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Abstract 

This dissertation is being published during an extraordinary time, under the shadow of the 

worldwide spread of COVID-19, with the world hoping for vaccines that would allow us to 

breath freely again, to give us back our freedom to move, to emerge from lockdowns, fear and 

frustration. Although vaccine manufacturers are being careful to put vaccines through well-

established testing processes, there are new vaccine technologies on trial and there is an intense 

public health and political pressure to bring them to market. It is inevitable that as vaccines are 

disseminated to the general population there will be reports of adverse health-related events in 

relation to vaccine distributions, some of which will be genuine vaccine reactions, either 

expected or untoward. It is vital that reports of adverse events are continually monitored to help 

ensure a rapid response to any emerging issues with vaccine safety and effectiveness.  

Traditional monitoring for Adverse Events Following Immunisation (AEFI) relies on 

various established reporting systems, where there is inevitably a lag between an adverse event 

following a vaccine and the reporting of it, and subsequent processing of reports. Therefore, it 

is desirable to try and detect AEFI earlier, ideally close to real-time, and monitoring social 

media data holds promise as a resource for this. However, social media users relaying 

experiences of adverse events following vaccination are difficult to detect – there is an 

overwhelming amount of other vaccine and virus-related conversations swamping social media 

platforms. This research is dedicated to proving that useful Vaccine Adverse Event Mentions 

(VAEM) can be detected in social media, using Twitter as a data source, and applying natural 

language processing techniques to successively filter out unwanted messages to bring VAEM 

to light.  

This research has developed a VAEM-Mine method that combines two stages of topic 

modelling with classification to extract around 90% of all VAEM posts from a Twitter stream, 

with a high degree of confidence. This is a significant achievement, as VAEM posts constitute 

less than 2% of all vaccine-related Twitter posts. The research also presents a taxonomy of 

vaccine-related Twitter posts, datasets of VAEM Twitter posts and detailed reporting on the 

most effective approaches to topic modelling and to classification of extracted posts, in relation 

to varying data volumes. This work provides a methodological foundation for potential near-

real time monitoring of social media VAEM to augment existing signal detection systems, 

maximising the ability to detect unsafe vaccines rapidly.  
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1 Introduction 

Vaccinations are one of the main components of public health programs and have significantly 

contributed to reducing mortality and morbidity rates of communicable diseases. At the time 

of completing this thesis the importance of vaccines is highlighted more than ever, as the world 

combats the COVID-19 pandemic. Vaccine uptake must be as complete as possible for 

effective disease prevention, with vaccinations of vulnerable children being a key feature of a 

vaccinated population. The safety of vaccines is vital, both for vaccine recipients and for public 

trust and confidence in vaccine programs (Jacobson et al., 2001). Monitoring for vaccine 

reactions is a key component of ensuring vaccine safety.  

Social media is increasingly becoming an additional source for health-related information, 

including disease, drug and vaccine-related reaction mentions. Social media monitoring for 

disease surveillance has been widely researched and proved useful in many areas including: 

tracking trends, early detection, forecasting, understanding transmission patterns, situational 

awareness, and discovering correlates of disease (Paul & Dredze, 2017). Vaccine-related social 

media monitoring offers the possibility of gaining early insights into vaccine safety issues 

through observing increased discussions by individuals experiencing vaccine reactions. 

This thesis seeks to establish the usefulness of social media for vaccine safety monitoring 

by applying current natural language and machine learning technologies to the task of detecting 

and extracting vaccine adverse reaction mentions from the enormous volume of other vaccine-

related social media discourse. 

1.1 Vaccines and vaccine safety 

Continued acceptance of vaccination programs is vital. WHO defines vaccine hesitancy as “ the 

reluctance or refusal to vaccinate despite the availability of vaccines” and declares it  as one of 

ten threats to global health (WHO, 2019). When most of the population have immunity against 

a contagious disease then the chance for an outbreak of the disease is minimized or even 

eliminated due to “herd immunity”. Vaccines are developed to help us to achieve immunity 

without having to go through the suffering and attrition of developing natural immunity through 

the ravages of an epidemic or pandemic. Therefore, public confidence in the safety and 

effectiveness of vaccines is necessary for general uptake, though additionally some form of 

mandatory vaccination is often considered  (Hardt et al., 2013). Mandatory vaccination 
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programs are broadly defined as vaccinations that every child must receive by law and can vary 

from soft/flexible to hard/inflexible (MacDonald et al., 2018). An example of inflexible law is  

the “No jab no pay” national and “No jab-no play” state legislation in Australia (Abbott & 

Morrison, 2015; National centre of Immunization, 2017), where financial penalties or social 

restrictions pertain for non-compliance. 

Public concerns over vaccine safety are ironically highlighted because of the great success 

of vaccines, the dreadful diseases of the past that are prevented by vaccines are no longer 

generally experienced by the population. Except in countries still battling epidemics, and until 

the experience of the current coronavirus pandemic for everyone else, an appreciation of what 

vaccines are protecting us against has waned. Consequently, people have focused their 

attention on vaccines themselves, and especially on their safety (Larson et al., 2011). Media 

reports of reactions or side-effects following vaccinations can quickly lower trust in a vaccine 

and ultimately affect its acceptance and uptake, particularly when these reports concern 

children and are sensationalized. If the vaccine in question is for a major disease, then lower 

uptake could result in a resurgence of the disease (Lantos et al., 2010); or in the case of a new 

disease like COVID-19, fail to achieve vaccine-enabled herd immunity.  

Vaccine authorities name an untoward medical effect after receiving a vaccine as an Adverse 

Event Following Immunization (AEFI), or more simply as an “adverse event” — see Section 

2.2.1 for a full definition. There is no implicit causality or required level of severity in an AEFI, 

it is essentially to take note of anything relating to an individual’s health in the context of a 

recent immunization. Noting and investigating AEFI is a key component in monitoring vaccine 

safety.  

To ensure that vaccines are safe and effective, it is of utmost importance that vaccines are 

manufactured and produced safely, and that they are thoroughly tested and proved to be safe 

and efficacious before distribution. To this end, a pre-licensure process takes place where 

vaccines go through three trial phases, where commonly encountered and mostly mild and 

temporary adverse events are documented, and vaccine efficacy is established (Salmon & 

Halsey, 2016). Due to the adherence to high safety standards, serious adverse events are rare 

and so not generally encountered until a vaccination has been implemented within a population 

generally (Council for International Organizations of Medical Sciences & WHO, 2012). 

Distribution and application of vaccines to target populations requires a number of ongoing 

safety-oriented measures, starting with correct transport and storage (usually refrigerated), and 

proper administration with sterile equipment — failures in these areas have resulted in great 

harm (Evans et al., 2016). Additionally, there needs to be ongoing monitoring for untoward 
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side-effects from a vaccine, particularly for a pattern that may indicate a previously unknown 

issue with a vaccine, or issues with local handling and administration of a vaccine.  

Most detection of vaccine problems is based on noting an increased incidence of reporting 

of an adverse event compared with the “normal background rate” of the event, the increased 

incidence is described as a “vaccine safety signal”. Therefore, timely data collection and 

analysis are essential for detecting any issues that may arise after a vaccine has been 

administered generally, and it is vital to look at these vaccine safety signals from as many 

sources as possible (Crawford et al., 2014).  

1.2 Social media monitoring 

Traditional reporting is seldom patient-driven, the average person does not actively seek to 

communicate information about a health issue via an established reporting system, instead they 

go to their doctor for advice and help, and it is the doctor’s choice to report any issues that are 

notifiable or they feel are noteworthy, which requires additional actions by the doctor (O’Shea, 

2017). However, a visit to a health professional is not always possible, or even if possible is 

not necessarily the first point of contact, people these days are inclined to consult with the 

internet, looking for and sharing information outside of any traditional reporting systems 

(Gualtieri, 2009; Tan & Goonawardene, 2017). Data resulting from these online activities is 

labelled “user generated” in the health data domain, and is a potentially valuable source for 

health studies, and increasingly a component of surveillance systems.  

Monitoring of social media and user-generated data on the web enables timely and 

inexpensive gathering of much more information than can be accessed through traditional 

health reporting systems. The collective experiences and opinions shared by social media users, 

although not something a health system can respond to individually, are an easily accessible 

wide-ranging data source for tracking emerging trends — which might be unavailable or less 

noticeable in data gathered by traditional reporting systems. 

Natural Language Processing (NLP) techniques are essential in social media monitoring, as 

the enormous amounts of data that are captured can only be handled effectively by computers. 

NLP is the use of computing-based technologies to understand language and is a very active 

area of artificial intelligence research. NLP encompasses a range of machine learning tools, 

including topic modelling to discover the semantic meaning or topics of texts, and increasingly 

uses powerful neural network-based technology to understand, translate, and generate text and 

speech — an approach known as deep learning. Recent years have seen major advances in 

these technologies, so that every year a new state-of-the-art improvement is announced and 
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made available by the research laboratories of major organizations and universities like Google, 

Facebook, OpenAI, Stanford, and the Allen Institute for Artificial Intelligence.  

1.3 Vaccine adverse event mentions 

Vaccines belong to the broad category of medicine, but in a subcategory known as 

“biologicals”  (Milstien et al., 2015). Unlike drugs that are prescribed to limited populations as 

a course of treatment for a disease, vaccines are given to both healthy and vulnerable 

populations at large, sometimes over a short period of time, to enhance their immune systems’ 

ability to combat a pathogen. In contrast to those who are taking a drug to help to cure a disease 

or to treat unwanted symptoms, most people receiving a vaccine are not ill. Therefore, there is 

a deferred individual benefit to taking a vaccine, and consequently a very low acceptance of 

risk regarding vaccines (Budhiraja & Akinapelli, 2010). Additionally, the pathophysiology of 

vaccine adverse events is not as well defined as those of adverse drug reactions -  due to  

vaccine’s complex biological nature and interaction with the immune system,  a reaction caused 

by a vaccine could be caused by any of its multiple ingredients or even an error in 

administration (Almenoff et al., 2005). Added to these issues, as vaccines are administered to 

such a varied population, reactions may be exacerbated by unknown underlying conditions in 

vaccine recipients, compared with the specific groups targeted for traditional drug therapies. 

Furthermore, a vaccine’s “time to market” may be curtailed such as has occurred in the 

COVID-19 pandemic, and not provide opportunities for studying potential vaccine side effects 

over a large population for a long time.   

Therefore, vaccines require a different emphasis in their safety surveillance, and monitoring 

for minor reactions is potentially just as important as surveillance for severe adverse events, as 

minor AEFI may act as a surrogate warning for more sever sequelae (such as increased rates 

of fever may be a marker for increased febrile seizures (Mesfin et al., 2020)), and may also 

play a major role in affecting vaccine confidence (Di Pasquale et al., 2016). Increased 

incidences of minor events could indicate larger problems and could ultimately affect public 

perception and acceptance of vaccines, and result in the failure of a vaccine program.  

Vaccine pharmacovigilance is considered to be different from pharmacovigilance of other 

medications and has specialized regulatory guidelines and surveillance systems around the 

world; examples include the US Vaccine Adverse Event Reporting System (VAERS)  (Chen 

et al., 1994) in the United States  and Surveillance of Adverse Events In the Community 

(SAEFVIC) (Clothier et al., 2011) in Australia. Vaccine surveillance systems’ objectives are 

to monitor unexpected, rare and late-onset events and to observe changes in the rate of known 
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and expected events. This research seeks to determine if social media monitoring can assist 

with the latter goal, because, as stated by  Clothier et al. (2019): “While rare but particularly 

serious events can be detected through review of each individual report or active surveillance, 

an increased incidence in a more common AEFI is often more difficult to detect, and has been 

described as akin to ‘finding a needle in the haystack’”.  

The term “Vaccine Adverse Event Mention” (VAEM) is used in this research to refer to 

social media posts that mention vaccine adverse events, no matter their severity or specificity 

or proven association with a particular vaccine. This distinguishes VAEM from formal AEFI 

reporting, and what are typically thought of as being severe adverse vaccine events, or drug 

reactions for that matter. Which is to say, VAEM are conversations, ideally gathered in volume, 

that contain information that might be those common AEFI that are so elusive to traditional 

reporting. 

1.4 Problem Statement 

Spontaneous passive reporting systems, where predominantly health professionals log data 

about adverse events they have observed, have been in place in many countries for decades — 

but even so, significant incidents may not be reported on in a timely manner (Armstrong et al., 

2011). For instance there were serious delays in reporting reactions to the TGA during the 2010 

flu vaccine in Australia, a subsequent ministerial review criticised the existing processes as 

contributing to delays in cancelling the vaccine program, and made recommendations about 

improving them (Stokes, 2010). Spontaneous reporting systems often suffer from 

underreporting and lag between the occurrence of the issues and the time it becomes known by 

the authorities (Isaacs et al., 2005). The Australian Immunization Handbook states that vaccine 

providers should use their clinical judgment when deciding to report an event (After 

vaccination | The Australian Immunisation Handbook, 2021). Consequently, the existing 

reporting system is potentially filtering out AEFI that individual practitioners decide not to 

report. Parrella et al. (2013) studied Australian healthcare providers’ knowledge and the 

challenges of AEFI reporting concluded that reporting is infrequent and depends on their 

perception of what constitutes a reportable AEFI, with additional barriers of lack of time and 

knowledge about reporting processes. For instance, the study found that Paediatric Emergency 

Department consultants, overall, would only report severe, “life-threatening” events. Apart 

from potential underreporting by health professionals, Mesfin et al. (2020)  point out that 

reporting on AEFI that occur after a patient has gone home depends on patients or their 

caregivers returning to the clinic or visiting an emergency department or hospital. Without such 
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a visit, less severe AEFI are unlikely to be captured. Their study suggests that “AEFI-related 

calls” from telephone-based triage systems, such as the Nurse-On-Call (NOC) system, offers 

opportunities for additional near real–time syndromic surveillance of AEFI, with the potential 

to identify sever AEFI signals earlier. 

In conclusion, it is desirable to try and detect a wider range of adverse events, and ideally 

close to real-time. This research seeks to establish if social media can usefully contribute to 

early detection of a broader range of vaccine adverse events, by first confirming that social 

media posts can contain textual information that is interpretable as AEFI, and what effective 

techniques can be used to isolate such posts.  

Extensive use of social media has provided a platform for sharing and seeking health-related 

information. Social media monitoring of health-related conversations offers a separate source 

of information that can be used to supplement and corroborate health-related signals coming 

from established health reporting systems. Real-time monitoring of social media discussions 

about health-related issues opens the possibility of early warning detection of emerging health 

crises (Steele, 2011).  

However, there are numerous challenges in filtering and interpreting the immense volume 

of social media data for true signals of current health issues, and for this study, vaccine-related 

adverse event mentions. The challenges encountered when filtering largely stem from the 

disparity between the huge volume of social media data and difficulties in extracting relevant 

information from it. Difficulties encountered in interpretation are due to the informal language 

and structure of social media posts.  

Even within the context of formally established health-related reporting systems 

(Spontaneous Reporting Systems - SRS), the characteristics of self-reporting about health 

problems by lay people are quite different from reporting by health professionals, and a topic 

of ongoing analysis for reliable information (Krska et al., 2011). Self-reporting in the context 

of social media conversations is by contrast a completely unstructured information source and 

it is not clear yet how it can best be utilized. 

In the health domain professionals use formal reporting methods and a more agreed upon 

vocabulary, and data is often in a structured form. Where clinical notes exist as free text, then 

there are difficulties in extracting codified meanings from them, and this is a current research 

problem (Yadav et al., 2018), but the text usually exists in a reliable database and often contains 

common terms that are amenable to codification using rule and machine-learning based natural 

language processing (Khademi et al., 2015). To reiterate, social media conversations on the 
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other hand are extremely widespread and wide ranging, so there are challenges in both finding 

potentially relevant data and in interpreting it to see if it is useful.  

There are various challenges involved in finding potentially relevant data in social media 

posts: 

● There are many different forums for people to discuss their concerns, and these in turn 

are based on different technologies (e.g., Twitter, Facebook, Reddit). That is, data is 

not readily accessible from just a few well understood sources, as it is with a known 

system like a health-care database. 

● Social media forums evolve, new platforms emerge, favourites appear and disappear 

— these in turn are centred around different demographics. For instance, Snapchat and 

Instagram may be favoured by teenagers but Facebook might be preferred by their 

mothers. Geographical variations also exist, for instance WeChat and Qzone are 

Chinese-specific messaging and social media applications. Therefore, social media 

surveillance strategies must be continuously adjusted to account for a dynamic social 

media landscape. 

● Terms that may have a specific meaning in a health-care context may be used in other 

contexts with a completely different meaning or application, and these can provide false 

signals. For example, from the vaccine-related field the term MMR stands for “Measles, 

Mumps and Rubella” and used to refer to the triple combination vaccine for these 

diseases. In a health-care database it can be safely assumed that the use of MMR is 

regarding the vaccine, but on-line gaming communities use MMR as an acronym for 

“Match Making Rating” and MMR is possibly used online more often in the gaming 

context. The words virus and viral have completely different applications outside of 

health-care, virus is used to describe malicious software and viral can refer to marketing 

techniques or the popularity of a rapidly emerging internet-based meme. 

● Beside the problem of the polysemous nature of recognised terms, people discussing 

their health issues are not necessarily going to use them. For instance, a mother may 

refer to her daughter’s reaction to a first MMR vaccine as “DD really sick and rashy 

with her 1 YO jab”. However, some of these terms have many other meanings: “DD” 

is commonly used as here for “darling daughter”, but can also be used for “direct 

download”, “direct debit”, “disk drive” etc. “Sick” can be an affirmation that something 

is really great, and a “rashy” is a type of summer protective clothing! Besides “year 

old”, YO can mean “your” or “hi”; and “jab” is used in countless contexts.  
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● There are no dictionaries containing all the possible variation of medical concepts. 

Therefore, simply searching for the colloquial equivalents of terms of interest is likely 

to lead to an overload of bogus noise; however, searching for terms that are only used 

in a medical context is likely to somewhat limit conversations to those coming from 

health-professionals, which for the study of emerging trends is not a broad enough 

search scope. Non-technical terms used to discuss health issues are described as being 

“consumer expressions” in contrast to the recognized professional terms use by health 

professionals (Farzindar & Inkpen, 2015), and they seldom find their way into 

dictionaries and corpuses of recognized medical terms that would normally be used as 

the basis for pattern matching with medical notes.  

● Traditional NLP tools such as part-of-speech taggers, parsers and lexicons may be 

insufficient to successfully classify social media conversations (Sarker et al., 2015). A 

traditional approach may be too complex to formulate and maintain, due to the variation 

in the language of social media. On the other hand, using automated approaches require 

large volume of examples containing the variations of language used. 

● Finding relevant health signals from social media text is more complicated than using 

other sources of data such as healthcare or medical data. There are no formal structures 

in the texts where a mention of a specific vaccine reaction is interpretable as a potential 

safety signal, instead there are numerous wildly different discussions and articles about 

vaccines in social media. Many of these might be mined for sentiment and opinions, 

but for texts to be considered as potentially useful for safety signal detection they should 

either indicate that a recent vaccine may be seriously affecting an individual’s health; 

or more likely, that there is an increased incidence of reporting of expected reaction-

mentions in relation to a vaccine program.  

● When machine learning approaches are used to classify data there usually needs to be 

a corpus of labelled data for the learning process. Labelling is a challenge when dealing 

with social media conversations: language is highly varied and useful text may be 

buried in irrelevant surrounding conversation (Cocos et al., 2017). Labelling may 

require preparatory tasks which themselves involve language processing. 

In summary, vaccine safety surveillance is enhanced by responsive reporting, and there is a 

possibility of obtaining near real-time vaccine adverse event mentions through social media 

streaming data, provided the numerous challenges in obtaining clear adverse event mentions 

can be overcome. 
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1.5 Research aims and objectives  

The inspiration and aim for this study are to contribute to research on vaccine safety 

surveillance. This was motivated by a leading Australian vaccine expert’s request to investigate 

whether social media streams might contain useful vaccine adverse event mentions, that could 

potentially contribute to earlier detection of emerging issues with vaccines, that might 

constitute a “safety signal”. The importance of this is described earlier in the problem 

statement: the earlier that safety signals can be detected then the greater the opportunity to act 

to prevent harm. The remit was to thoroughly explore, understand and document the problem 

and solutions of how to obtain vaccine adverse event mentions. Ideally, solutions should apply 

established techniques that would be accessible and utilizable by vaccine safety monitoring 

authorities such as the Therapeutic Goods Administration (TGA) and the Adverse Events 

Following Immunisation – Clinical Assessment Network (AEFI-CAN).  

The key objective of the study is to develop and describe an understanding of how to 

differentiate vaccine adverse events mentions from the myriad of other conversations that 

mention vaccinations or personal health issues. It was theorised by the author that the kind of 

language used by people describing personally experienced vaccine-related health issues would 

be distinguishable from people discussing vaccines in general, from anti/pro-vaccine 

arguments, from news articles about vaccination, and from other personal health mentions and 

of course, unrelated texts. The research set out to empirically verify this supposition using 

existing modern natural language processing techniques, aiming to combine commonly 

understood practices to create an effective method for detecting vaccine adverse event 

mentions from social media. The research also intended to thoroughly explore and document 

the problem and solution domain.  

The following research questions were proposed and addressed in this doctoral project: 

1.5.1 Research questions 

The aim of the research was to determine if social media surveillance could assist with 

detection of vaccine safety signals. We sought to answer the following questions: 

RQ1 — What effective techniques can be utilized for identifying posts containing vaccine 

adverse event mentions (VAEM)? 

RQ2 — How can a comprehensive dataset be assembled and labelled which will enable both 

this research and further research into vaccine discourse in social media? 
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RQ3 — What taxonomy of vaccine-related Twitter posts can be derived to assist with 

analysis of Twitter conversations regarding vaccines? 

Relevant posts (VAEM) are differentiated from commentary and voicing of opinions 

relating to vaccines and are describing personal or familial health events following vaccination. 

1.5.2 Research design 

This research proposed, developed, and validated approaches to answer these questions, 

following a prescribed but dynamically evolving research design:  

1. The design firstly consisted of exploring and defining the problem and solution domain 

by reviewing the literature around vaccine safety surveillance, the challenges in using 

social media in public health surveillance, and social media mining techniques. This 

flowed into experimental exploration of and training in the various technologies, 

especially in machine learning and deep learning — enough to apply them practically 

to solving the problems of the research. Where needed a domain expert and machine 

learning and NLP experts were consulted for their theoretical and practical help. These 

steps were foundational for answering the research questions. 

2. Vaccine-related Twitter data was collected, applying insights obtained from the 

literature review; through studying the use of the Twitter API; and from data 

exploration, including the assessment of data published by research laboratories and 

from pre-existing social media data.  

3. Data collection and experiments on the data were conducted in two phases. This 

enabled evaluation of the techniques. The first phase of data collection gathered 6 

months of data and was used to develop a topic modelling approach, the second phase 

added a further 6 months of data, which was used to evaluate the trained topic models 

when applied to a new dataset. Classifiers were able to be assessed with 6 months of 

data and reassessed with a year’s amount of data, thus allowing their performance to be 

measured relative to data quantity. These measurements were essential for 

understanding the effectiveness of the techniques and data importance.   

4. Topic models were assessed to understand the semantic themes of the data. This led to 

the identification of texts that include vaccine adverse event mentions, but also a 

realization that the intrinsic scoring techniques of the various models were insufficient 

for the task of identifying the configuration needed for the ideal of gathering VAEM 

into one topic, or for comparing models. A scoring system based on labelling a small 

number of records was developed and proved to be highly successful for tracking when 
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VAEM-containing texts are focused into a topic. A vaccine-related taxonomy was 

developed using the topics suggested by the topic models. Data from the best 

performing topic model was extracted and labelled for classification. 

5. An extensive range of classifiers were trained and compared on the labelled data, and 

this was performed twice — first on data collected over 6 months, then expanded to a 

larger dataset collecting for a year. This approach enabled the research to measure the 

suitability of classifiers in relation to data size, which turned out to be a significant 

effect. The models assessed include the most powerful deep learning models at the time, 

which use a “Transformer” architecture. 

6. A method, named VAEM-Mine, was designed for extracting vaccine adverse event 

mentions from Twitter data — it encapsulated the workflow and techniques required to 

combine the most effective of the processes for extracting vaccine adverse event 

mentions from Twitter data. The method is applicable to any similar requirement and 

data. 

7. All these steps were thoroughly documented, with the goal of sharing the insights 

gained during the research and to allow for reproducible research, especially regarding 

how to practically mine vaccine adverse event mentions from social media. 

1.6 Research contribution 

The motivation and aim of the research were to contribute to vaccine safety surveillance, by 

research results which focus on the role of social media in earlier detection of potential vaccine 

safety signals. The research first needed to answer whether vaccine adverse event mentions can 

be reliably detected in social media streams, and if so then to deliver information about 

effective techniques for vaccine adverse event mention detection, accompanied by a vaccine-

related dataset and a vaccine taxonomy. This study confirmed that social media can be used as 

a source for vaccine safety surveillance, by proving that Twitter posts can be effectively mined 

for vaccine adverse event mentions.  

This research can be described as the confluence of the needs of Immunisation Research 

and Surveillance (IRS) organizations, and the available infrastructure and knowledgebase. The 

research adds to prescriptive knowledge as it thoroughly explores and describes the challenges 

and solutions involved in detecting vaccine adverse event mentions in social media. Further, 

the research contributes a highly effective method for identifying vaccine adverse event 

mentions from the vast majority of other vaccine-related posts. The proposed VAEM-Mine 

method is comprehensive, efficient, easily implementable, and generally applicable to any 
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similar problem of identifying personal health mentions based on the types of language used 

in them.  

The contributions made by this research are: 

1. A very positive affirmation that social media surveillance can assist with vaccine safety 

signal detection. The research finds that combinations of readily available NLP tools 

can be used to extract almost all vaccine adverse event mentions from Twitter data, 

while eliminating irrelevant posts. The extracted data has been confirmed as fit for the 

purpose of safety signal detection by an expert’s analysis and by a comparative trend 

study.  The techniques used are applicable to any social media platform. The research 

confirms that social media can become a valuable complementary source for vaccine 

safety signal monitoring, to help address the deficiencies of timeliness and under-

reporting of passive reporting systems. 

2. The research provides explanations of the use of the NLP technologies that have been 

most successful in isolating vaccine adverse event mentions, to answer the first research 

question. Crucially, this includes describing a highly effective and easily 

implementable method for identifying the best performing topic models for the specific 

task of identifying almost all relevant VAEM posts, and the subsequent use of the 

current best deep learning models to then refine the extracted data.  

3. The topic modelling phase excluded many vaccine-related tweets and produced data 

that was either VAEM or like VAEM (personal health mentions and discussions), 

which collectively can be characterized as “VAEM-like”. These were labelled for 

classification, resulting in a balanced labelled dataset of 20,777 tweets and a larger 

labelled but imbalanced dataset of 83,891 tweets. These datasets can be shared under 

Twitter licensing conditions and satisfy the second research question regarding a 

comprehensive dataset. 

4. A taxonomy of vaccine-related Twitter posts, and so answering the third research 

question. The taxonomy will facilitate understanding the type of vaccine-related 

discussions on Twitter. The social media posts investigated by the research are 

evaluated against the taxonomy to determine what kinds of posts predominate.  This 

will aid understanding of the usefulness of social media for research into a range of 

vaccine-related subjects. 

5. In technical terms, the research describes:  
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o The method used to identify vaccine adverse event mentions, which has two 

phases, a topic modelling process followed by classification. The most effective 

topic models were determined using F1-scoring over a small number of labelled 

posts. The scoring approach was a key part of the success of the topic modelling 

and worked by ascertaining when topic models were most effective at including 

VAEM into one topic. Identifying the effectiveness of the topic modelling 

scoring approach, and the techniques employed to use it, are important 

contributions of the research. 

o A significant capability by the VAEM-Mine method to successively isolate 

vaccine adverse event mentions from the massive amount of other vaccine-

related Twitter posts. The topic modelling phase was able to isolate up to 99% 

of the Twitter posts which contained VAEM. This was just 1.1% of the original 

data, thereby eliminating 98.9% of irrelevant posts. A second stage of topic 

modelling proved to be effective at further isolating VAEM from this dataset, 

but ultimately the classification phase was able to identify VAEM with an F1-

Score of 0.91.  

o Detailed reporting and comparisons on a range of classification models, from 

standard machine learning models, to custom rule-based approaches, through to 

deep neural (deep learning) networks. Their effectiveness was measured against 

different sized datasets, emulating data sizes that are likely to be available to 

other researchers. Therefore, insights into relative model effectiveness vs data 

size will be useful to other researchers wanting to use commonly available 

techniques. The research observes that the most powerful deep learning models 

only excel when given more data, which is well known, but the research 

quantifies and compares results to give a concrete understanding about the data 

needs of the range of models.   

Additionally, the research offers observations into the data collected and its potential utility. 

It was found that Twitter posts regarding potential reactions following vaccination, although 

incredibly varied in language, were consistent in nature, being personal complaints of usually 

common side-effects following a recent vaccination. These were confirmed as the expected 

data by the domain expert. It became clear that the usefulness of social media for detecting 

potential vaccine safety signals depends on being able to reliably collect most of these posts, 

so that trends can be detected in changing volumes of vaccine adverse event mentions. Specific 

descriptions of unusual adverse events were vanishingly small and a targeted detection of them 
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was not considered to be a useful direction to take. However, it should be noted that by reliably 

collecting most of the AEFI-related social media posts, detection of rare rapid-onset events can 

be also considered. Evaluation of the usefulness of vaccine adverse event mentions for early 

detection of vaccine safety signals could be further performed by vaccine authorities — by 

examining the data; by testing and refining the method; and by using the method (or methods 

like it) to collect social media posts over an extended period, or for a specific purpose. 

1.7 Structure of the thesis 

The thesis is structured as follows: 

Chapter 1 – Introduction — Introduces the context of the research: the need for vaccines 

and the requirement for vaccine safety surveillance, and to exploit social media monitoring to 

assist with that surveillance. Includes the problem statement, research aims and objectives 

including the research questions and research design, which includes the need to determine 

effective techniques for detection of Vaccine Adverse Event Mentions (VAEM). Summarizes 

the research contributions. Finishes with a summary of the thesis structure.  

Chapter 2 – Background and Related Literature — Provides the background and the related 

literature around vaccine safety and its surveillance, the use of social media in public health 

monitoring and various automated Natural Language Processing (NLP) methods employed in 

the health-related surveillance domain. 

Chapter 3 – Research Design — Describes the research approach used to understand and 

analyse the problem and solution domain of social media for vaccine safety surveillance, then 

the NLP techniques that will be used to create a method for detecting VAEM. 

Chapter 4 – Data collection and preparation — Explains the data gathering process and 

various pre-processing techniques used to get the data ready to process via topic modelling. 

Then discusses the various datasets constructed over the two phases of data collection, starting 

with datasets that were processed through topic modelling, then the subsequent datasets that 

were used with classification. 

Chapter 5 – Topic modelling — Introduces topic modelling, including topic modelling 

scoring approaches. Describes the data preparation specific to topic modelling: lemmatization 

and vectorization etc. Discusses the two-stage topic modelling that applies a customized 
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scoring technique on a limited number of labelled records, to effectively identify and isolate 

vaccine adverse event mentions from a large amount of other vaccine-related Twitter posts. 

Shows the taxonomy that was derived from the topic models. Includes an evaluation of the 

effectiveness of the topic model scoring approach. 

Chapter 6 – Classification — illustrates the classification methods, including standard 

classifiers, a rule-based classifier, and various deep learning models, which were employed to 

increase the precision of isolating vaccine adverse event mention-containing posts. Two phases 

of data collection and the effects of data size on different classifiers’ performance are detailed, 

and the model scores are compared.  

Chapter 7 – Evaluation — presents various evaluations of the use of topic modelling and 

classification. Figures are used extensively to aid understanding of the research results. 

Chapter 8 – Discussion and Conclusion — Summarizes the research, including a more 

detailed description of how the research addressed the research questions. Describes the 

VAEM-Mine Method, which formalises the various processes that were used in this research as 

a method, which can be used to reproduce the research approach to similar problems. Explains 

the contribution, discusses the limitations and future research. 
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2 Literature Review 

2.1 Chapter overview 

Detection of vaccine safety signals depends on various established reporting systems, where 

there is inevitably a lag between an adverse reaction to a vaccine and subsequent reporting of 

it. With the advent of the internet, user-generated information on the web has become another 

source for vaccine-related data. This research endeavours to explore how social media 

surveillance can assist with detection of adverse vaccine reactions.  

This background chapter is made up of four sections:  

Vaccine safety — an explanation of the importance of vaccine safety; the stages of vaccine 

safety surveillance and how vaccine surveillance differs from monitoring of other medicines. 

The section concludes with an evaluation of the suitability of user-generated data, such as found 

in social media.  

Social media data sources for public health studies 

For public health studies, there are two major categories of social media platforms. General-

purpose domains such as Twitter, Facebook and Reddit; and domain-specific platforms such 

as PatientsLikeMe, DailyStrength and drugs-forum. The domain-specific social media forums 

provide data that focuses on specific health issues and interests. In contrast, general-purpose 

social media conversations cover a broad range of topics and are more suitable for discovering 

current trends and common subjects. Topics like the COVID-19 pandemic and vaccines in 

general are discussed by everyone and are well mentioned in general-purpose social media. 

Twitter, Facebook and Reddit are the most used social media sources for research in public 

health (Dol et al., 2019; Singh et al., 2020; Tang et al., 2018). The privacy and data sharing 

policy of these platforms impacts their popularity in research. Facebook, although the largest 

social network is very seldom used in research, mainly due to its strict privacy policies.  Reddit 

has been a source of data for public health studies — however, it is used a lot less than Twitter. 

Compared to Reddit, the frequency of information dissemination in Twitter is much higher, the 

interval between posts is measured in minutes rather than hours. Additionally, the short text 

requirements of tweets encourages focused conversations that use more prevalent terms (D. 

Choi et al., 2016).  According to Priya et al. (2019), tweets reduce the articulation of biased 

and extreme views, compared to Reddit posts. They also find that Twitter conversations can 

gather a greater momentum than Reddit posts, which can result in a news event being sustained 
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for much longer in Twitter, and that the spread, availability, and low inter-arrival times in 

Twitter posts make them very suitable for real-time monitoring, including emergencies.  

Amongst the general-purpose social media platforms Twitter is most widely used as an 

additional source of data in the pharmacovigilance domain and in public health research (Edo-

Osagie et al., 2020; Gupta & Katarya, 2020; Singh et al., 2020). Its real-time nature, high 

volume of messages and public availability makes it a suitable alternate source of data for 

surveillance of public health  (Lardon et al., 2018).  

Surveillance using social media — a review of the use of social media in health-related 

surveillance, particularly for disease surveillance, medication safety and personal-health 

mentions, and social media posts relating to vaccines and vaccinations. 

Social media data processing — describes data collection and text pre-processing, including 

the tokenization and vectorization of text data to prepare it for machine learning.  

Machine learning methods in text  — explanations of text classification and content 

analysis; supervised and unsupervised learning, topic modelling, deep learning and transfer 

learning. 

Each subsection finishes with a review and analysis of its main points, and the chapter 

concludes with a synthesis of the aspects of the literature review that are important for 

understanding the direction of this research. 

2.2 Vaccine safety 

High levels of vaccination uptake are required to effectively immunize a population. Vaccine 

safety is a key component of effective vaccine delivery, and the ongoing confidence needed 

for continued high levels of vaccine uptake (Chen, 1999). As high levels of immunization are 

achieved, the risk of contracting the diseases being vaccinated against diminishes, but the 

relatively small risks associated with vaccinations assume greater importance. A divergence 

emerges between individual and community risks vs benefits, and individuals only see the risks 

they are familiar with, those associated with vaccines (Salmon & Omer, 2006). Consequently, 

vaccine uptake may diminish, which in turn means that disease outbreaks may occur, and 

attention is again paid to the benefits of vaccination. This dynamic of initial vaccine uptake 

with accompanying disease suppression, followed by a loss of vaccine confidence and its 

ramifications, has been explained diagrammatically by Chen (1999) as depicted in Figure 1.  
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Figure 1: Potential stages in the evolution of an immunization program  

In addition to the growing perception of risks associated with traditional vaccines, new 

vaccines are being constantly developed for diseases which were not previously considered, 

such as annual influenza, rotavirus, hepatitis, meningococcal meningitis, and human 

papillomavirus. As a result, vaccines and vaccine schedules are becoming much more complex; 

consequently, the overall risk of vaccine-related reactions and illnesses increases, leading to a 

higher perception of risks (Vaccine history timeline, 2018). 

A greater awareness of and lower tolerance for the risks associated with vaccinations also 

accompanies changes in parenting approaches, where ideas about natural living, individual 

freedom and informed decision-making mean that parents are much more critical of anything 

that might risk their children’s health, and more willing to resist societal pressure (and 

legislation) to vaccinate (Freed et al., 2010). 

 There is a growing movement of those who are vaccine hesitant as perceptions of vaccine 

risks grow, and ideas such as the corruption of “big pharma” and the agendas of governments 

in relation to vaccines enter public discourse. This is particularly so as increasing numbers of 

vaccines are introduced, there are emerging opinions that children are being over-vaccinated, 

and not necessarily for their own good. 

Negative ideas and conversations about vaccine risks spread rapidly through media and 

social media (Larson et al., 2013),  but solid research that proves the effectiveness and safety 

of vaccines depends on scientific processes (Crawford et al., 2014) and cannot keep pace with 
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prevailing conjecture. This time lag between perception and evidence means there is much 

opportunity for the spread of misinformation regarding vaccines and vaccine safety. From the 

suburbs of any modern western city to bush clinics in remote settings, the use of media, social 

media, email, and cell phones results in rapid dissemination of negative news and “fake news” 

about vaccines, whereas countering this flood of negativity with good news about vaccines 

requires continuous medical and educational effort. 

Maximizing vaccine safety leads to a smaller number of safety issues, and a more confident 

uptake of vaccines, and reduces the risk of the impact of future vaccine controversies. Vaccine 

safety is relies upon rigorous compliance to development and manufacturing standards,  well 

conducted clinical trials,thorough assessment, licencing, control, and administration of 

vaccines. Vaccine safety surveillance is a vital component of safety effort, as it measures the 

effectiveness and safety of vaccines in the population at large (Chen et al., 2015). 

2.2.1 Surveillance definition 

Vaccine safety surveillance is inferred by observing rates of Adverse Events Following 

Immunization (AEFI). There is a standardized approach to describing AEFI, to enable 

scientific research and comparisons of AEFI data (Kohl et al., 2007). The World Health 

Organization (WHO) AEFI definition reads: 

“Adverse Event Following Immunization (AEFI): This is defined as any untoward medical 

occurrence which follows immunization, and which does not necessarily have a causal 

relationship with the use of the vaccine. The adverse event may be any unfavourable or 

unintended sign, an abnormal laboratory finding, a symptom or a disease.”  (WHO, 2013). 

As defined by the WHO, an AEFI could be any unfavourable reaction in a recipient, but 

also might be measured by abnormal laboratory findings, and longer-term results such as 

abnormal symptoms and diseases. As an example of long-term effects, almost 3 million 

Australian children were administered polio vaccines that were contaminated with a monkey 

virus in the 1960s, this has been linked to cancers in some of the recipients, particularly with 

mesothelioma (Cutrone et al., 2005). 

2.2.2 Vaccine safety assessment 

Vaccines are created from attenuated or dead viruses that induce the body to produce antibodies 

that protect against contracting the wild virus (Pulendran & Ahmed, 2011). Therefore, a range 

of mild and temporary reactions to a vaccine are expected: effects like swelling of an injection 
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site, a temperature, an upset stomach and the like. However, occasionally more severe AEFI 

can occur (Principi & Esposito, 2016). 

Vaccine safety is assessed before and after licensure, in fact throughout vaccine 

development. Extensive testing and review before licensure focuses on the key areas of safety, 

immunogenicity (the effectiveness of antigen-induced immune response), and efficacy (the 

potential for a vaccine to protect from disease), culminating in three phases of clinical trials 

(Mcphillips & Marcuse, 2001). 

2.2.3 Pre-licensure (clinical trials) surveillance 

Once governing body approval is granted, three phases of clinical trials follow, which utilize 

increasing numbers of test subjects, with a goal of ramping up testing as the vaccine proves 

safe and efficacious at each phase. Despite the extensive testing these trials typically only 

discover expected and temporary side effects and reactions, including any interactions between 

the new vaccine and already utilized vaccines. Pre-clinical trials seldom detect unusual or rare 

adverse events, or delayed onset adverse events (Salmon & Halsey, 2016).  

The use of controlled, double-blinded, and randomized trials ensures even and unbiased 

distribution of the vaccine throughout the test groups and safeguards the validity of any vaccine 

safety signals that may be detected. Even so, detection of rare and severe AEFIs during these 

clinical trials is unlikely, as these events arise only in a tiny percentage of much larger 

populations, which is only measurable during post-licensure surveillance  (Lopalco et al., 

2010). Furthermore, clinical studies are usually carried out on healthy subjects and within 

restricted age groups, and do not include individuals who are most at risk (such as those with 

medical conditions), and there is little additional evaluation of long-term or delayed onset 

health issues. Therefore, outcomes of clinical trials are not necessarily generalizable to the 

entire population (Salmon & Halsey, 2016). 

Once clinical trials have been completed the results of these trials and additional steps 

require regulatory approval before a license is granted to distribute a vaccine to the general 

population (Marshall & Baylor, 2011). 

2.2.4 Post-licensure surveillance  

Phase IV trials are sometimes conducted by drug companies, where continued monitoring for 

safety and efficacy is needed. Internationally accepted guidelines provided by the WHO 

(WHO, 2010) are typically used by organizations conducting post-licensure vaccine testing, 

including the Australian TGA.  
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Vaccine safety surveillance continues in a variety of forms after regulatory approval. It is 

intended to identify serious rare AEFIs that are unlikely to have been exposed by pre-licensure 

trials, and also allows surveillance in populations that were unable to be included in the trials 

(Chen et al., 2015). Surveillance also includes clinical practices in vaccine administration, to 

check that they adhere to the high standards required for safe delivery of vaccines. These 

systems can be categorised as passive, active, and a combination of both. 

Passive surveillance systems 

Passive systems typically rely on spontaneous reporting of adverse events by individuals, 

including vaccine manufacturers, physicians, health clinics, immunization programs, vaccine 

recipients and their caregivers (Varricchio et al., 2004).  This kind of reporting is characterized 

as passive because it relies on voluntary reporting of AEFI (though manufacturers are obliged 

to report), rather than information being actively sought or extracted by health authorities. 

These systems are the main method of gathering Adverse Drug Reactions and have proven 

useful in early detection of vaccine and drug related safety (Clothier et al., 2017; Härmark & 

Van Grootheest, 2008).  Examples of these systems in Australia are the Therapeutic Goods 

Administration (TGA) Adverse Drug Reaction System (ADRS) and the Adverse Events 

Following Immunisation – Clinical Assessment Network (AEFI-CAN) database for reporting 

of vaccine adverse events in Victoria and Western Australia. These systems have the 

advantages of being cost effective,  having access to national data and enabling the formulation 

of hypothesis about new events (Isaacs et al., 2005). Among disadvantages of these systems 

are underreporting, and potential reporting bias (Pal et al., 2013). For routine immunization 

surveillance, passive systems remain the main method, and have proven to be particularly 

effective at detecting a large range of AEFI, most especially rare severe adverse events. 

Although these systems are the backbone of drug safety monitoring, there is a need to actively 

search for alternate data to get a more accurate picture of the quantity of possible adverse 

events. 

Enhanced passive surveillance systems 

Enhanced passive surveillance consists of a health authority actively seeking additional 

information, after receiving a passive surveillance report. Although passive systems are 

effective in identifying AEFI reports, data tends to be incomplete, so further investigation is 

warranted, particularly when a pattern of reports is identified. For example, Clothier et al. 

(2011) describe SAEFVIC as an online portal for accepting reports from both patients and 
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immunization providers after an AEFI. Hinrichsen et al. (2007) examined a system where the 

AEFI surveillance system references patient’s electronic health records (EHRs) to determine 

likely AEFI, to then contact the patient’s physicians via SMS and instruct them to make 

additional reports about the patient. Lazarus et al. (2009) discuss a similar approach whereby 

clinicians are prompted to consider whether vaccination might be the cause of patient’s 

condition and where their further reporting to a passive surveillance system is facilitated. 

Active surveillance systems 

Active surveillance systems make an active effort to search, identify and collect AEFI (Griffin 

et al., 2009). There are major disadvantages of passive systems: underreporting and incomplete 

data, a preponderance of reporting on already known adverse events, and a tendency to report 

on coincidental events. Consequently, active AEFI surveillance techniques have emerged as 

complementary approaches to secure more comprehensive and clinically reliable data (Harpaz 

et al., 2016).   

Prospective surveillance is a type of active surveillance where a targeted group of AEFIs 

are monitored. An example is the Canadian Immunization Monitoring Program, ACTive 

(IMPACT) surveillance system, which uses active paediatric hospital-based surveillance (Ja et 

al., 2014). A monitoring nurse and supporting personnel in targeted Canadian paediatric 

hospitals collect data on children admitted with symptoms that are typically encountered post-

vaccination. Australia has also set up an active surveillance system based on the IMPACT 

model, which is called Paediatric Active Enhanced Disease Surveillance (PAEDS) and 

monitors medical encounters at major paediatric hospitals across Australia for potential cases 

of AEFI (Zurynski et al., 2013). 

Another form of active surveillance is through data record linkage. This approach 

endeavours to link vaccine history data with data coming from a variety of other health records 

such as electronic medical records and health insurance claims, where known AEFI and 

specific Health Outcomes of Interest (HOI) are targeted for the data linking process.  A leading 

example is the North American Vaccine Safety Datalink (VSD) project (McNeil et al., 2014), 

maintained by the Centre for Disease Control which conducts active surveillance of vaccine 

safety using large linked databases. VSD enables the study of causality between the adverse 

event and the vaccination. The main method for confirming possible vaccine reactions is to 

link a medical encounter’s likely vaccine event-related diagnostic codes to an actual 

vaccination. VSD can be used in two ways: Either by looking at historical data to establish if 

some adverse events are more common after receiving a specific vaccine; or to monitor 
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incoming data to establish if certain events are more prevalent among vaccinated people. VSD 

uses large-scale distributed data networks which allows almost near real-time vaccine safety 

surveillance, with most data being updated on a weekly basis. Another example is the US 

Federal Drug Agencies Post-Licensure Rapid Immunization Safety Monitoring (PRISM) 

system (Baker et al., 2013). This system uses large claims-based distributed databases, which 

allows monitoring of vaccine safety on a large population of more than 25 million. 

Mesfin et al. (2019) performed a systematic review on the use of EHRs for post-licensure 

vaccine surveillance and found that they are increasingly used for near real-time AEFI 

detection. They observed that there are opportunities for checking the utility of non-coded 

patient encounters for collecting additional AEFI surveillance data, and suggest the use of 

telephone helpline phone conversations, which they explore in a later study (Mesfin et al., 

2020).   

User-generated data 

Established passive reporting systems increasingly provide online public reporting interfaces. 

Although non-professional reporting on health issues are of a different quality from 

professionals reporting, it is uniquely valuable — as it is the patient’s perspective and voice 

and can in fact be quite reliable and objective at the same time, provided it can be interpreted 

(Seifert et al., 2017). For instance, a study by Krska et al. (2011) shows that patients usually 

feel confident to identify and describe their adverse drug reactions when reporting them to the 

Yellow Card Scheme web site run by the UK Medicines and Health Care Products Regulatory 

Agency. It has been found that their reporting aligns with that of health professionals, and the 

authors conclude that patients’ reports are reliable and should be taken seriously (Krska et al., 

2011).  

A study by Clothier et al. (2014) showed that even though reporting by patients on the AEFI-

CAN (Adverse Events Following Immunisation – Clinical Assessment Network) site is 

considerably less than professionals’ reporting, patients experiencing serious AEFIs are more 

likely to report them than health professionals, which indicates the value of patients’ initiatives 

in data collection. This result is also confirmed through a study done by Karapetiantz et al. 

(2018) reporting that patient-reported reactions in forums, although less informative, contain 

more unexpected reactions. 

Social media data has become an additional and widely used online source of data for public 

health research (Conway et al., 2019).  There are many examples of social media data being 

analysed in communicable and non-communicable disease monitoring, for drug use and abuse 
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studies, for measuring mental health issues, and for the impacts of health policies including 

vaccinations (Milinovich et al., 2014).  

To conclude, this subsection introduced the importance of vaccine safety and how vaccine 

surveillance for adverse events following immunisation (AEFI) is a vital component of 

ensuring vaccine safety.  Traditional vaccine surveillance reporting systems were described 

and problems with these systems were explained — including underreporting and deficiencies 

in timeliness and coverage — which has led to efforts to expand possible reporting sources. 

Social media users’ self-reporting on health-related issues was explained as an emerging 

complementary data source for timely public health surveillance, which is explored in detail in 

the next section. 

2.3 Social media data sources for public health studies 

For public health studies, there are two major categories of social media platforms. General-

purpose domains such as Twitter, Facebook and Reddit; and domain-specific platforms such 

as PatientsLikeMe, DailyStrength and drugs-forum. The domain-specific social media forums 

provide data that focuses on specific health issues and interests. In contrast, general-purpose 

social media conversations cover a broad range of topics and are more suitable for discovering 

current trends and common subjects. Topics like the COVID-19 pandemic and vaccines in 

general are discussed by everyone and are well mentioned in general-purpose social media. 

Twitter, Facebook and Reddit are the most used social media sources for research in public 

health (Dol et al., 2019; Singh et al., 2020; Tang et al., 2018). The privacy and data sharing 

policy of these platforms impacts their popularity in research. Facebook, although the largest 

social network is very seldom used in research, mainly due to its strict privacy policies.  Reddit 

has been a source of data for public health studies — however, it is used a lot less than Twitter. 

Compared to Reddit, the frequency of information dissemination in Twitter is much higher, the 

interval between posts is measured in minutes rather than hours. Additionally, the short text 

requirements of tweets encourages focused conversations that use more prevalent terms (D. 

Choi et al., 2016).  According to Priya et al. (2019), tweets reduce the articulation of biased 

and extreme views, compared to Reddit posts. They also find that Twitter conversations can 

gather a greater momentum than Reddit posts, which can result in a news event being sustained 

for much longer in Twitter, and that the spread, availability, and low inter-arrival times in 

Twitter posts make them very suitable for real-time monitoring, including emergencies.  

Amongst the general-purpose social media platforms Twitter is most widely used as an 

additional source of data in the pharmacovigilance domain and in public health research (Edo-
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Osagie et al., 2020; Gupta & Katarya, 2020; Singh et al., 2020). Its real-time nature, high 

volume of messages and public availability makes it a suitable alternate source of data for 

surveillance of public health  (Lardon et al., 2018).  

2.4 Surveillance using social media 

Surveillance as a major component of public health is defined as the continuous systematic 

collection, analysis and interpretation of health data for planning public health actions (B. C. 

K. Choi, 2012).  Social media platforms have become a valuable data source for public health 

research and monitoring. Existing research in public health-related social media use can be 

categorized into two major groups. One group is concerned with the use of social media as a 

platform for sharing knowledge and information communication; the other has to do with using 

social media for knowledge discovery and building predictive models (Zhou et al., 2018). In a 

systematic review performed by Sinnenberg et al. ( 2017) a taxonomy of Twitter use in health 

research is clustered into six categories. Four of the categories, including content analysis, 

surveillance, engagement, and network analysis, belong in the knowledge discovery group; the 

two other categories, including recruitment and intervention, belong in the information 

communication group. This research falls into the second group of knowledge discovery, 

specifically the discovery of vaccine surveillance information from social media. 

2.4.1 Disease surveillance  

Social media monitoring for disease surveillance has been widely researched and proved useful 

in many areas including: tracking trends, early detection, forecasting, understanding 

transmission patterns, situational awareness, and discovering correlates of disease (Paul & 

Dredze, 2017). Social media is used as a data source for surveillance of various disease, 

including: 

Infectious disease 

Influenza and influenza-like illnesses (ILI) comprise a large proportion of infectious disease 

surveillance on social media. Several studies have used social media data and established that 

the accuracy and effectiveness of detection of ILI could be improved by using social media 

data (Lampos et al., 2017; Signorini et al., 2011; Velardi et al., 2014). 

Other surveillance research demonstrating the usefulness of social media includes the 

monitoring of Ebola in Nigeria using Twitter data (Odlum & Yoon, 2015); Zika surveillance 

combining traditional disease surveillance techniques along with search logs, social media, and 
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news report data (McGough et al., 2017); Cholera outbreak tracking using Twitter and news 

media data (Chunara et al., 2012); and H1N1 (swine flu) surveillance using Twitter data 

(Signorini et al., 2011). 

Non-Infectious disease 

Examples of studies which have explored user-generated content for non-acute chronic disease 

include: Early detection of pancreatic cancer from user search log data (Paparrizos et al., 2016); 

establishing the effect of change of weather on fibromyalgia patients (Delir Haghighi et al., 

2017); and evaluating Twitter conversations for discussions that might indicate links between 

psychological characteristics and risks of heart-disease mortality (Eichstaedt et al., 2015). 

Twitter has also been investigated as a resource for allergy surveillance and was proved useful 

for insight generation and  early detection of  hay fever (Rong et al., 2019) and thunderstorm 

asthma outbreak (Joshi et al., 2020). 

Other illnesses and health conditions  

Other illnesses such as foodborne disease (Sadilek et al., 2017), mental health (Coppersmith et 

al., 2014) and obesity have also been studied using social media (Ghosh & Guha, 2013).   

2.4.2 Adverse Drug Reaction detection 

Pharmacovigilance is defined as “the science and activities relating to the detection, 

assessment, understanding and prevention of adverse effects or any other drug-related 

problem” (World Health Organization, 2002). In a comprehensive survey done by  Karimi et 

al. (2015) on text and data mining techniques for Adverse Drug Reactions (ADR), social media 

and online sources such as search logs and forums are identified as one of the main data sources 

used for discovery of ADRs. 

Many researchers have successfully established the usefulness of social media as a 

pharmacovigilance source. Research in ADR detection is mainly focused on either binary 

classification of sentences with mention of an ADR, and/or extraction of ADRs.  Lardon et al. 

(2015) conducted a scoping review to discover the extent of the use of social media for 

pharmacovigilance and concluded that more reliable pharmacovigilance data will be obtained 

as extraction systems mature, and that pharmacovigilance systems need to define the role that 

social media should play.  Sarker et al. (2015) reviewed articles published from 2010 to 2014 

on automatic pharmacovigilance utilising social media. They noted a shift of emphasis in this 

area of research, from exploratory studies to more structured approaches. This has resulted in 
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an increased interest in using supervised machine learning techniques, which require annotated 

data. Their study highlighted the need for more annotated publicly available data for 

pharmacovigilance purposes. This led to their initiative of organizing shared tasks for Social 

Media Mining for Public Health Monitoring and Surveillance (SMM4H). The SMM4H shared 

task has been held annually since 2016 and has always included tasks of binary classification 

of social media posts containing ADR, and of extraction and normalization of related terms 

(Klein et al., 2020; Sarker & Gonzalez-Hernandez, 2017; Weissenbacher et al., 2018; 

Weissenbacher & Gonzalez-Hernandez, 2019). The organizers provided participants in the 

ADR classification task around 25,000 of annotated tweets for training, and 5000 for validation 

— and these datasets remain available upon a request to the organizers.  

2.4.3 Vaccine Adverse Event detection 

Studies on using social media for ADR detection have included vaccine related words in drug-

related keyword searches used for collecting data from social media. An example is the work 

done by Sarker & Gonzalez (2017), where 267,215 tweets containing 250 drug-related 

keywords, including “vaccine”, were downloaded over a period of four months. Smaller, 

cleaned, and labelled subsets of this corpus have also been published (Sarker & Gonzalez, 

2015) , for example an annotated set of 10,822 tweets which the author assessed. The text of 

these tweets needed to be downloaded, and the author was able only able to obtain 6,670 of 

them — there were no vaccine adverse events. Downloading the accessible tweets of the larger 

unlabelled dataset only produced 158,028 tweets. Around 100 posts that mentioned 

influenza(flu) shots were all within Tamiflu discussions, and only 80 posts contained a vaccine 

mention. There were no AEFI mentions.  

A recent study by J. Wang et al. (2019) specifically addressed the challenge of flu shot 

adverse event detection. Their concern was to find social media posts that contained specific 

mentions of adverse events that were being experienced by users that were known to have 

recently had a vaccination. In their work they emphasized that the main problems for adverse 

events detection from social media were the cost of the annotation process and class imbalance. 

As a solution to the annotation problem, they based their work on first annotating users, then 

their tweets. To do this they needed to identify users who had vaccinations, and then collect all 

their subsequent tweets to look for mentions that were definite adverse events, as specified by 

a domain expert. Although this approach somewhat focussed the data annotation process, it 

still required a few tens of thousands of tweets to be annotated. For class imbalance they used 

a separate dataset of formal reports to add to the positive class. The emphasis of the study was 
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to identify definite adverse events, and the language used in the formal reports was therefore 

able to contribute to the signal of what might be understood as an adverse event  (J. Wang et 

al., 2018). Consequently, their work has interesting techniques for integrating the language of 

formal reports with that of social media data. The focus on identifying specific and verifiably 

adverse events means that their goals are like those of studies on adverse drug reaction 

detection, where the emphasis is on distinguishing significant drug reactions. 

This research is similar in scope to ADR and AEFI detection, but rather than focussing on 

detecting specific known events, the research goal is to detect the kind of language that is used 

in relation to the experience of a potential adverse event, so that the data can give insights into 

the general trends of such conversations, but is also capable of capturing any kind of adverse 

event related text – and to not be constrained to detecting specific events. The next section 

explores an area of research more related to this work, which is using social media for personal 

health mentions detection. 

2.4.4 Personal health mention detection  

One area of research in social media language processing is personal health mention detection. 

This deals with identifying posts which have a mention of a health condition and the person 

affected by it. Joshi at al. (2019) have published a survey of text-based health mention detection 

datasets, approaches and evaluation methods. Yin et al. (2015) collected tweets across 34 health 

conditions and showed that combining posts from a number of health topics into four categories 

can train a personal health mention classifier that performs better (with 77% accuracy) than a 

classifier trained on a single health issue. They used a Multinomial Naïve Bayes classifier but 

most recent work in this domain has used deep learning algorithms, either in feature 

engineering or as a classification technique. Karisani & Agichtein (2018) developed 

approaches for configuring word embedding representations which assisted the discovery of 

the most effective features to use in a statistical classifier and reported an improvement over 

previous methods using similar data. They used two labelled datasets of 3,000 and 7,000 

tweets. Iyer et al. (2019) used the same datasets and developed a deep learning approach with 

augmented features for idiom detection which showed further improvement in personal health 

mentions detection. Wang et al. (2021) were able to access 5,288 tweets from this dataset and 

used CNN-based classifiers with word embedding features to observe the impact of the number 

of training samples on the performance of models. In another study, Jiang et al. (2019) collected 

around 22 million tweets on 103 medicines, annotating around 12 thousand tweets, and 

confirmed that word embeddings as inputs to a long short term memory neural network 
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(LSTM) consistently performed better than traditional classifiers with bag of words plus 

engineered features.  

Personal health mention detection has also been defined as a task in SMM4H 

(Weissenbacher & Gonzalez-Hernandez, 2019). Five teams participated in the task and the 

systems have been evaluated on their generalizability across different health domains. The 

architectures of all the participated systems were based on Transformer language models.   

This area of research, although explored for applicability to various diseases, has however 

not been studied in relation to vaccines. The next section discusses areas where most of the 

vaccine-related social media research has been focused. 

2.4.5 Monitoring of vaccines and vaccinations 

Most of the research in social media monitoring of vaccine and vaccination mentions is in 

understanding and analysing sentiments, opinions, behaviour, and attitudes. Salathé & 

Khandelwal (2011) analysed vaccine sentiments in Twitter posts about the influenza A (H1N1) 

vaccine.  Larson et al. (2013) found that vaccine-related subjects such as vaccine development 

and programmes were associated with neutral or positive sentiment, but that beliefs, 

perceptions, and issues of safety and vaccine impact were overwhelmingly associated with 

negative sentiment. Du et al. (2017) assessed Twitter sentiments towards human 

papillomavirus (HPV) vaccines to understand public opinion and concerns.  

Other researchers have done more in-depth analysis to find the themes and sentiments of 

social media posts about a vaccine during an outbreak. Radzikowski et al. (2016) studied 

Twitter posts to understand public attitude toward the measles vaccination during the US 

measles outbreak in 2015; Mollema et al. (2015) analysed tweets to address public concerns 

during the 2013 measles outbreak in the Netherlands.  

Automatic classification of tweets mentioning vaccine behaviour was one of the tasks in the 

third SMM4H shared task (Weissenbacher et al., 2018). The task was a binary classification of 

tweets that indicate the intention to receive flu vaccine. Ten teams participated in this task and 

the winning team used an ensemble of statistical classifiers with task specific features 

combined with rule-based and deep learning models (Joshi et al., 2018).    

Table 1 provides a summary of some of these studies, which illustrates that they are mostly 

concerned with vaccine sentiment or opinion rather than with AEFI detection. 
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Table 1: Summary of vaccine-related studies 

This subsection reviewed the existing studies which utilize social media as a data source for 

public health surveillance. The analysis revealed that the use of such data is established, and 

more advanced mining techniques are being developed.  However, the review noted that there 

is a relative deficit in vaccine adverse event mention research, with investigations of vaccine 

and vaccination-related social media posts characterized as mostly concerned with sentiments, 

Study  Source Data size Aim Method 

(Salathé & 
Khandelwal, 
2011) 

Twitter 477,768 Measure the spatio-temporal 
sentiment towards influenza 
A(H1N1) vaccination / 3 categories 

Naive Bayes and 
the Maximum 
Entropy classifiers 

(Bello-Orgaz 
et al., 2017) 

Twitter 
and WHO 
data 

761.924 Measuring the potential influence 
of vaccine opinions based on the 
variation in the coverage rates 

community 
detection 
algorithms 

(Huang et al., 
2017) 

Twitter 
and CDC 
data 

1,007,582 Track vaccine attitudes and 
behaviours on Twitter and infer 
vaccine-related intentions from 
Twitter messages, focusing 
specifically on the influenza (flu) 
vaccine / Binary 

SVM, Multinomial 
Naive Bayes, 
RandomForest 

(Radzikowski 
et al., 2016) 

Twitter 669,136 Analyse themes and relations that 
make up the discussion about 
vaccination in Twitter 

community 
detection, network 
visualisation & 
analysis 

(Du et al., 
2017) 

Twitter 184,214 To understand public opinion 
about HPV vaccines 

SVM models 

(Huang et al., 
2018) 

Twitter 1,124,839 To measure influenza vaccination 
uptake through Twitter and track 
vaccine attitudes and behaviours  

convolutional 
neural network 

(Lama et al., 

2019) 

Reddit  22,729 To determine the topics of 
discussions on HPV vaccine related 
messages on Reddit 

Latent Semantic 
Analysis 

 

(Wang et al., 
2019) 

Twitter 3,139 
users and 
their 
90,185 
tweets 

adverse event-indicative messages 
from known vaccine recipients 

LibShortText to 
identify users; 
Semi-supervised 
Multi-instance 
(SSM) models to 
identify AEFI  

(Deiner et 
al., 2017) 

Facebook 
and 
Twitter 

58,078 
Facebook 
posts and 
82,993 
tweets 

To measure public opinion 
towards measles vaccination  

social media 
analytics platform 
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attitudes, and opinions. The next section describes the methods used in social media 

monitoring, which includes the applicable techniques for this study. 

2.5 Social media data processing 

Social media data are textual and range from news and stories expressed in a structured and 

more formal writing style through to anecdotal and idiosyncratic personal accounts and 

expressions. Social media platforms vary in their purpose and this is reflected in type of writing 

that can be found in them. For instance, Facebook allows people to write at length and to 

conduct ongoing personal, and even private, conversations; Twitter’s limited individual 

message lengths and its public nature encourages declarative language with the intent of rapid 

information dissemination; blogs, creative writing and news forums can constrain writers to 

specific structures, subjects and language and can even have quality controls over submissions.  

Many social media platforms publish aids for accessing data from them in the form of 

Application Programming Interfaces (APIs), most however limit the amount of information 

that can be freely accessed. Accessing and processing the texts of social media platforms is 

non-trivial and there are many resources and much research dedicated to these tasks, which this 

investigation makes use of, and is explored in this section. 

2.5.1 Social media data collection  

The first task when using mining social media is to collect data. Although some existing data 

may have been collected and curated, typically a researcher must collect their own data to meet 

their specific requirements. Usually this involves using the social media API to search or filter 

the data that is continually streamed online from the social media source. There are a variety 

of methods employed by researchers to filter the collection of social media posts of interest. 

Some of those include keyword and phrase selection, keyword selection with phonetic spelling 

and direct selection of users. The simplest method for collecting relevant content is to filter for 

social media messages using search queries containing certain keywords or phrases relevant to 

the task. Examples include research on emotion classification of tweets before and after the 

Ebola outbreak of 2015 (Ofoghi et al., 2016), and research on community opinion clustering 

about HPV vaccines by searching for “hpv” and “vaccine” combined, and variations of 

“Gardasil” (Surian et al., 2016). Pimpalkhute et al. (2014) describe a more generalizable 

approach, by generating phonetic spelling versions of the search term and its most frequent 

variations and conducting searches phonetically. For example, phonetic spelling of drug names 

has been used to target relevant social media posts. Another way to filter pertinent data is to 
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focus on posts that come from specific forums or blogs, or that include mentions of hashtags 

and other specific references that help to narrow the range of posts, or that come from people 

who are followers of particular subjects or brands. An example of a study using direct selection 

of users is the work done on automatic detection of e-cigarette use by filtering out the content 

based on the e-cigarette brand followers and hashtags (Aphinyanaphongs et al., 2016). Another 

approach which removes the bias introduced by keyword searches is to not have an initial 

keyword filter and collect everything for a given period or location (Cameron et al., 2012). 

2.5.2 Text pre-processing  

Texts collected from social media sites is normally processed by machine learning (ML) 

models — these automate the task of exploring and developing an understanding of the textual 

information, which would be virtually impossible to do manually. Typically, texts require some 

form of tokenization and the addition of features, then they must be converted into a numerical 

form for consumption by ML models. The following sections describe some of the NLP 

techniques used and their preparatory requirements.  

Bag-of-words 

To a human reader text has a logical sequence and the clear meaning of text is gained through 

reading it in sequence, and often with an understanding of meaning gained earlier in the reading 

of a text and even with consideration for the purpose of a text and an anticipation of its 

conclusion. Reading and comprehension are highly complex and sophisticated processes, and 

even the most advanced computer technology cannot truly emulate them. However, for 

determining the overall subject matter or emotion of a text there are computer-based 

approaches to understanding text that work reasonably well. Statistical techniques applied to 

the word counts are used to make decisions about document meanings. This is commonly 

referred to as the “bag-of-words” approach because words are just counted as being members 

of an unordered collection, as if they were loosely bagged up rather than laid out in a significant 

order. The bag-of-words approach is typically the first type of computer based natural language 

processing that is performed — it is surprisingly enough for many tasks and is used as a 

benchmark for more sophisticated techniques. A bag-of-words representation is the core 

representation utilized in all the search engines (Zhai & Massung, 2016).  
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N-grams — preserving some word relationships 

The bag-of-words approach does not attempt to understand phrases, all words are just collected 

together and counted and analysed, however it is very often the case that words are repeatedly 

found together as phrases, and that the phrases have their own significance which probably 

should be preserved. Therefore, when constructing the vocabulary of a corpus of documents, 

the practitioner should consider preserving phrases, to compensate for the loss of meaning 

enforced by the bag-of-words approach. 

Word n-grams are sequences of words which are comprised of the most likely words that 

happen in each text segment (Jurafsky & Martin, 2007) and are one of the most informative 

and commonly used features in text processing tasks (Sarker et al., 2017). N-grams are a basic 

representation of word order and relationships in that they create new words from commonly 

encountered sequences of words — for example if the phrase “black sheep” was often 

encountered in a document collection then a bigram (2-gram) would preserve this as the new 

word “black_sheep”, which would have a quite different significance to the individual words 

“black” and “sheep”.  

Lemmatization and Stemming — reducing word differences 

It can help a bag-of-words approach if differences between words are minimized by reducing 

them to their root forms. Lemmatization uses a dictionary of linguistically correct bases of 

words (the lemma) and can also consider the word context when deciding an appropriate 

lemma, and so preserves a natural and readable form of the common word. The lemma of a 

word might be a representative — for instance “good” is considered by some implementations 

as the lemma of “better”. Stemming however just chops off the ends of words to a 

representative stub and without any consideration of context, and so can be quite unreadable 

— however it is much faster to stem a document, as a dictionary lookup and accounting for 

word context is not required. Some root words might be the same using either approach. for 

example, the words “walks”, “walked”, “walking” are all reduced to “walk” by both 

approaches. 

Representing words and documents as vectors  

Machine learning algorithms need text to be converted to numbers to process them. A standard 

ML approach is to first assign each word a numeric position in a dictionary that contains all 

the assembled documents’ words. Then, for each document, to represent its words by referring 

to the dictionary positions of the words that are present in the document. This can be 
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represented as a vocabulary-length vector, with counts of only the currently present words 

being non-zero, at their position in the vector. As the length of these vectors is as large as the 

dictionary vocabulary and the vector consists of zeros unless a word is encountered in the 

document, they are known as sparse matrices. Normally however, the sparse matrix is 

represented by pairs of index positions and word counts per word in the document, which 

avoids having to represent the words that are not currently present.   

TF-IDF: Words in document context, and in corpus context 

The simplest technique to implement bag-of-words is to treat text as a collection of words and 

to just collect the words and count their frequency. This technique is called Term Frequency 

(TF). In its simplest form, where 𝑡 denotes a term and 𝑑 denotes a document, the formula of 

the TF calculation is:  

𝑇𝐹(𝑡, 𝑑) =  ∑ 𝑓𝑟(𝑥, 𝑡)

𝑥∈𝑑

 

𝑓𝑟(𝑥, 𝑡) =  {
1 , 𝑖𝑓 𝑥 = 𝑡

   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Inverse Document frequency (IDF) can be used with TF to give more importance to specific 

terms by downgrading frequently used terms. Where 𝐷 is the corpus and |{𝑑: 𝑡 ∈ 𝑑}| is the 

number of documents containing term 𝑡, the IDF formula is defined as:  

𝐼𝐷𝐹(𝑡) =  log
|𝐷|

1 + |{𝑑: 𝑡 ∈ 𝑑}|
 

 

That is, the more a term appears in a document the less discriminative it is (Jones, 1972).  

This combined approach to text feature extraction is called Term Frequency-Inverse Document 

Frequency (TF-IDF).  The TF-IDF formula is defined as follows: 

 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡) 

Although TF-IDF can model some of the relative semantic importance of the words in a 

document, it cannot however encode any information about term similarities (Kowsari et al., 

2019).  

A major shortcoming of these methods is that they do not intrinsically contain any 

information about words such as similar or opposite meanings or contexts. Any word 

significance and relationship are solely derived by the model as it processes the words in the 
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context of the individual documents and the document’s similarities and differences with other 

documents in the dataset. Alternative word embeddings, which embody intrinsic relationships 

between words, have been subsequently developed — these are used by neural networks and 

to some extent can be utilized by classic machine learning models, this is explored in the Dense 

Word Vectors section below. 

Dense Word Vectors 

When using one-hot encoding, words do not embody any semantic value, they are learned 

about by the classifier in terms of their frequency of appearance in the document collection. If 

a new word is introduced the model cannot use it, as it has not previously learned about it. 

However, if a word could be represented with a numerically expressed value that placed it in a 

context of similar words then it could be understood by a suitably engineered model as 

belonging in that context, so the model can gain additional “contextualized” understanding of 

words, as well as semantic ones (Chang & Chen, 2019).  

Providing computationally efficient representations of words which can capture word 

similarities has been the subject of much research (Mikolov et al., 2010). The resulting 

approach is to use “dense” vectors, named word embeddings, which represent (embed) words 

in a continuous vector space, and which are obtained from a shallow two-layer neural network 

that can discover semantic relationships. Words are evaluated in their context over many 

thousands of examples, and a three-dimensional vector space is constructed to place words into 

relationships with one another. Each word is represented by a vector of large floats, typically 

between 100 and 300 numbers per vector, where the value of individual numbers at each 

position in the vector are related to equivalent values used by other words — with the result 

that words that inhabit similar contexts in the corpus are positioned near to each other in the 

vector space. At the very least these vectors can provide a more succinct word representations 

than a sparse matrix can (e.g., 100 numbers per word instead of possibly thousands of zeros 

and a single number one), but the best use of them is to provide an excellent starting point for 

neural networks for understanding and clustering words of similar value, and they can even be 

used by classic machine learning models to infer document similarity via the combined values 

of words in a document. The sum of the numbers in the individual vectors place them into 

positive or negative space, and no individual word’s values sum to a very large number, 

therefore the value of any word does not carry any particular significance apart from its place 

in the vector space — which has the same effect of eliminating unwanted bias as the one-hot 

encoding approach. 
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Neural network approaches for modelling these distributed word representations include 

predictive CBOW (Continuous Bag-of-Words) and Skip-gram models (Mikolov, Chen, et al., 

2013), and co-occurrence matrices (Pennington et al., 2014). A CBOW model predicts the 

current word based on the context of surrounding words, maximizing the probability of a target 

word by examining its context. The skip-gram model predicts words within a certain range 

before and after the current word, suggesting the most likely surrounding words. A co-

occurrence model counts how frequently a word appears in a context. There are various 

implementation of these, the most well-known are Word2Vec which can use either CBOW or 

Skip-gram approaches (Mikolov, Sutskever, et al., 2013), and GloVe (Global Vectors for Word 

Representation) introduced by Pennington et al. (2014), which uses the co-occurrence 

approach.  

These various text pre-processing approaches all have the goal of rendering the texts in a 

numeric form suitable for consumption by machine learning text classifiers, which are 

described in the following section. 

2.6 Machine learning methods in text processing 

For the downstream processing of social media text in a health-related context most studies can 

be categorized into two main groups, one consisting of text classification and content analysis 

tasks and the other of information extraction (IE) and normalization tasks (Gonzalez-

Hernandez et al., 2017). In terms of the task of surveillance, these can be thought of either 

attempting to find specific indicators of the subjects of interest — using content analysis and/or 

text classification; or extracting medical terms or lay equivalents (IE) and mapping them to 

medical ontology identifiers (normalization), to discover what is being said. In the next section 

we review two categories of studies in each of these domains that related to the main research 

question of this study namely medication safety as a problem of information extraction and 

personal health mention detection as a classification area. 

Examples of well-established social media text classification and content analysis tasks in 

the health domain include sentiment analysis, emotion analysis  (Ofoghi et al., 2016), real-

world trend detection (Sun et al., 2017). Conversely, Adverse Event detection (Freifeld et al., 

2014; Huynh et al., 2016) is an Information Extraction task. 

While research into information extraction and medical terms capturing from medical texts 

is an established area (Khademi et al., 2015), performing IE and normalization on social media 

texts is relatively less developed, complicated by the lexical complexities of both the social 

media and medical domains (Baldwin et al., 2015).  
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One way of categorizing the approaches used in these tasks is based on their practical 

requirements and purpose — as being supervised, unsupervised, or semi-supervised. These 

categories describe the approach to training the models but are also indicative of the goal in 

using the approaches. Supervised learning is when the outcome is known beforehand, so the 

model is guided to accomplish the goal, for instance to classify a text. Unsupervised learning 

is when the model is to discover what is significant in data without any supervision, for instance 

to discover latent topics in texts. Semi-supervised learning is when the model should be guided 

to accomplish a task but lacks the data needed for fully supervised process, instead the model 

is assisted to discover the relevant data.  

 

Supervised methods 

Supervised machine learning methods are typically used to match words or overall subject 

matter of a text to specific categories. That is, with supervised tasks we know in advance how 

the text needs to be categorized, and examples of the texts are labelled with these categories 

and used to enable the ML models to learn how to recognize these sorts of texts. An example 

is Lamb et al. (2013) work, where after acquiring the initial Twitter dataset with a targeted 

search a ML model is trained to filter the data to health-related tweets and then use an additional 

model on that dataset to find flu-related tweets.  Supervised ML is often referred to as 

classification, as the models are trained to separate texts according to labels or classes. A model 

needs to be able to perform its classification task in a sufficiently generalizable way so that 

subsequent but different texts given to the model can be correctly categorized based on their 

similarities to the original texts.  As supervised ML relies on having labelled texts to learn 

from, it is most often a downstream process after texts have been understood and grouped 

sufficiently to be amenable for the labelling required for supervised ML models. This 

preliminary grouping is typically a task suitable for unsupervised machine learning. 

 

Semi-supervised methods 

Semi-supervised methods require a small amount of labelled data to help guide the model 

towards discovering patterns in the data (Zhu, 2005). A semi-supervised approach bridges 

between unsupervised and supervised learning. Lee et al. (2017) used a variety of unlabelled 

random tweets to pre-train several semi-supervised Convolutional Neural Networks and 

reported improved performance in supervised classification methods over models trained only 

on labelled data for the task of adverse drug reaction detection. 

 



38 

 

Unsupervised methods  

Unsupervised methods do not require labelled data and use clustering to group data into 

categories, but the categories are not known beforehand. Basic unsupervised techniques include 

K-means clustering (Han et al., 2011), where similarities in vectorized texts are identified to 

enable clusters of words and thereby documents containing them. The next section examines 

Topic Modelling in depth, which is one of the most widely used methods for analysing large 

amounts of social media data and utilize more sophisticated unsupervised text clustering 

methods.  

2.6.1 Topic modelling 

Topic models use dimension reduction to uncover the common themes that convey similar 

semantic meaning in a corpus of documents  (Blei et al., 2010). Topic models may take a non-

probabilistic approach such as used in singular value decomposition, or use probabilistic 

techniques which assume that each document can be represented by a distribution over topics 

and each topic by a distribution over words (Barde & Bainwad, 2017).  Simply put, a topic 

encapsulates its most likely words, compared to other topics; and a document can be understood 

by how its words are most likely to belong to specific topics — consequently, topic models can 

be used in classifying and summarizing documents. There are several methods of probabilistic 

topic modelling in the literature, one of the most popular methods is Latent Dirichlet Allocation 

(LDA) (Blei et al., 2003), which is a Bayesian topic model. LDA models have been widely 

used in health-related social media mining (Benton et al., 2016; Paul & Dredze, 2014).   

Latent Dirichlet Allocation (LDA) 

LDA based models are generative probabilistic models and are presently considered a state-of-

the-art method for topic derivation  (Nugroho et al., 2020). They work on the assumption that 

each document can be represented by distribution over topics and each topic by distribution 

over words. LDA models corpus D, containing M documents, based on following the 

generative process of (Blei et al., 2003): 

1. Randomly choose 𝒯 topic distribution, 𝛽𝑡~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜆𝛽)  

2. For each document 𝒹= (𝓌𝒹1, 𝓌𝒹2, … 𝓌𝒹𝑛 ): 

a. Randomly choose a distribution over topics, 𝜃𝒹 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝜆𝛼) 

b. For each of the N words in document 𝒹, 𝓌𝒹𝑛: 

i. Randomly choose a topic   𝓏𝒹𝑛~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝜃𝒹) 

ii. Randomly choose a word 𝓌𝒹𝓃~ 𝑀𝑢𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙( 𝛽𝓏𝓃) 
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Then the probability of a corpus is calculated as follows: 

𝑝(𝐷|𝛼, 𝛽) =   ∏ ∫ 𝑝(𝜃𝒹|𝛼) (∏ ∑ 𝑝(𝓏𝒹𝑛|𝜃𝒹)𝑃(𝓌𝒹𝓃| 𝓏𝒹𝑛, 𝛽)

 𝓏𝒹𝑛

𝑁𝒹

𝑛=1

) 𝒹𝜃𝒹

𝑀

𝒹=1

 

The parameters 𝛼 and 𝛽 are to be sampled once in the process of generating a corpus and 

therefore are corpus level. The variables 𝜃𝒹are document-level, and the variables  𝓏𝒹𝑛and 𝓌𝒹𝓃 

are word-level variables.  

Topic modelling on short text 

Topic modelling on short text has particular challenges. This is due to content sparsity and 

limited context, and in social media the further challenges of informality of language and noise. 

Three major approaches have been used to deal with short texts: One is to aggregate short texts 

into pseudo documents based on a common contextual feature such as author, location, or use 

of  hashtags, and then to apply standard topic models to the aggregated document (Bicalho et 

al., 2017; Quan et al., 2015). Another approach is to use global word co-occurrence based 

models, where topics are learned from a collection of all the words in a corpus (Cheng et al., 

2014; Zuo et al., 2016).  

The third approach is to make an assumption that each document can be described by one 

topic. Either the dominant topic of a potentially multiple-topic document can be assumed as 

the one topic, or a topic modelling algorithm that deduces only one topic per document can be 

used. The latter approach has been handled by topic models known variously as mixture of 

unigrams and Dirichlet Multinomial Mixture (DMM) models (Nigam et al., 2000). The 

assumption of one topic is a very reasonable one for short texts and means that topic 

identification can be consolidated and compensate somewhat for the content sparsity problem. 

Zhao et al. (2011) applied the one topic per tweet model to a Twitter corpus of 1.2 million 

tweets and compared it with LDA and Author topic models using human judgment on topic 

coherence, and found that it ourperformed other models, giving more meaningful top topic 

words. Yin & Wang (2014) compared DMM with some other clustering techniques on a corpus 

of tweets and found that the inferred topic are more complete and heterogenous, and the models 

were faster to converge than the other techniques. Mazarura & Waal (2016) used measures of 

topic coherence and topic stability to show that DMM outperformed LDA on a tweet corpus. 

Over the years variations of DMM models (which incorporate word embeddings into DMM ) 

have been proposed and proved promising results on short text topic modelling, some examples 
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include, LF-DMM (Nguyen et al., 2015), GPU-DMM (Li et al., 2016), GPU-PDMM (Li et al., 

2017), ULW-DMM (Yu & Qiu, 2019).  

In a review by Qiang et al. (2019) eight topic modelling approaches from the three categories 

of Self- aggregation, DMM, and global word co-occurrences based methods are compared on 

six different datasets including Twitter data. On Twitter dataset, DMM based models 

outperformed other models in classification accurency and topic coherence and purity. 

 

 Topic modelling in social media text mining 

One main use of topic models is for exploratory analysis. Prier et al.(2011) used LDA to 

discover valuable tobacco-related themes from Twitter conversations. Ghosh & Guha (2013) 

combined LDA and GIS information to extract common and important obesity-related topics 

from Twitter in the USA. Paul & Dredze ( 2011, 2014) extended LDA to develop the Ailment 

Topic Aspect Model (ATAM), which demonstrated the possibility of automatically identifying 

health topics from a corpus of Twitter messages - topics included influenza and allergies. 

Topic modelling is also used in classification tasks, in two major ways. One is to learn 

features based on unsupervised topic models and then to use the learned features in classifiers, 

either as main or additional features. As topic models identify the associations of words and so 

encapsulate semantic features of the data, including topic model-based features can improve 

classification results. The addition of topic modelling-based features has increased the 

performance of a binary classification task for classifying Twitter posts containing adverse 

drug reactions (Jonnagaddala et al., 2016), in detection of cyberbullying in social media text 

(Van Hee et al., 2018), and tweets sentiment analysis (Palogiannidi et al., 2016).  

The other classification use of topic models is to directly act as a classifier, these methods 

are called supervised topic models. Supervised Latent Dirichlet Allocation (SLDA), introduced 

by Mcauliffe and Blei (2008), is the most popular supervised topic model to date (Dai Nguyen, 

2019).  These models are particularly favourable over other classification methods due to their 

ability to discover the underlying structure of words associations. SLDA is used for mining 

Twitter in identification and analysis of traffic incidents  (Gu et al., 2016) and proved that social 

media can be a potential complementary source for incident reporting.  Supervised topic 

models have also been used to detect linguistic signals in depressed individuals language 

(Resnik et al., 2015).  

Another use of topic modelling is to speed document annotation (Poursabzi-Sangdeh & 

Boyd-Graber, 2015) and assist with automatically augmenting training data. Yang et al.( 2015) 
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used topic models for a dimension- reduction mechanism and to augment training data used for 

building a robust classifier to identify adverse drug reactions in social media.   

Topic modelling evaluation measures  

Topic modelling evaluation measures can be categorized either as intrinsic or extrinsic. 

Intrinsic measures do not rely on annotated data and are mostly to evaluate the generalizability, 

quality (interpretability) or predictive power of topic models. These techniques can be manual 

and have human input in the loop, for example word/topic intrusion introduced by Chang et al. 

(2009); or can be  automatic, such as perplexity (Wallach et al., 2009) and topic coherence 

(Newman et al., 2010). Qualitative intrinsic measures emulate and automate human input and 

the topics identified by them must be consistent with human understanding. When developing 

the coherence measure Newman et al. (2010) designed it to be coherent to humans, and asked 

humans to judge whether the learned topics of their models were both interpretable and 

associated with a single sematic concept. While the best arbiter of model suitability is the 

human practitioner, automated measures offer scalability (Dai Nguyen, 2019). 

Extrinsic measures do require annotated data and generally evaluate topic models suitability 

for performing tasks such as classification. Extrinsic measures are suited for making 

comparisons between topic modelling methods; some major examples include purity (Y. Zhao 

& George, 2001),  pairwise f-measure, and normalized mutual information (Manning et al., 

2008).  

The most useful evaluation measures are those that are applicable to the task that topic 

modelling is being used for. For instance, if the goal is to classify data then standard F-Scores 

will be applicable, and intrinsic measures should only be used for initial model evaluation. The 

most appropriate metrics depend on the application domain, and therefore there is no single 

best measure (Dai Nguyen, 2019).  

Document clustering techniques are vital for making sense of the vast amount of wide-

ranging data encountered in social media, and their outputs of homogeneous groups of 

documents are then amenable for the further machine learning task of classification, which is 

nowadays dominated by the neural network-based approach known as deep learning. 

2.6.2 Deep learning 

The underlying machine learning architectures for NLP tasks range from statistical modelling 

based on the volume of data (Gonzalez-Hernandez et al., 2017), to probabilistic modelling 

based on the frequencies of certain words, including combinations of words (Yala et al., 2017), 
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then to the use of word embeddings and deep learning (Miotto et al., 2017), through to fully 

fledged language modelling (Peters et al., 2017). 

When using machine learning (ML) models, a practitioner must assemble increasingly 

refined representations of text as inputs for the models, by making iterative manual adjustments 

to the data until the optimal data structure for the model’s capacity is determined. At the same 

time, the model’s settings or hyperparameters must also be adjusted to best handle the inputs. 

These input features need to be engineered by system experts; the model just performs 

numerical optimization on the prepared data to derive the clearest conclusion about what the 

data represents. It can be said that much of the learning in this situation is performed by the 

human expert, who is refining the input features and model hyperparameters after feedback 

from the ML model’s processing of them.    

Deep Learning (DL) however, hands over learning about the data to the ML model — data 

needs minimal preparation but instead requires sufficient examples for the computer model to 

create its own internal representations from the data and to simultaneously tune itself. Where 

traditional machine learning requires a lot of text preparation such as removing stop words and 

case, Deep Learning models require minimal preparation of text and often do best when 

contextual text features are left intact. 

The machine learning models in Deep Learning are “deep neural networks”, which are 

neural networks having one or more “hidden layers” that mathematically model and connect 

relationships in the data - between the starting input and finishing output layers - and hence are 

referred to as “deep”. Deep Learning is referred to as: 

A sub-field within machine learning that is based on algorithms for learning multiple levels 

of representation in order to model complex relationships among data. Higher-level features 

and concepts are thus defined in terms of lower-level ones, and such a hierarchy of features is 

called a deep architecture. (Deng, 2014, p. 7) 

 Simply put, deep or hierarchical learning allows for more complex modelling of data by 

creating and combining many lower-level features.  Deep Learning belongs in a domain called 

representation learning, where ML models automatically learn features or representations of 

the data. That is, the model creates features that it understands from relatively raw data and 

does not require features to be engineered by a system expert. In training a DL model, the 

feedback from how well the model is doing goes back to the model, which can act on the 

feedback to make its own adjustments to how it should deal with the data. This removes the 

burden of understanding and engineering the domain from a human being, and it can be more 

truly said that the machine is learning (Lecun et al., 2015). 



43 

 

Recently health-related research has embraced Deep Learning, as the benefits of a model 

that can rapidly learn how to make use of raw data given enough examples is eminently suited 

to many health-related data sets, initially in image processing such as radiological reports, and 

as NLP techniques in DL have improved, in social media text processing (Ravi et al., 2017). 

Although lexicon-based approaches have often been used to classify ADR mentions, they are 

not really suited for social media processing due to the effort of manually incorporating 

numerous non-medical terms, whereas DL models have demonstrated the ability to learn 

mappings between informal and medical terms (Chowdhury et al., 2018). 

Deep learning typically requires a lot of labelled data, so provided it can be labelled, the 

large quantity of social media data available makes it a suitable candidate for processing with 

deep learning models. Although labelling is usually a manual process it can be automated to a 

large extent through a reinforcement ML process called active learning (Settles, 2012), and 

labelled text can be adapted to similar domains, which is known as domain adaptation (Daume 

III & Marcu, 2006). Deep learning models trained in one domain can also be adapted for use 

in another similar domain, even if the new domain does not have a lot of labelled data — this 

is called transfer learning. 

Deep learning models 

The default deep learning model is called a “fully connected” network — it consists of nodes 

in successive layers that are all connected to one another, and therefore all capable of 

contributing to the propagation of information throughout the network. While a fully connected 

network is capable of handling NLP tasks, learning through all those connections can lead to 

problems as the models get larger, and there are other architectures that are more suitable in 

practice.  

A major complexity of learning how to handle text is due to the sequential nature of 

language, words are not discreet units of information, they have a context which can often be 

quite spread out in a text. To cope with this, sequential neural networks have been developed 

— they can preserve something of the long-term context of each word.  

A sequential network calculates and preserves the relationships to context words that are 

important for each word, while discarding words that are not needed for a word’s contextual 

meaning. Thus, the models are not forced to represent all the word relationships but only those 

that really matter while traversing the document. The basic sequential model is the Recurring 

Neural Network (RNN). With larger networks, standard RNNs can have problems of either 

losing or amplifying the influence of a specific input as the network cycles around the 
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connections, this is called the vanishing or exploding gradient problem (Graves et al., 2008). 

Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) and  Gated Recurrent 

Unit (GRU) (Chung et al., 2014)  are more advanced RNN architectures which are designed to 

deal with this problem, by having extra connections to preserve long-term relationships and to 

forget unwanted connections. Over the last few years more powerful implementations of 

sequential networks called attention networks (Vaswani et al., 2017) have been developed. The 

current state-of-the-art in attention networks are called Transformers. These are developed by 

large organisations, for instance Google’s Bidirectional Encoder Representations (BERT) 

(Devlin et al., 2018); Facebook’s Robustly Optimized BERT Pretraining Approach 

(RoBERTa) (Liu et al., 2019); Google/CMU’s XLNet (Z. Yang et al., 2019) and Facebook’s 

XLM (Lample & Conneau, 2019). These are the types of models often used in transfer learning, 

described in the next section. 

An alternative approach to developing a sequential understanding of a word’s context is to 

map its relationships to all immediately surrounding words, akin to constructing n-grams from 

frequently associated words, which can be implemented via Convoluted Neural Networks 

(CNN). Originally developed to process image information, CNNs have proven to be very 

efficient in many NLP tasks (Kim, 2014). These are quite effective in handling shorter texts 

that tend to have key phrases or words in proximity, and do not require sequence modelling of 

the entire texts of a document. The advantage of CNNs is that they reduce the complexity of 

the network by translating inputs via a series of filters into convolved features that simplify the 

data the network needs to handle. They can perform reasonably well on smaller amounts of 

data and are also relatively quick to train, compared to the requirements of sequential 

architecture models (W. Yin et al., 2017).  

Transfer Learning  

Transfer learning with a deep learning-based framework uses DL models where the domain 

and the task used in training and application of the models can be different (Aggarwal & Zhai, 

2012). It is a mean for transferring knowledge from an auxiliary domain to a similar but 

different target domain, and has been used in many real-world applications such as natural 

language processing, computer vision, biology, finance, and business management (Lu et al., 

2015). With transfer learning for NLP, models are typically very large and are trained on a 

massive amount of text such as the entire Wikitext corpus, then these models can be fine-tuned 

to quickly learn the nuances of a new text dataset. The resources required for training these 

models are often immense and only obtainable to large organizations like Google, but the 
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trained models can be used by an ordinary ML practitioner with access to a GPU-equipped PC. 

Using transfer learning offloads the deep learning requirement for massive, labelled datasets 

and very large DL models to the organisation doing the training, the users of the models can 

then make do with much less data and less computing resources. Transfer learning has been in 

increasingly used to achieve state-of-the-art results in many NLP tasks. The top four systems 

designed for classification of tweets mentioning adverse drug reactions in Social Media Mining 

for Health (#SMM4H) shared task 2019 used Transformer-based transfer learning techniques 

(Weissenbacher et al., 2019).   

Transformer models used by this study are based on Transformer language models, which utilize 

multi-headed encoder/decoder attention mechanisms, that dispense with recurrence and convolutions 

entirely (Vaswani et al., 2017). They use intentionally masked sections of text to learn to predict the 

most probable words in sentences, and use byte-pair-encoding (BPE) (Sennrich et al., 2016), 

which copes with unknown words by encoding them with subword units. RoBERTa (“Robustly 

Optimized BERT Pretraining Approach”) was developed by Facebook to improve on Google’s original 

BERT (“Bidirectional Encoder Representations from Transformers”). RoBERTa improves on BERT 

by removing its next-sentence pretraining objective; by using larger mini-batches and learning rates; 

and using an order of magnitude more data and for a longer time than BERT was trained on. RoBERTa 

Large was the largest model of the available RoBERTa models on the Hugging Face site. 

In this subsection essential NLP techniques utilized in mining and processing health-related 

social media text were reviewed. Unsupervised techniques, particularly topic modelling, were 

described as very effective for discovering the main subjects in a text collection without 

requiring labelling. Supervised techniques were characterised as using labelled data to guide 

machine learning models for goals such as text classification. Deep learning and transfer 

learning were reviewed as the current most powerful machine learning techniques for natural 

language processing. As well as the labelling requirements of supervised models, it was noted 

that traditional approaches require more data set up and model tuning compared to deep 

learning approaches, which require a greater volume of data. 

2.7 Chapter 2 summary 

This chapter provided background and context for the research — starting with an explanation 

of the importance of vaccine surveillance as a vital component of ensuring vaccine safety and 

describing the deficiencies in traditional vaccine surveillance reporting systems, especially 

their propensity for delay. Research into the growing use of social media monitoring to obtain 
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timely health-related messages was evaluated, and the benefit of identifying real-time social 

media-derived Vaccine Adverse Event Mentions (VAEM) was explained.  

This led to an examination of the text mining and Natural Language Processing (NLP) 

techniques that are relevant to identifying VAEM in social media posts. The chapter described 

the suitability of unsupervised machine learning clustering methods to automate the 

identification of subjects in large volumes of texts. Topic modelling was reviewed in depth as 

being an often used and highly effective clustering technique, and it was emphasized that 

appropriate evaluation measures are needed to derive the most suitable topic models. The 

highly effective VAEM filtering technique described in Chapter 5 uses unsupervised topic 

modelling with a small number of labelled records to enable evaluation of the most useful topic 

models for the filtering task.  

The chapter next introduced Deep Learning models (deep neural networks) by highlighting 

their superiority to traditional machine learning models when working with large datasets like 

those found in social media. Transfer learning was described as a method to harness powerful 

pre-trained deep learning models for text classification tasks. In Chapter 6 a range of traditional 

and deep learning models are evaluated for their applicability for classifying potential VAEM-

containing tweets, and it is seen that deep learning and in particular transfer learning are the 

most accurate classifiers provided they are given enough training data. 

. 
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3 Research Design 

3.1 Chapter overview 

This chapter describes the research approach that was taken to explore the problem and solution 

domain that relates to identifying Vaccine Adverse Event Mentions (VAEM) in social media. 

The approach is described both in terms of research stages and in terms of a framework of the 

NLP techniques and processes that were used in the practical stages of the research. The 

framework provided a structure for developing a method to reliably extract VAEM from 

Twitter data, which was eventually formalised as the VAEM-Mine method (Section 3.5).   

3.2 Research approach 

The approach first consisted of a stage of domain exploration — conducting literature reviews 

to understand and describe the problem and solution domain. Twitter was chosen as data source 

and tweets were gathered and prepared for data exploration using topic modelling. The viability 

of Twitter data for VAEM detection was established and a pipeline of topic modelling and 

classification was developed, leading both to a dataset of VAEM and to a method for VAEM 

filtering that can be adapted to any similar task. Figure 2 summarizes these stages, as high-

level descriptions of the approach that was taken when planning and conducting the research.  

 

     Vaccine data exploration:
 

- Use topic modelling to explore vaccine-

related Twitter discussions and determine 

prevalence of  VAEM 

- Explain data and create a taxonomy

             Domain exploration:

- Develop understanding and describe the 

requirement of vaccine safety surveillance 

- Review use of social media data in public 

health surveillance

- Understand social media mining techniques

- Elucidate the various data problems

Vaccine adverse event mention filtering:

- Develop a topic modelling and 

classification pipeline for effectively 

identifying VAEM

- Evaluate and explain the outcomes

- Summarize approach as a method 

      Data gathering and preparation:  
 

- Collect tweets over a number of months

- Pre-process data for machine learning

 

Figure 2: Research approach 
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Analysis of the Twitter data showed that tweets containing vaccine adverse event mentions 

tended to have a common structure, they were complaints about commonly experienced effects 

following a recent vaccination — physical effects like arm-pain and fever, very often with a 

reference to the cause, such as a “flu shot”. There were very few mentions of severe reactions, 

and many of these when they were present were in discussions about a previously reported 

event or controversy, not in a current personal experience. Our domain expert confirmed that 

the numerous reports of commonly experienced effects following a recent vaccine that we were 

finding in Twitter posts was the kind of data that was needed, as it allowed for observation of 

trends. The expert also confirmed that this kind of data was not available through formal 

reporting systems, which focus mostly on severe events. 

3.3 Research process 

Therefore, the task of identifying VAEM was understood as requiring a process that could 

identify the language used to describe personal mentions of common health ill-effects, to 

discover the relevant discussions. The process was not required to identify specific adverse 

events, and it did not need to categorize the adverse events. Consequently, the practical goal of 

the research became one of isolating tweets that contained the target language, which can be 

characterized as vaccination-related “personal health mentions”. This process is summarized 

in Table 2 as an overview of the stages of the process, with the motivations, critical aspects of 

the methods, and outcomes of each stage. 

The motivation for the initial data collection stage is described as obtaining social media 

data likely to contain VAEM discussions, so that NLP techniques could then be used to identify 

those that contained VAEM, by targeting the language of the posts. This meant that the data 

collection method was to target a social media source that would be expected to have a high 

volume of posts describing common vaccine-related effects, but at the same time not to limit 

the search to only posts that had specific adverse mentions. Twitter was clearly a suitable data 

source for this, as tweets tend to be extemporaneous and declarative. Tweeting is used by many 

people to make a brief running commentary about often inconsequential personal experiences, 

just for the sake of having a general social media presence. 

Topic modelling was the next stage of the process, as it was effective at gathering the VAEM 

tweets into very few or even one topic. Its motivation was to obtain a filtered subset of the data, 

so that classification had a simpler dataset to deal with, but topic modelling itself was not meant 

to act as a classifier. The distinctive feature of the topic modelling method was its evaluation 

technique. For this, a set of likely topics, including VAEM, were decided upon after manually 
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examining the data, and a set of 1,400 of the tweets were labelled with these topics. Topics 

were evaluated with consideration to how well they identified the labelled VAEM and assigned 

recall and precision scores based on their proportions of VAEM vs other labels. The most 

effective topics were those that brought together the most VAEM with the least of non-VAEM.  

Table 2: Research tasks - Motivation, methods, and outcomes 

  Data Collection 
Chapter Four 

Topic Modelling 
Chapter Five 

Classification 
Chapter Six 

M
o

ti
va

ti
o

n
 

-  Obtain vaccine-related 
social media data that 
likely to contain VAEM 
discussions 

-  Utilize the data to help 
evaluate NLP techniques 
for identifying the 
language characteristics 
of VAEM discussions  

-  To extract posts most like VAEM: i.e., 
those containing discussions around 
personal concerns and experiences 
with vaccines and of vaccine 
reactions… 
-- 

to simplify these subsequent VAEM 
identification tasks:  

• labelling datasets for classification  

• classification learning process 

-  To understand the distribution of 
topics in vaccine-related posts 

To train classifiers to identify VAEM 
as a binary choice in the now 
mostly personal vaccine-related 
discussions, which include VAEM 

• Use the data extracted from topic 
modelling to ensure classifiers are 
dealing mostly with VAEM and 
similar personal health mentions 

• Reduce the data complexity and 
simplifying the task to a binary 
classification to improve the 
models' capacity to detect VAEM   

M
et

h
o

d
 

-  Targeted Twitter as a 
platform, due to its:  

• extemporaneous, brief, 
declarative posts 

• real-time nature  

• high volume  

• public availability  

-  Used Twitter API with 
wide-ranging search 
terms, such as 
"vaccination" and "flu 
shot" 

-  Manually examined tweets to 
determine the major categories, with 
VAEM as a distinct category 

-  Labelled some tweets with those 
categories, evenly apportioned 

-  When training models, observed how 
the labelled tweets were distributed in 
the model's topics 

-  Identified the topics that most clearly 
contain labelled VAEM tweets 

-  Extracted the tweets from those 
topics, for use in the classification step 

-  Evaluated the best trained topic 
model when applied to a separate 
dataset 

-   Assessed classifiers 
performance when trained on  

• medium sized vs larger datasets 

• imbalanced vs balanced datasets 

• and evaluated on imbalanced vs 
balanced test datasets 

-   A range of models were tested: 
traditional classifiers, neural 
networks, and transfer learning with 
Transformers 

-   Hyperparameter & vectorization 
settings were optimized 

-  A rules-based model was created 
as a baseline; various extra 
features were also evaluated  

O
u

tc
o

m
es

 

-  811 thousand posts 
were collected over a year 

-  Cleaning, including de-
duplication, reduced this 
to 688 thousand posts 

-  Examination of the data 
showed very few VAEM 

-  Later analysis showed 
VAEM to be no more than 
1.5% of the data 

-  85.6% of data was eliminated after 
extracting only topics that were likely to 
contain VAEM 

- The extracted 14.4% of data consisted 
of around 99 thousand records, which 
were manually labelled, as VAEM and 
non-VAEM 

-  Percentage of VAEM in extracted 
data was around 10% 

-  A taxonomy of vaccine-related posts, 
based on the models' topics  

-  The best models classified VAEM 
with F1-Scores over 0.9 

-  94% of all VAEM were identified 
via the combined effect of 
extracting VAEM via topic 
modelling, followed by classification 
over the extracted data 

-  98.6% of initially collected data 
was eliminated through these 
processes, mostly non-VAEM, with 
only 6% of VAEM also lost   
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The trained topic models needed to be tested against new data, so topic modelling was 

applied through two data collection stages, with the first lot of data being used to train the 

models, the second lot being used to evaluate them.  

Although the topic modelling scoring mechanism borrowed concepts from classification 

measures, the topic modelling stage should be thought of as a filtering mechanism, and not as 

a classification process. That is, it was used to eliminate nearly all tweets that were not like 

vaccine-related personal health mentions, to simplify the task presented to the following 

classification stage. 

The motivation of the classification stage was to determine which of the mostly personal 

health mentions obtained from the topic modelling were describing VAEM - and classification 

was therefore framed as a simple binary task. The aim was to find the greatest number of 

VAEM as accurately as possible, so that downstream consumers of the data could use the data 

to determine trends. Crucially, as the models were dealing with already filtered data, it was 

much easier to get higher performance from the classifiers than it would have been, had it been 

necessary to compensate for class imbalance using other data manipulation or classifier 

techniques, or if multi-class classifiers had been needed.  

Classifiers used were well known and available to other researchers and were preferred if 

they did not require advanced expertise or special features to get the best out of them. For 

instance, the classifiers should learn what was distinctive about the language of VAEM based 

on the labelled examples only. If components of the language such as negations were important, 

then the classifiers should learn this based on how the texts were labelled, rather than requiring 

extra features added by the ML practitioner.  

As the topic models used data that had been collected in two stages, the classification 

method also utilized the filtered outcome of the topic models following these two data 

collection stages. That is, models were trained and evaluated with the first lot of data, then were 

re-trained and evaluated with the combined data of both lots of collected data, with some data 

being set aside for testing purposes. This was instructive as it highlighted the increasing 

performance of the classifiers relative to training data, and although the positive effect of 

adding data was expected it was considered worthwhile to quantify this in the evaluation of the 

classifiers. The best classifiers proved to be Transformer models, once sufficient data was made 

available.  

In the Outcomes sections, the table tracks the progress of the identifying and isolating 

VAEM through the stages of the processes — these were tangible outcomes, chiefly the posts 

containing VAEM, but the topic modelling stage also produced a taxonomy.  Evaluations of 
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the percentages of VAEM in each stage help with understanding the effectiveness of the 

process as it proceeds through the stages. The conclusions that only 1.5% of the original data 

contained VAEM, and that the overall process discarded 98% of the irrelevant data to identify 

94% of the VAEM, were made after the entire work had been completed - this is explained in 

Section 7.4. The technologies and processes outlined above can also be described as a 

framework, which is described next. 

3.4 Framework  

As presented in Figure 2 and Table 2, the research process started with domain exploration, 

then was followed by the practical stages of data gathering and preparation, data exploration 

and vaccine adverse event mention filtering, which required topic modelling and classification 

steps. Specific details of the process are presented in Figure 3 as a framework.  

Classified tweets

Traditional 
classifiers 

Rule-based 
classifier

Neural networks 
trained from 

scratch

Twitter data 
stream

Pre-Processing & 
Partial annotation

Pre-processed 
tweets

Vaccination 
keyword filtering

Potentially vaccine 
related tweets

VAEM Classifiers

Fine tuned adapted 
language models

Two-phase 
Topic models 

Labelled 
dataset

Refined 
dataset

Domain 
taxonomy

Domain corpus word 
embeddings

Balanced Datasets

TF or TF-IDF 
Vectors

Word 
Embeddings

Embeddings 
Cluster Features

Word Similarity 
Scoring

Brown Corpus

Wikipedia

 CommonCrawl News

Web text corpus

Elucidate the various 
data problem

Review Public health and 
vaccine safety surveillance 

Investigate social media 
monitoring techniques 

Study NLP, text mining and 
classification techniques

 

Figure 3: Research design framework 



52 

 

The next section describes the framework components in more detail. 

3.4.1 Domain exploration 

The first stage of the research was to conduct a literature review around the importance of 

vaccine safety and vaccine safety surveillance (as described in Chapter 2). The limitations of 

traditional data sources and established reporting systems were surveyed, followed by an 

investigation of the advantages and challenges of using social media data as an alternate data 

source. This included reviews of the use of social media in public health opinions and in 

surveillance, specifically disease surveillance and medication safety. The literature review 

highlighted the difference between social media monitoring for adverse drug reactions and 

adverse events following immunization. The review explained the point of this research, which 

is to monitor for the general level of vaccine adverse event mentions, rather than looking for 

specific severe adverse events. It was noted that this is more akin to social media monitoring 

for personal health mentions, but that very little vaccine-related research has been done in this 

area. The existing methods and algorithms commonly used in social media monitoring were 

summarized and their limitation and strengths were explored. These covered automatic 

classification methods, including topic modelling and deep learning methods. 

3.4.2 Data collection 

Table 3 summarizes the problems and the potential strategies that are relevant to identifying 

VAEM in the Twitter stream, and these are applicable to any similar challenge of finding a 

signal amidst an immense quantity of other indirectly related social media posts. 

Table 3: Strategies for data related problems 

Problem Description Strategy 

Noisy Data Vaccine-related messages are 

overwhelmingly not about personally 

experienced adverse events 

• Filter at source 

• Filter afterwards 

• Unsupervised clustering 

Weak Signal Even putting aside obscuring noisy data 

there is just not much posted that 

contains VAEM 

• Remove overrepresented data  

• Increase signal through 

collecting more data 

Sampled Data Streaming media APIs sample data based 

on filters and contractual agreements, 

and there are many social media outlets 

• Gather data for a long period  

• Get data from multiple social 

media sources 
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The third column of the table summarises the kinds of solutions that are applicable to each 

problem. For instance, noisy data can be filtered at the source by the search filter used when 

downloading streaming data and can be further improved by applying filters afterwards to 

remove unwanted data. The iterative process of removing noise from already downloaded data 

suggests rules that can be applied to refine the source filtering strategy. Although the 

subsequent identification of keywords or word combinations may suggest more restrictive 

filters for the streaming process, care must be taken to avoid elimination of valid data, so the 

best strategy is a balance of a filtered search followed by further filtering afterwards - where 

more sophisticated data processing techniques can be applied than those available in a social 

media API. 

The Twitter streaming API was used with a search term that would gather a broad range of 

vaccine-related data without capturing too much extraneous data: "vaccination, vaccinations, 

vaccine, vaccines, vax, vaxx, vaxine, vaccinated, vacinated, flushot, ‘flu shot’". The aim of the 

search was to gather wide-ranging vaccine-related discussions, including those related to the 

commonly used terms for flu vaccines, to provide a variety of data for evaluating VAEM text 

mining techniques. The approach is explained in Section 3.3, the Research Process, and Section 

4.1.1 contains a detailed discussion of the reasoning behind the approach. The search was 

limited to English language tweets, but no geo-location restrictions were applied. 

Twitter data was gathered from 7th February to 7th June 2018, comprising 400,097 tweets. 

A further 3 months of Twitter data was also collected between 9th August and 12th November 

2018, containing 401,482 tweets, and another set of 9,431 tweets were collected between 7th 

May and 20th July 2019.  This resulted in total of 811,010 tweets, almost a year’s worth of 

continuous downloading. Ethics approval for this study was granted by Monash University 

Human Research Ethics Committee (Project ID: 11767). 

A manual examination of the data showed that few of the discussions contained adverse 

events mentions. The data was deduplicated, cleaned and prepared for topic modelling, with 

an aim to understand what the main topics were and to get an idea of the extent of VAEM in 

the data. The data was also processed into Word2Vec word embeddings, for later use in the 

planned classification stages, using Gensim Word2Vec and skip-grams. Detail of the data 

collection and preparation can be found in Chapter 4, “Data collection and preparation”.     

3.4.3 Two stage topic modelling 

Topic modelling became the major contributor to understanding the Twitter data and 

developing an approach for extracting VAEM from the data. Topic modelling revealed the 
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main topics in the data, assisting with the development of a taxonomy of vaccine-related tweets, 

and revealed that VAEM were identifiable as a distinct topic. An evaluation approach was 

developed, which consisted of labelling a small number of the tweets and observing when topic 

models put tweets that had been labelled as VAEM into (ideally) one topic. The best model 

located almost 100% of the labelled VAEM into one topic, alongside similar tweets, which 

suggested that topic modelling could be used as a filtering mechanism. Further experiments 

showed that a second stage of topic modelling could be applied to filtered tweets, with a 

resulting VAEM-focussed dataset, which was used for developing the features that would be 

required for classification. Chapter 5 “Topic modelling” describes this. 

3.4.4 Datasets and embeddings 

The output from the topic modelling was labelled as either VAEM or non-VAEM and then, 

after conducting training experiments with imbalanced data, the data was balanced by 

removing excess non-VAEM to contain roughly equal amounts of each label. These were then 

used to create the training, validation and test datasets used in the Classification stage. 

Additionally, Word2Vec embeddings  (Mikolov, Chen, et al., 2013) were created from the pre-

processed tweets — that is, from the entire cleaned data rather than just from the labelled 

tweets. The embeddings were used by the neural networks as word vectors and were also used 

to develop additional features. 

3.4.5 Features development 

TF or TF-IDF vectors were created for use by the traditional classifiers. Apart from their 

standard use by neural networks, word embeddings were also used to create similarity scores 

that were utilized by a rule-based classifier, and for clusters that were also evaluated with 

traditional classifiers. Appendix D contains detailed descriptions of these. Various additional 

features were experimented with, see Appendix F, “Feature engineering results”. 

3.4.6 VAEM classification 

Although topic modelling on its own was not able to isolate VAEM with much precision it was 

highly successful in gathering VAEM into topics that included other similar messages and 

excluded most of anything else. Text classification models were then used to further isolate the 

vaccine adverse event mentions. Benchmarks for the classification models were created by 

assessing traditional machine learning approaches (S. Wang & Manning, 2012). To understand 

their success more clearly a benchmark of a manual rule-based classification process was 
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developed. Ensembles of models were also evaluated - ensembles frequently outperform 

individual models because each model deals with features differently (Heaton, 2016). Various 

neural network-based classifiers were also assessed, ranging from Convoluted Neural 

Networks (CNN), which suit detecting key phrases and patterns that do not require extensive 

language interpretation; to Recurring Neural Networks such as Long Short-Term Memory 

models (LSTM) that are designed for handling language data; and culminating in the current 

the state-of-the-art Transformer language models, which were trained on various large text 

corpuses. Chapter 6, the “Classification” chapter of the thesis, deals with this. 

3.5 The VAEM-Mine method 

The application of the various processes described in the framework can also be described 

as a method - that is, as the steps or pipeline required to obtain a classified set of tweets. Figure 

4 illustrates the VAEM-Mine method. The use of “Mine” in the method name reflects the 

process involved in detecting VAEM in Twitter conversations: the raw material in the form of 

Twitter texts must first be collected and prepared, then refined to extract the valued VAEM-

containing data. The VAEM-Mine method consists firstly of processes of data collection and 

data preparation, then as topic modelling and classification phases, both of which first require 

models to be trained before eventual deployment into a working pipeline.  

The method should be understood as a map for the choices of either training the topic models 

and classifiers, then having trained them - of using the deployed models to filter and classify 

new incoming tweets. The method includes decision points to determine the appropriate 

direction, either the training process, or the application of the trained models to incoming data. 

When the topic modelling phase is entered for the first time then the work of training the 

topic models begins. For training topic models, the first step is to label some examples of the 

subject of interest so that topic modelling scoring can be applied, to enable assessment of how 

well topic models perform in the task of filtering the data to contain the label of interest in just 

one topic, or in just a few topics. Labelling the records and scoring are only required in the 

training phase and are not part of the eventual deployed pipeline, and a large quantity of records 

is not required – around 150 to 200 of each of the potential major topics, as judged by manual 

observation of the tweets. This is explained in Section 5.1.3. Further refinement of the data is 

possible by a second stage of topic modelling on the data obtained from the top model of the 

first stage. The second stage will identify topics that have a higher ratio of the subject of interest 

to other subjects in the texts, but at the expense of losing some texts containing the subject of 

interest.  
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Figure 4: VAEM-Mine Method 
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Having trained the topic models, they can be applied to filter the incoming data, and it is up 

to the user whether they take just the output of the best topic of the first-stage topic model, or 

further refine the data by taking it from selected topics of the second-stage topic model. The 

topics of the first stage of topic modelling are also potentially useful to obtain a domain 

taxonomy. 

The filtered data is then passed into the classification phase. Entering the classification phase 

for the first time, the answer is No as to whether a trained classifier exists. Consequently, the 

method requires the incoming filtered data to be labelled for the creation of datasets suitable to 

train the classifiers. It additionally requires the creation of domain-specific embeddings. 

Dataset size is a factor. Is there enough data to fine-tune language model-based classifiers such 

as Transformers, or would less demanding neural networks such as CNNs or LSTMs, or even 

traditional classifiers, be more appropriate? These questions are most likely only answerable 

after assessing a range of classifiers and comparing their relative performance. If the scores 

obtained are not meeting expectations for the classifiers — for instance, an F1-Score of 0.8 or 

more — a decision may be made to collect more data and to repeat the process.  

In this research, it was found that the initial labelled dataset of 3.5 thousand records was 

insufficient to train Transformer models, but that hybrid CNN and bi-directional sequence 

models (e.g., a bidirectional GRU) were the best performers with F1-Scores around 0.8. With 

further data collection resulting in a dataset of 20 thousand labelled records all the models 

benefitted, but the outstanding result was an F1-Score of 0.9 obtained from the Transformers, 

which surpassed every other model. This is described in detail in Chapter 6 “Classification”, 

and a comparative analysis can be found in Chapter 7 “Evaluation”. 

Once the classification training is complete then the method is ready as an end-to-end 

pipeline to be applied to any new incoming data. The crucial mechanism of the method is the 

pipeline of steps that are taken to increasingly refine the data for the extraction of VAEM, 

which requires the applications of trained topic models and classifiers in a sequence. However, 

these could be used separately. That is, the topic models can be used as a filter for raw data to 

create a smaller and homogeneous dataset for the classifiers, or their output can be used as-is, 

without classification. The pipeline specifies that training the classifiers requires assessment of 

all potential models against the available data, and that classifier choices and performance 

depends on how much data is available. Therefore, the best possible result may require the 

collection of more data, re-training and re-evaluation, until the pipeline is ready.   
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3.6 Chapter 3 summary 

Chapter 3 introduced the research approach, firstly on a high level as stages of literature review, 

then data gathering and data analysis, followed by the application of techniques to identify and 

obtain Vaccine Adverse Event Mentions (VAEM) from social media. A description of a 

framework of NLP techniques and processes was used to make a more detailed assessment of 

the various components of the research, which included references to where these are explored 

in depth in the thesis. This was further explained in terms of the VAEM-Mine method. 
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4 Data collection and preparation 

4.1 Chapter overview 

Data collection and pre-processing are preliminary steps of the proposed framework, the 

interface between the data “at large” and the techniques that need to be applied to the data to 

discover meaningful insights. The research is predicated on discovering consistent VAEM-

related information embedded in extremely diverse and mostly unrelated volumes of social 

media data. The data collection aim is to obtain as much relevant data as possible without 

excluding too much by using overly specific search terms.  

Data pre-processing is dedicated to cleaning and pre-processing that data, then preparing it 

for use by the various downstream NLP technologies that are employed. The next section 

summarizes the general data processing techniques used in this research. The following topic 

modelling and classification sections each contain more specific explanations of their 

respective data preparation requirements, and details of the datasets. Those sections refer to 

processes performed in the topic modelling stage for filtering data to obtain more VAEM-like 

data subsets, so a basic understanding of the topic modelling processes is required. The 

classification section also refers to classification processes. Summary descriptions of those 

processes are presented with the dataset discussions, together with references should a more 

complete understanding be desired by the reader.  

4.1.1 Social media (Twitter) data collection 

The short, 280-word, message length of tweets was thought to be an advantage for this study, 

since it was likely that only one subject would be found per tweet. Another important feature 

of Twitter engagement is that it is used for making casual, extemporaneous, personal messages, 

which is the type of data the research needed to find. 

Twitter data was initially gathered from 7th February to 7th June 2018, comprising 400,097 

tweets, which covered the North American flu season, which amounted to a daily average of 

3,390 tweets. A further 3 months of Twitter data was collected between 9th August and 12th 

November 2018, containing 401,482 posts, and combined with another set of 9,431 tweets 

collected between 7th May and 20th July 2019. The data from the first data collection round was 

used for training topic models and for initial testing of classifiers. The data from the second 

data collection round was used for evaluating the trained topic models and for further testing 

of classifiers. 
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The Twitter Streaming API was used with a search for "vaccination, vaccinations, vaccine, 

vaccines, vax, vaxx, vaxine, vaccinated, vacinated, flushot, ‘flu shot’". Specific vaccines and 

disease-related terms were not targeted, as analysis of the Reddit data (Reddit’s publicly 

available comment dataset, 2015) (detail in Appendix I) had shown that many of the terms are 

ambiguous or polysemic and introduce too much noise. For instance, although the term MMR 

(meaning the Measles, Mumps, Rubella vaccine) might be infrequently used in social media 

discussions of personally experienced AEFI, the term is extensively used by the online gaming 

community where it means “Matchmaking Rating”. The terms “shot” and “jab” are associated 

with receiving injections but they are also used in too many other contexts to be useful search 

terms, whereas “flu shot” as a phrase was useful. Furthermore, the domain expert had advised 

that the strongest and most relevant adverse event mentions would likely come from flu 

vaccine-related incidents, due to the fluctuating nature of the seasonal flu vaccine compared 

with the much more stable nature of childhood vaccines.  

Arguably, further specific search terms could have been included to increase the likelihood 

of finding adverse event mentions. For instance, expanding the “flu shot” query with 

combinations like “flu jab”, “influenza injection”; and using terms such as “AEFI” or “reaction 

following immunization”. However, the goal of the research was to determine how to find 

VAEM based on the language in the texts, not to elicit the best search terms for catching 

specific instances of vaccine adverse mentions — so the author decided not to add additional 

terms to the most often used expressions such as “flu shot”. Initially, some of these specific 

terms were trialled, but it was found that posts that featured VAEM, other than those from a 

flu shot, almost always appeared in combination with a general term such as “vaccination”. 

Furthermore, technical, and formal terms were hardly ever used to describe VAEM. Therefore, 

given the research goal, it was decided to just use the general terms. The limitations of not 

using more specific terms are discussed in Chapter 8.3. 

Most posts were not reporting VAEM, and even those that might contain VAEM could turn 

out to be something different. Table 4 illustrates a sample of VAEM-related tweets — almost 

all of them contain personal anecdotes with phrases such as “I got” and “my arm”; indications 

of pain associated with words like “vaccinated”; and include words such as “today” and 

“yesterday” indicating a recent event. Although examples 5, 7 and 8 are not VAEM, the type 

of language used in all these examples is consistent and unlike other vaccine discussions, which 

lack the combined elements seen here. Note that example 7, which relates to a possible vaccine 

reaction in a puppy, would not be labelled as VAEM for the classification step, even without 
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the qualification indicating that there was no reaction, as it was decided to consign all animal-

related tweets to the non-VAEM category. 

Table 4: Sample of language used in vaccine-related tweets 

1 I got my second meningitis vaccine and it literally hurts so bad just to put on my backpack, it's a sign I shouldn't go 

to school for the rest of the week 

2 I finally got the flu shot yesterday and now my body feels weird. I don't know if I'm having a reaction or what. 

3 i spent all day thinkin i was a baby for having a sore arm after getting vaccinated. anyways turns out im like. rlly 

allergic to the meningitis vaccine i got :) 

4 This flu shot got my armpit on fire 

5 I'm proof of this! I got the flu shot and instead of feeling like I was dying for 5-7 days (actually diagnosed with flu on 

Friday), I was only achy, fever-y, and stuffy for three days in the middle. 6 days after starting the symptoms, I'm 

coughing, and that's about it. 

6 I got the flu shot today and in that area it's fucking hurting .. is that normal ? Am I dying????? 

7 So this dude brought his dog to the hospital today for some vaccines right, puppy passed tf out!!! We thought it was 

an allergic reaction, turns out, mf ain't feed the dog in 12 hours. The pup is 3 months. Smh. 

8 I got vaccinated as a kid. As a result, I'm now starting to gray and bald. My balding got so bad I had to shave my 

head. I've also gained weight. Because of vaccines I've started aging instead of dying as a baby. 

4.2 Data pre-processing 

Texts need to be regularized through pre-processing so that statistical techniques can be applied 

to recognize language patterns, that allow for subject grouping. This section describes the pre-

processing undertaken with this data to prepare it for topic modelling. 

4.2.1 Removing unwanted tokens 

Stop words 

When looking for meaningful words to count and analyse very often there are words that have 

no particular significance - they may be words that are just used everywhere (“a”, “the”, “in”, 

“my” etc.) or words that are hardly ever used. The commonly used words are known as “stop 

words”.  When assessing the impact of stop-word removal it was found that although the initial 

topic modelling benefitted from their removal generally the classifier models did worse with 

stop words removed – likely due to the important language clues contained in the intact text. 
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Punctuation, Numbers, Symbols 

Punctuation and numbers are components of text that can also be removed to good effect, 

particularly with a bag-of-words approach, as measuring the incidence of punctuation mark 

and number usage is not normally required. Punctuation can however be utilised in more 

sophisticated NLP techniques to determine sentence termination, possessive nouns etc. 

Punctuation and numbers were removed. Other symbols such as emoticons are on the other 

hand used constantly to convey meaning, so should be retained. To regularize emoticons, they 

were converted into equivalent English words (e.g., “ :( ” was changed into “sad”).  

 

Non-predictive tokens 

Special phrases such as URLs, hash-tags, Twitter names and retweet symbols were also 

removed. These phrases are not only repetitive and non-essential features that confuse the 

analysis of word significance but also are highly specific but transitory. For instance, a 

particular email address or signature phrase could be identified as being more significant than 

the words coming from the general discussion of a text, simply because it appears repetitively 

but not because it is part of the subject that the text discusses.  

4.2.2 Pre-processing and adding features 

Case and spelling 

Words may assume different forms but have the same meaning - for instance “His” at the 

beginning of a sentence probably has the same meaning as “his” in the middle of a sentence, 

and a mixed-case typo “hIs”. These probably do not want to be identified as different words, 

and so a common strategy is to make all words lower-case so that the vocabulary is trimmed to 

just one symbol per word, “his” in this example. In a similar vein spelling mistakes can 

introduce variations which could be corrected if desired. On the other hand, there may be times 

when case matters, texts dealing with the subject of God for example may deliberately use the 

word “His” (or maybe “Her”?) when referring to the deity and this carries a significance 

compared to an ordinary “his”, likewise upper-case “HIS” may very likely be an acronym or 

an organization name. It was found that using lower case has benefited the topic modelling, but 

a copy of the original text was retained for later re-evaluation with the classifiers. Spelling 

mistakes were not corrected as the text is full of jargon and peculiar words, and most of them 

are deliberate - they get ignored anyway by the models, and the focus was on the significant 

words which mostly are correctly spelled.  
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Text normalisation - Stemming or Lemmatization 

The various derived forms of words can be usefully reduced to a single form - either through 

stemming which creates a root form that might not actually be a real word, or lemmatization 

which uses a real word for the root. This is going further than the simplification of enforcing 

lower-case and removing punctuation, it is reducing many words into one word.  For instance, 

“playing”, “plays”, “played” might all be reduced to “play” (though some algorithms might 

leave “playing” as it is); “am”, “are”, “his”, “her” and “we” can be reduced to “be”. Other 

studies have shown that lemmatization improves topic coherence (Martin & Johnson, 2015) 

and that lemmatization is preferred over stemming because it considers context (Mehta, 2020; 

Win & Aung, 2018). Lemmatizing benefited the topic modelling process, as topic modelling 

needed to reduce text variation in a large quantity of text to discover underlying similarities, 

and lemmatization was effective for this – see Section 4.3. The classification models did not 

do well with lemmatized text – Sections 6.3 and 0 describe the preparation and evaluation of 

lemmatized text with classifiers.  

 

N-grams 

As described in Section 2.5.2, n-grams are used to preserve phrases in a bag-of-words 

approach. In our work we have used one (i.e., single words), 2 and 3 grams, with or without 

stop words removal, and with or without the preservation of word-case. Topic modelling used 

n-grams created from the lemmatized corpus; some of the standard classification models 

benefitted from using n-grams, this was evaluated for each model.   

4.3 Topic modelling data preparation 

Data preparation for topic modelling consisted of a data cleaning process to remove obviously 

invalid tweets and duplicates before further processing. Cleaning initially consisted of 

converting from Unicode to plain text, eliminating URLs, converting to lower case, removing 

the retweet tag and @user references and the hash symbol from hashtags. Text-based emoticons 

were replaced with plain English equivalents. Documents having less than five words, or with 

a high number of non-unique (therefore repeated) words and documents with a low number of 

English words were removed.  

Contractions were expanded prior to tokenisation (e.g., “Don’t” was converted to “do not”); 

stop words were removed using the NLTK (a Python library for text processing) (NLTK, 

Natural Language Toolkit, 2018) stop words list, apart from the strongly indicative words “do” 
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and “not” (as in “do not vaccinate”); and bigrams and trigrams were created. The Gensim utility 

function simple_preprocess was used to tokenize the data, as it had a low overhead compared 

to spaCy’s (Honnibal, 2017) tokenizing approach, but spaCy’s NLP library was subsequently 

used to lemmatize, retaining nouns, adjectives, verbs and adverbs.  

A dictionary of lemmatized terms was constructed using Gensim’s corpora.Dictionary 

function, and the dictionary’s document to bag-of-words (doc2bow) function was used to 

assemble a document corpus. After some experimentation it was found that trimming the 

dictionary had a beneficial effect on performance and coherence, so words that occurred in less 

than 20 documents or in more than 50% of the documents were removed from the dictionary 

and subsequent corpus. After trimming, the token count was reduced by 90% (e.g., from 

100,148 to 9,986 in the first dataset), and the time to construct a Gensim LDA model was 

reduced by 80% (e.g., from one hour to ten minutes), and topic coherence increased by 10%. 

As a result of these steps some documents had been stripped of all their words, and therefore 

were removed.  

4.4 Topic modelling datasets 

The initial dataset used for topic modelling consisted of 400,097 tweets that were collected 

in the first 6 months of the data collection process. After the de-duplication step this was 

reduced to 341,507 documents, and data cleaning further reduced the data to 329,842 

documents. After removing any empty documents resulting from the lemmatization step the 

document count was 328,822. This dataset was used to train the topic models. Part of the topic 

model scoring technique required a small number of labelled tweets, so 1,400 of them were 

labelled, following the guidance of the domain expert — see section 5.1.3 for detail.  

Topic modelling used two stages, and the best second-stage topic model (the DMM 9-topic 

model, see Section 5.6.1) provided an opportunity to extract a VAEM-like subset of tweets, by 

taking the top 3 topics that concentrated VAEM — being topics 8, 9 and 1. The result was a 

extracted subset of 18,801 tweets, which retained the topic numbers and the original 1,400 

topic labels. Additionally, labelling for VAEM (label 0) and Discussions (label 1) was 

completed for all tweets in the (best) Topic 8. This data was then used in the initial classification 

assessment.  

An additional 401,482 tweets were collected in the second 6 months of data collection, as 

two datasets. The new datasets were combined and then compared with the earlier dataset. 

There were 15,740 tweets that were duplicates of tweets present in the earlier dataset, so they 

were removed. After the pre-processing and cleaning required for topic modelling there were 
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359,535 posts. These were processed by the topic models that had been trained on the first lot 

of data. That is, the 14-topic DMM model, previously ranked as the best model in Phase One 

of topic modelling, was applied to the data - and the 80,372 records that the model put into the 

best VAEM topic of the model (Topic 13 of the first-stage 14-topic DMM model — see Section 

5.3.4) were retained as the most likely to contain VAEM. This data was combined with the 

previously extracted subset to re-train classifiers in a second classification round.  

4.5 Classification datasets 

The classification datasets were assembled from the tweets identified by the topic modelling 

process as most likely to be VAEM, and classification experiments were conducted in two 

phases — see Section 6.5 and Section 6.8.  

Phase One: The results of the first round of data collection and subsequent topic modelling 

and extracting the most likely VAEM texts was a dataset of 18,801 — but after fully labelling 

and balancing it to contain an even number of VAEM and non-VAEM examples, the dataset 

size was a little over 4,100 records. This was used in the first phase of classification, which 

tested traditional classifiers and deep neural networks trained from scratch.  

Phase Two: Data processed during the second round of data collection and topic modelling 

was added to the existing Phase One dataset to produce a combined Phase Two dataset of 

around 20,600 records. All the models were retested on the Phase Two dataset, and having 

more data allowed for additional deep learning models to be evaluated. The performance of all 

classifiers improved, and particularly that of the deep learning models. Sections 4.6 and 4.7 

describe the datasets in detail. 

4.6 Phase One classification data 

The data extracted from the topic modelling phase was mostly like VAEM. The goal of 

classification was to classify that data as either VAEM or not. Therefore, all the data that had 

been exported from the topic modelling was binary labelled for classification, as either 

“VAEM” or “non-VAEM”. These were manually decided by the author while observing all 

tweets, following the guidelines supplied by the domain expert. The task was reasonably 

straightforward due to the simple criteria for determining VAEM, which was to take any 

reference to an adverse effect in relation to a recent vaccination. There were only a handful of 

cases that required confirmation by the domain expert — see also Section 4.7.1 for examples 

of records that required expert judgement. 
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Phase One dataset creation took the output of the initial two-stage topic modelling — see 

Section 5.5. It consisted of the top 3 topics (topics 8, 9 and 1) of the best second-stage topic 

model (the DMM 9-topic model, see Section 5.6.1). Tweets containing references to the rock 

group “The Vaccines” were eliminated (Section 5.6.2), leaving 18,519 labelled documents. 

The DMM 9-topic model’s topic labels and the original 1,400 manual labels were retained as 

fields in the data. Labelling for VAEM (label 0) and Discussions (label 1) was additionally 

completed for all tweets in the (best) Topic 8. This enabled the data to be assessed by topic 

number and topic model label when evaluating classifiers’ performance while training with 

increasingly imbalanced data. This is described in Section 4.6.1.  

Eventually a balanced dataset was assembled to complete the Phase One training, described 

in Section 4.6.2. A test dataset was extracted from this, which was utilized throughout all the 

experiments to allow a fair comparison of classifiers’ capabilities (Section 4.6.3). The final 

dataset obtained after these steps is described in Section 4.6.4. 

4.6.1 Experimenting with imbalanced datasets 

The data that had been extracted from topic modelling including the topics numbers as a field. 

In Phase One, these were the “top topics” of the topic modelling second stage DMM 9-topic 

model, numbered 8, 9, and 1. Because each topic had increasing degrees of imbalanced data, 

they provided a simple mechanism for dividing the data into classification datasets of various 

degrees of imbalance. The 3 topics were used to create 4 datasets for classification, named 

“Best”, “Combined”, “Top Two Combined” and “All Combined”.  

The “Best” dataset contained just the records from the best topic, Topic 8. The “Combined” 

dataset contained all of Topic 8 and just the VAEM and labelled Discussions records (original 

topic model label 1) from Topic 9. The “Top Two Combined” dataset contained all of the 

records from topics 8 and 9, and the “All Combined” dataset contained all data from the three 

topics.  

In Table 5 the topic numbers and topic model labelling information are included to illustrate 

the makeup of the four datasets.  
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Table 5: Distribution of original topic model labels in classification datasets 

Label Topic 8   Topic 9   Topic 1   Label Totals 

Label 0 - VAEM         1,304                   161                   275                  1,740  

Label 1 - Discussions         1,697                     64                   754                  2,515  

All Others               48                5,365                8,851                14,264  

Topic Totals         3,049                5,590                9,880                18,519  

Datasets     VAEM %  

Best Dataset         3,049    43% 

Combined         3,549  (3,049 + 161 + 275 + 64) 49% 

Top Two Combined         8,639  (3,049 + 5,590) 17% 

All Combined      18,519  (3,049 + 5,590 + 9,880) 9% 

The labels show that Topic 8 is largely either VAEM or Discussions, as identified by the 

retained topic model labels; and that included into the Combined dataset there were 161 VAEM 

and 64 Discussions from Topic 9, and 275 VAEM from Topic 1. That is, the Combined set had 

all the VAEM, but apart from the 64 extra discussions, without the addition of any other non-

VAEM from topics 9 and 1.  

Figure 5 shows the relative percentages of the VAEM vs non-VAEM labels in the four 

datasets - the “Combined” dataset is the most balanced with 49% of the data being vaccine 

adverse event mentions. The “All Combined” dataset is the most imbalanced with just 9% of 

VAEM present. 

 

Figure 5: Proportion of VAEM in classification datasets 

Section 6.5 contains an assessment of how the traditional models coped with these datasets. 
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4.6.2 Creating a balanced dataset  

After completing the preliminary analysis of classifiers trained on varying degrees of 

imbalanced data, a final dataset was created that included all 1,740 VAEM labelled records 

from the three topics, all other data from Topic 8, and the Discussion (topic model label 1) 

records from topic 9. That is, a single dataset of 3,549 records, consisting of 1,740 VAEM 

records and 1,809 non-VAEM records - a ratio of 49% - see Table 6. 

Table 6: Distribution of labels and topics in final Combined dataset 

 

4.6.3 Imbalanced (Victorian) test dataset 

As part of the evaluation process, a test dataset was created for an investigation into local 

seasonal VAEM trends. The records were identified by looking through all the data in the 

geographical-related Twitter fields including UserLocation, UTCoffset, TimeZone and Place 

fields, to identify mentions of Victoria Australia and Victorian cities and towns, between 7th 

February and 7th June 2018. This period included the time when people were getting flu 

vaccines and the early Australian flu season of 2018. Based on the tweet text, the resulting 

3,014 tweets were labelled as containing VAEM tweets or not, resulting in 93 VAEM records 

and 2,921 non VAEM tweets. 

As with the other datasets the tweets were processed through the DMM topic model to 

eliminate most of the unwanted tweets. From 3,014 tweets with 93 VAEM the subset that was 

extracted contained 90 VAEM and 524 non VAEM — 614 in total, roughly a fifth of the 

original Victorian data. The resulting texts were assessed using the tweets’ dates, and the trend 

for VAEM discussions was found to follow the seasonal application of flu vaccinations, see 

Appendix H.  

4.6.4 Final Phase One datasets 

The 614-record imbalanced test dataset consisting of Victorian tweets had some records that 

were in the existing final dataset, so these had to be removed from the final dataset to ensure 

the test data was unique. This reduced the number of records in the final dataset by 40 to 3,519 
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— consisting of 1,722 VAEM and 1,797 non-VAEM — a ratio of 48.9%. The final dataset and 

test dataset for Phase One are shown in Table 7. The traditional classifiers were freshly assessed 

using these datasets and the preliminary training of the neural networks also used them, and as 

more data was added (see Section 4.7.1) the imbalanced test dataset continued to be used as a 

benchmark when comparing classifiers performance. 

Table 7: Phase One datasets 

 

 

4.7 Phase Two classification data 

Although it was hoped that all models could be assessed on the smaller dataset from the first 

phase of data collection, it became apparent that there was not enough training data to properly 

assess the neural networks. Deep learning requires a lot of examples for the models to learn 

well, and when evaluating the neural networks on the Phase One dataset their performance was 

only a little better than the traditional classifiers, and in particular the sequence-based networks 

such as LSTM and Transformer models did not perform as expected. Therefore, further 

evaluation of the Transformer models was deferred, and all models were re-tested, when the 

expanded Phase Two dataset was introduced. 

4.7.1 Additional data collection 

As previously described in Section 4.4, the initial data collection comprised 400,097 tweets, 

which was reduced via the two-stage topic modelling and data preparation for classification to 

3,519 records, with a further 614 test records — a total of 4,133 records. Also described in 

Section 4.4, additional data collection and processing through the 14-topic DMM model, 

previously ranked as the best model in Phase One of topic modelling, resulted in an additional 

data volume of 80,372.  The second stage 9-topic DMM model had also been applied to this 

data, but no further filtering was carried out. Instead, all the records were retained, along with 

their second-phase topic number.  
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These records were all manually labelled by the author as containing a VAEM or not, 

following the domain expert’s guidelines. The domain expert verified 97 edge cases that 

needed checking for the author’s judgement of VAEM, and there were only 10 that were 

corrected, mostly towards their being VAEM. For instance, “I got the flu shot today and idk 

how I feel” was confirmed by the expert as a VAEM, despite its vagueness, and “Last time I 

took my flu shot, my balls was sore af” was also tagged as VAEM, despite the sense of the 

event not having taken place recently. “I always feel the most crappy the day after getting a flu 

shot” was initially in doubt due to uncertainty about whether the user was referring to an actual 

recent vaccination. However, it was confirmed as VAEM as quite a number of tweets exhibited 

a similar structure and were certainly VAEM - e.g.: “Every time I get the flu shot I get hella 

sick , when I say hella I mean hella. And I got the flu shot today and I already feel hella hot 

and hella light headed”.  

Labelling all the data enabled verifying the previous conclusions about the topics most likely 

to contain VAEM, and also meant that all vaccine adverse event mentions were obtained. A 

balanced set of 16,251 records was extracted from the second phase data and combined with 

an additional 307 records that had been separately identified, resulting in a 16,558-record 

additional dataset. When combined with the Phase One data the total number of records was 

20,691.  

The Phase Two data was subsequently split into 15,730 records to be used for training and 

validation, and 828 records were set aside as a new balanced test dataset. These were combined 

with the Phase One 3,519 training and 614 test datasets, to provide 19,249 records for training 

and validation in Phase Two, and 1,442 records for testing. Table 8 shows these numbers. 

Table 8: Dataset numbers 

Stage 
First Phase 

data collection 

Second Phase 

data collection 
 Total  

Into topic modelling  328,822 359,535 688,357 

Minus filtered out by topic 

modelling  -310,021 -279,163 -589,184 

After topic modelling  18,801 80,372 99,173 

Minus data preparation 

and balancing  -14,668 -63,814 -78,482 

For classification training  4,133 16,558 20,691 
    

For training and validation 3,519 15,730 19,249 

For testing 614 828 1,442 
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4.7.2 Balancing the Phase Two data 

When balancing the Phase Two datasets all the VAEM were retained and the non-VAEM were 

under-sampled, which is one of the most popular and effective techniques for solving 

imbalanced classification problems (Kaur et al., 2019). This was appropriate for the dataset as 

there were plenty of the minority VAEM class. The final balanced counts were 9,995 VAEM 

and 10,082 non-VAEM, for a total of 20,077, excluding the imbalanced test dataset of 614 

records (the total is 20,691 if they are counted). The topic numbers of the second-stage topic 

model that were available in the dataset were accounted for when extracting non-VAEM from 

it, so the data had a similar ratio of non-VAEM to VAEM records per topic. Figure 6 shows 

the balanced distribution of VAEM to non-VAEM labelled records per topic, the “Previous” 

data are the 3,519 records from stage 1 plus the 307 added records. The figure excludes the 614 

records of the imbalanced test dataset. 

 

Figure 6: Distributions of balanced labels per topic — final combined datasets 

4.7.3 Final Phase Two datasets 

As described in Section 4.6.3 an imbalanced “Victorian” test set of 614 records was created 

during the first phase. It consisted of a set of tweets collected over four months having a 
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geographical mention of Victoria, Australia — as such it represented a probable real-world 

dataset and was a performance challenge for the classifiers. There were 90 VAEM and 524 

non-VAEM in the imbalanced test dataset. Using this dataset for testing across all experiments 

allowed a fair comparison between the models when they were re-evaluated with more data 

and compared with their earlier performance. For the second phase of classification, a larger, 

balanced, test dataset of 828 documents was randomly extracted from the new records that 

were introduced in the second phase dataset, being 0.05 of the data. It was comprised of 431 

VAEM and 397 non-VAEM, a 52.1% ratio, which left 9,564 VAEM and 9,685 non-VAEM in 

the main dataset for training and validation. The ratio of VAEM to non-VAEM in the main 

dataset was 49.7%. The Phase Two datasets are listed in Table 9. 

Table 9: Phase Two datasets 

 

During training, the datasets (apart from test data) were first shuffled, then split into training 

and validation data with an 75/25 ratio.  

4.8 Chapter 4 summary 

This chapter first described the Twitter data that was collected over almost the entire 2018 year, 

using a search pattern with the Twitter API. This included an examination of examples of the 

vaccine-related tweets that were gathered. The chapter then discussed standard pre-processing 

techniques that are used to prepare text for machine learning, which included tokenization, 

removing unwanted tokens, and adding features. The rest of the chapter described the datasets 

that were assembled over two data collection phases, and how these were used for topic 

modelling and classification.  
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5 Topic modelling 

5.1 Chapter overview 

The previous chapter described how the text was prepared for topic modelling. This chapter 

discusses how topic modelling was used in this research. Topic modelling is a machine learning 

technique used to reveal distinct themes that each convey similar semantic meaning in a corpus 

of documents (Section 2.6.1), rendering these themes as different topics. Topic modelling can 

be used as a first step for exploring textual data (Paul & Dredze, 2017). Manual inspection and 

annotation of large corpora is very difficult, but topic modelling is used to automatically detect 

words that can help to identify a corpus’s topics and which documents contain those topics.  

Evaluation of topic models is based both on manual inspection of the key words of the 

model’s topics and on using automated intrinsic and extrinsic measures - as explained in the 

“topic modelling evaluation measures” subsection of Section 2.6.1. The most useful evaluation 

measures are those that are aligned with the task that topic modelling is being used for. The 

primary goal of this research was to identify effective techniques for isolating VAEM to enable 

their extraction from the rest of the texts, so topic modelling was applied with a customized 

scoring technique to help identify which topics contain the most Vaccine Adverse Event 

Mentions (VAEM). This approach enabled an automated assessment of the optimum number 

of topics in a model that would result in one topic that best concentrated VAEM, then that topic 

was used to isolate or filter VAEM from the rest of the vaccine-related tweets.  

Topic modelling also assisted the secondary objective of the research - to identify topics 

that could be used to form a taxonomy of vaccine-related Twitter posts. 

5.1.1 Topic modelling algorithms  

Latent Dirichlet Allocation (LDA) based models are generative probabilistic models and are 

presently considered a state-of-the-art method for topic derivation  (Nugroho et al., 2020). They 

work on the assumption that each document can be represented by distribution over topics and 

each topic by distribution over words.  

 Dirichlet Multinomial Mixture (DMM) based models assume that each text can be 

described by one topic; DMM is applicable for modelling short texts and is an increasingly 

popular approach for topic modelling on Twitter data. For example, Surian et al. (2016) used 

DMM models to categorize opinions about HPV vaccine on Twitter data. 
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In the context of the main research objective to detect vaccine adverse event mentions in 

social media, several topic modelling algorithms were evaluated to determine a pragmatic 

approach that revealed a viable subset of VAEM-containing tweets from a corpus of vaccine-

related tweets (Khademi & Haghighi, 2019). The following topic models were evaluated: 

• LDA based model Gensim (Řehůřek & Sojka, 2010) developed in python programming 

language using online variational inference  (C. Wang et al., 2011) and online learning 

(Hoffman et al., 2010). 

• LDA based model MALLET (“MAchine Learning for LanguagE Toolkit”) (Mccallum, 

2002) via a Gensim wrapper using collapsed Gibbs sampling method (Latent Dirichlet 

Allocation via Mallet, 2020). 

• DMM model from the jLDADMM library (hereafter just referred to as DMM)  

developed by Nguyen (2018).  An enhanced version of the DMM model called Latent 

Feature DMM (LF-DMM) (Nguyen et al., 2015) includes the assessment of word 

vectors, this was also evaluated but found to be of no benefit for this dataset. 

After inspecting the Twitter data it was evident that a tweet generally contained only one 

significant topic. Therefore, to evaluate the effectiveness of LDA-based models they were 

treated as if assigning only one topic per document by considering their dominant topic only, 

effectively producing the same output as the DMM models. This enabled straightforward 

comparisons between the topic models. 

Coherence is a scoring method to measure the internal consistency of words allocated to a 

topic, and is normally used as a guide to decide on an optimum number of topics (Newman et 

al., 2010). CV coherence-scoring  (Röder et al., 2015) was determined to be the most useful 

coherence scoring approach because of its understandability and was available with the Gensim 

LDA and MALLET models. Coherence scoring of the DMM model was not included in the 

model. It required a gold-standard set of labelled data, where a ground-truth label file must 

contain the “golden label” (i.e. verified by a system expert) of every document in the corpus 

(Nguyen, 2018). Since this would require labelling the entire corpus, coherence scoring was 

not able to be used with the DMM models.  

5.1.2 Topic modelling data 

The topic models were trained on data assembled during the first data collection phase, and 

later evaluated on data made available in a second data collection phase. Topic modelling data 

preparation and datasets are described in Section 4.4. 
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5.1.3 Labelling for topic model scoring 

To be able to understand how topic modelling distributed tweets into topics, it was decided to 

manually pre-label some tweets, to be able to observe how the topic models categorized them 

and to understand which topics identified the VAEM. Random selections of tweets were 

inspected, and each tweet was assigned a label, based on the author’s understanding of the 

major category the tweet belonged to. This process continued until no more major categories 

were identified and the categories that were most like VAEM were well represented. The result 

was that 1,400 tweets were labelled with 10 labels, with 222 of the labels assigned to the VAEM 

topic. These are listed in Table 10.  

The domain expert also examined hundreds of examples of the tweets and verified that the 

annotated tweets were appropriately categorized. His observations and guidance at this stage 

of the study formed the ground-truth for what constituted VAEM and was used as the guideline 

for later annotation. All other tweets were labelled with a default value of 99. A scoring 

approach (see Section 5.2) used the labels to track when VAEM-labelled posts were identified 

in the models’ topics.  

Table 10: Manually assigned topic labels 

Label Topic 

0 Vaccine Adverse Event Mentions (VAEM) 

1 Enquiries / Discussions mentioning vaccines 

2 Obvious sentiment against vaccines — anti-vax 

3 Sentiment against anti-vax viewpoints, pro vaccines 

4 Statements from vaccine related organizations 

5 News articles and other factual or fake news 

6 Nonsense / Spoof hijacking Vaccine meme 

7 Everything else 

11 Animal related 

12 Advertising 

99 Un-labelled data 

Label 0 was given to the posts having vaccine adverse event mentions, which was the main 

topic of interest for the research. The zero value was used for the VAEM because it was the 

first number in a Python sequence, and this convention was followed also in subsequent 

labelling for classification. Generally, VAEM are effects like sore arms that and being currently 
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experienced, but discussions about similar past events were not excluded. Many of the 

examples are in the context of receiving a flu shot. Table 11 contains three examples of VAEM 

and three of tweets that are not VAEM.  

Table 11: VAEM tweets examples 

Vaccine adverse event mentions (label 0) 

Vaccinations suck when they make ur baby sick :( 

I got a flu shot Tuesday and my arm seriously hurts so bad. 

I got my flu shot on March 1 (03/01). By Friday (03/09), I had noticeably developed a runny nose, 

cough and sore throat. 

Not adverse event mentions (label 1) 

i have to get my flu shot today but i hate shots, ik it's not a big deal but they freak me out, same 

with blood tests ugh 

Gotten the flu shot every year, never had the flu. Quit blaming it on the vaccine people. 

I'm currently dying with the flu but I refuse to get a flu shot cause shots make you sicker so doctors 

and pharmaceutical companies make more money 

Note that although many of the adverse event mentions seem poorly worded and trivial and 

are expected side-effects such as a sore arm, these had been confirmed by the domain expert 

as vaccine adverse event mentions and the kind of data this study should try and obtain. That 

is, the study should find low-level personal narratives around experiences of adverse health 

events regarding vaccines, as this is the data that is missing from the formal reporting systems. 

This data can be used to measure trends, despite its seemingly inconsequential nature. The non-

VAEM tweets are similarly worded but do not have semantically clear evidence of a personally 

experienced reaction to a vaccination. The challenge of the research is to discover and describe 

techniques that are able to discern the difference between these two very similar types of texts, 

and to accurately deliver a high volume of VAEM. 

5.2 Topic modelling scoring method 

Each of the topic modelling methods were evaluated against a range of topics, incrementing by 

1, utilizing a loop with automated scoring. For each iteration, CV coherence was calculated 

where available (with the Gensim and MALLET models), but the main scoring technique used 

a form of F-Scoring that showed how many of the pre-labelled VAEM tweets were being 

grouped into a single topic. The main objective was to find the number of topics that resulted 

in the best ratio of VAEM to non-VAEM in one or two topics. At the same time, there was a 

preference for the smallest number of topics that still satisfied the main objective, as that was 

better for overall topic understanding. Experimentation showed that the ability for topics to 
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concentrate VAEM degraded after around 20 topics, and that they began to clearly differentiate 

VAEM from around 4 topics. Therefore, a range of 2 to 22 topics was used to allow a 

discernment of trends leading to and from the most significant points.  For conciseness, some 

of these topic numbers are not shown in the figures below.   

5.2.1 Calculating F-Scores 

The scoring method used was standard F-Scoring (Manning et al., 1999) on the single best 

topic that captured the most VAEM (recall in F-Score terminology) with some degree of 

precision. Since identifying the greatest number of VAEM-containing documents was more 

important than unambiguously isolating the VAEM-containing documents, in standard F-

Scoring terms recall was more important than precision. Therefore, F1-Beta scoring was 

additionally used, and named the Adjusted F-Score. F1-Beta scoring allows an adjustment of 

the importance of recall and precision. Experimentation revealed that a Beta of 1.3 was optimal 

— it increased the importance of recall but still accounted for precision, anything lower was 

not too different from standard F-Score, and higher values did not give enough importance to 

precision. Table 12 summarises the scoring metrics. 

Table 12: Precision, Recall, F-Score and Adjusted F-Score 

Precision Proportion of VAEM captured in a topic vs total records in the topic 

Recall Proportion of VAEM captured in a topic vs the total number of VAEM 

F-Score 2 x ( Precision x Recall ) / ( Precision + Recall ) 

Beta β 1.3  

Adjusted F-Score  ( 1 + β2 ) x ( Precision x Recall ) / ( ( β2 x Precision ) + Recall ) 

Precision and recall scores were based on how many of the labelled VAEM documents were 

identified in the single best topic, which naturally varies as topic counts are adjusted. That is, 

documents manually labelled as containing a VAEM were counted per topic and compared 

with the total VAEM count and the counts of other labelled documents within the topic. The 

best performing topic was taken as the scoring topic, as that indicated when the model was 

finding the characteristics that made VAEM tweets unique and placing these into one topic. 

However, if the top topic was not performing above a recall threshold of 0.6 and combining 

the top two topics produced a better score, then the combination of the top two topics was used. 

As earlier described, the labelled documents were a small subset of 1,400 records, 222 were 

labelled with VAEM (label 0), 367 were labelled as discussions (label 1) etc. F-Score and 
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Adjusted F-Score were calculated from these scores, and topics were ranked by the Adjusted 

F-Score. 

For instance, consider the 9-topic model in Table 13, and how it locates 221 of the VAEM 

documents into one best topic, which is Topic 8. At the same time, it also locates other labelled 

documents into Topic 8, resulting in a total 505 labelled documents. The precision, recall, and 

F-Scores attributed to Topic 8 are calculated from the relationships between the 221 VAEM 

and the total of 222 VAEM, and between the 221 VAEM and the total of 505 labelled 

documents in the topic. 

Table 13: 9-topic DMM model 

 

To aid understanding, Table 14 summarizes the counts in the 9-topic model. For precision, 

the VAEM count in the Best Topic (Topic 8) is divided by the count of all labelled records in 

the topic, which is 221/505, a score of 0.438. For recall, the VAEM count is divided by the 

total VAEM count, which is 221/222, a score of 0.995. The F-Score and Adjusted F-Score 

calculations are calculated from these. 

Table 14: Scoring of the 9-topic DMM model 

  Labels  

Topics VAEM 
All Other 
Labels 

Total  Precision 

Best Topic 221  265  505  = 220/485 

Other Topics 1  913  914  0.438 

Total 222  1178  1419   

     

Recall = 221/222 F-Score Beta Adj F-Score 

 0.995 0.608 1.300 0.675 
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The 9-topic model identifies 99.5% of VAEM-labelled documents into one topic, i.e., a 

recall of 0.995. However, it also brings in other labels, so the precision is somewhat low at 

0.438, and consequently the F-Score is 0.608. Adjusted F-Score using a beta of 1.3 favours 

recall and so the Adjusted F-Score is higher at 0.675 to indicate the importance of recall.  

The equivalent figures from a DMM 14-topic model are shown in Table 15. Although the 

recall is marginally lower due to 1 labelled VAEM being moved into another topic, the number 

of non-VAEM in the best topic has been reduced, resulting in greater precision and 

consequently better F Scores — so it is the preferred model. 

Table 15: Scoring of the 14-topic DMM model 

  Labels  

Topics VAEM 
All Other 
Labels 

Total  Precision 

Best Topic 220  265  485  = 220/485 

Other Topics 2  913  915  0.454 

Total 222  1178  1400   
     

Recall = 220/222 F-Score Beta Adj F-Score 

 0.991 0.622 1.300 0.688 

Figure 7 charts the changes of recall, precision, F-Score and Adjusted F-Score as the topic 

count increases and helps to illustrate the most suitable model as being that with the best 

combination of recall, precision and resulting Adjusted F-Score. Topic count also plays a part 

when there is a tie in the scores and a smaller topic count yields more interpretable topics. 

When examining the chart, the reader should observe the relationship between the Adjusted F-

Score and F-Score lines, and how recall fluctuates in relation to precision. 
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Figure 7: Scoring of DMM model per topic count 

The chart shows that recall and precision fluctuate in an inverse relationship. This is due to 

the measurement of these being taken just from the best topic, and as the models are trained 

with increasing topic numbers then at times the VAEM are split over two or more topics, which 

leads to poorer recall at that point, and usually accompanied by greater precision. When VAEM 

are gathered into mostly one topic then recall improves, but at the expense of precision. The 

ideal situation is one with a very high recall and the best possible precision for that recall. 

Adjusted F-Score is used to favour the recall, and to allow for arbitration between recall and 

precision.  

For instance, consider Topic 11 on the chart. At that point, the F-Score is the highest it has 

been to that point, due to a very high precision, but this is just because the model has split the 

VAEM, and the recall is correspondingly low. Although F-Score has increased, adjusted F-

Score has markedly decreased, and since recall is more important than precision, should be 

used to decide about that model. F-Score and Adjusted F-Score are more in harmony when 

both precision and recall are aligned but Adjusted F-Score allows a clearer picture of the best 

performing topic models that favour recall. As shown in Table 15 and in the chart, adjusted F-

Score is marginally better at 14 topics, with the 8, 9, and 20 topic models also contenders for 

the best Adjusted F-Score. Comparing the top 3 models, the 9-topic model has slightly better 

recall but less precision, the 20-topic model has the second-best precision but the least recall 

of the three models, and the 14-topic model has the best combination of recall and precision — 

both of its F-Score and Adjusted F-Score are better than the other models’ scores.  
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Considering the 20-topic model is useful to clarify why it was preferable to find the model 

that minimized the splitting of VAEM while achieving a high as possible precision. The best 

topic in the 20-topic model contained 216 labelled VAEM, with 262 other labelled posts in the 

topic — its precision was therefore 0.452, better than the 9-topic model (at 0.438) and slightly 

less than the 14-topic model (at 0.454). However, its recall of 0.973 was lowest of the three 

models, and it had its 6 remaining VAEM spread over 5 other topics. This was an additional 4 

VAEM outside of the best topic when compared to the 14-topic model, and 5 compared to the 

9-topic model.  

Table 16 illustrates these points using the numbers from 20-topic model. The rows of the 

table show the VAEM vs other posts per topic, with accumulating totals, and with precision, 

recall, and F-scores corresponding to these. The best topic’s F-Score of 0.617 and Adjusted F-

Score of 0.681 outperform those of the 9-topic model show in Table 14, which were 0.608 and 

0.675. But these better scores come with a lower recall, as only 216 VAEM are captured by the 

topic, instead of 221 in the 9-topic model, and the gain in precision does not compensate 

adequately for the loss of recall. Adding just 2 more VAEM to get closer in recall would require 

combining the first two rows, then the precision plummets to 0.265, the F-Score is reduced to 

0.417, and the Adjusted F-Score to 0.489. Clearly it is better to find a model count that balances 

precision and recall, to obtain as many VAEM as possible in one topic, with some precision.  

Table 16: Relationship of scores to split VAEM in the 20-topic DMM model 

    Accumulating Totals 

Topic VAEM Other Total VAEM Total Precision  Recall F-Score Adj F-Score 

06 216 262 478 216 478 0.452 0.973 0.617 0.681 

03 2 344 346 218 824 0.265 0.982 0.417 0.489 

01 1 145 146 219 970 0.226 0.986 0.367 0.438 

18 1 30 31 220 1001 0.220 0.991 0.360 0.430 

09 1 14 15 221 1016 0.218 0.995 0.357 0.427 

12 1 59 60 222 1076 0.206 1.000 0.342 0.412 

Other 0 324 324 222 1400         

Total 222 1178 1400       

The spread of VAEM over other topics could only be considered useful if it were required 

to discern some differences in the VAEM that the topic model had identified. However, the 

goal was to be able to extract the best balance of VAEM to non-VAEM, with no distinction 

required in discerning the type of VAEM. Given that both the 9-topic and 14-topic models did 

better at gathering VAEM into one topic, they were preferred. Even if the best, 14-topic model, 

had not been available, it would still have been better to pick the 9-topic model over the 20-



82 

 

topic model, despite the 20-topic model outscoring the 9-topic model, and deal with the poorer 

precision afterwards. Unless of course, it had been preferred to gain precision at the expense 

of recall at this point, which was not the case.  

In conclusion, the overall low precision in all these models was not a reason for concern, as 

the objective in using the topic models was to identify topics that contain the most VAEM, 

ideally with fewer of other topics, so that a filtered set of data could be obtained for labelling 

and handling by the subsequent classification process. In other words, precision was only 

important because it helped identify models that had a strong recall but with not too many other 

competing texts, which was when the topic model was acting as a most effective filter. Where 

models’ scores were nearly equal, preference was given to recall, and then to a lower total 

number of topics, as a lower number of topics was more comprehendible. 

5.2.2 Coherence  

Coherence acts as an intrinsic measure of the human interpretability of topics (discussed in the 

Topic modelling evaluation measures section of the literature review), so where it was available 

(Gensim and MALLET) it was assessed to see if it could help with choosing the optimal 

number of topics. However, it was found that coherence was very often out of sync with the 

best scores using the F-Scoring approach. For instance, the difference between Adjusted F-

Scores and traditional topic coherence obtained on the Gensim models is illustrated in Figure 

8; for both measures a higher score is better.  

 

Figure 8: Coherence vs F-Score per topic count 
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The points where Adjusted F-Scores are highest are where the model is identifying the best 

numbers of topics to isolate VAEM-containing documents, but at these points, coherence has 

always decreased. As it had been decided that the best number of topics should be based on 

finding at least one topic that clearly identified most of the VAEM, with a preference for topics 

that were also human interpretable, coherence was only examined as a general trend.  

5.3 First stage of topic modeling 

In the previous section topic modelling was introduced, with an explanation of the scoring 

calculations used to determine the best topics for isolating vaccine adverse event mentions. 

This section compares the results of applying this scoring approach over a range of topic 

numbers using Gensim LDA, MALLET, and DMM topic models. Figure 9 compares the 

adjusted F-Score for the three models over a range of 4 to 22 topics. As described previously, 

the scores were calculated as the Adjusted F-Score of the single best topic at each iteration — 

to help determine which topic model might most usefully identify potential vaccine adverse 

event mentions into one topic. 

 

Figure 9: Comparison of Adjusted F-Score vs topic counts 

All the models showed peaks in Adjusted F-Score at around 9 or 10 topics, then at 14 or 15 

topics, and again at 20 or 21 topics. The best model for identifying VAEM up until 14 topics 

was the DMM model and it was clearly the preferable model based on its performance in this 

lower range of topics, where fewer topics are more understandable and therefore preferred. It 
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performed well also at the 20-topic mark, while none of the models behaved consistently well 

between 15 and 19 topics. 

5.3.1 DMM model 

The DMM model recall and precision are shown with Adjusted F-Score in Figure 10. It 

performed admirably at 8 and 9 topics with a very high recall and although the precision was 

on the low side, the combination of the adjusted F-Score and the understandability of the topics 

indicated that one of these was a candidate for selecting a subset of VAEM-containing posts. 

The 9-topic model had the most understandable separation of topics while also having a 

reasonably high Adjusted F-Score. Slightly higher Adjusted F-Scores were obtained at 14 and 

20 topics in the DMM model - the 14-topic model performed best for the specific task of 

identifying a subset of potential vaccine adverse event mentions, but its topics were not as 

understandable as those of the 9-topic model.  

 

Figure 10: DMM model scores 

5.3.2 MALLET model 

The MALLET model (Figure 11) displayed increasing Adjusted F-Scores, but only competed 

with the DMM model from the 15 topics mark. However, from this point also its Adjusted F-

Score exhibited a wildly fluctuating pattern. This reflects an observation made when using 

MALLET, that in the process of more-or-less evenly distributing documents over the allocated 

topic numbers, it would tend to distribute VAEM containing documents over many groups. At 
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the points where MALLET separated the target documents into many topics it would perform 

badly due to a lack of recall, at the times when it gathered the targets together into fewer topics 

its performance was let down by a lack of precision. Besides this problem, the key words 

MALLET identified per topic were not as understandable as those delivered by other models 

— these differences are explored in Appendix A.  

 

Figure 11: MALLET model scores 

5.3.3 Gensim model 

The Genism model depicted in Figure 12 was a steadier performer. Starting with a reasonable 

precision and recall and at 10 topics the topics were very understandable and preferred to those 

obtained with the Gibbs Sampling used by MALLET, while having a similar performance at 

that point.  
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Figure 12: Gensim LDA model scores 

5.3.4 Summary of the best scoring topic models 

Table 17 summarizes the best scoring topic models, based on Adjusted F-Score on the best 

topic but also with consideration to those that identify the most VAEM (i.e. recall). Precision 

is the ratio of Label 0 to Total (documents) in topic. Recall is measured as the ratio of Label 0 

to the Total of Label 0 in the models, which was 222. 

 

Table 17: The best scoring topic models 
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The best model identified by Adjusted F-Score is the DMM 14-topic model with a score of 

0.688, which achieves this because of its precision of 0.454 combined with its high recall of 

0.991. This is in preference to the DMM 9-topic model - which has the highest recall of 0.996, 

but with less precision. Although nine topics was more understandable than fourteen and the 

high recall is significant, for filtering VAEM the almost identical recall with greater precision 

of the 14-topic model was preferred. The actual difference in counts of VAEM between the 

two DMM models was one. 

If standard F-Score were to be used then the best topic model would be the MALLET 15-

topic model with an F-Score of 0.653, but it achieves this because of its much higher precision 

of 0.547. However, its recall is relatively low at 0.811 compared to the other MALLET models, 

the Gensim LDA 18-topic model (when combined), and the DMM models. 

Examined in more detail in Table 18, scoring of the best topic (which was Topic 13) of the 

DMM 14-topic model shows that it captured 220 of the 222 labelled VAEM, a recall of 0.991. 

Although it was not very precise at 0.454 it was better than most other models in that regard, 

and so outperformed all other models because of its precision / recall combination. 

 

Table 18: Counts and Scoring of the 14-topic DMM model 

 

When consideration is given to recall over precision (where precision over recall was a 

major contributor to the Adjusted F-Score), the best models were still the DMM 14-topic model 

as its recall was only slightly less than the DMM 9 topic model; the Gensim combined 18-topic 

model; and the MALLET 10-topic model. Data from these topics was extracted for a second 

stage of topic modelling, which was expected to provide greater precision. This is explained in 

Section 5.5.  
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5.3.5 First Stage Topics keywords 

The 14-topic and 9-topic DMM models were very similar, with top keywords of “get, flu, shot, 

not, do, be, go, vaccination, year, sick, take, never, shoot, today, people, time, day, vaccinate, 

feel, need” in the VAEM topic of the 14-topic DMM model. This was the preferred model as 

it concentrated the most VAEM into one topic, while splitting off non-VAEM into other topics.  

The topic keywords of the 10-topic Gensim model were arguably the clearest set of different 

topics, and all the topics were understandable and well differentiated. The top 20 words of the 

VAEM topic in the Gensim model were “flu, get, shot, year, not, shoot, sick, still, time, last, 

season, never, today, be, go, take, bad, arm, week, feel”. The models that did not perform well 

tended to split VAEM into several topics and furthermore produced spurious topics that could 

not be meaningfully categorized. These are discussed in detail in Appendix A. 

5.4 Taxonomy 

A taxonomy is defined as a form of classification for structuring and organizing entities 

(Nickerson et al., 2013). Table 19 shows the taxonomy that was developed to describe the main 

topics in the tweets. 

Table 19: Taxonomy of vaccine related Twitter posts 

Subject Description 

Vaccine Adverse Event 

Mention (VAEM) 

Personal mentions of experiencing an adverse event after receiving a 

vaccine  

Personal Health Mention Personal mentions of experiencing health issues but not VAEM 

Discussions Enquiries / Discussions / Complaints mentioning vaccines; can be 

emotional, sensational or neutral, but not overtly pro or anti-vaccination 

Pro-Vaccination  Sentiment or language against anti-vax viewpoints, pro vaccines, 

including promoting and advertising vaccines, can be implicit 

Anti-Vaccination Obvious sentiment against vaccines; anti-vax 

Autism All autism related discussions 

HPV & Cancer HPV and cancer-related vaccine discussions 

Pets and Veterinary Pet and animal related discussions, including what might be classed as 

VAEM had they related to human subjects 

Trends and Outbreaks Statements and headlines mentioning trends and outbreaks 

Research and Studies Mentions of new studies and research, science of vaccine development, 

including headlines mentioning research 

News  News articles, headlines, and announcements. Statements from vaccine-

related organizations 

“The Vaccines” Mentions of the indie rock group The Vaccines; these could be filtered 

out at data collection time  
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The taxonomy accounted for the topics found by the topic models, and so is more aligned 

to the patterns in the data compared to the manually determined label scheme that had been 

used for the topic model scoring. The taxonomy was derived by evaluating the most 

understandable topic models from the three topic modelling algorithms and by examining the 

data. As described in Section 5.3, in the course of topic modelling it was found that all the 

models produced understandable divisions around 9 or 10 topics, and that the resulting topics 

were somewhat consistent across the models (see Appendix A), so a combination of the 

suggested topics was used in the taxonomy.  

The taxonomy accounts for how topic models see the data and contains distinctions that 

were not apparent when the data was initially examined and manually pre-labelled. For 

instance, HPV and cancer-related discussions were distinct topics in the models. Nevertheless, 

there is a reasonable alignment with many of the preliminary observations that were the basis 

for the initial 1,400 labelled records used for topic model scoring, especially around the 

divisions of VAEM-containing posts compared with discussions, and with the pro and anti-

vaccination groups. The distinction between vaccine adverse event mentions and other personal 

health mentions was created manually to assist with analysis, the topic models did not see these 

as separate. Likewise, the last topic of the rock group “The Vaccines” was manually added, as 

it was easy to ascertain these posts, so it made sense to delineate and target them for removal 

— perhaps as part of the initial data processing, and certainly before classification. “Pets and 

Veterinary” was adopted as a label for the many posts that mainly discuss pet vaccinations, and 

was a topic found by the models. The taxonomy places all animal-related posts into this group, 

even if the text of the post is describing what would otherwise be considered a vaccine adverse 

event mention, as the research needed to focus on human subjects — but this merging of all 

animal-related posts was not present in the topic models.  

Apart from the manually inserted or altered distinctions that were made to help with 

clarifying VAEM, the taxonomy does not differentiate topics any more than the topic models 

did. For instance, although the initial manual scheme identified “spoof” or fake posts as a 

separate area, the topic models did not find this distinction at around 10 topics, nor did it discern 

a separate “fake news” topic — so the taxonomy does not show these. The distinctive features 

of these kinds of posts might have been discernible if the topic numbers were sufficiently 

increased, but at the cost of decreased comprehensibility.   

Since the aim was to choose the topic model design and number of topics that concentrated 

most labelled vaccine adverse event mention posts into one or two topics for a binary 
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classification task, this taxonomy was not applied to further labelling. However, it was used on 

some data samples to verify the effectiveness of the topic modelling approach — see Section 

7.2.1. The Appendix B has a detailed view of the mapping between the topics’ keywords and 

the topics of the taxonomy. 

5.5 Second stage of topic modelling 

The previous section described the process used to decide on the best topic models per topic 

model type, which identified a subset of VAEM containing tweets. This section deals with 

processing and evaluating the best three data subsets suggested by that analysis, again using 

the three topic models.  

To this point, topic modelling had been used to capture nearly all VAEM posts into one 

topic, but relatively imprecisely — there were almost as many similar, but non-VAEM posts 

contained in the topic. After around fifteen topics any increase in precision was accompanied 

by a decrease in recall - the models would split the VAEM posts into different topics, and the 

models’ topics were generally less understandable. Therefore, it was decided to do further topic 

modelling on just the extracted top topic (or combined topics) subset which already contained 

the VAEM posts.  

To reiterate, to get to this stage Adjusted F-Score and recall were used to identify the best 

performing topic number (or numbers if combined), per model, per topic model architecture. 

The best topic(s) are hereafter named the “VAEM topic(s)”. The best VAEM topics of the 

models were Topic 13 of the DMM 14-topic model, topics 3 and 6 combined of the Gensim 

18-topic model and Topic 3 of the MALLET 10-topic model, and these were extracted for 

testing in the second stage, resulting in 3 data subsets.  

Further topic modelling was performed on the three datasets, using each of the three model 

types, testing a range from 2 to 20 topics. Nine result sets were thereby obtained and compared 

with one another — the goal being to see how the 3 models performed on each of the 3 input 

datasets, and how their results compared with one another. The DMM model applied to the 

DMM data was the outstanding performer, resulting in an F1-Score of 0.821 and an Adjusted 

F-Score of 0.820 at 9 topics, due to a high precision of 0.829 and recall of 0.814.  

The Adjusted F-Scores obtained in this second stage are considerably higher than the scores 

in stage one, 0.833 compared to 0.688 for the best scores. The results are demonstrated in Table 

20, which shows the best results over the three datasets were all achieved by DMM, but the 

other two models’ best scores were achieved over the Mallet dataset. A detailed analysis of the 

models’ performances can be found in Appendix C. 
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Table 20: Second stage best scores per model & dataset 

 

5.5.1 Second Stage topics keywords 

Table 21 shows the first 20 keywords of each topic in the DMM 9 topic model. Many of the 

topics have the words “get”, “flu”, “shot” as their first three key words, which indicates how 

concentrated these topics are around the predominant cause of VAEM — getting a flu shot. All 

the topics contain varying amounts of VAEM, so contain many of the same words, but Topic 

8 is the main VAEM containing topic, and its other key words “arm”, “today”, “feel”, “hurt”, 

together with “be”, “do” and “go”, indicate current activities around getting and reacting to a 

flu shot. The next two topics containing the most VAEM were topics 9 and 1. Topic 9 has many 

similarities to Topic 8, but “sick” is the only specifically vaccine reaction-related word in its 

top 20 keywords, whereas Topic 8 had “arm”, “hurt”, “sore”, and “pain”. The top 3 topics are 

the only ones containing the word “today” in their first 20 keywords, which corresponds with 

them being discussions of recent events.  

Table 21: Second stage DMM 9 topic model keywords 

1 get, not, vaccination, be, go, do, flu, shot, today, vaccinate, take, day, baby, need, time, doctor, give, say, know, feel 

2 blood, not, baby, dog, give, be, get, would, cry, help, could, donate, sad, do, take, heart, sansa, someone, need, poor 

3 flu, shot, get, not, take, shoot, do, eat, good, cold, day, make, sick, drink, vitamin, be, ginger, never, go, need 

4 
flu, shot, need, get, be, think, gravy, people, cold_bitch_think, not, cold, afraid, thot, know, change, college_graduation, 
cocaine, man, night, school 

5 get, flu, not, shot, do, vaccinate, stay, sick, kid, home, hand, go, cough, take, people, know, healthy, catch, keep, be 

6 flu, get, shot, not, do, people, be, go, say, shoot, sick, give, year, tell, take, need, know, die, never, work 

7 flu, get, shot, not, year, never, sick, be, have, do, time, still, shoot, go, ever, feel, take, last, first, think 

8 get, flu, shot, arm, not, vaccination, today, be, feel, hurt, go, sore, yesterday, still, do, day, needle, shoot, can, pain 

9 flu, get, shot, not, year, be, day, go, do, shoot, sick, feel, week, take, time, good, still, today, work, have 
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5.6 Summary of the two stages of topic modelling 

At the end of stage two, data was exported from the DMM 9-topic model. Topic 8, the best 

topic of the model, contained 81% of the VAEM and could be used for a final dataset, but data 

was taken from the top three topics, which were topics 8, 9, and 1 — together they captured 

95% of the original VAEM (211 of 220). The rest of the pre-labelled VAEM was captured by 

Topic 7 (with 7 VAEM) and topics 3 and 4 (with 1 each). 

Figure 13 summarizes the process of filtering the data through two stages of topic modelling, 

illustrating the filtering benefit obtained by focusing on the best topics from each stage. It 

shows that most of the relevant potential VAEM-containing documents have been identified 

and most of the irrelevant documents have been discarded. In the figure the large circles 

represent the entire data at each stage, the smaller circles within these represent the total 

labelled records, and within them are circles representing the VAEM-labelled records. 
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Figure 13: Two stages of topic modelling 
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The following four points are commentary for the numbered items in the figure: 

1. Starting with all tweets: There were 328,822 documents. 1,400 were labelled, of which 222 

were VAEM.  

2. Stage one of topic modelling identified a single topic, Topic 13 of a 14-topic DMM model, 

which according to the labelled samples includes around 99% of the VAEM-containing 

documents (i.e. it included 220 of the 222 labelled VAEM). In doing so it has discarded 

291,220 records, leaving only 37,602 — roughly 11% of the original records. 

3. From this extracted stage-one dataset, a second stage of topic modelling was performed, 

resulting in a 9-topic DMM model which concentrated the VAEM texts further into a small 

number of topics. Note that the 9 topics provide an overlay for the stage-one records, taking 

a subset of them results in further filtering. The top 3 topics of this model were topics 8, 9 

and 1 — when taken as a subset they filter out exactly half of the incoming records, 

including 4% of the VAEM. Consequently, 18,801 records would remain, which is 5.7% 

of the original records, containing 95% of the labelled VAEM (211 of the original 222 

VAEM).  

4. The best topic in stage two was Topic 8. It contained only 3,072 documents - around 1% 

of the original document count. According to the VAEM-labelled data this best topic 

contained around 81% of the VAEM (179 of 222).   

To conclude, the evidence coming from the pre-labelled documents was that after a single 

stage of topic modelling 89% of the irrelevant tweets were discarded, to retain 99% of VAEM. 

Taking the top 3 topics from a second stage of topic modelling would dispense with 50% of 

the remaining records — discarding 94.3% of the original records to retain 95% of VAEM. 

Using just the best topic of the second stage topic model would result in a total effect of 

discarding 99% of the original texts to retain 81% of the VAEM. However, these were only 

estimates based on the small number of 1,400 pre-labelled tweets. 

5.6.1 Verification of the best topic model 

To verify that the best topics in the best scoring second stage model were indicative of its ability 

to identify the VAEM containing tweets, data from the three top topics of the 9-topic DMM 

model was manually labelled by the author, following the domain expert’s guidelines. The 

uncertain cases were sent to the domain expert for clarification. As described above, these were 

topics 8, 9 and 1, and the criteria for choosing them was because together they captured 95% 

(211 / 220) of pre-labelled VAEM, while discarding a further 50% of the irrelevant tweets that 

were present in the data being processed by the stage two topic models.  
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The result of this labelling is shown in Figure 14. The top 3 bars in the figure show the 

proportions of VAEM (on the left) to non-VAEM (on the right) for each topic, and the 

percentage of total VAEM to the left of each bar. For instance, Topic 8 contains 1,300 VAEM 

and 1,772 non-VAEM, for a total of 3,072. Its VAEM is 75.1% of the 1,732 VAEM in all three 

topics. The bottom 3 bars display the topic’s VAEM number and percentage of VAEM in detail 

on the left section of the bar, and on the right, they display the VAEM figure relative to the 

total tweets in the topic. 

5,488160

9,809272

Topic 8 - 3,072

Topic 9 –       

Topic 1 - 10,081

18,801

1,732

1,300 1,772

160 / 1,732
9.2%

160 / 5,648
2.8%

1,300 / 1,732
75.1%

1,300 / 3,072
42.3%

75.1%

9.2%

15.7%

272 / 1,732
15.7%

272 / 10,081
2.7%

 
 

Figure 14: Labelled top 3 topics of second-stage topic model 

After labelling, 1,732 VAEM-containing documents were identified in the top 3 topics. It 

was verified that Topic 8 contained the biggest percentage of VAEM, with 1,300 tweets, which 

is 75% of VAEM, rounded. The other top topics contained 9% and 16% (rounded) of the 

VAEM between them. These differed somewhat from the estimated 81%, 8% and 6% 

proportions which had been calculated from the small cohort of pre-labelled documents, but it 

supported the observation that Topic 8 was by far the best topic for capturing VAEM. 

The proportion of VAEM to non-VAEM in each topic is significant, because the motivation 

behind topic modelling was to reduce non-VAEM so that a filtered subset of records could be 

obtained, ideally with a significant amount of VAEM in one topic, accompanied by as few non-

VAEM as possible. Topic 8 clearly achieves this but given that it contained only 75% of the 

now fully labelled VAEM, it was justified to keep topics 9 and 1 to retain the remaining VAEM, 

and certainly for the initial requirement of training classifiers on the filtered data.   

A prior observation was that Topic 7 might also contain significant VAEM, as it had 

contained 7 of the remaining 9 pre-labelled VAEM after counting topics 8, 9, and 1. To check 

this, it was also labelled, and was found to have only 94 VAEM tweets, which out of a total 
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topic count of 6,274 was around 1.5% of tweets in the topic. Since 94 was a small proportion 

of VAEM and adding over six thousand irrelevant records would have contributed additional 

noise to the data, it was decided to not include these records. Besides, expanding the dataset by 

including Topic 7 was contrary to the aim of effectively filtering the data via topic modelling.  

5.6.2 “The Vaccines” 

While labelling, 282 documents were found that were clearly discussing the indie rock group 

“The Vaccines”, so these were assigned a new temporary label 88. On the basis that these were 

easily identifiable by the exact proper case expression “The Vaccines”, they were eventually 

eliminated when creating the Classification datasets, reducing the total document count at that 

point to 18,519. 

5.6.3 Final labels 

Labelling of VAEM records in topics 8, 9, and 1 was completed. The eventual labelling aim 

was a binary label of vaccine adverse event mention or not. However, it was considered useful 

to retain some idea of what the non-VAEM documents contained, so some other labels were 

included. For Topic 8 the records were labelled as VAEM (label 0), discussions (label 1) or pet 

related (label 11), leaving only 30 unlabelled. Topics 9 and 1 were also fully labelled for any 

VAEM or pet related, but only around 800 more were labelled of the discussion-related 

documents. Anything else was left as unlabelled (label 99), but with the binary labelling 

scheme in mind these really counted as “other than VAEM” rather than their previous unknown 

status. The resulting 1,732 VAEM-labelled documents were confirmed by the domain expert. 

Table 22 show the final labelling over the 3 topics that were retained. 

 

Table 22: Label distributions in top 3 topics 
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5.7 Evaluation 

After labelling, the count of VAEM-containing tweets increased from 211 to 1,732. The ratios 

of VAEM to other data confirmed the effectiveness of the best topic (Topic 8) for identifying 

VAEM. Topic 8 contained 75.1% of the VAEM tweets identified in the three topics, and 

VAEM tweets were 42.3% of all the tweets in Topic 8. This is a lower proportion of VAEM in 

the topic than the 81.4% previously inferred using the partially labelled data.  

The two other topics contained 15.7% and 9.2% of VAEM but the ratio of VAEM to other 

records in them was much lower at 2.7% and 2.8% respectively.  It was evident that the two 

stages of topic modelling were very effective for obtaining a useful dataset of VAEM-

containing tweets, which was amenable to further refinement via classification techniques. 

Table 23 summarizes the proportions of VAEM to other labels for the three topics, before and 

after labelling. 

Table 23: Top 3 topics labelling summary 

 

Table 24 is a more summarized view of the proportions in the final labelled data with an 

emphasis on how well the main topic (Topic 8) does on concentrating VAEM, it contains 75.1% 

of VAEM, which are 42.3% of its total documents. 

Table 24: Distribution of data in the VAEM topic 

 

The effectiveness of the two-stage topic modelling process was verified when the topic 

models were applied to another 400 thousand records after the second round of data collection, 
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and the exported data was labelled for classification. It was very clear that Topic 13 of the first 

stage identified virtually all the VAEM and that Topic 8 of the second stage continued to isolate 

around 75% of the VAEM. This is discussed in Section 7.2.2, “Verifying effectiveness with 

label distributions”. 

5.8 Additional visualisation techniques 

Apart from graphing the progress of F-Scores and coherence per topic, other visualisation 

techniques were used to assist with understanding the distinct and shared characteristics of 

topics, and if topics appeared to be sensible and explainable divisions of the discussions.  

 

pyLDAvis 

The pyLDAvis library (pyLDAvis - Python library for interactive topic model visualization, 

2018) which is based on LDAvis (Sievert et al., 2014) was found to be very effective, as it 

enabled an interactive visual inspection of the topic and word distributions. For instance, Figure 

15 shows a visualisation of the best stage two DMM model, with its main VAEM topic 

highlighted. Words like “arm”, “feel”, “sick” and “shot” appear more prominently in this topic 

than in any others, and if a word such as “arm” is selected then the chart shows its distribution 

in the various topics - Figure 16. 

 

Figure 15: pyLDAvis inspection of Topic 8 of DMM 9-topic model 
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Figure 16: pyLDAvis inspection of "arm" in DMM 9-topic model 

 

Gephi 

The Gephi graph visualisation tool (Gephi-The Open Graph Viz Platform, n.d.) was also 

evaluated as an alternative to topic modelling, applying its implementation of the Louvain 

method (Blondel et al., 2008) for Community Detection. To prepare the data for Gephi a 

graphml file was created which defined nodes from every word in the corpus and edges up to 

5 words away from each word within each document. Words that were closest to one another 

were given more weight on the edge compared to the words further away. The best result was 

that 31 communities were detected, but most of them were less than 1% of the records (in fact 

most around 0.01%), and only 3 major communities were detected. The most indicative words 

from the VAEM topic did not emerge as a distinct group. Although interesting to experiment 

with and to pick up relationships between words, graph visualisation of communities did not 

assist with detecting the kinds of distinct similarities obtained with topic modelling, and 

furthermore the graphing process was not helpful for the goal of clustering documents together 

for dimension reduction and labelling. Figure 17 shows a zoomed-in view of clusters of words 

per communities, one of them associates some of the VAEM keywords such as “get”, “flu” and 

“shot” but misses many of the other important words such as “arm”, “hurt” and “today”.  
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Figure 17: Gephi words clusters 

5.9 Chapter 5 summary 

An exploration of topic modelling leveraged a scoring technique that identified the most 

suitable topic models for identifying Twitter posts likely to contain vaccine adverse event 

mentions. The results of topic modelling were beyond the author’s expectations, the data was 

reduced from an overwhelming cacophony of irrelevant posts to data that was fit for the goal 

of detecting vaccine adverse event mentions. The scoring technique was pivotal in assisting 

with making informed decisions about the best topic models, through two stages of topic 

modelling. The resulting filtered data was fit for proceeding to the next phase, which was to 

train classifiers to correctly identify the vaccine adverse event mentions from the now 

manageable dataset.  
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6 Classification 

6.1 Chapter overview  

The goal of using classification in this research is to further isolate VAEM in the data. The 

topic modelling step had reduced the input data to a manageable set of tweets that included 

almost all VAEM but also other similar posts; it was expected that classification would further 

refine this data to clearly extract most of the VAEM from the other posts.  

Although the literature review into classifiers had shown that the most likely best classifiers 

would be deep neural networks (Deep Learning), it was decided that to obtain a thorough 

understanding of classifier performance a range of the traditional classifiers should be tested 

— these would provide a benchmark. As the classifier evaluation proceeded it was decided to 

also evaluate a rule-based approach to classification, to provide a baseline for all the classifiers.  

This is explained in Section 6.10. 

6.2 Classifiers 

Classification was conducted over a range of classifiers, starting with traditional classifiers, 

and including a rule-based classifier, then neural networks — these were either trained from 

scratch on the Twitter data, or used transfer learning on pre-trained models. The classifiers that 

were used are summarised in Table 25. Classifier parameters are specified in Appendix J. 

Table 25: Classifiers 

Traditional Classifiers Library / Github source 

Logistic Regression CV sklearn.linear_model 

Stochastic Gradient Descent Classifier sklearn.linear_model 

Linear Support Vector Machines sklearn.svm 

Random Forest Classifier sklearn.ensemble 

Extra Trees Classifier sklearn.ensemble 

Multinomial Naïve Bayes  

(Complement Naive Bayes on imbalanced 

datasets) 

sklearn.naive_bayes 

Naïve Bayes SVM  

(combined NB & Linear SVM) 

GitHub Joshua-Chin/nbsvm 

XGBoost  GitHub dmlc/xgboost 

Ensemble (Naive Bayes SVM, Logistic 

Regression CV, SGD Classifier, Linear 

SVC, Random Forest) 

Using majority voting on predictions 

https://github/
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Neural Networks Libraries / Github source 

CNN,  

LSTM, BiLSTM, 

GRU, BiGRU, 

CNN-BiLSTM, CNN-BiGRU  

Pytorch 

RaRe-Technologies/gensim 

Shawn1993/cnn-text-classification-pytorch 

bamtercelboo/cnn-lstm-bilstm-deepcnn-

clstm-in-pytorch 

RoBERTa, RoBERTa Large, BERT, 

XLNet, XLNet Large, XLM 

Pytorch 

huggingface/transformers 

ULMFiT Pytorch, fastai 

6.2.1 Calibrated Classifier Cross Validation 

Initially, testing included an additional evaluation of the traditional classifiers when processed 

through the SKLearn.calibration library’s CalibratedClassifierCV (CCV). This was for the 

purpose of obtaining probabilities for predictions and for the additional benefit of scoring with 

cross-validation (in technical terms: with CCV the classifiers were fitted and calibrated using 

cross validation and averaging). Probabilities were required for examining which words the 

classifiers favoured for differentiating between the labels; cross-validation gave a potentially 

more accurate estimate of the model’s performance than any best single training run. Using 

CCV improved the F1-Scores of some models in an initial evaluation round and when using 

imbalanced data (Section 6.5). As models improved with better parameter tuning and with more 

training data then CCV did not improve scores and was no longer used.  

6.2.2 Ensemble 

An ensemble of 5 models was constructed: Naive Bayes SVM, Logistic Regression CV, SGD 

Classifier, Linear SVC, and Random Forest. Scoring these used a majority voting approach — 

whatever 3 or more models predicted was accepted — this had a correcting effect that 

compensated for variations in the models’ performance over test datasets. 

6.2.3 Neural network models 

Training neural networks requires far greater computations, and these are most effectively 

carried out on specialized hardware, typically a Graphics Processing Unit (GPU). For this 

training, a NVIDIA GTX 1080 GPU was utilized, although when training the RoBERTa Large, 

XLNET Large and XLM models the 8GB memory on the GPU was insufficient, so training 

was performed on more powerful GPUs obtained on cloud-based dedicated deep learning 
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servers via Google Colab. Pytorch (Paszke et al., 2019) deep learning libraries were used 

throughout.  

Neural networks typically use dense embeddings instead of sparse matrices to represent 

words to the models, these can start off in a random state or can be initialized using pre-trained 

embeddings. An initial test evaluated the models without any pre-initialized embeddings, but 

in every subsequent test Word2Vec embeddings were used where such embeddings were 

required (i.e., with the models that were trained from scratch). These clearly helped the models 

to learn more effectively. Models were trained on word sequences rather than at a character 

level.  

The starting point for the exploration of the effectiveness of neural networks was with 

Convoluted Neural Networks (CNN). Various implementations of Recurrent Neural Networks 

were also evaluated, such as Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 

1997) and Gated Recurrent Unit (GRU) (Chung et al., 2014) models. All these tests additionally 

assessed bi-directional versions of the RNN-based networks for their ability to better cope with 

arbitrary arrangements of text, and mostly these were found to be more effective. Benchmarks 

were established using the CNN, LSTM and GRU models trained on the first phase dataset, 

then compared those with results from training on the larger second phase dataset, to enable a 

comparison of the DL models effectiveness with varying amounts of data, and against the 

traditional classifiers.  

6.2.4 Transfer learning 

To look at some current state-of-the-art approaches to NLP, various Transformer-based models 

were then evaluated, using transfer learning. These were open-source HuggingFace (Wolf et 

al., 2019) sequence classification models that were based on pre-trained Transformer language 

models, e.g., BertForSequenceClassification. The HuggingFace implementations of Google’s 

Bidirectional Encoder Representations (BERT); Facebook’s Robustly Optimized BERT 

Pretraining Approach (RoBERTa); Google/CMU’s XLNet; and Facebook’s XLM were all 

evaluated. The XLM model is designed for language translation, it was included because 

HuggingFace had also made it available for binary classification and it was interesting to see 

how well it did. Though the XLM model performed well it was very demanding of GPU 

memory and took considerably longer than the others to train. BioBERT (Bidirectional Encoder 

Representations from Transformers for Biomedical Text Mining) (J. Lee et al., 2020), was 

considered — but its emphasis on biomedical terminology did not fit the prosaic and colloquial 

language of the tweets — there was almost no technical medical language used in them. 



103 

 

BERT was initially assessed against the smaller first phase dataset (see Section 6.2.5), and 

it did not perform that well. The much greater quantity of training data available in the second 

phase dataset was required to fairly evaluate the Transformers.  

There are no validation scores listed in the results sections for these models since they are 

simply tuned to the existing data, and training and validation data was combined to tune them 

with. These models clearly performed better than most of the models trained from scratch, 

except the LSTM which outperformed both the BERT model and the XLNet base model.  

Additionally, an experiment was conducted using Fast.ai’s (Howard & Ruder, 2018) 

Universal Language Model Fine-Tuning (ULMFiT), an ASGD Weight-Dropped LSTM 

(AWD-LSTM) trained on  Wikitext-103. It was fine-tuned with the Twitter data then applied 

to the classification task.   

6.2.5 Evaluation measures 

Overall performance was measured as a score based on Precision, Recall and the resulting F1-

Score for the vaccine adverse event mention-containing records — this F1-Score is referred to 

as the VAEM F1-Score. Additionally, the same “Adjusted F1-Score” (Beta-F1 with beta of 

1.3) that had been used during topic modelling was also evaluated, as the preference for 

identifying models that delivered a greater number of VAEM with the best possible precision 

still applied. During the training process the scoring was calculated against the validation data. 

The models’ scores were then also compared against two hold-out test datasets. 

6.3 Data preparation 

For traditional classifiers, a “bag-of-words” approach was used, where documents are assessed 

as collections of words with no consideration to word relationships apart from what might be 

preserved by n-grams. Text was tokenized and vectorized as a sparse matrix of the document’s 

words in relation to the entire corpus, which is the standard approach. A comparison between 

TF and TF-IDF vectorization (Section 2.5.2) was performed, utilizing the SKLearn 

CountVectorizer and TfidfTransformer (or alternatively the SKLearn TfidfVectorizer) 

libraries. The most appropriate text tokenization and vectorization approaches were determined 

for each model and dataset combination using grid or random searches. The text tokenization 

options that were evaluated consisted of stop-words elimination, the use of lower case, n-

grams, and the exclusion of numbers. 

Three forms of the text were evaluated, with examples in Table 26: the original text - which 

was used with some of the neural networks; a cleaned lower-case version, which expands 
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contractions, and was evaluated by all models; and lemmatized versions of the cleaned text, 

which was evaluated with the traditional classifiers. The reduced form of lemmatized text that 

worked well for topic models used only nouns, adjective, verbs, and adverbs — but this was 

not at all performant with the classifiers. Lemmatizing the complete cleaned text produced 

some mixed results (see Section 0), and this form is shown in the table. 

Table 26: Text used in Classification 

Original It's still not too late to be getting you and your loved ones a flu shot! #vaccineswork 

Cleaned it is still not too late to be getting you and your loved ones a flu shot! vaccineswork 

Lemmatized it be still not too late to be get you and your love one a flu shot ! vaccineswork 

The performance of the models was assessed by applying their best settings, as determined 

by grid searches, against both the cleaned text and the equivalent lemmatized text. The vector 

settings used are detailed in Appendix J.  

As an alternative to a sparse matrix, with the standard models, experiments were also carried 

out with using the average of Word2Vec word embeddings per document; and additionally, 

with clusters of Word2Vec embeddings, see Section E.1 for a description. When evaluating 

neural network models, Word2Vec embeddings were used for the initial word embedding 

weights of the models, with a measurably positive effect compared to models with randomly 

(or default) initialized embeddings. These results are explained in the Deep Learning section. 

6.4 Classification evaluation 

Classification evaluation was conducted over two quantities of data. The first dataset (Section 

4.6) consisted of the initial 6 months of data that was collected. The data had been used for 

training topic models - and then the records from the top 3 VAEM topics from the best second 

stage of topic model were exported and labelled for classification (Section 5.5). Experiments 

were initial conducted over all the labelled data, evaluating model performance with varying 

degrees of imbalanced data (see next section), then the data was balanced for the rest of the 

training. The second dataset (Section 4.7) included this data but added a further 6 months of 

data; it was obtained from the output of the top VAEM topic of the previously trained best first 

stage topic model (Section 5.3.4).  

6.5 Initial experimentation with imbalanced datasets 

The traditional classifiers were initially evaluated against four increasingly imbalanced datasets 

(Section 4.6.1), to gain some insight into how well they coped when trained and evaluated 
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using imbalanced data. The “Best” dataset contained just the records from the best topic of the 

second-stage topic model, Topic 8. The “Combined” dataset contained all of Topic 8, and just 

the VAEM and labelled Discussions records from Topic 9, plus the VAEM records from Topic 

1, and was the most balanced dataset. The “Top Two Combined” dataset contained all of the 

records from topics 8 and 9, and the “All Combined” dataset contained all data from the three 

topics; these were progressively imbalanced.  The datasets were split to apportion 30% of the 

data to a validation dataset, so validation sets had the same proportions of data imbalance as 

the training sets. Table 27 shows the dataset numbers used. 

Table 27: Initial datasets training & validation splits 

Dataset Training Validation  Total  

Best VAEM              929                       375                   1,304  

  Non-VAEM          1,205                       540                   1,745  

  Total          2,134                       915                   3,049  
      

Combined VAEM          1,222                       518                   1,740  

  Non-VAEM          1,262                       547                   1,809  

  Total          2,484                   1,065                   3,549  
      

Top Two Combined VAEM          1,056                       409                   1,465  

  Non-VAEM          4,991                   2,183                   7,174  

  Total          6,047                   2,592                   8,639  
      

All Combined VAEM          1,235                       505                   1,740  

  Non-VAEM        11,728                   5,051                 16,779  
 Total        12,963                   5,556                 18,519  

The class_weight parameter of the models was adjusted to account for class imbalance, 

typically with an 0.75 weighting for the “Top Two Combined” dataset, and 0.85 or 0.9 for the 

“All Combined” dataset. Complement Naïve Bayes model was used instead of the standard 

Naïve Bayes model with the highly imbalanced datasets. The results are summarized in Table 

28, which shows the best VAEM F1-Scores measured against the validation data of each 

dataset. In the table, the top 3 scores per dataset are shaded, with the top score having the 

darkest shade. If models performed best with TF-IDF vectors rather than just TF vectors this 

is indicated, as well as those that required CCV to achieve their best score per the dataset.  
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Table 28: Traditional classifiers - Initial F1-Scores 

Model Best Combined 
Top Two 

Combined 
All 

Combined 

Linear SVC    0.823 ☼    0.811 ☼    0.769 ☼    0.740 ☼ 

Extra Trees    0.820♦ 0.830 0.735     0.708 ♦ 

Logistic Regression CV 0.818 0.806 0.756 0.743 

Random Forest 0.815 0.820 0.731     0.695 ♦ 

Stochastic GD 0.808 0.812     0.761 ☼ 0.724 

XG Boost    0.812 ☼     0.819 ☼ 0.742 0.696 

Naïve Bayes 0.813 0.808      0.732 ☼*     0.683 ☼* 

Naïve Bayes SVM  0.791 0.789 0.721 0.685 

* Complement NB ☼ TF-IDF ♦ CCV   

Extra Trees outperformed the others on the balanced, “Combined” dataset but other models 

such as Linear SVC and Logistic Regression CV did well more generally, especially with the 

imbalanced data. The Extra Trees classifier benefitted slightly with additional cross validation 

folds (using CCV) on both the “Best” and “All Combined” datasets.  

Models that performed well on the imbalanced data did so because they maintained a 

reasonably consistent balance of precision and recall in the VAEM class despite the penalty of 

training and validating with vastly imbalanced data. Figure 18 shows the VAEM scores of the 

Linear SVC model as it was trained and validated over the various datasets. The VAEM and 

non-VAEM groups of scores are labelled, and the VAEM values are shown in the table at the 

bottom of the chart.  

 

 

Figure 18: Linear SVC - Scores over imbalanced datasets 



107 

 

The Linear SVC model’s top VAEM F1-Score score was on the “Best” dataset, and this was 

mainly due to its high recall. Extremely high scores are obtained for the non-VAEM as the data 

becomes increasingly imbalanced, this is expected but has no benefit for identifying the 

VAEM, though it does illustrate why only the VAEM scores are considered when measuring 

model effectiveness. 

The Extra Trees model had the highest VAEM F1-Score, but it did not perform well on the 

imbalanced datasets, its scores are shown in Figure 19. The model had very close relationships 

between the precision and recall until it got to the most imbalanced “All Combined” dataset, 

where recall suffered at the expense of precision. This is an effect of the model not coping with 

the imbalanced data. The model is assigning VAEM records to the non-VAEM side, which 

only slightly decreases precision on the non-VAEM side but very much increases precision on 

the VAEM side, at the expense of VAEM recall. 

 

Figure 19: Extra Trees - Scores over imbalanced datasets 

The results of training on imbalanced data were expected and highlighted the difficulties of 

using such data. It was decided to use balanced datasets for training and to assess model 

performance on both imbalanced and balanced test data.  

6.6 Experimentation with balanced training datasets 

Non-VAEM records were removed to balance the data – see Section 4.7.2 for a description of 

the under-sampling approach used. The final balanced datasets used in both Phase One and 

Phase Two of the classifier’s evaluation are described in sections 4.6.4 and 4.7.3. The Phase 
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One balanced main dataset contained 3,519 records, consisting of 1,722 VAEM records and 

1,797 non-VAEM records, plus an imbalanced, holdout “Victorian” 614 records test dataset 

which consisted of 90 VAEM and 524 non-VAEM - see Table 7.  

The Phase Two balanced dataset included these but added additional records, resulting in 

9,564 VAEM and 9,685 non-VAEM records in the 19,249 records main dataset used for 

training and validation, plus a balanced 828 records test dataset made up of 431 VAEM and 

397 non-VAEM — see Table 9. The models were assessed against both test datasets. The 

distribution of these records into training, validation and test datasets is depicted in Table 29.  

Table 29: Final datasets training, validation, and test splits 

Dataset Training Validation Test  Total  

Phase One VAEM              1,291                   431                     90               1,812  

  Non-VAEM              1,348                   449                   524               2,321  

  Total              2,639                   880                   614               4,133  

                 3,519    

      

Dataset Training Validation Test  Total  

Phase Two VAEM              7,512               2,052                   431               9,995  

  Non-VAEM              7,545               2,140                   397             10,082  

  Total            15,057               4,192                   828             20,077  

              19,249    
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6.7 Phase One classifiers results 

The first phase of classification experiments used a training set of 2,639 records, a validation 

set of 880 records, and the imbalanced holdout Phase-One Test dataset of 614 tweets. The F1 

Scores for the models evaluated in this phase are listed in Table 30.  

Table 30: Phase-One F1 Scores 

Model Validation 
Imbalanced 

Test 
Balanced 

Test 
Combined 

Test 

CNN-BiGRU 0.842 0.762 0.846 0.825 

BERT N/A 0.767 0.841 0.824 

BiGRU 0.807 0.793 0.828 0.822 

CNN-LSTM 0.805 0.777 0.815 0.808 

BiLSTM 0.815 0.807 0.807 0.807 

GRU 0.820 0.730 0.822 0.804 

CNN-BiLSTM 0.816 0.766 0.810 0.802 

CNN 0.816 0.787 0.800 0.798 

LSTM 0.796 0.767 0.803 0.796 

Ensemble 0.815 0.726 0.829 0.810 

Logistic Regression CV 0.812 0.730 0.820 0.803 

Linear SVC 0.814 0.693 0.824 0.797 

Stochastic GD 0.805 0.636 0.825 0.785 

Naïve Bayes SVM  0.792 0.767 0.789 0.785 

Random Forest 0.814 0.694 0.801 0.779 

Extra Trees 0.833 0.688 0.801 0.777 

XGBoost 0.811 0.704 0.791 0.774 

Rule-Based 0.745 0.656 - - 

Naïve Bayes 0.798 0.605 0.799 0.756 

The table includes subsequent tests of the models against the later Phase-Two “Balanced 

test” dataset and a “Combined test” dataset that uses all the test data. F1 Scores are measured 

for the positive, VAEM class, rather than over both classes. The models are arranged in order 

of the best F1 Score over the test datasets; validation scores are also included, where available. 

There are no validation F1-Scores available for models using transfer learning — they used a 

cross-validation approach and so were given combined training and validation data and were 

evaluated only against test datasets. The three best F1 scores on each of the datasets per 

classifier category are shaded, with the best score having the darkest shade. 

The Ensemble model is shown in the middle of the table, which was scored based on a 

maximum voting of the predictions of 5 standard models on the test dataset, it had the overall 

best score on the larger test data when using standard classifiers, which are all arranged below 
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it. Phase-One classification was completed with the assessment of the BERT Transformer 

model, which did not perform as expected. 

Experiments with a lemmatized version of the cleaned text showed that some of the models 

(especially the Logistic Regression CV, Linear SVC, and Stochastic Gradient Descent models) 

increased their validation F1-Scores when training on lemmatized texts, by as much as 0.2. 

However, all the models scored worse, in some cases worse by even more than 0.2, when 

assessed against lemmatized versions of both the imbalanced and balanced test data. They 

seemed to be over-fitting on the lemmatized training data and were not as generalizable on 

unseen data — therefore lemmatization was not used.  

A baseline rule-based classifier was constructed during the first classification phase - this is 

described in Section 6.10. Its performance was considered as a baseline for the classifiers, and 

its best score on the Imbalanced test scores has been included on the bottom of the table. It was 

not re-evaluated in Phase Two. The Phase One evaluation process also included assessing 

alternative word embedding vectorization approaches against the test dataset, but these 

approaches were not based on the “off the shelf” vectorizing techniques for standard 

classification. One used the average of Word2Vec word embeddings per document, and the 

other used “centroids” - clusters of Word2Vec embeddings. These resulted in mostly poorer 

scores than the sparse matrix approach — see Appendix E.  

All the deep learning models outperformed the best traditional classifier on the Imbalanced 

test dataset, by at least 6% and almost as much as 10% - the improvement was mostly due to a 

greater capacity to correctly distinguish non-VAEM-related tweets, and so obtain a greater 

precision. However, when evaluated against the Balanced and Combined test sets the results 

differed — here the traditional classifiers outperformed many of the deep learning models, 

especially the Ensemble, which was only surpassed by the top 3 deep learning models.  

A very best F1-Score of 0.805 on the imbalanced test set was obtained with a “manually-

tuned” CNN, which was a one-off result from a test of manually decreasing learning rates in 

small steps. This result was not able to be reproduced by using an automated learning rate 

adjustment scheme, so it has not been included in the chart - but obtaining this score indicated 

the possibility of an optimum result with a careful training regime. By comparison, the best of 

all other experiments with CNNs placed them below two CNN combined models — one 

combined with a bi-directional GRU (CNN-BiGRU), the other combined with a bi-directional 

LSTM (CNN-BiLSTM). It is notable that the bi-directional versions of these models generally 

outperformed their standard counterparts. 
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6.8 Phase Two classifiers results 

As depicted in Table 29, training in the second phase of classification used five times as much 

training data, by combining the 3,519 training records from the first phase with another 15,730 

records, resulting in a total of 19,249 training records. Phase Two also introduced the Phase-

Two Test dataset of 828 records. The greater amount of data allowed a proper assessment of 

neural networks and meant that additional Transformer models and the ULMFit model could 

be assessed. The scores for all models were considerably better in the second round of testing, 

especially over the imbalanced test dataset, and different best models emerged, see Table 31.  

Table 31: Phase-Two F1 Scores 

  
 Model Validation 

Imbalanced 
Test 

Balanced 
Test 

Combined 
Test 

Imbalanced  
Change 

Combined 
Change 

  RoBERTa Large N/A 0.919 0.908 0.910 - - 

  RoBERTa - 0.901 0.905 0.904 - - 

  XLNet Large - 0.884 0.906 0.902 - - 

  XLNet - 0.870 0.903 0.897 - - 

  XLM - 0.910 0.894 0.897 - - 

  BERT - 0.863 0.892 0.887 12.6% 7.7% 

  BiGRU 0.877 0.855 0.896 0.890 7.9% 8.2% 

  CNN-BiGRU 0.874 0.849 0.890 0.884 11.4% 7.1% 

  LSTM 0.866 0.875 0.879 0.878 14.1% 10.3% 

  CNN-LSTM 0.866 0.862 0.876 0.873 10.9% 8.1% 

  BiLSTM 0.872 0.847 0.884 0.878 5.0% 8.8% 

  GRU 0.869 0.825 0.876 0.868 13.1% 7.9% 

→ 
CNN-BiLSTM 0.872 0.824 0.879 0.871 7.6% 8.6% 

CNN 0.864 0.805 0.866 0.856 2.4% 7.2% 

 Ensemble 0.870 0.818 0.874 0.865 12.6% 6.8% 

 Logistic RCV 0.866 0.807 0.873 0.861 10.5% 7.3% 

 Stochastic GD 0.865 0.806 0.873 0.861 26.7% 9.7% 

 Linear SVC 0.864 0.802 0.869 0.857 15.7% 7.5% 

 Random Forest 0.857 0.796 0.864 0.853 14.7% 9.5% 

 Extra Trees 0.857 0.789 0.862 0.849 14.7% 9.2% 

→ 
NB SVM  0.838 0.798 0.838 0.832 3.9% 5.9% 

XGBoost 0.845 0.714 0.854 0.831 1.3% 7.4% 

 Naïve Bayes 0.835 0.735 0.841 0.822 21.5% 8.7% 

 

Several models’ names have been abbreviated, compared with the previous table: Logistic 

Regression CV is “Logistic RCV”, Stochastic Gradient Descent is “Stochastic GD”, and Naïve 

Bayes SVM is “NB SVM”. The best individual traditional models were the Logistic Regression 

CV and Stochastic Gradient Descent classifiers. The Ensemble was the best performing 
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traditional classifier across all test datasets, but only by a marginal 0.001 on the Balanced test 

set and 0.004 on the Combined test set, compared to the Logistic Regression CV model. 

The “Imbalanced Change” and “Combined Change” columns shows the percentage increase 

of the models’ F1-Score over the Imbalanced Test and Combined Test datasets, compared to 

their Phase One equivalents. The only Transformer trained in Phase One was the BERT model, 

so it is the only Transformer with comparative scores. Many of the score increases are very 

large, as much as 26.7% for the Stochastic Gradient Descent model on the Imbalanced Test 

data, and 10.3% for the LSTM on the Combined Test data.  

The two arrows on the left of the table indicate the approximate positions of the maximum 

Imbalanced Test F1-Scores from the Phase One traditional and deep learning models, which 

were 0.767 for the Naïve Bayes SVM model, and 0.807 for the BiLSTM model. The previous 

maximum Combined Test F1-Scores, which were 0.825 for the CNN-BiGRU and 0.801 for the 

Ensemble, are both below the Phase Two Combined scores so cannot be similarly represented. 

As previously explained, validation scores are not applicable for the Transformer models, but 

validation F1 scores have increased by around 5% where numbers are available.  

There was a much greater consistency of scoring over all the test datasets, and the top models 

scored best over all the test datasets. The highest score was from the RoBERTa Large 

Transformer model, with an F1 of 0.919 on the Imbalanced data, the standard RoBERTa model 

was placed second.  

One of the most noteworthy effects of having more data is that the previously strong 

combinations of CNN and bi-directional BiGRU and BiLSTM models were surpassed by the 

LSTM on the Imbalanced test data, both when combined with a CNN but most significantly as 

a stand-alone model. The LSTM in fifth position on the Imbalanced Test scoring is only 2.5% 

behind the score of the RoBERTa Large model. One can fairly conclude that a CNN or hybrid 

CNN approach performs well when limited data is available but will likely be surpassed by 

architectures designed for sequential language processing as more data becomes available. 

The ULMFiT model scored unexpectantly poorly, but it is likely that its mediocre 

performance is due to the author not knowing how to best tune it and that the score is 

misrepresentative of the classifier’s capability. The model had an excellent recall (behind only 

the best Transformer models) but was overly sensitive to nuances in language and generated 

too many false positives — for instance in testing predictions it would tip an otherwise non-

VAEM prediction over to a VAEM prediction just by the inclusion of one of the translated 

“sad” emoticons. Therefore, although the result is listed in Table 31, the model has not been 

included in the analysis in Section 6.9. 
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In conclusion, having more data has improved the results. With the deep learning models 

trained from scratch there was an average of 0.1 F1-Score improvement over the previous result 

on the Imbalanced test data, from an average F1-Score of 0.733 to an average of 0.833. Most 

tellingly the Transformer-based BERT model improved by almost 13% with the addition of 

the extra data and so performed as expected, with an F1-Score of 0.8634. Finally, having more 

data enabled an evaluation of the powerful RoBERTa Large model, which achieved an F1-

Score of 0.919 on the Imbalanced Test data. 

6.9 Classifier performance over the two training phases 

The results depicted in the F1-Scores tables above show an expected effect, that after training 

with more data, almost all the models improved considerably, and that the scores were more 

consistent over the test datasets. So far, F1-scores have been used to evaluate and compare the 

models. However, as with the topic modelling goals of obtaining the best recall with an 

optimum possible precision, the same F1-Beta score (with a beta of 1.3) was also evaluated 

with the classifiers. The difference between F1 and F1-Beta, together with an analysis of the 

constituent precision and recall, helps to identify the top classifiers as well as highlighting 

classifier differences in handling the test datasets. For example, Table 32 shows the F1 and F1-

Beta scores and the constituent measures for the RoBERTa Large model over the test data. 

Table 32: RoBERTa Large F1 scores and measures 

RoBERTa Large TP TN FP FN Precision Recall F1  F1-Beta 

Balanced Test 409 336 61 22 0.870 0.949 0.908 0.918 

Imbalanced Test 85 514 10 5 0.895 0.944 0.919 0.925 

Combined Test 494 850 71 27 0.874 0.948 0.910 0.919 

6.9.1 Imbalanced Test data with Phase-One models 

The Phase-One Imbalanced Test dataset was used throughout as a standard because it 

represented a real scenario of tweets that had been first identified as belonging to the author’s 

geographical region, and its proportion of VAEM to non-VAEM was not balanced. During the 

initial Phase-One testing, the author noted that the Imbalanced test dataset suited models that 

favoured the non-VAEM (negative) class. That is, models that tended to shift both false and 

true positives into the negative class did well with this test set. For instance, the Naïve Bayes 

SVM model eliminated many false positives and thereby achieved the highest precision among 

the standard models, but it also eliminated true positives and so had the poorest recall. 

However, it was awarded the highest F1 Score among the standard models just because there 
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was a much high number of the non-VAEM class in the test data. That is, the model’s precision 

benefitted by removing many false positives, which offset the penalty due to its removing 

(somewhat fewer) true positives.  

When testing with an F1-Beta score it was observed that the Naïve Bayes SVM F1-Beta 

score was closer to the middle of the scoring range, and that BERT, with its relatively higher 

recall, was promoted to second place — see Figure 20.  

 

Figure 20: Phase-One models and Imbalanced Test data - F1 vs F1 Beta 

The relationships between F1 and F1-Beta in the Phase-One models on the Imbalanced test 

data, together with the variations of precision and recall that help to explain the model’s 

performance, are depicted in Figure 21. The models are displayed in increasing order of their 

F1-Beta scores. Note that Naïve Bayes SVM has one of the highest precision values, but also 

the lowest recall, and so is penalised by the F1-Beta score. Conversely, the BERT model has a 

high recall but a relatively lower precision, resulting in the same F1 Score (0.767) as the Naïve 

Bayes SVM model — but that because of its recall is favoured by the F1-Beta score. The chart 

shows that the standard models tend to have a higher recall but with poor precision, but that 

after the point where the Naïve Bayes SVM enters the chart, the remainder of the models 

(which are based on neural networks) have precision and recall values that are somewhat closer 

to each other. 
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Figure 21: Phase-One models on Imbalanced Test data - F1 Scores & measures 

6.9.2 Imbalanced Test data with Phase-Two models  

Almost all the models’ F1 scores increased by at least 5%, after the models were re-trained 

with the five-fold increase in data available in the second phase of training - where the training 

data increased from 3,519 records to 19,249. The Phase-Two classifiers included five new 

Transformer models. See Figure 22 for the performance measures against the Imbalanced Test 

data, which again show some extreme differences in precision and recall, but significantly, 

fewer examples of a great divergence between precision and recall among the lower-order 

models, with F1 and F1-Beta being more aligned. The upwards trajectory of the resulting F1 

scores is rather steeper than it was with the Phase-One trained models, there is a 20% difference 

between the worst and best performing models. This is due to the top performing Transformer 

models having a 10% better performance than the top performing standard models, and 

effectively coping with the imbalanced data — the “Balanced Test data with Phase-Two 

models” section (6.9.4) shows that they were able to obtain very similar F1 scores on this data 

as they did on the Balanced Test data. The RoBERTa Large model achieved an F1 score of 

0.919, and an F1-Beta of 0.923.  
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Figure 22: Phase-Two models on Imbalanced Test data - F1 Scores & measures 

6.9.3 Balanced Test data with Phase-One models 

The Balanced Test dataset consisted of 828 records with 431 VAEM and 397 non-VAEM. The 

behaviour of the models when tested with this data was a lot more regular, even with the Phase-

One models, see Figure 23. Precision initially exceeded recall, then switched to recall 

exceeding precision, but with a more consistent relationship when compared with the 

evaluations on the Imbalanced Test data. The Naïve Bayes-based models are noteworthy: In 

this scenario Naïve Bayes SVM was the poorest performer, and standard Naïve Bayes scored 

much better — a very high recall was weighted by the F1-Beta calculation to offset a poor 

precision and give the model a score in the middle of the range. BERT and CNN-BiGRU were 

the best models — they both had combinations of high recall and precision, but the Ensemble 

of standard models had a similar balance of precision and recall and was the fourth best model. 

Testing on the Balanced Test data did not show such a clear distinction between the 
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performance of the standard models and neural networks, several standard classifiers 

performed better than some of the neural networks. 

 

Figure 23: Phase-One models on Balanced Test data - F1 Scores and their measures 

6.9.4 Balanced Test data with Phase-Two models 

As previously noted, the models’ F1 scores increased by at least 5% after the models were re-

trained with the larger data, and when tested with the balanced Test data their performance 

improved compared to that when tested with the Imbalanced Test dataset, all the F1 scores 

were above 0.8 — see Figure 24.  
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Figure 24: Phase-Two models on Balanced Test data - F1 Scores and their measures 

The Phase-Two results show an even closer relationship between the F1 and F1-Beta scores, 

with a clear progression in scores from the standard models to the neural network-based models 

— there are no longer standard models’ results interspersed within those from the neural 

networks models. The RoBERTa Large model achieved an F1 score of 0.908 and an F1-Beta 

of 0.918 — as indicated earlier these align with the scores achieved on the Imbalanced Test 

data, so the author concludes that training on the large dataset has achieved an optimal result. 

6.9.5 Phase-Two models vs Phase-One models 

Figure 25 shows the relative performance of the Phase-Two models vs the Phase-One models 

when evaluated with the Balanced Test data, as such they represent the best performances of 

both training phases. There are five extra entries for the Transformer models added to the 

Phase-Two models. Note that the highest scores from the Phase-One trained models shown in 

the bottom part of the chart are around 0.85, whereas only the bottom three Phase-Two trained 

models are on or below 0.85; that almost all scores have increased by at least 5%; and that there 

is a greater overall rate of improvement noticeable in the slope of the Phase-Two trained 

models.  
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Figure 25: Phase-Two vs Phase-One models - F1 scores on Balanced Test data 

To conclude this section, the descriptions of classification results and the analysis presented 

above highlighted the need for sufficient data to train classifiers and demonstrated the effect of 

imbalanced test data when classifiers are favouring the dominant, negative, class. The analysis 

should assist other researchers to make decisions about classifiers and the amount of data 

required, should they be encountering similar texts and volumes of data. The section also 

demonstrated that the most powerful classifiers were able to cope with imbalanced data and 

were consistent in their performance.  

The F1 scores of the Roberta Large model are exemplary — the almost 0.92 F1-Score on 

the Imbalanced test set is more than 10% better than the best traditional classifiers, which was 

the Ensemble. In Phase Two the Ensemble improved by 11.3% over its score from Phase One, 

but since the RoBERTa Large improved over this score by 10%, F1-Scores improved by 21% 

through the combined effect of increasing the training data and utilizing transfer learning with 

state-of-the-art Transformer models. The results have established that classification can very 

effectively isolate VAEM from the incoming topic model data.  

6.10  Baseline rule-based classification technique 

The most significant VAEM words for the traditional classifiers tended to focus on complaints 

of side-effects such as pain and sickness arising from a recent vaccination. The patterns were 

repetitive enough to suggest that a rule-based approach could be designed as a baseline 

technique. Therefore, it was decided to utilize the most-used words in VAEM-containing posts 
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as a target for scoring document similarity to those words. At the same time, the most-used 

VAEM words were also present in non-VAEM posts, so a rule-based system should not just 

classify every post as VAEM on finding common VAEM words. Instead, it should try to 

compensate with some awareness how these VAEM words were used, or to take account of 

non-VAEM words that might be used to counterbalance the tendency to make false positive 

predictions. 

The target VAEM words were those which were observed to be present in most VAEM-

containing documents, and in significantly greater proportion to their presence in non-VAEM-

containing documents. The opposite condition was also applied to find non-VAEM target 

words. Some words were observably common, for instance “arm” and “hurts” in VAEM 

documents. Others were chosen based on their presence in the same cluster as the most 

significant words when k-means clustering (Section 2.6) was performed on the entire data. 

Appendix Section D.3 contains a description of how these clusters were constructed. 

VAEM target words included “arm”, “hurts”, “got” and “yesterday”. Non-VAEM target 

words included “get”, “vaccine”, “needles”, “test” and “jesus” (often in the context of “Jesus 

is my flu shot”, a popular meme in the texts). That is, it was observed that a lot of the 

discussions in VAEM-containing documents were about having painful arms due to getting a 

vaccination sometime in the previous day or days, and the term “vaccine” was hardly used. 

Non-VAEM-containing documents, however, were more likely to discuss vaccines and 

encouragements to “get” them, to include information related to “test”, to complain about the 

fear of getting “needle(s)”, or to avoid them altogether because of beliefs (e.g., due to Jesus’s 

protection).  

Similarity scoring uses the built-in functionality of Word2Vec — words have a value in the 

vector space of the Word2Vec model, and similar words have a similar value — the similarity 

can be measured via the Word2Vec function most_similar. For the underlying Word2Vec 

embeddings, three models were assessed: (1) a model with word embeddings on all the words 

in the underlying data; (2) one with embeddings only on words greater than one character in 

length; and (3) a smaller model with embeddings on words greater than one character in length 

and with all the common English stop words removed. The smaller model gave the best results, 

the similarity scores between the words were stronger with the removal of the stop words 

“noise”.  

For the rule-based approach, words in a document were scored based on their similarity to 

the VAEM and non-VAEM target words, by using the Word2Vec most_similar function 

applied to the Word2Vec model. If a word being processed was not found in the Word2Vec 
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model, then it could not be scored, unless it happened to be one of the target words. For 

instance, the word “get” is quite highly indicative of a non-VAEM and so could be used as a 

target non-VAEM word, but “get” is also a stop word and so did not appear in the smaller 

Word2Vec model. Nevertheless, if “get” was used as a target word and “get” is encountered in 

a document then obviously they perfectly match and so the “get” must be assigned a similarity 

score of 1, despite it not being found in the Word2Vec model. 

Scoring a document would firstly consist of assessing every word in the document to get its 

similarity score to each of the VAEM target words (e.g., target words “arm” and “hurts”). 

Secondly, those scores would be sorted to get the top n scores, where n was a parameter (e.g., 

5), and the top n scores would be added for that word. Thirdly, the top n scores in the document 

would be determined by sorting the scores, and then were added to get a total document score. 

The words that earned the top n scores would be preserved, so the output would be a score, and 

the most significant n words in the document, in descending order of their similarity score. 

Non-VAEM target words were optional, but if specified then scores against them would be 

kept separately, so a document would have a VAEM score and words, and optionally a non-

VAEM score and words. Experimentation indicated that a parameter of five worked best for 

the number of word similarities to target words.  

To avoid inflated scores due to repetitive use of high-scoring words, the words would be 

counted as processed, and the count would be used as a denominator to adjust the score. If a 

word appeared for the first time its count would be 1 and with 1 as the denominator it would 

get a full score. Every subsequent appearance of the word would increase its count and 

denominator - so its subsequent scores would be progressively penalised.  

There were two approaches for obtaining the similarity scores: One was to ensure that only 

certain words would get scored by utilizing limited dictionaries of potential words (e.g., the top 

200 similar words to the chosen VAEM target words, derived by k-means clustering of 

similarity scores). The advantage of this approach was that only some words would ever be 

scored, they had to already exist as known similar words — therefore having a document score 

above a certain threshold was a fairly reliable indicator of it being a VAEM document. The 

disadvantage was that a document could end up with no score at all if none of its words were 

found in the dictionary. An example of scoring the sentence “my shoulder is tender and sore 

and I feel sick” with this approach is shown in Table 33. The target words are “arm”, “hurts”, 

“pain”, “reaction”, “fever” and “sick”. Some scores are zero because the limited dictionary has 

removed any words that were not in the top 200 similar words to the target words, despite any 

similarity they had. 
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Table 33: Rule-based model - Limited dictionary of similar words 

    Top Words - Limited Similarity Scores     

  Word arm hurts pain reaction fever sick Total Top 5 

1 sore 0.872 0.813 0.655 0.000 0.000 0.000 2.340  
2 shoulder 0.792 0.672 0.631 0.000 0.000 0.000 2.095  
3 feel 0.638 0.643 0.000 0.000 0.000 0.000 1.281  
4 sick 0.000 0.000 0.000 0.000 0.000 1.000 1.000  
5 my 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.716 

6 is 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
7 tender 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
8 and 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
9 and 0.000 0.000 0.000 0.000 0.000 0.000 0.000  

10 i 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
 

The other approach bypassed the use of dictionaries and always scored words using the 

Word2Vec most_similar method, so it would calculate a similarity no matter how different a 

word might be from the target. Scoring all words ensured that all documents would be scored, 

but it also meant that it was more complex to decide whether the score could be considered 

indicative of a VAEM document. This approach needed to account for non-VAEM scores and 

deciding that a document was VAEM based on the difference between the two scores.  

Table 34 illustrates scoring where all words are scored because scoring has not been 

restricted to words available only in limited dictionaries.  

Table 34: Rule-based model - All similarity scores 

    Top Words - All Similarity Scores     

  Word arm hurts pain reaction fever sick Total Top 5 

1 sore 0.872 0.813 0.655 0.462 0.408 0.588 3.390  
2 feel 0.638 0.643 0.571 0.458 0.274 0.591 2.901  
3 shoulder 0.793 0.672 0.631 0.478 0.245 0.321 2.895  
4 sick 0.460 0.462 0.423 0.364 0.343 1.000 2.709  
5 my 0.520 0.563 0.435 0.412 0.220 0.479 2.409 14.304 

6 tender 0.497 0.509 0.421 0.320 0.429 0.264 2.176  
7 and 0.231 0.268 0.332 0.309 0.258 0.356 1.523  
8 is 0.261 0.370 0.205 0.373 0.175 0.334 1.543  
9 and 0.116 0.134 0.166 0.155 0.129 0.178 0.762  

10 i 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
 

Note that only the top 5 scores per word are taken to score the word, and only the top 5 

scores are taken to score the document. Any scores earned outside of the top 5 limits are not 

utilized and are depicted with a lighter grey colour in the table. In this case the word “fever” 
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did not contribute anything to the individual word scores in the top 5 words, as all the other 

words scored higher. Also note that the word “and” earns only half the score for the second 

instance of the word, which illustrates the penalty assigned to repeated words. The word “I” 

does not earn any points at all, as it was excluded from the Word2Vec model.  

Three document scoring strategies were devised to make use of these scoring approaches. 

They were evaluated for F1-Scores using both validation data and the Imbalanced test data (the 

only test data available at the time of designing this approach).  

A first document scoring strategy was to just score VAEM words and to limit words to those 

that could be found in a dictionary of most similar words. When scoring this way, a document 

would be considered as a VAEM if its score were greater than zero. When evaluating the 

scoring technique against the document labels and specifying the VAEM target words “arm” 

and “pain”, an F1-Score of 0.771 was obtained on the validation data. An F1-Score of 0.627 

and an F1-Beta score of 0.644 were obtained on the test data.  

The second document scoring strategy was to again use dictionaries to limit the words that 

could be scored, but to also score non-VAEM words. A dictionary size of 200 words was found 

to be optimal for VAEM words and 400 for non-VAEM words. This approach assigned a 

VAEM label to a document when the VAEM score exceeded zero, but only if the non-VAEM 

score was no greater than 1. Using a pattern of “arm” and “hurts” for VAEM and “not” and 

“get” for non-VAEM, an F1-Score of 0.745 was obtained with the validation data and 0.656 

on the test data. The F1-Beta score on the test data was 0.664. This model is depicted in the 

Phase One model scores in Table 30. 

The third scoring strategy used an “always score” approach. It would score all words in the 

document, and score a document as being a VAEM post if the VAEM-related score exceeded 

the non-VAEM-related score, but by an added threshold. For instance, if a threshold value was 

2.0 it meant that the VAEM-related score needed to be at least 2 points higher than the non-

VAEM-related score for a document to be considered a VAEM. When specifying VAEM 

words of “arm”, “hurts”, “got” and “yesterday” and non-VAEM words of “not”, “get”, 

“needles”, “test”, and “jesus” and using a threshold of 2.0 the resulting validation F1-Score on 

the example document was 0.7631. A higher threshold of 2.9 was required with the same words 

on the test data to correctly classify the document, resulting in an F1-Score of 0.645, and an 

F1-Beta also of 0.644.  

Table 35 depicts the third scoring strategy, with examples of tweets, their VAEM scores and 

top words, and the rule used for that top word (V score, V top word, V top rule); their non-

VAEM counterparts (NV score, NV top word, NV top rule); and the difference between the 



124 

 

scores (Diff.). The VAEM rule words were “arm”, “hurts”, “got”, and “yesterday”, the non-

VAEM rule words were “not”, “get”, “needles”, “test” and “jesus”. The decision about whether 

a tweet should be classified as a VAEM is based on the threshold that is applied to the 

differences in their scores. If a threshold of 2.5 is applied, then all records with a difference of 

2.5 and above would be correctly classified, but if the threshold is 2.0 then the third record 

would be incorrectly classified as VAEM, as the 2.219 difference in the score exceeds the 

threshold of 2.0. 

Table 35: Examples of manual scores 

Tweet Class V 
score 

V top 
word 

V top 
target 

NV 
score 

NV top 
word 

NV top 
target 

Diff. 

i got my flu shot today 
and my arm is so sore i 
cant do anything...soooo 
anyone wanna cuddle? 

VAEM 13.895 got got 9.184 soooo needles 4.711 

i also have to get my 
vaccine shots today 
<annoyed> but at least 
i'm not scared or terrified 
of needles i just dislike 
them 

Non-
VAEM 

10.352 my got 10.366 needles needles -0.014 

i'm terrified of getting 
shots/vaccinations or 
having people take blood 
because i'm always 
scared they will snap the 
needle off in my arm. 

Non-
VAEM 

11.413 arm arm 9.194 scared needles 2.219 

feeling horrible today 
after getting the flu shot 
so annoying 

VAEM 11.124 feeling  yesterday 8.459 annoying not 2.665 

flu vax- thoughts? i'm 
very much for. 

Non-
VAEM 

3.835 flu got 3.876 flu not -0.041 

These techniques provided a baseline rule-based approach to measure classifiers against. 

The only classifiers which performed worse than the rule-based approach were the Naïve Bayes 

SVM and Naïve Bayes models in Phase One of the classification, with F1-Scores of 0.5970 

and 0.5292 on the Imbalanced Victorian dataset. All the classifiers surpassed the rule-based 

approach in Phase Two of the classification, which involved re-training with more data. The 

various scoring strategies used in the rule-based scoring approach are relatively successful 

depending on the dataset and the application of a lot of manual tuning to get the best from them 

— but the approach is not robust enough to adopt as an alternative to any of the machine 

learning models. Nevertheless, the techniques suggested that extra embeddings-based features 

could be derived that might be applicable to improve a classifier’s performance, which is 

explored in Appendix E.    
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6.11  Chapter 6 summary 

This chapter explored the capacities of classifiers in terms of small and larger dataset sizes, 

resulting in two phases of classification evaluation. This was important, as data availability is 

a key consideration when choosing classifiers and it is not always possible to find the data that 

is required to properly train the state-of-the-art deep learning classifiers. By providing the 

performance detail of a range of classifiers in relation to data availability, the aim was to help 

inform fellow researchers to assist their choices when collecting data and choosing classifiers. 

Section 7.3 of the Evaluation chapter further compares these results using charts.     
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7 Evaluation 

7.1 Chapter overview 

This chapter contains detailed evaluations of the performance of the topic modelling approach 

and classifiers that were used in this research. The analysis confirms the effectiveness of the 

techniques for identifying posts containing vaccine adverse event mentions, by measuring how 

the Twitter posts containing VAEM have been successively concentrated by applying these 

techniques. The chapter also clarifies that classifier effectiveness is relative to data availability.  

7.2 Evaluating topic model effectiveness 

Topic model effectiveness measures the capacity of the topic models to identify VAEM in the 

texts by bringing them together into one or two topics, so that exporting documents from only 

these topics can be used as a filtering mechanism. The most effective topic (the top topic) 

would be one that contains all or most of the VAEM without containing very many other 

documents. The following sections take the approach of counting proportions of VAEM in the 

top topics vs. VAEM in all topics (like a recall score), and VAEM vs. all other labels in a top 

topic (like precision). In section 7.2.1 the discussion is based on labelled samples, and in 

section 7.2.2 it is based on the fully labelled classification data.  

7.2.1 Verifying topic models with samples 

As previously discussed, Topic 13 of the 14-topic stage-one DMM model had been identified 

as the best topic, by the scoring system that utilized a small set of 1,400 labelled tweets. The 

Topic 13 tweets were subsequently labelled for classification purposes as either VAEM or not 

and used for the ongoing work. The remaining thirteen topics of the 14-topic model were not 

labelled and were not henceforth used, and beyond the insight gained by the topic model 

scoring system, it was unknown whether these might actually contain VAEM.  

Verifying the stage-one 14-topic model  

To verify that it had been justified to discard topics other than Topic 13 as unlikely to contain 

VAEM, ten thousand samples were taken of the total data of the 14-topic model (i.e., inclusive 

of the already labelled Topic 13), and the as-yet unlabelled tweets were labelled - as either 

VAEM or not. The result was 10 samples, each consisting of 10 randomly sampled groups of 

100 records and combined into 1,000-record samples, for a total of 10,000 sampled records. 

Only one VAEM record emerged in another topic apart from Topic 13, and this is depicted in 
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Figure 26. For simplicity only topic numbers containing VAEM are assigned a separate bar in 

the chart, all other topics are combined into the third “All Others” bar. Within topics 13 and 1 

(“Thirteen” and “One” on the chart) the VAEM containing tweets are depicted by the darker 

portions on the right of each bar, the lighter portion to the left is non-VAEM. These are counted, 

for instance in Topic 13 there are 127 VAEM and 1,564 non-VAEM, a total of 1,691. The 

percentage label to the right of the bar for Topic 13 indicates the proportion of all VAEM in 

the topic, which is 99.2%. That is, 127 of the total 128 VAEM in the samples are found in 

Topic 13, and therefore only 0.8% of VAEM are found in other topics. Topic 13 consists of 

only 16.9% of the total sampled data, which is consistent with the filtering effect observed 

during topic modelling. 

 

 

Figure 26: Sample Distribution of VAEM Stage One 

 

Five additional 1,000 sized samples were taken of topics excluding Topic 13, only 2 VAEM 

were found in the 5,000 samples, which was 0.04% of the data. These numbers verify the 

effectiveness of Topic 13 of the 14-topic DMM model for filtering vaccine adverse event 

mentions. To be consistent with the samples and allowing for error it is estimated that 99% of 

the vaccine adverse event mention data is being included in records collected by Topic 13 of 

the DMM 14-topic model. 

Visualizing filtering with the taxonomy topics 

Figure 27 illustrates the change of document topics as the data is progressively filtered over 

two stages of topic modelling to select the best VAEM topic. Samples of records were assigned 

the subjects of the taxonomy, which corresponds to the dominant topic of the tweet. The chart 

     

     

     

   

 

 

                                         

        

   

          

           

     

             



128 

 

compares the proportions of taxonomy topics found in the Stage One, Stage Two, and Topic 8 

samples. The bars depict the spread of taxonomy topics in the data that each stage handles. The 

“Sample = Stage One” section represents the taxonomy topics of the unprocessed data; the 

“Sample = Stage Two” section represents the taxonomy topics that have come into Stage Two 

after exporting from the top topic of the Stage One; and the third section, “Sample = Topic 8”, 

represents the taxonomy topics found in the top Stage Two topic (Topic 8). 

 

Figure 27: Proportions of Topic per Stage samples 

 

The figure shows that as the topic modelling proceeds the proportion of tweets that contain 

VAEM (taxonomy topic 1) and similar posts increases. Initially, in the Stage One sample, 

VAEM is a very small proportion of the data, and topics are distributed over all the data with 

the highest proportion being in taxonomy topic 3 — discussions, enquiries, and complaints. In 

the Stage Two sample in the middle of the chart many of the taxonomy topics have been 

reduced or eliminated, and although topic 3 still dominates there is a far higher proportion of 

VAEM. The best VAEM topic of Stage Two was Topic 8, which is rendered in the third sample 

in the chart — now VAEM is proportionally the largest topic and the spread of topics is reduced 

to mostly VAEM, discussions, and some non-adverse reaction personal health mentions. These 

observations are discussed in detail in the following charts, which present the same 

information, with the taxonomy topic proportions depicted as percentages. 
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Figure 28 is a detailed view of the same Stage One data that is depicted in Figure 27, which 

is from the DMM 14-topic 1,000-tweet sample. It shows that only 1.2% of the data can be 

allocated to VAEM. Personal health mentions also occupy 1.2% of the data, while the largest 

group at 27.3% is topic 3 - discussions, enquires and complaints about vaccinations. Pro and 

anti-vaccination tweets, and news articles and headlines occupy the next largest groups. 

 

Figure 28: Distribution of taxonomy in 1,000 tweet sample of stage one data 
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Figure 29 shows the detail of distribution of taxonomy topics in Stage Two sample shown 

in Figure 27, which used the 1,000-tweet sample from the second stage DMM 9-topic model. 

To reiterate, this is a sample from all of stage two data. Now VAEM occupy 8% of the data, 

personal health mentions are 4.7% and discussions are 64.2%. The number of other taxonomy 

topics is much reduced, occupying just 23.1% - the trend is that the data is much more heavily 

focussed on the types of tweets that might contain VAEM. 

 

Figure 29: Distribution of taxonomy in 1,000 tweet sample of stage two data 
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Figure 30 is the detail of the third sample shown in Figure 27, which uses a fresh 1,000-

tweet sample just from Topic 8 of the Stage Two data — now VAEM occupy 51.5% of the 

data, which is more than any other topic. It is quite a lot less than the actual proportion of 75.1% 

which was counted when the data was fully labelled (see next section), but this was only a 

sample. The tweets are nearly all VAEM, personal health mentions, or discussions. Data from 

this topic is very amenable to further classification work to identify the VAEM with greater 

precision. 

 

Figure 30: Distribution of taxonomy in 1,000 tweet sample of Topic 8 

 

7.2.2 Verifying effectiveness with label distributions 

The previous subsection described how the effectiveness of the two-stage topic modelling 

approach was verified with samples, this subsection describes how effectiveness was verified 

by observing the distribution of labelled VAEM in the various topics of the topic models. This 

approach was made possible after processing the second phase data (Section 4.7) through both 
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stage one and stage two DMM topic models. Because that data was subsequently fully labelled, 

the distribution of the VAEM in the various stage 2 topics was observable.  

That is, the 14-topic DMM model previously ranked as the best model was applied to the 

359,535 posts in that dataset, and 80,372 records that the model put into Topic 13 (the best 

VAEM topic of the model) were retained. The second phase DMM 9-topic model was applied 

to these, and all the records were retained, along with their second-phase topic number.  

Figure 31 shows the distribution of these records. It confirms that most of the VAEM 

containing documents are captured by Topic 8, the VAEM topic. That is, Topic 8 with 6,320 

records contains 77.5% of the total of 8,157 VAEM records. It also shows that, compared to 

other topics, Topic 8 effectively isolates VAEM in proportion to non-VAEM in the topic - the 

6,320 VAEM records in the topic are 1.24 times as many as the 5,075 non-VAEM records.  

 

Figure 31: Labels per topic, second stage topic model over the second phase dataset  

The numbers also confirm that all other topics have much fewer VAEM documents with the 

best of them proportionally being Topic 9 with 534 to 6,953 — that is, a proportion of 0.08 

VAEM records — significantly less than Topic 8’s 1.24 proportion of VAEM. Following that 

is Topic 7, which although having a greater number of VAEM at 720 also has more non-VAEM 
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at 12,476 — a proportion of 0.06. Figure 32 presents these relationships in a summary form, 

which highlights the degree to which Topic 8 contains the majority of VAEM while 

simultaneously excluding most of the non-VAEM records, which are mostly found in other 

topics.  

 

Figure 32: Summary of second stage VAEM distribution in topics 

 

The following charts consider this information as ratios, and over all data — that is, when 

stage two topic modelling numbers are combined for both phases of data collection. 

Figure 33 illustrates the effect of the increasing ratio of labelled VAEM and accompanying 

labelled non-VAEM as topics are added to the best Topic 8 of the second stage of topic 

modelling. That is, given that Topic 8 contains the majority of VAEM, the chart depicts the 

effect of starting with Topic 8, and incrementally adding other topics until the most VAEM are 

retained. Topics are added in the order of their amount of VAEM to non-VAEM ratio, starting 

with Topic 8, followed by Topic 7, then 9 etc. Topic 8 contains 0.763 of all labelled VAEM; 

Topic 7 contains 0.082, which accumulates to 0.845 etc. The lower line is the accumulating 

ratio of non-VAEM in each topic, as topics are added then the non-VAEM ratio also increases. 
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Retaining just Topic 8 would obtain 0.763 of all VAEM and only 0.072 of all non-VAEM; 

adding Topic 7 would increase to 0.845 of all VAEM and 0.267 of all non-VAEM, etc.  

 

 

Figure 33: Stage Two topics - Accumulating ratio of VAEM vs non-VAEM 

The actual numbers involved are depicted in Figure 34, here it can be seen that the 0.072 of 

the non-VAEM in Topic 8 represents 6,847 records, which is less than the 7,620 records that 

0.763 of VAEM represents; but when Topic 7 is added the non-VAEM records increase by 

18,656 to 25,503 records while the VAEM increase by only 814 to 8,434 records. As topics are 

added the record counts in the non-VAEM groups soon overwhelm those of the VAEM.  

 

8 7 9 1 4 6 2 3 5

VAEM 0.763 0.845 0.914 0.952 0.976 0.990 0.997 0.999 1.000

Non-VAEM 0.072 0.267 0.397 0.589 0.795 0.920 0.969 0.984 1.000
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Figure 34: Stage Two topics — Accumulating counts of VAEM vs non-VAEM 

 

Figure 35 shows this data with separate scales to make it easier to visualise the actual 

numbers as topics are added, with the caveat that attention must be paid to scale differences. 

8 7 9 1 4 6 2 3 5

VAEM 7,620 8,434 9,128 9,502 9,746 9,885 9,955 9,977 9,983

Non-VAEM 6,847 25,503 37,944 56,254 75,866 87,810 92,513 93,965 95,464
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Figure 35: Stage Two topics — Accumulating counts scaled 

This section’s analysis emphatically demonstrates that the approach of identifying the best 

performing topic models based on scoring a small sample of labelled data was highly effective. 

The topic models and their best topics which were identified using that technique performed 

very well when applied to new data, and the conclusions reached about the best performing 

topics when using the small, labelled sample are substantiated.  

7.2.3 Utilising topic model outputs 

Considering the analysis above, using Topic 13 from the first stage of topic modelling is a 

successful filtering strategy. The second stage of topic modelling also succeeds in further 

filtering the data, with 75% or more of the potential safety being isolated into Topic 8.  

Therefore, a choice must be made when using this approach to either take just the top topic 

from a first stage of topic modelling output as data and train classifiers to identify the signal of 

interest; or to utilize second stage topic modelling to further filter the data — looking for a 

balance that contains the majority of the signals of interest without also containing too many 

8 7 9 1 4 6 2 3 5

VAEM 7,620 8,434 9,128 9,502 9,746 9,885 9,955 9,977 9,983
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non-signals. If the latter approach is taken then a decision must be made whether the large 

percentage of a signal delivered by the best topic in stage two is sufficient, or if other signal-

containing topics need to be included even though doing so adds a lot of unwanted data — the 

summaries of the numbers obtained in this section should assist with making this decision.   

For training classifiers in this research, both approaches were used: the initial phase of 

classification training used just data from the second stage top topics 8, 9 and 1 as labelled 

input data, but the final phase of classification took all the stage one Topic 13 as input and 

labelled all of it; then added it to the initial labelled data. When training classifiers it was 

determined that a balanced dataset was preferable, so most of the non-VAEM records were 

subsequently discarded to get a similar number to the VAEM. Balancing the data was only an 

option because the data was manually labelled for training — for ongoing purposes data 

delivered by one or two stages of topic modelling must be used without labelling, then using 

the trained classifiers to identify the VAEM. 

7.3 Evaluating classifiers effectiveness 

7.3.1 Comparative charts 

Assessments of classifiers were provided in Chapter 6, which presented tables and charts of 

the scores obtained by increasingly sophisticated classifiers applied to different sizes of input 

data and discussed a baseline rule-based classification approach. Additionally, Appendices D 

and E contain evaluations of experiments with using embeddings with traditional classifiers 

and with utilizing feature engineering approaches. This section brings these various results 

together into charts to enable a visual understanding of the performance of the classifiers 

relative to each other and to the available data. The comparative F1-Scores and Adjusted F1-

Beta Scores used in the charts and tables are over the Imbalanced Victorian Test dataset, which 

functioned as a benchmark throughout evaluation. 

Training in the initial phase of classification evaluation used the smaller 3,519 record dataset 

and Figure 36 shows the results from this training phase. The chart arranges the models from 

left to right in increasing order of their F1-Scores. The rule-based model is included for 

reference but is not included in subsequent analysis. Also incorporated are the results of an 

experiment with Word2Vec centroids — represented by the Extra Trees Centroids model — 

these classifiers were not described in Chapter 6, as the discussion there focussed on standard 

models. 
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Figure 36: F1-Scores Victorian test data - first classification phase 

The deep learning models surpassed the traditional classifiers by scores between 0.06 and 

0.11 and are a distinct group in the top portion of the chart. The best of these were neural 

networks that were trained from scratch - CNNs or CNN hybrids like CNN-BiLSTM and CNN-

BiGRU (i.e., a CNN combined with a bi-directional LSTM or GRU). The pure sequence-based 

classifiers like the LSTM and GRU did not perform as well as their CNN hybrid variants. The 

fine-tuned transfer-learning approach was trialled using the BERT Transformer, but it did not 

perform as expected and highlighted the problem of working with a small dataset.   

                 

                  

                

                 

                

                   

             

              

                           

         

                           

               

                

                     

          

          

              

         

           

            

    

    

    

    

    

    

    

    

    

         



139 

 

On the other end of the chart, the rule-based classifier is a benchmark with an F1-Score of 

0.656. The Naïve Bayes and Stochastic Gradient Descent (SGD) models were both poorer than 

it, however the poor result of the SGD model was on the Imbalanced test data only, on the 

Balanced dataset it was one of the best models, and it significantly improved when more 

training data was made available. The Naïve Bayes SVM model was the best traditional 

classifier, with an F1-Score of 0.767, but on the Balanced test data it was not a strong performer 

— these findings are discussed in Chapter 6. The embeddings-based Extra Trees Centroids 

model with an F1-Score of 0.750 was one of the best performing traditional classifiers, but only 

in this phase of training - when more training data became available it was no longer prominent. 

The third-best traditional classifier was the ensemble of standard models at 0.726.  

Figure 37 charts the results of re-training all models and the additionally included 

Transformer models on the 20,077 records of the second phase dataset. 
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Figure 37: F1-Scores Victorian test data - second classification phase 

The chart shares the same scale as Figure 36 to enable an easier comparison of the trends. 

In Phase Two, with more data to work with, all the classifiers performed better, and there was 

no longer an abrupt division between the standard and deep learning classifiers. Six of the 

traditional classifiers outperformed the Extra Trees centroids model which only increased its 

F1-Score by 0.05, and these six models also outperformed the CNN classifier. Apart from the 

Extra Trees centroids model in Phase One, the best traditional classifier in both phases was the 

Ensemble, this was due to its greater precision through the elimination of false positives. SGD 

and Logistic Regression CV models were the next best traditional classifiers in this phase.  
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The LSTM model is shown to be the outstanding performer in the neural networks trained 

from scratch, outperforming both BERT and the XLNet Transformer model. The CNN-LSTM 

hybrid was the next deep learning model trained from scratch. Beyond these, the rest of the 

Transformer-based models dominated, with the RoBERTa Large model leading with an F1-

Score of 0.919.  

Figure 38 combines the data from these two charts into one. It is included to assist with 

understanding how much each model has improved with the addition of more training data. 

The models are organized from left to right in order of their second phase scores, which use 

round markers. Each model’s first phase score is located vertically below its higher second 

phase score and use diamond shaped markers. This means the first phase scores in the chart are 

no longer arranged in their first phase performance order from left to right, resulting in an 

irregular pattern to the points. Some models do not have comparative points — the rule-based 

model and the manually tuned CNN only appear in the Phase One data; and except for BERT 

the Transformer models only appear in the second phase data. Observing the vertical 

differences within a single model in each phase assists in understanding how responsive it was 

to an increase in data. 

The chart shows the performant Extra Trees Centroids model from Phase One has a 0.05 

increase in performance with the extra data, but that the six traditional classifiers arranged 

above it have enjoyed increases of 0.11 or more and have overtaken it. The Stochastic Gradient 

Descent model shows a massive 0.17 increase. Of note among the models are the RoBERTa 

Large model and the increases of F1-Scores for the Ensemble and the LSTM model — they 

represent the best models amongst the traditional classifiers and the neural networks trained 

from scratch.  
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Figure 38: F1-Scores Victorian test data - two classification phases 

 

7.3.2 Detailed analysis of classifier scores 

The following tables illustrate these results from Phase One of Classification, in terms of the 

confusion matrix values of True Positives (TP), True Negatives (TN), False Positives (FP), 

False Negatives (FN), and the accompanying Precision, Recall, F1-Score and Adjusted F-Score 

(F1-Beta calculated with a beta of 1.3). The figures are evaluated on the Imbalanced Victorian 

test set - which consists of 614 records, 90 VAEM — the positive label, and 524 non-VAEM 

— the negative label. 
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Table 36: Phase One - Imbalanced test dataset - Confusion Matrixes and Scores 

Model TP TN FP FN Precision Recall F1  F1-Beta 

BiLSTM 73 506 18 17 0.8022 0.8111 0.8066 0.8078 

BiGRU 69 509 15 21 0.8214 0.7667 0.7931 0.7861 

CNN 72 503 21 18 0.7742 0.8000 0.7869 0.7902 

CNN-LSTM 68 507 17 22 0.8000 0.7556 0.7771 0.7715 

Naïve Bayes SVM 66 508 16 24 0.8049 0.7333 0.7674 0.7584 

BERT 79 487 37 11 0.6810 0.8778 0.7670 0.7927 

LSTM 69 503 21 21 0.7667 0.7667 0.7667 0.7667 

CNN-BiLSTM 72 498 26 18 0.7347 0.8000 0.7660 0.7744 

CNN-BiGRU 77 489 35 13 0.6875 0.8556 0.7624 0.7843 

Extra Trees centroids 72 494 30 18 0.7059 0.8000 0.7500 0.7622 

GRU 77 480 44 13 0.6364 0.8556 0.7299 0.7584 

Logistic Regression CV 77 480 44 13 0.6364 0.8556 0.7299 0.7584 

Ensemble 77 479 45 13 0.6311 0.8556 0.7264 0.7557 

XG Boost 75 476 48 15 0.6098 0.8333 0.7042 0.7334 

Random Forest 77 469 55 13 0.5833 0.8556 0.6937 0.7291 

Linear SVC 79 465 59 11 0.5725 0.8778 0.6930 0.7325 

Extra Trees 76 469 55 14 0.5802 0.8444 0.6878 0.7221 

Rule-Based 60 496 28 30 0.6818 0.6667 0.6742 0.6722 

Stochastic GD 77 449 75 13 0.5066 0.8556 0.6364 0.6811 

Naïve Bayes 82 425 99 8 0.4530 0.9111 0.6052 0.6622 

 

Table 36 above displays these figures from Phase One of the Classification evaluation, in 

descending order of F1-Score. The F1-Beta (beta of 1.3) generally follows same trend as the 

F1-Score, except for models such as the BERT model where a much higher recall results in a 

higher F1-Beta. Compare the BERT and Naïve Bayes SVM models: the NBSVM has a higher 

F1-Score but markedly lower F1-Beta, because its recall is much lower, with its high precision 

being at the expense of recall. Compared to the top-scoring BiLSTM, the BERT model again 

has a higher recall, but the other model is better because of its balance of recall and precision 

— the BiLSTM model’s recall is somewhat lower than many of the models below it, but its 

precision is higher than most.  

The top scoring models are clearly better at detecting language differences between VAEM 

and not, which is reflected in a reduction of false positives in these models, leading to higher 

precision.  

Table 37 looks at the equivalent information from the second phase of Classification, with 

the exception that rule-based model did not feature in this phase and the table includes 

additional Transformer models. 
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Table 37: Phase Two - Imbalanced test dataset - Confusion Matrixes and Scores 

Model TP TN FP FN Precision Recall F1  F1-Beta 

RoBERTa Large 85 514 10 5 0.8947 0.9444 0.9189 0.9253 

XLM 86 511 13 4 0.8687 0.9556 0.9101 0.9213 

RoBERTa 86 509 15 4 0.8515 0.9556 0.9005 0.9140 

XLNet Large 84 508 16 6 0.8400 0.9333 0.8842 0.8963 

LSTM 77 515 9 13 0.8953 0.8556 0.8750 0.8699 

XLNet 87 501 23 3 0.7909 0.9667 0.8700 0.8929 

BERT 79 510 14 11 0.8495 0.8778 0.8634 0.8670 

CNN-LSTM 81 507 17 9 0.8265 0.9000 0.8617 0.8712 

BiGRU 71 519 5 19 0.9342 0.7889 0.8554 0.8373 

CNN-BiGRU 73 515 9 17 0.8902 0.8111 0.8488 0.8388 

BiLSTM 72 516 8 18 0.9000 0.8000 0.8471 0.8345 

GRU 78 503 21 12 0.7879 0.8667 0.8254 0.8356 

CNN-BiLSTM 68 517 7 22 0.9067 0.7556 0.8242 0.8055 

Ensemble 72 510 14 18 0.8372 0.8000 0.8182 0.8134 

Logistic Regression CV 75 503 21 15 0.7813 0.8333 0.8065 0.8132 

Stochastic GD 77 500 24 13 0.7624 0.8556 0.8063 0.8184 

CNN 72 507 17 18 0.8090 0.8000 0.8045 0.8033 

Linear SVC 75 502 22 15 0.7732 0.8333 0.8021 0.8099 

Naïve Bayes SVM 65 516 8 25 0.8904 0.7222 0.7975 0.7768 

Random Forest 72 505 19 18 0.7912 0.8000 0.7956 0.7967 

Extra Trees Centroids 75 500 24 15 0.7576 0.8333 0.7937 0.8035 

Extra Trees 73 502 22 17 0.7684 0.8111 0.7892 0.7947 

Naïve Bayes 75 485 39 15 0.6579 0.8333 0.7353 0.7582 

XG Boost 61 504 20 29 0.7531 0.6778 0.7135 0.7039 

  

With more data to train on, the second phase results are all much better, due to reductions 

in both false positives and false negatives. For instance, the LSTM model has reduced false 

positives from 21 to 9, and false negatives from 21 to 13, and has overtaken the CNN hybrid 

models and even outperforms the BERT and the XLNet Transformer models. The Naïve Bayes 

SVM model however, while halving its false positives from 16 to 8, has increased its false 

negatives from 24 to 25 — so it has gained precision at the expense of recall, and overall has 

not improved as much as other models which now surpass it. The experimental Extra Trees 

Centroids which did reasonably well on the Phase One training data is now towards the bottom 

of the table.  

Table 38 lists all the Classifiers assessed in Phase Two of classification with their combined 

test scores. That is, the predictions from the larger Balanced Test set introduced in Phase Two 

added to the predictions from the Imbalanced Victorian test set from Phase Two, which were 

explored above. For some classifiers, the figures are lower than those achieved purely on the 
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Imbalanced test set, but these figures should be a truer indicator of the classifiers’ capabilities. 

Note that the LSTM model is no longer the best performer from the neural nets trained from 

scratch, the bi-directional GRU is now the best performer of those models. RoBERTa Large is 

still clearly the strongest model. 

Table 38: Phase Two - Combined test datasets - Confusion Matrixes and Scores 

Model TP TN FP FN Precision Recall F1  F1-Beta 

RoBERTa Large 494 850 71 27 0.8743 0.9482 0.9098 0.9193 

RoBERTa 496 841 80 25 0.8611 0.9520 0.9043 0.9161 

XLNet Large 485 852 69 36 0.8755 0.9309 0.9023 0.9095 

XLM 475 858 63 46 0.8829 0.9117 0.8971 0.9008 

XLNet 478 854 67 43 0.8771 0.9175 0.8968 0.9020 

BiGRU 464 863 58 57 0.8889 0.8906 0.8897 0.8900 

BERT 476 845 76 45 0.8623 0.9136 0.8872 0.8939 

CNN-BiGRU 483 832 89 38 0.8444 0.9271 0.8838 0.8945 

BiLSTM 469 843 78 52 0.8574 0.9002 0.8783 0.8838 

LSTM 479 830 91 42 0.8404 0.9194 0.8781 0.8883 

CNN-LSTM 479 824 97 42 0.8316 0.9194 0.8733 0.8847 

CNN-BiLSTM 468 835 86 53 0.8448 0.8983 0.8707 0.8776 

GRU 482 813 108 39 0.8169 0.9251 0.8677 0.8817 

Ensemble 450 851 70 71 0.8654 0.8637 0.8646 0.8643 

Stochastic GD 460 834 87 61 0.8410 0.8829 0.8614 0.8668 

Logistic Regression CV 452 844 77 69 0.8544 0.8676 0.8610 0.8626 

Linear SVC 456 834 87 65 0.8398 0.8752 0.8571 0.8617 

CNN 457 831 90 64 0.8355 0.8772 0.8558 0.8612 

Random Forest 445 843 78 76 0.8509 0.8541 0.8525 0.8529 

Extra Trees 444 840 81 77 0.8457 0.8522 0.8489 0.8498 

Extra Trees Centroids 445 823 98 76 0.8195 0.8541 0.8365 0.8409 

Naïve Bayes SVM 412 863 58 109 0.8766 0.7908 0.8315 0.8207 

XG Boost 422 848 73 99 0.8525 0.8100 0.8307 0.8253 

Naïve Bayes 456 789 132 65 0.7755 0.8752 0.8224 0.8353 

 

7.3.3 Classifier effectiveness  

In summary, with the smaller amount of data in Phase One of the classifier testing the best 

results when measured by F1-Score came with the capacity for higher precision, and hybrids 

of CNN and bi-directional LSTM or GRU were amongst the best performers here — though 

the BERT Transformer was better than most if F1-Beta Score was considered. With the 

addition of more data in Phase Two all models benefitted, the CNN based models continued to 

perform well but so also did pure LSTM and GRU recurrent neural networks, but the standout 
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performers were the larger Transformer models — particularly the RoBERTa Large model — 

its F1-Score was consistently over 0.9 on any of the tests.  

7.4 Evaluating effectiveness of the method 

This section summarizes the overall effectiveness of the research approach by re-stating 

previous information in terms of the quantities of tweets that were progressively filtered and 

identified as having vaccine adverse event mentions. The numbers presented are the combined 

numbers of data collected and processed over the two data phases of data processing. When 

presented, the constituent first and second phase numbers are listed within brackets. 

Table 39: Summary Topic Modelling counts 

Tweets Collected        811,010       

- Cleaned      - 122,653       

- Discarded - Stage One      - 570,383       

Remaining        117,974   14.5% of total   

       

- Discarded - Stage Two        - 19,083    
   

Retained and labelled           98,891  
 Non-VAEM    88,900    

 
VAEM       9,991  10.1% of retained data 

VAEM in other Stage Two topics       2,367  
  

VAEM in best Stage Two topic       7,624  76.3% of retained VAEM 

 

Distributions to the completion of the first stage of topic modelling: 

• 811,010 (400,097 + 410,913) tweets were collected 

• 122,653 were cleaned before topic modelling, leaving 688,357  

• 570,383 were discarded by stage one of topic modelling, leaving 117,974 

Distributions to the completion of the second stage of topic modelling: 

• 117,974 tweets were processed, which is the total data coming from stage one of topic 

modelling for both phases of data collection  

• 19,083 were discarded — which was those from the first phase of data collection that 

were not in the top 3 topics of the second-stage topic model 

• 98,891 (18,519 + 80,372) were retained and labelled. From the first phase of data 

collection: the top 3 topics of the second-stage topic model. From the second phase of 

data collection: all of data filtered by the first-stage topic model 
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Proportion of VAEM in the 98,891 labelled tweets: 

• 88,900 did not contain VAEM 

• 9,991 of them contained VAEM 

• The proportion of VAEM was 10.1% 

Of the 9,991 retained VAEM-containing tweets: 

• 7,624 were found to be in the single best second-stage topic 

• 2,367 were distributed amongst the remaining 8 topics 

• 76.3% of the VAEM were in the best topic 

An estimate of the classifier’s performance:  

• Based on the RoBERTa Large classifier, which accurately identities 90% of the test 

data, and applying that proportion to all the extracted stage one data:  

• 8,992 of the 9,991 filtered first stage VAEM records would be correctly classified 

Finally, measuring the combined effectiveness of topic modelling and classification: 

• 8,992 VAEM are identified from the original 811,010 records, being 90% of all likely 

VAEM — with a very high confidence 

• Therefore 802,018 non- VAEM are eliminated through cleaning, topic modelling, and 

classification 

• 10% of the VAEM are also eliminated in this grouping, the attrition is a consequence 

of the filtering and classification required to capture the 90% 

• In overall percentage terms, 98.89% of data is eliminated as not containing VAEM, 

with a very small amount misidentified, to identify 1.12% of the data as having VAEM, 

with a 90% success. 

 

Figure 39: VAEM-Mine method - Capturing of 90% of VAEM 

Eliminated, 
802,018 

90% of VAEM, 
8,992 

1.12%

98.89%
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This section presented information about the effectiveness of two stages of topic modelling 

followed by classification to effectively identify and isolate vaccine adverse event mentions 

from almost all other vaccine-related Twitter posts. It analysed the topic modelling and 

classification in detail, then re-stated the information as a sequence of progressive data 

filtration and concluded that the process followed in this study can reliably extract 90% of 

vaccine adverse event mentions. 

7.5 Word importance analysis  

Word differences and similarities of words of the Victorian dataset were visualized, by plotting 

the relative importance of words in horizontal bar plots, and with word clouds. Firstly, Figure 

40 shows the relative importance of the first 30 words, where words are ranked based on a 

combined scoring between VAEM and non-VAEM texts (which are adjusted to account for 

the greater volume of texts):   

 

Figure 40: Relative frequency of top 30 words combined 
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Some words are almost relatively as important, such as ‘flu’ and ‘time’, but there is a greater 

emphasis on personal meanings of words in the VAEM texts — for instance, ”got” and 

“yesterday” are likely to relate to something that a person experienced (such as “got a flu shot 

yesterday”), whereas “get” and “free” are likely to accompany an command to action (such as 

“get your free flu shot”). “I’m”, “feel” and “sick” (representing “I’m sick” and “feel sick” as 

potential pairings) are much more strongly emphasized as important in the VAEM set. In fact, 

words that relate to painful physical symptoms are often exclusively represented in the VAEM 

set — for instance “arm”, “sore” and “hurts”. Conversely, words that would be used in a general 

discussion around vaccines have greater emphasis in the non-VAEM set: “vaccine” and 

“vaccines”, “vaccinations” and “vaccinated”. 

This becomes clearer in Figure 41 if the set is taken just from the top 30 words that are 

important to the vaccine adverse event mentions related to their importance on the non-VAEM 

side: “lie”, “bed”, “hurting”, “baby” and “right” (as in “right arm”) now also appear in the list, 

and mostly represented only from the VAEM side. 

 

Figure 41: Relative frequency of top 30 VAEM words 
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Word importance can also be portrayed as word clouds, although they are not quantifiable, 

they offer a visual interpretation of the relative importance of words. Figure 42 is the word 

cloud of VAEM, the most significant words are “flu”, “shot”, “got” and “arm”. Other important 

words are “today”, “yesterday”, “feel” and “sore”, with “sick”, “hurting”, “pain” and “reaction” 

also gaining visibility. These suggest reporting a recent flu vaccination that has led to a painful 

arm and feeling sick. 

 

Figure 42: Word cloud of VAEM tweets 

The most significant “flu” and “shot” words from the VAEM are also significant in the word 

cloud of the non-VAEM related tweets - Figure 43. Many of the words are similar, and this 

illustrates the juxtaposition of the data — there is not much that separates VAEM from non-

VAEM after most of the irrelevant data has been eliminated. However, the strongly significant 

word “got” from the VAEM word cloud has relatively less significance here, instead the 

equivalent word “get” is strong. This, along with the words “do”, “not”, “people”, “free” and 

the strength of the words “vaccine” and “vaccination” give the impression that these tweets can 

be characterized as enjoining people to action, either for or against getting a flu vaccination, or 

are otherwise discussing vaccines, but are not describing the effects of a recent vaccination, as 

the VAEM words do. 

 

Figure 43: Word cloud of non-VAEM tweets 
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7.6 Chapter 7 summary 

This chapter focussed on evaluating the effectiveness of the research approach for identifying 

VAEM from the enormous quantity of other vaccine-related tweets. Results were presented 

using charts and tables that summarized the two-stage topic modelling and classification 

approaches used. Topic model effectiveness was described in terms of the ability of the models 

to bring VAEM into one, or a few, topics while not including too much non-VAEM — so that 

the topics might be used as a filtering mechanism. Analysis of the classifiers compared F1-

Score in the context of two phases of data collection and highlighted how classifier 

effectiveness is linked to data quantity - and that given enough data, the best models can score 

at 0.80 or more. The inclusion of results from the range of the experiments that were conducted 

during the research gives context and certainty to the conclusions that were made.  

The chapter also examined the nature of the language that differentiates VAEM, to 

demonstrate that VAEM are semantically distinct, which is the reason that these techniques 

can be so effective. Appendix G expands on this by looking at the types of VAEM texts that 

are found in the topics of the models, and it contains textual analyses of the classification errors. 

The numbers presented in the chapter demonstrate that the research approach is highly effective 

for identifying VAEM in tweets.    
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8 Discussion and Conclusion 

This research is motivated by the great importance of ensuring that vaccines are safe and 

effective, so that we can all have confidence in them to help protect us and our loved ones from 

age-old and emerging deadly diseases. To this end, the research aimed to establish whether 

social media surveillance can assist with detection of vaccine safety signals, by investigating 

effective techniques for identifying posts containing Vaccine Adverse Event Mentions 

(VAEM). The research was grounded in the existing knowledge base of social media mining 

in public health surveillance. Natural language processing and machine learning techniques 

used in this domain, especially those used for personal health mention detection, were 

thoroughly studied, evaluated, and adapted to the research requirement of effectively 

identifying vaccine adverse event mention posts. It was found that tweets about vaccine 

reactions are mostly mild personal health mentions, usually accompanied by an informal 

reference to an influenza vaccine or other common vaccinations. The tweets differed from other 

related areas like drug reactions - which tended to be more specific about the medication 

reacted to and with more varied reactions.  

The major research contribution was to explain what techniques worked well to elicit these 

posts, adding to the knowledge of how to go about extracting this information from social 

media. A pragmatic approach to evaluating topic models was to use F1-scoring on a small 

number of labelled posts to identify the models that were most effective in placing vaccine 

adverse event mentions into one topic. Applying a second stage of topic modelling to that 

original topic helped to further filter out VAEM from the other vaccine-related tweets, so that 

the task of labelling for classification was manageable. A range of classifiers were assessed, to 

provide comparative effectiveness measures and to understand that available data quantity must 

be accounted for when choosing a classifier.  

In conclusion, the resulting topic modelling scoring approach was highly effective and was 

able to be utilized as a core component in the construction of an end-to-end method for 

extracting VAEM from Twitter posts, but which is also applicable to similar problems. This 

fulfilled the research expectation that an appropriate method would emerge to not only answer 

this research need, but also for use in downstream research and solutions.  

To evaluate the performance of machine learning algorithms, the research used the standard 

evaluation metrics of precision, recall and F-measure, including the Adjusted F1-Score. 

Throughout the development of the classifiers the final arbiter of success was via the F1-Score 

on an out-of-sample dataset consisting of tweets referencing Victoria, Australia for the period 
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of 7th February to 7th June 2018 — this was used as a representative of vaccine-related social 

media conversations in the physical research environment. In summary, models were judged, 

tuned, and improved using F1-Score, and recall was favoured when deciding between models. 

When evaluating classifiers, a range of traditional classifiers and a rule-based method were 

assessed before moving on to evaluating neural networks. This provided a benchmark and 

allowed an informed understanding of how much more effective neural networks could be. 

Additionally, classifiers were evaluated in two phases, firstly training with a smaller dataset, 

then one which was five times larger. This enabled assessment of the critical effect of dataset 

size, and that some classifiers did better than others on the smaller dataset, but with more data 

some of those others were then revealed as outstandingly effective. Specifically, it was found 

that CNN and CNN-hybrid neural networks did best when dealing with the smaller dataset, but 

that LSTM and Transformer models were very much better than anything else when trained on 

the larger dataset. 

The research findings are presented as observations and evaluations, reports, and data. The 

research resulted in a dataset of 692,748 vaccine-related tweets and from these, a binary-

labelled dataset of 84,889 vaccine-related tweets, and a subset of this as a balanced dataset of 

20,691 tweets. Additionally, the research describes a Twitter-based vaccine-related taxonomy.  

8.1 The Research Questions 

8.1.1 Aim of the research 

How can social media surveillance assist with detection of vaccine safety signals? 

The research finds that combinations of readily available NLP tools can be used to extract 

almost all vaccine adverse event mentions from Twitter data, while eliminating irrelevant posts. 

The extracted VAEM data has been confirmed as fit for the purpose of safety signal detection 

by an expert’s analysis, and by a comparative trend study.  Although the extracted posts were 

tweets and the techniques used were specifically designed to obtain Twitter posts, the 

techniques can be adapted to other social media platforms. The research confirms therefore, 

that social media can assist with detection of vaccine safety signals and can become a valuable 

complementary source for monitoring mentions of vaccine adverse events. A social media– 

based VAEM data stream can be assessed for changes to detect possible emerging vaccine 

safety signals, thus helping to address the deficiencies of timeliness and under-reporting of 

passive reporting systems. 
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8.1.2 Research Question 1  

What effective techniques can be utilized for identifying posts containing Vaccine Adverse 

Event Mentions (VAEM)? 

It was found that a two-stage topic modelling approach was able to identify up to 99% of 

Twitter posts containing VAEM, and that classification techniques were able to further isolate 

them with an over 90% accuracy. A F1-scoring system using a small number of pre-labelled 

posts was highly effective in identifying the best topic models. Topic modelling as an 

appropriate filtering technique was aided by the distinctive features of the VAEM Twitter 

posts, the brevity of tweets, and the use of topic models which do well on one-subject 

documents. State-of-the-art Transformer deep learning models completed the process of 

extracting VAEM posts from the texts identified by topic modelling. The techniques and 

models are applicable to a future software artefact that can be incorporated into a data collection 

process. 

8.1.3 Research Question 2  

How can a comprehensive data set be assembled and labelled which will enable both this 

research and further research into vaccine discourse in social media? 

By applying a targeted scoring approach with topic modelling, the VAEM containing tweets 

were filtered out of the incoming data into a manageable dataset for labelling. A balanced 

dataset was created containing 20,077 records labelled for the mention of a vaccine reactions 

or not - with 9,995 vaccine adverse event mentions and 10,082 non-vaccine adverse event 

mentions. A larger but imbalanced dataset of 83,891 records is also available, it contains the 

same records as the balanced dataset plus all remaining non-vaccine adverse event mentions 

which were excluded when creating the balanced dataset. 

Based on Twitter agreements the IDs of the datasets can be published together with the 

labels, so with the agreement of Twitter and provided a researcher is able to use the IDs to 

download the tweets and intends to use them for non-commercial research purposes, this 

dataset can be published for any other researcher to use in this area or any similar domain.  

8.1.4 Research Question 3  

What taxonomy of vaccine-related social media posts can be defined to enable classification 

of vaccine-related Twitter posts? 

A taxonomy was derived after evaluating topic models and by examining the data — see 

Section 5.4 for a complete description. The taxonomy, presented in Table 19, proved useful 
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when analysing how the two stages of topic modelling focussed data coming from a VAEM 

topic and a group of topics that had similar concerns and language. This is discussed in Section 

7.2.1 of the Evaluation chapter — which shows the changing distribution of the taxonomy 

topics in samples of the tweets over the topic modelling process, culminating in a subset where 

VAEM was proportionally the largest topic, and the spread of topics was reduced to mostly 

VAEM, discussions, and some non-adverse reaction personal health mentions. 

The taxonomy is generally useful to anyone wanting to understand the topics of vaccine-

related tweets. The greatest number of posts can be characterised as general discussions about 

vaccines. Interestingly, when it came to emphatically anti-vaccination vs. pro-vaccination 

discussions, the pro-vaccination group was significantly larger. News and research articles 

were also a substantial proportion of the texts. However, the taxonomy is likely to change over 

time — it was created before COVID-19 and coronavirus was not even a detectable subject; 

the research is concluding just as the first vaccines for the SARS-COV-2 virus are being tested. 

8.2 The research contribution 

This section discusses the contribution of the research in relation to issues that were examined 

in the literature review. These are that: 

• Vaccines differ from drugs, and adverse events following immunization (AEFI) differ 

from adverse drug reactions (ADR) 

• Few studies exist about social media monitoring of AEFI 

• The studies that do exist focus on finding severe known reactions, and treat AEFI 

detection similarly to ADR detection 

• Deep learning (DL) is increasingly used in social media classification tasks 

• DL requires large quantities of labelled data  

• There is little or no published AEFI-dedicated social media data 

The literature review and the domain expert have both established that the AEFI detection in 

social media should not be treated like ADR, in that vaccines share many common components 

and reactions to them are mostly expected to be commonly experienced effects, and that they 

apply to a great number of mostly healthy individuals. This contrasts with the relatively few 

who are taking medication for illnesses, each of which have distinctive potential adverse drug 

reactions. Therefore, rather than trying to locate specific mentions of vaccines and known and 

severe adverse reactions, the research aims to find most of these conversations, no matter what 

their significance might be. The research introduced the term “Vaccine Adverse Event 



156 

 

Mentions” (VAEM) to describe these posts – which have the characteristic of being any 

adverse event mention in relation to a vaccine, rather than a known or particularly severe one. 

To the human observer, the most frequent feature of these posts is a declarative description of 

health effects in relation to an external event - similarities are observed in how the stories are 

being told as well as what they are saying. Therefore, the author took the approach of evaluating 

NLP tools for their ability to detect the commonalities in these conversations.  

Topic modelling was first used because it can be unsupervised and not require labels, but 

the author used a very small set of labelled posts to score the models and identify those that 

most clearly discovered the similarities in the labelled VAEM posts. These models identified 

VAEM and other similar conversations as a distinct topic, contrasted to other topics such as 

pro- and anti-vaccination sentiments or news reports. One of the biggest problems with 

obtaining data for classification is labelling of large enough datasets, and this task can be eased 

if the subject of interest is proportionally well represented in the data at hand. The posts 

identified by topic models as most likely to contain VAEM provided this quality and quantity 

of data and simplified the labelling task, and so topic modelling became the first component of 

a pipeline to identify VAEM.  

The use of a small cohort of labels to score the topic models’ ability to identify texts of 

interest was particularly effective and simplified the evaluation of topic models – this has been 

adopted into the author’s NLP practice and is recommended to other practitioners. 

Additionally, the resulting relatively homogeneous labelled data allowed language model–

based deep learning classifiers to be more effective, as they could be fine-tuned to learn the 

nuances that distinguish VAEM — compared with needing to understand many features that 

separate multiple quite different classes, which would have been the situation had the text not 

been first filtered by topic modelling. 

This approach has enabled the gathering and subsequent identification of most of the VAEM 

that existed in the Twitter data, as confirmed in Section 7.4. This capacity is an important 

contribution of the research, for instance compared to the paper presented by J. Wang et al. 

(2019), which is discussed in Section Error! Reference source not found.. Their paper 

emphasized the cost of labelling and class imbalance in obtaining suitable data for detection of 

adverse events following flu vaccination. The authors solved this problem by first isolating 

users that were known to have had a vaccination, then looking only at their tweets for known 

reaction mentions. By contrast, this research seeks to capture all reaction mentions regardless 

of their provenance, then to successively filter them to reliably obtain a very high proportion 

of VAEM. The resulting data is very diverse and captures a lot of potential vaccine safety 
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signal, useful for noting trends in vaccine reactions, and avoids the potential bias of filtering to 

only known vaccinated users.  

The study has been able to verify that the labelled VAEM data is very suited to training deep 

learning models, this has been reflected in the scores that were obtained by classifiers over two 

phases of training, first with a smaller amount of data, then with five times more data. The data 

is available as a balanced labelled dataset of 20 thousand records and a larger imbalanced 

labelled dataset of 84 thousand records – thus beginning to fill the gap of little published data.    

8.3 Limitations 

There are unavoidable issues and potential biases that result from using any social media data. 

For instance, Twitter limits the length of the posts, and the posts themselves are subject to 

community guidelines and mores. The Twitter free streaming API also limits access to the data. 

Differences in social media platforms translate to differences in users and messaging. 

Additionally, if data is collected over a short period then it may not represent general trends, 

or it may fail to capture emerging changes.  

This section explores these and other limitations of the research, firstly in terms of the data 

that was used, and secondly in terms of the research approach and evaluation. The section also 

describes what has been done to mitigate some of the potential biases that were encountered in 

the research. 

Data source: There is a limitation in the use of only Twitter as a data source for the study. 

While this research examined Reddit as a possible data source, it was not found to be useful 

for the volume and kind of posts that were needed, and Facebook data was considered but 

dismissed because of access problems. Twitter was found to contain the type of posts this study 

set out to detect, but after settling on Twitter, no further research was conducted using other 

platforms.  

Data collection period: The data collection spanned roughly a year, and so included some 

potential trend patterns during the influenza seasons. However, a longer-term data collection 

would be better for this kind of analysis. Regarding the quantity of data, although the initial 

data collection over 6 months was adequate for topic modelling and an initial round of 

classification, it also proved to be insufficient for getting the best results from classifiers. The 

total data collected over a year was required to properly train and evaluate the classifiers. 

Data querying: This research took the approach of using a few broad search terms, mainly 

around the word “vaccine” but also included “flu shot” related terms – the reasoning for using 

these keywords is elaborated in Section 4.1.1. These search terms constrained the data, but they 
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were not highly specific, and by not including a range of vaccine-specific terms it is likely that 

the search missed some posts. Despite these potential issues, the resulting data did contain 

sufficient VAEM examples for the study. Furthermore, those examples were a small proportion 

of all the data and isolating them provided the challenge that motivated this study — so the 

data has been suitable for the study’s purpose.  

As the search terms that are used determine the data that gets retrieved, and appear in the 

collected data, there are inevitable biases in the data towards those terms. However, the author 

found that as the search terms were quite general, they had no particular significance in the 

downstream classification of the text, and instead words that were not specified emerged as 

distinctive. This can be seen in the comparison of word significance in Figure 40, where 

although the term “flu shot” emerges as having the most significance, and indeed reflects the 

importance of that term to obtain VAEM-like texts, the figure shows that this term is considered 

significant by both the positive and negative classes. Therefore, it cannot be used for deciding 

on the class. Words that were not included in the Twitter search are much more significant for 

identifying VAEM – for instance “sore” and “arm” appear to be significant just for the positive 

class.  

Data cleaning: To ensure that repeated messages did not predominate, duplicate tweets 

were removed, based both on tweet ID and on the text of the tweets, and retweets were also 

ignored. It is possible that doing so reduced the ability to measure the Twitter community’s 

perception of the importance of a tweet, but such analysis was not a part of this research. 

Additionally, very short tweets were removed, and those that had significant repetition – this 

was done to try to decrease meaningless texts — the author believes that the benefit of doing 

so outweighed any potential negative cost.  

Data aggregation and reduction: The research approach consisted of using topic modelling 

to significantly reduce the amount of data that needed to be handled by downstream classifiers, 

by extracting just the data from the best VAEM topic, which contained virtually all the VAEM 

plus similar personal health mentions and discussions. This could be characterised as creating 

a biased dataset, but it was intentional. The author judged that classifiers would do well at a 

binary classification task over a simplified dataset. An alternative approach of training multi-

class classifiers to handle all the data was considered as unlikely to perform as well and would 

have also made labelling extremely costly. Reducing the dataset via topic modelling 

considerably eased the task of labelling — over 85% of the unwanted non-VAEM data was 

discarded by this filtering process. The evaluation of the results in Chapter 7 indicate that the 

data filtering strategy was effective. 
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Datasets: The labelled datasets that were produced for the classification, and which will be 

made available, were those data that were passed through topic modelling. Around 81% of the 

data was obtained from the first stage of topic modelling, the remaining 19% came from the 

top 3 topics of the second stage of topic modelling – see Chapter 4. Therefore, this data 

represents what the DMM topic models identified as VAEM and similar posts and does not 

represent the entire range of original data obtained by the Twitter API search. Furthermore, 

classifiers were trained with subsequently balanced datasets, so balanced datasets do not 

represent the extracted topic model data. What the datasets do represent is a very large range 

of VAEM and similar posts, which is like any other dataset that is focussed on discerning a 

signal within mostly homogenous data.  

Metrics and Metric Selections: In this study, metrics were used when assessing the topic 

models and the classifiers during their training processes, then various sampling and counting 

were used to evaluate the effectiveness of these (and the entire model) for isolating VAEM.  

The metric used for assessing topic models and classifiers were the standard measures of 

precision, recall, and F1-score, which count the proportions of labelled VAEM against non-

VAEM. However, the topic model version of F1-scoring was not based on fully labelled data, 

but used a small set of 1,400 labelled records, and these records were in a dataset of several 

hundred thousand. Also, F1-scoring was only done for the topic that best concentrated the 

VAEM label. Recall was in terms of labelled VAEM in that topic against all labelled VAEM, 

and precision was calculated based on VAEM in that topic against all other labels in the topic 

– so these were proxies of an F1-Scoring system and served only to help identify the best topic 

models. Consequently, the scoring cannot be used as an accurate measure of the topic model 

or a comparative measure against any other topic models. However, when the topic models 

were later assessed for their effectiveness, then the subsequent labelling for classification was 

useful, as were samples of the excluded and unlabelled data. For instance, to verify that the 

best topic correctly identified VAEM, 15,000 tweets were sampled to see if the discarded 

tweets contained any VAEM, and it was found that only 0.04% of VAEM was likely lost – see 

Section 7.2.1. 

The classifiers were trained on balanced datasets derived the data from the best topic model 

and used standard F1-Scoring, achieving F1-Scores of over 0.9. The combined effect of topic 

modelling and classification is estimated, by using samples and counting, to have obtained at 

least 90% of the VAEM – see Section 7.4.  

Assessment and Interpretation: The primary goal of proving that social media can contain 

a significant amount of VAEM posts has been met through this approach. Extensive assessment 
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using counts, as discussed above, have proven this. However, this must be stated with the 

caveat that the assessment applies to the Twitter data gathered at the time of the study, and 

since the evaluation was restricted to just the approach used and that other techniques, such as 

multi-class classification, have not been attempted — there is no ability to compare the 

approach’s effectiveness with others. 

A potential issue with the classifiers is that they were trained on balanced data and were 

only tested on two reasonably small test datasets, one imbalanced dataset of 614 records, and 

another balanced of 828 records. They worked well in this context, but additional testing on 

subsequent and larger test datasets would have helped to reinforce the evaluation. However, 

this does not really detract from the observation that the research approach has been very 

successful for identifying VAEM. Verifying classifier effectiveness is only important for 

establishing that the data that was derived from the topic modelling process is amenable to 

accurate classification, the degree of accuracy is not highly important for the study.  

While the evaluation has verified that the research established that there are highly useful 

techniques for extracting VAEM from the Twitter posts that were collected throughout 2018 

and 2019, the research approach was specifically engineered to solutions that exploited 

distinctive features of the dataset. This is mainly the kind of language found in the generally 

short VAEM tweets, which describe various physical discomforts and potential reactions in 

relation to recent vaccinations. The orientation of the research was a practical exploration of 

applicable techniques for isolating VAEM, but the topic models and classifiers that were 

developed were specifically tuned to getting the best result from the Twitter data and were 

evaluated in this context. Therefore, while the approach — which has been formalised in 

Section 3.5 as the VAEM-Mine method — is transferrable to other similar problems, the 

models themselves are not designed to be generalizable enough to be applied elsewhere. Also, 

the VAEM-Mine method works very well for the assigned task, but since the author has not 

yet applied it to any other similar task, there is no evaluation of its transferability. 

A small comparison study was conducted to see if the VAEM trends in the data aligned with 

the known flu season reporting in Victoria, Australia – see Appendix H. Although this did show 

alignment, there were very few Victorian-specific tweets obtainable, which highlights the 

problem with the Twitter data, that it is more likely to be useful in the context of the major 

users of the platform, which are those in the United States. Twitter may only be useful in the 

Australian context if the full data stream, including location specific data, is accessed.  

The purpose of the study was to establish that social media could provide useful data for the 

task of signal detection, by providing a means of identifying the posts that contain the vaccine 
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adverse event mentions (which potentially contain signals). The domain expert has verified 

that the data does indeed provide the information required for signal detection, which would 

be performed by epidemiologists examining the extracted texts. 

8.4 Future research 

The VAEM-Mine method the research developed for detecting vaccine adverse event mentions 

has helped to establish that social media is indeed a prospective additional resource for vaccine 

safety monitoring. However, the approach needs to be implemented into a working application 

to realise its potential, and it also has scope for other applications, and for improvement. The 

following discussion explains these points. 

   

Application of the research for vaccine safety monitoring 

Vaccine safety monitoring authorities including the Therapeutic Goods Administration (TGA) 

and Adverse Events Following Immunisation – Clinical Assessment Network (AEFI-CAN) 

can benefit from the results of this research. This research potentially adds an additional active 

surveillance modality to complement existing passive (spontaneous) reporting systems and 

active surveillance systems. Currently, active systems are mostly general practice-based 

surveillance which utilise automated SMS to solicit reporting of AEFI experienced by recently 

vaccinated patients; social media-based self-reporting is an additional unsolicited surveillance 

source. The research findings need to be incorporated into working processes or applications 

that monitor social media streams for vaccine adverse event mentions. Their data would need 

to be assessed continuously to detect changes in trends, or specific adverse events of special 

interest (Law & Sturkenboom, 2020), that could indicate an emerging vaccine safety signal.  

 

Adapting the approach to similar problems 

The nature of the language in VAEM social media posts is reasonably consistent despite the 

variety of terms used. The use of topic modelling to encapsulate these similar posts into one 

topic, is adaptable to any similar problem. For instance, social media posts concerning the 

current COVID-19 pandemic are immense, but those that are concerned with personally 

experiencing the virus are miniscule in comparison, yet they contain similar language. These 

techniques could be applied to help to isolate those posts now, as well as being applicable later 

to help identify VAEM in relation to vaccines and treatments as they are generally released. 
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Verifying the effectiveness of topic modelling in the NLP pipeline 

The VAEM-Mine method includes a component of filtering through topic modelling, which 

means that data preparation for topic modelling and the subsequent topic inference needs to be 

built into the NLP pipeline. A future investigation needs to evaluate the trained classifier 

against unfiltered data, to see how well it performs in relegating previously unseen non-VAEM 

text patterns to the non-VAEM class. Additionally, we should compare our classifier trained 

on filtered data with a classifier that is trained to handle all the incoming data by separating 

texts into multiple classes.  

 

Improving the topic modelling approach 

A key finding of the research is that appropriately scored topic modelling is highly effective 

for identifying social posts that might contain VAEM. The specific technique identified in this 

research of F1-scoring based on a small number of labelled posts is a practical and easily 

implementable solution. Much more can be done in the topic modelling area, and it would be 

beneficial to further investigate recent work by other researchers. For instance: guided LDA 

(Jagarlamudi et al., 2012) might be  used to teach a topic model to converge to a topic 

containing the most likely VAEM posts, whereas the approach used in this research was to use 

F1-scoring to identify when a topic model naturally placed texts of interest into a topic. The 

combination of the distinctiveness and similarity of VAEM facilitated this research approach 

but incorporating additional customized steps into the pipeline might be required to improve 

the approach — for instance using embeddings similarity scores to focus the initial 

identification of texts of interest. 

In conclusion, this research has been instructive regarding the capabilities of NLP 

technologies, it has answered the research questions it was tasked with, and it has opened future 

directions, both for the research and the author, and it is hoped that much more will come as a 

result. 
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Appendix A  

First stage topics keywords 

Table 40 shows the first 20 keywords of each of the 14 topics of the 14 topic DMM model. 

Topic 13 was used for extracting VAEM - the words are mostly indications of getting a flu 

shot. The words are lemmatized, so the word “get” in this topic is likely to be a lemma of “got”, 

while “be” could be a replacement of “am”. Note that some topics keywords in the remaining 

topics are quite similar to one another, and in the more understandable 9-topic model shown in 

Table 41 some of these topics are amalgamated. Topic 8 was the topic that concentrated VAEM 

in the 9-topic model, the keywords are almost identical to those of the Topic 13 of the 14-topic 

model. 

Table 40: First stage DMM 14 topic model keywords 

1 
not, do, vaccination, people, get, make, know, child, go, would, use, flu, kill, take, say, give, need, good, cancer, 
disease 

2 
vaccination, health, new, research, work, hiv, need, not, disease, flu, world, good, day, development, vaccineswork, 
help, public, global, great, use 

3 
vaccination, not, disease, child, study, autism, risk, flu, virus, new, vaccinate, infection, influenza, cause, do, use, 
increase, high, health, may 

4 
vaccination, not, health, child, autism, news, anti, cdc, new, dengvaxia, medical, doctor, parent, science, safety, say, 
hpv, fake, do, public 

5 
vaccination, outbreak, measle, health, congo, case, experimental, new, begin, campaign, news, disease, first, world, 
people, use, ebola, say, cholera, vaccinate 

6 
vax, not, new, be, get, go, love, do, good, album, see, time, make, ticket, know, look, best_stock_investment, come, 
vaccination, think 

7 
not, do, autism, people, get, vaccinate, vaccination, child, kid, anti, because, think, know, say, be, make, go, would, 
can, parent 

8 
cancer, new, research, flu, mouse, virus, could, develop, market, study, human, news, scientist, cell, use, hiv, 
influenza, researcher, trial, patient 

9 
hpv, cancer, vaccination, cervical, get, not, girl, prevent, woman, boy, year, vaccinate, health, man, do, protect, 
gardasil, young, age, cause 

10 
vaccination, get, flu, health, not, free, travel, need, child, clinic, vaccinate, hepatitis, new, measle, do, shot, shingle, 
protect, school, year 

11 
vaccination, dog, vaccinate, pet, get, rabie, cat, old, not, need, clinic, year, vet, puppy, today, home, do, come, month, 
animal 

12 
child, vaccination, vaccineswork, polio, disease, protect, vaccinate, immunization, measle, health, week, year, world, 
get, not, prevent, help, campaign, do, life 

13 
get, flu, shot, not, do, be, go, vaccination, year, sick, take, never, shoot, today, people, time, day, vaccinate, feel, 
need 

14 
flu, shot, get, not, year, season, effective, say, influenza, cdc, health, people, vaccinate, news, do, child, new, die, still, 
good 
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Table 41: First stage DMM 9 topic model keywords 

1 
cancer, new, vaccination, research, flu, virus, disease, health, study, develop, hiv, influenza, use, development, could, 
human, work, market, mouse, news 

2 vaccination, dog, get, vaccinate, pet, not, clinic, need, rabie, old, cat, today, year, new, do, go, vet, free, come, puppy 

3 not, do, vaccination, people, get, make, child, go, know, flu, would, use, good, cancer, need, kill, take, say, disease, give 

4 
flu, shot, get, not, year, season, health, influenza, vaccination, new, effective, cdc, say, vaccinate, people, child, news, 
shingle, do, protect 

5 
vaccination, health, outbreak, measle, child, polio, case, vaccinate, campaign, disease, new, congo, news, get, first, people, 
begin, world, year, vaccineswork 

6 
vaccination, hpv, child, cancer, get, vaccineswork, not, protect, health, disease, vaccinate, prevent, immunization, cervical, 
year, do, need, week, measle, help 

7 not, do, get, people, autism, vaccinate, vaccination, child, kid, vax, anti, think, be, know, say, because, go, make, would, can 

8 flu, get, shot, not, do, be, go, year, vaccination, sick, take, never, shoot, people, today, time, need, day, say, give 

9 
vaccination, not, autism, child, health, hpv, study, new, do, cdc, link, science, parent, say, doctor, safety, news, anti, 
medical, dengvaxia 

 

Table 42 contains the keywords of a 10-topic MALLET model from Stage one. Ten topics 

had the highest recall of the MALLET models around this number of topics.  

Table 42: First stage MALLET 10 topic model keywords 

1 
people, autism, kid, parent, kill, stop, doctor, fact, story, question, reason, government, mom, claim, truth, american, 
mandatory, dangerous, lie, vaxxed 

2 
develop, country, support, global, provide, program, universal, development, control, healthcare, great, population, market, 
influenza, vaccination, target, improve, part, research, fund 

3 flu, shot, year, effective, bad, sick, time, season, shoot, cdc, doctor, influenza, die, feel, late, strain, stay, ago, give, nurse 

4 
vaccination, dog, free, today, call, month, pet, clinic, rabie, care, check, vaccinate, home, cat, visit, travel, animal, date, offer, 
love 

5 
vaccination, cancer, hpv, prevent, risk, school, high, patient, rate, girl, age, woman, infection, increase, adult, man, shingle, 
treatment, young, cervical 

6 
study, science, research, read, show, find, human, test, link, post, scientist, medical, safety, article, issue, trial, result, 
researcher, base, share 

7 
child, vaccinate, vaccineswork, day, protect, week, polio, world, life, baby, immunization, safe, disease, family, healthy, live, 
learn, hiv, community, death 

8 
health, vaccination, disease, news, measle, virus, outbreak, case, public, spread, hepatitis, campaign, death, state, report, 
fight, begin, deadly, due, epidemic 

9 make, good, give, work, time, drug, hope, cure, food, big, lot, pay, body, long, money, put, problem, fake, create, inject 

10 anti, vax, thing, watch, trump, back, fuck, talk, shit, video, guy, sad, play, turn, run, end, listen, head, love, fucking 

Some of the topics in Table 42 have similarities to the DMM 9-topic model, but there are 

some that are more difficult to interpret. For instance topic 9 — it’s difficult to interpret the 

words “make, good, give, work, time, drug, hope, cure, food, big, lot, pay, body, long, money, 
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put, problem, fake, create, inject” as a topic, and apart from the first words “anti, vax” and the 

word “trump” of topic 10 suggesting an anti-vax theme the remaining words “thing, watch, 

back, fuck, talk, shit, video, guy, sad, play, turn, run, end, listen, head, love” etc. do not seem 

to add anything to the theme. 

Table 43 shows another pass of the MALLET model with a different seed value, this model 

was preferred to the previous one. Again, there are comprehensible topics — for example, 

Topic 6 seems a very good collection of words representing autism concerns — but there are 

others like topic 10 where it is difficult to attribute a theme. Topic 7 in both variations are 

almost identical but other topics are quite different between these versions of the 10 topic 

MALLET model. 

Table 43: First stage MALLET 10 topic model keywords example 2 

1 flu, shot, year, people, die, work, doctor, time, bad, sick, effective, season, shoot, feel, give, day, late, strain, miss, ago 

2 
vaccination, health, free, school, care, public, clinic, today, call, provide, visit, travel, offer, information, hospital, service, 
include, check, cost, require 

3 
vaccine, news, measle, outbreak, case, death, risk, cdc, report, high, rate, hepatitis, influenza, increase, adult, shingle, 
recommend, health, begin, due 

4 
vaccine, medical, make, government, medicine, work, drug, trump, universal, pay, state, create, money, problem, 
american, mandatory, force, job, push, fund 

5 
vaccine, kill, stop, live, control, food, body, find, man, human, population, inject, vaccin, safe, brain, poison, water, add, 
gmo, eat 

6 
vaccine, autism, anti, science, people, read, link, post, fact, show, safety, article, story, question, video, claim, truth, 
dangerous, lie, fake 

7 
child, vaccination, disease, vaccineswork, protect, world, polio, week, immunization, country, important, campaign, 
prevent, learn, safe, spread, support, part, community, meningitis 

8 
vaccinate, dog, today, vaccination, good, month, pet, day, love, rabie, find, girl, healthy, home, vaccinated, family, cat, 
animal, date, boy 

9 
vaccine, cancer, hpv, virus, research, study, develop, patient, prevent, woman, infection, hiv, cure, treatment, test, 
cervical, influenza, scientist, development, prevention 

10 make, kid, people, vax, give, good, life, baby, thing, time, parent, talk, back, save, happen, put, hope, hear, fuck, mom 

 

In contrast, the topics of the 10-topic Gensim model in Table 44 are all amenable to 

interpretation and are arguably the best collection of keywords per topic. Compared to the 

almost incomprehensible anti-vax topic 10 of the MALLET model in Table 42, the anti-vax 

theme in topic 1 of the Gensim model seems very coherent: “anti, vax, vaccination, make, 

trump, food, kill, government, right, people, smallpox, bill_gate, force, new, use, push, poison, 

water, pay, control”. 
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Table 44: First stage Gensim 10 topic keywords 

1 
anti, vax, vaccination, make, trump, food, kill, government, right, people, smallpox, bill_gate, force, new, use, push, poison, 
water, pay, control 

2 
cancer, hpv, disease, virus, prevent, cure, cervical, vaccination, infection, could, woman, development, treatment, girl, 
patient, boy, use, prevention, cause, develop 

3 not, do, get, know, people, go, be, think, would, say, can, want, make, good, vaccination, need, thing, really, take, work 

4 
child, vaccinate, disease, not, kid, protect, get, people, parent, die, vaccination, vaccineswork, life, death, year, baby, 
many, measle, family, risk 

5 
vaccination, dog, vaccinate, today, pet, need, get, rabie, clinic, free, old, congo, cat, come, date, travel, visit, year, home, 
check 

6 flu, get, shot, year, not, shoot, sick, still, time, last, season, never, today, be, go, take, bad, arm, week, feel 

7 
new, effective, influenza, flu, study, news, cdc, report, shingle, universal, recommend, risk, year, vaccination, health, late, 
virus, adult, safe, show 

8 
autism, science, because, read, link, vaccination, article, doctor, question, cause, safety, video, claim, anti, medical, study, 
cdc, research, news, vaxxed 

9 
vaccination, health, outbreak, vaccineswork, immunization, measle, public, world, week, campaign, case, polio, country, 
begin, school, program, rate, care, dos, community 

10 
hiv, new, work, research, test, use, human, world, polio, day, develop, market, trial, global, first, drug, experimental, aid, 
create, ebola 
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Appendix B  

Taxonomy to topic mapping 

A taxonomy (Section 5.4) was derived with consideration to how the topic models segmented 

the data, but also incorporated distinctions made in this research, such as the differences 

between potential vaccine adverse event mentions and personal health mentions. Table 45 fits 

the percentages of posts per topic of the first stage Gensim 10-topic model (Table 44) over the 

taxonomy, to give some idea of the quantities of tweets per topic in the taxonomy. It is 

interesting to note that decidedly anti-vaccination messages are only around 8% of the tweets, 

and there are more tweets promoting vaccination at 9.7%. VAEM fall mainly into Topic 6, but 

there are some also in Topic 3, and likewise there are personal health mentions and discussions 

in Topic 6. 

Table 45: Taxonomy to Topic mapping 

Subject Description Topic Keywords % 

VAEM Vaccine Adverse Event Mentions  

6 
flu, get, shot, year, not, shoot, sick, still, 
time, last, season, never, today, be, go, 
take, bad, arm, week, feel 

10.7% Personal 
Health 
Mentions 

Mentions of experiencing health 
issues but not VAEM 

Discussions 

Enquiries / Discussions / 
Complaints mentioning vaccines 

— can be emotional, sensational 

or neutral, but not overtly pro or 
anti-vaccination 

3 

not, do, get, know, people, go, be, think, 
would, say, can, want, make, good, 
vaccination, need, thing, really, take, 
work 

20.7% 

“The 
Vaccines” 

The indie rock group ‘The Vaccines’ 

Pro-
Vaccination  

Sentiment or language against anti-
vax viewpoints, pro vaccines, 

including promoting and advertising 
vaccines, can be implicit 

4 

child, vaccinate, disease, not, kid, 
protect, get, people, parent, die, 
vaccination, vaccineswork, life, death, 
year, baby, many, measle, family, risk 

9.7% 

Anti-
Vaccination 

Obvious sentiment against vaccines 

— anti-vax 
1 

anti, vax, vaccination, make, trump, food, 
kill, government, right, people, smallpox, 
bill_gate, force, new, use, push, poison, 
water, pay, control 

8.0% 

Autism All autism related discussions 8 

autism, science, because, read, link, 
vaccination, article, doctor, question, 
cause, safety, video, claim, anti, medical, 
study, cdc, research, news, vaxxed 

8.5% 

HPV & 
Cancer 

HPV and cancer-related vaccine 
discussions 

2 

cancer, hpv, disease, virus, prevent, 
cure, cervical, vaccination, infection, 
could, woman, development, treatment, 
girl, patient, boy, use, prevention, cause, 
develop 

7.5% 

Pets and 
Veterinary 

Pet and animal related discussions, 
including what might be classed as 
VAEM had they related to human 
subjects 

5 

vaccination, dog, vaccinate, today, pet, 
need, get, rabie, clinic, free, old, congo, 
cat, come, date, travel, visit, year, home, 
check 

10.3% 
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Trends and 
Outbreaks 

Statements and headlines 
mentioning trends and outbreaks 

9 

vaccination, health, outbreak, 
vaccineswork, immunization, measle, 
public, world, week, campaign, case, 
polio, country, begin, school, program, 
rate, care, dos, community 

11.7% 

Research 
and Studies 

Mentions of new studies and 
research, science of vaccine 
development, including headlines 
mentioning research 

10 

hiv, new, work, research, test, use, 
human, world, polio, day, develop, 
market, trial, global, first, drug, 
experimental, aid, create, ebola 

6.0% 

News  
News articles, headlines, and 
announcements. Statements from 
vaccine-related organizations 

7 

new, effective, influenza, flu, study, news, 
cdc, report, shingle, universal, 
recommend, risk, year, vaccination, 
health, late, virus, adult, safe, show 

6.8% 

 

This is just an indicative look as the matching is not exact, and other topic models can also 

be fitted to the taxonomy, but as the topic numbers increase, they are more difficult to fit. 
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Appendix C  

Second stage topic modelling comparisons 

In the first stage of topic modelling, the best performing topic number (or numbers if combined) 

had been identified per model for each topic model architecture. These topics were referred to 

as VAEM topics. The best VAEM topics of the models were Topic 13 of the DMM 14-topic 

model, topics 3 and 6 combined of the Gensim 18-topic model and topic 3 of the MALLET 

10-topic model. The texts from these were extracted as 3 datasets for testing in the second 

stage, where further topic modelling was performed on each dataset, using each of the three 

model types, testing a range from 2 to 20 topics. Nine result sets were thereby obtained and 

compared with one another — the goal being to see how the 3 models performed on each of 

the 3 input datasets, and how their results compared with one another. 

Table 46 summarizes the labelled vs unlabelled documents per dataset assessed in stage two 

of topic modelling and shows that the datasets are much reduced from the 328,822 records of 

the stage one dataset. Based on the proportion of labelled VAEM vs other remaining labelled 

documents there is a far greater concentration of vaccine adverse event mentions in the data 

compared to the starting position. That is, in the first stage of topic modelling there were 222 

vaccine adverse event mentions in 1,400 labelled documents - only 15.9% VAEM, but in the 

second stage the VAEM percentage is up to 45% of the labelled documents. 

Table 46: Second stage data descriptions 

 

Applying the 3 topic model types to the 3 datasets resulted in 9 sets of results. These were 

compared with one another. Figure 44 shows the result as a grid of the training plots of each 

model over each dataset, the heavier line is the Adjusted F1-Score, the dotted line is precision, 

the lighter solid line is recall. The best result was obtained by the DMM model over the DMM 

data, which is the first plot in the chart. It reached an Adjusted F-Score of 0.82 at 9 topics with 

both a high recall and precision.  
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Figure 44: Second Stage topic models vs data 

 

The next 3 sections contain detailed analyses of each model’s performance.  

C.1 Gensim models 

Gensim LDA models performed best with from 3 to 7 topics, with later peaks in performance 

around 15 topics. Generally, after 3 to 5 topics the recall was markedly less than precision. 

There was a lot of variability in the Adjusted F-Score, the most regular results came when using 

the DMM dataset, which is shown in Figure 45. The highest F-Score is around 0.72 with 3 

topics due to a high recall, but the precision is very poor at 0.45. The next highest F-Score is 

around 0.68 at 15 topics, but at that point the recall is only 0.63. There is no point at which 

both recall, and precision are optimal.  
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Figure 45: Gensim LDA model over DMM dataset 

 

C.2 MALLET models and datasets 

MALLET models achieved their highest recall with a low number of topics, but with an 

accompanying low precision. Convergence of recall and precision only occurred with high 

topic counts with a decrease of recall and increase of precision. This is most evident when 

applied to the MALLET dataset, see Figure 46. In this chart the best Adjusted F-Score by a 

small margin was 0.813 at 19 topics, due to a precision of 0.788 and a recall of 0.828. However, 

better results for recall at very slightly lower F-Scores are obtained at 18 and 17 topics.  

 

Figure 46: MALLET model over MALLET dataset 
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As these results were only obtained at higher topic counts, they were also discarding VAEM 

texts to achieve smaller grouping, for instance the 19-topic model identified in the training plot 

contained only 163 of the 198 VAEM that were available in the MALLET dataset. 

Figure 47 depicts that the MALLET dataset was handled similarly by the DMM model, it 

also exhibited an initial high recall, a slow convergence of recall and precision, and achieved 

similar results to the MALLET model. This confirmed the stage one topic modelling analysis 

that data coming from MALLET topic models was splitting VAEM between topics, and so it 

was difficult to achieve an optimal balance of recall and precision in one topic. At 18 topics it 

had an Adjusted F-Score of 0.833, and an F-Score of 0.821, and contained 172 VAEM from 

the available 198. 

 

Figure 47: DMM model over MALLET dataset 

C.3 DMM models and dataset 

DMM models performed best in terms of balanced recall and precision from early in its training 

run when used on the DMM dataset. Figure 48 demonstrates the early convergence of recall 

and precision found by the DMM model over the DMM dataset, and that the best performing 

model was with 9 topics, with both an Adjusted F-Score and F-Score of 0.820 at 9 topics, due 

to a high precision of 0.829 and recall of 0.814. There were 179 VAEM in the best topic, out 

of 220 VAEM that were available in the DMM dataset.  
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Figure 48: DMM model over DMM dataset 

 

A contender for best combination of model and dataset was the MALLET model over the 

DMM dataset, depicted in Figure 49. Its best Adjusted F-Score was at 17 topics, but its 

Adjusted F-Score was still less than that of the DMM model at 9 topics, and with a count of 

172 VAEM it identified less than the 179 from the DMM model. 

 

Figure 49: MALLET model over DMM dataset 
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Using Adjusted F-Score and recall and considering the number of VAEM that exited in the 

dataset the clear leader from this assessment was the DMM 9-topic model over the DMM 

dataset. The DMM 9-topic model over DMM data identified 179 of 220 available VAEM 

whereas DMM over MALLET data found only 172 of 198. The best performing combinations 

are presented in Table 47. 

Table 47: Best second stage model & dataset combintation 

 

 

 

  



196 

 

Appendix D  

Word embeddings and embeddings-based features 

The following sections first summarize the procedures used when generating word embeddings 

and secondly describe how additional features were generated from embeddings to help 

distinguish vaccine adverse event mentions. The word embeddings were used by the Deep 

Learning models, and by some experiments with standard models (Appendix E). VAEM-

related features derived from Word2Vec similarity scores were used by a rule-based technique, 

which is described in 6.10. 

D.1 Vaccine-related word embeddings 

A Word2Vec embeddings model was trained on the entire cleaned dataset. Cleaning consisted 

of the same approach as used in the topic modelling: converting from Unicode to plain text, 

then lower-case conversion; URLs, the retweet tag, the hash symbol from hashtags, and @user 

references were all removed. Text-based emoticons were replaced with plain English, other 

emoticons were removed. After some experimentation it was found that a 100-vector length 

discovered word relationships adequately while increasing the vector length had no discernible 

benefit. For comparative purposes, a Word2vec model was also trained on the lemmatized data 

from the topic modelling phase, which contained n-grams of commonly encountered 

lemmatized phrases. 

The word embeddings generated from the entire collection of tweets clearly finds 

associations between words related to VAEM. A Word2Vec similarity function obtained the 

most similar words around some of the key indicators - the words “pain”, “arm”, and “sore”, 

the top 10 results are tabulated below in Table 48 and Table 49. Depending on whether the 

source text is the original cleaned text or the lemmatized version slightly different results are 

obtained, but it is evident that “arm” refers to “sore” and “hurts” in the non-lemmatized version 

of the similarity table and that “arm” and “sore” are both associated with the bigram “arm_hurt” 

in the lemmatized version of the table. The Word2Vec model trained on the cleaned text was 

used with the neural networks and with the rule-based classifier. 
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Table 48: Top 10 similar VAEM words 

pain arm sore 

soreness 
redness 
rashes 
headaches 
pains 
fatigue 
muscle 
swelling 
nausea 
fainting 

aching 
hurts 
arms 
sore 
bruised 
swollen 
throbbing 
shoulder 
bruise 
ow 

aching 
ache 
bruised 
achy 
headache 
itchy 
achey 
aches 
runny 
congestion 

 

Table 49: Top 10 similar VAEM n-grams 

pain arm sore 

headache 
soreness 
nausea 
anxiety 
ache 
redness 
unbearable 
fatigue 
relieve 
swelling 

sore 
left 
arm_hurt 
bruise 
hurt 
ache 
throb 
upper_arm 
swollen 
arm_feel 

ache 
arm_hurt 
bruise 
achy 
feverish 
throb 
swollen 
blood_drawn 
soreness 
body_ach 

 

D.2 Word embedding cluster features 

Using unsupervised word representations as additional word features has been an effective way 

to improve accuracy in NLP tasks (Nikfarjam et al., 2015). To evaluate this, an experiment was 

conducted to determine whether Word2Vec word embeddings could be used as an alternative 

to, or additionally with, the count-based vectors traditionally used with traditional classifiers 

— see Sections E.1 and E.2 of Appendix E. 

After training Word2Vec word embeddings on the entire unlabelled corpus, K-means 

clustering was performed on the word embeddings. K-mean clustering is a popular, simple 

approach for grouping similar words (Arora & Varshney, 2016).  Alike words were clustered 

in a group based on their place in vector space. As well as providing alternative vectors for 

classifiers this assisted with identification of top VAEM words for the rule-based approach.  
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D.3 Clusters for a rule-based approach 

K-means clustering was performed on the entire data and after experimentation with different 

cluster numbers it was decided that the optimal number for a rule-based manual approach was 

150 clusters. 150 was a number that could be handled in a manual exploration of the data, see 

examples in Table 50. The first two examples in the table are both from cluster 80, but the first 

is in order of the words found most frequently in VAEM posts, the second entry is in order of 

word frequencies in non-VAEM posts. The most important cluster 80 words (“arm, hurts, arms, 

hurt, feels, shoulder, hurting”) in the VAEM-related posts indicate the effects of a recent 

vaccination.  

Table 50: Cluster examples using 150 clusters 

Cluster Words 

80 in 
VAEM 
order 

arm, hurts, arms, hurt, feels, shoulder, hurting, lift, punched, ouch, needle, bruised, drawn, 
shoulders, needles, ow, throbbing, butt, bruise, stabbed, deltoid, swelled, jabbed, workout, lifting, 
fainted, cried, bicep, lollipop, tattoos, faint, cheek, bruises, tattoo, weights, wrist, amputated, 
champ, noodle, piercings, itches, bandaids, poke, thighs, poked, pinch, pokes, lightheaded, 
screamed, thigh, ankle, piercing, knot, wimp, stab, bandaid, bled, wuss, finger, stitches, pierced, 
poking, cushion, prick, flinch, pricked, bandage, tequila, sucker, bleed, phobia 

80 in 
Non-

VAEM 
order 

needles, needle, tattoo, tattoos, piercings, stabbed, drawn, bandaid, stab, prick, poked, piercing, 
tequila, phobia, cheek, cried, poke, finger, bleed, bandage, flinch, cushion, pierced, jabbed, wrist, 
poking, ankle, sucker, pricked, wimp, lollipop, stitches, noodle, thigh, bandaids, workout, pinch, 
itches, screamed, thighs, bruise, lightheaded, bled, bruises, pokes, wuss, knot, weights, 
amputated, champ, lifting, bicep, faint, butt, deltoid, fainted, swelled, ouch, shoulders, ow, bruised, 
throbbing, punched, lift, shoulder, hurting, hurt, feels, arms, hurts, arm 

51 

my, got, feel, yesterday, sleep, sick, hours, im, bed, tired, night, bit, woke, felt, ugh, barely, forgot, 
hour, ill, minutes, gotten, kicking, sleeping, exhausted, sucks, hella, asleep, nap, slightly, glad, 
cranky, ive, soooo, fml, remembered, sooo, lowkey, asf, knocked, crappy, stuck, napping, 
throwing, drowsy, sooooo, naps, ached, hives, dunno, couch, sitting, owie, laying, realized, 
deathly, hurty, groggy, pounding, mins, weenie, grumpy, yay, miserable, forgetting, ish, puked, 
bleh, ughhh, darn, whining, knock, woozy, stings, shaking, stressed, lethargic, oof, wakes, 
dreading, puke, bragging, awhile, terrified, feelin, ughh, regretting, welp, invincible, hrs, resting, 
teething, alllll, dread, shivering, havent, anxious, mofo, crummy, afterward, skipped, ducking, bih, 
er, hubby, yday, meh, yucky, sweating, stayed, mend, kiddo, mildly, friggin, shoulda, advil, sucked, 
def, pinched, congested, kms, depo, sniffles, relieved 

146 

pain, reaction, effects, painful, symptoms, allergic, swelling, rash, anxiety, itching, migraine, 
ibuprofen, mild, fatigue, lymph, cramps, flare, strep, tenderness, exhaustion, intense, slight, minor, 
pains, vomiting, stiffness, fevers, stress, temporary, steroid, appetite, migraines, lethargy, 
inflamed, redness, nodes, excruciating, unwell, fainting, reactions, rashes, tamiflu, distress, 
tylenol, discomfort, bleeding, lingering, traumatic 

279 

sore, feeling, throat, muscle, swollen, aches, numb, headache, aching, slept, ache, chills, 
soreness, dizzy, runny, sinus, muscles, achy, nauseous, stomach, sleepy, joints, stiff, headaches, 
nausea, congestion, feverish, itchy, achey, stuffy, sweats 

313 fever, yellow, yellowfever, brazil 

 

The importance of needles, tattoos, and piercings in non-VAEM posts reflects many posts 

that indicate an ironic aversion to vaccine injections, when the subject has extensive tattoos 
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and piercings and therefore ought not to be frightened. References to bandaids and lollipops 

etc. are also indicative of a recent vaccination, but there are twelve times as many mentions of 

bandaid in the non-VAEM group, the conversations are typically saying that the vaccination 

was uneventful but that a decorative bandaid was a good outcome! 

D.4 Clusters for alternative vectors 

When using the clustering approach for classification by applying the centroid of words as a 

feature (Section E.2), it was found that experimentation with cluster size was more useful than 

assessing numbers of clusters. A smaller size of around 20 produced a good outcome — which 

resulted in 3,170 clusters, examples in Table 51. It was observed that highly correlated words 

clustered together — for instance “needle, phobia” in cluster 1573 and “needles, piercings, 

tattoos” in cluster 2172 — they indicate similar but distinct ideas, and both are heavily used in 

non-VAEM rather than in VAEM. On the other hand, some of the useful groups that were 

found with the larger clusters used for the rule-based approach were split, cluster 1295 has 

“fever, yellow” but we need to go to cluster 1254 for “brazil, yellowfever”. The larger cluster 

313 in Table 50 had placed all of these together, which was reflected in the texts — many posts 

with yellow fever vaccination mentions were in the context of travel to Brazil.  

 

Table 51: Cluster examples using cluster size 20 

Cluster Words 

2867 arm, shoulder, sore 

2070 ache, aching, bruise, hurting, hurts, numb, ow, punched, stiff, throbbing 

736 
bleed, excruciating, itch, itching, minor, nerves, pain, painful, scars, scratch, sores, 
uncomfortable 

761 adverse, effects, reaction, reactions 

1295 fever, yellow 

1254 brazil, yellowfever 

1573 needle, phobia 

2172 needles, piercings, tattoos 

1987 

got, sick, gotten, hella, sucks, everytime, regretting, caught, feelin, sucker, killin, faint, puked, 
puking, shoulda, alllll, bedridden, blizzcon, bouta, clinicals, coughed, crud, deathly, def, 
dodging, hypochondriac, invincible, ish, knocks, probs, shouldve, skipped, sneezed, sniffle, 
stg, streak, tequila, twitchcon, welp, yeet 
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Appendix E  

Assessment of embeddings as vectors and features 

The features machine learning models learn from are the numeric vectors that represent the 

data they are processing, which for NLP tasks are the sparse word vectors or dense word 

embeddings created during pre-processing. Additional features can also be engineered from 

the data to help guide the model to understand its data more clearly. Experiments were 

conducted using embeddings as alternative to the standard sparse vectors used with traditional 

classifiers, and additionally as added features. The experiments used an Extra Trees classifier, 

which due to its architecture is an effective traditional classifier for conducting this kind of 

experiment, and which had performed well with the standard approach.  

E.1 Word2Vec embeddings as vectors 

In the second phase of evaluation, two experiments were conducted using word2vec 

embeddings as an alternative source of vectors for the traditional classifiers. That is, instead of 

creating sparse matrices using TF or TF-IDF vectors of one-hot encoded words, the words’ 

word2vec embeddings were utilized.  

One approach was to take the average of the word2vec embeddings of all words in a 

document, which potentially has the effect of locating the entire document into a vector 

space, with the result that similar documents have similar scores.  

The other approach was to use K-means clustering to create clusters of words based on 

their similarity, and then use the K-means centroid as a cluster number to assign to the words 

in the document.  Experimentation with cluster size showed that dividing word embeddings 

by 20 produced a reasonable outcome — which resulted in 3,170 clusters from the 63,403 

words available, with cluster sizes ranging from 1 to 1,839. If a larger size of 200 was used to 

get 317 clusters, the maximum cluster size was 2,599 — but these did not perform nearly as 

well, perhaps too many not very similar words were assigned the same cluster number. 

The results of these experiments showed that there was no advantage over the standard 

approach. For instance, the Random Forest classifier trained on the final dataset using the 

standard approach achieved an F1-Score of 0.8249 on the validation dataset; but trained with 

Word2Vec embeddings, it was 0.8180, and with Word2Vec centroids from the same dataset 

the F1-score was only 0.8035. 
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However, embeddings were essential for achieving the best results with the neural 

networks — here they came into effect as a much better initialisation of the words than 

random starting values. 

Additional features were based on the words obtained from the baseline rule-based 

technique (Section 6.10), which identified the most significant VAEM-related and non-

VAEM-related words, measured by their Word2Vec similarities to target words. The targets 

words were decided by clustering (Section D.2). 

The features were: 

- the word2vec embeddings of the words (Section E.2) 

- the word2vec similarity scores to the target words (Section E.3) 

- TF-IDF vectors created from the words (Section E.4) 

Features were all converted to vectors, either the 100-long Word2Vec embeddings, TF 

vectors, or simpler numpy numeric arrays. Python hstack or the SKLearn FeatureUnion 

library were used to add features to existing vectors. 

E.2 Word2vec embeddings as an additional feature 

This experiment used the 100-long Word2Vec embeddings of the top n VAEM-related words 

(Appendix D and Section 6.10), from the top 5 down to just the individual top word. The 

embeddings were combined with the existing TF-IDF vectors to function as added features. 

The results were poor in all experiments, compared with just using sparse vectors, or even with 

the embeddings approach of Section E.1.  

To provide an additional comparison between adding top n word embeddings to the TF-IDF 

vectors, a test was made using just the top n word embeddings as the only feature. The 

benchmark F1-Score over validation data of the standard TF-IDF sparse vectors approach was 

0.8249, the best F1-Score for using top n word embeddings alone was for two words at 0.7590, 

and when adding embeddings as an additional feature to TF-IDF the best F1-Score was 0.7634.  

Next, the non-VAEM embeddings were added and tested in the same way, and it was noted 

that while the scores improved, they were still significantly worse than the scores obtained by 

TF-IDF sparse vectors alone. In summary, using word2vec embeddings of the top words as 

features had a markedly negative effect and seemed to be just adding noise. 

E.3 Word2vec similarity scores as a feature 

Similarity scores were determined during the rule-based classification experiment (Section 

6.10) but using the scores as a feature did not improve the results. The best F1-Score when 
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these were used as the only feature was 0.7126, and when combined as an additional feature to 

TF-IDF the score also decreased — being 0.8227 compared to the benchmark score of 0.8249. 

The conclusion was that using similarity scores also added nothing but noise. 

E.4 Term Frequency (TF) vectors of top similar words as a feature 

To evaluate the top similar words themselves, rather than their dense embeddings or scores, 

standard term frequency (TF) vectors of the top words were created per document, ranging 

from the top 5 down to the single top word. These vectors were then combined with the standard 

TF or TF-IDF vectors of the documents, which meant that a document was then represented 

by two sparse matrices. This approach yielded positive results, with the best outcome obtained 

from using a TF vector of the single top VAEM word combined with the standard document 

sparse vectors. An F1-score of 0.8360 was obtained with this approach, compared with the 

standard score of 0.8249. An additional experiment adding the single best similarity score to 

this combination, an increased recall but poorer precision resulted in a worse F1-score.  
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Appendix F   

Feature engineering results 

Table 52 presents the F1-Scores calculated over validation data for each of the experiments. 

The F1-score from a default implementation of the Extra Trees classifier trained on TF vectors 

is first supplied as a benchmark, then for each experiment two values are shown — first the 

F1-score, then below it the difference from the default F1-score. Note that after tuning the Extra 

Trees classifier the validation F1-score increased, but the benchmark score used here was 

obtained using the default classifier settings.  

Table 52: Features experimentation scores 

 
VAEM-related 
feature 

Description Best Score 
& 

Difference 

 Standard TF 
vectors 

Standard sparse vectors over all the document words 0.8249 

1 Top Word 
Term frequency (TF) vector of the single top VAEM-
related word as an added feature 

0.8360 

0.0111 

2 
Word2vec 
embeddings of 
all text 

The average of word2vec embedding vectors for the 
entire document, as the only feature 

0.8180 

-0.0069 

3 
Word2vec 
centroids of  
all text 

The word2vec centroids for the entire document, as the 
only feature 

0.8035 

-0.0214 

4 
Word2vec 
embeddings top 
words only 

Word2vec embedding vectors for each of the top two 
VAEM-related words, as the only feature 

0.7590 

-0.0659 

5 
Word2vec 
embeddings top 
words added 

Word2vec embedding vectors for each of the top two 
VAEM-related words, as an added feature 

0.7634 

-0.0615 

6 
Similarity scores 
only 

Similarity scores of the top five VAEM-related words, as 
the only feature 

0.7126 

-0.1123 

7 
Similarity scores 
added 

Similarity scores of the top five VAEM-related words, as 
an added feature 

0.8227 

-0.0022 

 

The best experimental result (Section E.4) is shown in row 1 of the table - it added a TF 

vector of the single top VAEM-related word to the underlying TF vectors of the model and 

improved the F1-Score by 0.01. Experiments that used either the average of Word2Vec scores 

of the entire text, or an array of Word2Vec centroids (Section E.1) are included in rows 2 and 

3. They were a complete alternative to using the standard TF-IDF vectors and performed better 

than the remaining experiments, but on the validation data their F1-Score was 0.01 worse than 
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the standard approach, though the centroids approach did remarkedly well on the Victorian test 

data in Phase One of the classification test, see Figure 36.  

The remaining tests were varying degrees worse than the standard approach, and contributed 

nothing useful. Not listed in the table, but also considered, was to add the topic model topics 

as features. However, this did not make sense, as all the data used in classification came from 

only one class of the first-stage topic model, and using the topics of the second-stage topic 

model as an overlay would only have been justified if the goal was a multi-class classification 

that aligned with those topics. Instead, as the goal was to score only one class of a binary 

classification, adding features that suggested other distinctions in the data was not desirable. 

However, an assessment of using the second-stage topics was made, and the single additional 

feature made no difference to the model.  

It was concluded that adding engineered features was not fruitful due to the work required 

for any marginal positive effect, when more reliable and reproducible techniques were 

available by tuning the model or by choosing more powerful classifiers. The same conclusion 

was reached with experiments where the TF or TF-IDF sparse vectors were replaced with 

Word2Vec embeddings — the standard approach was more straightforward, reliable, and most 

often resulted in more accurate classifiers — with the promise of even better results using Deep 

Learning approaches. However, it was a worthwhile experiment as it confirmed that readily 

available classifiers and data preparation were entirely suitable for the task, but that an 

empirical assessment of feature engineering had been performed, for the benefit of fellow 

researchers who might consider similar approaches. 
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Appendix G  

Textual analyses of errors and VAEM per topic 

G.1 Classification Errors analysis 

This section makes observations about why some records may have been misclassified. Table 

53 shows records the RoBERTa Large model misclassified in the Victorian test dataset.  

Table 53: Misclassified Victorian test data 

Misclassified as not VAEM (false negatives) 

1 the meningitis vaccine make my arm feel like it just got punched repeatedly 

2 my flu shot arm is throbbbbing 

3 
I left deltoid is either A. extremely sore from yesterday's workout or B. from my flu shot today. i'm going 
with B 

4 trying to sleep on your flu shot arm- no bueno 

5 
"Finally got the flu shot. My arm is killing me and I am dead tired! Would go curl up on the couch were it 
not for this ""work"" thing." 

6 Yo the flu shot made me sick wtf 

7 Why the hell did I get a flu shot the day before the PFA Rip my arm 

8 I got a vaccine today and my arm is numb hey sisters 

9 Go to doctors to get a lump checked. Come out with sore arm from flu shot! Lump isn't worrisome. 

10 I dont understand how the flu shot makes my arm so sore 

Misclassified as VAEM (false positives) 

11 YAY!!! My shot was done today by an intern, and it still really didn't hurt! 

12 
This is the 3rd shot of the vaccine, every time it feels bad in the same way, as if I over worked out lifting. 
Considering it is the last shot of the series, so it's okay. 

13 
SINC CHILREN MERCY FORCE MI TOO TAK THEI FLU SHOT EAT 6 DES MORNING I BECME 
BLUND EN ONE EYE AND IM LOOSING FEELING ON MY HOELE LEIFT SIEDE 

14 I would get sick after getting the flu shot 

15 
Just got back from getting my flu shot. I wonder if this one is going to make my arm sore or not. Some 
years seem to be better than others for that. 

 

False Negatives: 

It looks like some of the missed VAEM might be attributed to either unrecognized or 

infrequently found words, or words that are normally attributed to the non-VAEM label. For 

instance, the word “throbbbbing” in row two does not appear in any training data. “no bueno” 

in row four appears in only 6 records in the training data and two of them are non-VAEM 

records. “make” in row one appears more slightly often in non-VAEM in the training data, so 

it is possible that the statistical possibility of this being a non-VAEM influenced the decision 



206 

 

here. However, “arm” and “punched” which are also in row one, are found together in 95 

VAEM vs 5 non-VAEM records in the training data.  Similarly, the words “arm” and “sleep” 

found in row four appear together in 139 VAEM records vs only 21 non-VAEM records in the 

training data, and “arm” and “numb” seen together in row eight are found together in 61 VAEM 

records vs 12 non-VAEM records. It is unclear why the classifier got these wrong. 

Some of the other combinations are more ambiguous, “flu shot” appears together with “sick” 

in the training data only 1.4 times more often in the VAEM records. “rip” appears only 1.3 

times more in VAEM records, though when combined with “arm” the ratio is 3.8. 

Finally, there are some texts that are quite subtle in their attribution of VAEM, rows three 

and nine for instance, where there is information that supports a reaction combined with other 

information that does not.  

False Positives: 

Here things are a little clearer, rows twelve to fourteen could all be correctly labelled as VAEM, 

row thirteen possibly wasn’t labelled as VAEM because of the exaggerated language and 

strange spelling but it has the structure of a VAEM, and twelve and fourteen could have been 

rightfully labelled as VAEM. Row eleven has a negation without which it would have been an 

adverse event, and row fifteen has a future tense and a question of wondering if a sore arm is 

immanent — these are subtle clues that are easy for a human to detect but not so for the 

classifier. It was observed that negations were not often found in VAEM, and as there was no 

specific negation-handling added, then examples like this are not surprising. However, there 

are very few of them, especially from the more powerful classifiers.  

Table 54 contains examples of misclassified records from the larger test dataset, again from 

the RoBERTa large model. The same patterns are observed: false positives and negatives might 

result when the classifier was unable to decipher subtle language clues such as negations (e.g., 

example 18: “Got a sore arm...feels like I got the flu shot in it. I didn't” and example 1: “"You 

won't get sick from getting a flu shot" ...liars. Because guess what?? I'm sick”) and subjective 

judgments only a human labeller could make (e.g., the non-VAEM in example 17: “Got a flu 

shot today.... 10 minutes later I sneezed. Goodbye world”). 

In other cases, ambiguity may contribute to incorrectly detecting the label. In example 3 the 

side effects that are listed are typical of flu rather than of flu shot: “I'm sick. I have mild fever, 

muscle aches, lock jaw, sinus is crammed full, and sore throat…”, it’s only the preceding rather 

subtle attribution by the post’s author that demands a label of VAEM: “10/10 do not 

recommend getting flu shot. Pretty sure that's why I'm sick”.  
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There are cases where the classifier has correctly identified records which look to have been 

incorrectly labelled: examples 7 to 12 and examples 19 to 24. They have left these intact for 

this analysis, but any incorrectly labelled records need fixing in the published dataset. 

Table 54: Misclassified larger test data 

Misclassified as not VAEM (false negatives) 

1 """You won't get sick from getting a flu shot"" ...liars. Because guess what?? I'm sick" 

2 
"That sadistic whore who gave me my flu shot yesterday was like ""Your arm won't hurt afterward."" 
Lying bitch." 

3 
10/10 do not recommend getting flu shot. Pretty sure that's why I'm sick. I have mild fever, muscle 
aches, lock jaw, sinus is crammed full, and sore throat. Don't do it. It's not worth it. 

4 Got the flu shot then got a cold 3 days later.. my immune system ain't shit 

5 bro i can feel myself getting sick, and I just got the flu shot at work, probably wasn't the smart idea lmao. 

6 
Feels like there is something tickling the inside of my ear and the injection site from my flu shot is lumpy 
and hurts. 

Correctly classified as not VAEM, incorrectly labelled as VAEM 

7 

"As I sat down to get my flu shot my amazing sister came over to hold my hand bc she knows shots 
have made me nervous since I was a kid. As soon as the needle was in my arm I hear ""Holy crap that 
needle is big"". Thanks @DizzityDanielle, you're the best." 

8 
It's moments like when Anthony kisses my shoulder where I got my flu shot to make it feel better where 
I'm just like... swoon #thewarmfuzziesandshit 

9 Boss : flu shot in the neck or the arm?...... Me: Moddafucken uhhhh 

10 
Got my flu shot and PPD today and had to take my top off so the nurse could get to my arm. It's the 
most action I've had in months. FML 

11 Ooh, this beer makes me feel much better- screw you, flu shot. 10 min later: uh oh 

12 Headed for my flu shot, RIP my arm 

Misclassified as VAEM (false positives) 

13 Exactly! These vaccines will have you out on sick leave 

14 
Feeling sore and worn out from my kickboxing and flu shot yesterday. Who wants to make me 
breakfast? I'll take a greek omelette and some toast, please... 

15 
Flu shot this morning at work. I'm left handed and my left shoulder already gets sore but it's easier to 
sleep on my right side so should I get it in my left arm? 

16 Fuck a flu shot these side effects are 

17 Got a flu shot today.... 10 minutes later I sneezed. Goodbye world 

18 Got a sore arm...feels like I got the flu shot in it. I didn't 

Correctly classified as VAEM, incorrectly labelled as not VAEM 

19 got a flu shot yesterday and now i feel like i got the flu 

20 I woke up twice now because I roll over on where I got my flu shot today. 

21 I would get sick after getting the flu shot 

22 Just had meningitis vaccinations and it wasn't even that bad until now lmao aches like hell <sad>  

23 Of course my throat is itchy day after my flu shot 

24 
This is the 3rd shot of the vaccine, every time it feels bad in the same way, as if I over worked out lifting. 
Considering it is the last shot of the series, so it's okay. 
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G.2 Vaccine adverse event mention examples per topic 

Table 55 contains examples of vaccine adverse event mentions, per topic of the second stage 

DMM 9-topic model, taken from the data collected in the second phase of classification. There 

is not much to distinguish them, but the majority of the VAEM (6,320) are found in Topic 8, 

and it has many tweets like the examples here that focus on having painful arms after getting a 

flu shot. Other topics contain fewer potential VAEM. For example Topic 5 contained only 6, 

the first 4 show here are very similar to one another: “this/the flu shot…”. 

Table 55: Vaccine adverse event mention examples 

Topic 1 – 102 tweets 

My son's has a fever and his arm aches from vaccinations yesterday. The only thing I can think of that would 
be worse is polio, measles, smallpox, etc. Vaccinate your kids! #VaccinesWork #vaccinessavelives 

that meningitis vaccine hit me real bad oof..... 

This is my poor baby 2nd baths because she's been running a fever since yesterday because of the vaccines 

Who cares not everyone needs to nor can be vaccinated, I got vaccinated once and my face and my arms 
swelled up and I got rashes on my arm I was pissed 

Topic 2 – 70 tweets 

that flu shot fucked me up 

I got my flu shot and I feel like I'm dying 

I got a flu shot and my arm hurts so bad and my mom basically called me a punk. 

Flu shot got my right delt looking swole rn 

Topic 3 – 22 tweets 

can't focus, flu shot kicked my ass, time to die 

Flu shot swelled my arm 

Me: ouch my arm hurts from my flu shot Mother: drink another glass of wine or two and you'll forget about it  
She's so wise 

Yesterday I discovered that the flu shot is a migraine trigger for me. So that has sucked. 

Topic 4 – 244 tweets 

my arm is so bruised from my flu shot and i don't think that's normal is this a sign that my time has finally 
ARRIVED...? 

My arm hurts never getting a flu shot again by anna 

Did anyone else get super sick from the flu shot???!?!!? 

Who gets a flu shot when they are already sick? This guy!! Who gets sicker?! This guy!! 

Topic 5 – 6 tweets  

This flu shot got me hella sick 

This flu shot hittin different 

The flu shot made me get sick and nose is stuffy yet runny at the same time like??? 

The flu shot was not worth it I am so sick haha 
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Topic 6 – 139 tweets 

This flu shot got me even more sick 

This flu shot got me fcckkkddd up. Don't do it ppl 

Only I would get the flu shot and have an allergic reaction 

This years flu shot had me in the hospital at 1am w allergic reaction, don't get that shit fam 

Topic 7 – 720 tweets 

I get the flu shot and right after I get sick. Awesome 

That flu shot tore my are all the way up. 

Forced to get the flu shot now I feel terrible 

I got my flu shot and no one told me I would get sick until after.... when I got sick. Fuck y'all. 

Topic 8 – 6,320 tweets 

Got my flu shot and now my arm sore af 

Just got vaccinated.. My arm is numb right now 

got a flu shot yesterday and my arm swollen asf 

I got a flu shot yesterday and my arms so fucking sore bruh 

Topic 9 – 534 tweets 

Turns out getting a flu vaccine gives you the symptoms of the flu  Huge scam 

My arm is just starting to recover from the flu shot. My ass was disabled for a few days. 

Flu shot made me feel miserable for about 12 hours. What a ride. 

My work made me get a flu shot.. its immediate soreness. 
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Appendix H  

Victorian data analysis 

As described in Section 4.6.3, for investigating the applicability of the data to local seasonal 

safety-signal trends, data coming from Victoria, Australia was identified by using the 

geographical-related Twitter fields UserLocation, UTCoffset, TimeZone and Place. Victoria 

was chosen as that is the author’s local area and the trends identified in the data could be 

checked with the local vaccine safety reporting authority AEFI-CAN. The data covered the 

period between 7th February and 7th June 2018, which includes the time when people were 

getting flu vaccines, and the early flu season of 2018. The numbers were however relatively 

low, 3,112 tweets were found and labelled, with 90 vaccine adverse event mentions records 

and 3,027 non VAEM. 

The weekly incidence of discussions is plotted in Figure 50. The chart shows that the pattern 

in VAEM-related tweeting follows a distinct trend of increasing over the month of April and 

then tailing off again after mid-May. This is in accordance with the rate of flu vaccinations in 

Victoria, and it is a somewhat different pattern to the more general vaccine-related discussions 

found in the non-VAEM related texts — these do not exhibit such extreme differences and 

have an additional peak before the flu season. The datasets have been assigned different y-axes 

in the chart so the smaller numbers of the VAEM data can be clearly visualized. AEFI-CAN 

confirmed that these trends follow those of their surveillance reporting. 

 

Figure 50: Victorian vaccine-related tweet trends 
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Appendix I  

Reddit data analysis 

One of the data assessments for the research used Reddit data that had been made available 

on the internet. This comprised of extremely large JSON files containing all Reddit 

submissions in one data set, and the related comments in separate data sets. The first 

publication of this data consists of partial data from 2006 and 2007, and all data from January 

1st, 2008 through to August 31st, 2015; and thereafter Reddit submissions and comments are 

published monthly. Much of the data is also available to Google BigQuery 

(https://cloud.google.com/bigquery), where aggregate queries are freely able to be created in 

a sandbox, though limits are soon reached and after that query data must be purchased.  

The Reddit submissions file  (Full Reddit Submission Corpus, 2015) is a 263 GB JSON file 

(downloadable as a 43 GB compressed file) containing around 200 million submissions. These 

are the initial posting of a Reddit conversation, and may only contain a Title with text of 

interest, but sometimes will also contain the beginnings of a conversation — in a field called 

Selftext. The entire conversation initiated by a submission consists of many comments, and can 

be found in separately published comments archives (Reddit’s publicly available comment 

dataset, 2015). The equivalent comments archive for the period contains around 1.7 billion 

JSON records and is over 1 terabyte uncompressed. 

The Reddit data analysis used the Reddit submissions, which were imported into a SQL 

Server database. During importation, the JSON files were processed into individual records 

containing the most useful fields (Date, ID fields, the Subreddit, and the Title and Selftext 

fields), and the JSON itself was also retained in a field in case it might be required for later 

processing. There were 196,531,736 Submission records obtained.  

To extract vaccine-related Reddit submissions from the data a series of queries were 

developed that searched for specific words, “vaccine”, “vaccination” and “vax”, “flu” and 

“influenza”, but also “virus” and “viral”. Text needed to additionally contain commonly used 

terms associated with either reactions to vaccines (e.g., “sick”, “tired”, “ill”, “sore”, 

“reaction”); or with descriptions of specific vaccines (e.g., “DT”, “TDap”, “MMR”, 

“pentacel”); or vaccine and viral related illnesses (e.g., “measles”, “mumps”, “rubella”, 

“meningococcal”, “pneumococcal”); or with discussions about vaccines (e.g., “mercury”, 

“thermisol”, “adjuvant”).  It was found that medical terms were very infrequently used and that 

widening the search to consider possible variations in spelling or colloquial equivalents 

introduced more noise than value. The queries also needed to incorporate a great many filters 
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to remove irrelevant discussions — especially because many of the terms employed are 

commonly used in other contexts, for instance “virus” is heavily used in computing related 

discussions. Useful submissions tended to be found in a group of subreddits concerned with 

obtaining advice - such as “doctors”, “medicine”, “medical”, “health”, “NoStupidQuestions”, 

“AskReddit” and “askscience”.  

Table 56 presents a sample of extracted VAEM-related Reddit posts. The posts reflect the 

type of conversations found in Reddit — they were longer and more detailed than the VAEM-

related posts that were found in Twitter, and these samples are on the brief side. When they did 

contain adverse event mentions then they tended to mention more serious reactions. But they 

were also very much less frequent and did not exhibit the direct, immediate, and casual nature 

of tweets — which had made tweets so valuable as a possible source for noting emerging 

trends.  

Table 56: Sample of VAEM-related Reddit posts 

My dad just 13 days ago received his flu shot from this brand Novartis. 4 days ago he came home feely extremely dizzy 
as if were drunk. he slept and next morning had no control on left side of body (face and legs and arm ) and till this day is 
unable to use his left arm and limps his leg around. he drools and slurrs speech and says has trouble swallowing foods. 
Could it be that this flu vaccine has these side affects? i googled some stuff and even read about GBS? Guillain-Barré 
syndrome. Anyone please! 

Took the last Gardasil vaccine yesterday. Now have high fever, body aches and chest pain.  Anyone else get this series of 
shots and have a similar reaction? 

So I got the HPV vaccine at the doctor today and about two minutes after I fainted and had a seizure spell. After the 
doctors got me stable again I read the page about the vaccine and it said this at the bottom:   "Brief fainting spells and 
related symptoms (such as jerking movements) can happen after any medical procedure, including vaccination. Sitting or 
lying down for about 15 minutes after a vaccination can help prevent fainting and injuries caused by falls. Tell your doctor 
if the patient feels dizzy or light-headed, or has vision changes or ringing in the ears."  I feel fine now and I'm just curious 
as to why this happened. If anyone knows then I would really appreciate an answer. 

Late reaction to vaccinations?  I received some vaccinations last week on the 17th which were: - yellowfever - Hep A/ 
Typhoid (vivaxim) -  Fluvax  along with an oral vaccination of Cholera and since yesterday (24th) I've been having bad 
pains in my head generally when i move my head or eyes, could this be a late reaction to my vaccinations or should i go 
and get it checked? I was going to book an appointment if it continued tomorrow at work. 

 

After filtering there were around 360,000 records but searching for discussions about 

vaccines from within the possibly vaccine-related subreddits (i.e., medical, parental, vaccine 

etc. subreddits) produced only 44,600 candidate VAEM records.  

After manually labelling nine thousand posts it was estimated that around 0.6% of the 

filtered potentially useful data was suitable for examples of VAEM, which would be only 

around 250 records — that is from 7 years of data! Although the records were useful, there 

were not enough for evaluating any machine learning-based techniques, and not enough for 
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this study. By contrast, Twitter data was entirely suitable for measuring direct cause and effect 

relationships and emerging trends in vaccine adverse event mentions.  

To give some idea of the ratios of various terms for a flu vaccination in the 44,600-record 

set, a search for “flu shot” produced 507 records, 27 of which were a VAEM, and a search for 

“flu vaccination” found 362 records, of which only 4 were a VAEM. Rarely used terms 

included “influenza vaccination”, with 49 records; “influenza injection” with 25 records, 

“influenza shot” with 3, and “flu jab” with 9 records. None of the posts that were found using 

the rarely used terms were a VAEM. Further analysis was based on searching for specific 

additional words — for instance 634 records were obtained with a mention of the word 

“reaction”, and 30 of these contained a VAEM. 

An analysis of the frequency of the term “MMR” in Reddit data is instructive: a BigQuery 

search was conducted over all Reddit submissions between 2015 and August 2019 and looked 

for submissions counts per subreddit with a mention of “MMR”. The total submissions count 

over the top 1,000 subreddits was 174,872, with 161,132 posts in the top 100 subreddits. 

Almost all the top 100 subreddits were devoted to gaming, where MMR signifies “Match 

Making Rating”. The rest of the top 100 were mostly conspiracy subreddits — there were only 

880 posts in parenting or medical-related subreddits. A more specific query looked for 

subreddits with submissions containing either “MMR shot”, “MMR jab”, “MMR injection”, 

“MMR vacc%”, or “MMR vax%”. Only 582 subreddits were returned, for a total count of 

3,415 submissions. Of these, only 349 submissions belonged in subreddits that were devoted 

to parenting or medical questions, and even here the top-rating subreddits were conspiracy-

related.  

When the labelled 41,600 records of downloaded vaccine-related submissions were 

examined for VAEM-related discussions of MMR, only 5 posts were found where an MMR 

vaccine was attributed to an VAEM. Most of the discussions were around controversies relating 

the MMR vaccine to autism and bowel disease. An example of a post mentioning MMR is 

quoted below in Table 57, as it is a good example of the nature of the discussions found on 

Reddit, which tend to be lengthy and diverse. Although revealing in their detail, because of 

both their length and infrequency, posts like this are not suitable for the measurement of trends.  

The vaccine that a reaction is attributed to seems to have been one of DTP, Hib or PCV13 

(“no more TDaP, no more HiB, no more PCV13”), but extracting that information while 

verifying the lack of an explicit MMR link to the reaction is not the direction of this research. 
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Table 57: Reddit submission example 

I now get to be 'that parent' the one with the under vaccinated child.  
 

Today marked my son's 6 month well child - even though he was 6 and a half months old.  Today he got only one vaccine 
and after speaking with the doctor this will be his last one until he's at least 5.  Possibly older... possibly never have another 
vaccine for the rest of his life.   
 

At 2 months I was suffering from severe anxiety.  Although at the time I would have told you it was hormones I now accept 
that it was because I almost died, and my son almost died in the birthing process.  The statistics for what we went through 
are very humbling.  5% of babies survive a full abruption.  That's it.  He is one of the 5%.  We're very lucky and a fast and 
efficient medical team is who I have to thank for his very being.   
 

So I had anxiety.  I insisted on an alternate vaccine schedule to ease my worries that my own vaccine reactions as a baby 
would not pass on to him.  Every one told me he would be fine, that those kinds of things don't happen.  I believed them but 
insisted anyway.  The altered schedule I'd drawn up only delayed one important vaccine by 1 month.  It wasn't that big of a 
deal.  Yes we were skipping the Hep A and Hep B altogether but other than that, we were going full bore with the rest.   
 

He had a reaction.   
 

He had a high fever and was screaming.  Not fussy, not a bit 'off'... he screamed in the same way as he had when they had 
jabbed him and he wasn't stopping.  Some Tylenol, some cuddling, eventually he fell asleep.   
 

At 3 months he got sick.  Bronchitis.  No vaccinations.   
 

At 4 months we repeated the ones he'd gotten at 2 months.  This time, this time it was worse.  A lot worse.  There was no 
consoling him, he wouldn't eat, he wouldn't be distracted, he wouldn't sleep.  Hour after hour after hour he screamed, and 
cried, and screamed.  His fever wouldn't go down.  I cried.  My mother made me leave the house for 20 minutes convinced 
it was me that was causing his distress.  He screamed louder when I wasn't there and my heart broke.  He vomited violently, 
he got a rash.  Against my instinct, against everything, my mother refused to take him to the ER, said I was overreacting, 
he'd calm down eventually.  I had no car.  I was trapped.   
 

His fever lasted for 2 days before breaking.  He was lethargic but improving slowly.  In a stroller out for a walk he was 
content.  That was the only place, so we took five walks that day.   
 

At 5 months my doctor said - 1 shot, one we hadn't given him yet.  Not the three we had planned at 3 months.  Just 1, just 
the most important 1.  He hadn't gotten one yet of that kind and maybe he'd be ok.   
 

I will say this, it was better than the others.  It wasn't good but it was doable.  No screaming.  No vomiting.  Just lethargic 
and fussy but that could have been any day.  I was just sensitive to it because of what happened the month before.  I admit 
that.  I admitted it at the time.   
 

Today I got to see a specialist in communicable diseases.  He looked at the pictures of the rash, he spoke to me at length 
about baby boy's reaction.  We spoke about my anxiety and how I was feeling much better now so it was no longer an issue 
and he said something to me I didn't expect.  He said to me, 'you don't have to worry anymore, your son won't be getting 
any more vaccinations until he's at least 5.'   
 

I hadn't expected that.  I had expected a lecture.  I had expected to be told that we'd repeat the one that didn't really have 
a reaction.  That I would need to just do one at a time until we were done to 'rule out the bad ones'.  Nope.  He told me 
about measles outbreaks, he told me about what to look for and how to keep my son safe as an un-vaccinated baby.  How 
to keep other babies safe FROM him.  He talked about titres and immunity all the while my pediatrician sat there and smiled.  
He told me about quarantine.  I will say this, I feel amazingly relieved.   
 

I am not anti-vaccination.  I had expected to go through the entire series in some altered form to avoid reactions, not to be 
told that we were done.  Now, nothing.  No MMR, no Hep A, no Hep B, no polio, no flu, no more TDaP, no more HiB, no 
more PCV13.   
 

I think I'll explain this to people by not telling them ever at all.  All my friends and family will say I'm overreacting but I'm 
doing this under the guidance and recommendation of my pediatrician who is VERY pro-vaccination.  Thanks for reading, I 
just really wanted to type that out but I'm not a blogger so I have no blog to add it to. 
 

**TL;DR** - I'm pro-vaccination but due to bad reaction to them we're now a member of the under vaccinated crowd.  The 
specialist says he can't recommend starting up again until he's at least 5 and then only one at a time. 
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Appendix J  

Classification model definitions 

The table below presents parameters and architectures of the classification models used in this 

study. For the traditional models, the vectorization method and parameters are also presented. 

For the traditional models, only the specific parameters the author used are presented. For the 

neural networks trained from scratch there are a few standard settings, such as optimizer and 

learning rate, which were used throughout. The Transformers were used with their defaults 

throughout, the key values from their configurations are presented. The ULMFiT model was 

also extensively tested, to try and improve the underlying language model’s capacity to predict 

VAEM texts, but these experiments consisted of unlocking layers and fine-tuning them while 

evaluating the optimum number of iterations, rather than adjusting many parameters. For all 

the neural networks, a lot of the experimentation was to assess the optimum number of epochs 

and minibatches to get the best from the model, which was usually just before the models 

started overfitting — and was assessed based on changes in validation loss, and, after training, 

on test F1-Scores. For the models that were trained from scratch, many experiments were 

conducted to arrive at these settings, but the detail of these is not presented.  

Table 58: Model definitions and parameters 

Model Model Definition Vectorizer Definition 
Logistic 
Regression 
CV 

LogisticRegressionCV( 
    Cs=50,  
    max_iter=2000,  
    random_state=23 
) 

TfidfVectorizer( 
    sublinear_tf=True, 
    max_df=0.5,  
    ngram_range = (1, 2), 
    use_idf=False 
) 

Stochastic 
Gradient 
Descent 
Classifier 

SGDClassifier( 
    alpha=0.0001,  
    max_iter=50000, 
    penalty='l2',  
    tol=0.001, 
    random_state=23 
) 

TfidfVectorizer( 
    sublinear_tf=True, 
    max_df=0.5,  
    token_pattern ='(?ui)\\b\\w*[A-Za-z]{2,}\\w*\\b', 
    ngram_range=(1, 2), 
    use_idf=True 
) 

Linear 
Support 
Vector 
Machines 

LinearSVC( 
    C=1,  
    tol=0.001,  
    random_state=23 
) 

TfidfVectorizer( 
    sublinear_tf=True, 
    binary=False, 
    ngram_range=(1, 2), 
    use_idf=True 
) 
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Random 
Forest 
Classifier 

RandomForestClassifier( 
    n_estimators=1000,  
    max_features=10,  
    max_depth=None, 
    min_samples_leaf=1, 
    min_samples_split=3, 
    criterion='entropy',  
    bootstrap=False,  
    oob_score=False,  
    random_state=23 
) 

TfidfVectorizer( 
    max_df=0.5, 
    sublinear_tf=True, 
    token_pattern=u'(?ui)\\b\\w*[A-Za-z]{2,}\\w*\\b', 
    use_idf=False 
) 

Extra Trees 
Classifier 

ExtraTreesClassifier( 
    n_estimators=1000,  
    max_features=10,  
    max_depth=None, 
    min_samples_leaf=1, 
    min_samples_split=3, 
    criterion='entropy',  
    bootstrap=False,  
    oob_score=False,  
    random_state=23 
) 

TfidfVectorizer( 
    max_df=0.5, 
    sublinear_tf=True, 
    token_pattern=u'(?ui)\\b\\w*[A-Za-z]{2,}\\w*\\b', 
    use_idf=False 
) 

Multinomial 
Naïve Bayes 

MultinomialNB( 
    alpha=0.15,  
    class_prior=None,  
    fit_prior=False 
) 

TfidfVectorizer( 
    sublinear_tf=True, 
    max_features = None, 
    max_df=0.5,  
    ngram_range = (1, 2), 
    token_pattern = '(?ui)\\b\\w*[A-Za-z]{2,}\\w*\\b', 
    use_idf=False 
) 

Naïve Bayes 
SVM 

NBSVM( 
    C=1,  
    alpha = 0.01,  
    beta=1 
) 

TfidfVectorizer( 
    sublinear_tf=True, 
    binary = False, 
    norm = 'l1', 
    max_features = 10000,  
    max_df=0.5,  
    ngram_range = (1, 3), 
    use_idf=False 
) 
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XGBoost XGBClassifier( 
    learning_rate=0.04,  
    n_estimators=900,  
    colsample_bytree=0.6, 
    gamma=1, 
    max_depth=5, 
    min_child_weight=1, 
    subsample=0.6, 
    
objective='binary:logistic', 
    random_state=23 
) 

TfidfVectorizer( 
    max_df=0.5, 
    sublinear_tf=True, 
    use_idf=True 
) 

All Neural 
Networks 
trained from 
scratch 

activation : selu 
optimizer : AdamW 
learning_rate : 0.001 
init_weight : True 
init_weight_value : 2.0 
optim_momentum_value : 0.9 
batch_normalizations : False 
clip : 5 
weight_decay : 1e-8 
batch_size : 32 

CNN [Conv2d(1, 100, kernel_size=(1, 100), stride=(1, 1), bias=False),  
 Conv2d(1, 100, kernel_size=(2, 100), stride=(1, 1), padding=(1, 0), bias=False),  
 Conv2d(1, 100, kernel_size=(3, 100), stride=(1, 1), padding=(1, 0), bias=False)] 
CNN_Text( 
  (embed): Embedding(4882, 100, padding_idx=1, scale_grad_by_freq=True) 
  (dropout): Dropout(p=0.5, inplace=False) 
  (dropout_embed): Dropout(p=0.1, inplace=False) 
  (fc): Linear(in_features=300, out_features=2, bias=True) 
) 

CNN-BiLSTM [Conv2d(1, 100, kernel_size=(1, 100), stride=(1, 1)),  
 Conv2d(1, 100, kernel_size=(2, 100), stride=(1, 1), padding=(1, 0)),  
 Conv2d(1, 100, kernel_size=(3, 100), stride=(1, 1), padding=(1, 0))] 
CNN_BiLSTM( 
  (embed): Embedding(4882, 100, padding_idx=1) 
  (bilstm): LSTM(100, 300, num_layers=2, dropout=0.5, bidirectional=True) 
  (hidden2label1): Linear(in_features=900, out_features=450, bias=True) 
  (hidden2label2): Linear(in_features=450, out_features=2, bias=True) 
  (dropout): Dropout(p=0.5, inplace=False) 
) 
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CNN-BiGRU [Conv2d(1, 100, kernel_size=(1, 100), stride=(1, 1)),  
  Conv2d(1, 100, kernel_size=(2, 100), stride=(1, 1), padding=(1, 0)),  
  Conv2d(1, 100, kernel_size=(3, 100), stride=(1, 1), padding=(1, 0))] 
CNN_BiGRU( 
  (embed): Embedding(4882, 100, padding_idx=1) 
  (bigru): GRU(100, 300, num_layers=2, dropout=0.5, bidirectional=True) 
  (hidden2label1): Linear(in_features=900, out_features=450, bias=True) 
  (hidden2label2): Linear(in_features=450, out_features=2, bias=True) 
  (dropout): Dropout(p=0.5, inplace=False) 
) 

CNN-LSTM CNN_LSTM( 
  (embed): Embedding(4882, 100, padding_idx=1) 
  (dropout): Dropout(p=0.5, inplace=False) 
  (lstm): LSTM(100, 300, num_layers=2, dropout=0.5) 
  (hidden2label1): Linear(in_features=600, out_features=300, bias=True) 
  (hidden2label2): Linear(in_features=300, out_features=2, bias=True) 
) 

LSTM LSTM( 
  (embed): Embedding(4882, 100, padding_idx=1) 
  (lstm): LSTM(100, 300, num_layers=2, dropout=0.5) 
  (hidden2label): Linear(in_features=300, out_features=2, bias=True) 
  (dropout): Dropout(p=0.5, inplace=False) 
  (dropout_embed): Dropout(p=0.1, inplace=False) 
) 

BiLSTM LSTM(100, 150, bias=False, dropout=0.5, bidirectional=True) 
BiLSTM( 
  (embed): Embedding(4882, 100, padding_idx=1) 
  (bilstm): LSTM(100, 150, bias=False, dropout=0.5, bidirectional=True) 
  (hidden2label1): Linear(in_features=300, out_features=150, bias=True) 
  (hidden2label2): Linear(in_features=150, out_features=2, bias=True) 
) 

GRU GRU( 
  (embed): Embedding(4882, 100, padding_idx=1) 
  (gru): GRU(100, 300, num_layers=2, dropout=0.5) 
  (hidden2label): Linear(in_features=300, out_features=2, bias=True) 
  (dropout): Dropout(p=0.5, inplace=False) 
) 

BiGRU BiGRU( 
  (embed): Embedding(4882, 100, padding_idx=1) 
  (bigru): GRU(100, 300, num_layers=2, dropout=0.5, bidirectional=True) 
  (hidden2label): Linear(in_features=600, out_features=2, bias=True) 
  (dropout): Dropout(p=0.5, inplace=False) 
) 
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All 
Transformers 

max_seq_length : 64 
learning_rate : 2e-5 
batch_size : 32, or 16 for larger models 
iterations per epoch : length training data / batch size 
adam_epsilon : 1e-8 
warmup_steps : 0 
max_grad_norm : 1.0 
random_seed : 42 
 

BERT { 
  "attention_probs_dropout_prob": 0.1, 
  "hidden_act": "gelu", 
  "hidden_dropout_prob": 0.1, 
  "hidden_size": 768, 
  "initializer_range": 0.02, 
  "intermediate_size": 3072, 
  "layer_norm_eps": 1e-12, 
  "max_position_embeddings": 512, 
  "num_attention_heads": 12, 
  "num_hidden_layers": 12, 
  "output_attentions": false, 
  "output_hidden_states": false, 
  "output_past": true, 
  "type_vocab_size": 2, 
  "vocab_size": 30522 
} 

RoBERTa { 
  "attention_probs_dropout_prob": 0.1, 
  "hidden_act": "gelu", 
  "hidden_dropout_prob": 0.1, 
  "hidden_size": 768, 
  "initializer_range": 0.02, 
  "intermediate_size": 3072, 
  "layer_norm_eps": 1e-05, 
  "max_position_embeddings": 514, 
  "num_attention_heads": 12, 
  "num_hidden_layers": 12, 
  "output_attentions": false, 
  "output_hidden_states": false, 
  "output_past": true, 
  "type_vocab_size": 1, 
  "vocab_size": 50265 
} 
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RoBERTa 
Large 

{ 
  "attention_probs_dropout_prob": 0.1, 
  "hidden_act": "gelu", 
  "hidden_dropout_prob": 0.1, 
  "hidden_size": 1024, 
  "initializer_range": 0.02, 
  "intermediate_size": 4096, 
  "layer_norm_eps": 1e-05, 
  "max_position_embeddings": 514, 
  "num_attention_heads": 16, 
  "num_hidden_layers": 24, 
  "output_attentions": false, 
  "output_hidden_states": false, 
  "output_past": true, 
  "pruned_heads": {}, 
  "torchscript": false, 
  "type_vocab_size": 1, 
  "vocab_size": 50265 
} 

XLNet { 
  "attn_type": "bi", 
  "clamp_len": -1, 
  "d_head": 64, 
  "d_inner": 3072, 
  "d_model": 768, 
  "dropout": 0.1, 
  "end_n_top": 5, 
  "ff_activation": "gelu", 
  "initializer_range": 0.02, 
  "layer_norm_eps": 1e-12, 
  "n_head": 12, 
  "n_layer": 12, 
  "n_token": 32000, 
  "output_attentions": false, 
  "output_hidden_states": false, 
  "output_past": true, 
  "start_n_top": 5, 
  "summary_activation": "tanh", 
  "summary_last_dropout": 0.1, 
  "summary_type": "last", 
  "summary_use_proj": true, 
  "untie_r": true, 
} 
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XLNet Large { 
  "clamp_len": -1, 
  "d_head": 64, 
  "d_inner": 4096, 
  "d_model": 1024, 
  "dropout": 0.1, 
  "end_n_top": 5, 
  "ff_activation": "gelu", 
  "initializer_range": 0.02, 
  "layer_norm_eps": 1e-12, 
  "n_head": 16, 
  "n_layer": 24, 
  "output_attentions": false, 
  "output_hidden_states": false, 
  "output_past": true, 
  "start_n_top": 5, 
  "summary_activation": "tanh", 
  "summary_last_dropout": 0.1, 
  "summary_type": "last", 
  "summary_use_proj": true, 
  "vocab_size": 32000 
} 

XLM { 
  "attention_dropout": 0.1, 
  "dropout": 0.1, 
  "emb_dim": 2048, 
  "init_std": 0.02, 
  "layer_norm_eps": 1e-12, 
  "mask_index": 5, 
  "max_position_embeddings": 512, 
  "n_heads": 16, 
  "n_layers": 12, 
  "output_attentions": false, 
  "output_hidden_states": false, 
  "output_past": true, 
  "pad_index": 2, 
  "start_n_top": 5, 
  "use_lang_emb": true, 
  "summary_first_dropout": 0.1, 
  "summary_proj_to_labels": true, 
  "summary_type": "first", 
  "summary_use_proj": true, 
  "vocab_size": 30145 
} 
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ULMFiT learning rate = 1e-3 
optimizer = Adam(), betas=(0.9, 0.99) 
loss function = FlattenedLoss of CrossEntropyLoss() 
callbacks = [RNNTrainer  
  learn: ... 
  alpha: 2.0 
  beta: 1.0] 
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