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Abstract

One of the primary goals of extremal combinatorics is to understand how an object’s
properties are influenced by the presence or multiplicity of a given substructure.
Most classical theorems in the area, such as Mantel’s Theorem, are phrased in
terms of substructure counts such as the number of edges or the number of triangles
in a graph. Gradually, however, it has become more popular to express results in
terms of the density of substructures, where the substructure counts are normalised
by some natural quantity. This approach has several benefits; results are often more
succinctly stated using densities, and it becomes easier to focus on the asymptotic
behaviour of objects.

In this thesis, we study three topics concerning density. We begin Chapter
1 by contextualising the study of combinatorial density and justifying its impor-
tance within extremal combinatorics. We also introduce the relevant combinatorial
objects, results, and questions that are central to the later chapters. Particular
attention is paid to developing the theory of graph limits and flag algebras, two
modern fields that rely heavily on the notion of density.

In Chapter 2, we investigate the interplay between the densities of cycles of length
3 and 4 in large tournaments. In particular, we prove two cases of a conjecture of
Linial and Morgenstern (2016) that the minimum density of 4-cycles in a graph with
a fixed density of 3-cycles is attained by a particular random construction.

In Chapter 3, we explore quasirandom permutations. A permutation is said
to be quasirandom if the density of every subpermutation matches the expected
density in a random permutation. Our main result is that quasirandomness can be
characterised by a property which, on the surface, appears significantly weaker.

Lastly, in Chapter 4, we resolve a problem posed by Bubeck and Linial (2016)
on the inducibility of trees. The inducibility of a tree X is defined as the maximum
possible density of X in a large tree. We show that there exist non-path, non-star
trees with positive inducibility, but that all such trees have inducibility bounded
away from 1. We also show that there exists a sequence of trees in which every
possible subtree appears asymptotically with positive density.
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Chapter 1

Introduction

Extremal combinatorics is an area of discrete mathematics that investigates how the
global parameters of a combinatorial object influence its properties [7, 8, 39]. The
study of extremal combinatorics is commonly understood to have originated with
the work of Mantel, who proved in 1907 that every n-vertex graph with more than
n2/4 edges has the property that it contains a triangle as a subgraph [79]. Now
named Mantel’s Theorem, this result and its generalisations form the foundation of
extremal graph theory, the most classical subfield of extremal combinatorics.

More specifically, Mantel’s Theorem can be seen as the case r = 3 of the equally
well-known Turan’s Theorem [96], which determines the minimum number of edges
an n-vertex graph must have to force the existence of an r-vertex clique Kr as a
subgraph. Both of these theorems address the forbidden subgraph problem:

Given a graph H, what is the maximum number of edges in an n-vertex, H-free
graph?

When H is not bipartite, the problem is essentially solved by the celebrated Erdős–
Stone Theorem [43], which states that the threshold number of edges is

[
χ(H)− 2
χ(H)− 1 + o(1)

](
n

2

)
,

where χ(H) is the chromatic number of H and the little-o is interpreted as n →
∞. Proved in 1946 and more recently described by Bollobás as “the fundamental
theorem of extremal graph theory” [7], this landmark result illustrates some of the
themes that have driven the field in subsequent decades. For example, the perhaps
surprising appearance of the chromatic number in the above expression inspired the
study of graph parameters beyond simply the number of vertices and edges. Graph
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invariants such as chromatic number, connectivity, minimum degree, and average
degree have since become standard parameters that are investigated in extremal
graph theory [8].

Secondly, the concession of a o(1) term reflects a focus on asymptotic (as opposed
to exact) behaviour. This increases the scope for powerful, general theorems that
may otherwise be unapproachable or burdened by notation that detracts from the
key behaviour. It is worth highlighting that the o(1) term appears inside the factor
of
(n

2
)
, a very natural expression that corresponds to the maximum possible number

of edges in an n-vertex graph. This suggests that, asymptotically at least, the
most succinct way to describe the threshold is not as a relationship between the
number of edges and vertices, but rather as a proportion of possible edges that are
realised in the graph. In other words, the dependence of the threshold on n can be
asymptotically removed if we normalise by

(n
2
)

to obtain an edge density between
0 and 1. More broadly, density can be viewed as a meaningful normalisation of
substructure counts that draws attention to asymptotic behaviour. As we shall see,
questions of an extremal nature can be asked for a wide range of combinatorial
objects, and with an appropriate choice of normalisation factor for each object we
can more easily discuss the commonalities in their behaviour.

Intriguingly, there is another generalisation of Mantel’s Theorem that traces its
roots back to the 1940s. Although complete balanced bipartite graphs demonstrate
the existence of triangle-free graphs with bn2/4c edges, Rademacher and later Erdős
[44] surprisingly proved that exceeding this bound immediately forces the existence
of not just one, but bn/2c triangles. Building on this interesting phenomenon,
the Erdős–Rademacher Problem asks how many triangles are forced in an n-vertex
graph with m edges, where m > bn2/4c. Note that whereas the property of interest
in the forbidden subgraph problem is the existence of a given substructure, the
Erdős–Rademacher Problem is interested in the property of having multiple copies
of an object. It was conjectured that the graph forcing the fewest triangles was a
complete multipartite graph with all parts having equal size except for one smaller
part. This conjecture received substantial attention for several decades [6,47,53,75],
but remained open until its eventual solution in 2008 by Razborov [86], using his
newly developed flag algebra method.

The flag algebra method and the complementary theory of combinatorial limits
are a modern approach to extremal combinatorics that fully embraces the concept of
density. The language of these fields suppresses o(1) terms entirely, placing the focus
on asymptotic results while avoiding the need for cumbersome notation. Equipped
with appropriate definitions of density, these modern techniques can be applied to
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many classes of combinatorial objects; indeed, the foundational work of Razborov
on flag algebras [85] was expressed in general, model-theoretic terms in anticipation
of its extensive utility.

In this thesis we will explore three extremal questions, all centered around the
concept of density, and apply them to three different classes of combinatorial objects.
The first is a direct analogy of the Erdős–Rademacher Problem in the setting of
tournaments, i.e., oriented complete graphs. A conjecture of Linial and Morgenstern
[72] asserts that the minimum density of (directed) 4-cycles in a tournament forced
by a given density of 3-cycles is achieved by a specific blow-up construction. If
true, this would demonstrate behaviour similar to that proved by Razborov for K2

and K3 in graphs. Utilizing tools from spectral graph theory and optimisation, we
confirm the conjecture when the density of 3-cycles exceeds 1/72 and additionally
describe the family of extremal constructions when the density exceeds 1/32. Along
the way, we show how the framework of combinatorial limits expresses these results.

The second question is about the density of subpermutations (called patterns)
in permutations. Building on the foundational work of Chung, Graham, and Wilson
[32] on quasirandomness, Cooper [34] defined quasirandom permutations, which have
the same pattern densities as random permutations despite being deterministic. We
formulate this concept in the convenient language of permutation limits, and apply
the flag algebra method to prove that quasirandomness is equivalent to a property
that appears, at first glace, to be weaker. In particular, we show that if the densities
of a specific set of eight patterns match those expected in a random permutation,
then the densities of all other patterns match as well. This is an analogue of a
theorem about quasirandom graphs, extending a line of research on permutations
initiated by Graham (see [34], page 141).

Lastly, we turn our attention to the concept of density in sparse graphs, which
has been a topic of recent interest [9, 11, 12, 60, 67, 80]. In the sparse setting, to ask
any meaningful questions about density we must normalise our substructure counts
in an alternative way. In our case, we will resolve two open problems posed by
Bubeck and Linial [22] about the density of subtrees in trees, and compare them to
the behaviour observed in general graphs. The first of these questions concerns the
inducibility of trees. The inducibility of a tree X is defined as the maximum possible
density of X in a large tree. We show that there exist non-path, non-star trees with
positive inducibility, but that all such trees have inducibility bounded away from 1.
We also affirmatively answer a question about universality by showing that there
exists a sequence of trees in which every possible subtree appears asymptotically
with positive density.

3



The remainder of this chapter is devoted to establishing notation and defining
the objects and questions that will be studied in this thesis. The tools that we use
will at first be presented in the unified context of graphs before we progress to the
settings of tournaments, permutations, and trees. Note that some general knowledge
of measure theory will be assumed; the relevant measure-theoretic concepts can be
found, for example, in [48].

1.1 Graphs

A graph is a mathematical structure that models a collection of objects and a sym-
metric, binary relation between them. More formally, a (simple) graph G consists
of a finite set V of vertices, together with a set E ⊆

(V
2
)

of edges. By convention
we write G = (V,E), and refer to the vertex and edge sets of G with V (G) and
E(G) respectively. The number of vertices of G, denoted by |V (G)| or simply |G|,
is known as the order of G, and the number of edges of G, denoted by |E(G)|, is
known as the size of G. The degree of a vertex v in G, written degG(v), is the
number of edges of G that contain v.

Subgraphs. Given two graphs H and G, we say that H is a subgraph of G and
write H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a set of vertices V ′ ⊆
V (G), the induced subgraph on V ′, denoted by G[V ′], has vertex set V ′ and edge-set
E(G) ∩

(V ′
2
)
.

Morphisms. A homomorphism from a graphH to a graphG is a map ϕ : V (H)→
V (G) such that ϕ(u)ϕ(v) is an edge of G whenever uv is an edge of H. An isomor-
phism from H to G is a bijective homomorphism such that ϕ(u)ϕ(v) is an edge of
G if and only if uv is an edge of H. If there exists an isomorphism from H to G,
then we say that H is isomorphic to G.

Random graphs. For n ∈ N and p ∈ [0, 1], the Erdős–Rényi random graph
G(n, p) is the graph with n vertices and each edge included independently with
probability p. Thus, G(n, p) is expected to have p

(n
2
)

edges. Whenever we work
with randomly-constructed graphs on n vertices, we say that a statement holds with
high probability if it holds with probability converging to 1 as n→∞.

Asymptotics. We say that a function f : R→ R is O(1) if there exists constants
c,N ∈ R with |f(x)| 6 c for all x > N . The function f is said to be o(1) if for every
positive c ∈ R there exists a number Nc with |f(x)| 6 c for all x > Nc.
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1.1.1 Graph limits

In this section, we introduce the key definitions, intuitions, and results from the
theory of graph limits. As the theoretical underpinnings lean heavily on tools from
probability theory, this subsection of the thesis is free of proofs; for a detailed
treatment of the topic, see the monograph of Lovász [74].

The field of graph limits emerged in a series of papers by Borgs, Chayes, Lovász,
Sós, Szegedy and Vesztergombi [14,16,17,76,77] in the period 2006–2012, essentially
setting out to answer the following question:

What does it mean for a sequence of graphs to converge?

For graphs with quadratically-many edges, this question has been satisfactorily
resolved, and we now detail the answer. If G and H are graphs with |H| 6 |G|,
the density of H in G, denoted d(H,G), is the probability that a randomly chosen
subset of |H| vertices of G induces a subgraph isomorphic to H. In other words,

d(H,G) =
#(H,G)(|G|
|H|
) ,

where #(H,G) is the number of subgraphs of G isomorphic to H. (If |G| > |H|, we
set d(H,G) to be 0.) We note here that an equivalent theory of graph limits can
be built on an alternative definition of density: that of homomorphism density, the
probability that a random map ϕ : V (H)→ V (G) defines a graph homomorphism.
While arguably less intuitive, the homomorphism approach can sometimes lead to
simpler analytic expressions, as well shall see in Chapter 2.

A sequence (Gn)n∈N of graphs is convergent (or locally convergent) if the se-
quence of densities (d(H,Gn))n∈N converges for every graph H. In general, we
will only be interested in graph sequences (Gn)n∈N where |Gn| → ∞. Examples
of convergent graph sequences include the sequence of complete graphs (Kn)n∈N,
the sequence of balanced complete bipartite graphs (Kn,n)n∈N, and the sequence
of complete bipartite graphs (Kn,bαnc)n∈N with part sizes converging to some ratio
α ∈ (0, 1). Another key example is the sequence of Erdős–Rényi random graphs
(G(n, p))n∈N, which can be shown to converge with probability 1 using the Borel-
Cantelli Lemma and Azuma-Hoeffding Inequality, relatively simple tools from prob-
ability theory.

Now that we have established a notion of convergence and have given examples
of convergent sequences, the natural question to ask is:

Do convergent sequences of graphs have a limit object?
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Figure 1.1: The graphons corresponding to the graph sequences (Kn)n∈N, (Kn,n)n∈N,
(Kn,3n)n∈N, and (G(n, 1/2))n∈N.

It turns out that a convergent sequence of graphs is best represented not by
an infinite graph, but rather an analytic object called a graphon. Furthermore,
in the space of graphons, many graph-theoretic problems and constructions have
a simpler description (see [15] for a survey). A graphon is a measurable function
W : [0, 1]2 → [0, 1] that is symmetric in the sense that W (x, y) = W (y, x) for all
x, y ∈ [0, 1]. One way to think of a graphon is as a continuous limit of the adjacency
matrix of a large graph; we will see shortly that this analogy is misleading, but it
nevertheless provides a good first intuition.

Typically, graphons are depicted as a shaded unit square, with the value of
W (x, y) represented by a shade ranging from white (denoting a value of 0) to black
(denoting a value of 1). Because of the analogy to adjacency matrices, it is customary
to draw the point (0, 0) in the top left corner. Several examples of graphons are
given in Figure 1.1.

If W is a graphon, then a W -random graph of order n is the n-vertex graph
obtained by sampling n points x1, . . . , xn uniformly and independently in the interval
[0, 1] and adding an edge between vertex i and vertex j with probability W (xi, xj).
As this definition is probabilistic, graphons can be seen as a type of random graph
model. In particular, if W is the graphon that is uniformly equal to p for some
p ∈ [0, 1], then a W -random graph of order n is exactly the Erdős–Rényi random
graph G(n, p).

Having established a method of sampling a graph H from a graphon W , we can
define the density d(H,W ) of H in W to be the probability that a W -random graph
of order |H| is isomorphic to H. In particular, if v1, . . . , v|H| are the vertices of H
and Aut(H) is the automorphism group of H, then

d(H,W ) = |H|!
|Aut(H)|

∫
[0,1]|H|

∏
vivj∈E(H)

W (xi, xj)
∏

vivj /∈E(H)
(1−W (xi, xj)) dx1 . . . x|H|.

Essentially, the integral fixes a labelling of the vertices of H and computes the
probability that it is isomorphic (as a labelled graph) to a vertex-ordered W -random
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graph of order |H|; the factor |H|!/|Aut(H)| de-orders the vertices. Finally, we say
that a graphon W is the limit of a convergent sequence (Gn)n∈N of graphs if for
every graph H,

d(H,W ) = lim
n→∞

d(H,Gn).

Theorem 1.1. (Lovász and Szegedy [76]) Let W be a graphon, and for each n ∈ N
let Gn be a W -random graph of order n. The sequence (Gn)n∈N is convergent and
W is its limit with probability 1.

Based on the examples in Figure 1.1, one might start to wonder where the in-
tuition of graphons as a continuous limit of adjacency matrices begins to fall flat.
After all, the depicted graphons are more-or-less macroscopic versions of the adja-
cency matrices of the associated graph sequences. However, it must be remembered
that the adjacency matrix of a graph depends on the ordering of its vertices. While
the most common way of representing the adjacency matrix of Kn,n is by grouping
vertices from the same side of the bipartition together, it is also possible to order
the vertex set by interweaving vertices from each side one-at-a-time. The resulting
adjacency matrices consist of an alternating pattern of 0s and 1s. If such a sequence
of matrices could be said to have a continuous limit, it certainly could not be the sec-
ond graphon depicted in Figure 1.1. If anything, the limit ought to be the graphon
that takes the value 1/2 everywhere, i.e., the graphon for G(n, p). However, if H is
a non-bipartite graph, then d(H,Kn,n) = 0 for every n but the density of H in the
random graphon is non-zero. Therefore, the random graphon cannot be a limit for
the sequence (Kn,n)n∈N.

Clearly then, it is faulty to view graphons as the limit of adjacency matrices.
Repairing this intuition requires the well-known concept of graph regularity, intro-
duced by Szemerédi in 1978 [94]. For graph limits, a weaker notion of regularity due
to Frieze and Kannan [49] is used. Given a large graph G, the Regularity Lemma
equipartitions the vertex set of G into many parts. It then builds an auxiliary
real-valued matrix whose rows and columns are indexed by these parts, and whose
(i, j)-th entry describes the number and approximate distribution of edges between
the i-th and j-th parts of the equipartition. By repeatedly refining these regular
partitions, it is possible to better and better approximate the structure of G, and
at the same time ensure some conformity between the resulting auxiliary matrices,
akin to increasing the resolution of a blurry image. While the specifics are outside
the scope of this thesis, the graphon associated with a convergent sequence (Gn)n∈N
can be more accurately viewed as the continuous limit of the auxiliary matrices
constructed in this way. Indeed, the Regularity Lemma is the main tool used to
prove the following fundamental theorem about the existence of graph limits.
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Theorem 1.2. (Lovász and Szegedy [76]) Every convergent sequence (Gn)n∈N of
graphs has a limit graphon W .

Having addressed the existence of graph limits, it remains to consider uniqueness.
In other words, do there exist distinct graphons W1 and W2 such that d(H,W1) =
d(H,W2) for every graph H? The answer is yes, but in a highly controlled way.
Call W1 and W2 weakly isomorphic if d(H,W1) = d(H,W2) for every graph H.
A general method of constructing weakly isomorphic graphons is as follows: Let
ϕ : [0, 1] → [0, 1] be a measuring-preserving map, that is, a map for which the
preimage of any measurable set S ⊆ [0, 1] is measurable and has the same measure
as S. Then the graphons W and Wϕ are weakly isomorphic because ϕ preserves
integrals. The final theorem of this subsection states that measure-preserving maps
are essentially the only way to generate weakly isomorphic graphons.

Theorem 1.3. (Borgs, Chayes, and Lovász [13]) If W1 and W2 are weakly isomor-
phic graphons, then there exist measure-preserving maps ϕ1, ϕ2 : [0, 1]→ [0, 1] such
that the graphons Wϕ1

1 and Wϕ2
2 are equal almost everywhere.

This concludes the overview of the theoretical background behind graph limits.
Although graphons will not be directly featured in this thesis, the analogous notions
for tournaments and permutations will be central to Chapters 2 and 3.

1.1.2 Flag algebras

The celebrated method of flag algebras was developed by Alexander Razborov in
2007 [85], and one of its first applications was to solve [86] the Erdős–Rademacher
Problem, which at the time had been open for decades. Like graph limits, flag
algebras study the density of graphs inside graph sequences whose orders tend to
infinity, thereby ignoring non-asymptotic behaviour. However, whereas graph limits
typically study analytic properties such as convergence, existence, and uniqueness,
one way to think of flag algebras is as an attempt to elucidate the syntactic structure
underlying many standard arguments in extremal combinatorics.

In this section, we often represent a graph by drawing it. For example, b

b is the
empty graph on two vertices and b b

b is the complete graph on three vertices. In
this notation, consider the equation 1 = d( b b

b

, G) +d( b b

b

, G) +d( b b

b

, G) +d( b b

b

, G),
which holds for every graph G. Even more succinctly, if we allow ourselves to replace
the expression d(H,G) with simply H, we can write

1 = b b

b
+ b b

b
+ b b

b
+ b b

b
.
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What other general equalities hold about subgraph densities? One example is that
whenever H is a graph with at most k vertices,

H =
∑
F∈Fk

d(H,F ) · F, (1.1)

where Fk is the set of graphs on k vertices. Here, we implicitly assume that we have
some background graph G, with H and F being written as shorthand for d(H,G)
and d(F,G). The equation is a reflection of the fact that choosing |H| vertices at
random is no different from choosing k > |H| vertices at random and then choosing
a subset of |H| of those vertices. For example, when H = K2 and k = 3,

b

b
= 0 · b b

b
+ 1

3 · b b

b
+ 2

3 · b b

b
+ 1 · b b

b
(1.2)

In fact, we can say something even more general. Let H1, H2, and F be graphs
with |H1| = k1, |H2| = k2, and |F | = k1 + k2. Define d(H1, H2;F ) to be the
probability that a randomly chosen set of k1 vertices of F induces a copy of H1 and
the remaining vertices induce a copy of H2. Then

d(H1, G) · d(H2, G) = (1 + o(1))
∑

F∈Fk1+k2

d(H1, H2;F ) · d(F,G) (1.3)

for any graph G with |G| → ∞. Although we omit a formal proof, the intuition
is similar to the reasoning behind (1.1); to choose k1 and k2 vertices from G, one
may first choose a set of k1 + k2 vertices and then partition this set. The o(1) error
term arises because on the left side of the equation, our random choice of k1 vertices
might overlap with our random choice of k2 vertices, while on the right side, our
sets are guaranteed to be disjoint. Of course, when |G| is large, it makes essentially
no difference whether vertices are chosen with or without replacement.

To codify the general equalities above into an algebraic object, first let F be the
set of graphs, and let RF be the space of formal linear combinations of elements of
F , i.e., the set of expressions of the form a1F1+· · ·+anFn, where ai ∈ R and Fi ∈ F .
Define A to be the algebraic quotient of RF by the expression H−∑F∈Fk d(H,F )·F
for each H ∈ F and each k > |H|. Essentially, the quotient enforces equations of the
form (1.1) in A. Next, given graphs H1, H2 (considered as elements of A), we define
the following multiplication operation that encodes equations of the form (1.3):

H1 ×H2 =
∑

F∈Fk1+k2

d(H1, H2;F ) · F.

9



Extending linearly, we obtain a multiplication operation on A. Note that the o(1)
term that appears in (1.3) is suppressed, so expressions in A, when interpreted as
statements about subgraph densities, are accurate only when |G| → ∞.

So far, what we have is an algebra A. There is one more device that we can
introduce to increase the expressiveness of this algebra. Let σ be a fixed (typically
small) graph whose vertices are labelled. This labelled graph is called a type. Let Fσ

be the set of graphs H that are equipped with a labelled copy of σ. More formally,
Fσ is the set of graphs H that are equipped with an injective map θ from V (σ) to
V (H), such that θ is an isomorphism (of labelled graphs) from σ to H[Im(θ)]. Let
Fσk be the subset of Fσ for which |H| = k. The elements of Fσ are called σ-flags,
the vertices of Im(θ) are said to be flagged, and the subgraph of H induced by Im(θ)
is called the root of the σ-flag.

For two σ-flags H and G with |H| 6 |G| whose maps are given by θ and θ′,
respectively, define the density d(H,G) of H in G to be the probability that a
randomly chosen subset of |H| − |σ| vertices in V (G) \ θ′(V (σ)), together with
θ′(V (σ)), induces a subgraph that is isomorphic to H through an isomorphism f

satisfying f(θ′) = θ. Informally speaking, we fix the root of G to be the root of
H, and ask for the probability that by randomly choosing an additional |H| − |σ|
vertices of G we induce a graph isomorphic (as a partially labelled graph) to H. For
example, if σ is the one-vertex flag and ◦ is drawn to represent flagged vertices, then
d( bc

b

, bc b

b ) = 0, d( bc

b

, bc b

b ) = 1/2, and d( bc

b

, bc b

b ) = 1 (the labelling of the vertices of σ
is not depicted as there is only one possible labelling of K1). More generally, if σ
is the one-vertex flag, G is a σ-flag, and v is the flagged vertex of G, then d( bc

b

, G)
is equal to degG(v)/(|G| − 1), a quantity known in classical terms as the relative
degree of v. Thus, the point of introducing σ-flags is that it becomes possible to
write expressions referencing specific vertices of a graph, unlike in the algebra A,
where we can only talk about properties such as the overall edge density d( b

b

, G).
We now define the product of two elements from Fσ. Fix σ-flags H,H1, H2 ∈ Fσ

with |H| 6 k for the rest of this section, and let ` = |H1|+|H2|−|σ|. Suppose F ∈ Fσ`
and let θ : V (σ)→ V (F ) be the map associated with F . Define d(H1, H2;F ) to be
the probability that a randomly chosen subset of V (F ) \ θ(V (σ)) of size |H1| − |σ|
together with θ(V (σ)) induces a subgraph isomorphic (as a partially labelled graph)
to H1, and that the remaining |H2| − |σ| vertices together with θ(V (σ)) induce
a subgraph isomorphic (as a partially labelled graph) to H2. Then the natural

10



analogues of (1.1) and (1.3) hold for graphs G with |G| → ∞:

H =
∑
F∈Fσ

k

d(H,F ) · F, and (1.4)

d(H1, G) · d(H2, G) = (1 + o(1))
∑
F∈Fσ

`

d(H1, H2;F ) · d(F,G).

Thus, we can construct an algebra Aσ from the space RFσ of formal linear
combinations of elements of Fσ in the same way that we constructed A from RF ,
namely by taking the quotient of RFσ by relations of the form (1.4) and defining a
multiplication operation

H1 ×H2 =
∑
F∈Fσ

`

d(H1, H2;F ) · F.

Two examples of this multiplication are

bc

b
× bc

b
= 1

2 · bc b

b
+ 1

2 · bc b

b
and bc

b
× bc

b
= 1 · bc b

b
+ 1 · bc b

b
,

where we have omitted terms with coefficient 0. Note that σ is the identity element
of this operation as H1 × σ = H1. We call Aσ the flag algebra of type σ.

Lastly, we define a way to translate expressions in Aσ to expressions in A. As
mentioned above, σ-flags allow us to count subgraphs containing specific vertices of
a large graph G. Averaging these counts over all possible choices of σ in G, we can
recover standard subgraph counts. In particular, for any σ-flag H and graph G,

Eσ(d(H,Gσ)) = p(σ,H∅) · d(H∅, G),

where the expected value is taken over all σ-flags Gσ whose underlying graph is G,
H∅ is the underlying graph corresponding to H, and p(σ,H∅)) is the probability
that a random injective map from V (σ) to V (H∅) yields a σ-flag isomorphic to H.
For this reason, we define the averaging (or unlabelling) operator J·K : Aσ → A as
the linear operator defined on the elements of H ∈ Fσ by

JHK = p(σ,H∅) ·H∅.

For example, when σ is the one-vertex flag, we have

r
bc b

b
z

= 1 · b b

b
,

r
bc b

b
z

= 2
3 · b b

b
,

r
bc b

b
z

= 1
3 · b b

b
.

Equipped with the advanced language of flag algebras, we can very efficiently
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prove an asymptotic version of Mantel’s Theorem:

Theorem 1.4. If b b

b = 0, then b

b

6 1/2.

Proof. We begin by averaging the expression (1 − 2 bc

b )2, which we know is non-
negative because it is the square of a real number. Using b b

b = 0, we obtain

0 6

s(
1− 2 bc

b )2
{

=
r

1− 4 bc

b
+ 4 bc

b 2
z

=
r

1− 4 bc

b
+ 4 bc b

b
+ 4 bc b

b
z

= 1− 4 b

b
+ 4 b b

b
+ 4

3 b b

b

= 1− 4 b

b
+ 4

3 b b

b
.

By (1.2) with b b

b = 0, we have 2 b

b = 2
3 b b

b + 4
3 b b

b , so the last expression above is
equal to 1− 2 b

b − 2
3 b b

b . Therefore, 2 b

b + 2
3 b b

b

6 1, and in particular, b

b

6 1/2.

In fact, the proof above even tells us something about the structure of extremal
examples—since we derive the inequality 2 b

b + 2
3 b b

b

6 1, any graph G with |G| → ∞
that satisfies b

b = 1/2 and b b

b = 0 must have b b

b = 0. This property is exhibited by
the extremal graph Kn,n, the complete balanced bipartite graph. Proving Mantel’s
Theorem (which concerns finite graphs) from Theorem 1.4 requires a simple blow-up
argument that we briefly detail. Suppose that there exists a graph G with d( b

b

, G) >
1/2 and d( b b

b

, G) = 0. Let V (G) = {v1, . . . , v|G|}. For every integer n > 1, let Gn be
the graph with |G|n vertices organised into |G| equal parts, and whenever vivj is an
edge of G, add all edges between vertices of the i-th and j-th parts of Gn. Then the
sequence (Gn)n∈N has b

b = d( b

b

, G) > 1/2 and b b

b = d( b b

b

, G) = 0, contradicting
Theorem 1.4.

In principle, the above proof of Theorem 1.4 could have been expressed without
the need for the flag algebra framework. Nevertheless, the formalism provides a
succinct way to represent an argument that no doubt is used frequently in extremal
combinatorics. Later, in Section 1.3 and Chapter 3, we will see that it also lends
itself to the search for computerised proofs of combinatorial inequalities. For an
overview of results that have been obtained in this way, see the survey of Razborov
[87], and for a more detailed and formal introduction to flag algebras, we refer the
reader to the PhD theses of Volec [98] and Grzesik [57].

Despite the many results that have been shown using flag algebras, we conclude
this subsection with a brief discussion about its theoretical limitations. Observe
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that the proof of Theorem 1.4 began with an inequality of the form 0 6
q
A2y for

some A ∈ Aσ. More generally, the main source of inequalities on flag algebras is the
following analogue of the Cauchy–Schwarz inequality:

Theorem 1.5 (Razborov [85]). Let σ be a type. If f, g ∈ Aσ then

q
f2y q

g2y > JfgK2 .

In particular,
q
f2y JσK > JfK2, which also implies

q
f2y > 0.

This inequality forms the basis of computational methods in flag algebras. In-
deed, one might hope that every linear inequality that holds between graph densities
can be derived from Theorem 1.5. Along these lines, Lovász and Szegedy [78] proved
that all such inequalities can be approximated arbitrarily well by a sum of Cauchy–
Schwarz inequalities. However, an undecidability result of Hatami and Norine [61]
(see also [5]) later showed that there exist linear graph density inequalities whose
truth cannot be computationally verified.

1.2 Tournaments

As previously stated, graphs model symmetric, binary relations between objects.
However, many real-world phenomena, such as in social choice theory, are more
accurately modelled by anti-symmetric relations [18]. This motivates the study of
directed graphs, i.e., graphs in which edges (called arcs) have a direction. One of
the most well-known classes of directed graphs are tournaments, which are complete
graphs where every edge is given an orientation.

Tournaments were studied as early as the 1930s by Rédei [88], and are so-called
because they can be used to model a round-robin competition between players (rep-
resented by vertices), with the edge between two players directed towards the winner
of their head-to-head match. An example of a tournament on n vertices {v1, . . . , vn}
is the transitive tournament, where an ordering of the vertices is fixed and an arc
is directed from vi to vj whenever vi occurs before vj in the ordering. Another
important example is the random tournament, where every edge is given a random
orientation (with probability 1/2 in each direction).

In Chapter 2, we investigate a problem about tournaments posed by Linial and
Morgenstern [72], who set out to determine the possible densities of cycles of length
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Figure 1.2: An illustration of the random blow up construction with three parts.

4 in a large tournament with a fixed density of cycles of length 3. The (homomor-
phism) density of the (directed) cycle C` of length ` in a tournament T , denoted
by t(C`, T ), is the probability that a random mapping from V (C`) to V (T ) is a
homomorphism (i.e. arcs of C` map to arcs of T ). Note that, for fixed `, a tourna-
ment T on n vertices contains t(C`, T )n`/`+O(n`−1) cycles of length `. In fact, for
` ∈ {3, 4, 5}, the error term is zero as every homomorphism of C` to T is injective.

It was shown in [30, Fact 1] that t(C3, T ) 6 1/8 for every tournament T . Linial
and Morgenstern proved that, for d ∈ [0, 1/8], the asymptotically feasible densities
of 4-cycles in tournaments with t(C3, T ) = d + o(1) form an interval [72, Proof of
Lemma 1.3]. They also showed that t(C4, T ) 6 2t(C3, T )/3, and that this bound is
tight, thus determining the maximum 4-cycle density in a large tournament when
t(C3, T ) is fixed. Attempting to find the correct minimum 4-cycle density, they
proved t(C4, T ) > 12t(C3,T )2

1+16t(C3,T ) , but suspected that the true behaviour was more
complex. They conjectured that the tournament that asymptotically minimises the
density of 4-cycles is a blow-up of a transitive tournament with all but one part of
equal size and one smaller part, with arcs inside each part oriented randomly. (They
call this construction a random blow-up, see Figure 1.2.) If true, the structure of the
extremal examples would parallel the solution of the Erdős–Rademacher problem.
Figure 1.3 visualises the conjectured feasible region of 3-cycle and 4-cycle densities.

The bound t(C4, T ) > 12t(C3,T )2

1+16t(C3,T ) supports the conjecture of Linial and Morgen-
stern when t(C3, T ) = 1/32 + o(1). We further confirm the conjecture in the case
where the proposed extremal examples have two or three parts and provide a full
description of extremal tournaments in the two-part case. In contrast to many of the
recent proofs in this area that use the flag algebra method, our approach is based
on the analysis of the spectrum of adjacency matrices of tournaments. We remark
that descriptions of the extremal graphs for the Erdős–Rademacher problem have
been given by Pikhurko and Razborov [82], and by Liu, Pikhurko, and Staden [73].

Now, we formally define the random blow-up construction from [72], parametrised
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t(C3, T )

t(C4, T )

0 1
8

1
32

1
72

1
12

1
16

1
128

1
432

Figure 1.3: The conjectured region of asymptotically feasible densities of C3 and C4
in tournaments. The lower bound for t(C3, T ) ∈ {1/8, 1/32} and the upper bound
were proved in [72]. The rest of the lower bound is conjectured except for the part
depicted in bold, which we prove.

by z ∈ [0, 1], which will motivate the definition of the function g below. If z = 0,
then the construction is simply a large transitive tournament. Otherwise, we let n
be an integer chosen large with respect to 1/z and define an n-vertex tournament T
as follows. The vertices of T are split into bz−1c+ 1 disjoint parts V1, . . . , Vbz−1c+1

such that bz−1c parts contain exactly bznc vertices and the remaining part contains
the rest of the vertices (note that if z−1 and zn are integers, then the last part
is empty). If two vertices v and v′ respectively belong to distinct parts Vi and Vj

with i < j, then the tournament T contains an edge from v to v′. If v and v′

instead belong to the same part, then the edge between them is oriented from v to
v′ with probability 1/2, i.e., the vertices of each part induce a randomly oriented
tournament (see Figure 1.2 for an illustration with z = 3/8).
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It is easy to see that t(C3, T ) = t(C4, T ) = 0 if z = 0, and that for any other
z the expected value of t(C3, T ) and t(C4, T ) is a constant depending on z only.
Furthermore, if z ∈ (0, 1], it can be shown by writing the number of homomorphisms
from C3 and C4 to T as a sum of indicator variables that t(C3, T ) and t(C4, T ) have
O(n−3) and O(n−4) variance, respectively. Therefore, it follows from Chebyshev’s
inequality that with high probability,

t(C3, T ) = 1
8

(
bz−1cz3 +

(
1− bz−1cz

)3
)

+ o(1) and

t(C4, T ) = 1
16

(
bz−1cz4 +

(
1− bz−1cz

)4
)

+ o(1).

The conjecture of Linial and Morgenstern [72] asserts that the above construction
is asymptotically optimal. In light of this, we write the regime of k parts to denote
the set of values of t(C3, T ) between 1/(8k2) and 1/(8(k−1)2), corresponding to the
range of values for which the above construction has its vertices split into k parts.
In particular, our results focus on the regimes of two and three parts, which refer
to values of t(C3, T ) in the ranges [1/32, 1/8] and [1/72, 1/32], respectively.

To formally state the conjecture, define g : [0, 1/8] → [0, 1] as follows: g(0) = 0
and

g

(1
8

(
bz−1cz3 +

(
1− bz−1cz

)3
))

= 1
16

(
bz−1cz4 +

(
1− bz−1cz

)4
)

for z ∈ (0, 1].

Conjecture 1.6 (Linial and Morgenstern [72, Conjecture 2.2]1). For every tourna-
ment T ,

t (C4, T ) > g (t(C3, T )) + o(1).

Although 0 6 t(C3, T ) 6 1/8 for every tournament T , the conjecture is currently
only known to hold for tournaments with 3-cycle density asymptotically equal to 0,
1/8, or 1/32 [72].

In Chapter 2, we confirm the conjecture for all 3-cycle densities in the range
[1/72, 1/8] (Theorem 2.1). Using a different method, we characterise the asymptotic
structure of extremal tournaments for densities in the range [1/32, 1/8] (Theorem
2.8).

1Linial and Morgenstern phrased their conjecture equivalently in terms of subgraph counts as
opposed to homomorphism densities; the quantities c3 and c4 in their paper are asymptotically
equal to 2t(C3, T ) and 6t(C4, T ), respectively.
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1.3 Permutations

Permutations, which describe the ways in which a sequence of items can be arranged,
are an important object of study in combinatorics, cryptography, and algebra. For-
mally, a permutation of order (or length) k, also known as a k-permutation, is a
bijection π from [k] to [k]. The order of a permutation π is denoted by |π|.

Although there are many ways to represent a k-permutation π, the convention
used in this thesis is to write π = π(1)π(2) . . . π(k). For example, 2143 is the
permutation π : [4] → [4] with π(1) = 2, π(2) = 1, π(3) = 4, and π(4) = 3.
Permutations can also be represented pictorially, as shown in Figure 1.4.

b
b
b

b

b
b b

b

b
b
b

b

b

b
b

b
b
b

Figure 1.4: The six permutations of order 3. From left to right: 123, 132, 213, 231,
312, 321. A dot i-th from the left and j-th from the bottom indicates that π(i) = j.

We now define the natural notion of density in permutations. If A = {a1, . . . , a`}
is a subset of [k] with a1 < · · · < a`, the subpermutation of π induced by A is the
unique permutation π′ of order |A| = ` such that π′(i) < π′(j) if and only if π(ai) <
π(aj) for every i, j ∈ [`]. For example, if π = 521364 and A = {1, 4, 5}, then A picks
out the subsequence 536 from 521364, so the corresponding induced subpermutation
is 213. More briefly, we can say the elements 536 of the permutation 521364 induce
the permutation 213. Subpermutations are also often referred to as patterns. If π
and Π are two permutations with |π| 6 |Π| = n, then the pattern density of π in
Π, which is denoted by d(π,Π), is the probability that the subpermutation of Π
induced by a random |π|-element subset of [n] is π. If |Π| < |π|, then we set d(π,Π)
to be 0. We often refer to pattern density simply as density in this thesis.

A well-known concept in the study of combinatorial densities is that of quasir-
andomness. Informally speaking, a combinatorial object is said to be quasirandom
if it looks like a truly random object of the same kind. The theory of quasirandom
graphs can be traced back to the work of Rödl [89], Thomason [95], and Chung,
Graham, and Wilson [32] from the 1980s. It turned out that if any of a multitude
of properties of random graphs involving subgraph density, edge distribution, and
adjacency matrix eigenvalues are satisfied by a large graph, then all of the prop-
erties are satisfied. Results of a similar kind have been obtained for many other
types of combinatorial objects, such as groups [56], hypergraphs [28, 54, 55, 62, 69],
set systems [29], subsets of integers [31] and tournaments [23,30,35,58].

One example of such a result is by Chung, Graham, and Wilson [32], who showed
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that if the edge density of a large graph G is p and the density of cycles of length
4 is p4 + o(1), then the density of all subgraphs is close to their expected density
in a random graph. This can be seen as the case H = C4 of the forcing conjecture,
which strengthens a famous conjecture of Sidorenko [90]:

Conjecture 1.7 (Skokan and Thoma [91]). Let G be a graph with edge density p,
and let H be a bipartite graph that is not a tree. If d(H,G) = (1 + o(1))p|E(H)|, then
G is quasirandom in the sense that d(F,G) = (1 + o(1))p|E(F )| for all graphs F .

In this section we are concerned with the quasirandomness of permutations as
studied by Cooper [34]. Observe that the expected density of any permutation π

in a large random permutation is 1/|π|!. Based on this key property, we say that a
sequence {Πi}i∈N of permutations is quasirandom if

lim
i→∞

d(π,Πi) = 1
|π|!

for every permutation π.
Our research is motivated by the following question of Graham (see [34, page

141]): Is there an integer k such that a sequence {Πi}i∈N of permutations is quasir-
andom if and only if

lim
i→∞

d(π,Πi) = 1
k!

for every k-permutation π? This question was answered affirmatively by Král’ and
Pikhurko [71], who established that k = 4 has this property. It was later noticed that
this statement is equivalent to a result in statistics on non-parametric independence
tests by Yanagimoto [100] that improved an older result of Hoeffding [65].

Theorem 1.8 (Král’ and Pikhurko [71]). A sequence {Πi}i∈N of permutations is
quasirandom if and only if

lim
i→∞

d(π,Πi) = 1
4!

for every 4-permutation π.

The statement of Theorem 1.8 does not hold for 3-permutations [33, 71]—in
other words, there exists a non-quasirandom sequence of permutations in which the
density of every 3-permutation converges to 1/3!.

Theorem 1.8 says that if the limit densities of all 4-permutations in a sequence
are equal to 1/4!, then the sequence is quasirandom. Hence, it is natural to ask
whether it is possible to replace the set of all 4-permutations in the statement of
Theorem 1.8 with a smaller set. Inspecting the proof given in [71], Zhang [102]
observed that there exists a 16-element set of 4-permutations with this property.
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We identify several 8-element sets that have this property. In fact, the sets S that
we identify have the stronger property that fixing the sum of densities of elements
of S is enough to force quasirandomness; it is not necessary to fix the density of
each individual element of S. In reference to the forcing conjecture of Skokan and
Thoma, we say that a set S of k-permutations is Σ-forcing (“sum-forcing”) if for
every sequence {Πi}i∈N of permutations,

lim
i→∞

∑
π∈S

d(π,Πi) = |S|
k! if and only if {Πi}i∈N is quasirandom.

Our main result is the characterisation of all Σ-forcing sets of 4-permutations (The-
orem 3.1 in Chapter 3). The first of the sets listed in Theorem 3.1 was previously
identified by Bergsma and Dassios [4], who studied the Σ-forcing property in statis-
tics.

1.3.1 Permutation flags

In Section 1.1 we introduced flag algebras for graphs. However, the flag algebra
framework is applicable to a wide range of combinatorial structures, having orig-
inally been expressed by Razborov [85] (primarily a logician and theoretical com-
puter scientist) in model-theoretic terms. As the results appearing in Chapter 3
rely heavily on flag algebras, in this subsection we will develop the flag algebra of
permutations with an emphasis on practical applications. The exposition will be
accompanied by an example of the semidefinite method.

Let F be the set of permutations, and let Fk be the set of permutations of order
k. We first need to define the algebra A. As the construction has essentially already
been given in Section 1.1, and indeed will be given again when we construct the
flag algebra Aτ below, we simply describe A as the quotient of the space RF by
relations of the form

π =
∑
ϕ∈Fk

d(π, ϕ) · ϕ, (1.5)

with multiplication given by

π1 × π2 =
∑
ϕ∈F`

d(π1, π2;ϕ) · ϕ,

where ` = |π1| + |π2| and d(π1, π2;ϕ) is the probability that |π1| randomly chosen
elements of ϕ induce π1 and the remaining |π2| elements induce π2.

Fix a permutation τ for the rest of this section. A τ -rooted permutation is a
permutation with |τ | distinguished elements such that the subpermutation induced
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by these elements is τ ; the distinguished elements are referred to as roots. When
presenting rooted permutations, the roots will be underlined. For example, 123,
123, and 123 are distinct τ -rooted permutations for τ = 12. Define Fτ to be the
set of τ -rooted permutations, Fτk to be the set of τ -rooted permutations of order k,
and RFτ to be the set of formal linear combinations of elements of Fτ with real
coefficients.

For two τ -rooted permutations π and ϕ with |π| 6 |ϕ|, define the density d(π, ϕ)
of π in ϕ to be the probability that a randomly chosen subset of |π| − |τ | non-root
elements of ϕ, together with the root of ϕ, induce π. For example d(123, 126435) =
1/4 because the only τ -rooted subpermutation of 126435 that induces 123 is the
subpermutation corresponding to 245. Furthermore, given τ -rooted permutations
π1, π2, and ϕ with |ϕ| = |π1|+ |π2| − |τ |, we define d(π1, π2;ϕ) to be the probability
that a randomly chosen subset of |π1| − |τ | unrooted elements of ϕ together with
the root of ϕ induce π1, and that the remaining |π2| − |τ | unrooted elements of ϕ
together with the root of ϕ induce π2.

Closely paralleling the exposition for graphs, we observe two important relation-
ships between pattern densities. Namely, given a large τ -rooted background permu-
tation Π and τ -rooted permutations π, π1, and π2 with |π| 6 k, let ` = |π1|+|π2|−|τ |.
Then

π =
∑
ϕ∈F τ

k

d(π, ϕ) · ϕ, and (1.6)

d(π1,Π) · d(π2,Π) = (1 + o(1))
∑
ϕ∈F τ

`

d(π1, π2;ϕ) · d(ϕ,Π),

for any permutation Π with |Π| → ∞. Thus, we can construct a flag algebra Aτ

from the space RFτ of formal linear combinations of elements of Fτ by taking the
quotient of RFτ by relations of the form (1.6) and defining a multiplication operation

π1 × π2 =
∑
ϕ∈F τ

`

d(π1, π2;ϕ) · ϕ. (1.7)

An example of this multiplication is

12× 123 = 1 · 1234 + 2
3 · 1243 + 2

3 · 1324 + 1
3 · 1342 + 1

3 · 1423 + 0 · 1432.

As in the case of graphs, there is also a linear averaging (or unlabelling) operator
J·K : Aτ → A, defined on the elements of π ∈ Fτ by JπK =

(
|π|
|τ |

)−1
·π∅, where π∅ ∈ F

is the underlying (unrooted) permutation corresponding to π. This is because only
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one of the
(
|π|
|τ |

)
choices of |τ | roots in π∅ leads to a permutation isomorphic to π,

unlike in the case of graphs.
We now turn towards the practical aspects of the flag algebra method. An n×n

symmetric real matrix M is said to be positive semidefinite if xTMx > 0 for all
x ∈ Rn, where xT denotes the vector transpose of x. In particular, if Πτ is a τ -rooted
permutation, we can take each entry of x to be a flag density of the form d(ψ,Πτ )
for some τ -rooted permutation ψ. Moreover, averaging the expression xTMx over
τ -flags Πτ with underlying (unrooted) permutation Π preserves non-negativity, so

q
xTMx

y
> 0. (1.8)

Finding positive semidefinite matrices M that generate useful inequalities is the core
of the so-called semidefinite method in flag algebras.

Let us consider a question along the lines of Mantel’s Theorem (Theorem 1.4).
Suppose we wish to find an upper bound on the density of the permutation 12 in
a large permutation Π satisfying d(123,Π) = 0 + o(1). Using our shorthand of
drawing a permutation (see Figure 1.4) to represent its density in Π, our problem is
to maximise b

b given that b
b
b = 0. Applying (1.5) with π = b

b and k = 3, we have

b
b

=
∑
ϕ∈F3

d
(

b
b
, ϕ
)
· ϕ = b

b
b

+ 2
3 b

b
b + 2

3
b
b

b

+ 1
3

b
b

b + 1
3

b

b
b + 0

b
b
b . (1.9)

As b
b
b = 0 and b

b
b + b

b
b + b

b

b + b
b

b + b

b
b + b

b
b = 1, we immediately obtain the

non-trivial bound
b
b
6 max

{2
3 ,

2
3 ,

1
3 ,

1
3 , 0

}
= 2

3 ,

with equality holding if and only if b

b
b + b

b

b = 1. However, it was proved by Albert
et al. [1] that there is no large permutation Π with b

b
b + b

b

b = 1, so the bound
b
b
6 2/3 is not tight. Indeed, if |Π| > 5, the non-asymptotic inequality d(132,Π) +

d(213,Π) < 1 is implied by the Erdős–Szekeres Theorem [45], which states that
every permutation of length at least 5 contains 123 or 321 as a subpermutation.

To improve the bound on b
b , the idea is to use (1.8) to prove an inequality

0 6
∑
ϕ∈F3

αϕ · ϕ,

where αϕ is a (possibly negative) constant depending on ϕ. For instance, let M
be a 4 × 4 positive semidefinite matrix and let xT = ( bc

b
,

b
bc ,

bc
b , b

bc ), where the
unfilled circles represent rooted elements (so bc

b depicts the permutation 12). Then
by (1.7), the product xTMx is a linear combination of 1-rooted permutations of
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length 3. Applying (1.8) to unlabel xTMx and adding the resulting inequality to
(1.9) gives us the bound

b
b
6 max

ϕ∈F3
[d(π, ϕ) + α(ϕ)] .

Therefore, if α(132) and α(213) are both negative, and the other values of α are not
too large, we have a chance to improve the bound on b

b .
Following the template above, a typical application of flag algebras to maximise

the density of a small permutation π (or a linear combination of permutations) in a
large permutation Π under some conditions is as follows:

• Choose some integer k > |π|. Using (1.5), write d(π,Π) as a linear combination
of densities of k-permutations in Π.

• Choose a small permutation τ and an integer ` < |τ | such that 2` − |τ | =
k. Let x be the vector whose entries are the elements of Fτ` (the τ -rooted
permutations of order `).

• Find a positive semidefinite |Fτ` |× |Fτ` | matrix M that minimises the quantity
maxϕ∈Fk [d(π, ϕ) + α(ϕ)], where α(ϕ) is the coefficient of ϕ in

q
xTMx

y
.

Sliačan and Stromquist [93] provide an example of such a proof (with a 4×4 matrix
M) that can be verified by hand. More generally, however, it is not clear how to
guess the matrix M . The problem of finding the optimal matrix is an example of a
semidefinite program (SDP). Thankfully, the literature on the field of semidefinite
programming is extensive (see [52] for an overview). Several solvers such as CSDP
[10] and SDPA [50] pre-date the development of flag algebras, and there are also
software packages customised for use in flag algebras, including Flagmatic 2.0 [97]
and Permpack [92].

1.4 Trees

An important class of graphs is the set of trees. A tree is a connected graph that
contains no cycles, or equivalently, a graph in which there is a unique path between
every pair of vertices. Trees have been studied since at least 1857 [24] and are
of fundamental importance as a data structure in computer science and algorithm
design [68].

Trees are examples of sparse graphs. While the distinction between dense and
sparse graphs is, to some degree, a matter of perspective, trees fall firmly into the
latter class. It is easily shown by induction that every tree on n vertices has exactly
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n − 1 edges. In particular, trees have o(n2) edges and the density of edges in T

converges to 0. Therefore, when we randomly sample k vertices from a tree T for
some fixed k, we expect to see o(1) edges in the subgraph of T induced by these k
vertices. This implies that the limit density of the empty graph Kn in T is 1, and
the limit density of every other graph in T is 0. In particular, every sequence of
trees converges to the graphon that is zero everywhere.

Clearly, the standard definition of subgraph density, which normalises subgraph
counts by

(n
k

)
, does not capture any meaningful information about trees. There

have been several attempts to address this problem. On the side of developing a
general limit theory for sparse graphs, multiple competing definitions of convergence
exist, although each has its drawbacks. Perhaps the simplest of these notions is that
of Benjamini–Schramm convergence [3], which samples a random vertex v from a
large, sparse graph G and looks at the distribution of subgraphs induced by the
set of vertices at distance at most d from v. Research in the area of sparse limits
primarily focusses on understanding the different notions of convergence and their
relationships to each other, see [9, 11,12,42,60,80,81].

Regarding the study of graph densities in the class of trees specifically, Bubeck
and Linial [22] defined an alternative normalisation of subgraph counts as follows.
Let T be a tree. We denote by Zk(T ) the number of k-vertex subtrees in T . An
embedding of a tree S in T is a subtree of T isomorphic to S. Note that in our usage,
an embedding can be associated with (possibly multiple) injective homomorphisms
from S to T , and all injective homomorphisms from S to T with the same image are
associated with a single embedding. The density of a k-vertex tree S in T , denoted
by d(S, T ), is the number of embeddings of S in T divided by Zk(T ); if the number
of vertices of T is less than k, we set d(S, T ) = 0.

From here, the theory of tree profiles can be developed. The k-profile of a tree
T , denoted by p(k)(T ), is the vector whose entries are indexed by the set of non-
isomorphic k-vertex trees, where the entry of p(k)(T ) indexed by a tree S is equal
to d(S, T ). Note that p(k)(T ) is the zero vector when the number of vertices of T is
less than k, and the entries of p(k)(T ) sum to 1 when the number of vertices of T
is at least k. We say that a sequence (Tn)n∈N of trees is convergent if the k-profiles
p(k)(Tn) converge entrywise for every k ∈ N. As p(k)(Tn) is a [0, 1]-valued vector and
any countable product of sequentially compact spaces is itself sequentially compact,
every sequence of trees has a convergent subsequence.

Let Nk be the number of non-isomorphic k-vertex trees. The main result of [22]
is that for every integer k, the limit set of k-profiles of trees (seen as a subset of
[0, 1]Nk) is convex. This is in stark contrast to the case of graph profiles, where
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not only is the limit set of k-profiles non-convex, describing its convex hull is not
computationally feasible [61].

It is natural to check whether existing questions about graph densities have an
analogue in the case of trees. For example, perhaps the most simple question one
can ask about limit densities of graphs is:

What is the maximum possible density of a fixed graph H in a large graph G?

This maximum is called the inducibility of H, and was introduced by Pippenger
and Golumbic [83]; also see [20, 46, 59, 63, 64, 70, 99, 101] for graph inducibility and
[1, 2, 84, 93] for the equivalent notion in permutations. We remark that the dual
problem of finding the minimum possible density of H in a large graph G is closely
related to the influential conjecture of Sidorenko [90] mentioned in Section 1.3.
Mimicking the literature on graphs, the inducibility of a tree S is defined as the
maximum limit density of S in a convergent sequence of trees. In other words, the
inducibility of S is equal to

lim sup
n→∞

max{d(S, T ) : T is an n-vertex tree}.

We note that the definition of tree inducibility used here is that of Bubeck and Linial
[22], which differs slightly from the definition used in [36,37,40,41].

Clearly, paths have inducibility 1 since every subtree of a path is a path. Sim-
ilarly, stars have inducibility 1 since every subtree of a star is a star. The second
result proved by Bubeck and Linial in [22] is that paths and stars are the only trees
with inducibility 1. Motivated by this result, they asked [22, Problem 4] whether
there are additional trees with inducibility arbitrarily close to 1, or if not, whether
there are infinitely many trees with inducibility bounded away from 0 by a fixed
constant:

• Does there exist ε > 0 such that the inducibility of every tree that is neither
a star nor a path is at most 1− ε?

• Does there exist ε > 0 such that there are infinitely many trees with inducibil-
ity at least ε?

We answer both these questions affirmatively (Theorems 4.1 and 4.2 in Chapter 4).
Both theorems give explicit values for ε, although we make no attempt to optimise
these values.

Another property related to profiles that holds for general graphs is the existence
of universal graphs, that is, large graphs in which the limit density of every graph
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is positive. It is easily shown that Gn,p is an example of a universal graph. Bubeck
and Linial [22, Problem 5] asked whether there exist universal trees:

• Does there exist a convergent sequence (Tn)n∈N of trees in which the limit
density lim

n→∞
d(S, Tn) of every tree S is positive?

Our final result is an explicit construction of such a sequence of trees (Theorem 4.3).
Regarding the state of the other problems appearing in [22], Bubeck, Edwards,

Mania and Supko [21] and Czabarka, Székely and Wagner [38] independently re-
solved [22, Problem 3] by showing that if the limit density of a k-vertex path Pk

in a (convergent) sequence of trees equals 0, then the limit density of the k-vertex
star Sk equals 1. Further, results on 5-profiles of trees can be found in [21], where
additional questions raised in [22, Problems 1 and 7] have been answered.
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Chapter 2

Cycles in Tournaments

2.1 Overview

As discussed in Section 1.3, Linial and Morgenstern [72] conjectured that a par-
ticular construction minimises the density of 4-cycles among all tournaments with
a fixed density of 3-cycles. In this chapter, we confirm the conjecture when the
homomorphism density of 3-cycles is at least 1/72:

Theorem 2.1. Let T be a tournament with t(C3, T ) > 1/72. Then t(C4, T ) >

g(t(C3, T )) + o(1).

This result is equivalent to Theorem 2.14. Additionally, when t(C3, T ) > 1/32,
Theorem 2.8 fully characterises the extremal tournaments. The proofs of both the-
orems rely on spectral analysis of adjacency matrices of tournaments.

2.2 Preliminaries

In this section, we introduce the notation used throughout the chapter, as well as the
notions of tournament matrices and tournament limits. The set of integers 1, . . . , n
is denoted by [n]. Some of the matrices that we consider have complex eigenvalues
and the complex unit will be denoted by ι. If A is a matrix (or a vector), then we
write AT for its transpose and A∗ for its conjugate transpose; in particular, if A is
real, then AT = A∗. The trace of a square matrix A is the sum of the entries in
its diagonal and is denoted by TrA. We let 〈· | ·〉 denote the standard inner (dot)
product on Rn. We use Jn to denote the square matrix of order n such that each
entry of Jn is equal to one; if n is clear from the context, we will omit the subscript.
Note that Jn has one eigenvalue equal to n and the remaining n − 1 eigenvalues
are equal to zero. The n-dimensional column vector with all entries equal to one is
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denoted by ~jn and we again omit the subscript when n is clear from the context.
Note that Jn = ~jn~j

T
n .

2.2.1 Tournament matrices

We say that a square matrix A of order n is a tournament matrix if A is non-
negative and A + AT = J; in particular, if A is a tournament matrix, then each
diagonal entry of A is equal to 1/2. Every n-vertex tournament T can be associated
with a tournament matrix A of order n, which we refer to as the adjacency matrix
of T , in the following way. Each diagonal entry A is equal to 1/2 and, for i 6= j,
the entry of A in the i-th row and the j-th column (denoted Ai,j) is equal to 1 if T
contains an arc from the i-th vertex to the j-th vertex, and it is equal to 0 otherwise.
The following proposition readily follows.

Proposition 2.2. Let T be a tournament on n vertices, A be the adjacency matrix
of T and ` > 3. The number of homomorphisms of C` to T is TrA` +O(n`−1).

Recall that the trace of a matrix is equal to the sum of its eigenvalues and that
the eigenvalues of the `-th power of a matrix are the `-th powers of its eigenvalues.
In view of Proposition 2.2, for ` > 1, we define σ`(A) for a square matrix A of order
n to be

σ`(A) = 1
n`

n∑
i=1

λ`i = 1
n`

TrA`

where λ1, . . . , λn ∈ C are the eigenvalues of A. Note that the normalisation of the
sum is chosen in such a way that σ1(A) = 1/2 for every tournament matrix A.

Next, we argue that Conjecture 1.6 is equivalent to the following.

Conjecture 2.3. If A is a tournament matrix, then σ4(A) > g(σ3(A)).

Indeed, Conjecture 2.3 implies Conjecture 1.6 by Proposition 2.2. In the other
direction, suppose that there exists a tournament matrix A of order n such that
σ4(A) < g(σ3(A)). We consider the following (random) tournament T with k · n
vertices, k ∈ N: the vertices of T are split into n sets V1, . . . , Vn, each containing k
vertices, and a vertex v ∈ Vi is joined by an arc to a vertex v′ ∈ Vj with probability
Ai,j ; note that v′ is joined by an arc to v with probability Aj,i = 1 − Ai,j , i.e., the
tournament T is well defined. Since n is fixed, for ` ∈ {3, 4} and large k, the number
of homomorphisms from C` to T is σ`(A)(nk)` +O(k`−1) with high probability and
so Conjecture 1.6 fails for t(C3, T ) ≈ σ3(A).

We conclude this subsection by establishing the following lemma. A similar result
has been proved by Brauer and Gentry [19], but for a slightly different definition of
a tournament matrix.
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Lemma 2.4. If A is a tournament matrix, then every eigenvalue of A has non-
negative real part.

Proof. Let λ be any eigenvalue of A and let v be a corresponding eigenvector. Ob-
serve that

0 6 (~jT v)(~jT v) = v∗Jv = v∗(A+AT )v = v∗(Av) + (v∗AT )v

= v∗(λ+ λ)v = (λ+ λ)v∗v .

Since v∗v is a non-negative real number, it follows that λ+λ is a non-negative real.
In particular, the real part of λ is non-negative.

2.2.2 Tournament limits

As we have seen in Section 1.1, the theory of graph limits provides analytic tools to
represent and analyse large graphs. In an analogous way, one can develop a limit
theory for tournaments, in which the foundational results for graphons translate to
similar statements for tournament limits with essentially the same proofs. Below,
we define tournament limits and outline some of the basic results that we will use.

A tournament limit is a measurable function W : [0, 1]2 → [0, 1] such that
W (x, y) +W (y, x) = 1 for all (x, y) ∈ [0, 1]2. One can define the density of the cycle
C` in W as follows:

t(C`,W ) =
∫
x1,...,x`∈[0,1]

W (x1, x2)W (x2, x3) · · ·W (x`−1, x`)W (x`, x1) dx1 · · ·x` .

Note that any n-dimensional tournament matrix A can be represented by a tour-
nament limit WA by dividing [0, 1] into sets I1, . . . , In of measure 1/n and setting
W equal to Ai,j on the set Ii × Ij . It is easily observed that t(C`,WA) is precisely
σ`(A). The following proposition links densities of cycles in tournament limits and
in tournaments.

Proposition 2.5. The following two statements are equivalent for every sequence
(s`)`>3 of non-negative reals:

• There exists a tournament limit W such that t(C`,W ) = s` for every ` > 3.

• There exists a sequence (Ti)i∈N of tournaments with increasing orders such
that

lim
i→∞

t(C`, Ti) = s`

for every ` > 3.
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The first statement easily implies the second by letting Ti be a W -random tour-
nament of order i; that is, we let x1, . . . , xi be independent uniformly random points
of [0, 1] and join the ith vertex to the jth with probability W (xi, xj). For the other
direction, the tournament limit W can be constructed by adapting one of the ex-
isting arguments in the graph case, e.g., the argument of Lovász and Szegedy [76]
based on weak regularity that was briefly discussed in Subsection 1.1.1. In light of
Proposition 2.5, Conjecture 1.6 is equivalent to the following.

Conjecture 2.6. For every tournament limit W ,

t(C4,W ) > g(t(C3,W )).

The notion of regularity decompositions of graphs readily extends to tourna-
ments. We present here the notion of weak regular partitions introduced by Frieze
and Kannan in [49] adapted to the setting of tournament limits. We use |X| to
denote the measure of a measurable subset X of [0, 1]. Given a tournament limit
W and ε ∈ (0, 1), a partition Z1, . . . , Zn of [0, 1] into sets of measure 1/n is weak
ε-regular for W if∣∣∣∣∣∣

∫
(x,y)∈X×Y

W (x, y) dx dy −
n∑

i,j=1
Ai,j · |Zi ∩X| · |Zj ∩ Y |

∣∣∣∣∣∣ 6 ε

for all measurable subsets X and Y of [0, 1], where A is the tournament matrix
defined by

Ai,j =
∫

(x,y)∈Zi×Zj W (x, y) dx dy
|Zi| · |Zj |

.

We say that a tournament limit W ′ is a weak ε-regular approximation of W if
there exists a weak ε-regular partition {Z1, . . . , Zn} such that W ′(x, y) = Ai,j for
(x, y) ∈ Zi × Zj , i, j ∈ [n], where A is the tournament matrix associated with the
partition.

The results of Frieze and Kannan [49] adapted to the setting of tournament
limits and the corresponding arguments for graph limits [76] yield the following:
for every tournament limit W and k > 2, there exists a weak 1/k-regular partition
{Zk,1, . . . , Zk,nk} with the following properties: (a) nk is bounded by a function of k,
and (b) the partitions are refining in the sense that, for every k < k′ and i′ ∈ [nk′ ],
the set Zk′,i′ is contained in Zk,i for some i ∈ [nk]. It can be shown analogously to
the graph case that the corresponding weak 1/k-regular approximations converge to
W in L1. In particular,

lim
k→∞

σ`(Ak) = t(C`,W )
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for every ` > 3, where, for k ∈ N, Ak is the tournament matrix associated with the
partition Zk,1, . . . , Zk,nk .

We conclude with a proposition on the density of C3 in a weak regular approxi-
mation of a tournament limit. The proof of the proposition is also valid in a more
general setting of step approximations of tournament limits, which need not be weak
regular, however, we prefer stating the proposition in the restricted setting of weak
regular approximations to avoid introducing additional notation not needed for our
exposition.

Proposition 2.7. Let W be a tournament limit and W ′ a weak ε-regular approxi-
mation of W . Then t(C3,W ) 6 t(C3,W

′).

Proof. We begin by showing that any tournament limit U satisfies

t(C3, U) = 1
2 −

3
2

∫
x∈[0,1]

(∫
y∈[0,1]

U(x, y) dy
)2

dx . (2.1)

To do this, we derive two identities based on the symmetry of variables x, y and z.
Firstly,

1 =
∫
x,y,z∈[0,1]

(U(x, y) + U(y, x))(U(x, z) + U(z, x))(U(y, z) + U(z, y)) dx dy dz

= 2
∫
x,y,z∈[0,1]

U(x, y)U(y, z)U(z, x) dx dy dz

+ 6
∫
x,y,z∈[0,1]

U(x, y)U(y, z)U(x, z) dx dy dz

= 2t(C3, U) + 6
∫
x,y,z∈[0,1]

U(x, y)U(y, z)U(x, z) dx dy dz , (2.2)

and similarly,

∫
x∈[0,1]

(∫
y∈[0,1]

U(x, y) dy
)2

dx

=
∫
x,y,z∈[0,1]

U(x, y)U(x, z) dx dy dz

=
∫
x,y,z∈[0,1]

U(x, y)U(x, z)(U(y, z) + U(z, y)) dx dy dz

= 2
∫
x,y,z∈[0,1]

U(x, y)U(x, z)U(y, z) dx dy dz . (2.3)

Noticing that the integrals on the last lines in (2.2) and (2.3) are the same, the equal-
ity (2.1) is obtained. Hence, the inequality from the statement of the proposition is
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equivalent to ∫
x∈[0,1]

f ′(x)2 dx 6
∫
x∈[0,1]

f(x)2 dx , (2.4)

where for brevity we have set

f ′(x) =
∫
y∈[0,1]

W ′(x, y) dy and f(x) =
∫
y∈[0,1]

W (x, y) dy .

Since
f ′(x) = 1

|Zi|

∫
x′∈Zi

f(x′) dx′

for every x in a part Zi of the weak ε-regular partition defining the tournament limit
W ′,

∫
x∈Zi

f ′(x)2 dx = |Zi|
( 1
|Zi|

∫
x′∈Zi

f(x′) dx′
)2

6
∫
x∈Zi

f(x)2 dx , (2.5)

where the last line follows from the Cauchy–Schwarz inequality. Summing the in-
equalities obtained from applying (2.5) to each Zi yields (2.4).

2.3 Regime of two parts

Our goal in this section is to prove Conjecture 2.3 in the case that σ3(A) > 1/32,
as well as describe the tournament matrices which achieve equality. We then apply
this result to characterise the extremal tournament limits for Conjecture 2.6 for
t(C3,W ) > 1/32. Throughout the proof of the next theorem, we will frequently
use the property that the trace of a product of matrices is invariant under “cyclic
permutations”, i.e., Tr (M1M2 · · ·Mk) = Tr (M2 · · ·MkM1).

Theorem 2.8. Let A be a tournament matrix of order n. If σ3(A) > 1/32, then
σ4(A) > g(σ3(A)) and equality holds if and only if there exists a vector z ∈ Rn such
that Ai,j = 1/2 + zi − zj for i, j ∈ [n].

Proof. Fix a tournament matrix A of order n. Let B = J − 2A. Note that B is
a skew-symmetric matrix, i.e., B = −BT . It follows (see, e.g., [51, p. 293]) that
B can be written as B = ULUT where the columns v1, v2, . . . , vn of U form an
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orthonormal basis of Rn and L has the form

L =



0 λ1n 0 0 · · · 0 0
−λ1n 0 0 0 · · · 0 0

0 0 0 λ2n · · · 0 0
0 0 −λ2n 0 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 0 λkn

0 0 0 0 · · · −λkn 0


if n is even, and

L =



0 λ1n 0 0 · · · 0 0 0
−λ1n 0 0 0 · · · 0 0 0

0 0 0 λ2n · · · 0 0 0
0 0 −λ2n 0 · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · 0 λkn 0
0 0 0 0 · · · −λkn 0 0
0 0 0 0 · · · 0 0 0


otherwise, where k = bn/2c and λ1, . . . , λk are real numbers. (Note that they are not
the eigenvalues of B.) Since replacing v2i−1 and v2i with v2i−1 cosβ + v2i sin β and
v2i cosβ−v2i−1 sin β, respectively, does not change the matrix B (this corresponds to
rotating the basis inside the plane spanned by v2i−1 and v2i), we can assume that the
vectors v2, v4, . . . , v2k are orthogonal to the vector ~j. Set αi = cos−1

〈
v2i−1 | n−1/2~j

〉
for i ∈ [k], and additionally set αk+1 = cos−1

〈
v2k+1 | n−1/2~j

〉
if n is odd.

We next examine TrA3 and TrA4 in terms of J and B. We start with the trace
of A3:

8 TrA3 = Tr(J−B)3 = Tr J3 − 3 Tr J2B + 3 Tr JB2 − TrB3 .

Since both B and B3 are skew-symmetric, it follows that Tr J2B = 0 and TrB3 = 0.
We next analyse the term Tr JB2. Since v1, . . . , vn are mutually orthogonal and
v2, v4, . . . , v2k are orthogonal to ~j, we have

Tr JB2 = 1
n

Tr J2B2 = 1
n

Tr JB2J = 1
n

Tr J(ULUT )2J = 1
n

Tr JUL2UT J

= −n2
k∑
i=1

λ2
i

〈
v2i−1 | ~j

〉2
= −n3

k∑
i=1

λ2
i cos2 αi .
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Hence, we obtain

8σ3(A) = 1− 3
k∑
i=1

λ2
i cos2 αi. (2.6)

Similarly, we can express the trace of A4 as follows:

16 TrA4 = Tr J4 − 4 Tr J3B + 4 Tr J2B2 + 2 Tr JBJB − 4 Tr JB3 + TrB4 .

Since B and B3 are skew-symmetric, it follows that Tr J3B = 0, Tr JBJB = 0 and
Tr JB3 = 0. Also, TrB4 = 2n4∑k

i=1 λ
4
i by the cyclic property. Consequently,

16σ4(A) = 1− 4
k∑
i=1

λ2
i cos2 αi + 2

k∑
i=1

λ4
i . (2.7)

Recall that, if σ3(A) ∈ [1/32, 1/8], then g(σ3(A)) = 1
16(z4 + (1 − z)4) where z ∈

[1/2, 1] such that σ3(A) = 1
8(z3 + (1 − z)3). So, for σ3(A) in the considered range,

we have
8σ3(A) = z3 + (1− z)3 = 1− 3(z − z2) .

By comparing this equation to (2.6), it must be the case that

z − z2 =
k∑
i=1

λ2
i cos2 αi . (2.8)

It follows that

16g(σ3(A)) = z4 + (1− z)4 = 1− 4z + 6z2 − 4z3 + 2z4

= 1− 4(z − z2) + 2(z − z2)2

= 1− 4
k∑
i=1

λ2
i cos2 αi + 2

(
k∑
i=1

λ2
i cos2 αi

)2

.

Combining this with (2.7), we see that the inequality σ4(A) > g(σ3(A)) holds if and
only if

k∑
i=1

λ4
i >

(
k∑
i=1

λ2
i cos2 αi

)2

, (2.9)

and σ4(A) = g(σ3(A)) if and only if (2.9) holds with equality.
Since v1, . . . , vn form an orthonormal basis of Rn,

n∑
i=1

〈
vi | n−1/2~j

〉2
=
〈
n−1/2~j | n−1/2~j

〉2
= 1.

33



Thus, ∑k
i=1 cos2 αi = 1 if n is even and ∑k+1

i=1 cos2 αi = 1 otherwise. In either case,∑k
i=1 cos4 αi 6 1 and the equality holds if and only if exactly one of the values of

α1, . . . , αk is equal to zero and the remainder are equal to π/2. Since the Cauchy–
Schwarz inequality implies that

(
k∑
i=1

λ2
i cos2 αi

)2

6

(
k∑
i=1

λ4
i

)
·
(

k∑
i=1

cos4 αi

)
, (2.10)

the inequality (2.9) indeed holds.
Now, assume that the inequality (2.9) holds with equality. As we have seen, this

can only occur if exactly one of the αi are zero and the rest are π/2. By symmetry,
we can assume that α1 = 0 and αi = π/2 for i > 1. It follows that λ2 = · · · = λk = 0,
and v1 = n−1/2~j. Hence, as B = ULUT , the entry Bi,j is equal to λ1n

1/2(v2,j − v2,i)
for all i, j ∈ [n]. It follows that, for σ3(A) ∈ [1/32, 1/8], if σ4(A) = g(σ3(A)), then
Ai,j = 1/2 + zi − zj where zi = λ1n

1/2v2,i/2. Conversely, any matrix of this form
satisfies (2.9) with equality and therefore satisfies σ4(A) = g(σ3(A)).

Reinterpreting Theorem 2.8 in the language of tournament limits, we obtain the
following corollary.

Corollary 2.9. Let W be a tournament limit. If t(C3,W ) > 1/32, then t(C4,W ) >
g(t(C3,W )) and the equality holds if and only if there exists a measurable function
f : [0, 1]→ [0, 1/2] such that W (x, y) = 1/2 + f(x)− f(y) for almost every (x, y) ∈
[0, 1]2.

Proof. Let (Wk)k∈N be a sequence of refining weak 1/k-regular approximations of
W and let Ak, k ∈ N, be the corresponding tournament matrices. Since t(C3,W ) >
1/32, we obtain σ3(Ak) = t(C3,Wk) > 1/32 by Proposition 2.7. Thus, by Theo-
rem 2.8, we have

t(C4,Wk) = σ4(Ak) > g (σ3(Ak)) = g(t(C3,Wk)) .

and so t(C4,W ) > g(t(C3,W )) by the fact that (Wk)k∈N converges to W in L1.
To prove the structure of W in the case of equality, assume that t(C4,W ) =

g(t(C3,W )). Let nk be the order of Ak for k ∈ N, and let λk,1, . . . , λk,bnk/2c,
αk,1, . . . , αk,bnk/2c and Bk be defined as in the proof of Theorem 2.8 (we may assume
that nk is even and so αk,bnk/2c+1 is not defined). The analysis of the case of equality
in the proof of Theorem 2.8 implies that

lim
k→∞

λk,1 =

√
1− 8t(C3,W )

3 and lim
k→∞

αk,1 = 0 . (2.11)
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Let {Zk,1, . . . , Zk,nk} be the partition of the interval [0, 1] corresponding to Wk, and
let wk = (wk,1, . . . , wk,nk) be the vector v2 as defined in the proof of Theorem 2.8.
Define a function fk : [0, 1]→ R by setting

fk(x) = λk,1n
1/2
k

2

(
wk,i −

∑nk
i′=1wk,i′

nk

)

where i ∈ [nk] such that x ∈ Zk,i. It follows from (2.11) that

lim
k→∞

∫
x,y∈[0,1]

|Wk(x, y)− (1/2 + fk(x)− fk(y))| dx dy = 0 . (2.12)

Also observe that the definition of fk implies that∫
x∈[0,1]

fk(x) = 0 . (2.13)

We next define functions f̃k : [0, 1]→ R by setting

f̃k(x) = 1
|Zk,i|

∫
(x′,y)∈Zk,i×[0,1]

W (x′, y) dx′ dy − 1
2

for x ∈ Zk,i, i ∈ [nk]. Note that

f̃k(x) =
∫
y∈[0,1]

Wk(x, y) dy − 1
2 . (2.14)

In particular, f̃k(x) ∈ [−1/2, 1/2] for all x ∈ [0, 1]. Observe that the just defined
functions satisfy that ∫

x∈Zk,i
f̃k′(x) dx =

∫
x∈Zk,i

f̃k(x) dx

for every k ∈ N, i ∈ [nk] and k′ > k. In particular, the sequence (f̃k)k∈N forms
a martingale when viewed as a sequence of random variables on [0, 1]. So, Doob’s
Martingale Convergence Theorem yields that the sequence (f̃k)k∈N L1-converges to
a function f̃ : [0, 1]→ [−1/2, 1/2].

We derive by applying the L1-convergence of (f̃k)k∈N, (2.14), (2.13), the triangle

35



inequality and (2.12) (in this order) that

lim
k→∞

∫
x∈[0,1]

∣∣∣f̃(x)− fk(x)
∣∣∣ dx

= lim
k→∞

∫
x∈[0,1]

∣∣∣f̃k(x)− fk(x)
∣∣∣ dx

= lim
k→∞

∫
x∈[0,1]

∣∣∣∣∣
∫
y∈[0,1]

Wk(x, y) dy − 1/2− fk(x)
∣∣∣∣∣ dx

= lim
k→∞

∫
x∈[0,1]

∣∣∣∣∣
∫
y∈[0,1]

Wk(x, y)− (1/2 + fk(x)− fk(y)) dy
∣∣∣∣∣ dx

6 lim
k→∞

∫
x,y∈[0,1]

|Wk(x, y)− (1/2 + fk(x)− fk(y))| dx dy = 0 .

This implies that the sequence (fk)k∈N also L1-converges to the function f̃ . It
follows from (2.12) and the L1-convergence of Wk to W that W (x, y) is equal to
1/2 + f̃(x)− f̃(y) for almost every (x, y) ∈ [0, 1]2.

It remains to shift f̃ so that its range lies in [0, 1/2]. Let z0 be the infimum
of those values z such that the measure of f̃−1 ((−∞, z]) is positive, and define a
function f : [0, 1]→ [0, 1/2] as follows:

f(x) =

f̃(x)− z0 if f̃(x) ∈ [z0, z0 + 1/2], and

0 otherwise.

Since W (x, y) = 1/2+f̃(x)−f̃(y) for almost every (x, y) ∈ [0, 1]2 and W (x, y) ∈ [0, 1]
for all (x, y) ∈ [0, 1]2, the set of x ∈ [0, 1] such that the second case in the definition
of f(x) applies has measure zero. It follows that W (x, y) = 1/2 + f(x) − f(y) for
almost every (x, y) ∈ [0, 1]2 as desired.

2.4 Regime of three parts

Having confirmed Conjecture 1.6 in the regime of two parts, we now turn towards
the next case, namely 1/72 6 σ3(A) 6 1/32 (Theorem 2.14). Indeed, the proof
of Theorem 2.14 will apply to both regimes, although it does not characterise the
extremal tournaments.

We start with analysing the following optimisation problem, which we refer to
as the problem Spectrum. This optimisation problem is obtained from constraints
that (normalised) eigenvalues of a non-negative matrix of order n with trace n/2
must satisfy. We state this formally in Lemma 2.10, which follows the statement of
the problem.
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Optimisation problem Spectrum
Parameters: reals s3 ∈ [0, 1/8] and ρ ∈ [0, 1/2]

non-negative integers k and ` such that k + ` > 1
Variables: real numbers r1, . . . , rk, a1, . . . , a` and b1, . . . , b`

Constraints: 0 6 r1, . . . , rk 6 ρ

0 6 a1, . . . , a`

ρ+
k∑
i=1

ri + 2 ∑̀
i=1

ai = 1/2

ρ3 +
k∑
i=1

r3
i + 2 ∑̀

i=1

(
a3
i − 3aib2

i

)
= s3

Objective: minimise ρ4 +
k∑
i=1

r4
i + 2 ∑̀

i=1

(
a4
i − 6a2

i b
2
i + b4

i

)
Lemma 2.10. Let A be a tournament matrix of order n with spectral radius equal
to ρ · n. Let k be one less than the number of real eigenvalues of A (counting
multiplicities) and ` the number of conjugate pairs of complex eigenvalues (again
counting multiplicities). Further, let ρ ·n, r1 ·n, . . . , rk ·n be the k+1 real eigenvalues
and (a1 ± ιb1)n, . . . , (a` ± ιb`)n be the ` pairs of complex eigenvalues. Then the
numbers r1, . . . , rk, a1, . . . , a` and b1, . . . , b` satisfy all constraints in the optimisation
problem Spectrum for the parameters s3 = σ3(A), ρ, k and `.

Proof. Since ρ · n is the spectral radius of A, we have ri 6 ρ for every i ∈ [k] and
ρ · n is an eigenvalue of A by the Perron–Frobenius theorem. Since the real part of
every eigenvalue of A is non-negative by Lemma 2.4, all r1, . . . , rk and a1, . . . , a` are
non-negative. Since the diagonal entries of A are all 1/2 and trace of A is equal to
the sum of its eigenvalues, we have

ρn+
k∑
i=1

rin+ 2
∑̀
i=1

ain = n/2.

Similarly, the trace of A3 gives us

s3n
3 = σ3(A)n3 = ρ3n3 +

k∑
i=1

r3
i n

3 + 2
∑̀
i=1

(
a3
i − 3aib2

i

)
n3.

Thus, we conclude that the numbers r1, . . . , rk, a1, . . . , a` and b1, . . . , b` satisfy all
constraints in the optimisation problem Spectrum.

Note that the objective function of Spectrum is precisely σ4(A). Next, we
analyse the structure of optimal solutions of the optimisation problem Spectrum.
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Lemma 2.11. Let r1, . . . , rk, a1, . . . , a` and b1, . . . , b` be an optimal solution of the
optimisation problem Spectrum with the parameters s3, ρ, k and `. Then, at least
one of the following two cases must hold:

• There exist positive reals r′ and r′′ such that r1, . . . , rk ∈ {0, r′, r′′, ρ} and
(a1, b1), . . . , (a`, b`) ∈ {(0, 0), (r′, 0), (r′′, 0)}.

• There exist reals a′ and b′ 6= 0 such that r1, . . . , rk ∈ {0, ρ} and
(a1, b1), . . . , (a`, b`) ∈ {(0, 0), (a′, b′), (a′,−b′)}.

Proof. The method of Lagrange multipliers implies that the gradient of the objective
function is a linear combination of the gradient of the two equality constraints when
restricted to the entries indexed by ri /∈ {0, ρ}, by ai 6= 0 and bi 6= 0, i.e., when we
are not on the boundary of the feasible set. In particular, the rank of the matrix M
with rows being the described restrictions of the three gradient vectors is at most
two.

We first analyse the case that one of the numbers b1, . . . , b` is non-zero. Our aim
is to show that the second case described in the statement of the lemma applies.
By symmetry, we can assume that b1 6= 0. Also note the following holds for every
i ∈ [`]: if bi 6= 0, then ai 6= 0. Indeed, if ai = 0 and bi 6= 0, then setting bi = 0 does
not affect the constraints and decreases the objective function, which contradicts
that the solution is optimal. It follows that a1 is positive.

Suppose that there exist ri such that 0 < ri < ρ. The restriction of the matrix
M to the columns corresponding to a1, b1 and ri is the following.

2 0 1
6a2

1 − 6b2
1 −12a1b1 3r2

i

8a3
1 − 24a1b

2
1 8b3

1 − 24a2
1b1 4r3

i

 (2.15)

Dividing the first column by 2 and the second by 4b1, dividing the second row by
3 and the third by 2, and subtracting the last column from the first one yields the
following matrix, which has the same rank.

0 0 1
a2

1 − b2
1 − r2

i −a1 r2
i

2(a3
1 − 3a1b

2
1 − r3

i ) b2
1 − 3a2

1 2r3
i


This matrix is not full rank if and only if the determinant of its submatrix formed
by the intersection of the second and third rows with the first and second columns,
which is equal to

−(a2
1 + b2

1)2 + (3a2
1 − b2

1)r2
i − 2a1r

3
i ,
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is zero. However, this determinant can be rewritten as

−(2a1ri + a2
1 + b2

1)
(
(ri − a1)2 + b2

1

)
,

which is negative since a1 > 0 and b1 6= 0. It follows that ri ∈ {0, ρ} for all i ∈ [k].
Further suppose that there exists an index i ∈ [`] for which (ai, bi) /∈ {(0, 0),

(a1, b1), (a1,−b1)}. If bi = 0, then the restriction of the matrix M to the columns
corresponding to a1, b1 and ai is the same as the restriction of the matrix M consid-
ered in the previous paragraph with ri replaced by ai and the corresponding column
multiplied by two. In particular, the restriction cannot have rank two in this case.
Hence, we can assume that bi 6= 0 and so ai > 0 (the argument is the same as
when we argued that a1 > 0). The restriction of the matrix M to the columns
corresponding to a1, b1, ai and bi is the following.

2 0 2 0
6a2

1 − 6b2
1 −12a1b1 6a2

i − 6b2
i −12aibi

8a3
1 − 24a1b

2
1 8b3

1 − 24a2
1b1 8a3

i − 24aib2
i 8b3

i − 24a2
i bi


The rank of this matrix is the same as the rank of the following matrix (the rows
are multiplied by 1/2, 1/6 and 1/4, the columns by 1, −a1/2b1, 1 and −ai/2bi,
respectively). 

1 0 1 0
a2

1 − b2
1 a2

1 a2
i − b2

i a2
i

2a3
1 − 6a1b

2
1 3a3

1 − a1b
2
1 2a3

i − 6aib2
i 3a3

i − aib2
i


By subtracting twice the second column from the first column and twice the fourth
column from the third column, we obtain the following matrix.

1 0 1 0
−(a2

1 + b2
1) a2

1 −(a2
i + b2

i ) a2
i

−4a1(a2
1 + b2

1) 3a3
1 − a1b

2
1 −4ai(a2

i + b2
i ) 3a3

i − aib2
i


Since the last row of the matrix is a linear combination of the previous two rows (the
operation that we have performed so far has preserved this property of the matrix
M), it follows that

3a2
1 − b2

1
a1

= 3a2
i − b2

i

ai
(2.16)

We now subtract the second row multiplied by the value given in (2.16) from the
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third row and obtain the following matrix, which has the rank two.
1 0 1 0

−(a2
1 + b2

1) a2
1 −(a2

i + b2
i ) a2

i

−(a2
1 + b2

1)2/a1 0 −(a2
i + b2

i )2/ai 0


It follows that

(a2
1 + b2

1)2

a1
= (a2

i + b2
i )2

ai
,

which yields that
b2
i = −a2

i +
√
ai
a1

(a2
1 + b2

1) . (2.17)

On the other hand, we derive from (2.16) that

b2
i = 3a2

i −
ai
a1

(
3a2

1 − b2
1

)
. (2.18)

We obtain by comparing (2.17) and (2.18) the following.

0 = 4a2
i −

ai
a1

(
3a2

1 − b2
1

)
−
√
ai
a1

(a2
1 + b2

1)

= √ai(
√
ai −

√
a1)

(
4ai + 4√a1ai + a2

1 + b2
1

a1

)

Since both a1 and ai are positive, this expression can be equal to zero only if ai = a1.
Consequently, the equality (2.17) implies that bi = b1 or bi = −b1, which contradicts
the choice of (ai, bi). Hence, we have established that if at least one of b1, . . . , b` is
non-zero, then the second case indeed applies.

We now consider the case that b1 = · · · = b` = 0. Suppose that the first case in
the statement of the lemma does not apply. This implies that there exist three dis-
tinct positive reals α, β and γ such that at least one of the values r1, . . . , rk, a1, . . . , a`

is α, at least one is β and at least one is γ. Consequently, the matrix M contains
the following submatrix possibly after dividing some columns by two (the columns
correspond to those of the variables r1, . . . , rk, a1, . . . , a` that are equal to α, β and
γ, respectively; the columns corresponding to the variables a1, . . . , a` are divided by
two). 

1 1 1
3α2 3β2 3γ2

4α3 4β3 4γ3


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The determinant of this matrix is equal to

12(α2β3 + β2γ3 + γ2α3 − α2γ3 − β2α3 − γ2β3) ,

which is equal to

12(α− β)(β − γ)(γ − α)(αβ + αγ + βγ) .

Since this expression is non-zero for all distinct positive reals α, β and γ, we conclude
that the rank of M is three, which contradicts our assumption that the first case as
described in the statement of the lemma does not apply.

Before we can prove the main result of this section, we need two additional
auxiliary lemmas.

Lemma 2.12. Let z ∈ (0, 1], and let x1, . . . , xn be non-negative reals such that
x1 + · · ·+ xn = 1/2 and xi 6 z for every i ∈ [n]. Then

n∑
i=1

x3
i 6 bz−1/2c · z3 + (1/2− bz−1/2c · z)3,

and equality holds if and only if all but at most one of x1, . . . , xn are equal to 0 or
z.

Proof. Consider any n-tuple x1, . . . , xn that maximises the sum x3
1 + · · ·+x3

n among
all n-tuples of non-negative reals x1, . . . , xn such that x1 + · · ·+xn = 1/2 and xi 6 z,
i ∈ [n]. If xi ∈ {0, z} for all but at most one i ∈ [n], then the sum of x3

1 + · · ·+ x3
n

is equal to ∑n
i=1 x

3
i 6 bz−1/2c · z3 + (1/2 − bz−1/2c · z)3 and the lemma holds.

Otherwise, there exist xi and xj such that 0 < xi 6 xj < z. Choose ε > 0 such that
ε < xi and ε < z−xj , and replace xi with xi− ε and xj with xj + ε. This preserves
the sum x1 + · · · + xn and increases the sum x3

1 + · · · + x3
n, which contradicts the

choice of the n-tuple x1, . . . , xn.

Linial and Morgenstern [72] proved that, among the random blow-ups of transi-
tive tournaments with the fixed density of C3, the density of C4 is minimised if all
parts have the same size except possibly for a single smaller part. This statement
is equivalent to the following.

Lemma 2.13 (Linial and Morgenstern [72, Lemma 2.7]). Let x1, . . . , xn be any
non-negative reals such that their sum is 1/2. Then

x4
1 + · · ·+ x4

n > g(x3
1 + · · ·+ x3

n) .
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We are now ready to prove the main result of this section.

Theorem 2.14. Let A be a tournament matrix of order n. If σ3(A) > 1/72, then
σ4(A) > g(σ3(A)).

Proof. Let s3 = σ3(A). We start with lower bounding the spectral radius of A.
Let λ1, . . . , λn be the eigenvalues of A. By Lemma 2.4, the real parts of all the
eigenvalues are non-negative, which implies that

s3 =
n∑
i=1

(
λi
n

)3
6

n∑
i=1

(Reλi
n

)3
.

By Lemma 2.12, the last sum is at most

bρ−1
A /2c · ρ3

A + (1/2− bρ−1
A /2c · ρA)3

where ρA is the spectral radius of A divided by n. Consequently, ρA is at least z
where z is the unique real between 0 and 1/2 satisfying that

s3 = bz−1/2c · z3 + (1/2− bz−1/2c · z)3 .

Note that z > 1/6 since s3 > 1/72.
Lemma 2.10 now yields that the theorem will be proven if we show that the

optimal solution of the problem Spectrum is at least g(s3) for s3, any ρ > z and
all non-negative integers k and `. By Lemma 2.11, this would be implied by the
following two claims, which correspond to the two cases described in the statement
of Lemma 2.11.

Claim 1. If r1, . . . , rk are any positive real numbers that have at most three distinct
values and that satisfy r1 + · · · + rk = 1/2 and r3

1 + · · · + r3
k = s3, then

r4
1 + · · ·+ r4

k > g(s3).

Claim 2. If m and m′ are positive integers, ρ > z, a is a non-negative real and b

is a real such that mρ + 2m′a = 1/2 and mρ3 + 2m′(a3 − 3ab2) = s3, then
mρ4 + 2m′(a4 − 6a2b2 + b4) > g(s3).

Claim 1 follows from Lemma 2.13 (even without the restriction on the number of
the distinct values that r1, . . . , rk may have). So, we focus on proving Claim 2 in
the remainder of the proof. Note that m ∈ {1, 2} in this case since ρ > z > 1/6.

To prove Claim 2, we fix m and m′ and consider the following optimisation
problem: minimise the sum mρ4 +2m′(a4−6a2b2 + b4) subject to mρ+2m′a = 1/2,
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mρ3 + 2m′(a3 − 3ab2) = s3, ρ > z and a > 0. The method of Lagrange multipliers
implies that the following matrix is not full rank

m 2m′ 0
3mρ2 6m′a2 − 6m′b2 −12m′ab
4mρ3 8m′a3 − 24m′ab2 8m′b3 − 24m′a2b

 (2.19)

for the values of ρ, a and b that minimise the sum unless ρ = z or a = 0. However,
dividing the first column by m and the remaining two by m′, permuting the columns
and renaming the variables yields the same matrix as in (2.15), which we have
analysed in the proof of Lemma 2.11. In particular, the matrix in (2.19) has full
rank unless a = 0 or (possibly) b = 0. We conclude that the expression mρ4 +2(a4−
6a2b2 + b4) is minimised when at least one of the following holds: ρ = z, a = 0 or
b = 0. We next analyse these three cases.

The case ρ = z. In this case, Lemma 2.12 implies that mρ3 + 2m′a3 < s3 unless
a > ρ, i.e., there is no such feasible solution unless a > ρ. If indeed a > ρ, then
since mρ+2m′ρ = 1/2 and ρ > 1/6, it must be that m = m′ = 1, ρ = a = 1/6,
s3 = 1/72 and b = 0, in which case mρ4+2m′(a4−6a2b2+b4) = 1/432 = g(s3).

The case a = 0. If a = 0, then, as noted in the proof of Lemma 2.11, setting b = 0
does not affect the constraints, but does decrease the objective function. Hence
this case reduces to the final case b = 0.

The case b = 0. If b = 0, then using Lemma 2.13 we obtain that mρ4 + 2m′a4 >

g(mρ3 + 2m′a3) = g(s3).

Hence, we have shown that mρ4 + 2m′(a4 − 6a2b2 + b4) > g(s3) for all ρ, a and b

such that mρ+ 2m′a = 1/2, mρ3 + 2m′(a3−3ab2) = s3, ρ > z and a > 0. The proof
of Claim 2 is now finished and so is the proof of the theorem.

Proposition 2.5 yields the following corollary in the tournament limit setting.

Corollary 2.15. Let W be a tournament limit. If t(C3,W ) > 1/72, then t(C4,W ) >
g(t(C3,W )).

2.5 Concluding remarks

Unfortunately, the proof of Theorem 2.14 does not immediately work in higher
regimes because, in the case of four or more parts, the solution to the optimisation
problem Spectrum beats the conjectured minimum. Of course, as solutions need
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not be realisable as the eigenvalues of a tournament matrix, this does not invali-
date Conjecture 1.6. It is possible that the current method can be pushed further
by introducing to the optimisation problem additional constraints that reflect the
properties that eigenvalues of tournament matrices must satisfy.

Meanwhile, in the regime of two parts, we have been able to fully determine the
asymptotic structure of extremal examples. These constructions can be extended to
the remaining regimes as follows. Fix k ∈ N, z ∈ [1/(k + 1), 1/k] and i, i′ ∈ [k + 1]
such that |i− i′| = 1. We construct a tournament T with n vertices as follows. The
vertices of T are split into k + 1 parts V1, . . . , Vk+1 such that |Vi| = n− kbznc and
|Vj | = bznc if j 6= i. If two vertices v and v′ respectively belong to distinct parts
Vj and Vj′ with j < j′ and {j, j′} 6= {i, i′}, then the tournament T contains an arc
from v to v′. If, instead, v and v′ belong to the same part Vj , where j 6∈ {i, i′}, then
the edge between v and v′ is oriented from v to v′ with probability 1/2, i.e., the
vertices of every such part induce a randomly oriented tournament. Finally, each
vertex v ∈ Vi ∪ Vi′ is assigned a real number pv ∈ [0, 1/2] and the edge between v

and v′ ∈ Vi ∪ Vi′ is directed from v to v′ with probability 1/2 + pv − pv′ . If the
expected number of triangles in T is equal to 1

8

(
kbznc3 + (n− kbznc)3

)
, then the

expected value of the density t(C4, T ) is

g

(1
8
(
kbznc3 + (n− kbznc)3

))
+ o(1)

and both of these random variables are concentrated. In particular, unless z−1 is a
positive integer, there are infinitely many different types of extremal tournaments.

It is also interesting to note that the problem of determining the set of feasible
densities of cycles of length three and four is equivalent to the analogous problems
for transitive tournaments of order three and four and for the cycle and transitive
tournament of order four [72, Proposition 1.1]. To see this, let Tk be the transitive
tournament of order k and let t(Tk, T ) be the probability that a random mapping
from V (Tk) to V (T ) is a homomorphism. The following holds for every n-vertex
tournament T :

8t(C3, T ) + 24t(T4, T )− 6t(C4, T ) = 1−O(n−1).

Thus, the problem of minimizing the density of C4 when the density of C3 is fixed
is equivalent to minimizing the density of T4 when the density of T3 is fixed, and
also equivalent to minimizing the density of C4 when T4 is fixed, in the sense that
a complete solution to any of these three problems yield complete solutions to the
remaining two.
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Chapter 3

Quasirandom Permutations

3.1 Overview

In Section 1.3, we defined Σ-forcing sets of permutations as the sets S for which

lim
i→∞

∑
π∈S

d(π,Πi) = |S|
k! if and only if {Πi}i∈N is quasirandom,

whenever {Πi}i∈N is a sequence of permutations. In this chapter, we characterise
all Σ-forcing sets of 4-permutations:

Theorem 3.1. Let S be a set of 4-permutations. The set S is Σ-forcing if and only
if S is one of the following five sets

• {1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321},

• {1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321},

• {1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231},

• {1324, 1423, 2314, 2413, 3142, 3241, 4132, 4231},

• {1234, 1243, 1432, 2134, 2143, 2341, 3214, 3412, 3421, 4123, 4312, 4321},

or their complements.

The five listed sets are shown to be Σ-forcing in Theorems 3.5, 3.6, 3.7, and 3.8
(one of the sets follows by symmetry). The proofs of all of these results rely on flag
algebras. Theorem 3.16 completes the proof of Theorem 3.1 by showing that no
other set of 4-permutations is Σ-forcing. Some of the arguments are supported by
supplementary data that is available online as a series of five appendices totalling 44
pages. The appendices can be downloaded as an ancillary file on arXiv at https:

//arxiv.org/src/1909.11027/anc/Appendices.pdf.
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3.2 Preliminaries

In this section, we fix the notation used throughout the chapter. Let τ1 and τ2 be
the permutations 12 and 21, respectively. The set of all k-permutations is denoted
by Sk. Two permutations π and σ of the same order, say k, are symmetric if the
permutation matrix of π can be obtained from the permutation matrix of σ by a
sequence of reflections and rotations when viewed as k × k tables, i.e., if either

• π(i) = σ(i), or

• π(i) = σ(k + 1− i), or

• π(i) = k + 1− σ(i), or

• π(i) = k + 1− σ(k + 1− i), or

• π(i) = σ−1(i), or

• π(i) = σ−1(k + 1− i), or

• π(i) = k + 1− σ−1(i), or

• π(i) = k + 1− σ−1(k + 1− i)

holds for all i ∈ [k]. For example, exactly the following seven permutations are
symmetric to 12534 in addition to the permutation 12534 itself: 12453, 23145, 31245,
35421, 43521, 54132 and 54213.

A permuton is a Borel probability measure µ on [0, 1]2 that has uniform marginals,
i.e., µ ([x, x′]× [0, 1]) = x′−x for every 0 6 x < x′ 6 1 and µ ([0, 1]× [y, y′]) = y′−y
for every 0 6 y < y′ 6 1. In other contexts, permutons are known as doubly
stochastic measures or two-dimensional copulas. Given a permuton µ, a µ-random
permutation of order k is obtained in the way that we now describe. We first sample
k points (x1, y1), . . . , (xk, yk) in [0, 1]2 according to the probability measure µ. Note
that the probability that an x- or y-coordinate is shared by multiple points is zero
because µ has uniform marginals. By renaming the points, we can assume that
x1 < · · · < xk. The µ-random permutation π ∈ Sk is then the unique permutation
such that π(i) < π(j) if and only if yi < yj for every i, j ∈ [k]. We define the
pattern density of π ∈ Sk in the permuton µ to be the probability that a µ-random
permutation of order k is π. A sequence (Πi)i∈N of permutations is convergent if
|Πi| grows to infinity and the limit

lim
i→∞

d(π,Πi)

exists for every permutation π. It can be shown [66,71] that if (Πi)i∈N is a convergent
sequence of permutations, then there exists a unique permuton µ such that

lim
i→∞

d(π,Πi) = d(π, µ)
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for every permutation π; the permuton µ is called the limit of the sequence (Πi)i∈N.
In the other direction, if µ is a permuton, then, with probability 1, a sequence of
µ-random permutations with increasing orders converges and its limit is µ. We note
that a sequence (Πi)i∈N of permutations is quasirandom if and only if its limit is the
uniform measure on [0, 1]2.

The support of a Borel measure µ, denoted supp (µ), is the set of all points x such
that every open neighbourhood of x has positive measure under µ. Fix a permutation
τ ∈ S`. A τ -rooted permuton is an (` + 1)-tuple µτ = (µ, (x1, y1), . . . , (x`, y`)) such
that

• µ is a permuton,

• (x1, y1), . . . , (x`, y`) ∈ supp (µ), x1 < · · · < x`, and

• τ(i) < τ(j) if and only if yi < yj for all i, j ∈ [`].

The points (x1, y1), . . . , (x`, y`) are referred to as roots. If µτ is a τ -rooted permuton,
then a µτ -random permutation of order k > ` is a τ -rooted permutation obtained by
sampling k − ` points in [0, 1]2 according to the measure µ, forming a permutation
of order k using the ` roots and the k − ` sampled points, and distinguishing the `
points corresponding to the roots of µτ to be the roots of the permutation. If πτ

is a τ -rooted permutation, we write d(πτ , µτ ) for the probability that a µτ -random
permutation of order |πτ | is πτ .

Fix a permuton µ for the rest of this section. We define a mapping hµ : A → R by
setting hµ(π) to be d(π, µ) for every permutation π and extending linearly. Clearly,
hµ is a homomorphism from A to R that respects addition and multiplication by a
real number. The mapping hµ also respects the multiplication operation on A, i.e.,
hµ(A× B) = hµ(A)hµ(B) for all A,B ∈ A. Following the shorthand introduced in
Section 1.3, we write A > α for an element A ∈ A and a real α ∈ R if hµ(A) > α

for every permuton µ. Analogously to the unrooted case, for a τ -rooted permuton
µτ , we can define a homomorphism hµτ : Aτ → R.

Next, for a permutation τ with d(τ, µ) > 0, we wish to define a probability
distribution on τ -rooted permutons arising from µ. Formally, we define µτ to be a
τ -rooted permuton obtained from µ by choosing |τ | points randomly according to
the probability measure µ to be the roots (and sorting them according to their first
coordinates) conditioned on the event that the chosen roots yield the permutation τ ,
i.e., µτ is a random τ -rooted permuton where the randomness comes from the choice
of |τ | roots. The probability distribution on τ -rooted permutons in turn defines a
probability distribution on homomorphisms from Aτ to R, and we will write hτµ for
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a random homomorphism from Aτ to R sampled according to this distribution. As
in Section 1.3,

hµ (JAKτ ) = d(τ, µ) · Ehτµ(A)

for every A ∈ Aτ , and if M is a k×k positive semidefinite matrix, then the following
holds for every vector w ∈ (Aτ )k:

hµ
(q
wTMw

y
τ

)
> 0.

3.3 Σ-forcing sets

In this section, we present a sequence of flag algebra calculations to prove that the
sets listed in Theorem 3.1 are Σ-forcing. To do so, we first need the following lemma.

Lemma 3.2. Let µ be a permuton. If

µ ([min{x1, x2},max{x1, x2}]× [min{y1, y2},max{y1, y2}]) = |x2 − x1| · |y2 − y1|

for all points (x1, y1), (x2, y2) ∈ supp (µ), then µ is the uniform measure.

Proof. Our goal is to show that supp (µ) = [0, 1]2. We start with showing that all
points on the boundary of [0, 1]2 are contained in supp (µ). Suppose that supp (µ)
does not contain the whole boundary of [0, 1]2. Since supp (µ) is closed, it is enough
to consider the points distinct from the four corners. By symmetry, we need to
consider the following two cases.

• There exists x ∈ (0, 1) such that (x, 0) 6∈ supp (µ) but (x, 1) ∈ supp (µ).
By the definition of the support of a measure, there exists ε ∈ (0,min{x, 1−x})
such that

µ ([x− ε, x+ ε]× [0, ε]) = 0.

Let y′ ∈ [0, 1] be the infimum among all reals such that (x′, y′) ∈ supp (µ) for
some x′ ∈ (x−ε, x). If there was no such y′, then the measure of the rectangle
[x − ε, x] × [0, 1] would be zero, which is impossible because the measure µ
has uniform marginals. Observe that y′ ∈ [ε, 1]. Since supp (µ) is a closed set,
there exists x′ ∈ [x − ε, x] such that (x′, y′) ∈ supp (µ); if possible, choose x′

distinct from x.

We first consider the case that x′ < x. The assumption of the lemma implies
that the measure of the rectangle [x′, x]× [y′, 1] is (x−x′)(1−y′). On the other
hand, the choice of y′ implies that the measure of the rectangle [x′, x]× [0, y′]
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is zero. Consequently, the measure of the rectangle [x′, x]× [0, 1] is (x−x′)(1−
y′) < x− x′, which is impossible.

It remains to analyse the case x′ = x. The choice of y′ implies that there
exist y′′ ∈ (y′, 1] and x′′ ∈ (x − ε, x) such that (x′′, y′′) ∈ supp (µ). Since the
measure of the rectangle [x′′, x]× [y′′, 1] is (x−x′′)(1− y′′) and the measure of
the rectangle [x′′, x]× [y′, y′′] is (x−x′′)(y′′− y′), the measure of the rectangle
[x′′, x]× [y′, 1] is (x− x′′)(1− y′). On the other hand, the choice of y′ implies
that the measure of the rectangle [x′′, x]× [0, y′] is zero, which yields that the
measure of the rectangle [x′′, x]× [0, 1] is less than x−x′′, which is impossible.

• There exists x ∈ (0, 1) such that (x, 0) 6∈ supp (µ) and (x, 1) 6∈ supp (µ).
By the definition of the support of a measure, there exists ε ∈ (0,min{x, 1−x})
such that

µ ([x− ε, x+ ε]× [0, ε]) = 0 and µ ([x− ε, x+ ε]× [1− ε, 1]) = 0.

Let y1 ∈ [0, 1] be the infimum among all reals such that (x1, y1) ∈ supp (µ)
for some x1 ∈ (x− ε, x+ ε). If there was no such y1, then the measure of the
rectangle [x− ε, x+ ε]× [0, 1] would be zero, which is impossible because the
measure µ has uniform marginals. Since supp (µ) is a closed set, there exists
x1 ∈ [x − ε, x + ε] such that (x1, y1) ∈ supp (µ). Note that y1 ∈ [ε, 1 − ε].
Similarly, let y2 ∈ [0, 1] be the supremum among all reals such that (x2, y2) ∈
supp (µ) for some x2 ∈ (x − ε, x + ε) (again note that y2 ∈ [ε, 1 − ε]) and we
fix x2 ∈ [x − ε, x + ε] such that (x2, y2) ∈ supp (µ). If possible, we choose x1

and x2 above such that x1 6= x2.

We first consider the case that x1 6= x2; by symmetry, we can assume that
x1 < x2. The assumption of the lemma implies that the measure of the
rectangle [x1, x2] × [y1, y2] is (x2 − x1)(y2 − y1), and the choices of y1 and y2

imply that the measure of each of the rectangles [x1, x2]× [0, y1] and [x1, x2]×
[y2, 1] is zero. It follows that the measure of the rectangle [x1, x2] × [0, 1] is
(x2 − x1)(y2 − y1) < x2 − x1, which is impossible.

It remains to consider the case that x1 = x2. Since the measure of the rectangle
[x− ε, x+ ε]× [0, 1] is not zero, there exists x3 ∈ [x− ε, x+ ε], x3 6= x1, and
y3 ∈ (y1, y2) such that (x3, y3) ∈ supp (µ). By symmetry, we can assume that
x1 < x3. The measures of the rectangles [x1, x3]× [y1, y3] and [x1, x3]× [y3, y2]
are (x3−x1)(y3−y1) and (x3−x1)(y2−y3), respectively. Since the measure of
each of the rectangles [x1, x3]× [0, y1] and [x1, x3]× [y2, 1] is zero, we conclude
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that the measure of the rectangle [x1, x3]× [0, 1] is (x3−x1)(y2−y1) < x3−x1,
which is impossible.

We have shown that all points on the boundary of [0, 1]2 are contained in
supp (µ). Suppose that there exists a point (x, y) ∈ (0, 1)2 that is not contained
in supp (µ), and let ε ∈ (0,min{x, y, 1− x, 1− y}) be such that the whole set
[x−ε, x+ε]×[y−ε, y+ε] is not contained in supp (µ). Let y1 be the supremum among
all reals in [0, y−ε] such that (x1, y1) ∈ supp (µ) for some x1 ∈ (x−ε, x+ε), and let
y2 be the infimum among all reals in [y+ ε, 1] such that (x2, y2) ∈ supp (µ) for some
x2 ∈ (x−ε, x+ε). Further, let x1, x2 ∈ [x−ε, x+ε] be such that (x1, y1) ∈ supp (µ)
and (x2, y2) ∈ supp (µ). Note that y1 can be 0 and y2 can be 1, and y2 − y1 > 2ε.

We first consider the case that x1 6= x2. By symmetry, we can assume that
x1 < x2. Since the boundary of the square [0, 1]2 is contained in supp (µ), the
measures of the rectangles [x1, x2]× [0, y1] and [x1, x2]× [y2, 1] are (x2 − x1)y1 and
(x2−x1)(1−y2), respectively. On the other hand, the choice of y1 and y2 implies that
the measure of the rectangle [x1, x2]× [y1, y2] is zero. Consequently, the measure of
the rectangle [x1, x2]× [0, 1] is (x2−x1)(1− y2 + y1) < x2−x1, which is impossible.

To conclude the proof, we need to analyse the case x1 = x2. Let x3 be any point
in the interval [x−ε, x+ε] distinct from x1 = x2. By symmetry, we can assume that
x1 < x3. Again, since the boundary of the square [0, 1]2 is contained in supp (µ), it
follows that the measures of the rectangles [x1, x3]× [0, y1] and [x1, x3]× [y2, 1] are
(x3−x1)y1 and (x3−x1)(1−y2), respectively, and the choice of y1 and y2 yields that
the measure of the rectangle [x1, x3]× [y1, y2] is zero. We obtain that the measure of
the rectangle [x1, x3]× [0, 1] is (x3−x1)(1− y2 + y1) < x3−x1, which is impossible.
We can now conclude that the support of the measure µ is the whole square [0, 1]2.
Consequently the measure of each set [x, x′]× [y, y′] is equal to (x′−x)(y′−y), which
implies that the measure µ is the uniform measure on [0, 1]2. This finishes the proof
of the lemma.

For the rest of the section, we fix the following elements A1 ∈ Aτ1 and A2 ∈ Aτ2 .

A1 = (1234− 1432) + (1234− 3214) + (2341− 2143) + (4123− 2143)

A2 = (3214− 3412) + (1432− 3412) + (4321− 4123) + (4321− 2341)

These definitions are motivated by the next two lemmas, which show that a permu-
ton µ satisfies the assumptions of Lemma 3.2 if for both i = 1 and i = 2, the value
of Ai is zero for almost all τi-rooted permutons µτi .
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a11 a21 a31

a12 a22 a32

a13 a23 a33

x1 x2

y1

y2

Figure 3.1: Notation used in the proof of Lemma 3.3.

Lemma 3.3. Let µ be a permuton. If hτ1
µ (A1) = 0 with probability 1, then

µ ([x1, x2]× [y1, y2]) = |x2 − x1| · |y2 − y1|

for all points (x1, y1), (x2, y2) ∈ supp (µ) such that x1 6 x2 and y1 6 y2.

Proof. Fix (x1, y1), (x2, y2) ∈ supp (µ) such that x1 6 x2 and y1 6 y2 and such
that h(A1) = 0 for the homomorphism h : Aτ1 → R associated with the τ1-rooted
permuton (µ, (x1, y1), (x2, y2)). Further let (x0, y0) = (0, 0) and (x3, y3) = (1, 1),
and let

aij = µ ([xi−1, xi]× [yj−1, yj ])

for i, j ∈ [3]. See Figure 3.1 for illustration of the just introduced notation.
Since h(A1) = 0, the following holds:

a22a33 − a23a32 + a22a11 − a12a21 + a22a31 − a21a32 + a22a13 − a12a23 = 0 .

We rewrite this expression using the property that µ has uniform marginals as
follows:

0 = a22a33 − a23a32 + a22a11 − a12a21 + a22a31 − a21a32 + a22a13 − a12a23

= a22(a11 + a13 + a31 + a33)− (a21 + a23)(a12 + a32)

= a22(1− (x2 − x1)− (y2 − y1) + a22)− (x2 − x1 − a22)(y2 − y1 − a22)

= a22 − (x2 − x1)(y2 − y1)

We conclude that the equality from the statement of the lemma holds for almost all
points (x1, y1), (x2, y2) ∈ supp (µ) such that x1 6 x2 and y1 6 y2.

We next show that the equality in the statement of the lemma holds for all
(x1, y1), (x2, y2) ∈ supp (µ) such that x1 6 x2 and y1 6 y2. Fix (x1, y1), (x2, y2) ∈
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supp (µ) such that x1 6 x2 and y1 6 y2. If x1 = x2 or y1 = y2, then the equality
holds since the measure µ has uniform marginals. Let ε0 = min{x2 − x1, y2 − y1}
and consider ε ∈ (0, ε0/2). Since all points in the ε-neighbourhood of (x1, y1) have
both their coordinates smaller than all points in the ε-neighbourhood of (x2, y2),
almost every point (x′1, y′1) in the intersection of supp (µ) and the ε-neighbourhood
of (x1, y1) and almost every point (x′2, y′2) in the intersection of supp (µ) and the
ε-neighbourhood of (x2, y2) satisfy the equality from the statement of the lemma,
and it also holds that

∣∣µ ([x1, x2]× [y1, y2])− µ
([
x′1, x

′
2
]
×
[
y′1, y

′
2
])∣∣ 6 4ε

because the measure µ has uniform marginals. Since both (x1, y1) and (x2, y2) are
contained in supp (µ), the ε-neighbourhood of (x1, y1) has positive measure and the
ε-neighbourhood of (x2, y2) also has positive measure, we conclude that

∣∣µ ([x1, x2]× [y1, y2])− |x2 − x1| · |y2 − y1|
∣∣ 6 8ε

for every ε ∈ (0, ε0/2). It follows that the equality from the statement of the lemma
holds for all points (x1, y1), (x2, y2) ∈ supp (µ) such that x1 6 x2 and y1 6 y2.

A symmetric argument yields the following lemma.

Lemma 3.4. Let µ be a permuton. If hτ2
µ (A2) = 0 with probability 1, then

µ ([x1, x2]× [y1, y2]) = |x2 − x1| · |y2 − y1|

for all points (x1, y2), (x2, y1) ∈ supp (µ) such that x1 6 x2 and y1 6 y2.

We are now ready to prove Theorems 3.5, 3.6, 3.7 and 3.8, which are based on
the flag algebra method. We follow the standard path of applying the method by
setting up appropriate SDP programs, i.e., supplying an objective as well as the
types τ1 and τ2 and the integer ` = 4 to the algorithm described at the end of
Section 1.3. Solving these programs yields the positive semidefinite matrices M and
vectors A1, . . . , O1 and A2, . . . , O2 used in the proofs of the four theorems.

Theorem 3.5. Let S = {1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321}. For every
permuton µ, ∑

π∈S
d(π, µ) > 1

3

and equality holds if and only if µ is uniform.
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Proof. Let B1, C1, D1 and E1 be the following four elements of Aτ1 .

B1 = (1234− 3214) + (1234− 4231) + (1243− 3241) + (1243− 4213)

C1 = (1234− 1432) + (1234− 4231) + (2134− 2431) + (2134− 4132)

D1 = (2143− 4123) + (1234− 4231) + (2134− 4132) + (1243− 4213)

E1 = (2143− 2341) + (1234− 4231) + (2134− 2431) + (1243− 3241)

Further, let B2, C2, D2 and E2 be the corresponding four elements of Aτ2 . For
example, B2 is the following element:

B2 = (1432− 3412) + (1324− 4321) + (1423− 3421) + (1342− 4312) .

Finally, let M be the following (positive definite) matrix.

M =


1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2


A direct computation yields that

hµ
(q
w1MwT1

y
τ1

+
q
w2MwT2

y
τ2

)
= hµ

8
9
∑
π∈S

π − 2
9

∑
π∈S4\S

π


= 2

3

(∑
π∈S

d(π, µ)− 1
3

)

where w1 = (B1, C1, D1, E1) and w2 = (B2, C2, D2, E2). Since the matrix M is pos-
itive semidefinite, hµ

(q
w1MwT1

y
τ1

)
> 0 and hµ

(q
w2MwT2

y
τ2

)
> 0, which implies

that
0 6

∑
π∈S

d(π, µ)− 1
3 .

Moreover, the equality holds if and only if both hτ1
µ (w1MwT1 ) = 0 with probability 1

and hτ2
µ (w2MwT2 ) = 0 with probability 1. Since all the eigenvalues of the matrix M

are positive, hτ1
µ (w1MwT1 ) = 0 if and only if hτ1

µ (B1) = 0, hτ1
µ (C1) = 0, hτ1

µ (D1) = 0
and hτ1

µ (E1) = 0. Since A1 = B1 + C1 −D1 − E1, we conclude that if the equality
holds, then hτ1

µ (A1) = 0 with probability 1. A symmetric argument yields that if the
equality holds, then hτ2

µ (A2) = 0 with probability 1. The statement of the theorem
now follows from Lemmas 3.2, 3.3 and 3.4.
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We next prove the second main theorem of this section. Since the proofs of this
theorem and the two subsequent to it are similar to the proof of Theorem 3.5, we
will be brief in their parts that are analogous.

Theorem 3.6. Let S = {1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321}. For every
permuton µ, ∑

π∈S
d(π, µ) > 1

3

and equality holds if and only if µ is uniform.

Proof. Consider the following elements F1 and G1 of Aτ1 .

F1 = (1243− 3241) + (4132− 2134) + (1243− 1423) + (2314− 2134)

+ (1324− 1342) + (2431− 2413) + (3124− 1324) + (2413− 4213)

G1 = (1243− 1234) + (3421− 3412) + (1432− 1423) + (2314− 2341)

+ (4312− 3412) + (2134− 1234) + (3214− 2314) + (1423− 4123)

+ (1432− 1342) + (3214− 3124) + (1324− 1234) + (2143− 2413)

+ (3124− 4123) + (1342− 2341) + (2143− 3142) + (4231− 1234)

Let F2 and G2 be the corresponding elements of Aτ2 as in the proof of Theorem 3.5,
and let M be the following (positive definite) matrix.

M =


5 0 3
0 9 0
3 0 4


Then

hµ
(q
w1MwT1

y
τ1

+
q
w2MwT2

y
τ2

)
= 2

(∑
π∈S

d(π, µ)− 1
3

)

where w1 = (A1, F1, G1) and w2 = (A2, F2, G2). This implies that

0 6
∑
π∈S

d(π, µ)− 1
3

and equality holds if and only if both hτ1
µ (w1MwT1 ) = 0 with probability 1 and

hτ2
µ (w2MwT2 ) = 0 with probability 1. Since all the eigenvalues of M are positive (the

eigenvalues are 9 and 9±
√

37
2 ), it follows that equality holds if and only if hτ1

µ (A1) = 0
with probability 1 and hτ2

µ (A2) = 0 with probability 1. The statement of the theorem
now follows from Lemmas 3.2, 3.3 and 3.4.
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We next prove the third main theorem of this section. Note that the set S from
the statement of Theorem 3.7 is symmetric to the set {1324, 1423, 2314, 2413, 3142,
3241, 4132, 4231} by a 90-degree rotation (i.e. the symmetry π(i) = σ(k + 1 − i)
listed in Section 3.2). Therefore, Theorem 3.7 proves that both the third and fourth
sets from the statement of Theorem 3.1 are Σ-forcing.

Theorem 3.7. Let S = {1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231}. For every
permuton µ, ∑

π∈S
d(π, µ) 6 1

3

and equality holds if and only if µ is uniform.

Proof. Let S = S4 \ S and consider the following four elements of Aτ1 .

H1 = (1234− 3214) + (2341− 2143) + (1243− 4213) + (2431− 2134)

I1 = (2143− 4123) + (1432− 1234) + (1243− 4213) + (2431− 2134)

J1 = (2134− 2314) + (1324− 3124) + (3241− 1243) + (2413− 2431)

+ (4231− 1234) + (1423− 4123) + (2314− 2341) + (2143− 2413)

K1 = (2413− 4213) + (4132− 2134) + (1243− 1423) + (1324− 1342)

+ (4231− 1234) + (1423− 4123) + (2314− 2341) + (2143− 2413)

Further, let H2, I2, J2 and K2 be the corresponding elements of Aτ2 as in the proof
of Theorem 3.5, and let M be the following (positive definite) matrix.

M =


35 0 12 0
0 35 0 −12
12 0 37 0
0 −12 0 37


Then

hµ
(q
w1MwT1

y
τ1

+
q
w2MwT2

y
τ2

)
= 16

∑
π∈S

d(π, µ)− 2
3


where w1 = (H1, I1, J1,K1) and w2 = (H2, I2, J2,K2). This implies that

0 6
∑
π∈S

d(π, µ)− 2
3

and equality holds if and only if both hτ1
µ (w1MwT1 ) = 0 with probability 1 and

hτ2
µ (w2MwT2 ) = 0 with probability 1. Since all the eigenvalues of M are positive
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(the matrix has eigenvalues 36 +
√

145 and 36−
√

145, each with multiplicity two),
hτ1
µ (w1MwT1 ) = 0 if and only if hτ1

µ (H1) = 0, hτ1
µ (I1) = 0, hτ1

µ (J1) = 0 and hτ1
µ (K1) =

0. Hence, if equality holds, then hτ1
µ (A1) = 0 with probability 1 (note that A1 =

H1 − I1). A symmetric argument yields that hτ2
µ (A2) = 0 with probability 1. The

statement of the theorem now follows from Lemmas 3.2, 3.3 and 3.4.

Finally, we prove the last main theorem of this section.

Theorem 3.8. Let S = {1234, 1243, 1432, 2134, 2143, 2341, 3214, 3412, 3421, 4123,
4312, 4321}. For every permuton µ,

∑
π∈S

d(π, µ) > 1
2

and equality holds if and only if µ is uniform.

Proof. Consider the following four elements of Aτ1 .

L1 = (4213− 1243) + (4123− 2143) + (2341− 2143)

+ (4231− 1234) + (1234− 1432) + (3241− 1243)

M1 = (2134− 2431) + (1234− 4231) + (1234− 1432)

+ (1243− 3241) + (2134− 4132) + (3241− 1243)

N1 = (1243− 1234) + (2134− 1234) + (1324− 1234) + (2143− 2413)

+ (2143− 3142) + (2314− 2341) + (3214− 2314) + (1432− 1342)

+ (1342− 2341) + (3214− 3124) + (3124− 4123) + (3421− 3412)

+ (4312− 3412) + (1432− 1423) + (1423− 4123) + (4231− 1234)

O1 = (1423− 1243) + (1342− 1324) + (1324− 3124) + (2413− 2431)

+ (4213− 2413) + (2134− 2314) + (2134− 4132) + (3241− 1243)

Further, let L2, M2, N2 and O2 be the corresponding elements of Aτ2 as in the proof
of Theorem 3.5, and let M be the following (positive definite) matrix.

M =



1132 −652 −638 197 326
−652 774 516 −68 −326
−638 516 774 68 −326
197 −68 68 172 0
326 −326 −326 0 516


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Then
hµ
(q
w1MwT1

y
τ1

+
q
w2MwT2

y
τ2

)
= 172

(∑
π∈S

d(π, µ)− 1
2

)

where w1 = (A1, L1,M1, N1, O1) and w2 = (A2, L2,M2, N2, O2). This implies that

0 6
∑
π∈S

d(π, µ)− 1
2

and equality holds if and only if both hτ1
µ (w1MwT1 ) = 0 with probability 1 and

hτ2
µ (w2MwT2 ) = 0 with probability 1. Since all the eigenvalues of M are positive

(because all the leading principal minors of M are positive), it follows that equality
holds if and only if both hτ1

µ (A1) = 0 with probability 1 and hτ2
µ (A2) = 0 with

probability 1. The statement of the theorem now follows from Lemmas 3.2, 3.3 and
3.4.

3.4 Perturbations of the uniform permuton

In this section, we analyse pattern densities in step permutons obtained from the
uniform permuton by a perturbation. This analysis will yield that most of the sets
different from those listed in Theorem 3.1 are not Σ-forcing (see Lemma 3.15; the
remaining cases will be dealt with individually in the proof of Lemma 3.16).

If A is a (non-negative) doubly stochastic square matrix of order n, i.e., each
row sum and each column sum of A is equal to one, we can associate to it a step
permuton µ[A] by setting

µ[A](X) :=
∑
i,j∈[n]

Aij · n ·
∣∣∣∣X ∩ [

i− 1
n

,
i

n

)
×
[
j − 1
n

,
j

n

)∣∣∣∣
for every Borel set X ⊆ [0, 1]2. A straightforward computation yields the following
expression for the density of a k-permutation π in µ[A]; we use f : [k]↗ [n] to mean
that f is a non-decreasing function from [k] to [n]. Indeed, each of the summands
corresponds to the probability that the µ[A]-random permutation of order k is π and
the k points defining π are sampled from the squares with coordinates (f(i), g(π(i))),
i ∈ [n].

Lemma 3.9. Let A be a doubly stochastic square matrix of order n, and π a k-
permutation. Then

d(π, µ[A]) = k!
nk

∑
f,g:[k]↗[n]

1∏
i∈[n]
|f−1(i)|! · |g−1(i)|! ×

∏
i∈[k]

Af(i),g(π(i)).
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For i, j ∈ [n− 1], let Bij be the matrix such that

Bij
i′j′ =


+1 if either i′ = i and j′ = j or i′ = i+ 1 and j′ = j + 1,

−1 if either i′ = i and j′ = j + 1 or i′ = i+ 1 and j′ = j, and

0 otherwise.

In the following exposition, the order n of the matrices Bij will always be clear from
the context and so we use only the indices i and j to avoid unnecessarily complex
notation.

For an integer n and a permutation π, we define a function hπ,n : Un → R on
the cube Un := {~x ∈ R[n−1]2 : ‖~x‖∞ 6 1/4n} around the origin as

hπ,n(x1,1, . . . , xn−1,n−1) := d

π, µ
A+

∑
i,j∈[n−1]

xijB
ij


where A is the n × n matrix with all entries equal to 1/n. Note that this is well-
defined as A + ∑

i,j∈[n−1] xijB
ij is doubly stochastic whenever xi,j ∈ Un for all

i, j ∈ [n− 1]. More generally, if S is a set of permutations, we define hS,n : Un → R
as

hS,n(~x) :=
∑
π∈S

hπ,n(~x) .

In this section, we are concerned with sets S that consist of 4-permutations only.
If S is a set of 4-permutations, we define the cover matrix of S to be a 4 × 4

matrix CS such that CSij is the number of permutations π ∈ S such that π(j) = i.
If the set S is clear from context, then we just write C for the cover matrix. We
show that the gradient of hS,n at the origin is determined by the cover matrix of S.

Lemma 3.10. Let n be an integer and S a set of 4-permutations with cover matrix
C. Then

∂

∂xij
hS,n(0, . . . , 0) = 4!

n7

∑
f,g:[4]↗[n]

1∏
m∈[n]

|f−1(m)|! · |g−1(m)|! ×

 ∑
k∈f−1(i)
`∈g−1(j)

Ck,`

−
∑

k∈f−1(i+1)
`∈g−1(j)

Ck,` −
∑

k∈f−1(i)
`∈g−1(j+1)

Ck,` +
∑

k∈f−1(i+1)
`∈g−1(j+1)

Ck,`


for every i, j ∈ [n− 1].
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Proof. Since both the first derivative on the left hand side and the expression on the
right hand side in the statement of the lemma are additive with respect to adding
elements of the set S, it is enough to prove the lemma when S contains a single
element π. In such case, the formula given in the statement of the lemma follows
directly from Lemma 3.9.

Lemma 3.10 yields the following.

Lemma 3.11. Let n be an integer and S a set of 4-permutations. If the cover
matrix C is constant, then the gradient

∇hS,n(0, . . . , 0) =
(

∂

∂xij
hS,n(0, . . . , 0)

)
i,j∈[n−1]

is zero.

Proof. We start by defining an operator on non-decreasing functions from [4] to [n].
Given f : [4] ↗ [n] and an index k ∈ [n − 1], we define f̃ (k) as follows. Let Z be
the image of f viewed as a multiset with every k replaced with k + 1 and every
k + 1 replaced with k. Then f̃ (k) is the unique non-decreasing function from [4] to
[n] whose image is Z. Informally speaking, we switch the values k and k + 1 and
reorder to obtain a non-decreasing function. Note that f = (̃f̃ (k))(k) for all f and
k, and f = f̃ (k) if |f−1(k)| = |f−1(k + 1)|.

We now analyse the individual summands inside the sum from the statement of
Lemma 3.10. Fix two indices i and j, and a function g : [4]↗ [n]. If f = f̃ (i), then
the expression in the parenthesis evaluates to zero. If f 6= f̃ (i), then the expressions
for f and f̃ (i) have opposite signs, in particular their contributions cancel out. We
conclude that the sum is equal to zero if all the entries of the cover matrix C are
the same. The lemma now follows.

Lemma 3.10 establishes that the gradient ∇hS,n(0, . . . , 0) for a set S of 4-permu-
tations is a linear function of the entries of the cover matrix C of S. Analysing the
matrix corresponding to this linear function for n ∈ {4, 5} yields that for such n

the gradient ∇hS,n(0, . . . , 0) is zero if and only if the cover matrix of S is constant.
Instead of providing this technical computation here, we give a more illustrative
proof that the converse of Lemma 3.11 holds for large enough integers n, as this is
sufficient for our exposition.
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Lemma 3.12. Let S be a set of 4-permutations whose cover matrix is not constant.
Then there exists an integer n such that the gradient

∇hS,n(0, . . . , 0) =
(

∂

∂xij
hS,n(0, . . . , 0)

)
i,j∈[n−1]

is non-zero.

Proof. We will assume that the gradient ∇hS,n(0, . . . , 0) is zero and establish that
the entries of the cover matrix satisfy Ck,` − Ck+1,` − Ck,`+1 + Ck+1,`+1 = 0 for all
k, ` ∈ [3]. We will then use this to show that the cover matrix C must be constant.

We start by analysing the partial derivative ∂
∂xij

hS,n(0, . . . , 0) for i = 1 and j = 1.
Recall the notation f̃ (k) from the proof of Lemma 3.11. If |Im(f) ∩ {1, 2}| 6 1 or
|Im(g) ∩ {1, 2}| 6 1, then the summands in the expression given in Lemma 3.10
corresponding to (f, g), (f̃ (1), g), (f, g̃(1)) and (f̃ (1), g̃(1)) sum to zero. Hence, we
need to focus on the summands where {1, 2} ⊆ Im(f) and {1, 2} ⊆ Im(g). Note the
number of summands such that f or g is not injective is O(n3), which yields the
following.

∂

∂x11
hS,n(0, . . . , 0) = 4!

n7


∑

f,g:[4]↗[n]
f(1)=1,f(2)=2,|Im(f)|=4
g(1)=1,g(2)=2,|Im(g)|=4

(C11 − C12 − C21 + C22) +O(n3)


= 4!
n7

(
n− 2

2

)2

(C11 − C12 − C21 + C22) +O

( 1
n4

)
.

If n is sufficiently large, the above expression can be zero only if C11 − C12 −
C21 + C22 = 0. An analogous argument for i = 1 and j = n − 1 yields that
C13 −C14 −C23 +C24 = 0, for i = n− 1 and j = 1 that C31 −C32 −C41 +C42 = 0,
and for i = n− 1 and j = n− 1 that C33 − C34 − C43 + C44 = 0.

We next analyse the partial derivative ∂
∂xij

hS,n(0, . . . , 0) for i = 1 and j = bn/2c.
If |Im(f) ∩ {1, 2}| 6 1 or |Im(g) ∩ {bn/2c, bn/2c + 1}| 6 1, then the summands in
the expression given in Lemma 3.10 corresponding to (f, g), (f̃ (1), g), (f, g̃(bn/2c))
and (f̃ (1), g̃(bn/2c)) sum to zero. Hence, we need to focus on the summands where
|Im(f) ∩ {1, 2}| = 2 and |Im(g) ∩ {bn/2c, bn/2c + 1}| = 2. Since the number of
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summands such that f or g is not injective is O(n3),

∂

∂x1,bn/2c
hS,n(0, . . . , 0) = 4!

n7


∑

f,g:[4]↗[n]
f(1)=1,f(2)=2,|Im(f)|=4

g(1)=bn/2c,g(2)=bn/2c+1,|Im(g)|=4

(C11 − C12 − C21 + C22)

+
∑

f,g:[4]↗[n]
f(1)=1,f(2)=2,|Im(f)|=4

g(2)=bn/2c,g(3)=bn/2c+1,|Im(g)|=4

(C12 − C13 − C22 + C23)

+
∑

f,g:[4]↗[n]
f(1)=1,f(2)=2,|Im(f)|=4

g(3)=bn/2c,g(4)=bn/2c+1,|Im(g)|=4

(C13 − C14 − C23 + C24)


+O

( 1
n4

)
.

Since the first and the third sum are equal to zero, we obtain that

∂

∂x1,bn/2c
hS,n(0, . . . , 0) = (C12 − C13 − C22 + C23) ·Θ

( 1
n3

)
+O

( 1
n4

)
.

Hence, if n is large enough and this partial derivative is zero, it must hold that
C12−C13−C22+C23 = 0. An analogous argument for i = bn/2c and j = 1 yields that
C21−C22−C31 +C32 = 0, for i = n−1 and j = bn/2c that C32−C33−C42 +C43 = 0,
and for i = bn/2c and j = n− 1 that C23 − C24 − C33 + C34 = 0.

Finally, we analyse the partial derivative ∂
∂xij

hS,n(0, . . . , 0) for i = j = bn/2c. As
in the preceding two cases, we consider the functions f̃ (bn/2c) and g̃(bn/2c) to conclude
that the summands with |Im(f)∩{bn/2c, bn/2c+1}| 6 1 or |Im(g)∩{bn/2c, bn/2c+
1}| 6 1 sum to zero. We next express the partial derivative as the sum of nine terms
corresponding to injective mappings f and g with {bn/2c, bn/2c+ 1} ⊆ Im(f) and
{bn/2c, bn/2c + 1} ⊆ Im(g) (the terms are determined by the preimages of bn/2c
and bn/2c + 1). Eight of these terms correspond to the sums of the entries of the
cover matrix that we have already shown to be zero, which leads to the following
expression for the considered partial derivative:

∂

∂xbn/2c,bn/2c
hS,n(0, . . . , 0) = (C22 − C23 − C32 + C33) ·Θ

( 1
n3

)
+O

( 1
n4

)
.

Hence, if n is large enough and the partial derivative is zero, it must hold that
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C22 − C23 − C32 + C33 = 0.
Since the cover matrix C satisfies that Ck,` −Ck,`+1 −Ck+1,` +Ck+1,`+1 = 0 for

all k, ` ∈ [3], C is of the form

C =


a b c d

e b+ e− a c+ e− a d+ e− a
f b+ f − a c+ f − a d+ f − a
g b+ g − a c+ g − a d+ g − a


for some integers a, . . . , g. Since C is a cover matrix for a set S of 4-permutations,
each row and each column must sum to |S|, i.e., the sums of the entries of each row
are equal and the same holds for the columns of C. It follows that b = c = d and
e = f = g, so

C =


a b b b

e b+ e− a b+ e− a b+ e− a
e b+ e− a b+ e− a b+ e− a
e b+ e− a b+ e− a b+ e− a

 .

It now follows that b = e (otherwise, the sum of the second row and the second
column would differ), which yields that the matrix C must be of the form

C =


a b b b

b 2b− a 2b− a 2b− a
b 2b− a 2b− a 2b− a
b 2b− a 2b− a 2b− a

 .

Hence, we get that a+ 3b = 7b− 3a, which yields that a = b. We conclude that the
matrix C is constant.

The following lemma will be used to analyse sets of 4-permutations with constant
cover matrix.

Lemma 3.13. Let S be a set of 4-permutations such that the cover matrix C is
constant. The Hessian matrix of the second order partial derivatives of hS,5 at
(0, . . . , 0) has both a positive and a negative eigenvalue, unless S is symmetric to
one of the following sets of 4-permutations

• {1234, 2143, 3412, 4321},

• {1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321},

• {1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321},
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• {1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231},

• {1342, 1423, 2314, 2431, 3124, 3241, 4132, 4213},

• {1234, 1243, 1324, 2134, 2143, 2413, 3142, 3412, 3421, 4231, 4312, 4321},

• {1234, 1243, 1342, 2134, 2143, 2431, 3124, 3412, 3421, 4213, 4312, 4321},

• {1234, 1243, 1342, 2134, 2143, 2431, 3214, 3412, 3421, 4123, 4312, 4321},

• {1234, 1243, 1432, 2134, 2143, 2341, 3214, 3412, 3421, 4123, 4312, 4321},

• {1234, 1243, 1432, 2134, 2341, 2413, 3142, 3214, 3421, 4123, 4312, 4321},

• {1234, 1243, 1432, 2143, 2314, 2341, 3214, 3412, 3421, 4123, 4132, 4321},

• {1234, 1342, 1423, 2143, 2314, 2431, 3124, 3241, 3412, 4132, 4213, 4321},

• {1234, 1342, 1423, 2314, 2413, 2431, 3124, 3142, 3241, 4132, 4213, 4321},

or their complements.

Proof. For a 4-permutation π, let Hπ be the Hessian matrix (of order sixteen)(
∂2

∂xij∂xi′j′
h{π},5(0, . . . , 0)

)
i,j,i′,j′∈[4]

.

The matrices Hπ for all 4-permutations can be found in Appendix 1. For a set S of
4-permutations, let HS be the corresponding Hessian matrix, i.e.,

HS =
∑
π∈S

Hπ.

Note that HS = −HS where S is the complement of S with respect to the set of
all 4-permutations. If the cover matrix of S is constant, then |S| must be divisible
by four. Up to symmetry, there are 12 sets S with 4 elements and 65 sets S with 8
elements whose cover matrix is constant. Up to symmetry and taking complements,
there are 68 sets S with 12 elements whose cover matrix is constant. These sets
are listed in Appendices 2–4 together with the corresponding matrices HS and their
largest and smallest eigenvalues. An inspection of these values yields the statement
of the lemma (the sets S such that the matrix HS does not have both positive and
negative eigenvalues are highlighted by the bold font in Appendices 2–4).

We are now ready to prove the main theorem of this section.
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Theorem 3.14. Let S be a set of 4-permutations. There exists an integer n and
~x, ~y ∈ Un such that hS,n(~x) < |S|/24 < hS,n(~y), unless S is symmetric to one of the
sets of 4-permutations listed in Lemma 3.13, or to the complement of one of them.

Proof. If the cover matrix C of S is not constant, then there exists an integer n
such that the gradient ∇hS,n(0, . . . , 0) is non-zero by Lemma 3.12. Hence, we can
set ~x = −ε∇hS,n(0, . . . , 0) and ~y = ε∇hS,n(0, . . . , 0) for a sufficiently small positive
ε. If the cover matrix C of S is constant, then ∇hS,n(0, . . . , 0) is zero for every
integer n by Lemma 3.11, in particular, for n = 5. However, unless S is symmetric
to one of the sets of 4-permutations listed in Lemma 3.13 or to the complement of
one of them, the Hessian matrix of the second partial derivatives of hS,5 at (0, . . . , 0)
has both positive and negative eigenvalues. Hence, we can set ~x to be an ε-multiple
of the eigenvector corresponding to a negative eigenvalue of the Hessian matrix and
~y to be an ε-multiple of the eigenvector corresponding to a positive eigenvalue for a
sufficiently small positive ε.

3.5 Non-Σ-forcing sets

We start this section with a lemma which asserts that in order to show that a set S
of 4-permutations is not Σ-forcing, it is enough to find a permuton where the sum of
pattern densities is smaller than |S|/24, and a permuton where the sum of pattern
densities is larger than |S|/24.

Lemma 3.15. Let S be a set of 4-permutations. If there exist permutons µ1 and
µ2 such that ∑

π∈S
d(π, µ1) < |S|24 and

∑
π∈S

d(π, µ2) > |S|24 ,

then there exists a non-uniform permuton µ such that

∑
π∈S

d(π, µ) = |S|24 .

Proof. Define a permuton µλ for λ ∈ (1, 2) as follows:

µλ(X) = (2− λ) · µ1

( 1
2− λ ×

(
X ∩ [0, 2− λ]2

))
+ (λ− 1) · µ2

( 1
λ− 1 ×

(
X ∩ [2− λ, 1]2 − (2− λ, 2− λ)

))
,
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µ1

µ2

2− λ

2− λ

Figure 3.2: The permuton µλ in the proof of Lemma 3.15. The support of the
permuton lies in the grey area.

where α×X stands for {α · x, x ∈ X} and X − v for {x− v, x ∈ X}. The definition
of a permuton µλ is illustrated in Figure 3.2. Note that µλ is µ1 for λ = 1 and µ2

for λ = 2. Next define a function f : [1, 2]→ [0, 1] as

f(λ) =
∑
π∈S

d(π, µλ).

Observe that f is a continuous function on the interval [1, 2]. Hence, there exists
λ ∈ (1, 2) such that f(λ) = |S|/24. Since the permuton µλ is not uniform for any
λ ∈ (1, 2), the statement of the lemma follows.

We are now ready to prove the main theorem of this section.

Theorem 3.16. Let S be a set of 4-permutations. Then there exists a non-uniform
permuton µ such that ∑

π∈S
d(π, µ) = |S|24

unless the set S is one of the following sets of 4-permutations

• {1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321},

• {1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321},

• {1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231},

• {1324, 1423, 2314, 2413, 3142, 3241, 4132, 4231},

• {1234, 1243, 1432, 2134, 2143, 2341, 3214, 3412, 3421, 4123, 4312, 4321},

or their complements.

Proof. Fix a set S of 4-permutations that is not one of the sets listed in the statement
of the lemma. We can assume that |S| 6 12 by considering the complement of S if
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necessary. By Lemma 3.15, it suffices to find permutons µ1 and µ2 such that the
sum of the pattern densities of the permutations contained in S for µ1 is less than
|S|/24 and for µ2 is larger than |S|/24. If S is not symmetric to a set listed in the
statement of Lemma 3.13, such permutons µ1 and µ2 exist by Theorem 3.14. Hence,
we can assume that S is one of the 9 sets listed in the statement of Lemma 3.13 but
not in the statement of Theorem 3.16.

We first consider the case S = {1342, 1423, 2314, 2431, 3124, 3241, 4132, 4213}.
We choose µ1 to be the monotone increasing permuton, i.e., the unique permuton
such that supp (µ)1 = {(x, x), x ∈ [0, 1]}. The density of a pattern π in µ1 is 1 if π
is increasing and 0 otherwise; in particular, the sum of the pattern densities of the
permutations from S is zero. Next, consider the following doubly stochastic matrix
A

A =



0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0


,

and set µ2 = µ[A]. A direct computation yields that the sum of the pattern densities
of the permutation contained in S in µ2 is 25

72 >
1
3 .

Each of the eight sets S that remain to be considered contain the permutation
1234. Hence, we set µ2 to be the monotone increasing permuton. The permutons µ1

for these sets can be chosen as step permutons corresponding to doubly stochastic
matrices listed in Appendix 5.
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Chapter 4

Inducibility of Trees

4.1 Overview

In this chapter, we resolve three questions posed by Bubeck and Linial [22] about
limit densities of subtrees in trees. Recall that the density d(S, T ) of a k-vertex
tree S in a tree T is the number of embeddings of S in T divided by the number of
k-vertex subtrees of T , and that the inducibility of S the maximum possible density
of S in a large tree. Our main result is:

Theorem 4.1. The inducibility of every tree S that is neither a star nor a path is
at most 1− 10−35.

The theorem is proved in Section 4.6, and relies on several preliminary results in
Sections 4.3–4.5. Theorem 4.1 is complemented in Section 4.7 by a lower bound on
the inducibility of a class of trees that we call sparklers, which implies the following:

Theorem 4.2. There are infinitely many trees with inducibility at least 13/165.

Lastly, in Section 4.8 we construct a universal sequence of trees.

Theorem 4.3. There exists a sequence (Tn)n∈N of trees in which the limit density
lim
n→∞

d(S, Tn) of every tree S is positive.

4.2 Preliminaries

Given a vertex v in a tree T , a branch of T rooted at v is a subtree of T formed by
a component of the graph T \ v together with its edge to v. A branch is non-trivial
if it is not a single edge; in other words, it does not correspond to a leaf of T . A
non-trivial branch rooted at a vertex v is a fork if it is isomorphic to a star (note that
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v must be a leaf of this star). The order of a fork is its number of (non-root) leaves.
A branch is major if it is a non-trivial branch that is not a fork. A caterpillar is a
tree T such that every vertex of T is the root of at most two non-trivial branches.
Finally, a vertex of a caterpillar that is not a leaf is called internal. Observe that a
tree is a caterpillar if and only if its internal vertices induce a path.

Czabarka, Székely and Wagner [38, Theorem 1 and Lemma 4] proved the fol-
lowing result about limit densities in trees of bounded radius.

Proposition 4.4 ([38]). Let (Tn)n∈N be a convergent sequence of trees with |Tn| →
∞. If there exists an integer K such that the radius of each Tn is at most K, then

lim
n→∞

d(Sk, Tn) = 1

for every k ∈ N, where Sk is the k-vertex star.

As mentioned at the end of Section 1.4, the result below is proved independently
in [21, Theorem 2] and [38, Theorem 1].

Proposition 4.5 ([21, 38]). Let k > 4 and let (Tn)n∈N be a convergent sequence of
trees with |Tn| → ∞. If lim

n→∞
d(Pk, Tn) = 0, then lim

n→∞
d(Sk, Tn) = 1.

A center of a tree T is a vertex v such that each branch rooted at v has at most
|T |/2 edges. Every tree T has either one or two centers. Moreover, if T has two
centers, then |T | is even, the two centers are adjacent, each center has a branch
rooted at it with exactly |T |/2 edges, and the other center is its neighbour in this
branch. A hub of a tree T is a vertex v that is the only vertex on the path from v

to the nearest center of T that is the root of at least three non-trivial branches. In
particular, if a center of T is the root of at least three non-trivial branches, then it
is a hub.

Proposition 4.6. Every tree T that is not a caterpillar has at least one and at most
two hubs.

Proof. Let T ′ be the tree obtained from T by removing all of its leaves. The degree
of a vertex v in T ′ is equal to the number of non-trivial branches rooted at v in T .
Since T is not a caterpillar, T ′ is not a path. Therefore, T ′ contains a vertex of
degree at least 3, so T has at least one hub.

Let W be the set of vertices of T ′ with degree at least 3. Suppose that T has a
single center vC . If vC has degree at least three in T ′, then vC is the only hub of T .
Otherwise, the degree of vC in T ′ is equal to 1 or 2 and there exists at least one and
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Figure 4.1: Two embeddings of 7-vertex trees that can be obtained from each other
by moving two edges. The edges of the embeddings are in bold.

at most two vertices w ∈ W such that there is no other vertex of W on the unique
path between vC and w. These vertices w are the hubs of T .

In the case that T has two centers vC and v′C , which are necessarily adjacent,
then each center is a hub if its degree in T ′ is at least three. Otherwise, there
exists at most one vertex w ∈ W such that the unique path between vC and w

contains neither another vertex of W nor v′C . Similarly, there exists at most one
vertex w ∈W such that the unique path between v′C and w contains neither another
vertex of W nor vC . Hence, T has at most two hubs.

Let S0 and S be embeddings of trees in a tree T with |S0| = |S| = n, and let
k be an integer less than n. (In fact, we only use k 6 3). We say that S can be
obtained from S0 by moving k edges if the intersection of S0 and S is a subtree of
T with n− k vertices (see Figure 4.1). In this sense, S is said to be obtained from
S0 by removing the edges of S0 that are not contained in S, and then adding the
edges of S that are not contained in S0.

We next bound the number of vertices that can become a center of an embedding
of a tree when at most three edges are moved.

Proposition 4.7. Let S0 be an embedding of a tree with at least 17 vertices in
another tree T . There exists a set X of at most 8 vertices of T such that if three
or fewer edges of S0 are moved to produce an embedding S of a tree in T , then each
center of S is contained in X.

Proof. Let n = |S0| > 17. Let X be the set of vertices v of S0 such that each branch
rooted at v has at most n/2 + 3 edges. We claim that X has the property given
in the statement of the lemma. Indeed, if S is an embedding obtained from S0 by
moving at most three edges and w is a center of S, then each branch of S rooted at
w has at most n/2 edges and so each branch of S0 rooted at w has at most n/2 + 3
edges. Hence, w is contained in X.

It remains to estimate |X|. We call a branch B of S0 significant if B is rooted
at a center of S0, has at least n/2− 3 edges, and does not contain the other center
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(if another center exists). Every vertex x ∈ X is either a center or is contained
in a significant branch—otherwise, the branch rooted at x containing the center(s)
has at least (n − 1) − (n/2 − 4) + 1 = n/2 + 4 edges. Since significant branches
are edge-disjoint and 3(n/2 − 3) = (n − 1) + (n/2 − 8) > n − 1, S0 has at most
two significant branches. Note that each significant branch has at most bn/2c edges
since it is rooted at a center of S0, so the other branches rooted at the same center
contain at least dn/2e − 1 edges in total.

Therefore, if n is odd, each significant branch has at most three vertices w such
that the branch rooted at w containing the center(s) has at most dn/2e + 2 =
bn/2c + 3 edges. If n is even and S0 has two centers, then the branches rooted at
each center that contain the other center have exactly n/2 edges. So again, each
significant branch has at most three vertices w such that the branch rooted at w
containing the center(s) has at most n/2 + 3 edges. Lastly, if n is even and S0 has
only one center, then we use the fact that there is at most one significant branch
with exactly n/2 edges. This branch, if it exists, has at most four vertices w such
that the branch rooted at w containing the center has at most n/2 + 3 edges; any
other significant branch has at most three such vertices w. In each case, |X| 6 8.

Note that the bound on |X| in Proposition 4.7 is best possible since it is attained
when S0 is a path with an even number of vertices.

We finish this section by bounding the number of vertices that can become a
hub of an embedding of a tree when at most three edges are moved.

Proposition 4.8. Let S be a non-caterpillar tree with at least 17 vertices, and fix
an embedding of a tree S′ with |S′| = |S| in a tree T . There exists a set X of at most
144 vertices of T such that if an embedding of S in T can be obtained by moving
three or fewer edges of S′, then each hub of the obtained embedding of S is contained
in X.

Proof. Let X0 be the set of the vertices from Proposition 4.7 applied with S0 = S′,
and let D be the set of distances between the hubs of S and the nearest center in
S. By Proposition 4.6, S has at most two hubs, so |D| 6 2.

For a vertex z in the embedding of S′, define the resistance of z as the number
of edges not incident with z that are contained in branches of S′ rooted at z with
the two largest branches excluded. Informally speaking, the resistance of z is the
number of edges that must be removed from S′ so that z is no longer the root of
three non-trivial branches, and therefore not a candidate hub.

Consider a vertex x ∈ X0 that is a center of an embedding of S in T obtained
by moving at most three edges of S′. Observe that in this embedding of S, a vertex
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v 6= x of T can be a hub whose nearest center is x only if the following holds:

• v is an internal vertex of S′,

• the distance d between v and x belongs to the set D, and

• the sum of the resistance of x and the resistances of the internal vertices on
the path between v and x is at most 3.

Let X be the union of X0 with the set of vertices v that satisfy these three conditions
for some x ∈ X0.

For a vertex x ∈ X0, let Zx be the union of {x} with the set of internal vertices
z of S′ such that the sum of the resistance of x and the resistances of the internal
vertices on the path between z and x is at most 3. Observe that if a vertex z belongs
to Zx, then all vertices on the path between z and x also belong to Zx. Define SZ
to be the subtree of S′ induced by Zx, and note that the resistance of z is an upper
bound on the number of leaves of SZ lying in non-trivial branches rooted at z with
the two largest branches excluded. Let δ be the number of branches of SZ rooted at
x. Since each of the δ branches of SZ rooted at x has at most 4− γ 6 min{4, 6− δ}
leaves, where γ > δ− 2 is the resistance of x, the tree SZ has at most 9 leaves. This
implies that the number of vertices of Zx lying at a distance contained in D from x

is at most 18. Hence, the set X contains at most 8 · 18 = 144 vertices.

4.3 Inducibility of trees with three large branches

In this section, we present a part of the proof of Theorem 4.1 for trees with three
large branches rooted at a hub. For a k-vertex tree S and a host tree T , one
approach would be to construct a function fS,T that maps each embedding of S
in T to an embedding of a k-vertex subtree of T non-isomorphic to S such that
at most α embeddings of S are mapped to the same subtree of T , where α is a
constant independent of S and T . This would imply that the inducibility of S is at
most α/(α+ 1). An explicit construction of such a function fS,T is technical, so we
prove its existence implicitly using a discharging argument.

Theorem 4.9. Assume S is a k-vertex tree (k > 17) with a fixed hub vS that is
either adjacent to at most one leaf, or is the root of at least three major branches
and at most one fork. If T is a tree with radius at least 4k, then d(S, T ) 6 1−10−7.

Proof. Let vT be a vertex of T such that there exist (2k+1)-vertex paths P1 and P2

starting at vT that are disjoint except at vT itself; such a choice is possible because
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the radius of T is at least 4k. For every vertex v of T , fix a linear order �v of the
edges incident with v.

If there is at most one leaf adjacent to vS , then we say that every non-trivial
branch rooted at vS is important; otherwise, a branch rooted at vS is said to be
important only if it is major. Note that there are at least three important branches
regardless which of the two cases described in the statement of the theorem apply.
In this proof, a stub is an embedding of a (k − 3)-vertex tree S′ in T with a distin-
guished vertex v′ and three distinguished branches, together with a correspondence
between the distinguished branches and three (isomorphism classes of) branches of
S rooted at vS such that it is possible to add a single leaf to each of the distinguished
branches of S′ so that there is an isomorphism from S′ to S that maps vS→T to
vS and the vertices of each of the distinguished branches of S′ to the vertices of
the corresponding branch of S. The three distinguished branches of the stub are
referred to as grafts.

We next introduce a canonical way of obtaining a stub from an embedding of
S in T . For an embedding of S in T , let vS→T be the vertex of T corresponding
to the hub vS ; if there are two possible choices for vS→T , we choose an arbitrary
one. Consider the three important branches of the embedding rooted at vS→T
whose edges incident with vS→T appear earliest in the linear order �v. These three
branches will be denoted by SA, SB, and SC ; we will decide which branch is SA,
which is SB, and which is SC later in the proof. Consider the DFS traversal of the
branches SA, SB, and SC from vS→T such that the edges at each vertex v of the
branches are visited in the order given by �v; that is, a part of the branch joined by
an edge earlier in the order �v is explored first. We obtain the stub S′ by removing
the leaf of the embedding that appears last in the DFS traversal in the branch SA,
the leaf that appears last in the branch SB, and the leaf that appears last in the
branch SC . The branches obtained from SA, SB, and SC are the grafts of the stub
S′.

Let vA, vB, and vC be the vertices of the branches SA, SB, and SC adjacent to
the removed leaves of the embedding, and let dA, dB, and dC be the degrees of vA,
vB, and vC in the embedding of S, respectively. Fix the indexing of the branches
SA, SB, and SC so that dA > dB > dC > 2. The edges of T incident with vA, vB,
and vC , respectively, that appear in the orders �vA , �vB , and �vC after the edge of
the embedding of S that is visited second-last by the DFS traversal are referred to as
active, with the possible exception of the edge towards the vertex vS→T ; that is, the
edge incident with vA, vB, or vC on the path to vS→T is never active. In particular,
if dA = 2 then all edges incident with vA except the one towards the vertex vS→T
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are active. Observe that no active edges are contained in the stub S′ and the only
active edges contained in the embedding of S are the three edges incident with the
removed leaves. Let sA, sB, and sC be the number of active edges incident with vA,
vB, and vC , respectively.

Observe that if a stub S′ is fixed, including the choice of the distinguished vertex
and grafts, the vertices vA, vB and vC are uniquely determined: they are the last
vertices in the DFS traversal uniquely determined by the orders �v whose distance
is 1 less than the distance of the missing leaf. Hence, the same stub S′ can be
obtained from exactly sAsBsC embeddings of a tree S in the tree T .

Define Q to be the unique path in the tree T between the vertices vS→T and
vT prolonged by P1 if P1 does not contain the edge from vT towards vS→T and
prolonged by P2 otherwise. Since P1 and P2 each have 2k + 1 vertices, Q has at
least k+ 1 vertices not contained in the embedding of S. We next construct a set S
of embeddings of several k-vertex trees non-isomorphic to S in T as follows.

• If sA > 3 and sA > sB, then S contains all embeddings obtained from S′ by
adding two active edges incident with vA and an active edge incident with vC .

• If 3 6 sA < sB and sB > sC , then S contains all embeddings obtained from
S′ by adding an active edge incident with vA and two active edges incident
with vB.

• If 3 6 sA < sB < sC and dB 6= dC + 1, then S contains all embeddings
obtained from S′ by adding an active edge incident with vA and two active
edges incident with vC .

• If 3 6 sA < sB < sC and dA−1 6= dB = dC+1, then S contains all embeddings
obtained from S′ by adding two active edges incident with vB and an active
edge incident with vC .

• If 3 6 sA < sB < sC and dA−1 = dB = dC+1, then S contains all embeddings
obtained from S′ by adding an active edge incident with vB and two active
edges incident with vC .

• If sA < 3, sB > 3 and sB > sC , then S contains all embeddings obtained from
S′ by adding an active edge incident with vA and two active edges incident
with vB.

• If sA < 3 6 sC , sB < sC and dB 6= dC + 1, then S contains all embeddings
obtained from S′ by adding an active edge incident with vA and two active
edges incident with vC .
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• If sA < 3 6 sC , sB < sC and dA 6= dB = dC+1, then S contains all embeddings
obtained from S′ by adding an active edge incident with vB and two active
edges incident with vC .

• If sA < 3 6 sC , sB < sC and dA = dB = dC+1, then S contains all embeddings
obtained from S′ by adding three active edges incident with vC .

• If sA, sB, and sC are all less than 3, then S contains the unique tree that is
obtained from S′ by adding the first three edges of Q that are not already
contained in S′.

The above ten cases cover all values of sA, sB, sC , dA, dB, and dC satisfying
sA, sB, sC > 1 and dA > dB > dC > 2. In each case, the degree sequence of every
tree in S is different from the degree sequence of S. For example, in the first case,
trees in S contain more vertices of degree dA + 1 than S, and in the last case, the
tree in S has fewer leaves than S. Therefore, none of the embeddings in S is an
embedding of a tree isomorphic to S. In all but the last case, |S| > sAsBsC/12. For
example, in the first case,

|S| =
(
sA
2

)
sC = sA(sA − 1)sC

2 >
s2
AsC
3 >

sAsBsC
3 >

sAsBsC
12 .

Cases 2–8 follow similarly (by permuting the letters A, B, and C in the argument
above). In the second-last case, since sA 6 2,

|S| =
(
sC
3

)
>
sC(sC − 1)

6 >
sCsB

6 >
sAsBsC

12 .

In the last case, |S| = 1 > sAsBsC/8. This implies that |S| is at least the number
of embeddings of S yielding the stub S′ divided by 12.

Fix an embedding S′′ of a k-vertex tree that is not isomorphic to S. We now esti-
mate the number of stubs S′ associated with an embedding of S whose corresponding
set S contains S′′. We will create a stub S′ from S′′ by following constructive steps
that we next describe. The steps sometimes result in a tree that cannot be a stub
of an embedding of the tree S, however, any stub S′ associated with an embedding
of S such that the corresponding set S contains S′′ can be created by following the
described steps.

The distinguished vertex of S′ must be a hub vS→T of an embedding of S that
can be transformed into S′′ by moving at most three edges. By Proposition 4.8,
there are at most 144 choices for vS→T . Once the vertex vS→T is chosen, it needs to
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be decided which three branches of S′′ rooted at vS→T correspond to grafts of the
stub S′. Suppose S has at most one leaf adjacent to vS , which implies that every
non-trivial branch rooted at vS is important. Every graft of S′ corresponds to either
a leaf (as an important branch can be become trivial after the removal of a single
edge—note that at most three additional leaves can be created in this way), or to
one of the first four non-trivial branches rooted at vS in the order given by �vS
(as a new non-trivial branch can be created by adding the first three edges of Q).
Hence, there are at most eight branches of S′′ that could possibly be grafts in S′

when vS→T is chosen. Similarly, if S has at most one fork rooted at vS , every graft
of S′ corresponds to either a fork (as an important branch can become a fork after
the removal of a single edge—again, at most three additional forks can be created
in this way), or to one of the first four major branches rooted at vS in the order
given by �vS . Again, there are at most eight branches of S′′ that could possibly be
grafts in S′.

Next, fix a triple among the at most eight branches that could be the three grafts
of S′. Observe that the degree of vS→T in S′′ is the same as the degree of vS in S

unless a new branch at vS→T was created by adding the first three edges on Q; that
is, these three edges form a branch rooted at vS→T in S′′. In the latter case, remove
the three edges of Q that have been added to get the same number of branches in
the embedding as in S′. The correspondence between the branches of the embedding
and S′ different from the grafts is given by their isomorphism to the branches of
S rooted at vS . Three branches of S remain unmatched in this way and these can
correspond in 3! = 6 ways to the grafts. When the correspondence of these three
branches and the grafts is fixed, it is uniquely determined which edges of S′′ need
to be removed to get the stub S′. For example, if one of the branches of S′′ has
two additional edges but not two additional leaves compared to the corresponding
branch of S, then the last of the ten cases applied (that is, three edges from Q were
added), and we just remove the three edges of Q to get S′. Otherwise, the difference
between the number of edges in the three branches of S′′ chosen as grafts and the
corresponding branches of S determine the number of edges to be removed to get S′,
and the correct edges to be removed are uniquely determined by the linear orders
�v.

We conclude that for every k-vertex tree S′′, there are at most

144 ·
(8

3
)
· 6 6 48 384

stubs S′ such that S′ is associated with an embedding of S that the corresponding
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set S contains S′′; the estimate follows from the fact that there are at most 144
choices of vS→T , each of which leads to at most

(8
3
)

choices of grafts and at most six
ways in which the grafts can correspond to the branches of S rooted at vS .

The bound on the density of S in T is obtained as follows. Assign a charge
of 48 384 · 12 = 580 608 to each embedding of a k-vertex tree S′′ in T that is not
isomorphic to S. Each such embedding sends 12 units of charge to each of the at
most 48 384 stubs S′ associated with an embedding of S whose corresponding set
S contains S′′. In this way, every stub S′ receives at least sAsBsC units of charge,
where sA, sB and sC are defined as above (note that the quantities sA, sB and
sC are uniquely determined by the stub S′). Finally, the stub S′ sends one unit
of charge to each embedding of S in T whose associated stub is S′. Since every
embedding of S in T receives at least one unit of charge, the density of S in T is at
most 1− 580 609−1 6 1− 10−7.

4.4 Inducibility of trees with forks

In this section, we analyse the inducibility of non-caterpillar trees that are not
covered by Theorem 4.9. A similar argument applies to a large class of caterpillars
and so we formulate a single theorem to cover all cases.

Theorem 4.10. Let S be a k-vertex tree (k > 17) that has a fixed vertex vS satisfying
one of the following:

• S is not a caterpillar, and vS is a hub of S that is the root of at least one fork
and is adjacent to at least two leaves,

• S is a caterpillar with at least four internal vertices, and vS is the root of a
fork of order at least two and is adjacent to a leaf, or

• S is a caterpillar with exactly three internal vertices, and vS is the root of a
fork and is adjacent to a leaf.

If T is a tree with radius at least 4k, then d(S, T ) 6 1− 10−4.

Proof. The assumptions guarantee that vS is the root of at least two non-trivial
branches, and that there is at most one vertex v′S 6= vS of S such that S has an
automorphism mapping the vertex vS to v′S . Let ` be the maximum order of a fork
rooted at vS ; since vS is the root of a fork, ` > 0 is well-defined.

Notation. Fix a tree T with radius at least 4k. Let vT be a vertex of T such
that there exist (2k + 1)-vertex paths P1 and P2 starting at vT that are disjoint
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except at vT itself; such a choice is possible because the radius of T is at least 4k.
We show that the density of S in T is at most 1−10−4 using a discharging argument
that assigns each embedding of a k-vertex tree non-isomorphic to S a charge of 9 999
units and redistributes this charge to embeddings of S so that each one receives at
least one unit of charge.

Consider an embedding of S in T and let vS→T be the vertex of T corresponding
to vS ; if there are two valid choices, choose vS→T arbitrarily among them. Let R0

be the set of leaves of the embedding of S adjacent to vS→T and let Ri be the
neighbours of vS→T that are contained in a fork of order i for i ∈ {1, . . . , `}. Note
that R0 6= ∅ and R` 6= ∅. In addition, observe that ` > 1 or |R0| > 1; in the
last case described in the statement of the lemma, this is because |S| > 17. Set
R = R0 ∪ · · · ∪R`. Let α be the number of edges of T incident with vS→T that are
not contained in S, and for a vertex v ∈ R, let βv be the number of edges incident
with v that are not contained in S. Finally, define Q to be the unique path in T

between vS→T and vT prolonged by P1 if P1 does not contain the edge from vT

towards vS→T and prolonged by P2 otherwise. Since P1 and P2 each have 2k + 1
vertices, Q has at least k + 1 vertices not contained in the embedding of S.

Definition of correspondence. We next define sets SA, SB and SC of embed-
dings of trees non-isomorphic to S, and in some cases, we also define a set SD. Each
of the embeddings contained in SA, SB and SC can be obtained from the embedding
of S by moving an edge, and some of these sets can be empty.

Let SA be the set of embeddings obtained by removing a leaf adjacent to vS→T
and adding a leaf to a fork of order ` rooted at vS→T . Note that the number of
leaves of S that are adjacent to a vertex that is the root of exactly one non-trivial
branch (that is, the number of leaves contained in a fork) is one fewer than the
number of such leaves in the obtained embedding. Hence, the trees in SA are not
isomorphic to S. Observe that

|SA| = |R0| ·
∑
v∈R`

βv,

and let
εA = |SA|

(`+ 1)(α+ 1) =
|R0| ·

∑
v∈R` βv

(`+ 1)(α+ 1) .

Let SB be the set of embeddings obtained by removing a leaf adjacent to vS→T
and adding a leaf to a fork of order ` − 1 if ` > 2 or adding a leaf to another leaf
adjacent to vS→T if ` = 1. Since the number of leaves of S that are adjacent to a
vertex that is the root of exactly one non-trivial branch is one fewer than the number
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of such leaves in the obtained embedding, the trees in SB are not isomorphic to S.
Observe that if ` 6= 1, then

|SB| = |R0| ·
∑

w∈R`−1

βw,

and if ` = 1, then
|SB| = (|R0| − 1) ·

∑
w∈R`−1

βw.

Finally, let

εB = |SB|
(|R`|+ 1)`(α+ 1) >

|R0| ·
∑
w∈R`−1

βw

2(|R`|+ 1)`(α+ 1);

the inequality holds since ` > 1 or |R0| > 1.
Next, let SC be the set of embeddings obtained by removing a leaf of a fork

of order ` rooted at vS→T and adding a leaf adjacent to vS→T . Unless ` = 1, the
number of leaves of S that are adjacent to a vertex that is the root of exactly
one non-trivial branch is one more than the number of such leaves in the obtained
embedding. If ` = 1, then the number of leaves of S is one less than the number
of leaves in the obtained embedding. In both cases, the trees contained in SC are
non-isomorphic to S. Observe that

|SC | = |R`| · ` · α,

and let
εC =

∑
v∈R`

` · α
(|R0|+ 1)

(
βv + 1 +∑

w∈R`−1
βw
) .

If ` > 2, then we also define SD to be the set of embeddings obtained by removing
a leaf adjacent to vS→T and a leaf of a fork of order ` rooted at vS→T , and adding the
first two edges of Q not contained in the embedded tree. Since the number of leaves
of S is at least one more than the number of leaves in the obtained embedding, the
obtained embedding is not an embedding of S. Unlike in the previous three cases,
the embeddings obtained in this way need not all be embeddings of the same tree
since one of the removed edges can be contained in Q and then added back. Observe
that

|SD| = |R0| · |R`| · `,

and let
εD =

∑
v∈R`

|R0| · `
(α+ 1)

(
βv + 1 +∑

w∈R`−1
βw
) .
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Discharging argument. Given an embedding S′ of a k-vertex tree in T , the
number of choices of a vertex vS→T in S′ such that S′ is contained in one of the sets
SA, SB, SC , and SD for an embedding of S with the vertex vS mapped to vS→T is
at most 144 by Proposition 4.8 if S is not a caterpillar. If S is a caterpillar, then
the number of choices of a vertex vS→T in S′ such that S′ is contained in SA, SB,
or SC for an embedding of S with the vertex vS mapped to vS→T is at most 4: if
S′ is a caterpillar then vS→T must be its first, second, second-last, or last internal
vertex, and if S′ is not a caterpillar, then it can only be contained in SB and vS→T
is its unique vertex with two forks. Furthermore, the number of choices of a vertex
vS→T in S′ such that S′ is contained in SD for an embedding of S with the vertex
vS mapped to vS→T is at most 4: there are at most two choices of edges that could
have been added as part of Q and, once these edges are chosen and removed, vS→T
is either its second or second-last internal vertex (assuming the tree is a caterpillar).
We conclude that if S is a caterpillar, then the number of choices of a vertex vS→T in
S′ such that S′ is contained in one of the sets SA, SB, SC and SD for an embedding
of S with the vertex vS mapped to vS→T is at most 8.

For each choice of vS→T , the embedding S′ distributes 10 units of its charge
equally to the embeddings of S with vS→T such that S′ is in the corresponding
set SA, 10 units of its charge equally to the embeddings such that S′ is in the
corresponding set SB, 10 units of its charge equally to the embeddings such that S′

is in the corresponding set SC , and, if ` > 2, an additional 10 units of its charge
equally to the embeddings such that S′ is in the corresponding set SD. In this way,
the embedding S′ distributes at most 8 · 40 = 320 charge if S is a caterpillar, and
at most 144 · 40 = 5 760 units of charge if it is not. We remark that there will
be additional charge distributed by S′ by rules described later in the proof. Each
embedding of S receives at least 10(εA + εB + εC) units of charge and, if ` > 2, at
least 10(εA+εB +εC +εD) units of charge. In particular, the considered embedding
receives at least one unit of charge unless εA, εB, εC , and εD are all less than 1/10.

We next show that one of εA, εB and εC is at least 1/10 unless α = 0 or∑
w∈R`−1

βw = ∑
v∈R` βv = 0. Suppose that α 6= 0. Let B be the maximum value of

βv for v ∈ R`. If B >
∑
w∈R`−1

βw, then

εAεC =
|R0| ·

∑
v∈R` βv

(`+ 1)(α+ 1) ·
∑
v∈R`

` · α
(|R0|+ 1)

(
βv + 1 +∑

w∈R`−1
βw
)

>
|R0| ·

∑
v∈R` βv

4`α · |R`| · ` · α2(|R0|+ 1)B >
|R0|

8(|R0|+ 1) >
1
16 .
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Hence, εA or εC is at least 1/10. If B 6
∑
w∈R`−1

βw and ∑w∈R`−1
βw 6= 0, then

εBεC >
|R0| ·

∑
w∈R`−1

βw

2(|R`|+ 1)`(α+ 1) ·
∑
v∈R`

` · α
(|R0|+ 1)

(
βv + 1 +∑

w∈R`−1
βw
)

>
|R0| ·

∑
w∈R`−1

βw

8|R`|`α
·
∑
v∈R`

` · α
3(|R0|+ 1)∑w∈R`−1

βw

= |R0|
24(|R0|+ 1) >

1
48 .

Hence, εB or εC is at least 1/10. We conclude that if α 6= 0, then one of εA, εB
and εC is at least 1/10 unless ∑w∈R`−1

βw = 0 and ∑v∈R` βv = 0. So, we need to
analyse the cases when α = 0 or when ∑w∈R`−1

βw = ∑
v∈R` βv = 0.

Analysis of non-caterpillars. Suppose that S is not a caterpillar and α = 0.
Let S′ be obtained from the embedding of S by removing any two leaves adjacent to
vS→T and adding the first two edges on Q not contained in the embedding. Since S′

has at least one less leaf than S, it is not isomorphic to S. The embedding S′ sends
one unit of charge to the considered embedding of S. Note that the embedding
S′ sends by this rule at most 2 · 144 units of charge in addition to the charge sent
earlier: when S′ is fixed, there are at most two choices of edges that could have been
added as part of Q, and at most 144 choices of vS→T by Proposition 4.8. The leaves
adjacent to vS→T that were removed are uniquely determined since α = 0.

Suppose that S is not a caterpillar, α > 0 and ∑w∈R`−1
βw = ∑

v∈R` βv = 0. If
` > 2, then

εC = |R`|`α
|R0|+ 1 and εD = |R`|`|R0|

α+ 1 .

It follows that εCεD > 1/4; that is, εC or εD is at least 1/10. If ` = 1 and |R1| > 2,
then let S′ be obtained from the embedding of S by removing a leaf from two forks
rooted at vS→T and adding the first two edges of Q. Since the embedding S′ has
fewer leaves contained in forks, S′ is not isomorphic to S. The embedding S′ sends
one unit of charge to the considered embedding of S. Each embedding S′ sends in
this way at most 2 · 144 units of charge in addition to the charge sent earlier: when
S′ is fixed, there are at most two choices of edges that could have been added as
part of Q, and at most 144 choices of vS→T by Proposition 4.8. The leaves adjacent
to vS→T to be changed to a fork are uniquely determined and so are the edges to
be added since ∑w∈R`−1

βw = ∑
v∈R` βv = 0.

If ` = |R1| = 1, then let e be the edge incident with the leaf of the fork rooted
at vS→T . If vS→T has a neighbour w in T that is not contained in S and that
has degree at least two in T , then remove the edge e and add the edge vS→Tw
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to obtain an embedding S′. The embedding S′ has more leaves than S and so is
not isomorphic to S. The embedding S′ sends one unit of charge to the considered
embedding of S. Each embedding S′ sends in this way at most 2 · 144 units of
charge in addition to the charge sent earlier as there are at most two leaves adjacent
to vS→T that can be changed to a fork with the unique edges to be added (as∑
w∈R`−1

βw = ∑
v∈R` βv = 0). Hence, we can assume that all neighbours of vS→T

in T are leaves except its neighbours that are contained in the non-trivial branches
of S.

If e is not contained in Q, then let S′ be the embedding obtained from S by
removing e and adding the first edge of Q not contained in S, and let S′′ be the
embedding obtained from S by removing the fork containing e and adding the first
two edges of Q not contained in S. Observe that S′ or S′′ is not isomorphic to S
since at least one of them has a different number of leaves from S. The embedding
that is not isomorphic sends one unit of charge to S and each embedding sends at
most 4 ·144 units of charge in this way (it can appear in the role of S′ and S′′, there
are at most two choices of edges that could have been added as part of Q, and there
are at most 144 choices of vS→T , each determining the embedding S uniquely).

If e is contained in Q, then let S1 be the set of embeddings obtained by removing
a leaf adjacent to vS→T and adding the edge of Q following the edge e; note that
|S1| = |R0|. Let S2 be the set of embeddings obtained by removing the edge e and
adding an edge incident with vS→T not contained in S; note that |S2| = α. Since
the embeddings in S1 and S2 have different numbers of leaves than S, they are not
isomorphic to S. Each embedding in S1 distributes one unit of charge equally among
all α+ 1 embeddings of S that can be obtained in this way, and each embedding in
S2 distributes one unit of charge equally among all |R0| + 1 embeddings of S that
can be obtained in this way (note that vS→T is uniquely determined as the vertex
in the embedding with degree greater than 2 that is closest to the added edges of
Q, and the fork of an embedding of S is created only by adding an edge to a leaf
adjacent to vS→T whose degree in T is 2). We conclude that the embedding of S
receives at least

|R0|
α+ 1 + α

|R0|+ 1 >
1
2

( |R0|
α

+ α

|R0|

)
> 1

units of charge.
Analysis of caterpillars. We next analyse the case when S is a caterpillar. If

α = 0 and |R0| > 2, then let S′ be obtained from the embedding of S by removing
any two leaves adjacent to vS→T and adding the first two edges on Q not contained
in the embedding. Since S′ has fewer leaves than S, S′ is not isomorphic to S. The
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embedding S′ sends one unit of charge to the considered embedding of S. Note that
in this way the embedding S′ sends at most 2 · 2 units of charge in addition to the
charge sent earlier: there are at most two choices of edges that could have been
added as part of Q and, once these edges are chosen and removed, the vertex vS→T
is either the second or second-last internal vertex of the resulting caterpillar.

If α = 0, |R0| = 1 and ` > 2, then we derive along the lines used in the general
case that εAεD > |R0|2

4(α+1)2 = 1
4 or εBεD > |R0|2

12(α+1)2 = 1
12 unless ∑w∈R`−1

βw =∑
v∈R` βv = 0. However, if ∑w∈R`−1

βw = ∑
v∈R` βv = 0, then εD = |R0|·|R`|·`

α+1 > 2.
If α = 0 and |R0| = ` = 1, then εA > 1/2 unless ∑v∈R` βv = 0. If α = 0, |R0| =

` = 1, and ∑v∈R` βv = 0, and more generally whenever ` = 1 and ∑v∈R` βv = 0,
then we are in the third case from the statement of the lemma, and |R`| = 2. In other
words, S is a star with two different edges subdivided. Consider S′ obtained from
the embedding of S by removing the edges that are incident with the leaves of the
two forks of S and adding the first two edges on Q not contained in the embedding.
Observe that S′ is not isomorphic to S. The embedding S′ sends one unit of charge
to the considered embedding of S. Note that in this way the embedding S′ sends at
most one unit of charge in addition to the charge sent earlier; the edges of S′ that
were added as a part of Q are the unique edges whose removal creates a star, the
vertex vS→T is the internal vertex of this star, and the remaining two edges of the
embedding of S are uniquely determined since ∑v∈R` βv = 0.

The final case to consider is when α > 0, ∑w∈R`−1
βw = ∑

v∈R` βv = 0, and
` > 2 (note that the case ` = 1 is covered in the previous paragraph). As in the
non-caterpillar case, it follows that εCεD > `2|R`|2/4 > 1/4; that is, εC or εD is at
least 1/10.

Conclusion. According to the rules set above, each embedding of a tree non-
isomorphic to S distributes at most 320 + 4 + 1 = 325 units of charge if S is a
caterpillar, and at most 5 760 + 10 ·144 + 2 = 7 202 units of charge if it is not. Thus,
the density of S in T is at most 1− 7203−1 6 1− 10−4.

4.5 Inducibility of caterpillars

In this section, we complete the analysis of the inducibility of caterpillars. We start
with caterpillars whose second or second-last internal vertex is the root of a fork of
order 1 and is adjacent to a leaf.

Lemma 4.11. Let S be a non-path caterpillar with k > 10 vertices that has at least
four internal vertices and has a fixed vertex vS that is the root of a fork of order 1 and
is adjacent to a leaf. If T is a tree with radius at least 4k, then d(S, T ) 6 1− 10−3.
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Figure 4.2: The trees S, S′, S′′ and S′′′ used in the proof of Lemma 4.11 when ` = 3.

Proof. Let ` > 0 be the number of leaves adjacent to vS . Since S is a caterpillar
with at least four internal vertices, vS is the root of exactly one fork; the order of
this fork is 1 by the assumption of the lemma.

Let vT be a vertex of T such that there exist (2k + 1)-vertex paths P1 and P2

starting at vT that are disjoint except at vT itself; such a choice is possible because
the radius of T is at least 4k.

We next define trees S0, S′, S′′ and S′′′ (see Figure 4.2). Let S0 be the tree
obtained from S by removing the fork and all leaves adjacent to vS . If ` > 2, then
let S′ be the tree obtained from S by removing a leaf adjacent to vS and turning
another leaf adjacent to vS into a fork of order 1; if ` = 1, then S′ is not defined. Let
S′′ be the tree obtained from S by removing a leaf adjacent to vS and adding a leaf
to the fork rooted at vS . Finally, let S′′′ be the tree obtained from S be removing
the leaf of the fork rooted at vS and adding a leaf adjacent to vS . The trees S, S′

(if defined), S′′, and S′′′ are mutually non-isomorphic, since S′ is the only one that
is not a caterpillar, S′′′ has fewer internal vertices than S and S′′, and the numbers
of leaves adjacent to the first and last internal vertices of S and S′′ differ.

In this proof, a stub is an embedding of S0 with a distinguished vertex vS→T

such that the embedding of S0 can be extended to an embedding of S with vS→T

corresponding to vS . Let Q be the unique path in T between the vertices vS→T
and vT prolonged by P1 if P1 does not contain the edge from vT towards vS→T and
prolonged by P2 otherwise. Let D > `+ 1 be the degree of vS→T in T minus 1 and
let d1, . . . , dD be the degrees of its neighbours not contained in the embedding of
S0 minus 1. The numbers of ways that the embedding of S0 can be extended (with
vS→T corresponding to vS) to an embedding of S, S′, S′′, and S′′′ are

∑
16i6D

di

(
D − 1
`

)
,

∑
16i<j6D

didj

(
D − 2
`− 2

)
,
∑

16i6D

(
di
2

)(
D − 1
`− 1

)
, and

(
D

`+ 2

)
,

respectively. Let N , N ′, N ′′ and N ′′′ be these numbers. We claim that N 6

54(N ′+N ′′+N ′′′+NQ), where NQ is the number of extensions of S0 to an embedding
of a tree SQ that is defined later. Note that NQ > 0 only if ∑16i6D di = 1 or
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` = d1 = d2 = 1; we set NQ = 0 otherwise.
The following three paragraphs concern the case when ∑16i6D di = 1; note that

N ′ = N ′′ = 0 in this case. Fix an embedding of S and denote the internal vertices
of the embedding by v1, . . . , vm so that v2 = vS . Consider the first edge of Q not
contained in this embedding. If this edge is incident with vm, then let SQ be the
embedding obtained from S by removing one of the leaves adjacent to vS→T and
adding the first unused edge of Q. The sum of the degrees of the first and last
internal vertices of SQ is greater than that of S, so SQ is not isomorphic to S.
Furthermore, the number NQ of ways that the embedding of S0 can be extended to
an embedding of SQ (with the added edge of Q fixed) is

(D−1
`−1

)
.

Now suppose that the first edge of Q not contained in the embedding of S is
incident with a vertex other than vm; note that this edge is not incident with v2

because ∑16i6D di = 1. Let SQ be the embedding obtained from S by removing the
leaf of the fork rooted at vS→T and one of the leaves adjacent to vS→T , and then
adding the first two unused edges of Q. The resulting embedding is not isomorphic
to S: if the first unused edge is incident with one of v3, . . . , vm−1 or their adjacent
leaves, then SQ is not a caterpillar, and if the first unused edge is incident with a
leaf of v1 or vm, then SQ has more internal vertices than S. Again, the number NQ

of ways that the embedding of S0 can be extended to an embedding of SQ (with the
edge v1v2 and the added edges of Q fixed) is

(D−1
`−1

)
.

It follows that

N =
(
D − 1
`

)
=
(
D − 1
`− 1

)
D − `
`

,

N ′′′ =
(

D

`+ 2

)
=
(
D − 1
`− 1

)
D(D − `)(D − `− 1)

(`+ 2)(`+ 1)` , and

NQ =
(
D − 1
`− 1

)
.

If D 6 2`, then N 6 NQ. If D > 2`+1, then D−`−1 > ` > 1
2(`+1) and D > `+2,

so N 6 2N ′′′. Therefore, regardless of the relationship between D and `, we have
N 6 2(N ′′′ +NQ).

In the rest of the proof, we analyse the case when ∑16i6D di > 2. If D = `+ 1,
then the numbers of ways that the embedding of S0 can be extended to an embedding
of S, S′ and S′′ (note that N ′′′ = 0) are

N =
∑

16i6D
di, N ′ =

∑
16i<j6D

(`− 1)didj , and N ′′ =
∑

16i6D
`

(
di
2

)
,
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respectively. If ` > 2, then N 6 2N ′ unless only one of the di is non-zero, in which
case N 6 N ′′. If ` = 1, then N = d1 + d2, N ′ = 0 and N ′′ =

(d1
2
)

+
(d2

2
)
, in which

case N 6 2N ′′ + 2 6 4N ′′ unless d1 = d2 = 1. Finally, if ` = d1 = d2 = 1, then
consider the embedding SQ defined in the same way as in the case ∑16i6D di = 1
unless the first edge of Q not contained in the embedding of S is incident with the
leaf adjacent to vS→T ; note that the embedding SQ is well-defined as the first edge
of Q not contained in the embedding of S cannot be incident with v2 as D = `+ 1.
If the first edge of Q not contained in the embedding of S is incident with the leaf
adjacent to vS→T , then remove the fork rooted at vS→T and add the first two edges
of Q not contained in S; the resulting embedding SQ is a caterpillar with diameter
greater than that of S and so is non-isomorphic to S (note that the embedding SQ is
the same for both embeddings of S that can be obtained from the same stub). In all
cases describe above, the embedding SQ is uniquely determined by the embedding
of the stub, so NQ = 1, which implies that N = 2 6 2NQ.

Next assume that D > `+ 2. If ` > 2, then

N 6 2
(
D − 2
`− 2

) ∑
16i6D

di
D(D − `)

`2
,

N ′ >

(
D − 2
`− 2

) ∑
16i<j6D

didj ,

N ′′ >

(
D − 2
`− 2

) ∑
16i6D

(
di
2

)
, and

N ′′′ >
1
8

(
D − 2
`− 2

)
D2(D − `)2

`4

Hence,

N ′ +N ′′ >
1
4

(
D − 2
`− 2

) ∑
16i6D

di

2

,

which implies that N 6 8(N ′ +N ′′ +N ′′′) by the AM-GM inequality.
If ` = 1, then

N 6
∑

16i6D
Ddi 6 D2 +

∑
16i6D
di>2

D(di − 1) 6 D2 +D3 +
∑

16i6D
di>2

(di − 1)2,

N ′′ =
∑

16i6D

(
di
2

)
>

∑
16i6D
di>2

(di − 1)2

2 , and
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N ′′′ =
(
D

3

)
>
D3

27 .

It follows that

N 6 D2 +D3 +
∑

16i6D
di>2

(di − 1)2 6 54(N ′′ +N ′′′).

In all cases, we have proved that N 6 54(N ′+N ′′+N ′′′+NQ). Each embedding
of a k-vertex tree non-isomorphic to S sends 72 charge to each stub that it extends.
In this way, each stub receives at least 54(N ′+N ′′+N ′′′+NQ) > N charge, which
it can then distribute to its N extensions into embeddings of S.

To complete the discharging argument, it remains to bound the total amount of
charge that each embedding of a k-vertex tree non-isomorphic to S sends. If the
embedding is isomorphic to S′, then vS→T is the unique vertex that is the root of
two forks. If the embedding is isomorphic to S′′, then vS→T is either the second
or second-last internal vertex. If the embedding is isomorphic to S′′′, then vS→T is
either the first or last internal vertex. Finally, if the embedding is isomorphic to SQ,
then there are at most two choices of edges that could have been added as part of
Q, and once these edges are chosen and removed, vS→T is either the first, second,
second-last, or last internal vertex of the resulting caterpillar. When the edge(s)
added from Q are removed from the embedding and vS→T is chosen, the edges of
the stub can be recovered by removing the forks and leaves rooted at vS→T from
the embedding. Hence, the embedding sends at most 54 · (max{1, 2, 2}+ 2 ·4) 6 999
charge, and the density of S in T is at most 1− 10−3.

The next lemma deals with caterpillars S that are not covered by Theorem 4.10
and Lemma 4.11.

Lemma 4.12. Let S be a caterpillar with k > 10 vertices that is not a path such
that the path v1, . . . , vm formed by its internal vertices satisfies either m = 2, or
m > 3 and the degrees of v2 and vm−1 equal 2. If T is a tree with radius at least 4k,
then d(S, T ) 6 1− 10−3.

Proof. Let α > 0 and β > 0 be the number of leaves adjacent to v1 and vm respec-
tively. By symmetry, we can assume that α 6 β. Let S′ be the caterpillar obtained
from S by removing the α leaves adjacent to v1 and β leaves adjacent to vm.

Let vT be a vertex of T such that there exist (2k + 1)-vertex paths P1 and P2

starting at vT that are disjoint except at vT itself; such a choice is possible because
the radius of T is at least 4k.
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In this proof, a stub is an embedding of S′ in T together with a choice of orien-
tation for the longest path in the embedding. (The length of this path is the same
as the distance between v1 and vm.) Given a stub, let v′1, . . . , v′m be the vertices of
the longest path in the embedding, ordered according to the chosen orientation, and
let A and B be the degrees of v′1 and v′m minus 1. Let Q be the unique path in T

between the vertices vS→T and vT prolonged by P1 if P1 does not contain the edge
from vT towards vS→T and prolonged by P2 otherwise.

We analyse the case when α = β = 1 separately at the end of the proof, so for
now suppose that β > 2. The number of ways the embedding of S′ can be extended
to an embedding of S with each v′i corresponding to vi is

(A
α

)(B
β

)
. We will associate

to each embedding of S′ in T a set of N embeddings of k-vertex trees non-isomorphic
to S so that (

A

α

)(
B

β

)
6 9N.

Note that if A < α or B < β, then there is nothing to prove, so we assume that
A > α and B > β.

If B = β, then we consider extensions obtained from the embedding of S′ by
adding α leaves to v′1, β − 2 leaves to v′m and then the first two edges of Q not
contained in the embedding. If the obtained embedding is a caterpillar, then the
sum of the degrees of its first and last internal vertices is less than the sum of the
degrees of the first and last internal vertices of S. Therefore, the N =

(A
a

)
=
(A
α

)(B
β

)
obtained embeddings are not isomorphic to S.

If A = α > 2, then consider extensions obtained from the embedding of S′ by
adding α − 2 leaves to v′1, β leaves to v′m and then the first two edges of Q not
contained in the embedding. Again, if the obtained embedding is a caterpillar, then
the sum of the degrees of its first and last internal vertices is less than the sum
of the degrees of the first and last internal vertices of S. Therefore, the obtained
embeddings are not isomorphic to S, and their number is N =

(B
β

)
, which is equal

to
(A
α

)(B
β

)
.

If A = α = 1 but 2 6 β < B, then the number of extensions to S is
(B
β

)
, and

we consider extensions of S′ obtained by either adding β + 1 leaves to v′2 or adding
β − 1 leaves to v′2 and the first two edges of Q not contained in the embedding; the
number N such extensions is

N =
(

B

β − 1

)
+
(

B

β + 1

)
>

(
B

β

)
.

Hence, we can assume that A > α and B > β in the remainder of the analysis
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of the case β > 2. We first deal with the case when α 6= β − 1. Consider extensions
obtained from the embedding of S′ by either adding α + 1 leaves to v′1 and β − 1
leaves to v′m or adding α− 1 leaves to v′1 and β+ 1 leaves to v′m; the number of such
extensions is

N =
(

A

α+ 1

)(
B

β − 1

)
+
(

A

α− 1

)(
B

β + 1

)

=
(

A

α− 1

)(
B

β − 1

)((A− α+ 1)(A− α)
α(α+ 1) + (B − β + 1)(B − β)

β(β + 1)

)

>
1
4

(
A

α− 1

)(
B

β − 1

)(
(A− α+ 1)2

α2 + (B − β + 1)2

β2

)

>
1
2

(
A

α− 1

)(
B

β − 1

)
A− α+ 1

α

B − β + 1
β

= 1
2

(
A

α

)(
B

β

)
.

It remains to analyse the case α = β − 1. Consider extensions obtained from
the embedding of S′ by either adding α + 2 leaves to v′1 and β − 2 leaves to v′m or
adding α− 1 leaves to v′1 and β + 1 leaves to v′m; the number of such extensions is

N =
(

A

α+ 2

)(
B

β − 2

)
+
(

A

α− 1

)(
B

β + 1

)
,

unless A = α+ 1. We next argue that
(A
α

)(B
β

)
6 9N . If

( A
α−1

)( B
β+1

)
6 1

9
(A
α

)(B
β

)
, then

9 6 (β+1)(A−α+1)
α(B−β) and

(
A

α+ 2

)(
B

β − 2

)
= β(β − 1)(A− α)(A− α− 1)

(α+ 2)(α+ 1)(B − β + 2)(B − β + 1)

(
A

α

)(
B

β

)

>
22

34 · 62

((β + 1)(A− α+ 1)
α(B − β)

)2(A
α

)(
B

β

)

>
92

36

(
A

α

)(
B

β

)
= 1

9

(
A

α

)(
B

β

)
,

so N > 1
9
(A
α

)(B
β

)
.

Finally, we deal with the case A = α + 1. Consider extensions obtained from
the embedding of S′ by adding α − 1 leaves to v′1, β − 1 leaves to v′m and then the
first two edges of Q not contained in the embedding, or adding α − 1 leaves to v′1
and β+ 1 leaves to v′m; as before, these extensions are not isomorphic to S, and the
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number of such extensions is(
A

α− 1

)(
B

β − 1

)
+
(

A

α− 1

)(
B

β + 1

)
>

(
A

α+ 1

)(
B

β − 1

)
+
(

A

α− 1

)(
B

β + 1

)
,

which is at least
(A
α

)(B
β

)
/2 as established in the case α 6= β − 1.

We complete the case β > 2 by a discharging procedure similar to that used in
the proof of Lemma 4.11. Each embedding of a k-vertex tree non-isomorphic to S
sends a charge of 9 to each stub that it extends. In this way, each stub receives
9N >

(A
α

)(B
β

)
charge, which is then distributed to the extensions of the stub into

embeddings of S.
To finish the analysis of the discharging argument, it remains to bound the total

amount of charge that each embedding of a k-vertex tree non-isomorphic to S sends.
Fix an embedding of a k-vertex tree non-isomorphic to S and suppose that it can
be obtained from a stub by at least one of the above processes. If this process does
not involve adding two unused edges of Q, then the embedding is a caterpillar and
the vertex that corresponds to v′1 is either the first or last internal vertex of the
embedding, or the unique leaf of the first internal vertex if the first internal vertex
has degree 2, or the unique leaf of the last internal vertex if the last internal vertex
has degree 2. For each choice of v′1 there is at most one valid choice of v′m at the
correct distance in T , and the stub is then determined by removing the leaves of the
embedding adjacent to v′1 and v′m. Thus, the embedding sends at most 9 · 4 units of
charge in this way. If the embedding can be obtained from a stub by a process that
does involve adding two unused edges of Q, then there are at most two places where
these edges could have been added. After choosing which of these sets of two edges
to remove from the embedding, we follow the same procedure as above to obtain
the possible stubs, so the embedding sends at most 9 · 2 · 4 additional charge in this
way. In total, each embedding of a k-vertex tree non-isomorphic to S sends at most
9 · 3 · 4 < 999 units of charge, so the density of S in T is at most 1− 10−3.

Finally, we return to the case α = β = 1; the argument is again based on a
discharging procedure. Since S is not a path, we have m > 5. Consider extensions of
the embedding of S′ obtained by either adding two leaves to the vertex v′1 or adding
two leaves to the vertex v′m. The number of such extensions is

(A
2
)

+
(B

2
)
> 1

4AB

unless A = B = 1. If A = B = 1, then
(A
α

)(B
β

)
= 1 and we consider the embedding

obtained from S′ by adding the first two edges of Q that are not contained in S′. If
the first of these two edges attaches to a vertex of S′ other than v′1, v′2, v′m−1, or v′m,
then the obtained embedding is not a caterpillar. If it attaches to v′2 or v′m−1, then
the second or second-last internal vertex of the obtained caterpillar has degree 3.
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Thus the obtained embedding is not isomorphic to S unless the added edges attach
to v′1 or v′m. By symmetry, we assume that they attach to v′m. Any isomorphism
between S and the obtained embedding maps the vertex vm−1 of S to the vertex
v′3 of the obtained embedding. In particular, if the two trees are isomorphic, then
the degree of v′3 in S′ is 2, and we instead consider the embedding obtained from
S′ by adding a leaf to v′2 and a leaf to v′m, if such an embedding exists. If such an
embedding does not exist, we instead consider the embedding obtained from S′ by
removing the edge v′1v′2 and adding the first three edges of Q. In all cases above from
the analysis of the case A = B = 1, the obtaining embedding is non-isomorphic to
S.

Thus, when each embedding of a k-vertex tree non-isomorphic to S sends 4
units of charge to each stub that it extends, each stub such that A 6= 1 or B 6= 1
receives at least AB units of charge, which it can then redistribute to its extensions
into embeddings of S. We next estimate additional charge because of embeddings
considered in the case A = B = 1; for this analysis, fix an embedding of a k-vertex
tree non-isomorphic to S.

• If the embedding can be obtained from the process of adding the first two
unused edges of Q, then there are at most two places where these edges could
have been added. After choosing which of these two choices of two edges to
remove, the vertices v′1 and v′m must correspond to the unique leaves of the
first and last internal vertices, and the stub is determined once a choice for
the correspondence is made.

• If the embedding can be obtained from the process of adding a leaf to v′2 and
v′m−1, then either the first or last internal vertex of the embedding has two
leaves, and this vertex corresponds to either v′2 or v′m−1. One of the two leaves
then corresponds to either v′1 or v′m, and the stub is determined by choosing
the correspondence, removing the other leaf, and removing the unique leaf of
the terminal internal vertex at the other end of the caterpillar.

• If the embedding can be obtained from the process of removing the edge v′1v′2
and adding the first three unused edges of Q, there are at most two places
where these edges could have been added. After choosing which of these two
options of three edges to remove, v′3 is the first or last internal vertex of the
resulting caterpillar, v′2 is the unique leaf of v′3 in the caterpillar, and v′1 is the
unique neighbour of v′2 in T that is not in the caterpillar.

Each embedding of a k-vertex tree non-isomorphic to S sends at most 12 additional
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units of charge and so it sends at most 16 < 99 units of charge in total. We conclude
that if α = β = 1, then d(S, T ) 6 1− 10−2.

The next theorem summarises our analysis of caterpillars.

Theorem 4.13. Every caterpillar S with |S| > 17 that is neither a star nor a path
has inducibility at most 1− 10−4.

Proof. The limit density of S in any sequence of trees with bounded radius is 0 by
Proposition 4.4, so it remains to investigate the density of S in trees with unbounded
radius. Since S is not a star, S has more than one internal vertex. The case where
S has two internal vertices is covered by Lemma 4.12, the case where S has three
internal vertices is covered by Lemma 4.12 and the third case of Theorem 4.10
(depending on whether the middle internal vertex has degree 2), and the case where
S has four or more internal vertices is covered by Lemma 4.11, Lemma 4.12, and the
second case of Theorem 4.10 (depending on the order of forks rooted at the second
or second-last internal vertex of S and their degrees).

4.6 Inducibility bounded away from 1

As detailed in the proof of Theorem 4.1 below, the results in the preceding sections
show that the inducibility of every tree with at least 17 vertices is at most 1− 10−8.
On the other hand, the inducibility of every k-vertex tree X that is neither a path
nor a star is less than 1, since for every convergent sequence of trees (Tn)n→∞ with
|Tn| → ∞, if limn→∞ d(X,Tn) = 1, then limn→∞ d(Pk, Tn) = limn→∞ d(Sk, Tn) = 0,
contradicting Proposition 4.5. In particular, trees with at most 16 vertices have
inducibility bounded away from 1. These two results combined imply that the
inducibility of every tree is at most 1 − ε for some fixed constant ε > 0. In the
interest of obtaining an explicit value of ε, we provide a crude upper bound on the
inducibility of small trees.

Lemma 4.14. For k > 5, the inducibility of every k-vertex tree S that is neither a
path nor a star is at most 1− k−(2k−3).

Proof. Since the inducibility of S is defined with respect to d(S, T ) where |T | → ∞,
it suffices to show that d(S, T ) 6 1 − k−(2k−3) for every tree T with |T | > kk. We
prove the bound by a discharging argument. Every embedding of a k-vertex tree
in T that is not isomorphic to S begins with one unit of charge and distributes the
charge according to the following rules.
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Every embedding S′′ of a k-vertex tree that neither non-isomorphic to S nor a
star distributes its charge equally among all embeddings S′ of k-vertex trees that
share an edge with S′′ such that the maximum degree of a vertex of S′ in T is at
most k. Since there are at most (k − 1)!(k − 1)k−2 6 k2k−3 such embeddings S′ for
every embedding S′′, each embedding S′ of a k-vertex tree such that the maximum
degree of a vertex of S′ in T is at most k receives at least k−(2k−3) units of charge.

Every embedding S′′ of a k-vertex star distributes its charge as follows. Let
v be the center of S′′ and d its degree in T . The embedding S′′ distributes its
charge equally among all embeddings S′ of k-vertex trees that share an edge with
S′′ such that the maximum degree of the vertices of S′ in T is at most d. Each
such embedding S′ receives charge from at least

(d−1
k−2
)

embeddings of stars and each
embedding of a k-vertex star centered at v sends charge to at most (k − 1)!k(d −
1)k−2 6 k!dk−2 embeddings of S. Hence, each embedding S′ of a k-vertex tree such
that the maximum degree of the vertices of S′ in T is d > k receives at least(

d− 1
k − 2

)
1

k!dk−2 >
1

k!kk−2 > k−(2k−3)

units of charge.
Since every embedding of a k-vertex tree in T (regardless whether the embedding

is of S or not) has at least k−(2k−3) units of charge at the end of the process described
above, it follows that d(S, T ) 6 1− k−(2k−3).

We now combine the results of Sections 4.3–4.6 to prove the main result of this
chapter. As mentioned earlier, we do not attempt to optimise the upper bound on
the inducibility presented in the theorem.

Proof of Theorem 4.1. Since S is neither a star nor a path, |S| > 5. If |S| 6 16,
then the inducibility of S is at most 1 − 16−29 6 1 − 10−35 by Lemma 4.14. Now
assume that |S| > 17. If S is a caterpillar, then the inducibility of S is at most
1− 10−4 by Theorem 4.13. If S is not a caterpillar, then consider an arbitrary hub
v of S. By the definition of a hub, v is the root of three non-trivial branches. If
v is adjacent to at most one leaf, or is the root of at most one fork and at least
three major branches, then the inducibility of S is at most 1−10−7 by Theorem 4.9.
Otherwise, v is adjacent to at least two leaves, and additionally is either the root of
at least two forks or at most two major branches. In either case, v is the root of a
fork since every non-trivial branch is either a fork or is major. Theorem 4.10 then
guarantees that the inducibility of S is at most 1− 10−4.
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Figure 4.3: The tree T3 constructed for k = 4 in the proof of Theorem 4.15.

4.7 Inducibility bounded away from 0

A sparkler is a graph obtained from a star by subdividing one of its edges once. The
following result shows that sparklers are an infinite class of trees with inducibility
bounded away from 0. This implies Theorem 4.2 and answers Problem 4 of Bubeck
and Linial [22] in the affirmative.

Theorem 4.15. The inducibility of every sparkler with at least four edges is at least
13/165.

Proof. Fix k > 4, and let S′k be the sparkler with k edges; that is, the graph obtained
from the star with k − 1 leaves by subdividing one of its edges. We will construct
a a sequence (Tn)n∈N of trees with |Tn| → ∞ such that d(S′k, Tn) > 13/165, which
implies the theorem.

As illustrated in Figure 4.3, let Tn be the tree obtained from a path with n(k +
1) + k vertices (called the spine) by adding 3k leaves to its (j(k + 1))-th vertex for
j ∈ {1, . . . , n}; each of the n vertices to which the leaves are attached is called a
vertebra.

Observe that the number of copies of S′k in Tn is

2n
(

3k + 1
k − 2

)
.

We next count the number of all k-edge subtrees of Tn. Each k-edge subtree of Tn
contains exactly one of the vertebrae. The number of k-edge subtrees that contain
exactly j edges from the spine of Tn for j ∈ {0, . . . , k} is

(j + 1)n
(

3k
k − j

)
.

Thus the total number of k-edge subtrees of Tn is

n
k∑
j=0

(j + 1)
(

3k
k − j

)
. (4.1)
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Observe that ( 3k
k−j
)( 3k

k−j−1
) = 2k + j + 1

k − j
> 2

for every j ∈ {0, . . . , k − 1}, which can be used iteratively on (4.1) to bound the
number of k-edge subtrees of Tn:

n
k∑
j=0

(j + 1)
(

3k
k − j

)
6

(
3k
k

)
n

k∑
j=0

j + 1
2j 6

(
3k
k

)
n
∞∑
j=0

j + 1
2j .

The arithmetico–geometric series in the last expression sums to 4, so it follows that
the density of S′k in Tn is at least

2
(3k+1
k−2

)
n

4
(3k
k

)
n

= (3k + 1)k(k − 1)
2(2k + 3)(2k + 2)(2k + 1) >

13
165 ,

where the last inequality holds since k > 4.

We remark that the construction from Theorem 4.15 can be optimised by adding
dαke leaves instead of adding 3k to the vertebrae for α ≈ 2.8507, which yields that
the inducibility of sufficiently large sparklers is at least 0.19004, while the bound
presented in the proof converges to 3/16 for k tending to infinity.

4.8 Universal sequence of trees

In this section, we construct a universal sequence of trees, i.e., a sequence of trees
in which the limit density of every tree S is positive.

Proof of Theorem 4.3. To describe the construction, we first define a gluing opera-
tion on trees, which we denote by ⊕; this operation has already been used in the
context of tree profiles in [22]. If T and T ′ are trees, then T ⊕T ′ is any tree obtained
from the disjoint union of T and T ′ by joining a vertex of T and a vertex of T ′ by
an edge. The resulting tree depends, of course, on which vertices are chosen to be
joined by an edge, but the choice will not influence our arguments as long as the
maximum degree of the resulting tree is controlled when we do a sequence of these
operations. In particular, if we always choose a leaf of T and a leaf of T ′, then the
maximum degree does not increase (unless T ∼= K2 or T ′ ∼= K2).

Observe that the number of k-vertex trees containing the gluing edge is at most
(k − 1)k−1 (∆(T ⊕ T ′)− 1)k−1 6 (k(∆(T ⊕ T ′)− 1))k−1, where ∆(T ⊕ T ′) denotes
the maximum degree of T ⊕T ′ (start with the gluing edge and then add k− 1 edges
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B1 B2 T2 T2

Figure 4.4: The trees B1, B2, and two possible choices of T2. Edges added by the
operation ⊕ are dashed.

iteratively, having at most (k − 1) (∆(T ⊕ T ′)− 1) at each iteration). This yields
that

Zk(A) + Zk(B) 6 Zk(A⊕B) 6 Zk(A) + Zk(B) +
(
k(∆(T ⊕ T ′)− 1)

)k−1 (4.2)

We further define an iterative version of the gluing operation ⊕ by setting T⊕1 = T

and T⊕` = T⊕(`−1) ⊕ T for ` > 2.
Let Bd be the complete d-ary tree of depth d; that is, Bd is the rooted tree such

that every internal vertex has d children and every leaf is at distance d from the
root. Observe that |Bd| = 1 + d + d2 + · · · + dd = dd+1−1

d−1 6 dd+1, the maximum
degree of Bd is d + 1 if d > 2 and 1 if d = 1, and the tree Bd contains a copy of
every tree with d vertices. We now define the sequence (Tn)n∈N in the statement of
the theorem. The tree Tn is obtained by gluing copies of the trees B1, . . . , Bn in a
ratio such that a significant proportion of the k-vertex subtrees in the resulting tree
Tn arises from copies of B1, . . . , Bk. Formally, set T1 = B1, and for n > 2, define

Tn = Bn ⊕
(
T⊕n

2

n−1

)
,

where the gluing operation is performed so that ∆(Tn) 6 n + 1. Observe that Tn
consists of

(
n!
d!

)2
copies of Bd for d ∈ {1, . . . , n}. See Figure 4.4 for an illustration.

Fix a k-vertex tree S with k > 3 for the rest of the proof, and note that

d(S, Tn) > 1
Zk(Tn) ·

(
n!
k!

)2
(4.3)

for every n > k. We next upper bound the number of k-vertex subtrees in Tn by
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using (4.2):

Zk(Tn) 6 Zk(Bn) + Zk(T⊕n
2

n−1 ) + (kn)k−1

6 Zk(Bn) + n2Zk(Tn−1) + n2(kn)k−1

= Zk(Bn) + n2Zk(Tn−1) + kk−1nk+1.

Iterating the inequality, we obtain that

Zk(Tn) 6

 n∑
d=k+1

(
n!
d!

)2 (
Zk(Bd) + kk−1dk+1

)+
(
n!
k!

)2
Zk(Tk).

We next analyse the sum from the above expression:

lim
n→∞

n∑
d=k+1

(
n!
d!

)2 (
Zk(Bd) + kk−1dk+1

)
(
n!
k!

)2 =
∞∑

d=k+1

(
k!
d!

)2 (
Zk(Bd) + kk−1dk+1

)

6
∞∑

d=k+1

(
k!
d!

)2 (
dd+1kk−1dk−1 + kk−1dk+1

)

6 3(k!)2kk−1
∞∑

d=k+1

2dd+k

(d!)2

6 6(k!)2kk−1
∞∑

d=k+1

dd+ke2d−2

d2d

6 6(k!)2kk−1e2k.

This combines with (4.3) to imply that

d(S, Tn) > 1
6(k!)2kk−1e2k + Zk(Tk)

> 0.

Considering a convergent subsequence of (Tn) if necessary, we deduce that there
exists a convergent sequence of trees in which the limit density of every tree S is
positive.

We remark that the choice of the vertices for the gluing operation permits creat-
ing sequences of trees with different “shapes”. For example, the trees can be grown
to the depth as the left tree T2 in Figure 4.4 or along a path as the right tree T2 in
Figure 4.4.
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[23] M. Bucić, E. Long, A. Shapira and B. Sudakov: Tournament quasirandomness
from local counting, preprint arXiv:1910.09936 (2019).

[24] A. Cayley: On the theory of the analytical forms called trees, Philosophical
Magazine, Series 4 13 (1857), 172–176.

[25] T. F. N. Chan, A. Grzesik, D. Král’ and J. A. Noel: Cycles of length three
and four in tournaments, J. Combin. Theory Ser. A 175 (2020).

98



[26] T. F. N. Chan, D. Král’, B. Mohar and D. R. Wood: Inducibility and univer-
sality for trees, preprint arXiv:2102.02010 (2020).

[27] T. F. N. Chan, D. Král’, J. A. Noel, Y. Pehova, M. Sharifzadeh and J. Volec:
Characterization of quasirandom permutations by a pattern sum, Random
Structures Algorithms 57 (2020), 920–939.

[28] F. R. K. Chung and R. L. Graham: Quasi-random hypergraphs, Random
Structures Algorithms 1 (1990), 105–124.

[29] F. R. K. Chung and R. L. Graham: Quasi-random set systems, J. Amer. Math.
Soc. 4 (1991), 151–196.

[30] F. R. K. Chung and R. L. Graham: Quasi-random tournaments, J. Graph
Theory 15 (1991), 173–198.

[31] F. R. K. Chung and R. L. Graham: Quasi-random subsets of Zn, J. Combin.
Theory Ser. A 61 (1992), 64–86.

[32] F. R. K. Chung, R. L. Graham and R. M. Wilson: Quasi-random graphs,
Combinatorica 9 (1989), 345–362.

[33] J. Cooper and A. Petrarca: Symmetric and asymptotically symmetric permu-
tations, preprint arXiv:0801.4181 (2008).

[34] J. N. Cooper: Quasirandom permutations, J. Combin. Theory Ser. A 106
(2004), 123–143.

[35] L. N. Coregliano and A. A. Razborov: On the density of transitive tourna-
ments, J. Graph Theory 85 (2017), 12–21.
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[81] J. Nešetřil and P. Ossona de Mendez: A model theory approach to structural
limits, Comment. Math. Univ. Carolin. 53 (2012), 581–603.

[82] O. Pikhurko and A. Razborov: Asymptotic structure of graphs with the mini-
mum number of triangles, Combin. Probab. Comput. 26 (2017), 138–160.

[83] N. Pippenger and M. C. Golumbic: The inducibility of graphs, J. Combin.
Theory Ser. B 19 (1975), 189–203.

102



[84] C. B. Presutti and W. Stromquist: Packing rates of measures and a conjecture
for the packing density of 2413, in: Permutation Patterns (2010), 287–316.

[85] A. A. Razborov: Flag algebras, J. Symb. Log. 72 (2007), 1239–1282.

[86] A. A. Razborov: On the minimal density of triangles in graphs, Combin.
Probab. Comput. 17 (2008), 603–618.

[87] A. A. Razborov: Flag algebras: An interim report, in: The Mathematics of
Paul Erdös II (2013), 207–232.
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