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Abstract

Millimeter-wave base stations are expected to be deployed within the 5G cellular network

to increase data rate and network capacity. The proposal of the use of millimeter-wave

range radio frequency (RF) is motivated by the ever-increasing demand of data through-

put, congestion of the lower sub-3 GHz radio frequency band, and the relatively larger

available bandwidth in millimeter-wave frequency bands. However, higher frequency

range signals have higher path loss and are susceptible to atmospheric absorption caused

by water moisture and oxygen. Hence, millimeter-wave signals have a relatively shorter

reliable transmission range which means that more base stations are needed to achieve

the same coverage area compared to the existing sub-3 GHz base stations. Besides,

conventional RF-based fronthaul solutions might not be sufficient for sustained Gigabit

transmission for future generation communication due to limited bandwidth and reliable

transmission range. The proposal of analog radio-over-fiber (ARoF) replaces traditional

RF-based link between the central office and the base station with fiber, providing more

bandwidth, lower propagation loss, and is immune to RF interference. ARoF also in-

creases spectral efficiency and overcomes the data rate constraints of common public

radio interface (CPRI) based digital radio-over-fiber (DRoF). However, ARoF systems

are sensitive to phase noise contributed by the optical transmitter and non-linear ef-

fects of the fiber. While the increase in the number of base stations allows aggressive

frequency reuse, it requires significantly more overhead and processing capability to

perform large-scale coordination and scheduling for beamforming, beam alignment, and

coordinated multipoint transmission (CoMP).

In this thesis, investigations on proposed differential encoded data and differential de-

modulation methods are carried out to evaluate the performance of proposed differential

encoding based RoF schemes using varying levels of optical receiving power, intensity

noise, and phase noise. The differentially encoded data is modulated onto an unlock

heterodyning RoF scheme. Compared to self-homodyning-based RoF schemes, the pro-

posed DPSK and DQPSK schemes can directly detect phase-modulated signals and

convert millimeter-wave signal to baseband signal in a single stage while remaining rel-

atively phase noise tolerant. Compared to oscillator-based RoF receivers, the proposed

M-DPSK schemes’ performance falls between a conventional phase-coherent RoF link

and an unlocked heterodyning RoF link. The proposed schemes show minimal degrada-

tion in detection performance up to 1 MHz range lasers.

Investigation on the use of deep learning in downlink joint transmission CoMP has

been carried out using three different approaches in two different scenarios with varying

number of base stations. In the three approaches, the deep learning algorithm is used
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to select additional base stations, provide all possible base station options, and act as

a trigger for downlink joint transmission. Results obtained show that different deep

learning algorithms and architecture can yield different results in different approaches.

In general, the deep learning algorithms used performed better than support vector

machine (SVM) algorithm, and can provide an increase in prediction accuracy of up to

26 percent.

Two deep learning based phase noise tolerant millimeter-wave RoF receivers was devel-

oped. The proposed deep learning based receivers are bandwidth-efficient and adaptable

to various RoF links. The proposed receivers detect signals using two different ap-

proaches: direct detection of phase corrupted signals, and detection of phase corrupted

signals with reference tone. The proposed deep learning architecture used for the re-

ceivers are based long short-term memory (LSTM) and autoencoder. The receivers’ per-

formance is compared with direct threshold detection, self-homodyning-based receiver,

and various deep learning algorithms such as multilayer perceptron (MLP), convolu-

tional neural network (CNN), and CNN+LSTM. Results obtained show that for direct

detection, denoising autoencoder based receiver performs better than direct threshold

detection and other deep learning algorithms in the presence of phase noise. For detec-

tion with reference tone, when the frequency gap between the unmodulated reference

tone and the main data signal is sufficient, the self-homodyning-based receiver performs

the best. However, when the gap reduces, the proposed LSTM based receiver performs

better than the self-homodyning-based receiver. In general, the proposed deep learning

based receivers can improve detection accuracy by up to 34 percent for direct detection,

and reduce bit-error-rate from 10−3 to 10−5 for detection with reference tone.

The proposed differential encoding methods and deep learning based phase noise tolerant

RoF receivers have shown potential in reducing the overall system complexity of ARoF

links while being relatively phase noise tolerant. Furthermore, the results obtained from

applying deep learning in CoMP and phase noise tolerant RoF receivers demonstrated

the ability of deep learning algorithms and the possibility to implement deep learning

in future generation cognitive-communication networks.
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Chapter 1

Introduction

Wireless communication has become an inseparable part of modern society since the

commercialization of the first wireless communication system in the early 1900 [1]. Since

then, the wireless industry has evolved from point-to-point technologies to broadcasting

and finally to wireless networks that we have today. Although wireless communication

was introduced in the early 1900s, the widespread adoption of the masses only started

over the past twenty years due to the extensive development in cellular networks and

local area networks. Increasing purchasing power in conjunction with global economic

growth and the reduced cost of adoption also contributed to wireless communication’s

widespread adoption.

Wireless mobile communication technologies are divided into generations, with each mo-

bile generation transition occurring approximately every decade. Analog mobile radio

systems were introduced in the first generation (1G) of mobile communication in 1980

and predominantly operated in the 450 MHz radio frequency (RF) band using analog

frequency modulation (FM). The move towards digital mobile systems occurred in the

second generation (2G) of mobile communication. The move from analog to digital mod-

ulation allows error-correcting codes to be used, which substantially improved speech

quality. There were three main technologies that were used in commercial 2G communi-

cation systems: global system for mobile communication (GSM), code division multiple

access (CDMA), digital advanced mobile phone system (D-AMPS), and personal digital

communication (PDC). GSM was first developed in Europe in the 1980s and was later

widely adopted by multiple countries except for the North America region and Japan

[2]. CDMA and D-AMPS were mainly used in North America, while PDC was mainly

deployed in Japan. 2G networks were initially rolled out at 900 MHz RF range and

was later extended to include 2 GHz range RF. The move to a higher RF from 450

MHz used in 1G led to an increase in path loss, making the initial base station (BS)

1



Introduction 2

infrastructure deployment more expensive as more BSs are required. Broadband data

communication using mobile systems was introduced in 3G, and Long-Term Evolution

(LTE) was introduced in 4G [3]. There were two main bodies that were developing

3G wireless communication standards: Third Generation Partnership Project (3GPP)

and Third Generation Partnership Project 2 (3GPP2). While 3GPP worked on a 3G

standard based on GSM, and 3GPP2 intended to develop a 3G standard based on 2G

IS-95 CDMA standards, both bodies ultimately converged towards using CDMA for

3G. There were three competing technologies in the early days of 4G: LTE, Worldwide

Interoperability for Microwave Access (WIMAX), and Ultra Mobile Broadband (UMB).

However, LTE was the predominant standard used for 4G [4–6].

Currently, 5G-enabled based stations are being deployed worldwide where higher fre-

quency bands ranging from 4GHz up to 70 GHz are being considered. The move to

higher frequency bands, especially in the millimeter-wave range (30 GHz - 300 GHz),

is mainly driven by bandwidth availability in these bands and lower frequency bands’

congestion. The candidate millimeter-wave bands are: 24.25 GHz - 27.5 GHz, 37 GHz -

43.5 GHz, 45.5 GHz - 47 GHz, 47.2 GHz - 48.2 GHz, and 66 GHz - 71 GHz. These bands

have been determined in the World Radiocommunication Conference 2019 (WRC-19)

for 5G mobile services [7]. In the millimeter-wave band, up to 400MHz of bandwidth can

be offered to mobile operators compared to the 20MHz bandwidth being used in current

LTE systems [8]. Research in millimeter-wave started long before the commercializa-

tion of wireless communication systems. The first 60GHz transmission and reception

system over 23 meters was demonstrated in 1895 by Jagadish Chandra Bose [9]. In

the same year, transmission and propagation of millimeter-wave were studied by Ryotr

N. Lebedew [10], a Russian physicist. In the early days of millimeter-wave communi-

cation, especially in the 60GHz range, it is viewed as a wired backhaul replacement

[11] due to the requirement for highly directional antennas and high-power amplifier

to achieve error-free transmission due to the high propagation loss of millimeter-wave.

However, these equipment are expensive, and due to the short reliable transmission range

of millimeter-wave, the cost of deployment increases drastically as more base stations

are required to cover the same area as traditional lower frequency base stations. The

increased number of base stations would also increase network management’s difficulty

for optimization of beamforming, coordinated multipoint (CoMP), and multiple-input

multiple-output (MIMO) transmissions.

Power consumption of each base station due to high power amplifiers needed to overcome

the high path loss of millimeter-wave signals is also a concern. For mobile carriers,

an increase in power consumption will affect the network’s operational cost. From an

environmental point of view, an increase in base station needed, could increase power

consumption, which could lead to an increase in global carbon dioxide (CO2) output, as
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power generation methods are still predominantly fossil-fuel based. According to [12],

worldwide technology devices consumes approximately 600 TWh of power, and 9% of

the total power consumption is contributed by telecommunication radio networks [13].

And according to [14], only approximately 10% of the power consumption is associated

with the end-user equipment (UE) while the remaining 60% and 30% is used by the

base stations and other network components respectively. Amplifying the RF signal and

cooling the base station can consume up to approximately 35% of the total base station

power consumption, with cooling consuming up to 13% and power amplifier consuming

22% of power [12].

The conventional wireless access network has the remote radio head (RRH) unit and

the baseband processing unit located at the cell site. The increase in density of base

stations within a network due to short transmission length of high-frequency signals will

rapidly increase the cost of deployment of such architecture. Centralized/cloud radio

access network (CRAN) proposes separating the baseband unit (BBU) and the radio

equipment unit [15]. The baseband units will be located in a centralized location (e.g

central office), and the radio equipment will be located at the base station. The usage

of optical fibers in CRAN to connect base stations with the central office enables high

capacity and low loss transmissions.

There are two competing technologies in CRAN: Common Public Radio Interface (CPRI)

based digital Radio-over-Fiber (DRoF) and analog Radio-over-Fiber (ARoF). The main

difference between both RoF technologies is the signal transmitted within the fiber con-

nection between the central office and the base stations. In DRoF, the radio signals are

digitized before optical modulation. Therefore, the received signal at the base station

has to be upconverted to the desired millimeter-wave range frequency before wireless

transmission. In ARoF, the radio signals are directly modulated onto the optical carrier

generating optical double-sideband signals (ODSB) or optical single-sideband signals

(OSSB). The base station signal will already be in the millimeter-wave range after pho-

todetection. Hence, the base station will act as a relay as no further processing is

required. The main advantage DRoF has over ARoF is the simplicity in optical trans-

mitter configuration needed as the signal transmitted is in baseband. However, due to

the radio signal’s digitization, which involves a large number of quantization bits and

baseband signal transmission, CPRI based DRoF schemes are not spectrally efficient

[16]. Efforts to improve the bandwidth efficiencies of CPRI have been made. For exam-

ple, introducing the use of pulse amplitude modulation [17], CPRI compression [18–21],

and enhanced CPRI [22]. However, these methods either increases configuration com-

plexity or are limited by the system compression ratio [16, 23]. Furthermore, the base

stations of DRoF have a more complex configuration and require a high frequency RF

oscillator compared to ARoF.
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Artificial intelligence (AI) has garnered attention from the general public and research

community ever since the news of AlphaGo [24, 25], an AI-based program developed by

Google DeepMind, beating professional Go players such as Fan Hui and Ke Jie. Journal

papers published regarding AlphaGo [24, 25] had been accessed more than a hundred

thousand times and cited more than nine thousand times. However, the field of AI is

not new. The origin of AI’s conceptualization can be traced back to the year 1950 [26].

Nevertheless, computers back then are limited by their computational power. In the

past decade, the rapid improvement in the processing capability of the central process-

ing unit (CPU) and graphic processing unit (GPU) has enabled the use of deep learning

algorithms that were deemed too computationally intensive to be used in the 20th cen-

tury [27]. The use of machine learning algorithms had been successfully demonstrated

in various fields. For example, image processing for magnetic resonance imaging (MRI)

[28] and computerized tomography (CT) scan [29], and audio processing for corrupted

audio documents [30, 31], speech activity detection and recognition [32–34]. Machine

learning algorithms have also been explored in optical and wireless communication for

network traffic control [35, 36], optical performance monitoring [37, 38], and proactive

fault detection [39, 40]

1.1 Research Focus

Generally, ARoF is more bandwidth efficient than DRoF due to direct radio signal mod-

ulation. In wireless communication, phase modulated radio signal such as quadrature

phase-shift keying (QPSK) and quadrature amplitude modulation (QAM) are usually

used. Therefore, in ARoF, the signal modulated onto the optical carrier will be QPSK

or QAM signals. Hence, the transmitted optical signal in ARoF is more susceptible to

nonlinear distortion contributed by the optical transmitter. In contrast, the baseband

transmission used in DRoF is less susceptible to optical nonlinear distortion due to base-

band signal transmission. Therefore, longer fiber length can be used for DRoF compared

to ARoF [16].

To overcome some of the distortions caused by the optical transmitter and fiber, narrow

linewidth lasers, OSSB signals, and phase-coherent optical tones were used. The use

of narrow-linewidth lasers and phase-coherent optical tones reduces optical phase noise

propagating from the optical system to the wireless receiver after heterodyne detection.

OSSB signals are more resilient to RF power fading and bit walk-off as a result of fiber

chromatic dispersion compared to ODSB+C, and ODSB+SC signals [41]. Conventional

phase-coherent optical tone generation methods demonstrated in [42–63] requires high

speed optoelectronics and RF oscillators. The higher the RF frequency used, the higher
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the components’ speed requirement. While optical frequency multiplication reduces

the speed and frequency requirements of optical modulators and oscillators used, it

is limited by the harmonic generation efficiency and modulator used [64]. Optical tone

generation using uncorrelated optical sources reduces the optical transmitter complexity

and the number of high-frequency components used. However, the uncorrelated optical

sources are not phase-locked and will lead to phase noise propagating from the optical

transmitter to the wireless receiver. The use of self-homodyning (SH) based receivers

demonstrated in [65] using amplitude modulation has shown its capability in improving

optical phase noise tolerance of the wireless receivers. But SH-based receivers cannot

be used directly to detect and downconvert phase modulated signals to baseband as the

signal’s phase integrity will be affected. Therefore, in this thesis, differential encoded

millimeter-wave RoF schemes are proposed in chapter 3 and chapter 4 to maintain phase

integrity of phase-modulated signals during detection while maintaining relatively phase

noise tolerant. In addition, deep learning based phase noise tolerant millimeter-wave

RoF receivers are proposed in chapter 6.

Densification of base stations in the network, led by the low reliable transmission range

of millimeter-wave due to high propagation loss and weak penetration power relative to

lower RF, enables aggressive frequency reuse and lower interference. The proposal of

massive MIMO (mMIMO) antenna allows base stations to exploit the benefit of beam-

forming. The short-wavelength nature of millimeter-wave allows the antenna elements

within the mMIMO antenna to be packed in a relatively dense package, occupying a

relatively small footprint [66–68]. However, the increase in antenna elements within the

antenna array and the number of base stations increases the network management com-

plexity, as significantly more signaling and feedback between the network elements and

computational capacity are required for large-scale coordination and scheduling of beam-

forming and CoMP. Following the development of AI in various fields, as it progresses in

tackling complex problems such as real-time obstacle detection for autonomous driving,

human-like text generation using GPT-3, and quantum computing, a fully AI-managed

network might be possible in the future. Hence, a deep learning based CoMP is explored

and discussed in chapter 5 with a discussion on the challenges faced in CoMP provided

in chapter 2.

Fig. 1.1 shows how each chapter fits in a CRAN. In a fiber-connected CRAN, the BBU

and RRH are separated, and the optical signal is generated and transmitted from the

CO where the BBUs are located. In chapter 3 and chapter 4, a novel approach in

implementing differential encoding in ARoF links with an incoherent M-DPSK detector

was proposed. Therefore, in the figure, both chapters are highlighted at the CO and

the mobile receiver. In chapter 5, we explore the use of deep learning algorithms in

CoMP. And CoMP is used to reduce cell edge interference and improve cell edge data
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throughput. Hence, the cell edge is highlighted in the figure for chapter 5. In chapter

6, novel deep learning based phase noise tolerant receivers were proposed, and therefore

in the figure, chapter 6 is highlighted at the mobile receiver.

Figure 1.1: Centralized fiber wireless access network architecture

This thesis identifies challenges faced in fronthaul centralized radio access network, fo-

cusing on ARoF systems with reduced reliance on high-speed optoelectronics and RF

oscillators, and explore the use of deep learning for the future generation wireless com-

munication. The objectives of this thesis are:

• Investigate the feasibility of uncorrelated analog millimeter-wave RoF systems us-

ing differentially encoded data through simulations and theoretical analysis.

• Analyze and compare the performance of proposed millimeter-wave RoF systems

with existing millimeter-wave RoF alternatives.

• Develop a deep learning based phase noise tolerant receiver.

• Propose and investigate the use of deep learning in CoMP.
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1.2 Thesis Contribution

Following the research objectives, three M-ary differential phase-shift keying (M-DPSK)

modulated millimeter-wave RoF fronthaul downlink schemes are proposed and demon-

strated experimentally. The proposed links are analyzed theoretically and experimen-

tally through software simulation and are evaluated through varying receive optical

power, laser linewidth, and relative intensity noise. The proposed schemes are compared

to a phase correlated conventional millimeter-wave RoF scheme and two intermediate

frequency (IF) RoF alternatives. Proposed links reduce system reliance on high-speed

optoelectronics, RF oscillators, and complex phase lock system. The differential en-

coding in M-DPSK modulated signal encodes bits information using phase differences

between successive signal transmission. The use of incoherent detection for differential

phase-shift keying (DPSK) and differential QPSK (DQPSK) allows phase noise to be

reduced through delayed and phase-shifted multiplication of the signal while remaining

spectrally efficient.

A deep learning based centrally managed CoMP is proposed and demonstrated. The

deep learning algorithms were tested in two different scenarios with varying cell sizes.

The deep learning algorithm is used as a trigger to activate or deactivates a CoMP

algorithm, to provide all possible base stations for CoMP joint transmission, and to

select an additional base station that fulfills predefined criteria for CoMP transmission.

Varying user distributions were used to test the performance of different deep learning

algorithms used in the deep learning based CoMP. Results show that the multilayer

perceptron and long short-term memory (LSTM) based deep learning CoMP performs

better than support vector machine (SVM) algorithm.

Two phase noise tolerant receivers employing deep learning algorithm was proposed.

The proposed receivers use autoencoder and long short-term memory (LSTM) based

deep learning architecture. The receivers are demonstrated using unlock heterodyning

RoF downlink using oscillator-based receivers. Traditionally, the autoencoder is trained

with the aim of having the output be the same as the input wherein the encoder encodes

the input and the decoder decodes the encoded input to obtain the original input. The

autoencoder-based receiver is tasked to predict the uncorrupted signal from a phase cor-

rupted input. By defining the output of the encoder to have a smaller dimension than

the input, the encoder is forced to only extract essential features from the noisy input

that is sufficient for the decoder to reconstruct the original uncorrupted signal. For the

LSTM based receiver, an additional reference input is used. The receiver detects the

signal based on the phase corrupted input and the reference input. Due to unlocked het-

erodyning, the phase noise from the transmitter causes phase rotation in the received

signal. Hence, the LSTM based receiver detects the transmitted signal based on the



Introduction 8

reference input changes. The reference input changes are caused by homodyning of the

reference signal with an oscillating signal of the same frequency. The phase difference be-

tween the reference signal (due to phase rotation caused by the optical transmitter phase

noise) and the RF oscillator causes amplitude changes. Therefore, the reference signal

can be used as a reference point for the receiver to detect the phase corrupted signal.

Compared to self-homodyning-based intermediate frequency RoF systems, the proposed

LSTM receiver can improve overall bandwidth efficiency while remaining phase noise

tolerant. Furthermore, the proposed receivers using autoencoder and LSTM algorithms

can detect phase corrupted signals better than MLP and CNN-based receivers.

As discussed above, the contributions of this thesis can be summarised as follow:

• Proposed and demonstrated the use differential encoding in ARoF links using

optical baseband M-DPSK modulation

• Provided theoretical analysis on three M-DPSK millimeter ARoF links and two

downlink IF-RoF systems

• Compared link performance of three proposed M-DPSK millimeter-wave RoF links

to two QPSK IF-RoF links and a phase correlated conventional millimeter-wave

RoF scheme

• Proposed and explored the use of MLP and LSTM algorithms in downlink joint

transmission CoMP

• Proposed, demonstrated, and evaluated the use of autoencoder and LSTM algo-

rithms for deep learning based phase noise tolerant receiver for millimeter-wave

RoF system

• Compared detection performance of proposed deep learning based receivers to self-

homodying based receiver, and other deep learning based receivers using MLP and

CNN algorithms.

• Improved overall spectral efficiency of RoF receivers relative to SH based IF-RoF

receivers through

– reducing required frequency spacing between RF frequencies using proposed

LSTM based receiver

– using proposed differential encoding and incoherent detection.

The contributions described above have resulted in the following journal and conference

papers:
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• T. G. Hao, M. Bakaul and M. Boroon, ”Incoherent Heterodyning of Phase Mod-

ulated Signal for Low-cost Millimeter-wave RoF Link,” 2018 IEEE International

RF and Microwave Conference (RFM), Penang, Malaysia, 2018, pp. 159-161

• G. H. Th’ng, M. Bakaul, and M. H. Jaward,”Differential Encoding for Unlock

Heterodyning Millimeter-wave RoF Link,” Submitted to Optics Communications

[Status: Accepted]

• G. H. Th’ng, M. H. Jaward, and M. Bakaul, ”Deep Learning based Phase Noise

Tolerant Radio-Over-Fiber Receiver,” Submitted to Journal of Optical Communi-

cations and Networking [Status: Under Review]

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 provides a review based on the research

focus. This includes challenges faced in CoMP, different ARoF optical tone generation

methods, optical fiber impairments, and millimeter-wave characteristics. The consecu-

tive chapters present the research’s contribution and the details on the research method-

ology, data generation, results, and discussion. Chapter 3 presents two DPSK modulated

millimeter-wave RoF schemes. The chapter demonstrates the proposed scheme’s ability

to directly detect phase-modulated data while remaining phase tolerant and bandwidth-

efficient. Chapter 4 extends the demonstration of the use of differential encoded data

in a DQPSK setup. The chapter includes a theoretical analysis and performance com-

parison of the proposed DQPSK scheme with two IF-RoF schemes. The deep learning

based CoMP is presented in chapter 5. Chapter 6 presents two deep learning based

phase noise tolerant millimeter-wave RoF receivers. And chapter 7 concludes the thesis

and highlights a few future research directions.



Chapter 2

Millimeter-Wave Analog

Radio-over-Fiber Centralized

Radio Access Networks

2.1 Introduction

For future generation communication, 5G and beyond, the use of higher radio frequency

(RF) band, discrete spectral band, and small-cells are being considered to improve la-

tency and data rate for wireless communication. The use of smaller cells and higher

RF in populated areas allow more aggressive carrier aggregation and lead to densifica-

tion of cells. Densification of cells that could go up to 1000 cells per square kilometer

allows aggressive spectrum reuse but also incurs new technical challenges [69]. The

transition between cells occurs more frequently due to smaller coverage area of a single

cell, which means CoMP transmission and beamforming are needed to optimize net-

work performance. CoMP is needed to manage interference between network elements

and to increase cell edge data throughput. However, due to the densification of cells,

such operation requires an immense amount of processing power and speed from the

baseband unit to be able to perform large-scale coordination and scheduling, and at the

same time, need to be cost and power-efficient. A cloud radio access network (CRAN)

has been proposed to address the aforementioned challenges, using fiber as a transmis-

sion medium between CO and base stations [15]. Fiber as an enclosed transmission

medium can provide more bandwidth, lower latency, lower attenuation, and immune to

RF interference. However, the use of fiber and millimeter-wave signals can pose several

challenges, which will be further discussed in this chapter.

10
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As discussed in section 1.1, this thesis focuses on millimeter-wave ARoF systems and ex-

ploring the use of deep learning for future generation wireless communication. Following

the research objectives of this thesis, three ARoF links using differential encoding and

incoherent detection are proposed. In addition, deep learning based centrally managed

CoMP is proposed and demonstrated using MLP and LSTM algorithms. Furthermore,

two novel deep learning based phase noise tolerant millimeter-wave receivers were pro-

posed and demonstrated using autoencoder and LSTM algorithms. Therefore, this chap-

ter provides essential background information related to the research topics presented in

subsequent chapters. In section 2.2, regulations and characteristics of millimeter-wave

signals are presented. Section 2.3.1 presents signal impairments caused by the optical

delivery system, focusing on ARoF signals. ARoF optical tone generation methods are

discussed in section 2.3.2. Section 2.4 presents the challenges of CoMP implementations.

Section 2.5 presents an overview of AI implementations in millimeter-wave RoF.

2.2 Millimeter-wave Characteristics, Standards and Reg-

ulation

The usage of RF frequency bands are usually regulated by local authorities of each

country. For example, the regulatory body in the United States (US) of America is

the Federal Communications Commission (FCC), and the Malaysian Communications

and Multimedia Commission (MCMC) is the regulatory body in Malaysia. For upper

microwave flexible use service (UMFUS) with a frequency range of 24.25 GHz -48.2 GHz,

FCC specifies a limit of up to 43 dB average effective isotropic radiated power (EIRP)

for mobile stations [70]. In addition to the 43dB EIRP limit, FCC expects that upper

microwave flexible use service (UMFUS) devices to comply with FCC’s radiofrequency

radiation exposure rules as these rules have more stringent exposure limits for devices

within 20cm from the human body, which would limit the power of such device to be

below the 43 dBm limit [71–73]. For fixed point-to-point transmission at 57 GHz to 71

GHz RF, FCC specifies a maximum average power of 82 dBm, with a 2 dB reduction

for every dB if the antenna gain of the transmitter is below 51 dBi [74]; for 27.5 GHz to

28.35 GHz and 38.6 GHz to 40 GHz RF bands the maximum allowable EIRP is 85 dBm

[75]. Initially, a 62dBm/100MHz transmission power limit for UMFUS base stations was

specified by FCC, but that limit was increased to 75 dBm/100MHz EIRP [70, 76]. The

increase in maximum average power limit increases UMFUS base stations’ link reliability

in dense urban areas and during weather events [71].

On the other hand, third-generation partnership project (3GPP) specifies a maximum

total radiated power of 47 dBm and 33 dBm for medium-range BS and local area BS
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respectively [77]. However, an upper limit for the total radiated power for wide-area BS

was not specified. For wireless user equipment (UE), 3GPP guidelines categorize them

into four different classes:

• Power Class 1: Fixed wireless access

• Power Class 2: Vehicular UE

• Power Class 3: Handheld UE

• Power Class 4: High power non-handheld UE

The maximum EIRP specified by 3GPP for power class 1 is 55 dBm [78]. For the

remaining three classes, the maximum EIRP is 43 dBm [78]. The power limits specified

are for RF signal that falls within the 24 GHz - 40 GHz RF range.

While millimeter-waves are non-ionizing, where the risk of cancer due to prolong expo-

sure should not be an issue as compared to ionizing radiation such as ultraviolet (UV),

X-rays, and Gamma rays. The radiation energy of millimeter wave is way below the en-

ergy required, which is typically 12 eV, to displace an electron from a molecule, to create

free-radicals that can lead to cancer [80–82]. While millimeter-waves are non-ionizing,

the primary cancer risk will be heating due to the human body absorbing millimeter-

waves, especially the eyes and skin of the human body [80, 81]. Hence, the guidelines

for the emission power of RF waves should be designed to protect against such risk [83–

86]. In the International Commission on Non-Ionizing Radiation Protection (ICNIRP)

guideline for the year 2020 [87], the RF power density exposure limits for the general

public is 55f−0.177
GHz

W
m2 for 6 GHz to 300 GHz RF range. fGHz is the RF measured in

GHz. The incident power density is averaged over a square surface of 4 cm2 of the body

surface exposed to RF. If the RF frequency is above 30 GHz with an upper limit of 300

GHz, the incident power density limit averaged over a smaller square surface of 1 cm2

should not exceed 110f−0.177
GHz

W
m2 . The IEEE dosimetric reference limits has a similar

incident power limit as well [88]. The FCC specifies a maximum permissible exposure

of 10 W
m2 averaged over a 4 cm2 surface [89, 90]. For 1 cm2 surface, FCC has recently

proposed a maximum local power density limit of 40 W
m2 [91].

When a signal is transmitted wirelessly, it will be affected by what is present in the prop-

agation channel space at a given time. RF signal traveling through air will experience

attenuation, scattering, and diffraction; most of it is frequency-dependent. The signal’s

attenuation is contributed by free-space path loss (FSPL), atmospheric gas attenuation,

which is mainly contributed by water vapor and oxygen, precipitation attenuation, sand
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and dust storm, and foliage blockage. The FSPL can be defined as

Free Space Path Loss (FSPL) = 10log10

(
4πdf

c

)2

dB (2.1)

where d is the distance between the transmitting and receiving antenna measured in

meters, f is the frequency of the RF signal in Hz, c is the speed of light in m/s. Fig.

2.1 [79] shows the attenuation caused by the presents of water and oxygen at sea level

(1013 hPa) with a temperature of 15 degree Celsius. From 10 GHz to 100 GHz range,

the attenuation contributed by atmospheric absorption peaks around 60 GHz [93, 94].

The lowest attenuation for the millimeter-wave frequency range is at 30 GHz to 40 GHz.

Fig. 2.2 [92] shows the specific attenuation of RF signal from 1 GHz to 1000 GHz due

Figure 2.1: Specific attenuation of RF signal at sea-level for dy air and water vapour
(7.5 g/m3) [79]. (Reproduced, with permission, from [“Attenuation by atmospheric
gases and related effects,” Recommendation ITU-R P.676-12, Tech. Rep., 08 2019.] )
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to rain. Interestingly, the attenuation curve gradient flattens around 100 GHz, which

means that the specific attenuation experienced by an RF signal at 1000 GHz is similar

to the specific attenuation at 100 GHz.

As discussed in the previous paragraphs, constituents of the atmosphere can absorb

electromagnetic energy and cause attenuation. At the same time, they can also ra-

diate electromagnetic energy. The radiated signals are noise-like, which can degrade

communication link performance. Sky noise is a concern for the space industry and

is usually considered for satellite communications [96]. When an antenna on earth is

pointed upwards with a high elevation angle aimed towards a satellite, the signal sent

will be impinged by sky noise emitting from the atmospheric constituents and other

sources [97]. This is referred to as brightness temperature or sky noise temperature. In

contrast, if the elevation angle of the antenna is low, the dominant sky noise will be from

the terrain [97]. If sky noise is considered in a system, it will normally be included in the

Figure 2.2: Specific attenuation of RF signal due to rain [92]. (Reproduced, with
permission, from [“Attenuation by hydrometeors, in particular precipitation, and other

atmospheric particles,” CCIR, Geneva, Switzerland, Report 721-2, 1986])
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Figure 2.3: Sky noise temperature for RF range of 1 Hz to 340 GHz at a water
moisture concentration of 7.5 g/m3 [95]. (Reproduced, with permission, from [E.K.
Smith, “Centimeter and Millimeter Wave Attenuation and Brightness Temperature
due to Atmospheric Oxygen and Water Vapor,” Radio Science, Vol. 17, Dec. 1982])

antenna noise temperature. Fig. 2.3 shows the sky noise temperature for corresponding

RF frequency ranges from 1 Hz to 340 GHz.

Foliage is a collective bunch of leaves on a plant. Foliage loss is due to RF signal

propagating through one or more plants, mainly trees. If the foliage depth, denoted by

R, is less than 400 meters, foliage loss can be estimated using the ITU-R model as shown

below [98]:

Foliage Loss = 0.2fMHz
0.3R0.6 (2.2)

where fMHz is the RF signal in MHz. The equation shown above is valid for a frequency

range of 0.2 GHz to 95 GHz. However, it is important to note that the foliage loss is

also affected by the type of plant as different plants have different trunk, branch, and
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leave sizes, which can influence the propagation of the RF signal through the vegetation

[99–101].

For an RF signal, even if the path between the transmitting and receiving antenna

is not a line-of-sight (LOS) path, the signal can still be transmitted and received by

receiving antenna through reflections of obstacles and objects via diffraction. There are

two kinds of reflections, diffused or specular. The difference between these two reflections

is frequency-dependent. A reflective surface appears ”rougher” when the incident signal

is of higher frequency as the signal has a shorter wavelength. This results in a relatively

more diffused reflection in contrast to specular reflections, depending on the angle of

incident [102, 103]. Hence, the reflection loss of millimeter-wave may be higher due to

its shorter wavelength. However, if the incident angle is large, the scattering loss is small

[103, 104]. The larger incident angle leads to a smaller angular spread [103].

Table 2.1: Penetration attenuation for different matterials

Attenuation, dB

Material Thickness, sub-3 GHz 28 GHz 40 GHz 60 GHz
cm [105, 106] [107] [108] [105]

Dry Wall 2.5, 38.1 5.4 6.84 (38.1 cm) - 6.0

Office Whiteboard 1.9 0.5 - - 9.6

Clear Glass <1.3 6.4 3.6 2.5 3.6

Mesh Glass 0.3 7.7 - - 10.2

Tinted Glass 3.8 - 40.1 - -

Chipwood 1.6 - - 0.6 -

Wood 0.7 5.4 - 3.5 -

Plaster board 1.5 - - 2.9 -

Mortar 10 - - 160 -

Brick Wall 10, 185.4 - 38.3 (185.4 cm) 178 -

Concrete 10 17.7 - 175 -

While existing sub-3 GHz RF used in current wireless communication can penetrate

through buildings with relatively low attenuation loss, millimeter-wave signals do not

penetrate obstacles very well. Table 2.1 shows the tabulated penetration attenuation

values for different materials at different RF frequencies [105–108]. In general, the

penetration loss for millimeter-wave signals is higher than sub-3 GHz RF signals.

2.3 Analogue Radio-over-Fiber

In Radio-over-Fiber, fiber is used to connect the base stations to the central office. Con-

trary to wireless fronthaul solutions, such as conventional RF-based fronthaul links and

free-space optics (FSO) based fronthaul links, fiber as an enclosed transmission medium
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is immune to RF interference, less susceptible to weather conditions, have relatively low

propagation loss, and have more available bandwidth. Fronthaul based on RF links are

either limited by available frequency bands or high propagation loss. As discussed in

Chapter 1 and Section 2.2, lower RF bands are congested, and while millimeter-wave

provides more available bandwidth, it has high propagation loss due to atmospheric ab-

sorption and high obstacle penetration loss. On the other hand, FSO based fronthaul

link is highly susceptible to weather conditions and temperature fluctuations [109, 110].

In the presence of thick fog, an FSO link’s performance degrades greatly due to signal

absorption caused by water molecules suspended in the environment [111]. Tempera-

ture variations around the FSO link cause variations in the reflective index due to a

change in air density and can lead to fluctuations in the received signal’s amplitude

[109]. Besides, the wireless link between the FSO transmitter and receiver can be tem-

porarily obstructed by flying objects such as flying birds and foliage. Therefore, an

enclosed transmission medium such as fiber can provide a more reliable and consistent

transmission performance compared to wireless solutions.

In general, RoF can be categorized into two categories: digital RoF (DRoF) and analog

RoF (ARoF). In a millimeter-wave DRoF link based on CPRI, the signal transmitted

from CO is in baseband and will be upconverted to millimeter-wave signal in the BS.

In contrast, in analog RoF (ARoF) the base station acts solely as a relay, and the

millimeter-wave signal is generated in the central office. Hence, the base stations in

ARoF can be simplified as it no longer performs RF upconversion and modulation as

opposed to DRoF. Fig. 2.4 shows an example of fiber connections linking base stations

to the central office. The millimeter-wave signal in ARoF is generated by heterodyning

two optical tones at the photodiode, where the difference in frequency between the

two optical tones will be the millimeter-wave frequency generated. Optical tones can

be generated using multiple optical sources or optical modulation. The optical tones

generated can be correlated in phase, frequency locked, or both.

Figure 2.4: Illustration of fiber connection used for linking base stations and central
office (CO) for DRoF or ARoF.
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2.3.1 Optical Transmission Impairments

Compared to wireless backbone networks, the introduction of fiber in RoF provides more

bandwidth, lower attenuation, and immunity to RF interference. The high bandwidth

fiber allows higher data throughput and improved latency. In RoF, the transmitted sig-

nal’s quality and integrity can be affected by phase noise, intensity noise, and dispersion.

These impairments are contributed by the use of fiber, amplifier, photodiode, and laser.

In an optical transmitter, optical phase noise originates from the optical source and opti-

cal amplifier. For the optical amplifier, nonlinear phase noise is generated by the ampli-

fied spontaneous emission noise interacting with Kerr non-linearity in fibers [112, 113].

Furthermore, in the optical source, the phase noise originates from spontaneous photon

emissions, which causes phase fluctuations. Besides, Ker non-linearity is also affected by

the intensity of emitted photons. When the optical intensity increases, the phase delay

in fiber increases due to a change in refractive index [114]. Phase noise contributed by

the optical amplifier and optical source leads to spectrum broadening. In ARoF, the sig-

nal modulation, dictated by the desired wireless signal modulation corresponding to the

wireless channel quality, is carried out in the central office. In wireless communication,

phase-modulated signals such as QPSK and M-QAM are popular modulation formats.

The phase noise contributed by the optical transmitter can significantly degrade the

receiver’s detection performance. While phase-coherent optical tones can help with re-

ducing optical phase noise through locked heterodyne detection, phase noise from the

optical transmitter should be controlled and monitored closely. As high order modula-

tion such as 1024 QAM is being proposed in 5G [8], the margin for phase fluctuations

to ensure an error-free transmission is very tight.

Aside from phase noise, spontaneous emission photons can also lead to optical intensity

noise [115]. At the photodetector, the unstable rate of photons’ emission, shot noise,

can cause intensity fluctuations in the electrical signal [116]. On the other hand, the

phase change due to chromatic dispersion can cause intensity fluctuations as well [117].

Relative intensity noise (RIN) of a laser limits the maximum achievable SNR of a given

optical link as RIN is contributed by the transmitter [118–123]. This means that the

second the laser is turned on, the SNR of the signal is degraded, and amplifying the

signal with an optical amplifier will not change the maximum achievable SNR. The use

of a single photodiode direct detection in RoF does not have the ability to cancel out

the RIN and beat noise of detected signal compared to balanced photodiode detection

[124]. Therefore, during the design stage of an ARoF link, the link power budget should

account for RIN, and a low RIN optical source should be used as other noise sources

contributes to the larger fraction of the noise budget [124].
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Fiber chromatic dispersion can convert optical phase fluctuations to intensity fluctua-

tions and also convert intensity modulation to phase modulation [118]. Chromatic dis-

persion occurs due to frequency-dependent refraction index of the fiber. Hence, optical

signals at various frequencies have different paths and speeds. In ARoF, signals trans-

mitted from the central office to the base station can be generally categorized in three

forms: optical double sideband with carrier (ODSB+C), optical double sideband with

suppressed carrier (ODSB+SC), and optical single sideband with carrier (OSSB+C). It

was found that chromatic dispersion causes RF power fading in ODSB signals [125–128].

The power fading can cause a drop in SNR, degrading the overall link performance. The

RF power degradation changes with different fiber lengths and frequency gaps. The fre-

quency gap is the frequency difference between the optical carrier and one of the optical

sideband. In general, a wider frequency gap will lead to a higher the power degradation

[126]. In contrast, OSSB signals are immune to RF power fading [41, 126]. The RF

power generated from OSSB signals remains relatively flat compares to ODSB signals

wherein the RF power generated fluctuates with different fiber length [129].

2.3.2 Optical Tone Generation

In ARoF, optical tones are generated in the CO before transmitting to the BS. The

optical tones generated can be uncorrelated, phase-locked, frequency-locked, or phase

and frequency locked depending on the generation method used. In this section, optical

tones generated through directly modulated laser, multiple optical sources, and external

modulation are presented.

The optical generation methods can be categorized into three categories: conventional

optical tone generation, uncorrelated optical tone generation Optical injection locking

requires three lasers, a master laser, and two slave lasers to generate two optical coherent

tones, as shown in Fig. 2.5. The master laser is modulated with an RF reference using

frequency modulation, which generates an optical carrier with multiple sidebands. The

sideband to carrier spacing is equal to the integer multiples of the modulating frequency.

If the slave lasers’ wavelength is set to the frequency of the 2nd sideband [42], let’s

say +2nd order and -2nd order, it will generate a beat note of four times of the RF

reference. If the wavelength is set to the 3rd sideband [43], the RF frequency generated

after photodiode detection will be six times the RF reference. Optical injection locking

is achieved when the slave lasers operating frequency is equivalent to the sideband of

the frequency-modulated optical signal [42]. The two slave lasers can also be replaced

with a multi-longitudinal-mode slave laser to simplify the overall configuration [43].
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Figure 2.5: Optical injection locking with a master laser and two slave lasers

Optical frequency locked loops [44, 45] generates optical tones that are frequency locked.

However, the optical tones lack phase coherence. This would lead to the millimeter-wave

signal generated after heterodyne photodiode detection to inherit phase noise from the

optical transmitter. Frequency-locked optical tones are generated using a master laser

and a slave laser. The frequency locking is achieved through the feedback loop, as shown

in Fig. 2.6. The frequency discriminator converts the frequency variations into voltage

variation. The loop compares the frequency of the controlled oscillator to the reference

and increases or lowers the frequency of the slave laser until the frequency matches the

reference oscillator’s frequency.

Figure 2.6: Optical frequency-locked loop

Phase coherent optical tones can also be generated using optical phase-lock loop [46–

48]. The configuration of an optical phase lock loop is shown in Fig. 2.7. This approach

achieves phase coherence by actively locking one of the laser’s phase to the other using

an optical phase lock loop. RF signal generated through the optical phase-lock loop

approach can achieve a linewidth of less than 1mHz [46, 48]. However, narrow linewidth
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Figure 2.7: Optical phase-locked loop

lasers are required to reduce the optical phase-lock loop complexity, as the phase fluc-

tuations of narrow linewidth lasers are at low frequencies.

Optical tone generation discussed in previous paragraphs separates the process of opti-

cal tone generation and data modulation. A directly modulated laser can produce op-

tical tones through modulating the downlink data signal at the desired millimeter-wave

frequency directly. The downlink data needs to be upconverted from baseband using

a quadrature modulator with an oscillator functioning at millimeter-wave frequency.

While this setup is relatively simple and cost-effective compared to previously discussed

methods, the maximum frequency is limited by the laser resonance peak, and the per-

formance is impaired by frequency chirp, non-linearity, and relative intensity noise of a

directly modulated laser [49–54].

An external optical modulator can be used to avoid impairments of a directly modulated

laser. Optical tones used to generate millimeter-wave through heterodyning is generated

using an continuous wave (CW) laser, RF oscillator, and external modulators such

as Mach-Zehnder modulator (MZM), electro-absorption modulator (EAM), or optical

phase modulators [55–59]. The simplest method to generate correlated optical tones

using an external modulator is intensity modulation. The external modulator modulates

the optical output of the CW laser using the downlink data signal at millimeter-wave

frequency. This method requires an RF oscillator operating in the millimeter-wave

frequency range and a high-speed optical modulator capable of modulating the high-

speed RF signal onto the optical carrier. The optical tone generated is in the form of

an optical double-sideband (ODSB) signal. However, ODSB signals are heavily affected

by fiber chromatic dispersion [125–128]. As the spectral components within the ODSB

signal travel at different speeds and different paths, the spectral components detected

at the photodiode will have different phases, which would lead to power degradation
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of the generated RF signal. The dispersion effect can be mitigated through the use

of optical single-sideband (OSSB) signal. An OSSB signal can be generated using an

optical filter to suppress one of the sidebands of an ODSB signal, or using dual parallel

MZM or a single dual-electrode MZM by varying the operating point of the MZM and

phase difference between the modulator arms [60–63]. Fig. 2.8 shows the methods used

to generate OSSB and ODSB signals.

Figure 2.8: Conventional ARoF optical tone generation method for a) optical double
sideband with carrier b) Optical double sideband with suppressed carrier and c) Optical

single sideband

Contrary to previous generation methods discussed, where the optical tones generated

are correlated in terms of phase, frequency, or both, uncorrelated ARoF optical tones

can be generated using two individual free-running laser. An uncorrelated millimeter-

wave RoF scheme, as shown in Fig. 2.9, was proposed in [130–133] and demonstrated

using ASK data [65, 134]. The optical tones with a frequency gap equivalent to the

desired millimeter-wave frequency are generated using two free-running optical lasers.

This method simplifies the optical tone generation method compared to other methods

discussed above and does not require a high-speed optical modulator. However, optical

tone generated through this method suffers from phase noise inherited from the optical

transmitter due to unlock heterodyning of incoherent optical tones. As opposed to coher-

ent optical tones, where the phase of the optical tones are correlated or the same at any

given time, uncorrelated optical tones have varying optical phases. During heterodyne
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detection at the photodiode, optical phase noise is reduced if the tones are correlated,

and the opposite is true for uncorrelated optical tones. Therefore, narrow-linewidth

lasers are required for such a method.

Figure 2.9: Optical tone generation using multiple optical sources

Figure 2.10: Optical frequency multiplication optical tone generation using filter with
a) intermediate frequency data modulation b) baseband data modulation

The cost of a millimeter-wave analog RoF link is closely related to the number of high-

speed components used. As the required speed of the optical modulators and RF oscil-

lators increases, the cost increases, as lower frequency components are less costly than

higher frequency components. Optical frequency multiplication method was proposed to

generate millimeter-wave signal using lower frequency oscillators and an external mod-

ulator. The external modulator used can have a lower bandwidth or speed compared

to the desired millimeter-wave signal. Optical frequency multiplication can be achieved
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using two methods, one of which requires an optical filter while the other uses carrier

suppression modulation, as shown in Fig. 2.10 and Fig. 2.11. The first method achieves

optical frequency multiplication by filtering the ODSB signal’s optical carrier using an

optical filter, or optical interleaver [135–138]. Using proper modulator biasing and mod-

ulation index, a frequency separation between the two sidebands can be more than twice

the frequency of the oscillator used and limited by the harmonic generation efficiency and

modulator used [64]. The second method implements optical frequency multiplication

through optical double sideband with suppressed carrier modulation achieved by varying

the biasing voltage and phase difference between the two arms of a dual-electrode MZM

[139, 140] or multiple cascaded MZMs [141].

Figure 2.11: Optical frequency multiplication optical tone generation using carrier
suppressed modulation with a) intermediate frequency data modulation b) baseband

data modulation

Table 2.2 provides a comparison comparing the advantages and disadvantages of each

optical tone generation method discussed above.
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2.4 Coordinated Multipoint

In March 2008, 3GPP initiated a study item focusing on radio interface enhancements

for Long Term Evolution-Advance (LTE-A) and was published in [142]. To fulfill these

requirements, CoMP has been identified as a critical component for physical layer en-

hancements [143], and a feasibility study was released in 3GPP Release 11 [144]. In

CoMP, transmissions between base stations and mobile users are coordinated to reduce

interference and to improve overall data throughput. Interference between base stations

and mobile users can be managed through coordinated scheduling or coordinated beam-

forming. For example, to manage interference in a downlink CoMP, base stations are

coordinated in which data transmission to the user originates from a single base station

at a time. For uplink CoMP interference management, mobile users are coordinated

such that the user data is received by one recipient point (or base station) at a given

time. On the other hand, in joint transmission downlink CoMP, data is simultaneously

transmitted from multiple base stations to a single mobile user to improve received sig-

nal quality and/or data throughput. However, several challenges such as cluster size,

fault detection and mitigation, efficiency, and backhaul bandwidth have to be addressed

to exploit the full benefit of CoMP.

The network performance using coordinated multipoint is closely related to the cluster

size. The cluster’s size is determined by the total number of base stations involved

in a coordinated multipoint transmission. A CoMP cluster that is too small will lead

to a failure in achieving the full potential of CoMP. On the other hand, an oversize

cluster would increase overhead due to Channel State Information (CSI) feedback and

increase the load on the backhaul network [145]. An increase in cluster size results in

a better-weighted sum-rate at the cost of additional signal processing, increased feed-

back and signaling, and power consumption [146, 147]. A dynamic clustering scheme

demonstrated in [148] shows no spectral efficiency gain in employing CoMP in a high

signal-to-interference-plus-noise ratio (SINR) region due to an increase in the overhead

required for CoMP. The CSI collection relies on the backhaul network of CoMP; when

the CoMP feedback and signaling increases, the bandwidth required to collect the CSI

increases. If the backhaul network relies on wireless transmission wherein bandwidth is

limited, the increase in overhead can reach a point where most bandwidth is used for

CoMP feedback and signaling instead of actual data transmission.

Self-Organizing Network (SON) in telecommunication aims to automate the operation

task to simplify the system and reduce latency. SON is a part of 3GPP LTE and LTE-A

standards starting from Release 8 with further improvement introduced until Release

12 [149]. SON aims to automated new site configuration, initial automated neighbor

relations, optimize network performance through monitoring to reduce operational costs
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and improves overall network Quality of Service (QoS) and network capacity [150, 151].

SON also aims to detect, analyze, diagnose, and clear faults in network elements [152].

Ideally, suppose a fault is detected in one of the cooperating base stations within a

given cluster. The network should be able to detect the fault and re-route network

traffic to other base stations while optimizing for coordinated multipoint transmission

to maximize transmission rate or avoiding interference between base stations.

There are three main clustering types in CoMP: static clustering, semi-dynamic clus-

tering, and dynamic clustering. Static clustering forms clusters based on topology and

does not change according to network traffic changes. The method offers a relatively

low complexity solution as clusters are static; hence no data exchange between sites is

required. However, the advantage of static clustering is also its downside; the static na-

ture of this method makes it not able to respond to network profile changes throughout

the day [153, 154]. Hence, the throughput gain from static clustering is limited, and its

effectiveness to handle different degrees of interferences is limited as well. An effort to

improve such a situation is demonstrated in [145], where overlapping clusters are formed,

but this increases complexity with increasing network cluster size. On the other hand,

dynamic clustering [155–157] is more flexible. Cluster sets change with time according

to changes in user density. A change in user density increases or decreases network

traffic within an area. Dynamic clustering requires frequent channel state information

(CSI) transmission to coordinate and manage clusters sets and sizes that are constantly

changing. A semi-dynamic clustering CoMP falls between static clustering and dynamic

clustering. While static clustering is simple to be implemented and dynamic cluster-

ing provides flexibility but requiring more overhead, a semi-dynamic clustering scheme

demonstrated in [158], requires lower overhead and clustering complexity compared to

dynamic clustering. Furthermore, providing more flexibility compared to static cluster-

ing. The added flexibility of semi-dynamic clustering and dynamic clustering can have

scalability issues due to increased in complexity, computational intensity and backhaul

bandwidth [159–166].

As discussed in Chapter 1, the introduction of millimeter-wave frequency bands to com-

mercial wireless communication enables higher data throughput due to higher bandwidth

availability than lower RF bands. However, higher frequency bands lead to higher prop-

agation loss, as discussed in Section 2.2. This leads to needing more base stations to

service the same area compared to using lower RF base stations. While having more

base stations in closer proximity allows aggressive frequency reuse, it increases the load

on the backbone network. More base stations mean more scheduling and coordination

needed, and these are carried out through feedback and signaling between network ele-

ments. Since base stations are densely distributed, users’ movement from one cell site

to the other is shorter. Besides, cooperating base stations involved in CoMP have to be
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synchronized [167]. Hence, the network has to be able to process the immense amount

of feedback and signaling from network elements fast for large-scale synchronization,

scheduling, and coordination for CoMP and beamforming. The use of CRAN can be an

effective solution for the latency and heavy processing requirements to perform CoMP for

densely distributed base stations. The centrally located baseband units in CRAN enable

more efficient resource allocation and distribution, and easier information sharing as all

the signals are transmitted back to the central office. Several research has been carried

out using CRAN for CoMP. Space-frequency block coding based CoMP demonstrated

using an RoF link presented in [168] shows an improvement of 3 dB in optical receiver

sensitivity. The performance of the demonstrated link is evaluated using only two radio

head units. Besides, the impact of uplink performance and synchronization still needs

to be evaluated. A demonstration of a polarization division multiplexing (PDM) based

coordinated multipoint transmission RoF link was presented in [169], showing a polar-

ization track-free mechanism at the receiver in which requires no additional latency for

PDM demultiplexing. However, similar to [168], the demonstration was only carried out

using a downlink system with two radio head units. A study on the balancing of coopera-

tive gain of CoMP and bandwidth consumption and resource allocation optimization for

delay-sensitive traffic in CRAN is carried out in [170]. In [170], a hybrid CoMP scheme

has been proposed to balance between cooperation gain and fronthaul consumption to

minimize transmission delay in CRAN. The simulation results show that the proposed

hybrid CoMP [170] achieves a significant delay performance gains against coordinated

beamforming CoMP and joint processing CoMP. However, the demonstration did not

evaluate the impact of processing and radio parameters on energy consumption and

delay of user-requested service. A software-defined network (SDN) based orchestration

of CoMP on a cloud radio-over flexible optical fronthaul network was demonstrated in

[171]. The SDN-based orchestration [171] reduces traffic between baseband units through

lightpath reconfiguration without impacting the download rate of cell-edge users. While

a latency of hundreds of milliseconds was reported in [171], the lightpath setup time is

ignored, assuming that the lightpath has already been configured. To cope with net-

work traffic changes due to changes in user density throughout the network, and to

reduce power consumption, spectral width and bit rate of the lightpaths need to be

dynamically configured. In a fixed-grid network, the number of wavelengths available

is limited due to the fixed channel spacing. The limited number of wavelengths limits

the number of possible lightpaths, limiting the flexibility in dynamically assigning RRH

and BBU pairs. Consequently, the fixed grid network will impede the applicability of

the SDN-based orchestration demonstrated in [171].
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2.5 Deep Learning in Millimeter-Wave Radio-over-Fiber

In recent years, AI has garnered attention and interest of the research community, and

has motivated research in AI application in telecommunication problems. In RoF, the

use of AI has been explored to be used as a decoder [172–176] ,and equalizer[177–179].

In addition, the use of AI has also been explored in network management [180–186]. The

algorithms used in [172–186] are mainly k-nearest neighbors [177], SVM [178, 179], feed-

forward neural network [172–174], CNN [175, 176], LSTM [184, 185], Hopfield neural

network [186]. While most studies are carried out using neural networks are mainly

shallow neural networks in which only a single hidden layer is used [172–174, 180], only

limited number of experiments are carried out using deep learning algorithms.

A multilayered feed-forward neural network has been proposed for traffic prediction and

resource allocation in a time-division multiplexing passive optical network based CRAN

RoF [183]. The demonstration results suggest that the proposed deep learning method

outperforms conventional passive optical network compliant dynamic bandwidth allo-

cation methods in terms of delay time, packet loss ratio, and efficient use of upstream

bandwidth. In addition, LSTM has been utilized for traffic prediction, and resource

allocation in CRAN [184, 185]. The use of LSTM increases network throughput by 7%

[184], reduces required processing resources [184, 185], and improves power efficiency

[185]. Besides, the use of deep learning algorithms such as CNN [175, 176] has been

explored and demonstrated as a nonlinear decoder. The use of CNN improves link

sensitivity while requiring less computation compared to feed-forward neural network

based decoder. The demonstrations are carried out using correlated optical tones, which

reduces phase noise incurred by the optical transmission system through lock heterodyn-

ing. Although numerous studies on AI application in RoF CRAN have been carried out,

only a few experimental demonstrations were carried out using deep learning in ARoF

CRAN. Hence, more research can be carried out to explore the use of deep learning on

problems discussed in section 2.3 and section 2.4.

2.6 Conclusions

Millimeter-wave band frequency can provide more bandwidth compared to sub-3GHz RF

bands used in 4G LTE to meet future generation wireless communication data through-

put requirements. However, such high-frequency signal suffers from high path loss, high

specific attenuation in the presence of water and moisture, high specific attenuation when

it is raining, and high penetration loss, especially for concrete walls. The introduction of

fiber helps solve the increased bandwidth utilization for signaling and feedback between
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network elements and provides more bandwidth to the base stations to meet the tenfold

increase in data throughput requirement for 5G wireless communication. However, the

maximum range of optical signal transmission is heavily dependent on the signal mod-

ulation used due to impairments caused by the fiber and the optical source. Hence, the

maximum distance from the central office and the base station is limited. Coordinated

multipoint helps improve cell edge data throughput and reduce interference between

base stations. The extent of the diversity gain of CoMP depends on how well the net-

work can optimize for the size of each cell, the degree of freedom in clustering, power

consumption, and bandwidth utilization.

Moreover, the densification of base stations due to high propagation loss increased the

optimization complexity of CoMP. While ARoF is spectrally more efficient than DRoF,

the ARoF link’s performance can be severely degraded due to fiber impairments. Con-

ventional ARoF phase-coherent optical tone generation methods rely on high-speed op-

toelectronics and oscillators and are generally more complex than phase uncorrelated

generation methods.

The problems discussed in this chapter mainly arise from the use of high-frequency RF,

and the solutions to those problems also cause new challenges. However, it is not limited

to the current transmission from lower sub-3 GHz RF to millimeter-wave range signals.

As long as the demand for higher data throughput remains, the move to higher frequency

RF will continue, and similar problems will arise again.



Chapter 3

Differential Encoding for Unlock

Heterodyning Millimeter-wave

Radio-over-Fiber

3.1 Introduction

The ever-increasing demand in bandwidth by wireless end-users and connected IoT

devices has poised to set the future wireless communications in millimeter-wave and

sub-THz bands. These high-frequency bands offer much higher aggregate bandwidth,

but signals at such frequencies have high propagation loss. To overcome this problem,

wireless base stations (BS) at these frequencies are expected to be networked by low-

loss fiber backhaul networks, such as radio-over-fiber (RoF). RoF connects the BSs to

the central office (CO) via a fiber feeder network, predominantly utilizing the widely

deployed last-mile fiber infrastructure [187].

Traditionally, the generation of millimeter-wave RoF signal relies on the generation

of two correlated/coherent optical tones by using either various frequencies, modes or

phase locking mechanisms of the laser, or advanced external modulations, such as op-

tical single-sideband with carrier or optical double sidebands with suppressed carrier

[188–190]. These locked optical tones will be heterodyned at the photodetector (PD)

to be downconverted to the desired millimeter-wave wireless frequency. The principal

drawbacks of these approaches are their complexity, delicacy, and cost, which are far too

high compared to other access technologies such as CPRI. Therefore, a scheme having

a pair of free running optical tones separated by the desired millimeter-wave frequency

at the CO, one of which is modulated with data, has been proposed [133, 191]. The

tones are heterodyned at the BS for wireless transmission and directly detected by a

31
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Figure 3.1: Uncorrelated Millimeter-wave Radio-over-Fiber

phase noise-tolerant direct conversion receiver (DCR) (also known as a self-homodyning

receiver) at the customer premise (CP) for baseband downconversion, as shown in Fig.

3.1. Hence, the scheme can reduce the amount of high-speed optoelectronic and RF

components in a typical RoF link to make it simple and independent of electrical local

oscillators. The scheme can potentially be designed as a subset of current passive opti-

cal network (PON) deployments. Along with modulated optical carrier, an optical tone

with the correct wavelength spacing can be added for the provision of RoF. A scheme

similar to Fig. 3.1 was successfully demonstrated experimentally for both single and

multi-level amplitude-shift-keyed (ASK) modulations employing DCR [65, 192].

However, direct detection using DCR, as demonstrated in ASK, is not directly applica-

ble to phase-sensitive data such as in QPSK and QAM as it would affect the detected

signal’s phase integrity. Methods demonstrated in [67, 193] used QAM on an interme-

diate frequency radio-over-fiber link (IF-RoF), managed to maintain phase information,

and avoid beating interference after heterodyning and direct DCR detection through

the presence of an additional intermediate frequency (IF) tone made available at CP.

However, additional bandwidth is required to transmit IF tone for self-homodyning de-

tection.

This chapter extends the previous ASK investigations to phase-sensitive data while main-

taining bandwidth efficiency and relative phase noise tolerant without IF pilot tone. We

propose the use of differential encoding and baseband optical modulation for millimeter-

wave RoF link. The proposed method is demonstrated in this chapter using an optical

baseband modulated DPSK system and is extended to include an optical baseband

DQPSK system in Chapter 4. While it is possible for the proposed method to be im-

plemented in high-order modulations such as Differential QAM, it is not the focus of
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this thesis and can be explored in the future. During demodulation of a differential

encoded signal such as DPSK, the actual bit is recovered using the received signal with

a delayed version of the received signal. Hence, the phase noise can be reduced through

multiplication of the received signal and the delayed signal. Therefore, an IF tone is

no longer required at CP and thus increases overall bandwidth efficiency. The proposed

model is compared with two different RoF links: a Mach-Zehnder interferometer (MZI)

demodulated DPSK RoF link, and a conventional OSSB+C RoF link. The proposed

model is analyzed through theoretical analysis and software simulations.

The main contributions of this chapter are as follows:

• Develop a theoretical analysis of differential encoding in RoF links using optical

baseband DPSK modulation

• Increase overall spectral efficiency through incoherent detection without the need

of IF tone for phase noise tolerant receiver.

In this chapter, the theoretical analysis of the proposed optical DPSK RoF scheme and

the alternative optical demodulated DPSK scheme are provided in section 3.2. Section

3.3 presents the theory of operation of a conventional phase-locked RoF link. The

simulation results and system performance comparison between the proposed optical

DPSK scheme, optical demodulated DPSK scheme, and conventional phase-locked RoF

link are provided in section 3.4. Section 3.5 summarizes the chapter.

3.2 Proposed DPSK Millimeter-wave Radio-over-Fiber Schemes

In this section, two DPSK schemes using differential encoding and baseband optical

modulation are presented. The two schemes are the following:

• Proposed Optical DPSK Scheme (Scheme A)

• Optical Demodulated DPSK Scheme (Scheme B)

The two schemes share the same optical transmission configuration while having different

BS and CP configurations. In Scheme A, the DPSK signal is demodulated and down-

converted to baseband at the CP. However, in Scheme B, the DPSK signal is converted

to OOK at the BS and downconverted to baseband at the CP.
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3.2.1 Proposed Optical DPSK Scheme

Fig. 3.2 shows the configuration of the proposed optical baseband DPSK modulated

millimeter-wave RoF scheme (Scheme A) for downlink communication that employs an

electrical delay-and-multiply (DAM) type DPSK receiver at the CP to demodulate data

asynchronously. Fig. 3.3 shows the optical and radio frequency spectra of the signal at

points stated in Fig. 3.2.

Figure 3.2: Optical Modulated OSSB+C NRZ-DPSK RoF

Figure 3.3: Optical spectrum of at point a; RF spectra at respective points b to d
shown in Fig. 3.2

The structure of the DAM receiver is similar to an SH receiver. In an SH receiver,

the received signal at millimeter-wave range is downconverted to baseband through self-

multiplication. In a DAM receiver, the received signal is demodulated from DPSK to

OOK and downconverted to baseband through multiplying the received signal with a

delayed version of the received signal. Comparing the DAM receiver shown in Fig. 3.2

and the SH receiver shown in Fig. 3.1, the DAM receiver has an additional time delay

at one of the arm. The proposed DAM receiver should remain relatively tolerant to

phase noise compared to LO-based receivers without the need for an additional phase-

locked loop for synchronization [12]. As shown in Fig. 3.2, the optical tone from the

first laser will be modulated with DPSK encoded data using a dual-drive Mach-Zehnder
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modulator (DD-MZM). The output signal from the DD-MZM will be coupled with the

output optical tone from the second laser. An optical amplifier will be used to amplify

the coupled signal before fiber transmission. The output signal from the fiber is received

at the BS and directly detected using a photodiode. The received signal will undergo

optical heterodyning to produce a millimeter-wave signal with a frequency equivalent to

the two optical sources’ frequency difference. Before RF transmission from the BS, the

signal is filtered and amplified. At CP, the received signal from BS will be demodulated

from DPSK to OOK and downconverted to baseband using the proposed DAM receiver.

Given the output of two lasers and modulator used is represented by

E1(t) = ej(ω1t+φ1l(t)) (3.1)

E2(t) = ej(ω2t+φ2l(t)) (3.2)

EMD
(t) =

Ein(t)

10
li
20

[
γe

j(
πv2(t)
VπRF

+
πvbias2
VπDC

)
+ (1− γ)e

j(
πv1(t)
VπRF

+
πvbias1
VπDC

)
]

(3.3)

where:

- E1(t) and E2(t) are the lasers used shown in Fig. 3.2

- ω1 and ω2 are the angular frequency of the lasers.

- φ1l(t) and φ2l(t) are the phase noise representation of the lasers. As the lasers used

are not phase-locked, separate notations are used.

- EMD
(t) is the output equation for a dual arm MZM (or DD-MZM) [194–196].

- Ein(t) is the input optical signal to a MZM.

- li is the parameter insertion loss

- v1(t) and v2(t) are the input electrical signal voltages for the upper and lower modulator

arms respectively.

- vbias1 and vbias2 are the biasing voltage driving the two MZM arms.

- VπRF is the switching modulation voltage.

- VπDC is the switching bias voltage.

- γ is the power splitting ratio between the two MZM arms, and it is given by:

γ =
(1− 1√

εr
)

2
(3.4)

εr = 10
re
10 (3.5)

where re is the extinction ratio of the MZM to turn the modulator on or off.

Assuming that the signal is transmitted in the form of non-return-zero (NRZ) DPSK,

only one dual drive MZM is used with v1(t) = v2(t), and assuming vbias1 = vbias2 and
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γ = 1
2 . The output of the modulator for Scheme A can be represented by

EMD
(t) =

Ein(t)

10
li
20

[
e
j(
πv2(t)
VπRF

+
πvbias2
VπDC

)
]

(3.6)

If E1(t) is the MZM input and sD(t) is the electrical DPSK signal, equation (3.6) can

be rewritten as

EMD
(t) =

E1(t)

10
li
20

[
e
j(
πsD(t)

VπRF
+
πvbias2
VπDC

)
]

=
ej(ω1t+φ1l(t))

10
li
20

[
e
j(
πsD(t)

VπRF
+
πvbias2
VπDC

)
]

=
e
j(ω1t+

πsD(t)

VπRF
+φ1l(t)+

πvbias2
VπDC

)

10
li
20

= A1e
j(ω1t+

πsD(t)

VπRF
+φ1(t))

(3.7)

where A1 = 1

10
li
20

and φ1(t) = φ1l(t) + πvbias2
VπDC

.

Since optical baseband modulation is used, the output of the MZM only contains a single

optical tone centered around the operating frequency of the laser (E1(t)) used. In RoF,

millimeter-wave RF signals are generated through heterodyning of optical tones at the

photodiode. Therefore, the output of the DD-MZM is coupled with a second laser using

a 3 dB optical coupler to generate an OSSB+C signal.

Figure 3.4: Optical Coupler

Fig. 3.4 shows an optical coupler, where the output of the coupler can be represented

as follows [197, 198]:

Ecoupler =

[
E1Out

E2Out

]
= α

[ √
1− c pj

√
1− c

pj
√

1− c
√

1− c

][
E1In

E2In

]
(3.8)

Ecoupler =

[
E1Out

E2Out

]
= α

 √
1
2 −j

√
1
2

−j
√

1
2

√
1
2

[ E1In

E2In

]
(3.9)
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where:

- E1In(t) and E2In(t) are the inputs of the optical coupler

- E1Out(t) and E2Out(t) represent the outputs of the optical coupler

- α is the insertion loss of the coupler

- c being the coupling coefficient. Since a 3 dB coupler is used, c = 0.5

- p controls the phase difference between the two outputs of the coupler at ±90 deg

[
E1Out

E2Out

]
= α

 √
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2 −j

√
1
2

−j
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1
2

√
1
2
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]
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
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√

1
2 [A1e

j(ω1t+
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]− j
√

1
2 [ej(ω2t+φ2l(t))]

−j
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1
2 [A1e

j(ω1t+
πsD(t)

VπRF
+φ1(t))

] +
√

1
2 [ej(ω2t+φ2l(t))]

 (3.10)

Letting A1 = 1 for simplicity and assuming the signal transmitted from the CO is

E1Out , the transmitted signal (in the form of an OSSB+C signal) from the CO can be

represented as

ETD(t) = E1Out ∝ e
j(ω1t+

πsD(t)

VπRF
+φ1(t)) − jej(ω2t+φ2l(t))

∝ e
j(ω1t+

πsD(t)

VπRF
+φ1(t))

+ ej(ω2t+φ2l(t)+
3
2
π)

∝ e
j(ω1t+

πsD(t)

VπRF
+φ1(t))

+ ej(ω2t+φ2(t)) (3.11)

where φ2 = φ2l + 3
2π.

The optical signal is received by the photodiode at the base station, and the photocurrent

output can be represented as :

ID(t) ∝ ETD(t)× E∗TD(t)

ID(t) ∝ 2 + 2 cos

(
2πfmmt+ ∆φ(t) +

πsD(t)

VπRF

)
(3.12)

Here, E∗TD(t) is the conjugate of ETD(t), fmm is the millimeter-wave frequency where

2πfmm = ω1 − ω2, and ∆φ(t) is the phase noise contributed by two laser source where

∆φ(t) = φ1(t)−φ2(t). The signal will then be amplified and filtered before transmission

from the BS, as shown in Fig. 3.2. The output signal from the BS can be represented

by

IBS1(t) ∝ 2 cos

(
2πfmmt+ ∆φ(t) +

πsD(t)

VπRF

)
(3.13)
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In our proposed configuration, the received DPSK signal will be demodulated using a

DAM receiver. After DAM receiver detection, the signal can be represented as

rD(t) = IBS(t)× IBS(∆t)

rD(t) ∝ cos

(
2πfmmt+ ∆φ(t) +

πsD(t)

VπRF

)
×

cos

(
2πfmm∆t+ ∆φ(∆t) +

πsD(∆t)

VπRF

)
∝ cos

(
2πfmmt+ ∆φ(t) +

πsD(t)

VπRF

)
×

cos

(
2πfmm∆t+ φd(∆t) +

πsD(∆t)

VπRF

)
(3.14)

The term ∆t is the shifted time; it can be represented by t− τ1 where τ1 is a bit time.

The delayed phase noise is defined as ∆φ(∆t) = φd(∆t). After lowpass filtering, the

signal before sampling Y (t) will be:

Y (t) ∝ cos

(
2πfmmτ1 +

π

VπRF
[sD(t)− sD(∆t)] + ∆φ(t)− φd(∆t)

)
(3.15)

As shown in equation (3.15), the DAM receiver reduces phase noise through subtracting

the phase noise inherited from the optical transmission system (∆φ(t)) with its delayed

version (φd(∆t)). The phase noise residual after subtraction is denoted as φr(t) where

φr(t) = ∆φ(t)− φd(∆t). If the phase fluctuation between time t and ∆t increase, there

will be an increase in phase noise residual φr(t). The increase in φr(t) will lead to a

drop in detection accuracy. The effects of signal impairment due to phase noise residual

is demonstrated and discussed in section 3.4.

3.2.2 Optical Demodulated DPSK Scheme

Fig. 3.5 and Fig. 3.6 presents an alternative DPSK scheme (Scheme B) and the optical

and RF spectra at respective points. In Scheme B, the DPSK signal is demodulated

to OOK using an MZI at the BS and downconverted to baseband using DCR at CP.

This scheme simplifies the receiver by replacing DAM with DCR while maintaining the

advantage of optical DPSK modulation over On-Off-Keying (OOK) optical modulation.

Since the configuration of the CO is the same for both schemes, the transmission signal

can be represented by equation (3.11). At the BS, the received optical signal will pass

through an MZI, with its outputs being denoted by E3(t) and E4(t), to be converted from

DPSK to OOK. As DPSK and OOK transmit the same number of bits per symbol, the

overall bandwidth efficiency will not be affected. An MZI can be composed of two optical

couplers, and an optical delay line [197, 198]. In this case, the MZI transfer function can
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Figure 3.5: Alternative Optical demodulated DPSK RoF

Figure 3.6: Optical spectrum of at point a; RF spectra at respective points b to d
shown in Fig. 3.5

be obtained by cascading each optical coupler and optical delay line’s transfer function.

HI = Hc. Hd. Hc

Hc =

[ √
0.5 −j

√
0.5

−j
√

0.5
√

0.5

]
(3.16)

Hd =

[
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0 1

]
(3.17)
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=
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[
e−j2πfτ − 1 −je−j2πfτ − j
−je−j2πfτ − j −e−j2πfτ + 1

]
(3.18)

with HI representing the transfer function of MZI, Hd representing the transfer function
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of the optical delay line, and Hc representing the transfer function of the optical coupler.

By obtaining HI , output of the MZI can be represented by:

EI =

[
E3(t)

E4(t)

]
= HI

[
E1in (t)

0

]

EI =

[
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]
[
E3(t)

E4(t)

]
=

1

2

[
e−j2πfτ − 1 −je−j2πfτ − j
−je−j2πfτ − j −e−j2πfτ + 1

][
E1in (t)

0

]

=
1

2

[
E1in (t)

(
e−j2πfτ − 1

)
E1in (t)

(
−je−j2πfτ − j

) ] (3.19)

Using F{g(t− τ)} = e−j2πfτG(f) where τ = τ1, equation (3.19) can be rewritten as[
E3(t)

E4(t)

]
=

1

2

[
E1in(t− τ1)− E1in(t)

e−j
1
2
πE1in(t− τ1) + e−j

1
2
πE1in(t)

]
(3.20)

Let ∆t = t− τ1, and substituting equation (3.11), equation (3.20) can be rewritten as:

E3(t) =
1

2

 e
j(2πf1∆t+φ1(∆t)+

πsD(∆t)

VπRF
)

+ ej(2πf2∆t+φ2(∆t))−

e
j(2πf1t+φ1(t)+

πsD(t)

VπRF
) − ej(2πf2t+φ2(t))

 (3.21)

E4(t) =
1

2

 e
j(2πf1∆t+φ1(∆t)+

πsD(∆t)

VπRF
+ 3

2
π)

+ ej(2πf2∆t+φ2(∆t)+ 3
2
π)−

e
j(2πf1t+φ1(t)+

πsD(t)

VπRF
+ 3

2
π) − ej(2πf2t+φ2(t)+ 3

2
π)

 (3.22)

Here, τ1 is the time delay introduced by the MZI. Assuming E4(t) is being detected, the

output signal from the photodetector can be:

ID2(t) ∝ 2 + cos(2πfmmt+
πsD(t)

VπRF
+ ∆φ(t)) +

cos(2πf1τ1 +
πsD(t)

VπRF
− πsD(∆t)

VπRF
+ φ1(t)− φ1(∆t)) +

cos(2πfmmt+ 2πf2τ1 +
πsD(t)

VπRF
+ φ1(t)− φ2(∆t)) +

cos(2πf2τ1 + φ2(t)− φ2(∆t)) + cos(2πfmm∆t+
πsD(∆t)

VπRF
+ φd(∆t)) +

cos(−2πfmmt+ 2πf1τ1 −
πsD(∆t)

VπRF
+ φ2(t)− φ1(∆t)) (3.23)
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Before tranmitting out of the BS, the signal will be filtered and amplified. The output

signal from the BS can be represented as

IBS2(t) ∝ cos(2πfmmt+
πsD(t)

VπRF
+ ∆φ(t)) +

cos(2πfmmt+ 2πf2τ1 +
πsD(t)

VπRF
+ φ1(t)− φ2(∆t)) +

cos(−2πfmmt+ 2πf1τ1 −
πsD(∆t)

VπRF
+ φ2(t)− φ1(∆t)) +

cos(2πfmm∆t+
πsD(∆t)

VπRF
+ φd(∆t)) (3.24)

At the CP, the received millimeter-wave signal will be downconverted to baseband using

DCR. The signal after DCR detection can be represented by

rD2(t) = I2
BS2

rD2(t) ∝ cos(A)2 + cos(B)2 + cos(C)2 + cos(D)2 + 2 cos(A) cos(B) +

2 cos(A) cos(C) + 2 cos(B) cos(C) + 2 cos(A) cos(D) + 2 cos(B) cos(D) +

2 cos(C) cos(D) (3.25)

where

A = 2πfmmt+
πsD(t)

VπRF
+ ∆φ(t)

B = 2πfmmt+ 2πf2τ1 +
πsD(t)

VπRF
+ φ1(t)− φ2(∆t)

C = −2πfmmt+ 2πf1τ1 −
πsD(∆t)

VπRF
+ φ2(t)− φ1(∆t)

D = 2πfmm∆t+
πsD(∆t)

VπRF
+ φd(∆t)

Full derivation to obtain the baseband signal Y2(t) from equation (3.25) is shown in

Appendix A.1. After lowpass filtering and simplifying equation (A.3), the baseband
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signal Y2(t) can be represented as

Y2(t) ∝ 2 + 2 cos(φ2(∆t)− φ2(t)− 2πf2τ1)

+ cos(φ1(t)− φ1(∆t) +
πsD(t)

VπRF
+ 2πf1τ1 −

πsD(∆t)

VπRF
)

+ cos(φ1(t)− φ2(∆t) + φ2(t)− φ1(∆t) +
πsD(t)

VπRF
+ 2πf2τ1 + 2πf1τ1 −

πsD(∆t)

VπRF
)

+ cos(∆φ(t)− φd(∆t) +
πsD(t)

VπRF
− πsD(∆t)

VπRF
+ 2πfmmτ1)

+ cos(φ1(t)− φ1(∆t) +
πsD(t)

VπRF
+ 2πf2τ1 −

πsD(∆t)

VπRF
+ 2πfmmτ1) (3.26)

The phase noise propagated from the optical transmitter is converted into additive noise,

as shown in the second term of equation (3.26). If the phase fluctuation between time t

and time ∆t increases, the baseband signal of Scheme B will not only be impaired by the

increased phase noise, but also the converted additive noise. Comparing the received

baseband signal of Scheme A (equation (3.15)) and Scheme B (equation (3.26)), the

additive noise term is not present in baseband signal of Scheme A. Therefore, Scheme B

may have a lower detection accuracy compared to Scheme A at the same level of phase

noise.

3.3 Conventional Phase Locked Optical DPSK Link

In this section, a theory of operation is provided on a conventional phase-locked RoF

link. In a phase-locked millimeter-wave RoF OSSB+C optical DPSK link (Scheme C),

the optical tones used are phase-locked. Hence contrary to (3.11), the output signal

from the CO can be represented as

E1Out ∝ e
j(ω1t+vmm(t)+φ1(t)) + ej(ω1t+φ1(t)) (3.27)

where vmm(t) is the millimeter-wave DPSK signal. Correlated phase-locked optical

tones can be generated through conventional method using high-speed millimeter-wave

oscillators and MZMs, as shown in [199], or frequency quadrupling method shown in

[139]. Conventionally, an OSSB+C signal can be generated using a dual-parallel MZM,

as shown in Fig. 3.7. The biasing voltages supplied to the DPMZM are used to bias

the MZM and control the phase difference between the two MZM outputs within the

DPMZM. However, the simulator used for the experiment does not have a dual-parallel

MZM. Hence, the OSSB+C signal is generated using two single drive MZM, two optical
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couplers with a 90 deg phase difference between two output ports, and a phase shifter of

−90 deg to mimic a DPMZM, as shown in Fig. 3.8. Therefore, a theoretical analysis is

carried out to ensure the individual components used to mimic a DPMZM can generate

OSSB+C signals. The alternative shown in [200] simplifies the overall configuration by

using only a single dual-drive MZM, but the unwanted sideband suppression ratio is

lower than the conventional method. A lower suppression ratio would lead to a drop in

system performance due to higher dispersion.

Figure 3.7: DPMZM

Figure 3.8: Conventional DPSK RoF Link
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As shown in Fig. 3.8, the laser output is divided using a 3dB optical coupler. Using

equation (3.8), the output of the first optical coupler can be represented by

Ecoupler1 =

[
E1Out

E2Out

]
= α

 √
1
2 j

√
1
2

j
√

1
2

√
1
2

[ E1In

E2In

]

=

[
E1Out

E2Out

]
= α

 √
1
2 j

√
1
2

j
√

1
2

√
1
2

[ E1In

0

]

=

[
E1Out

E2Out

]
=

 α
√

1
2E1In

αj
√

1
2E1In

 (3.28)

The outputs of the optical coupler are modulated using two single drive MZM. The

output signal of the single drive MZM can be represented by [134]

Emod(t) = α2Ein(t)[1 + as(t)] (3.29)

where α2 is the modulation index of the modulator with a = π
Vπ

. The output of the first

modulator is

Emod1(t) = α2

√
1

2
E1In(t)[1 + as1(t)]

= α2

√
1

2
E1In(t)[1 + a cos(2πfmmt+ φs(t))]

= α2

√
1

2
E1In(t)[1 + a

1

2
(ej(2πfmmt+φs(t)) + e−j(2πfmmt+φs(t)))] (3.30)

where s1(t) = cos(2πfmmt + φs(t)) is the modulating signal, and φs(t) is the phase

change caused by DPSK modulation. The output of the second modulator is

Emod2(t) = α2j

√
1

2
E1In(t)[1 + as2(t)]

= α2j

√
1

2
E1In(t)[1 + a cos(2πfmmt+ φs(t) +

π

2
)]

= α2j

√
1

2
E1In(t)[1− a sin(2πfmmt+ φs(t))]

= α2j

√
1

2
E1In(t)[1− a 1

2j
(ej(2πfmmt+φs(t)) − e−j(2πfmmt+φs(t)))] (3.31)

The output of the second modulator is phase shifted by −90 deg before coupling with

the output of the first modulator using an optical coupler. The output representation
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of the second optical coupler is

Ecoupler2 =

[
E1Out

E2Out

]
= α

 √
1
2 j

√
1
2

j
√

1
2

√
1
2

[ Emod1(t)

−jEmod2(t)

]

=

[
E1Out

E2Out

]
= α

 √
1
2Emod1(t) +

√
1
2Emod2(t)

j
√

1
2Emod1(t)− j

√
1
2Emod2(t)

 (3.32)

Assuming E1Out is transmitted from the CO, the signal output from CO can be repre-

sented by

ETD 2
= E1Out = α

√
1

2
(Emod1 + Emod2)

= αα2
1

2
E1In(t)(1 + a

1

2
(ej(2πfmmt+φs(t)) + e−j(2πfmmt+φs(t)))

+j[1− a 1

2j
(ej(2πfmmt+φs(t)) − e−j(2πfmmt+φs(t)))])

= αα2
1

2
E1In(t)([1 + j] + ae−j(2πfmmt+φs(t)))

= αα2
1

2
([1 + j]ej(ω1t+φ1l(t)) + aej(ω1t−2πfmmt−φs(t)+φ1l(t)))

= αα2
1

2
(
√

2[ej
π
4 ]ej(ω1t+φ1l(t)) + aej(ω1t−2πfmmt−φs(t)+φ1l(t)))

= αα2
1√
2
ej(ω1t+φ1l(t)+

π
4

) + αα2
1

2
aej(ω1t−2πfmmt−φs(t)+φ1l(t))

= C1e
j(ω1t+φ1l(t)+

π
4

) +D1e
j(ω1t−2πfmmt−φs(t)+φ1l(t)) (3.33)

where C1 = αα2
1√
2

and D1 = αα2
1
2a. As the optical tones are phase locked, as shown in

equation (3.33), during heterodyning detection at the photodiode, phase noise from the

transmitter is reduced as opposed to unlocked heterodyning shown in equation (3.12).

Hence, the signal output of the photodiode will be

ID3(t) ∝ ETD 2
(t)× E∗TD 2

(t)

ID3(t) ∝ 2 + 2cos(2πfmmt+ φs(t) +
π

4
) (3.34)

where E∗TD 2
(t) is the conjugate of ETD 2

(t), and assuming C = D for simplicity, and

no optical fiber is present. Comparing the equation above with equation (3.12), it can

be observed that the phase noise contributed by the transmitter is no longer present.

However, this is based on the assumption that no fiber is present, and the optical tones

generated stays coherent throughout the link before heterodyning detection at the photo-

diode. If the optical tones are no longer coherent, the photodiode’s output signal will be

similar to equation (3.12). The millimeter-wave DPSK signal is downconverted to base-

band using an RF mixer and an RF oscillator operating at millimeter-wave frequency.
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The downconverted signal is denoted as rD3(t).

rD3(t) ∝ cos(φs(t)− φLO(t)) (3.35)

where φLO(t) represents the phase noise contributed by the RF oscillator. The baseband

DPSK signal can be demodulated using a DPSK demodulator.

3.4 Experiment and Results

The performance of all three schemes are compared using varying levels of optical re-

ceiving power, phase noise, and relative intensity noise. In addition, validation tests

comparing different signal formats of DPSK, and optical carrier-to-sideband power dif-

ference were carried out to optimize the performance of Scheme A and Scheme B. This

section is arranged as follows. The simulation setup for all three schemes are provided in

section 3.4.1. Validation tests and performance comparison between schemes are provide

in section 3.4.2 and section 3.4.3 respectively.

3.4.1 Simulation Setup

All three schemes presented in section 3.2 and section 3.3 are modelled using OptiSystem

16 software. For Scheme A and Scheme B, a free-running DFB laser operating at

193.1THz is externally modulated by dual-drive Mach-Zehnder Modulator (DD-MZM)

with a differential encoded data generated by 2.5Gbps Pseudo Random Bit Sequence

(PRBS) fed into an XOR gate with a one-bit delay feedback path. Another free-running

optical LO laser operating at 193.1375 THz is coupled with the output of DD-MZM

using a 3dB coupler. The linewidth of both lasers is set to 5 MHz, which corresponds

to the linewidth found in low-cost laser diodes. The coupled signal is amplified and

transported over a 25km single-mode fiber (SMF) to the BS. In Scheme A, received

tones from the lasers are directly detected by a PD, and heterodyning occurs to generate

a DPSK modulated millimeter-wave signal at 37.5GHz. An MZI is used before the PD

in Scheme B with a delay equivalent to one-bit time. For all schemes, a 50-dB gain

amplifier with a spectral density of noise current of 2.25 × 10−11 A√
(Hz)

and a 5GHz

bandwidth Bessel bandpass filter centered around 37.5 GHz is used to amplify and filter

the millimeter-wave signal.

For Scheme C, a single free-running laser operating at 193.1THz is modulated by a

dual-parallel MZM (DP-MZM). The DP-MZM is modeled using two MZM, two optical

couplers, and an optical phase change in OptiwaveTM . The DP-MZM generates an
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OSSB+C signal as described in the section 3.3. Before the signal is transmitted, an

optical filter is used to improve the optical carrier-to-sideband ratio (OCSR) from -

22.742 dB to -11.4 dB. The BS configuration of Scheme C is similar to Scheme A. The

37.5 GHz millimeter-wave signal is downconverted at the receiver, using an oscillator-

based receiver operating at the same frequency as the millimeter-wave signal. The DPSK

signal is demodulated to OOK signal at the CP.

3.4.2 Validation Test

Optical carrier-to-sideband power difference has a major influence on system perfor-

mance [201]. In Scheme C, an optical filter is used to improve OCSR. In Scheme A and

Scheme B, optical tones are generated using two uncorrelated lasers; hence the optical

carrier-to-sideband power difference can be controlled by varying the power of the lasers

used. To optimize the performance of uncorrelated multi-optical source RoF, the power

of the lasers are varied from -15 dBm to -5 dBm. The power difference is calculated

between the MZM output signal power (PM1) and the power of the second LO laser

(PL2), and is denoted by ∆P = PM1 − PL2. The fiber launch power is fixed at 0 dBm

±0.001. The received power of Scheme A and Scheme B is fixed at -24 dBm ±0.002

when PM1 = PL2. Results for various ∆P are shown in Fig. 3.9 and Fig. 3.10. Based

on the results obtained, the optimal point of operation is when PM1 = PL2.

Figure 3.9: BER of Scheme A and Scheme B under different ∆P
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Figure 3.10: Generated RF power of Scheme A and Scheme B under different ∆P

Three different signal formats were tested on Scheme A and Scheme B: Return-to-zero

(RZ) DPSK, carrier-suppressed return-to-zero (CSRZ) DPSK, and non-return-to-zero

(NRZ) DPSK. RZ-DPSK and CSRZ-DPSK demonstrated in [202, 203] have shown lower

BER over NRZ-DPSK against fiber nonlinearity, dispersion, and thermal noise in long-

haul communication systems. However, both CSRZ-DPSK and RZ-DPSK utilize more

bandwidth compared to NRZ-DPSK, and the fiber used in an RoF link is used as a

last-mile connection to base stations, which are normally much shorter in length relative

to fiber length used in long-haul communication. Hence, these three signal formats are

compared in Scheme A and Scheme B to investigate the performance benefit of using

RZ and CSRZ over NRZ in a relatively shorter fiber length RoF link.

Configurations of RZ-DPSK and CSRZ-DPSK for Scheme A and Scheme B are shown in

Fig. 3.11. Comparing the configurations shown in Fig. 3.11, Fig. 3.2, and Fig. 3.5, two

DD-MZM are required to generate RZ-DPSK and CSRZ-DPSK signals as opposed to one

DD-MZM used for optical baseband NRZ-DPSK generation. An additional modulator

is required for pulse shaping. For the RZ-DPSK setup, the first modulator has the same

biasing and configuration as NRZ-DPSK, where both inputs of the DD-MZM are fed

with the same data. As for CSRZ-DPSK, both arms have a 180-degree phase difference.

The second DD-MZM for both RZ-DPSK and CSRZ-DPSK is fed by a signal generator,

generating a sine wave at 1.25 GHz for CSRZ-DPSK, and a cosine wave at the same

frequency for RZ-DPSK. Both arms of the second DD-MZM will have a 180-degree phase
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Figure 3.11: Configuration of RZ-DPSK and CSRZ-DPSK for Scheme A (top) and
Scheme B (bottom)

difference. The output signal of the second DD-MZM is coupled with the output of the

LO laser.

Fig. 3.12 shows the performance of 33% RZ-DPSK, CSRZ-DPSK, and NRZ-DPSK at

different optical receiving power for Scheme A and Scheme B. As shown in the figure,

for both Scheme A and Scheme B, RZ-DPSK performs the best, followed by NRZ-

DPSK and CSRZ-DPSK. At BER of 10−9, the performance of CSRZ-DPSK is similar to

NRZ-DPSK. While CSRZ-DPSK performs better than NRZ-DPSK at lower BER rates,

NRZ-DPSK performs better than CSRZ-DPSK at higher BER rates. Although the

performance benefit of RZ-DPSK compared to NRZ-DPSK and CSRZ-DPSK is larger

in Scheme B relative to Scheme A, it is still relatively small, at less than 1 dBm measured

at 10−9 BER. The performance improvement comes at the cost of requiring twice the

bandwidth and a relatively more complex transmission setup compared to NRZ-DPSK.

In wireless communication, bandwidth is limited, and since both RZ-DPSK and CSRZ-

DPSK provides minor performance benefit over NRZ-DPSK, only NRZ-DPSK is used

for the consecutive tests.
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Figure 3.12: Performance of Scheme A (top) and Scheme B (bottom) using different
signal formats measured using BER with varying optical receiving power
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3.4.3 Comparison between Schemes

The main advantage of DPSK over OOK is the lack of modulation depth, which could

result in better sensitivity of the system. Even with the use of MZI before the PD, the

advantage of using DPSK remains, although the base station’s received data has been

demodulated to OOK. As shown in Fig. 3.3. and Fig. 3.6. the signal’s spectrum after

MZI remains the same. However, such configuration takes a slight performance hit of

around 0.55 dB compared to Scheme A at the same bit error rate (BER). From Fig.

3.13, we can see that in all scenarios, Scheme C performs better than Scheme A and

Scheme B. Scheme C has a power penalty advantage of 1.2dBm over Scheme A, and

1.75dB over Scheme B at BER of 10−9.

Figure 3.13: Performance of Scheme A, Scheme B, and Scheme C at various optical
receiving power

Fig. 3.14. shows the power penalty incurred by the laser’s relative intensity noise (RIN)

on each scheme. The power penalty is calculated relative to the optical received power at

-145 dB/Hz with a 10−9 BER. The curve of Scheme A and Scheme B is plotted relative

to Scheme C. Linewidth of each laser is set to 1kHz to eliminate the effects of laser

linewidth while obtaining results. RIN of the data modulated laser source is varied from

-145 dB/Hz to -115 dB/Hz. This range is chosen because off-the-shelve laser’s RIN falls
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within this range, and commercially available distributed feedback (DFB) lasers have a

RIN of below -130 dB/Hz [67].

Figure 3.14: Power penalty incurred to Scheme A, Scheme B, and Scheme C at
different levels of relative intensity noise

Based on the results obtained, a minimal increase in power penalty is observed when

RIN is increased from -145 dB/ Hz to -135 dB/Hz for Scheme B, -145 dB/Hz to -130

dB/Hz for Scheme A, and -145 dB/Hz to -140 dB/Hz for Scheme C. From that point

onwards, the gradient of the curve increases rapidly, with Scheme C being the fastest,

followed by Scheme B and Scheme A. The trend in curves show that Scheme A is more

resilient to RIN compared to Scheme B, and proposed DAM receiver is more resilient

to RIN compared to oscillator based receiver used in Scheme C. As RIN increases, each

scheme’s power penalty increases exponentially, which indicates that RIN needs to be

monitored while designing and during deployment of ARoF fronthaul link.

Phase noise of a system is affected by the data rate and the linewidth of the laser.

Usually, when the linewidth of a laser increases, phase noise increases as well [204, 205].

To quantify the effect of phase noise on each scheme, the first laser’s (E1(t)) linewidth is

varied from 1 Hz up to 75 MHz while fixing the second LO laser at 1 MHz. A LO-based

downconversion technique used in an uncorrelated RoF link (LO2) [206, 207] is added



Differential Encoding for Unlock Heterodyning Millimeter-wave Radio-over-Fiber 53

for comparison in addition to the three schemes. The results are shown in Fig. 3.15.

The power penalty is calculated based on the lowest optical receiving power to achieve

a BER of 10−9, which happens to be the optical receiving power at 1 Hz laser linewidth

of the added LO based uncorrelated RoF link. A minimal increase in power penalty is

observed from the figure till 10 MHz for Scheme A and Scheme B. While LO2 performs

better than the proposed scheme (Scheme A) before 100KHz, it receives a power penalty

of 9.25 dB at 200 kHz laser linewidth. In contrast, although Scheme C also uses LO

based receiver, the power penalty curve remains relatively flat throughout the test due

to using coherent optical tones. This shows the robustness of the proposed scheme’s

(Scheme A) DAM receiver to high laser linewidth.

Figure 3.15: Power penalty incurred to Scheme A, Scheme B, and Scheme C at
different levels of laser linewidth

Beyond 10 MHz, the curves’ gradient increases rapidly with Scheme B being faster than

Scheme A. At 75 MHz, the power penalty is 3.113 dB for Scheme A and 6.228 dB for

Scheme B. Compared to ASK [134], the proposed DPSK scheme power penalty curve

increases exponentially while the power penalty curve of ASK remains relatively flat

with increasing laser linewidth. As linewidth increases, the coherence time of the signal

decreases. Therefore, the phase difference between the signal at current time and the
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delayed signal (∆t and t) changes with increasing linewidth. This contributes to a higher

power penalty for the proposed DPSK model at higher laser linewidth.

3.5 Summary

A novel implementation of differential encoding in an unlocked heterodyning RoF link

has been proposed and demonstrated using a DPSK RoF link. Theoretical analysis car-

ried out shows that the proposed DPSK RoF scheme has the potential in reducing phase

noise inherited from the optical transmitters, a common problem faced by uncorrelated

RoF systems. Simulation results show that the proposed DPSK RoF scheme remains

phase noise tolerant up to 10 MHz range laser linewidth. The conventional phase-locked

RoF link performs better than the proposed DPSK scheme at low RIN and high phase

noise scenarios, while the proposed DPSK scheme performs better than oscillator re-

ceiver based unlocked heterodyning RoF link at higher phase noise levels. Besides, the

proposed DPSK scheme is more tolerant towards RIN compared to the conventional

phase-lock RoF link. Similar to conventional phase-locked RoF links, optical carrier-

to-sideband power difference can significantly influence the proposed DPSK scheme’s

system performance. Results obtained show that the optimal operating point for the

proposed DPSK link is when the total carrier power is equal to the total sideband power.



Chapter 4

DQPSK Millimeter-wave

Radio-over-Fiber

4.1 Introduction

This chapter extends the previous chapter’s investigation to include the use of DQPSK

in uncorrelated millimeter-wave RoF. The proposal of millimeter-wave band frequency

usage has been driven by the limited availability of bandwidth in the existing 4G sub-

3GHz RF band [208]. However, with the increasing number of connected devices, even

with the increased available bandwidth with the inclusion of millimeter-wave frequencies,

wireless bandwidth should be utilized efficiently. Moving from DPSK to DQPSK doubles

the spectral utilization where data are transmitted at a rate of 2 bits/Hz instead of 1

bits/Hz [209, 210]. DQPSK signal can be modulated onto an optical carrier using the

same optical transmitter setup as the proposed DPSK scheme in Chapter 3. Hence,

no additional changes have to be made to the optical transmitter while doubling the

spectral usage. However, the demodulation process of DQPSK signal will cause a drop

in detection performance due to higher phase noise residual. The longer time delay used

to demodulate DQPSK would lead to a greater difference in phase between the current

signal and the delayed signal. As discussed in the previous chapter, the time delay in the

DAM receiver will cause an exponential decrease in detection performance when phase

noise increases. The impairment would be greater for DQPSK as the time delay used in

DQPSK is twice the duration of DPSK [211].

Therefore, this chapter investigates the feasibility of DQPSK in the presence of a rel-

atively higher phase noise residual compared to the phase noise residual present in

the proposed DPSK scheme. The proposed DQPSK scheme will be compared to two

self-homodyning-based IF-RoF schemes. The two IF-RoF schemes were demonstrated

55
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through physical experiments in [67, 193] using QAM-based orthogonal frequency di-

vision multiplexing (OFDM) signals and envelop detection. The demonstrated IF-RoF

systems managed to maintain phase information and avoid beating interference after het-

erodyning and self-homodyning detection. However, additional bandwidth is required to

transmit IF tone for self-homodyning detection to ensure that the signal’s phase integrity

is maintained.

The main contributions of this chapter are as follows:

• Develop a theoretical analysis of differential encoding in RoF links using optical

baseband DQPSK modulation

• Provide theoretical analysis on two IF-RoF links based on self-homodyning re-

ceiver.

• Increase overall spectral efficiency through incoherent detection without the need

of IF tone for phase noise tolerant receiver.

In this chapter, the theoretical analysis of the proposed baseband optical modulated

DQPSK millimeter-wave RoF scheme is provided in section 4.2. Section 4.3 presents the

theoretical analysis on two alternative self-homodyning-based IF-RoF schemes. Simu-

lation results and performance comparison between the proposed schemes and the two

IF-RoF alternatives are provided in section 4.4. A summary of the chapter is provided

in section 4.5

4.2 Proposed Optical DQPSK Scheme

Fig. 4.1 shows the configuration of the proposed optical baseband DQPSK modulated

millimeter-wave RoF scheme. The proposed DQPSK scheme is similar to the DPSK

scheme in chapter 3, with the exception of requiring an additional DAM receiver. The

two DAM receivers are used to demodulate in-phase and quadrature components of the

DQPSK signal respectively. The DQPSK data is modulated optically onto an optical

carrier using a dual-drive MZM (DD-MZM). Using the output equation of an MZM de-

fined in Chapter 3, equation (3.3), the output of the dual-drive MZM can be represented

by

EMQ
(t) =

Ein(t)

10
li
20

[
γe

j(
πv2(t)
VπRF

+
πvbias2
VπDC

)
+ (1− γ)e

j(
πv1(t)
VπRF

+
πvbias1
VπDC

)
]

=
E1(t)

10
li
20

e
j(
πv2(t)
VπRF

)
(4.1)
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Figure 4.1: Proposed Downlink Radio-over-Fiber DQPSK link

where E1(t) is the input optical carrier from the first laser, and li is the insertion loss of

the MZM. Assuming both of the modulator arms are symmetric with γ = 0.5, both arms

of the modulator are fed with the same signal v1(t) = v2(t), and the biasing voltage of

the two arms are the same vbias2 = vbias1 = 0. If the switching voltage of the modulator

VπRF = 4V , the DQPSK signal denoted by v2(t) will be

v2(t) = 4I(t) + 2Q(t) (4.2)

where I(t) and Q(t) are the in-phase and quadrature components of the DQPSK signal.

The amplitude of the in-phase component is set to be twice of the quadrature components

because when |VπRF | = 4, I(t) and Q(t) will have a 90 deg phase difference as shown

below

EMQ
(t) =

E1(t)

10
li
20

e
j(
πv2(t)
VπRF

)

=
E1(t)

10
li
20

ej(
π4I(t)+π2Q(t)

4
)

=
E1(t)

10
li
20

ej(πI(t)+
π
2
Q(t)) (4.3)

A change in voltage in I(t) and Q(t) will lead to a change in phase to the input optical

carrier. The output of the dual-drive MZM will be coupled with an optical local oscillator

using an optical coupler before transmitting out of the CO and is denoted by ECQ

ECQ = α

 √
1
2 −j

√
1
2

−j
√

1
2

√
1
2

[ EMQ

E2(t)

]

= α

 √
1
2EMQ

− j
√

1
2E2(t)

−j
√

1
2EMQ

+
√

1
2E2(t)

 (4.4)
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where E2(t) represents the output signal of the second laser, and α is the insertion loss

of the optical coupler. Assuming that the first output is transmitted from the CO, and

given that the output of the two lasers are

E1(t) = ej(ω1t+φ1l(t))

E2(t) = ej(ω2t+φ2l(t))

the signal output from the CO can be

ETQ(t) = α

(√
1

2
EMQ

(t)− j
√

1

2
E2(t)

)

= α

√
1

2

(
E1(t)

10
li
20

ej(πI(t)+
π
2
Q(t)) − jE2(t)

)
= α

√
1

2

(
ej(ω1t+φ1l(t))

10
li
20

ej(πI(t)+
π
2
Q(t)) − jej(ω2t+φ2l(t))

)

= α

√
1

2

(
ej(ω1t+φ1l(t)+πI(t)+

π
2
Q(t))

10
li
20

+ ej(ω2t+φ2l(t)−π2 )

)
= A2e

j(ω1t+φ1l(t)+πI(t)+
π
2
Q(t)) +B2e

j(ω2t+φ2l(t)−π2 ) (4.5)

where A2 =
α
√

1
2

10
li
20

and B2 = α
√

1
2 . For simplicity, let A2 = B2. At the BS, the signal is

directly detected by a photodiode. The photocurrent can be obtained as

IQ(t) ∝ ETQ(t)× E∗TQ(t)

∝ (ej(ω1t+φ1l(t)+πI(t)+
π
2
Q(t)) + ej(ω2t+φ2l(t)−π2 ))

×(e−(ω1t+φ1l(t)+πI(t)+
π
2
Q(t)) + e−j(ω2t+φ2l(t)−π2 ))

∝ 1 + cos
(
ω1t− ω2t+ φ1l(t)− φ2l(t) + πI(t) +

π

2
Q(t) +

π

2

)
∝ 1 + cos

(
∆ωt+ ∆φl(t) + πI(t) +

π

2
Q(t) +

π

2

)
(4.6)

with the assumption that there is no fiber to distort the signal. Here, E∗TQ(t) is the

conjugate of ETQ(t), ∆ωt represents ω1t − ω2t, and ∆φl(t) represents φ1l(t) − φ2l(t).

The millimeter-wave carrier (ωmm) is produced through heterodyning of the two optical

tones, ωmmt = ∆ωt. The transmitted signal from the BS after bandpass filtering and

amplification is

IBS Q(t) ∝ cos
(
ωmmt+ ∆φl(t) + πI(t) +

π

2
Q(t) +

π

2

)
(4.7)

For DQPSK demodulation, the received signal is split into two by a balance power

divider with a time delay τ2 = 2
Bit-Time , and a phase change of π

4 or − π
4 at both arms.
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The output representation at one of the delay arm,

id(t) ∝
(
ωmm∆t2 + ∆φl(∆t2) + πI(∆t2) +

π

2
Q(∆t2) +

π

2

)
∝

(
ωmm∆t2 + φl d(∆t2) + πI(∆t2) +

π

2
Q(∆t2) +

π

2

)
(4.8)

where ∆t2 = t− τ2 and the delayed phase noise is defined as ∆φl(∆t2) = φl d(∆t2).

The output representation at one of the phase shift arm,

ips(t) ∝ cos

(
ωmmt+ ∆φl(t) + πI(t) +

π

2
Q(t) +

3π

4

)
(4.9)

At the receiver, signal demodulation and baseband downconversion is carried out through

multiplying delayed signal and the phase-shifted signal at both arms respectively, as

shown in Fig. 4.1.

r(t) = id(t)× ips(t)

After lowpass filtering, the baseband IQ signal represented by rI(t) and rQ(t) are

rI(t) = cos(−ωmmτ + φl d(∆t2)−∆φl(t) + πI(∆t2)

−πI(t) +
π

2
Q(∆t2)− π

2
Q(t)− π

4
) (4.10)

rQ(t) = cos(−ωmmτ + φl d(∆t2)−∆φl(t) + πI(∆t2)

−πI(t) +
π

2
Q(∆t2)− π

2
Q(t) +

π

4
) (4.11)

As shown in equation (4.10) and equation (4.11), the DAM receivers reduces the phase

noise inherited from the optical transmission system through subtracting the inherited

phase noise (∆φl(t)) with its delayed version (φl d(∆t2)). If the phase difference from

time t to ∆t2 is negligible, then the phase noise can be minimized to approximately

zero, φl d(∆t2) − ∆φl(t) ≈ 0. However, when the phase difference from time t to ∆t2

increases, residue phase noise increases. This finding is similar to the proposed DPSK

scheme. However the time delay used for DPSK demodulation is one bit time (τ1) while

the time delay used for DQPSK demodulation is two bit time (τ2). The longer time delay

used in DQPSK would result in having a larger phase fluctuation between symbols which

will cause a drop in detection accuracy of the system. The effects on system performance

in the presence of a larger phase noise residue due to having a longer time delay will be

explored in section 4.4.
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Figure 4.2: Downlink of an Uncorrelated Intermediate Frequency Radio-over-Fiber
(IF-RoF) Link Using Self-Homodyning (SH) Receiver

4.3 Intermediate Frequency Radio-over-Fiber

A theoretical analysis of two downlink IF-RoF links is provided in this section: unlock

heterodyned IF-RoF and remote oscillator IF-RoF. Both IF-RoF schemes were demon-

strated in [67, 193]. However, in both papers, a full downlink theoretical analysis was

not provided. Therefore, a full downlink theoretical analysis from RoF signal generation

to baseband frequency downconversion is carried out in this section.

4.3.1 Unlock Heterodyned IF-RoF

An intermediate frequency (IF) RoF link using unlocked optical heterodyning and enve-

lope detection has been proposed and demonstrated using orthogonal frequency-division

multiplexing (OFDM) with quadrature amplitude modulation (QAM) in [193]. The link

was analyzed through physical experiments with varying fiber lengths and optical re-

ceiving power. However, a theoretical analysis was not provided. Hence, the IF-RoF

link in [193] is adapted to use DQPSK signal (Fig. 4.2), and a theoretical analysis is

provided in this section.

The DQPSK data is generated using a quadrature modulator using an intermediate

frequency that is much lower than the desired millimeter-wave signal. Although RF

oscillators operating at IF are required, the physical link configuration is similar to

ASK-based uncorrelated RoF link shown in Fig. 3.1. Hence, the number of high-speed

optoelectronics and RF components used are still lower than conventional RoF links.
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At the transmitter, the output of the modulator is represented by

EMQ2
(t) = α2E1In(t)[1 + as2(t)]

= α2E1(t)[1 + a cos(2πfIF t+ φs2(t))]

= α2e
j(ω1t+φ1l(t))

[
1 + a

1

2
(ej(2πfIF t+φs2 (t)) + e−j(2πfIF t+φs2 (t)))

]
= α2e

j(ω1t+φ1l(t)) + α2a
1

2
(ej(2π(f1+fIF )t+φ1l(t)+φs2 (t))

+ej(2π(f1−fIF )t+φ1l(t)−φs2 (t))) (4.12)

where ω1 = 2πf1, fIF is the intermediate frequency used, and φs2(t) is the phase rep-

resentation of the DQPSK signal. As shown in equation (4.12), the output from the

modulator is the form of an optical double sideband with carrier signal (ODSB+C).

ODSB+C signals are known to have higher impairments due to dispersion compared

to OSSB+C and ODSC+SC signals. The effect of dispersion is also affected by the

frequency difference between the carrier and sidebands. The higher the frequency dif-

ference, the higher the impairment. Compared to conventional ODSB+C generation

method where the frequency difference between carrier and sidebands equals to the de-

sired millimeter-wave frequency, the frequency used in this IF-RoF link is IF. Hence the

signal impairment due to dispersion is lower.

Before transmitting out of the CO, the output of the modulator will be coupled with

an optical local oscillator using a 3 dB optical coupler. The output of the coupler is

denoted by ECQ2
.
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Assuming the first output of the optical coupler is transmitted, the output from the CO

can be represented by

ETQ2
(t) = α

(√
1

2
EMQ2

(t)− j
√

1

2
E2(t)

)

= αα2

√
1

2
ej(ω1t+φ1l(t)) + αα2a

1

2
√

2
(ej(2π(f1+fIF )t+φ1l(t)+φs2 (t))

+ej(2π(f1−fIF )t+φ1l(t)−φs2 (t))) + α

√
1

2
ej(ω2t+φ2l(t)−π2 ) (4.14)

For simplicity, let the amplitude of each optical tone in ETQ2
(t) be one, and assume that
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no fiber is present. After heterodyning detection at the photodiode, the photocurrent

output can be represented by

IQ2(t) ∝ ETQ2
(t)× E∗TQ2

(t)

∝ 4 + 2ej(2πfIF t+φs2 (t)) + 2e−j(2πfIF t+φs2 (t))

+ej((ω1−ω2)t+φ1l(t)−φ2l(t)+
π
2

) + ej(4πfIF t+2φs2 (t))

+ej((ω1−ω2)t+2πfIF t+φ1l(t)−φ2l(t)+φs2 (t)+π
2

) + e−j(4πfIF t+2φs2 (t))

+ej((ω1−ω2)t−2πfIF t+φ1l(t)−φ2l(t)−φs2 (t)+π
2

)

+e−j((ω1−ω2)t+φ1l(t)−φ2l(t)+
π
2

)

+e−j((ω1−ω2)t+2πfIF t+φ1l(t)−φ2l(t)+φs2 (t)+π
2

)

+e−j((ω1−ω2)t−2πfIF t+φ1l(t)−φ2l(t)−φs2 (t)+π
2

)

∝ 2 + 2 cos(2πfIF t+ φs2(t)) + cos
(
ωmmt+ ∆φl(t) +

π

2

)
+ cos(4πfIF t+ 2φs2(t)) + cos

(
ωmmt+ 2πfIF t+ ∆φl(t) + φs2(t) +

π

2

)
+ cos

(
ωmmt− 2πfIF t+ ∆φl(t)− φs2(t) +

π

2

)
(4.15)

where E∗TQ2
(t) is the conjugate of ETQ2

(t). Due to the usage of SH receiver, in addition

to one of the sideband of the double-sideband signal, the carrier of the double-sideband

signal has to be present at the receiver to maintain the phase integrity of the signal.

Therefore, the signal transmitted from the BS is

IBS I(t) ∝ cos
(
ωmmt+ ∆φl(t) +

π

2

)
+ cos

(
ωmmt+ 2πfIF t+ ∆φl(t) + φs2(t) +

π

2

)
(4.16)

At the CP, the signal will be downconverted to IF by the SH receiver, and the IF

signal will be downconverted to baseband using RF oscillators. The IF signal after

downconversion can be represented by

rIF (t) ∝ IBS5(t)× IBS5(t)

∝ cos2
(
ωmmt+ ∆φl(t) +

π

2

)
+2 cos

(
ωmmt+ ∆φl(t) +

π

2

)
cos
(
ωmmt+ 2πfIF t+ ∆φl(t) + φs2(t) +

π

2

)
+ cos2

(
ωmmt+ 2πfIF t+ ∆φl(t) + φs2(t) +

π

2

)
∝ 1− 1

2
cos(2ωmmt+ 2∆φl(t))

+ cos(2πfIF t+ φs2(t))− cos(2ωmmt+ 2πfIF t+ 2∆φl(t) + φs2(t))

−1

2
cos(2ωmmt+ 4πfIF t+ 2∆φl(t) + 2φs2(t)) (4.17)
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The final baseband IQ signal after lowpass filtering can be represented by

rI2(t) ∝ cos(φs2(t)− φLO(t)) (4.18)

rQ2(t) ∝ cos
(
φs2(t)− φLO(t) +

π

2

)
(4.19)

where φLO(t) is the phase fluctuation of the RF local oscillator used for baseband down-

conversion, given that the RF local oscillators used have an output of cos(2πfIF t +

φLO(t)) and cos
(
π
2 − 2πfIF t− φLO(t)

)
respectively. As shown in equation (4.17), the

term ∆φl(t) is not present in the signal at IF after SH downconversion. Hence, in the

final baseband signal, as shown in equation (4.18) and equation (4.19), the phase noise

contributed from the optical transmitter in the CO is no longer present while retaining

the DQPSK signal phase information. If the additional carrier tone is not present during

SH detection, the signal downconverted will be at baseband instead of IF, and the phase

information of the signal will be removed.

4.3.2 Remote Oscillator IF-RoF

The remote oscillator IF-RoF has been demonstrated and evaluated experimentally in

[67] using M-QAM signals. While a brief theoretical analysis is provided, it is not

complete. Hence, the demonstrated remote IF-RoF link is adapted to use DQPSK (as

shown in Fig. 4.3), and an end-to-end downlink theoretical analysis is provided in this

section. Comparing Fig. 4.3 and Fig. 4.2, both IF-RoF links are similar while having

two differences. At the BS, while unlock heterodyning IF-RoF generates millimeter-wave

signal through unlocked heterodyning of the ODSB+C signal and the optical tone from

the second laser, remote oscillator IF-RoF generates the desired millimeter-wave signals

through mixing of output signals from the two photodiodes. At the CO, the second

laser’s output is directly coupled with the output of the MZM in unlocked heterodyning

IF-RoF, whilst in remote oscillator IF-RoF, the output of the second laser is modulated

with an IF signal to generate an ODSB+SC signal.

For remote oscillator IF-RoF, the signal representation of the modulated signal on the

first laser’s output (E1) is similar to EMQ2
(t). For the second modulator, frequency
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doubling modulation technique is used, and the output can be represented by

EMQ3
(t) =

Ein(t)
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πvbias2
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)
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)
]
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e
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)
]
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(
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)
= −A1Ein(t) sin

(
π
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cos(2πfIF2t)

)
= −A1Ein(t)

(
2J1

(
π

VπRF

)
cos(2πfIF2t)

)
= −A1J1

(
π

VπRF

)
Ein(t)(ej(2πfIF2

t) + e−j(2πfIF2
t))

= −A1J1

(
π

VπRF

)
(ej(ω2t+2πfIF2

t+φ2l(t)) + ej(ω2t−2πfIF2
t+φ2l(t))) (4.20)

As shown in equation (4.20), frequency doubling modulation can be carried out using

a dual-drive MZM with a biasing voltage equivalent to ±1
2VπDC . The signal input fed

to the two MZM arms have an inverse polarity, v1(t) = −v2(t). The output of the two

MZMs are coupled using an optical coupler with an output representation of

ECQ3
= α
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√
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√
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√
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−j
√

1
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1
2EMQ3
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 (4.21)

Figure 4.3: Downlink of an Remote Oscillator Intermediate Frequency Radio-over-
Fiber (IF-RoF) Link Using Self-Homodyning (SH) Receiver
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Assuming that the first output of the coupler is transmitted, the transmitted signal from

the CO will be

ETQ3
(t) = α

(√
1

2
EMQ2

(t)− j
√

1

2
EMQ3

(t)

)

= −αA1J1

(
π

VπRF

)
(ej(ω2t+2πfIF2

t+φ2l(t)) + ej(ω2t−2πfIF2
t+φ2l(t)))

+αα2

√
1

2
ej(ω1t+φ1l(t)) + αα2a

1

2
√

2
(ej(2π(f1+fIF )t+φ1l(t)+φs2 (t))

+ej(2π(f1−fIF )t+φ1l(t)−φs2 (t))) (4.22)

Before photodiode detection, the coupled optical tones are separated using an optical

filter. A high-speed photodiode is used to detect EMQ3
with its output denoted by IIF2

and a low-speed photodiode is used to detect EMQ2
with an output denoted by IIF1 .

IIF1(t) ∝ EMQ2
(t)× E∗MQ2

(t)

∝ 3 + 2ej(2πfIF t+φs2 (t)) + 2e−j(2πfIF t+φs2 (t)) + ej(4πfIF t+2φs2 (t))

+e−j(4πfIF t+2φs2 (t))

∝ 3 + 4 cos(2πfIF t+ φs2(t)) + 2 cos(4πfIF t+ 2φs2(t)) (4.23)

IIF2(t) ∝ EMQ3
(t)× E∗MQ3

(t)

∝ 2 + ej(2π(2×fIF2
)t) + e−j(2π(2×fIF2

)t)

∝ 2 + 2 cos(2π(2× fIF2)t) (4.24)

Here, E∗MQ2
(t) and E∗MQ3

(t) are the conjugate of EMQ2
(t) and EMQ3

(t) respectively.

Referring to equation (4.23) and equation (4.24), IIF1(t) contains the DQPSK signal

φs2(t) at IF whilst IIF2(t) only contains a signal oscillating at fIF2 . The oscillator fre-

quency used for signal up-conversion is remotely delivered from the CO to the BS, hence

the name of the setup: remote oscillator IF-RoF. The output of the two photodiodes are

mixed using an RF mixer to generate the desired millimeter-wave signal with its output

represented by

IIF1(t)× IIF2(t) ∝ 3 + 3 cos(2π(2× fIF2)t) + 4 cos(2πfIF t+ φs2(t))

+4 cos(2πfIF t+ φs2(t)) cos(2π(2× fIF2)t)

+2 cos(4πfIF t+ 2φs2(t))

+2 cos(4πfIF t+ 2φs2(t)) cos(2π(2× fIF2)t)
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IIF1(t)× IIF2(t) ∝ 3 + 3 cos(2π(2× fIF2)t) + 4 cos(2πfIF t+ φs2(t))

+2(cos(2π(fIF − 2fIF2)t+ φs2(t)) + cos(2π(fIF + 2fIF2)t+ φs2(t)))

+ cos(4π(fIF − fIF2t+ 2φs2(t))) + cos(4π(fIF + fIF2t+ 2φs2(t)))

+2 cos(4πfIF t+ 2φs2(t)) (4.25)

Before BS transmission, the signal is filtered to have frequencies at fmm = fIF+2fIF and

2× fIF2 . If an oscillator based receiver is used, the frequency required for transmission

will only be fmm. The BS transmitted signal is

IBS r(t) ∝ 3 cos(2π(2× fIF2)t) + 2 cos(2π(fIF + 2fIF2)t+ φs2(t)) (4.26)

At the receiver, the signal is detected by the SH based receiver, which can be represented

by

rIF2(t) ∝ IBS6(t)× IBS6(t)

∝ 9 cos2(2π(2× fIF2)t) + 4 cos2(2π(fIF + 2fIF2)t+ φs2(t))

+12 cos(2π(2× fIF2)t) cos(2π(fIF + 2fIF2)t+ φs2(t)) (4.27)

The signal will then be further downconverted to baseband using RF oscillators and RF

mixers. The final baseband IQ signal will be similar to equation (4.18) and equation

(4.19).

rI3(t) ≈ cos(φs2(t)− φLO(t))

rQ3(t) ≈ cos
(
φs2(t)− φLO(t) +

π

2

)

Comparing both IF-RoF schemes, at the photodiode, as shown in equation (4.15), equa-

tion (4.23) and equation (4.24), in remote oscillator IF-RoF, the phase noise contributed

by the optical transmission source is subtracted from the photocurrent output due to

optical locked heterodyning. Although both IF-RoF schemes use two uncorrelated op-

tical sources, in remote oscillator IF-RoF the signal is detected separately using two

photodiodes. Due to the modulation methods used in remote oscillator IF-RoF, the

two signals are in the form of an ODSB+C signal and an optical double sideband with

suppressed carrier (ODSB+SC) signal. While these two signals are not correlated, the

tones within the ODSB+C and ODSB+SC signals are correlated. Therefore, the op-

tical tones heterodyned at the photodiodes are phase-locked, reducing the phase noise

inherited from the optical transmitter. However, this is only possible if the optical tones

remain phase-locked at the photodiode after fiber transmission.
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4.4 Experimental Results

In this section, the proposed DQPSK scheme’s performance is compared to the two

IF-RoF alternative schemes at varying levels of optical receiving power, phase noise,

and relative intensity noise. A validation test comparing the optical carrier-to-sideband

power difference is carried out to optimise the performance of the proposed DQPSK

scheme. The simulation setup for the proposed DQPSK scheme and the two IF-RoF

schemes are provided in section 4.4.1. Validation test and performance comparisons

between schemes are provided in section 4.4.2 and section 4.4.3 respectively. In this

section, solid continuous lines in all figures are fitting curves plotted using MATLAB.

It is plotted to provide a better illustration of the trend of the results collected for each

test.

4.4.1 Simulation Setup

The proposed DQPSK link as shown in Fig. 4.1 is modeled using OptiSystem 16 soft-

ware. A free-running continuous wave (CW) laser operating at 193.1 THz is externally

modulated by a dual-drive Mach-Zehnder Modulator (DD-MZM) with differential en-

coded IQ data generated using 2.5 Gbps Pseudo Random Bit Sequence (PRBS) fed into

a precoder to generate DQPSK data. Another free-running optical LO laser operating

at 193.1375 THz is coupled with the output of the DD-MZM using a 3 dB coupler. The

linewidth of both lasers is set to 1 MHz. The coupled signal is amplified before being

transported over a 25 km single-mode fiber (SMF) to the BS. A 37.5 GHz millimeter-

wave signal is generated through unlocked heterodyning of the received tones. A 50 dB

gain amplifier with a spectral density of noise current of 2.25×10−11 A√
Hz

and a 2.5 GHz

bandwidth Bessel bandpass filter centered around 37.5 GHz is used to amplify and filter

the millimeter-wave signal.

The proposed scheme is compared to two intermediate frequency QPSK setups as shown

in Fig. 4.2 and Fig. 4.3. From this point onwards, unlocked heterodyining IF-RoF and

remote oscillator IF-RoF will be referred to as IF-RoF1 and IF-RoF2 respectively. The

IF used in both schemes is set to 2.5 GHz. In IF-RoF1, a double sideband with carrier

(DSB+C) signal is generated by feeding the MZM with a quadrature modulated 2.5 GHz

DQPSK signal. The DSB+C signal is coupled with a LO laser tone before transmission.

Millimeter-wave signal is generated through unlocked heterodyning of the LO tone and

the DSB+C signal. In IF-RoF2, the millimeter-wave carrier is generated at the second

photodiode through heterodyning of double sideband with suppressed carrier (DSB+SC)

laser tones. The DSB+SC tones are generated using the second DD-MZM shown in Fig.

4.3. The RF carrier is added to the DSB+C IF signal through an RF combiner. For
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both schemes, the millimeter-wave signal is amplified by 50 dB, and filtered to include

the main data signal and the RF reference tone for SH detection.

4.4.2 Optical Carrier-to-Sideband Power

As mentioned in chapter 3, optical carrier-to-sideband power difference can influence sys-

tem performance drastically. Therefore, before commencing subsequent test, a validation

test is carried out to obtain the optimal optical carrier-to-sideband power difference.

In the proposed DQPSK link, two uncorrelated lasers were used. The power of the

two uncorrelated sources is varied from -15 dBm to -5 dBm. The power difference is

calculated between the output power of the MZM and the power of the second LO laser,

denoted by ∆P . The fiber length is fixed at 5 km, and the launch power is fixed at 0

dBm ±0.001. The results obtained are shown in Fig. 4.4 and Fig. 4.5. Compared to

the test carried out on DPSK, as shown in Fig. 3.9 and Fig. 3.10, the DQPSK scheme

has the same optimal operating point as the DPSK schemes. At ∆P = 0 dBm, the

proposed DQPSK scheme achieves the lowest BER and has the highest RF generated

power at the same fiber launch power.

Figure 4.4: BER of the proposed DQPSK scheme under different ∆P
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Figure 4.5: Generated RF signal power of the proposed DQPSK scheme under dif-
ferent ∆P with the same fiber launch power.

4.4.3 Comparison between the proposed scheme and IF-RoF schemes

Fig. 4.7 shows the performance of the proposed scheme and the two IF-RoF schemes un-

der varying levels of optical receiving power at 25 km fiber length measured using symbol

error rate (SER). The SER obtained is estimated using the error vector magnitude of

the received signal constellation. In Chapter 3, the results on varying optical receiving

power included the results for a back-to-back optical link. However, the back-to-back

analysis is not carried out for DQPSK. In millimeter-wave RoF systems, dispersion in-

duced by the fiber can severely limit the transmission distance and performance of a

given link, especially when optical double sideband signals are used [125–128]. Hence,

the performance of the two IF-RoF schemes and the proposed scheme are measured

using SER at a varying fiber length of 0 to 30 km. The fiber launch power is set to

maintain at 0 dBm ±0.001, and the optical receiving power is set to maintain at -13.5

dBm ±0.002 at all fiber length using an optical attenuator. The results obtained are

shown in Fig. 4.6. From the figure, IF-RoF2 reaches its local minima at 25 km while

the local minima for IF-RoF1 falls between 25 km and 26 km. The proposed scheme

reaches a local minima at 23 km. Furthermore, all three schemes have a much higher
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SER at 0 km fiber (back-to-back) relative to the performance of both links at 25 km.

For consistency, all three schemes will be compared using a fiber length of 25 km.

Figure 4.6: Effects of fiber dispersion on the proposed DQPSK sheme and two IF-
RoF schemes measured using SER

Figure 4.7: Performance of the proposed DQPSK sheme and two IF-RoF schemes at
various optical receiving power

From Fig. 4.7, the results show that the proposed scheme performs better than both

IF-RoF schemes, while IF-RoF1 and IF-RoF2 perform similarly. At a SER of 10−9, the
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optical receiving powers are -16.75 dBm, -13.5 dBm, and -13.6dBm for the proposed

scheme, IF-RoF1, and IF-RoF2 respectively. Additionally, the proposed scheme has

an approximate 3 dB power penalty advantage over the other schemes at 1 MHz laser

linewidth.

Figure 4.8: Power penalty incurred at different levels of relative intensity noise

Fig. 4.8 shows the power penalty incurred by varying levels of relative intensity noise

(RIN). RIN is varied from -145 dB/Hz to -130 dB/Hz. The power penalty is calculated

relative to the received power at SER 10−9 of the proposed scheme at -145 dB/Hz. Based

on Fig. 4.8, the proposed DQPSK scheme performs better than IF-RoF1 and IF-RoF2

at all RIN levels. The rate of increase in the gradient of the power penalty curve is much

faster for IF-RoF1 and IF-RoF2 compared to the proposed scheme. Compared to Scheme

A and Scheme B in Chapter 3, as shown in Fig. 3.14, the proposed DQPSK scheme

is more sensitive to RIN, as the gradient of the proposed DQPSK power penalty curve

increases much faster than DPSK. At -130 dBc/Hz, Scheme A experienced a power

penalty of less than 2 dB, while the proposed DPQSK scheme experienced a power

penalty of 2.96 dB. Hence, for higher-order modulation, RIN needs to be controlled and

monitored during designing and deployment.

Phase noise effects on detection accuracy, induced by the laser tones, can be quantified

by measuring the SER at different laser linewidths. Fig. 4.9 shows the power penalty
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Figure 4.9: Power penalty incurred at different of laser linewidth

incurred by increasing laser linewidth on all three schemes. The laser linewidth of the

first laser (E1) is varied from 1 Hz to 75 MHz. Power penalty is calculated relative to

the lowest optical receiving power at SER of 10−9, which is the receiving power of the

proposed scheme at SER of 10−9. At a linewidth of less than 2.8 MHz, the proposed

scheme performs better than both IF-RoF schemes. However, the proposed scheme’s

curve gradient increases much faster than other schemes. This is contributed by the

increase in residue phase noise as the phase fluctuation increases with increasing laser

linewidth. As shown in equation (4.10) and equation (4.11), the phase noise is reduced

through the subtraction of ∆φl(∆t2) and ∆φl(t). As the laser linewidth increases, phase

noise at time ∆t2 and t can differ greatly. IF-RoF2 performs better than IF-RoF1 at

higher phase noise as the power penalty curve is flatter than IF-RoF1. As discussed

in section 4.3.2, while the laser diodes used in IF-RoF2 are unlocked, the detection of

DSB+C and DSB+SC tones are carried out separately. Hence the tones within the

DSB+C signal and DSB+SC signal are locked. Therefore, in IF-RoF2, the phase noise

is reduced through heterodyning. Compared to DPSK, the power penalty experienced

by the proposed DQPSK scheme with increasing phase noise is much higher, and the

gradient of the curve is also much steeper. As discussed in section 4.2, the residue phase

noise for QPSK is higher than DPSK at the same laser linewidth due to having a longer

time delay τ2.



DQPSK Millimeter-wave Radio-over-Fiber 73

4.5 Summary

An optical DQPSK RoF link is proposed and investigated. Results obtained through

theoretical analysis and simulation show that the proposed DQPSK RoF scheme has

the potential to reduce phase noise inherited from the optical transmitter. However,

the proposed scheme experience a higher impairment compared to the DPSK schemes

shown in Chapter 3 due to the longer time delay used in the detection process and a

higher symbol rate. While the two IF-RoF schemes perform better than the proposed

DQPSK scheme at high phase noise scenario, the proposed DQPSK scheme performs

better at lower phase noise levels and has a higher tolerance towards RIN. The optimal

point of operation for the proposed DQPSK link is when the total carrier power is equal

to the total sideband power.



Chapter 5

Deep Learning based Coordinated

Multipoint

5.1 Introduction

One of the significant challenges of future wireless networks, 5G and beyond, is the ever-

increasing demand for higher data rate. Such demand has led to an increase in research

in the millimeter-wave band (30 GHz - 300 GHz) and terahertz band for the upcoming

5G and 6G wireless communication respectively, due to congestion in the sub-3 GHz

band [212]. However, radio signals propagating at high-frequency experience consider-

ably higher path loss, which reduces reliable communication distance. Therefore, more

base stations and the adoption of steerable high-gain antennas are required. However,

millimeter-wave’s short-wavelength nature allows stacking of multiple antenna elements

within a relatively small footprint to form a massive antenna array, thus making it

possible to exploit the benefit of beamforming [66–68].

Densification of both antenna arrays and base stations incurs new technical challenges.

In wireless communication, coordinated multipoint (CoMP) is used to coordinate trans-

missions of network elements to minimize interference and increase overall data through-

put of a network. The increase in the number of base stations increases network manage-

ment complexity, especially for CoMP transmission. In addition, to benefit from the use

of massive MIMO (mMIMO) antenna arrays, the base station has to align the high gain

RF beam towards the user through beamforming. Therefore, the network has to be man-

aged such that it aligns the high gain RF beam towards the user and at the same time

coordinates the transmission of the base stations to mitigate interference and improve

data throughput. Hence, significantly more overhead resources and processing capabil-

ity are required from the baseband processing unit to perform large-scale coordination

74
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Figure 5.1: Illustration of CRAN with different CO to BS link.

and scheduling for a mMIMO millimeter-wave wireless communication network. Aside

from higher data rate, energy efficiency and latency are three things to consider when

deploying 5G systems. The increase in the number of base stations, overhead resources,

and processing capability can lead to an increase in power consumption. Furthermore,

a congested backhaul network might lead to an increase in latency.

The concept of centralization, as shown in Fig. 5.1, has been proposed to address the

aforementioned challenges, whereby baseband units are located in a centralized pool in

the central office separated from the base station (BS), e.g. centralized radio access

network (C-RAN) [15]. In this configuration, all routing, control signal, and data pro-

cessing are carried out centrally. This means that CoMP and beamforming of mMIMO

array processing will be managed centrally. Downlink CoMP can be categorized into
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Figure 5.2: Illustration of a C-RAN based Coordinated Multipoint

three categories: joint transmission, dynamic point selection (DPS), and coordinated

beamforming. In DPS, the user can only receive signals transmitted from a single base

station. The base station is selected among the cooperating base stations within a clus-

ter based on channel conditions. For coordinated beamforming, user data only exists in

one base station, while users’ channel state information is shared among base stations.

Interference between base stations can be suppressed by either altering base station ra-

diating pattern, zero-forcing beamforming (ZFBF), or joint leakage suppression (JLS).

The focus of this chapter will be on downlink joint transmission coordinated multipoint

as it allows for more efficient utilization of base stations transmission resources to im-

prove cell edge throughput. Joint transmission CoMP requires user equipment (UE)

multiplexed data to be available at multiple CoMP cooperating points for transmission,

which in effect will form a distributed multiple-input multiple-output (MIMO) chan-

nel with multiple streams to improve overall data rate and cell edge reception. For a

centrally managed CoMP, as shown in Fig. 5.2, UE multiplexed data is present in the

central office. The CoMP cooperating cluster will be controlled and managed centrally

based on UE multiplexed data and predefined CoMP connection rules.

The use of machine learning has been applied in telecommunication problems, including

self-organizing network management, beam alignment, and physical layer optimizations

[213–215]. The successful breakthrough in applying deep learning in other domains

such as speech processing [216], image processing [217], and gaming [25] motivates the

application of deep learning to communication problems [214, 218]. Looking at the

development trend in various fields using machine learing, it is possible to have a future

where the network is entirely controlled using machine learning algorithms. Therefore,

in this chapter, we explore the use of deep learning in CoMP.

In this chapter, we extend the application of deep learning for CoMP triggering in [219].



Deep Learning based Coordinated Multipoint 77

We do this by including two different applications of deep learning for CoMP: to select

an additional base station for downlink joint CoMP transmission, and to provide all

possible base station options that meet the predefined criteria for downlink joint CoMP

transmission. In the demonstrated deep learning based CoMP triggering [219], deep

feed-forward neural network, with varying number of neurons, was used to determine

non-linear boundaries for CoMP triggering. The performance of the deep neural net-

work (DNN) was measured using downlink throughput and compared to SVM based

triggering and static SNR triggering. The results shown in [219] suggests that using

a simple dual-layered feed-forward neural network can improve system performance as

it can define the non-linear boundary for CoMP triggering better than SVM. In addi-

tion, a recurrent neural network based deep learning algorithm has been demonstrated

in predicting triggering conditions for enabling or disabling virtual cell based CoMP

[220]. The results show that the recurrent neural network based deep learning algorithm

achieves a 92% accuracy in predicting triggering conditions for enabling and disabling

the virtual cell mode. However, there were no comparisons made to other deep learning

algorithms.

The data collected from the constant exchange of telemetry data between network ele-

ments can be used for more than just triggering CoMP algorithm. In CRAN, the data

collected will be available centrally. Hence, deep learning algorithms can be used to pro-

cess the collected data to select additional base stations for downlink CoMP, perform

large-scale beamforming and scheduling, and providing all possible base station options

for CoMP joint downlink transmission.

In this chapter, a deep learning based CoMP is demonstrated using deep reinforcement

learning and other deep learning algorithms such as multilayer perceptron (MLP) and

long short-term memory (LSTM). The performance of these algorithms are explored

and compared using three different approaches for two different scenarios with varying

complexity. In the three different approaches, the task performed by the deep learning

algorithm varies. The three approaches, namely AP1, AP2, and AP3, are:

• AP1: As a switch to trigger the downlink CoMP algorithm

• AP2: To select an additional base station for CoMP using predefined criteria.

• AP3: To provide all possible base station options that meet the predefined criteria

for CoMP transmission.

The chapter is organized as follows. Section 5.2 provides a brief background on an

mMIMO link and a description of the deep learning algorithm and deep reinforcement
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learning used. Results and performance comparison between algorithms used are pro-

vided in section 5.3. Section 5.4 summarizes this chapter.

5.2 Proposed Deep Learning Algorithm based Centrally

Managed Millimeter-wave CoMP

This section is organized as follows. Section 5.2.1 provides a brief introduction to the

link model of an mMIMO system. Section 5.2.2 describes the methods used to gener-

ate and collect data used for deep learning training and testing. A brief introduction

and description of the proposed deep learning algorithms used and their application

in a downlink CoMP problem is provided in Section 5.2.3. Section 5.2.4 describes the

proposed reinforcement learning algorithm used and its application in CoMP.

5.2.1 Link Model

In a practical mMIMO millimeter-wave system, a codebook-based beam alignment would

generally be used. Hence a MIMO channel can be estimated by

HMIMO =
√
NTXNRX(

L∑
l=1

αlaRX(θAl , φ
A
l )aHTX(θDl , φ

D
l )) (5.1)

where αl denotes the instantaneous random complex path gain, θAl ∈ [0, π] and φAl ∈
[0, π] are the angle of arrival, θDl ∈ [0, π]and φDl ∈ [0, π] are the angle of departure,

aRX(θAl , φ
A
l ) and aHTX(θDl , φ

D
l ) are the antenna response or steering vectors at the re-

ceiver and transmitter for l-th path, L is the number of rays per transmitter and receiver

pair, NTX is the number of transmitting antenna, and NRX is the number of antenna

at the receiver. Since there are multiple stacked antenna elements within an mMIMO

antenna, the beamforming gain depends on the number of transmitted and received

beam pairs. Using the estimated MIMO channel, the average beam gain matrix can be

calculated using

Gq,p = Eα[|wHq ·HMIMO · gp|2] (5.2)

where the expectation is carried out over all channel path coefficients α with wq and

gp being elements from the codebook pairs. The average beam gain matrix contains

individual combined transmitter and receiver beam pair choice. The transmitting and
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receiving beam codebooks are denoted as:

VTX = {g1, ...., gNTX} (5.3)

VRX = {w1, ...., gNRX} (5.4)

where

gp = aTX(θDp , φ
D
p ), p ∈ {1, ....., NTX} (5.5)

wq = aRX(θAq , φ
A
q ), q ∈ {1, ....., NRX} (5.6)

The path loss of the transmitted signal can be calculated using:

LP [dB] = LFS [dB/meter] + 10n log10(d) +

LA [dB] + FS (5.7)

where LFS is the free space path loss, d is the transmitter-receiver distance in meter, n

is the path loss exponent where n = 2 for free space, FS is the shadow fading, and LA

is the atmospheric loss due to adsorption.

Hence, the received signal can be represented by:

r = GTots+ ni (5.8)

where GTot is the total gain including average beam gain from multiple radiating ele-

ments from mMIMO array, path loss, and amplifying components; s is the transmitted

signal, and ni is the noise contributed by interference and thermal noise.

5.2.2 Data Generation

Data used for training and testing the deep learning based CoMP were generated using

Vienna 5G System-Level Simulator [221], a MATLAB-based simulator. The training

dataset is used to train the neural network model used. For example, in a feed-forward

neural network model, the model’s weights and biases are optimized based on this set

of data. The test dataset is used to evaluate the trained model.

The simulator is used to simulate user equipment (UE) movements and the propagation

channel model. From the simulator, results such as data throughput, UE and BS posi-

tion, received signal power, channel quality index (CQI), and block-error rate (BLER)

of each individual user were collected.
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Figure 5.3: Scenario A with base station (red) and UEs (blue)

The simulator is configured to include both large and small-scale path losses and fading

in an urban environment. The base stations are set to have a carrier frequency of 60

GHz, 20MHz bandwidth, and a maximum radiating power of 30 dBm. UEs are assumed

to be pedestrians moving at a maximum speed of 5 km/h in random directions. The deep

learning based CoMP is demonstrated using two scenarios: Scenario A (Fig. 5.3) and

Scenario B (Fig. 5.4). Fig. 5.3 shows a simplistic urban street scenario with only two

base stations. Fig. 5.4 shows a more complex scene with seven base station arranged in a

hex grid formation in an open field. These two scenarios are configured in the simulator

with the base stations in Scenario A and Scenario B having an inter base station distance

of 139.2 meters and 100 meters respectively. Simulations were run N + 1 times where N

is the number of base stations in the region of interest. Hence, the simulation ran three

times for Scenario A and eight times for Scenario B. In the first simulation, all base

stations were turned on to obtain primary UE to BS connection and the UE’s random

movement pattern. The primary UE to BS connection is the connection with the highest

channel quality index. In the event where joint downlink transmission is not activated,

the primary connection will be the only connection that the UE will be receiving signals

from. For the consecutive runs, only one base station will be turned on at a time, with

UE moving in the same path and speed as in the first simulation run. Since the main

focus of this chapter is on joint transmission CoMP, where multiple base stations in a

cluster are transmitting to the receiver, the radiating pattern of antenna arrays within a

base station is considered as a whole unit and evaluating individual beam radiating from

a massive MIMO antenna base station is not within the scope of this chapter. Therefore,

the base station is assumed to have a combined radiation pattern similar to a tri-sector

antenna.

Simulations of each scenario are sampled at an interval of Tsamp, such that Tsamp stays
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Figure 5.4: Scenario B with base station (red [actual position] and green [position at
ground level]) and UEs (blue)

within the channel coherence time Tcor and the 5G radio frame duration TRF . In the

3GPP Release 16 [222], the radio frame and subframe of 5G new radio (NR) are 10

ms and 1 ms respectively. Since the user is moving at 5 km/h and a 60 GHz carrier

frequency is used, the coherence time is approximately 3.6 millisecond, using Tcor ≈ c
vfc

,

where c is the speed of light, v is the movement speed of the user, and fc is the center

frequency of the transmitter. Therefore, the sampling period Tsamp is set to have a

duration of 1 millisecond.

5.2.3 Deep Learning based CoMP

As mentioned in section 5.1, the use of MLP based DNN has been demonstrated for

the use of triggering CoMP function [219]. The demonstration shows that the MLP

based trigger outperforms conventional static SNR based triggering and SVM-based

triggering. In this chapter, LSTM is proposed for the use in CoMP along with MLP.

LSTM is a type of recurrent neural network (RNN) and has been demonstrated to solve

problems involving sequential data. While the input data used in this chapter might

not be sequential between each batch input, the columns of the input matrix (shown in

equation (5.10)) are correlated. Hence, the unique structure of LSTM wherein includes

memory blocks and forget gates, may allow LSTM to outperform MLP.

Following sections are organized as follows. Section 5.2.3.1 describes the input features

and the label generation methods used for the proposed deep learning based CoMP. In
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section 5.2.3.2 and section 5.2.3.3, describes the proposed MLP and LSTM algorithms

used.

5.2.3.1 Input and Label Generation

As mentioned in section 5.1, the proposed deep learning algorithms will be evaluated

using three approaches. In these three approaches, deep learning algorithms are tasked

to either trigger downlink joint transmission CoMP algorithm, select an additional base

station for downlink joint transmission CoMP, or provide all possible base station options

that meet the predefined CoMP transmission criteria. Each of the three approaches can

be posed as classification tasks as listed below

• AP1: Binary Classification

• AP2: Multiclass Classification

• AP3: Multi-label Classification

Although the three approaches are different classification problems, the input matrix X

is the same for all three approaches.

X =


x1 1 ..... x1 N

...
. . .

...

xft 1 ..... xft N

 (5.9)

where ft being the number of features collected from UE fromN number of base stations.

The number of columns of the input matrix is determined by the number of base stations

while the number of rows is determined by the number of input features collected.

The input features can be channel state information (CSI) such as UE received power,

location, transmitted and received beam angle pair, and CQI; as demonstrated in [214]

for beam alignment and [219] for downlink CoMP. Hence, x1 1 to xft 1 represents the

CSI collected from the first base station; and x1 N to xft N represents the CSI collected

from the N -th BS.

In this chapter, input X will have two features. The two features are SINR and the

UE’s receive power, denoted by x1 n and x2 n respectively, where n = [1, ....., N ]. Hence,

the input matrix X can be rewritten as

X =

[
x1 1 ..... x1 N

x2 1 ..... x2 N

]
(5.10)
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where x1 1 and x2 1 represents the SINR and UE’s received signal power for the first

BS; x1 N and x2 N represents the SINR and UE’s received signal power from the N -th

BS. Since SINR and received signal power are measured from the UE’s perspective, the

measurement of these two features are relative to the position of the UE’s position.

Therefore, whenever the position of UE changes, the SINR and received signal power

from each BS will change. As base stations remain stationary, the measurements taken

will only change when UE’s position changes.

In AP1, the deep learning CoMP algorithm acts as a trigger switch. Hence, the target

output of the algorithm will be

YAP1 =

{
0 , CoMP off

1 , CoMP on
(5.11)

which represents a switch with 1 representing turning the CoMP algorithm on, and 0

representing not turning on the CoMP algorithm. The decision target output label is

processed based on the following criteria

ys := 1βs≤βtarget , s = 1, ....., Ns (5.12)

where YAP1 = [y1, y2, ...., yNs ]
T , Ns is the number of samples taken, and βs and βtarget

are the BLER for s-th sample and the predetermined BLER threshold. When βs is

smaller than or equals to βtarget, the output label is ’1’.

In AP2, the deep learning algorithm is tasked with selecting an additional base station for

CoMP where there is already an existing link between UE and one of the base stations.

The deep learning algorithm’s output will have a range of [0, N ]. The additional BS is

selected if it is not the existing BS that the UE is connected to, and its transmitted signal

is above the predefined BLER threshold. If more than one BS fulfills these criteria, the

BS with the highest power is selected. Using Scenario B as an example, the output of

the deep learning algorithm will range from 0 to 7, and if one-hot encoding [223] is used,

all of the possible output can be represented by Table 5.1.

Table 5.1: All possible outputs for AP2 using one-hot encoding

None 1 0 0 0 0 0 0 0
Base Station 1 0 1 0 0 0 0 0 0
Base Station 2 0 0 1 0 0 0 0 0
Base Station 3 0 0 0 1 0 0 0 0
Base Station 4 0 0 0 0 1 0 0 0
Base Station 5 0 0 0 0 0 1 0 0
Base Station 6 0 0 0 0 0 0 1 0
Base Station 7 0 0 0 0 0 0 0 1
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In AP3, the deep learning algorithm provides all possible BS that meets the predefined

criteria for CoMP transmission. A base station is labeled ’1’ if it transmits below the

BLER threshold and if it is not the existing BS that the UE is connected to. For Scenario

B, there will be 27−1 possible combinations, ranging from [0 0 0 0 0 0 0] to [1 1 1 1 1 1 0],

as shown in Table 5.2.

Table 5.2: Possible outputs for AP3

0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 1
...

...
...

1 1 1 1 1 0 0
1 1 1 1 1 0 1
1 1 1 1 1 1 0

5.2.3.2 Multilayer Perceptron (MLP)

Multilayer Perceptron [224–227] is a type of feed-forward artificial neural network. Arti-

ficial neural network (ANN) is inspired by the biological nervous system. The basic unit

of ANN is an artificial neuron. In MLP, these neurons are organized in layers and are

trained through a backpropagation learning algorithm. A feed-forward neural network

consists of three layers (Fig. 5.5): an input layer, a hidden layer, and an output layer.

The output of one layer is the input of the consecutive layer, and neurons in each layer

are not connected within a layer. Depending on the depth of hidden layers, a neural

network can be categorized as a deep neural network or a shallow neural network. In

MLP, the output of a single hidden layer can be defined as follows,

yh = Af (W Tx + b) (5.13)

with input vector x, transposed weight matrix W T , bias vector b and activation function

Af .

During the training phase of deep learning based CoMP, the deep learning algorithm

is optimised to minimise the loss value returned from the loss function. For example,

in AP1, where the output is either ’0’ or ’1’, the deep learning algorithm is tasked to

determine the non-linear boundary separating ’0’ and ’1’, such that the neural network

can return a value that is as close as possible to the targeted output based on the input

vector. If the value deviates from the targeted output, a non-zero loss value is returned

from the loss function. In MLP, the feed-forward neural networks’ weight matrix and

bias vector are updated throughout the training process until the loss curve converges or
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Figure 5.5: Feed-forward neural network

when the training process stops. Algorithm 1 shows the training process of the proposed

MLP algorithm.

Algorithm 1 MLP Training Algorithm

1: Input: Data generated in Section 5.2.2 and arranged in the form of equation (5.10)
2: Data split using 4:1 ratio for training and testing sample
3: Initialize: W
4: while loss did not converge do
5: Calculate output of neural network using equation (5.13);
6: Applying activation function (Softmax or Sigmoid)
7: Calculate loss using BCE or CCE
8: Update weights and biasses of each neural network layer such that loss is being

minimized;
9: end while

The proposed MLP algorithm is optimized using either binary cross-entropy (BCE) or

categorical cross-entropy (CCE) [228]. The binary cross-entropy loss function can be

defined as

Lbce = − 1

so

so∑
i=1

yt i log (yp i) + (1− yt i) log (1− yp i) (5.14)

where so is the output size of the deep learning model, yt i is the ground truth label,and

yp i is the predicted output of the model. The categorical cross-entropy loss function

can be defined as

Lcce = −
so∑
i=1

yt i log (yp i) (5.15)

The loss function used depends on the given task. In AP1, the loss function used can

either be BCE or CCE depending on the output label. If one-hot encoding is used for

AP1, then the loss function used would be CCE. If the output of the model in AP1 is

binary, then BCE is used. In AP2, CCE loss function is used when the output labels
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are in the form of one-hot. For AP3, BCE loss function is used as binary target output

is used.

5.2.3.3 Long-Short Term Memory (LSTM)

In contrast to feed-forward neural network, an LSTM layer is much more complex, as

shown in Fig. 5.6. LSTM [229–231] is a type of recurrent neural network (RNN). The

introduction of LSTM is motivated by the vanishing gradient problem faced by RNN

[229, 232]. A single LSTM block unit has three gates: input gate, output gate, and forget

gate. These gates within the LSTM blocks allow LSTM to add, prevent, and remove

information within the cell state. Memory blocks in the LSTM have access to all gates,

preventing irrelevant information from entering and important information from leaving

the memory blocks. The forget gate weighs the information within the LSTM cell. For

example, when a piece of information held within the LSTM memory block becomes

irrelevant, the forget gate can reset the individual cell’s state inside the block. Hence,

the forget gate prevents prediction biasing by making cells ”forget” previous states.

Figure 5.6: LSTM block as used in a recurrent neural network layer

An LSTM layer is made up of multiple LSTM blocks, and forward pass output of each

blocks at time t can be represented by [233]

yblk(t) = Af b(c(t))� o(t) (5.16)
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where � is the elemental-wise product and yblk represents the output of an LSTM block

with

o(t) = Af o (Wox(t) +Wr oyblk(t− 1) + wp o � c(t) + bo) output gate

c(t) = iblk(t)� i(t) + c(t− 1)� f(t) cell

iblk(t) = Af ib(Wibx(t) +Wr ibyblk(t− 1) + bib) block input

i(t) = Af i(Wix(t) +Wr iyblk(t− 1) + wp i � c(t− 1) + bi) input gate

f(t) = Af f (Wfx(t) +Wr fyblk(t− 1) + wp f � c(t− 1) + bf ) forget gate

(5.17)

with input weight matrices: Wib , Wi, Wf , Wo ; recurrent weight matrices: Wr ib , Wr i,

Wr f , Wr o; peephole weight vectors: wp i, wp f , wp o; bias: bib , bi, bf , bo; and x(t)

being the input vector at time t.

As discussed in section 5.2.3.2, during the training phase, the deep learning algorithm is

optimized to minimize the loss value until the loss curve converges. While LSTM layers

are more complicated compared to feed-forward neural networks, the training process

of LSTM is similar to MLP. During training, the weights and biases of each individual

gate within each LSTM block are updated based on the present input and the past

hidden states. The LSTM algorithm is also optimized using BCE or CCE loss function.

The training of the proposed LSTM algorithm stops when the loss curve converges.

Algorithm 2 describes the training process of the proposed LSTM algorithm.

Algorithm 2 LSTM Training Algorithm

1: Input: Data generated in Section 5.2.2 and arranged in the form of equation (5.10)
2: Data split using 4:1 ratio for training and testing sample
3: Initialize weights: Wib , Wi, Wf , Wo, Wr ib , Wr i, Wr f , Wr o, wp i, wp f , wp o

4: while loss did not converge do
5: Calculate o(t), c(t), iblk(t), i(t), f(t) (equations shown in (5.17))
6: Calculate output of each LSTM block using equation (5.16)
7: Applying activation function (Softmax or Sigmoid)
8: Calculate loss using BCE or CCE
9: Update weights and biasses of each gate and blocks within the LSTM neural

network layer such that loss is being minimized
10: end while

5.2.4 Deep Reinforcement Learning Based CoMP

The method proposed in Section 5.2.3 trains deep learning algorithms using supervised

learning where each input is mapped to a targeted output. The targeted output has to be

generated based on the objective of the task. For example, if the task is to maximize data

throughput, the targeted output for a CoMP problem would be base stations that can

transmit at the highest rate based on the data collected. Different tasks would require

different targeted labels and have to be generated before any training or testing can be
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carried out on a given deep learning model. The labels would also change based on the

number of base stations within the cooperating CoMP cluster. In static clustering, the

cluster size will remain the same. However, in dynamic clustering, cluster size changes

according to network conditions. Hence, all possible combinations of dynamic clustering

have to be considered before labels are generated.

In contrast, reinforcement learning does not require training with pre-generated labels.

The desired output criteria of reinforcement learning can be defined within the reward

system. Hence, no preprocessing is needed to map each input to a targeted output. In

future generation communication networks where higher RF bands are used, the net-

work’s complexity will increase due to densification of network elements. The predefined

criteria used to generate the targeted output might not be the best solution for a given

CoMP problem.

In general, a simple reinforcement learning setup is composed of two components; an

environment and an agent. The relationship between the environment and the agent

is such that the agent’s actions are a reaction to a given state of the environment. At

the same time, the agent’s action also creates an effect against the environment it has

reacted to. An agent’s reward is given based on its actions. The reward is dependent

on the intended goal of the assigned problem. For example, if the goal is to escape

from a maze, the agent can be rewarded if it successfully escapes from the maze and

penalized if it meets a dead end. The agent’s aim is to maximize the reward gained.

Unlike traditional supervised learning, where training is carried out using training data

tied to a corresponding ground-truth label, reinforcement learning learns through its

“experience”(penalty and rewards) and can be trained in the absence of the ground

truth label.

Deep reinforcement learning (DRL) combines reinforcement learning with deep learning.

While RL has shown potential in its application in a wide range of fields [234–240], the

performance of RL suffers when state and action spaces are of high dimension [241].

The addition of a deep learning algorithm in reinforcement learning can help efficiently

overcome this problem [242]. Deep reinforcement learning has garnered attention when

it was successfully demonstrated in playing a range of classic Atari 2600 games, with

performance surpassing previous algorithms and comparable to a professional human

game tester [241]. This demonstration shows deep reinforcement learning capability in

learning challenging tasks with high-dimensional inputs and actions.

In a CoMP problem, the environment will be the area where UEs are present, the agent is

the network management algorithm, and reward is given based on the agent’s actions. In

a real-world scenario, every single telemetry exchange between UE and base station can

be used for reinforcement learning without prior bulk data collection. This means that
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it can be done in real-time and deployed for online learning of non-linear interactions of

features from incoming data. Fig. 5.7 shows how a deep reinforcement learning CoMP

problem can be formulated. The observer obtains channel state information of the users

in a given environment and passes it on to the agent. The observer also rewards the agent

based on current state of the environment that has been affected by the agent’s previous

actions. Rewards given are based on the criteria set within the reward system. The

agent’s actions are affected by past rewards awarded by the observer, and the current

channel state information from the environment. In this chapter, the channel state

information is X, and the agent’s action will be the additional base station required for

downlink CoMP joint transmission.

Figure 5.7: Deep reinforcement learning for CoMP

In our work, deep Q-network (DQN) is used. DQN combines the use of Q-learning with

deep learning. Q-learning is an off-policy model-free reinforcement learning algorithm.

An off-policy reinforcement learning algorithm learns from a different policy and not

from its derived policy. The Q-learning algorithm is based on Bellman equation [243].

The goal of Q-learning is to maximize the Q value. The optimal Q value can be obtained

using [242]

Qop(s,a) = Est+1 [rt+1 + fD max
a

Q(st+1,at+1)] (5.18)

where fD ∈ [0, 1] represents the discount factor, and st, at and rt represent the state,

action and reward at time t. For DQN the optimal Q value is

Qop DRL(s,a) = Est+1 [rt+1 + fD max
a

Q(st+1,at+1; θDQN )] (5.19)

where θDQN represents the parameters of the neural network used in DQN. If mean

squred error (MSE) loss function is used, the DQN will be optimized using the function
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shown below [241, 244]

Lmse DQN = E((Qop DRL −QDRL)2) (5.20)

with the Q value being QDRL

QDRL(s,a) = Est+1 [rt+1 + fDQ(st+1,at+1; θDQN )] (5.21)

Therefore, in this CoMP problem, the data collected will be fed iteratively to the agent

in the form of equation (5.10). The agent’s action will be selecting the additional base

station for joint downlink CoMP transmission, and the agent will be rewarded or penal-

ized based on the selection made. The award given to the agent will be based on the

reward criteria of the DRL. For every iteration, the Q value of the DQN based DRL will

be updated, the optimal Q value is obtained using equation (5.19), and the weights and

biases within DQN will be optimized based on the Lmse DQN .

5.3 Experiment and Results

The proposed deep learning and deep reinforcement learning algorithms are evaluated

using three different CoMP approaches. The performance of the proposed MLP, LSTM,

and DQN algorithms are compared to SVM in terms of prediction accuracy and compu-

tational cost. The training of machine learning algorithms is carried out using Matlab

and Tensorflow. SVM training is carried out in MATLAB, and the training for deep

learning and deep reinforcement learning is carried out using Keras Tensorflow. Deep

reinforcement learning is implemented using Keras Tensorflow by modifying the base

code provided in [245, 246].

5.3.1 Dataset

The datasets used were sampled from the data generated using methods described in

Section 5.2.2. A dataset of one million points was generated for Scenario A, and two

sets of data of the same size were generated for Scenario B. All three datasets have a

size of one million data points each.

As shown in Fig. 5.3, Scenario A has only two BSs. To perform a joint downlink CoMP

transmission when the predefined transmission criteria are met, and the scene only has

two BS. Since UEs in the scene are already assigned to one BS, the option will only be

the BS that was not transmitting to the UE. Therefore, only AP1 is applied to Scenario
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A. Hence, the label in Scenario A dataset is prepared according to equation (5.11) and

equation (5.12). Based on the generated dataset, the ground truth labels consist of

84.28% ’1’ and 15.72% ’0’.

For Scenario B, we considered two datasets, where one is a static dataset, and the other

is a dynamic dataset. Datasets generated for Scenario B are used for AP1, AP2, and

AP3. The label generation criteria for these three approaches are detailed in Section

5.2.3. The static dataset is used in all three approaches, while the dynamic dataset is

only used in AP2. The main difference between these two datasets is the proportion of

labels between the training and testing samples. In the static dataset, both training and

testing samples have a similar distributed proportion of ground truth labels. Using AP2

as an example, the proportion of label ’0’ to label ’7’ distributed between the training

and testing sample are similar, as shown in Table 5.3. In the dynamic dataset, as shown

in Table 5.4, the proportion of the labels distributed between the training and testing

sample are different. In both tables, Table 5.3 and Table 5.4, the total number of labels

within each training and testing sample are listed with its corresponding proportion with

respect to the total number of data points within a sample.

The proportion of the distributed labels are calculated in percentage relative to the total

number of samples as shown below

Distribution of Nlabel of YAP2 =
Total no. of Nlabel

Total no. of Samples
(5.22)

where Nlabel = {’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’} refers to the ground truth labels of AP2. The

total number of samples refers to the total number of samples within the training sample

or testing sample. The total number of Nlabel refers to the total number of Nlabel within

the training or testing sample.

Table 5.3: Static Dataset Labels for AP2

Training + Validation Testing

Label Data Points Distribution Data Points Distribution

0 81661 10.21% 20401 10.20%

1 70533 8.82% 17674 8.84%

2 45964 5.75% 11681 5.84%

3 57132 7.14% 14219 7.11%

4 253265 31.66% 63449 31.72%

5 84398 10.55% 21106 10.55%

6 62274 7.78% 15463 7.73

7 14473 18.10% 36007 18.00%

total 80000 100% 200000 100%
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Table 5.4: Dynamic Dataset Labels for AP2

Training + Validation Testing

Label Data Points Distribution Data Points Distribution

0 57790 7.22% 44272 22.14%

1 78169 9.77% 10038 5.02%

2 40962 5.12% 16683 8.34%

3 50194 6.27% 21157 10.58%

4 277632 34.70% 39082 19.54%

5 93951 11.74% 11553 5.78%

6 56358 7.04% 21379 10.69%

7 144944 18.12% 35836 17.92%

total 80000 100% 200000 100%

The dynamic dataset is used to mimic a scenario where the scene changes with time. For

example, assuming that the distribution of labels reflects UEs’ activity within a given

area of a city for a certain period of time, let’s say a year. As time goes by, the dynamic

of the city will change, and so will the movements and distribution of UEs. An event

that occurs within an area or neighboring area might influence the movements of users

as well. The main reason for the generation of the dynamic dataset is to test how well

the deep learning algorithms can perform in an ’unexpected’ event where the algorithms

have not been trained for.

For the static dataset, the maximum and minimum difference in label distribution be-

tween the training and testing set are 0.95% and 0.00325% respectively. The difference

is much bigger for the dynamic dataset with a maximum and minimum label distribu-

tion difference of 15.163% and 0.2% respectively. A detailed training and testing label

distribution difference for each label is provided in Table 5.5.

Table 5.5: Training and Testing Data Distribution Difference

Static Dynamic

Label Differences Differences

0 0.007125% 14.91%

1 0.020375% 4.75%

2 0.095% 3.22%

3 0.032% 4.30%

4 0.066375% 15.16%

5 0.00325% 5.96%

6 0.05275% 3.64%

7 0.09325% 0.20%

Average 0.04625% 6.52%

Max 0.095% 15.16%

Min 0.00325% 0.20%
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5.3.2 Experimental Setup

Fig. 5.8 shows the general architecture of a neural network. Both MLP and LSTM

have five layers: an input layer, three hidden layers, and an output layer. The proposed

MLP and LSTM algorithms have three hidden layers because increasing the depth of the

neural network architecture did not result in a noticeable performance improvement. For

the proposed MLP algorithm, three densely connected neural network layers are used.

Moreover, the proposed LSTM algorithm’s hidden layers consist of two LSTM layers

and a densely connected neural network layer. For DQN, two densely connected neural

networks are used. Table 5.6 provides the settings used for different neural network

layers.

Figure 5.8: An example of the neural network architecture used for deep learning
based CoMP

Table 5.6: Deep learning algorithm neural network parameters

Deep Learning Algorithms Parameter Values

Densely connected neural network layer nodes: 250
(MLP)

LSTM No of block(s): 50

The following table (Table 5.7) shows the parameters used for training the deep learning

algorithms. An initial learning rate as low as 10−4 and up to 10−3 is used. The learning

rate decay is set to have a constant decaying rate ranging from 10−4 to 10−3. Adam

optimizer is used for MLP, LSTM, and DQN. BCE loss function is used for AP1 and

AP3, while CCE is used for AP2. DQN uses MSE loss function. All models are trained

until the loss function converges. Hence, up to 4000 epochs were run to ensure that the

loss function has fully converged.
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Table 5.7: Training Parameters

Parameters Values

Learning rate 10−4 - 10−3

Learning rate decay 10−4 to 10−3

Optimizer Adam

Loss function BCE, CCE, MSE

Batch size/ MLP/LSTM: 125 to 250
Steps DQN :20

Epochs 200 - 4000

Table 5.8: AP1 (Prediction Accuracy)

Scenario Scenario A Scenario B

SVM 99.53% 89.59%

MLP 99.90% 96.95%

LSTM 96.18% 96.90%

5.3.3 Deep Learning Algorithm as a Trigger (AP1)

Results for AP1 are shown in Table 5.8. The test for AP1 is carried out in both Scenario

A and Scenario B (static data) using SVM, MLP, and LSTM. The deep learning algo-

rithm is trained until both its loss curve and accuracy curve converges, as shown in Fig.

5.9. The algorithms’ performances are compared to observe their accuracy in triggering

the CoMP algorithm “on” or “off”. The accuracy of each algorithm is calculated using

the equation below

Accuracy =
Total no. of True Predictions

Total no. of Samples
(5.23)

For Scenario A, SVM, MLP, and LSTM achieves an accuracy of 99.53%, 99.9%, and

96.18% respectively. For Scenario B, an accuracy of 89.59%, 96.95%, and 96.9% is

recorded for SVM, MLP, and LSTM respectively. For both scenarios, the results suggest

that MLP performs better than both SVM and LSTM for AP1. While SVM performs

better than LSTM in Scenario A, in Scenario B, LSTM performs better than SVM. In

scenario A, MLP has a 3.72% advantage over LSTM. However, while MLP still performs

better than LSTM in Scenario B, the advantage gap drops to 0.05%.

5.3.4 Selecting Base Station for Joint Downlink CoMP (AP2)

The test on AP2 is carried out on Scenario B using both static and dynamic dataset.

Since both datasets have imbalanced labels, where label ’4’ takes up around 30% of the

total number of labels, as shown in Table 5.4. The labels are weighted using the equation
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Figure 5.9: (AP1) Loss (top) and accuracy (bottom) curve for a) MLP and b) LSTM

below

Weight of Nlabel =
Total no. of Samples

No. of Classes× Total no. of Nlabel
(5.24)

Using equation (5.24), the labels are weighted such that the least frequent label will be

weighted higher than the most frequently occurring label. In AP2, the total number

of classes is eight. The neural networks are trained until both of the loss and accuracy

curve converges, as shown in Fig. 5.10 and Fig. 5.11.

Table 5.9: DQN Agent reward

BS select Reward/Penalty value

Correct +1

Wrong (>BLER) −1

Wrong (<BLER) 0

In AP2, the performance of DQN is added for comparison with SVM, MLP, and LSTM.

The agent in the deep Q-network is awarded if it selects the correct BS. However, if the

agent selects a BS that is not the intended BS, it will be penalized if the selected BS

does not fulfill the predefined BLER threshold. If the selected BS transmits below the

predefined BLER threshold, the agent will neither be rewarded nor penalized. Table 5.9

summarizes the reward criteria for DQN.
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Figure 5.10: (AP2) Loss (top) and accuracy (bottom) curve for a) MLP and b) LSTM

Figure 5.11: (AP2) Reward (left) and loss (right) curve for DRL

When both training and testing dataset have the same proportion of distributed labels

(static), SVM, MLP, LSTM, and DRL achieves an accuracy of 69.05%, 93.94%, 95.95%,

and 94.11% respectively. When the distribution differs between the training and testing

set (dynamic), an accuracy of 55.53%, 56%, 68.60%, and 71.85% is achieved by SVM,

MLP, LSTM, and DRL respectively. The results of both datasets are tabulated in Table

5.10.

Referring to Table 5.8 and Table 5.10, the results suggest that if the neural network

output is not affected by the sequence of which the input is fed, the LSTM algorithm

has no advantage against MLP. Taking Scenario B in AP1 as an example, if the column
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Table 5.10: AP2 (Prediction Accuracy)

Scenario B Static Dynamic

SVM 69.05% 55.53%

MLP 94.65% 56.00%

LSTM 95.95% 68.60%

DRL 94.11% 71.85%

position of the input vector, as shown in equation (5.10), were to be switched in every

single input, it will have no effect on the trigger output. The neural network output is not

dependent on the sequence within the input vector. However, when the neural network

output depends on the sequence within the input vector, LSTM performs better than

MLP. In general, LSTM performs the best for static dataset, and the deep Q network

used for DRL performs best for dynamic dataset. Since the dynamic set is sampled in

time sequence, the DRL algorithm that is continuously updating and learning from the

environment is expected to perform better.

5.3.5 Providing Possible Base Station Options for Joint Downlink CoMP

(AP3)

AP3 is carried out using SVM, MLP, and LSTM using Scenario B’s static data. While

the input vector remains the same, the truth label is different from AP2 (shown in

Table 5.3) as the target labels for AP3 provide all possible BS that fulfills the predefined

requirements for CoMP transmission. The deep learning algorithms are trained until

the loss and accuracy curve converges, similar to AP1 and AP2. The results obtained

are shown in Table 5.11. The predicted output is considered correct only if it is an

exact match to the target output. Using this rule, SVM, MLP, and LSTM achieved an

accuracy of 70.52%, 78.8%, and 78.9% respectively. However, if the prediction accuracy

is calculated based on the individual label, the prediction accuracy increases to more

than 90%, with SVM achieving an accuracy of 94.3%, and 96.1% for both MLP and

LSTM.

Table 5.11: AP3 (Prediction Accuracy)

Scenario B AP3

SVM 70.52%

MLP 78.80%

LSTM 78.90%
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5.3.6 Computational Cost

Table 5.12 compares the computation time taken by SVM, MLP, LSTM, and DQN

to provide predicted outputs based on inputs from the static dataset’s testing sample.

The testing sample has a size of 200,000 data points. The test was performed on a

workstation equipped with an Intel Xeon E5-2650v3 processor, 256GB of RAM, and an

NVIDIA Geforce GTX 1080.

Overall, it can be seen that DQN demands the highest computational time with more

than 25 minutes taken to process the entire testing sample, while other algorithms’

computational time falls within the 10 second range. However, it is to note that rewards

are still being calculated during the testing phase of DQN. Therefore, the DQN based

DRL has to evaluate the agent’s actions and reward the agent based on the actions taken.

This would lead to a longer computational time as more processing is required. In a

similar scenario, if the proposed deep learning algorithms’ computational time includes

evaluating the predicted output with the ground truth label, the computational time of

MLP will increase from 1.43 seconds to 632.07 seconds, and the computational time of

LSTM will increase from 8.34 seconds to 630.91 seconds. However, both algorithms still

demand less than half of the computation time of DQN. In general, MLP demands the

lowest computational time, followed by SVM, LSTM, and DQN.

Table 5.12: Computational cost per testing sample on Scenario B static dataset

Scenario B Computational Time (s)

SVM 2.42

MLP 1.43

LSTM 8.34

DQN 1527.53

5.4 Summary

A deep learning and deep reinforcement learning based downlink joint transmission

CoMP were demonstrated using MLP, LSTM, and DQN. The results obtained were

compared with SVM. In general, the deep learning and deep reinforcement learning

algorithms perform better than SVM. The results suggest that in situations where the

sequence of the input vector matters, LSTM can perform better than MLP. However,

when the input vector sequence is irrelevant, MLP performs better than LSTM. In an

environment that is constantly changing, DQN based reinforcement learning algorithm

can perform better than both LSTM and MLP. However, DQN demands the most

computational time, followed by LSTM, SVM, and MLP.



Chapter 6

Deep Learning based Phase Noise

Tolerant Millimeter-wave

Radio-over-Fiber Receiver

6.1 Introduction

In chapter 3 and chapter 4, we demonstrated three different differential encoded millimeter-

wave RoF schemes. Two optical baseband modulated DPSK millimeter-wave RoF links

were demonstrated in chapter 3, and an optical baseband modulated DQPSK millimeter-

wave RoF link was demonstrated in chapter 4. The proposal of the use of differential

encoded signal in millimeter-wave RoF links were mainly motivated by three things: the

simplicity of an uncorrelated millimeter-wave RoF transmitter, the phase noise toler-

ance of an SH receiver [133, 191], and the inability of an SH based receiver to directly

detect phase modulated signal as explained in chapter 3.1. The results obtained from

the demonstrated links in chapter 3 and chapter 4 suggest that the usage of differential

encoded data with its DAM receiver enables the proposed schemes to have the ability

to directly detect phase-modulated data while maintaining relatively tolerant to phase

noise and bandwidth-efficient. While the delay used in a DAM receiver, as shown in

Fig. 3.2 and Fig. 4.1, allows the detector to reduce the phase noise inherited from

an uncorrelated optical transmitter, its presence prevents the use of non differentially

encoded signal to be used. For higher-order modulation, the time delay used in the

DAM receiver increases, which would cause the residual phase noise to increase, leading

to a drop in detection performance as suggested by the results obtained in chapter 4.

However, dynamic modulation format selection based on channel quality is supported in

wireless communication, and this feature would be a problem for the incoherent DAM

99
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receiver proposed and demonstrated in chapter 3 and chapter 4 as it limits the choice

of modulation format and the phase noise residual increases with increasing modulation

order.

As discussed in chapter 2, the use of uncorrelated optical tones causes phase noise to

propagate from the optical transmitter to the RF receiver due to unlock heterodyning.

While conventional optical tone generation methods, as shown in Fig. 2.6 to Fig. 2.8, can

generate phase correlated optical tones, these methods require high-speed optoelectron-

ics and oscillators that operate in the millimeter-wave frequency range. Although optical

tone generation using optical frequency multiplication reduces the reliance on high-speed

components through varying advanced modulation techniques and/or optical filtering, it

is limited by the harmonic generation efficiency of the modulator used, and the transmit-

ter configuration is more complicated than unlocked heterodyning ARoF systems. To

exploit the benefit of using a simple unlock heterodyning ARoF transmitter, SH-based

receivers were proposed and demonstrated in [65, 192]. However, phase-modulated sig-

nals cannot be directly detected using SH receiver as the phase integrity of the signal

will be corrupted. To maintain the phase integrity of phase-modulated signals, SH-based

IF-RoF system [193] introduces an additional tone at the SH receiver. The additional

tone causes the received millimeter-wave signal to be downconverted to IF so that the

phase of the received signal is retained. However, the additional bandwidth required

to transmit the additional RF tone will decrease the overall spectral efficiency of the

system. Therefore, new transceivers for unlocked heterodyning ARoF systems that are

more robust to phase noise has to be explored to enable low-cost unlock heterodyn-

ing RoF systems to be used in future generation high order modulation fiber-wireless

communication.

In recent years, the application of machine learning (ML) in optical communication

has been an active research topic. The use of ML has been demonstrated in optical

performance monitoring [37, 38], link equipment failure prediction [247], and linear and

non-linear noise estimation [248]. Besides, an ML-based classifier to mitigate nonlinear

phase noise through applying nonlinear decision boundary using support vector machine

(SVM) was demonstrated in [249]. In addition, feed-forward neural network has been

applied as a nonlinear equalizer for nonlinear distortions of millimeter-wave RoF links.

These demonstrations show that the feed-forward neural network can improve system

sensitivity by up to 2 dB [172], and suppresses cross-modulation nonlinearity [173, 174].

Deep learning based decoder has been demonstrated in [175, 176], showing that the CNN

based decoder can improve link sensitivity and perform better than multilayered feed-

forward neural networks while requiring less computation. However, the CNN based

decoder is carried out in a millimeter-wave RoF link that uses correlated optical tones,
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and as discussed in chapter 2, heterodyning of correlated tones can reduce nonlinear

phase noise contributed by the optical source.

In this chapter, we propose two deep learning based RoF receiver that is capable of

improving signal detection in the presence of phase noise. While ML-based phase noise

receiver has been explored and demonstrated in [249], only SVM-based algorithm is

used. Furthermore, phase noise reduction through SH-based receiver requires additional

bandwidth and cannot be used directly on phase-modulated data. The proposed receiver

is bandwidth-efficient, adaptable to various RoF setups, and flexible in terms of data

rate and modulation format. The proposed receiver is demonstrated using a QPSK RoF

link in two different scenarios as listed below:

• Deep learning based direct detection (DLDD)

• Deep learning based detection with reference tone (DLD-RT)

In DLDD, detection is carried out on sampled downconverted phase noise corrupted

received signal; and DLD-RT detects signal using an additional reference tone in addition

to the sampled received signal. The reference tone can be generated in the transmitter

using an oscillator operating at a frequency close to the modulated IF signal. In this

chapter, we propose the use of autoencoder-based deep learning architecture for DLDD

and LSTM for DLD-RT. The contributions of the chapter are as follows:

• Propose, demonstrate and evaluate the use of autoencoder and LSTM deep learn-

ing based receiver for millimeter-wave RoF system

• Comparing proposed deep learning receiver with MLP and CNN based deep learn-

ing receiver.

• Improve overall spectral efficiency of RoF receivers relative to SH receiver based

intermediate frequency radio-over-fiber (IF-RoF) link through reducing required

frequency spacing between RF frequencies.

The chapter is organized as follows. Section 6.2 provides a theoretical analysis on an

intermediate frequency radio-over-fiber link using an oscillator-based receiver, and de-

scribes the model of the proposed deep learning algorithm. Section 6.3 describes the

experimental details and provides a discussion on the results obtained. Section 6.4 con-

cludes the chapter.
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6.2 Proposed Deep Learning based RoF Receivers

The proposed deep learning based receiver are demonstrated on an unlocked heterodyn-

ing intermediate frequency radio-over-fiber (IF-RoF) system with an oscillator-based

receiver, as shown in Fig. 6.1. Heterodyning of unlocked optical tones will cause phase

noise to propagate from the transmitter to the receiver as the base station has no ad-

ditional processing capability. Unlike self-homodyning based receivers, oscillator based

receiver used in this setup has no phase noise reduction capability. Hence, the deep

learning based RoF receiver is proposed to improve signal detection in the presence of

phase noise.

Figure 6.1: Intermediate frequency radio-over-fiber setup

This section is organized as follows. Section 6.2.1 provides a theoretical analysis on the

IF-RoF system shown in Fig. 6.1. Section 6.2.2 describes the proposed autoencoder

model for DLDD, and section 6.2.3 describes the deep learning model used for DLD-RT.

6.2.1 Oscillator based receiver on IF-RoF

For an IF-RoF link as shown in Fig. 6.2, the output of the Mach-Zehnder modulator

(MZM) can be represented by:

EMosc(t) = AE1(t)e
j π
VπRF

v(t)
(6.1)

where v(t) is the IF signal, VπRF is the switching voltage of the modulator, E1(t) is the

output of the first laser with a wavelength of λ1, as shown in Fig. 6.2, and A is the gain

of the modulator, and it is affected by the voltage supply, extinction ratio and the split

ratio of the modulator. Let v(t) = cos(2πfIF t),

EMosc(t) = AE1(t)e
j π
VπRF

cos(2πfIF t)
(6.2)
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Applying Jacobi-Anger expansion [250, 251]:

ejzcos(θ) ≡ J0(a) + 2
∞∑
n=1

jnJn(a) cos(nθ)

and let a = π
VπRF

, equation (6.2) could be written as follows

EMosc(t) = AE1(t)(J0(a) +

2
∞∑
n=1

jnJn(a) cos(n2πfIF t)) (6.3)

For simplicity, let n = 1 and ignore higher-order harmonics

EMosc(t) = AE1(t)(J0(a) + j12J1(a) cos(2πfIF t))

= AE1(t)(J0(a) + jJ1(a)[ej2πfIF t

+e−j2πfIF t]) (6.4)

Substituting E1(t) = ej(ω1t+φ1(t)),

EMosc(t) = Aej(ω1t+φ1(t))(J0(a) + jJ1(a)[ej2πfIF t

+e−j2πfIF t])

= Aej(ω1t+φ1(t))J0(a)

+jAJ1(a)[ej(ω1t+2πfIF t+φ1(t))

+ej(ω1t−2πfIF t+φ1(t))] (6.5)

Figure 6.2: Intermediate frequency radio-over-fiber with oscillator based receiver with
output labels
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where φ1(t) is the phase noise contributed by the first laser, and ω1 is the angular

frequency of the first laser. Before transmitting out from the central office (CO), the

output of the modulator is coupled with a local oscillator (LO) laser E2(t). The output

signal from the CO can be represented as follows

ETosc(t) = EMosc(t) + E2(t)

ETosc(t) = Aej(ω1t+φ1(t))J0(a)

+jAJ1(a)[ej(ω1t+2πfIF t+φ1(t))

+ej(ω1t−2πfIF t+φ1(t))] + ej(ω2t+φ2(t)) (6.6)

where φ2(t) is the phase noise of the LO laser. After heterodyning photodiode detection,

the photocurrent can be represented as:

IDosc(t) = ETosc(t)× E∗Tosc(t)

IDosc(t) = (Aej(ω1t+φ1(t))J0(a)

+jAJ1(a)ej(ω1t+2πfIF t+φ1(t))

+jAJ1(a)ej(ω1t−2πfIF t+φ1(t)) + ej(ω2t+φ2(t))).

(Ae−j(ω1t+φ1(t))J0(a)

−jAJ1(a)e−j(ω1t+2πfIF t+φ1(t))

−jAJ1(a)e−j(ω1t−2πfIF t+φ1(t))

+e−j(ω2t+φ2(t))) (6.7)

where E∗Tosc(t) is the conjugate of ETosc(t) . Expanding equation (6.7),

IDosc(t) = 1 +A2J2
0 (a)− jA2J0(a)J1(a)e−j(2πfIF t)

−jA2J0(a)J1(a)e+j(2πfIF t)

+AJ0(a)ej(∆ωt+∆φ(t))

+jA2J0(a)J1(a)ej(2πfIF t) +A2J2
1 (a)

+A2J2
1 (a)ej(4πfIF t)

+jAJ1(a)ej(∆ωt+2πfIF t+∆φ(t))

+jA2J0(a)J1(a)e−j(2πfIF t)

+A2J2
1 (a)e−j(4πfIF t) +A2J2

1 (a)

+jAJ1(a)ej(∆ωt−2πfIF t+∆φ(t))

+AJ0(a)e−j(∆ωt+∆φ(t))

−jAJ1(a)e−j(∆ωt+2πfIF t+∆φ(t))

−jAJ1(a)e−j(∆ωt−2πfIF t+∆φ(t)) (6.8)
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Simplifying equation (6.8),

IDosc(t) = 1 +A2J2
0 (a) + 2A2J2

1 (a)

−j2A2J0(a)J1(a) cos(2πfIF t)

+2AJ0(a) cos(∆ωt+ ∆φ(t))

+j2A2J0(a)J1(a)cos(2πfIF t)

+2A2J2
1 (a) cos(4πft)

+jAJ1(a)(2j sin(∆ωt+ 2πfIF t+ ∆φ(t))

+jAJ1(a)(2j sin(∆ωt− 2πfIF t+ ∆φ(t))

= 1 +A2J2
0 (a) + 2A2J2

1 (a)

+2AJ0(a) cos(∆ωt+ ∆φ(t))

+2A2J2
1 (a) cos(4πft)

+j2AJ1(a)(j sin(∆ωt+ 2πfIF t+ ∆φ(t))

+j2AJ1(a)(j sin(∆ωt− 2πfIF t+ ∆φ(t))

Before the signal is transmitted wirelessly to the CP from the BS, the signal is bandpass

filtered to obtain the desired millimeter-wave frequency signal at ωmm = ∆ω − 2πfIF .

The output signal from the BS can be represented by

IBSosc(t) = −2AJ1(a)(sin(∆ωt− 2πfIF t+ ∆φ(t)))

IBSosc(t) ∝ cos(∆ωt− 2πfIF t+ ∆φ(t) +
π

2
) (6.9)

where ∆ωt = ω1t − ω2t, and ∆φ(t) = φ1(t) − φ2(t). At the receiver located in the CP,

the received signal from the base station (BS) will be downconverted to IF using an

oscillator to extract the transmitted IF signal (v(t)):

rDosc(t) ∝ cos(∆ωt− 2πfIF t+ ∆φ(t) +
π

2
)×

cos(∆ωt+ φosc(t))

∝ 1

2
(cos(2∆ωt− 2πfIF t+ ∆φ(t)

+φosc(t) +
π

2
)

+ cos(−2πfIF t+ ∆φ(t)− φosc(t)

+
π

2
)) (6.10)

where φosc(t) is the phase noise of the RF oscillator. After lowpass filtering, the signal

at IF can be represented by

rDosc(t) ∝
1

2
cos(−2πfIF t+ ∆φ(t)− φosc(t) +

π

2
)) (6.11)
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The received downconverted signal (6.11) inherits the phase noise ∆φ(t) from the op-

tical transmission system due to unlock heterodyning detection of uncorrelated optical

tones. The inherited phase noise from the optical source can drastically degrade link

performance during detection. The higher the order of modulation, the more sensitive

it is to phase noise. This could pose a serious problem for 1024 QAM proposed to be

used for 5G and Gigabit Long-Term Evolution (LTE) [8]. The proposed DLDD and

DLD-RT receiver can be used to improve signal detection in the presence of phase noise.

The proposed receivers can be used as an complementary solution together with existing

hardware based phase noise reduction techniques to improve detection in the presence

of residue phase noise, or as an alternative solution for SH based RoF system.

6.2.2 Deep learning based direct detection (DLDD)

Denoising autoencoder (DAE) and variational autoencoder (VAE) are proposed for

DLDD. DAE has shown potential in reproducing signal from noise corrupted signal

in electrocardiogram [252, 253], corrupted linguistic features in audio documents [30],

and radar pulse streams [254]. VAE has also shown potential in recovering “clean” signal

from a noisy signal in speech enhancement [31], and speech recognition [32]. Therefore in

this problem, DAE and VAE are used to recover “clean” signal from the phase corrupted

signal sampled from the received signal of the configuration shown in Fig. 6.3.

Figure 6.3: Deep learning based direct detection configuration

An autoencoder, as shown in Fig. 6.4, can be seperated into two parts: encoder and

decoder. Conventionally, autoencoders are used in unsupervised learning where the

ground truth values is also the input, yi = xi where yi is the ground truth and xi is the



Deep Learning based Phase Noise Tolerant Millimeter-wave RoF Receiver 107

Figure 6.4: Basic Autoencoder

input. The autoencoder neural network tries to learn a function where hθ,φ(xi) = x̃i

with x̃i being the output of the decoder, and will be optimized such that the output of

the decoder is as close as possible to input of the autoencoder. An autoencoder takes

the input X = [x1, x2, ...., xn]T , where n is the total number of input samples, and map

it to a hidden representation z parameterized using φ = {W, b}. W and b are the

weight and bias matrix respectively. The hidden representation z is then mapped to

the reconstructed decoder output parameterized with θ = {W ′, b′}. The autoencoder is

optimized to minimized the average squared reconstruction error:

φ, θ = arg min
φ,θ

1

n

n∑
1

L(xi, x̃i) (6.12)

where L is the mean squared error (MSE) loss function, L(xi, x̃i) = ||xi − x̃i||2.

However, the purpose of DLDD is to detect signals that are phase corrupted. Therefore,

the input of the proposed autoencoders will be the noisy phase corrupted QPSK signal,

and the output of the autoencoders will be a “clean” uncorrupted version of the input.

Hence, the proposed DAE and VAE are optimized differently compared to conventional

autoencoder implementation.
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6.2.2.1 Denoising Autoencoder (DAE)

In general, DAE has a similar structure as a basic autoencoder shown in Fig. 6.4.

However, contrary to the most basic form of a basic autoencoder where feed-forward

neural networks are used in the hidden layer of the encoder and decoder, the proposed

DAE uses convolutional neural networks (CNN) in the hidden layer of the encoder and

transposed convolution neural networks in the hidden layer of the decoder. Fig. 6.5

shows the proposed DAE architecture.

As mentioned in the previous section, the implementation of the proposed autoencoders

are different for DLDD. Contrary to the conventional usage of autoencoder, for DLDD,

the input to the autoencoder is a noisy input and the desired output of the autoencoder

is a “clean” uncorrupted version of the input. Therefore, the neural networks in DAE

will try to learn a slightly different function hDAE(xi) = x̃i such that the output x̃i is as

close as possible to the “clean” uncorrupted version of the input. The input to DAE is

the rosc(t) signal (shown in Fig. 6.3) sampled at 32 sample per bit, and the ground truth

is denoted by y = [I(t), Q(t)]T assuming that v(t) = I(t) cos(2πfIF t)+Q(t) sin(2πfIF t).

The encoded feature z is defined to have a smaller size compared to the input feature and

the regenerated output, so that the encoder neural network will only extract important

features from the noisy input. Hence the decoder is forced to learn from a “compressed”

version of the input to regenerate an uncorrupted version of the input. The dimension

of z denoted by sz is 2 ≤ sz < c as the input features consist of I and Q symbols, and c

represents the input feature size. The proposed DAE is optimized using:

φ, θ = arg min
φ,θ

1

n

n∑
1

L(yi, x̃i) (6.13)

where the MSE loss function is L(yi, x̃i) = ||yi − x̃i||2.

As shown in Fig. 6.5, CNN and densely connected neural network are used in DAE.

During training of the DAE algorithm, weights and biases of the densely connected

neural network, and the filter parameter and biases of the CNN are updated such that

the MSE is minimized. The training process is stopped when the MSE returned from

the loss function converges.

6.2.2.2 Variational Autoencoder (VAE)

VAE is different from basic autoencoder and denoising autoencoder. An example of

the VAE architecture is shown in Fig 6.6. VAE is a maximum likelihood generative

model which maximizes the Evidence Lower Bound (ELBO) through minimization of
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Figure 6.5: Denosing Autoencoder

the model’s reconstruction error and the differences between the posterior distribution

and the hypothesized prior using Kullback-Leibler (KL) divergence. The encoder por-

tion of VAE is an inference model, while the decoder is a generative model. A simple

VAE can be implemented using a single Gaussian distribution prior. However, over-

regularization of the posterior distribution might occur, which may lead to posterior

collapse and underfitting of the encoder. Hence, for the proposed VAE, a Gaussian

mixture distribution prior is used.

For a single Gaussian distribution VAE, the ELBO can be defined as [255]:

ELBO = −DKL(Q(z|X)||P (z)) + E[log(P (X|z))] (6.14)

where P (z) is the prior distribution, P (X|z) represents the generative model (decoder),

and Q(z|X) represents the inference model (encoder). Input x is fed into the encoder

to be encoded with Q(z|X) distribution and sampled with a latent representation of z.

Sampled z is used by the decoder for reconstruction. DKL(Q(z|X)||P (z)) can be defined
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Figure 6.6: Variational Autoencoder where a) shows an example of a mix Gaussian
prior for latent representation z.

as:

DKL(Q(z|X)||P (z)) = D[N (µ0,Σ0)||N (µ1,Σ1)]

=
1

2
(tr(Σ−1

1 Σ0) +

(µ1 − µ0)TΣ−1
1 (µ1 − µ0)

−k + log(
det Σ1

det Σ0
)) (6.15)

If the prior is N (µ1,Σ1) = N (0, 1), then

D[N (µ0,Σ0)||N (0, 1)] =
1

2
(Σ0 + (−µ0)2 − 1− log(det Σ0)) (6.16)

For DLDD, we defined a Gaussian mixture prior. The Guassian mixture can be defined

as a sum of multiple individual Gaussian distributions. Hence Q(z|X) and P (z) can be

defined as

Q(z|X) =

M∑
m

πmqm

P (z) =

M∑
m

π
′
mq

′
m

where m = 1, 2, 3, 4, ......M . M is the number of Gaussian distributions within the

Gaussian mixture, and πm,π
′
m is the weight of the distribution. Since QPSK is used,



Deep Learning based Phase Noise Tolerant Millimeter-wave RoF Receiver 111

I and Q are in binary form, the Gaussian mixture contains two Gaussian distributions

(M=2) as shown in Fig. 6.7. Since the distribution of the prior has changed, the KL

divergence equation for single Gaussian distribution as shown in (6.16) cannot be used.

The KL divergence for the Gaussian mixture distribution prior can be represented as:

DKL[Q(z|X)||P (z)] = −
∫
Q(z|X) log(

P (z)

Q(z|X)
)dz

=

∫
[
M∑
m

πmqm] log(

∑M
m πmqm∑M
m π′

mq
′
m

)

=
M∑
m

πm log(

∑M
m πm∑M
m π′

m

) +

M∑
m

πmD[qm||q
′
m] (6.17)

where
∑M

m πmD[qm||q
′
m] can be represented as:

M∑
m

πmD[qm||q
′
m] =

1

2

M∑
m

πm(tr(Σ−1
1 Σ0) +

(µ1 − µ0)TΣ−1
1 (µ1 − µ0)

−k + log(
det Σ1

det Σ0
)) (6.18)

Figure 6.7: Constellation diagram of transmitted IQ symbols (left) and the distribu-
tion of the individual I and Q signals (right).
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Therefore, after substituting equation (6.18) into equation (6.17), the KL divergence for

a Gaussian mixture distribution prior can be rewritten as:

D[Q(z|X)||P (z)] =
M∑
m

πm log(

∑M
m πm∑M
m π′

m

) +

1

2

M∑
m

πm(tr(Σ−1
1i,m

Σ0i,m) +

(µ1i,m − µ0i,m)TΣ−1
1i,m

(µ1i,m − µ0i,m)− k

+ log(
det Σ1i,m

det Σ0i,m

)) (6.19)

For DLDD, feed-forward neural networks are used in the encoder and decoder of the

proposed VAE. Similar to DAE, the neural networks in VAE are optimized such that

the output VAE is similar to the ground truth label. However, the loss function of

VAE is different from DAE. In DAE, the neural networks are optimized using MSE

loss function. For VAE, the loss function has two components: reconstruction loss and

latent loss. The reconstruction loss of VAE is BCE (equation (5.14)), and the latent

loss will be KL divergence loss shown in equation (6.19). The reconstruction loss of

VAE calculates the difference between the output of the VAE and the ground truth

label, while the latent loss penalizes VAE if the latent representation z deviates from

the defined Gaussian mixture prior. Therefore, contrary to DAE and basic autoencoder

where the latent representation z is defined by the encoder’s output and can not be

directly controlled, the latent representation of VAE can be optimized such that it is

similar to the defined Gaussian mixture prior.

As mentioned in Section 6.2.2.1, the latent representation z is defined to have a smaller

dimension than the autoencoder’s input and output. Essentially, the DAE’s encoder

transforms the noisy input of a higher dimension to a small dimension latent representa-

tion z, and during that process, only ”important” features that are used to reconstruct

the “clean” uncorrupted version of the input is retained. However, the transformation

process might produce a corrupted latent representation which will cause the decoder

to generate an output that is different from the ground truth label. Hence, by defining

the prior distribution of the latent variable in VAE such that it closely resembles the

distribution of the “clean” uncorrupted ground truth labels, and have a smaller variance

than the noise corrupted input, the defined prior distribution acts as a ”guide” during

the optimization process of the neural network within the VAE. By having a prior distri-

bution with a smaller variance than the corrupted input, the encoder can estimate the
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posterior distribution such that it is sufficient for the decoder to reconstruct the “clean”

version of the input, and at the same time is less noisy than the corrupted input.

As shown in Fig. 6.7, the I and Q components of the QPSK can be represented using two

Gaussian distributions with zero variance. However, the proposed VAE prior Gaussian

mixture distribution is defined to have a variance of more than zero. This is because

having a variance that is very close to zero might lead to poor generalization of the

neural networks within VAE. Therefore a test to determine the optimal variance for the

prior distribution was carried out and discussed in Section 6.3.3.

6.2.3 Deep learning based detection with reference tone (DLD-RT)

For DLD-RT, an additional reference tone is used as an input to the proposed deep

learning based receiver in addition to the phase corrupted signal as shown in Fig. 6.8.

The additional reference tone input, highlighted in pink, is used as a reference for the

deep learning based receiver to predict the transmitted IQ symbol. When phase noise is

not present, the reference tone will stay constant for every IQ symbol. In the presence

of phase noise, the reference tone will fluctuate. Since both the main data signal and

the reference tone are corrupted from the same source, the deep learning based receiver

can predict the transmitted QPSK IQ symbol based on the fluctuation in the reference

tone.

Figure 6.8: DLD-RT configuration

As discussed in chapter 4, in a self-homodyning-based IF-RoF (SH-IF-RoF) system,

phase noise is reduced by mixing the reference tone (referred to as the carrier tone in
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chapter 4) and the main data signal. The reduction of phase noise is possible for an SH-

IF-RoF system because the reference tone and the main data signal are modulated onto

the same optical tone using the same modulator. However, for SH-IF-RoF, a certain

gap between the reference tone and the main data signal has to be maintained to avoid

signal-to-signal beating interference (SSBI), and to ensure that the downconverted IF

signal has sufficient frequency such that it is more than or equal to the symbol period.

An insufficient gap can affect system performance. Therefore, DLD-RT is proposed to

increase bandwidth efficiency of unlocked heterodyning IF-RoF system by reducing the

required frequency gap of SH IF-RoF, and replacing the SH receiver with a deep learning

based phase noise tolerant receiver.

We proposed the use of LSTM neural network for DLD-RT as the input signals, the

received phase corrupted signal, and the reference tone are sequence data, and both

signals fluctuate with time. LSTM is a variant of RNN, and RNN has shown poten-

tial in solving challenging problems involving sequential data analysis such as speech

recognition [33, 34], language modeling [256], and speech activity detection [257]. The

structure of an LSTM block has been introduced in Section 5.2.3.

Figure 6.9: Deep learning architecture of DLD-RT

Fig. 6.9 shows the architecture of the deep learning architecture used in DLD-RT. The

input of the deep learning based receiver contains the sampled I and Q components of

the phase corrupted received signal, and the sampled reference tone. The input matrix

has three rows and Nsample of columns. The number of columns of the input matrix

is determined by the number of samples per bit. The output of the DLD-RT receiver

is the number of bits represented by each symbol. Hence, the input has a larger size

compared to the output. The hidden layer consists of multiple layers of the proposed

LSTM neural network. The LSTM neural network in the hidden layer has to learn the

correlation between the sampled IQ signal and the reference tone, and between past

and present reference tone samples to predict the transmitted QPSK signal. During the

training process of the proposed LSTM algorithm, the weights and biasses within the
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various gates of each LSTM blocks has to be updated, and the forget gates has to weigh

past and present information within the memory blocks such that the loss returned from

the loss function is minimized. The training process stops when the loss converges. The

proposed LSTM algorithm is optimized using MSE loss function. Algorithm 3 shows

the training process of the proposed LSTM based receiver.

Algorithm 3 Training of the proposed LSTM algorithm for DLD-RT receiver

1: Input: Sampled reference tone and phase corrupted IQ components of the received
QPSK signal

2: Data split using 10:2:1 ratio for training, validation, and testing sample
3: while loss did not converge do
4: Calculate o(t), c(t), iblk(t), i(t), f(t) (equations shown in (5.17))
5: Calculate output of each LSTM block using equation (5.16)
6: Applying activation function (Sigmoid)
7: Calculate MSE loss
8: Update weights and biasses of each gate and blocks within the LSTM neural

network layer such that loss is being minimized;
9: end while

6.3 Experiments

The proposed algorithms for DLDD and DLD-RT are evaluated using varying levels of

phase noise. A test comparing the performance of SH receiver based IF-RoF link to

oscillator receiver based IF-RoF links is carried out to show the phase noise tolerance

of SH-based RoF systems and as a baseline for comparison with the performance of the

proposed deep learning based RoF receivers. Furthermore, a test comparing different

variances used for VAE is carried out to optimize the performance of the VAE used in

DLDD.

The training of the deep learning algorithm is completed using Keras Tensorflow. Simula-

tions are carried out on a workstation equipped with an Intel Xeon E5-2650v3 processor,

256GB of RAM, and an NVIDIA Geforce GTX 1080.

This section is organized as follows. The data generation for deep learning algorithm

training is described in Section 6.3.1. Section 6.3.2 describes the neural network archi-

tectures used. The results for both DLDD and DLD-RT are included in Section 6.3.3

and Section 6.3.4.

6.3.1 Data Generation

The data used for training the proposed algorithms are collected through simulations

carried out using OptiSystem 16, using two configurations shown in Fig. 6.3 and Fig. 6.8.
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The data collected is further processed using MATLAB before exporting for deep learn-

ing algorithm training and testing. For DLDD, the downconverted baseband phase cor-

rupted IQ signal, and the transmitted uncorrupted IQ signal are collected and sampled

at 32 sample/bit. For DLD-RT, an additional reference tone is sampled and collected in

addition to the transmitted and received IQ symbols. Approximately 14 million bits are

collected for 1 kHz, 100 kHz, and 1 MHz laser linewidth individually and divided into

training, validation, and testing set with a ratio of 10:2:1 for both DLDD and DLD-RT

receivers respectively. In a real-world scenario, the deep learning training data can be

collected from the UE (phase corrupted signal) and the CO (uncorrupted signal). The

following paragraphs describe the simulation setups used for data collection.

For DLDD, a free-running laser operating at 193.1 THz is externally modulated using

an MZM with a 2.5 GHz IF carrier. The IF signal carries 1 Gbps QPSK signal gener-

ated using a quadrature modulator with oscillators operating at 2.5 GHz and a PRBS

generator. The output of MZM is coupled with the optical output from the second free-

running LO laser. An amplifier with a 20 dBm gain and a noise figure of 6 dBm is used

to amplify the coupled optical signal before being transported over a 5 km single-mode

fiber (SMF) to the BS. A 60 GHz millimeter-wave signal is generated at the BS after

unlock heterodyning photodiode detection of the received optical tones. The millimeter-

wave signal is amplified using a 50 dB gain amplifier with a current spectral density of

2.25×10−11 A√
Hz

and filtered using a Bessel bandpass filter with 1 GHz bandwidth (BW)

centered around 60 GHz. At the CP, the received signal is downconverted to baseband

using a quadrature demodulator with RF oscillators operating at 60 GHz.

For DLD-RT, the optical transmitter configuration is similar to DLDD. At the BS, the

millimeter-wave signal is generated through unlocked heterodyning of received optical

tones. The millimeter-wave signal is amplified using the same amplifier as DLDD and

filtered using a Bessel bandpass filter with a filter bandwidth ranging from 1 GHz to 5

GHz. The bandpass filter’s bandwidth is varied to extract the millimeter-wave QPSK

signal and the reference tone at different frequency gaps. The different frequency spac-

ing between the reference tone and the millimeter-wave QPSK signal requires different

bandpass filter bandwidth. At the CP, the signal is split into two using a balance power

divider, as shown in 6.8. At the first arm, the millimeter-wave QPSK signal is down-

converted using a quadrature demodulator with RF oscillators operating at 60 GHz. A

lowpass filter is used to extract the downconverted baseband signal. At the second arm,

the reference tone at millimeter-wave frequency is downconverted to baseband using an

oscillator with the same frequency. The frequency of the oscillator is varied according

to the frequency spacing between the QPSK signal and the reference tone.
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6.3.2 Experimental Setup

As mentioned in chapter 5, and shown in Fig. 5.8, the architecture of a deep learning

neural network consists of an input layer, an output layer, and at least a hidden layer.

The performance of the proposed autoencoders (DAE and VAE), measured in terms of

prediction accuracy, is compared to various deep learning architectures such as MLP,

CNN, CNN+LSTM, and a basic autoencoder. For a basic autoencoder, as shown in Fig.

6.4, the encoder and decoder each consist of two densely connected neural network layers.

As shown in Fig. 6.5, the encoder of DAE consist of two sets of convolution and batch

normalization layers, and the decoder consists of two sets of transposed convolution and

batch normalization layers. For VAE, the encoder and decoder use the same layers as

the basic autoencoder. For MLP, three layers of densely connected neural network are

used in the hidden layer. For CNN, similar to DAE, two sets of convolution and batch

normalization layers were used in addition to a densely connected neural network. For

CNN+LSTM, the architecture is similar to CNN, with the exception of replacing the

densely connected neural network with LSTM. Table 6.1 provides the settings used for

different neural network layers.

Table 6.1: Deep learning algorithm parameters

Deep Learning Algorithms Parameter Values

Densely connected neural network layer nodes: 256
(MLP, VAE and basic autoencoder)

Convolutional layer (CNN, DAE) No. of filters: 10− 64
Kernel size: (r, c); r ∈ [2, 8], c ∈ [1, 3]
Stride size: (2,1)

LSTM No of block(s): 50

For the proposed LSTM based DLD-RT, the hidden layer consists of two LSTM layers

and a densely connected neural network. The MLP and CNN added for comparison

shares the same architecture as those described for DLDD. The settings of the hidden

layers used are similar to those listed in Table 6.1. Table 6.2 provides a summary of the

settings used for training the proposed DAE, VAE, and LSTM algorithms.

Table 6.2: Training Parameters

Parameters Values

Learning rate 10−7 - 10−3

Learning rate decay 10−6 to 10−1

Optimizer Adam

Loss function MSE

Batch size 8 - 256

Epochs 10 - 400
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6.3.3 Results for Deep Learning based Direct Detection (DLDD)

For VAE used in DLDD, the Gaussian mixture prior’s variance used can be varied. For

an uncorrupted QPSK, its I and Q components can each be represented as a Gaussian

mixture distribution with mean at 1 and −1, and variance of approximately zero as

shown in Fig. 6.7. Gaussian distribution with a zero variance can be represented as

a Dirac delta distribution. However, the presence of phase and thermal noise would

increase the variance of the distribution as shown in Fig. 6.10. Setting a small variance

for the prior could lead to the deep learning algorithms in the VAE to not be able to

’learn’ properly, which leads to a poor detection performance of the received signal.

Figure 6.10: Distribution of I or Q symbols in the presence of phase and thermal
noise

A test is carried out to search for the optimal variance for Gaussian mixture prior using

a small dataset of one million samples for both 1 kHz and 1 MHz laser linewidth data

set. The variance is varied from 0.005 to 0.2. The data is normalized to [0, 1], and hence

the threshold between the two signal peaks is at 0.5. Therefore, the variance of the prior

is set such that the threshold value does not fall within one standard deviation of the

mean of the Gaussian mixtures, and a variance of 0.2 has a standard deviation of 0.4472.

Fig. 6.11 shows the detection performance of VAE using different Gaussian mixture

prior variance. From the obtained results, VAE performed the best at a variance of 0.01

for both 1 MHz and 1 kHz laser linewidth datasets. It is to be noted that during the

training phase of variance 0.005 and 0.0055, ’NaN’ is returned from the loss function.

The model is unable to optimize properly and caused the detection accuracy to be low

at 0.005 and 0.0055 variance. Therefore, for VAE, the Gaussian mixture prior variance

is defined as 0.01 for DLDD.

Fig. 6.12 shows the performance degradation with increasing phase noise of an oscillator-

based receiver (Fig. 6.1) and a SH-based receiver (Fig. 4.2) in an unlocked heterodyning
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Figure 6.11: Detection Performance of VAE using different Gaussian mixture prior
variance

IF-RoF link. The performance of each receiver is measured in terms of bit error rate

(BER) with a fiber launch power of 0 dBm, and an optical receiving power of -11 dBm.

The phase noise is varied through varying laser linewidth from 1 Hz to 80 MHz. The

graph shows a rapid increase in BER for the oscillator-based receiver as the linewidth

of the laser increases. The oscillator-based receiver performs better than the SH-based

receiver below 100 Hz laser linewidth. However, the SH-based receiver is more resilient

to phase noise as performance degradation of the receiver is much slower compared

to the oscillator-based receiver. The SH-based receiver has virtually no performance

degradation up to 1 MHz laser linewidth. In contrast, the error rate of the oscillator-

based receiver increases exponentially with increasing phase noise.
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Figure 6.12: a) Receivers’ detection performance with increasing linewidth measured
using BER b) Zoom in portion of a)
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Table 6.3:
DLDD (Detection Accuracy)

1 kHz 1 MHz

Threshold Detection 61.95% 51.40%

MLP 81.00% 52.90%

CNN 82.00% 81.50%

CNN+LSTM 83.60% 82.50%

Basic Autoencoder (Feed-forward) 87.70% 58.17%

DAE (CNN) 96.00% 84.35%

VAE (Feed-forward) 91.76% 75.30%

Results obtained for DLDD are tabulated in Table 6.3. All the algorithms’ performance is

measured based on the accurate prediction of transmitted bits. The results are obtained

by training each deep learning algorithm using two sets of data collected at different

phase noise levels. Phase noise is varied through varying the laser linewidth of the lasers

used, as shown in Fig. 6.3, to operate at 1 kHz and 1MHz respectively. All algorithms

used were trained using the same sets of data. At 1 kHz laser linewidth, the autoencoder-

based architectures, namely: Basic Autoencoder, DAE, and VAE, perform better than

MLP and CNN based algorithms. At 1 MHz laser linewidth, the detection accuracy

of basic autoencoder and VAE, which are both based on feed-forward neural network,

decreases drastically. The detection accuracy of basic autoencoder dropped from 87.7%

to 58.7%. For VAE, the detection accuracy dropped from 91.76% to 75.3%. Based on

the results obtained, VAE outperforms basic autoencoder in terms of detection accuracy,

which suggests that the user-configurable distribution of the latent representation can

help improve the deep learning detection performance. On the other hand, the detection

degradation of DAE and other CNN-based algorithms are smaller. Moving from 1 kHz

to 1 MHz, the drop in detection accuracy of CNN and CNN+LSTM algorithms are both

less than 1%. Although the drop in detection accuracy for DAE is much larger than

CNN and CNN+LSTM, the detection accuracy of DAE for both laser linewidth levels

remains higher than the rest.

6.3.4 Results for Deep Learning based Detection with Reference Tone

(DLD-RT)

As mentioned in Section 6.2.3, a certain frequency gap has to be maintained between

the reference tone and the main data signal in an SH-based IF-RoF link; an insufficient

frequency gap can cause a drop in link performance. Fig. 6.13 shows the performance

of the IF-RoF link with varying levels of frequency gap. The frequency gap ∆f is varied

through varying the IF carrier fIF used, ∆f = fIF . Since the 1 Gbps data is transmitted

in the form of QPSK at a symbol rate (SR) of 0.5×106 symbol/s, at ∆f = 0.5 GHz, the
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reference tone is located right after the main frequency of the data signal. The results

obtained suggest that the guard band (GB) has to be GB ≥ 2 × SR. The guard band

is defined as GB = fIF − 1
2BWsignal, where BWsignal is the bandwidth of the QPSK

signal at millimeter-wave frequency.

Figure 6.13: BER vs Frequency gap

Table 6.4:
Method 2 (BER)

∆f=2.5 GHz

100 KHz 1 MHz

SH Receiver -9.6100

Threshold Detection -0.3134 -0.3027

MLP -2.3645 -1.5217

LSTM -5.3783 -4.3979

CNN -1.9222 -1.8972

∆f=0.5 GHz

SH -2.5023

MLP -0.3680 -0.3200

LSTM -4.2882 -3.1487

CNN -1.4097 -1.2047
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For DLD-RT, the performance of the proposed LSTM based receiver measured using

bit error rate (BER) and is compared to SH receiver and deep learning algorithms such

as MLP and CNN. Results obtained are tabulated in Table 6.4, and the BER in the

table are calculated using log10(BER). The proposed LSTM receiver’s performance was

compared to the SH-based RoF receiver at two different frequency gap values (∆f =

{0.5GHz, 2.5GHz}), and two different levels of phase noise at each ∆f . Hence, all the

deep learning algorithms were trained using four different datasets. As shown in Fig.

6.12, an SH receiver has virtually no performance degradation up to 1MHz linewidth;

the SH receiver’s performance is measured at 1MHz for both frequency gaps.

Comparing results shown in Table 6.3 and Table 6.4, the overall results of the deep

learning algorithms used in DLD-RT is better than DLDD. At ∆f = 2.5 GHz, which

means that the frequency gap is sufficient, the proposed LSTM algorithm achieves a BER

of less than 10−4, much better than the results obtained in DLDD, and outperforms MLP

and CNN algorithms by a significant margin. However, the SH-based receiver achieves a

much lower BER at 10−9 compared to the proposed LSTM based deep learning receiver,

which only has a BER of less than 10−4. At ∆f = 0.5 GHz, the BER obtained using

the proposed LSTM algorithm is still lower than MLP and CNN. When the frequency

gap is insufficient (∆f = 0.5 GHz), the proposed LSTM based receiver performs much

better than SH based receiver, with the proposed LSTM based receiver achieving a BER

of less than 10−3 while the SH based receiver has a BER of less than 10−2. As shown in

Table 6.4 and Fig. 6.13, the SH-based receiver’s performance deteriorates quickly when

the frequency gap is insufficient. In contrast, the performance degradation experienced

by the proposed LSTM based receiver is much smaller. Using the results obtained at

1 MHz as an example, when the frequency gap decreases from ∆f = 2.5 to ∆f = 0.5,

the LSTM based receiver’s BER increases from 4 × 10−5 to 7.1 × 10−4 while the BER

of the SH receiver increases from 2.5× 10−10 to 3.1× 10−3. Fig. 6.14 shows changes in

the output signal constellation of the proposed LSTM based receiver as it is gradually

optimized during the training process. Each subplot within the figure is extracted during

various stages of the training process until the MSE loss curve converges. As shown in

Fig. 6.14, as the training process progresses, the ability of the proposed LSTM based

receiver to be able to ’sort’ the phase noise corrupted signal to its respective symbol

improves. The last subplot, situated at the bottom right of Fig. 6.14, suggests that the

detection of the phase corrupted signal should be error-free if an appropriate threshold is

used. However, the results shown in Table 6.4 do not support that claim which suggests

that an SER estimated using error vector magnitude cannot be used as a performance

indicator for deep learning based receivers.
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Figure 6.14: Proposed LSTM based millimeter-wave RoF receiver output changes as
the network gradually optimize
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6.4 Conclusions

Two novel implementations of deep learning based detection for millimeter-wave RoF,

namely DLDD and DLD-RT has been demonstrated with three proposed deep learning

algorithms. For DLDD, DAE and VAE were proposed, while LSTM was proposed for

DLD-RT. Results obtained for DLDD show that CNN-based DAE can improve signal

detection accuracy better than VAE, basic autoencoder, MLP, CNN, and CNN+LSTM

based algorithms. While DLDD receivers as a whole have a BER of above 10−3, the

detection accuracy of these DLDD receivers is higher than direct threshold detection.

This shows that DLDD receivers have the potential to be used in lower phase noise RoF

links such as differential encoding based RoF link shown in chapter 3 and chapter 4 or a

phase-locked optical tone RoF link, to minimize the performance impairment caused by

residual phase noise. For DLD-RT, the LSTM based receiver performs better than MLP

and CNN-based receivers. Results obtained for the LSTM based receiver show that the

receiver has the potential to be used as a bandwidth-efficient alternative to an SH-based

receiver in an uncorrelated RoF link. However, there are still room for improvement

that can be explored in the future.



Chapter 7

Conclusions and Future Works

This thesis’s focus is on ARoF systems with reduced complexity and reliance on high-

speed optoelectronics and RF oscillators. In addition, this thesis explores the use of deep

learning for future generation communication networks. From the literature review car-

ried out in chapter 2, we know that while millimeter-wave frequency bands provide more

bandwidth than lower RF bands, millimeter-wave have high propagation loss, high spe-

cific attenuation in the presence of oxygen, moisture, and rain, and high penetration loss.

The high path loss of millimeter-wave can require more base stations to achieve simi-

lar coverage areas as lower RF bands, which would increase the network’s deployment

cost. Solutions proposed to overcome issues that arise with the use of millimeter-wave

introduces new challenges and problems. The introduction of mMIMO antenna allows

finer beamforming control and higher antenna gain to overcome the high path loss of

millimeter-wave. However, significantly more overhead resources and processing capabil-

ity are needed by the baseband units to perform large-scale coordination and scheduling

for CoMP. While the introduction of fiber can increase fronthaul bandwidth, the sig-

nal transmitted through fiber is susceptible to impairments such as dispersion, phase

noise, and intensity noise contributed by the optical transmission system. Phase-locked

optical tones can reduce the impairments propagated from the optical transmitter, but

conventional coherent optical tone generation methods rely on cutting-edge high-speed

optoelectronics and RF oscillators. While the use of self-homodyning (SH) receivers

with uncorrelated optical tones reduces the overall optical transmitter configuration,

SH receiver cannot be used directly to detect phase-modulated signals. Therefore, in

chapter 3, we proposed the use of differential encoding and differential demodulation

method to enable direct detection of phase modulated signal in unlocked heterodyning

RoF links. However, the time delay present in the differential demodulation method

limits modulation choices and leads to higher phase noise residue. Hence, deep learning

based phase noise tolerant RoF receivers were proposed in chapter 6 as an alternative to

126
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the DAM receiver proposed in chapter 3 and to replace the bandwidth inefficient self-

homodyning-based receiver used in unlocked heterodyning IF-RoF schemes. In chapter

5, we explore and investigate the use of deep learning in joint downlink CoMP transmis-

sion. The following paragraphs discuss the contributions of the research topics explored

in chapter 3, 4, 5, and 6.

In chapter 3, two DPSK baseband modulated millimeter-wave RoF fronthaul downlink

schemes were proposed and demonstrated experimentally. The proposed links were an-

alyzed theoretically and experimentally through software simulation and were evaluated

through varying optical power, laser linewidth, and relative intensity noise. In addition,

the proposed links are tested using different optical carrier-to-sideband power ratios,

and different signal formats such as RZ-DPSK, CSRZ-DPSK, and NRZ-DPSK. Results

obtained show that the optimal operating point for both proposed DPSK schemes is

when the total carrier power is equal to the total sideband power. Furthermore, while

RZ-DPSK and CSRZ-DPSK have a slight performance advantage over NRZ-DPSK, the

transmission of signals in the form of RZ-DPSK and CSRZ-DPSK require more band-

width and a more complex transmission configuration. Theoretical analysis performed

on the proposed DPSK scheme and the optical demodulated DPSK scheme shows that

these two schemes can directly detect phase-modulated signals and reduce phase noise

contributed by the optical transmission system. Simulation results show that the pro-

posed DPSK RoF scheme remains relatively phase noise tolerant up to 10 MHz range

laser linewidth. However, conventional phase-locked optical DPSK link performs better

than the proposed DPSK scheme and the optical demodulated DPSK scheme at lower

RIN levels and high phase noise scenarios. Compared to oscillator receiver based un-

locked heterodyned RoF scheme, at higher phase noise levels, the proposed DPSK RoF

scheme and the optical demodulated DPSK scheme performs better whilst the oscillator

receiver based unlocked heterodyned RoF scheme perform better than the two DPSK

schemes at lower phase noise levels.

In chapter 4, the investigation on the use of differential encoding and differential de-

modulation methods on RoF links was extended to include DQPSK signals. From the

findings in chapter 3, we discover that while the DAM receiver used in the proposed

DPSK RoF scheme can reduce the phase noise impairment caused by the optical trans-

mitter, the time delay present in the DAM receiver causes detection accuracy to drop

due to phase fluctuations between time t and t−τ1. In DQPSK, the DAM receiver’s time

delay used to demodulate the DQPSK signal is twice as long. The longer time delay

will cause the phase noise residual to increase due to higher phase fluctuation between

time t and t− τ2. Hence, chapter 4 investigates the feasibility of the proposed differen-

tial encoding RoF link using DQPSK signal in the presence of a relatively higher phase

noise residual. Results obtained through theoretical analysis and simulation show that
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the proposed DQPSK RoF scheme can reduce phase noise inherited from the optical

transmitter. Compared to the DPSK schemes demonstrated in chapter 3, the proposed

DQPSK RoF scheme experienced a higher detection impairment in the presence of phase

noise caused by the longer time delay used in the demodulation process. Compared to

SH IF-RoF schemes, the proposed DQPSK scheme performs better at lower phase noise

levels and has a higher tolerance towards RIN.

A deep learning based CoMP is explored and demonstrated in chapter 5. The deep

learning algorithms were tested in two different scenarios with varying cell sizes. Deep

learning algorithms were tasked as a trigger to activate or deactivate a CoMP algorithm,

to provide all possible base stations for CoMP joint transmission, and to select an addi-

tional base station that fulfills predefined criteria for CoMP transmission. In addition,

varying user distributions were used to test the performance of different deep learning

algorithms used in the deep learning based CoMP. The proposed deep learning based

CoMP was demonstrated using MLP, LSTM, and DQN, and the results obtained were

compared with SVM. In general, the deep learning and deep reinforcement learning al-

gorithms perform better than SVM in all tests. In situations where the sequence of the

input vector matters, LSTM performs better than MLP. However, when the sequence of

the input vector is irrelevant, MLP can perform better than LSTM. In addition, MLP

demands a lower computational time compared to LSTM. In an environment that is

constantly changing, DQN based deep reinforcement learning can perform better than

both LSTM and MLP. However, DQN demands more computational time compared to

LSTM and MLP.

The use of incoherent detection for M-DPSK signals in chapter 3 and chapter 4 allows

phase noise to be reduced through delayed and phase-shifted multiplication of the signal

while remaining spectrally efficient. However, the presence of the time delay in the DAM

receiver prevents the use of non-differentially encoded signals. The time delay used in

the DAM receiver increases with the order of modulation, which would cause an increase

in phase noise residual and lead to a drop in detection performance. Furthermore, al-

ternative RoF schemes discussed in chapter 2 and chapter 3 require either additional

bandwidth, high-speed optoelectronics and oscillators, or a more complex transceiver

configuration. Therefore, transceivers for unlocked heterodyning ARoF systems that

are more robust to phase noise have to be explored to enable low-cost unlock heterodyn-

ing RoF systems to be used in future generation high order modulation fiber-wireless

communication. Hence, two deep learning based phase noise tolerant receivers have been

proposed and demonstrated in chapter 6. The proposed receivers use autoencoder and

LSTM based deep learning architecture and are demonstrated using unlocked hetero-

dyning RoF downlink with oscillator-based baseband downconversion method. Contrary

to conventional implementation of autoencoder where it is trained to have the output
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be the same as the input, the autoencoder-based receiver is tasked to predict the uncor-

rupted signal from a phase corrupted input. For the LSTM based receiver, an additional

reference input is used. The LSTM based receiver detects the signal based on the phase

corrupted input and the reference input. The reference input is used as a reference point

for the LSTM based receiver to predict the phase rotation caused by the optical trans-

mitter’s phase noise. Based on the results, both deep learning based receivers have the

ability to detect signal in the presence of phase noise. The proposed autoencoder and

LSTM receivers achieve a higher detection accuracy compared to MLP and CNN based

receivers. Compared to SH-based receivers, the LSTM based receiver performed better

than the SH-based receiver when the frequency gap between the main data signal and

the reference signal is small (or insufficient), while the inverse is true when the frequency

gap is sufficient. Therefore, based on the results obtained, the LSTM based receiver has

the potential to be used as a bandwidth-efficient alternative to an SH-based receiver in

an uncorrelated RoF link.

In summary, the proposed differential encoding optical baseband M-DPSK schemes

demonstrated in chapter 3 and chapter 4 can directly detect phase-modulated signals,

improve overall bandwidth efficiency, and is more tolerant to RIN compared to self-

homodyning receiver based RoF schemes. The results obtained from applying deep

learning in CoMP and phase noise tolerant RoF receivers have demonstrated the abil-

ity of deep learning algorithms and the possibility of implementing machine learning

algorithms in future generation cognitive-communication networks.

7.1 Future Research

This thesis presented investigations and comparisons on analog millimeter-wave RoF

systems using variations of differential encoding and DAM receivers, explored the use of

deep learning in CoMP, and developed phase noise tolerant receivers for millimeter-wave

ARoF systems. However, the proposed differential encoding and DAM receiver demon-

strated in chapter 3 and chapter 4 considered the impairments incurred by the fiber link;

the impairments contributed by wireless transmission were not included in the investiga-

tion. In addition, the proposed link in which used OSSB signal format generated using

optical baseband modulation and unlocked laser sources exhibited performance fluc-

tuations due to chromatic dispersion, wherein OSSB signals generated through locked

optical tones are generally known to be immune to chromatic dispersion. Besides, as

discussed in chapter 6, there are other higher-order modulation formats that are used in

wireless communication, which were not included in the investigations carried out in this

thesis. The results obtained and discussed in chapter 3 and chapter 4 showed that the
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bit-delay introduced in the DAM receiver caused the receiver performance to degrade

with increasing phase noise, and the effect is more evident when the bit-delay increases

when the order of modulation increases. In chapter 5, the scope of investigation for

CRAN CoMP was confined to triggering, base station selection, and providing possible

base station options for CoMP joint transmission. However, there are other optimiza-

tion issues that are of concern, such as clustering policy, backhaul bandwidth, power

usage, fault detection, and fault mitigation, that have to be addressed to exploit the

full benefit of CoMP in a millimeter-wave centralized radio access network. In chapter

6, the investigation focused on evaluating the proposed phase noise tolerant deep learn-

ing based receivers in varying levels of phase noise induced by unlocked heterodyning.

However, the maximum linewidth of the laser sources used are only up to 1 MHz, and

while fiber impairments are considered, the performance of the proposed deep learning

based receivers was not evaluated and quantified in varying levels fiber induced impair-

ments such as nonlinear phase noise and dispersion which can significantly degrade link

performance. Therefore, more research can be carried out to fill in research gaps that

were not covered in this thesis’s investigations, and more research has to be carried out

to work towards a fully AI-controlled future generation communication network. The

following list includes future pursuable works

• Further investigations on the effects of chromatic dispersion on OSSB like optical

signals generated using uncorrelated ARoF systems can be carried out, especially

on differential encoded and DAM receiver based ARoF systems. While OSSB

signals are generally known to be immune to chromatic dispersion, during the

investigation of DQPSK ARoF links presented in Chapter 4, the ARoF based

DQPSK link performance exhibited signs of fluctuation in detection performance

with different fiber lengths. Hence, a thorough investigation on the effects of chro-

matic dispersion on differentially encoded based ARoF systems and comparisons

with conventional phase-locked OSSB tones and phase uncorrelated OSSB tones

can be carried out.

• An investigation into the limits of differentially encoded and DAM receiver based

ARoF systems can be carried out. As shown in Chapter 3 and Chapter 4, for

M-DPSK modulation, the system sensitivity towards phase noise increases with

increasing M. Hence, the limits of M for differential PSK and differential QAM

based modulation can be investigated to explore how high M can be before the

phase noise reduction effect of the DAM receiver is no longer sufficient for error-free

detection.



Deep Learning based Phase Noise Tolerant Millimeter-wave RoF Receiver 131

• Explore and compare different deep reinforcement learning algorithms, algorithms

other than Q- learning based algorithms for CoMP applications for problems such

as:

– Optimization for maximum network throughput

– Achieving a balance between network throughput and power consumption

– Optimization for clustering policies to balance between overhead bandwidth,

network throughput, and power consumption

• Develop a feasible real-world framework for training and testing deep reinforcement

learning algorithms for communication network management without affecting user

experience.

• Evaluate the developed deep learning based ARoF receivers in Chapter 6:

– In the presence of other distortion contributed by the optical transmitter

– In a wider range of optical phase noise, including laser phase noise and non-

linear phase noise

– Implementing the DLDD receiver with proposed differentially encoded ARoF

schemes, and evaluate its feasibility and quantify the performance benefit of

such implementation

• Develop a deep learning based encoder that is capable of generating encoded sig-

nals that are resistant towards optical transmitter impairments to improve the

performance of ARoF links and to enable higher transmission speeds.



Appendix A

Theoretical Analysis

A.1 Optical Demodulated DPSK Link (Scheme B)

Continuing from equation (3.25)

rD2(t) = I2
BS2

rD2(t) ∝ cos(A)2 + cos(B)2 + cos(C)2 + cos(D)2 + 2 cos(A) cos(B) +

2 cos(A) cos(C) + 2 cos(B) cos(C) + 2 cos(A) cos(D) + 2 cos(B) cos(D) +

2 cos(C) cos(D)

where

A = 2πfmmt+
πsD(t)

VπRF
+ ∆φ(t)

B = 2πfmmt+ 2πf2τ1 +
πsD(t)

VπRF
+ φ1(t)− φ2(∆t)

C = −2πfmmt+ 2πf1τ1 −
πsD(∆t)

VπRF
+ φ2(t)− φ1(∆t)

D = 2πfmm∆t+
πsD(∆t)

VπRF
+ φd(∆t)

132
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Rewriting rD2(t)

rD2(t) ∝ cos(2πfmmt+
πsD(t)

VπRF
+ ∆φ(t))2

+ cos(2πfmmt+ 2πf2τ1 +
πsD(t)

VπRF
+ φ1(t)− φ2(∆t))2

+ cos(−2πfmmt+ 2πf1τ1 −
πsD(∆t)

VπRF
+ φ2(t)− φ1(∆t))2

+ cos(2πfmm∆t+
πsD(∆t)

VπRF
+ φd(∆t))

2

+2 cos(2πfmmt+
πsD(t)

VπRF
+ ∆φ(t))

cos(2πfmmt+ 2πf2τ1 +
πsD(t)

VπRF
+ φ1(t)− φ2(∆t))

+2 cos(2πfmmt+
πsD(t)

VπRF
+ ∆φ(t))

cos(−2πfmmt+ 2πf1τ1 −
πsD(∆t)

VπRF
+ φ2(t)− φ1(∆t))

+2 cos(2πfmmt+ 2πf2τ1 +
πsD(t)

VπRF
+ φ1(t)− φ2(∆t))

cos(−2πfmmt+ 2πf1τ1 −
πsD(∆t)

VπRF
+ φ2(t)− φ1(∆t))

+2 cos(2πfmmt+
πsD(t)

VπRF
+ ∆φ(t))

cos(2πfmm∆t+
πsD(∆t)

VπRF
+ φd(∆t))

+2 cos(2πfmmt+ 2πf2τ1 +
πsD(t)

VπRF
+ φ1(t)− φ2(∆t))

cos(2πfmm∆t+
πsD(∆t)

VπRF
+ φd(∆t))

+2 cos(−2πfmmt+ 2πf1τ1 −
πsD(∆t)

VπRF
+ φ2(t)− φ1(∆t))

cos(2πfmm∆t+
πsD(∆t)

VπRF
+ φd(∆t)) (A.1)
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Expanding equation (A.1)

rD2(t) ∝ 2 + cos(∆φ(t)− φ1(t) + φ2(∆t)− 2πf2τ1)

+ cos(∆φ(t) + φ2(t)− φ1(∆t) +
πsD(t)

VπRF
+ 2πf1τ1 −

πsD(∆t)

VπRF
)

+ cos(φ1(t)− φ2(∆t) + φ2(t)− φ1(∆t) +
πsD(t)

VπRF
+ 2πf2τ1 + 2πf1τ1 −

πsD(∆t)

VπRF
)

+
1

2
cos(2φ2(t)− 2φ1(∆t) + 4πf1τ1 − 2

πsD(∆t)

VπRF
− 4πfmmt)

+
1

2
cos(2∆φ(t) + 2

πsD(t)

VπRF
+ 4πfmmt)

+ cos(∆φ(t) + φ1(t)− φ2(∆t) + 2
πsD(t)

VπRF
+ 2f2τ1π + 4πfmmt)

+
1

2
cos(2φ1(t)− 2φ2(∆t) + 2

πsD(t)

VπRF
+ 4f2τ1π + 4πfmmt)

+ cos(∆φ(t)− φ2(t) + φ1(∆t) +
πsD(t)

VπRF
− 2f1τ1π +

πsD(∆t)

VπRF
+ 4πfmmt)

+ cos(φ1(t)− φ2(∆t)− φ2(t) + φ1(∆t) +
πsD(t)

VπRF
+ 2f2τ1π − 2f1τ1π +

πsD(∆t)

VπRF
+ 4πfmmt)

+ cos(φ2(t)− φ1(∆t)− φd(∆t) + 2f1τ1π − 2
πsD(∆t)

VπRF
− 2πfmmt−

2πfmm∆t)

+ cos(∆φ(t)− φd(∆t) +
πsD(t)

VπRF
− πsD(∆t)

VπRF
+ 2πfmmt− 2πfmm∆t)

+ cos(φ1(t)− φ2(∆t)− φd(∆t) +
πsD(t)

VπRF
+ 2f2τ1π −

πsD(∆t)

VπRF
+

2πfmmt− 2πfmm∆t)

+ cos(φ2(t)− φ1(∆t) + φd(∆t) + 2f1τ1π − 2πfmmt+ 2πfmm∆t)

+ cos(∆φ(t) + φd(∆t) +
πsD(t)

VπRF
+
πsD(∆t)

VπRF
+ 2πfmmt+ 2πfmm∆t)

+ cos(φ1(t)− φ2(∆t) + φd(∆t) +
πsD(t)

VπRF
+ 2f2τ1π +

πsD(∆t)

VπRF
+

2πfmmt+ 2πfmm∆t)

+
1

2
cos(2φd(∆t) + 2

πsD(∆t)

VπRF
+ 4πfmm∆t) (A.2)
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After lowpass filtering, the baseband signal before sampling Y2(t) will be

Y2(t) ∝ 2 + cos(∆φ(t)− φ1(t) + φ2(∆t)− 2πf2τ1)

+ cos(∆φ(t) + φ2(t)− φ1(∆t) +
πsD(t)

VπRF
+ 2πf1τ1 −

πsD(∆t)

VπRF
)

+ cos(φ1(t)− φ2(∆t) + φ2(t)− φ1(∆t) +
πsD(t)

VπRF
+ 2πf2τ1 + 2πf1τ1 −

πsD(∆t)

VπRF
)

+ cos(∆φ(t)− φd(∆t) +
πsD(t)

VπRF
− πsD(∆t)

VπRF
+ 2πfmmt− 2πfmm∆t)

+ cos(φ1(t)− φ2(∆t)− φd(∆t) +
πsD(t)

VπRF
+ 2f2τ1π −

πsD(∆t)

VπRF
+

2πfmmt− 2πfmm∆t)

+ cos(φ2(t)− φ1(∆t) + φd(∆t) + 2f1τ1π − 2πfmmt+ 2πfmm∆t)

∝ 2 + cos(∆φ(t)− φ1(t) + φ2(∆t)− 2πf2τ1)

+ cos(∆φ(t) + φ2(t)− φ1(∆t) +
πsD(t)

VπRF
+ 2πf1τ1 −

πsD(∆t)

VπRF
)

+ cos(φ1(t)− φ2(∆t) + φ2(t)− φ1(∆t) +
πsD(t)

VπRF
+ 2πf2τ1 + 2πf1τ1 −

πsD(∆t)

VπRF
)

+ cos(∆φ(t)− φd(∆t) +
πsD(t)

VπRF
− πsD(∆t)

VπRF
+ 2πfmmτ1)

+ cos(φ1(t)− φ2(∆t)− φd(∆t) +
πsD(t)

VπRF
+ 2f2τ1π −

πsD(∆t)

VπRF
+

2πfmmτ1)

+ cos(φ2(t)− φ1(∆t) + φd(∆t) + 2f1τ1π − 2πfmmτ1) (A.3)
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[218] D. Côté, “Using machine learning in communication networks [invited],”

IEEE/OSA Journal of Optical Communications and Networking, vol. 10, pp.

D100–D109, 2018.

[219] F. B. Mismar and B. Evans, “Deep learning in downlink coordinated multipoint

in new radio heterogeneous networks,” IEEE Wireless Communications Letters,

vol. 8, pp. 1040–1043, 2019.



Deep Learning based Phase Noise Tolerant Millimeter-wave RoF Receiver 157

[220] M. Elkourdi, A. Mazin, and R. Gitlin, “Performance analysis for virtual-cell based

comp 5g networks using deep recurrent neural nets,” 2019 Wireless Telecommu-

nications Symposium (WTS), pp. 1–6, 2019.

[221] M. K. Müller, F. Ademaj, T. Dittrich, A. Fastenbauer, B. R. Elbal, A. Nabavi,

L. Nagel, S. Schwarz, and M. Rupp, “Flexible multi-node simulation of cellular mo-

bile communications: the Vienna 5G System Level Simulator,” EURASIP Journal

on Wireless Communications and Networking, vol. 2018, no. 1, p. 17, Sep. 2018.

[222] 3GPP, “Technical specification group radio access network; evolved universal ter-

restrial radio access; physical channel and modulation (release 16),” 3rd Genera-

tion Partnership Project (3GPP), Tech. Rep. TS 36.211, 2020, version 16.3.0.

[223] D. M. Harris and S. L. Harris, Sequential Logic Design. Massachusetts, United

States: Kaufmann, 2013, ch. Digital Design and Computer Architecture, pp. 108–

171.

[224] H. S. Hippert, C. E. Pedreira, and R. Souza, “Neural networks for short-term load

forecasting: a review and evaluation,” IEEE Transactions on Power Systems,

vol. 16, pp. 44–55, 2001.

[225] S. Skansi, Introduction to Deep Learning. Berlin: Springer, 2018, ch. Feedforward

Neural Networks, pp. 79–105.

[226] S. Abirami and P. Chitra, Advances in Computers. Amsterdam: Elsevier, 2019,

ch. Energy-efficient edge based real-time healthcare support system, pp. 339–368.

[227] H. Iba and N. Noman, Deep Neural Evolution. Berlin: Springer, 2020.

[228] A. Semenov, V. Boginski, and E. L. Pasiliao, Neural Networks with Multidimen-

sional Cross-Entropy Loss Functions. Berlin: Springer, 2019, ch. Computational

Data and Social Networks, pp. 57–62.

[229] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, pp. 1735–80, 12 1997.

[230] A. Graves, “Generating sequences with recurrent neural networks,” ArXiv, vol.

abs/1308.0850, 2013.

[231] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirec-

tional lstm and other neural network architectures,” Neural networks : the official

journal of the International Neural Network Society, vol. 18 5-6, pp. 602–10, 2005.

[232] S. Hochreiter and J. Schmidhuber, “Lstm can solve hard long time lag problems,”

01 1996, pp. 473–479.



Deep Learning based Phase Noise Tolerant Millimeter-wave RoF Receiver 158
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[256] M. Sundermeyer, H. Ney, and R. Schlüter, “From feedforward to recurrent lstm

neural networks for language modeling,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 23, pp. 517–529, 2015.

[257] G. Gelly and J. Gauvain, “Optimization of rnn-based speech activity detection,”

IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, pp.

646–656, 2018.

https://github.com/keras-rl/keras-rl

	Abstract
	Declaration
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Research Focus
	1.2 Thesis Contribution
	1.3 Thesis Outline

	2 Millimeter-Wave Analog Radio-over-Fiber Centralized Radio Access Networks
	2.1 Introduction
	2.2 Millimeter-wave Characteristics, Standards and Regulation
	2.3 Analogue Radio-over-Fiber
	2.3.1 Optical Transmission Impairments
	2.3.2 Optical Tone Generation

	2.4 Coordinated Multipoint
	2.5 Deep Learning in Millimeter-Wave Radio-over-Fiber
	2.6 Conclusions

	3 Differential Encoding for Unlock Heterodyning Millimeter-wave Radio-over-Fiber
	3.1 Introduction
	3.2 Proposed DPSK Millimeter-wave Radio-over-Fiber Schemes
	3.2.1 Proposed Optical DPSK Scheme
	3.2.2 Optical Demodulated DPSK Scheme

	3.3 Conventional Phase Locked Optical DPSK Link
	3.4 Experiment and Results
	3.4.1 Simulation Setup
	3.4.2 Validation Test
	3.4.3 Comparison between Schemes

	3.5 Summary

	4 DQPSK Millimeter-wave Radio-over-Fiber
	4.1 Introduction
	4.2 Proposed Optical DQPSK Scheme
	4.3 Intermediate Frequency Radio-over-Fiber
	4.3.1 Unlock Heterodyned IF-RoF
	4.3.2 Remote Oscillator IF-RoF

	4.4 Experimental Results
	4.4.1 Simulation Setup
	4.4.2 Optical Carrier-to-Sideband Power
	4.4.3 Comparison between the proposed scheme and IF-RoF schemes

	4.5 Summary

	5 Deep Learning based Coordinated Multipoint
	5.1 Introduction
	5.2 Proposed Deep Learning Algorithm based Centrally Managed Millimeter-wave CoMP
	5.2.1 Link Model
	5.2.2 Data Generation
	5.2.3 Deep Learning based CoMP
	5.2.3.1 Input and Label Generation
	5.2.3.2 Multilayer Perceptron (MLP)
	5.2.3.3 Long-Short Term Memory (LSTM)

	5.2.4 Deep Reinforcement Learning Based CoMP

	5.3 Experiment and Results
	5.3.1 Dataset
	5.3.2 Experimental Setup
	5.3.3 Deep Learning Algorithm as a Trigger (AP1)
	5.3.4 Selecting Base Station for Joint Downlink CoMP (AP2)
	5.3.5 Providing Possible Base Station Options for Joint Downlink CoMP (AP3)
	5.3.6 Computational Cost

	5.4 Summary

	6 Deep Learning based Phase Noise Tolerant Millimeter-wave Radio-over-Fiber Receiver
	6.1 Introduction
	6.2 Proposed Deep Learning based RoF Receivers
	6.2.1 Oscillator based receiver on IF-RoF
	6.2.2 Deep learning based direct detection (DLDD)
	6.2.2.1 Denoising Autoencoder (DAE)
	6.2.2.2 Variational Autoencoder (VAE)

	6.2.3 Deep learning based detection with reference tone (DLD-RT)

	6.3 Experiments
	6.3.1 Data Generation
	6.3.2 Experimental Setup
	6.3.3 Results for Deep Learning based Direct Detection (DLDD)
	6.3.4 Results for Deep Learning based Detection with Reference Tone (DLD-RT)

	6.4 Conclusions

	7 Conclusions and Future Works
	7.1 Future Research

	A Theoretical Analysis
	A.1 Optical Demodulated DPSK Link (Scheme B)

	Bibliography

