the
semidirect product G nϕ N, where ϕ is the underlying G-action on N defined by the given
G-module structure. Further, the semidirect product is isomorphic to the extension Eη , where
η is the trivial 2-cocycle. However, Theorem 2.2.2 shows that Eβ and Eη are equivalent if and
only if β and η differ by an element in B2(G, N). Since η is the identity element of B2(G, N), it
follows that Eβ splits if and only if β ∈ B2(G, N). This also shows that for a fixed G-module
structure on N, all split extensions of N by G are equivalent to Eη .

Since H2(G, N) = Z2(G, N)/B2(G, N), the preceding discussions prove a famous result re-
garding second cohomology group of group extensions; see also [43, (11.1.4)] and [44, Theo-
rem 9.13].

Theorem 2.2.4 (Schreier; [44], Theorem 9.13). Let G be a group and N be a G-module. Let e(G, N)
be the family of all equivalence classes of extensions of N by G. Then there is a bijection

Φ : H2(G, N)→ e(G, N),

and Φ maps the identity element of H2(G, N) to the equivalent class of split extensions.

We remark that when studying groups, it is usually desirable to classify groups up to iso-
morphism. We have discussed a way to classify extensions up to equivalence, but often two
group extensions are isomorphic despite being nonequivalent. For example, consider N = Z2,
G = Z2 ×Z2. We know that there are only four groups (up to isomorphism) of order 8 that
have a normal subgroup of order 2 with quotient isomorphic to Z2 × Z2. However, there
are eight nonequivalent group extensions of N by G, in one-to-one correspondence with the
elements of H2(G, H). Since the main goal of this thesis is to find explicit construction and
identification functions of the isomorphism class representatives of groups of small order type,
we need to reduce the list of extensions by solving the isomorphism problem. The following
section is devoted to a special type of isomorphism.

2.3 Strong isomorphisms

We first recall some notation. Let H be a group. Then the automorphism group Aut(H) acts
naturally on H; we use hα and α(h) interchangeably for α ∈ Aut(H) and h ∈ H. We remark
that hαβ = β ◦ α(h) for α, β ∈ Aut(H) and h ∈ H. In this section, we look into the so-called
“strong isomorphisms”; for further discussion we refer to Besche and Eick’s [4, Section 4.2.1].

Definition 2.3.1. Let G be a group and N be a G-module. For i ∈ {1, 2}, let Ei be an extension of
N by G with the canonical identification between N and the corresponding normal subgroup
of Ni E Ei. If there exists an isomorphism α : E1 → E2 such that α(N1) = N2, then E1 and E2
are strongly isomorphic; such an isomorphism α is called a strong isomorphism. Equivalently, two
extensions E1, E2 of N by G are strongly isomorphic if there exist isomorphisms α : E1 → E2,
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β : N → N, and τ : G → G such that the following diagram is commutative:

1 N E1 G 1

1 N E2 G 1.

∼= β

i1

α

π1

τ∼=
i2 π2

Remark 2.3.2. Although the commutative diagram in Definition 2.3.1 resembles the one in Def-
inition 2.2.1, we draw attention to the key difference: we do not insist an identity map (an
isomorphism suffices) on N nor on G in the commutative diagram of Definition 2.3.1.

Definition 2.3.3. Let G and N be groups. If every isomorphism between two extensions of N
by G maps the normal subgroup N to itself, then N is called a strong G-group.

For example, N ∼= C3 is a strong G-group for any G with gcd(3, |G|) = 1, because in any such
extension N is a characteristic Sylow 3-subgroup. Note that Definition 2.3.3 is not confined
to extensions with abelian normal subgroups N. In general, if N is a strong G-group with a
fixed G-action on N, and two extensions E1 and E2 of N by G are isomorphic via α : E1 → E2,
then α induces an automorphism α|N ∈ Aut(N) and an isomorphism α : E1/N → E2/N via
xN 7→ xαN for all x ∈ E. Since G ∼= Ei/N, we can identify α with an automorphism of G.
Without loss of generality, we may consider α ∈ Aut(G). Observe that (ng)α|N = (nα|N )(gα).
This relation can be generalised to more elements of Aut(G)×Aut(N), which motivates the
following definition. For further details, we refer to [33, p. 55] and [44, pp. 570–571].

Definition 2.3.4. Let G be a group with a G-module N via ϕ : G → Aut(N). A pair of automor-
phisms (ν, µ) ∈ Aut(G)×Aut(N) is called a compatible pair if (ng)µ = (nµ)(gν) for all n ∈ N
and g ∈ G. We denote the set of all compatible pairs in Aut(G)×Aut(N) with respect to the
G-action ϕ by Comp(ϕ).

We observe that if the G-action on N is trivial, then (ng)µ = nµ = (nµ)(gν) for all
(ν, µ) ∈ Aut(G)×Aut(N), in which case Comp(ϕ) = Aut(G)×Aut(N). We further observe
that Aut(G)×Aut(N) acts on the set of all group homomorphisms ϕ : G → N via

ϕ(α,β)(g) = β−1 ◦ ϕ(α(g)) ◦ β. (2.3.1)

By definition, for any homomorphism ϕ : G → Aut(N), the stabiliser of ϕ is the subgroup

Stabϕ =
{
(α, β) ∈ Aut(N)×Aut(G) :

(
β−1 ◦ ϕ(α(g)) ◦ β

)
(n) = ϕ(g)(n) ∀g ∈ G, n ∈ N

}
,

which can be rewritten as{
(α, β) ∈ Aut(N)×Aut(G) :

(
(nβ)(gα)

)(β−1)
= ng, ∀n ∈ N, g ∈ G

}
,

but
(
(nβ)(gα)

)(β−1)
= ng ⇐⇒ (nβ)(gα) = (ng)β, which shows that Comp(ϕ) = Stabϕ.

Reminiscent to that the equivalence classes of extensions can be classified by the cohomol-
ogy classes, the following theorem shows that the strong isomorphism classes of extensions
with an abelian normal subgroup can be classified by the orbits of cohomology group under a
compatible-pair action.
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Theorem 2.3.5 ([33], p. 55). Let G be a group and N be a G-module. For γ, δ ∈ Z2(G, H), let Eγ and
Eδ be the corresponding extensions of N by G. Then Eγ and Eδ are strongly isomorphic if and only if
there exists (ν, µ) ∈ Comp(ϕ) such that

γ(ν,µ) ≡ δ mod B2(G, N),

where
γ(ν,µ)(g, h) = γ(g(ν

−1), h(ν
−1))µ. (2.3.2)

Proof. Suppose α : Eγ → Eδ is a strong isomorphism. Then α restricts to an automorphism
α|N = µ ∈ Aut(N), and induces an automorphism ν = α|Eγ/N ∈ Aut(G) with the usual iden-
tification N E Eγ and G = Eγ/N. Also, for all (1, n), (g, 1) ∈ Eγ, we have α((1, n)) = (1, nµ)
and α((g, 1)) = (gν, ag) for some ag ∈ N. Moreover, since α is an isomorphism, it follows that
α((g, n)) = α((g, 1))α((1, n)) = (gν, agnµ). We also know that (1, n)(g, 1) = (g, ng). Thus, we
can compute the image of (g, ng) under α in two ways:

α((g, ng)) =
(

gν, ag(ng)µ
)

and α((1, n))α((g, 1)) = (1, nµ)(gν, ag) = (gν, (nµ)(gν)ag).

Since N is abelian, this implies that

(nµ)(gν) = (ng)µ, ∀n ∈ N, g ∈ G, (2.3.3)

which shows that (ν, µ) ∈ Comp(ϕ). Since α((g, n)(h, m)) = α((g, n))α((h, m)) for all
(g, n), (h, m) ∈ Eγ, we have(

(gh)ν, agh

(
nhmγ(g, h)

)µ)
=
(
(gh)ν, agh(nh)µmµγ(g, h)µ

)
=
(
(gh)ν, (agnµ)(h

ν)ahmµδ(gν, hν)
)
=
(
(gh)ν, a(h

ν)
g (nµ)(h

ν)ahmµδ(gν, hν)
)

.
(2.3.4)

Applying (2.3.3) to (2.3.4) yields that γ(g, h)µ = a−1
gh a(h

ν)
g ahδ(gν, hν). Since ν−1 ∈ Aut(G), we

further deduce that

γ(g(ν
−1), h(ν

−1))µ = a−1
g(ν−1)h(ν−1)

ah
g(ν−1)ah(ν−1)δ(g, h),

where the left-hand side is equal to γ(ν,µ)(g, h). This shows that γ(ν,µ) ≡ δ mod B2(G, N), since

ν ∈ Aut(G) and (gν, hν) 7→ a−1
gh a(h

ν)

g ahν is a 2-coboundary.

Conversely, suppose there exists (ν, µ) ∈ Comp(ϕ) such that γ(ν,µ) ≡ δ mod B2(G, N). Then
there exists a map f : G → N via g 7→ ag with f (1) = 1 that defines a 2-coboundary β f such
that γ(ν,µ) = δβ f . Define α : Eγ → Eδ by (g, n) 7→ (gν, agnµ). A direct computation verifies that
α is an isomorphism. Lastly, we check that (1, m)α = (1, mµ) ∈ {(1, n) : n ∈ N}E Eδ for all
(1, m) ∈ Eγ; that is, α preserves N. Therefore, Eγ and Eδ are strongly isomorphic.

It follows from Theorem 2.3.5 that we have a group action of Comp(ϕ) on Z2(G, N). To see this,
we show that the map χ : Z2(G, H) → Z2(G, H), γ 7→ γ(ν,µ) is an automorphism of Z2(G, N)
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for any (ν, µ) ∈ Comp(ϕ). We first check that χ is a homomorphism: for all γ, δ ∈ Z2(G, N),(
γ(ν,µ)δ(ν,µ)

)
(g, h) = γ

(
g(ν

−1), h(ν
−1)
)µ

δ
(

g(ν
−1), h(ν

−1)
)µ

=(γδ)
(

g(ν
−1), h(ν

−1)
)µ

= (γδ)(ν,µ)(g, h).

Since (ν, µ) ∈ Aut(G) × Aut(N), it follows that if γ(ν,µ)(g, h) = δ(ν,µ)(g, h) for all g, h ∈ G,
then γ = δ; that is, χ is injective. Lastly, since γ = (γ(ν−1,µ−1))(ν,µ) for all γ ∈ Z2(G, N),
we know χ is also surjective. We check that β(ν,µ) ∈ B2(G, N) for all β ∈ B2(G, N), which
shows that χ|B2(G,N) is an automorphism on B2(G, N). Hence, χ induces an automorphism of
H2(G, N). In combination with Theorem 2.3.5, we conclude that there is a bijection between
the Comp(ϕ)-classes of H2(G, N) and the strong isomorphism classes of extensions of N by G.

2.4 Split extensions

In the preceding section, we looked at the classification of groups extensions of a G-module N
by G up to strong isomorphism. However, for the purpose of this thesis, we also encounter
extensions of a nonabelian normal subgroup. Moreover, two isomorphic extensions are not
necessarily strongly isomorphic. For example, two split extensions of N and G with different
G-actions on N can still be isomorphic. The aim of this section is to present some results
regarding isomorphic split extensions that are crucial to later chapters.

Recall that if G is a finite group of order m and H is a subgroup of G with index n, then H is a
Hall subgroup if gcd(m

n , n) = 1. The following theorem is a fundamental result of finite group
theory.

Theorem 2.4.1 (Schur–Zassenhaus, [43], Theorem 9.1.2). Let G be a finite group. If H is a normal
Hall subgroup of G, then G = K n H for some K ≤ G. If K1, K2 ≤ G are both complements of H, then
K1 and K2 are conjugate in G.

In particular, Theorem 2.4.1 shows that if two groups N and G have coprime orders, then every
extension of N by G splits over N.

Theorem 2.4.2. Let G and N be finite groups, and let ϕ, ψ : G → Aut(N) be nontrivial group actions.
Let G nϕ N and G nψ N be the respective split extensions (see Remark 2.1.4).

(i) If there exist some (ν, µ) ∈ Aut(G)×Aut(N) such that ϕ(h) = µψ(hν)µ−1 for all h ∈ G,
then G nϕ N ∼= G nψ N.

(ii) If N is an abelian strong G-group or if gcd(|N|, |G|) = 1, then G nϕ N ∼= G nψ N if and
only if there exists some (ν, µ) ∈ Aut(G)×Aut(N) such that ϕ(h) = µψ(hν)µ−1 for all h ∈ G.

Proof. Note that (i) applies to all semidirect products of finite groups, although its converse is
not necessarily true. To show (ii), it is sufficient to show the converse of (i) holds under those
special conditions.

(i) Define α : G nϕ N → G nψ N by α((g, n)) = (gν, nµ). By hypothesis, the following diagram
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commutes:
1 N G nϕ N G 1

1 N G nψ N G 1

µ

i1

α

π1

ν

i2 π2

,

where i1, i2 are inclusions n 7→ (1, n), and π1, π2 are projections (g, n) 7→ g. The Five Lemma
asserts that α is an isomorphism if and only if it is a homomorphism. Thus, to prove the claim
it suffices to show that

α((g, s)(h, t)) = α((g, s))α((h, t)) (2.4.1)

for all g, h ∈ G and s, t ∈ N. By definition, α((g, s)) = (gν, sµ) for all g ∈ G and s ∈ N. For any
g, h ∈ G and s, t ∈ N, we compute that

α((g, s)(h, t)) = ((gh)ν, (sϕ(h)t)µ)

and
α((g, s))α((h, t)) = ((gh)ν, (sµ)ψ(hν)tµ).

Since ϕ(h) = µψ(hν)µ−1 for all h ∈ G by assumption, it follows that sϕ(h)µ = sµψ(hν) for all
s ∈ N, and the equality in (2.4.1) holds. Thus α is an isomorphism and the two split extensions
are isomorphic.
(ii) Denote G nϕ N and G nψ N by E1 and E2 respectively. Identify N with Ni E Ei for each
i = 1, 2.

• If Ni is abelian and a strong G-group, then an isomorphism α : E1 → E2 induces automor-
phisms α|N1 = µ ∈ Aut(N) and α|E1/N1 ∈ Aut(E1/N1). Thus α((1, n)) = (1, nµ) for all
(1, n) ∈ E1, and α((g, 1)) = (gν, θ(g)) for some map θ : G → N. Since

((gh)ν, θ(gh)) = α((g, 1)(h, 1)) =
(
(gh)ν, θ(g)ψ(hν)θ(h)

)
for all g, h ∈ G, it follows that θ ∈ Z1(G, N). Moreover, for all (g, n) ∈ E1,

α((g, n)) = (gν, θ(g))(1, nµ) = (gν, θ(g)nµ).

Similarly, we compute

α((g, s)(h, t)) = α
(
(gh, sϕ(h)t)

)
=
(
(gh)ν, θ(gh)(sϕ(h)t)µ

)
=α((g, s))α((h, t)) = (gν, θ(g)sµ) (hν, θ(h)tµ)

=
(

gνhν, (θ(g)sµ)ψ(hν)θ(h)tµ
)

,

which yields that θ(gh)(sϕ(h)t)µ = (θ(g)sµ)ψ(hν)θ(h)tµ for all (g, s), (h, t) ∈ E1. Since N is
abelian and θ ∈ Z1(G, N), it follows that sϕ(h)µ = sµψ(hν) for all (h, s) ∈ G nϕ N, implying
that ϕ(h)µ = µψ(hν); that is, ϕ(h) = µψ(hν)µ−1 for all h ∈ G.

• If gcd(|G|, |N|) = 1, then Ni
∼= N is a normal Hall subgroup of Ei for each i. In par-

ticular, Ni is characteristic in Ei and Theorem 2.4.1 shows that Ni has a complement
Gi, isomorphic to G, in Ei. This implies that if α : E1 → E2 is an isomorphism then
α(N1) = N2. Moreover, since α is a homomorphism and E1 = G1 n N1, the semidi-
rect product decomposition is preserved by α, namely, α(E1) = α(G1) n α(N1). Theo-
rem 2.4.1 also asserts that α(G1) is conjugate to G2. This implies that there exists an inner
automorphism β ∈ Aut(E2) such that β(α(G1)) = G2. Then α0 = β ◦ α is also an iso-
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morphism from E1 to E2, and by construction it satisfies that α0(g, s) = (gν, sµ), where
α0|N = µ ∈ Aut(N) and ν = α0|G ∈ Aut(G). Since α0 is a homomorphism, it follows that
for any (g, s), (h, t) ∈ E1,(

(gh)ν, (sϕ(h)t)µ
)
=
(
(gh)ν, (sµ)ψ(hν)tµ

)
,

forcing that (sϕ(h))µ = (sµ)ψ(hν) for all s ∈ N and h ∈ G. In particular, this shows that
ϕ(h) = µψ(hν)µ−1, as claimed.

As a corollary, we consider the case where G is cyclic.

Corollary 2.4.3. Let G be a cyclic group, and ϕ, ψ : G → Aut(N) be nontrivial G-actions.

(i) If ϕ(G) and ψ(G) are conjugate in Aut(N), then G nϕ N ∼= G nψ N.

(ii) If |N| and |G| are coprime, then the split extensions G nϕ N and G nψ N are isomorphic if
and only if ϕ(G) and ψ(G) are conjugate in Aut(N).

Proof. (i) Let a be a generator of G. By assumption we know that |ϕ(G)| = |ψ(G)| and
there exists some µ ∈ Aut(N) such that ϕ(G) = µψ(G)µ−1. It follows that there must
exist a generator g ∈ G such that ϕ(a) = µψ(g)µ−1. In particular, g = ak for some positive
integer k < |G| coprime to |G|. Every element of G is of the form ax for some non-
negative integer x < |G| and we observe

ϕ(ax) = (ϕ(a))x =
(

µψ(g)µ−1
)x

= µ(ψ(g))xµ−1 = µψ(gx)µ−1

= µψ((ak)x)µ−1.

Since gcd(k, |G|) = 1, the power map ν : G → G, ν(a) = ak is an automorphism of G and
ϕ(h) = µϕ(hν)µ−1 for all h ∈ G. It follows from Theorem 2.4.2(i) that G nϕ N ∼= G nψ N.

(ii) Since (i) applies to the special case where gcd(|G|, |N|) = 1, it remains to show the
converse. Since Theorem 2.4.1 implies that N is a strong G-group, it follows from Theo-
rem 2.4.2(ii) that two split extensions of N by G are isomorphic if and only if there exist
some ν ∈ Aut(G) and µ ∈ Aut(N) such that ϕ(h) = µψ(hν)µ−1 for all h ∈ G. This
implies that ϕ(G) = µψ(G)µ−1, as claimed.

We conclude this section by presenting a counting formula with some variations for the iso-
morphism types of a special class of split extensions. We note that these results can be directly
derived from Theorem 2.4.2; for more details we refer to Taunt’s paper [50] and Eick’s arXiv
preprint [24]. As mentioned in the Introduction, we merged our results and Eick’s and sub-
sequently, we borrowed some of the notation from [24] and made adjustments to our initial
proofs. Here, we present the version after we had made such changes; see also [20, Section 3.2]
and [24, Section 4.2].

Definition 2.4.4. For N and G finite solvable groups with gcd(|N|, |G|) = 1, let S be a set of
representatives for the conjugacy classes of subgroups in Aut(N), let K be a set of representa-
tives for the Aut(G)-classes of normal subgroups in G, and let

X = {(S, K) : S ∈ S , K ∈ K with S ∼= G/K}.
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For (S, K) ∈ X , let AK be the subgroup induced by the action of StabAut(G)(K) on G/K; let the
group AS be the preimage under a fixed isomorphism G/K → S of the subgroup of Aut(S)
induced by the action of NAut(N)(S). Finally, we let

indK = [Aut(G/K) : AK] and DC(S, K) = AK\Aut(G/K))/AS.

Recall that there is a well-defined Aut(G) × Aut(N)-action on the set of group homomor-
phisms ϕ : G → Aut(N) as described in (2.3.1), and the stabiliser of such a homomorphism
ϕ is the group of compatible pairs Comp(ϕ).

In light of Theorem 2.4.2, we obtain the following result using the notation introduced in Defi-
nition 2.4.4.

Theorem 2.4.5. Let G be a finite group and let N be a finite strong G-group. Let ω(G, N) denote the
number of isomorphism classes of split extensions of N by G.

(i) If N is abelian, then letO be a complete set of representatives for the orbits of Aut(G)×Aut(N)
acting on the set of group homomorphisms from G to Aut(N). For each ϕ ∈ O let oϕ be the
number of Comp(ϕ)-orbits in H2

ϕ(G, N). Then ω(G, N) = ∑ϕ∈O oϕ.

(ii) If N and G have coprime orders, then ω(G, N) = ∑(S,K)∈X |DC(S, K)|.

Proof. (i) To emphasise the G-action on N via ϕ, write Eϕ,γ for the extension Eγ of N by G
with a 2-cocycle γ ∈ Z2

ϕ(G, N). Suppose α : Eϕ,γ → Eψ,δ is an isomorphism. Then

α((g−1, 1)(1, n)(g, 1)) = α((g−1, 1))α((n, 1))α((g, 1))

for all g ∈ G, n ∈ N. Proceeding from the calculation in proof of Theorem 2.4.2(ii), it
follows that

α
(
(1, nϕ(g))

)
=
(

1, (nµ)ψ(gν)
)

,

which shows that ϕ(g) = µ−1 ◦ ψ(g) ◦ µ for all g ∈ G, n ∈ N. In particular, this means
that if Eϕ,γ ∼= Eψ,δ then ϕ and ψ are in the same Aut(G)×Aut(N)-orbit. That is, if the re-
spective Aut(G)×Aut(N)-orbits containing ϕ and ψ have different representatives inO,
then Eϕ,γ and Eψ,δ are nonisomorphic. Now if ϕ and ψ are in the same Aut(G)×Aut(N)-
orbit, then it suffices to consider the representative ϕ ∈ O. It follows from Theorem 2.3.5
that Eϕ,γ ∼= Eϕ,δ if and only if the γ and δ are in the same Comp(ϕ)-orbit. The claimed
result follows.

(ii) By Theorem 2.4.1, every extension of N by G splits. Theorem 2.4.2(ii) implies that
if two split extensions G nϕ N and G nψ N are isomorphic, then ϕ(G) and ψ(G) are
conjugate in Aut(G), and both isomorphic to G/K, where K = Ker ϕ is in the same
Aut(G)-class as Ker ψ. Conversely, for each (S, K) ∈ X , if Ker ϕ = Ker ψ = K and
ϕ(G) = ψ(G) = S, then G nϕ N ∼= G nψ N if and only if there exist α ∈ AK and β ∈ AS

such that i = αjβ, where i, j ∈ Aut(G/K) are the isomorphisms induced by ϕ|G/K and
ψ|G/K onto S ∼= G/K, respectively. It follows that the number of split extensions of N by
G is counted by ω(G, N) = ∑(S,K)∈X |DC(S, K)|.

Theorem 2.4.2(ii) simplifies to the following result when N and Aut(N) are cyclic. This holds
when N is a cyclic group of order 2, 4, or pn when p > 2.
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Corollary 2.4.6. Let N be a finite cyclic group such that Aut(N) is cyclic, and let G be a finite group
with order coprime to |N|. Let π = gcd(|G|, |Aut(N)|), and let K` = {K ∈ K : G/K ∼= C`} where
K is as defined in Definition 2.4.4. Then the number of isomorphism types of extensions of N by G is
given by

∑
`|π

∑
K∈K`

indK,

where indK is as defined in Definition 2.4.4.

Proof. Since |G| and |N| are coprime, it follows from Theorem 2.4.1 that any extension of N
by G splits over G. On the other hand, N is a normal Hall subgroup in any such extension,
thus a strong G-group. Let ϕ1, ϕ2 : G → Aut(N) be two nontrivial group actions, and let
E1
∼= G nϕ1 N and E2 ∼= G nϕ2 N be the corresponding split extensions. Since Aut(N) is cyclic,

Theorem 2.4.2(ii) implies that E1
∼= E2 if and only if there exists some ν ∈ Aut(G) such that

ϕ1(g) = ϕ2(gν) for all g ∈ G. Since ϕi(G) ∼= G/Ker ϕi embeds into Aut(N), thus is cyclic, it
follows that E1

∼= E2 if and only Ker ϕ1
∼= Ker ϕ2 are in the same Aut(G)-class as K ∈ K` for

some ` | π and there exists some νK ∈ Aut(G/K) such that ϕ1(G/K)) = ϕ2((G/K)νK), where
ϕi ∈ Aut(G/K) are the isomorphisms induced by G/K 7→ ϕi(G). That is, ϕ1 and ϕ2 are in the
same coset of AK in Aut(G)/K. This shows that for each ` | π, the isomorphism types of N by
G are in one-to-one correspondence with the cosets of AK in Aut(G/K) where K ∈ K`.
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Chapter 3

Polycyclic groups

Recall that a group is solvable if it has an abelian subnormal series.The celebrated odd-order
theorem, proved by Feit & Thompson [26], asserts that every group of odd order is solvable.
Moreover, Burnside’s pq-theorem shows that all groups of order paqb for distinct primes p, q
are solvable. It follows from these results that many of the order types that we consider in
this thesis will always admit solvable groups. Recall that a finite group is solvable if and
only all its composition factors are cyclic of prime order. Such groups are polycyclic and can
be efficiently represented by so-called polycyclic presentations. Importantly, there are many
efficient algorithms to compute with groups defined by polycyclic presentations. The aim
of this chapter is to recall some definitions and well-known facts from [33, Chapter 8], [43,
Chapters 2], and [45, Chapters 11–12].

3.1 Group presentations

Let X be a nonempty set and FX be the free group on X. We say ω = xe1
1 xe2

2 · · · x
em
m is a word

on X if each xi ∈ X and each ei ∈ Z. Let R be a subset of FX and denote N(R) for the
normal closure of the subgroup generated by R. We say 〈X | R〉 is a presentation of G if
G ∼= FX/N(R). Conversely, given a presentation 〈X | R〉, the group it yields is uniquely
determined by the quotient FX/N(R). By abuse of notation, we identify words on X with
elements they represent in G = 〈X | R〉. If X is finite, then we say G is finitely generated; if
both X and R are finite, then we say G is finitely presented or has a finite presentation. Every
group has at least one presentation and every finite group has a finite presentation. We say two
presentations are isomorphic if the groups they define are isomorphic. For further background
we refer to [43, Chapter 2] and [45, Chapter 11].

Group presentations give a useful way to describe a group. However, there are serious algo-
rithmic problems: in general, there is no algorithm to determine whether two presentations are
isomorphic. In fact, there is not even an algorithm to determine whether a presentation defines
a trivial group [45, Chapter 12]. Given a group presentation, it is natural to ask whether a word
on the generators and the inverses represents the identity of the group: this gives an informal
description of the word problem. Novikov, Boone, and Britton independently proved that there
exists a finitely presented group for which this is an algorithmically indecisive problem; see
also [45, Chapter 12] for further background. Nonetheless, there are special classes of groups
for which such an algorithm exists. In particular, a group G = 〈X | R〉 is said to have a solvable
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word problem if there exists an algorithm that determines whether ω = 1G for all words ω on
X. For further details we refer to [43, Section 2.2] and [45, Chapter 12].

Although there is no algorithm to determine whether two arbitrary presentations are isomor-
phic, the following theorem due to von Dyck is useful in practice because it can be used to
attempt solving the isomorphism problem. We refer to [43, Theorem 2.2.1] for a proof.

Theorem 3.1.1 (von Dyck). Let G = 〈X | R〉 be a finitely presented group. Let H be a group and let
α : X → H be a map. If α(x1)

e1 · · · α(xr)er = 1 for every relator xe1
1 · · · x

er
r ∈ R, then α extends to a

group epimorphism G → 〈α(x) : x ∈ X〉 ≤ H. Thus, if 〈α(x) : x ∈ X〉 = H and |G| = |H| is finite,
then α extends to an isomorphism.

Conversely, given G = 〈X | R〉 and a homomorphism ϕ : G → H, it suffices to describe the
image ϕ(x) for each x ∈ X in order to describe the homomorphism ϕ and the image Im ϕ. In
this thesis, we often work with group presentations. Thus, for abbreviation we often define a
group homomorphism by describing the image of the generators of the domain. For example,
if G = Pc〈a, b | ap, bp〉, then we write {a 7→ a−1, b 7→ b} for the isomorphism ι : G → G
induced by this map on the generators. Furthermore, if the map α described in Theorem 3.1.1
extends to an isomorphism, then {α(x1), . . . , α(xr)} forms a generating set of H, and the map
{α(x1) 7→ x1, . . . , α(xr) 7→ xr} extends to the inverse of the isomorphism induced by α. For
example, the map {a−1 7→ a, b 7→ b} extends to ι−1 ∈ Aut(G), where ι and G are as described
before.

3.2 Polycyclic presentations

Recall that a group G is polycyclic if it has a subnormal series G = G1 D G2 D · · ·D Gn+1 = 1
such that each section Gi/Gi+1 is cyclic for all i ∈ {1, . . . , n}; such a series is called a cyclic
subnormal series. With respect to this subnormal series, a polycyclic sequence is an ordered list
X = [g1, . . . , gn] with each gi ∈ Gi\Gi+1 such that Gi/Gi+1 = 〈giGi+1〉; the corresponding list
of relative orders is denoted by R(X) = [r1, . . . , rn] with each ri = |Gi/Gi+1|. In general, ri = ∞
is possible, but in this thesis we focus on finite groups, so we consider each ri to be a positive
integer. A polycyclic sequence is sometimes also called a polycyclic generating set, abbreviated
as pcgs.

Definition 3.2.1. Let X = [x1, . . . , xn] be a finite ordered list. With respect to the ordering of
X, a presentation 〈X | R〉 is a polycyclic presentation (or pc-presentation) with power exponents
s1, . . . , sn ∈N, if the only relations inR are

xsi
i =xai,i+1

i+1 · · · x
ai,n
n (1 ≤ i ≤ n),

x
xj
i =x

bi,j,j+1
j+1 · · · x

bi,j,n
n (1 ≤ j < i ≤ n),

where ai,k, bi,j,k, ci,j,k ∈ Z such that 0 ≤ ai,k, bi,j,k, ci,j,k ≤ sk − 1.

Usually, it is conventional to omit trivial commutator relations x
xj
i = xi. It is also common

to replace relations xsi
i = 1 by standalone relators xsi

i . To highlight when this has happened,
we write Pc〈X | R〉 for both the presentation 〈X | R〉 and the polycyclic group it defines.
For example, Pc〈a, b | a2, b2〉 = 〈a, b, | a2 = 1, ba = 1, ba = b〉 ∼= C2 × C2. The group G de-
fined by the above polycyclic presentation in Definition 3.2.1 is polycyclic with pcgs X and
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polycyclic series G = G1 D G2 D · · ·D Gn+1 = 1, where each Gi = 〈xi, . . . , xn〉. By construc-
tion, |Gi/Gi+1| = |xiGi+1| = ri, which divides si, but it is possible that ri 6= si. We call
S(X) = [si, . . . , sn] the power exponents of the presentation with respect to the ordering of
X.

Definition 3.2.2. A pc-presentation Pc〈X | R〉with power exponents S(X) is consistent (or con-
fluent) if and only if R(X) = S(X). A consistent pc-presentation is called a refined pc-presentation
if the relative orders are all primes.

Let G = Pc〈X | R〉 be a finite polycyclic group with X = [x1, . . . , xn] and S(X) = [s1, . . . , sn].
An inductive argument shows that every element in G can be uniquely expressed as
g = xe1

1 · · · x
en
n with 0 ≤ ei < si and 0 ≤ ei < ri for each 1 ≤ i ≤ n. This word is called

the normal form of g with respect to X and S(X); we say a word is collected if it is given in nor-
mal form. The following theorem leads to an algorithm to determine whether a presentation is
consistent by collecting words to their normal form.

Theorem 3.2.3 ([48], Proposition 8.3). A pc-presentation Pc〈X | R〉 with pcgs X = [x1, . . . , xn] and
power exponents S(X) = [s1, . . . , sn] is consistent if and only if the normal forms of the following pairs
of words coincide, where the subwords in brackets are to be collected first:

xk(xjxi) and (xkxj)xi for 1 ≤ i < j < k ≤ n,

(x
sj
j )xi and x

sj−1
j (xjxi) for 1 ≤ i < j ≤ n with si < ∞,

xj(xsi
i ) and (xjxi)xsi−1

i for 1 ≤ i < j ≤ n with sj < ∞,

xj(x
sj
j ) and (x

sj
j )xj for 1 ≤ j ≤ n with sj < ∞.

We illustrate this in an example as follows.

Example 3.2.4. If G = Pc〈x1, x2, x3 | x3
1 = x3, x2

2 = x3, x5
3 = 1, xx1

2 = x2x3〉, then

(x2
2)x1 = x3x1 = (x3

1)x1 = x1x3 and x2(x2x1) = (x2x1)x2x3 = x1x2x3x2x3 = x1x2
2x2

3 = x1x3
3.

Since x1x3 = x1x3
3 are both normal forms of the word x2x2x1 with respect to the power ex-

ponents [3, 2, 5], the presentation is not consistent. Indeed, we deduce that x3 = 1 in G, and
G ∼= C6.

We note that the polycyclic presentation obtained from a given pcgs and associated polycyclic
series is always consistent. In the following, all our polycyclic presentations are consistent, so
we often omit the term “consistent”.

Recall that a finite group is nilpotent if it has a central series. Theorem A.0.9 asserts that a
nilpotent group is a direct product of its Sylow subgroups. We now present a result that follows
directly from the Sylow theorems and the Schur–Zassenhaus theorem.

Corollary 3.2.5. Every finite nilpotent group G has a polycyclic presentation

Pc〈X1 ∪ · · · ∪ Xn | R1 ∪ · · · ∪ Rn〉,

where each Pc〈Xi | Ri〉 is a polycyclic presentation for the Sylow pi-subgroup of G.
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3.3 Computing cohomology using polycyclic presentations

Let G = Pc〈X | R〉 be a polycyclic group with composition series G = G1 D · · ·D Gn+1 = 1
with respect to the pcgs X = [x1, . . . , xn]. Let N = Pc〈Y | T 〉 be a G-module with composition
series N = N1 D · · ·D Nm+1 = 1. If E is an extension with N E E and E/N = G, then let G̃i
be the full preimage of Gi under the natural projection map E → G. It follows that E is also
polycyclic, as it admits a subnormal series E = G̃1 D · · ·D G̃n D N1 D · · ·D Nm+1 = 1 where
each section is cyclic. Let wi be the image of xi ∈ X under a fixed transversal map G → E,
then E has a pcgs W = [wi, . . . , wn, y1, . . . , ym], where [y1, . . . , ym] = Y is the corresponding
pcgs of N. Moreover, if R(X) = [r1, . . . , rn] and R(Y) = [u1, . . . , um] are the relative orders
of X and Y, respectively, then R(W) = [r1, . . . , rn, u1, . . . , um]. Let xri

i = ωi,i(xi+1, . . . , xn) be a
relation in Pc〈X,R〉, where ωi,i is a collected word in xi+1, . . . , xn. Then in E there exists some
ti,i ∈ N such that wri

i = ωi,i(wi+1, . . . , wn)ti,i; we can assume that ti,i is a collected word in
〈Y | T 〉. Similarly, for a relation x

xj
i in Pc〈X | R〉 with i > j, there exists ti,j ∈ N such that

w
wj
i = ωi,j(wj + 1, . . . , wn)ti,j. Analogously, we can readily write every word on W in normal

form and find a consistent pc-presentation E = Pc〈W | Rt〉 with relative orders R(w), where
the only relations inRt are the following:

wri
i = ωi,i(wi+1, . . . , wn)ti,i (1 ≤ i ≤ n),

w
wj
i = ωi,j(wj+1, . . . , wn)ti,j (1 ≤ j < i ≤ n),

yui
i = 1 (1 ≤ i ≤ m),

y
wj
i = y

ei,j,1
1 · · · yei,j,m

m (1 ≤ i ≤ m, 1 ≤ j ≤ n),

where 1 ≤ ea,b,c ≤ uc for all 1 ≤ c ≤ m, and t = [tk,`]1≤k≤`≤n is an ordered list of collected
words tk,` ∈ N on [y1, . . . , ym]. Such a list t is sometimes called a tail-vector, coined by the
authors of [33, Chapter 8], and each word tk,` is called a tail. Note that in this thesis we focus

on finite groups so we omit all relators of the forms w
(w−1

j )

i and y
(w−1

j )

i , which results in that
t has length 1

2 (n
2 + n), instead of n2 as seen in [33, Chapter 8]. Observe that if tk,` = 1 for

all k, `, then Pc〈W | Rt〉 splits over N. More generally, two extensions E1 = Pc〈W | Rt1〉 and
E2 = Pc〈W | Rt2〉 with pc-relations Rt1 and Rt2 only differ in the tail-vectors. We exemplify
this in the following.

Example 3.3.1. Let G = Pc〈a | a2 = 1〉 ∼= C2. Let N = Pc〈b | b4 = 1〉 be a G-module via
ϕ : G → Aut(N), a 7→ (b 7→ b3). Let E be an extension of N by G. Such an extension E
has a pc-presentation of the form

Pc〈a, b | a2 = t, b4 = 1, ba = b3〉,

where t ∈ 〈b〉 = N. It follows that t = bx for some x ∈ Z4. Writing b4 = b(b3), a direct
manipulation shows that if x = 1 or 3, the presentation would be inconsistent. Thus, x = 0 or
2. Let D = Pc〈a, b | a2 = 1, b4 = 1, ba = b3〉 and Q = Pc〈a, b | a2 = b2, b4 = 1, ba = b3〉. Observe
that D ∼= D4 has 5 elements of order 2, whereas Q ∼= Q8 only has 2 elements of order 2: this
shows that D 6∼= Q. In particular, these are the only two isomorphism types of such extensions
with the given G-module structure.

Let G = Pc〈X | R〉 with X = [x1, . . . , xn] and let N = Pc〈Y | T 〉 be a G-module. Theo-
rem 2.1.3(ii) asserts that every group extension E of N by G can be identified with Eγ for
some (normalised) 2-cocycle class representative γ ∈ Z2(G, N). In particular, with respect to
the map τ : G → Eγ, g 7→ (g, 1), if xri

i = ωi,i and x
xj
i = ωi,j are relations of R, then in Eγ there
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exist ti,i, ti,j ∈ N such that (xi, 1)ri = (ωi,i, ti,i) and (xi, 1)(xj,1) = (ωi,j, ti,j), respectively. By eval-
uating the relations of G in Eγ, we obtain a pc-presentation of Eγ; to emphasise the tail-vector
t ∈ N

1
2 (n

2+n), we denote the pc-presentation obtained this way by P(t). Furthermore, we can
apply this “evualuation” to an arbitrary extension Eγ with γ ∈ Z2(G, N); this gives a map
ζ : Z2(G, N)→ N

1
2 (n

2+n), γ 7→ t. We have the following result; see also [33, Lemma 8.47].

Lemma 3.3.2 ([33], Lemma 8.47). With the above setting, the map ζ : Z2(G, N) → N
n2+n

2 , γ 7→ t is
a homomorphism of abelian groups with Ker ζ ≤ B2(G, N). Moreover,

H2(G, N) ∼= Z2(G, N)ζ/B2(G, N)ζ .

Proof. First note that every extension Eγ of N by G is polycyclic. As explained above, Eγ

can be described by a pc-presentation P(t). Now consider γ1, γ2 ∈ Z2(G, N) with images
t1 = γ

ζ
1 and t2 = γ

ζ
2, respectively. To show that ζ is a homomorphism, we need to show

that (γ1γ2)ζ = t1t2. This is equivalent to saying that the extension Eγ1γ2 has a pc-presentation
P(t1t2), which follows from the fact that N = Pc〈Y | T 〉 is abelian; that is, reordering the en-
tries of any word in Y does not change the element it represents. Now suppose γ ∈ Ker ζ.
By definition, γζ = t = [1, . . . , 1]; that is, ti,j = 1 for all 1 ≤ i ≤ j ≤ n, which implies that
Eγ
∼= P(t) splits over N. Then it follows from Corollary 2.2.3 that γ ∈ B2(G, N). This shows

that Ker ζ ≤ B2(G, N). Since Ker ζ is normal in Z2(G, N), the third isomorphism theorem
implies that H2(G, N) = Z2(G, N)/B2(G, N) ∼= (Z2(G, N)/Ker ζ)/(B2(G, N)/Ker ζ). Finally,
applying the first isomorphism theorem gives the claimed result.

From the preceding discussion, it follows that there exists γ ∈ Z2(G, N) such that ζ(γ) = t
if and only P(t) ∼= Eγ and P(t) is a consistent pc-presentation; see also [33, Lemma 8.48]. In
particular, Lemma 3.3.2 instructs how to compute H2(G, N) using the pc-presentations of G
and N. We conclude this chapter with an example.

Example 3.3.3. Let p be an odd prime. Let G = Pc〈x1 | xp
1 = 1〉 be a cyclic group of order p and

let N = Pc〈y1, y2 | yp
1 = 1, yp

2 = 1〉 ∼= C2
p be a G-module via yx1

1 = y1y2 and yx1
2 = y2. Suppose

E is an extension of N by G, then E can be described by a pc-presentation P(t), with t ∈ N, of
the following form:

P(t) = Pc〈x1, y1, y2 | xp
1 = t, yp

1 = 1, yp
2 = 1, yx1

1 = y1y2〉;

here t = ym
1 yn

2 for some m, n ∈ Zp. In light of Lemma 3.3.2, we can compute H2(G, N) by find-
ing the values of t such that P(t) is a consistent pc-presentation. Applying Theorem 3.2.3, we
see that such P(t) is consistent if and only if (xp

1 )x1 = x1(xp
1 ); that is, tx1 = x1t, which is equiv-

alent to t = tx1 . Thus, to compute Z2(G, N)ζ , it is equivalent to solving for m, n ∈ Zp such that
(ym

1 yn
2)

x1 = ym
1 yn

2 : the left-hand side equals ym
1 ym

2 yn
2 = ym

1 ym+n
2 , and equating both sides yields

m = 0. This shows that Z2(G, N)ζ = 〈y2〉. Since B2(G, N)ζ E Z2(G, N)ζ , and B2(G, N)ζ define
split extensions, we find that B2(G, N)ζ is the trivial subgroup. It follows from Lemma 3.3.2
that H2(G, N) ∼= Z2(G, N)ζ/B2(G, N)ζ ∼= Cp. This shows that there are p equivalence classes
of extensions of N by G, with pc-presentations P(t) of said form, parametrised by t = yk

2 for
k ∈ Zp. Observe that if k ∈ Z∗p, then the isomorphism type of P(t = yk

2) is independent of the
choice of k, since rewriting yk

2 for y2 extends to an isomorphism (Theorem 3.1.1). In particular,
such groups have exponent p2. On the other hand, if k = 0, then P(t) ∼= Cp n C2

p has expo-
nent p. This shows that there are in total two isomorphism types of extensions with the given
G-module structure.
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Chapter 4

Automorphism groups

From Chapter 2 we have seen that group actions play a crucial role in the construction and
classification of group extensions. Recall that a group action of G on N is a homomorphism
ϕ : G → Aut(N). We now focus on automorphism groups and present some results that lay
the basis for our determination of groups of order n ∈ {pq, p2q, p2q2, p3q, pqr, pqrs, p2qr}where
p, q, r, s are distinct primes. We refer to [8], [9], [10], and [47, Chapter 2] for further discussion
on this topic.

One main goal of this thesis is to derive an algorithm to identify the isomorphism type of a
given group of certain order type. For this purpose, we assign each isomorphism type an “ID”,
as discussed in Section 1.2. Since in this thesis we determine most of the groups by recognising
them as group extensions and the isomorphism types of group extensions are closely related
to subgroups of automorphism types as seen in Corollary 2.4.3 and Corollary 2.4.6, the assign-
ment of group IDs often relies on sorting automorphisms in a “canonical” way. We exemplify
this in the following.

Example 4.0.1. Groups of order pq, where p, q are distinct primes such that q | (p − 1), are
isomorphic to split extensions Cq n Cp. It follows from Theorem 2.4.2(ii) that there are two
isomorphism types of such extensions, dependent on the Cq-module Cp. More specifically, if
Cq acts trivially on Cp, then we assign the corresponding split extension Cq×Cp with ID (pq, 1).
On the other hand, if Cq acts nontrivially on Cp, then such split extensions are isomorphic to

G(k) = Pc〈a, b | aq, bp, ba = bkφ(p)/q〉,

where φ is the Euler totient function and k ∈ Z∗q ; Corollary 2.4.3(ii) shows that G(k) ∼= G(1)
for any k ∈ Z∗q . In this case, we choose G(1) to be the isomorphism class representative with
ID (pq, 2), and call the automorphism induced by b 7→ bkφ(p)/q the “canonical” automorphism
of 〈b〉, and call the Cq action described by ba = bkφ(p)/q. the “canonical” Cq-action on Cp. Con-
versely, a group of order pq that is abelian is of isomorphism type (pq, 1), and its nonabelian
counterpart is of type (pq, 2). We introduce some notations and explain the canonical choices
of automorphisms in more general settings in Notations 4.1.1, 4.2.1, and 4.2.6.

4.1 Automorphism groups of finite abelian groups

Bidwell and Curran [9] classified the automorphism groups of finite abelian groups. Here we
only selectively present some results that we use in later chapters. We refer to [9] for proofs
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and more details on this subject.

Notation 4.1.1. Let a be a positive integer such that Ca has a cyclic automorphism group of
order φ(a), where φ is the Euler totient function; that is, Aut(Ca) ∼= Zφ(a). In particular, this
holds if and only if a = 1, 2, 4, pk, 2pk, where p is an odd prime. Let

σa ∈ Z∗a

denote the smallest positive integer such that Z∗a = 〈σa〉. Let b be a positive integer dividing
φ(a). We define the canonical generator of the (unique) cyclic subgroup of order b in Aut(Ca) by

ρ(a, b) : Ca → Ca, x 7→ x(σ
φ(a)/b
a ), ∀x ∈ Ca.

For k ∈ Zb, we write
ρ(a, b, k) = ρ(a, b)k,

and abbreviate ρ(a, b, 1) as ρ(a, b). Note that we allow k = 0, and ρ(a, b, 0) is the trivial auto-
morphism. We observe that the map ρ is naturally identified with an integer-value function
such that ρ(a, b, k) = σ

kφ(a)/b
a ∈ Z∗a .

Theorem 4.1.2 ([9], Theorems 2.4 & 2.5). Let p be a prime and G = Cpm × Cpn with m > n. If
p = 2 then |Aut(G)| = 2m+3n−2. If p > 2, then Aut(G) has order (p− 1)2 pm+3n−2 , with a group
presentation as follows:

〈a, b, c, d | aφ(pm), bpn
, cpn

, dφ(pn), ba = b(σ
−1
pn ), bd = bσpn ,

ca = cσpm , cd = c(σ
−1
pn ), cb = a−wbcdw, da = d〉,

where w < φ(pn) is a positive integer such that σw
pm ≡ 1 + pm−n mod pm.

Note that if m = n, then Aut(G) is in one-to-one correspondence with the group of 2× 2 invert-
ible matrices with coefficients in Zpn ; for the special case m = n = 1 it follows that
Aut(C2

p)
∼= GL2(p). In general, treating elementary abelian groups of order pn as n-dimensional

vector spaces over Zp, we see that if P is an elementary abelian p-group of order pn, then
Aut(P) ∼= GLn(p). For the generalisation of Theorem 4.1.2 to groups with more than two
direct factors, see [9, § 4].

Let G be a group acting on an elementary abelian group P ∼= Cn
p . Then every G-action on P

via ρ : G → Aut(P) ∼= GLn(p) is a linear representation of G over Zp. Conversely, any Zp-
representation of G of dimension n defines an action of G on an elementary abelian group of
order pn. We thus recall some relevant terminology and results in representation theory. For
further background, we refer to [34, Chapter 1].

Recall that a G-module is irreducible if it is nontrivial and contains no nontrivial proper G-
submodules. A G-module is reducible if it is not irreducible. A G-module V is completely re-
ducible if it can be written as a direct sum of irreducible G-submodules. The following is a
well-known result in representation theory.

Theorem 4.1.3 (Maschke, [34], Theorem 1.9). Let G be a finite group and let F be a field whose
characteristic does not divide |G|. Then every F-representation of G is completely reducible.

Theorem 4.1.3 plays a key role in our classification of semidirect products, especially when we
consider the split extensions of elementary abelian groups.
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If G is a subgroup of GLn(F), then the inclusion ι : G ↪→ GLn(F) is an F-representation of G.
Recall that G is an irreducible subgroup of GLn(F) if such a representation is irreducible, and
G is called a reducible subgroup if the representation induced by this inclusion is reducible. A
direct consequence of Theorem 4.1.3 is that if G is a subgroup of GLn(F) with order coprime
to the characteristic of F, then every element of G is conjugate to a block diagonal matrix
with irreducible blocks. If G is conjugate to a group of diagonal matrices, then we say G is
diagonalisable and G acts diagonalisably on Fn. Moreover, the inclusion ι induces a G-action on
Fn. We say G acts irreducibly on Fn if G is a irreducible subgroup of GLn(F), and use analogous
terminology for its reducible and diagonalisable counterparts.

4.2 Subgroup classes of small linear groups GLn(p)

We now look into the conjugacy classes of cyclic subgroups in linear groups GLn(p), where
n ∈ {2, 3, 4}. In combination with Theorem 2.4.2, the results we present in this section are
fundamental to our determination of groups that contain a normal Sylow p-subgroup of order
dividing p4. We first introduce some notation for the cyclic reducible subgroups in GL2(p).

Notation 4.2.1. Let p be a prime and b be a positive integer with b | (p− 1). Let H be a cyclic
subgroup of order b in GL2(p). By Maschke’s theorem (Theorem 4.1.3), we know H is com-
pletely reducible. In GL2(p) this implies that H is conjugate to a subgroup of diagonal matrices.
In particular, the conjugacy class containing H has a representative generated by

(
ρ(p,b) 0

0 ρ(p,b,k)

)
for some k ∈ Zb, regarding ρ as an integer value function explained in Notation 4.1.1. We call
this matrix the canonical generator of H and denote it by

M(p, b, k) = diag(ρ(p, b), ρ(p, b, k)).

In line with Notation 4.1.1, we have

M(p, b, 0) = diag(ρ(p, b), 1)

and abbreviate
M(p, b, 1) = M(p, b).

Further, since GL2(p) ∼= Aut(C2
p), we define the canonical generator of the H-action on the ele-

mentary abelian group Pc〈x, y | xp, yp〉 ∼= C2
p by (x, y)M(p,b,k) = (xρ(p,b), yρ(p,b,k)), which means

that M(p, b, k) maps the generators x and y to xρ(p,b) and yρ(p,b,k), respectively.

The following theorem asserts that there is, up to conjugacy, at most one cyclic irreducible
subgroup of a given order in GLn(p).

Theorem 4.2.2 (Short, [47], Theorems 2.3.2 & 2.3.3). There exists a cyclic irreducible subgroup
A ≤ GLn(pk) of order m if and only m | (pnk − 1) and m - (pdk − 1) for all d < n. If such a cyclic
subgroup exists, then it is unique up to conjugacy in GLn(pk).

An immediate implication of Theorem 4.2.2 is that if a cyclic subgroup of GLn(p) has order m
such that m|(pd − 1) for some positive d < n, then it is reducible in GLn(p). It also follows
from Theorem 4.2.2 that the maximal cyclic irreducible groups of GLn(pk) are of order pkn − 1;
such groups are called the Singer cycles of GLn(pk).

Applying Theorem 4.2.2 to the case where k = 1, we have the following corollary.
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Corollary 4.2.3. Let p, q be distinct primes. If G is an irreducible subgroup of order q in GLn(p), then
G is conjugate to a subgroup of a Singer cycle of GLn(p).

Recall that companion matrix of a monic polynomial p(x) = xn + an−1xn−1 + · · ·+ a1x + a0 is
the n× n matrix defined as 

0 0 . . . 0 −a0

1 0 . . . 0 −a1
...

...
. . .

...
...

0 0 . . . 1 −an−1

 .

The following lemma gives a formula for finding a generator of Singer cycle in GL2(p).

Lemma 4.2.4 ([47], Proposition 2.3.6). If β is a primitive element of GF(p2)∗, then

B =

(
0 −βp+1

1 β + βp

)

is a generator of a Singer cycle of GL2(p).

Proof. Observe that B is the companion matrix of the minimal polynomial of the diagonal ma-
trix diag(β, βp). Thus |B| = |diag(β, βp)| = p2 − 1 and 〈B〉 is a Singer cycle. Since all Singer
cycles are conjugate in GL2(p) by Theorem 4.2.2, the claim follows.

Similarly, Lemma 4.2.4 generalises to larger linear groups. The following result is briefly dis-
cussed in [47, p. 15]; we provide a sketch of a proof.

Theorem 4.2.5. For each k ∈ {2, 3, 4} fix a primitive element β ∈ GF(pk)∗. Then the companion
matrix of the minimal polynomial of the matrix diag(β, βp, . . . , β(pk−1)) generates a Singer cycle of
GLk(p).

Sketch of proof. Let PX(t) by the minimal polynomial of X = diag(β, βp, . . . , β(pk−1)). Since the
eigenvalues β, βp, . . . , β(pk−1) of X are distinct roots of unity in GF(pk)∗, the characteristic poly-
nomial of X is equal to PX(t) in this case. By definition, the companion matrix of PX(t) is
conjugate to X in the extension field GF(pk), thus |C| = |X|. It remains to show that all entries
of C lie in Zp. To see this, it is sufficient to check that all coefficients of PX(t) are integers. How-
ever, we know that PX(t) = ∑k

i=0(−1)itr(∧iX)tk−i since it equals the characteristic polynomial
of X, and tr(∧iX) equals the sum of all principal minors of X of dimension i. An inductive ar-
gument shows that tr(∧mX) = ∑k−1

j=0 (β∑m−1
i=0 pi

)(pj) for all m > 1. Since the sum ∑k−1
j=0 (β∑m−1

i=0 pi
)(pj)

is an integer, and the claim follows.

Since Aut(Ck
p)
∼= GLk(p) and all the Singer cycles of GLk(p) are conjugate, it follows that the

cyclic irreducible subgroups of order b (with b | (pk − 1) and b - (pd − 1) for all d < k) lie in the
same subgroup class. We define the canonical choice of the conjugacy class representative for
such cyclic irreducible subgroups as follows.

Notation 4.2.6. Let p be a prime. For each k ∈ {2, 3, 4}, if b is a positive integer with b | (pk− 1)
and b - (pd− 1) for all d < k, then fix a primitive element β ∈ GF(pk)∗. Let γ = β(pk − 1)/b. Define

Irrk(p, b)
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to be the companion matrix of the minimal polynomial of diag(γ, γp, . . . , γ(pk−1)). The cyclic
group 〈Irrk(p, b)〉 acts irreducibly on Zk

p. We say Irrk(p, b) is the canonical generator of both
this irreducible action and the subgroup class representative for cyclic irreducible subgroups
of order b in GLk(p). We write

Irrk(p, b, x) = Irrk(p, b)x

for x ∈ Zb.

The following theorem presents some useful counting formulas for the conjugacy classes of
subgroups of GLk(p), where k ∈ {2, 3, 4}; see also [24, Theorem 15] or [20, Theorem 3.2] for the
first four parts. Recall that

∆y
x =

{
1 if y | x
0 otherwise.

Theorem 4.2.7. Let p, q, r be distinct primes, and denote the number of conjugacy classes of subgroups
of order m in G by sm(G). Then we have the following results.

(i) If q > 2, then sq(GL2(p)) = 1
2 (q + 3)∆q

p−1 + ∆q
p+1;

s2(GL2(p)) = 2.

(ii) sq2(GL2(p)) = ∆q
p−1 +

1
2 (q

2 + q + 2)∆q2

p−1 + ∆q2

p+1.

(iii) If q, r > 2, then sqr(GL2(p)) = 1
2 (qr + q + r + 5)∆qr

p−1 + ∆qr
p+1;

if r > 2, then s2r(GL2(p)) = 1
2 (3r + 7)∆r

p−1 + 2∆r
p+1.

(iv) If q > 2, then

sq(GL3(p)) =
1
6
(q2 + 4q + 9 + 4∆3

q−1)∆
q
p−1

+ ∆q
(p+1)(p2+p+1)(1− ∆q

p−1);

s2(GL3(p)) = 3.

(v) If q > 2, then

sq(GL4(p)) =
1
24

(q3 + 7q2 + 21q + 39 + 16∆3
q−1 + 12∆4

q−1)∆
q
p−1

+
1
4
(q + 5 + 2∆4

q−1)∆
q
p+1

+∆q
p2+p+1(1− ∆3

q)

+∆q
p2+1;

s2(GL4(p)) = 4.

Proof. For each n ∈ {2, 3, 4}, let Diagn
∼= Cn

p−1 be the subgroup of diagonal matrices in GLn(p).
By [19, Lemma 8], each subgroup H ≤ GL2(p) with cubefree order coprime to p is conjugate
to a subgroup of N ∼= C2 n S (Singer normaliser), where S = 〈Irr2(p, p2 − 1)〉 is the canonical
Singer cycle defined in Notation 4.2.6, or of a subgroup C2 n Diag2 (maximal primitive).

Since two diagonalisable matrices are conjugate if and only if they have the same multiset of
eigenvalues, it follows that two cyclic subgroups of Diagn are conjugate if and only if they are
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equivalent under the permutation action of Symn on the diagonal entries. It follows that a
cyclic subgroup in Diagn of order m > 1 is generated by diag(a, ak1 , . . . , akn) where a ∈ Z∗p has
order m and ki ∈ Zm. In particular, a direct calculation shows that cyclic subgroups gen-
erated by diag(a, ak) and diag(a, a`), with k, ` ∈ Zm, are conjugate in GL2(p) if and only
if k = ` or there exists some x ∈ Z∗m such that k = x−1 and ` = x. Analogously, sub-
groups 〈diag(a, ak, a`)〉 and 〈diag(a, au, av)〉 with k, `, u, v ∈ Zm are conjugate in GL3(p) if
and only if {k, `} ∈ {{u, v}, {uv−1, v−1}, {u−1v, u−1}}. Similarly, for k, `, m, u, v, w ∈ Zm, the
subgroups 〈diag(a, ak, a`, am)〉 and 〈diag(a, au, av, rw)〉 are conjugate in GL4(p) if and only if
{k, `, m} ∈ {{u, v, w}, {u−1, u−1v, u−1w}, {v−1, v−1w, uv−1}, {w−1, uw−1, vw−1}}. We use these
results in tandem with Theorem 4.2.2, Corollary 4.2.3, and Notations 4.1.1, 4.2.1, 4.2.6 in the fol-
lowing.

(i) Since |GL2(p)| = p(p− 1)2(p+ 1), there exists a cyclic group of order q in GL2(p) if and
only if q | (p− 1)(p+ 1). In particular, there exists a unique conjugacy class of irreducible
subgroup of order q if and only if q | (p + 1) and q - (p − 1) by Theorem 4.2.2 and
Corollary 4.2.3, which requires q > 2, accounting for the summand ∆q

p+1. If q | (p− 1),
then every subgroup of order q is diagonalisable in GL2(p), thus conjugate to a subgroup
of D = Diag2. Let a = ρ(p, q) and let r = σq (see Notation 4.1.1). Then a has order
q in Z∗p and r has order q − 1 in Z∗q . There are 1 + 1

2 (q + 1− ∆2
q) conjugacy classes of

cyclic reducible subgroups with representatives generated by diag(a, 1) and diag(a, a(r
k))

with k ∈ {0, . . . , b 1
2 (q − 1)c}, accounting for the summand 1

2 (q + 3)∆q
p−1. Lastly, since

any subgroup of order 2 in GL2(p) is reducible, there are two conjugacy classes of such
subgroups with representatives generated by diag(1,−1) and diag(−1,−1); we obtain
s2(GL2(p)) = 2.

(ii) If q | (p + 1) and q - (p− 1), then all cyclic subgroups of order q in GL2(p) are irre-
ducible and conjugate to subgroups of S, the canonical Singer cycle. This shows that for
a group Q of exponent q, if q | (p + 1) and q - (p− 1), then Q is conjugate to a subgroup
of S. It follows that there exists a noncyclic subgroup of order q2 in GL2(p) if and only if
q | (p− 1). Moreover, such groups are reducible and conjugate to the unique elementary
abelian subgroup of order q2 in Diag2

∼= C2
p−1, accounting for the summand ∆q

p−1. It re-
mains to consider the cyclic subgroups of order q2. In particular, a cyclic irreducible sub-
group of order q2 exists in GL2(p) if and only if q2 | (p + 1) and q2 - (p− 1); such groups

lie in a single conjugacy class, accounting for the summand ∆q2

p+1(1− ∆q2

p−1) = ∆q2

p+1. On
the other hand, a cyclic reducible subgroup of order q2 exists if and only if q2 | (p− 1);
such groups are diagonalisable and conjugate to subgroups of Diag2. Let α = σq2 and
a = ρ(p, q2). Then we count the subgroup classes by explicitly determining the rep-
resentatives: there is a unique class represented by 〈diag(a, 1)〉; there are q2 − q(q − 1)
classes represented by 〈diag(a, ax)〉 with non-units x ∈ Zq2\Z∗q ; there are 1

2 (q
2 − q + 2)

classes with representatives 〈diag(a, a(σ
k
q ))〉, where 0 ≤ k ≤ 1

2 q(q− 1), in one-to-one cor-

respondence with the orbits of Z∗q2 under inversion. Thus, we count 1
2 (q

2 + q + 2)∆q2

p−1

conjugacy classes of cyclic reducible subgroups of order q2 in GL2(p).

(iii) A cyclic irreducible subgroup of order qr exists in GL2(p) if and only if qr | (p2 − 1)
and qr - (p− 1); such a group is unique up to conjugacy, accounting for the summand
∆qr

p+1(1− ∆qr
p−1). In particular, if q, r > 2, then this summand simplifies to ∆qr

p+1; if q = 2,
then it simplifies to ∆r

p+1. On the other hand, if qr | (p − 1), then every cyclic sub-
group of such order is reducible and diagonalisable in GL2(p); such a subgroup is con-
jugate to a subgroup in D = Diag2 and has a generator of the form diag(a, ak) for some
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a ∈ Z∗p with order qr and k ∈ Zqr, or diag(b, c) with b, c ∈ Z∗p of order q, r respec-
tively. In the latter case, there is a unique such subgroup in D. It remains to count the
conjugacy classes of the subgroups of the form 〈diag(a, ak)〉. If k ∈ Zqr\Z∗qr, then there
exists no x ∈ Z∗qr such that k = x−1, thus the q + r − 1 non-units in Zqr account for
(q + r− 1)∆qr

p−1 classes. If k ∈ Z∗qr, then it is equivalent to counting the number of orbits
of Z∗qr under inversion: there are 1

2 (qr − q − r + 5− 2∆2
q) orbits in this case. Thus, we

count 1
2 (qr + q + r + 5− 2∆2

q)∆
q
p−1 classes of cyclic reducible subgroups of order qr.

A nonabelian subgroup H of order qr exists in GL2(p) if and only if qr | 2(p2 − 1) = |N|
or qr | 2(p − 1)2 = 2|D|. Both cases require that q = 2 and r | (p2 − 1). In particu-
lar, if r | (p + 1), then H is irreducible and conjugate to a subgroup in N ∼= C2 n S; if
r | (p− 1), then H is reducible and conjugate to a subgroup in C2 n D. In either case, H
is unique up to conjugacy, accounting for the summand (∆r

p+1 + ∆r
p−1)∆

2
q. More specifi-

cally, if r | (p + 1), then the subgroup class containing H has a representative generated
by {

(
0 1
1 0

)
, Irr2(p, r)}; if r | (p− 1), then the subgroup class has a representative gener-

ated by {
(

0 1
1 0

)
, diag(ρ(p, r), ρ(p, r, r− 1))}.

In total, we find

1
2
(qr + q + r + 5− ∆2

q)∆
qr
p−1 + ∆qr

p+1(1− ∆qr
p−1) + (∆r

p+1 + ∆r
p−1)∆

2
q

classes, which simplifies to the claimed result if we consider the cases q, r > 2 and
r > q = 2 separately.

(iv) A cyclic subgroup of order q in GL3(p) is diagonalisable if and only if q | (p − 1).
Since two diagonalisable matrices are conjugate if and only if they have the same multiset
of eigenvalues, we can count the conjugacy classes of such groups by considering three
non-conjugate types, namely, groups with a generating element of the form diag(a, 1, 1),
diag(a, a(α

k), 1), and diag(a, a(α
k), a(α

`)), where a ∈ Z∗p has order q, and α ∈ Z∗q has or-
der q − 1. In particular, the first two types embed into GL2(p), which are considered
in (i), and we find 1

2 (q + 3)∆q
p−1 classes of these groups for q > 2 and 2 classes for

q = 2. It remains to consider the third type. For q = 2, there is a unique conju-
gacy class of such groups. If q > 2 then the cyclic subgroups 〈diag(a, a(α

k), a(α
`))〉 and

〈diag(a, a(α
x), a(α

y))〉 are conjugate if and only if {x, y} ∈ {{k, `}, {−k, `− k}, {−`, k− `}}.
This is equivalent to saying that (x, y) and (k, `) are in the same orbits under the action of
Sym3

∼= 〈
(

0 1
1 0

)
,
(

0 1
−1 −1

)
〉 on the set Z2

q−1. Thus the number of conjugacy classes of such
subgroups of order q in GL3(p) coincides with the size of the Sym3-orbits in Z2

q−1. Let
Ω = Z2

q−1 and let FixΩ(g) be the set of fixed points in Ω of g for each g ∈ Sym3. A direct
computation shows that

|FixΩ(g)| =


(q− 1)2 if g =

(
1 0
0 1

)
;

q− 1 if g =
(

0 1
1 0

)
;

q if g ∈ {
( −1 −1

0 1

)
,
(

1 0
−1 −1

)
};

2∆3
q−1 if g ∈ {

(
0 1
−1 −1

)
,
( −1 −1

1 0

)
}.

Using the Cauchy–Frobenius orbit-counting formula (see Theorem A.0.14), we count
1
6 (q

2 + q + 4∆3
q−1)∆

q
p−1 orbits. Together, there are 1

6 (q
2 + 4q + 9 + 4∆3

q−1)∆
q
p−1 classes of

diagonalisable groups of order q if q > 2, and 3 classes if q = 2. The non-diagonalisable
groups exist if only if q | (p + 1)(p2 + p + 1) and q - (p2 − 1), requiring q > 2. Such
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groups arise from the irreducible subgroups of GL2(p) if 2 < q | (p + 1), or from that
of GL3(p) if 3 < q | (p2 + p + 1), accounting for the summand ∆q

(p+1)(p2+p+1)(1− ∆q
p−1),

which is equivalent to ∆q
p+1(1− ∆2

q) + ∆q
p2+p+1(1− ∆2

q)(1− ∆3
q).

(v) A cyclic subgroup of order q in GL4(p) is diagonalisable if and only if q | (p − 1).
The conjugacy classes of these subgroups have representatives in Diag4, which are gen-
erated by four types of matrices: diag(a, 1, 1, 1), diag(a, a(α

k), 1, 1), diag(a, a(α
k), a(α

`), 1),
and diag(a, a(α

k), a(α
`), a(α

m)), where a ∈ Z∗p has order q, α ∈ Z∗q has order q − 1, and
k, `, m ∈ Zq−1. The first three types of groups embed into GL3(p) and fall into
1
6 (q

2 + 4q + 9 + 4∆3
q−1)∆

q
p−1 + ∆q

(p+1)(p2+p+1)(1 − ∆q
p−1) classes if q > 2, or 3 classes if

q = 2, as counted in (iv). It remains to count the number of classes of the fourth type.
A direct computation shows that two cyclic subgroups 〈diag(a, a(α

k), a(α
`), a(α

m))〉 and
〈diag(a, a(α

x), a(α
y), a(α

z))〉 are conjugate if and only if the parameters x, y, z, k, `, m ∈ Zq−1
satisfy

{x, y, z} ∈ {{k, `, m}, {−k, `− k, m− k}, {−`, m− `, k− `}, {−m, k−m, `−m}}.

It is equivalent to saying that the triples (x, y, z), (k, `, m) ∈ Z3
q−1 lie in the same orbit

under the action of

Sym4
∼= 〈
(
−1 0 0
−1 1 0
−1 0 1

)
,
(

0 −1 0
0 −1 1
1 −1 0

)
,
(

0 0 −1
1 0 −1
0 1 −1

)
〉

on Z3
q−1. Similar to (iv), we can explicitly count the fixed points of each element in Sym4,

and then applying the orbit-counting formula yields that there are 4 classes of the diag-
onalisable subgroups of the fourth type when q = 2 and 1

24 (q
3 + 3q2 + 5q + 3 + 12∆4

q−1)

classes when q > 2. Adding up all four cases, we obtain s2(GL4(p)) = 4 and the sum-
mand 1

24 (q
3 + 7q2 + 21q + 39 + 16∆3

q−1 + 12∆4
q−1)∆

q
p−1 for q > 2. A cyclic reducible sub-

group is non-diagonalisable in GL4(p) if and only if its generator is conjugate to a block
diagonal matrix diag(M, N) with at least one of M, N being non-diagonalisable. Thus,
the representatives for the conjugacy classes of the reducible non-diagonalisable sub-
group of order q are generated by diag(Irr2(p, q), Irr2(p, q, k)), where Irr2(p, q, k) is con-
jugate to Irr2(p, q)k for k ∈ Zq, or diag(Irr3(p, q), 1). The latter case exists if and only if
q | (p2 + p + 1) and q - (p− 1); the group generated by diag(Irr3(p, q), 1) is unique up to
conjugacy and contributes to the summand ∆q

p2+p+1(1− ∆q
p−1). The former case requires

that q | (p + 1) and p - (p− 1); two such groups are conjugate if and only if they have the
same set of eigenvalues over GF(p2). If k = 0 then there is a unique conjugacy class of
such groups. It remains to consider k ∈ Z∗q . Let α ∈ Z∗q have order q− 1. Since two matri-
ces diag(Irr2(p, q), Irr2(p, q, αk)) and diag(Irr2(p, q), Irr2(p, q, α`)) are conjugate in GL2(p)
if and only if they have the same multiset of eigenvalues in GL2(GF(p2)), we deduce that
two cyclic groups 〈diag(Irr2(p, q), Irr2(p, q, αk))〉 and 〈diag(Irr2(p, q), Irr2(p, q, α`))〉 are
conjugate in GL2(p) if and only if k ∈ {`, −`, −` + 1

2 (q − 1), −` − 1
2 (q − 1)}. This

shows that if q | (p + 1) and q > 2 then the conjugacy subgroup class representatives
have the form 〈diag(Irr(p, q), 1)〉 or 〈diag(Irr2(p, q), Irr(p, q, αk))〉 with 0 ≤ k ≤ 1

4 (q− 1),
accounting for the summand 1

4 (q + 5 + 2∆4
q−1)∆

q
p+1. Lastly, an irreducible subgroup ex-

ists if and only if q | (p4 − 1) and q - (p3 − 1)(p2 − 1). This requires that q > 2 and
q | (p2 + 1); such groups are conjugate to the unique subgroup of order q in the Singer
cycle of GL4(p), which accounts for the summand ∆q

p2+1 for q > 2.
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Theorem 4.2.7 plays a significant role in later chapters when we enumerate and construct the
isomorphism classes of split extensions of elementary abelian groups. Moreover, the proof
of Theorem 4.2.7 is “constructive”, in the sense that we have implicitly found conjugacy class
representatives, which in conjunction with Corollary 2.4.3 gives a way to find the isomorphism
classes representatives of certain split extensions. We conclude this section by presenting a
result that gives a useful method to count the conjugacy classes of subgroups of prime order
in a more general setting.

Lemma 4.2.8 ([25], Lemma 9). Let p and q be distinct primes and let G and H be finite groups. If
there exists a homomorphism ϕ : G → H such that Ker ϕ is a p-group, then G and H have the same
number of conjugacy classes of subgroups of order q.

Let G be a finite group. Recall that Op(G) is the largest normal p-subgroup of G. The natural
projection π : G → Op(G) is a homomorphism with p-group kernel and Im π ∼= G/Op(G).
Thus Lemma 4.2.8 applies and the number of conjugacy classes of subgroups of order q in G
coincides with that in G/Op(G). Once we know an explicit presentation of P whose order
divides p4, we can directly compute Aut(P)/Op(Aut(P)) (see also [46] for computation of
automorphisms of p-groups). Together with Corollary 2.4.3(ii), this result provides a powerful
tool for enumerating the isomorphism types of split extensions of P by a cyclic group.
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Part II

Determination of groups whose order
factors into at most four primes
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In this part of the thesis, we explicitly determine the isomorphism types of groups whose
orders factorise into at most four primes. Finite abelian groups are fully classified by the fun-
damental theorem of finitely generated abelian groups (Theorem A.0.12). For this reason, we
omit further details for the determination of finite abelian groups. Groups of order dividing p4

and squarefree groups are well-studied and there are abundant theoretical and computational
results in the literature. We thus concentrate on the remaining order types and only include
a brief summary of results regarding squarefree and p-power orders for the sake of complete-
ness. For all order types that are products of at most four primes, we list the isomorphism
class representatives in Tables 5.1, 5.3, 5.4, 6.1, 6.2, 6.3, 6.4, 7.1, 7.2, and 7.3. To make the tables
less clustered, we omit the list of pcgs and abbreviate every pc-presentation by only listing its
nontrivial relators. We simplify the notations in tables by replacing “=” by “/”. For example,
we write ap, bp, cp, ba/bc for the group described by Pc〈a, b, c | ap, bp, cp, ba = bc〉. Furthermore,
we use notations defined in Chapter 4 for the canonical automorphisms throughout the rest of
the thesis.

We remark that our counting formulas for groups of order n ∈ {p2q, p2q2, p3q, p2qr} agree
with Eick’s results in [24], which motivated our collaboration with Eick. In 2021, we merged
our results to present both the enumeration results and a complete list of isomorphism class
representatives of the groups of said order types. Along the way, we noticed that a few meth-
ods and results of Eick could be applied to simplify some of our proofs in this thesis. We now
present the modified version, which shares some similarities with [20, 24]. We also note that
the published version of these results is very concise, but in this thesis we provide more de-
tails on how to explicitly determine the isomorphism representatives and we verify that our
results give nonisomorphic groups by studying the possible isomorphisms. Our proofs in this
thesis involve more technical manipulations of polycyclic presentations and some number the-
oretical discussion, along with a brief discussion of isomorphisms between two groups with
different presentations that are in the same isomorphism class, which will be useful for our
later derivation of an isomorphism function (see Section 8.3).

We present our main results in three chapters: we discuss the p-groups of order dividing p4

in Chapter 5, followed by the determination of groups whose orders are of the form paqb with
a + b ≤ 4 in Chapter 6, and then we look into groups whose orders have three or more dis-
tinct prime factors in Chapter 7. The approach described in Chapter 5 is different to what is
used in Chapters 6 and 7, which results in different table layouts in the result summary. In
addition to the determination of the isomorphism types in Chapter 5, we present some in-
formation about the subgroup analysis and some results regarding relevant automorphism
groups, which provide useful references for later chapters. For each order type, we structure
the respective section as follows: we first summarise the results in the main theorem and cor-
responding tables, then we present the proofs of the determination of the isomorphism types.
The derivation of these proofs involves some technical manipulation of pc-presentations, but
as the main technique is repetitively used in such calculations in later parts of the proofs, thus
we omit some of the details. The main approach to derive the explicit construction is to exploit
the presentations of polycyclic group extensions in combination with our classification of split
extensions and the enumeration of conjugacy classes of subgroups with certain properties in
small linear groups that we discussed in Part I.
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Chapter 5

Groups of order pn with n ≤ 4

Let p denote a prime number. Groups of p-power order are well-studied and the p-group
generation algorithm [39, 40] can be used for the construction of such groups; this algorithm is
available in GAP [27] and MAGMA [12], efficient for groups of order dividing p7. In particular,
Cole and Glover [18] determined groups of order dividing p3, Adler, Garlow, and Wheland [1]
explicitly determined groups of order p4, and Wild [52] determined groups of order 16. It is
thus not the focus of this exposition to study p-groups in depth. Nevertheless, as building
blocks for larger solvable groups, the isomorphism class representatives of the groups of order
dividing p4 are of great importance. We list the isomorphism types using pc-presentations, and
discuss a few structural results that are fundamental to later chapters; we include some proofs
for the sake of completeness. A few general results from [3, Chapter 4], [23, § 5.3 - 6.1], and [45]
regarding p-groups are essential to the classification of p-groups. For an extensive account on
the structure of groups of p-power order, we refer to the series of books of Berkovich [3] and
Leedham-Green & McKay [38].

5.1 Groups of order pn with n ≤ 3

5.1.1 Summary of results

We introduce a nonstandard but convenient notation for the p-groups in the tables by assigning
each isomorphism type an “SOT ID”, namely, (n : i), where n denotes the order of the group,
and i is the ordinal mark given to the type.1 The same assignment of these IDs is implemented
in our package SOTGrps [20], which we discuss in more detail in Chapter 8. Note that GAP’s
SmallGroups library already stores an identification code for each group of order dividing p4.
As a reminder that the SOT IDs are not necessarily the same as the GAP IDs, we also list the
GAP IDs in the tables for p-groups. However, by “ID” we always mean the SOT ID throughout
the thesis. If we recognise a group as an extension of certain groups, say A and B, then we
write A n B for an extension that splits over B, where A acts nontrivially on B, and write A.B
exclusively for a nonsplit extensions of B by A.

Recall that a group G of order p1+2m is an extraspecial group if [G, G] = Φ(G) = Z(G) ∼= Cp
and G/Z(G) is a nontrivial elementary abelian group. For each m ∈N+, there are exactly two

1Note that this colon-notation is only used in this thesis as a differentiation between the SOT IDs and the GAP
IDs of p-groups, but in our implementation SOTGrps [20] we simply write [n, i].
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nonisomorphic extraspecial groups of order p1+2m (see Theorem A.0.7). Recall that for a finite
group G, the least nonzero number n such that gn = 1 for all g ∈ G is called the exponent of G,
often denoted by exp(G). For p > 2 and each positive integer m, it is conventional to denote
the isomorphism type of exponent p by p1+2m

+ and denote the one of exponent p2 by p1+2m
− . For

p = 2 and m = 1, we adopt the convention to denote 21+2
+ for D4 and 21+2

− for Q8; for p = 2
and m > 2, the "+" type denotes the groups that contains an even number of copies of Q8 in
the central product, and the "−" type denotes the groups that contain an odd number of copies
of Q8.

TABLE 5.1: Groups whose orders divide p3.

Order type SOT ID PC-relators Structure GAP ID
|G| = p

(p : 1) ap Cp (p, 1)
|G| = p2

(p2 : 1) ap2
Cp2 (p2, 1)

(p2 : 2) ap, bp C2
p (p2, 2)

|G| = p3

(p3 : 1) ap3
Cp3 (p3, 1)

(p3 : 2) ap2
, bp Cp2 × Cp (p3, 2)

(p3 : 3) ap, bp, cp C3
p (p3, 5)

p > 2
(p3 : 4) ap, bp, cp, ba/bc p1+2

+ (p3, 3)
(p3 : 5) ap/c, bp, cp, ba/bc p1+2

− (p3, 4)

23 (8 : 4) a2, b2, c2, ba/bc D4 (8, 3)
(8 : 5) a2/b2, b4, ba/b3 Q8 (8, 4)

Theorem 5.1.1. A group of order p is cyclic and simple. A group of order p2 is either cyclic or elemen-
tary abelian. There are three abelian and two isomorphism types of nonabelian groups of order p3; the
two nonabelian groups of order p3 are extraspecial. Up to isomorphism, the groups of order dividing p3

are the ones given in Table 5.1.

Recall that we abuse the notation: For example, the group with SOT ID (p3 : 4) is

Pc〈a, b, c | ap, bp, cp, ba = bc〉 = 〈a, b, c | ap, bp, cp, ba = bc, ca = c, cb = c〉.

This group is isomorphic to the extraspecial group p1+2
+ of order p3 of exponent p.

5.1.2 Determination of groups of order dividing p3

The classification of groups of prime order p follows directly from Lagrange’s theorem: a group
of prime order is simple as it contains no nontrivial proper subgroups and each non-identity
element of a group of order p is a generator of the entire group. It remains to consider p-groups
with order pn where n > 1. The next theorem summarises some well-known results.
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Theorem 5.1.2 ([15], Theorem III; [45], Theorem 4.4; [23]). Let G be a nontrivial finite p-group.

(i) If pk | |G|, then G contains a normal subgroup of order pk.

(ii) If H is a subgroup of G of index p, then H C G.

(iii) G has a nontrivial centre.

(iv) If G is nonabelian, then G/Z(G) is not cyclic.

The classification of groups of order p2 and nonabelian groups of order p3 follows from Theo-
rem 5.1.2 directly.

Corollary 5.1.3. If G is a group of order p2, then G is isomorphic to C2
p or Cp2 .

Proof. Let G be a group of order p2. Then Theorem 5.1.2 asserts that G has a nontrivial cen-
tre. Suppose that G is nonabelian, then |Z(G)| = p and G/Z(G) is cyclic, which contradicts
Theorem 5.1.2(iv). Hence, G is abelian and Theorem A.0.12 shows G is isomorphic to C2

p or
Cp2 .

It remains to consider the groups of order p3. The abelian isomorphism types of subgroups are
characterised by Theorem A.0.12.

Lemma 5.1.4. There are three abelian isomorphism types of the groups of order p3, namely,

Cp3 , Cp × Cp2 , C3
p.

Nonabelian groups of order p3 are extraspecial.

Proof. Suppose that G is a nonabelian group of order p3. Then Theorem 5.1.2 implies that
Z(G) ∼= Cp. Since G/Z(G) is noncyclic and has order p2, it is isomorphic to C2

p by Corol-
lary 5.1.3. Hence, [G, G] ≤ Z(G). Since [G, G] 6= 1, it follows that [G, G] = Z(G) and G is
extraspecial.

The following commutator formula follows from a direct computation; it is useful for our later
discussion.

Lemma 5.1.5. Let G be a group with [G, G] ≤ Z(G). Then for any x, y ∈ G and n ∈ N+, we have
(xy)n = xnyn[y, x]

1
2 n(n−1).

Proof. Since [y, x] ∈ Z(G), we have that yx = xy[y, x] = [y, x]xy, and so

(xy)n = (xy) · · · (xy) = xny[y, x]n−1y[y, x]n−2y . . . [y, x]y

= xnyn[y, x](n−1)+(n−2)+···+1 = xnyn[y, x]
1
2 n(n−1).

The following result about nonabelian groups of order p3 seems well-known [46], we present
a proof for the sake of completeness.

Lemma 5.1.6. Let G be a nonabelian group of order p3. If p > 2, then G has a normal subgroup
isomorphic to C2

p; if p = 2, then G has a cyclic normal subgroup of order 4.
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Proof. If p > 2, then Corollary 5.1.4 and Lemma 5.1.5 imply that [G, G] ∼= Cp, and for all
x, y ∈ G, we have

(xy)p = xpyp[y, x]
1
2 p(p−1) = xpyp.

Thus, the power map f : G → G, g 7→ gp is an endomorphism of G. We claim that the kernel
of this power map is isomorphic to C2

p. To see this, first note that Z(G) is contained in Ker f
as Z(G) is cyclic of order p. We now show that Z(G) is properly contained in Ker f : suppose
for contradiction that Z(G) equals the kernel, then the first isomorphism theorem implies that
the image of f is isomorphic to G/Z(G), which is isomorphic to C2

p by Corollary 5.1.4. Since
the power map is an endomorphism of G, this shows that G has a subgroup isomorphic to
C2

p. However, such a subgroup has exponent p, hence must also be in Ker f , contradicting our
assumption. Hence Ker f has at least p2 elements and is of exponent p. If it has order p2, then
Ker f ∼= C2

p, and it is normal in G; if it has order p3, then G must have exponent p. In the latter
case, take g ∈ G\Z(G), then 〈g, Z(G)〉 ∼= C2

p, which is normal in G by Theorem 5.1.2(ii). If
p = 2, then there is a ∈ G such that |a| > 2, since otherwise G is abelian by Theorem A.0.4;
now 〈a〉 ∼= C4 is normal in G by Theorem 5.1.2(ii).

It follows from Theorem 5.1.2 that every finite p-group admits a cyclic subnormal series, thus
is polycyclic. Lemma 5.1.6 implies that, if p is an odd prime, then all nonabelian groups of
order p3 can be constructed by extending C2

p by Cp; all nonabelian groups of order 23 can be
constructed by extending C4 by C2.

Lemma 5.1.7. A nonabelian group G of order 8 is isomorphic to D4 or Q8.

Proof. Any nonabelian group G of order 8 contains a normal subgroup N ∼= C4 by Lemma 5.1.6.
The determination of such groups follows from Example 3.3.1.

Lemma 5.1.8. A nonabelian group of odd order p3 is isomorphic to p1+2
+ or p1+2

− with a presentation
encoded in Table 5.1.

Proof. It follows from Lemma 5.1.4 that such a group G is extraspecial. We now show that there
are two isomorphism types of such groups and present the isomorphism class representatives.
Note that Lemma 5.1.6 asserts that there exists a normal subgroup N ∼= C2

p in G. Since G/N is
cyclic, N contains [G, G] = Z(G). Thus, every such group has a pc-presentation of the form

G(i, j, e, f ) = Pc〈a, b, c | ap = bicj, bp, cp, ba = bec f 〉,

for some i, j, e, f ∈ Zp such that e > 0 and Z(G) = 〈c〉 ≤ N = 〈b, c〉. The relations ba = bec f

and ca = c reflect the G/N-module structure of N, which is represented by a 7→
(

e f
0 1

)
acting

from the right on the row vectors generated by b = (1 0) and c = (0 1). Since |a| = p, we have(
e f
0 1

)p

=

(
ep f ∑

p−1
k=0 ek

0 1

)
=

(
1 0
0 1

)
.

In particular, this shows that ep = 1, forcing e = 1. Since b /∈ Z(G) by assumption, we must
have f 6= 0. For any f ∈ Z∗p the change of basis from {b, c} to {b, c f } does not change the
Cp-module structure on N; thus it suffices to consider f = 1.
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Fixing this module structure, Example 3.3.3 shows that there are at most two isomorphism
types in this case, namely,

G1 = Pc〈a, b, c | ap, bp, cp, ba = bc〉,

and
G2 = Pc〈a, b, c | ap = c, bp, cp, ba = bc〉,

where G1 splits over N. Observe that any element in G1 can be written in normal form aubvcw

for some u, v, w ∈ Zp. By construction, we have [bv, au], c ∈ Z(G1), thus for any u, v, w ∈ Zp

we have (aubvcw)p = (aubv)pcwp = aupbvp[bv, au]
1
2 p(p−1) = 1. This shows that G1

∼= p1+2
+ has

exponent p. On the other hand, G2 ∼= p1+2
− has exponent p2 as it is isomorphic to the semidirect

product Cp n Cp2 with presentation Pc〈x, y | xp, yp2
, yx = yp+1〉, via an isomorphism described

by {a 7→ y, b 7→ x, c 7→ yp}. The claim follows.

Before we move on to the groups of order p4, we examine the presentations listed in Table 5.1
for isomorphism types of groups of order p3 and summarise some results regarding the charac-
teristic subgroups of these groups; see also [51] for an alternative discussion with more details.
This information will be useful later.

TABLE 5.2: Proper nontrivial characteristic subgroups of groups of order p3 using the relations
of Table 5.1.

SOT ID Nontrivial proper characteristic subgroups

(p3 : 1) 〈ap〉 ∼= Cp2 , 〈ap2〉 ∼= Cp

(p3 : 2) 〈ap, b〉 ∼= C2
p, 〈b〉 ∼= Cp

(p3 : 3) –
(p3 : 4), p > 2 〈c〉 ∼= Cp

(p3 : 5), p > 2 〈b, c〉 ∼= C2
p, 〈c〉 ∼= Cp

(8 : 4) 〈ab〉 ∼= C4, 〈c〉 ∼= C2

(8 : 5) 〈a2〉 ∼= C2

5.1.3 An interlude: automorphism groups of extraspecial groups of order p3

Both [46, Section 1.5.1] and [51, § 4] give detailed calculations regarding the automorphism
groups of the groups of order p3. We extract three results about the automorphism groups of
extraspecial groups. Recall that the Frattini subgroup of a finite group G is the intersection of
its maximal subgroups, denoted by Φ(G); if G is a p-group, then Φ(G) = [G, G]G[p] (Theo-
rem A.0.6), where G[p] = 〈{gp : g ∈ G}〉 is often called the Agemo subgroup of G, denoted by
f(G).

Proposition 5.1.9. If p is an odd prime and P ∼= p1+2
+ , then Aut(P/Φ(P)) ∼= GL2(p), and the

natural projection P→ P/Φ(P) induces an epimorphism

π : Aut(P)→ Aut(P/Φ(P)),

where Ker π is a p-group. Moreover, Aut(P) is an extension of C2
p by GL2(p), and so

|Aut(P)| = p3(p− 1)2(p + 1).
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Proof. The Frattini subgroup Φ(P) is characteristic in P, thus every α ∈ Aut(P) induces au-
tomorphisms α|Φ(P) ∈ Aut(Φ(P)) and α|P/Φ(P) ∈ Aut(P/Φ(P)). For α ∈ Aut(P) we abbre-
viate π(α) = α so that α(gΦ(P)) = α(g)Φ(P) for all g ∈ P. It follows from Theorem A.0.6
that P/Φ(P) ∼= C2

p, and so Aut(P/Φ(P)) ∼= GL2(p). Thus, for any α, β ∈ Aut(P) we have
αβ(gΦ(P)) = αβ(gΦ(P)) for all g ∈ P, showing π is a homomorphism. Consider

P = 〈a, b | ap = bp = [a, b]p = 1〉.2

With respect to this presentation, we have that Φ(P) = 〈[a, b]〉. Let A = aΦ(P) and B = bΦ(P).
Then we can write P/Φ(P) = Pc〈A, B | Ap, Bp〉. To see that π is surjective, it is sufficient to
show that every θ ∈ Aut(P/Φ(P)) lifts to an automorphism α of P such that π(α) = θ. Any
θ ∈ Aut(P/Φ(P)) acts on C2

p via an invertible matrix
( x1 y1

x2 y2

)
∈ GL2(p) with respect to the basis

{A = (1 0), B = (0 1)}, where x1y2 − x2y1 6≡ 0 mod p; define α : P→ P via{
α(a) = ax1 by1

α(b) = ax2 by2
.

We check by von Dyck’s theorem (Theorem 3.1.1) that α is a homomorphism on P. Lastly, note
that θ−1 lifts to the inverse of α, thus α ∈ Aut(P) and π is surjective. To show that Ker π is a p-
group, we show that automorphisms of order coprime to p are not in Ker π. Let σ ∈ Aut(P) be
an automorphism of prime order q 6= p. Suppose that σ = 1. That is, σ acts on each coset xΦ(P)
as a permutation of order 1 or q. It follows that σ leaves at least one element fixed in each base
element of P/Φ(P), say ai ∈ aiΦ(P) is such an element for each i. By Burnside’s basis theorem
(Theorem A.0.6), the collection of these elements {a1, . . . , am} forms a minimal generating set
of P and it is fixed under σ. This forces that σ = 1, a contradiction. Hence, σ /∈ Ker π and
Ker π is a p-group. It remains to show that Ker π ∼= C2

p, from which the claim follows. Let
S = {θ : θ(a) = a[a, b]s, θ(b) = b[a, b]t, where s, t ∈ Zp}. It follows from Theorem 3.1.1 that
for any s, t ∈ Zp such a map θ extends to an automorphism of P. By abuse of notation, we
write θ ∈ Aut(P). Then a direct computation shows that C2

p
∼= S ≤ Aut(P). We now show

that Ker π ⊆ S: if α ∈ Ker π, then α(g)Φ(P) = gΦ(P) for all g ∈ P, which is equivalent to
saying that α(g) = g[h, k] for some [h, k] = [a, b]r ∈ Φ(P) and r ∈ Zp (recall that Φ(P) ∼= Cp);
in particular, this shows that α(a) = a[a, b]s and α(b) = b[a, b]t for some s, t ∈ Zp, and so α ∈ S.
Conversely, we show that S ⊆ Ker π: let θ ∈ S with θ(a) = a[a, b]s and θ(b) = b[a, b]t; since
every element g ∈ P can be expressed as g = axby[a, b]z for some x, y, z ∈ Zp, it follows that
gΦ(P) = axbyΦ(P), but θ(g)Φ(P) = axby[a, b]xs+yt+zΦ(P) = axbyΦ(P), thus θ ∈ Ker π. In
conclusion, Ker π = S ∼= C2

p and Aut(P) is an extension of C2
p by GL2(p).

Proposition 5.1.10. If p is an odd prime and P ∼= p1+2
− , then Aut(P) ∼= Cp−1 n p1+2

+ .

Proof. If P = Pc〈a, b | ap, bp2
, ba = bp+1〉, then each α ∈ Aut(P) is defined by α(a) = aubv and

α(b) = axby for some u, x ∈ Zp and v, y ∈ Zp2 . We have bjai = aibj(p+1)i
= aibj(ip+1) and

(aibj)n = ainbjn+ 1
2 ijpn(n−1). For α to be an automorphism, it must preserve the order of a and

b. Hence the values for u, v, x, y must satisfy that (aubv)p = bvp = 1, and (axby)p = byp 6= 1,
forcing y ∈ Z∗p2 and v = mp for some m ∈ Zp. Moreover, for α(ba) = α(b)α(a) to hold

true, or equivalently, α(b)α(a) = α(a)α(b)1+p, it is required that axbyaubv = aubv(axby)1+p,
which simplifies to ax+ubuyp+y+v = ax+ubv+yp+y, forcing u = 1. Conversely, any such triple
of exponents {v, x, y} defines an automorphism of P. That is, for any v = mp ∈ Zp\Z∗p and

2Note that P is isomorphic to Pc〈a, b, c | ap, bp, cp, ba = bc〉, as seen in Table 5.1, via an isomorphism α described
by α(a) = a, α(b) = b, α([a, b]−1) = c.
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x ∈ Zp and y ∈ Z∗p2 , the map α defined by α(a) = abmp and α(b) = axby extends to an
automorphism of P by Theorem 3.1.1. Since there are p options for v, x, and p(p− 1) options
for y, we find |Aut(P)| = p3(p− 1). Theorem A.0.8 shows that the Sylow p-subgroup, denoted
by N, is normal in Aut(P), and Theorem 2.4.1 shows that N has a complement of order p− 1
in Aut(P). Thanks to the detailed calculation given in [46, Section 1.5.1] for an explicit formula
of multiplication in Aut(P), we find that an automorphism of P has order p if and only if it is
defined by the triple (mp, x, 1 + pr) for some m, x, r ∈ Zp and m, x, r are not all zero. It follows
these p3 − 1 elements define precisely the nontrivial elements of N, and so N is nonabelian of
exponent p. Thus, N ∼= p1+2

+ by Lemma 5.1.8. It remains to investigate the structure of the
complement to N in Aut(P). If r ∈ Z∗p2 has order p− 1, then β ∈ Aut(P)\N defined by the
triple (0, 0, r) has order p − 1. Moreover, βN has order (p − 1) in Aut(P)/N. It follows that
Aut(P)/N ∼= Cp−1.

5.2 Groups of odd order p4

By Theorem A.0.12, there are five isomorphism types of abelian groups of order p4, namely,

Cp4 , Cp × Cp3 , C2
p2 , C2

p × Cp2 , C4
p.

We are left with the nonabelian groups. To classify the nonabelian groups of order p4 up to
isomorphism, the following lemma from [1] shows that it suffices to classify the extensions of
an abelian group of order p3 by Cp; see also [15, pp. 140–144].

Lemma 5.2.1 ([1], Proposition 12). Every group of order p4 has an abelian subgroup of order at least
p3.

5.2.1 Summary of results

In this subsection, we consider odd primes p; we consider order 24 in the next subsection. The
main approach used in this section is motivated by [1, 2, 15, 38, 46]; we collate some of the
results in said sources and construct the groups using what we have established for p-groups
and polycyclic extensions.

Theorem 5.2.2. Let p be an odd prime. There are 15 isomorphism types of the groups of order p4, five
of which are abelian. Up to isomorphism, groups of odd order p4 are the ones described in Table 5.3.

5.2.2 Determination of groups of odd order p4

To determine groups of odd order p4, the following lemma of Burnside [15] asserts that it is
sufficient to consider extensions of Cp2 × Cp and C3

p by Cp.

Lemma 5.2.3 ([15], § 109). Let p be an odd prime. If a nonabelian group G of order pm contains a
cyclic normal subgroup of order pm−1, then it also contains a subgroup isomorphic to Cpm−2 × Cp.

By setting m = 4 in Lemma 5.2.3, we see that if G contains a cyclic normal subgroup of order
p3, then it also contains a normal subgroup isomorphic to Cp2 ×Cp. It remains to construct and
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TABLE 5.3: Groups of odd order p4, using Notation 4.1.1.

SOT ID PC-relators Structure Centre GAP ID
(p4 : 1) ap4

Cp4 Cp4 (p4, 1)
(p4 : 2) ap3

, bp Cp3 × Cp Cp3 × Cp (p4, 5)
(p4 : 3) ap2

, bp2
C2

p2 C2
p2 (p4, 2)

(p4 : 4) ap2
, bp, cp Cp2 × C2

p Cp2 × C2
p (p4, 11)

(p4 : 5) ap, bp, cp, dp C4
p C4

p (p4, 15)
(p4 : 6) ap, bp, cp2

, ba/bcp Cp n (Cp × Cp2 ) Cp2 (p4, 14), (81, 14)
(p4 : 7) ap/b, bp, cp2

, ba/bcp Cp n Cp3 Cp2 (p4, 6), (81, 6)
(p4 : 8) ap, bp2

, cp, ba/b1+p p1+2
− × Cp C2

p (p4, 13), (81, 13)
(p4 : 9) ap, bp2

, cp, ba/bc Cp n (Cp2 × Cp) C2
p (p4, 3), (81, 3)

(p4 : 10) ap/c, bp2
, cp, ba/b1+p Cp2 n Cp2 C2

p (p4, 4), (81, 4)
(p4 : 11) ap, bp, cp, dp, ba/bc p1+2

+ × Cp C2
p (p4, 12), (81, 12)

(p4 : 12) ap, bp2
, cp, ba/bc, ca/bpc Cp n (Cp2 × Cp) Cp (p4, 9), (81, 8)

(p4 : 13) ap, bp2
, cp, ba/bc, ca/brpc Cp n (Cp2 × Cp) Cp (p4, 10), (81, 9)

(p4 : 14) ap, bp, cp, dp, ba/bc, ca/cd Cp n C3
p Cp (p4, 7), (81, 7)

(p4 : 15), p > 3 ap/d, bp, cp, dp, ba/bc, ca/cd Cp n (Cp n Cp2 ) Cp (p4, 8)
(81 : 15) a3/d, b3/d, c3, d3, ba/bc, ca/cd2 C3.31+2

+ C3 (81, 10)

classify the extensions of Cp2 × Cp and C3
p by Cp up to isomorphism. Before that, recall that a

p-group G of order pm is of maximal class if it has nilpotency class m− 1; we now present a
result on the groups of maximal class.

Lemma 5.2.4 ([3], Lemma 1.1, [38] Chapter 3). Let G be a nonabelian p-group that has an abelian
subgroup of index p, then the following are equivalent:

(i) |Z(G)| = p,

(ii) |G : G′| = p2,

(iii) G is of maximal class.

Proof. Since G is nonabelian, we can assume |G| ≥ p3. For the case where G has an abelian
subgroup of index p, Berkovich [3, Lemma 1.1] showed that |G| = p|G′||Z(G)|. Leedham-
Green and McKay [38, 52, Proposition 3.1.2] showed if G is of maximal class, then its upper
and lower central series coincide and G/G′ ∼= C2

p and Z(G) ∼= Cp. To show the equivalence of
the statements, it is sufficient to show that (i) implies (ii) and (ii) implies (iii); this is left as an
exercise in [3] and we include a sketch of the proof here for the sake of completeness.
(i) =⇒ (ii): |G : G′| = |G|

|G′| = p|Z(G)| = p2 since |G| = p|G′||Z(G)|.
(ii) =⇒ (iii): Since |G|

p|G′| = |Z(G)| by assumption, it follows that |Z(G)| = p. Since G is
nilpotent, nontrivial normal subgroups intersect Z(G) nontrivially ([45, Theorem 5.41]). This
implies that G′ ∩ Z(G) = Z(G); that is, Z(G) ≤ G′. In particular, the third isomorphism
theorem shows that |G/Z(G) : G′/Z(G)| = p2. If |G| = p3, then the claim follows trivially,
which serves the base case for an induction to show that G is of maximal class: if |G| = p4,
then G/Z(G) is of maximal class. Since Z(G) ∼= Cp, by examining the upper central series, we
see that G is also of maximal class. Inductively, this proves that G is of maximal class.

We now prove Theorem 5.2.2 by a case distinction on the size of the centre of the group for the
extensions of Cp2 × Cp and C3

p by Cp. Note that we often compute some invariant subgroups
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in determining whether two groups are isomorphic. We now briefly recall that the Omega
subgroup of a p-group G is the subgroup generated by {g ∈ G : gp = 1}, denoted by Ω(G).

Proof of Theorem 5.2.2. Let G be a nonabelian group of order p4, then G contains an abelian
normal subgroup H of order p3 by Lemma 5.2.1.

1. If H ∼= Cp2 × Cp and Z(G) = Cp2 , then G has a pc-presentation of the form

G(t, e, f ) = Pc〈a, b, c | ap = t, bp, cp2
, ba = bec f 〉,

where t ∈ H = 〈b, c〉, e ∈ Zp and f ∈ Zp2 cannot be both 0, and Z(G) = 〈c〉. Since
ap = t lies in H, it commutes with b; that is, b(ap) = b. Thus we read b(ap) = b(e

p)c( f p) = b,
which implies that ep ≡ 1 mod p and f p ≡ 0 mod p2; since e ≡ ep mod p for every e, we
can assume that e = 1 and f ∈ {kp : k ∈ Zp}. However, note that f 6= 0, for otherwise
ba = be = b, which implies that b ∈ Z(G), a contradiction. Since we assume that G(t, e, f )
is a consistent pc-presentation, Theorem 3.2.3 requires that at = a(ap) = (ap)a = ta. Since
t ∈ H and H is abelian, it follows that t ∈ Z(G) = 〈c〉; that is, t = ck for some k ∈ Z∗p2 .

Now, G ∼= (ck, 1, xp) for some k ∈ Zp and x ∈ Z∗p. However, we see that for any x ∈ Z∗p
the map {a 7→ ax, b 7→ b, c 7→ c} extends to an isomorphism G(ckx, 1, xp) → G(ck, 1, p)
by Theorem 3.1.1, thus it suffices to consider x = 1 and there is a unique isomorphism
class of the split extension Cp n H with cyclic centre of order p2, isomorphic to

G(1, 1, p) = Pc〈a, b, c | ap, bp, cp2
, ba = bcp〉 (type (p4 : 6) in Table 5.3).

Moreover, observe that the map {a 7→ a, b 7→ bk, c 7→ ck} extends to an isomorphism
G(c, 1, p) → G(ck, 1, p) for all k ∈ Z∗p2 and the map {a 7→ abcp+1, b 7→ b, c 7→ c} extends

to an isomorphism G(ckp, 1, p) → G(1, 1, p) for all k ∈ Z∗p . This shows that G(ck, 1, p)
is nonisomorphic to G(1, 1, p) with SOT ID (p4 : 6) if and only if k ∈ Z∗p2 , and for any

k ∈ Z∗p2 , such a group G(ck, 1, p) is isomorphic to

G(c, 1, p) = Pc〈a, b, c | ap = c, bp, cp2
, ba = bcp〉 (type (p4 : 7) in Table 5.3),

which is equivalent to

Pc〈a, b, c, d | ap = c, bp, cp = d, dp, ba = bd〉,

which allows us to see that such a group is isomorphic to

Cp n Cp3 = Pc〈x, y | xp, yp3
, yx = xp2+1〉

via the isomorphism induced by {b 7→ x, a 7→ y, c 7→ yp2
, d 7→ yp}. Lastly, since the

group with SOT ID (p4 : 6) contains no element of order p3 while type (p4 : 7) does, they
are not isomorphic.

2. Suppose that G contains a normal subgroup H ∼= Cp2 × Cp and Z(G) = C2
p. Then G has

a presentation of the form

Pc〈a, b, c, d | ap = t, bp = c, cp, dp, ba = be1 ce2 de3〉,

where H = 〈b, c, d〉, t ∈ H, Z(G) = 〈c, d〉, and e1, e2, e3 ∈ Zp are not all zero. Since ta = t,
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and H is abelian, it follows that t ∈ Z(G). Since

bt = b(e
p
1 )ce2(1+e1+···e

p−1
1 )de3(1+e1+···e

p−1
1 ) = b,

it is required that e2 ∑
p−1
i=0 ei

1 ≡ e3 ∑
p−1
i=0 ei

1 ≡ 0 mod p and ep
1 ≡ 1 mod p. Hence, e1 = 1,

and so e2, e3 cannot be both zero, for otherwise ba = b and G is abelian, a contradiction.
Now we consider G of the form

G(t, e2, e3) = Pc〈a, b, c, d | ap = t, bp = c, cp, dp, ba = bce2 de3〉.

First note that the map {a 7→ a, b 7→ b, c 7→ c, d 7→ cxdx} extends to an isomorphism
G(t, 0, 1) → G(t, x, x), it suffices to consider e2 6= e3. Observe that {a 7→ ak}3 extends to
an isomorphism G(t, k, e3) → G(t, 1, k−1e3) for any k ∈ Z∗p, and {d 7→ dm} extends to an
isomorphism G(t, e2, 1) → (t, e2, m) for any m ∈ Z∗p. This shows that it is sufficient to
consider e2, e3 ∈ {0, 1}, and so G is isomorphic to G(t, 1, 0) or G(t, 0, 1). Moreover, since
{a 7→ ak} extends to an automorphism of Cp ∼= G/H and {d 7→ cmdn} extends to an
automorphism of H for any k, m, n ∈ Z∗p, Theorem 2.3.5 verifies that it is sufficient to
consider t ∈ {1, c, d}.
If t = 1, then G is a split extension and G is isomorphic to one of the following:

G(1, 1, 0) = Pc〈a, b, c, d | ap, bp = c, cp, dp, ba = bc〉 (type (p4 : 8) in Table 5.3),

G(1, 0, 1) = Pc〈a, b, c, d | ap, bp = c, cp, dp, ba = bd〉 (type (p4 : 9) in Table 5.3).

If t = c, then G is isomorphic to

G(c, 1, 0) = Pc〈a, b, c, d | ap = c, bp = c, cp, dp, ba = bc〉,

or
G(c, 0, 1) = Pc〈a, b, c, d | ap = c, bp = c, cp, dp, ba = bd〉.

Since G/Z(G) is abelian, we know [G, G] ≤ Z(G) and Lemma 5.1.5 applies. In particular,
we have (ab−1)p = apb−p[b−1, a]

1
2 p(p−1) = 1. Using this, we see that the map {a 7→ ab−1}

extends to isomorphisms G(c, 1, 0) → G(1, 1, 0) and G(c, 0, 1) → G(1, 0, 1). If t = d, then
G is isomorphic to

Pc〈a, b, c, d | ap = d, bp = c, cp, dp, ba = bc〉,

or
Pc〈a, b, c, d | ap = d, bp = c, cp, dp, ba = bd〉.

However, both of them are isomorphic to

Pc〈a, b, c | ap = c, bp2
, cp, ba = bp+1〉 (type (p4 : 10) in Table 5.3),

via isomorphisms described by

{a 7→ a, b 7→ b, c 7→ bp, d 7→ c}

and
{a 7→ b, b 7→ a−1, c 7→ c−1, d 7→ bp},

respectively. It remains to show that groups with SOT ID (p4 : 8), (p4 : 9), and (p4 : 10)
are nonisomorphic. Note that every element in each of those groups can be written in its

3Recall that we sometimes abbreviate the map on generators by omitting the fixed points.
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normal form, thus we compute the Agemo subgroup 〈{(axbycudv)p : x, y, u, v ∈ Zp}〉. In
particular, we see that the Agemo subgroups of types (p4 : 8), (p4 : 9), and (p4 : 10) are
〈c〉, 〈c〉, and 〈c, d〉 respectively. This shows that type (p4 : 10) is not isomorphic to either
of the others. On the other hand, we can also find that the derived subgroup of type
(p4 : 8) coincides with its Agemo subgroup, whereas the derived subgroup of (p4 : 9) is
〈d〉 6≤ 〈c〉, from which we conclude that the groups with SOT ID (p4 : 8) and (p4 : 9) are
nonisomorphic.

3. Suppose that G contains a normal subgroup H ∼= C3
p and Z(G) = C2

p. Then G has a
pc-presentation of the form

Pc〈a, b, c, d | ap = t, bp, cp, dp, ba = be1 ce2 de3〉,

where t ∈ H = 〈b, c, d〉 and Z(G) = 〈c, d〉. Since H is abelian and ta = t, it follows that
t ∈ Z(G), namely, t = ced f for some e, f ∈ Zp. Theorem 3.2.3 shows that e1 = 1 and e2, e3

are not both zero. Moreover, since {c 7→ cdk} extends to an automorphism of H, we can
consider e3 = 0 without loss of generality. Thus, we know that G is isomorphic to

G(e, f , e2) = Pc〈a, b, c, d | ap = ced f , bp, cp, dp, ba = bce2〉,

for some e2 ∈ Z∗p and e, f ∈ Zp. Observe that the map {a 7→ ak} extends to an isomor-
phism G(ek, f k, k) → G(e, f , 1) for any k ∈ Z∗p, thus it suffices to consider e2 = 1 and
there is a unique isomorphism class of split extensions Cp n H isomorphic to G(0, 0, 1),

with a nontrivial Cp-action on H = 〈b, c, d〉 represented by 〈
( 1 1 0

0 1 0
0 0 1

)
〉 with respect to the

basis {b = (1 0 0), c = (0 1 0), d = (0 0 1)}. Thus there is a unique Cp-module structure
on H up to equivalence, and it remains to consider nonsplit extensions G(e, f , 1) with
ced f 6= 1. A similar computation as before shows that G(e, 0, 1) has SOT ID (p4 : 8) for
e > 0, and G(0, f , 1) has SOT ID (p4 : 9) for f > 0; if e 6= 0, f 6= 0 then G(e, f , 1) has
SOT ID (p4 : 10). So we conclude that the extensions of this kind only add one new
isomorphism class, which has a representative given by

Pc〈a, b, c, d | ap, bp, cp, dp, ba = bc〉 (type (p4 : 11) in Table 5.3).

4. Suppose that Z(G) = Cp. By Lemma 5.2.4, we know that G is of maximal class, and
|G′| = p2. Furthermore, Lemma 5.2.4 shows that G/Z(G) is also of maximal class. In con-
junction with [38, Theorem 3.3.2], which shows that both G′ and G/Z(G) have exponent
p, implying G/Z(G) ∼= p1+2

+ and G′ ∼= C2
p, we deduce that G has a presentation with pcgs

{a, b, c, d}whose upper central series has the following terms: ζ1(G) = Z(G) = 〈d〉 ∼= Cp,
ζ2(G) = 〈c, d〉 = G′ ∼= C2

p, ζ3(G) = G. Moreover, 〈a, b, c〉 ∼= p1+2
+ . That is, any such maxi-

mal class group G of order p4 is a central extension of Cp by p1+2
+ and has a presentation

of the form
Pc〈a, b, c, d | ap = t1, bp = t2, cp, dp, ba = bct3, ca = ct4〉,

where each ti ∈ 〈d〉 = Z(G). Observe that t1, . . . , t4 cannot all be zero, since otherwise
the presentation defines a group with SOT ID (p4 : 11), which is already accounted for.
Since {c 7→ cdk} extends to an automorphism of 〈c, d〉 for all k ∈ Zp, we can fix t3 = 1
without loss of generality. Now observe that if t4 = 1, then for any choice of t1 and t2,
the subgroup 〈c, d〉 lies in the centre, a contradiction. Hence, it suffices to consider the G
of the form

G(x, y, z) = Pc〈a, b, c, d | ap = dx, bp = dy, cp, dp, ba = bc, ca = cdz〉,
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where x, y ∈ Zp, z ∈ Z∗p.

(a) If x = 0, then independent of the choices of y, z, the extension G splits over a normal
subgroup of order p3: if y = 0, then G ∼= Cp nC3

p; if y 6= 0, then G ∼= Cp n (Cp2 ×Cp).

i. If y = 0 and G ∼= Cp n C3
p with said setting, then the Cp-action on H = 〈b, c, d〉

can be represented by a matrix a 7→
( 1 1 0

0 1 z
0 0 1

)
acting on C3

p with respect to the

basis {b = (1 0 0), c = (0 1 0), d = (0 0 1)} for some z ∈ Z∗p. Since {b, c, dz} also

forms a basis, any matrix of this form is conjugate to
( 1 1 0

0 1 1
0 0 1

)
. By Corollary 2.4.2,

this case adds a unique isomorphism class with representative G(0, 0, 1)

Pc〈a, b, c, d | ap, bp, cp, dp, ba = bc, ca = cd〉 (type (p4 : 14) in Table 5.3).

ii. If y ∈ Z∗p, then for any z ∈ Z∗p map {dy 7→ d} extends to an isomorphism
G(0, y, z)→ G(0, 1, y−1z). Hence it is sufficient to fix y = 1, and it remains to in-
vestigate the pc-presentations corresponding to the p− 1 choices of z. Observe
that for any s ∈ Z∗p, the map {a 7→ as, c 7→ csd

1
2 s(s−1)} extends to an isomor-

phism between G(0, 1, z) and G(0, 1, s2z). This shows that if z is a quadratic
residue modulo p, then G(0, 1, z) is isomorphic to

Pc〈a, b, c, d | ap, bp = d, cp, dp, ba = bc, ca = cd〉 (type (p4 : 12) in Table 5.3);

otherwise, G(0, 1, z) is isomorphic to

Pc〈a, b, c, d | ap, bp = d, cp, dp, ba = bc, ca = cdr〉 (type (p4 : 13) in Table 5.3),

where r = σp (Notation 4.1.1), as {s2r : s ∈ Z∗p} generates the complete set of
the quadratic non-residues.

We are left to verify that types (p4 : 12), (p4 : 13), and (p4 : 14) are pairwise noniso-
morphic. Since type (p4 : 14) has exponent p whereas the others have exponent p2,
it remains to show that types (p4 : 12) and (p4 : 13) are not isomorphic. Let G1 have
SOT ID (p4 : 12) and G2 have SOT ID (p4 : 13), and both are defined by the presen-
tations above. Suppose for contradiction that α : G1 → G2 is an isomorphism. Since
derived subgroups are characteristic, α(〈c, d〉) = 〈c, d〉 = [G2, G2]. Since b commutes
with both c and d, it follows that b ∈ α(〈b, c, d〉), thus α(〈b, c, d〉) = 〈b, c, d〉. Let
N = 〈a, b, c〉C G1, this shows that α|N ∈ Aut(N), and α|〈a〉 ∈ Aut(〈a〉). In particu-
lar, it shows that it suffices to consider α(a) = ak for some k ∈ Z∗p, and α(b) = b`cmdn

where ` ∈ Z∗p, m, n ∈ Zp. Since α is a homomorphism, we read that α([[b, a], a]) =
[[b`cmdn, ak], ak]. However, the left-hand side equals α(dr) = α(brp) = b`rp = d`r,
while the right-hand side is d(k

2) = b(`k2). Since r is a quadratic non-residue, there
exists no k ∈ Z∗p such that k2 = r, thus there exists no such an isomorphism α, that
is, G1 6∼= G2.

(b) If x > 0, the the map {a 7→ ax, c 7→ cx, d 7→ d(x2)} extends to an isomorphism
G(1, y, z) → G(x, y, z) for all x ∈ Z∗p, thus we can fix x = 1. A similar calculation
with case distinction on y = 0 and y > 0 as seen in the preceding discussion shows
that there are at most three new isomorphism types arising from such extensions,
namely, G(1, 0, 1), G(1, 1, 1), and G(1, 1, σp). However, considering each of these
cases, we find that G(1, 0, 1) has SOT ID (81 : 14) if p = 3, and G(1, 1, 1) has SOT ID
(p4 : 12) for all p > 2, and G(1, 1, σp) has SOT ID (p4 : 13) for all p > 3. Thus, in total
these extensions adds at most one new isomorphism type, depending on whether
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G(1, 0, 1) adds a new isomorphism type when p > 3 and whether G(1, 1, σp) adds a
new isomorphism type when p = 3. Now consider these two cases: for p > 3, the
group G(1, 0, 1) is isomorphic to

Pc〈a, b, c, d | ap = d, bp, cp, dp, ba = bc, ca = cd〉 (type (p4 : 15) in Table 5.3);

for p = 3, the group G(1, 1, σp) is isomorphic to

Pc〈a, b, c, d | a3 = b3 = d, c3, d3, ba = bc, ca = cd2〉 (type (81 : 15) in Table 5.3).

In the former case, we calculate the Omega subgroup of the group in G(1, 0, 1) to be

{axbycudv : (axbycudv)p = axp = dx = 1, x, y, u, v ∈ Zp} = 〈b, c, d〉,

which is abelian of order p3 with p > 3, while type (p4 : 12) and (p4 : 13) both have
nonabelian Omega subgroups (both have the form 〈a, c, d〉 ∼= p1+2

+ ), and the Omega
subgroup of type (p4 : 14) has order p4 since it is of exponent p. Hence, if p > 3,
then type (p4 : 15) is nonisomorphic to any of the other three.
For p = 3, the group G(1, 1, σp) is of exponent p2, and so it is nonisomorphic to
type (34 : 14)) and its Omega subgroup is isomorphic to C2

3 (hence nonisomorphic
to either of type (34 : 12) or (34 : 13).

Remark 5.2.5. When p > 3, the groups Pc〈a, b, c, d | ap, bp = d, cp, ba = bc, ca = cdr〉 and
Pc〈a, b, c, d | ap = d, bp = d, cp, ba = bc, ca = cdr〉 are isomorphic via the isomorphism induced
by {a 7→ abc}. When p = 3, the groups Pc〈a, b, c, d | ap, bp, cp, dp, ca = bc, da = cd〉 and
Pc〈a, b, c, d | ap = d, bp, cp, dp, ba = bc, ca = cd〉 are isomorphic via the isomorphism induced by
{a 7→ abcd}.

5.3 Groups of order sixteen

In this section, we comment on the special case of nonabelian groups of order 16.

TABLE 5.4: Nonabelian groups of order 16.

SOT ID PC-relators Structure Centre GAP ID
(24 : 6) a2, b4, c2, ba/b3, ca/b2c C2 n (C4 × C2) C4 (16, 13)
(24 : 7) a2, b4, c2, ba/b3 (C2 n C4)× C2 C2 × C2 (16, 11)
(24 : 8) a2, b4, c2, ba/bc C2 n (C4 × C2) C2 × C2 (16, 3)
(24 : 9) a2/b2, b4, c2, ba/b3 Q8 × C2 C2 × C2 (16, 12)
(24 : 10) a2/b2, b4, c2, ba/bc C4 n C4 C2 × C2 (16, 4)
(24 : 11) a2, b8, ba/b5 C2 n C8 C4 (16, 6)
(24 : 12) a2, b8, ba/b3 QD16 C2 (16, 8)
(24 : 13) a2, b8, ba/b7 D8 C2 (16, 7)
(24 : 14) a2/b4, b8, ba/b7 Q16 C2 (16, 9)

Theorem 5.3.1. There are 14 isomorphism types of the groups of order 16, five of which are abelian. A
group of order 16 has a pc-presentation as encoded in Table 5.4.

We omit the details but provide only a sketch of the proof here. All fourteen groups can be
constructed by cyclic extensions of the known groups of order 23 (see Table 5.1). However, the
list can be reduced beforehand. Most of the results in the previous section still apply except
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for Lemma 5.2.3. Similar to the general case of p4, we only need to consider abelian normal
subgroups of order 23 in constructing the groups of order 24. The main difference lies in which
abelian normal subgroup we use, since Lemma 5.2.3 only applies to odd primes p. In particular,
we know that any nonabelian group of order 16 contains a cyclic subgroup of order 4, thus we
further deduce that the nonabelian extensions of C3

2 by C2 always contain a normal subgroup
isomorphic to C4 × C2. The discussion of such extensions for general primes p in the previous
section still applies here, except that there are no extensions analogous to the types in Table 5.3
involving σp, since σ2 = 1 is also a quadratic residue. For this reason, there are only three
maximal class groups of order 16 up to isomorphism. All the nonabelian groups of order 16
containing no elements of order 8 can be constructed as extensions of C4 × C2 by C2. For the
groups containing elements of order 8, it suffices to consider the extensions of C8 by C2. Since
the group order is small, the construction and identification are trivial by exhaustion and we
obtain the results in Table 5.4.
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Chapter 6

Groups of order paqb

Let p, q be distinct primes. In this chapter, we determine the isomorphism types of groups
of order paqb, where 1 ≤ a, b and a + b ≤ 4. Since the abelian groups are classified by the
fundamental theorem of finitely generated abelian groups, we only discuss the proofs for the
nonabelian ones. The determination of groups of order pq, p2q, p3q exists in the literature, for
example, see [18], [32] and [51]. The enumeration is known for groups of order p2q2 (see [37]
and [25]). Amongst the known results, some of the existing constructions are not efficient in
practice. Our goal is to independingly describe explicit constructions for these groups using
the results discussed in Chapter 2 to present an accessible proof and to derive an efficient
algorithm for the construction and identification for these groups. As a direct result of our
constructions, we obtain a counting formula for each order type. Our enumeration for groups
of order p2q2 agrees with [37, Chapter V, § 1] and [24]; our enumeration for groups of order p2q
agrees with [32, § 21 - § 37] and [15, § 59]; our enumeration for groups of order p3q agrees with
[24] and [37].

In the rest of the chapter, let G be a group and let P ∈ Sylp(G) and Q ∈ Sylq(G) denote Sylow
subgroups of G. Recall that we write np(G) = |Sylp(G)| for each prime divisor p of |G|. Note
that in the construction of non-nilpotent groups of order paqb with a normal Sylow subgroup,
we make canonical choices as described in Notations 4.1.1, 4.2.1, and 4.2.6, which imposes a
canonical order on the list of isomorphism representatives. This canonical ordering is crucial
to the development of an identification function, which we exemplify in Chapter 8. In each
table, we list the isomorphism types using said notation and include the enumeration result in
the rightmost column; we highlight that if the expression in the column of “number of types”
evaluates to 0 for a given order, then it means that the isomorphism type in the corresponding
row does not exist. Recall again that ∆v

u is the Kronecker delta function for divisibility of u by
v.

6.1 Groups of order pq and p2q

Recall that Theorem A.0.9 characterises finite nilpotent groups and Corollary 3.2.5 gives a pre-
sentation for each nilpotent group. Therefore, in the rest of the thesis we omit proofs of the
determination of nilpotent groups.
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TABLE 6.1: Groups of order pq and p2q, using Notations 4.1.1, 4.2.1, and 4.2.6.

Order type Pc-relators Parameters Number of types

pq, p > q

Cluster 1: abelian
apq 1
Cluster 2: nonabelian
aq, bp, ba/bρ(p,q) ∆q

p−1

p2q

Cluster 1: nilpotent
ap2q 1
apq, bp 1
Cluster 2: non-nilpotent, with C2

p
∼= P E G

aq, bp, cp, ba/bρ(p,q) ∆q
p−1

aq, bp, cp, (ba, ca)/(b, c)M(p,q,σk
q ) 0 ≤ k ≤ 1

2 (q− 1) 1
2 (q + 1− ∆2

q)∆
q
p−1

aq, bp, cp, (ba, ca)/(b, c)Irr2(p,q) (1− ∆2
q)∆

q
p+1

Cluster 3: non-nilpotent, with Cp2 ∼= P E G
aq, bp2

, ba/bρ(p2,q) ∆q
p−1

Cluster 4: non-nilpotent, with Q E G and P ∼= C2
p

ap, bp, cq, ca/cρ(q,p) ∆p
q−1

Cluster 5: non-nilpotent, with Q E G and P ∼= Cp2

ap2
, bq, ba/bρ(q,p) ∆p

q−1

ap2
, bq, ba/bρ(q,p2) ∆p2

q−1

Theorem 6.1.1. Let p and q be distinct primes. Every group of order pq or p2q has a normal Sylow
subgroup. If p > q, then there are 1 + ∆q

p−1 isomorphism types of groups of order pq. There are five
isomorphism types of groups of 2p2 with p > 2; there are exactly

2 + ∆q
p+1 +

1
2
(q + 5)∆q

p−1 + 2∆p
q−1 + ∆p2

q−1

nonisomorphic groups of order p2q with q > 2. A group of order pq or p2q has a presentation as encoded
in Table 6.1 using notation defined in Notations 4.1.1, 4.2.1, and 4.2.6.

The following lemmas prove Theorem 6.1.1.

Lemma 6.1.2. If G is a group of order pnq with n a positive integer and p > q, then P C G and
G ∼= Cq n P.

Proof. The order of P is pn and [G : P] = q. Since p > q, the number of Sylow p-subgroups
in G is 1 by Sylow theorems (see Theorem A.0.8), thus P is normal in G. On the other hand,
since q is coprime to p, it follows from Theorem 2.4.1 that Q is a complement of P. Since Sylow
q-subgroups of G have order q, this shows that G = Q n P ∼= Cq n P.

Applying Lemma 6.1.2 to the case where n = 1, we determine all groups of order pq.

Lemma 6.1.3. Let p > q be primes. Then there are 1 + ∆q
p−1 isomorphism types of groups of order pq.

In particular, a group G of order pq is abelian if and only if G ∼= Cpq, and G is nonabelian if and only if
G ∼= Cq nϕ Cp where with a faithful action ϕ.

Proof. Let G be a group of order pq. By Theorem A.0.12, G is abelian if and only if G ∼= Cpq.
Lemma 6.1.2 shows that a nonabelian group G of such order is isomorphic to a split extension
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Cq nϕ Cp, where ϕ : Cq → Aut(Cp) ∼= Cp−1 is nontrivial. Since q is prime, such a nontrivial
action must be faithful and exists only if q | (p− 1). Further, Corollary 2.4.3(ii) asserts that the
isomorphism classes of such nontrivial split extension are in bijection with conjugacy classes
of subgroups of order q in Aut(P) ∼= Z∗p. It follows immediately that there is a unique isomor-
phism type of nonabelian group G ∼= Cq nCp. In particular, as demonstrated in Example 4.0.1,
such a nonabelian G is isomorphic to

Pc〈a, b | aq, bp, ba = bρ(p,q)〉,

where ρ(p, q) as defined in Notation 4.1.1.

Let G be a group of order p2q. If G is abelian, then G is isomorphic to Cp2q or Cpq × Cp by
Theorem A.0.12. Hence, it remains to consider the cases where G is nonabelian. We first show
that G has a normal Sylow subgroup.

Lemma 6.1.4. If G is a nonabelian group of order p2q, then G contains a normal Sylow subgroup.

Proof. Suppose for contradiction that G has no normal Sylow subgroup. By Theorem A.0.8, we
deduce that |Sylp(G)| = q and q ≡ 1 mod p. In particular, this implies that q > p. On the
other hand, if |Sylq(G)| = p2, then there are p2(q− 1) elements of order q in G, leaving at most
p2 elements of order coprime to q, which implies that the Sylow p-subgroup is normal in G, a
contradiction. It follows that |Sylq(G)| = p. However, this implies that p > q, a contradiction.
Therefore G has a normal Sylow subgroup.

We now apply Theorem 2.4.1 and Lemma 6.1.4 and see that a nonabelian group of order p2q
is isomorphic to Cq n P or P n Cq, where P ∈ {Cp2 , C2

p}. We look into these cases separately in
the following lemmas.

Lemma 6.1.5. A nonabelian group of order p2q with a normal cyclic Sylow p-subgroup is unique up
to isomorphism and exists if and only if q | (p− 1).

Proof. By Theorem 2.4.1 such groups are isomorphic to Q n P, where P ∼= Cp2 and Q ∼= Cq. On
the other hand, a split extension Q n P is nonabelian if and only Q acts faithfully on P. Since
Aut(P) ∼= Z∗p2 , this requires that q | (p− 1). Uniqueness follows from Corollary 2.4.3. In par-

ticular, such groups are isomorphic to Pc〈a, b | aq, bp2
, ba = bρ(p2,q)〉, where ρ(p2, q) ∈ Aut(P) is

the canonical automorphism of order q in Aut(Cp2) as described in Notation 4.1.1.

Lemma 6.1.6. There are 1
2 (q + 3)∆q

p−1 + ∆q
p+1 isomorphism types of the groups of order p2q with a

normal elementary abelian Sylow p-subgroup if q > 2, and two isomorphism types if q = 2. Each of
them has a presentation as encoded in Table 6.1.

Proof. The enumeration of such groups up to isomorphism follows from Corollary 2.4.3 and
Theorem 4.2.7(i). To find an explicit construction of such groups, we note that if Q = 〈a〉 ∼= Cq
and P = 〈b, c〉, then any Q-module structure of P via ϕ : G → Aut(P) can be described by the
induced image of the generator a in GL2(p), namely,

ϕ : Q→ GL2(p), a 7→
(

i j
e f

)
,
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corresponding to

a 7→
{

b 7→ bice

c 7→ bjc f ,

for some i, j, e, f ∈ Zp such that f i − ej 6≡ 0 mod p. This in turn defines a pc-presentation of
G = Q n P, namely,

Pc〈a, b, c | aq, bp, cp, ba = bice, ca = bjc f 〉.

In conjunction with canonical choices of automorphisms given in Chapter 4, we follow the
proof of Theorem 4.2.7(i) to construct the (ordered) list of isomorphism types of nonabelian
extensions G ∼= Cq n C2

p as follows.

1. If q > 2 and q | (p + 1), then subgroups of order q are irreducible and lie in a single
conjugacy class in GL2(p). Thus, there is a unique isomorphism type of nonabelian split
extensions G = Q nϕ P, with isomorphism class reprsentative

Pc〈a, b, c | aq, bp, cp, ba = c, ca = b−1ci+ip〉,

where ϕ(a) = Irr2(p, q) (recall Notation 4.2.6).

2. If q | (p− 1), then Cq is diagonalisable in GL2(p), implying that it acts diagonalisably on
C2

p. It follows from Theorem 4.2.7(i) and Corollary 2.4.3(ii) that there are 1
2 (q + 3− ∆2

q)

isomorphism types of G ∼= Cq n C2
p, in one-to-one correspondence with the conjugacy

classes of subgroups of order q in GL2(p). In particular, if Z(G) ∼= Cp, then G is isomor-
phic to

Pc〈a, b, c | aq, bp, cp, ba = bρ(p,q)〉;

if Z(G) = 1, then the isomorphism class representatives for such groups are parame-
terised by

Pc〈a, b, c | aq, bp, cp, (b, c)a = (b, c)M(p,q,σk
q )〉,

where 0 ≤ k ≤ 1
2 (q− 1) using notation explained in Notation 4.2.1.

Lemma 6.1.7. There are 2∆p
q−1 + ∆p2

q−1 isomorphism types of nonabelian groups of order p2q with a
normal Sylow q-subgroup. Each of them has a presentation as encoded in Table 6.1.

Proof. Let G be a nonabelian group of order p2q with a normal Sylow q-subgroup, then
G ∼= P nϕ Cq, where |P| = p2. Since Aut(Cq) ∼= Z∗q is cyclic, we apply Corollary 2.4.6 to
construct and enumerate the isomorphism types of these nonabelian split extensions. Since P
is abelian, we further deduce that Z(G) = Ker ϕ. There are two cases to consider.

1. If P ∼= Cp2 , then it has two proper normal subgroups with cyclic quotient. Moreover,
such subgroups are characteristic in P. It follows that a P-action on Cq via ϕ is nontrivial
if and only if Ker ϕ = 1 or Ker ϕ ∼= Cp. In particular, if Ker ϕ = 1, then p2 | (q− 1); if
Ker ϕ ∼= Cp, then p | (q− 1). Conversely, if G ∼= Cp2 n Cq has a trivial centre, then it is
isomorphic to

Pc〈a, b | ap2
, bq, ba = bρ(q,p2)〉;

if G has nontrivial (proper) centre, then it is isomorphic to

Pc〈a, b | ap2
, bq, ba = bρ(q,p)〉.
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2. If P ∼= C2
p, then it has a unique Aut(P)-class of proper normal subgroups with cyclic quo-

tients. Therefore, G is nonabelian if and only if ϕ : P→ Aut(Cq) is nontrivial, if and only
if Ker ϕ ∼= Cp. By Corollary 2.4.6, such a split extension is unique up to isomorphism,
and is isomorphic to

Pc〈a, b, c | ap, bp, cq, ca = cρ(q,p)〉.

Combining both cases, the enumeration follows; we obtain the presentations as encoded in
Table 6.1 accordingly.

6.2 Groups of order p3q

In this section, we discuss the groups of order p3q. Western determined the isomorphism
types of these groups in [51], where the proofs are detailed and in length. Here we provide
a proof built on what we have established previously. We derived our results independent of
Western’s, but our main approaches are similar and our enumeration results agree.

6.2.1 Summary of results

Theorem 6.2.1. Then there are

5 + 7∆2
p + 2∆4

q−1 + ∆8
q−1 + 3∆2

p∆3
q + ∆2

p∆7
q + 10∆2

q

isomorphism types of groups of even order p3q; then there are

5 + (5 + p)∆p
q−1 + 2∆p2

q−1 + ∆p3

q−1 +
1
6
(q2 + 13q + 36 + 4∆3

q−1)∆
q
p−1

+ 2∆q
p+1 + (1− ∆3

q)∆
q
p2+p+1

(6.2.1)

isomorphism types of groups of odd order p3q. A group of order p3q has a presentation as encoded in
Tables 6.2 and 6.3.

Note that ∆q
p+1 + (1− ∆3

q)∆
q
p2+p+1 in (6.2.1) can be written as (1− ∆q

p−1)∆
q
(p+1)(p2+p+1).

6.2.2 Determination of groups of order p3q

From Burnside’s pq-theorem we know that all groups of order p3q are solvable. We also know
that if p > q, then a group of such order always contains a normal Sylow p-subgroup by
Lemma 6.1.2. In the following discussion, we will first show that a group of order p3q always
contains a normal Sylow subgroup except when it is isomorphic to Sym4. Then we list all
the isomorphism types of the nilpotent groups of this order type using the fact that a finite
group is nilpotent if and only if all of its Sylow subgroups are normal. For the remaining non-
nilpotent groups with a normal Sylow subgroup, we divide the determination into two cases
depending on the existence of a normal Sylow q-subgroup, and for each case we further divide
our discussions depending on the isomorphism types of the Sylow p-subgroups. In particular,
there are only five possible isomorphism types of Sylow p-subgroups (with pc-presentations
in Table 5.1) in a group of order p3q.
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TABLE 6.2: Groups of order p3q with a normal Sylow q-subgroup, using Nota-
tions 4.1.1, 4.2.1, and 4.2.6.

Pc-relators Parameters Number of types
Cluster 1: nilpotent
ap3q 1
ap2

, bpq 1
ap, bp, cpq 1
ap, bp, cp, dq, ba/bc 1− ∆2

p
ap/c, bp, cp, dq, ba/bc 1− ∆2

p
a2, b4, cq, ba/b3 ∆2

p
a2/b2, b4, cq, ba/b3 ∆2

p
Cluster 2: non-nilpotent, P ∼= Cp3

ap3
, bq, ba/bρ(q,p) ∆p

q−1

ap3
, bq, ba/bρ(q,p2) ∆p2

q−1

ap3
, bq, ba/bρ(q,p3) ∆p3

q−1

Cluster 3: non-nilpotent, P ∼= Cp2 × Cp

ap2
, bp, cq, cb/cρ(q,p) ∆p

q−1

ap2
, bp, cq, ca/cρ(q,p) ∆p

q−1

ap2
, bp, cq, cb/cρ(q,p), ca/cρ(q,p2) ∆p2

q−1

Cluster 4: non-nilpotent, P ∼= C3
p

ap, bp, cp, dq, da/dρ(q,p) ∆p
q−1

Cluster 5: non-nilpotent, P ∼= p1+2
+ or P ∼= D4

ap, bp, cp, dq, ca/bc, da/dρ(q,p) ∆p
q−1

a2, b4, cq, ba/b3, ca/c−1 ∆2
p

Cluster 6: non-nilpotent, P ∼= p1+2
− or P ∼= Q8

ap, bp2
, cq, ba/bp+1, cb/cρ(q,p) (1− ∆2

p)∆
p
q−1

ap, bp2
, cq, ba/bp+1, ca/cρ(q,p,k) k ∈ Z∗p (p− 1− ∆2

p)∆
p
q−1

a2/b2, b4, ba/b3, cq, ca/c−1 ∆2
p

Lemma 6.2.2. Let G be a group of order p3q. Then G has no normal Sylow subgroups if and only if
G ∼= Sym4.

Proof. Since Sym4 has 3 subgroups of order 8 and 4 subgroups of order 3, it follows from
Theorem A.0.8 that G does not normalise a nontrivial Sylow subgroup. Conversely, if G has
no normal Sylow p-subgroup, then Theorem A.0.8 shows that there are q Sylow p-subgroups
in G. It follows that q ≡ 1 mod p, which implies that p < q. Similarly, nq(G) ≡ 1 mod q
and nq(G) | p3, and it follows that nq(G) > q > p. Also, since all q-subgroups of G intersect
trivially, we deduce that nq(G) 6= p3, for otherwise there could be at most one subgroup of
order p3 in G, contradicting that np(G) = q. Therefore, nq(G) = p2, which implies that q |
(p2 − 1) = (p− 1)(p + 1). Since p < q as established, it follows that q | (p + 1), but q ≥ p + 1,
thus p = 2 and q = 3. This affirms that G has order 24 and has 4 Sylow 3-subgroups. A direct
computation (for example, carried out in GAP [27]) shows that G ∼= Sym4. Alternatively, here
we also include some theoretical arguments. Note that the conjugation action of G on Sylq(G)

gives rise to a homomorphism f : G → Sym4. Since K = Ker f ≤ NG(Q) and |G|/|NG(Q)| = 4
for all Q ∈ Syl3(G), implying |NG(Q)| = 6, we know that |K| 6= 3, 6, for otherwise K C G
contains a characteristic subgroup of order 3 that is normal in G. Also, observe that |K| 6= 2,
for otherwise G/K has order 12 and contains a normal Sylow subgroup as seen in Lemma 6.1.4.
In particular, if G/K contains a normal Sylow 3-subgroup, then KQ/K = NG(Q)/K is normal
in G/K. This implies that NG(Q) C G and G contains a normal Sylow 3-subgroup; if G/K
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TABLE 6.3: Groups of order p3q without normal Sylow q-subgroup, using Nota-
tions 4.1.1, 4.2.1, and 4.2.6.

Pc-relators Parameters Number of types
Cluster 7: P C G, P ∼= Cp3

aq, bp3
, ba/bρ(p3,q) ∆q

p−1

Cluster 8: P C G, P ∼= Cp2 × Cp

aq, bp2
, cp, ca/cρ(p,q) ∆q

p−1

aq, bp2
, cp, ba/bρ(p2,q) ∆q

p−1

aq, bp2
, cp, ba/bρ(p2,q), ca/cρ(p,q,k) k ∈ Z∗q (q− 1)∆q

p−1

Cluster 9: P C G, P ∼= C3
p

aq, bp, cp, dp, ba/bρ(p,q) ∆q
p−1

aq, bp, cp, dp, ba/bρ(p,q), ca/cρ(p,q,σk
q ) 0 ≤ k ≤ 1

2 (q− 1) 1
2 (q + 1− ∆2

q)∆
q
p−1

aq, bp, cp, dp, ba/bρ(p,q), ca/cρ(p,q), da/dρ(p,q,k) k ∈ Z∗q (q− 1)∆q
p−1

aq, bp, cp, dp, ba/bρ(p,q), ca/cρ(p,q,σk
q ), da/dρ(p,q,σ`

q ) (k, `) ∈ P 1
6 (q

2 − 5q + 6 + 4∆3
q−1)∆

q
p−1

aq, bp, cp, dp, (ba, ca)/(b, c)Irr2(p,q) (1− ∆2
q)∆

q
p+1

aq, bp, cp, dp, (ba, ca, da)/(b, c, d)Irr3(p,q) (1− ∆2
q)(1− ∆3

q)∆
q
p2+p+1

Cluster 10: P C G, P ∼= p1+2
+

aq, bp, cp, dp, cb/cd, ba/bρ(p,q,q−1), ca/cρ(p,q) ∆q
p−1

aq, bp, cp, dp, cb/cd, ba/bρ(p,q), da/dρ(p,q) ∆q
p−1

aq, bp, cp, dp, cb/cd, ba/bρ(p,q,k), ca/cρ(p,q,q+1−k), da/dρ(p,q) 2 ≤ k ≤ 1
2 (q + 1) 1

2 (q− 1− ∆2
q)∆

q
p−1

aq, bp, cp, dp, cb/cd, (ba, ca)/(b, c)Irr2(p,q) (1− ∆2
q)(1− ∆2

p)∆
q
p+1

Cluster 11: P C G, P ∼= p1+2
− or Q8

aq, bp, cp2
, ca/cρ(p2,q), cb/cp+1. ∆q

p−1
a3, b2/c2, c4, cb/c3, ba/c, ca/bc ∆2

p∆3
q

Cluster 12: no normal Sylow subgroup
a2, b3, c2, d2, ba/b2, ca/d, cb/d, da/c, db/cd ∆2

p∆3
q

Parameter sets

P =

{
{(x, y) ∈ Z2

q−1 : 1 ≤ x ≤ 1
3 (q− 2), 2x ≤ y ≤ q− 2− x} (q ≡ 2 mod 3)

{(x, y) ∈ Z2
q−1 : 1 ≤ x ≤ 1

3 (q− 1), 2x ≤ y ≤ q− 2− x} ∪ {( 1
3 (q− 1), 2

3 (q− 1))} (q ≡ 1 mod 3)

contains a normal Sylow 2-subgroup, then S/K C G/K for any S ≤ G such that K C S and
|S/K| = 4, and it follows that S ∈ Syl2(G) and S = P C G by correspondence theorem (see
[45, Theorem 2.28]), a contradiction. Therefore f is injective and G embeds into Sym4; since
|G| = |Sym4|, it follows that G ∼= Sym4.

The nilpotent groups of order p3q are isomorphic to P×Q, where Q ∼= Cq and the isomorphism
types of P are listed in Table 5.1. We thus obtain the following result.

Lemma 6.2.3. There are five isomorphism types of nilpotent groups of order p3q, namely,

Cp3q, Cp2q × Cp, Cpq × C2
p, p1+2

+ × Cq, p1+2
− × Cq.

It remains to consider the isomorphism types of non-nilpotent groups of order p3q with a
normal Sylow subgroup. Theorem 2.4.1 asserts that such groups are isomorphic to P n Q
or Q n P; Corollary 2.4.3(ii) and Corollary 2.4.6 classify these split extensions. In particular,
Corollary 2.4.6(ii) shows that the isomorphism types of non-nilpotent split extensions Q n P
are in bijection with the conjugacy classes of subgroups of order q in Aut(P); using notation
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from Definition 2.4.4, it follows that the number of isomorphism types of P n Q is

∑
`|m

∑
K∈K`

indK,

where m = gcd(p3, q− 1). We use these results in the following lemmas to explicitly determine
the isomorphism types of non-nilpotent groups of order p3q with a normal Sylow subgroup.

Lemma 6.2.4. There are
(5 + p)∆p

q−1 + 2∆p2

q−1 + ∆p3

q−1

isomorphism types of non-nilpotent groups of order p3q with a normal Sylow q-subgroup, each of which
has a presentation as encoded in Table 6.2.

Proof. By assumption, each such group has the form G = P nϕ Q, where P acts on Q nontriv-
ially via ϕ : P → Aut(Q). This requires that |ϕ(P)| divides |Aut(Q)|. Since Aut(Q) ∼= Z∗q , it

follows that ϕ(P) is normal in Aut(Q), and there are ∆p
q−1 + ∆p2

q−1 + ∆p3

q−1 nontrivial cyclic sub-
groups of order dividing p3 in Aut(Q). In particular, we can apply Corollary 2.4.6 to construct
and enumerate such split extensions PnQ. Following the notation in Corollary 2.4.6, we know
it suffices to consider Ker ϕ = K for some representative K ∈ K` with ` | gcd(p3, q− 1). Since
we only consider non-nilpotent P nϕ Q, it follows that Z(G) ≤ K. Furthermore, since K acts
trivially on Q, we know that K×Q is nilpotent. Let F(G) be the largest nilpotent subgroup of
G, namely, the Fitting subgroup. Then K×Q ≤ F(G). Since such groups exist only if |ϕ(P)| is
greater than 1 and divides |Aut(Q)|, in the following we consider p | (q− 1) throughout.

1. If P ∼= Cp3 , then Z(G) = Ker ϕ = K for some K ∈ Kp ∪ Kp2 ∪ Kp3 , and indK = 1 for
each such K. Let c1 be the number of isomorphism types of groups G ∼= Cp3 n Cq, then it

follows from Corollary 2.4.6 that c1 = ∆p
q−1 + ∆p2

q−1 + ∆p3

q−1. In particular, if |Z(G)| = p2,
then G is isomorphic to

Pc〈a, b | ap3
, bq, ba = bρ(q,p)〉;

if |Z(G)| = p, then G is isomorphic to

Pc〈a, b | ap3
, bq, ba = bρ(q,p2)〉;

if |Z(G)| = 1, then G is isomorphic to

Pc〈a, b | ap3
, bq, ba = bρ(q,p3)〉.

2. If P ∼= Cp2 × Cp, then Z(G) = Ker ϕ = K for some K ∈ Kp ∪ Kp2 . For K ∈ Kp, we have
|K| = p2; there are two Aut(P)-classes of such subgroups, namely, K ∼= Cp2 or K ∼= C2

p.
For K ∈ Kp2 , we have |K| = p; such subgroups are isomorphic to Cp2 and lie in a single
Aut(P)-class. We determine indK = 1 for all K ∈ Kp ∪ Kp2 . Applying Corollary 2.4.6,

we count in total c2 = 2∆p
q−1 + ∆p2

q−1 isomorphism types of such groups. In particular, if
Z(G) ∼= Cp2 , then G is isomorphic to

Pc〈a, b, c | ap2
, bp, cq, cb = cρ(p,q)〉;
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if Z(G) ∼= C2
p, then G is isomorphic to

Pc〈a, b, c | ap2
, bp, cq, ca = cρ(p,q)〉;

if Z(G) ∼= Cp, then G is isomorphic to

Pc〈a, b, c | ap2
, bp, cq, ca = cρ(q,p2)〉.

3. If P ∼= C3
p, then there is a unique Aut(P)-class of normal subgroups with cyclic quotient

and Z(G) = Ker ϕ = K for some K ∈ Kp. Since K ∼= C2
p and indK = 1 for K ∈ Kp,

and |Kp| = 1, it follows that there are c3 = ∆p
q−1 isomorphism types of P nϕ Q with

representative G ∼= C2
p × (Cp n Cq) given by

Pc〈a, b, c, d | ap, bp, cp, dq, da = dρ(p,q)〉.

4. If P ∼= p1+2
+ or P ∼= D4, then we can write P = Pc〈a, b, c | ap, bp, cp, ba = bc〉. If p > 2, then

there is a unique Aut(P)-class of normal subgroups K with cyclic quotient and P/K ∼= Cp.
In this case, it suffices to consider G ∼= P nϕ Cq with Ker ϕ = K = 〈b, c〉 ∼= C2

p and we
have indK = 1. If p = 2 and P ∼= D4, then there are two Aut(D4)-classes of normal
subgroups with a cyclic quotient; that is, K ∼= C2 or K ∼= C4. In each case, indK = 1. In
total, we count c4 = ∆p

q−1 + ∆2
p isomorphism types of groups G ∼= p1+2

+ nϕ Cq. Given
such a group G, we can determine its isomorphism type by a case distinction on F(G): if
F(G) ∼= Cp × Cqp, then G is isomorphic to

Pc〈a, b, c, d | ap, bp, cp, dq, ba = bc, da = dρ(q,p)〉;

if F(G) ∼= C4p, then G is isomorphic to

Pc〈a, b, c | a2, b4, cq, ba = b3, ca = c−1〉.

5. If P ∼= p1+2
− with p > 2, then we can write P = Pc〈a, b | ap, bp2

, ba = bp+1〉 for some
a, b ∈ G. Observe that K` 6= ∅ if and only if ` = p. Moreover, K ∈ Kp is either
cyclic, generated by akb for some k ∈ Zp, or elementary abelian, generated by {a, bp}.
Note that it is sufficient to consider k = 0: suppose K = 〈akb〉 for some k ∈ Z∗p, then
the map {b0 7→ akb, a0 7→ a} induces an isomorphism on P (Theorem 3.1.1). In other
words, {〈akb〉 | k ∈ Zp} lies in a single Aut(P)-class. We see from Table 5.2 that 〈a, bp〉 is
characteristic in P. Thus, Kp = {〈b〉 ∼= Cp2 , 〈a, bp〉 ∼= C2

p}.
(a) Suppose that Ker ϕ = K = 〈b〉 and Q = 〈c〉. Then G ∼= Cp n (Cp2 n Cq), and we

show that indK = p− 1 by verifying that each of the possible value of k ∈ Z∗p in

G(k) = Pc〈a, b, c | ap, bp2
, cq, ba = bp+1, ca = cρ(q,p,k)〉 (6.2.2)

adds a new isomorphism type: Suppose, for a contradiction, that G(1) ∼= G(x) for
some 1 < x ∈ Z∗p, then there is an isomorphism G(1)→ G(x) described by

a 7→ ae1 be2 p

b 7→ ae3 be4

c 7→ c f

,
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where ei ∈ Zp with e1, e4 > 0. A direct calculation shows that such an isomorphism
exists only if e1 = x and e4(p + 1)e1 ≡ e4(p + 1) mod p2. However, since x ∈ Z∗p,
this forces that x = 1, a contradiction. Thus, there are (p− 1)∆p

q−1 new isomorphism
types arising from the parametrised presentation (6.2.2).

(b) If Ker ϕ = K = 〈a, bp〉, then G ∼= Cp n (Cp2 n Cq) has a presentation of the form

Pc〈a, b, c | ap, bp2
, cq, ba = bp+1, cb = cr〉,

where r ∈ Z∗q has order p. Since ϕ(P) = 〈ϕ(b)〉 is uniquely determined as the
normal subgroup of order p in Aut(Q), we have indK = 1 and it suffices to consider
r = ρ(q, p) by Corollary 2.4.6.

If P ∼= Q8, then G has a presentation of the form

Pc〈a, b, c | a2 = b2, b4, cq, ba = b3, ca = cr1 , cb = cr2〉,

where r2
i ≡ 1 mod q for i = 1, 2. Since |K4| = 1 in Q8, we deduce that Ker ϕ ∼= C4 and

K = 〈b〉 ∈ K4 is characteristic in P. It follows that r2 = 1 since [b, Q] = 1, and G is
uniquely determined by the action of 〈a〉 on Q. In particular, G is isomorphic to

Pc〈a, b, c | a2 = b2, b4, cq, ca = c−1〉.

In total, there are c5 = (p− ∆2
p)∆

p
q−1 isomorphism types of G if p1+2

−
∼= P ∈ Sylp(G) with

a normal Sylow q-subgroup.

Combing all of the above, we have the explicit isomorphism class representatives for all non-
nilpotent groups of order p3q with a normal Sylow q-subgroup; the enumeration follows from
summing ci over i ∈ {1, . . . , 5}. In particular, we extract the results for the special case |G| = 8q
and count

7∆2
p + 2∆4

q−1 + ∆8
q−1

such groups of order 8q.

Lemma 6.2.5. If q = 2, then there are 10 isomorphism types of non-nilpotent groups of order p3q with
a normal Sylow p-subgroup; if q = 3, then there are 14∆q

p−1 + 2∆q
p+1 isomorphism types; if q > 3,

then there are
1
6
(q2 + 13q + 36 + 4∆3

q−1)∆
q
p−1 + 2∆q

p+1 + ∆q
p2+p+1

isomorphism types.

Proof. Every such group has the form G = Q nϕ P, where ϕ : Q → Aut(P) is nontrivial. Since
Q is simple, ϕ(Q) ∼= Cq for any such nontrivial action ϕ. Since p is coprime to |Q|, the (normal)
Sylow p-subgroup P is a strong Q-group and every Q-action fixes the characteristic subgroups
of P setwise, as listed in Table 5.2. We apply Corollary 2.4.3 to enumerate and determine the
isomorphism types of such split extensions by investigating the conjugacy classes of cyclic q-
subgroups of Aut(P) for each isomorphism type of P. Similar to the preceding proof, we make
canonical choices defined in Chapter 4 to find the isomorphism class representatives.

1. If P ∼= Cp3 , then Aut(P) ∼= Z∗p3 and G ∼= Cq nϕ Cp3 is a nonabelian metacyclic split
extension. It follows that q | (p − 1). Since Cq ∼= ϕ(Q) C Aut(P), Corollary 2.4.3(ii)
shows that there is a unique isomorphism type of such split extensions, namely,

Pc〈a, b | aq, bp3
, ba = bρ(p3,q)〉.
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2. If P ∼= Cp2 × Cp, then |Aut(P)| = p3(p − 1)2. It follows that q | (p − 1). We further
deduce that Aut(P) has a normal Sylow p-subgroup by Theorem A.0.8. On the other
hand, studying the automorphisms of P we see that Aut(P) contains a subgroup isomor-
phic to C2

p−1. It follows from Theorem 2.4.1 that this subgroup is unique up to conjugacy
and complements the normal Sylow p-subgroup in Aut(P) Thus, we count (q + 1)∆q

p−1
conjugacy classes of cyclic subgroups Cq in Aut(P). Now we explicitly determine the
isomorphism types. Write P = Pc〈a, b | ap2

, bp〉. Then from Table 5.2 we know that the
subgroups 〈ap, b〉 and 〈b〉 are characteristic in P. As a result, the characteristic subgroups
of P are normal in every such extension. Thus, every such group G ∼= Q n P has a pre-
sentation of the form

G(x1, x2) = Pc〈a, b, c | aq, bp2
, cp, ba = bx1 , ca = cx2〉,

where x1 ∈ Z∗p2 , x2 ∈ Z∗p and x1, x2 have order at most q. It remains to investigate the
possibilities for xi. If x1 = 1, then G(1, x2) ∼= (Cq nCp)×Cp2 is determined by the unique
isomorphism type of the nonabelian group Cq n Cp and G is isomorphic to

Pc〈a, b, c | aq, bp2
, cp, ca = cρ(p,q)〉.

Similarly, if x2 = 1, then G(x1, 1) ∼= (Cq n Cp2)× Cp is determined by the unique isomor-
phism type of the nonabelian group Cq n Cp2 and has a presentation

Pc〈a, b, c | aq, bp2
, cp, ba = bρ(p2,q)〉.

Now we are left with the case where both x1, x2 have order q. First we note that it is suf-
ficient to fix x1 = ρ(p2, q): a different choice of x1 ∈ Z∗p2 can be written as ρ(p2, q, k) for

some k ∈ Z∗q , but we check that the map {a 7→ ak, b 7→ b, c 7→ c} extends to an isomor-
phism G(ρ(p2, q, k), xk

2)→ G(ρ(p2, q), x2). It remains to investigate the effect of choosing
different values of x2 in G(ρ(p2, q), x2). By investigating the maps on the generators, we
see that G(ρ(p2, q), k) ∼= G(ρ(p2, q), k′) if and only if k ≡ k′ mod q. We also know that
there are precisely q− 1 conjugacy classes of subgroups of order q in Aut(P) remained to
be considered, accounting for the remaining q− 1 isomorphism types, namely,

Pc〈a, b, c | aq, bp2
, cp, ba = bρ(p2,q), ca = cρ(p,q,k)〉

parametrised by k ∈ Z∗q . In conclusion, there are in total (q + 1)∆q
p−1 isomorphism types

of such non-nilpotent split extensions Cq n (Cp2 × Cp), agreeing with the number of con-
jugacy classes of subgroups of order q in Aut(P).

3. If P ∼= C3
p, then Aut(P) ∼= GL3(p) with |Aut(P)| = p3(p− 1)3(p2 + p + 1)(p + 1), and

the nonabelian split extensions G ∼= Q nϕ P are in one-to-one correspondence with the
conjugacy classes of cyclic subgroups Cq in GL3(p) as counted in Theorem 4.2.7(iv). We
look at the cases where q divides (p − 1), (p2 + p + 1) or (p + 1), and determine the
isomorphism types of Cq n C3

p in accordance with the conjugacy class representatives
discussed in the proof of Theorem 4.2.7(iv).

(a) If q | (p− 1), then Q acts diagonalisably on C3
q . We see in the proof of Theorem 4.2.7

that, up to conjugacy, Q has a generating element represented by a diagonal matrix
of the form diag(a, 1, 1), diag(a, a(α

k), 1), and diag(a, a(α
k), a(α

`)), where a = ρ(p, q),
and α = σq.
If |Z(G)| = p2, then Q acts (with our canonical choices of automorphisms) on P via
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〈diag(a, 1, 1)〉, and G is isomorphic to

Pc〈a, b, c, d | aq, bp, cp, dp, ba = bρ(p,q)〉.

On the other hand, if |Z(G)| = p, then Q acts via 〈diag(a, a(α
k), 1)〉, in which case

G ∼= (Cq n C2
p)× Cp. Such groups are fully determined by the isomorphism types

of the centreless factor Cq nC2
p, which are listed in Table 6.1. More specifically, there

are 1
2 (q + 1− ∆2

q) isomorphism types of such groups in this case, namely,

Pc〈a, b, c, d | aq, bp, cp, dp, ba = bρ(p,q), ca = c(ρ(p,q,σk
q )〉

parametrised by k ∈ {0, . . . b 1
2 (q− 1)c}.

It remains to consider the cases where Z(G) = 1, in which case Q acts on P via
〈diag(a, a(α

k), a(α
`))〉. In this case, any such group is isomorphic to

G(x, y) = Pc〈a, b, c, d | aq, bp, cp, dp, ba = bρ(p,q), ca = cρ(p,q,σx
q ), da = dρ(p,q,σy

q )〉,

for some x, y ∈ Z∗q with r ∈ Z∗p of order q. From Corollary 2.4.3(ii) and Theo-
rem 4.2.7(iv) we know that two such groups G(k, `) and G(x, y) are isomorphic if
and only if the cyclic groups 〈diag(r, r(σ

k
q ), r(σ

`
q ))〉 and 〈diag(r, r(σ

x
q ), r(σ

y
q ))〉 are conju-

gate in GL3(p), if and only if {x, y} ∈ {{k, `}, {−`, k − `}, {`− k,−k}}. It follows
that if k = `, then the pairs (0,−k), (−k, 0), (k, k) define the same isomorphism type,
and there are q− 1 isomorphism types of G parametrised by

Pc〈a, b, c, d | aq, bp, cp, dp, ba = bρ(p,q), ca = cρ(p,q), da = dρ(p,q,k)〉,

with k ∈ Z∗q . It remains to consider that k 6= ` and k, ` ∈ {1, . . . , q− 2}. To find the
parameter sets {k, `} that define nonisomorphic groups, it is equivalent to find the
remaining 1

6 (q
2 − 5q + 6 + 4∆3

q−1) representatives for the Sym3-orbits in Z3
q−1 (see

Theorem 4.2.7(iv)). Without loss of generality, consider k < `, and define the repre-
sentative of each orbit to be the ordered pair (a, b) ∈ {(k, `), (−k, `− k), (−`, k− `)}
such that a = min (k,−k,−`) mod (q− 1). A direct computation shows that at least
one of the ordered pairs (k, `), (−k, `− k), (−`, k − `) contains an entry that is less
than or equal to 1

3 (q− 1). Hence, it suffices to consider 1 ≤ k ≤ 1
3 (q− 1). In par-

ticular, k = 1
3 (q − 1) is an integer if and only if 3 | (q − 1). By our choice of the

representatives, it follows that 2k ≤ ` ≤ q− 2− k for all pairs (k, `) with an excep-
tion at ( 1

3 (q− 1), 2
3 (q− 1)), which exists only if 3 | (q− 1). In conclusion, there are

1
6 (q

2 − 5q + 6 + 4∆3
q−1) isomorphism types in this case, namely,

Pc〈a, b, c, d | aq, bp, cp, dp, ba = bρ(p,q), ca = cρ(p,q,σk
q ), da = dρ(p,q,σ`

q )〉,

parametrised by (k, `) ∈ Z2
q−1 with k < `, such that (k, `) = ( 1

3 (q− 1), 2
3 (q− 1)), or

1 ≤ k ≤ 1
3 (q− 1) and 2k ≤ ` ≤ q− 2− k.

(b) If q - (p− 1) and q | (p2 + p+ 1), then q > 3 and Q acts irreducibly on C3
p. Since there

is a unique conjugacy class of irreducible subgroups Cq in GL3(q), such extensions
are isomorphic to

Pc〈a, b, c, d | aq, bp, cp, dp, (ba, ca, da) = (b, c, a)Irr3(p,q)〉,

where Irr3(p, q)is the canonical irreducible automorphism of order q in GL3(p) de-
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scribed in Notation 4.2.6.

(c) Lastly, consider q - (p − 1) and q | (p + 1). This implies that q > 2. Since q di-
vides neither |Aut(Cp)| nor |GF(p3)|, the Q-action on P embeds into an irreducible
subgroup of GL2(p) and G is isomorphic to (Cq n C2

p)× Cp. In particular, G has a
pc-presentation

Pc〈a, b, c, d | aq, bp, cp, dp, (ba, ca) = (b, c)Irr2(p,q)〉,

where Irr2(p, q)as described in Notation 4.2.6.

4. If P ∼= D4, then Aut(P) ∼= D4, in which case there exists no non-nilpotent split extension
Cq n D4. If p > 2 and P ∼= p1+2

+ , then |Aut(P)| = p3(p− 1)2(p + 1) by Proposition 5.1.9.
Moreover, Proposition 5.1.9 shows that Aut(P) is an extension of C2

p by GL2(p), and it
contains a normal Sylow p-subgroup. There are two cases to consider: either q | (p− 1)
or q | (p+ 1). For each case we make further distinctions on the centre of G. In particular,
we know that the centre of G is characteristic in P, leaving only two possibilities: either
Z(G) ∼= Cp or Z(G) is trivial. Moreover, the conjugacy classes of cyclic groups of order
q in Aut(P) are in one-to-one correspondence with those of Aut(P/Φ(P)) ∼= GL2(p) by
Proposition 5.1.9. In conjunction with Lemma 4.2.8, it follows that the number of non-
nilpotent isomorphism types of Cq n p1+2

+ is counted by Theorem 4.2.7(i). To explicitly
determine the isomorphism types arising from this case, we lift the Q-actions on the
normal subgroup C2

p in P to determine the split extensions Q n P.

(a) If q | (p− 1) and Z(G) ∼= Cp, then Q acts trivially on Z(P) and G is isomorphic to

G(r1, r2) = Pc〈a, b, c, d | aq, bp, cp, dp, cb = cd, ba = br1 , ca = cr2〉,

for some r1, r2 ∈ Z∗p such that r1, r2 are of order at most q and not both 1. To deter-
mine the values of ri, note that (cb)a = (ca)(b

r1 ) is required for the pc-presentation to
be consistent, but

(cb)a = (cd)a = cada = cr2 d and (ca)(b
r1 ) = (cr2)(b

r1 ) = cr2 dr1r2 ,

which forces r2 ≡ r−1
1 mod p and both r1, r2 ∈ Z∗p have order q. On the other hand,

since {a 7→ ak} extends to an isomorphism G(rk
1, r−k

1 ) → G(r1, r−1
1 ) for any k ∈ Z∗q ,

it suffices to fix r1 = ρ(p, q). Hence, there is a unique isomorphism type of G:

Pc〈a, b, c, d | aq, bp, cp, dp, cb = cd, ba = bρ(p,q), ca = cρ(p,q,q−1)〉.

(b) If q | (p− 1) and Z(G) = 1. Then Q acts nontrivially on Z(P)C G, and G is isomor-
phic to

G(r1, r2, r3) = Pc〈a, b, c, d | aq, bp, cp, dp, cb = cd, ba = br1 , ca = cr2 , da = dr3〉,

where each r1, r2 ∈ Z∗p has order at most q and r3 ∈ Z∗p has order q. Since {a 7→
ak} extends to an isomorphism G(r1, r2, rk

3) → G(r(k
−1)

1 , r(k
−1)

2 , r3) for any k ∈ Z∗q , it
suffices to fix r3 = ρ(p, q), denoted by r. Then we can write r1 = rx, r2 = ry for some
x, y ∈ Zq. For such a pc-presentation to be consistent it is required that

(cb)a = (ca)(b
a),
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which is equivalent to
c(r

y)dr = c(r
y)d(r

x+y);

that is,
x + y ≡ 1 mod q.

Hence, any such group G is isomorphic to

G(k)=Pc〈a, b, c, d | aq, bp, cp, dp, cb = cd, ba = bρ(p,q,k), ca = cρ(p,q,q+1−k), da = dρ(p,q)〉,

for some k ∈ Z∗q . However, the map {b 7→ c, c 7→ b, d 7→ d−1} extends to an iso-
morphism, hence the groups G(k) and G(q + 1− k) are isomorphic for any k ∈ Z∗q .
Therefore, there are 1

2 (q − 1− ∆2
q) new isomorphism types arising from this case,

parametrised by G(k) with k ∈ {2, . . . , b 1
2 (q + 1)c}.

(c) If q | (p + 1), then Q acts trivially on 〈d〉. Since there is a unique conjugacy class of
subgroups of order p + 1 in Aut(P), there is a unique conjugacy class of irreducible
cyclic subgroups of order q in Aut(P), corresponding to the unique isomorphism
type of such extensions, namely,

Pc〈a, b, c, d | aq, bp, cp, dp, cb = cd, (ba, ca) = (b, c)Irr2(p,q)〉.

In total, there are 1
2 (q + 3− ∆2

q)∆
q
p−1 + (1− ∆2

q)∆
q
p+1 isomorphism types, in one-to-one

correspondence with the conjugacy classes of reducible cyclic subgroups Cq in GL2(p),
with p > 2.

5. If P ∼= p1+2
− and p > 2, then Aut(P) ∼= Cp−1 n p1+2

+ has size p3(p − 1) by Proposi-
tion 5.1.10. From Theorem A.0.8 and Theorem 2.4.1 we know Aut(P) has a normal Sylow
p-subgroup with a unique (up to conjugacy) complement isomorphic to Cp−1. It follows
that q | (p − 1) and ϕ(Q) is unique up to conjugacy in Aut(P), corresponding to the
unique isomorphism type of such extensions, namely,

Pc〈a, b, c | aq, bp, cp2
, cb = cp+1, ca = cρ(p2,q)〉.

On the other hand, if P ∼= Q8, then Aut(P) ∼= Sym4, and it follows that q = 3. Moreover,
ϕ(Q) is a Sylow q-subgroup of Aut(P) ∼= Sym4; Sylow q-subgroups are conjugate in
Aut(P). By Corollary 2.4.3, this shows that there is a unique non-nilpotent split extension
C3 n Q8, namely,

Pc〈a, b, c, d | a3, b2 = c2 = d, d2, cb = cd, ba = c, ca = bc.〉 (6.2.3)

In particular, this group is isomorphic to SL2(3).

Combining all of the cases above, the claimed result follows. In particular, there are 10 non-
nilpotent isomorphism types of the groups of order 2p3, each of which contains a normal Sylow
p-subgroup.
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TABLE 6.4: Isomorphism type of groups of order p2q2, using Notations 4.1.1, 4.2.1, and 4.2.6.

Pc-relators Structure Number of types
Cluster 1: nilpotent
ap2q2

1
ap, bpq2

1
ap2q, bq 1
apq, bpq 1
Cluster 2: non-nilpotent, Cp2 ∼= P C G with complement Q ∼= Cq2

aq2
, bp2

, ba/bρ(p2,q) ∆q
p−1

aq2
, bp2

, ba/bρ(p2,q2) ∆q2

p−1

Cluster 3: non-nilpotent, Cp2 ∼= P C G with complement Q ∼= C2
q

aq, bq, cp2
, ca/cρ(p2,q) ∆q

p−1
Cluster 4: non-nilpotent, C2

p
∼= P C G with complement Q ∼= Cq2 , or (p, q) = (3, 2)

aq2
, bp, cp, ba/bρ(p,q) ∆q

p−1

aq2
, bp, cp, (ba, ca)/(b, c)M(p,q,σk

q ) 0 ≤ k ≤ 1
2 (q− 1) 1

2 (q + 1− ∆2
q)∆

q
p−1

aq2
, bp, cp, ba/bρ(p,q2) ∆q2

p−1

aq2
, bp, cp, (ba, ca)/(b, c)

M(p,q2,σk
q2 ) 0 ≤ k ≤ 1

2 (q
2 − q) 1

2 (q
2 − q + 2)∆q2

p−1

aq2
, bp, cp, (ba, ca)/(b, c)M(p,q2,kq) k ∈ Z∗q (q− 1)∆q2

p−1
a9, b2, c2, ba/c, ca/bc ∆3

p∆2
q

aq2
, bp, cp, (ba, ca)/(b, c)Irr2(p,q) (1− ∆2

q)∆
q
p+1

aq2
, bp, cp, (ba, ca)/(b, c)Irr2(p,q2) ∆q2

p+1

Cluster 5: non-nilpotent, C2
p
∼= P C G with complement Q ∼= C2

q , or (p, q) = (3, 2)
aq, bq, cp, dp, ca/cρ(p,q) ∆q

p−1

aq, bq, cp, dp, (ca, da)/(c, d)M(p,q,σk
q ) 0 ≤ k ≤ 1

2 (q− 1) 1
2 (q + 1− ∆2

q)∆
q
p−1

aq, bq, cp, dp, ca/cρ(p,q), db/dρ(p,q) ∆q
p−1

a3, b3, c2, d2, ca/d, da/cd ∆3
p∆2

q
aq, bq, cp, dp, (ca, da)/(c, d)Irr2(p,q) (1− ∆2

q)∆
q
p+1

6.3 Groups of order p2q2

6.3.1 Summary of results

Theorem 6.3.1. Let p > q be primes. There are four isomorphism types of abelian groups of order p2q2,
namely,

Cp2q2 , Cp2q × Cq, Cp × Cpq2 , Cpq × Cpq.

If q = 2 and p = 3, then there are 10 isomorphism types of nonabelian groups of order p2q2; if q = 2
and p > 3, then there are 7 + 5∆4

p−1 + ∆4
p+1 isomorphism types of nonabelian groups of order p2q2; if

p > q > 2, then there are

(6 + q)∆q
p−1 +

1
2
(4 + q + q2)∆q2

p−1 + 2∆q
p+1 + ∆q2

p+1

isomorphism types of nonabelian groups of order p2q2; Each isomorphism type has a presentation as
encoded in Table 6.4.
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6.3.2 Determination of groups of order p2q2

Abelian groups of order p2q2 are determined by Theorem A.0.12. It remains to consider the
nonabelian isomorphism types. Without loss of generality, assume p > q throughout this
section. Then Theorem A.0.8 implies that the number of Sylow p-subgroups in a group G of
order p2q2 is either 1 or q2. Let G be a group of order p2q2 and P ∈ Sylp(G) and Q ∈ Sylq(G).
Since both P and Q are abelian, G is nonabelian if and only if it is non-nilpotent. If np(G) = 1,
then P is normal in G, and G ∼= Q n P. If np(G) = q2, then p divides (q + 1) since p > q,
implying that p = 3 and q = 2, in which case we will show that the Sylow 2-subgroup is
normal. This allows us to apply Theorem 2.4.2(ii) to determine all non-nilpotent groups of
order p2q2.

Lemma 6.3.2. There are

(6 + q− ∆2
q)∆

q
p−1 +

1
2
(4 + q + q2)∆q2

p−1 + 2(1− ∆2
q)∆

q
p+1 + ∆q2

p+1

isomorphism types of nonabelian groups of order p2q2 with a normal Sylow p-subgroup.

Proof. Any such group as described in the lemma is a split extension G ∼= Q nϕ P, where
ϕ : Q→ Aut(P) is a nontrivial action. Since both P and Q are abelian, Ker ϕ ≤ Z(G). We make
case distinction on the isomorphism types of P and Q to determine the isomorphism types of
such extensions in the following.

1. If P ∼= Cp2 and Q ∼= Cq2 , then |Aut(P)| = p(p− 1) and q | (p− 1). Since Q, P, and Aut(P)
are all cyclic, we apply Corollary 2.4.3(ii) and Corollary 2.4.6. In particular, we note that
Ker ϕ = K for some K ∈ Kq ∪ Kq2 ; for each K ∈ K, it is straightforward to check that

indK = 1. Also, Z(G) = Ker ϕ. Therefore, there are ∆q
p−1 + ∆q2

p−1 isomorphism types of
such groups, and we explicitly determine them as follows:

• If Z(G) ∼= Cq, then K ∈ Kq and q | (p − 1). Since |Kq| = 1, there is a unique
isomorphism type of such groups, namely,

G ∼= Pc〈a, b | aq2
, bp2

, ba = bρ(p2,q)〉.

• If Z(G) = 1, then K ∈ Kq2 and q2 | (p − 1). Since |Kq2 | = 1, there is a unique
isomorphism type of such groups, namely,

G ∼= Pc〈a, b | aq2
, bp2

, ba = bρ(p2,q2)〉.

2. If P ∼= C2
p and Q ∼= Cq2 , then Aut(P) ∼= GL2(p). It follows that q | (p2 − 1). Applying

Corollary 2.4.3(ii), the enumeration of the isomorphism types of such groups follows
from Theorem 4.2.7. To explicitly construct these groups, we first note that Ker ϕ = K for
some K ∈ Kq ∪Kq2 . Since K ≤ Z(G), there are two cases to consider:

• If q | |Z(G)|, then K ∈ Kq. In this case, q | (p2 − 1), and G is uniquely deter-
mined by its nonabelian maximal normal subgroup of order p2q that has a nor-
mal Sylow p-subgroups. The isomorphism types of such groups are in bijection
with the conjugacy classes of subgroups of order q in GL2(p); that is, there are
1
2 (q + 3− ∆2

q)∆
q
p−1 + (1− ∆2

q)∆
q
p+1 isomorphism types in this case, counted in The-

orem 4.2.7(i). Using Notations 4.1.1, 4.2.1, 4.2.6, we construct the isomorphism class
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representatives for these groups as follows:

Pc〈a, b, c | aq2
, bp, cp, (ba, ca) = (b, c)Irr2(p,q)〉,

Pc〈a, b, c | aq2
, bp, cp, ba = bρ(p,q)〉,

Pc〈a, b, c | aq2
, bp, cp, (ba, ca) = (b, c)M(p,q,σk

q )〉,

with k ∈ {0, . . . , b 1
2 (q− 1)c}.

• If q - |Z(G)|, then K ∈ Kq2 , and it follows that q2 | (p2 − 1). The isomorphism types
of such groups are in bijection with the conjugacy classes of cyclic subgroups Cq2 in
GL2(p) by Corollary 2.4.3(ii), which are counted in Theorem 4.2.7(ii). In conjunc-
tion with Corollary 2.4.3(ii), the proof of Theorem 4.2.7(ii) shows that each of the
conjugacy class representative corresponds to a new isomorphism type. We thus
follow the proof of Theorem 4.2.7(ii) to explicitly determine the isomorphism class
representatives. If q2 | (p + 1), then Q acts irreducibly on P and there is a unique
isomorphism type of such split extensions, namely,

Pc〈a, b, c | aq2
, bp, cp, (ba, ca) = (b, c)Irr2(p,q2)〉.

If q2 | (p− 1), then Q acts diagonalisably on P. If Z(G) = p, then G is isomorphic to

Pc〈a, b, c | aq2
, bp, cp, ba = bρ(p,q2)〉.

If Z(G) = 1, then there are 1
2 (q

2 − q + 2) + q− 1 isomorphism types of such group,
parametrised by

Pc〈a, b, c | aq2
, bp, cp, (ba, ca) = b

M(p,q2,σk
q2 )〉,

where 0 ≤ k ≤ 1
2 (q

2 − q), and

Pc〈a, b, c | aq2
, bp, cp, (ba, ca) = bM(p,q2,kq)〉,

where k ∈ Z∗q . In total, we find 1
2 (q

2 + q + 2) isomorphism types in accordance
with the conjugacy class representatives of cyclic groups of order q2 in GL2(p) (The-
orem 4.2.7(ii)).

3. If P ∼= Cp2 and Q ∼= C2
q , then Aut(P) ∼= Z∗p2 and it follows that q | (p − 1). Moreover,

Ker ϕ ∼= ϕ(Q) ∼= Cq. Thus, G is isomorphic to Cq × (Cq n Cp2). There are ∆q
p−1 iso-

morphism types of nonabelian extensions Cq n Cp2 as seen in Theorem 6.1. Thus, G is
isomorphic to

Pc〈a, b, c | aq, bq, cp2
, ca = cρ(p2,q)〉.

4. If P ∼= C2
p and Q ∼= C2

q , then Aut(P) ∼= GL2(p) and q | (p2 − 1). Observe that Q acts
nonfaithfully on P if and only if q | |Z(G)|, in which case G ∼= Cq × (Cq n C2

p) is deter-
mined by the isomorphism types of nonabelian groups Cq n C2

p, which are determined
in Lemma 6.1.6. It follows that there are 1

2 (q + 3− ∆2
q)∆

q
p−1 + (1− ∆2

q)∆
q
p+1 isomorphism
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types of such groups. In particular, G is isomorphic to one of the following:

Pc〈a, b, c, d | aq, bq, cp, dp, (ca, da) = (c, d)Irr2(p,q)〉,
Pc〈a, b, c, d | aq, bq, cp, dp, ca = cρ(p,q)〉,

Pc〈a, b, c, d | aq, bq, cp, dp, (ca, da) = (c, d)M(p,q,σk
q )〉,

with k ∈ {0, . . . , b 1
2 (q − 1)c}. If Q acts faithfully on P, then Z(G) = 1 and q | (p − 1).

Since there is a unique conjugacy class of elementary abelian subgroups C2
q in GL2(p) as

shown in Theorem 4.2.7(ii), it follows that G isomorphic to

Pc〈a, b, c, d | aq, bq, cp, dp, ca = cρ(p,q), db = dρ(p,q)〉.

Combining the results for each case, we obtain the claimed result. In particular, if q = 2, then
the counting formula simplifies to 7 + 5∆4

p−1 + ∆4
p+1.

It remains to consider the special case where G is non-nilpotent and contains no normal Sylow
p-subgroup, in which case p = 3, q = 2 as a consequence of Theorem A.0.8 (as discussed at the
start of this section).

Lemma 6.3.3. If G is a non-nilpotent group of order 36 and contains no normal Sylow 3-subgroup,
then G contains a normal Sylow 2-subgroup. There are two isomorphism types of such groups, namely,

C9 n C2
2 , C2

3 n C2
2
∼= C3 ×Alt4.

Proof. This can be shown by a direct computation in GAP [27]. Alternatively, we present a
theoretical argument as follows: Since Sylow 3-subgroups of G are not normal, it follows from
Theorem A.0.8 that there are 4 Sylow 3-subgroups. Let P ∈ Sylp(G), then [35, Corollary 1.15]
shows that [G : NG(P)] = np(G) = 4. It follows that |P| = |NG(P)| = 9. Since P ≤ NG(P),
we have NG(P) = P. Consider the action of G on the set of all left cosets of NG(P) via left
multiplication. This gives rise to a homomorphism ϕ : G → Sym4. Since G does not embed
into Sym4, we know Ker ϕ 6= 1. Also, |Ker ϕ| ≤ |NG(P)|. Denote K = Ker ϕ. Since P is
not normal in G by assumption, it follows that |K| = 3. Since all Sylow 3-subgroups of G
are abelian, and K C G, it follows that the centraliser of K contains at least 4(9− 3) + 3 = 27
elements. By Lagrange’s Theorem, it forces that CG(K) = G; that is, K ≤ Z(G), which im-
plies that 3 | |Z(G)|. Since G is nonabelian and contains no normal Sylow q-subgroup, we
deduce immediately that |Z(G)| /∈ {9, 36}. We also deduce that |Z(G)| 6= 18, since G has no
normal subgroup of order 18 (any group of order 18 = 2·32 contains a characteristic Sylow
3-subgroup as shown in Lemma 6.1.2, which would be normal in G, a contradiction). More-
over, |G/Z(G)| 6= 3, for otherwise G/Z(G) is cyclic and G would be abelian, a contradiction.
Hence, |Z(G)| ∈ {3, 6}. However, if |Z(G)| = 6, then G is a nonabelian central extension of C6
by D3 (otherwise G would be abelian), which contains a normal Sylow 3-subgroup, a contra-
diction. Hence, |Z(G)| = 3 and Z(G) = K. This shows that G is a central extension of K by H,
where |H| = 12. If H has a normal Sylow 3-subgroup, then G will also have a normal Sylow
3-subgroup, a contradiction. Thus H has a normal (unique) Sylow 2-subgroup, which is also
normal in G. Therefore, G is isomorphic to Q n P, where Q ∈ Sylq(G). Since Aut(C4) ∼= C2

and Aut(C2
2)
∼= GL2(2) ∼= Sym3, we see that G has a normal subgroup P ∼= C2

2 and Q acts
irreducibly on P. Finally, we apply Corollary 2.4.3 and explicitly determine the isomorphism
types of G. If Q ∼= C9, then G is isomorphic to Pc〈a, b, c | a9, b2, c2, ba = c, ca = bc〉; if Q ∼= C2

3 ,
then G is isomorphic to Pc〈a, b, c, d | a3, b3, c2, d2, ca = d, da = cd〉.
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Chapter 7

Groups of orders pqr, pqrs, and p2qr

Let p, q, r, s be distinct primes. Groups of order pqr, pqrs and p2qr are special cases of squarefree
and cubefree orders, hence for more general algorithms to generate such groups we refer to
[16], [19], and [21]. The C-Group generation algorithm in [21] is a complete generalisation
of [16] that generates groups of a given order whose Sylow subgroups are cyclic (namely, C-
groups); it also offers an identification function that determines the assigned C-group ID of a
given group. While this covers the construction and identification functionality for groups of
order pqr and pqrs, for the sake of completeness, we include a discussion here. For groups of
order p2qr, it is well-known that such a group is nonsolvable if and only if it is isomorphic to
Alt5 of order 60 and that Alt5 is the smallest simple group ([35, p. 29]).

7.1 Groups whose Sylow subgroups are cyclic

In [32], Hölder gave a formula for the enumeration of isomorphism types of squarefree groups.
We have seen a trivial example in the previous chapter of groups of order pq, here we describe
a more general approach to construct and classify squarefree groups using results of Burn-
side, Hölder, and Zassenhaus ([43, (10.1.10)]) on the structure of finite groups whose Sylow
subgroups are all cyclic.

Theorem 7.1.1 (Hölder, Burnside, Zassenhaus, [43], (10.1.10)). If G is a finite group all of whose
Sylow subgroups are cyclic, then G has a presentation

G = Pc〈a, b | am, bn, ba = br〉,

where n is an odd integer, r ∈ Zn and rm ≡ 1 mod n, and gcd(n, m(r− 1)) = 1.

Note that Theorem 7.1.1 classifies the structure of C-groups, but it does not solve the isomor-
phism problem. The next theorem due to Hölder gives a counting formula for the isomorphism
types of squarefree groups. Hölder’s approach in the derivation of this result also motivates
the main approach we use in this chapter for the determination of groups of order p2qr.

Theorem 7.1.2 ([32], § 7). Let n be a squarefree natural number, f (n) be the number of isomorphism

75



7.1. Groups whose Sylow subgroups are cyclicChapter 7. Groups of orders pqr, pqrs, and p2qr

types of groups of order n. Then

f (n) = ∑
m|n

∏
p∈π(n/m)

pcm(p) − 1
p− 1

,

where π(x) = {p is a prime : p | x} denotes the set of prime factors of a positive integer x ∈ N, and
cx(p) is the number of prime divisors q ∈ π(x) of x such that q ≡ 1 mod p for each prime p.

We recall that the Fitting subgroup of G, denoted by F(G), is the largest normal nilpotent
subgroup of G. We recall a few results regarding the Fitting subgroup that are useful to the
investigation of solvable groups.

Theorem 7.1.3 ([35]). Let G be a finite group. Then

(i) F(G) is unique and characteristic in G;

(ii) F(G)/Φ(G) = F(G/Φ(G));

(iii) if N E G is nontrivial, then N ∩ F(G) = F(N).

Proof. For (i), we refer to [35, Corollary 1.28], the proof of which shows that F(G) is a direct
product of its Sylow subgroups, each of which is precisely the p-core of G for each prime p
dividing |G|. For (ii), we refer to [35, (1D.15)]. To see (iii), note that it follows from (i) that F(N)
is characteristic in N, and so F(N) is normal in G and F(N) ≤ N ∩ F(G). On the other hand,
since F(G) is normal in both N and G, the intersection N ∩ F(G) is nilpotent and normal in N,
hence contained in F(N).

Theorem 7.1.4 ([43], Lemma 5.4.4). If G is a nontrivial finite solvable group, then F = F(G) is
nontrivial and CG(F) = Z(F).

We are now ready to prove a useful result that we use later for our determination of solvable
cubefree groups.

Lemma 7.1.5. If G is a finite solvable group with abelian Fitting subgroup F = F(G), then G/F acts
faithfully on F.

Proof. Since G is solvable, F is nontrivial and normal in G. Thus, there is a well-defined G-
action on F via conjugation, and the kernel of such action is CG(F), which is contained in F
by Theorem 7.1.4. Given F is abelian, it follows that F = CG(F). Thus, there is an induced
well-defined action of G/F on F via ϕ : G/F → Aut(F) via xϕ(gF) 7→ xg for gF ∈ G/F. If gF
acts trivially on F, then g centralises F by definition, which implies that g ∈ CG(G) ≤ F and
gF = F. Hence, Ker ϕ is trivial and G/F acts faithfully.

In the case where G is squarefree, F(G) and G/F are also squarefree, we thus have the follow-
ing result.

Lemma 7.1.6. If G is a finite group of squarefree order, then G decomposes into G = (A n B)× C,
where A ∼= G/F(G), F(G) = B×C, and C = Z(G); the groups A, B, C are cyclic of pairwise coprime
orders.
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Proof. Since G is squarefree and F = F(G) is nilpotent, it follows that F is also squarefree and
Theorem A.0.12 implies that it is cyclic and has a complement A ∼= G/F in G. The group A is
cyclic by Lemma 7.1.5. We know that Z(G) is contained in F and it has an abelian complement
in F, thus we can write F = B × Z(G), where B ≤ F is a complement of Z(G) in F and
F/Z(G) ∼= B ≤ F, and B is cyclic since it is squarefree.

In particular, observe that the subgroup B in Lemma 7.1.6 is a normal Hall subgroup of F, thus
characteristic in F and normal in G. Moreover, since G is squarefree, G/B ∼= A× C is cyclic
and B contains [G, G]. The following theorem shows that such a subgroup B coincides with
[G, G].

Theorem 7.1.7 ([35], Lemma 4.6). Let G be a finite group. If B is an abelian normal subgroup of G
such that G/B is cyclic. Then [G, G] = [B, G] and |[G, G]| = |B|/|B ∩ Z(G)|.

7.1.1 Groups of order pqr

TABLE 7.1: Groups of order pqr with p < q < r, using Notation 4.1.1.

Pc-relators Parameters Number of types
Cluster 1: abelian
apqr 1
Cluster 2: |Z(G)| ∈ {p, q, r}
ap, bq, cr, ba/bρ(q,p) ∆p

q−1

ap, bq, cr, ca/cρ(r,p) ∆p
r−1

ap, bq, cr, cb/cρ(r,q) ∆q
r−1

Cluster 3: |Z(G)| = 1
ap, bq, cr, ba/bρ(q,p), ca/cρ(r,p,k) k ∈ Z∗p (p− 1)∆p

r−1∆p
q−1

ap, bq, cr, ca/cρ(r,p), cb/cρ(r,q) ∆qp
r−1

Theorem 7.1.8. There are 1 + ∆p
q−1 + ∆p

r−1(1 + (p− 1)∆p
q−1 + ∆q

r−1) + ∆q
r−1 isomorphism types of

groups of order pqr with p < q < r, each of which has a presentation as encoded in Table 7.1.

Proof. Theorem A.0.12 shows that an abelian group of order pqr is isomorphic to Cpqr, thus it re-
mains to consider the isomorphism types of nonabelian groups of such order. By Lemma 7.1.6
and Theorem 7.1.7, we know that such a group admits a decomposition G = (A n B) × C,
where C = Z(G), B = [G, G], B × C = F(G), and A ∼= G/F(G). In particular, since A acts
faithfully on F via conjugation (Lemma 7.1.5), it must also act faithfully on B as it acts trivially
on C. Moreover, for any g ∈ F(G), if [g, A] = 1 then g ∈ Z(G). That is, the split extension
A n B has trivial centre. Since G/C is noncyclic for any nonabelian group G, we deduce that
|C| ∈ {1, p, q, r}. We make a case distinction on the order of C. In the following, we apply
Corollary 2.4.3(ii) and Corollary 2.4.6 to explicitly determine the isomorphism types of G.

• If |C| ∈ {p, q, r}, then G is uniquely determined by the nonabelian subgroup H = A n B
whose order is a product of two primes, say H = ab where a < b are primes. Lemma 6.1.3
shows that a | (b− 1) for such a nonabelian H of order ab to exist, and it is unique up to
isomorphism. It follows that G is isomorphic to one of the nonabelian groups:

(Cq n Cr)× Cp, (Cp n Cr)× Cq, (Cp n Cq)× Cr,
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each of which is unique up to isomorphism if it exists, and so there are ∆q
r−1 + ∆p

r−1 + ∆p
q−1

isomorphism types of such groups with cyclic centre of prime order.

• If |C| = 1, then G = A n B with B = F(G). Since A ∼= G/F acts faithfully on B, it follows
that A | |Aut(B)|, and we deduce that |B| ∈ {qr, pr, r, q}.

1. If B ∼= Cqr, then G ∼= AnCqr where A ∼= Cp acts nontrivially on both the normal Sy-
low q- and r-subgroups of G, for otherwise Z(AnB) 6= 1. There are (p− 1)∆p

r−1∆p
q−1

such normal subgroups of order p that project nontrivially into each of the direct fac-
tors of Z∗q ×Z∗r , each of which corresponds to a unique isomorphism type of G by
Corollary 2.4.3(ii).

2. If B ∼= Cpr, then A ∼= Cq acts trivially on the Sylow p-subgroup of G since q > p, but
this implies that |Z(A n B)| ≥ p, a contradiction. Thus, this case does not occur.

3. If B ∼= Cr, then A ∼= Cpq and A embeds into Aut(B) ∼= Z∗r . Such a nonabelian group
G ∼= Cpq n Cr exists if and only if ∆pq

r−1 = 1, and is unique up to isomorphism.

4. If B ∼= Cq, then A ∼= Cpr, but there is no faithful action of A on B via conjugation
since r > q. Thus, such case does not exist.

In conclusion, there are (p − 1)∆p
r−1∆p

q−1 + ∆r−1 pq isomorphism types of nonabelian
groups of order pqr such that Z(G) = 1.

Combining all cases, the counting formula for the isomorphism types of groups of order pqr
follows. For each of the nonabelian isomorphism types (if it exists) we construct a canonical
presentation using Notation 4.1.1, the claimed result follows.

7.1.2 Groups of order pqrs

Let G be a group of order pqrs. We can apply Lemma 7.1.6 to construct the isomorphism types
of G by a case distinction on the sizes of Z(G) and F(G).

Theorem 7.1.9. Let p < q < r < s be primes. There are

1+∆s
r−1 + ∆q

s−1 + ∆q
r−1 + ∆p

s−1 + ∆p
r−1 + ∆p

q−1

+(q− 1)∆q
s−1∆q

r−1 + ∆qr
s−1 + (p− 1)∆p

s−1∆p
r−1 + ∆pr

s−1

+(p− 1)∆p
s−1∆p

q−1 + ∆pq
s−1 + (p− 1)∆p

r−1∆p
q−1 + ∆pq

r−1

+(p− 1)((q− 1)∆pq
r−1∆pq

s−1 + ∆pq
r−1∆p

s−1 + ∆p
r−1∆pq

s−1)

+(q− 1)(∆pq
r−1∆q

s−1 + (q− 1)∆q
r−1∆pq

s−1) + ∆p
r−1∆q

s−1

+∆q
r−1∆p

s−1 + ∆p
q−1∆r

s−1(1 + (p− 1)∆p
s−1 + ∆pqr

s−1

isomorphism types of groups of order pqrs, each of which has a presentation as encoded in Table 7.2.

Proof. Theorem A.0.12 shows that an abelian group of order pqrs is isomorphic to Cpqrs, thus
it remains to consider the isomorphism types of the nonabelian groups of such order. By
Lemma 7.1.6 and Theorem 7.1.7 we know that such a group admits a decomposition G =
(A n B)× C, where C = Z(G), B = [G, G], B× C = F(G), and A ∼= G/F(G); this shows that
G is determined by the centreless nonabelian direct factor A n B. Since G/C is noncyclic and
C < F(G) < G, it follows that |C| ∈ {1, p, q, r, s, pq, pr, ps, qr, qs, rs}. We make a case distinction
on the order of C in the determination of isomorphism types of G. Moreover, since A and B
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TABLE 7.2: Groups of order pqrs with p < q < r < s, using Notation 4.1.1.

Pc-relators Parameters Number of types
Cluster 1: abelian
apqrs 1
Cluster 2: |Z(G)| ∈ {pq, pr, ps, qr, qs, rs}
ar, bs, cpq, ba/bρ(s,r) ∆r

s−1
aq, bs, cpr, ba/bρ(s,q) ∆q

s−1
aq, br, cps, ba/bρ(r,q) ∆q

r−1
ap, bs, cqr, ba/bρ(s,p) ∆p

s−1
ap, br, cqs, ba/bρ(r,p) ∆p

r−1
ap, bq, crs, ba/bρ(q,p) ∆p

q−1

Cluster 3: |Z(G)| ∈ {p, q, r, s}
aqr, bs, cp, ba/bρ(s,qr) ∆qr

s−1
aq, br, cs, dp, ba/bρ(r,q), ca/cρ(s,q,k) k ∈ Z∗q (q− 1)∆q

r−1∆q
s−1

apr, bs, cq, ba/bρ(s,pr) ∆pr
s−1

ap, br, cs, dq, ba/bρ(r,p), ca/cρ(s,p,k) k ∈ Z∗p (p− 1)∆p
r−1∆p

s−1
apq, bs, cr, ba/bρ(s,pq) ∆pq

s−1
ap, bq, cs, dr, ba/bρ(q,p), ca/cρ(s,p,k) k ∈ Z∗p (p− 1)∆p

q−1∆p
s−1

apq, br, cs, ba/bρ(r,pq) ∆pq
r−1

ap, bq, cr, ds, ba/bρ(q,p), ca/cρ(r,p,k) k ∈ Z∗p (p− 1)∆p
q−1∆p

r−1

Cluster 4: |Z(G)| = 1
ap, bq, cr, ds, ba/bρ(q,p), ca/cρ(r,p,k), da/dρ(s,p,`) (k, `) ∈ Z∗p

2 (p− 1)2∆p
q−1∆p

r−1∆p
s−1

ap, bq, cr, ds, ca/cρ(r,p), cb/cρ(r,q), da/dρ(s,p,k), db/dρ(s,q,`) (k, `) ∈ Z∗p ×Z∗q (p− 1)(q− 1)∆pq
r−1∆pq

s−1
ap, bq, cr, ds, ca/cρ(r,p,k), da/dρ(s,p), db/dρ(s,q) k ∈ Z∗p (p− 1)∆p

r−1∆pq
s−1

ap, bq, cr, ds, cb/cρ(r,q,k), da/dρ(s,p), db/dρ(s,q) k ∈ Z∗q (q− 1)∆q
r−1∆pq

s−1
ap, bq, cr, ds, ca/cρ(r,p), cb/cρ(r,q), da/dρ(s,p,k) k ∈ Z∗p (p− 1)∆pq

r−1∆p
s−1

ap, bq, cr, ds, ca/cρ(r,p), cb/cρ(r,q), db/dρ(s,q,k) k ∈ Z∗q (q− 1)∆pq
r−1∆q

s−1
ap, bq, cr, ds, ca/cρ(r,p), db/dρ(s,q) ∆p

r−1∆q
s−1

ap, bq, cr, ds, cb = cρ(r,p), da = dρ(s,p) ∆q
r−1∆p

s−1
ap, bq, cr, ds, ba = bρ(q,p), dc = dρ(s,r) ∆p

q−1∆r
s−1

ap, bq, cr, ds, ba/bρ(q,p,k), da/dρ(s,p), dc/dρ(s,r) k ∈ Z∗p (p− 1)∆pr
s−1∆p

q−1
apqr, bs, ba = bρ(s,pqr) ∆pqr

s−1

are both cyclic and have coprime orders, we apply Corollary 2.4.3(ii) and Corollary 2.4.6 upon
construction of such groups.

• If |C| ∈ {pq, pr, ps, qr, qs, rs}, then G ∼= (A n B) × C is uniquely determined by the
nonabelian subgroup whose order is a product of two distinct primes. It follows by
Lemma 6.1.3 that there is a unique isomorphism type for each of the following nonabelian
isomorphism types (if they exist) of G:

(Cr n Cs)× Cpq, (Cq n Cs)× Cpr, (Cq n Cr)× Cps,

(Cp n Cs)× Cqr, (Cp n Cr)× Cqs, (Cp n Cq)× Crs.

In other words, there are ∆s
r−1 + ∆q

s−1 + ∆q
r−1 + ∆p

s−1 + ∆p
r−1 + ∆p

q−1 isomorphism types of
G such that |Z(G)| is a product of two distinct primes.

• If |C| ∈ {p, q, r, s}, then G = H× C is uniquely determined by the centreless direct factor
H = A n B whose order is a product of three distinct primes. In particular, such groups
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are determined in Lemma 7.1.8. Therefore, there are

(q− 1)∆q
s−1∆q

r−1 + ∆qr
s−1

+(p− 1)∆p
s−1∆p

r−1 + ∆pr
s−1

+(p− 1)∆p
s−1∆p

q−1 + ∆pq
s−1

+(p− 1)∆p
r−1∆p

q−1 + ∆pq
r−1

isomorphism types of G such that Z(G) is cyclic of prime order, each of which is of the
form H × Z(G), where H has a pc-presentation whose pc-relators are listed in Cluster 3
in Table 7.1 with appropriate relative orders.

• If |C| = 1, then G ∼= A n B, where A acts faithfully on B = F(G), which implies that
|B| /∈ {1, p, q, r, pq, pr, qr, pqr}, for otherwise |A| - |Aut(B)| and there are no faithful
A-actions on B. On the other hand, A must act nontrivially on all nontrivial Sylow sub-
groups of B, for otherwise A n B has a nontrivial centre, hence |B| /∈ {ps, pqs, prs}. We
consider |B| ∈ {s, qs, rs, qrs}.

1. If |B| = qrs, then G ∼= Cp n Cqrs. Since A ∼= Cp acts nontrivially on all nontrivial
Sylow subgroups of B ∼= Cqrs, it follows that p divides each of (q− 1), (r− 1), and
(s − 1). In particular, there are (p − 1)2∆p

q−1∆p
r−1∆p

s−1 isomorphism types of such
G in one-to-one correspondence with the cyclic normal subgroups of order p that
project nontrivially into each of the direct factors of Aut(B) ∼= Z∗q ×Z∗r ×Z∗s .

2. If |B| = rs, then G ∼= Cpq n Crs and A ∼= Cpq embeds into Aut(B). Then by Corol-
lary 2.4.3(ii), the isomorphism types of such split extensions are in bijection with the
cyclic normal subgroups of order pq in Aut(B) ∼= Z∗r ×Zs∗: there are

(p− 1)(q− 1)∆pq
r−1∆pq

s−1

+(p− 1)∆pq
r−1∆p

s−1

+(p− 1)∆p
r−1∆pq

s−1

+(q− 1)∆pq
r−1∆q

s−1

+(q− 1)∆q
r−1∆pq

s−1

+∆p
r−1∆q

s−1 + ∆q
r−1∆p

s−1

isomorphism types in this case.

3. If |B| = qs, then A ∼= Cpr. Since r > q, the Sylow r-subgroup acts trivially on
the normal Sylow q-subgroup of B, thus it acts nontrivially on the normal Sylow
s-subgroup of B, for otherwise the action of A is nonfaithful. On the other hand,
the Sylow p-subgroup of A must act nontrivially on the Sylow q-subgroup of B, for
otherwise the centre of A n B is nontrivial, which is a contradiction. It follows that
r | (s− 1) and p | (q− 1). Now there are two cases dependent on whether the Sylow
p-subgroup acts nontrivially on the Sylow r subgroup of B:
(a) If the Sylow p-subgroup of A acts trivially on the Sylow r-subgroup of B, then

G ∼= (Cp nCq)× (Cr nCs), which is determined by the nonabelian direct factors
Cp n Cq and Cr n Cs. By Lemma 6.1.3, there are ∆p

q−1∆r
s−1 isomorphism types in

this case.
(b) If the Sylow p-subgroup of A acts nontrivially on the Sylow r-subgroup of B,

then p | (r − 1), and G ∼= Cpr n Cqs. Corollary 2.4.3(ii) shows that the iso-
morphism types of such split extensions are in bijection with the cyclic normal
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subgroups of order pr that project nontrivially into each of the direct factors of
Aut(B) ∼= Z∗q ×Z∗s . In particular, there are (p− 1)∆pr

s−1∆p
q−1 such isomorphism

types.
In total, we find ∆p

q−1∆r
s−1(1+ (p− 1)∆p

s−1) isomorphism types of such groups with
trivial centre and cyclic Fitting subgroup of order qs.

4. If |B| = s, then G ∼= Cpqr n Cs. A faithful action of A ∼= Cpqr on B ∼= Cs requires that
pqr | (s− 1), in which case there is a unique normal subgroup of order pqr in Z∗s .
Therefore, there are ∆pqr

s−1 isomorphism types of such groups in this case.

Combining all of the cases above, the number of isomorphism types of groups of order pqrs
follows. For each of the nonabelian isomorphism types, if it exists, we determine a presentation
using the canonical automorphisms defined in Notation 4.1.1, the claimed result follows.

7.2 Groups of order p2qr

Without loss of generality, let q < r. The enumeration of isomorphism types of the groups of
order p2qr is given in [24] and discussed in [37]. Such groups can be constructed by applying
the algorithm in [19] since they are of cubefree order. In this section, we explicitly determine the
isomorphism class representatives of these groups, which leads to an identification function
that is not covered by [19]. Our explicit construction directly results in a counting formula,
which agrees with the results in [24].

Note that all nilpotent groups of such order are classified by Theorem A.0.12, since all Sylow
subgroups of a group of order p2qr are abelian. We are left to determine all the isomorphism
types of non-nilpotent groups. In particular, all groups of order p2qr are solvable with only
one exception, namely, Alt5. Thus, it remains to classify the solvable non-nilpotent groups.
Inspired by the approach adopted in [24], we explicitly construct the isomorphism types by
making a case distinction on the structure of the Fitting subgroup.

From now on, let G exclusively denote a nonabelian group of order p2qr with q < r. If G
is solvable, then it has a nontrivial Fitting subgroup F. Moreover, since F is cubefree and
nilpotent, it is abelian. Then Lemma 7.1.5 shows that G/F embeds into Aut(F). We construct
and classify all isomorphism types of groups of order p2qr accordingly.

7.2.1 Summary of results

TABLE 7.3: Groups of order p2qr with r > q, using Notations 4.1.1, 4.2.1, and 4.2.6.

PC-relators Parameters Number of groups
Cluster 1: F = G
ap2qr 1
ap, bpqr 1
Cluster 2: |F| = r

ap2q, br, ba/bρ(r,p2q) ∆p2q
r−1

Cluster 3: |F| = qr

ap2
, bq, cr, ba/bρ(q,p2) ∆p2

q−1

ap2
, bq, cr, ba/bρ(q,p2), ca/cρ(r,p,k) k ∈ Z∗p (p− 1)∆p2

q−1∆p
r−1

ap2
, bq, cr, ba/bρ(q,p2), ca/cρ(r,p2,k) k ∈ Z∗p2 (p2 − p)∆p2

r−1∆p2

q−1
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ap2
, bq, cr, ca/cρ(r,p2) ∆p2

r−1

ap2
, bq, cr, ba/bρ(q,p), ca/cρ(r,p2,k), k ∈ Z∗p (p− 1)∆p2

r−1∆p
q−1

ap, bp, cq, dr, ca/cρ(q,p), db/dρ(r,p) ∆p
q−1∆p

r−1

Cluster 4: |F| = p2

aqr, bp2
, ba/bρ(p2,qr) ∆qr

p−1
aq, br, cp, dp, ca/cρ(p,q), db/dρ(p,r) ∆qr

p−1
aq, br, cp, dp, ca/cρ(p,q), cb/cρ(p,r) ∆qr

p−1
aq, br, cp, dp, (ca, da)/(c, d)M(p,q,k), cb/cρ(p,r) k ∈ Z∗q (q− 1)∆qr

p−1
aq, br, cp, dp, ca/cρ(p,q), (cb, db)/(c, d)M(p,r,k) k ∈ Z∗r (r− 1)∆qr

p−1

aq, br, cp, dp, (ca, da)/(c, d)M(p,q,σk
q ), (cb, db)/(c, d)M(p,r,σ`

r ) (k, `) ∈ P1
1
2 (qr− q− r + 5− 2∆2

q)∆
qr
p−1

a2, br, cp, dp, ba/b−1, (ca, da)/(d, c), (cb, db)/(c, d)M(p,r,r−1) ∆2
q∆r

p−1
aqr, bp, cp, (ba, ca)/(b, c)Irr2(p,qr) (1− ∆2

q)∆
qr
p+1

aq, br, cp, dp, (ca, da)/(c, d)M(p,q), (cb, db)/(c, d)Irr2(p,r) ∆q
p−1∆r

p+1

a2, br, cp, dp, ba/b−1, (ca, da)/(d, c), (cb, db)/(c, d)Irr2(p,r) ∆2
q∆r

p+1
aq, br, cp, dp, (ca, da)/(c, d)Irr2(p,q), (cb, db)/(c, d)M(p,r) (1− ∆2

q)∆
q
p+1∆r

p−1

Cluster 5: |F| = p2q
ar, bp2

, cq, ba/bρ(p2,r) ∆r
p−1

ar, bp, cp, dq, ba/bρ(p,r) ∆r
p−1

ar, bp, cp, dq, (ba, ca)/(b, c)M(p,r,σk
r ) 0 ≤ k ≤ 1

2 (r− 1) 1
2 (r + 1)∆r

p−1
ar, bp, cp, dq, (ba, ca)/(b, c)Irr2(p,r) ∆r

p+1

Cluster 6: |F| = p2r
aq, br, cp2

, ba/bρ(r,q) ∆q
r−1

aq, br, cp2
, ca/cρ(p2,q) ∆q

p−1

aq, br, cp2
, ba/bρ(r,q,k), ca/cρ(p2,q) k ∈ Z∗q (q− 1)∆q

r−1∆q
p−1

aq, br, cp, dp, ca/cρ(p,q) ∆q
p−1

aq, br, cp, dp, (ca, da)/(c, d)M(p,q,σk
q ) 0 ≤ k ≤ 1

2 (q− 1) 1
2 (q + 1− ∆2

q)∆
q
p−1

aq, br, cp, dp, (ca, da)/(c, d)Irr2(p,q) ∆q
p+1

aq, br, cp, dp, ba/bρ(r,q) ∆q
r−1

aq, br, cp, dp, ba/bρ(r,q), ca/cρ(p,q,k) k ∈ Z∗q (q− 1)∆q
r−1∆q

p−1

aq, br, cp, dp, ba/bρ(r,q,σ`
q ), (ca, da)/(c, d)M(p,q,σk

q ) (k, `) ∈ P2
1
2 q(q− 1− ∆2

q)∆
q
r−1∆q

p−1
a2, br, cp, dp, ba/b−1, ca/c−1, da/d−1 ∆2

q

aq, br, cp, dp, ba/bρ(r,q), (ca, da)/(c, d)(Irr2(p,q)k) 1 ≤ k ≤ 1
2 (q− 1) 1

2 (q− 1− ∆2
q)∆

q
r−1∆q

p+1

Cluster 7: |F| = pr
aq, bp, cp, dr, da/dρ(r,q), db/dρ(r,p) ∆pq

r−1
aq, bp2

, cr, ca/cρ(r,q), cb/cρ(r,p) ∆pq
r−1

aq, bp, cp, dr, ca/dρ(p,q), db/dρ(r,p) ∆p
r−1∆q

p−1
aq, bp, cp, dr, ca/dρ(p,q,k), da/dρ(r,q), db/dρ(r,p) k ∈ Z∗q (q− 1)∆pq

r−1∆q
p−1

Cluster 8: |F| = pqr
ap2

, bq, cr, ca/cρ(r,p) ∆p
r−1

ap2
, bq, cr, ba/bρ(q,p) ∆p

q−1

ap2
, bq, cr, ba/bρ(q,p), ca/cρ(r,p,k) k ∈ Z∗p (p− 1)∆p

r−1∆p
q−1

ap, bp, cq, dr, da/dρ(r,p) ∆p
r−1

ap, bp, cq, dr, ca/cρ(q,p) ∆p
q−1

ap, bp, cq, dr, ca/cρ(q,p), da/dρ(r,p,k) k ∈ Z∗p (p− 1)∆p
r−1∆p

q−1

Cluster 9: F = 1
Alt5 (not solvable) ∆2

p∆3
q∆5

r
Parameter sets
P1 = {(x, y) : 0 ≤ x ≤ 1

2 (q− 1), 0 ≤ y ≤ 1
2 (r− 1)} ∪ {(x, y) : 1 ≤ x ≤ 1

2 (q− 3), 1
2 (r + 1) ≤ y ≤ r− 2}

P2 = {(x, 0) : 0 ≤ x ≤ 1
2 (q− 3)} ∪ {(x, y) : 0 ≤ x ≤ 1

2 (q− 1), 1 ≤ y ≤ 1
2 (q− 3)} ∪ {( 1

2 (q− 1), 1
2 (q− 1))}

∪ {(x, y) : 0 ≤ x ≤ 1
2 (q− 3), 1

2 (q− 1) ≤ y ≤ q− 2}
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Theorem 7.2.1. Let p, q, r be distinct primes and r > q. Then there are

2 + ∆p2q
r−1 + ∆p2

q−1(1 + (p− 1)∆p
r−1 + (p2 − p)∆p2

r−1)

+ ∆p2

r−1(1 + (p− 1)∆p
q−1) + ∆p

r−1∆p
q−1

+
1
2
(qr + q + r + 7)∆qr

p−1 + (1− ∆qr
p−1)(1− ∆2

q)∆
qr
p2−1

+ 2∆r
p+1∆2

q +
1
2
(r + 5)∆r

p−1 + ∆r
p+1 + 8∆2

q

+ (1− ∆2
q)(

1
2
(q− 1)(q + 4)∆q

p−1∆q
r−1 +

1
2
(q− 1)∆q

p+1∆q
r−1

+
1
2
(q + 5)∆q

p−1 + 2∆q
r−1 + ∆q

p+1)

+ ∆p
r−1(∆

q
p−1(1 + (q− 1)∆q

r−1) + 2∆q
r−1)

+ 2(∆p
q−1 + ∆p

r−1 + (p− 1)∆p
q−1∆p

r−1) + ∆2
p∆3

q∆5
r

isomorphism types of groups of order p2qr, and each of the solvable ones has a presentation as encoded
in Table 7.3; a group of such order is nonsolvable if and only if it is isomorphic to Alt5.

7.2.2 Determination of groups of order p2qr

Firstly, note that there is a unique isomorphism type of nonsolvable groups of order p2qr.

Lemma 7.2.2. If G is a nonsolvable group of order p2qr, then G ∼= Alt5.

Proof. If G is a nonsolvable group of order p2qr, then G is simple. To see this, suppose N is
a proper nontrivial normal subgroup of G. Since all squarefree groups and groups of order
paqb are solvable, N and G/N are solvable, which implies that G is solvable, a contradic-
tion. Thus, G is simple as claimed. Recall that we assume r > q. As a consequence of [15,
Theorem II, §243] (also known as Burnside’s normal p-complement theorem or Burnside’s transfer
theorem), if q < p, then G has a normal q-complement, a contradiction. Thus, we deduce that
p < qr. Further, let P ∈ Sylp(G), then P is abelian of order p2. Since P is not normal in G and
P ≤ CG(P) ≤ NG(P), we deduce that |NG(P)| = p2q: if |NG(P)| = p2r, then |G : NG(P)| = q
and [35, Corollary 1.3] asserts that |G| = p2qr must divide q! given G is simple, but this contra-
dicts the assumption that r > q; if |NG(P)| = p2qr then it implies that P C G; if |NG(P)| = p2

then NG(P) = P = CG(P), and it follows from Burnside’s transfer theorem that G has a nor-
mal p-complement. Let C = CG(P), N = NG(P), and Q ∈ Sylq(G). Then Q ∈ Sylq(N), since
|Q| = q. Since |N : C| > 1, for otherwise G has a normal p-complement by Burnside’s theorem,
it follows that |N : C| = q, but we also know that N/C embeds into Aut(P), which has order
p(p− 1) if P is cyclic, or p(p− 1)2(p+ 1) if P is elementary abelian. This implies that q | (p+ 1)
or q | (p − 1). Since p < q, in particular, q > 2, we have that q | (p + 1), which forces that
q = 3 and p = 2. Applying Sylow theorems, we deduce that the number of Sylow r-subgroups
is 6, and r = 5. In other words, |G| = 60. It remains to show that G ∼= Alt5, which can be
directly verified using the SmallGroups Library of GAP [27]. Alternatively, we include a brief
theoretical argument here: note that PQ ≤ G has order 12, and it does not contain a normal
3-subgroup. Lemma 6.1.4 shows that this group is isomorphic to Alt4. That is, G contains a
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subgroup PQ ∼= Alt4 with index [G : PQ] = 5. Since G is simple, G acts on the set of cosets of
PQ faithfully, implying that G embeds into Sym5. Let A = Alt5 and S = Sym5. Then A C S, if
G ∼= H ≤ S, then A ∩ H C H. It follows that A ∩ H ∈ {1, H} as H is simple. However, since
H/(A ∩ H) ∼= HA/A ≤ S/A ∼= C2, it follows that HA/A = 1 and A ∩ H = H, which implies
that G ∼= H = A ∼= Alt5.

We now prove Theorem 7.2.1.

Proof of Theorem 7.2.1. Lemma 7.2.2 shows that a group of order p2qr is nonsolvable if and only
if it is isomorphic to Alt5. Thus, we are left to determine the isomorphism types of nonabelian
solvable groups of such order. Such a group G has nontrivial Fitting subgroup. Thus we make a
case distinction on the order of F = F(G) in the following discussion. In particular, |F| = |G| if
and only if G is abelian, and the isomorphism type of F is determined by the Sylow subgroup;
if gcd(|F|, |G/F|) = 1, then G ∼= G/F n F is a split extension where G/F acts faithfully on
F by Lemma 7.1.5. This implies that if |F| ∈ {q, r, qr, p2, p2q, p2r}, then G is isomorphic to
a nonabelian semidirect product G/F n F. In this case, we apply Theorem 2.4.2(ii) and the
subsequent corollaries discussed in Section 2.4 to determine the isomorphism types. The cases
where |F| ∈ {p, pq, pr, pqr} are dealt with separately. Together, we obtain the claimed result in
Theorem 7.2.1 as follows.

1. If |F| = q, then G/F is cyclic of order p2r since Aut(F) ∼= Z∗q is cyclic. It follows that
G ∼= Cp2r n Cq and p2r | (q− 1), which is impossible since q < r. Thus, there exists no
such group.

2. If |F| = r, then G/F is cyclic of order p2q since Aut(F) ∼= Z∗r is cyclic. It follows that
G ∼= Cp2q n Cr and p2q | (r− 1). Since the isomorphism types of such metacyclic exten-
sions are enumerated by the number of conjugacy classes of groups of order p2q in Z∗r

(Corollary 2.4.3(ii)) and there are ∆p2q
r−1 isomorphism types of such groups. In particular,

G is isomorphic to
Pc〈a, b | ap2q, br, ba = bρ(r,p2q)〉.

3. If |F| = qr, then F ∼= Cq × Cr and Aut(F) ∼= Z∗q ×Z∗r . It follows that G/F is abelian of
order p2 and p2 | (q− 1)(r− 1). There are two cases to consider.

(a) If G/F ∼= Cp2 , then p2 | (q − 1) or p2 | (r − 1), for otherwise there is no faithful
action of G/F on F. Moreover, from Corollary 2.4.3(ii) it follows that the number of
isomorphism types of G coincides with the number of normal subgroups of order
p2 in Aut(F) ∼= Z∗q ×Z∗r . Note that if p2 divides both q − 1 and r − 1, then there

are p2 + p normal cyclic subgroups of order p2 in Aut(F); if ∆p2

q−1∆p
r−1 = 1 and

∆p2

r−1 = 0 then there are p such subgroups in Aut(F). Dual to the preceding case,

if ∆p2

r−1∆p
q−1 = 1 and ∆p2

q−1 = 0, then there are also p such subgroups in Aut(F).

Also, if ∆p
q−1∆p

r−1 = 0 but ∆p2

q−1 = 1 or ∆p2

r−1 = 1, then there is a unique normal
subgroup of order p2 in Aut(F). Lastly, note that since F is abelian and characteristic
in G, all Sylow q- and r-subgroups of G are normal. Upon the construction of such
nonabelian metacyclic split extensions G ∼= Cp2 n Cqr by exhausting all possible
canonical Cp2-actions on Cqr as described in Notation 4.1.1, we apply Corollary 2.4.3
and obtain a complete and irredundent list of isomorphism types of G as follows:
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• If p2 | (q− 1), then there are

∆p2

q−1(1 + (p− 1)∆p
r−1 + (p2 − p)∆p2

r−1)

isomorphism types of such groups with isomorphism class representatives

Pc〈a, b, c | ap2
, bq, cr, ba = bρ(q,p2)〉,

Pc〈a, b, c | ap2
, bq, cr, ba = bρ(q,p2), ca = cρ(r,p,k)〉,

Pc〈a, b, c | ap2
, bq, cr, ba = bρ(q,p2), ca = cρ(r,p2,`)〉,

where k ∈ Z∗p and ` ∈ Z∗p2 .

• If p2 - (q− 1), then p2 | (r− 1) and there are ∆p2

r−1(1+(p− 1)∆p
q−1) isomorphism

types of such groups with isomorphism class representatives

Pc〈a, b, c | ap2
, br, cq, ba = bρ(r,p2)〉,

Pc〈a, b, c | ap2
, bq, cr, ba = bρ(q,p,k), ca = cρ(r,p2)〉,

where k ∈ Z∗p.

(b) If G/F ∼= C2
p, then p | (q − 1) and p | (r − 1) since there are ∆p

q−1∆p
r−1 normal

elementary abelian subgroups of order p2 in Aut(F). Thus, there is a unique non-
abelian isomorphism type (Cp n Cq)× (Cp n Cr) with presentation

Pc〈a, b, c, d | ap, bp, cq, dr, ca = cρ(q,p), db = dρ(r,p)〉.

4. If |F| = p2, then G/F is of order qr.

(a) If F ∼= Cp2 , then Aut(F) is cyclic of order p(p− 1). It follows that qr | (p− 1). Since
there are ∆qr

p−1 normal cyclic subgroups of order p2 in Aut(F), Corollary 2.4.3(ii)
implies that there is a unique isomorphism type in this case, namely,

Pc〈a, b | aqr, bp2
, ba = bρ(p2,qr)〉.

(b) If F ∼= C2
p, then G/F embeds into Aut(F) ∼= GL2(p) and qr | (p2 − 1). If q > 2, then

either q | (p− 1) or q | (p + 1), likewise either r | (p− 1) or r | (p + 1). If q = 2,
then 2r | (p2 − 1) and 2r - (p− 1) if and only if r | (p + 1).

• If qr | (p − 1) and q > 2, then q - (p + 1), r - (p + 1). We claim that there
exists no faithful action of a nonabelian group of order qr on C2

p, then it will be
sufficed to consider G/F ∼= Cqr. Suppose for contradiction that G/F ∼= Cq n Cr
is nonabelian, in which case G is isomorphic to (Cq n Cr)n C2

p, with a Sylow
q-subgroup that acts nontrivially on a Sylow r-subgroup. Since a subgroup of
order qr | (p− 1) is reducible in GL2(p), it suffices to consider the presentation
of G of the following form:

Pc〈a, b, c, d | aq, br, cp, dp, ba = bδ, ca = cs1 , da = ds2 , cb = ct1 , db = dt2〉,

where δ ∈ Z∗r has order q, and for each i ∈ {1, 2} we have sq
i ≡ tr

i ≡ 1 mod p.
For such a pc-presentation to be consistent, it is required that c(b

a) = c(b
δ): the

left-hand side collects to cs2 , and the right-hand side collects to c(s
δ
2), forcing

δ = 1, which contradicts the assumption that 〈a, b〉 is nonabelian. Therefore, if
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q > 2 and qr | (p − 1), the isomorphism types of such G are split extensions
Cqr n C2

p.
By Corollary 2.4.3, the isomorphism types of such groups are characterised by
the conjugacy class representatives of reducible cyclic subgroups of order qr
in Aut(P) ∼= GL2(p). Proceeding from the proof of Theorem 4.2.7(iii), we ex-
plicitly construct the isomorphism class representatives of such groups. Let
P ∈ Sylp(G), Q ∈ Sylq(G), and R ∈ Sylr(G) be Sylow subgroups of G. Since P is
normal in G, we know PQ and PR are subgroups of G. If Z(PQ) ∼= Z(PR) ∼= Cp,
then G ∼= (Cq n Cp)× (Cr n Cp), which is unique up to isomorphism and exists
if and only if ∆p

q−1∆p
r−1 = 1. If Z(PQ) = 1 and Z(PR) ∼= Cp, then R acts trivially

on a nontrivial subgroup of P whereas Q acts nontrivially on all nontrivial sub-
groups of P. That is, G/F acts on one of the nontrivial subgroups Cp in F via an
automorphism of order q. There are (q− 1)∆p

q−1∆p
r−1 isomorphism types with

presentations

Pc〈a, b, c, d | aq, br, cp, dp, ca = cρ(p,q), cb = cρ(p,r), da = dρ(p,q,k)〉,

parametrised by k ∈ Z∗q . Dual to the preceding case, if Z(PQ) ∼= Cp and
Z(PR) = 1, then G/F acts on one generator of F via an automorphism of order
r. There are (r− 1)∆p

q−1∆p
r−1 isomorphism types of such groups, with presenta-

tions

Pc〈a, b, c, d | aq, br, cp, dp, ca = cρ(p,q), cb = cρ(p,r), db = dρ(p,r,`)〉,

parametrised by ` ∈ Z∗r .
If G/F acts on all nontrivial subgroups of F via an automorphism of order qr,
then the isomorphism types of these groups are constructed using the conjugacy
class representatives of cyclic diagonalisable subgroups of order qr in GL2(p) as
discussed in Theorem 4.2.7(ii). In particular, there are 1

2 (qr− q− r + 5)∆q−1∆r−1
isomorphism types in this case, with presentations

Pc〈a, b, c, d | aq, br, cp, dp, ca = cρ(p,q), cb = cρ(p,r),

da = dρ(p,q,σk
q ), db = dρ(p,r,σ`

r )〉,

parametrised by

(k, `) ∈{(x, y) : 0 ≤ x ≤ 1
2
(q− 1), 0 ≤ y ≤ 1

2
(r− 1)}

∪{(x, y) : 1 ≤ x ≤ 1
2
(q− 3),

1
2
(r + 1) ≤ y ≤ r− 2}.

In total, if q > 2 then there are 1
2 (qr + q + r + 5)∆qr

p−1 isomorphism types of such
groups. In the case where q = 2, the isomorphism types of groups that are iso-
morphic to C2r n C2

p, which are determined analogously, except that parameter
set {(x, y) : 1 ≤ x ≤ 1

2 (q− 3), 1
2 (r + 1) ≤ y ≤ r− 2} is empty and there are in

total 1
2 (3r + 5) isomorphism types. It remains to consider the case G/F ∼= Dr.

The proof of Theorem 4.2.7(iii) shows that groups are diagonalisable in GL2(p),
exist only if r | (p− 1), and are conjugate to the subgroup generated by

(
0 1
1 0

)
and

( t 0
0 t−1

)
with t = ρ(p, r) of order r in Zp. In particular, such groups are
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isomorphic to

Pc〈a, b, c, d | a2, br, cp, dp, ba = b−1, ca = d, cb = cρ(p,r),

da = c, db = dρ(p,r,r−1)〉.

• If qr | (p+ 1) and q > 2, then qr - (p− 1), and it follows from Theorem 4.2.2 that
any cyclic subgroup of order qr is conjugate to a normal subgroup of the Singer
cycle of GL2(p) and is irreducible. By Corollary 2.4.3(ii) and Theorem 4.2.7(iii),
there is a unique isomorphism type in this case, namely,

Pc〈a, b, c | aqr, bp, cp, (ba, ca) = (b, c)Irr2(p,qr)〉,

using Notation 4.2.6. If qr | (p + 1) and q = 2, then the construction of C2r n C2
p

follows analogously and there is a unique isomorphism type of such groups,
corresponding to the unique conjugacy class of the cyclic subgroup of 2r in
GL2(p).
It remains to consider the case where G ∼= Dr n C2

p. Since any subgroup of
order r | (p + 1) is irreducible and conjugate to a Singer cycle of GL2(p) by
Theorem 4.2.2, such group G has a presentation of the form

G(k) = Pc〈a, b, c, d | a2, br, ba = b−1, (c, d)a = (c, d)M, (cb, db)Irr2(p,r,k)〉,

for some M ∈ GL2(p) of order 2 and k ∈ Z∗r . For the presentation to be consis-
tent, it is required that M =

(
0 1
1 0

)
. On the other hand, since the map {b 7→ bk}

extends to an isomorphism G(k)→ G(1) for any k ∈ Z∗r , the isomorphism type
of G(k) is independent of the choice of k. Therefore, there is a unique isomor-
phism type in this case, namely,

Pc〈a, b, c, d | a2, br, ba = b−1, ca = d, da = c, (cb, db)Irr2(p,r)〉.

• If qr | (p2− 1), qr - (p− 1), and qr - (p+ 1), then q > 2 and either ∆q
p−1∆r

p+1 = 1
or ∆q

p+1∆r
p−1 = 1. We claim that in both cases the subgroup of order qr is cyclic.

Suppose for contradiction that Q ∈ Sylq(G/F) acts nontrivially on the normal
subgroup R ∈ Sylr(G/F). If ∆q

p−1∆r
p+1 = 1, then Q is reducible and R irre-

ducible in GL2(p), and G ∼= (Q n R)n C2
p has a presentation of the form

Pc〈a, b, c, d | aq, br, cp, dp, ba = bδ, (ca, da) = (c, d)M, (cb, db) = (c, d)A〉,

where δ = ρ(r, q), M = M(p, q, k), and A = Irr2(p, r, `) are the canonical au-
tomorphisms desribed in Notations 4.1.1, 4.2.1, and 4.2.6, with k, ` ∈ Z∗q . For
the pc-presentation to be consistent, it is required that ((c, d)b)a = ((c, d)a)(b

a),
while the left-hand side is equivalent to (c, d)AM and the right-hand side equals
(c, d)MAδ

, forcing the matrices AM and Mδ A to be equal. Since M is diago-
nal, we have AM = MA = Mδ A, forcing that δ = 1, a contradiction. Analo-
gous arguments apply to the case where ∆q

p+1∆r
p−1 = 1. Hence, if q > 2, then

it is sufficient to consider G/F ∼= Cqr. Applying Corollary 2.4.3(ii), we find
∆q

p−1∆r
p+1 + ∆r

p−1∆q
p+1 isomorphism types in this case, in correspondence with

the unique conjugacy class of the irreducible cyclic groups of order qr in GL2(p).
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In particular, if ∆q
p−1∆r

p+1 = 1, then G is isomorphic to

Pc〈a, b, c, d | aq, br, cp, dp, (c, d)a = (c, d)M(p,q), (c, d)b = (c, d)Irr2(p,r)〉;

if ∆q
p+1∆r

p−1 = 1, then G is isomorphic to

Pc〈a, b, c, d | aq, br, cp, dp, (c, d)a = (c, d)Irr2(p,q), (c, d)b = (c, d)M(p,r)〉.

5. If |F| = p2q, then G/F ∼= Cr and G splits over F. Since r > q, we know G/F acts trivially
on the Sylow q-subgroup of F. There are two isomorphism types of F, namely, Cp2 × Cq

and C2
p × Cq.

(a) If F ∼= Cp2 ×Cq, then G ∼= (Cr nCp2)×Cq is uniquely determined by the nonabelian
metacyclic extensions Cr nCp2 , in one-to-one correspondence with the ∆r

p−1 normal
subgroups of order r in Aut(F). In particular, G is isomorphic to

Pc〈a, b, c | ar, bp2
, cq, ba = bρ(p2,r)〉.

(b) If F ∼= C2
p × Cq, then Aut(F) ∼= GL2(p) × Z∗q . It follows that r | (p2 − 1), and

G ∼= (Cr n C2
p)× Cq. There are two cases to consider.

• If r | (p− 1), then r - (q + 1) and G ∼= (Cr n C2
p)× Cq is determined by the non-

abelian factor Cr n C2
p. Such groups of order p2q are classified in Theorem 6.1.1.

Thus, there are 1
2 (r + 3)∆r

p−1 isomorphism types in this case. In particular, if
Z(G) ∼= Cpq, then G is isomorphic to

Pc〈a, b, c, d | ar, bp, cp, dq, ba = bρ(p,r)〉;

if Z(G) ∼= Cq, then G is isomorphic to one of the following 1
2 (r− 1) groups

Pc〈a, b, c, d | ar, bp, cp, dq, (ba, ca) = (b, a)M(p,r,σk
r )〉,

parametrised by k ∈ {0, . . . , 1
2 (r− 1)}.

• If r | (p + 1), then r - (p − 1) and G ∼= (Cr n C2
p) × Cq is determined by the

nonabelian direct factor Cr n C2
p in this case. In particular, such a group exists

only if ∆r
p+1 = 1, and is unique up to isomorphism, and so G is isomorphic to

Pc〈a, b, c, d | ar, bp, cp, dq, (ca, da) = (c, d)Irr2(p,r)〉.

6. If |F| = p2r, then G/F ∼= Cq. There are two isomorphism types of F, namely, F ∼= Cp2 ×Cr

or C2
p × Cr.

(a) If F ∼= Cp2 × Cr, then G ∼= Cq n Cp2r is a nonabelian metacyclic split extension.
In particular, there are ∆q

r−1 + ∆q
p−1 + (q− 1)∆q

r−1∆q
p−1 isomorphism types of such

groups, in one-to-one correspondence with the cyclic normal subgroups of order q
in Aut(F) ∼= Z∗p2 ×Z∗r . Using Notation 4.1.1, these groups have presentations

Pc〈a, b, c | aq, br, cp2
, ba = bρ(r,q)〉,

Pc〈a, b, c | aq, bp2
, cr, ba = bρ(p2,q)〉,

Pc〈a, b, c | aq, bp2
, cr, ba = bρ(p2,q), ca = cρ(r,q,k)〉,
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where k ∈ Z∗q .

(b) If F ∼= C2
p × Cr, then Aut(F) ∼= GL2(p)×Z∗r . It follows that q | (p2 − 1)(r− 1).

• If q - (r − 1), then q | (p− 1) or q | (p + 1) and G ∼= (Cq n C2
p)× Cr. If q > 2,

then there are ∆q
p+1 +

1
2 (q + 5)∆q

p−1 isomorphism types of such G parametrised
by the conjugacy class representatives of cyclic subgroups of order q in GL2(p).
In particular, if q | (p + 1), then G is isomorphic to

Pc〈a, b, c, d | aq, bp, cp, dr, (ba, ca) = (b, c)Irr2(p,q)〉;

if q | (p− 1) and Z(G) ∼= Cpr, then G is isomorphic to

Pc〈a, b, c, d | aq, bp, cp, dr, ba = bρ(p,q)〉

if q | (p− 1) and Z(G) ∼= Cr, then G is isomorphic to one of the 1
2 (q + 1) groups

Pc〈a, b, c, d | aq, bp, cp, dr, ba = bρ(p,q), ca = cρ(p,q,k)〉,

parametrised by k ∈ {0, . . . , 1
2 (q− 1)}.

Analogously, if q = 2, there are 2 isomorphism types of G ∼= (C2 n C2
p) × Cr.

More specifically, if Z(G) ∼= Cpr, then G is isomorphic to

Pc〈a, b, c, d | a2, bp, cp, dr, ba = b−1〉;

otherwise, G is isomorphic to

Pc〈a, b, c, d | a2, bp, cp, dr, ba = b−1, ca = c−1〉.

• If q - (p2 − 1), then q | (r − 1) and G ∼= (Cq n Cr) × C2
p, which is uniquely

determined by the nonabelian direct factor Cq n Cr, which is unique up to iso-
morphism and exists only if ∆q

r−1 = 1. Hence in this case, G is isomorphic to

Pc〈a, b, c, d | aq, br, cp, dp, ba = bρ(r,q)〉.

• It remains to consider the cases where G/F ∼= Cq acts nontrivially on both Sy-
low p- and r-subgroups of F. This requires that q | (p2− 1) and q | (r− 1). From
Corollary 2.4.3(ii) we know each conjugacy class of cyclic subgroups of order q
in Aut(F) ∼= Z∗r × GL2(p) corresponds to precisely one isomorphism type of
such split extensions. If q | (p− 1), then subgroups of order q are reducible in

GL2(p) < Aut(F). Write diag(a, b, c) for an element
( a 0 0

0 b 0
0 0 c

)
∈ Aut(F), where

the first row is evaluated modulo r and the second and third rows modulo p.
Using Notations 4.1.1 and 4.2.1, then a reducible subgroup Cq in Aut(F) is con-
jugate to 〈diag(sδ, t, tµ)〉 with s = ρ(r, q), t = ρ(p, q), δ ∈ Z∗p, and µ ∈ Zp.
In particular, a direct calculation shows that for µ, ν ∈ Zp and δ ∈ Z∗p, two
subgroups generated by diag(s, t, tµ) and diag(sδ, t, tν) are conjugate in Aut(F)
if and only if there exists some x ∈ Z∗q such that diag(s, t, 1)x is conjugate to
diag(sδ, t, 1), if and only if sx = sδ and diag(tx, 1) is conjugate to diag(t, 1) in
GL2(p), if and only if δ = 1. Similarly, for γ, δ ∈ ZZ∗p and µ, ν ∈ Zp, the
subgroups 〈diag(sγ, t, tµ)〉 and 〈diag(sδ, t, tν)〉 are conjugate if and only if there
exists some x ∈ Z∗q such that diag(sγ, t, tµ)x is conjugate to diag(sδ, t, tν), if and
only if sxγ = sδ, and diag(tx, txµ) is conjugate to diag(t, tν) in GL2(p), if and
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only if δ ≡ γν and νµ ≡ 1 mod q. This implies that if δ = ν, then 〈diag(sδ, t, tν)〉
is conjugate to 〈diag(s, t, tν−1

)〉. Together, this shows that the conjugacy class
representatives for these cyclic subgroups of order q in Aut(F) are of the form
〈ρ(r, q), ρ(p, q, k), 1〉 with k ∈ Z∗q , 〈ρ(r, q), M(p, q, σk

q )〉 with 0 ≤ k ≤ b 1
2 (q− 3)c,

or 〈ρ(r, q, σ`
q ), M(p, q, σk

q )〉, with

(k, `) ∈{(x, y) ∈ Z2
q−1 : 0 ≤ x ≤ 1

2
(q− 1), 1 ≤ y ≤ 1

2
(q− 3)}

∪{(x, y) ∈ Z2
q−1 : 0 ≤ x ≤ 1

2
(q− 3),

1
2
(q− 1) ≤ y ≤ q− 2}

∪{(1
2
(q− 1),

1
2
(q− 1)) ∈ Z2

q−1}.

Accordingly, we find the (q− 1+ 1
2 q(q− 1))∆q

r−1∆q
p−1 isomorphism types in this

case, with presentations

Pc〈a, b, c, d | aq, br, cp, dp, ba = bρ(r,q), ca = cρ(p,q,k)〉

parametrised by k ∈ Z∗q , and

Pc〈a, b, c, d | aq, br, cp, dp, ba = bρ(r,q,σ`
q ), (ca, da) = (c, d)M(p,q,σk

q )〉,

parametrised by (k, `) ∈ P ⊆ Z2
q−1, where

P ={(x, 0) : 0 ≤ x ≤ 1
2
(q− 3)}

∪{(x, y) ∈ Z2
q−1 : 0 ≤ x ≤ 1

2
(q− 1), 1 ≤ y ≤ 1

2
(q− 3)}

∪{(x, y) ∈ Z2
q−1 : 0 ≤ x ≤ 1

2
(q− 3),

1
2
(q− 1) ≤ y ≤ q− 2}

∪{(1
2
(q− 1),

1
2
(q− 1))}.

Note that in the special cases q = 2, there are two conjugacy classes of groups
of order 2 in Aut(F), and the above discussion simplifies. In particular, the
conjugacy class representatives are 〈diag(−1,−1, 1)〉 and 〈diag(−1,−1,−1)〉,
and the corresponding two isomorphism types are Drp×Cp andC2 n (Cr ×C2

p).
If q | (p + 1) and q | (r− 1), then, up to conjugacy, there is a unique subgroup
of order q in GL2(p), and there is a unique normal subgroup of order q in Z∗r .
Since the Sylow r-subgroup is normal in both F and G, it suffices to consider G
with a presentation

G(k, `) = Pc〈a, b, c, d | aq, br, cp, dp, ba = bρ(r,q,k), (ca, da) = (c, d)Irr2(p,q,`)〉,

for some k, ` ∈ Z∗q . For any such k, `, since the map {a 7→ ak} extends to
an isomorphism G(k, `) → G(1, k−1`), it suffices to consider k = 1. It re-
mains to investigate the isomorphism types of G(1, `) with ` ∈ Z∗q . Follow-
ing from Corollary 2.4.3, we know G(1, `) ∼= G(1, `′) if and only if the cyclic
subgroups 〈s, Irr2(p, q, `)〉 and 〈s, Irr2(p, q, `′)〉 are conjugate in Aut(F). Using
Notation 4.2.6, with a fixed q-th root of unity i ∈ GF(p2), the block matrix
Irr2(p, q, `) is conjugate to

(
0 −1
1 i`p+i`

)
in GL2(p) < Aut(F) for any ` ∈ Z∗q , and so
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〈s, Irr2(p, q, `)〉 is conjugate to

〈
(

s 0 0
0 0 −1
0 1 i`p+i`

)
〉

for any ` ∈ Z∗q . A direct calculation shows that for `, `′ ∈ Zq∗, the subgroups
〈s, Irr2(p, q, `)〉 and 〈s, Irr2(p, q, `′)〉 are conjugate if and only if

i`p + i` = i`
′p + i`

′
,

if and only if `′ ∈ {`,−`} (since i`p = i−`−1 for any ` ∈ Z∗q). Therefore, there
are 1

2 (q− 1)∆q
r−1∆q

p+1 isomorphism types in this case, with presentations

Pc〈a, b, c, d | aq, br, cp, dp, ba = bρ(r,q), (ca, da) = (c, d)Irr2(p,q,σk
q )〉,

parametrised by k ∈ {1, . . . , 1
2 (q− 1)}.

We are left with the cases where gcd(|F|, |G/F|) > 1, namely, |F| ∈ {p, pq, pr, pqr}.

1. If |F| = p, then G/F ∼= Cpqr since Aut(F) ∼= Cq−1. Hence, G/F has a normal Sylow
p-subgroup, whose preimage under the natural projection G → G/F in G is also a nor-
mal Sylow subgroup and is of order p2, which contradicts the assumption that |F| = p.
Therefore, there exists no such group.

2. If |F| = pq, then G/F ∼= Cpr since Aut(F) ∼= Cp−1 × Cr−1. It follows that p | (q− 1) and
r | (p − 1) for there to be a faithful G/F-action on F. But this implies that r < p < q,
which contradicts the assumption that r > q. Therefore, there exists no such group.

3. If |F| = pr, then G/F ∼= Cpq since Aut(F) ∼= Cp−1 × Cr−1. It follows that p | (r− 1) and
q | (p− 1)(r− 1). Let Q ∈ Sylq(G/F). There are two cases to consider.

(a) If Q acts trivially on the Sylow p-subgroup of F, then Q acts nontrivially on the
Sylow r-subgroup R for the G/F-action on F to be faithful. It follows that q | (r− 1).
Moreover, R C G is characteristic and has a complement in G, denoted by H. Up
to conjugacy, such H is unique by Theorem 2.4.1. In particular, G ∼= H n R, where
|H| = p2q and H acts on R ∼= Cr via an automorphism of order pq. Also, H is
abelian by assumption. Thus H ∼= Cp2q or C2

p × Cq. For each case, there is a unique
isomorphism type by Corollary 2.4.3; namely,

Pc〈a, b, c, d | ap, bp, cq, dr, da = dρ(r,p), dc = dρ(r,q)〉,

and
Pc〈a, b, c, d | ap = b, bp, cq, dr, da = dρ(r,p), dc = dρ(r,q)〉,

respectively, accounting for 2∆q
r−1∆p

r−1 isomorphism types in this case.

(b) If Q acts nontrivially on the Sylow p-subgroup of F, then q | (p− 1). Theorem 2.3.5
and Theorem 2.4.3 show that, up to equivalence, there are ∆q

p−1 + (q− 1)∆q
p−1∆q

r−1
such nonequivalent G/F-module structures on F, in bijection with the conjugacy
classes with the cyclic normal subgroup of order q in Aut(F) ∼= Z∗p ×Z∗r . Thus it
suffices to consider a pc-presentation of G parametrised by

G(t1, t2, k) = Pc〈a, b, c, d | ap = t1, bq = t2, cr, dp, ca = cν, cb = cs, db = dµ〉,
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where ν = ρ(r, p) and µ = ρ(p, q), and s = ρ(r, q, k) for some k ∈ Zq with k > 0
only when q | (r − 1). Suppose that t1 = cx1 dy1 and t2 = cx2 dy2 . Theorem 3.2.3
implies that ta

1 = t1 and tb
2 = t2, that cνx1 = cx1 and csx2 dµx2 = cx2 dy2 ; this implies

that x1 = 0 = y2. Moreover, if k 6= 0, then x2 = 0; if k = 0, then q | (r− 1) and we
might have ap = dy1 and bq = cx2 . However, (dy1)b = dµy1 = (ap)b = ap = by1 and
(cx2)a = cνx2 = (bq)a = bq = cx2 , which forces x2 = 0 = y1. Hence, we conclude
that any such extension of F by G/F splits. In particular, if Q acts trivially on the
Sylow r-subgroup of F, then G ∼= (Cp n Cr)× (Cq n Cp) is uniquely determined by
the isomorphism types of the nonabelian factors Cp nCr and Cq nCp, in which case
G is isomorphic to

Pc〈a, b, c, d | ap, bq, cr, dp, ca = cρ(r,p), db = dρ(p,q)〉.

On the other hand, if Q acts nontrivially on the Sylow r-subgroup, then q | (r− 1),
and there are q− 1 isomorphism types of (Cp × Cq)n (Cr × Cp) with presentations

Pc〈a, b, c, d | ap, bq, cr, dp, ca = cρ(r,p), cb = cρ(r,q), db = dρ(p,q,k)〉,

parametrised by k ∈ Z∗q .

4. If F = pqr, then G/F ∼= Cp and the subgroup N C F of order qr is characteristic in G.
Theorem 2.4.1 shows that N has a complement P ∈ Sylp(G) and G = Pn N. In particular,
P acts on N via depending ∈ Aut(N) such that α has order p. It follows that p divides
at least one of (q− 1) and (r − 1). There are two cases to consider, namely, P ∼= Cp2 or
C2

p. For each case, there are ∆p
r−1 + ∆p

q−1 + (p− 1)∆p
r−1∆p

q−1 isomorphism types of G, in
one-to-one correspondence with subgroups of order p in Aut(N) ∼= Z∗q ×Z∗r . Since the
Sylow q- and r-subgroups are both normal in G, it suffices to consider the isomorphism
types

Pc〈a, b, c, d | ap = t, bp, cq, dr, ca = cν, da = dµ〉,

where t = 1 or b, corresponding to the cases where P ∼= C2
p or Cp2 respectively, and

µ ∈ Z∗q and ν ∈ Z∗r have order at most p, at least one of which has order p. In particular,
these groups have isomorphism class representatives

Pc〈a, b, c, d | ap = b, bp, cq, dr, ca = cρ(q,p)〉,
Pc〈a, b, c, d | ap = b, bp, cq, dr, da = dρ(r,p)〉,
Pc〈a, b, c, d | ap = b, bp, cq, dr, ca = cρ(q,p), da = dρ(r,p,k)〉,
Pc〈a, b, c, d | ap, bp, cq, dr, ca = cρ(q,p)〉,
Pc〈a, b, c, d | ap, bp, cq, dr, da = dρ(r,p)〉,
Pc〈a, b, c, d | ap, bp, cq, dr, ca = cρ(q,p), da = dρ(r,p,k)〉,

where k ∈ Z∗p.
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Generalisations and implementations
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Chapter 8

Outlook and computational remarks

We have explicitly constructed all groups whose orders are products of at most four prime fac-
tors; this and the resulting GAP implementations are the main results of this thesis. In this final
chapter, we briefly discuss possible generalisations. We also comment on the implementation
of our algorithms.

8.1 Further order types

Let p, q be distinct primes. In [4], Besche and Eick gave an algorithmic description for the con-
struction of groups of order pnq (assuming complete classification of groups of order pn). The
so-called upwards cyclic extension method [4, Figure 4] and the downwards cyclic extension method
[4, Figure 3] are constructive and reflect the applications of Corollary 2.4.3 and Corollary 2.4.6
to groups of order pnq. Our discussion in Chapter 6 is motivated by these cyclic extension
methods. Moreover, we note that these methods are not confined to groups of order pnq. For
example, the downwards extension method also applies to groups of order paqb with a nor-
mal cyclic Sylow subgroup S such that Aut(S) is cyclic, and the upwards extension method
applies to groups of order paqb with a normal Sylow subgroup and a cyclic complement. More
generally, Theorem 2.4.2(ii) applies to the classification of groups with a normal Sylow sub-
group. However, the generalisation of this approach to groups of order paqb faces a number
of challenges since many of the results depend on the existence of a normal Sylow subgroup.
Nevertheless, for “small” order types, groups without normal Sylow subgroup rarely appear
and many of them can be constructed and identified by exhaustion. For example, Laue [37,
Theorem 1.11] showed that if there exists a group of order m = paqb with a + b ≤ 6 that has no
normal Sylow subgroup, then

m ∈ {23·3, 23·32, 23·33, 24·3, 24·7, 24·32, 24·72, 24·3, 25·5, 25·7, 34·13, 34·22, 34·132, 35·13}

or m ∈ {p4q2 : p, q are primes such that q = p2 + p + 1}.

Note that the converse is not true. For example, we see later in Theorem 8.1.2 that every group
of order 24·7 contains a normal Sylow subgroup (see also [37, Theorem 2.1]). If we restrict our
attention to the groups of order pnq, then the following theorem due to Eick and Moede [25]
affirms that there is a strict condition on the primes p and q for there to exist a group of order
pnq without normal Sylow subgroup.
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Theorem 8.1.1 ([25], Theorem 25). Let p, q be distinct primes and n be a positive integer. If there
exists a group of order pnq without normal Sylow subgroup, then there exist positive integers m, ` with
m` ≤ n such that p | gcd(m``!, q− 1) and q | (pm − 1).

On the other hand, a group of order pnq is nilpotent if and only if all of its Sylow subgroups are
normal. Such groups are isomorphic to direct products of Cq and p-groups of order pn, thus
are fully classified by the isomorphism types of such p-groups. Let N (x) be the number of
isomorphism types of nilpotent groups of order x and denote the total number of isomorphism
types of groups of order x by G(x). It follows that N (pnq) = G(pn). The remaining groups
are non-nilpotent and can be partitioned into three cases. Let Np(x) be the number of non-
nilpotent groups of order x that have a normal Sylow p-subgroup, let Nq(x) be its counterpart
with a normal Sylow q-subgroup, and letR(x) be the number of isomorphism types of groups
of order x without normal Sylow subgroups. Then the total number of isomorphism types of
groups of order pnq is given by

G(pnq) = G(pn) +Np(pnq) +Nq(pnq) +R(pnq). (8.1.1)

The groups of order pnq2 can be studied in a similar manner, noting that there are two isomor-
phism types of groups of order q2, namely, Cq2 and C2

q . Thus, the total number of isomorphism
types of groups of order pnq2 is given by

G(pnq2) = 2G(pn) +Np(pnq2) +Nq(pnq2) +R(pnq2). (8.1.2)

For n ≤ 5, Eick and Moede [25] enumerated groups of order pnq, where they gave an explicit
formula for each summand in (8.1.1). For n ≤ 3, we have constructed these groups explicitly
in Chapter 6. Assuming a complete list of isomorphism class representatives for groups of
order pn, we can generalise the proofs of Lemma 6.2.5 and Lemma 6.2.4 to n > 3. For exam-
ple, with the list of groups of order p4 in Table 5.3, we apply the cyclic extension methods to
explicitly construct all non-nilpotent groups (up to isomorphism) of order p4q with a normal
Sylow subgroup. For the remaining groups without normal Sylow subgroup, we first apply
Theorem 8.1.1 to exhaust the finite list of possible orders, and then construct these groups and
findR(p4q) accordingly.

This way, we find a list of isomorphism class representatives for groups of order p4q; we
present the results in this section as a demonstration for the generalisation of Chapter 6. Due
to the large number and complexity of the isomorphism types of these groups, the construc-
tion of groups of order p4q contains more involving and technical manipulations of the pc-
presentations. We omit detailed proofs in this section, but include a sketch of the proof in
Appendix B (see Lemmas B.0.3, B.0.4, and B.0.2). Recall that in each table if the counting for-
mula in the right column gives 0, then it means the groups listed in the respective row do not
exist. Moreover, for each group of order p4, we use our SOT ID (see Tables 5.3 and 5.4) to
encode the isomorphism type. Unless otherwise specified, notation in Tables 8.1 and 8.2 are
consistent with Notations 4.1.1, 4.2.1, and 4.2.6.
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Theorem 8.1.2. Let G(p4q) be the number of isomorphism types of groups of order p4q. Then

G(p4q) = 15− ∆2
p + (5p + 19− ∆2

p)∆
p
q−1

+ (5 + 2p)∆p2

q−1 + 2∆p3

q−1 + ∆p4

q−1

+
1

24
(q3 + 31q2 + 189q + 423 + 16∆3

q−1 + 12∆4
q−1 + 27∆2

q)∆
q
p−1

+
1
4
(q + 21 + 2∆4

q−1)(1− ∆2
q)∆

q
p+1 + (1− ∆3

q)(1− ∆2
q)∆

q
p2+p+1

+ (1− ∆2
q)∆

q
p2+1 + ∆13

p ∆3
q + 4∆2

p∆3
q.

In particular, we have N (p4q) = 15− ∆2
p and R(p4q) = ∆13

p ∆3
q + 4∆2

p∆3
q. A non-nilpotent group of

order p4q with a normal Sylow subgroup has a presentation as listed in Tables 8.1 and 8.2; groups of
such order without normal Sylow subgroup are listed in Table 8.3.
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TABLE 8.3: Groups of order p4q without normal Sylow subgroup

PC-relators Structure Number of groups

|G| = 48

a2, b2, c3, d2, e2, cb/c2, db/e, eb/d, dc/de C2 × Sym4 ∆2
p∆3

q

a2/b, b2, c3, d2, e2, ca/c2, da/e, ea/d, dc/e, dc/de C4 n Alt4 ∆2
p∆3

q

a2, b3, c2/e, d2/e, e2, ba/b2, ca/d, da/c, cb/de, db/cd, dc/de C2 n (C3 n Q8) ∆2
p∆3

q

a2/e, b3, c2/e, d2/e, e2, ba/b2, ca/d, da/c, cb/de, db/cd, dc/de C2.(C3 n Q8) ∆2
p∆3

q

|G| = 34·13

a3, b13, c3, d3, e3, ba/bρ(13,3), ca/de, da/c2d2e, ea/cd2e, (cb, db, eb)/(c, d, e)Irr3(3,13) C3 n (C13 n C3
3) ∆3

p∆13
q

8.2 The SOTGrps package

We have implemented the results in the preceding section and previous chapters in GAP and
developed a package called SOTGrps, available at github.com/xpan-eileen/sotgrps_gap_pkg.
This section gives an introduction to this package and we briefly comment on its main func-
tionalities. We plan to extend the package by adding more functions and more order types, but
this is beyond the scope of this thesis.

Let p, q, r, s be distinct primes. At the time of writing, the SmallGroups library of GAP [27]
contains the following orders discussed in this paper: p2q for all primes p 6= q, and pnq for
primes p 6= q with pn dividing one of {28, 36, 55, 74} and all relevant orders up to 2000. Our
package SOTGrps is available for

• p-groups of order dividing p4;

• groups of order pnq where n ≤ 4;

• groups of order p2q2;

• groups of order dividing pqrs;

• groups of order p2qr.

SOTGroupIsAvailable(n) = true if n is one of these order types. We remark that our pack-
age provides new efficient functionalities for orders p2q2 and p2qr that are greater than 2000,
and orders p3q and p4q with p > 7. At the time of writing, SOTGrps contains the following
main functions for integers n such that SOTGroupIsAvailable(n) = true; these functions con-
stitute a dynamic database of SOTGrps; that is, the package computes efficiently the following
information on demand.

• NumberOfSOTGroups(n): returns the number G(n) of isomorphism types of groups of or-
der n.

• AllSOTGroups(n): returns a list Ln of all isomorphism class representatives of groups of
order n.

• SOTGroup(n, i): for i ∈ {1, . . . ,G(n)}, returns the i-th group in the ordered list Ln without
constructing the whole list L(n).
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• IdSOTGroup(G): for a group G of order n, returns the SOT1 ID (n, i), such that G is iso-
morphic to SOTGroup(n, i).

8.2.1 Explicit constructions

For an order n such that SOTGroupIsAvailable(n) = true, the list Ln is determined by mak-
ing various case distinctions on the structure of the groups of order n. Distinguishing features
such as nilpotency, the existence of normal Sylow subgroups, size of the centre, the structure
of the derived subgroup, and the structure of the Fitting subgroup are to be considered. Such
case distinctions partition Ln into various clusters. The counting formulas for |Ln| thus consist
of the enumeration of the isomorphism types of these groups in each cluster. Since we con-
struct these groups by group extensions, the clusters are further sorted by the group extension
decomposition: that is, the structure of the normal subgroup N and the factor group U such
that G is an extension of N by U. Moreover, two split extensions of N by U in the same cluster
only differ by the U-action on N; these actions are parametrised in a canonical way with re-
spect to the canonical automorphisms defined in Chapter 4. This parametrisation is explained
in the proofs of the main theorems in Chapters 5, 6, 7, and Appendix B, and demonstrated in
the Parameter columns of the tables. Since the enumeration of each cluster reflects the number
of parameters (given in the right columns in the tables), these counting formulas are the key in-
gredients that allow us to directly construct the i-th group in Ln without constructing the whole
list of groups. A similar approach is used for the construction functionality provided by the
SmallGroups library and by the algorithms in [21]. The following example is a demonstration
of this process for groups of order p2q.

Example 8.2.1. Let n = p2q with q > 2. The proof of Theorem 6.1.1 partitions the groups in Ln
into five cluster as given in Table 6.1. The groups in Cluster 1 are nilpotent and can be sorted
by the isomorphism types of the Sylow p-subgroup. Cluster 2 exists only if q | (p + 1)(p− 1);
Cluster 3 exists only if q | (p − 1); Clusters 4 and 5 exist only if p | (q − 1). To be more
specific, Clusters 2 and 3 comprise non-nilpotent groups with a normal Sylow p-subgroup.
That is, Clusters 2–4 consists of non-nilpotent split extensions P n Q and Q n P, where P has
order p2 and Q ∼= Cq. In the case where P is cyclic, there exists a non-nilpotent extension
Q n P only if q | (p− 1); such group is unique up to isomorphism. For the other case where
P is elementary abelian, we can apply Theorem 4.2.7 since Aut(P) ∼= GL2(p). If q | (p + 1),
then Q acts irreducibly on P and the centre of Q n P is trivial; there is a unique isomorphism
type of this split extension. If q | (p− 1), then there are 1

2 (q + 3) types of Q n P and they are
parametrised by the conjugacy classes of diagonalisable subgroups of GL2(p) of order q as seen
in the proof of Theorem 4.2.7(ii). The proof also explains how to list these classes canonically:
if σp ∈ Z∗p and σq ∈ Z∗q are the canonical generators and ρ(p, q) = σ

(p− 1)/q
p , then the subgroups

Cq in GL2(p) are sorted as 〈diag(ρ(p, q), 1)〉 and 〈M(p, q, σk
q ))〉with k ∈ {0, . . . , 1

2 (q− 1)} using
canonical automorphisms defined in Notations 4.1.1 and 4.2.1. On the other hand, if p | (q− 1),
then Cluster 2 and 3 are empty, whereas Cluster 4 and 5 consist of at least two isomorphism
types of non-nilpotent groups with a normal Sylow q-subgroup; there are two isomorphism
types in Cluster 5 if and only if p2 | (q− 1).

We now exemplify some explicit cases. If n = 292·7, then Clusters 1-5 have 2, 5, 1, 0, 0 groups,
respectively. The group G with ID (292·7, 6) is in Cluster 2, and G ∼= C7 nC2

29 where a generator

1We remark that the ordering of Ln constructed by AllSOTGroups(n) may differ from the ordering imposed
by AllSmallGroups(n) in GAP’s Small Group Library (if applicable). Hence for a group G implemented in GAP,
IdSmallGroup(G) and IdSOTGroup(G) do not necessarily coincide. In this thesis, by ID we always refer to the SOT
ID given in SOTGrps.
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u ∈ C7 acts on generators v, w ∈ C2
29 via M(29, 7, σ2

7 ) = diag(ρ(p, q), ρ(p, q, σ2
7 )); here σ29 = 2

and σ7 = 3, so ρ(29, 7) = σ4
29 = 16 and ρ(29, 7, σ2

7 ) = 24. Hence, we construct G by the (so-
called canonical) pc-presentation Pc〈u, v, w | u7, v29, w29, vu/v16, wu/w24〉. If n = 72·29, then
Clusters 1-5 have 2, 0, 0, 1, 1 groups, respectively. In this case, we see that there exists no
groups of such order that has a trivial centre. The group G with ID (72·29, 3) is in Cluster 4 and
G ∼= C72 n C29 where a generator u ∈ C72 acts on a generator v ∈ C29 via an automorphism
ρ(29, 7) of order 7; we construct G by the pc-presentation Pc〈u, v | u49, v29, vu = v16〉.

8.2.2 Group IDs

Many applications of group theory use the classification of finite groups of a given order. More
specifically, given an arbitrary group G of order n, we often want to know the isomorphism type
of G; that is, which group in the list of isomorphism class representatives Ln is G isomorphic
to? In theory, once the list Ln is known, this question can be answered by exhaustively testing
whether G ∼= H for each H ∈ Ln. However, when |Ln| and n are large, this approach is prac-
tically inefficient. This motivates our goal of finding an identification function for groups of
order n that computes a complete isomorphism invariant. As mentioned in the Introduction,
the group ID inherited from the canonical ordering of Ln is such a complete invariant. For
example, we saw that the isomorphism classes of groups of a given order type are partitioned
into subclasses by various case distinctions, and in each subclass there is a natural ordering on
the parametrised isomorphism representatives with respect to the canonical choices of auto-
morphisms of groups.

Reversing the construction process, we find an identification function that computes the group
ID of a given group G, namely, the position of the unique group H in the ordered list Ln such
that H ∼= G. To be more specific, we first determine the order type of |G| and depending
on the order type we choose to compute its Sylow subgroups, centre, derived subgroup, or
Fitting subgroup to determine which cluster it belongs to. For order types that are discussed
in this thesis, if G is nonsolvable, then we know G ∼= Alt5 and we are done. If G is solvable,
then we compute a parametrised pc-presentation of G with respect to our canonical choices of
automorphisms and determine the value of the parameter. This translates to the position of G
in its respective cluster, from which we further deduce its position in Ln, namely, the group
ID. We exemplify this process for an explicit group as follows.

Example 8.2.2. Consider the group G = 〈u, v, w | u7, v29, w29, wv/w, vu/v24, wu/v11w7〉. We
first determine n = |G| = 292·7 and compute a Sylow 29-subgroup P and a Sylow 7-subgroup
Q. We find that C2

29
∼= P E G, so G ∼= Q n C2

29. This tells us that G is a group of order p2q in
Cluster 2 as given in Table 6.1 with p = 29 and q = 7. Moreover, since 7 | (29− 1) and Z(G)
is trivial, we know that G has ID (292·7, 2 + 2 + k), where k ∈ {1, 2, 3} is the parameter of the
canonical pc-presentation of G with respect to the canonical Q-action on P. If G is given as a
matrix or permutation group, then we need to firstly choose a suitable pcgs and compute a
pc-presentation of G, but in this case we can use the given presentation with generators u ∈ Q
and v, w ∈ P and observe that vu = v24 and wu = v11w7. This gives the matrix representation of
u acting on v, w via

(
24 0
11 7

)
∈ GL2(29). This matrix has eigenvalues {24, 7}, so it is conjugate to

diag(24, 7) = diag(ρ(29, 7, 2), ρ(29, 7, 3)) with ρ(29, 7) = 16. Since u4 is also a generator of Q,
we can raise the matrix to its power of 4, which yields diag(ρ(29, 7), ρ(29, 7, 35)) = M(29, 7, σ5

7 ),
and it represents the same Q-action on P. That is, G has a canonical pc-presentation of the
form Pc〈a, b, d | a7, b29, c29, (ba, ca) = (b, c)M(29,7,σ5

7 )〉. From this we obtain parameter 5, but our
canonical choices of representatives are parametrised by k ∈ {0, . . . , 1

2 (q− 1) = 3}. We thus
look for a parameter k ∈ {0, . . . , 3} such that 〈M(29, 7, σ5

7 )〉 and 〈M(29, 7, σk
7)〉 are conjugate in
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GL2(29): since 3−5 mod (q−1) = 3 in Z∗7 , following the proof of Theorem 4.2.7(i) we determine
the parameter k = 1. Therefore, G has ID (292·7, 5).

8.2.3 Accuracy of results

SOTGrps arises from the implementation of our classification results. The proofs are construc-
tive and mainly rely on Theorem 2.4.2 in Chapter 2 and Theorem 4.2.7 in Chapter 4 and the
resulting corollaries. We compared our enumeration results with [24] and [37] and confirmed
that our counting formulas derived from explicit constructions and the formulas from count-
ing subgroup classes coincide. Moreover, for orders that are available in GAP’s SmallGroups
library, we checked our results against the existing database. We also compared our construc-
tion with that obtained by the GrpConst package (see [6]) and the Cubefree package (see [22])
for a larger range of orders that are not yet available in the SmallGroups library. The identifica-
tion function is derived by reversing the construction process, as exemplified in Example 8.2.2,
which involves choosing a pcgs and computing a presentation if the input is a solvable group.
In particular, once a presentation is chosen, we often need to compute the module structure
and calculate its parameter with respect to our canonical choices. One useful test is to feed the
function with multiple “random” copies2 of the same group and check whether it outputs the
same, correct ID. This way we ensure that the identification function handles different inputs
properly, and we avoid doing ad-hoc computations that rely on the input already given in a
canonical form.

In practice, we tried to avoid typos and errors introduced by data transcription by cross-
checking our GAP implementation with the proofs and the tables. After we compared SOTGrps
with other existing packages, we checked our tables again by reimplementing the lists of pc-
presentations in GAP and confirmed that they match the SOTGrps output.

8.2.4 Performance

We now comment on the performance of SOTGrps: all computations were carried out with GAP
4.11.0 on a computer with Intel(R) Core(TM) i5-7500 CPU@3.40GHz and 16GB RAM.3

• There are 20514 groups of order p2q at most 105. SmallGroups required 196 seconds to
construct these groups, while our code took 16 seconds. Our code identified the groups
constructed with SmallGroups in 78 seconds, whereas SmallGroups required 778 sec-
onds to identify our groups. There are 159800 groups of order up to 106 and our code
required 120 seconds for the construction of these groups; SmallGroups took 15181 sec-
onds. The reason for the increased runtime required for SmallGroups is because for some
order types the construction involves some computations (also causing longer runtime
for the order types described below), whereas our code directly writes down the group
presentations.

• Among the 74844 groups of order p2q, p3q, p2q2 or p2qr at most 50000, there are 74562
that are available in the SmallGroups library. Our code required 47 seconds to construct

2For this purpose, we used GAP to generate three to five “random” permutation group copies and five “ran-
dom” PcGroup copies, and verified that the identification function returned the same, correct group ID.

3All our runtimes were determined by using the option USE_NC:=true in our code: this prevents GAP from
checking consistency of polycyclic presentations, which becomes a major bottleneck when large primes are in-
volved.
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these groups, whereas SmallGroups required 27359 seconds. Moreover, SmallGroups
took 43356 seconds to identify our groups, while our code required 259 seconds to iden-
tify the groups constructed with SmallGroups. It required 0.2 seconds for our code to
construct the remaining 282 groups.

• Our code is also practical for larger primes. For example, the construction of the 37371,
6566, and 21348 groups of order 93413·467, 1276912·1132, and 4156312·467·89 took 32, 5,
and 17 seconds, respectively.4 For such large orders we cannot compare our results with
those of GrpConst or Cubefree, because the latter computations do not terminate in a
reasonable period of time (within a few hours). This is partly because these packages use
general-purpose algorithms which invoke computations with group homomorphisms
and matrix groups (bottlenecks akin to this also occur to other order types). Our code
avoids these bottlenecks by directly writing down polycyclic presentations of the (solv-
able) groups; the main bottleneck in our code seems to be GAP’s pc-group arithmetic for
large primes.

• At the time of writing, the SmallGroup library does not cover groups of order p4q except
for the special cases where p is at most 7 as mentioned before. GrpConst can in theory
be used to construct these groups, but it tends to be less efficient than SOTGrps and does
not terminate within a reasonable time even for “small” orders such as 194·3. For even
smaller orders such as 115·5 = 73205, which is not yet available in the SmallGroup library,
GrpConst required 326 seconds to construct the list of all groups while SOTGrps only took
0.07 seconds. More importantly, SOTGrps offers an identification function for groups of
order p4q while GrpConst does not.

8.3 Future work

In SOTGrps we use the canonical ordering of Ln to assign each group an ID, and the reverse
process leads to an identification function. A closely related problem is to compute an iso-
morphism between two groups with the same group ID. At the time of writing, the Small-
Group library only offers a generic isomorphism function constructed by first principles (see
IsomorphismGroups in GAP Manual [27]). In light of Theorem 2.4.2 and the subsequent corol-
laries, we can improve this isomorphism function using our explicit construction results. For
instance, if two groups G1, G2 both have group ID (n, x), then to compute an isomorphism
i : G1 → G2, we first determine a canonical copy G ∈ Ln that is the isomorphism class rep-
resentative with ID (n, x). Once the groups are identified and are isomorphic, we know that
they can be constructed as extensions of the same building blocks by Theorem 2.1.3. For exam-
ple, many of the groups considered in this thesis and in SOTGrps are split extensions with few
exceptions and we know that two such extensions only differ in the module structure. Theo-
rem 2.4.2 shows that to find the isomorphism it suffices to compute and compare these group
actions and determine the conjugate element that relates the two actions (see Section 2.4). Then
we compute an isomorphism i1 : G1 → G and similarly an isomorphism i2 : G2 → G. The com-
position map i = i−1

2 ◦ i1 is an isomorphism as desired. Having such an isomorphism function
will not only make the package more complete but will also provide more practical tools for
the study of these groups and may shed light on relevant applications.

4The performance of our code is even better (5, 1, and 3 seconds, respectively) if groups are returned as GAP
objects pcp-group (instead of pc-group) by setting USE_PCP:=true.
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Appendix A

Preliminary results

We briefly recall some definitions and preliminary results that are used in this thesis. For
details and proofs we refer to standard textbook references, such as [33], [35], [43], and [45].

Theorem A.0.1 (Frattini). If G is a finite group, then its Frattini subgroup Φ(G) is nilpotent.

Theorem A.0.2 (Frattini’s argument). If G is a finite group with normal subgroup H, and P is a
Sylow subgroup of H. Then G = NG(P)H.

Lemma A.0.3 ([35], 1A.1). Let G be a group and H a subgroup of G. If [G : H] = p, where p is the
smallest prime dividing |G|, then H C G.

Theorem A.0.4 (Burnside). If G is a group of exponent 2, then G is abelian.

Theorem A.0.5 ([3], Lemma 6). A finite p-group is nilpotent.

Theorem A.0.6 (Burnside basis theorem; [43], Theorem 5.3.2). Let G be a finite p-group. Then
Φ(G) = [G, G]G[p]. If [G : Φ(G)] = pr, then every generating set of G has a subset of r elements
which also generates G.

Theorem A.0.7 ([43], Theorem 5.3.8). Any finite extraspecial group has order p1+2r for some positive
integer r. For each r, there are two isomorphism type of extraspecial groups. Extraspecial 2-groups are
central products of copies of the dihedral group D4 and the quaternion group Q8.

Theorem A.0.8 (Sylow). Let G be a finite group and p prime divisor of |G|. Write |G| = pam such
that p - m, and write np(G) = |Sylp(G)| for the number of Sylow p-subgroups of G. Then the
following are true:

(i) np(G) ≡ 1 mod p.

(ii) np(G) | m.

(iii) Every p-subgroup of G is contained in a Sylow p-subgroup of G.

(iv) If P ∈ Sylp(G), then all Sylow p-subgroups of G are conjugate to P.
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Theorem A.0.9 (Characterisation of finite nilpotent groups, [35], Theorem 1.26). The following
statements are equivalent for any finite group G:

(i) G is nilpotent.

(ii) For every subgroup H ≤ G, there exists a subnormal series of G that contains H as a term.

(iii) If H is a proper subgroup of G, then H < NG(H).

(iv) Every maximal subgroup of G is normal.

(v) G is the direct product of its Sylow subgroups.

(vi) [G, G] < Φ(G).

Theorem A.0.10 ([43], Theorem 5.1.9). For a nilpotent group G, the nilpotency class of G is the
length of its upper central series, as same as the length of its lower central series.

Theorem A.0.11 ([35], Corollary 1.28). Let G be a finite group and m = |G|. Then the following
statements are equivalent:

(i) F(G) = ∏p|m Op(G).

(ii) F(G) is the unique largest normal nilpotent subgroup of G.

(iii) F(G) is the Fitting subgroup of a group G.

Theorem A.0.12 (Fundamental theorem of finitely generated abelian groups; [33], Theorem 9.12).
A nontrivial finitely generated abelian group is isomorphic to a direct product of finitely many cyclic
groups of infinite or prime-power orders. More specifically, such a group is isomorphic to

Cd1 × · · ·Cdr × (Z,+)s

for uniquely defined r, s ∈N and d1, . . . , dr ∈N+ with di | di+1 for all 1 ≤ i ≤ r.

Theorem A.0.13 ([9], Lemma 1.3). Let H and K be groups whose orders are coprime, and let
G = H × K. Then Aut(G) ∼= Aut(H)×Aut(K).

Theorem A.0.14 (Cauchy–Frobenius; [35], 1.A.6). Let G be a finite group acting on a set X. For
each g ∈ G let FixX(g) be the set of fixed points of g in X.Then the number of G-orbits in X equals

1
|G| ∑

g∈G
|FixX(g)|.
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Determination of groups of order p4q

Let p, q be distinct primes, and let G be a group of order p4q throughout. Let
P ∈ Sylp(G) and Q ∈ Sylq(G). Since Q is of order q, it is cyclic and isomorphic to Cq, with
Aut(Q) ∼= Cq−1. There are 14 isomorphism types of groups of 16 and there are 15 isomorphism
types of groups of odd order p4. We make case distinction on the isomorphism types of groups
of order p4 and use results in Chapter 5. In this section we give brief explanation of our de-
termination of groups of order p4q. Recall that Eick and Moede [25] proved the enumeration
results for these groups. Our explicit determination of the isomorphism types of such groups
directly results a counting formula that agrees with that of Eick and Moede. More specifi-
cally, we divide our discussion into three parts: first we determine groups of order p4q without
normal Sylow subgroups, then we determine the non-nilpotent groups of such order with a
normal Sylow q-subgroup, and lastly we determine the non-nipotent groups with a normal
Sylow p-subgroup. This way, in combination with the aforementioned results for groups of
order p4, we obtain a list of the isomorphism types of groups of order p4q and a formula for
each of the summand in (8.1.1).

First consider groups of order p4q without normal Sylow subgroups. The following result
follows by a direct application of Theorem 8.1.1.

Lemma B.0.1 ([25], Theorem 2). If G is a group of order p4q with no normal Sylow subgroup, then
|G| = 24·3 or 34·13.

Since a group of order p4q is solvable, we deduce that if G has no normal Sylow subgroup, then
it has a normal subgroup H with index p; that is, |H| = p3q. Moreover, if Q ∈ Sylq(H) then Q
is not normal in H, for otherwise Q C G, contradicting our assumption. Groups of order p3q
without a normal Sylow q-subgroup are determined in Lemma 6.2.2 and Lemma 6.2.5, from
which we know that H ∼= Sym4 or H has a normal Sylow p-subgroup. Using this fact we can
readily determine all groups of order n ∈ {24·3, 34·13} without normal Sylow subgroups in
GAP [27]. In particular, we obtain the following result.

Lemma B.0.2. Let G be a group of order 48 or 34·13 with no normal Sylow subgroup. If |G| = 48
contains no normal Sylow subgroup, then G is isomorphic to one of the following:

C2 n Sym4, C4 n Alt4, GL2(3), C2.SL2(3),

where C2.SL2(3) is a non-split extension with a normal subgroup isomorphic to SL2(3) ∼= C3 nQ8 (see
(6.2.3) for a presentation). If |G| = 34·13, then G contains a normal subgroup H ∼= C13 n C3

3 where
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C13 acts on C3
3 via the irreducible matrix Irr3(3, 13), and G ∼= C3 n H, where C3 acts on trivially on

C3
3 C H and C3 acts on a Sylow 13-subgroup of H via ρ(13, 3) (see Notation 4.1.1).

The following lemmas complete the determination of groups of order p4q; in the proofs we
omit some technical details if they are due to direct but complicated computation.

Lemma B.0.3. Let Nq be the number of isomorphism types of non-nilpotent groups of order p4q with
a normal Sylow q-subgroup. Then

Nq = (5p + 19− ∆2
p)∆

p
q−1 + (5 + 2p)∆p2

q−1 + 2∆p3

q−1 + ∆p4

q−1.

Proof. By Theorem 2.4.1, if G is a non-nilpotent group of order p4q with a normal Sylow q-
subgroup, then G = P nϕ Q, where P has order p4 and Q ∼= Cq. First note that G is nilpotent
if and only if ϕ is trivial, thus it suffices to only consider the cases where ϕ is nontrivial. It
follows that Z(G) ≤ Ker ϕ. Since both Q and Aut(Q) are cyclic, we apply Corollary 2.4.6 for
the classification of such groups. Using the same notation in Corollary 2.4.6, for each K ∈ K`

where ` | gcd(|P|, |Aut(Q)|), we write indK = [Aut(P/K) : AK]. Note that Aut(Q) ∼= Cq−1 and
P/Ker ϕ embeds into Aut(Q), so it follows that Ker ϕ ≤ [P, P] and |P/Ker ϕ| divides q − 1.
We make a case distinction on the isomorphism type of P. For an isomorphism type P with
SOT ID (p4 : x) as listed in Table 5.3; we write nx for the number of isomorphism types of
non-nilpotent semidirect products P n Cq where P is of type (p4 : x). Recall that for group
homomorphisms that are described by the image of a generating set, we abbreviate the map
on the generating sets by omitting fixed points. For example, given two group presentations
with the same generating set {a, b, c, d, e}, we write {a 7→ b, b 7→ a} for the homomorphism
{a 7→ b, b 7→ a, c 7→ c, d 7→ d, e 7→ d}.

1. If P ∼= Cp4 , then for each ` ∈ {1, p, p2, p3} there is a unique Aut(P)-class of normal
subgroups K ∈ K` with P/K ∼= C`. Since P is abelian, Ker ϕ = Z(G). We determine that
indK = 1 for each representative K and apply Corollary 2.4.6 to count that

n1 = ∆p
q−1 + ∆p2

q−1 + ∆p3

q−1 + ∆p4

q−1.

Conversely, we identify the isomorphism type of G by computing Z(G):

• If Z(G) ∼= Cp3 , then G ∼= Pc〈a, b | ap4
, bq, ba = bρ(q,p)〉.

• If Z(G) ∼= Cp2 , then p2 | (q− 1) and G ∼= Pc〈a, b | ap4
, bq, ba = bρ(q,p2)〉.

• If Z(G) ∼= Cp, then p3 | (q− 1) and G ∼= Pc〈a, b | ap4
, bq, ba = bρ(q,p3)〉.

• If Z(G) = 1, then p4 | (q− 1) and G ∼= Pc〈a, b | ap4
, bq, ba = bρ(q,p4)〉.

2. If P ∼= Cp3 × Cp, then Z(G) = Ker ϕ. By looking at normal subgroups of P with cyclic
quotient, we find that Ker ϕ = K ∈ {Cp3 , Cp2 × Cp, Cp2 , C2

p, Cp}. Since there is a unique
Aut(P)-class of normal subgroups for each such representative K, and indK = 1. Apply-
ing Corollary 2.4.6, we find that

n2 = 2∆p
q−1 + 2∆p2

q−1 + ∆p3

q−1.

Conversely, we identify the isomorphism type of G by computing Z(G):

• If Z(G) ∼= Cp3 , then p | (q− 1) and G ∼= Pc〈a, b, c | ap3
, bp, cq, cb = cρ(q,p)〉.
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• If Z(G) ∼= Cp2 × Cp, then p | (q− 1) and G ∼= Pc〈a, b, c | ap3
, bp, cq, ca = cρ(q,p)〉.

• If Z(G) ∼= Cp2 , then we can write P = Pc〈a, b | ap3
, bp〉 and Z(G) is of the form

〈apbk〉 for some k ∈ Z∗p. Since such subgroups 〈apbk〉 are in the same Aut(P)-class
with representative 〈apb〉, it follows that

G ∼= Pc〈a, b, c, d | ap2
= c, bp = c, cp, dq, da = dρ(q,p2)〉.

• If Z(G) ∼= C2
p, then p2 | (q− 1) and G ∼= Pc〈a, b, c | ap3

, bp, cq, ca = cρ(q,p2)〉.

• If Z(G) ∼= Cp, then p3 | (q− 1) and G ∼= Pc〈a, b, c | ap3
, bp, cq, ca = cρ(q,p3)〉.

3. If P ∼= Cp2 × Cp2 , then Z(G) = Ker ϕ. Subgroups of P with cyclic quotients are isomor-
phic to Cp2 × Cp or Cp2 . Since each of such subgroups lies in a unique Aut(P)-class with
a representative K ∈ Kp ∪Kp2 with indK = 1, we apply Corollary 2.4.6 and find

n3 = ∆p
q−1 + ∆p2

q−1.

Conversely, we identify the isomorphism type of G by computing Z(G):

• If Z(G) ∼= Cp2 × Cp, then p | (q− 1) and G ∼= Pc〈a, b, c | ap2
, bp2

, cq, ca = cρ(q,p)〉.

• If Z(G) ∼= Cp2 , then p2 | (q− 1) and G ∼= Pc〈a, b, c | ap2
, bp2

, cq, ca = cρ(q,p2)〉.

4. If P ∼= Cp2 ×C2
p, then Z(G) = Ker ϕ. Subgroups of P with cyclic quotients are isomorphic

to Cp2 × Cp, C2
p, or C3

p, and there is a unique Aut(P)-class containing each of such sub-
groups. For each representative K ∈ Kp ∪ Kp2 ∪ Kp3 we determine indK = 1 and apply
Corollary 2.4.6 to count that

n4 = 2∆p
q−1 + ∆p2

q−1.

Conversely, we identify the isomorphism type of G by computing Z(G):

• If Z(G) ∼= Cp2 × Cp, then p | (q− 1) and G ∼= Pc〈a, b, c, d | ap2
, bp, cp, dq, db = dρ(q,p)〉.

• If Z(G) ∼= C3
p, then p | (q− 1) and G ∼= Pc〈a, b, c, d | ap2

, bp, cp, dq, da = dρ(q,p)〉.

• If Z(G) ∼= C2
p, then p2 | (q− 1) and G ∼= Pc〈a, b, c, d | ap2

, bp, cp, dq, da = dρ(q,p2)〉.

5. If P ∼= C4
p, then subgroups of P with cyclic quotients are isomorphic to C3

p and lie in a
unique Aut(P)-class. It follows that n5 = ∆p

q−1, and G ∼= C3
p × (Cp n Cq) if it exists.

6. If P is of type (p4 : 6), then we can write P = Pc〈a, b, c, d | ap, bp = c, cp, dp, da = cd〉 for
p > 2, and P = Pc〈a, b, c, d | ap, bp = c, cp, dp, ba = bc, da = cd〉 for p = 2, whose normal
subgroups with cyclic quotients are of the form Cp2 ×Cp, p1+2

+ , p1+2
− (recall that we follow

the convention that 21+2
+
∼= D4 and 21+2

−
∼= Q8 if p = 2). There are three Aut(P)-classes

of Kp, with representatives K ∈ {〈b, c, d〉, 〈a, c, d〉, 〈a, bd, c〉} respectively, and indK = 1
for each K. In total, there are n6 = 3∆p

q−1 isomorphism types of such groups. Observe
that the Fitting subgroup of G is F(G) = Ker ϕ × Q, it follows that |F(G)| = p3q, and
G/F(G) ∼= Cp. This gives a way to identify the isomorphism type of such a group G by
computing F(G):

• If F(G) ∼= (Cp × Cp2)× Cq and p > 2, then

G ∼= Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, da = cd, ea = eρ(q,p)〉;
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if F(G) ∼= (C2 × C4)× Cq, then

G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2, d2, eq, ba = bc, da = cd, ea = eρ(q,p)〉;

• If F(G) ∼= p1+2
+ × Cq and p > 2, then

G ∼= Pc〈a, b, c, d, e | ap, bp = c, cp, dp, da = cd, eb = eρ(q,p)〉;

if F(G) ∼= D4 × Cq, then

G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2, d2, eq, ba = bc, da = cd, eb = eρ(q,p)〉;

• If F(G) ∼= p1+2
− × Cq and p > 2, then

G ∼= Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, da = cd, db = cd, ea = eρ(q,p)〉;

if F(G) ∼= Q8 × Cq, then

G ∼= Pc〈a, b, c, d, e | a2, b2 = d, c2 = d, d2, eq, ca = cd, cb = cd, ea = e−1〉.

7. If P is of type (p4 : 7), then we can write P = Pc〈a, b, c, d | ap = b, bp = c, cp, dp, da = cd〉
for p > 2, and P = Pc〈a, b, c, d | a2, b2 = c, c2, d2, ba = bc〉 for p = 2. First consider the
case p > 2, and note that normal subgroups in P with cyclic quotients are of the form Cp3 ,
Cp2 ×Cp, Cp2 , C2

p. There are two Aut(P)-orbits in Kp and two orbits in Kp2 . In particular,
if K ∈ Kp is isomorphic to Cp3 , then indK = p− 1; if K ∈ Kp is isomorphic to Cp2 × Cp,
then indK = 1; if Cp2 ∼= K ∈ Kp2 , then indK = p− 1; if C2

p
∼= K ∈ Kp2 , then indK = 1. For

the construction and identification of such groups, we note that F(G) ∼= Ker ϕ× Q and
Ker ϕ ∈ Sylp(F(G)). We compute from the above presentation of P that if p > 2, then
〈c〉 = [P, P], 〈c, d〉 = Ω(P), 〈b, c〉 = Z(P), and 〈b, c, d〉 are characteristic in P.
Now consider the case p = 2, note that normal subgroups in P with cyclic quotients have
size p3 = 8, and K2 = {C4 × C2, D4, C3

2}. For each K ∈ K2, we find indK = 1. It follows
from Corollary 2.4.6 that

n7 = (p + ∆2
p)∆

p
q−1 + p(1− ∆2

p)∆
p2

q−1.

These groups can be constructed and identified as follows:

• If F(G) ∼= Cp3 × Cq, then p > 2 and K ∈ Kp takes the form 〈adk, b, c〉 with k ∈ Zp.
Since such groups are in the same Aut(P)-class, it suffices to consider

G ∼= G(k) = Pc〈a, b, c, d, e | ap = b, bp = c, cp, dp, eq, da = cd, ed = eρ(q,p,k)〉 (B.0.1)

for some k ∈ Z∗p. Any isomorphism G(k)→ G(k′) maps the pcgs {a 7→ ax1 bx2 cx3 dx4 ,
b 7→ bx1 cx2 , c 7→ cx1 , d 7→ cy1 dy2 , e 7→ ez} with xi, yi ∈ Zp, z ∈ Z∗q , and x1, y2 > 0.
A routine calculation shows that such an isomorphism exists if and only if k = k′.
Therefore, there are precisely p− 1 isomorphism types of the form G(k) as described
in (B.0.1), parametrised by k ∈ Z∗p. Conversely, given such a group G, to determine
the value of k it is sufficient to determine the action of Ω(P) = 〈c, d〉 on Q, where
〈c〉 = [P, P].

• If F(G) ∼= (Cp × Cp2)× Cq and p > 2, then it suffices to consider K = 〈b, c, d〉 ∈ Kp
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and

G ∼= G(k) = Pc〈a, b, c, d, e | ap = b, bp = c, cp, dp, eq, da = cd, ea = eρ(q,p,k)〉

for some k ∈ Z∗p. However, for each k ∈ Z∗p, the map {a 7→ ak, b 7→ bk, c 7→ ck}
extends to an isomorphism G(k)→ G(1). Therefore, there is a unique isomorphism
type of such groups and it suffices to consider k = 1.
If F(G) ∼= C4 × C2, then G ∼= Pc〈a, b, c, d | a2, b2 = c, c2, d2, ba = bc, ea = e−1〉.

• If F(G) ∼= Cp2 × Cq, then p > 2 and K ∈ Kp2 takes the form 〈bkd, c〉 for some k ∈ Z∗p.
Since they are in the same Aut(P)-class, it suffices to consider K = 〈bd, c〉. Under
α ∈ Aut(P) defined by α(a) = a, α(bd) = b, α(b) = c, α(c) = d, this allows us to
consider

G ∼= G(k) = Pc〈a, b, c, d, e | ap = b, bp = d, cp = d, dp, eq, ca = cd,

ea = eρ(q,p2,k), eb = eρ(q,p,k)〉

for some k ∈ Z∗p. A routine calculation shows that each k ∈ Z∗p adds a new isomor-
phism type G(k). On the other hand, we know that for any x, k ∈ Z∗p, the groups

Pc〈a, b, c, d, e | ap = b, bp = d, cp = d, dp, eq, ca = cdx, ea = eρ(q,p2,k), eb = eρ(q,p,k)〉,

and

Pc〈a, b, c, d, e | ap = b, bp = d, cp = d, dp, eq, ca = cd, ea = eρ(q,p2,x−1k), eb = eρ(q,p,x−1k)〉

are isomorphic. This directly gives a way to determine the isomorphism type of
a given group G by computing a presentation of the form G(k) and finding the
parameter k.

• If F(G) ∼= C2
p × Cq, then p > 2 and K = 〈c, d〉. This shows that

G ∼= G(k) = Pc〈a, b, c, d, e | ap = b, bp = c, cp, dp, eq, da = cd,

ea = eρ(q,p2,k), eb = eρ(q,p,k)〉

for some k ∈ Z∗p. Since {a 7→ ak, b 7→ bk, c 7→ ck} extends to an isomorphism
G(k) → G(1), the isomorphism type of G(k) is independent of the choice of k and
G ∼= G(1).

• If F(G) ∼= C4 × C2, then G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2, d2, eq, ba = bc, ea = e−1〉.
• If F(G) ∼= D4 × Cq, then G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2, d2, eq, ba = bc, ed = e−1〉.
• If F(G) ∼= C3

2 × Cq, then G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2, d2, eq, ba = bc, eb = e−1〉.

8. If P is of type (p4 : 8), then we can write P = Pc〈a, b, c, d | ap, bp = c, cp, dp, ba = bc〉 for
p > 2, and P = Pc〈a, b, c, d | a2, b2 = c, c2, d2, ba = bd〉 for p = 2. If p > 2, then there
are three Aut(P)-classes of normal subgroups of P with cyclic quotient; these subgroups
have size p3, and Kp = {〈b, c, d〉 ∼= Cp2 × Cp, 〈a, b, c〉 ∼= p1+2

− , 〈a, c, d〉 ∼= C3
p}. For

each such K ∈ Kp, we determine that indK = p − 1, 1, 1, respectively. We compute
from the above presentation for p > 2 that the subgroups 〈c, d〉 = Z(P), 〈c〉 = [P, P], and
〈a, c, d〉 = Ω(P) are characteristic in P. If p = 2, then we can choose K4 = {〈a, d〉 ∼= C2

2}
and K2 = {〈b, c, d〉 ∼= C4 × C2, 〈a, c, d〉 ∼= C3

2}. For each representative K ∈ K2 ∪ K4, we
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find indK = 1. Applying Corollary 2.4.6 yields that there are

n8 = (p + 1− ∆2
p)∆

p
q−1 + ∆2

p∆4
q−1

isomorphism types of such groups. We explicitly construct and identify these groups as
follows:

• If F(G) ∼= (Cp × Cp2)× Cq and p > 2, then K = 〈b, c, d〉 and

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bc, ea = eρ(q,p,k)〉

for some k ∈ Z∗p. To see this, first note that for any x, k ∈ Z∗p, the groups

Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bcx, ea = eρ(q,p,k)〉,

and
Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bc, ea = eρ(q,p,x−1k)〉

are isomorphic via {a 7→ ax}. Thus, it suffices to fix x = 1. Moreover, for k, k′ ∈ Z∗p,
any isomorphism G(k) → G(k′) maps the pcgs {a 7→ ax1 bx2 cx3 dx4 , b 7→ by1 cy2 dy3 ,
c 7→ cy1 , d 7→ cz1 dz2 , e 7→ eu}, where xi, yi, zi ∈ Zp, u ∈ Z∗q , x1, y1 > 0, and z1, z2 are
not both zero. A routine calculation shows that such an isomorphism exists if and
only if k = k′. Therefore, each k ∈ Z∗p adds a new isomorphism type G(k).
If F(G) ∼= (Cp × Cp2)× Cq and p = 2, then

G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2, d2, eq, ba = bd, ea = e−1〉.

• If F(G) ∼= p1+2
− × Cq, then p > 2 and K = 〈a, b, c〉. This shows that

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bc, ed = eρ(q,p,k)〉

for some k ∈ Z∗p. Since {d 7→ dk} extends to an isomorphism G(k) → G(1) for
any k ∈ Z∗p, the isomorphism type of G(k) is independent of the choice of k; that is,
G ∼= G(1).

• If F(G) ∼= C3
p × Cq and p > 2, then K = 〈a, c, d〉 and

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bc, eb = eρ(q,p,k)〉

for some k ∈ Z∗p. However, for any k ∈ Z∗p, the map {b 7→ bk, c 7→ ck} extends to an
isomorphism G(k) → G(1). Therefore, the isomorphism type of G(k) is indepen-
dent of the choice of k and G ∼= G(1).
If F(G) ∼= C3

p × Cq and p = 2, then

G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2, d2, eq, ba = bd, eb = e−1〉.

• If F(G) ∼= C2
2 × Cq, then 4 | (q− 1) and

G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2, d2, eq, ba = bd, eb = eρ(q,4), ec = e−1〉.

9. If P is of type (p4 : 9), then we can write P = Pc〈a, b, c, d | ap, bp = c, cp, dp, ba = bd〉 for
p > 2, and P = Pc〈a, b, c, d | a2 = c, b2 = c, c2, d2, ba = bc〉 for p = 2. If p > 2, then
there are three Aut(P)-classes of normal subgroups of P with cyclic quotient. In partic-
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ular, Kp = {〈b, c, d〉 ∼= Cp2 × Cp, 〈a, c, d〉 ∼= C3
p} and Kp2 = {〈a, d〉 ∼= C2

p}. For each
K ∈ Kp ∪ Kp2 , we find that indK = 1. Moreover, we compute that Z(P) = 〈c, d〉,
[P, P] = 〈d〉, Ω(P) = 〈a, c, d〉, and f(P) = 〈c〉 are characteristic in P. If p = 2, then
there are two Aut(P)-classes of normal subgroups with cyclic quotient in P. These sub-
groups have order 8 with representatives K ∈ K2 = {〈b, c, d〉 ∼= C4 × C2, 〈a, b, c〉 ∼= Q8}.
For each K ∈ K2 we find indK = 1. Corollary 2.4.6 implies that

n9 = 2∆p
q−1 + (1− ∆2

p)∆
p2

q−1

isomorphism types in total. We explicitly construct and identify these groups as follows:

• If F(G) ∼= (Cp2 × Cp)× Cq and p > 2, then K = 〈b, c, d〉 and

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bd, ea = dρ(q,p,k)〉

for some k ∈ Z∗p. However, since for each k ∈ Z∗p, the map {a 7→ ak, d 7→ d(k
−1)}

extends to an isomorphism G(k)→ G(1), the isomorphism type of G(k) is indepen-
dent of the choice of k and G ∼= G(1).
If F(G) ∼= C4 × C2, then

G ∼= Pc〈a, b, c, d, e | a2 = c, b2 = c, c2, d2, eq, ba = bc, ea = e−1〉.

• If F(G) ∼= C3
p × Cq, then p > 2 and K = 〈a, c, d〉. It follows that

G ∼= Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bd, eb = eρ(q,p,k)〉

for some k ∈ Z∗p. A routine calculation shows that the map {b 7→ bk, c 7→ ck} extends
to an isomorphism G(k)→ G(1). Therefore, G ∼= G(1).

• If F(G) ∼= C2
p × Cq, then p > 2, K = 〈a, d〉, and

G ∼= Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bd, eb = eρ(q,p2), ec = eρ(q,p)〉.

10. If P is of type (p4 : 10), then we can write P = Pc〈a, b, c, d | ap = d, bp = c, cp, dp, ba = bc〉.
First note that there are three Aut(P)-classes of normal subgroups of P with cyclic quo-
tient. We choose Kp = {〈a, c, d〉 ∼= 〈b, c, d〉 ∼= Cp2 × Cp} and Kp2 = {〈b, c〉 ∼= C2

p} to be
the representatives for these classes. For K = 〈a, c, d〉, we find that indK = p − 1; for
K = 〈b, c, d〉, we find indK = 1; for K = 〈b, c〉, we find indK = p− 1. Moreover, we com-
pute from the above presentation of P that that 〈c, d〉 = Z(P), 〈c〉 = [P, P], 〈c, d〉 = Ω(P),
and 〈b, c, d〉 are characteristic in P. We apply Corollary 2.4.6 and count

n10 = p∆p
q−1 + (p− 1)∆p2

q−1.

We explicitly construct these groups as follows:

• If F(G) ∼= (Cp2 × Cp)× Cq, then let g ∈ G\F(G) and there are two possibilities: if
〈g〉 ∩ F(G) = [P, P], then K = 〈a, c, d〉; otherwise K = 〈b, c, d〉. In the former case,
we have

G ∼= G(k) = Pc〈a, b, c, d, e | ap = d, bp = c, cp, dp, eq, ba = bc, eb = eρ(q,p,k)〉

for some k ∈ Z∗p. However, a routine computation shows that G(k) ∼= G(1) for any
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k ∈ Z∗p. Therefore, G ∼= G(1). In the latter case, we see that the groups

Pc〈a, b, c, d, e | ap = d, bp = c, cp, dp, eq, ba = bcx, ea = eρ(q,p,k)〉

and
Pc〈a, b, c, d, e | ap = d, bp = c, cp, dp, eq, ba = bc, ea = eρ(q,p,x−1k)〉.

are isomorphic via {a 7→ ax} for any x ∈ Z∗p. Thus, it suffices to consider x = 1, and

G ∼= G(k) = Pc〈a, b, c, d, e | ap = d, bp = c, cp, dp, eq, ba = bc, ea = eρ(q,p,k)〉

for some k ∈ Z∗p. Since any isomorphism G(k) → G(k′) can be described by a map
on the pcgs, which takes the form

{a 7→ ax1 bx2 cx3 dx4 , b 7→ by1 cy2 dy3 , c 7→ cy1 , d 7→ cx2 dx1 , e 7→ ez},

where xi, yi ∈ Zp, z ∈ Z∗q , and x1, y1 > 0, a routine calculation shows that for
k, k′ ∈ Z∗p, the groups G(k) ∼= G(k′) if and only if k = k′. Thus, each of k ∈ Z∗p adds
a new isomorphism type.

• If F(G) ∼= Cp2 × Cq, then K = 〈c, d〉. A routine calculation shows that

Pc〈a, b, c, d, e | ap = d, bp = c, cp, dp, eq, ba = bcx, ea = eρ(q,p2,k), ed = eρ(q,p,k)〉

and

Pc〈a, b, c, d, e | ap = d, bp = c, cp, dp, eq, ba = bc, ea = eρ(q,p2,x−1k), ed = eρ(q,p,x−1k)〉

are isomorphic for any x, k ∈ Z∗p. Thus it suffices to consider x = 1 and

G ∼= G(k) = Pc〈a, b, c, d, e | ap = d, bp = c, cp, dp, eq, ba = bc,

ea = eρ(q,p2,k), ed = eρ(q,p,k)〉

for some k ∈ Z∗p. Akin to the preceding case, we can compute and show that for any
k, k′ ∈ Z∗p, two groups G(k) and G(k′) are isomorphic if and only if k = k′. Thus,
each k ∈ Z∗p adds a new isomorphism type.

11. If P is of type (p4 : 11), then we can write P = Pc〈a, b, c, d | ap, bp, cp, dp, ca = bc〉 for
p > 2, and P = Pc〈a, b, c, d | a2, b2 = c, c2 = d, d2, ba = bd〉 for p = 2. If p > 2, then normal
subgroups of P with a cyclic quotient are of order p3. Choosing Kp = {〈a, b, c〉 ∼= p1+2

+ ,
〈b, c, d〉 ∼= C3

p} to be the representatives, we determine that indK = 1 for each K ∈ Kp with
p > 2. If p = 2, then we considerK2 ∪K4 whereK2 = {〈b, c, d〉 ∼= C8, 〈a, c, d〉 ∼= C4×C2}
and K4 = {〈a, d〉 ∼= C2

2 , 〈ac, d〉 ∼= C4}; we find indK = 1 for each K ∈ K2 ∪K4. We apply
Corollary 2.4.6 and count

n11 = 2∆p
q−1 + 2∆2

p∆4
q−1.

The isomorphism type representatives are explicitly determined as follows:

• If F(G) ∼= p1+2
+ × Cq, then p > 2, K = 〈a, b, c〉, and

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp, cp, dp, eq, ba = bc, ed = eρ(q,p,k)〉,

for some k ∈ Z∗p. Since {d 7→ dk} extends to an isomorphism G(k) → G(1), we
conclude that G ∼= G(1).
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• If F(G) ∼= C3
p × Cq, then p > 2, K = 〈b, c, d〉, and

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp, cp, dp, eq, ba = bc, ea = eρ(q,p,k)〉,

for some k ∈ Z∗p. However, for each k ∈ Z∗p, the map {a 7→ ak, c 7→ c(k
−1)} extends

to an isomorphism G(k)→ G(1), thus it suffices to consider k = 1 and G ∼= G(1).

• If F(G) ∼= C8, then K = 〈b, c, d〉 and

G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2 = d, d2, eq, ba = bd, ea = e−1〉.

• If F(G) ∼= C4 × C2, then K = 〈a, c, d〉, and

G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2 = d, d2, eq, ba = bd, eb = e−1〉.

• If F(G) ∼= C4, then K = 〈ac, d〉. Note that α(b) = a, α(ac) = b, α(c) = c, α(d) = d
defines an automorphism α ∈ Aut(P). Thus we obtain another presentation of P
and determine that

G ∼= Pc〈a, b, c, d, e | a2 = c, b2 = d, c2 = d, d2, eq, ba = bc, ea = eρ(q,4), ec = e−1〉.

• If F(G) ∼= C2
2 , then K = 〈a, d〉 and

G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2 = d, d2, eq, ba = bd, eb = eρ(q,4), ec = e−1〉.

12. If P is of type (p4 : 12), then we write P = Pc〈a, b, c, d | ap, bp = c, cp, dp, ba = bd, da = cd〉
for p > 2, and P = Pc〈a, b, c, d | a2, b2 = c, c2 = d, d2, ba = bc, ca = cd〉 for p = 2. In the
case p > 2, normal subgroups of P with a cyclic quotient are of order p3. Moreover,
Kp = {〈b, c, d〉 ∼= Cp2 × Cp, 〈a, c, d〉 ∼= p1+2

+ , 〈abd, c, d〉 ∼= p1+2
− }. We determine indK = 1,

1
2 (p − 1), and 1

2 (p − 1) for each K ∈ Kp, respectively. Also, we compute that the sub-
groups Z(P) = 〈c〉, [P, P] = 〈c, d〉, Ω(P) = 〈a, c, d〉, and 〈b, c, d〉 are characteristic in P.
For p = 2, we note that K2 = {〈b, c, d〉 ∼= C8, 〈a, c, d〉 ∼= D4, 〈abc, c, d〉 ∼= Q8}, and
indK = 1 for each K ∈ K2. In tandem with Corollary 2.4.6, it follows that

n12 = (p + ∆2
p)∆

p
q−1.

We explicitly construct these groups as follows:

• If F(G) ∼= (Cp2 × Cp)× Cq, then p > 2 and K = 〈b, c, d〉. Note that if x is a quadratic
residue modulo p and s2 ≡ x mod p, then the groups

Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bdx, da = cd, ea = eρ(q,p,k)〉

and
Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bd, da = cd, ea = eρ(q,p,s−1k)〉

are isomorphic for any k ∈ Z∗p. Thus, it suffices to consider x = 1 and

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bd, da = cd, ea = eρ(q,p,k)〉

for some k ∈ Z∗p. Two such groups G(k) and G(k′) with k, k′ ∈ Z∗p are isomorphic if
and only if there exists an isomorphism described by {a 7→ ax1 cx2 dx3 , b 7→ by1 cy2 dy3 ,
c 7→ cy1 , d 7→ cz1 dz2 , and e 7→ eu}, where xi, yi, zi ∈ Zp, u ∈ Z∗q . However, such
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an isomorphism exists if and only if there exist xi, yi, zi ∈ Z∗p such that x1z2 = y1,
x1y1 = z2, z1 = x1y3, and kx1 ≡ k′ mod p. This requires that x2

1 ≡ 1 mod p, from
which we further deduce that the parameters k, k′ ∈ Z∗p define isomorphic groups
if and only if k′ ∈ {k,−k}. Therefore, there are 1

2 (p− 1) isomorphism types and it
suffices to consider G(k) parametrised by k ∈ {1, . . . , 1

2 (p− 1)}.
• If F(G) ∼= p1+2

+ × Cq, then K = 〈a, c, d〉. If p = 2, then

G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2 = d, d2, eq, ba = bc, ca = cd, ea = e−1〉.

For p > 2,

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp = c, cp, dq, eq, ba = bd, ca = cd, eb = eρ(q,p,k)〉

for some k ∈ Z∗p. Since {b 7→ bk, c 7→ ck} extends to an isomorphism G(k) → G(1),
the isomorphism type of G(k) is independent of the choices of k ∈ Z∗p and G ∼= G(1).

• If F(G) ∼= p1+2
− × Cq, then p > 2 and K = 〈abd, c, d〉. A routine calculation shows

that if x ∈ Z∗p is a quadratic residue modulo p and s2 ≡ x mod p, then the groups

Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bcxdx, da = cd, db = cd, ea = eρ(q,p,k)〉

and

Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bcd, da = cd, db = cd, ea = eρ(q,p,s−1k)〉

are isomorphic for any k ∈ Z∗p. Thus, it suffices to fix x = 1. For p = 3, since
the map {abc 7→ b, c 7→ c−1} extends to an automorphism of P, we obtain another
presentation of P and find

G ∼= Pc〈a, b, c, d, e | a3, b3 = c, c3, d3, eq, ba = bd2, da = cd, db = c2d, ea = eρ(q,3)〉.

For p > 3, since there is an automorphism α ∈ P such that α(abd) = b, α(a) = a,
α(c) = c, and α(d) = d, we determine that

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bcd,

da = cd, db = cd, ea = eρ(q,p,k)〉

for some k ∈ Z∗p. Furthermore, a similar calculation as before shows that two groups
G(k) and G(k′) with k, k′ ∈ Z∗p are isomorphic if and only if k′ ∈ {k,−k}. Therefore,
there are 1

2 (p− 1) isomorphism types G(k) parametrised by k ∈ {1, . . . , 1
2 (p− 1)}.

• If F(G) ∼= C8 × Cq, then K = 〈b, c, d〉 and

G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2 = d, d2, eq, ba = bc, ca = cd, ea = e−1〉.

• If F(G) ∼= Q8 × Cq, then K = 〈abc, c, d〉. Since there is an automorphism α ∈ Aut(P)
such that α(abc) = b, α(a) = a, α(c) = c, and α(d) = d, we obtain another presenta-
tion of P and determine that

G ∼= Pc〈a, b, c, d, e | a2, b2 = d, c2 = d, d2, eq, ba = bc, ca = cd, cb = cd, ea = e−1〉.

13. If P is of type (p4 : 13), then we write P = Pc〈a, b, c, d | ap, bp = c, cp, dp, ba = bd, da = cσp d〉
for p > 2, and P = Pc〈a, b, c, d | a2, b2 = c, c2 = d, d2, ba = bcd, ca = cd〉 for p = 2. In the
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case p > 3, we note that normal subgroups of P with a cyclic quotient are of order p3 and
Kp = {〈b, c, d〉 ∼= Cp2 × Cp, 〈a, c, d〉 ∼= p1+2

+ , 〈abd, c, d〉 ∼= p1+2
− }. We further determine

that indK = 1
2 (p− 1), 1, 1

2 (p− 1) for each K ∈ Kp, respectively. Moreover, Z(G) = 〈c〉,
[P, P] = 〈c, d〉, and Ω(P) = 〈a, c, d〉 are characteristic in P. If p = 3, then we have
K3 = {〈b, c, d〉 ∼= C9 × C3, 〈a, c, d〉 ∼= 31+2

+ }, with Z(P) = 〈c〉, [P, P] = 〈c, d〉, and 〈b, c, d〉
characteristic in P. We further determine that indK = 1 for each K ∈ K3. For p = 2, then
we have K2 = {〈b, c, d〉 ∼= C8, 〈a, c, d〉 ∼= D4}, and indK = 1 for each K ∈ K2. In total, we
count

n13 = (p− ∆3
p)∆

p
q−1

isomorphism types, which can be explicitly constructed as follows:

• If F(G) ∼= (Cp × Cp2)× Cq, then p > 2 and K = 〈b, c, d〉. Further, note that if x is a
quadratic residue modulo p and s2 ≡ x mod p, then the groups

Pc〈a, b, c, d, e | ap, bp = c, cp, dq, eq, ba = bdx, da = cσp d, ea = eρ(q,p,k)〉

and

Pc〈a, b, c, d, e | ap, bp = c, cp, dq, eq, ba = bd, da = cσp d, ea = eρ(q,p,s−1k)〉

are isomorphic for any k ∈ Z∗p. Thus, it suffices to consider x = 1 and

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp = c, cp, dq, eq, ba = bd,

da = cσp d, ea = eρ(q,p,k)〉

for some k ∈ Z∗p. A routine calculation shows that two such groups G(k) and G(k′)
with k, k′ ∈ Z∗p are isomorphic if and only if k′ ∈ {k,−k}. Therefore, it suffices to
consider G(k) parametrised by k ∈ {1, . . . , 1

2 (p− 1)}.
• If F(G) ∼= Cq × C8, then p = 2 and

G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2 = d, d2, eq, ba = bcd, ca = cd, eb = e−1〉.

• If F(G) ∼= p1+2
+ × Cq or F(G) ∼= D4 × Cq, then K = 〈a, c, d〉. If p = 2, then

G ∼= Pc〈a, b, c, d, e | a2, b2 = c, c2 = d, d2, eq, ba = bcd, ca = cd, eb = e−1〉;

if p > 2, then

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp = c, cp, dq, eq, ba = bd,

da = cσp d, eb = eρ(q,p,k)〉

for some k ∈ Z∗p. However, for any k ∈ Z∗p, the map {b 7→ bk, c 7→ ck, d 7→ dk}
extends to an isomorphism G(k) → G(1). This the isomorphism type of G(k) is
independent of the choice of k ∈ Z∗p and it suffices to consider G ∼= G(1).

• If F(G) ∼= p1+2
− × Cq, then p > 3 and K = 〈abd, c, d〉. If x is a quadratic residue

modulo p and s2 ≡ x mod p, then the groups

Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bcxdx, da = cσp d, db = cd, da = dρ(q,p,k)〉
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and

Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bcd, da = cσp d, db = cd, da = dρ(q,p,s−1k)〉

are isomorphic for any k ∈ Z∗p. Under the automorphism α ∈ Aut(P) described by
α(a) = a, α(abd) = b, α(c) = c, and α(d) = d, we have

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp = c, cp, dp, eq, ba = bcd, da = cσp d,

db = cd, ea = eρ(q,p,k)〉

for some k ∈ Z∗p. By a routine computation, we find that two groups G(k) and G(k′)
with k, k′ ∈ Z∗p are isomorphic if and only if k′ ∈ {k,−k}. Thus, there are 1

2 (p− 1)
isomorphism types G(k) parametrised by k ∈ {1, . . . , 1

2 (p− 1)}.

14. If P is of type (p4 : 14), then we can write P = Pc〈a, b, c, d | ap, bp, cp, dp, ca = bc, da = cd〉
for p > 2; and P = Pc〈a, b, c, d | a2 = d, b2 = c, c2 = d, d2, ba = bcd, ca = cd〉 for p = 2. If
p > 3, then normal subgroups of P with a cyclic quotient are of order p3. We may choose
representatives Kp = {〈b, c, d〉 ∼= C3

p, 〈a, b, c〉 ∼= p1+2
+ } for the Aut(p)-classes of these

normal subgroups. We further determine that indK = 1 for each K ∈ Kp. If p = 3, then
K3 = {〈b, c, d〉 ∼= C3

3 , 〈a, b, c〉 ∼= 31+2
+ , 〈acd, b, c〉 ∼= 31+2

− }, and indK = 1 for each K ∈ K3.
For p = 2, we have K2 = {〈b, c, d〉 ∼= C8, 〈a, c, d〉 ∼= Q8}, and indK = 1 for each K ∈ K2.
It follows from Corollary 2.4.6 that n14 = (2 + ∆3

p)∆
p
q−1. We determine the isomorphism

class representatives as follows:

• If F(G) ∼= C3
p × Cq, then p > 2 and K = 〈b, c, d〉. It follows that

G ∼= G(k) = Pc〈a, b, c, d, e | ap, bp, cp, dp, eq, ca = bc, da = cd, ea = eρ(q,p,k)〉

for some k ∈ Z∗p. However, the map {a 7→ ak, b 7→ b(k
2), c 7→ b

1
2 k(k−1)ck} extends to

an isomorphism G(k)→ G(1). Therefore, the isomorphism type of G(k) is indepen-
dent of the choice of k and it suffices to consider G ∼= G(1).

• If F(G) ∼= p1+2
+ × Cp, then p > 2 and K = 〈a, b, c〉. We determine that

G ∼= Pc〈a, b, c, d, e | ap, bp, cp, dp, eq, ba = bc, ca = cd, ed = eρ(q,p)〉.

• If F(G) ∼= 31+2
− × Cq, then K = 〈acd, b, c〉. We determine that

G ∼= Pc〈a, b, c, d, e | a3, b3 = c, c3, d3, eq, ba = bd, da = cd, db = cd, ea = eρ(q,3)〉.

• If F(G) ∼= C8 × Cq, then K = 〈b, c, d〉 and

G ∼= Pc〈a, b, c, d, e | a2 = d, b2 = c, c2 = d, d2, eq, ba = bcd, ca = cd, ea = e−1〉.

• If F(G) ∼= Q8 × Cq, then K = 〈a, c, d〉 and

G ∼= Pc〈a, b, c, d, e | a2 = d, b2 = c, c2 = d, d2, eq, ba = bcd, ca = cd, eb = e−1〉.

15. If P is of type (p4 : 15), then p > 2. For p > 3 we write

P = Pc〈a, b, c, d | ap = b, bp, cp, dp, ca = bc, da = cd〉,
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and for p = 3 we write

P = Pc〈a, b, c, d | a3 = c, b3 = c, c3, d3, ba = bd, da = c2d〉.

If p > 3, then normal subgroups of P with a cyclic quotient are of order p3. We may
choose Kp = {〈b, c, d〉 ∼= Cp2 × Cp, 〈a, b, c〉 ∼= p1+2

− } to be the representatives for the
Aut(P)-classes of these subgroups. We further determine that indK = 1 for each K ∈ Kp.
If p = 3, then K3 = {〈b, c, d〉 ∼= C9 × C3, 〈a, c, d〉 ∼= 31+2

− }, and indK = 1 for each K ∈ K3.
In total, there are

n15 = 2(1− ∆2
p)∆

p
q−1

isomorphism types. We determine these groups as follows:

• If F(G) ∼= C3
p × Cq, then p > 3 and K = 〈b, c, d〉. We determine that

G ∼= Pc〈a, b, c, d, e | ap = b, bp, cp, dp, eq, ca = bc, da = cd, ea = eρ(q,p)〉

• If F(G) ∼= p1+2
− × Cq and p > 3, then K = 〈a, b, c〉 and

G ∼= Pc〈a, b, c, d, e | ap = b, bp, cp, dp, eq, ca = bc, da = cd, ed = eρ(q,p)〉.

• If F(G) ∼= 31+2
− × Cq, then K = 〈a, c, d〉 and

G ∼= Pc〈a, b, c, d, e | a3 = c, b3 = c, c3, d3, eq, ba = bd, da = c2d, eb = eρ(q,3)〉.

• If F(G) ∼= C9 × C3 × Cq, then K = 〈b, c, d〉 and

G ∼= Pc〈a, b, c, d, e | a3 = c, b3 = c, c3, d3, eq, ba = bd, da = c2d, ea = eρ(q,3)〉.

The determination of these groups follows by combing all the cases above; the counting for-
mula is derived from ∑15

i=1 ni.

In the following, we determine the isomorphism type of non-nilpotent groups of order p4q
with a normal Sylow p-subgroup.

Lemma B.0.4. Let Np be the number of isomorphism types of non-nilpotent groups of order p4q with
a normal Sylow p-subgroup. Then if q = 2 then Np = 40; otherwise,

Np =
1

24
(q3 + 31q2 + 189q + 423 + 16∆3

q−1 + 12∆4
q−1)∆

q
p−1

+
1
4
(q + 21 + 2∆4

q−1)∆
q
p+1 + (1− ∆3

q)∆
q
p2+p+1 + ∆q

p2+1.

Proof. Since p, q are coprime, Theorem 2.4.1 implies that such a group G is isomorphic to a
semidirect product Q nϕ P where |P| = p4 and |Q| = q. Since G is nilpotent if and only if ϕ
is trivial, it remains to consider nontrivial ϕ. In particular, since Q ∼= Cq is simple, Q acts on
P via ϕ faithfully. The enumeration of the isomorphism types of G follows by determining the
number of conjugacy classes of cyclic subgroup of order q in Aut(P) as an application of Corol-
lary 2.4.3(ii). Further, Lemma 4.2.8 asserts that this is equivalent to determining the number of
conjugacy classes of subgroups of order q in Aut(P)/Op(Aut(P)). To apply Lemma 4.2.8, an
analysis of the automorphism group of each P (up to isomorphism) is required. For space pur-
pose we omit some details on the derivation of the many known results regarding this topic;
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we refer to [46] for further details; see also [37, pp. 96 - 97] for a list of Aut(P)/Op(Aut(P))
with P of order p4. For each P of type (p4 : x) as discussed in Table 5.3, we write cx for the
number of isomorphism types of non-nilpotent split extensions Cq n P. For the determination
of such groups, we make some general observations: since Q acts on P faithfully, Z(G) ≤ Z(P);
since G/P ∼= Q is cyclic, [G, G] ≤ P; since G ∼= Qn P splits over P, if Z(G) is nontrivial, then G
is a central extension of Z(G) by G/Z(G), where G/Z(G) is a group of order pnq with n ≤ 3.
Such groups are classified in Chapter 5 (see Tables 6.1, 6.2, and 6.3). Let Φ(P) be the Frattini
subgroup of P. Then Q acts faithfully on P/Φ(P); see [43, Theorem 9.3.2]. We use these results
alongside Notations 4.1.1, 4.2.1, and 4.2.6 in the following to determine the isomorphism class
representatives for the groups as described in the lemma.

1. If P ∼= Cp4 , then Aut(P) is cyclic of order p3(p− 1). Applying Corollary 2.4.3(ii) yields
c1 = ∆q

p−1, and

G ∼= Pc〈a, b | aq, bp4
, ba = bρ(p4,q)〉.

2. If P ∼= Cp3 × Cp, then Aut(P)/Op(Aut(P)) ∼= C2
p−1. It follows that c2 = (q + 1)∆q

p−1,
counted by the number of conjugacy classes of subgroups of order q in Aut(P) by
Lemma 4.2.8, in bijection with the isomorphism types of said groups. The isomorphism
type of a group G in this case can be determined by a case distinction on Z(G) as follows:

• If Z(G) ∼= Cp, then G ∼= Pc〈a, b, c | aq, bp3
, cp, ba = bρ(p3,q)〉.

• If Z(G) ∼= Cp3 , then G ∼= Pc〈a, b, c | aq, bp3
, cp, ca = cρ(p,q)〉.

• If Z(G) = 1, then G is isomorphic to one of the following q− 1 groups

G(k) = Pc〈a, b, c | aq, bp3
, cp, ba = bρ(p3,q), ca = cρ(p,q,k)〉

parametrised by k ∈ Z∗q .

3. If P ∼= Cp2 × Cp2 , then Aut(P)/Op(Aut(P)) ∼= GL2(p). By Theorem 4.2.7(i), we have

c3 =
1
2
(p + 3− ∆2

q)∆
q
p−1 + (1− ∆2

q)∆
q
p+1.

We apply Lemma 4.2.8 in conjunction with the proof of Theorem 4.2.7(i) to determined
the isomorphism class representatives for these groups as follows:

• If Z(G) ∼= Cp2 , then

G ∼= Pc〈a, b, c | aq, bp2
, cp2

, ba = bρ(p,q)〉.

• If Z(G) = 1, then Q acts diagonalisably on P/Φ(P) ∼= C2
p (induced by the action on

P) if q | (p − 1), and Q acts irreducibly on P/Φ(P) if q | (p + 1) and q > 2. The
isomorphism types of such Q n P/Φ(P) ∼= Cq n C2

p are previously determined in
Lemma 6.1.6. Lifting the Q-action on P/Φ(P), we obtain the isomorphism types of
Q n P: if q | (p− 1), then there are 1

2 (q + 1− ∆2
q) isomorphism types of the form

G(k) = Pc〈a, b, c | aq, bp2
, cp2

, ba = bρ(p2,q,σk
q ), ca = cρ(p2,q)〉,

parametrised by k ∈ {0, . . . , 1
2 (p− 1)} with Φ(P) = 〈bp, cp〉; if q | (p + 1) and q > 2,

then there is a unique isomorphism type with representative

Pc〈a, b, c | aq, bp2
, cp2

, (ba, ca) = (b, c)Irr2(p2,q)〉,
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where Irr2(p2, q) has multiplicative order q in the ring of 2× 2 matrices over Zp2

and Irr2(p2, q) ≡ Irr2(p, q) mod p.

4. If P ∼= Cp2 ×C2
p, then Aut(P)/Op(Aut(P)) ∼= Z∗p×GL2(p). If q | (p− 1), then subgroups

of order q in Z∗p×GL2(p) are conjugate to cyclic subgroups of one of the following forms:

〈(ρ(p, q), diag(1, 1))〉, 〈(1, diag(ρ(p, q), 1))〉, 〈(ρ(p, q, k), diag(ρ(p, q), 1))〉,

〈(ρ(p, q, k), M(p, q))〉, 〈(ρ(p, q), diag(ρ(p, q, k), ρ(p, q, m)))〉,

where 0 ≤ ` ≤ 1
2 (p− 1) and k, m ∈ Z∗q with k < m. If q | (p + 1) and q > 2, then there

is a unique conjugacy class of subgroups of order q in Z∗p ×GL2(p), with representative
〈(1, Irr2(p, q))〉. In total we find

c4 =
1
2
(q2 + 2q + 3− ∆2

q)∆
q
p−1 + (1− ∆2

q)∆
q
p+1 + 5∆2

q

isomorphism types. The isomorphism class representatives are determined as follows:

• If Z(G) ∼= Cp2 × Cp, then G ∼= (Cq n Cp)n Cp2 × Cp and

G ∼= Pc〈a, b, c, d | aq, bp, cp, dp2
, ba = bρ(p,q)〉.

• If Z(G) ∼= Cp2 , then G ∼= (Cq n C2
p)× Cp2 , which is determined by the isomorphism

type of the nonabelian direct factor Cq nC2
p. Such groups are previously determined

(Lemma 6.1.6) and there are 1
2 (q + 1− ∆2

q)∆
q
p−1 + (1− ∆2

q)∆
q
p+1 isomorphism types

of such groups. In particular, if q | (p − 1) then G is isomorphic to one of the
following 1

2 (q + 1− ∆2
q) groups

G(k) = Pc〈a, b, c, d | aq, bp, cp, dp2
, (ba, ca) = (b, c)M(p,q,σk

q )〉,

parametrised by k ∈ {0, . . . , b 1
2 (q− 1)c}; if q | (p + 1) and q > 2 then

G ∼= Pc〈a, b, c, d | aq, bp, cp, dp2
, (ba, ca) = (b, c)Irr2(p,q)〉.

• If Z(G) ∼= C2
p, then G ∼= (Cq n Cp2)× C2

p is determined by the isomorphism type of
the nonabelian direct factor Cq n Cp2 . Since Cq n Cp2 is unique up to isomorphism,

G ∼= Pc〈a, b, c, d | aq, bp2
, cp, dp, ba = bρ(p2,q)〉.

• If Z(G) ∼= Cp, then the isomorphism type of G ∼= (Cq n (Cp × Cp2))× Cp is deter-
mined by that of the nonabelian direct factor Cq n (Cp×Cp2). From Lemma 6.2.5 we
know that there are (q − 1)∆q

p−1 isomorphism types of nonabelian groups
Cq n (Cp × Cp2), and G is isomorphic to one of the q− 1 isomorphism types

G(k) = Pc〈a, b, c, d | aq, bp, cp, dp2
, ba = bρ(p,q,k), da = dρ(p2,p)〉

parametrised by k ∈ Z∗q .
• If Z(G) = 1, then Q embeds into a subgroup conjugate to 〈(ρ(p, q, k), M(p, q))〉 or
〈(ρ(p, q), diag(ρ(p, q, k), ρ(p, q, m)))〉 in Aut(P), with k, m ∈ Z∗q and k < m. In par-
ticular, q | (p− 1). There are (q− 1 + 1

2 (q
2 − 3q + 2))∆q

p−1 =
1
2 (q

2 − q)∆q
p−1 isomor-

phism types of such groups, in accordance with the conjugacy class representatives
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of cyclic subgroups with generators described above in Z∗p ×GL2(p), with isomor-
phism class representatives of the form

Pc〈a, b, c, d | aq, bp, cp, dp2
, ba = bρ(p,q,k), ca = bρ(p,q,m), da = dρ(p2,q)〉 or

Pc〈a, b, c, d | aq, bp, cp, dp2
, (ba, ca) = (b, c)M2(p,q), da = dρ(p2,q,`)〉,

where k, `, m ∈ Z∗q and k < m.

5. If P ∼= C4
p, then Aut(P) ∼= GL4(p) has order q6(q− 1)4(q3 + q2 + q + 1)(q2 + q + 1)(q + 1);

the number of nonabelian isomorphism types of Cq n C4
p is exactly the number of conju-

gacy classes of the cyclic subgroups of order q in GL4(p). As seen in Theorem 4.2.7(v), if
q = 2, then there are s2(GL4(p)) = 4 isomorphism types; if q > 2, then there are

1
24

(q3 + 7q2 + 21q + 39 + 16∆3
q−1 + 12∆4

q−1 − 21∆2
q)∆

q
p−1

+
1
4
(q + 5 + 2∆4

q−1)(1− ∆2
q)∆

q
p+1

+(1− ∆3
q)∆

q
p2+p+1 + (1− ∆2

q)∆
q
p2+1

isomorphism types. Following the proof for Theorem 4.2.7(v) in conjunction with Corol-
lary 2.4.3(ii), these isomorphism types are explicitly determined in accordance with the
conjugacy class representatives of subgroups of order q in GL2(p) as follows:

• If Z(G) ∼= C3
p, then q | (p− 1), and G ∼= (Cq n Cq)× C3

p is determined by the unique
nonabelian isomorphism type of order pq. In particular, there are ∆q

p−1 isomorphism
types.

• If Z(G) ∼= C2
p, then q | (p2 − 1), and G ∼= (Cq × C2

p) × C2
p is determined by the

centreless semidirect product Cq × C2
p given in Table 6.1.1. In particular, there are

(1− ∆2
q)∆

q
p+1 +

1
2 (q + 1− ∆2

q)∆
q
p−1 isomorphism types of such groups.

• If Z(G) ∼= Cp, then q | (p2 − 1)(p2 + p + 1), and G ∼= (Cq n C3
p)× Cp is determined

by the centreless semidirect product Cq n C3
p given in Table 6.3. In particular, there

are 1
6 (q

2 + q + 4∆3
q−1) + (1− ∆3

q)∆
q
p2+p+1 isomorphism types of such groups.

• If Z(G) = 1, then q | (p2 − 1)(p3 + p2 + p + 1)(p2 + p + 1), and G ∼= Cq n C4
p. There

are

1
24

(q3 + 3q2 + 5q + 3 + 12∆4
q−1 − 9∆2

q)∆
q
p−1

+
1
4
(q + 1 + 2∆4

q−1)(1− ∆2
q)∆

q
p+1 + (1− ∆2

q)∆
q
p2+1

isomorphism types. In particular, if q | (p− 1), then Q ∼= Cq acts diagonalisably on
P; in accordance with the conjugacy class representatives of subgroups generated
by diag(ρ(p, q), ρ(p, q, σk

q ), ρ(p, q, σ`
q ), ρ(p, q, σm

q )), the isomorphism class represen-
tatives of such Q n C4

p are determined as follows. If only one of k, `, m is greater
than 1, then there are q− 1 isomorphism types

Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, ba = bρ(p,q), ca = cρ(p,q), da = dρ(p,q), ea = eρ(p,q,αk)〉,

parametrised by k ∈ Zq−1. If two of k, `, m are greater than one, then there are two
cases: if k, `, m are not pairwise distinct, then there are 1

2 (q− 1) isomorphism types,
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namely,

Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, ba = bρ(p,q), ca = cρ(p,q), da = dρ(p,q,αk), ea = eρ(p,q,αk)〉,

parametrised by k ∈ {1, . . . , 1
2 (q− 1)}; if k, `, m are pairwise distinct, then there are

(q−2
2 ) = 1

2 (q− 2)(q− 3) isomorphism types, namely,

Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, ba = bρ(p,q), ca = cρ(p,q), da = dρ(p,q,αk), ea = eρ(p,q,α`)〉,

where (k, `) ∈ Z2
q−1 with 1 ≤ k < ` ≤ q− 2. Finally, if k, `, m are all greater than 1,

then only the cases where k, `, m are pairwise distinct add new isomorphism types.
In particular, there are 1

24 (q
3 − 9q2 + 29q − 33 + 12∆4

q−1) new isomorphism types
arisen from this case, namely,

Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, ba = bρ(p,q), ca = cρ(p,q,αk), da = dρ(p,q,α`), ea = eρ(p,q,αm)〉,

parametrised by (k, `, m) ∈ Z3
q−1 with

1 ≤ k ≤ 1
4
(q− 1), 2k ≤ ` ≤ 1

2
(q− 1), k + ` ≤ m ≤ q− 2− k,

or

1 ≤ k ≤ 1
4
(q− 1),

1
2
(q + 1) ≤ ` ≤ q− 1− 2k, k + `+ 1 ≤ m ≤ q− 2− k,

or
k =

1
4
(q− 1), ` =

1
2
(q− 1), m =

3
4
(q− 1).

If q > 2 and q | (p + 1), then Q acts reducibly but nondiagonalisably on P and G is
isomorphic to one of the 1

4 (p + 3− 2∆4
p+1) isomorphism types

G(k) = Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, (ba, ca) = (b, c)Irr2(p,q), (da, ea) = (d, e)Irr2(p,q,σk
q )〉,

where k ∈ {0, . . . , b 1
4 (p− 1)c}. If q > 3 and q | (p2 + 1) then Q acts irreducibly on P

and

G ∼= Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, (ba, ca, da, ea) = (b, c, d, e)Irr4(p,q)〉.

6. If P is of type (p4 : 6), then Aut(P)/Op(Aut(P)) ∼= GL2(p) contains

c6 =
1
2
(q + 3− ∆2

q)∆
q
p−1 + ∆q

p+1(1− ∆2
q)

conjugacy classes of cyclic subgroups of order q, corresponding to the number of iso-
morphism types of G ∼= Cq n P, where P ∼= Pc〈a, b, c, d | ap, bp = c, cp, dp, da = cd〉. The
isomorphism types of G are determined by a case distinction on the structures of Z(G)
and [G, G] as follows:

• If Z(G) ∼= Cp2 , then Z(G) = Z(P) and G/Z(G) ∼= Cq n C2
p. We further deduce that

q | (p2 − 1). If q | (p− 1), then G has a presentation of the form

Pc〈a, b, c, d, e | aq, bp, cp, dp = e, ep, cb = ce, ba = bxt1, ca = cyt2〉,
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where t1, t2 ∈ Z(G) = 〈d, e〉 and x, y ∈ Z∗p have order q. It follows from Theo-
rem 3.2.3 that xy ≡ 1 mod q. A routine calculation shows that it suffices to consider
t1 = t2 = 1 and y = ρ(p, q). Thus,

G ∼= Pc〈a, b, c, d, e | aq, bp, cp, dp = e, ep, cb = ce, ba = bρ(p,q,q−1), ca = cρ(p,q)〉.

If q | (p + 1) and q > 2, there is a unique isomorphism type, namely,

Pc〈a, b, c, d, e | aq, bp, cp, dp = e, ep, cb = ce, (ba, ca) = (b, c)Irr2(p,q)〉.

• If Z(G) = 1, then there are two cases to consider, depending on the structure of
the derived subgroup [G, G]: if [G, G] = P, then Q acts nontrivially on all genera-
tors of P; otherwise, Q acts trivially on at least one generator of P. From a routine
computation, we deduce that there is a unique isomorphism type for the latter case
([G, G] < P), namely,

Pc〈a, b, c, d | aq, bp, cp2
, dp, db = cpd, ba = bρ(p,q), ca = cρ(p2,q)〉.

For the case [G, G] = P, there are 1
2 (q− 1− ∆2

q) isomorphism types, namely,

Pc〈a, b, c, d | aq, bp, cp2
, dp, db = cpd, ba = bρ(p,q+1−k), ca = cρ(p2,q), da = dρ(p,q,k)〉,

parametrised by k ∈ {2, . . . , b 1
2 (q + 1)c}.

7. If P is of type (p4 : 7), then Aut(P)/Op(Aut(P)) ∼= Cp−1, which contains c7 = ∆q
p−1

normal subgroups of order q. Thus,

G ∼= Pc〈a, b, c | aq, bp, cp3
, cb = c1−p2

, ca = cρ(p3,q)〉.

8. If P is of type (p4 : 8), then Aut(P)/Op(Aut(P)) ∼= C2
p−1 contains c8 = (q + 1)∆q

p−1 con-

jugacy class of cyclic subgroups of order q. Writing P = Pc〈b, c, d | bp, cp2
, dp, cb = cp+1〉,

the corresponding isomorphism types of G can be determined by a case distinction on
the structures of Z(G) and [G, G] as follows:

• If Z(G) ∼= Cp, then a routine manipulation shows that there are two cases depending
on the derived subgroup [G, G]. If [G, G] ∼= C2

p, then Q acts trivially on 〈b, c〉. In this
case, there is a unique isomorphism type, namely,

Pc〈a, b, c, d | aq, bp, cp2
, dp, cb = cp+1, da = dρ(p,q)〉.

If [G, G] ∼= Cp2 , then Q acts nontrivially on 〈c〉 but trivially on 〈a, d〉. In this case,
there is a unique isomorphism type, namely,

Pc〈a, b, c, d | aq, bp, cp2
, dp, cb = cp+1, ca = cρ(p2,q)〉.

• If Z(G) = 1, then Q acts nontrivially on all generators of P. In this case,

G ∼= G(k) = Pc〈a, b, c, d | aq, bp, cp2
, dp, cb = cp+1, ca = cρ(p2,q), da = dρ(p,q,k)〉

for some k ∈ Z∗q . A routine computation shows that for any k, k′ ∈ Z∗q , two groups
G(k) and G(k′) are isomorphic if and only if k = k′. Thus, such groups G(k) account
for the remaining q− 1 isomorphism types.
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9. If P is of type (p4 : 9) and p > 2, then Aut(P)/Op(Aut(P)) ∼= C2
p−1; if P is of type

(16 : 9), then Aut(P)/Op(Aut(P)) ∼= GL2(2). Applying Corollary 2.4.3(ii) in conjunction
with Theorem 4.2.7(ii), we count

c9 = (q + 1)∆q
p−1 + ∆p

2 ∆q
3

isomorphism types. With the presentation P = Pc〈b, c, d | bp, cp2
, dp, cb = cd〉 for p > 2, or

P = Pc〈b, c, d, e | b2 = d, c2 = d, d2, e2, cb = cd〉 for p = 2, we determine the isomorphism
class representatives as follows.

• If p = 2, then q = 3 and G is isomorphic to

Pc〈a, b, c, d, e | a3, b2 = d, c2 = d, d2, e2, cb = cd, ba = c, ca = bc〉.

• If p > 2 and Z(G) > 1, then we observe that Z(P) ∼= Cp and there are two cases to
consider: if [G, G] < P, then Q must act trivially on 〈c, d〉 and

G ∼= Pc〈a, b, c, d | aq, bp, cp2
, dp, cb = cd, ba = bρ(p,q), da = dρ(p,q)〉;

if [G, G] = P, then

G ∼= Pc〈a, b, c, d | aq, bp, cp2
, dp, cb = cd, ba = bρ(p,q,q−1), ca = cρ(p2,q)〉.

• If p > 2 and Z(G) = 1, then there are two cases depending on the derived subgroup
of G. If [G, G] < P, then

G ∼= Pc〈a, b, c, d | aq, bp, cp2
, dp, cb = cd, ca = cρ(p2,q), da = dρ(p,q)〉.

If [G, G] = P, then the remaining q− 2 groups are parametrised by

G(k) = Pc〈a, b, c, d | aq, bp, cp2
, dp, cb = cd, ba = bρ(p,q),

ca = cρ(p2,q,k), da = dρ(p,q,k+1)〉

with k ∈ Zq−1\{0}.

10. If P is of type (p4 : 10), then Aut(P)/Op(Aut(P)) ∼= Cp−1 contains c10 = ∆q
p−1 normal

subgroups of order q. It follows that

G ∼= Pc〈a, b, c, d | aq, bp = d, cp2
, dp, cb = cp+1, ca = cρ(p2,q)〉.

11. If P is of type (p4 : 11) and p > 2, then Aut(P)/Op(Aut(P)) ∼= Z∗p ×GL2(p); if p = 2
then Aut(P)/Op(Aut(P)) = 1. It follows that

c11 = c4 =
1
2
(q2 + 2q + 3− ∆2

q)∆
q
p−1 + (1− ∆2

q)∆
q
p+1 + 5∆2

q.

Writing P = Pc〈b, c, d, e | bp, cp, dp, ep, cb = cd〉 for p > 2, we note that Z(P) = 〈d, e〉 and
[P, P] = 〈c〉. The isomorphism types are determined as follows:

• If Z(G) = Z(P) ∼= C2
p and q | (p− 1), then

G ∼= Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, cb = cd, ba = bρ(p,q,q−1), ca = cρ(p,q)〉;

128



Appendix B. Determination of groups of order p4q

if Z(G) = Z(P) ∼= C2
p, q > 2, and q | (p + 1), then

G ∼= Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, cb = cd, (ba, ca) = (b, c)Irr2(p,q)〉.

• If Z(G) ∼= Cp and [G, G] ∼= C2
p, then there are two possibilities for the derived

subgroup, namely, [G, G] = Z(P) or [G, G] 6= Z(P). In particular, if [G, G] = Z(P),
then

G ∼= Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, cb = cd, ea = eρ(p,q)〉;

if [G, G] 6= Z(P), then

G ∼= Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, cb = cd, ba = bρ(p,q), da = dρ(p,q)〉.

• If Z(G) ∼= Cp and [G, G] ∼= C3
p, then G is isomorphic to one of the following

1
2 (q− 1− ∆2

q) isomorphism types

G(k) = Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, cb = cd,

ba = bρ(p,q,q+1−k), ca = cρ(p,q,k), da = dρ(p,q)〉

parametrised by k ∈ {2, . . . , b 1
2 (q + 1)c}.

• If Z(G) ∼= Cp and [G, G] = P, then we consider two cases: if q > 2, then G is
isomorphic to one of the following 1

2 (q− 1 + ∆2
q) isomorphism types

G(k) = Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, cb = cd, ba = bρ(p,q),

ca = cρ(p,q,q−1), ea = eρ(p,q,k)〉

parametrised by k ∈ {1, . . . , 1
2 (q− 1)}; if q = 2, then

G ∼= Pc〈a, b, c, d, e | a2, bp, cp, dp, ep, cb = cd, ba = b−1, ca = c−1, ea = e−1〉.

• If Z(G) = 1 and [G, G] ∼= C3
p then G is isomorphic to one of the following q − 1

isomorphism types

G(k) = Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, cb = cd, ca = cρ(p,q),

da = dρ(p,q), ea = eρ(p,q,k)〉

parametrised by k ∈ Z∗q .

• If Z(G) = 1 and [G, G] = P, then G is isomorphic to one of the following
1
2 (q

2 − 2q + 1)(1− ∆2
q) isomorphism types

G(k) = Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, cb = cd, ba = bρ(p,q), ca = cρ(p,q,σ`
q ),

da = dρ(p,q,σ`
q+1), ea = eρ(p,q,k)〉

parametrised by the pairs (k, `) ∈ Z2
q−1 with ` ∈ {0, . . . , b 1

2 (q− 3)c}.

12. If P is of type (p4 : 12), and p > 2 then Aut(P)/Op(Aut(P)) ∼= C2 × Cp−1; if p = 2 then
Aut(P)/Op(Aut(P)) = 1. It follows that

c12 = ∆q
p−1 + 2∆2

q.
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Writing P = Pc〈b, c, d | bp, cp2
, dp, cb = cd, db = cpd〉, the corresponding isomorphism types

are determined as follows:

• If q > 2, then q | (p− 1) and there is a unique isomorphism type corresponding to
the normal subgroup of order q in Aut(P)/Op(Aut(P)). In this case,

G ∼= Pc〈a, b, c, d | aq, bp, cp2
, dp, cb = cd, db = cpd, ca = cρ(p2,q), da = dρ(p,q)〉.

• If q = 2, then Z(P) = 〈cp〉, from which we deduce that |Z(G)| ≤ p. In this case,

G ∼= Pc〈a, b, c, d | a2, bp, cp2
, dp, cb = cd, db = cpd, ba = b−1, da = cpd−1〉.

• If q = 2 and Z(G) = 1, then there are two cases depending on the derived subgroup
[G, G]. In particular, if [G, G] < P, then [G, G] ∼= Cp × Cp2 , and

G ∼= Pc〈a, b, c, d | a2, bp, cp2
, dp, cb = cd, db = cpd, ca = cρ(p2,2), da = d−1〉;

if [G, G] = P, then G is isomorphic to

Pc〈a, b, c, d | a2, bp, cp2
, dp, cb = cd, db = cpd, ba = b−1, ca = cρ(p2,2), da = c−pd〉.

13. If P is of type (p4 : 13), and p > 2 then Aut(P)/Op(Aut(P)) ∼= C2 × Cp−1; if p = 2 then
Aut(P)/Op(Aut(P)) = 1. It follows that c13 = c12 = ∆q

p−1 + 2∆2
q. Writing

P = Pc〈b, c, d | bp, cp2
, dp, cb = cd, db = cσp pd〉,

the isomorphism types of G are determined as follows (akin to the preceding case):

• If q > 2, then

G ∼= Pc〈a, b, c, d | aq, bp, cp2
, dp, cb = cd, db = cσp pd, ca = cρ(p2,q), da = dρ(p,q)〉.

• If q = 2 and Z(G) = 〈cp〉, then

G ∼= Pc〈a, b, c, d, e | a2, bp, cp = dσp , dp, ep, cb = cd, db = cd, ba = b−1, ea = de−1〉.

• If q = 2, Z(G) = 1, and [G, G] ∼= Cp × Cp2 , then

G ∼= Pc〈a, b, c, d | a2, bp, cp2
, dp, cb = cd, db = cσp pd, ca = cρ(p2,2), da = d−1〉.

If q = 2, Z(G) = 1, and [G, G] = P, then G is isomorphic to

Pc〈a, b, c, d, e | a2, bp, cp = dσp , dp, ep, cb = cd, db = cd, ba = b−1,

ca = c−1d−σp , da = d−1, ea = d−1e〉.

14. If P is of type (p4 : 14), then Aut(P)/Op(Aut(P)) ∼= C2
p−1, which contains

c14 = (q + 1)∆q
p−1

normal subgroups of order q. Since Z(P) ∼= Cp, we have |Z(G)| ≤ p.

Writing P = Pc〈b, c, d, e | bp, cp, dp, ep, db = cd, eb = de〉, the isomorphism types of these
groups are determined as follows:
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• If Z(G) ∼= Cp, then G/Z(G) ∼= Cq n (Cp n C2
p). Such groups of order p3q are deter-

mined previously (see Lemma 6.2.5). It follows that G is isomorphic to

Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, db = cd, eb = de, ba = bρ(p,q),

da = c(2
−1)ρ(p,q,q−1)(ρ(p,q)−1)dρ(p,q,q−1), ea = eρ(p,q,q−2)〉.

• If Z(G) = 1, then there are q∆q
p−1 isomorphism types, each of which has a presenta-

tion of the form

Pc〈a, b, c, d, e | aq, bp, cp, dp, ep, db = cd, eb = de, ba = bx, ca = cρ(p,q), da = cydv, ea = ew〉,

where

x = ρ(p, q, k), v = ρ(p, q, q + 1− k), w = ρ(p, q, q + 1− 2k), y =
1
2

x(x− 1)w,

are parametrised by k ∈ Zq.

15. If P is of type (p4 : 15), then p > 2 and Aut(P)/Op(Aut(P)) ∼= Cp−1. It follows that
c15 = ∆q

p−1. Such groups are determined as follows:

• If p > 3, then G is isomorphic to

Pc〈a, b, c, d | aq, bp, cp, dp2
, db = c−1dp+1, dc = d1−p, da = dρ(p2,q),

ba = bρ(p,q,q−1), ca = cd(2
−1)p(ρ(p,q)−1)〉.

• If p = 3, then q = 2 and G is isomorphic to

Pc〈a, b, c, d, e | a2, b3 = d, c3 = d, e3, cb = ce, eb = d2e, ca = c2d2, da = d2, ea = de〉.

Combining all the cases above, the determination and enumeration results follow.
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