
Learning Under Concept Drift

Chaitanya Manapragada

A thesis submitted for the degree of Doctor of
Philosophy at Monash University in 2020

Machine Learning Group
Department of Data Science and Artificial Intelligence

Faculty of Information Technology
Melbourne, Australia

Supervisors

Geoff Webb and Mahsa Salehi

Even the physical “constants” of
the universe may be drifting.

ii

Abstract
Change is inexorable, and yet we continue to build learning systems that assume an unchanging
world. Machine learning today frequently operates under i.i.d assumptions, more often than not
because the assumption of identically and independently distributed data allows us to offer guaran-
tees of learning and other nice properties. Discarding such assumptions places us in a world without
learning guarantees where only the empirical success of learning strategies is of utility—the real
world.

This is a work that studies how systems for learning may be designed, developed and evaluated
in the real, changing world. Experimentation and empiricism are central to this study, but given
that scope of experimentation is unbounded, observations from settings that can be theoretically
reasoned about are used to aid the development of learning heuristics and hypotheses about learning.

Through thorough experimental analysis, this work demonstrates that complexities in the learn-
ing systems we build imply that our understanding and justifications for how those systems work
may not match the real reasons for their behavior; that a measured dose of plasticity can improve
the error performance of the state-of-the-art online decision tree learner in learning settings with
and without changing concepts (concept drift); and that that measured dose of plasticity may also
be advantageous in online ensemble learning. These results open a large number of avenues for the
future exploration of how best to learn in a changing world and where adaptive strategies fit in.

Concretely, we extricate unspecified features in the state-of-the-art decision tree learners Very
Fast Decision Tree (VFDT) and Hoeffding Adaptive Tree; we contribute a novel online decision
tree learner Extremely Fast Decision Tree (EFDT) that outperforms VFDT on streams with and
without concept drift individually and as part of commonly used ensembling strategies, without
significantly increasing the order of time complexity. Further, we indicate that in settings with
concept drift, a strategy of deliberate node evisceration would benefit VFDT-based trees; that the
unspecified strategy of using rough approximations of information gain is particularly effective in the
VFDT-based adaptive tree Hoeffding Adaptive Tree (HAT); and that combining the eager-splitting
strategy from EFDT and the subtree substitution mechanism from HAT is highly profitable.

iii

iv

Copyright notice

© Chaitanya Manapragada 2020.
I certify that I have made all reasonable efforts to secure copyright permissions for third-party

content included in this thesis and have not knowingly added copyright content to my work without
the owner’s permission.

v

vi

Declaration

I hereby declare that this thesis contains no material which has been accepted for the award of
any other degree or diploma at any university or equivalent institution and that, to the best of my
knowledge and belief, this thesis contains no material previously published or written by another
person, except where due reference is made in the text of the thesis.

This thesis includes (2) original papers published in peer reviewed journals and (2) submitted
publications. The core theme of the thesis is “Learning under concept drift”. The ideas, develop-
ment and writing up of all the papers in the thesis were the principal responsibility of myself, the
student, working within the Faculty of Information Technology under the supervision of Geoffrey
Ian Webb and Mahsa Salehi.

The inclusion of co-authors reflects the fact that the work came from active collaboration be-
tween researchers and acknowledges input into team-based research.

In the case of Chapters 3, 4 and 6, and Appendix .1, which are presented as published or
submitted research papers, my contribution to the work is detailed in Table 1.

Sections of submitted or published papers have not been renumbered.
Date: May 5, 2021

vii

Table 1: Contribution to Included Publications

Thesis
Chapter

Publication Title Status
Nature and % of student
contribution

Nature and % of Co-
authors’ contributions

Co-
author(s),
Monash
stu-
dent?

3

Emergent and Un-
specified Behaviors
in Streaming Deci-
sion Trees: Why On-
line Decision Trees
Perform So Well

Submitted
to DMKD

80%
Concept
Experimental Design
All technical work
Writing all drafts
Identification of all
unspecified and
emergent behaviors

Geoff Webb 10%
Research Supervision
Editing
Experimental Design
Publication Strategy

Mahsa Salehi 5%
Research Supervision
Editing

Albert Bifet 5%
Consulting
Editing

No

4
Extremely Fast De-
cision Tree

Published,
Proceedings
of SIGKDD
2018

70%
Concept
All Experimental Work
Writing all drafts
All technical work
Theoretical Claims
and Proofs
Experimental Design

Geoff Webb 20%
Concept
Research Supervision
Editing
Experimental Design

Mahsa Salehi 10%
Research Supervision
Editing
Experimental Design

No

6
An Eager Splitting
Strategy for Deci-
sion Trees

Submitted
to DMKD

80%
Concept
Experimental Design
All Experimental Work
Writing all drafts
All technical work

Geoff Webb 5%
Research Supervision
Editing
Experimental Design
Diagram with simple
stream example

Mahsa Salehi 5%
Research Supervision
Editing
Experimental Design

Heitor Gomes 5%
Research Supervision
Editing
Initial Ensemble—
Ranking Analysis

Albert Bifet 5%
Research Supervision
Experimental Design
Editing

No

Appendix
.1

On The Shattering
Coefficient of Deci-
sion Trees

Published
in Expert
Systems
and Appli-
cations

10% Finding an issue
with the recursive ex-
pression of the Shatter-
ing Coefficient for deci-
sion trees while the work
was being prepared

Rodrigo Mello 80%
(Main Author)

Albert Bifet 10%
No

viii

Preface
I entered academia with the driving motivation of learning how strategies are learnt. I started this
work with a desire to gain an intuitive understanding of how equilibria are established in multiagent
games and how an individual agent might be able to learn a profitable strategy during the process
of gameplay in an unpredictable and ever-changing environment, with the assumption that such
agents could be “machines”.

This question may be tackled at various levels of abstraction of other agents in the game; one
may focus on one-on-one play, as with Google’s AlphaGo, or work on derivatives and abstractions
of the problem that deal with larger population effects. The nature of PhD projects varies widely,
and I picked from the scope of topics available to me the problem of studying concept drift in the
hope that it would be a derivative I would find of particular use in developing my intuition. It has
served its purpose well.

This work is focused on online learning; little or no mention is made of games. It consistently
retains focus on design and analysis of online learning strategies; there are no explicit detours into
multiagent gameplay. However, the core thesis of the work—that it is possible to design effective
learning strategies for changing environments—is essential to support the notion of agents learning
strategies in complex environments. It is this microcosm of the problem space that I have used as
a vantage point to ponder the larger problem that has been driving my personal curiosity.

ix

x

Contents

1 Introduction 1
1.1 Thesis Format . 2
1.2 Overview . 2

1.2.1 Problem statement . 3
1.2.2 Problems studied . 3
1.2.3 The problem of generalization . 4

1.3 Structure . 5

2 Background and Related Work 7
2.1 Overview . 7
2.2 Terminology . 7
2.3 Change Detectors . 8

2.3.1 ADWIN Family . 9
2.3.2 SeqDrift Family . 10
2.3.3 Other Change Detectors . 10

2.4 Tree Learners . 10
2.4.1 C4.5 . 12
2.4.2 Early Online Decision Trees . 12
2.4.3 Hoeffding Tree . 13
2.4.4 CVFDT . 14
2.4.5 Options for Hoeffding Trees . 15
2.4.6 Hoeffding Adaptive Tree . 16
2.4.7 OzaBoost . 16
2.4.8 Online SmoothBoost . 17
2.4.9 Adaptable Diversity-based Online Boosting (ADOB) 17
2.4.10 Boosting-Like Online Ensemble (BOLE) . 17
2.4.11 OzaBag . 17
2.4.12 Leveraged Bagging . 18
2.4.13 Adaptive Random Forest . 18

2.5 Testbenches . 18
2.5.1 Generators that use a nonstationary distribution 18
2.5.2 Meta-generators . 20
2.5.3 Generators that generate from stationary streams and must be used with a

meta-generator . 20

xi

2.5.4 Limitations of stream generators . 21
2.5.5 Real datasets . 21

3 Unspecified Features 23

4 An Improved Base Learner 53

5 Responding to Concept Drift: Extremely Fast Adaptive Tree 65
5.1 Experimental Results . 66

5.1.1 EFDT and HAT . 66
5.1.2 HAT and EFAT . 68

5.2 Future Work . 70

6 Ensembles of EFDT 73

7 Conclusions 115
7.1 Findings . 115
7.2 Future Work . 118

Appendices 121
.1 Publication on Shattering Coefficient . 123

xii

Chapter 1

Introduction

Should learning be driven by
guarantees, or by usefulness?

Real world learning problems inherently have concept drift—that is, processes generating data
(“concepts”) are always changing in unexpected and unpredictable ways. Human beings learn
and update their models of the world in rapidly changing environments well enough to be able to
strategize and survive.

It follows that the natural setting for studying machine learning is also one in which concepts
are always changing in unexpected and unpredictable ways as data arrive in streams.

However, studying supervised machine learning under such settings does not lend itself to con-
venient theories about whether a learner can generalize—that is, whether it can predict reasonably
well on “out-of-sample” data that have not been used for training the learner. In order to be able
to reason about generalizability of a learner, the concept being learned cannot change unexpectedly
and unpredictably. It must either not change at all, or must change in a predictable manner.

The inability to reason about generalization should not be a hindrance to studying machine
learning under the natural, concept-drifting setting. If the objective of machine learning is gen-
erating useful predictions, the measure of progress towards that objective must be practical and
relevant to the task at hand. One such measure might be predictive sequential accuracy (prequen-
tial accuracy). However, prequential accuracy must not be the only measure by which learners are
assessed—it should be a component of a schema that is relevant to the learning task. Similarly, a
measure such as generalizability is quite useful as a heuristic component of an evaluation function
for a learner even though it assumes stationarity of the data-generating process. However, if it
becomes overly important as a yardstick of utility or admissibility, it may push the field onto a tra-
jectory in which learners are designed for stationary streams primarily so that properties relating
to generalizability on stationary streams can be proved, as though that were the mark of validity
of the learner.

On such a trajectory, the field of machine learning might limit study of adaptive learners that
may be difficult to reason about in terms of generalizability on evolving streams in favor of non-
adaptive learners for stationary streams, which may be seen as being more “valid”. The default
response to concept drift then might be to continuously rebuild non-adaptive learners rather than

1

to develop adaptive ones.

Although theoretical properties—such as divergence of a decision tree from an “ideal batch
tree” or a low shattering coefficient—are by nature dependent on strong assumptions (such as
the identical-and-independently-distributed-data assumption) that do not hold in the real world,
they are highly informative and are of great utility when used as heuristics to evaluate and guide
algorithm design. But if satisfaction of such properties is treated as an incontrovertible design
principle in machine learning, the end result will be the continued process of algorithms being
designed for trivial scenarios purely because “important” properties are provable. Rigor with respect
to toy problems would supersede the practical and utilitarian goal of solving real ones.

This work focuses on design, analysis and experimentation with a notable deficiency of strong
assumptions. It studies the practical problem of learning in a changing environment, starting with
the metalevel of emergent behaviors due to unspecified algorithm implementation details, followed
by novel design solutions for online decision trees as independent learners and as part of ensembles.

1.1 Thesis Format

This is a thesis including published works, a format available at Monash University in which the
thesis is comprised of works that have been published or have been submitted for publication.
Some chapters in such a thesis chapters may comprise published or submitted papers with very
brief framing text for continuity.

In this thesis I present one published paper, “Extremely Fast Decision Tree” (KDD 2018) as
Chapter 4, and two papers under journal review, “Emergent and Unspecified Behaviors in Streaming
Decision Trees” as Chapter 3 and “An Eager Splitting Strategy for Online Decision Trees” as
Chapter 6. Chapter 5 on combining the adaptation mechanism from Hoeffding Adaptive Tree and
the eager splitting mechanism from Extremely Fast Decision Tree is written as a short regular
chapter. “On the Shattering Coefficient of Decision Trees” is provided as an appendix (Appendix
.1) to the thesis, as is required for inclusion in a Monash thesis of this form where my contribution
is not as lead author.

Brief Introduction, Background and Related Work (Chapter 2) and Conclusions (Chapter 7)
chapters provide context and structure. Note that some text in these chapters may overlap with
text found in the publications in order to improve readability of the thesis.

1.2 Overview

Predicting the trajectory of events in our world so that we may plan ahead is essential to our
survival and central to the human condition.

With enough data, natural tendencies become self evident; for instance, regression towards the
mean. However, we may often be interested in tendencies that are more relevant to us in the
near term, and these may be different to patterns observed in the long term. The world is always
changing. How does one make the most appropriate decisions in our rapidly changing world?

A great deal of additional complexity accrues from humans playing adversarial and cooperative
games while learning; it follows that making useful predictions in a changing world would be also
be important to someday achieve strong intelligence. How do we make useful predictions under
these changing circumstances?

2

As with most real-world challenges, the problem is difficult to precisely define. For the purposes
of making scientific progress and communicating findings unambiguously enough that they are
of practical use, I study a reasonably well defined, abstract problem: the problem of supervised
classification in a scenario with evolving data streams. I hope that findings and artefacts that result
from this study either provide useful indications for solving real-world problems, or do so directly.

1.2.1 Problem statement

How can prequential accuracy be optimized in supervised data stream classification with and with-
out concept drift?

1.2.2 Problems studied

The premise of this project is that learning under concept drift is not well understood, and that a
better understanding is needed.

The following questions are addressed in this work:

• Are theoretical justifications provided for performance of online learning algo-
rithms consistent with the true explanations underlying algorithm behavior? Do
unspecified features affect algorithm behavior, and if so, which ones individually
or through interactions lead to improvement or deterioration in performance, and
how?

This theme is present throughout the work. Chapter 3 addresses it directly, diving into the
MOA [16] interpretations of the state-of-the-art online decision tree learner, Hoeffding Tree,
and an adaptive variant Hoeffding Adaptive Tree, finding significant implementation effects
and emergent behaviors due to unspecified features that are not addressed in the theoretical
constructs of the algorithms but contribute to algorithm performance in a positive manner
that is measurably significant. Chapter 6 notes that the divergence bounds given for the
HoeffdingTree are quickly rendered inutile; while the bound on divergence is a nice property,
divergence from the ideal batch tree can be very large in practice as it increases with the
number of leaves—which increase exponentially—and thus bounding divergence is not as
useful a justification for the algorithm’s efficacy in practice as effects from many unspecified
implementation details are.

• Can the state-of-the-art online decision tree algorithm, Hoeffding Tree, be im-
proved?

We answer this question in the affirmative in Chapter 4 by presenting Hoeffding AnyTime Tree
(HATT) [78], an online decision tree that is statistically more efficient than Hoeffding Tree
[36], that converges to the ideal batch tree while Hoeffding Tree does not, and achieves higher
prequential accuracy on a large set of test streams taken from the UCI Machine Learning
repository. HATT, implemented as Extremely Fast Decision Tree (EFDT) minimally increases
the order of time complexity as compared to Hoeffding Tree. It achieves its outperformance
through a redesign of the split selection mechanism, leading to greater overall plasticity in
terms of the stability-plasticity tradeoff [84, 30] while preserving the Hoeffding Test as a
rigorous basis for stability.

3

• Can the state-of-the-art online decision tree algorithm, Hoeffding Adaptive Tree,
be improved?

From Sections 2.4.3, 2.4.4, 2.4.5, and 2.4.6, we gather the primary strategies that may be used
by individual tree learners to respond to concept drift center around:

– how tree structure is grown through splitting;

– and, how tree structure is modified in order to adapt to concept drift

Our work, Extremely Fast Decision Tree, described in Chapter 6, focuses on splitting eagerly
in order to build tree structure efficiently for learning from stationary streams. Meanwhile,
Hoeffding Adaptive Tree [11] focuses on adapting tree structure to respond to concept drift.

In Chapter 5 we study the effects of combining the split mechanism from Extremely Fast
Decision Tree with the concept drift adaptation mechanism from Hoeffding Adaptive Tree.
The resulting system, which we refer to as Extremely Fast Adaptive Tree (EFAT), outperforms
HAT on prequential accuracy on stationary streams with and without concept drift, and on
a synthetic concept drift testbench (Chapter 5).

• Is increasing base learner plasticity in ensembles, and thus ensemble diversity,
advantageous for ensemble learning?

Replacing Hoeffding Tree with HATT as the base learner in boosting and bagging ensembles
leads to measurably significant increases in prequential accuracy in online settings with and
without concept drift, as we show in Chapter 6.

1.2.3 The problem of generalization

The generalization question asks: How well will the hypothesis output by my algorithm perform on
data that are out-of-sample?

Statistical Learning Theory [83, 115] provides a way of reasoning about generalization in terms
of the algorithm bias F—the set of hypotheses produced by the algorithm—and n, the number
of data instances; simply put, if an algorithm has a shattering coefficient N (F , n) (size of the
algorithm bias) that grows polynomially or slower in n, it is possible to bound the probability that
any hypothesis in the bias has empirical risk that differs from its true risk by more than some ε:

P (sup|R(f)−Remp(f)| > ε) ≤ 2N (F , n)exp(−2nε2) (1.1)

This is a learning guarantee that bounds the probability of a hypothesis f produced by the
algorithm performing very differently on empirical data (risk Remp(f)) compared to its expected
performance (risk R(f)).

Statistical Learning Theory assumes a stationary data generating distribution. There have been
attempts to extend the theory to the scenario where distributions change (and thus have concept
drift) [72, 33], though with necessarily heavy assumptions on the nature of change in the stream.

Our focus is on experimentally optimizing prequential accuracy; we do not reason about gener-
alization by formally restricting the nature of change of the generating distribution.

4

1.3 Structure

This manuscript is organized as follows:

• Chapter 2 provides a brief overview of related work that should be sufficient to read the rest
of the thesis.

• Chapter 3 describes unspecified features and their effects in VFDT and Hoeffding Adaptive
Tree.

• Chapter 4 describes an improved online decision tree base learner, EFDT, for stream data
mining (and consequently enables us to study avenues for better concept drift response).

• Chapter 5 studies Extremely Fast Adaptive Tree (EFAT), obtained by using the revision
mechanism from Hoeffding Adaptive Tree with EFDT.

• Chapter 6 compares EFDT as a base learner in boosting and bagging ensembles against
VFDT.

• Chapter 7 concludes this manuscript with a summary of findings, and briefly touches on
directions for future work.

5

6

Chapter 2

Background and Related Work

2.1 Overview

The background work referenced in this section and the narrative that accompanies it is intended
to clearly and concisely demonstrate the context within which my research was conducted and the
role it occupies in advancing the state of knowledge in the field.

The reader might find it useful to first review the techniques used to update models to reflect
change occurring in drifting streams. Change detection mechanisms were first used as wrappers
that signaled when models should be rebuilt, and eventually made their way into models themselves.
Thus we briefly cover extant change detectors. While our aesthetic objective has been to aim for
adaptive learning free of explicit change detection, change detection is still indispensable at the
current stage of development of the field.

Decision trees are the primary class of learners being studied in the field of concept drift as well
as in this work. An overview of online decision trees and their ensembles follows the overview of
change detectors.

We then move on to a brief description of test data streams in the literature. This is significant
because of the lack of literature offering a standardized testbench. My work comprises by far the
largest experimental testbench in online learning.

The literature review mirrors the field and this manuscript in terms of the focus on decision
trees; this is still a relatively new subfield of machine learning and a wider approach in terms of
model classes is yet to be comprehensively studied. Decision trees are the main object of study in
online learning.

We use the Massive Online Analysis platform [16] as the workbench for our experimentation.
In the interest of reproducibility and confidence in our results, we used MOA 2016.04 for all of our
experimentation.

2.2 Terminology

The notation below is adapted from “Characterizing Concept Drift” (Webb et al, 2016) [120] and
“A Survey on Concept Drift Adaptation” (Gama et al, 2013) [44]:

1. Data stream A sequence of data instances generated by a process. At time t ∈ N, we draw

7

an example (or instance) (Xt, Yt) which is a pair consisting of an input vector Xt ∈ Rd and
a class value Yt ∈ N. (Xt, Yt) is drawn from the joint probability distribution ptX,Y .

2. Data stream Classification The task of predicting Yt given Xt at time t.

3. Concept The joint probability distribution at time t, ptX,Y .

4. Concept Drift pt0X,Y 6= pt1X,Y . For two distinct times t0 and t1, the joint distribution pt0X,Y
differs from pt1X,Y .

5. Class Drift pt0Y |X 6= pt1Y |X . For two distinct times t0 and t1, the posterior distribution of the

class variable pt0Y |X differs from pt1Y |X .

6. Covariate Drift pt0X 6= pt1X . For two distinct times t0 and t1, the covariate distribution over
non-class variables pt0X differs from pt1X .

7. Drift Magnitude D(t, u). Given some function D that computes distance between concepts,
D(t, u) measures the drift in the concept from starting time t to end time u of the concept
drift.

8. Abrupt Drift pt0X,Y 6= pt1X,Y for t1 = t0 + 1. A concept pt0X,Y extant at time t0 is suddenly

replaced by a different concept pt1X,Y at time t1 = t0 + 1

9. Gradual Drift ∀t∈[Ea,Sa+1−ν]D(t, t+ ν) ≤ µ Where Ea is the time the concept a ends, Sa+1

is the time the concept a + 1 starts, µ is the maximum allowed drift magnitude during any
time interval ν during the drift phase between the two concepts

10. Prequential Accuracy Predictive sequential accuracy [44, 43, 32, 92]. Each example in a
data stream is first used for testing, then for training. The error from each test is aggregated
and the average error is computed over a window that may span the last M examples, or
from the beginning of learning, or may be adjusted using a more complex mechanism (e.g.
Prequential-ADWIN.). Prequential accuracy is the most commonly used evaluation measure
for performance of classification algorithms on streaming data. Prequential accuracy meshes
with the prequential philosophy that stresses the importance of predictive models that gen-
erate sequential forecasts over descriptive models that describe the parameters of a system.

Note that the true class value for each example in the stream is made available after the predic-
tion has been made. While there is likely to be some lag between the prediction and the availability
of the true class in real scenarios, we study a reduced problem wherein the true value is available
as soon as the prediction is made.

2.3 Change Detectors

Since change detection has been a central strategy to construct algorithms that learn under concept
drift, I will discuss it in some detail. Change detectors are used to determine when there has been a
change in the data-generating distribution, so that corrective measures can be taken in order to keep
the model as current as possible. In other words, change detectors serve as a signaling mechanism
for when the model must adapt to a new concept. This is particularly relevant in the case of abrupt

8

drift, when concepts change suddenly; it is also relevant in the case of a gradual transition between
concepts by providing an indication of when the cumulative gradual change is large enough that it
is profitable to update the model, risking a short term degradation in performance for a potentially
longer term improvement obtained from more closely matching the extant concept.

There are two primary approaches to change detection: observing the data distribution to assess
whether it changes, and observing classification performance to assess whether it changes. Changes
in the model may alter classifications even in the absence of drift in the stream; drift can result
in a model’s performance improving, thereby preventing drift detection, even though even better
performance might be possible if the drift were recognised and the model revised.

2.3.1 ADWIN Family

ADWIN [10] is a change detector with some nice properties; it has a variable self-adjusting window
size with resizing decided, once again, using the Hoeffding inequality in order to offer a guarantee
with some confidence that old examples are only discarded when a change has actually been de-
tected. ADWIN tracks 1− 0 classification loss to detect change (a misclassification is a “1”, and a
correct classification is a “0”).

ADWIN maintains a growing window of 1-0 losses (obtained from the learner’s classification
attempts) as examples. It checks after every example has been incorporated whether there is a cut
in the window such that the resulting sub-windows w0 and w1 have differing measured averages. If
the observed population means are different, it signifies that a change has occurred, and discards
the old window w0. Note that this could result in ADWIN signaling a change when a learner
is just learning and thus error has fallen. ADWIN is simply a change detector; it is left to the
user to decide to ignore detections where error has fallen. If there is no change, then the two
sub-windows must share the same true mean µ. It follows (from a variant of the Law of Large
Numbers) that the population means of the two windows µ̂w0 and µ̂w1 must be very close if both
windows are of sufficient size; i.e. µ̂w1 − µ̂w0 must be very close to zero with high probability is
the sub-windows are sufficiently large. The Hoeffding Inequality gives us a way of deciding whether
the two population means have been drawn from the same population with some confidence and
tolerance levels. We have Pr[|µ̂w1

− µ̂w1
|− 0 > εcut] ≤ δ/n, with δ/n being the greatest probability

that ADWIN decides to shrink the window to w1 and n the number of examples (we correct for

the number of tests conducted). Bifet derives an εcut =
√

1
2m ln

4m
δ ; thus, for a given tolerance δ, we

can compute what threshold for difference in population means εcut leads to change being signaled.
(Note: m = 1

1
n0

+ 1
n1

, where n0 and n1 are the subwindow sizes.)

In practice, maintaining such a window, and evaluating all possible cuts is computationally
inefficient; the same work [10] also proposes ADWIN2, a more efficient derivative of ADWIN that
uses buckets to store 1 − 0 loss history. The buckets are of size 2i, and a design parameter, M ,
determines how many buckets of each size 2i will be allowed. M is arbitrarily set to a value of 5 in
their paper. Instead of evaluating all n possible cut-points, ADWIN2 creates a new bucket of size
20 = 1 for an incoming example. If this causes the number of 1-sized buckets to exceed M , the two
oldest buckets of size 1 are concatenated to form a bucket of size 2. If now we have more than M
buckets of size 2, we repeat the same process, thus creating larger and larger buckets. When a drift
is detected (the buckets are used as cutpoints to test) the oldest bucket is dropped. The number of
tests to find a cutpoint is thus reduced from n to O(log2 n). That ADWIN2 approximates ADWIN
well was experimentally validated by the authors.

9

2.3.2 SeqDrift Family

A similar pair of approaches, SeqDrift and its successor SeqDrift2, [96], [86] use the Bernstein
inequality (as does ADWIN2- this provides tighter bounds). SeqDrift2 takes into account improving
drift detection sensitivity and reducing latency by adjusting εcut to be reduced as long as the drift
detection false positive rate δ set by the user is not exceeded. Further, it only conducts one pass
through the data repository (while ADWIN2 conducts log2 n passes, where n is window size), and
has a “left” repository, equivalent to the left sub-window in an ADWIN split window, that is
implemented as a reservoir, a non-sliding window that contains instances spread over the past: a
new instance replaces an older one with some probability so that one has a mixture of instances
from different points in the past at any time. The “right” repository simply contains the latest
examples. Since the “cut-point” is predefined, they only conduct one test every time an example is
seen. Their results show comparable drift detection in terms of number of instances seen post drift
before drift is signaled, which they term “delay”, and a quicker processing time due to conducting
a linear number of hypothesis tests (O(n)) with respect to the window size n (ADWIN2 conducts
O(n log2 n) tests).

2.3.3 Other Change Detectors

Other change detectors proposed specifically to aid learning with concept drift include Drift De-
tection Method (DDM) [46] and Early Drift Detection Method [4]. These do not use windows;
the former tests for a rising mean rate of misclassification, with warning and drift detection levels
as parameters, while the latter looks for an increase in the frequency of mis-classifications. Both
ADWIN [10] and SeqDrift [86] claim superior performance to such window-free methods based on
statistical process control.

Whichever change detector is used, wrapping entire ensembles or internal ensemble members
with change detectors implies that models will be rebuilt from scratch every time drift is detected.
Useful information from unchanged parts of the model will be discarded. There is a need for a
more adaptive system that reduces both the number of base models and reliance on external drift
wrappers to achieve both accuracy and performance gains—a motivating factor through the course
of my journey.

2.4 Tree Learners

Of the many approaches to inductive learning, Decision Trees are a particularly utile paradigm
that store knowledge in an easily interpretable manner. Algorithms that build decision tree models
recursively divide the sample space with hyperplane decision boundaries. Each division represents
a conditioning of the sample space on a particular set of data attribute values or ranges. The
knowledge obtained from a Decision Tree is represented in an elementary form; in the classification
case, each path down the tree results in a conditional probability distribution P (C|X1 = v1, X2 =
v2, ...), that is, the probability distribution of the class values given the observations X1 = v1,
X2 = v2, The regression case may use, for instance, a simple average of observed target values.

Decision Trees are a natural starting point for the study of extending inductive strategies to
streaming scenarios; their simplicity allows us to compute model complexity [83], so we may exactly
ascertain the state of over/underfitting, while their interpretability allows one to analyse the effects

10

of proposed strategies from the perspective of model fidelity with respect to a known sequence of
generating distributions where an application is specified.

The history of decision trees is conjoined with the development of the field of artificial intelli-
gence. A detailed review of early work on decision trees is found in [64]. At this stage, the nature
of work was basic reasoning centred around the notion of “conditional focusing” in order to obtain
concepts in the form of decision trees. The binary classification problem is the primary object of
discussion in literature of the time; it is noted that a method for constructing decision trees would
require, in the first instance, a set of labeled instances; and then, that a series of tests must be ap-
plied so as to separate the positive examples from the negative examples. It is also mentioned that
the 1950s produced much speculation about how learning and other forms of artificial intelligence
may be implemented—and that the 60s might provide concrete artefacts (they did).

A concrete decision tree algorithm was given in 1966 in the form of the Concept Learning
System (CLS) in [65], which unfortunately we were unable to access directly. A brief description
is provided in [90], which we use as our reference. Concept Learning System aims to construct a
decision tree using the cost of classifying an instance as a guide to choose the construction pathway.
Two types of cost are considered; the cost of obtaining the value of a given attribute, and the cost
of misclassifying the instance. These costs are used to inform a lookahead mechanism wherein the
costs of all possible subtrees of upto a fixed depth are computed, and the attribute likely to be least
expensive is selected to continue tree construction. Quinlan deems this a minimax-like approach.

The comparison to minimax is a fortunate one, as at this point it is worth noting the primary
factor that influenced decision tree development from this starting point. The form of the decision
tree is fairly immutable; it is a simple artefact that represents a concept in a manner easily accessible
to the human observer. The structure of this artefact is that of a recursively conditioned linear graph
of decisions. Any procedure that constructs such a graph is necessarily, obviously, tautologically,
a procedure of recursive conditioning. The space of design choices for formulating decision tree
procedures is thus limited to two choices: the choice of value system informing the conditioning
procedure, and the choice of heuristic the designer considers most appropriate for the value system.
For instance, CLS makes minimizing classification cost, defined in a particular way, its primary
objective; and the heuristic it uses to assess the expected value of this objective is a limited-depth
exploration of the space of potential trees. Just as the core of the minimax strategy is the evaluation
heuristic, the core of the decision tree is the split evaluation heuristic.

CLS was followed by the Iterative Dichotomizer (ID3) in 1979 [89]. ID3 differs from CLS in its
choice of evaluation objective: the separability of classes. It uses information gain as a heuristic.
It was limited in terms of applied usage in its initial iteration as it was, like CLS, only designed
to perform binary classification; however, an even greater limitation was the assumption that no
training instances would be erroneously or wrongly labelled—ID3 relied on resampling the input
space to build a tree, proceeding in steps, assuming that at each stage the current artefact had
perfectly classified the input examples, until all training examples had been utilised. ID3 was further
studied [91] to assess performance when only a part of the training set was explored (extracting
“approximate rules”, in the language of the day) .

A more complete system that included pruning to adjust for overfitting, multiclass classification,
and a solution for regression, “Classification and Regression Trees” (CART) was proposed in 1984
[21]. CART shared the objective of maximising class purity with ID3; it differed in the heuristic
choice of Gini coefficient vis-à-vis information gain for ID3. Consequently, a major improvement of
ID3 called C4.5 that also addressed pruning, multiclass classification and regression was released
[88]. The ideas embedded in C4.5 and CART form the basis of most modern decision tree learning

11

systems today designed for both batch and streaming cases.

2.4.1 C4.5

C4.5 was one of the most widely used decision tree algorithms for batch learning. It was designed by
Ross Quinlan [88] and uses Information Gain as the heuristic for deciding best splits. Information
Gain should tell us what the relative class purity of two given class distributions is (the idea is that
more “pure” class distributions contain less information). The class purity of the distribution at
a node is compared with the aggregate class purity of the distributions resulting from a split to
compute Information Gain. The Information Gain due to several attributes is then compared to
find the best one. Simplifying Quinlan’s terminology and notation, one can write down information
(or entropy) of a class distribution at a node N as IN =

∑c
i=1−pi log pi, where pi is the probability

observing class i at node N . If node N were now split on attribute A leading to j child nodes, the

information contained in each of the child nodes is INj
A

=
∑c
i=1−p

Nj
A

i log p
Nj

A
i , and the Information

Gain is given by
∑
j INj

A
− IN . Finding the attribute A that maximises gain is used as a heuristic

in C4.5 and similar algorithms to determine a better split.

2.4.2 Early Online Decision Trees

Applying C4.5 to a streaming setting is not straightforward—the main problem is that of anytime
prediction. How many examples does one need to see before deciding that one has enough data
accumulated to split it into test, validation and training sets and create a model? How frequently
does one need to update this model in order to optimize prediction accuracy? Should one use a
sequence of sliding windows? Is there a more efficient approach?

One potential solution is to learn in multiple passes with sets of stored instances; this raises the
question of what the ideal working instance repository size must be—that is, how many instances
should be stored at any given time?—a finicky hyperparameter. Such a choice would require
a significant space overhead and unduly influence the method’s anytime predictions—predictions
requested on-demand during the continuous learning process, a standard expectation of online
learners. Clearly, in learning from potentially infinite data streams, it is desirable that instances
are not stored at all.

A one-pass solution, wherein each example is processed exactly once, is ideal for online settings.
Work on scalability of batch learners helped set the foundation for one-pass learning in sequential
prediction scenarios.

Bootstrapped Optimistic Algorithm for Tree construction (BOAT) [48] represents a typical
attempt at learning from a large database that does not use a predictive sequential setting, by
sampling fixed size chunks that are used to bootstrap multiple trees. A “coarse” tree is then
extracted, based on the overlapping parts of the bootstrapped trees in terms of split decisions; this
tree is further refined to produce a final tree by passing the whole dataset over it. The system is
“incremental” in the sense that it can process additional datasets; and it is responsive to drift in that
the system detects when a new dataset requires a change in split criterion at a node through a global
assessment of split criterion, and causes a rebuild of the subtree rooted at that node. While key
ideas that shape later trees are developed in this work, the sizes of the initial bootstrap samples are
arbitrarily chosen, and concurrently the notion of anytime prediction is not entertained—there is no
automated way of determining how many examples suffice to build a first reliable tree. Further, the
focus is on minimising utilisation of main memory; it is assumed that the database D is available

12

for a corrective step in the algorithm. On the other hand, Hoeffding Tree is truly one-pass, in
that it is assumed that an example is seen only once, then discarded. Meanwhile, the RainForest
framework [47] introduces the idea of storing attribute-value-class counts at nodes, which we see in
Hoeffding Tree as node statistics.

2.4.3 Hoeffding Tree

Hoeffding Tree was one of several attempts [102, 113] to provide a one-pass solution, and the first
one-pass learner to provide guarantees on deviation of the tree from the batch tree—the hypothetical
tree that would be learned if all infinite examples from a stationary distribution were made available
at once. Hoeffding Tree uses a statistical test—the Hoeffding Test [36, 59]—to determine the most
appropriate time to split and attribute to split on. The Hoeffding Tree work, “Mining High Speed
Data Streams”, won the KDD Test of Time Award in 2015 [107]. Its success may be attributed to
the fact that it provided a one-pass solution, deviation guarantees from the ideal batch tree, and a
statistically sound rationale for deciding splits. Hoeffding Tree refers to the theoretical construct
proposed in [36], while its implementation is referred to as Very Fast Decision Tree (VFDT).

VFDT is designed for a process generating identical and independently distributed (i.i.d) data.
In order to ensure that the tree being built is stable and to ensure that there is a strong rationale
for deciding that a split decided upon at a point holds as the stream progresses, VFDT uses
concentration inequalities to decide when a potential split attribute has overtaken the remaining
potential split attributes at a node in terms of information gain. In particular, the Hoeffding
Inequality is used to test the likelihood that the average observed difference in information gain
at a node for the two attributes with highest information gain differs from their actual average
difference by more than some factor ε.

Using notation from [36], consider attributes Xa and Xb that are the top two in terms of In-
formation Gain G(X) at some node N . Say Ḡ(Xa) > Ḡ(Xb), i.e. the respective average gains
are compared. VFDT does not split node N until it is reasonably certain that there is a winning
attribute. To do this, it first computes ∆Ḡ(X) = Ḡ(Xa) − Ḡ(Xb) at nodes with impure class
distributions (once every nmin instances, because of the expensive nature of information gain com-
putation). Hoeffding Tree was one of several attempts [102, 113] to provide a one-pass solution, and
the first one-pass learner to provide guarantees on deviation of the tree from the batch tree—the
hypothetical tree that would be learned if all infinite examples from a stationary distribution were
made available at once. We want to test whether the average difference in gain due to the two
attributes is non-zero- that would imply one attribute is better than the other. The tolerance ε for
the deviation of ∆Ḡ from 0 is computed from:

ε =

√
R2 log(1/δ)

2n
(2.1)

where R is the range of our random variables. With confidence 1− δ, after n examples have been
seen, the true mean of the random variable is ∆Ḡ±ε. This is derived from the Hoeffding Inequality
[59] : for some collection of independent random variables X1, X2, ...Xn, Pr[X̄ − µ ≥ ε] ≤ e−2nε2 .
The random variable X̄ in our case is ∆Ḡ. µ = 0. And we decide whether to split or not at a node
based on whether Ḡ(Xa) > Ḡ(Xb).

The authors note that the usage of nmin > 1 has the effect of implementing a smaller δ than the
one specified by the user because more examples are considered than would have otherwise been

13

considered before deciding a split must be made. They also note than this slows down the building
of the node (which is compensated for by reducing the number of Information Gain computations).

VFDT focuses on using as few examples as possible from an i.i.d distribution to build a tree. A
consequence of this is that as the number of examples grows large, for a fixed confidence level 1− δ,
ε, the tolerance, decreases. So a very small difference in attribute gain ratios ∆Ḡ will exceed the
monotonically decreasing tolerance ε and signal that a split is necessary. Because of the monotonic
decrease in ε, we should eventually see ∆Ḡ > ε, but this may not occur before ∆Ḡ < ε < τ occurs,
where τ is the tie threshold. The tie threshold exists to resolve a scenario where ∆Ḡ < ε holds up
splitting a node and thus holds up learning (that is, the top two attributes are so close that it is
very difficult to determine a split, and when the threshold ε falls below the tie threshold τ , it is
likely most effective to simply choose the current best attribute, split on it, and continue learning
instead of waiting for ∆Ḡ > ε in order to split).

In the edge case where ∆Ḡ > ε is achieved exactly when ε < τ occurs, implying that a winning
attribute has been found among the top two just when the tie threshold ε < τ has been met, both
making the split by choosing the top attribute and invoking the tie-breaking mechanism are valid
courses of action (the ambiguity is not formally addressed, but both choices will likely lead to the
same attribute being picked).

VFDT is not designed to handle concept drift; it assumes a stationary data generating distri-
bution. It does not revise structure that is no longer applicable following a change in distribution.
The drift response of VFDT is studied in [40].

2.4.4 CVFDT

The VFDT work was followed up with a method specifically aimed at learning from streams with
concept drift, the “Concept-adapting Very Fast Decision Tree” or CVFDT [63]. CVFDT makes
a number of important design modifications. One is the introduction of a window so that older
examples are forgotten. Forgetting older examples that are no longer relevant to the current concept
ensures that they no longer contribute to the distribution at a node and thus to a split decision.

CVFDT maintains instance counts at every node, not just the leaves as does VFDT. CVFDT
periodically scans its internal nodes for a possibly better split than the current one; if it finds that at
an internal node, other attributes have better overall performance than the current split attribute,
it builds a set of alternate trees based on those attributes. Each alternate tree receives a copy of
each instance and thus learns; its prediction accuracy is constantly assessed; but alternate trees
do not contribute to predictions output by the CVFDT. If and when an alternate tree is found to
have better accuracy than the corresponding main subtree at a node, CVFDT swaps in the best
alternate tree, replacing the subtree stemming from the current split at the node. This is the key
mechanism by which CVFDT adapts to concept drift.

Note that a window as specified by CVFDT will have to be of sufficiently large size n when
both the threshold ε and confidence level 1− δ are specified according to Equation 2.1 so that there
are enough examples to determine whether the attribute with highest information gain is better
than the attribute with the second highest information gain. The required window size will vary
widely depending on the nature of the stream and thus is a very difficult parameter to set. If the
window is too small, alternates will be difficult to establish in the first instance and then difficult
to grow in order to be of use; if it is too large, it would adversely impact the primary basis upon
which CVFDT responds to concept drift—removing older examples from the window. Further, a
window implies a potentially large memory usage, as instances in the window will have to stored

14

so they may be later unlearned; ideally we would want learners to be one-pass, as with Hoeffding
Tree, which does not store instances.

2.4.5 Options for Hoeffding Trees

Hoeffding Option Tree [87] was the first online algorithm to introduce options for online decision
trees. It constructs a Hoeffding Tree classifier in the usual manner—but once a split has been made
at a node on some attribute using the Hoeffding Test with the usual confidence 1− δ that the top
attribute is more informative than the second best one, the algorithm makes further splits on other
attributes at the same node with confidence 1− δ′ that the new split option is better than the best
existing option.

Each optional split may lead to the growth of a subtree, as each example is passed down all the
splits. Each subtree within the set of options at a node is allowed to predict, through a weighted
vote—the individual probability predictions of each class across all the leaves an example reaches
are summed.

It is noted in [87] that Hoeffding Option Trees can grow very rapidly. Automated pruning
strategies were tried and deemed ineffective, and it is postulated that it is unlikely that automated
pruning can obtain satisfactory results. Additional splits are restricted—it is suggested that the
number of paths available to an example at each option node be restricted to 5 at most, a point at
which experimental accuracy gains were diminished. Further, the δ′ parameter is noted as being
able to control tree growth—δ′ is set in terms of δ through a multiplication factor α, thereby
controlling how eagerly optional splits are made.

“Ambiguous CVFDT” or aCVFDT, an option tree based on CVFDT rather than on Hoeffding
Tree is proposed in [76]. Unlike with CVFDT, where alternate subtrees being considered as replace-
ments for the original subtree do not vote, optional subtrees are allowed to vote in aCVFDT, as in
[87]. The main differences with respect to the strategy in [87] are that only the most accurate or
the latest option may be allowed to vote, and that the underlying CVFDT has a moving window of
examples, relative to which obsolete options are pruned. It suffers the same issue as does CVFDT
with respect to the sufficiency of the window size for determining whether a new option is better
than existing ones and consequently growing subtrees.

These works were followed by [66], which focuses on online regression trees where all attributes
are numerical. The main change in strategy is that rather than adding optional subtrees one by
one after an initial split has been made based on distinguishing the top two attributes using the
Hoeffding Test, after a certain minimum number of examples nmin is observed at a leaf, optional
subtrees are created simultaneously for all candidate splits that are indistinguishable (using the
Hoeffding Test) from the best performing attribute in terms of their discriminative power. While
this strategy also grows trees rapidly, it introduces the notion of introducing optional subtrees—and
thus structure—before a split has been chosen.

Option trees provide an important conceptual basis for designing adaptive decision trees. In
different ways, they all reinforce the notion that building more structure is a useful strategy. They
provide an interesting direction for research in terms of comparison with ensembles, given they can
effectively simulate the combination of multiple trees. However, on account of their rapid growth
and potential difficulty to prune without moving windows of examples (which come with their own
set of drawbacks), it may also be useful to explore strategies that create very simple models that
may then be used with established ensembling methods.

15

2.4.6 Hoeffding Adaptive Tree

The Hoeffding Adaptive Tree (HAT) [11] places change detectors and error estimators at every
internal node of a Hoeffding Tree. When used with ADWIN [10], which serves as both a change
detector and error estimator, it is called HAT-ADWIN.

When a change in the concept is signaled at a node by its change detector, an alternate subtree
begins to be built at that node, starting as a leaf node. Each instance passes both down the original
subtree and the alternate. The method leaves unspecified the issue of whether the alternate is
allowed to vote, and implementations can vary. When the alternate subtree has better accuracy
than its corresponding original, HAT switches out the alternate for the original subtree.

This resourceful construction of potentially at most a single alternate tree based on inputs
from change detectors and error estimators gives HAT an edge over CVFDT and option trees in
limiting tree growth; further, it is demonstrated in [11] that HAT has much better performance
than CVFDT in terms of prequential accuracy in most concept-drifting settings. As implemented,
each alternate may have an alternate, and we study the effect of this and many other unspecified
features in Chapter 3.

Note that our method Hoeffding AnyTime Tree (Chapter 4) is abbreviated as HATT to avoid
confusion with HAT. While HAT relies on error estimation and change detection to alter tree struc-
ture and grow subtrees, HATT—similarly to Hoeffding Tree—relies on discriminatory heuristics
alone for modifying tree structure and not on error or change detection. HATT is designed as a
simple, elementary replacement for Hoeffding Tree in stationary settings with enough plasticity to
be inducted into ensembles as an unstable base learner (thereby boosting ensemble diversity and
potentially improving the learning of more subconcepts) in place of Hoeffding Tree, which is a stable
learner [51].

2.4.7 OzaBoost

Online boosting (OzaBoost) [85] was proposed as an online version of AdaBoost [38, 39] following
the vein of “boosting” weak learners — developing strong learners from combinations of weak
ones [101]. AdaBoost is a batch learning ensemble method; a set of base models h1, h2, ...hm is
trained in sequence, with each model having half of it’s training examples drawn from the ones the
previous model misclassified. This will create a series of models with increasingly better results on
misclassified examples. Higher-indexed models may overfit to noise, so finding an optimal voting
strategy for these models can be of importance (this will be application dependent...). AdaBoost
represents steepest functional gradient descent on the chosen hypothesis space [27, 81, 80].

OzaBoost aims to recreate the weighting strategy of AdaBoost by furnishing each incoming
example Pois(λ = 1) times to the first requisitioned model; then, it adjusts λ so that it mimics
having misclassified examples take half the total weight in the input to the next learner. In the
MOA implementation, providing multiple copies of an instance is approximated by weighting an
instance accordingly.

To simulate misclassified examples making up half of the examples provided to the next model in
the ensemble, OzaBoost uses simple multiplicative factors f cm and fwm for the m′th model depending
on whether the example has been correctly or wrongly classified, so that an effectively larger λ is
used for wrongly classified examples.

16

2.4.8 Online SmoothBoost

Online Smooth Boosting [31] is an online version of the smooth boosting algorithm [104] which
instead of weighting examples with integer weights as with AdaBoost or OzaBoost uses real weights
in [0, 1] for each example, thus providing a rationalised continuous weighting scheme for examples in
contrast with the stepped Poisson weighting provided by OzaBoost. One motivation for restricting
the weights is to reduce the impact of noisy examples. Smooth online boosting also weights the
predictions of each ensemble component in an attempt to mitigate the impact of poorer predictors.

2.4.9 Adaptable Diversity-based Online Boosting (ADOB)

ADOB [99] builds upon OzaBoost by positing that arranging the base learners in increasing order
of accuracy will boost the value of λ favorably for the next base learner to enable better learning
under conditions of concept drift—because more examples are likely to be misclassified by learners
with lower accuracy, and those examples would be prioritized by being assigned half the total weight
when fed to the next learner.

The paper specifies a usage wherein the entire ensemble is wrapped in an ADWIN change
detector, an alternative ensemble begins to be constructed when a drift warning is issued, and the
entire ensemble is replaced with the alternative enemble when drift is confirmed. However, the code
provided in MOA defaults to assuming that it is each individual base learner that is wrapped in an
ADWIN change detector.

Because the core strategy offered—the rearrangement of learners—was what we were primarily
interested in testing, we used ADOB with VFDT and EFDT as base learners without drift detection
and thus without having to resolve the ambiguity concerning the text in the paper and the code.

2.4.10 Boosting-Like Online Ensemble (BOLE)

BOLE [8] is an online boosting- like learning framework. It is based on OzaBoost [85]. OzaBoost
and it’s derivatives have excellent recovery from abrupt concept drift.

BOLE incorporates from the ADOB system the idea of sorting the ensemble members in order
of worst performance. BOLE adds to this by allowing base models with lower than 50% accuracy
to vote. It also replaces the drift wrapper algorithm; it uses DDM instead of ADWIN in order to
achieve quicker drift detection. Again, there is a discrepancy between the publication and the code
in terms of whether the change detector wraps the ensemble or individual ensemble components.

2.4.11 OzaBag

Bagging approaches target diversity—that is, a larger bias space of descriptive functions is used for
our composite predictor function. A learner with a larger bias space (also confusingly called a “low
bias” learner) uses a somewhat different design aesthetic to boosting approaches (which “boost”
weak learners to create a strong one): instead of “zero-ing in” on a small portion of the hypothesis
space through a process of gradient descent, bagging approaches supply a different subset of training
examples to each component, thus simulating a different input space. This results in a larger spread
over the predictors generated as a result.

OzaBag creates an ensemble of base models (VFDT trees in MOA, the standard usage in recent
literature). Each base model is learned from a different input stream, those streams being random

17

resamples of the input. This is achieved by assigning each instance a different weight when provided
to each base model; the weight is drawn randomly from a Poisson(1) distribution.

OzaBag is based on a simple notion of extending batch bagging to the online setting. In the
batch scenario for bagging, let P (K = k) be the probability of an instance in the training set of size
N being chosen k times for input to some base model m. [85] argue that because we are considering
indefinite streams, we can use the following reasoning to provide Pois(λ = 1) copies of the instance
to the first base model in the queue for online boosting: P (K = k) =

(
N
k

)
(1
N)k(1− 1

N)N−k, which
is the binomial distribution. And as N → ∞, the distribution of K tends to a Pois(λ = 1)
distribution—thus providing Pois(1) copies of an instance in the online setting to each base model
simulates bagging in OzaBag. Again, in the MOA implementation, providing multiple copies of an
instance is approximated by weighting an instance accordingly.

2.4.12 Leveraged Bagging

OzaBag draws the weight for each instance of each ensemble member’s input stream from a Pois-
son(1) distribution; this means that around a third of training examples are discarded, because a
weight of 0 is drawn a third of the time with Poisson(λ = 1)! The main contribution of Lever-
aged Bagging [12] is to draw weights instead from a Poisson(6) distribution, which doesn’t discard
as many examples. This contributes to diversity of ensemble components without compromising
statistical efficiency.

2.4.13 Adaptive Random Forest

Adaptive Random Forest (ARF) [50] is an ensemble of online decision trees that follows on early
development in Ultra Fast Forest of Trees [41]. As with regular random forests, the attributes
available at each node for spliting are restricted to a random subset of all the available attributes.
Just as random forests use bagging to increase diversity within the ensemble, ARF uses online
bagging.

Unlike traditional random forests, ARF uses change detectors with each ensemble component to
determine whether concept drift is occurring. Each ensemble component has one ADWIN change
detector with a high tolerance level to warn of concept drift, and an ADWIN change detector with
a very low tolerance level that confirms concept drift. When a warning is signaled on a tree, an
alternative tree begins to be constructed. When a concept drift is signaled, the alternative tree
replaces the original in the ensemble.

2.5 Testbenches

Experimental studies of online learning algorithms where concept drift is introduced into streams
have relied on limited real datasets and on synthetic data streams that are difficult to measure
against each other. There is a real need for a comprehensive testbench.

2.5.1 Generators that use a nonstationary distribution

Hyperplane Generator

One of the first synthetic generators to come out was the hyperplane generator, from [63]. This was
introduced along with the CVFDT algorithm to compare performance with VFDT, and continues

18

to be widely used in concept drift studies. It is rather simple: a hyperplane in d dimensions is

given by
d∑
i=1

wixi = w0. We may define as positive examples such that
d∑
i=1

wixi ≥ w0 and as

negative examples such that
d∑
i=1

wixi < w0. Obviously, this only allows us to have two classes.

[63] use a slightly more complicated system where they have many parallel hyperplanes, but the
points between still only have binary class labels, with labels alternating in between bands. It is
noted that in a d-dimensional environment, if all but one dimension were weighted zero, then the
only dimension with a weight will contain all the information about the concept; consequently, the
weight of a dimension/feature tells us how much it contributes to the concept itself. A larger weight
change would correspond to a larger concept change.

The hyperplane generator implemented in MOA is a simpler version that only does a single
hyperplane. The hyperplane generator gives us an abstract way of testing learner performance
as dimensionality increases. The restriction to binary classes may not allow a direct convenient
comparison to multi-class problems. To an extent, it gives us control over the nature and magnitude
of drift. Developed further, this does have potential for generating synthetic data for abrupt drifts.
For gradual drift, one usually sets the hyperplane in rotatory motion with some angular velocity.
This is a somewhat simple notion of gradual drift; consider a more complex scenario where sub-
concepts are drifting. It is not straightforward, even using multiple parallel hyperplanes, to extend
this type of generator to a scenario where you intend to change a conditional dependency for a
small subset of attribute-values to study learner responses to subconcept drift.

Random RBF Generator

The radial basis function (RBF) generator [17] consists of centroids with fixed classes and standard
deviations assigned to them; the relative weight of each centroid is also the likelihood that it will
generate the next data point. In the concept drifting version of the RBF Generator provided by
MOA (RBFGeneratorDrift), the centroids are simply given velocities so that their locations are
continually changing.

A generator with a measured level of drift: Recurrent AbruptDriftGenerator

A method that allows generation of abrupt drift with specified magnitude in simple categorical
instance space is presented in [120]. A full conditional probability table is generated; thus, pY |X ,
the target distribution, is explicitly modeled. Further, a probability distance measure, the Hellinger,
is used to measure the distance between distributions. This allows us to generate a measurable level
of drift in settings with increasing dimensionality of the covariate and the class vector. The drift
generate may either be covariate drift, or posterior drift (“pure” or “real” concept drift). Note that
the size of the table is exponential in the number of input variables; this limits the applicability
of the approach to low dimensionality. However, learning problems generated by this generator
become significantly harder with small increases in dimensionality, possibly because of the relative
independence of the variables.

One change that can be made to better measure changes in the subconcept is to account for
the frequency of the covariate X = x conditioned upon. This may be useful because it prevents
a large change in the class distribution pY |X=x conditioned on a rare example X = x leading to
observing a large change in the target pY |X . While this remains a direction for future research, it

19

would provide a good base for a drift generator that would allow a more principled approach for
studying the effects of data dimensionality and subconcept drift.

I have added functionality to the AbruptDriftGenerator to generate recurrent abrupt drifts,
invoked with the ”Recurrent” option. In the charts in our publications, this generator usually
appears in the form “recurrent—abrupt—222” in tables, where “222” may be replaced by other
three-digit numbers. The first digit signifies the number of classes, the second digit the number of
nominal attributes, and the third digit is the number of values each nominal attribute can take.

2.5.2 Meta-generators

Recurrent Concept Drift Stream

Recurrent Concept Drift Stream is provided by MOA [16]. It is parameterized with two distributions
that are gradually alternated between. During the first occurrence of drift, the probability that an
instance is picked from the alternative concept gradually increases sigmoidally up until the specified
central position of the first concept drift change, and then the probability decreases symmetrically
up until the end of the drift. A fixed period of stability follows, and then the drift and the stable
period recur as many times as specified.

2.5.3 Generators that generate from stationary streams and must be
used with a meta-generator

STAGGER

STAGGER concepts [103] as implemented in MOA consist of colored (red, green, blue) shapes
(circle, square, triangle) of various sizes (small, medium, large). Three different classification func-
tions are provided for binary classification. We generate concept drift by changing the classification
function.

Waveform Generator

Two or three base waves are combined to create three different waveforms for classification [21,
45]. It offers 21 noisy attributes, or 21 attributes and 19 irrelevant attributes to generate data;
one of three waveforms is randomly selected for each instance. The concept drifting version of
the Waveform Generator provided by MOA (WaveformGeneratorDrift) adds “drift” to a specified
number of attributes with respect to the base stream for a given seed—but this still creates a
stationary distribution that is merely displaced from the original; therefore, it must be wrapped
within a stream such as RecurrentConceptDriftStream in order to provide a nonstationary (concept-
drifting) stream.

LED Generator

The LED generator [21, 45] has 24 binary attributes, of which 7 are used to represent a digit from
0 to 9 on an LED screen and thus correspond to the 7 segments in the representation. The digits
correspond to 10 classes from 0 to 9. The remaining 17 attributes are irrelevant.

Each data instance consists of 0-1 coding for the 7 segment attributes determining which ones
are displayed, while equiprobable random values are output for the 17 irrelevant attributes. At each

20

step in time, there is a 10% chance that one of the segment attributes flips, thus changing what is
shown on the LED screen (this noise implies that a digit may be wrongly represented).

As with WaveformGeneratorDrift, the LEDGeneratorDrift does not by itself generate concept
drift—it merely swaps pairs of attributes at the start of the stream and provides a new stationary
stream that is displaced from the original for a given seed, so it has to be provided as one of the
two distributions in a stream such as RecurrentConceptDriftStream.

Function Generator

Termed AgrawalGenerator in MOA, this generator [2, 45] offers a binary classification problem with
six numeric and three categorical attributes, and ten different classification functions to choose from.

SEA Generator

The SEA generator is a synthetic stream written for the purposes of demonstrating the SEA algo-
rithm [110]. It has three attributes, each of which takes values from 0 to 10. Only the first two
attributes are relevant. Four concepts are generated by having 4 simple thresholds θ1, θ2... such
that a1 + a2 ≤ θi → class1 else class2 within each concept (a concept is thus a division of the
dataset with that threshold applied for classification - a decision surface). It is different to the
rotating hyperplane system in that the concepts are fixed, there is no rotation, and one switches
between concepts.

2.5.4 Limitations of stream generators

Synthetic data streams in use in the field are limited in terms of both rationale for construction
as well as cross-comparability. It is not clear what expectations about response to future drift
scenarios one might draw from results derived from most available generators—the generality of
conclusions that may be drawn is unclear.

2.5.5 Real datasets

Of the real datasets commonly used for published experimental results in the study of concept drift
[16], the electricity dataset is relatively small, and neither the forest cover-type nor the poker-hand
datasets (also available through MOA and widely used) are naturally time-stamped streams (time
sequences). Thus their utility for testing drift detection algorithms is limited.

In order to test with a larger number of datasets with real data, I have chosen the largest
classification datasets with streaming data from the UCI Machine Learning repository [37] that
have a clear classification objective and do not have missing values—the handling of missing values
is a case for future study, as much of my work has involved carefully comparing elementary algorithm
mechanisms that interact in unpredictable and complex ways.

As many of the UCI datasets were provided in multiple files—often without an easy or obvious
way to concatenate them—using them involved a significant amount of text processing on large
files using a suite of tools such as awk, R, and sed in bash and Python scripts to homogenize and
concatenate the files and prepare them for use with MOA; the file converter provided by Weka was
usually unable to deal with large files. In order to test with homogenised versions of streams without
the incidental concept drift due to file boundaries in stitched datasets or concept drift otherwise
present in the data, I shuffled the UCI streams, and used both shuffled and unshuffled versions

21

for experimentation. Shuffled streams were particularly time-intensive to generate and thus were
stored on disk. The amount of text processing work that went into just creating my test datasets
indicates the general lack of availability of a universal testbench of real data for works in online
learning. The difficulty of obtaining a reliable testbench reflects in the literature in the form of a
lack of consistency in the real data streams used for comparison of proposed streaming methods.

In this context, I hope that the testbench I provide with this work is a useful resource in terms of
standardised evaluation of online learning algorithms. The full UCI testbench makes an appearance
in Chapter 6.

22

Chapter 3

Unspecified Features

It’s not a bug. It’s not a feature.
It’s just not specified.

It was not a particularly strenuous task to find the first gap in the literature with regard to
understanding learning under concept drift, as with just about the first paper anyone studying
stream learning would read—the KDD Test of Time Award 2015 Winner [107] “Mining High-Speed
Data Streams” which gave us the Hoeffding Tree (HT) theoretical construct and its implementation
Very Fast Decision Tree (VFDT)—I found that my implementation of their HT algorithm did not
match the performance of its implementation found in the widely-used MOA software. Despite
being designed for stationary distributions and including no mechanism for revising elements once
learned, the MOA implementation of Hoeffding Tree responds unexpectedly well to concept drift.

Careful investigation revealed that the reason for the discrepancy was due to a number of open
issues with the interpretation of the algorithm. This led me to a productive line of research revealing
the manner in which seemingly innocuous design choices in the implementation of a machine learning
system can lead to highly significant and potentially overlooked impacts on performance. Simple
unspecified features interact in complex ways to significantly influence prequential accuracy, with the
interactions being both crucial for algorithm performance and difficult to understand. I identify and
study the various unspecified features in the MOA interpretations of Hoeffding Tree and Hoeffding
Adaptive Tree—respectively the state-of-the-art learners for stationary and evolving streams—and
present my findings in this chapter.

23

Noname manuscript No.
(will be inserted by the editor)

Emergent and Unspecified Behaviors in Streaming Decision Trees

Why Online Decision Trees Perform So Well

Chaitanya Manapragada · Geoffrey I Webb ·
Mahsa Salehi · Albert Bifet

Received: date / Accepted: date

Abstract Keywords Concept Drift · Hoeffding Tree · Explainability
Hoeffding trees are the state-of-the-art methods in decision tree learning for evolving data

streams. Due to their efficiency, these very fast decision trees are used in many real applica-
tions where data is generated in real-time. In this work, we extricate explanations for why these
streaming decision tree algorithms for stationary and nonstationary streams (HoeffdingTree and
HoeffdingAdaptiveTree) work as well as they do. In doing so, we identify thirteen unique un-
specified design decisions in both the theoretical constructs and their implementations with
substantial and consequential effects on predictive accuracy—design decisions that, without nec-
essarily changing the essence of the algorithms, drive algorithm performance. We begin a larger
conversation about explainability not just of the model but also of the processes responsible for
an algorithm’s success.

1 Introduction

Algorithm design is, for now, mostly a manual, creative process; proposed strategies usually
have major components assumed to cause the bulk of a behavior. But are we certain of our
understanding of the causal relationships underpinning algorithmic performance?

A learning system may consist of many components, all interacting in complex ways with
existing mechanisms and leading to a system that is difficult to comprehend. Further, imple-
mentation details are quite often open to interpretation—it would be extremely restricting to
formally specify all aspects of implementation. Given a published algorithm, unspecified differ-
ences in implementation decisions may lead to—overall—hugely differing behavior and may be
best termed unspecified strategies.

Minor aspects of theory and implementation may be considered irrelevant to the essence of
the algorithm but may silently exert tremendous influence on measured objectives. For instance,
we show that though Hoeffding Tree constitutes a major advance in incremental learning due to
the introduction of the Hoeffding Test, a minor detail in how node statistics are initialized upon

Chaitanya Manapragada, Geoff Webb, Mahsa Salehi
Monash University, Australia
E-mail: FirstName.LastName@monash.edu

Albert Bifet
University of Waikato, New Zealand
E-mail: abifet@waikato.ac.nz

24

2 Chaitanya Manapragada et al.

node creation has a significant role to play in its performance. This “minor detail” pertaining
the initialization of node statistics is not considered a key aspect of the algorithm. It is merely
a convenience. But it is a convenience that has a strikingly large impact on the performance of
HoeffdingTree, as we demonstrate in Section 4.

The complexity of interactions between components of a learning system is such that the
most unassuming of algorithm components may interact with other parts of the system to pro-
duce unexplained variations of performance. While these are subsumed into the overall aesthetic
and direction of the algorithm developer and the algorithm itself, thus resisting straightforward
detection, they warrant study and explanation, especially so when effects are unexpectedly sig-
nificant. It is with this rationale that we study the benchmark MOA (Bifet, Holmes, Kirkby,
et al. 2010) implementations of two state-of-the-art stream learning methods: Hoeffding Tree
(Domingos and Hulten 2000), and Hoeffding Adaptive Tree (Bifet and Gavaldà 2009). We find
that simple design decisions in the algorithms and their respective implementations that are well
within the scope of reasonable interpretation lead to substantial and consequential variations in
prequential accuracy.

The main contributions of this paper are the following:

1. Identification of unspecified design decisions in Hoeffding Tree and Hoeffding Adaptive Tree
2. A thorough experimental study of how such unspecified features, individually and in combi-

nation, influence algorithm behavior and prequential error performance
3. Suggestions for unspecified features that may be worth formally inducting into the algorithms
4. A discriminative testbench that helped us identify differences in behavior and prequential

error performance

The outline of this paper is as follows: Section 2 presents Background and Related Work;
Section 4 details unspecified features and emergent behaviors due to them in the MOA imple-
mentation of Hoeffding Tree; Section 5 details unspecified features and emergent behaviors due
to them in the MOA implementation of Hoeffding Adaptive Tree; and finally Section 6 contains
our Conclusions.

2 Background and Related Work

2.1 Batch learning origins of Decision Trees

Decision trees were some of the earliest mechanisms identified (Hunt 1962) as highly interpretable
models for the representation and storage of knowledge. This representation of knowledge was
initially in the form of a simple binary tree. All of the data were collected at the “root” vertex
of the tree; then, the datapoints were separated into the two child vertices (“nodes”) based
on a decision pertaining to the value of each datapoint. For instance, with unidimensional data
(x1, x2...xm) obtained from the real line observed at the root node Nroot, the data point xi might
assigned to the child node on the left NLeft if less than 0, and to the node on the right NRight

if greater than or equal to zero. Further subdivision may be possible in recursive manner. This
binary data structure is easily generalised—the data may also be multivariate and nominal (e.g.
xi = (Sunny,Cold,Windy)), and trees are not required to be binary (for instance they may be
ternary—with the root having child nodes NRight, NMiddle, NLeft).

Algorithms for the construction of decision trees were consequently proposed; major mile-
stones begin in 1966 with the Concept Learning System by Hunt et al. (Hunt, Marin, and Stone
1966), followed on by Quinlan in 1979 with ID3 (Quinlan 1979; Quinlan 1983; Quinlan 1986),
Breiman in 1984 with Classification and Regression Trees (CART) (Breiman et al. 1984), and
C4.5 by Quinlan in 1992 (Quinlan 1992).

25

Emergent and Unspecified Behaviors in Streaming Decision Trees 3

These algorithms share a common core instrumentation; a split criterion determines how each
node, starting with the root, splits data that have filtered to it; child nodes are created, and the
tree is thus recursively grown. Early systems assumed data could be perfectly separated, and
that data and trees were both binary; however, CART (Breiman et al. 1984) and C4.5 (Quinlan
1992) were robust systems that did not make assumptions of perfect data separability, pruned
themselves to avoid overfitting, allowed multivariate and nominal data, and thus were suitable
for a wide range of applications.

C4.5 by Ross Quinlan has remained a widely used decision tree algorithm for batch learning—
a learning paradigm in which all of the data is available at once. It uses Information Gain as the
heuristic for deciding best splits. Information Gain tells us what the relative class purity of two
given class distributions is (the idea is that “purer” class distributions contain less information—
one needs a shorter message to represent the fact that all instances belong to a class, and a longer
one to represent a spread).

As previously mentioned, tree classifiers are grown by “splitting” nodes, starting at an initial
node, the root. Each split at a node corresponds to dividing the instance space with decision
boundaries that provide an optimal separation of classes based on some convenient measure of
separation such as Information Gain or Gini coefficient, creating corresponding child nodes from
which the sub-division process may continue.

The class purity of the distribution at a node is compared with the aggregate class purity of
the distributions resulting from a split in order to compute Information Gain. The Information
Gains due to several attributes being considered at a node are then compared to find the best one.
Simplifying Quinlan’s terminology and notation from (Quinlan 1992)(p21-22), the information
(or entropy) of a class distribution at a node N is IN =

∑c
i=1−pi log pi, where pi is the probability

observing class i at node N and c is the number of classes. This characterization encapsulates
neatly the notion of a “pure” node having low information—for a one-class distribution, it is
easy to observe that information evaluates to 0.

If node N were now split on attribute A leading to j child nodes, the information contained

in each of the child nodes is INj
A

=
∑c

i=1−p
Nj

A
i log p

Nj
A

i , and the Information Gain is given by∑
j INj

A
− IN . Finding the attribute A that maximises gain is used as a heuristic in C4.5 and

similar algorithms to determine the best split.
Classification and Regression Trees (CART) (Breiman et al. 1984), which use the Gini im-

purity instead of Information Gain as a splitting heuristic, (Breiman et al. 1984) precede C4.5.
In this work, we focus our discussion around Information Gain, though it applies equally to
Gini-based trees.

Applying C4.5 or CART to a streaming setting is not straightforward; the main problem is
that of anytime prediction. How many examples does one need to see before deciding that one has
enough data accumulated to create a reliable model? Do we need separate training, validation
and test sets in a streaming scenario? How frequently does one need to update this model in order
to optimize prediction accuracy? Should one use a sequence of sliding windows? How does one
address concept drift in streams? These are the questions that online decision trees address—a
set of questions rather different to those centred around data scarcity that apply to the batch
paradigm.

2.2 Online Decision Trees

In learning from potentially infinite data streams, it is imperative that instances are not stored.
One potential solution is to learn in multiple passes with sets of stored instances; this raises the
question of what the ideal working instance repository size must be—that is, how many instances

26

4 Chaitanya Manapragada et al.

should be stored at any given time?—a finicky hyperparameter. Such a choice would require a
significant space overhead and unduly influence the method’s anytime predictions—predictions
requested on-demand during the continuous learning process, a standard expectation of online
learners.

A one-pass solution, wherein each example is processed exactly once, is ideal for such settings;
HoeffdingTree was one of several attempts (Schlimmer and Fisher 1986; Utgoff 1989) to provide
a one-pass solution, and the first one-pass learner to provide guarantees on deviation of the tree
from the batch tree—the hypothetical tree that would be learned if all infinite examples from a
stationary distribution were made available at once. Hoeffding Tree uses a statistical test—the
Hoeffding Test (Domingos and Hulten 2000; Hoeffding 1963)—to determine the most appropriate
time to split. Its success may be attributed to the fact that it provided both a one-pass solution
and deviation guarantees in the same package.

Work on scalability of batch learners also helped set the foundation for one-pass learning in se-
quential prediction scenarios. Bootstrapped Optimistic Algorithm for Tree construction (BOAT)
(Gehrke, Ganti, et al. 1999) represents a typical attempt at learning from a large database that
does not use a predictive sequential setting, by sampling fixed size chunks that are used to
bootstrap multiple trees. A “coarse” tree is then extracted, based on the overlapping parts of
the bootstrapped trees in terms of split decisions; this tree is further refined to produce a fi-
nal tree by passing the whole dataset over it. The system is “incremental” in the sense that it
can process additional datasets; and it is responsive to drift in that the system detects when a
new dataset requires a change in split criterion at a node through a global assessment of split
criterion, and causes a rebuild of the subtree rooted at that node. While key ideas that shape
later trees are developed in this work, the sizes of the initial bootstrap samples are arbitrarily
chosen, and concurrently the notion of anytime prediction is not entertained—there is no au-
tomated way of determining how many examples suffice to build a first reliable tree. Further,
the focus is on minimising utilisation of main memory; it is assumed that the database D is
available for a corrective step in the algorithm. On the other hand, Hoeffding Tree is truly one-
pass, in that it is assumed that an example is seen only once, then discarded. Meanwhile, the
RainForest framework (Gehrke, Ramakrishnan, and Ganti 2000) introduces the idea of storing
attribute-value-class counts at nodes, which we see in Hoeffding Tree as node statistics.

Hoeffding Tree and Hoeffding Adaptive Tree (HAT) are state-of-the-art one-pass incremental
learners for stationary and nonstationary streams respectively; we discuss these methods and
briefly outline the primary unspecified effects we observe that influence prequential accuracy
performance.

2.2.1 Hoeffding Tree

Hoeffding Tree (Domingos and Hulten 2000) is an online learning strategy that takes as input
a stream of instances (i1, i2, ...it, it+1, ...) and incrementally builds a decision tree that offers
anytime prediction. That is, at any point of time “t”, a regression or class value prediction can
be made based on the examples in the stream up to that point.

27

Emergent and Unspecified Behaviors in Streaming Decision Trees 5

Algorithm 2.1: Hoeffding Tree, Domingos & Hulten (2000) –Reproduced verbatim from

original–

Input: S, a sequence of examples,
X, a set of discrete attributes,
G(.), a split evaluation function
δ, one minus the desired probability of choosing the correct attribute at any given node

Output: HT , a decision tree.
begin

Let HT be a tree with a single leaf l1 (the root).
Let X1 = X ∪X∅.

Let G1(X∅) be the G obtained by predicting the most frequent class in S
foreach class yk do

foreach value xij of each attribute Xi ∈ X do
Let nijk(l1) = 0

end

end
foreach example (x, y) in S do

Sort (x, y) into a leaf l using HT
foreach xij in x such that Xi ∈ Xl do

Increment nijk(l)
end
Label l with the majority class among the examples seen so far at l
if the examples seen so far at l are not all of the same class then

Compute Gl(Xi) for each attribute Xi ∈ Xl − {X∅} using the counts nijk(l)

Let Xa be the attribute with highest Gl

Let Xb be the attribute with second-highest Gl

Compute ε using Equation 1;
if Gl(Xa)−Gl(Xb) > ε and Xa 6= X∅ then

Replace l by an internal node that splits on Xa foreach branch of the split do

Add a new leaf lm and let Xm = X− {X∅} Let Gm(X∅) be the G obtained by
predicting the most frequent class at lm foreach class yk and each value Xij of
each attribute Xi ∈ Xm − {X∅}]} do

Let nijk(lm) = 0
end

end

end

end

end
Return HT

end

The provision of deviation guarantees, and the use of statistical tests (the Hoeffding Test) to
make reliable split decisions in a single-pass paradigm made Hoeffding Tree a durable baseline
method that won it the KDD Test of Time award in 2015.

Unlike batch decision trees, which process all instances at once, online decision trees need
to decide when they are ready to split a node. That is, they need to decide what value of t
in the instance stream offers sufficient confidence for a reliable decision boundary to be drawn
in input space by splitting a node. Another way of framing this is thus: assuming a stationary
distribution, if the entire infinity of instances were filtered down the tree as if in a batch setting,
the resulting split is the ideal split—and online decision trees aim to approximate such an ideal
split as closely as possible, but because they have to do so in finite time, they need to decide at
what time t they have enough confidence that a proposed split for a node matches the “ideal”
split.

28

6 Chaitanya Manapragada et al.

And so: deciding when to split a node is the problem that Hoeffding Tree solves in a principled
and reliable manner; the Hoeffding Test is used to determine the likelihood of the true best
split—as would be obtained by a hypothetical batch tree able to process all infinite examples at
once—varying from the best split being considered by the algorithm at a given time. When a
certain preset level of confidence is reached at a node, it is split. Terminals do not have children;
they are called “leaf” nodes. Leaf nodes are evaluated for splits that may result in a better model.

In Hoeffding Tree, leaf nodes uniquely serve the purpose of “learning”, in the sense of at-
tempting to find a split point based on examples accumulated at the leaf. Once a learning node
has been split on, the “split node” that replaces it only serves to filter down examples. Leaf nodes
that serve as learning nodes update their statistics—and also make predictions. Learning nodes,
in Hoeffding Tree, are always leaf nodes.

Statistics that represent the characteristics of the distribution over data attributes and
attribute-values are stored in lieu of the data at each node. These node statistics help deter-
mine what child nodes will result in a split on a particular attribute at a learning node. They are
used to compute test values for the Hoeffding Test; splits are made when a new division of the
space by a certain attribute is ascertained to increase the separation power reliably compared to
the next best attribute based on the Hoeffding Test applied to Information Gain, Gini coefficient,
or other measure of comparative separation due to the attributes.

The Hoeffding Test uses the Hoeffding bound: for n independent random variables r1..rn,
with range R and mean r̄, the Hoeffding bound states that with probability 1− δ the true mean
is at least r̄ − ε where Domingos and Hulten 2000; Hoeffding 1963:

ε =

√
R2 ln(1/δ)

2n
(1)

2.2.2 Hoeffding Adaptive Tree

Hoeffding Adaptive Tree (HAT) is an adaptive online decision tree based on Hoeffding Tree.
HAT starts growing an alternate subtree when concept drift is detected at a node by ADWIN
(Bifet and Gavalda 2007) or another change detector, and replaces the original subtree with an
alternate when the error from the alternate is lower than the error from the main subtree. Till
date, it remains the best performing single online tree on our expanded concept drift testbench
in terms of prequential error; we experimented with several strategies to improve performance,
such as allowing alternates to vote as a form of lookahead and weighting examples at subtrees as
a form of subtree-level example boosting, only to find that unspecified features already accounted
for them to various degrees. In Section 5, we explain what these unspecified features are and how
they result in superior performance, isolating strategies that boost prequential accuracy.

3 Experimental Setup

We use the Massive Online Analysis (MOA 2016.04) (Bifet, Holmes, Kirkby, et al. 2010) frame-
work for our experimentation. MOA provides implementations of Hoeffding Tree and Hoeffding
Adaptive Tree, and a number of concept drift streams.

We choose a testbench geared towards exposing differences in algorithm behavior in concept-
drifting settings. The Hyperplane (Hulten, Spencer, and Domingos 2001) and Radial Basis Func-
tion (RBF) (Bifet, Holmes, Pfahringer, et al. 2009) generators have long been used to differentiate
the effectiveness of strategies for learning under gradual drift. They generate instances from a
naturally evolving concept and allow the parametrization of rate of drift and dimensionality of
the stream.

29

Emergent and Unspecified Behaviors in Streaming Decision Trees 7

Our Recurrent AbruptDrift generator adds the option of generating recurrent abrupt drifts
to the AbruptDrift generator from (Webb et al. 2016). This generator is particularly useful
for demonstrating differences in algorithm behavior with respect to increasing dimensionality,
as we see in Section 5.2 where a clear difference in prequential accuracy performance is noted
between compared strategies with respect to stream dimensionality. The Recurrent AbruptDrift
generator models a full conditional probability table for the target distribution pY |X that grows
exponentially in the number of input variables, which are relatively independent.

The Agrawal (Agrawal et al. 1992), LED (Breiman et al. 1984), RandomTree (Bifet, Holmes,
Kirkby, et al. 2010), SEA (Street and Kim 2001), STAGGER (Schlimmer and Granger 1986), and
Waveform (Breiman et al. 1984) generators are commonly used in studies of concept drift; as they
are not based on an inherently evolving distribution, we use the RecurrentConceptDriftStream
generator (Bifet, Holmes, Kirkby, et al. 2010) to generate drift between different parametrizations
of these streams.

The parametrized synthetic streams are listed in Table 1. The suffix notation in the shorthand
“recurrent—abrupt—522” used in tables conveys that that particular stream has 5 classes, 2
nominal attributes, and 2 values per attribute.

Table 1 Synthetic Datasets

MOA Stream Shorthand
1 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (genera-

tors.AgrawalGenerator -f 2 -i 2) -d (generators.AgrawalGenerator -f 3 -i 3))
recurrent—agrawal

2 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (generators.LEDGenerator
-i 2) -d (generators.LEDGeneratorDrift -i 3 -d 7))

recurrent—led

3 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (genera-
tors.RandomTreeGenerator -r 1 -i 1) -d (generators.RandomTreeGenerator -r 2 -i
2))

recurrent—randomtree

4 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (generators.SEAGenerator
-f 2 -i 2) -d (generators.SEAGenerator -f 3 -i 3))

recurrent—sea

5 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (genera-
tors.STAGGERGenerator -i 2 -f 2) -d (generators.STAGGERGenerator -i 3 -f 3))

recurrent—stagger

6 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (genera-
tors.WaveformGenerator -i 2 -n) -d (generators.WaveformGeneratorDrift -i 3 -d 40
-n))

recurrent—waveform

7 -s (generators.HyperplaneGenerator -k 10 -t 0.0001 -i 2) hyperplane—1
8 -s (generators.HyperplaneGenerator -k 10 -t 0.001 -i 2) hyperplane—2
9 -s (generators.HyperplaneGenerator -k 5 -t 0.0001 -i 2) hyperplane—3
10 -s (generators.HyperplaneGenerator -k 5 -t 0.001 -i 2) hyperplane—4
11 -s (generators.RandomRBFGeneratorDrift -s 0.0001 -k 10 -i 2 -r 2) rbf—drift-1
12 -s (generators.RandomRBFGeneratorDrift -s 0.0001 -k 50 -i 2 -r 2) rbf—drift-2
13 -s (generators.RandomRBFGeneratorDrift -s 0.001 -k 10 -i 2 -r 2) rbf—drift-3
14 -s (generators.RandomRBFGeneratorDrift -s 0.001 -k 50 -i 2 -r 2) rbf—drift-4
15 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 2 -n 2 -v 2 -r 2 -b 200000 -d

Recurrent)
recurrent—abrupt—222

16 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 3 -n 2 -v 2 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—322

17 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 3 -n 3 -v 2 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—332

18 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 3 -n 3 -v 3 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—333

19 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 3 -n 3 -v 4 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—334

20 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 3 -n 3 -v 5 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—335

21 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 4 -n 2 -v 2 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—422

22 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 4 -n 4 -v 4 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—444

23 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 5 -n 2 -v 2 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—522

24 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 5 -n 5 -v 5 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—555

We use predictive sequential accuracy—prequential accuracy—as our performance measure.
This is the cumulative accuracy from a setting where a prediction is offered for each instance

30

8 Chaitanya Manapragada et al.

by the learner, and the true value is made available following the prediction. We focus on the
classification problem.

All streams generate one million examples. Each stream generator is run with 10 differ-
ently initialized random seeds. Because prequential accuracy is a curve that plots error at every
timestep, the results are reported thus: a measure of the mean error is obtained by averaging
error across seeded runs for each epoch, and then averaging over the epoch-wise error averages. A
measure of variance is obtained by computing the variance of the error across the seeded runs for
each epoch, then averaging the epoch-wise variances. The error reported for each epoch is itself
the average across 1000 examples, which is the default for the evaluator in MOA. The number
of leaves, and the CPU time, are simply the averages of the final values across the seeded runs
for a given stream.

As a base for our experimentation we use implementations of VFDT and HAT stripped of the
unspecified features we have found in the MOA and VFML implementations. All references to
“VFDT” or “HAT” in our charts and tables refer to an implementation of the core Hoeffding Tree
(Algorithm 2.1) as described in (Domingos and Hulten 2000) and the Hoeffding Adpaptive Tree
algorithm (Bifet and Gavaldà 2009) without any of the unspecified features that have entered
the implementations of VFDT and HAT in the form of engineering artifacts.

To these base implementations, we have added as options each of the unspecified features we
identified in the MOA implementations. In the following sections, we systematically investigate
the impact of identified unspecified features on prequential accuracy.

4 Unspecified and Emergent Behaviors in the MOA implementation of Hoeffding
Tree

An online strategy designed for concept drift adapts to the stream in order to predict as well
as possible as concepts change; an online strategy designed for learning from stationary streams
assumes an overall unchanging distribution, and prioritizes minimizing deviation from an ideal
batch learner that has access to the entire stream of infinite size at once. A learner designed
for a stationary stream can be expected to be stable on the stability-plasticity (Grossberg 1988;
Hoens, Polikar, and Chawla 2012) spectrum, as it aims to mitigate a reactive change in the model
on exposure to noise so it can capture the unchanging concept.

HoeffdingTree—the state-of-the-art online learning tree that has served as a base procedure
for the development of methods for learning from online streams with concept drift—is surpris-
ingly responsive to abrupt drifts, in spite of having been designed for learning from stationary
streams and for very high stability. Abrupt drifts are large shifts in concept over a relatively
short period of time (Gama, Sebastião, and Rodrigues 2013; Webb et al. 2016)—in our experi-
mental setup, abrupt drifts are considered instantaneous, with the data-generating distribution
(“concept”) switching instantly to a new one.

Closer inspection reveals several factors promoting a form of response to drift that we call
amnesia. By amnesia we refer to the ability of a learner to update its model to better capture
the present state of the stream by diminishing the influence of earlier examples—effectively,
forgetting them to some degree.

One of the factors leading to the excellent drift response of Hoeffding Tree in any reasonable
implementation is inadvertent inbuilt amnesia—as instances are not stored, and there is no
effective way to exactly determine node statistics in child nodes resulting from a split, node
statistics are simply initialised to zero for convenience, effectively deleting history upon splitting.
We elaborate on this in Section 4.1.

31

Emergent and Unspecified Behaviors in Streaming Decision Trees 9

A second factor that is unique to the MOA interpretation of Hoeffding Tree is that it was
possible to re-split on a used nominal attribute, again contributing to amnesia when it was most
useful. We explain this in greater depth in Section 4.2.

A further simplification, which we explain in Section 4.3, in the MOA implementation—one
which contributes to time efficiency without changing time complexity or producing a discernible
change in prequential accuracy—is that Information Gains are not averaged; periodic infogain
computations are considered good enough approximations—as they indeed turn out to be in
practice. This is a significant optimization that could be written into other HoeffdingTree imple-
mentations.

Put together, these factors lead to a significance performance gain over a base Very Fast
Decision Tree (VFDT), the implementation of the theoretical Hoeffding Tree construct. We use
the MOA implementation, though some significant factors are also part of the original VFML
implementation. (Section 4.5).

4.1 Inherent Amnesia

HoeffdingTree, as a stream learner, is designed to operate with a low, finite memory requirement.
Examples are not stored, but statistics about examples are at each node, “node statistics” that
help determine the resultant class distributions when a chosen attribute is split upon. Node
statistics are simply representations of the data collected at the node—frequency counts for
nominal attribute values, and appropriate statistics such as mean for real attribute values. This
allows determination of the best split attribute—one can choose the attribute that results in
maximal class separation.

A critical side effect of the usage of node statistics is that freshly created nodes have to
start off with no node statistics, as there does not appear to be an obviously sound way of
redistributing node statistics from the parent without storing examples—one needs the examples
in order to be able to determine an appropriate redistribution of node statistics (by filtering
examples down the tree).

Though Hoeffding Tree was designed for stationary streams, the consequence of new nodes
being created without statistics turns out to be a significant unplanned advantage in the scenario
with concept drift; a tree algorithm may “recover” from a concept drift (that is, update its model
to be current) simply by splitting, leading to amnesia that erases the previous concept—thus
modeling the novel concept better than expected after a concept drift.

For example: in an extreme case, suppose previously that all 1000 examples that reached a
leaf belonged to class A. After drift, all examples reaching the leaf belong to class B. Simply by
splitting on a now irrelevant attribute, the tree can forget the 1000 examples of class A in the
node statistics. A further split may be justified based on the new separable node statistics, and
this would render a child with a class distribution derived from these fresh node statistics that
classify concept B well.

In order to demonstrate this effect, we built a version of VFDT that does not forget instances,
so that the node statistics nijk in the children are initialized to counts from all the examples i
in the stream to date that filter into the freshly created child nodes, instead of being set to zero.

We then set up a simple noise-free test stream with drift in the conditional distribution P(Y|X)
with 5 attributes, 5 nominal values per attribute and 5 classes. The stream is from (Webb et al.
2016) and is initialized thus: first, a “starting” distribution is created. A random distribution over
the covariates is created by drawing attribute-value probabilities from a Gamma(1,1) function
and normalizing them per attribute (every attribute gets a value in every instance); and every
possible combination of values of the covariates is assigned a random class by drawing an index

32

10 Chaitanya Manapragada et al.

Fig. 1 Plot showing a significant improvement in drift response resulting from amnesia inherent to HoeffdingTree.
A single abrupt drift occurs at t = 150, 000. VFDT shows a far better recovery in prequential error following the
drift. ‘E’ and ‘T’ are error and time, respectively, averaged every 1000 steps over 10 randomised streams.

from a uniform distribution. Next, a second, “final” distribution after drift is created by randomly
changing the class assignment, ensuring we pick a class that is not the one that is already chosen.
The proportion of classes to be changed is provided as an input for drift magnitude.

Figure 1 plots the prequential accuracies of unmodified Hoeffding Tree and an “eidetic”
Hoeffding Tree that retains instances for initialization of the node statistics nijk on a synthetic
stream with 5 classes, 5 nominal attributes, and 5 values per attribute. An abrupt drift occurs
at t = 150, 000 with the highest possible magnitude of 1.0. The figure shows that due to the
amnesia inherent in HoeffdingTree, response to drift in terms of recovery in error rate following
the abrupt drift is far quicker than it is without inherent amnesia.

4.2 MOA implementation: Resplitting on attributes

If a nominal attribute that has already been used to split on a decision path is reused to split, we
should achieve no advantage at all and only the disadvantage of making the tree larger. Because
the value for the previously used nominal attribute has already been decided the first time it
was split upon, “splitting” on it again will make no difference whatsoever to the sequence of
decisions down the path, and it will in no way discriminate any set of instances accumulated
at the node—all instances will contain the same value of the reused attribute! As a result, all
examples will pass down the same branch below the split—hence the distribution at the new leaf
should be identical to that at the current one.

Thus, when a leaf node evaluates multiple split options, it should normally be the case
that a previously used nominal attribute will offer zero information gain—it has already been
conditioned upon and hence will all have the same value.

However, VFDT was designed for stationary streams; at least in the MOA implementation,
the introduction of concept drift leads to splits occuring when they should not. Previously used
attributes are enabled for reuse—that is, the implementation interpretation allows re-“splitting”
on the same attribute—with the same previously used attribute-value being assigned to the split

33

Emergent and Unspecified Behaviors in Streaming Decision Trees 11

(as the attribute has already taken it’s value, and with any other value an instance would end
up elsewhere in the tree).

This re-“splitting” behavior has not been found to manifest in drift-free streams. Concept drift
triggers it (Table 2 provides an example), and the end result is very interesting—amnesia. In the
freshly created leaf node on a resplit on a previously used attribute, node statistics are zeroed as
a consequence of the effect described in Section 4.1; this amnesia helps concept drift adaptation,
again, by allowing the tree to model a newer concept at any future leaves without the weight of
the previous concept as the class distribution used to predict is derived from the parent’s node
statistics, which have been cleared. The interaction between inherent amnesia and concept-drift
triggered “resplitting” leads over all to a better drift response as can be seen in Table 3, which
shows an overwhelming win rate on our testbench for VFDT that allows resplitting over our
base VFDT that does not (p-value < 0.00001). The number of wins with the resplitting strategy
over without it is significant in itself, but further consequence is found in how this interacts with
other unspecified features, as demonstrated in Section 4.5.

Table 2 A previously used attribute is “reused”, effectively creating a single child with a clean node statistics
register, but carrying over the class distribution. This table shows how the behavior can be simulated, and what
the results are. The only change to the original code is a clause printing the tree before and after a resplit occurs.
The tree as it stands after the first resplit is shown below.

Code used to display behavior

// if shouldSplit is True

if(parent != null && splitDecision.splitTest.getAttsTestDependsOn()[0]
== parent.splitTest.getAttsTestDependsOn()[0]) {

StringBuilder treeDescription = new StringBuilder();
getModelDescription(treeDescription, 4);
System.out.println(treeDescription);

}

MOA command used to trigger behavior

java -cp "commons-math3-3.6.1.jar:guava-22.0.jar:moa.jar:mytrees.jar" "moa.DoTask" "EvaluatePrequential -l
trees.HoeffdingTreeOriginal -s (ConceptDriftStream -s (generators.RandomTreeGenerator -o 2 -u 0 -v 2 -d 2 -l 1)
-d (generators.RandomTreeGenerator -r 2 -i 2 -o 2 -u 0 -v 2 -d 2 -l 1) -p 200000 -w 1 -r 4) -i 400000 -f 1000"

Resplitting on same attribute behavior (in bold)

if [att 1:nominal1] = val 1:value1:
if [att 2:nominal2] = val 1:value1:

Leaf [class:class] = <l class 1:class1> weights: 49,391—0
if [att 2:nominal2] = val 2:value2:

Leaf [class:class] = <class 2:class2> weights: 0—49,243
if [att 1:nominal1] = val 2:value2:

if [att 2:nominal2] = val 1:value1:
if [att 2:nominal2] = val 1:value1:

Leaf [class:class] = <class 2:class2> weights: 0—208
if [att 2:nominal2] = val 2:value2:

Leaf [class:class] = <class 1:class1> weights: 49,411—253

34

12 Chaitanya Manapragada et al.

Table 3 Performance of the “resplitting” strategy: A previously used attribute is “reused”, effectively creating
a single child with a clean node statistics register

Streams VFDT VFDT with resplitting
strategy

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.20846 0.00043 482 0.19894 0.00028 788
recurrent—led 0.33838 0.00068 54 0.33906 0.00065 56
recurrent—randomtree 0.22404 0.00231 1155 0.22151 0.00211 1292
recurrent—sea 0.15251 0.00016 164 0.15239 0.00015 360
recurrent—stagger 0.1882 0.00047 23 0.00699 5e-05 162
recurrent—waveform 0.19355 0.00171 147 0.19303 0.0016 153
hyperplane—1 0.11566 0.00021 285 0.11455 0.00019 350
hyperplane—2 0.16785 0.00117 333 0.16458 0.00097 395
hyperplane—3 0.1074 0.00013 284 0.10714 0.00013 340
hyperplane—4 0.16309 0.00359 316 0.16005 0.00301 376
rbf—drift-1 0.11462 0.00053 397 0.11381 0.00052 423
rbf—drift-2 0.2858 0.00155 482 0.28486 0.00156 491
rbf—drift-3 0.13821 0.00068 365 0.1377 0.00066 390
rbf—drift-4 0.40874 0.00141 288 0.40583 0.0015 363
recurrent—abrupt—222 0.35403 0.02056 4 0.00261 8e-05 17
recurrent—abrupt—322 0.37862 0.01248 4 0.00325 7e-05 16
recurrent—abrupt—332 0.3504 0.08913 8 0.01316 0.00035 32
recurrent—abrupt—333 0.36505 0.01499 27 0.0582 0.00128 134
recurrent—abrupt—334 0.39687 0.00217 64 0.15073 0.00525 278
recurrent—abrupt—335 0.39622 0.00319 121 0.23007 0.00768 481
recurrent—abrupt—422 0.33416 0.02931 4 0.00959 0.00028 15
recurrent—abrupt—444 0.40671 0.00636 235 0.34738 0.00684 380
recurrent—abrupt—522 0.3309 0.03999 4 0.00937 3e-04 14
recurrent—abrupt—555 0.46461 0.00584 1405 0.46352 0.00568 1417

Unique Wins 1 23

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
<

0.00001

Confidence
Interval:
0.81711

— 1

As “re-splitting” proves to be a powerful strategy for responding to concept drift, it might
be instructive to experiment with variations of initializing/zeroing node statistics when a drift
is detected or suspected in adaptive methods designed specifically for concept drift. We provide
an example of doing so in Section 4.6.

4.3 Infogain approximations

Hoeffding tree is premised upon offering rationalised splits in streaming scenarios using the
Hoeffding Inequality as a test to determine whether a potential split is likely to be the long-
term choice in a theoretical batch tree built on an infinite stationary stream. Hoeffding test is
applied with the computed prospective infogain differences between the top two attributes due
to a potential split at timestep t, ∆Gt, as the random variables.

The standard use of Hoeffding’s inequality would involve taking the mean of all computed
infogain differences ∆Gt over all timesteps (Domingos and Hulten 2000; Hoeffding 1963). That is,
every time the infogain difference ∆Gt is computed, it is fed into the mean value ∆Gt comprising
all ∆Gt up until that timestep—the value used in the Hoeffding Test to determine the relative
superiority of an attribute. (We use timestep subscripts to clarify the meanings of the random
variables. Random variables are often assumed to be “taking values in sequence”; this is a
misconception. A random variable is machinery to represent uncertainty about a particular event,
and multiple events correspond to different random variables, even if drawn from the same
distribution—the random variable does not take “one value after another”).

In practice, for the sake of efficiency, infogain is only computed at set intervals, such as once
every 200 timesteps. This implies, for example, that over 10 invocations of the ∆Gt computations
over 2, 000 timesteps, one would only have n = 10 of the random variables ∆Gt to average. Having

35

Emergent and Unspecified Behaviors in Streaming Decision Trees 13

fewer ∆Gt to average, would mean a potentially longer wait for VFDT for the Hoeffding Test to
become significant.

Both the MOA implementation (Bifet, Holmes, Kirkby, et al. 2010) and the original Very
Fast Machine Learning (VFML) implementation (Domingos and Hulten 2000) take n to be the
number of examples (not the number of ∆Gt computations), and use the most recently computed
∆Gt divided by n as a proxy for the average ∆Gt, at variance with the published algorithm in
(Domingos and Hulten 2000).

In the stationary case, this is perfectly reasonable to do. After all, we do expect ∆Gt to
converge in the long run, and we do not expect unusually great fluctuations after having observed
each instance. Therefore, we benefit from quicker decisions in building tree structure as n grows
large quickly in step with the number of examples and not in step with infogain computations.

In the drifting scenario, the larger n implies that the much more variable instantaneous
infogain computations would be accepted faster than theoretically expected by the algorithm
in situations where drift induces the gap between the best candidate split attribute and the
second best one to widen. In contrast, averaging would slow down response as one uses a “fuzzy”
average of potentially unhelpful gains over a small n. However, this strategy does not appear to
impact VFDT (though we will see in Section 5.7).Table 4 shows us how the unspecified strategy
of infogain approximation fares in terms of prequential accuracy—with 11 wins—to 12 when
approximation is not used. Thus there is no evidence to support infogain approximation having
a conclusive effect (p-value 0.5). Therefore, it may be a valid strategy to continue to use with
VFDT for the sake of efficiency even in the drifting scenario.

Table 4 Performance of the infogain approximation strategy

Streams VFDT without infogain
approximation

VFDT with infogain
approximation

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.20846 0.00043 482 0.20774 0.00055 466
recurrent—led 0.33838 0.00068 54 0.34105 0.00071 48
recurrent—randomtree 0.22404 0.00231 1155 0.22367 0.00274 1221
recurrent—sea 0.15251 0.00016 164 0.15228 0.00016 163
recurrent—stagger 0.1882 0.00047 23 0.1882 0.00047 23
recurrent—waveform 0.19355 0.00171 147 0.19395 0.00174 147
hyperplane—1 0.11566 0.00021 285 0.11576 0.00021 288
hyperplane—2 0.16785 0.00117 333 0.1681 0.00119 342
hyperplane—3 0.1074 0.00013 284 0.10745 0.00013 286
hyperplane—4 0.16309 0.00359 316 0.16251 0.00348 322
rbf—drift-1 0.11462 0.00053 397 0.11446 0.00055 404
rbf—drift-2 0.2858 0.00155 482 0.28565 0.00147 489
rbf—drift-3 0.13821 0.00068 365 0.13867 0.00065 363
rbf—drift-4 0.40874 0.00141 288 0.40887 0.00141 287
recurrent—abrupt—222 0.35403 0.02056 4 0.35402 0.02053 4
recurrent—abrupt—322 0.37862 0.01248 4 0.37862 0.01246 4
recurrent—abrupt—332 0.3504 0.08913 8 0.35104 0.08916 8
recurrent—abrupt—333 0.36505 0.01499 27 0.36503 0.01453 27
recurrent—abrupt—334 0.39687 0.00217 64 0.39678 0.00238 64
recurrent—abrupt—335 0.39622 0.00319 121 0.39635 0.00277 121
recurrent—abrupt—422 0.33416 0.02931 4 0.33416 0.02949 4
recurrent—abrupt—444 0.40671 0.00636 235 0.40632 0.00827 236
recurrent—abrupt—522 0.3309 0.03999 4 0.3312 0.03932 4
recurrent—abrupt—555 0.46461 0.00584 1405 0.46106 0.00601 1505

Unique Wins 10 11

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.5

Confidence
Interval:
0.32811

— 1

36

14 Chaitanya Manapragada et al.

4.4 Using number of instances seen at leaves instead of weight seen at leaves to determine split
evaluation

Each instance is assumed to be labeled with a class label i, and a separate count ci is maintained
for each class label at each node, leading to a class distribution.

When a split occurs on a node, child nodes are initialised with a class distribution Y derived
from that of the parent node—the parent class counts ci are distributed among the child nodes
at their inception. Thus child leaf nodes are initialised with a class distribution that is useful for
making predictions from the point they are created.

Because of the class weight due to initialisation, the class weight
∑
ci for classes i seen at

leaves is generally larger than the actual number of instances seen at the leaf. Thus if the summed
class weight

∑
ci is used as a proxy for the actual number of instances N seen at the leaf, we

will generally end up using a larger value than the actual number of instances seen at the leaf. In
other words, the aggregate of the counts of the classes should add up to the number of instances
observed (assuming every instance is labeled)—plus the counts carried over from the parents at
the time of the split.

Now, the application of the Hoeffding Test at a node is based on the number of examples seen
at a node. Because

∑
ci is generally larger than N , using

∑
ci for the Hoeffding Test in lieu of N

helps increase test confidence faster by sending the signal that a larger number of examples than
actually observed have been observed. Because the newly created leaf already has node statistics
nijk set to zero, it should respond more easily to change by splitting. Weighted examples may
also arise from streams or learners.

Table 5 shows us how this affects drift streams. The effect is minor and we do not find it
particularly significant (note the number of streams with identical prequential error and p-value
of 0.38721).

Table 5 Using weightSeen instead of number of instances

Streams VFDT with number of
instances

VFDT with weightSeen

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.20846 0.00043 482 0.2078 0.00045 473
recurrent—led 0.33838 0.00068 54 0.33838 0.00068 54
recurrent—randomtree 0.22404 0.00231 1155 0.22403 0.00229 1155
recurrent—sea 0.15251 0.00016 164 0.15253 0.00016 162
recurrent—stagger 0.1882 0.00047 23 0.1882 0.00047 23
recurrent—waveform 0.19355 0.00171 147 0.19344 0.0017 147
hyperplane—1 0.11566 0.00021 285 0.11565 0.00021 285
hyperplane—2 0.16785 0.00117 333 0.16801 0.00117 332
hyperplane—3 0.1074 0.00013 284 0.10744 0.00013 283
hyperplane—4 0.16309 0.00359 316 0.16287 0.00358 316
rbf—drift-1 0.11462 0.00053 397 0.11458 0.00053 399
rbf—drift-2 0.2858 0.00155 482 0.2862 0.00156 475
rbf—drift-3 0.13821 0.00068 365 0.13852 0.00068 365
rbf—drift-4 0.40874 0.00141 288 0.40853 0.00142 289
recurrent—abrupt—222 0.35403 0.02056 4 0.35403 0.02056 4
recurrent—abrupt—322 0.37862 0.01248 4 0.37862 0.01248 4
recurrent—abrupt—332 0.3504 0.08913 8 0.3504 0.08913 8
recurrent—abrupt—333 0.36505 0.01499 27 0.36505 0.01499 27
recurrent—abrupt—334 0.39687 0.00217 64 0.39687 0.00217 64
recurrent—abrupt—335 0.39622 0.00319 121 0.39622 0.00319 121
recurrent—abrupt—422 0.33416 0.02931 4 0.33416 0.02931 4
recurrent—abrupt—444 0.40671 0.00636 235 0.40671 0.00636 235
recurrent—abrupt—522 0.3309 0.03999 4 0.3309 0.03999 4
recurrent—abrupt—555 0.46461 0.00584 1405 0.46461 0.00584 1405

Unique Wins 5 7

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.38721

Confidence
Interval:
0.31524

— 1

37

Emergent and Unspecified Behaviors in Streaming Decision Trees 15

4.5 Putting it all together

Individually, the unspecified strategies from Sections 4.1,4.2, 4.3, 4.4 sometimes lead to signif-
icant performance increases, and are sometimes inconclusive; put together, a broad “win” is
obtained for our experiments on this broad, standard concept drift testbench. Table 6 shows us
the combined winning effect of these unspecified features for VFDT in the case of streams with
concept drift (p-value 0.00002).

Table 6 All three unspecified strategies put together

Streams VFDT VFDT: unspecified
strategies

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.20846 0.00043 482 0.1977 0.00034 822
recurrent—led 0.33838 0.00068 54 0.34153 0.00067 49
recurrent—randomtree 0.22404 0.00231 1155 0.22123 0.0023 1351
recurrent—sea 0.15251 0.00016 164 0.15237 0.00015 361
recurrent—stagger 0.1882 0.00047 23 0.00699 5e-05 162
recurrent—waveform 0.19355 0.00171 147 0.19366 0.00169 151
hyperplane—1 0.11566 0.00021 285 0.11464 0.00019 354
hyperplane—2 0.16785 0.00117 333 0.16436 0.001 404
hyperplane—3 0.1074 0.00013 284 0.10723 0.00013 342
hyperplane—4 0.16309 0.00359 316 0.15871 0.00289 391
rbf—drift-1 0.11462 0.00053 397 0.11331 0.00053 434
rbf—drift-2 0.2858 0.00155 482 0.28356 0.00147 503
rbf—drift-3 0.13821 0.00068 365 0.13803 0.00064 392
rbf—drift-4 0.40874 0.00141 288 0.40593 0.0015 361
recurrent—abrupt—222 0.35403 0.02056 4 0.00263 8e-05 17
recurrent—abrupt—322 0.37862 0.01248 4 0.00328 9e-05 16
recurrent—abrupt—332 0.3504 0.08913 8 0.01349 0.00044 32
recurrent—abrupt—333 0.36505 0.01499 27 0.05837 0.00124 134
recurrent—abrupt—334 0.39687 0.00217 64 0.15038 0.00529 278
recurrent—abrupt—335 0.39622 0.00319 121 0.23056 0.00754 480
recurrent—abrupt—422 0.33416 0.02931 4 0.0096 0.00027 15
recurrent—abrupt—444 0.40671 0.00636 235 0.34814 0.00749 382
recurrent—abrupt—522 0.3309 0.03999 4 0.00948 0.00032 14
recurrent—abrupt—555 0.46461 0.00584 1405 0.4605 0.00586 1518

Unique Wins 2 22

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
2e-05

Confidence
Interval:
0.7602
— 1

4.6 The Node Evisceration Strategy

Given the success of the unspecified inadvertent strategy of resplitting described in Section 4.2,
we experimented with a deliberate policy of eviscerating nodes instead, that is, when a previously
used attribute resurfaced as the best, we cleared both node statistics and the class distribution
within the node instead of allowing redundant “re-splitting” of the node on a used attribute.
Table 7 shows us that this deliberate policy works out to be immensely successful and would be
worth trying for users of online decision trees (p-value 0.00002).

38

16 Chaitanya Manapragada et al.

Table 7 Clearing node statistics and Class distributions

Streams VFDT VFDT with deliberate node
clearing

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.20846 0.00043 482 0.17856 5e-04 564
recurrent—led 0.33838 0.00068 54 0.33916 0.00066 53
recurrent—randomtree 0.22404 0.00231 1155 0.22004 0.00209 1196
recurrent—sea 0.15251 0.00016 164 0.14994 0.00015 258
recurrent—stagger 0.1882 0.00047 23 0.00435 6e-05 23
recurrent—waveform 0.19355 0.00171 147 0.19323 0.00171 142
hyperplane—1 0.11566 0.00021 285 0.11429 0.00019 298
hyperplane—2 0.16785 0.00117 333 0.16007 0.00089 329
hyperplane—3 0.1074 0.00013 284 0.10719 0.00013 297
hyperplane—4 0.16309 0.00359 316 0.15347 0.00237 314
rbf—drift-1 0.11462 0.00053 397 0.11451 0.00053 394
rbf—drift-2 0.2858 0.00155 482 0.28429 0.00154 476
rbf—drift-3 0.13821 0.00068 365 0.13853 0.00069 362
rbf—drift-4 0.40874 0.00141 288 0.40525 0.00154 316
recurrent—abrupt—222 0.35403 0.02056 4 0.00233 7e-05 4
recurrent—abrupt—322 0.37862 0.01248 4 0.00344 7e-05 4
recurrent—abrupt—332 0.3504 0.08913 8 0.01317 0.00033 8
recurrent—abrupt—333 0.36505 0.01499 27 0.05836 0.00124 27
recurrent—abrupt—334 0.39687 0.00217 64 0.15157 0.00543 64
recurrent—abrupt—335 0.39622 0.00319 121 0.23064 0.00776 121
recurrent—abrupt—422 0.33416 0.02931 4 0.00933 0.00025 4
recurrent—abrupt—444 0.40671 0.00636 235 0.34795 0.00688 235
recurrent—abrupt—522 0.3309 0.03999 4 0.00972 0.00031 4
recurrent—abrupt—555 0.46461 0.00584 1405 0.46356 0.00568 1405

Unique Wins 2 22

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
2e-05

Confidence
Interval:
0.7602
— 1

5 Unspecified and Emergent Behaviors in the MOA implementation of Hoeffding
Adaptive Tree

We also investigate the success of Hoeffding Adaptive Tree (HAT)—the state-of-the-art adaptive
tree learner—for learning under concept drift. We show that in addition to its main proposed
strategy of building alternate subtrees upon drift detection and replacing mainline subtrees with
alternates with lower error, HAT’s excellent performance is influenced, to various degrees, by
factors such as:

• Alternate voting, explained in Sections 5.2, 5.3, and 5.4
• Partial weighting of examples at leaves, explained in Section 5.5
• Effects from the VFDT base—explained in Sections 5.1, 5.7, 5.11

We elaborate on these mechanisms, perform comparisons with and without unspecified strate-
gies enabled, and show the effects each strategy has on prequential error. We also describe un-
specified features that do not result in significant effects.

5.1 Resplitting on nominal attributes

This unspecified feature of MOA-VFDT is responsible for a significant performance gain for HAT.
As explained in Section 4.3, nominal attributes that have been used once to split are “reused”,
in that a single child is created if a previously used attribute leads to greater Information Gain
than any other attribute under drifting streams. This turns out to be a particularly effective
performance booster, as it forces the creation of a fresh leaf with empty node statistics, implying
that every iteration of self-splitting leads to telescoping amnesia in the node statistics. We need

39

Emergent and Unspecified Behaviors in Streaming Decision Trees 17

the node statistics to compute Information Gain; when these are set to zero, we are effectively
working with a blank slate, having deleted the historical node statistics that would otherwise
retain information from older concepts. In addition, further splits will also have a predictor—
a class distribution—derived solely from the freshly cleared node statistics of the parent that
represent the post-drift concept. This enables learning a newer concept rapidly and is useful
particularly in concept drift settings, more so for HAT than for VFDT, as is clear from our
results (Table 8, p-value 0.00024). This attests to the complexity that simple design decisions
may produce in conjunction, leading to significant effects on algorithm performance—even in
such simple artifacts as decision trees.

Table 8 Performance of the resplitting on nominal attributes strategy

Streams HAT that does not
“resplit” on nominal

attributes

HAT that “resplits” on
nominal attributes

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.13645 0.00037 14 0.12454 0.0011 92
recurrent—led 0.26767 0.00085 12 0.26761 0.00084 11
recurrent—randomtree 0.10104 0.00269 250 0.09866 0.00282 281
recurrent—sea 0.12579 0.00014 5 0.11207 0.00011 74
recurrent—stagger 0.00215 3e-05 19 0.00213 5e-05 18
recurrent—waveform 0.17867 0.00031 33 0.17756 3e-04 41
hyperplane—1 0.10801 0.00017 84 0.10875 0.00016 137
hyperplane—2 0.11934 3e-04 23 0.11823 0.00028 47
hyperplane—3 0.10588 0.00014 98 0.10693 0.00015 199
hyperplane—4 0.11254 4e-04 10 0.11008 4e-04 29
rbf—drift-1 0.13508 0.00083 47 0.1197 5e-04 66
rbf—drift-2 0.19549 0.00155 14 0.19199 0.00143 13
rbf—drift-3 0.16636 0.00107 46 0.15267 0.00087 97
rbf—drift-4 0.33926 0.00334 3 0.33877 0.00337 2
recurrent—abrupt—222 0.00185 9e-05 3 0.00085 4e-05 4
recurrent—abrupt—322 0.0016 0.00013 3 0.00087 6e-05 5
recurrent—abrupt—332 0.00252 0.00037 6 0.00169 0.00019 6
recurrent—abrupt—333 0.00425 0.00019 23 0.00404 0.00018 23
recurrent—abrupt—334 0.01212 0.00052 58 0.01228 0.00054 58
recurrent—abrupt—335 0.01687 0.00147 111 0.01675 0.00148 111
recurrent—abrupt—422 0.00177 0.00011 3 0.00095 4e-05 4
recurrent—abrupt—444 0.06662 0.00297 171 0.06643 0.00298 171
recurrent—abrupt—522 0.00177 0.00012 4 0.00113 9e-05 4
recurrent—abrupt—555 0.34892 0.00896 329 0.34892 0.00896 329

Unique Wins 3 20

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00024

Confidence
Interval:
0.69636

— 1

5.2 Alternate Voting

HAT makes use of change detectors at each node to determine whether a concept drift has
occurred. Upon detecting a concept drift, an alternate subtree is grown. After a set period, the
alternate subtree is made eligible to replace the mainline subtree if it has lower prequential error.
Alternates are only specified to be potential replacements, not to vote. After all, it is possible
that an alternate is grown as a result of a false drift detection due to noise.

However, should alternates be allowed to vote, they can represent a lookahead ability; while
the model currently holds on to an older concept due to underlying statistical considerations of
the HoeffdingTree base, exploratory submodels that catch on to fresh concepts may represent the
best future state of the tree in concordance with ongoing concept drift. Giving these alternates a
say in model predictions would be dependent on the scenario: it is a tradeoff between identifying

40

18 Chaitanya Manapragada et al.

subtrees that represent new concepts early and allowing in predictions from subtrees built as a
result of noise.

Alternates voting was one of the unspecified features in the original implementation of HAT.
We have distilled this feature in order to study it in isolation.

Table 9 compares a baseline, standardized HAT (without the HoeffdingTree unspecified effects
described in Sections 4.2, 4.3, and 4.4 or the other unspecified HAT features described in this
section), with a version of HAT where only a single alternate is grown and allowed to vote.

Table 9 Performance of the single alternate voting strategy: a single alternate may be grown and allowed to
vote.
While the base algorithm makes no provision for alternates voting, allowing them to do so provides the system
with a form of lookahead wherein alternate subtrees under development—concepts being developed as potential
future replacements—begin to take part in providing predictions instead of waiting until a replacement has taken
place to start doing so.

Streams HAT HAT with a single voting
alternate

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.13645 0.00037 14 0.13643 0.00036 14
recurrent—led 0.26767 0.00085 12 0.26669 8e-04 12
recurrent—randomtree 0.10104 0.00269 250 0.10615 0.00264 250
recurrent—sea 0.12579 0.00014 5 0.12538 0.00014 5
recurrent—stagger 0.00215 3e-05 19 0.00136 0 19
recurrent—waveform 0.17867 0.00031 33 0.17789 0.00026 33
hyperplane—1 0.10801 0.00017 84 0.10576 0.00015 84
hyperplane—2 0.11934 3e-04 23 0.11606 0.00026 23
hyperplane—3 0.10588 0.00014 98 0.10412 0.00013 98
hyperplane—4 0.11254 4e-04 10 0.10947 0.00034 10
rbf—drift-1 0.13508 0.00083 47 0.13109 0.00078 47
rbf—drift-2 0.19549 0.00155 14 0.18094 0.00124 14
rbf—drift-3 0.16636 0.00107 46 0.16503 0.00101 46
rbf—drift-4 0.33926 0.00334 3 0.32535 0.00305 3
recurrent—abrupt—222 0.00185 9e-05 3 7e-04 5e-05 3
recurrent—abrupt—322 0.0016 0.00013 3 0.00056 4e-05 3
recurrent—abrupt—332 0.00252 0.00037 6 0.00144 0.00027 6
recurrent—abrupt—333 0.00425 0.00019 23 0.00475 0.00022 23
recurrent—abrupt—334 0.01212 0.00052 58 0.01389 6e-04 58
recurrent—abrupt—335 0.01687 0.00147 111 0.01978 0.00149 111
recurrent—abrupt—422 0.00177 0.00011 3 0.00049 3e-05 3
recurrent—abrupt—444 0.06662 0.00297 171 0.07347 0.00302 171
recurrent—abrupt—522 0.00177 0.00012 4 0.00037 0 4
recurrent—abrupt—555 0.34892 0.00896 329 0.35605 0.00868 329

Unique Wins 6 18

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.01133

Confidence
Interval:
0.56531

— 1

It is clear from Table 9 that allowing alternates to vote is beneficial for prequential accuracy
on a standard testbench of drifting streams (p-value 0.01133); we also notice a clear trend where
increasing dimensionality of the data leads to loss of performance for the alternate voting strategy
(as seen in the last ten rows).

The base strategy wins on streams with greater data dimensionality. As previously mentioned,
the recurrent abrupt drift streams are notated with the number of classes, followed by the number
of nominal attributes, and the number of values per attribute; a 5x4x3 stream has 5 classes, 4
nominal attributes, and 3 possible values per attribute. The experimental results in Table 9 show
us that the base HAT strategy wins on 5x5x5, 4x4x4, 3x3x5, 3x3x4, and 3x3x3 streams, and the
Random Tree Generator stream; in this test setting, the base strategy loses to the alternate-voting
strategy on all those streams with under 21 degrees of freedom, winning on all of the others.
Conversely, the strategy with alternate voting wins on all low-dimensional streams, losing on all
the high-dimensional streams with 21 degrees of freedom or over.

41

Emergent and Unspecified Behaviors in Streaming Decision Trees 19

Given that the high-dimensional recurrent drift streams are noise free, we hypothesize that the
effect due to alternate voting—an aggressive lookahead strategy—results in higher bias (implying
a larger bias space or set of hypothesis functions to choose from). In increasingly higher dimen-
sional scenarios, the larger bias—and the ability to traverse it thanks to model adaptation—would
lead to overfitting recent examples and thus a drop in prequential accuracy performance.

Thus on a typical concept drift testbench found in the literature that does not include a
high dimensional recurrent abrupt drift generator, the alternate voting strategy leads to almost
universal outperformance over standard HAT. It might be interesting to explore the extent to
which existing results on the standard testbench generalize to higher dimensionality.

Our conclusion with respect to unspecified alternate voting is that it has a profound, fun-
damental impact on the performance of HAT, in a positive sense on a standard concept drift
testbench.

5.3 Alternates of alternates

In addition to the losses on higher dimensional streams, enabling alternates to sprout their own
alternates leads to losses in some gradual drift Hyperplane and RBF settings (Table 10). We
offer this observation without explanation; it merits further study. Overall, our conclusion based
on this testbench is that this unspecified strategy does not provide improvement in prequential
accuracy, and that a single voting alternate is significantly better (p-value 0.02452).

Table 10 Performance of the multiple alternates voting strategy: multiple alternates may be grown and allowed
to vote

Streams HAT with multiple voting
alternates

HAT with single voting
alternate

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.13643 0.00036 14 0.13643 0.00036 14
recurrent—led 0.26671 8e-04 11 0.26669 8e-04 12
recurrent—randomtree 0.10663 0.00262 250 0.10615 0.00264 250
recurrent—sea 0.12538 0.00014 5 0.12538 0.00014 5
recurrent—stagger 0.00136 0 19 0.00136 0 19
recurrent—waveform 0.17772 0.00026 34 0.17789 0.00026 33
hyperplane—1 0.10562 0.00016 65 0.10576 0.00015 84
hyperplane—2 0.11571 0.00026 22 0.11606 0.00026 23
hyperplane—3 0.1044 0.00013 92 0.10412 0.00013 98
hyperplane—4 0.10963 0.00034 11 0.10947 0.00034 10
rbf—drift-1 0.13617 0.00083 39 0.13109 0.00078 47
rbf—drift-2 0.18238 0.00135 13 0.18094 0.00124 14
rbf—drift-3 0.17105 0.00129 37 0.16503 0.00101 46
rbf—drift-4 0.32534 0.00305 3 0.32535 0.00305 3
recurrent—abrupt—222 7e-04 5e-05 3 7e-04 5e-05 3
recurrent—abrupt—322 0.00056 4e-05 3 0.00056 4e-05 3
recurrent—abrupt—332 0.00157 0.00028 6 0.00144 0.00027 6
recurrent—abrupt—333 0.00793 0.00031 23 0.00475 0.00022 23
recurrent—abrupt—334 0.01693 7e-04 58 0.01389 6e-04 58
recurrent—abrupt—335 0.0212 0.00149 111 0.01978 0.00149 111
recurrent—abrupt—422 0.00049 3e-05 3 0.00049 3e-05 3
recurrent—abrupt—444 0.07469 0.00299 171 0.07347 0.00302 171
recurrent—abrupt—522 0.00037 0 4 0.00037 0 4
recurrent—abrupt—555 0.35638 0.00866 329 0.35605 0.00868 329

Unique Wins 4 13

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.02452

Confidence
Interval:
0.53945

— 1

42

20 Chaitanya Manapragada et al.

5.4 Alternates of alternates allowed, but only single leaf alternates do not vote

This is the unspecified voting strategy followed in the implementation used to report results in
the original paper; alternates are allowed to vote, and alternates may grow alternates, which are
also allowed to vote—but only if the alternates are not simple leaves but have more structure.
Table 11 demonstrates that, interestingly, support for the underperformance of this strategy falls
within a significance level of 0.05 when compared to the strategy where alternates are allowed to
vote regardless of how simple their structure is (p-value 0.03196). The strategy especially under-
performs across the board on streams with gradual drift. The implication is that the lookahead
provided by single-leaf alternates is valuable in gradually drifting environments.

Table 11 Performance of the multiple alternates voting strategies: when single leaves are not allowed to vote,
and when they are

Streams HAT with multiple voting
alternates, excepting single

leaves

HAT with multiple voting
alternates, including single

leaves
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.1364 0.00037 14 0.13643 0.00036 14
recurrent—led 0.27417 0.00326 11 0.26671 8e-04 11
recurrent—randomtree 0.10284 0.00262 250 0.10663 0.00262 250
recurrent—sea 0.1256 0.00014 5 0.12538 0.00014 5
recurrent—stagger 0.002 3e-05 19 0.00136 0 19
recurrent—waveform 0.18552 0.00197 34 0.17772 0.00026 34
hyperplane—1 0.13141 0.00382 65 0.10562 0.00016 65
hyperplane—2 0.12012 0.00076 22 0.11571 0.00026 22
hyperplane—3 0.13913 0.00771 92 0.1044 0.00013 92
hyperplane—4 0.11189 0.00073 11 0.10963 0.00034 11
rbf—drift-1 0.14943 0.00167 39 0.13617 0.00083 39
rbf—drift-2 0.19643 0.00186 13 0.18238 0.00135 13
rbf—drift-3 0.20134 0.00698 37 0.17105 0.00129 37
rbf—drift-4 0.33891 0.00336 3 0.32534 0.00305 3
recurrent—abrupt—222 0.00159 7e-05 3 7e-04 5e-05 3
recurrent—abrupt—322 0.00147 9e-05 3 0.00056 4e-05 3
recurrent—abrupt—332 0.00246 0.00034 6 0.00157 0.00028 6
recurrent—abrupt—333 0.00699 0.00026 23 0.00793 0.00031 23
recurrent—abrupt—334 0.01497 0.00061 58 0.01693 7e-04 58
recurrent—abrupt—335 0.01796 0.00146 111 0.0212 0.00149 111
recurrent—abrupt—422 0.00149 7e-05 3 0.00049 3e-05 3
recurrent—abrupt—444 0.06767 0.00295 171 0.07469 0.00299 171
recurrent—abrupt—522 0.00148 7e-05 4 0.00037 0 4
recurrent—abrupt—555 0.34955 0.00892 329 0.35638 0.00866 329

Unique Wins 7 17

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.03196

Confidence
Interval:
0.52127

— 1

5.5 Partial weighting

Weighting examples is a common strategy to force a learner to focus on some examples more
so than others. For instance, online boosting (Oza 2005) weights misclassified examples higher
than correctly classified ones, creating a virtual “heavier” history for examples that are being
misclassified to aid learners in classifying them correctly if the reason for the misclassification
happens to be sparsity of examples complicated by noisy observations.

Table 12 demonstrates that, with HAT, adding a Poisson(1) weighting for examples at leaves
outperforms only letting alternates that are not single leaves vote (within a 0.05 significance level,
p-value 0.00331); some instances are weighted more than others at leaves, prioritizing them. A
Poisson(1) weighting assigns weights to examples stochastically—the weight is randomly drawn

43

Emergent and Unspecified Behaviors in Streaming Decision Trees 21

from the Poisson(1) distribution, with a mean value of 1, and otherwise taking nonnegative integer
values. This strategy is followed in the original HAT implementation with the likely intention
of creating a semblance of ensemble-like diversity within subtrees. Given the seeming success
of this unspecified strategy, it might be worthwhile exploring other Poisson values—Poisson(1)
evaluates to 0 about a third of the time, so a third of all instances are not counted at leaves.

Table 12 Performance of the partial weighting strategy: leaves are weighted Poisson(1)

Streams HAT with multiple voting
alternates, excepting single

leaves

...with partial weighting
also enabled

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.1364 0.00037 14 0.13354 0.00049 23
recurrent—led 0.27417 0.00326 11 0.28105 0.00528 16
recurrent—randomtree 0.10284 0.00262 250 0.10111 0.00252 305
recurrent—sea 0.1256 0.00014 5 0.12522 0.00014 5
recurrent—stagger 0.002 3e-05 19 0.00205 5e-05 17
recurrent—waveform 0.18552 0.00197 34 0.17895 0.00077 39
hyperplane—1 0.13141 0.00382 65 0.15097 0.00376 72
hyperplane—2 0.12012 0.00076 22 0.14423 0.00435 27
hyperplane—3 0.13913 0.00771 92 0.13817 0.00256 124
hyperplane—4 0.11189 0.00073 11 0.11276 0.00048 12
rbf—drift-1 0.14943 0.00167 39 0.1475 0.00363 62
rbf—drift-2 0.19643 0.00186 13 0.18406 0.0016 22
rbf—drift-3 0.20134 0.00698 37 0.19871 0.00393 44
rbf—drift-4 0.33891 0.00336 3 0.32724 0.00291 4
recurrent—abrupt—222 0.00159 7e-05 3 0.00154 0.00014 3
recurrent—abrupt—322 0.00147 9e-05 3 0.00135 0.00011 4
recurrent—abrupt—332 0.00246 0.00034 6 0.00185 2e-04 6
recurrent—abrupt—333 0.00699 0.00026 23 0.00698 0.00024 23
recurrent—abrupt—334 0.01497 0.00061 58 0.01312 0.00058 58
recurrent—abrupt—335 0.01796 0.00146 111 0.01528 0.00099 112
recurrent—abrupt—422 0.00149 7e-05 3 0.00146 0.00011 3
recurrent—abrupt—444 0.06767 0.00295 171 0.05249 0.00232 182
recurrent—abrupt—522 0.00148 7e-05 4 0.00143 8e-05 3
recurrent—abrupt—555 0.34955 0.00892 329 0.28932 0.00648 541

Unique Wins 5 19

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00331

Confidence
Interval:
0.61086

— 1

5.6 Using weight accumulated at leaves to measure split evaluation intervals instead of number
of instances seen

If examples at leaves are weighted, and split evaluation is done at intervals of a certain amount
of weight seen, weighted examples will cause more frequent splitting. As Poisson(1) is used for
weighting, on the whole, the effects should be negligible. As with VFDT, we find (Table 13)
that there is no notable effect on the synthetic streams due to replacing a weight-based split
evaluation timer (as in the original implementation) with an instance based one—prequential
error is identical on all streams.

44

22 Chaitanya Manapragada et al.

Table 13 Using getweightSeen instead of nodeTime: No measurable difference in prequential accuracy

Streams HAT with nodeTime HAT with getWeightSeen
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.13645 0.00037 14 0.13645 0.00037 14
recurrent—led 0.26767 0.00085 12 0.26767 0.00085 12
recurrent—randomtree 0.10104 0.00269 250 0.10104 0.00269 250
recurrent—sea 0.12579 0.00014 5 0.12579 0.00014 5
recurrent—stagger 0.00215 3e-05 19 0.00215 3e-05 19
recurrent—waveform 0.17867 0.00031 33 0.17867 0.00031 33
hyperplane—1 0.10801 0.00017 84 0.10801 0.00017 84
hyperplane—2 0.11934 3e-04 23 0.11934 3e-04 23
hyperplane—3 0.10588 0.00014 98 0.10588 0.00014 98
hyperplane—4 0.11254 4e-04 10 0.11254 4e-04 10
rbf—drift-1 0.13508 0.00083 47 0.13508 0.00083 47
rbf—drift-2 0.19549 0.00155 14 0.19549 0.00155 14
rbf—drift-3 0.16636 0.00107 46 0.16636 0.00107 46
rbf—drift-4 0.33926 0.00334 3 0.33926 0.00334 3
recurrent—abrupt—222 0.00185 9e-05 3 0.00185 9e-05 3
recurrent—abrupt—322 0.0016 0.00013 3 0.0016 0.00013 3
recurrent—abrupt—332 0.00252 0.00037 6 0.00252 0.00037 6
recurrent—abrupt—333 0.00425 0.00019 23 0.00425 0.00019 23
recurrent—abrupt—334 0.01212 0.00052 58 0.01212 0.00052 58
recurrent—abrupt—335 0.01687 0.00147 111 0.01687 0.00147 111
recurrent—abrupt—422 0.00177 0.00011 3 0.00177 0.00011 3
recurrent—abrupt—444 0.06662 0.00297 171 0.06662 0.00297 171
recurrent—abrupt—522 0.00177 0.00012 4 0.00177 0.00012 4
recurrent—abrupt—555 0.34892 0.00896 329 0.34892 0.00896 329

5.7 Approximating Information Gain

According to the original specification, Information Gain needs to be averaged across all timesteps,
as explained in Section 4.3. Table 14 shows us that the unspecified HAT approximation strat-
egy of using the latest computed infogain divided by the number of instances results in a net
performance gain in prequential accuracy (p-value 0.04657, within a significance level of 0.05).
Instantaneous Information Gain should be higher than a smoothed average if there is a trend
favoring an attribute—which is particularly relevant in drifting settings and contributes to out-
performance.

45

Emergent and Unspecified Behaviors in Streaming Decision Trees 23

Table 14 Approximating Information Gain

Streams HAT that averages infogain HAT that approximates
infogain

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.13645 0.00037 14 0.13871 0.00021 12
recurrent—led 0.26767 0.00085 12 0.2675 0.00062 9
recurrent—randomtree 0.10104 0.00269 250 0.10079 0.00285 252
recurrent—sea 0.12579 0.00014 5 0.12578 0.00014 5
recurrent—stagger 0.00215 3e-05 19 0.00215 3e-05 19
recurrent—waveform 0.17867 0.00031 33 0.17862 0.00031 32
hyperplane—1 0.10801 0.00017 84 0.10832 0.00016 80
hyperplane—2 0.11934 3e-04 23 0.11929 3e-04 19
hyperplane—3 0.10588 0.00014 98 0.1063 0.00014 102
hyperplane—4 0.11254 4e-04 10 0.11148 0.00043 16
rbf—drift-1 0.13508 0.00083 47 0.1372 0.00088 46
rbf—drift-2 0.19549 0.00155 14 0.19518 0.00149 16
rbf—drift-3 0.16636 0.00107 46 0.16541 0.00101 45
rbf—drift-4 0.33926 0.00334 3 0.33939 0.00337 2
recurrent—abrupt—222 0.00185 9e-05 3 0.00183 9e-05 3
recurrent—abrupt—322 0.0016 0.00013 3 0.00161 0.00012 3
recurrent—abrupt—332 0.00252 0.00037 6 0.0028 0.00045 6
recurrent—abrupt—333 0.00425 0.00019 23 0.00421 0.00017 23
recurrent—abrupt—334 0.01212 0.00052 58 0.0118 0.00056 59
recurrent—abrupt—335 0.01687 0.00147 111 0.01646 0.00143 111
recurrent—abrupt—422 0.00177 0.00011 3 0.00176 0.00013 3
recurrent—abrupt—444 0.06662 0.00297 171 0.06559 0.00312 172
recurrent—abrupt—522 0.00177 0.00012 4 0.00173 0.00014 4
recurrent—abrupt—555 0.34892 0.00896 329 0.34081 0.00849 342

Unique Wins 7 16

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.04657

Confidence
Interval:
0.50356

— 1

5.8 Split replacement behaviors—1

The original HAT exhibits some split replacement behaviors that appear to be detrimental to
its performance under certain conditions. When a root level alternate leaf node lRA is ready to
split, it replaces the root node Root. Note that replacement shouldn’t be occurring unless the
alternate has better accuracy!

Table 15 studies the replacement of the root by a root level alternate when the alternate
splits, with all of the VFDT unspecified features enabled. It is clear that this behavior leads to a
significant drop in performance. The explanation could lie in the fact that all of the knowledge
in the form of subtree structure accumulated under the root is prematurely lost.

46

24 Chaitanya Manapragada et al.

Table 15 When an root alternate splits, it replaces the root

Streams HAT with VFDT
unspecified features

...with added root
substitution when root

alternate splits
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.11303 0.0024 98 0.11828 0.00193 99
recurrent—led 0.2675 0.00062 9 0.2675 0.00062 9
recurrent—randomtree 0.09855 0.00287 284 0.09855 0.00287 284
recurrent—sea 0.11203 0.00011 74 0.11203 0.00011 74
recurrent—stagger 0.00213 5e-05 18 0.00177 2e-05 19
recurrent—waveform 0.17746 3e-04 41 0.17768 3e-04 40
hyperplane—1 0.10882 0.00016 140 0.10884 0.00017 144
hyperplane—2 0.11838 0.00028 47 0.11855 0.00029 44
hyperplane—3 0.10675 0.00015 215 0.10696 0.00015 207
hyperplane—4 0.11007 4e-04 39 0.11033 0.00041 48
rbf—drift-1 0.11975 0.00053 68 0.11975 0.00053 68
rbf—drift-2 0.19195 0.00143 14 0.19142 0.00141 16
rbf—drift-3 0.15236 0.00085 104 0.15236 0.00085 104
rbf—drift-4 0.33901 0.00334 4 0.3385 0.00342 3
recurrent—abrupt—222 0.00087 5e-05 4 0.00093 4e-05 4
recurrent—abrupt—322 0.00083 5e-05 5 0.00097 4e-05 4
recurrent—abrupt—332 0.00161 0.00017 6 0.00152 0.00018 6
recurrent—abrupt—333 0.00412 0.00019 23 0.00416 0.00017 23
recurrent—abrupt—334 0.01182 0.00057 59 0.0117 0.00057 58
recurrent—abrupt—335 0.0164 0.00143 111 0.01642 0.00143 111
recurrent—abrupt—422 0.00101 6e-05 5 0.00101 6e-05 4
recurrent—abrupt—444 0.06557 0.00312 172 0.06557 0.00312 172
recurrent—abrupt—522 0.00104 6e-05 4 0.00101 5e-05 5
recurrent—abrupt—555 0.34081 0.00849 342 0.34081 0.00849 342

Unique Wins 10 6

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.89494

Confidence
Interval:
0.17777

— 1

5.9 Split replacement behaviors—2

When a leaf alternate lA of a mainline node notRoot1 that is not the root splits, it replaces the
corresponding mainline subtree of notRoot1—again, it is not meant to do so until it has sprouted
a subtree with higher accuracy. We study these behaviors with respect to a HAT with all the
VFDT unspecified behaviors enabled.

Table 16 studies the replacement of the mainline subtrees by alternates when the alternates
split. This also turns out to be detrimental—lookahead in these cases is too rapid.

47

Emergent and Unspecified Behaviors in Streaming Decision Trees 25

Table 16 When a non-root alternate splits, it replaces its corresponding mainline node

Streams HAT with VFDT
unspecified features

...with substitution of
mainline node when

alternate splits (not root
level)

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.11303 0.0024 98 0.11167 0.00257 88
recurrent—led 0.2675 0.00062 9 0.26807 0.00092 7
recurrent—randomtree 0.09855 0.00287 284 0.1128 0.0024 184
recurrent—sea 0.11203 0.00011 74 0.11727 0.00015 51
recurrent—stagger 0.00213 5e-05 18 0.00211 4e-05 18
recurrent—waveform 0.17746 3e-04 41 0.18341 0.00036 28
hyperplane—1 0.10882 0.00016 140 0.11003 0.00018 95
hyperplane—2 0.11838 0.00028 47 0.11828 0.00028 37
hyperplane—3 0.10675 0.00015 215 0.10986 2e-04 111
hyperplane—4 0.11007 4e-04 39 0.11003 4e-04 29
rbf—drift-1 0.11975 0.00053 68 0.12437 0.00058 41
rbf—drift-2 0.19195 0.00143 14 0.19145 0.00148 18
rbf—drift-3 0.15236 0.00085 104 0.15928 0.00089 55
rbf—drift-4 0.33901 0.00334 4 0.33875 0.00336 3
recurrent—abrupt—222 0.00087 5e-05 4 0.00085 4e-05 3
recurrent—abrupt—322 0.00083 5e-05 5 0.00084 5e-05 4
recurrent—abrupt—332 0.00161 0.00017 6 0.00164 0.00017 6
recurrent—abrupt—333 0.00412 0.00019 23 0.00405 0.00016 23
recurrent—abrupt—334 0.01182 0.00057 59 0.01201 0.00058 58
recurrent—abrupt—335 0.0164 0.00143 111 0.01832 0.00144 97
recurrent—abrupt—422 0.00101 6e-05 5 0.00098 5e-05 4
recurrent—abrupt—444 0.06557 0.00312 172 0.0675 0.00306 163
recurrent—abrupt—522 0.00104 6e-05 4 0.00106 5e-05 4
recurrent—abrupt—555 0.34081 0.00849 342 0.34213 0.00848 302

Unique Wins 15 9

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.92421

Confidence
Interval:
0.21157

— 1

5.10 Split replacement behaviors—3

Following on from Sections 5.8 and 5.9, we should expect the combination of premature root re-
placement and premature non-root replacement should lead to an even larger drop in prequential
accuracy. Table 17 studies the case with both replacement of the mainline subtrees by alternates
when the alternates split, and of the root when a root alternate splits. Interestingly, combining
these strategies leads to an improvement over each strategy alone as shown in Tables 15 and
16! While it does not perform significantly better than our rewritten baseline HAT, this can tip
results in studies that focus mainly on naive rankings of algorithm performance.

48

26 Chaitanya Manapragada et al.

Table 17 When an root alternate splits, it replaces the root; similarly, when any alternate splits, it replaces it’s
corresponding mainline node

Streams HAT with VFDT
unspecified features and

multiple alternates
excepting single leaves

voting

...with premature
replacement by alternates

at all levels added

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.13098 0.00153 170 0.12793 0.00103 152
recurrent—led 0.28362 0.0058 18 0.2678 0.00041 17
recurrent—randomtree 0.0994 0.00251 354 0.12227 0.00206 206
recurrent—sea 0.11224 0.00011 100 0.11853 0.00016 51
recurrent—stagger 0.00187 4e-05 19 0.00188 2e-05 19
recurrent—waveform 0.18374 0.00193 46 0.18298 0.00034 38
hyperplane—1 0.11936 0.00058 171 0.11644 0.00021 105
hyperplane—2 0.13425 0.0028 59 0.1241 0.00033 37
hyperplane—3 0.13868 0.0039 249 0.11753 0.00024 94
hyperplane—4 0.11149 0.00055 39 0.11526 0.00042 24
rbf—drift-1 0.13354 0.00244 99 0.12037 0.00056 64
rbf—drift-2 0.18126 0.00141 22 0.18017 0.00118 16
rbf—drift-3 0.19556 0.00728 121 0.15522 0.00085 60
rbf—drift-4 0.32677 0.00288 3 0.32757 0.00278 3
recurrent—abrupt—222 0.00065 2e-05 5 0.00068 2e-05 3
recurrent—abrupt—322 0.00068 3e-05 5 0.00062 4e-05 4
recurrent—abrupt—332 0.00167 0.00013 7 0.00122 0.00012 6
recurrent—abrupt—333 0.00642 2e-04 23 0.00307 0.00011 23
recurrent—abrupt—334 0.01252 0.00047 57 0.0093 0.00044 57
recurrent—abrupt—335 0.01473 0.0011 113 0.01475 0.00105 103
recurrent—abrupt—422 0.00069 3e-05 5 0.00073 2e-05 4
recurrent—abrupt—444 0.05099 0.00233 180 0.05314 0.00238 172
recurrent—abrupt—522 0.00079 2e-05 4 0.00078 4e-05 4
recurrent—abrupt—555 0.28127 0.00627 558 0.28637 0.00589 443

Unique Wins 10 14

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.27063

Confidence
Interval:
0.39679

— 1

5.11 Effects from HoeffdingTree

Table 18 shows us that adding just the unspecified features from HoeffdingTree is significantly
beneficial for HAT, as it was found to be for VFDT (p-value 0.00002).

There are many more combinations and possibilities to study—given there are 9 options, a
simple binomial sum gives us 19,863 possibilities to study. It is possible there are scenarios in
which split replacement behaviors lead to an improvement under concept drift on the testbench.

49

Emergent and Unspecified Behaviors in Streaming Decision Trees 27

Table 18 With and without unspecified VFDT features

Streams HAT HAT with VFDT
unspecified features

Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.13645 0.00037 14 0.11303 0.0024 98
recurrent—led 0.26767 0.00085 12 0.2675 0.00062 9
recurrent—randomtree 0.10104 0.00269 250 0.09855 0.00287 284
recurrent—sea 0.12579 0.00014 5 0.11203 0.00011 74
recurrent—stagger 0.00215 3e-05 19 0.00213 5e-05 18
recurrent—waveform 0.17867 0.00031 33 0.17746 3e-04 41
hyperplane—1 0.10801 0.00017 84 0.10882 0.00016 140
hyperplane—2 0.11934 3e-04 23 0.11838 0.00028 47
hyperplane—3 0.10588 0.00014 98 0.10675 0.00015 215
hyperplane—4 0.11254 4e-04 10 0.11007 4e-04 39
rbf—drift-1 0.13508 0.00083 47 0.11975 0.00053 68
rbf—drift-2 0.19549 0.00155 14 0.19195 0.00143 14
rbf—drift-3 0.16636 0.00107 46 0.15236 0.00085 104
rbf—drift-4 0.33926 0.00334 3 0.33901 0.00334 4
recurrent—abrupt—222 0.00185 9e-05 3 0.00087 5e-05 4
recurrent—abrupt—322 0.0016 0.00013 3 0.00083 5e-05 5
recurrent—abrupt—332 0.00252 0.00037 6 0.00161 0.00017 6
recurrent—abrupt—333 0.00425 0.00019 23 0.00412 0.00019 23
recurrent—abrupt—334 0.01212 0.00052 58 0.01182 0.00057 59
recurrent—abrupt—335 0.01687 0.00147 111 0.0164 0.00143 111
recurrent—abrupt—422 0.00177 0.00011 3 0.00101 6e-05 5
recurrent—abrupt—444 0.06662 0.00297 171 0.06557 0.00312 172
recurrent—abrupt—522 0.00177 0.00012 4 0.00104 6e-05 4
recurrent—abrupt—555 0.34892 0.00896 329 0.34081 0.00849 342

Unique Wins 2 22

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
2e-05

Confidence
Interval:
0.7602
— 1

6 Conclusions

It is instructive to understand why a particular implementation of a proposed strategy works in
terms of both unspecified features and intended mechanisms. We find that both VFDT and HAT
have unspecified features that interact in complex ways to determine algorithm performance
under concept drift.

In studying HAT, we came to understand the effects due to VFDT; in particular, the signif-
icance of inadvertent amnesia both by design of Hoeffding Tree (the theoretical artifact VFDT
implements) and by design of VFDT-MOA (due to resplitting on used attributes). Proceeding
along this line of inquiry, we also found that both major VFDT implementations (VFML and
MOA) do not average infogain. Given Hoeffding Bound itself might not be suitable to use in the
current context (Rutkowski et al. 2012), we find the approximations in computing the Hoeffding
Bound are generally effective and harmless... with the added benefit of better performance on
drifting streams.

We find the VFDT strategies of erasing node statistics through resplitting and approximating
infogains individually somewhat effective, but significantly so when combined in terms of evoking
a good response to concept drift from both VFDT, and HAT which derives from VFDT. We also
find that the unspecified strategy of allowing alternates to vote in HAT significantly improves
performance on streams with concept drift, with other strategies such as weighting leaves or
optimistically early replacement of subtrees turning out to be beneficial or detrimental. We note
that there are potentially thousands of possible interactions that need to be studied in order to
extricate the true breadth of performance characteristics of simple strategies such as VFDT and
HAT, and the choice of testbench adds further complexity to the conclusions one can draw.

50

28 Chaitanya Manapragada et al.

A standardized, rationalized testbench that accounts for data stream characteristics does not
exist in spite of decades of development in the field; we hope to have made a start in offering
such a testbench.

In practice, we suggest that the node evisceration strategy proposed in Section 4.6 is inte-
grated into standard Hoeffding Tree (and consequently into HAT) when they are expected to
encounter concept drift, and that not averaging information gain 4.3 should continue being used
in place of averaging information gain given the lack of evidence for adverse effect in stationary
settings and due to the positive effects in drifting settings. However, it might be instructive to
study specific cases in stationary settings in which an effect is observed due to not averaging
information gain, and cases in drifting settings where not averaging infogain is detrimental. We
also recommend that HAT is used with a single alternate until the effects of using multiple
alternates are studied in greater depth, and that split replacement behaviors are normalized in
general use (without the unspecified behaviors in Sections 5.1, 5.8, and 5.9), but that the mixture
of unspecified strategies in Section 5.10 be studied in more detail.

It would be of immense utility to distill unspecified features from other basic machine learning
methods so we may further our understanding of how learning strategies work.

References

Agrawal, Rakesh, Sakti Ghosh, Tomasz Imielinski, Balakrishna Iyer, and Arun Swami (Jan.
1992). “An Interval Classifier for Database Mining Applications.” In: pp. 560–573.

Bifet, Albert and Ricard Gavalda (2007). “Learning from time-changing data with adaptive
windowing”. In: Proceedings of the 2007 SIAM International Conference on Data Mining.
SIAM, pp. 443–448.

Bifet, Albert and Ricard Gavaldà (2009). “Adaptive learning from evolving data streams”. In:
International Symposium on Intelligent Data Analysis. Springer, pp. 249–260.

Bifet, Albert, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer (2010). “Moa: Massive
online analysis”. In: Journal of Machine Learning Research 11.May, pp. 1601–1604.

Bifet, Albert, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard Gavaldà (2009).
“New ensemble methods for evolving data streams”. In: Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, pp. 139–148.

Breiman, L., J.H. Friedman, R.A. Olshen, and C.J. Stone (1984). Classification and regression
trees. Chapman and Hall, New York.

Domingos, Pedro and Geoff Hulten (2000). “Mining high-speed data streams”. In: Proceedings of
the sixth ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, pp. 71–80.

Gama, João, Raquel Sebastião, and Pedro Pereira Rodrigues (Mar. 2013). “On Evaluating Stream
Learning Algorithms”. In: Mach. Learn. 90.3, pp. 317–346. issn: 0885-6125. doi: 10.1007/
s10994-012-5320-9. url: http://dx.doi.org/10.1007/s10994-012-5320-9.

Gehrke, Johannes, Venkatesh Ganti, Raghu Ramakrishnan, and Wei-Yin Loh (1999). “BOAT—
Optimistic Decision Tree Construction”. In: Proceedings of the 1999 ACM SIGMOD In-
ternational Conference on Management of Data. SIGMOD ’99. Philadelphia, Pennsylvania,
USA: ACM, pp. 169–180. isbn: 1-58113-084-8. doi: 10.1145/304182.304197. url: http:
//doi.acm.org/10.1145/304182.304197.

Gehrke, Johannes, Raghu Ramakrishnan, and Venkatesh Ganti (2000). “RainForest—a frame-
work for fast decision tree construction of large datasets”. In: Data Mining and Knowledge
Discovery 4.2-3, pp. 127–162.

51

Emergent and Unspecified Behaviors in Streaming Decision Trees 29

Grossberg, Stephen (1988). “Nonlinear neural networks: Principles, mechanisms, and architec-
tures”. In: Neural networks 1.1, pp. 17–61.

Hoeffding, Wassily (1963). “Probability inequalities for sums of bounded random variables”. In:
Journal of the American statistical association 58.301, pp. 13–30.

Hoens, T Ryan, Robi Polikar, and Nitesh V Chawla (2012). “Learning from streaming data with
concept drift and imbalance: an overview”. In: Progress in Artificial Intelligence 1.1, pp. 89–
101.

Hulten, Geoff, Laurie Spencer, and Pedro Domingos (2001). “Mining time-changing data streams”.
In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discov-
ery and data mining. ACM, pp. 97–106.

Hunt, Earl Busby (1962). Concept learning: An information processing problem. John Wiley and
Sons Inc.

Hunt, Earl Busby, Janet Marin, and Philip James Stone (1966). Experiments in Induction. Aca-
demic Press. url: https://books.google.com.au/books?id=60NDAAAAIAAJ.

Oza, Nikunj C. (Oct. 2005). “Online Bagging and Boosting”. In: International Conference on
Systems, Man, and Cybernetics, Special Session on Ensemble Methods for Extreme Environ-
ments. Ed. by Mo Jamshidi. New Jersey: Institute for Electrical and Electronics Engineers,
pp. 2340–2345.

Quinlan, John Ross (1979). “Discovering rules by induction from large collections of examples”.
In: Expert systems in the micro electronics age.

— (1983). “Learning efficient classification procedures and their application to chess end games”.
In: Machine learning. Springer, pp. 463–482.

— (1986). “Induction of Decision Trees”. In: MACH. LEARN 1, pp. 81–106.
— (1992). C4.5: programs for machine learning. San Mateo, CA: Morgan Kaufmann. url: http:

//cds.cern.ch/record/2031749.
Rutkowski, Leszek, Lena Pietruczuk, Piotr Duda, and Maciej Jaworski (2012). “Decision trees for

mining data streams based on the McDiarmid’s bound”. In: IEEE Transactions on Knowledge
and Data Engineering 25.6, pp. 1272–1279.

Schlimmer, Jeffrey and Douglas Fisher (1986). “A case study of incremental concept induction”.
In: AAAI. Vol. 86, pp. 496–501.

Schlimmer, Jeffrey and Richard Granger (1986). “Incremental learning from noisy data”. In:
Machine Learning 1.3, pp. 317–354. issn: 1573-0565. doi: 10.1007/BF00116895. url: http:
//dx.doi.org/10.1007/BF00116895.

Street, W Nick and YongSeog Kim (2001). “A streaming ensemble algorithm (SEA) for large-
scale classification”. In: Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, pp. 377–382.

Utgoff, Paul E (1989). “Incremental induction of decision trees”. In: Machine learning 4.2,
pp. 161–186.

Webb, Geoffrey I, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean (2016). “Char-
acterizing concept drift”. In: Data Mining and Knowledge Discovery 30.4, pp. 964–994.

52

Chapter 4

An Improved Base Learner

Better Atoms For Machine
Learning! Get yours now!

The process of identifying unspecified features had significant overlap with the process of aim-
ing to design strategies that could improve these algorithms. Having understood the workings of
Hoeffding Tree both in terms of its designed and unspecified features, we began looking for ways to
increase plasticity without compromising statistical guarantees. We experimented with changing
split mechanisms, the functional core of decision trees.

By tweaking the attribute selection mechanism and adding the possibility of revising poor split
decisions, we created a decision tree algorithm that exhibited improved prequential accuracy with
negligible time overhead, did not have an increased runtime complexity, and, unlike Hoeffding Tree,
converged to the ideal batch tree.

We named our tree Hoeffding AnyTime Tree on account of its ability to revise split decisions and
its relative eagerness in splitting compared to Hoeffding Tree. We presented our work as “Extremely
Fast Decision Tree” (EFDT) at KDD 2018.

EFDT contains a subtree revision mechanism, one that is not designed for concept drift adapta-
tion but for helping with the long-term stability needed to learn streams generated from stationary
distributions. This is distinctly different from subtree revision mechanisms focused on concept-drift
adaptation such as those found in HAT and CVFDT geared towards high plasticity.

53

Extremely Fast Decision Tree
Chaitanya Manapragada

Monash University
Victoria, Australia

chait.m@monash.edu

Geoffrey I. Webb
Monash University
Victoria, Australia

geoff.webb@monash.edu

Mahsa Salehi
Monash University
Victoria, Australia

mahsa.salehi@monash.edu

ABSTRACT
We introduce a novel incremental decision tree learning algorithm,
Hoeffding Anytime Tree, that is statistically more efficient than
the current state-of-the-art, Hoeffding Tree. We demonstrate that
an implementation of Hoeffding Anytime Tree—“Extremely Fast
Decision Tree”, a minor modification to theMOA implementation of
Hoeffding Tree—obtains significantly superior prequential accuracy
onmost of the largest classification datasets from the UCI repository.
Hoeffding Anytime Tree produces the asymptotic batch tree in the
limit, is naturally resilient to concept drift, and can be used as a
higher accuracy replacement for Hoeffding Tree in most scenarios,
at a small additional computational cost.

CCS CONCEPTS
•Computingmethodologies→Online learning settings;Clas-
sification and regression trees;Machine learning algorithms;

KEYWORDS
Incremental Learning, Decision Trees, Classification
ACM Reference Format:
Chaitanya Manapragada, Geoffrey I. Webb, and Mahsa Salehi. 2018. Ex-
tremely Fast Decision Tree. In KDD ’18: The 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, August 19–23, 2018,
London, United Kingdom. ACM, New York, NY, USA, Article 4, 10 pages.
https://doi.org/10.1145/3219819.3220005

1 INTRODUCTION
We present a novel stream learning algorithm, Hoeffding Anytime
Tree (HATT)1. The de facto standard for learning decision trees
from streaming data is Hoeffding Tree (HT) [11], which is used as
a base for many state-of-the-art drift learners [3, 6, 8, 10, 16, 18, 24].
We improve upon HT by learning more rapidly and guaranteeing
convergence to the asymptotic batch decision tree on a stationary
distribution.

Our implementation of the Hoeffding Anytime Tree algorithm,
the Extremely Fast Decision Tree (EFDT), achieves higher prequen-
tial accuracy than the Hoeffding Tree implementation Very Fast
Decision Tree (VFDT) on many standard benchmark tasks.
1In order to distinguish it from Hoeffding Adaptive Tree, or HAT [6]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’18, August 19–23, 2018, London, United Kingdom
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5552-0/18/08. . . $15.00
https://doi.org/10.1145/3219819.3220005

(a) VFDT: the current de facto standard for incremental tree learning

(b) EFDT: our more statistically efficient variant

Figure 1.1: The evolution of prequential error over the du-
ration of a data stream. For each learner we plot error for
4 different levels of complexity, resulting from varying the
number of classes from 2 to 5. The legend includes time in
CPU seconds (T) and the total error rate over the entire du-
ration of the stream (E). This illustrates how EFDT learns
much more rapidly than VFDT and is less affected by the
complexity of the learning task, albeit incurring a modest
computational overhead to do so. The data are generated by
MOARandomTreeGenerator, 5 classes, 5 nominal attributes,
5 values per attribute, 10 stream average.

HT constructs a tree incrementally, delaying the selection of a
split at a node until it is confident it has identified the best split, and
never revisiting that decision. In contrast, HATT seeks to select and
deploy a split as soon as it is confident the split is useful, and then
revisits that decision, replacing the split if it subsequently becomes
evident that a better split is available.

The HT strategy is more efficient computationally, but HATT is
more efficient statistically, learning more rapidly from a stationary
distribution and eventually learning the asymptotic batch tree if
the distribution from which the data are drawn is stationary. This
statistical efficiency in producing the batch tree equivalent is the
reasonwe denote our implementation Extremely Fast Decision Tree;
in the long run, where numerical features are involved, VFDT will
grow interminably in depth causing increasing fragmentation and
slowing while EFDT will readjust its splits maintaining a steady

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

1953 54

tree size and thus computational load as long as the batch tree
is finite. Further, false acceptances are inevitable, and since HT
never revisits decisions, increasingly greater divergence from the
asymptotic batch learner results as the tree size increases (Sec. 4).

In Fig. 1.1, we observe VFDT taking longer and longer to learn
progressively more difficult concepts obtained by increasing the
number of classes. EFDT learns all of the concepts very quickly,
and keeps adjusting for potential overfitting as fresh examples are
observed.

In Section 5, we will see that EFDT continues to retain its ad-
vantage even 100 million examples in, and that EFDT achieves
significantly lower prequential error relative to VFDT on the ma-
jority of benchmark datasets we have tested. VFDT only slightly
outperforms EFDT on three synthetic physics simulation datasets—
Higgs, SUSY, and Hepmass.

2 BACKGROUND
Domingos and Hulten presented one of the first algorithms for
incrementally constructing a decision tree in their widely acclaimed
work, “Mining High-Speed Data Streams” [11].

Their algorithm is the Hoeffding Tree (Table 2.1), which uses
the Hoeffding Bound. For any given potential split, Hoeffding Tree
checks whether the difference of averaged information gains of
the top two attributes is likely to have a positive mean—if so, the
winning attribute may be picked with a degree of confidence, as is
described below.

Hoeffding Bound: If we have n independent random variables
r1..rn , with range R and mean r̄ , the Hoeffding bound states that
with probability 1 − δ the true mean is at least r̄ − ϵ where [11, 15]:

ϵ =

√
R2 ln(1/δ)

2n (1)

Hoeffding Tree is a tree that uses this probabilistic guarantee to
test at each leaf whether the computed difference of information
gains ∆G between the attributes Xa and Xb with highest informa-
tion gains respectively, ∆G (Xa) − ∆G (Xb), is positive and non-zero.
If, for the specified tolerance δ , we have ∆G > ϵ , then we assert
with confidence that Xa is the better split.

Note that we are seeking to determine the best split out-of-
sample. The above controls the risk that Xa is inferior to Xb , but it
does not control the risk that Xa is inferior to some other attribute
Xc . It is increasingly likely that some other split will turn out to
be superior as the total number of attributes increases. There is no
recourse to alter the tree in such a scenario.

3 HOEFDDING ANYTIME TREE
If the objective is to build an incremental learner with good pre-
dictive power at any given point in the instance stream, it may be
desirable to exploit information as it becomes available, building
structure that improves on the current state but making subsequent
corrections when further alternatives are found to be even better.
In scenarios where information distribution among attributes is
skewed, with some attributes containing more information than
others, such a policy can be highly effective because of the limited
cost of rebuilding the tree when replacing a higher-level attribute
with a highly informative one. However, where information is more

Algorithm 2.1: Hoeffding Tree, Domingos & Hulten (2000)
–Reproduced verbatim from original–
Input: S , a sequence of examples,

X, a set of discrete attributes,
G(.), a split evaluation function
δ , one minus the desired probability of choosing the
correct attribute at any given node

Output: HT , a decision tree.
begin

Let HT be a tree with a single leaf l1 (the root).
Let X1 = X ∪ X∅.
Let G1 (X∅) be the G obtained by predicting the most
frequent class in S

foreach class yk do
foreach value xi j of each attribute Xi ∈ X do

Let ni jk (l1) = 0
end

end
foreach example (x⃗ ,y) in S do

Sort (x⃗ ,y) into a leaf l using HT
foreach xi j in x⃗ such that Xi ∈ Xl do

Increment ni jk (l)
end
Label l with the majority class among the examples
seen so far at l
if the examples seen so far at l are not all of the same
class then

Compute Gl (Xi) for each attribute Xi ∈ Xl − {X∅}
using the counts ni jk (l)
Let Xa be the attribute with highest Gl
Let Xb be the attribute with second-highest Gl
Compute ϵ using Equation 1
if Gl (Xa) −Gl (Xb) > ϵ and Xa , X∅ then

Replace l by an internal node that splits on Xa
foreach branch of the split do

Add a new leaf lm and let Xm = X − {X∅}
Let Gm (X∅) be the G obtained by
predicting the most frequent class at lm
foreach class yk and each value Xi j of
each attribute Xi ∈ Xm − {X∅}]} do

Let ni jk (lm) = 0
end

end
end

end
end
Return HT

end

uniformly distributed among attributes, Hoeffding Tree will strug-
gle to split andmight have to resort to using a tie-breaking threshold
that depends on the number of random variables, while HATT will
pick an attribute to begin with and switch when necessary, leading
to faster learning.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

1954 55

In this paper, we describe HATT, and provide an instantiation
that we denote Extremely Fast Decision Tree (EFDT).

Hoeffding Anytime Tree is equivalent to Hoeffding tree except
that it uses the Hoeffding bound to determine whether the merit
of splitting on the best attribute exceeds the merit of not having
a split, or the merit of the current split attribute. In practice, if no
split attribute exists at a node, rather than splitting only when the
top candidate split attribute outperforms the second-best candidate,
HATT will split when the information gain due to the top candidate
split is non-zero with the required level of confidence. At later
stages, HATT will split when the difference in information gain
between the current top attribute and the current split attribute
is non-zero, assuming this is better than having no split. HATT is
presented in Algorithm 3.1, Function 3.2, and Function 3.3.

Algorithm 3.1: Hoeffding Anytime Tree
Input: S , a sequence of examples. At time t, the observed

sequence is St = ((x⃗1,y1), (x⃗2,y2), ...(x⃗t ,yt))
X = {X1,X2...Xm }, a set ofm attributes
δ , the acceptable probability of choosing the wrong
split attribute at a given node
G(.), a split evaluation function

Result: HATT t , the model at time t constructed from having
observed sequence St .

begin
Let HATT be a tree with a single leaf, the root
Let X1 = X ∪ X∅
Let G1 (X∅) be the G obtained by predicting the most
frequent class in S

foreach class yk do
foreach value xi j of each attribute Xi ∈ X do

Set counter ni jk (root) = 0
end

end
foreach example (x⃗ ,y) in S do

Sort (x⃗ ,y) into a leaf l using HATT

foreach node in path (root ...l) do
foreach xi j in x⃗ such that Xi ∈ Xnode do

Increment ni jk (node)
if node = l then

AttemptToSplit (l)
else

ReEvaluateBestSplit (node)
end

end
end

end
end

3.1 Convergence
Hoeffding Tree offers guarantees on the expected disagreement
from a batch tree trained on an infinite dataset (which is denoted
DT∗ in [11], a convention we will follow). “Extensional disagree-
ment” is defined as the probability that a pair of decision trees will

Function 3.2: AttemptToSplit(leafNode l)
begin

Label l with the majority class at l
if all examples at l are not of the same class then

Compute Gl (Xi) for each attribute Xl − {X∅} using
the counts ni jk (l)
Let Xa be the attribute with the highest Gl
Let Xb = X∅
Compute ϵ using equation 1
if Gl (Xa) −Gl (Xb) > ϵ and Xa , X∅ then

Replace l by an internal node that splits on Xa
for each branch of the split do

Add a new leaf lm and let Xm = X − Xa
Let Gm (X∅) be the G obtained by predicting
the most frequent class at lm
for each class yk and each value xi j of each
attribute Xi ∈ Xm− {X∅} do

Let ni jk (lm) = 0.
end

end
end

end
end

Function 3.3: ReEvaluateBestSplit(internalNode int)
begin

Compute Gint (Xi) for each attribute Xint − {X∅} using
the counts ni jk (int)

Let Xa be the attribute with the highest Gint
Let Xcurrent be the current split attribute
Compute ϵ using equation 1
if Gl (Xa) −Gl (Xcurrent) > ϵ then

if Xa = X∅ then
Replace internal node int with a leaf (kills subtree)

else if Xa , Xcurrent then
Replace int with an internal node that splits on Xa
for each branch of the split do

Add a new leaf lm and let Xm = X − Xa
Let Gm (X∅) be the G obtained by predicting
the most frequent class at lm
for each class yk and each value xi j of each
attribute Xi ∈ Xm− {X∅} do

Let ni jk (lm) = 0.
end

end
end

end
end

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

1955 56

produce different predictions for an example, and intensional dis-
agreement that probability that the path of an example will differ
on the two trees.

The guarantees state that either form of disagreement is bound
by δ

p , where δ is a tolerance level and p is the leaf probability– the
probability that an example will fall into a leaf at a given level. p is
assumed to be constant across all levels for simplicity.

Note that the guarantees will weaken significantly as the depth
of the tree increases. While the built trees may have good pre-
quential accuracy in practice on many test data streams, increasing
the complexity and size of data streams such that a larger tree is
required increases the chance that a wrong split is picked.

On the other hand, HATT converges in probability to the batch
decision tree; we prove this below.

For our proofs, we will make the following assumption:
• No two attributes will have identical information gain. This
is a simplifying assumption to ensure that we can always
split given enough examples, because ϵ is monotonically
decreasing.

Lemma 3.1. HATT will have the same split attribute at the root as
HT at the time HT splits the root node.

Proof. Let S represent an infinite sequence drawn from a prob-
ability space (Ω,F , P), where (x⃗ ,y) ∈ Ω constitute our data points.
The components of x⃗ take values corresponding to attributesX1,X2,
... Xm , if we havem attributes.

We are interested in attaining confidence 1−δ that∑ni=0 ∆G/n−
µ∆G ≤ ϵ , where µ∆G is the true mean of the summed historical
differences in information gain between the top and second-best
attributes (the matter of whether a sum must be used appears to be
ambiguous in the original Hoeffding Tree proposed in [11]; because
it is necessary in order to meaningfully use the Hoeffding bound,
we assumed this was their intent. In implementation, there appears
to be no consequence). We don’t know µ∆G , but we would like it to
be non-zero, because that would imply both attributes do not have
equal information gain, and that one of the attributes is the clear
winner. Setting µ∆G to 0, we want to be confident that ∆G differs
from zero by at least ϵ . In other words, we are using a corollary of
Hoeffding’s Inequality to state with confidence that our random
variable ∆G diverges from 0.

In order for this to happen, we need ∆G to be greater than ϵ . ϵ
is monotonically decreasing, as we can see in equation 1.

Given the same infinite sequence of examples S , both HT and
HATT will be presented with the same evidence St (N0) at the root
level node N0 for all t (that is, indefinitely). They will always have
an identical value of ϵ .

If at a specific timeT Hoeffding Tree compares attributesXa and
Xb , which correspond to the attributes with the highest and second
highest information gains X 1:T and X 2:T at time T respectively,
it follows that since ST (N0) (HT) = ST (N0) (HATT), that is, since
both trees have the same evidence at time T , Hoeffding AnyTime
Tree will also find X 1:T = Xa . However, HATT will compare Xa
with XT , the current split attribute. There are four possibilities:
XT = X 1:T , XT = X 2:T , XT = X i :T , i > 2 or XT is the null split.
We will see that under all these scenarios, HATT will select (or
retain) X 1:T .

We need to consider the history of ∆G, which can be different
for HT and HATT. That is, it is possible that for t ≤ T , ∆G (HT) ,
∆G (HATT). This is because while HT always compares X 1:t and
X 2:t , HATT may compare X 1:t with, say, X 3:t , X 4:t or X∅, which
may happen to be the current split.

Clearly, at any timestep,X i :t (N0) (HT) = X i :t (N0) (HATT). That
is, the ranking of the information gains of the potential split at-
tributes is always the same at the root node for both HT and HATT.
It should also be obvious that since the observed sequences are
identical, G (X i :t (N0) (HT)) = G (X i :t (N0) (HATT))– the informa-
tion gains of all of the corresponding attributes at each timestep are
equal. So the top split attribute at the root X 1:t (N0) is always the
same for both trees. If we decompose ∆Gt as Gt

top −G
t
bot , we will

have Gt
top (HT) = G

t
top (HATT), but Gt

bot (HT) and G
t
bot (HATT)

wouldn’t necessarily be equal.
Since at any timestep t HT will always choose to compare

G (X 1:T) and G (X 2:T) while HATT will always compare G (X 1:T)
with G (X currentSplit) where G (X currentSplit) ≤ G (X 2:T) (un-
less X 1:T = X currentSplit , in which case GT

bot (HATT) is G (X 2:T))
, we have G

t
bot (HATT) ≤ G

t
bot (HT) for all t . (In the case that

X currentSplit = XnullSplit , either X currentSplit = X 1:T , which
we have just accounted for, or X currentSplit = X 2:T).

Because we have Gt
bot (HATT) ≤ G

t
bot (HT), we will have

∆G
T
(HATT) ≥ ∆G

T
(HT), and∆GT

(HT) > ϵ implies∆GT
(HATT) >

ϵ , which would cause HATT to split on X 1:T if it already does not
happen to be the current split attribute simultaneously with HT at
time T . □

Lemma 3.2. The split attribute XHATT
R at the root node of HATT

converges in probability to the split attribute XDT∗
R used at the root

node of DT∗. That is, as the number of examples grows large, the
probability that HATT will have at the root a split XHATT

R that

matches the split XDT∗
R at the root node of DT∗ goes to 1.

Proof. Let us denote the attributes available at the root Xi
and the information gain of each attribute computed at time t
as G (Xi)

t , based on the observed sequence of examples St =
((x⃗1,y1), (x⃗2,y2)...(x⃗t ,yt)).

Now, we are working under the assumption that each Xi has a
finite, constant information gain associated with it—DT∗ would not
converge, and thus any guarantees about HT ’s deviation from DT∗
would not hold without making this assumption. Let us denote this
gain G (Xi)

∞.
This in turn implies that all pairwise differences in information

gain: ∆G∞ = G (Xa)
∞ − G (Xb)

∞ for any two attributes Xa and
Xb must also be finite and constant over any given infinite dataset
(from which we generate a stationary stream).

As t → ∞, we expect the frequencies of our data (x⃗ ,y) to ap-
proach their long-term frequencies given by P . Consequently, we
expect our measured sequences of averaged pairwise differences in
information gain ∆G (Xi j)

t to converge to their respective constant
values on the infinite dataset ∆G (Xi j)

∞, which implies we will
effectively have the chosen split attribute for HATT converging in
probability to the chosen split attribute for DT∗ as t → ∞.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

1956 57

Why would this convergence only be in probability and not
almost surely?

For any finite sequence of examples St = ((x⃗1,y1), (x⃗2,y2) ...
(x⃗t ,yt)) with frequencies of data that approach those given by P ,
we may observe with nonzero probability a followup sequence
((x⃗t+1,yt+1), (x⃗t+2,yt+2), ...(x⃗2t ,y2t)) that will result in a distribu-
tion that is unlike P over the observations. Obviously, we expect
the probability of observing such an anomalous sequence to go to
0 as t grows large– if we didn’t, we would not expect the observed
frequencies of the instances to ever converge to their long-term
frequencies.

Anytime we do observe such a sequence, we can expect to see
anomalous values of ∆G (Xi j)

t , which means that even if the top
attribute has already been established as one that matches the at-
tribute corresponding to ∆G (Xi j)

∞, it may briefly be replaced by
an attribute that is not the top attribute as per G (Xi)

∞. We have
already reasoned that the probability of observing such anomalous
sequences must go to 0; so we expect that the probability of ob-
serving sequences with instance frequencies approaching those
given by the measure P must go to 1. And for a sequence that is
distributed as per P , we expect our information gain differences
∆G (Xi j)

t → ∆G (Xi j)
∞.

Remember that we have assumed that the pairwise differences
in information gain ∆G (Xi j)

t are nonzero (by implication of no
two attributes having identical information gain). Since ϵ is mono-
tonically decreasing and no two attributes have been assumed to
be identical, as t grows large, we will always pick the attribute with
the largest information gain because its advantage over the next
best attribute will exceed some fixed ϵ ; and this picked top attribute
will match, in probability, the one established by DT∗.

□

Lemma 3.3. Hoeffding AnyTime Tree converges to the asymptotic
batch tree in probability.

Proof. From Lemma 3.2, we have that as t → ∞, XHATT
R

P−→
XDT∗
R , meaning that though it is possible to see at any individual

timestepXHATT
R , XDT∗

R , we have have convergence in probability
in the limit.

Consider immediate subtrees of the root node HATT 1
i (denot-

ing they are rooted at level 1). In all cases where the root split
matches XDT∗

R , the instances observed at the roots of HATT 1
i will

be drawn from the same data distribution that the respective DT 1
∗i

draw their instances from. Do level 1 split attributes for HATT,
XHATT
i :L1 converge to XDT∗

i :L1 ?
We can answer this by using the Law of Total Probability. Let

us denote the event that for first level split i , XHATT
i :L1 = XDT∗

i :L1 by
matchi :L1. Then we have as t → ∞:

P (XHATT
i :L1 = XDT∗

i :L1)

= P (matchi :L1)

= P (matchi :L1 |matchL0)P (matchL0)

+P (matchi :L1 |not_matchL0)P (not_matchL0)

We know that P (matchL0) → 1 and P (not_matchL0) → 0 as
t → ∞ from Lemma 3.1. So we obtain P (XHATT

i :L1 = XDT∗
i :L1)

∞ =
P (matchi :L1 |matchL0)∞.

Effectively, we end up only having to condition on the event
matchL0. In other words, we may safely use a subset of the stream
where onlymatchL0 has occurred to reason aboutwhetherXHATT

i :L1 =

XDT∗
i :L1 as t → ∞.
Now, we need to show that P (matchi :L1 |matchL0) → 1 as t → ∞

to prove convergence at level 1. This is straightforward. Since we
are only considering instances that result in the event matchL0
occurring, the conditional distributions at level 1 of HATT match
the ones at level 1 of DT∗. We may extend this argument to any
number of levels; thus HATT converges in probability to DT∗ for
any finite DT∗.

□

3.2 Time and Space Complexity
Space Complexity: On nominal with data with d attributes, v
values per attribute, and c classes, HATT requires O (dvc) memory
to store node statistics at each node, as does HT [11]. Because the
number of nodes increases geometrically, there may be a maximum
of (1−vd)/(1−v) nodes, and so the worst case space complexity is
O(vd−1dvc). Since the worst case space complexity for HT is given
in terms of the current number of leaves l as O(ldvc) [11], we may
write the space complexity for HATT as O (ndvc), where n is the
total number of nodes. Note that l is O (n), so space complexity is
equivalent for HATT and HT.

Time Complexity: There are two primary operations associ-
ated with learning for HT: (i) incorporating a training example by
incrementing leaf statistics and (ii) evaluating potential splits at the
leaf reached by an example. The same operations are associated
with HATT, but we also increment internal node statistics and eval-
uate potential splits at internal nodes on the path to the relevant
leaf.

At any leaf for HT and at any node for HATT, no more than
d attribute evaluations will have to be considered. Each attribute
evaluation at a node requires the computation of v information
gains. Each information gain computation requiresO (c) arithmetic
operations, so each split re-evaluation will require O (dvc) arith-
metic operations at each node. As for incorporating an example,
each node the example passes through will require dvc counts up-
dated and thus O (dvc) associated arithmetic operations. The cost
for updating the node statistics for HATT is O (hdvc), where h is
the maximum height of the tree, because up to h nodes may be tra-
versed by the example, while it is O (dvc) for HT, because only one
set of statistics needs to be updated. Similarly, the worst-case cost of
split evaluation at each timestep is O (dvc) for HT and O (hdvc) for
HATT, as one leaf and one path respectively have to be evaluated.

4 RELATEDWORK
There is a sizable literature that adapts HT in sometimes substantial
ways [12, 19, 23] that do not, to the best of our knowledge, lead to
the same fundamental change in learning premise as does HATT.
[23] and [19] substitute the Hoeffding Test with McDiarmid’s and
the “Normal” test respectively; [12] adds support for Naive Bayes at
leaves. Methods proposed prior to HT are either significantly less

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

1957 58

tight compared to HT in their approximation of a batch tree [14]
or unsuitable for noisy streams and prohibitively computationally
expensive [26].

The most related other works are techniques that seek to modify
a tree through split replacement, usually for concept drift adapta-
tion.

Drift adaptation generally requires explicit forgetting mecha-
nisms in order to update the model so that it is relevant to the most
recent data; this usually takes the form of a moving window that
forgets older examples or a fading factor that decays the weight of
older examples. In addition, when the underlying model is a tree,
drift adaptation can involve subtree or split replacement.

Hulten et al [18] follow up on the Hoeffding Tree work with a
procedure for drift adaptation (Concept-adapting Very Fast Deci-
sion Tree, CVFDT). CVFDT has a moving window that diminishes
statistics recorded at a node due to an example that has fallen out
of a window at a given time step. The example statistics at each
internal node change as the window moves, and existing splits are
replaced if the split attribute is no longer the winning attribute and
one of a set of alternate subtrees grown by splitting on winning
attributes registers greater accuracy.

The idea common to both CVFDT and HATT is that of split re-
evaluation. However, the circumstances, objectives, and methods
are entirely different. CVFDT is explicitly designed for a drifting
scenario; HATT for a stationary one. CVFDT’s goal is to reduce pre-
quential error for the current window in the expectation that this
is the best way to respond to drift; HATT’s goal is reduce prequen-
tial error overall for a stationary stream so that it asymptotically
approaches that of a batch learner. CVFDT builds and substitutes
alternate subtrees; HATT does not. CVFDT deliberately employs a
range of forgetting mechanisms; HATT only forgets as a side effect
of replacing splits—when a subtree is discarded, so too are all the
historical distributions recorded therein. CVFDT always compares
the top attributes, while HATT compares with either the current
split attribute or the null split.

However, CVFDT is not incompatible with the core idea of Ho-
effding Anytime Tree; it would be interesting to examine whether
the idea of comparingwith the null split or the current split attribute
when applied to CVFDT will boost its performance on concept drift-
ing streams. However, that is beyond the scope of this paper.

In order to avoid confusion, we will also mention the Hoeffding
Adaptive Tree (HAT) [6]. This method builds a tree that grows
alternate subtrees if a subtree is observed to have poorer prequential
accuracy on more recent examples, and substitutes an alternate
when it has better accuracy than the original subtree. HAT uses
an error estimator, such as ADWIN [5] at each node to determine
whether the prediction error due to a recent sequence of examples
is significantly greater than the prediction error from a longer
historical sequence so it can respond to drift. HATT, on the other
hand, does not rely on prediction results or error, and does not aim
to deliberately replace splits in response to drift.

5 PERFORMANCE
Our EFDT implementation was built by changing the split evalua-
tions of the MOA implementation of VFDT [7]. We compared VFDT
and EFDT on all UCI [21] classification data sets with over 200, 000

(a) 10 stream shuffled average.

(b) Unshuffled.

Figure 5.1: KDD intrusion detection dataset [21]

instances that had an obvious classification target variable, did not
require text mining, and did not contain missing values (MOA has
limited support for handling missing values). To augment this lim-
ited collection of large datasets, we also studied performance on
the WISDM dataset [20]. In all, we have 12 benchmark datasets
with a mixture of numeric and nominal attributes ranging from a
few dimensions to hundreds of dimensions.

Many UCI datasets are ordered. VFDT and EFDT are both de-
signed to converge towards the tree that would be learned by a
batch learner if the examples in a stream are drawn i.i.d. from a
stationary distribution. The ordered UCI datasets do not conform
to this scenario, so we also study performance when they are shuf-
fled in order to simulate it. To this end, we shuffled the data 10
times with the Unix shuf utility seeded by a reproducible stream
of random bytes [13] to create 10 different streams, averaged our
prequential accuracy results over the streams, as well as comparing
with performance on the corresponding unshuffled stream.

Our experiments are easily reproducible. Instructions for pro-
cessing datasets, source code for VFDT and EFDT to be used with
MOA, and Python scripts to run the experiments are all available
at [https://github.com/chaitanya-m/kdd2018.git].

EFDT attains substantially higher prequential accuracy on most
streams (Figs. 5.1 to 5.9) whether shuffled or unshuffled. Where
VFDT wins (5.10, 5.11, 5.12) the margin is far smaller than most
of the EFDT wins. While EFDT runtime generally exceeds that of
VFDT, we find it rarely requires more than double the time and
in some cases, when it learns smaller trees, requires less time. We
evaluate leaves every 200 timesteps and internal nodes every 2000
timesteps.

Differences in shuffled and unshuffled performance highlight
the amount of order that is present in the unshuffled data. The
unshuffled Skin dataset contains B,G,R values and a target variable
that indicates whether the input corresponds to skin or not. All
positive examples are at the start followed by all negative examples;
the net effect is that a learner will replace one extremely simple
concept with another (Fig. 5.5). When shuffled, it is necessary to

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

1958 59

(a) 10 stream shuffled average.

(b) Unshuffled.

Figure 5.2: Poker dataset [21]

(a) 10 stream shuffled average.

(b) Unshuffled.

Figure 5.3: Fonts dataset [21]

learn a more complex decision boundary, affecting performance for
both learners.

A different effect is observed with the higher dimensional Fonts
dataset (Fig. 5.3). The goal is to predict which of 153 fonts corre-
sponds to a 19x19 greyscale image, with each pixel able to take 255
intensity values. When instances are sorted, by font name alpha-
betically,each time a new font is encountered VFDT needs to learn
the new concept at every leaf of an increasingly complex tree. In
contrast, EFDT is able to readjust the model, efficiently discarding
outdated splits to achieve an accuracy of around 99.8%, making it a
potentially powerful base learner for methods designed for concept
drifting scenarios.

The results on the Poker and Forest-Covertype datasets (Figs.
5.2, 5.4) reflect both effects: EFDT performs significantly better on

(a) 10 stream shuffled average.

(b) Unshuffled.

Figure 5.4: Forest covertype dataset [9, 21]

(a) 10 stream shuffled average.

(b) Unshuffled.

Figure 5.5: Skin dataset [4, 21]

ordered data, and performance for both learners deteriorates with
shuffled data in comparison with unshuffled data.

Every additional level of a decision tree fragments the input
space, slowing down tree growth exponentially. A delay in splitting
at one level delays the start of collecting information with respect to
the splits for the next level. These delays cascade, greatly delaying
splitting at deeper levels of the tree.

Thus, we expect HATT to have an advantage over HT in situ-
ations where HT considerably delays splits at each level—such as
when the difference in information gain between the top attributes
at a node is low enough to require a large number of examples in
order to overcome the Hoeffding bound, though the information
gains themselves happen to be significant. This would lead to a
potentially useful split in HT being delayed, and poor performance
in the interim.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

1959 60

(a) 10 stream shuffled average.

(b) Unshuffled.

Figure 5.6: Gas sensor dataset [17, 21]

(a) 10 stream shuffled average.

(b) Unshuffled.

Figure 5.7: WISDM dataset [20, 21]

Conversely, when the differences in information gain between
top attributes as well as the information gains themselves are low,
it is possible that HATT chooses a split that would require a large
number of examples to readjust. However, since we expect this to
keep up with VFDT on the whole, the main source of underperfor-
mance for EFDT is likely to be an overfitted model making low-level
adjustments. Synthetic data from physics simulations available in
the UCI repository (Higgs, Hepmass, SUSY) led to such a scenario
(Figs. 5.10 to 5.12).

(a) 10 stream shuffled average.

(b) Unshuffled.

Figure 5.8: Human Activity Recognition dataset: Phone,
watch accelerometer, and gyrometer data combined. [21, 25]

(a) 10 stream shuffled average.

(b) Unshuffled.

Figure 5.9: PAMAP2 Activity Recognition dataset (UCI)– 9
subjects data combined [21, 22]

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

1960 61

(a) 10 stream shuffled average.

(b) Unshuffled.

Figure 5.10: Higgs dataset [1, 21]

(a) 10 stream shuffled average.

(b) Unshuffled.

Figure 5.11: Hepmass dataset [2, 21]

Fig. 5.13 shows us that with the MOA tree generator used in Fig.
1.1, even on a 100 million length stream, EFDT’s prequential error
is still an order of magnitude lower than that of VFDT.

6 CONCLUSIONS
Hoeffding AnyTime Tree makes a simple change to the current
de facto standard for incremental tree learning. The current state-
of-the-art Hoeffding Tree aims to only split at a node when it has
identified the best possible split and then to never revisit that de-
cision. In contrast HATT aims to split as soon as a useful split is
identified, and then to replace that split as soon as a better alter-
native is identified. Our results demonstrate that this strategy is
highly effectively on benchmark datasets.

(a) 10 stream shuffled average.

(b) Unshuffled.

Figure 5.12: SUSY dataset [1, 21]

(a) VFDT

(b) EFDT

Figure 5.13: A longer term view of the experiments from Fig.
1.1 shows us that even 100 million examples in, EFDT main-
tains a commanding lead on prequential accuracy.

Our experiments find that HATT has some inbuilt tolerance to
concept drift, though it is not specifically designed as a learner for
drift. It is easy to conceive of ensemble, forgetting, decay, or subtree
replacement approaches built upon HATT to deal with concept
drift, along the lines of approaches that have been proposed for HT.

HT cautiously works toward the asymptotic batch tree, ignoring,
and thus not benefiting from potential improvements on the current
state of the tree, until it is sufficiently confident that they will not
need to be subsequently revised. If an incrementally learned tree is
to be deployed to make predictions before fully learned, HATT’s
strategy of always utilizing the most useful splits identified to date
has profound benefit.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

1961 62

ACKNOWLEDGEMENTS
This material is based upon work supported by the Air Force Office
of Scientific Research, Asian Office of Aerospace Research and
Development (AOARD) under award number FA2386-17-1-4033.

REFERENCES
[1] Pierre Baldi et al. 2014. Searching for exotic particles in high-energy physics

with deep learning. Nature communications 5 (2014), 4308.
[2] Pierre Baldi et al. 2016. Parameterized neural networks for high-energy physics.

The European Physical Journal C 76, 5 (2016), 235.
[3] R.S.M. de Barros, S.G.T. de Carvalho Santos, and P.M.G. Júnior. 2016. A Boosting-

like Online Learning Ensemble. In 2016 International Joint Conference on Neural
Networks (IJCNN). 1871–1878.

[4] Rajen Bhatt and Abhinav Dhall. 2012. Skin Segmentation Dataset: UCI Machine
Learning Repository. (2012).

[5] Albert Bifet and Ricard Gavalda. 2007. Learning from time-changing data with
adaptive windowing. In Proceedings of the 2007 SIAM International Conference on
Data Mining. SIAM, 443–448.

[6] Albert Bifet and Ricard Gavaldà. 2009. Adaptive learning from evolving data
streams. In International Symposium on Intelligent Data Analysis. Springer, 249–
260.

[7] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. 2010. Moa:
Massive online analysis. Journal of Machine Learning Research 11, May (2010),
1601–1604.

[8] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard
Gavaldà. 2009. New ensemble methods for evolving data streams. In Proceedings
of the 15th ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 139–148.

[9] Jock Blackard and Denis Dean. 1999. Comparative Accuracies of Artificial Neural
Networks and Discriminant Analysis in Predicting Forest Cover Types from
Cartographic Variables. 24 (12 1999), 131–151.

[10] Dariusz Brzezinski and Jerzy Stefanowski. 2014. Reacting to different types of
concept drift: The accuracy updated ensemble algorithm. IEEE Transactions on
Neural Networks and Learning Systems 25, 1 (2014), 81–94.

[11] Pedro Domingos and Geoff Hulten. 2000. Mining high-speed data streams. In
Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 71–80.

[12] João Gama, Ricardo Rocha, and Pedro Medas. 2003. Accurate Decision Trees
for Mining High-speed Data Streams. In Proceedings of the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD ’03).
ACM, New York, NY, USA, 523–528. https://doi.org/10.1145/956750.956813

[13] GNU Coreutils: Random sources. 2018. 2.7–Sources of random data. (2018).
Retrieved Jan 05, 2018 from https://www.gnu.org/software/coreutils/manual/
html_node/Random-sources.html

[14] Jonathan Gratch. 1996. Sequential inductive learning. In Proceedings of the
thirteenth national conference on Artificial intelligence-Volume 1. AAAI Press,
779–786.

[15] Wassily Hoeffding. 1963. Probability inequalities for sums of bounded random
variables. Journal of the American statistical association 58, 301 (1963), 13–30.

[16] Stefan Hoeglinger and Russel Pears. 2007. Use of hoeffding trees in concept
based data stream mining. In Information and Automation for Sustainability, 2007.
ICIAFS 2007. Third International Conference on. IEEE, 57–62.

[17] Ramon Huerta, Mosqueiro, et al. 2016. Online decorrelation of humidity and
temperature in chemical sensors for continuous monitoring. Chemometrics and
Intelligent Laboratory Systems 157 (2016), 169–176.

[18] Geoff Hulten, Laurie Spencer, and Pedro Domingos. 2001. Mining time-changing
data streams. In Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 97–106.

[19] Ruoming Jin and Gagan Agrawal. 2003. Efficient decision tree construction on
streaming data. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 571–576.

[20] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. 2010. Activity recog-
nition using cell phone accelerometers. In Proceedings of the Fourth International
Workshop on Knowledge Discovery from Sensor Data. 10–18.

[21] Moshe Lichman. 2013. UCI Machine Learning Repository. (2013). http://archive.
ics.uci.edu/ml

[22] Attila Reiss and Didier Stricker. 2012. Introducing a new benchmarked dataset
for activity monitoring. InWearable Computers (ISWC), 2012 16th International
Symposium on. IEEE, 108–109.

[23] Leszek Rutkowski, Lena Pietruczuk, Piotr Duda, and Maciej Jaworski. 2013. De-
cision trees for mining data streams based on the McDiarmid’s bound. IEEE
Transactions on Knowledge and Data Engineering 25, 6 (2013), 1272–1279.

[24] Silas Santos et al. 2014. Speeding Up Recovery from Concept Drifts. Springer Berlin
Heidelberg, Berlin, Heidelberg, 179–194.

[25] Allan Stisen et al. 2015. Smart Devices Are Different: Assessing and Mitigating-
Mobile Sensing Heterogeneities for Activity Recognition. In Proceedings of the
13th ACM Conference on Embedded Networked Sensor Systems (SenSys ’15). ACM,
New York, NY, USA, 127–140.

[26] Paul E Utgoff. 1989. Incremental induction of decision trees. Machine learning 4,
2 (1989), 161–186.

Research Track Paper KDD 2018, August 19‒23, 2018, London, United Kingdom

1962 63

64

Chapter 5

Responding to Concept Drift:
Extremely Fast Adaptive Tree

“Future Work”—We have no idea.

Chapter 4 details a learning mechanism, Hoeffding AnyTime Tree (HATT), designed as a re-
placement for Hoeffding Tree (HT) on stationary streams. HATT adds plasticity through eager
splitting that results in greater statistical efficiency and consequent superior prequential accuracy
performance on a UCI testbench. In this chapter, we study the effect of using the eager splitting
strategy with an adaptive algorithm designed for learning with concept drift, Hoeffding Adaptive
Tree [11]. In order to avoid confusion between HAT and HATT, in this chapter we will refer to
HATT by the name of its implementation, Extremely Fast Decision Tree (EFDT).

By HAT we refer to the original implementation of Hoeffding Adaptive Tree with all the un-
specified features—for this discussion, we will assume that the reader is familiar with Chapter 3.
HAT, with all unspecified features, has outstanding prequential accuracy performance as a package
that we could not beat by experimenting with combining some of the unspecified features that we
identified in Chapter 3. It would appear the unspecified features—including the replacement of
mainline subtrees anytime an alternate leaf is ready to split, instead of replacing the corresponding
leaf—are incredibly powerful strategies in the face of concept drift.

HAT’s change detection and subsequent update strategy is explicitly designed for addressing
concept drift. As a result, we investigate whether replacing the simple update strategy of EFDT
with HAT’s revision strategy leads to better drift responsiveness. We call this strategy Extremely
Fast Adaptive Tree (EFAT).

This simple change in strategy turns out to be profitable for EFAT with respect to both HAT
and EFDT on concept-drifting streams as well as on real streams with minimal concept drift.

Overall, these results support the thesis that rationalized plasticity at multiple layers of a learn-
ing mechanism in different flavors (whether short-term plasticity aimed at long-term stability as
with EFDT, or greedy plasticity aimed at rapid drift response as with HAT, or a combination) can
be effective for learning in settings with concept drift as well in the stationary setting.

65

5.1 Experimental Results

The experimental design we use to compare EFDT, EFAT and HAT is the same as the one used in
Chapter 3.

5.1.1 EFDT and HAT

EFDT is not designed to address concept drift, as is Hoeffding Adaptive Tree (HAT). EFDT is
considerably more conservative than HAT in deciding when to modify tree structure.

As discussed in Chapters 2, 3 and 4, HAT theoretically modifies tree structure as soon as an
alternate has reliably superior accuracy (based again on the Hoeffding Test). However, given the
unspecified feature of voting alternates, structural modification effectively occurs as soon as an
alternate is created. In either instance, HAT is far more plastic than is EFDT, which modifies tree
structure only once it is confident that a new split is better than the existing one. HAT can replace
a subtree trained on data from an older concept with an alternate subtree trained on fresh data
from a new concept even if the replacement subtree splits on the same attribute as the mainline
one at the top level. EFDT, which does not build alternate subtrees, replaces splits, deleting any
underlying tree structure; it will replace a split only if it infers that on an underlying generating
distribution assumed to be stationary, an alternative split attribute is better than the current one.
EFDT is thus less sophisticated in its response to concept drift than is HAT.

On real data streams—mostly UCI testbenches with inherent concept drift, and incidental con-
cept drift introduced due to concatenation of data files—HAT appears to have a slight advantage
over EFDT, though it is not within a 0.05 significance level (Table 5.1, p-value 0.17964). When
these UCI streams are shuffled to remove concept drift, as shown in Table 5.2 EFDT appears to have
the advantage over HAT, though not within a 0.05 significance level. The event we are interested
in is that of EFDT winning 13 or more times by chance—and this has a probability of 0.08353,
which does not fall within a 0.05 level of significance, but still suggests that the greater stability
of EFDT is more suitable in situations with minimal concept drift (note that the p-value 0.996822
in the table corresponds to the probability that HAT wins at least 6 times if wins and losses were
equiprobable).

66

Table 5.1: Real Streams: EFDT and HAT

Streams EFDT HAT

aws—price-discretized 0.14143 0.14572
chess 0.31152 0.08866
covertype 0.15431 0.1808
covpokelec 0.19391 0.26455
fonts 0.003 0.0053
hhar 0.00357 0.00519
kdd 0.00094 0.00092
localization 0.09754 0.059
miniboone 0.00013 0.00011
nbaiot 0.00076 0.00035
nswelec 0.19283 0.16772
pamap2 0.06136 0.03138
poker 0.218 0.3315
pucrio 0.00147 0.00125
sensor—home-activity 0.00135 0.00068
sensor—CO-discretized 0.06655 0.03226
skin 0.00055 3e-04
tnelec 0.00496 0.00376
wisdm 0.14576 0.16293

A bold value indicates higher accuracy, and bold italics indicate a tie. Unique Wins 7 12

The test is a one-tailed binomial test to determine the probability that the
strategy in the rightmost column would achieve so many wins if wins and
losses were equiprobable.

Test Statistics p-value:
0.17964

Confidence
Interval:
0.41806
— 1

Table 5.2: Real Streams, Shuffled: EFDT and HAT

Streams EFDT HAT

aws—price-discretized 0.14139 0.15319
chess 0.60706 0.67336
covertype 0.27648 0.28159
covpokelec 0.37454 0.3386
fonts 0.00068 0.00062
hhar 0.05113 0.06596
kdd 0.00094 0.00173
localization 0.33857 0.35673
miniboone 0.11875 0.11652
nbaiot 0.02908 0.33445
nswelec 0.24057 0.24114
pamap2 0.15672 0.218
poker 0.30909 0.28636
pucrio 0.08329 0.12773
sensor—home-activity 0.0955 0.08867
sensor—CO-discretized 0.2432 0.22496
skin 0.01359 0.01593
tnelec 0.00586 0.73151
wisdm 0.13637 0.19029

A bold value indicates higher accuracy, and bold italics indicate a tie. Unique Wins 13 6

The test is a one-tailed binomial test to determine the probability that the
strategy in the rightmost column would achieve so many wins if wins and
losses were equiprobable.

Test Statistics p-value:
0.96822

Confidence
Interval:
0.14747
— 1

However, on a purely concept-drifting testbench, HAT has far superior prequential accuracy

67

performance (Table 5.3, p-value 0.00024), which is to be expected given its drift-specific plasticity.

Table 5.3: Synthetic Streams: EFDT and HAT

Streams EFDT HAT

recurrent—led 0.34679 0.26767
recurrent—randomtree 0.21817 0.09415
recurrent—sea 0.14958 0.11169
recurrent—stagger 0.19043 0.00158
recurrent—waveform 0.18957 0.17667
hyperplane—1 0.11677 0.11503
hyperplane—2 0.14056 0.12429
hyperplane—3 0.11208 0.11407
hyperplane—4 0.13384 0.11399
rbf—drift-1 0.11255 0.11806
rbf—drift-2 0.2623 0.18264
rbf—drift-3 0.14308 0.15343
rbf—drift-4 0.40597 0.32701
recurrent—abrupt—222 0.35381 0.00052
recurrent—abrupt—322 0.37596 0.00055
recurrent—abrupt—332 0.33376 0.00132
recurrent—abrupt—333 0.36583 0.00295
recurrent—abrupt—334 0.39001 0.00904
recurrent—abrupt—335 0.3945 0.01264
recurrent—abrupt—422 0.33569 6e-04
recurrent—abrupt—444 0.38967 0.04815
recurrent—abrupt—522 0.33374 6e-04
recurrent—abrupt—555 0.40866 0.27943

A bold value indicates higher accuracy, and bold italics indicate a tie. Unique Wins 3 20

The test is a one-tailed binomial test to determine the probability that the
strategy in the rightmost column would achieve so many wins if wins and
losses were equiprobable.

Test Statistics p-value:
0.00024

Confidence
Interval:
0.69636
— 1

5.1.2 HAT and EFAT

Interestingly, EFAT—a tree with the eager splitting mechanism from EFDT and the drift adaptation
mechanism from HAT—outperforms HAT on real streams whether shuffled (Table 5.4, p-value
0.02452) or unshuffled (Table 5.5, p-value 0.00636), as well as on synthetic streams with concept
drift (Table 5.6, p-value 0.01734). That EFAT performs better than HAT on shuffled streams in
spite of greater plasticity is interesting—this might be because useful structure is learned faster,
thus deploying a higher quality classifier sooner.

68

Table 5.4: Real Streams: HAT and EFAT

Streams HAT EFAT

aws—price-discretized 0.14572 0.13956
chess 0.08866 0.04397
covertype 0.1808 0.11259
covpokelec 0.26455 0.19816
fonts 0.0053 0.00147
hhar 0.00519 0.00132
kdd 0.00092 0.00102
localization 0.059 0.0469
miniboone 0.00011 0.00011
nbaiot 0.00035 0.00019
nswelec 0.16772 0.1418
pamap2 0.03138 0.05903
poker 0.3315 0.25468
pucrio 0.00125 0.00127
sensor—home-activity 0.00068 0.00074
sensor—CO-discretized 0.03226 0.02605
skin 3e-04 3e-04
tnelec 0.00376 0.00339
wisdm 0.16293 0.09262

A bold value indicates higher accuracy, and bold italics indicate a tie. Unique Wins 4 13

The test is a one-tailed binomial test to determine the probability that the
strategy in the rightmost column would achieve so many wins if wins and
losses were equiprobable.

Test Statistics p-value:
0.02452

Confidence
Interval:
0.53945
— 1

Table 5.5: Real Streams, Shuffled: HAT and EFAT

Streams HAT EFAT

aws—price-discretized 0.15319 0.14962
chess 0.67336 0.60834
covertype 0.28159 0.27161
covpokelec 0.3386 0.30311
fonts 0.00062 0.00062
hhar 0.06596 0.08036
kdd 0.00173 0.00186
localization 0.35673 0.35505
miniboone 0.11652 0.10954
nbaiot 0.33445 0.00203
nswelec 0.24114 0.23722
pamap2 0.218 0.17819
poker 0.28636 0.30697
pucrio 0.12773 0.05015
sensor—home-activity 0.08867 0.03589
sensor—CO-discretized 0.22496 0.17362
skin 0.01593 0.00956
tnelec 0.73151 0.73151
wisdm 0.19029 0.12277

A bold value indicates higher accuracy, and bold italics indicate a tie. Unique Wins 3 14

The test is a one-tailed binomial test to determine the probability that the
strategy in the rightmost column would achieve so many wins if wins and
losses were equiprobable.

Test Statistics p-value:
0.00636

Confidence
Interval:
0.60436
— 1

69

Table 5.6: Synthetic Streams: HAT and EFAT

Streams HAT EFAT

recurrent—led 0.26767 0.26775
recurrent—randomtree 0.09415 0.0855
recurrent—sea 0.11169 0.11183
recurrent—stagger 0.00158 0.00122
recurrent—waveform 0.17667 0.17475
hyperplane—1 0.11503 0.12303
hyperplane—2 0.12429 0.13156
hyperplane—3 0.11407 0.12494
hyperplane—4 0.11399 0.12018
rbf—drift-1 0.11806 0.11026
rbf—drift-2 0.18264 0.1586
rbf—drift-3 0.15343 0.14871
rbf—drift-4 0.32701 0.31819
recurrent—abrupt—222 0.00052 0.00049
recurrent—abrupt—322 0.00055 0.00053
recurrent—abrupt—332 0.00132 0.00094
recurrent—abrupt—333 0.00295 0.00137
recurrent—abrupt—334 0.00904 0.00273
recurrent—abrupt—335 0.01264 0.0053
recurrent—abrupt—422 6e-04 0.00051
recurrent—abrupt—444 0.04815 0.01342
recurrent—abrupt—522 6e-04 0.00051
recurrent—abrupt—555 0.27943 0.09666

A bold value indicates higher accuracy, and bold italics indicate a tie. Unique Wins 6 17

The test is a one-tailed binomial test to determine the probability that the
strategy in the rightmost column would achieve so many wins if wins and
losses were equiprobable.

Test Statistics p-value:
0.01734

Confidence
Interval:
0.54902
— 1

5.2 Future Work

While we make a start studying the interaction of eager splitting and change detection, detailed
analysis of the combination of specified and unspecified strategies for both the case of individual
and ensembled learners is left to future work. HAT as implemented has a tendency for exponential
growth due to alternates being allowed their own alternates; but subtree replacement on the ba-
sis of unrelated alternate splitting reverses this tendency and adds plasticity. On the other hand,
“re-splitting” may lead to degenerate paths and increased tree size—while simultaneously increas-
ing drift adaptation. Overall, with the unspecified features, tree growth is difficult to predict...
yet unspecified features interact in an intriguing, overall highly performant manner with respect
to prequential accuracy, at least in the case of individual trees. Experiments with ensembles of
HAT consumed far too much memory on our standard testbench, leading to experimental failure,
especially so with eager splitting (we terminated our experimentation at a maximum of 128GB and
a Java stack of 24GB); HAT/EFAT growth will have to be methodically addressed in future work.

HAT performs well on prequential accuracy in spite of the unspecified feature of discarding
mainline trees and subtrees when the alternate is ready to split, long before a comparison of relative
accuracy takes place.

It is plausible that for most tested scenarios, the concept in the mainline tree is already less
effective than an alternate leaf by when the alternate is ready to split, and that it is thus usually
suitable to discard the mainline tree when an alternate leaf is ready to split. Alternate leaves, unlike

70

child nodes, do not receive a class distribution. Perhaps that an alternate is ready to split signifies
that it is more fruitful to discard the previous split at a given level and lose all of the structure
underneath than aim to retain it—as long as the structure is quickly recovered through rapid tree
growth.

An obvious next step involves creating testbenches that respond poorly to replacement of the
main tree—we did not seem to quite achieve this in spite of our large testbench with recurrent
drift and difficult-to-learn concepts. Clearly, designing a concept drift testbench is a problem that
requires significant work. It might be the case that most problems that we are likely to encounter
in the real world are addressed sufficiently well simply through bounded plasticity, though that is
unlikely. We are building on top of a machine learning ecosystem designed to generalize well on
stationary distributions. Our ecosystem of testbenches, evaluation methods, theoretical constructs
and learning strategies is evolving, but slowly and incrementally. Given such an ecosystem, it
is perhaps unsurprising in hindsight that increasing doses of plasticity in even uncontrolled and
seemingly catastrophic ways helps learning under concept drift.

Ensembles that actively maintain both stable and plastic components might be a direction to
continue to pursue. Naturally, the question of how many degrees of indirection are required arises;
how do we decide what “stable” components store? Would we be “storing” concepts that we may
be able to return to, in a “repository”, as in [108]? If so, how many concepts do we store? If not, are
we assuming that there are longer term features in the stream that are beneficial to model within
a stable sub-component of the ensemble?

At this early stage of development, I believe it is premature to start optimizing for storage and
retrieval of past knowledge in repositories, though it is clearly a promising direction to explore. We
have yet to optimize prediction from the knowledge stored within “active” learning components—I
believe there is ample scope for improvement of adaptive mechanisms in one-pass settings.

71

72

Chapter 6

Ensembles of EFDT

Is the sum of the parts...

VFDT remains the popular choice of base learner for random forests, and for boosting and
bagging with online decision trees. Is EFDT a better choice?

In this chapter, we study the effects of short-term plasticity and long-term stability—as obtained
from EFDT—in base learners for tree ensembles.

73

Noname manuscript No.
(will be inserted by the editor)

An Eager Splitting Strategy for Online Decision Trees

Chaitanya Manapragada · Heitor M Gomes ·
Mahsa Salehi · Albert Bifet · Geoffrey I Webb

Received: date / Accepted: date

Abstract Keywords Concept Drift · Hoeffding Tree · Explainability
We study the effectiveness of replacing the split strategy for the state-of-the-art online tree

learner, Hoeffding Tree, with a rigorous but more eager splitting strategy. Our method, Hoeffding
AnyTime Tree (HATT), uses the Hoeffding Test to determine whether the current best candidate
split is superior to the current split, with the possibility of revision, while Hoeffding Tree aims to
determine whether the top candidate is better than the second best and fixes it for all posterity.
Our method converges to the ideal batch tree while Hoeffding Tree does not. Decision tree
ensembles are widely used in practice, and in this work, we study the efficacy of HATT as a
base learner for online bagging and online boosting ensembles. On UCI and synthetic streams,
the success of Hoeffding AnyTime Tree in terms of prequential accuracy over Hoeffding Tree is
established. HATT as a base learner component outperforms HT within a 0.05 significance level
for the majority of tested ensembles on what we believe is the largest and most comprehensive
set of testbenches in the online learning literature. Our results indicate that HATT is a superior
alternative to Hoeffding Tree in a large number of ensemble settings.

1 Introduction

The traditional batch learning setting for machine learning is designed for finite datasets drawn
from stationary distributions. Methods developed for learning from such datasets do not readily
lend themselves to modern data processing applications dealing with streams of data where
instances arrive continuously, generated by processes that may themselves be ever-changing. It
is necessary to design new algorithms for learning from such settings, and a good place to start
is from algorithms designed for batch settings.

Decision Trees are ubiquitous in batch learning settings, both as individual learners and in
multiple ensembled forms such as Random Forests. Attempts at producing online versions of
decision trees largely dominate work in online learning. Hoeffding Tree (HT) [17] has been the
mainstay of online decision tree learning methods since its introduction in 2000 by Domingos &

Chaitanya Manapragada, Geoff Webb, Mahsa Salehi
Monash University, Australia
E-mail: FirstName.LastName@monash.edu

Albert Bifet, Heitor Murilo Gomes
University of Waikato, New Zealand
E-mail: FirstName.LastName@waikato.ac.nz

74

2 Chaitanya Manapragada et al.

Hulten. To the best of our knowledge, it is the first attempt at incremental tree learning that
provides guarantees of bounded divergence from a theoretical batch tree that has all examples
in an infinite stream available to it at once. These guarantees are useful in that they enable us
to compare theoretical performance with respect to longstanding, reliable decision tree methods.
However, such guarantees often assume each data instance corresponds to a random variable
from a stationary process that generates independent and identically distributed (i.i.d) random
variables. This is usually not a valid assumption in streaming scenarios in which processes can
change over time, and working around this assumption would require placing restrictions on the
nature of change of the generating process. Such restrictions may be meaningful in the context
of particular, well-studied processes where the nature of change is fully known.

In the batch learning scenario, all target values are available at the outset, barring missing
values. In the online setting, there is expected to be an infinite stream of instances and thus
storage is considered impossible in the limit. Incremental tree learners are thus typically one-pass
learners, in that they process each training instance exactly once. And because they are one-pass
learners, incremental learners naturally allow for continuous evaluation; continuous evaluation
of learning enables us, among other things, to detect or otherwise respond to concept drift in
streams and adapt the learner accordingly.

Hoeffding Tree has dominated the development of incremental learning, winning a KDD Test
of Time award [49] in 2015. It uses a statistical test—the Hoeffding Test— that is known to
possibly lead to loose bounds, that is, the bound on the difference between the observed mean
and the true mean is larger than would have been obtained with a tighter bound on the standard
deviation. R, the range (or support) of the random variable may be considered too large an upper
bound for the standard deviation in cases where variance is small [55]. The population of random
variables1 consists of the difference of cumulatively averaged information gain measurements of
the top two split attributes after each learning step; a loose bound implies that a far larger
number of such measurements is needed than actually required to establish the winning attribute
[25]. Because the bound depends on the size of the population of random variables, which in turn
depends directly on the number of observations of training instances, greater statistical efficiency
(see Figure 1) may be achieved by either using an alternative test or by changing the application
of the test. Our strategy, Hoeffding AnyTime Tree (HATT) [34], is an example of the latter.

Our focus in this work is on online classification tasks, though our method can also be used for
regression. In 2018, we presented preliminary results based on a simple and fundamental change
[34]: HATT uses the current best available split attribute until a better one is found, as opposed
to Hoeffding Tree which aims to find a split attribute that will never have to be replaced. HATT
converges to the ideal batch tree while Hoeffding Tree does not. Our implementation of HATT,
Extremely Fast Decision Tree (EFDT), was demonstrated to offer significant improvement in
prequential accuracy2 on UCI data streams over the Hoeffding Tree implementation Very Fast
Decision Tree (VFDT) from the MOA toolkit [5] in a comparison setting that included only
a minor change to VFDT in order to obtain EFDT. The current state-of-art tree-based online
systems are ensembles that use VFDT as a base learner. In this work we provide a detailed
assessment of the relative performance of VFDT and EFDT as base learners for online ensembling
techniques.

1 There is a common misconception that an individual random variable “changes, taking on a number of values
during a process”; in fact, a process is a sequence of events, each of which corresponds to an individual random
variable that has taken a particular value (which is fixed and never to change).

2 In the prequential setting, training instances arrive in a sequence, and the true target value pertaining to each
training instance is made available after the predictor has offered a prediction for a sequence of n instances. The
loss function applied is necessarily incremental in nature. Choosing n = 1 — that is, updating the predictor after
every instance—is an obvious transformation of a periodic evaluation process into an instantaneous one. While
not typical of real world application scenarios, prequential accuracy serves as a useful approaximation thereto.

75

An Eager Splitting Strategy for Online Decision Trees 3

(a) Data Types — Data with Attribute 1 = Red and Attribute 2 = Blue are classified as Purple. All other data
are classified as White. Attributes are independent.
Distribution of Data — Attribute 1 is red 3/4 of the time, Attribute 2 is blue 2/3 of the time, so each class occurs
1/2 the time.

(b) Streaming Example with Tree Construction.

Fig. 1: On a randomized stream generated from the data schema and distribution shown above
in (a), EFDT first splits after 8-9 examples, then splits again after 12-13 examples to build the
correct tree. VFDT takes around 69 examples for the first split, and makes the second split at
around 73 examples. EFDT greatly increases statistical efficiency without compromising the use
of a rigorous statistical test to determine split attributes, and revises splits in order to converge
to the ideal batch tree.

76

4 Chaitanya Manapragada et al.

Hoeffding Tree is the base learner for online versions of widely successful ensembling methods
such as random forests, bagging and boosting. A host of derivative online ensemble methods have
been proposed in the literature; the methods vary in the diversity of base learners they use, the
the adaptability of the ensemble as a whole and of the component base learners. It is imperative
that a proposed method works well in ensemble settings as well as standalone, as likely usage
will often involve ensemble learners.

The ensemble methods we test generally far outperform plain EFDT and VFDT in terms of
prequential accuracy, which is to be expected; bagging approaches specifically utilize diversity in
order to aim to “stabilize” the predictive model, while boosting approaches modify the model in
a principled manner to focus on learning misclassified examples. Generally speaking, the success
of ensembling strategies on this testbench and in practice in the real world demonstrates that
tree learners may suffer from high variance and a small considered hypothesis space (bias) when
used as individual classifiers. Further, it should be noted that a formal definition of overfitting
or underfitting is difficult to obtain in an online setting that may include concept drift unless
the nature and magnitude of drift is bounded and fixed in a highly restrictive manner.

It is the prerogative of the user to pick an ensemble method that suits the application of
interest; a corollary of the No Free Lunch Theorems is that no individual system will obtain
superior performance on all possible problems [57, 58, 59]. With this proviso, in this work, we
show that on the most common testbenches, it is highly beneficial to use HATT as a base classifier
for ensemble methods in the place of Hoeffding Tree in terms of prequential accuracy.

The main contributions of this paper are:

1. A comprehensive experimental analysis comparing EFDT and VFDT as base learners for a
large set of online ensembles across a diverse set of real and synthetic streams, building on
our preliminary work in [34]

2. Identification of scenarios in which EFDT has a definitive advantage with high confidence
3. A working hypothesis for the observed outperformance of EFDT (Section 3.4)
4. Discussion of how change detection mechanisms may interact adversely with ensemble com-

ponents

This paper is organized as follows: Section 2 presents a general overview of the context of
stream learning within which this work is placed. Section 3 presents HATT. This is largely
similar to our previous presentation in [34], but with the addition of a new subsection on HATT
in ensembles (Section 3.4), the primary focus of this paper. Section 4 describes our experimental
setup. Section 5 is a discussion of experimental results in terms of the types of ensembles and
settings in which HATT is advantageous as a base learner. Section 6 summarizes our findings.

2 Background

2.1 Decision Trees for Batch Learning

Of the many approaches to inductive learning, Decision Trees are a particularly utile paradigm
that store knowledge in an easily interpretable manner. Algorithms that build decision tree
models recursively divide the sample space with hyperplane decision boundaries. Each division
represents a conditioning of the sample space on a particular set of data attribute values or
ranges. The knowledge obtained from a Decision Tree is represented in an elementary form; in
the classification case, each path down the tree results in a conditional probability distribution
P (C|X1 = v1, X2 = v2, ...), that is, the probability distribution of the class values given the
observations X1 = v1, X2 = v2, The regression case may use, for instance, a simple average
of observed target values.

77

An Eager Splitting Strategy for Online Decision Trees 5

Decision Trees are a natural starting point for the study of extending inductive strategies
to streaming scenarios; their simplicity allows us to compute model complexity [37], and they
are highly interpretable. Concept Learning System (CLS) [29] was one of the first decision tree
algorithms, published in 1966. The next decision tree system of note was Iterative Dichotomizer
(ID3), published in 1979 [39, 40]. ID3 introduced the idea of using information gain as a split
heuristic, though it was limited to handling binary classification and assumed all instances were
correctly labelled.

“Classification and Regression Trees” (CART), proposed in 1984, included pruning to adjust
for overfitting, multiclass classification, and a solution for regression [11]. CART used the Gini
coefficient as a heuristic, not Information Gain. Consequently, a major improvement over ID3
called C4.5 that also addressed pruning, multiclass classification and regression was released [41].
The ideas embedded in C4.5 and CART form the basis of most modern decision tree learning
systems today designed for both batch and streaming scenarios.

2.2 Incremental Decision Trees

Work on incremental decision trees began appearing just as batch decision trees started to
mature. ID4 [46] was an incremental extension to ID3 that stored instances used for a split at
each level of the tree. ID4 was conceived for a binary classification problem; the test of choice is
the χ2 test to determine whether the attribute with maximal separation power is independent
of the target variable. When confidence of dependence is reached with the χ2 test, the maximal
attribute is split upon. The limitation of ID4 was that storage required was in the order of the
number of instances.

Storage is a primary issue to address in the construction of an incremental supervised learning,
because streams may be assumed to be indefinite. Another key problem is determining when and
how the algorithm should modify the model—unlike with batch learning, one does not have all
training instances available in one go and must periodically decide whether one has enough data
to modify the decision tree model with some degree of confidence.

Strategies that process each instance and discard it immediately afterwards—one-pass
strategies—would hypothetically address the problem of storage by only requiring storage of
the order of the size of the tree, not the number of instances.

HoeffdingTree (Algorithm 2.1) was one of several attempts [46, 53] to provide a one-pass
solution. Its success may be attributed to the fact that it was the first one-pass learner to also
offer a robust solution to the problem of how the algorithm should modify the tree model. This
robustness lies in the guarantees provided by the HoeffdingTree algorithm on the deviation of
the inducted tree from the ideal batch tree—the hypothetical tree that would be learned if all
infinite examples from a stationary distribution were made available at once. Hoeffding Tree uses
a statistical test—the Hoeffding Test [17, 26]—to determine the most appropriate time to split.
Its success may be attributed to the fact that it provided both a one-pass solution and deviation
guarantees in the same package.

The ideas that underlie HoeffdingTree were individually and independently developed in
related contexts. Work on scalability of batch learners had helped set the foundation for one-
pass learning in sequential prediction scenarios. Bootstrapped Optimistic Algorithm for Tree
construction (BOAT) [19] in particular lays the groundwork of ideas for a tree refined in stages,
though it deals with a batch setting. BOAT represents a typical attempt at learning from a large
database that does not use a predictive sequential setting, by sampling fixed size chunks that
are used to bootstrap multiple trees. A “coarse” tree is then extracted, based on the overlapping
parts of the bootstrapped trees in terms of split decisions; this tree is further refined to produce

78

6 Chaitanya Manapragada et al.

Algorithm 2.1: Hoeffding Tree, Domingos & Hulten (2000) –Reproduced verbatim from

original–

Input: S, a sequence of examples,
X, a set of discrete attributes,
G(.), a split evaluation function
δ, one minus the desired probability of choosing the correct attribute at any given node

Output: HT , a decision tree.
begin

Let HT be a tree with a single leaf l1 (the root).
Let X1 = X ∪X∅.

Let G1(X∅) be the G obtained by predicting the most frequent class in S
foreach class yk do

foreach value xij of each attribute Xi ∈ X do
Let nijk(l1) = 0

end

end
foreach example (x, y) in S do

Sort (x, y) into a leaf l using HT
foreach xij in x such that Xi ∈ Xl do

Increment nijk(l)
end
Label l with the majority class among the examples seen so far at l
if the examples seen so far at l are not all of the same class then

Compute Gl(Xi) for each attribute Xi ∈ Xl − {X∅} using the counts nijk(l)

Let Xa be the attribute with highest Gl

Let Xb be the attribute with second-highest Gl

Compute ε using Equation ??

if Gl(Xa)−Gl(Xb) > ε and Xa 6= X∅ then
Replace l by an internal node that splits on Xa foreach branch of the split do

Add a new leaf lm and let Xm = X− {X∅} Let Gm(X∅) be the G obtained by
predicting the most frequent class at lm foreach class yk and each value Xij of
each attribute Xi ∈ Xm − {X∅}]} do

Let nijk(lm) = 0
end

end

end

end

end
Return HT

end

a final tree by passing the whole dataset over it. The system is “incremental” in the sense that
it can process additional datasets; and it is responsive to drift in that the system detects when
a new dataset requires a change in split criterion at a node through a global assessment of split
criterion, and causes a rebuild of the subtree rooted at that node. While key ideas that shape later
trees are developed in this work, the sizes of the initial bootstrap samples are arbitrarily chosen,
and concurrently the notion of anytime prediction is not entertained—there is no automated
way of determining how many examples suffice to build a first reliable tree. Further, the focus
is on minimizing utilization of main memory; it is assumed that the database D is available
for a corrective step in the algorithm. On the other hand, Hoeffding Tree is truly one-pass, in
that it is assumed that an example is seen only once, then discarded. Meanwhile, the RainForest
framework [20] introduces the idea of storing attribute-value-class counts at nodes, which we see
in Hoeffding Tree as node statistics. Node statistics are indispensable in HoeffdingTree; they solve
the one-pass problem and are critical in the application of the Hoeffding Test for split evaluation.

79

An Eager Splitting Strategy for Online Decision Trees 7

Hoeffding Tree may be considered to be aiming to achieve the same evaluation objective as
CART and C4.5—maximal class purity—with a heuristic designed to be relevant in the streaming
scenario where the data generation distribution is assumed to be static.

2.3 Ensembles

Ensemble methods were proposed as a means of utilizing multiple predictors to represent and
combine various parts of the instance space, for various heuristic reasons—using a set of base
predictors may reduce the risk of building an overfitted individual predictor; reducing the com-
plexity of each individual base predictor may also serve to reduce risk from overfitting [16].
Further, using multiple base predictors may allow us to achieve a rather different bias-variance
profile compared to using a single predictor.

Bootstrap aggregation- or “bagging” ensembles were proposed for stability, that is, to limit
variance [12]. By “perturbing” the learning set for each component of an ensemble of predictors,
Breiman creates predictors that effectively represent a larger bias (the set of hypothesis func-
tions being considered) through combination. Assuming then a stationary distribution over the
instance space, the ensemble is likely to demonstrate lower dataset dependent variance than a
single tree. The objective for bagging differs from boosting in its addressal of controlling variance,
and the accompanying heuristic follows.

Boosting was first proposed as an approach to answer affirmatively the question of whether
a combination of weak predictors—predictors that find hypotheses that perform only slightly
better than random guessing—can learn strongly, that is, are able to find hypotheses “that are
correct with high probability on all but an arbitrarily small fraction of instances” [45]. In the
classification setting, boosting works by using some components of the ensemble to focus on
weighting misclassified examples higher so they are preferentially learned with respect to their
actual frequency of occurrence, and thus potentially classified better on a test set if they were
not merely noisy instances. In practice, a major advantage is that ensemble components need to
be less complex (thus less prone to individually overfit). The objective is to reduce the possibility
of overfitting, and the heuristic is the idea that using individual models of lower complexity will
mitigate the danger of overfitting while remaining effective as constituent ensemble components
would have learned subconcepts that would otherwise have been learned by a single complex
model.

Online versions of both boosting (OzaBoost) and bagging (OzaBag) were proposed in [38].
Hoeffding Tree versions of the ensembles were made available in MOA [5].

Because the online versions assume infinite streams, strategies to sample the input space in
a manner equivalent to sampling from a finite sample space had to be devised. Online bagging
as performed by OzaBag achieves the goal of providing each learner with a different subset of
the sample space by weighting each example with a value drawn from a Poisson(1) distribution.
Similarly, online boosting as performed by OzaBoost provides the first base predictor an example
weighted as Pois(λ = 1); the second base predictor receives weighted examples with λ adjusted so
that misclassified examples comprise half the total weight, thus heavily stressing the learning of
misclassified examples. This telescoping sequence of boosting misclassified examples is continued
through the predictors in the ensemble.

While ensembles do tend to be more expensive in terms of memory and time than individual
predictors, their ability to provide diversity particularly motivates their usage with evolving
streams. As discussed, predictor diversity is central to bagging approaches; it plays a role in
boosting approaches; in evolving scenarios, some base predictors may learn the latest versions
of a changing concept, some may preserve portions of a concept that may recur, and some

80

8 Chaitanya Manapragada et al.

predictors could be reset if they have not been of utility for a prolonged period. Note that there
also exists the possibility that an ensemble approach may degenerate its base predictors into a
set of redundant models [22].

3 Hoeffding AnyTime Tree (HATT)

Algorithm 3.1: Hoeffding Anytime Tree

Input: S, a sequence of examples. At time t, the observed sequence is St = ((x1, y1), (x2, y2), ...(xt, yt))
X = {X1, X2...Xm}, a set of m attributes
δ, the acceptable probability of choosing the wrong split attribute at a given node
G(.), a split evaluation function

Result: HATT t, the model at time t constructed from having observed sequence St.
begin

Let HATT be a tree with a single leaf, the root
Let X1 = X ∪X∅
Let G1(X∅) be the G obtained by predicting the most frequent class in S
foreach class yk do

foreach value xij of each attribute Xi ∈ X do
Set counter nijk(root) = 0

end

end
foreach example (x, y) in S do

Sort (x, y) into a leaf l using HATT
foreach node in path (root...l) do

foreach xij in x such that Xi ∈ Xnode do
Increment nijk(node)
if node = l then

AttemptToSplit(l)
else

ReEvaluateBestSplit(node)
end

end

end

end

end

Hoeffding AnyTime Tree (Algorithm 3.1) [34] makes a simple change to the attribute selec-
tion mechanism of Hoeffding Tree and achieves better performance on a large testbench. Given
the streaming setting, the objective underwent a subtle change; convergence to the ideal batch
tree was the aim, as divergence from the ideal batch tree grows as the number of leaves in
HoeffdingTree, which may plausibly be expected to see exponential growth, invalidating it in
the general case. Assuming the convergence objective can be met, a desired augmentation to
the objective is statistical efficiency on the way to convergence. A strategy for convergence in a
streaming scenario would necessarily re-evaluate the model; HATT improvises a split evaluation
heuristic more conducive to statistical efficiency and eventual convergence than to maximizing
confidence in historical splits as does HoeffdingTree.

As previously mentioned, in the classification setting, decision trees are grown by repetitively
dividing the instance space and assigning a class (and possibly a probability distribution over
classes) to each subspace. Where all training instances are available at the outset, as in batch
learning, decision trees evaluate all available features (attributes) in order to decide which at-
tribute should first be utilized to divide the space. According to the split heuristics we have

81

An Eager Splitting Strategy for Online Decision Trees 9

Function 3.2: AttemptToSplit(leafNode l)

begin
Label l with the majority class at l
if all examples at l are not of the same class then

Compute Gl(Xi) for each attribute Xl − {X∅} using the counts nijk(l)

Let Xa be the attribute with the highest Gl

Let Xb = X∅
Compute ε using equation ??

if Gl(Xa)−Gl(Xb) > ε and Xa 6= X∅ then
Replace l by an internal node that splits on Xa

for each branch of the split do
Add a new leaf lm and let Xm = X−Xa

Let Gm(X∅) be the G obtained by predicting the most frequent class at lm
for each class yk and each value xij of each attribute Xi ∈ Xm− {X∅} do

Let nijk(lm) = 0.
end

end

end

end

end

Function 3.3: ReEvaluateBestSplit(internalNode int)

begin

Compute Gint(Xi) for each attribute Xint − {X∅} using the counts nijk(int)

Let Xa be the attribute with the highest Gint

Let Xcurrent be the current split attribute
Compute ε using equation ??

if Gl(Xa)−Gl(Xcurrent) > ε then
if Xa = X∅ then

Replace internal node int with a leaf (kills subtree)
else if Xa 6= Xcurrent then

Replace int with an internal node that splits on Xa

for each branch of the split do
Add a new leaf lm and let Xm = X−Xa

Let Gm(X∅) be the G obtained by predicting the most frequent class at lm
for each class yk and each value xij of each attribute Xi ∈ Xm− {X∅} do

Let nijk(lm) = 0.
end

end

end

end

end

discussed, the best attribute is one that maximizes increase in class purity based on some heuris-
tic measuring class purity such as Information Gain or the Gini Coefficient. For example, if we
have available the nominal features “can-swim” and “is-a-mammal”, the latter feature would
perfectly classify sharks and dolphins, splitting the instance space into two parts assuming no
noise in the data, while the former attribute provides no information, as both sharks and dolphins
swim. Now suppose we wish to further classify the creatures as certain shark or dolphin species;
we may use other attributes to recursively split the instance space.

Where all training instances are not available at the outset, as in the case of online learning, it
becomes necessary to determine when and how split the instance space. Hoeffding Tree addresses
the problem by aiming to attain statistical confidence (using the Hoeffding Test) in the top

82

10 Chaitanya Manapragada et al.

attribute outperforming the second best attribute at each split decision. However, attaining this
confidence is time-consuming. HATT utilizes information available before attaining this level of
confidence by using the Hoeffding Test to determine whether a candidate attribute is better
than the current split, rather than the second best attribute. If there is currently no split and
a candidate split attribute tests to be significantly better, it is split upon; this decision may be
revised as necessary. The net result is that in the stationary (i.i.d) setting that Hoeffding Tree
assumes, HATT converges to the ideal tree that would have been obtained in a hypothetical
batch setting that processes an infinity of training examples at once.

3.1 Convergence

Hoeffding Tree probabilistically bounds deviation from the ideal batch tree. It guarantees that the
expected “extensional” or “intensional” disagreement from a batch tree are each independently
bound by δ

p , where δ is a tolerance level and p is the leaf probability– the probability that
an example will fall into a leaf at a given level. “Extensional disagreement” is defined as the
probability that a pair of decision trees will produce different predictions for a given example,
and “intensional disagreement” is the probability that the path of an example will differ on the
two trees [17]. It is assumed that these guarantees hold in the limit when trained on an infinite
dataset denoted DT∗. p is assumed to be constant across all levels for simplicity.

Note that the guarantees will weaken significantly as the number of leaves increase, tending to
probability bound 1 as tree size increases. Increasing the complexity and size of data streams such
that a larger tree is required increases the chance of a greater deviation. This limits the utility of
guarantees for Hoeffding Tree to lower dimensional scenarios, though the trees themselves may
be highly useful.

HATT on the other hand, converges in probability to the batch decision tree under the
following assumptions:

– No two attributes will have identical information gain. This is a simplifying assumption to
ensure that we can always split given enough examples, because ε is monotonically decreasing.

– The data are independently and identically distributed (i.i.d)

Given these assumptions, we list three useful properties of HATT that follow as lemmas; the
proofs are presented in the “Extremely Fast Decision Tree”work that introduces HATT [34].

Lemma 1 For any input stream S, HATT learned from S will have the same split attribute at
the root as HT learned from S at the time HT splits the root node.

Lemma 2 If the input stream S is i.i.d, the split attribute XHATT
R at the root node of HATT

converges in probability to the split attribute XDT∗
R used at the root node of DT∗. That is, as the

number of examples grows large, the probability that HATT will have at the root a split XHATT
R

that matches the split XDT∗
R at the root node of DT∗ goes to 1.

Lemma 3 If the input stream S is i.i.d, Hoeffding AnyTime Tree converges to the asymptotic
batch tree in probability.

3.2 Time and Space Complexity

Space Complexity:As detailed in [34], on nominal data with d attributes, v values per attribute,
and c classes, HATT requires O(dvc) memory to store node statistics at each node, as does HT
[17]. The worst case space complexity is O(vd−1dvc), because there may be a maximum of

83

An Eager Splitting Strategy for Online Decision Trees 11

(1 − vd)/(1 − v) nodes due to geometric tree growth. The space complexity for HT is given
as O(ldvc) in [17], where l is the current number of leaves; for HATT, the space complexity is
O(ndvc), where n is the current total number of nodes, including internal nodes. Because l is
O(n), space complexity is equivalent for HATT and HT.

In the ensemble setting, space complexity is simply multiplied by the maximum ensemble
size m to obtain O(mndvc). Ensembles which use change detectors add to the space complexity
by maintaining a window (this is independent of whether the base learner is HT or HATT).
The change detector used in such ensembles in our experiments is ADWIN, the default MOA
option, which maintains a self-adjusting window of prediction errors. ADWIN is parameterized
with a parameter M that determines maximum window size as W = M×∑M

i=0 2i. Each ADWIN
instance uses O(Mlog(W/M)) memory [4], and one instance is used per ensemble component,
so the space complexity added by ensembles that use ADWIN is O(mMlog(W/M)).

Time Complexity: Again, as detailed in [34], the worst-case cost of both split evaluation
and updating node statistics while processing an example are O(dvc) for HT and O(hdvc) for
HATT, where h is the maximum height of the tree. One leaf (for HT) or one path (for HATT)
have to be evaluated for splits and have their node statistics updated.

In the ensemble setting, time complexity is also simply multiplied by maximum ensemble size
m, giving us O(mdvc) for HT and O(mhdvc) for HATT for both split evaluation and updating
node statistics. Ensembles that use ADWIN add an additional amortized cost of O(1) and worst
case cost of O(W) for processing each example per ADWIN instance, which evaluates to O(m)
amortized and O(mW) worst case, as one ADWIN instance is used per ensemble component.

3.3 HATT in the context of concept drift

Hoeffding Tree is surprisingly responsive to concept drift given that it is designed for learning
from stationary distributions and has no capacity to revise internal nodes once they have been
added to the model. A major reason for this responsiveness is that when a split is created, the
new leaves that are created start with no memory of the examples seen by the learner previously.
As a result, if a split occurs after drift, the new leaves start with a fresh slate and learns the new
distribution [35].

HATT has the same property of new leaves starting with a fresh slate. However, it has the
additional properties of—

1. forming new branches more readily (when it has evidence that a specific branch is better than
none, rather than better than any potential alternative) and

2. replacing internal nodes with new splits when the new split becomes better than the existing
one.

The first of these properties enhances the speed with which HATT adjusts to drift, as it will
develop new leaves reflecting a new distribution more rapidly. However, the second has both
positive and negative aspects in the context of drift. Replacing an internal node can potentially
remove a large section of the model that reflects the old distribution and allow it to be replaced
by a new subtree that will grow to reflect the new distribution. However, the closer to the root
a node is, the more evidence of older distributions will be retained in its node statistics. Hence,
the closer to the root a node is, the longer it is likely to take for the evidence to grow sufficient
to replace it. As a result, by the time an internal node is replaced following a drift, the subtrees
below it are likely to have already had time to adjust to the new distribution, and hence replacing
them may be detrimental in the near term until a new tree can be grown to replace them.

84

12 Chaitanya Manapragada et al.

3.4 HATT in the Ensemble Setting

The choice of base predictor is important and Hoeffding Tree has been the mainstay of online
ensemble learning. It has been argued that uncorrelated predictions are important for error
reduction effect [12]; consequently that learner diversity is key to uncorrelated predictions [31],
implying that unstable learners are most suited as base learners for ensembles, so that small
changes to the stream can cause significant changes to the base models, creating diversity in
the ensemble. However, Hoeffding Tree is a stable learner [23]; that is, being provided slightly
different versions of a stream does not greatly alter the decision tree model produced, on account
of the Hoeffding Test that is used to decide each split with statistical confidence. Hoeffding
AnyTime Tree can be argued to be perfectly stable in the long run—no matter the sequence in
which the input is provided, it will converge to the ideal predictor as t→∞—however, it is far
less stable than Hoeffding Tree in the short term on account of its incidentally adaptive nature as
a result of constantly readjusting split decisions. This short term reduction in stability in HATT
is a plausible reason to expect more accurate ensembles when it is used as a base predictor in
ensembles in place of Hoeffding Tree.

4 Experimental Setup

We work with the MOA framework [5], which provides implementations of common ensembling
strategies for decision trees, including Hoeffding Tree. Each ensemble method comprises either a
bagging or boosting component, may involve a change detector and may also weight instances.
Change detectors are usually used to determine whether to kill off the worst performing trees in
order to replace them with a new one if a significant increase in the error is observed.

We use a testbench that to our best knowledge is the largest and most comprehensive in
the literature, though there is ample room for improvement. We test on UCI datasets that are
mostly drawn from real data as well as on synthetic streams with concept drift. We carefully
selected twenty real datasets: two electricity datasets and the airlines and AWS dataset that are
widely used in the concept drift literature, and as for the rest, the largest datasets from the
UCI repository that involved an obvious classification task and had no missing values in order
to reduce the confounding factor of how the algorithms handle missing values. We omitted the
physics simulation datasets Hepmass, SUSY and Higgs as these are synthetic datasets with low
information [34]. The price variable in the AWS dataset was discretized into ten equal buckets
and set as the classification target; similarly, the CO concentration variable in the sensor-CO
dataset was discretized into 5 equal buckets and set as the classification target. The datasets we
use and their key features are listed in Table 1.

UCI datasets are often ordered on some basis. As such, when processed sequentially in their
native order, they provide a non-stationary data stream. We use them in this way. To assess
performance on real world data in the absence of concept drift, we also use shuffled versions
of each dataset. This ensures a stationary distribution. Our shuffled runs on real data use 10
randomised shuffles of each stream with fixed seeds so the experiments are reproducible.

In order to assess ensembling strategies with VFDT and EFDT as base learners under high
levels of concept drift, we chose a synthetic testbench that demonstrates noticeable differences in
performance across different parametrizations. These synthetic streams and their parametriza-
tions are listed in Table 2.

Hyperplane [28] and Radial Basis Function (RBF) [7] generators draw examples from a nat-
urally evolving concept and allow exploration of the interactions between varying rates of drift
and dimensionalities.

85

An Eager Splitting Strategy for Online Decision Trees 13

Table 1: Properties of Real Datasets

Dataset Instances
Attributes
(Numeric,
Nominal)

Classes

1 airlines [9] 539383 8 (3, 5) 2
2 aws—price-discretized [54] 27410309 7 (4, 3) 10
3 chess [18] 28056 6(3, 3) 18
4 covtype [10, 18] 581012 54 (10, 44) 7
5 cpe [8, 7] 1455525 72 (22, 50) 10
6 fonts [33, 18] 745000 411 (410, 1) 153
7 hhar [50, 18] 43930257 9 (6, 3) 6
8 kdd [18] 4000000 42 (34, 8) 23
9 localization [30, 18] 164860 8 (4, 4) 11
10 miniboone [43, 18] 130065 50 (50, 0) 2
11 nbaiot [36, 18] 7062606 115 (115, 0) 11
12 nswelec [24, 18] 45312 9 (7, 2) 2
13 pamap2 [42, 18] 3850505 53 (53,0) 25
14 poker [18] 1025010 10 (5, 5) 10
15 pucrio [52, 18] 165632 18 (15, 3) 5
16 sensor—home-activity [27, 18] 919438 11 (11, 0) 3
17 sensor—CO-discretized [13, 14, 18] 4095000 19 (19, 0) 5
18 skin [3, 18] 245057 3 (3, 0) 2
19 tnelec [18] 45781 4 (2, 2) 20
20 wisdm [32, 18] 15630426 44 (43, 1) 6

Our Recurrent AbruptDrift generator tweaks the AbruptDrift generator from [56] to add
the option of generating recurrent abrupt drifts. It models a full conditional probability table
for the target distribution pY |X that grows exponentially in the number of input variables.
Learning problems generated by this generator become significantly harder with small increases
in dimensionality, possibly because of the relative independence of the variables. The suffix
notation in the shorthand “recurrent—abrupt—522” used in tables conveys that that particular
stream has 5 classes, 2 nominal attributes, and 2 values per attribute.

We use the RecurrentConceptDriftStream generator [5] to generate drift between different
parametrizations of synthetic streams commonly used in the concept drift literature that do not
have in-built drift generation; these are the Agrawal [1], LED [11], RandomTree [5], SEA [51],
STAGGER [47], and Waveform [11] generators.

All synthetic streams generate one million examples. Each synthetic stream generator is run
with 10 differently initialized random seeds. Now, prequential accuracy is a curve that plots
error at every timestep, so the results are reported thus: a measure of the mean error is obtained
by averaging error across seeded runs for each epoch, and then averaging over the epoch-wise
error averages. A measure of variance is obtained by computing the variance of the error across
the seeded runs for each epoch, then averaging the epoch-wise variances. Note that the error
reported for each epoch is itself the average across a thousand examples, which is the default for
the evaluator in MOA. The number of leaves, and the CPU time, are simply the averages of the
final values across the seeded runs for a given stream.

All ensembles were requisitioned with ten trees each; this was about the limit on a fairly
large university cluster that made available 60 CPUs at a time for embarrassingly parallel work-
loads. Ensembles were otherwise parameterized with their MOA defaults. The boosting ensem-
bles we use are: OzaBoost [38], OzaBoost with the ADWIN change detector (OzaBoostADWIN)
[4], OnlineSmoothBoost [48, 15], Adaptable Diversity-based Online Boosting (ADOB) [44], and
Boosting-Like Online Ensemble (BOLE) [2]. The bagging ensembles in our experiments are:

86

14 Chaitanya Manapragada et al.

Table 2: Synthetic Datasets

MOA Stream Shorthand
1 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (genera-

tors.AgrawalGenerator -f 2 -i 2) -d (generators.AgrawalGenerator -f 3 -i 3))
recurrent—agrawal

2 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (generators.LEDGenerator
-i 2) -d (generators.LEDGeneratorDrift -i 3 -d 7))

recurrent—led

3 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (genera-
tors.RandomTreeGenerator -r 1 -i 1) -d (generators.RandomTreeGenerator -r 2 -i
2))

recurrent—randomtree

4 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (generators.SEAGenerator
-f 2 -i 2) -d (generators.SEAGenerator -f 3 -i 3))

recurrent—sea

5 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (genera-
tors.STAGGERGenerator -i 2 -f 2) -d (generators.STAGGERGenerator -i 3 -f 3))

recurrent—stagger

6 -s (RecurrentConceptDriftStream -x 200000 -y 200000 -z 100 -s (genera-
tors.WaveformGenerator -i 2 -n) -d (generators.WaveformGeneratorDrift -i 3 -d 40
-n))

recurrent—waveform

7 -s (generators.HyperplaneGenerator -k 10 -t 0.0001 -i 2) hyperplane—1
8 -s (generators.HyperplaneGenerator -k 10 -t 0.001 -i 2) hyperplane—2
9 -s (generators.HyperplaneGenerator -k 5 -t 0.0001 -i 2) hyperplane—3
10 -s (generators.HyperplaneGenerator -k 5 -t 0.001 -i 2) hyperplane—4
11 -s (generators.RandomRBFGeneratorDrift -s 0.0001 -k 10 -i 2 -r 2) rbf—drift-1
12 -s (generators.RandomRBFGeneratorDrift -s 0.0001 -k 50 -i 2 -r 2) rbf—drift-2
13 -s (generators.RandomRBFGeneratorDrift -s 0.001 -k 10 -i 2 -r 2) rbf—drift-3
14 -s (generators.RandomRBFGeneratorDrift -s 0.001 -k 50 -i 2 -r 2) rbf—drift-4
15 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 2 -n 2 -v 2 -r 2 -b 200000 -d

Recurrent)
recurrent—abrupt—222

16 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 3 -n 2 -v 2 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—322

17 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 3 -n 3 -v 2 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—332

18 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 3 -n 3 -v 3 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—333

19 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 3 -n 3 -v 4 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—334

20 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 3 -n 3 -v 5 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—335

21 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 4 -n 2 -v 2 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—422

22 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 4 -n 4 -v 4 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—444

23 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 5 -n 2 -v 2 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—522

24 -s (generators.monash.AbruptDriftGenerator -c -o 1.0 -z 5 -n 5 -v 5 -r 2 -b 200000 -d
Recurrent)

recurrent—abrupt—555

OzaBag [38], OzaBag with ADWIN (OzaBagADWIN), Leveraging Bagging (LevBag) [6], Lever-
aging Bagging without ADWIN (LevBagNoADWIN), and Adaptive Random Forest [21]. Note
that OzaBag and OzaBoost are two state-of-the-art online bagging and boosting algorithms—
their core mechanisms extending bagging and boosting to online scenarios underpin all the other
MOA ensembles that perform online bagging or boosting. We also compare just the individual
EFDT and VFDT learners.

All trees use NBAdaptive prediction at the leaves [5], that is, they either use Naive Bayes
or Majority Class for prediction depending on whichever has been more accurate overall — the
cumulative accuracy of each approach from the beginning of the learning process at each leaf is
recorded in order to facilitate this switching behavior.

Note that variance is reported in Sections 5.1.2 and 5.2, because these report error averages
over 10 seeded runs for shuffled UCI streams and synthetic streams respectively, but not in
Section 5.1.1 where standard UCI streams are used unshuffled. Tables 7, 18, and 29 do not
present leaf counts as the MOA result files do not contain this information.

Our implementations of EFDT and VFDT differ only in their split selection (and reselection)
strategy; there are no implementation details that are otherwise different. All our experimental
results and scripts are available for replicability at github.com/chaitanya-m in the exp analysis,
results2 and moa experiment scripts (ensembles branch) repositories.

87

An Eager Splitting Strategy for Online Decision Trees 15

We use prequential accuracy as the primary evaluation measure. While the instantaneous
feedback provided to the learner in prequential evaluation does not reflect a common setup in
applied incremental learning, none of the learners in the study relies on or exploits it. All learners
examined are general incremental learners, capable at any point in time of either updating the
current model by learning from an example or applying that model to classify an example. The
prequential evaluation strategy is simply a convenient incremental setting for evaluating such
systems. The critical feature of prequential learning is the it ensures that a learner does learn
from an example before classifying it. We use prequential evaluation because it is the defacto
standard for evaluation in the field of research.

5 Experimental Results

In order to compare the relative prequential accuracy of EFDT as a base learner with the
prequential accuracy of VFDT as a base learner, we tabulated their wins by ensemble and class
of streams (UCI unshuffled, UCI shuffled 10-seed, Synthetic 10-seed). Overall, EFDT does not
have a significant CPU time overhead given its prequential accuracy performance: we list CPU
run-times in Appendix A, Tables 37, 38 and 39.

5.1 UCI Streams

As explained above, following the experimental method of [34], we first use UCI datasets in their
original order to assess netural datasets with inherent drift. We then shuffle the same datasets,
in order to assess performance when an input stream comes from a sstationary distribution.

5.1.1 Standard UCI streams

Tables 3—13 show the effect due to EFDT on 20 UCI data streams, which are largely drawn from
real data. The prequential accuracy performance matches expectations; there is minimal complex
drift in these scenarios, mostly arising from concatenating files together, as many streams were
made available in files that were each associated with a single class. Under these conditions, class
boundaries change periodically, an instance of a trivial concept drift.

Five of these tables show bagging ensembles, which favor EFDT over VFDT. Table 3 shows the
performance of vanilla OzaBag, in which EFDT outperforms VFDT on 16 streams, underperforms
on 2 streams, and draws level on the remaining 2 streams. The p-value noted is 0.00066, well
within a standard significance level of 0.05. Table 4 shows the performance of OzaBagADWIN,
a version of OzaBag with the ADWIN change detector, which maintains a variable-length, self-
adjusting window of observed error; when a change is detected in one of the base classifiers, it is
replaced with a new one. This makes little difference to the performance of EFDT over VFDT,
with outperformance on 15 streams (p-value 0.00377), potentially implying that in scenarios
without significant levels of concept drift, ADWIN does not have an affect on EFDT bagging
ensembles. However, as we discuss in Section 5.2, ADWIN interacts adversely with EFDT-based
bagging ensembles when significant concept drift is present.

Table 5 shows the prequential accuracy performance comparison with Leveraging Bagging
without ADWIN (LevBagNoADWIN), and Table 6 shows the comparison for LeveragingBagging
(LevBag). Leveraging Bagging [6] is a variant of OzaBag that makes the critical observation
that the original OzaBag algorithm parameterizes the Poisson distribution used for determining
the weight of a sample with value 1—which causes a third of examples to be ignored as the
value drawn from Pois(λ = 1) is 0 about 34% of the time. Leveraging Bagging uses instead

88

16 Chaitanya Manapragada et al.

Poisson(6) which allows using many more examples, giving it a significant advantage in the
streaming setting while retaining the bagging heuristic through differential weighting of examples.
Leveraging Bagging (Table 6) performs better with EFDT than with VFDT—we obtain p-value
of 0.04813, which is significant at the 0.05 significance level. The removal of the change detector
causes a slight deterioration, with a p-value of 0.08353 that falls outside a significance level of
0.05 (Table 5), and one more stream on which the EFDT Based system underperforms compared
to the VFDT based system. Based on this observation and the observation concerning OzaBag,
we do not find the role of ADWIN to be significant in streams with minimal concept drift when
bagging strategies are applied.

Table 7 shows the performance of Adaptive Random Forest [21], an adaptive, online variant of
classic random forests. The EFDT based system registers a clear outperformance on prequential
accuracy (p-value 0.00377).

As for boosting ensembles, neither OzaBoost (Table 8, p-value 0.11894) nor its variant with
ADWIN change detection (Table 9, p-value 0.3238) benefit EFDT with significance. The general
success of online bagging strategies over straightforward online boosting strategies is noted in
[6], and while tangential to ensemble comparison, this discrepancy appears to work in favor of
further setting apart EFDT based bagging ensembles in their outperformance.

However, boosting regimes with greater particularity in weighting misclassified examples favor
EFDT with significance. We observe this with ADOB (Table 10, p-value 0.04813), a variant of on-
line boosting that rearranges ensemble components in increasing order of accuracy—misclassified
examples are given half the total weight when passed to the next ensemble component in on-
line boosting, and thus ADOB’s strategy optimizes for learning misclassified instances sooner.
BOLE (Table 11), a variant of ADOB which allows poorly performing ensemble members to vote,
and OnlineSmoothBoost(Table 12), which provides a rationalized continuous weighting scheme
for examples in contrast with the stepped Poisson weighting provided by OzaBoost, both also
benefit EFDT with high significance, with p-values of 0.04813 and 0.02069 respectively. Note
that we use ADOB and BOLE for their core strategies without change detectors (their MOA
implementations default to wrapping ensemble components with change detectors, while the re-
spective papers require wrapping the entire ensemble—this ambiguity was not of interest to our
experimentation, but the core strategies were).

Plain EFDT outperforms plain VFDT on 13 streams (Table 13), with VFDT registering lower
prequential accuracy on the remaining 7.

In summary, as expected, the greater variance induced by EFDT’s less conservative splitting
mechanism proves productive when drift is not extreme. All types of ensemble learner achieve
lower accuracy for more datasets than not when EFDT is used as a base learner in place of
VFDT. The frequency of these wins is statistically significant at the 0.05 level for all ensemble
techniques other than LeveragingBagging in the case that ADWIN is disabled (when the use of
EFDT still achieves lower error for 13 datasets, but VFDT achieves lower error for 6, preventing
a statistically significant win).

89

An Eager Splitting Strategy for Online Decision Trees 17

Table 3: OzaBag - UCI streams processed in original order

Streams VFDT Base EFDT Base
Error Leaves Error Leaves

airlines 0.34988 8445 0.34133 17366
aws—price-discretized 0.1469 5052 0.14027 6117
chess 0.57514 4 0.25848 69
covertype 0.14551 162 0.11684 196
covpokelec 0.146 315 0.13372 313
fonts 0.01729 207 0.00245 211
hhar 0.02375 2430 0.00115 1173
kdd 0.00088 135 0.00086 178
localization 0.09551 164 0.06576 74
miniboone 8e-05 4 8e-05 4
nbaiot 0.00522 43 0.00091 27
nswelec 0.17367 38 0.17226 52
pamap2 0.04046 152 0.01335 104
poker 0.1613 129 0.15943 104
pucrio 0.02202 22 0.00089 7
sensor—home-activity 0.00208 240 0.00049 20
sensor—CO-discretized 0.01362 608 0.03894 450
skin 0.00062 4 0.00062 4
tnelec 0.0025 2 0.00528 8
wisdm 0.11476 2692 0.0812 2296

Unique Wins 2 16

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00066

Confidence
Interval:
0.68974

— 1

Table 4: OzaBagADWIN - UCI streams processed in original order

Streams VFDT Base EFDT Base
Error Leaves Error Leaves

airlines 0.33446 3488 0.33988 2637
aws—price-discretized 0.14711 4879 0.14057 5897
chess 0.01741 3 0.01379 2
covertype 0.15069 1 0.10075 4
covpokelec 0.2132 2 0.18577 2
fonts 0.00128 156 8e-04 156
hhar 0.0041 4 0.00093 4
kdd 0.00047 41 0.00055 36
localization 0.06409 5 0.04699 4
miniboone 8e-05 2 8e-05 2
nbaiot 0.00028 2 0.00014 2
nswelec 0.16307 3 0.12798 4
pamap2 0.00858 1 0.00282 1
poker 0.25234 2 0.24115 4
pucrio 0.00092 2 0.00066 5
sensor—home-activity 3e-04 2 0.00029 2
sensor—CO-discretized 0.02445 2 0.02192 4
skin 0.00036 2 0.00036 2
tnelec 0.00278 4 0.00343 11
wisdm 0.10881 1 0.07696 2

Unique Wins 3 15

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00377

Confidence
Interval:
0.62332

— 1

90

18 Chaitanya Manapragada et al.

Table 5: LevBagNoADWIN - UCI streams processed in original order

Streams VFDT Base EFDT Base
Error Leaves Error Leaves

airlines 0.35124 13743 0.34829 27354
aws—price-discretized 0.13042 10612 0.12233 14160
chess 0.48134 66 0.18238 164
covertype 0.099 697 0.07295 379
covpokelec 0.06218 1560 0.08186 376
fonts 0.01641 208 0.00156 210
hhar 0.01012 8911 0.00109 2567
kdd 0.00073 156 0.00075 275
localization 0.05593 305 0.05218 84
miniboone 4e-05 4 5e-05 4
nbaiot 0.00089 59 0.00038 24
nswelec 0.15643 110 0.14809 108
pamap2 0.15539 515 0.02625 107
poker 0.05333 804 0.09355 292
pucrio 0.01239 47 0.00115 7
sensor—home-activity 0.0029 597 0.00071 26
sensor—CO-discretized 0.01437 1949 0.03077 446
skin 0.00015 4 0.00016 4
tnelec 0.00324 7 0.00324 7
wisdm 0.08572 6174 0.06601 3856

Unique Wins 6 13

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.08353

Confidence
Interval:
0.47003

— 1

Table 6: LevBag - UCI streams processed in original order

Streams VFDT Base EFDT Base
Error Leaves Error Leaves

airlines 0.34316 1676 0.34607 1410
aws—price-discretized 0.13038 10576 0.12272 13174
chess 0.01576 2 0.01355 2
covertype 0.09768 2 0.06784 9
covpokelec 0.17382 6 0.13015 7
fonts 0.00114 155 0.00067 161
hhar 0.00088 10 0.00063 6
kdd 0.00034 69 0.00037 37
localization 0.03834 5 0.03781 5
miniboone 4e-05 4 5e-05 4
nbaiot 9e-05 2 8e-05 3
nswelec 0.11276 12 0.10457 19
pamap2 0.003 2 0.00138 2
poker 0.222 11 0.1684 26
pucrio 0.00101 3 0.00103 6
sensor—home-activity 3e-04 1 0.00025 2
sensor—CO-discretized 0.01412 2 0.0142 4
skin 0.00014 3 0.00014 3
tnelec 0.00267 7 0.00267 7
wisdm 0.10197 2 0.06728 3

Unique Wins 5 13

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.04813

Confidence
Interval:
0.50217

— 1

91

An Eager Splitting Strategy for Online Decision Trees 19

Table 7: Adaptive Random Forest - UCI streams processed in original order

Streams
VFDT
Base

EFDT
Base

Error Error

airlines 0.34994 0.33776
aws—price-discretized 0.18187 0.19474
chess 0.01924 0.0139
covertype 0.11075 0.07057
covpokelec 0.18964 0.15533
fonts 0.006 0.00599
hhar 0.0015 0.00075
kdd 0.00044 0.00043
localization 0.03333 0.03576
miniboone 4e-05 5e-05
nbaiot 4e-05 4e-05
nswelec 0.13567 0.11857
pamap2 0.00151 0.00113
poker 0.24551 0.20895
pucrio 0.00044 0.00044
sensor—home-activity 5e-04 0.00024
sensor—CO-discretized 0.00834 0.00765
skin 0.00013 0.00011
tnelec 0.01257 0.00748
wisdm 0.10885 0.07728

Unique Wins 3 15

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that the
strategy in the rightmost column would achieve so many wins if wins and
losses were equiprobable.

Test Statistics p-value:
0.00377

Confidence
Interval:
0.62332

— 1

Table 8: OzaBoost - UCI streams processed in original order

Streams VFDT Base EFDT Base
Error Leaves Error Leaves

airlines 0.36114 9095 0.36415 10139
aws—price-discretized 0.14541 5526 0.13773 7987
chess 0.84848 14 0.24224 66
covertype 0.08286 155 0.05701 224
covpokelec 0.09133 334 0.09009 334
fonts 0.00167 208 0.00166 220
hhar 0.00142 2493 0.00103 1104
kdd 0.00176 315 0.00183 437
localization 0.04061 98 0.03807 102
miniboone 9e-05 3 9e-05 3
nbaiot 0.0092 31 0.00124 9
nswelec 0.14113 27 0.13004 36
pamap2 0.28883 132 0.00364 55
poker 0.10215 142 0.10375 135
pucrio 0.00532 14 0.02177 9
sensor—home-activity 0.00145 161 8e-04 12
sensor—CO-discretized 0.00385 507 0.01015 220
skin 0.20681 4 0.20681 4
tnelec 0.00148 4 0.00152 7
wisdm 0.10207 2174 0.06448 2263

Unique Wins 6 12

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.11894

Confidence
Interval:
0.44595

— 1

92

20 Chaitanya Manapragada et al.

Table 9: OzaBoostADWIN - UCI streams processed in original order

Streams VFDT Base EFDT Base
Error Leaves Error Leaves

airlines 0.38107 2679 0.38181 5095
aws—price-discretized 0.14548 5300 0.13786 7636
chess 0.18648 2 0.10631 4
covertype 0.08812 4 0.0856 4
covpokelec 0.12989 11 0.14332 6
fonts 0.42996 150 0.00853 128
hhar 0.14148 2 0.12517 2
kdd 0.2722 42 0.28153 28
localization 0.0501 4 0.04536 4
miniboone 6e-05 2 7e-05 2
nbaiot 0.43386 2 0.37867 2
nswelec 0.09989 11 0.0983 9
pamap2 0.32267 2 0.24907 2
poker 0.14994 61 0.18364 11
pucrio 0.00124 2 0.2646 2
sensor—home-activity 0.32472 2 0.00088 2
sensor—CO-discretized 0.30825 5 0.34715 3
skin 0.99995 2 0.99995 2
tnelec 0.00143 11 0.00165 19
wisdm 0.08342 5 0.07332 4

Unique Wins 8 11

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.3238

Confidence
Interval:
0.36812

— 1

Table 10: ADOB - UCI streams processed in original order

Streams VFDT Base EFDT Base
Error Leaves Error Leaves

airlines 0.36174 9302 0.36964 9879
aws—price-discretized 0.14263 5432 0.13371 7627
chess 0.60293 14 0.16659 78
covertype 0.07985 154 0.05784 239
covpokelec 0.09125 325 0.08324 370
fonts 0.00038 211 0.00038 225
hhar 0.00152 2654 8e-04 1708
kdd 0.00023 321 0.00026 529
localization 0.04004 103 0.03828 95
miniboone 0.00017 3 0.00016 3
nbaiot 0.00354 36 0.00688 11
nswelec 0.13748 35 0.13211 36
pamap2 0.08868 138 0.00342 56
poker 0.0915 140 0.10831 101
pucrio 0.00289 13 0.00117 10
sensor—home-activity 0.00206 176 0.00056 16
sensor—CO-discretized 0.00295 437 0.00713 145
skin 0.00019 4 0.00019 4
tnelec 0.00172 2 0.00159 8
wisdm 0.09067 2641 0.06247 2174

Unique Wins 5 13

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.04813

Confidence
Interval:
0.50217

— 1

93

An Eager Splitting Strategy for Online Decision Trees 21

Table 11: BOLE - UCI streams processed in original order

Streams VFDT Base EFDT Base
Error Leaves Error Leaves

airlines 0.36173 9302 0.36963 9879
aws—price-discretized 0.14263 5432 0.13371 7627
chess 0.45517 14 0.16648 78
covertype 0.07985 154 0.05773 239
covpokelec 0.09122 325 0.08315 370
fonts 0.00039 211 0.00039 225
hhar 0.00152 2654 8e-04 1708
kdd 0.00023 321 0.00026 529
localization 0.04005 103 0.0383 95
miniboone 0.00017 3 0.00016 3
nbaiot 0.00355 36 0.00688 11
nswelec 0.13737 35 0.132 36
pamap2 0.04702 138 0.00342 56
poker 0.09138 140 0.10831 101
pucrio 0.00288 13 0.00116 10
sensor—home-activity 0.00207 176 0.00057 16
sensor—CO-discretized 0.00294 437 0.00713 145
skin 0.00017 4 0.00017 4
tnelec 0.00172 2 0.00159 8
wisdm 0.09066 2641 0.06247 2174

Unique Wins 5 13

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.04813

Confidence
Interval:
0.50217

— 1

Table 12: OnlineSmoothBoost - UCI streams processed in original order

Streams VFDT Base EFDT Base
Error Leaves Error Leaves

airlines 0.34321 8124 0.33784 12517
aws—price-discretized 0.14576 4924 0.13951 5981
chess 0.47655 10 0.28121 70
covertype 0.15224 183 0.11009 280
covpokelec 0.13829 358 0.12604 365
fonts 0.01291 207 0.00228 211
hhar 0.01685 2214 0.00245 2898
kdd 0.00086 151 0.00076 180
localization 0.09631 170 0.06973 88
miniboone 0.00011 4 0.00013 4
nbaiot 0.00358 36 0.00097 29
nswelec 0.17422 36 0.16039 58
pamap2 0.05008 182 0.03045 88
poker 0.13754 146 0.16386 84
pucrio 0.02314 21 0.00119 12
sensor—home-activity 0.00382 215 9e-04 30
sensor—CO-discretized 0.01256 502 0.03383 541
skin 0.00051 4 0.00055 4
tnelec 0.00237 2 0.00498 7
wisdm 0.12901 2340 0.09535 2665

Unique Wins 5 15

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.02069

Confidence
Interval:
0.54442

— 1

94

22 Chaitanya Manapragada et al.

Table 13: Plain single learners (no ensemble) - UCI streams processed in original order

Streams VFDT Base EFDT Base
Error Leaves Error Leaves

airlines 0.34955 8420 0.34782 14361
aws—price-discretized 0.14728 5041 0.14143 6144
chess 0.65807 5 0.31152 76
covertype 0.18905 217 0.15431 389
covpokelec 0.18665 368 0.19391 505
fonts 0.01781 207 0.003 211
hhar 0.03749 2590 0.00357 2947
kdd 0.00093 141 0.00094 181
localization 0.13299 177 0.09754 115
miniboone 0.00011 4 0.00013 4
nbaiot 0.00368 36 0.00076 29
nswelec 0.19861 40 0.19283 71
pamap2 0.0972 234 0.06136 88
poker 0.20509 142 0.218 150
pucrio 0.01457 26 0.00147 12
sensor—home-activity 0.00906 238 0.00135 39
sensor—CO-discretized 0.02633 605 0.06655 794
skin 0.00052 4 0.00055 4
tnelec 0.00235 2 0.00496 7
wisdm 0.18796 2752 0.14576 2598

Unique Wins 7 13

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.13159

Confidence
Interval:
0.44197

— 1

95

An Eager Splitting Strategy for Online Decision Trees 23

5.1.2 Shuffled UCI streams

We shuffled the UCI streams in order to test prequential accuracy performance when concept drift
was removed so as to understand if the advantage is retained in the case of a static generating
distribution. The results on shuffled data streams are based on averaged prequential performance
over 10 shuffles of each data stream, with fixed random seeds so the experiments can be replicated
easily. These results are shown in Tables 14 through 24.

The pattern of comparative prequential accuracy performance is roughly the same for three
of the bagging approaches, but not for the Leveraged Bagging approaches. OzaBag (Table 14),
OzaBagADWIN (Table 15) and Adaptive Random Forest (Table 18) all favor EFDT with p-
values of 0.00377, 0.00377, and 0.00591 respectively. However, in the absence of residual concept
drift, it appears that EFDT based Leveraging Bagging without ADWIN (Table 16, p-value
0.24034) does not attain significance, and Leveraging Bagging (Table 17, p-value 0.75966) also
loses significance (VFDT outperforms slightly, 10 wins to 8 and 2 draws). Change detection with
Leveraging Bagging appears to make the effect more severe, but changing the choice of Poisson
value alone (to 6) as compared to OzaBag negates the advantage of EFDT when the stream is
highly uniform. This erosion of advantage for EFDT based Leveraging Bagging when supplied
highly uniform streams merits further investigation.

Among the boosting approaches, we note the failure of OzaBoost and OzaBoostADWIN to
reach significance (Tables 19, 20, p-values 0.31453 and 0.24034 respectively), and the success
of ADOB, BOLE and OnlineSmoothBoost (Tables 21, 22, and 23, p-values 0.04813, 0.04813,
and 0.00377 respectively) well within a 0.05 significance level. Clearly, improving strategies for
weighting misclassified examples is of particular interest for future work on boosting in general.

Plain EFDT outperforms plain VFDT on 13 streams (Table 24), with VFDT registering lower
prequential accuracy on remaining 5 and drawing on two.

Table 14: OzaBag - Shuffled UCI streams

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

airlines 0.35662 0.00023 9331 0.36085 0.00023 17292
aws—price-discretized 0.14668 0.00013 5054 0.14018 0.00012 6133
chess 0.67124 0.00023 1 0.59518 3e-04 78
covertype 0.27185 0.00021 47 0.25813 2e-04 73
covpokelec 0.29823 0.00029 110 0.34712 0.00043 53
fonts 0.00075 0 243 0.00075 0 244
hhar 0.05203 6e-05 1821 0.03088 3e-05 3418
kdd 0.00098 0 144 8e-04 0 188
localization 0.35064 0.00023 52 0.32112 0.00068 122
miniboone 0.10228 0.00012 45 0.10025 0.00011 37
nbaiot 0.04758 0.0026 52 0.00216 3e-05 103
nswelec 0.23156 2e-04 26 0.23054 2e-04 33
pamap2 0.1234 0.00016 152 0.10654 0.00014 369
poker 0.26286 0.00024 60 0.27569 0.00043 56
pucrio 0.1063 0.00018 21 0.04309 8e-05 56
sensor—home-activity 0.06297 9e-05 242 0.03715 0.00011 328
sensor—CO-discretized 0.18668 0.00022 350 0.17228 0.00022 508
skin 0.01661 2e-05 25 0.00973 1e-05 34
tnelec 0.00663 1e-05 31 0.00663 1e-05 31
wisdm 0.17683 0.00018 231 0.11814 0.00011 510

Unique Wins 3 15

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00377

Confidence
Interval:
0.62332

— 1

96

24 Chaitanya Manapragada et al.

Table 15: OzaBagADWIN - Shuffled UCI streams

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

airlines 0.3794 0.00025 4186 0.38762 0.00026 4477
aws—price-discretized 0.14701 0.00013 4875 0.14066 0.00012 5887
chess 0.67127 0.00022 1 0.59529 0.00029 78
covertype 0.27194 0.00021 46 0.25837 2e-04 70
covpokelec 0.3107 0.00037 79 0.37881 0.00065 14
fonts 0.00075 0 243 0.00075 0 244
hhar 0.05104 6e-05 1704 0.03142 3e-05 3149
kdd 0.00096 0 142 0.00079 0 187
localization 0.35122 0.00023 51 0.32013 0.00061 123
miniboone 0.10225 0.00011 45 0.10132 0.00011 33
nbaiot 0.33052 0.0013 1 0.0037 3e-05 92
nswelec 0.23162 0.00019 25 0.23045 0.00019 33
pamap2 0.11963 0.00012 127 0.10477 0.00014 296
poker 0.26353 0.00024 59 0.28535 0.00047 46
pucrio 0.10893 0.00019 19 0.0449 9e-05 51
sensor—home-activity 0.0638 9e-05 240 0.04238 0.00019 285
sensor—CO-discretized 0.18565 0.00024 335 0.18344 0.00028 418
skin 0.01661 2e-05 25 0.00973 1e-05 34
tnelec 0.00678 0 31 0.00678 0 31
wisdm 0.17588 0.00018 223 0.11891 0.00012 475

Unique Wins 3 15

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00377

Confidence
Interval:
0.62332

— 1

Table 16: LevBagNoADWIN - Shuffled UCI streams

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

airlines 0.35897 0.00023 16509 0.36134 0.00024 26322
aws—price-discretized 0.13032 0.00011 10600 0.12266 0.00011 14197
chess 0.61357 0.00032 83 0.60015 0.00037 154
covertype 0.22738 0.00019 394 0.22208 0.00019 416
covpokelec 0.19074 0.00034 991 0.28548 0.00091 498
fonts 0.00061 0 248 0.00061 0 248
hhar 0.02496 3e-05 4391 0.01873 2e-05 5739
kdd 0.00064 0 207 0.00054 0 267
localization 0.33575 0.00047 116 0.30653 0.00072 283
miniboone 0.08894 8e-05 191 0.09681 0.00011 91
nbaiot 0.04423 0.00346 97 0.03933 0.00354 138
nswelec 0.22097 2e-04 107 0.22363 2e-04 97
pamap2 0.0833 1e-04 488 0.10028 0.00015 633
poker 0.16567 0.00042 614 0.21305 0.00218 336
pucrio 0.0453 0.00012 93 0.04027 0.00024 91
sensor—home-activity 0.01491 2e-05 621 0.01644 6e-05 482
sensor—CO-discretized 0.1251 0.00012 1861 0.12438 2e-04 1705
skin 0.00529 1e-05 66 0.00394 0 71
tnelec 0.00356 0 31 0.00356 0 31
wisdm 0.13369 0.00013 574 0.11135 0.00013 888

Unique Wins 7 11

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.24034

Confidence
Interval:
0.39216

— 1

97

An Eager Splitting Strategy for Online Decision Trees 25

Table 17: LevBag - Shuffled UCI streams

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

airlines 0.41108 0.00032 1129 0.42212 0.00032 405
aws—price-discretized 0.1311 0.00011 9615 0.12379 0.00011 12693
chess 0.62328 0.00071 21 0.63585 0.00083 47
covertype 0.22735 0.00019 389 0.22286 2e-04 377
covpokelec 0.18993 0.00023 904 0.36941 0.00084 37
fonts 6e-04 0 248 6e-04 0 248
hhar 0.02357 3e-05 4119 0.01815 3e-05 5253
kdd 0.00063 0 207 0.00054 0 266
localization 0.38614 0.00069 28 0.44004 0.00041 23
miniboone 0.08798 8e-05 189 0.09766 0.00011 79
nbaiot 0.10372 0.00349 57 0.00304 3e-05 121
nswelec 0.22097 2e-04 107 0.22377 2e-04 93
pamap2 0.33327 0.00182 5 0.36266 0.00155 6
poker 0.16436 4e-04 618 0.25652 0.00141 132
pucrio 0.04534 0.00011 91 0.04214 0.00014 61
sensor—home-activity 0.01491 2e-05 621 0.02001 0.00011 401
sensor—CO-discretized 0.12546 0.00012 1782 0.13818 0.00021 1295
skin 0.00529 1e-05 66 0.00399 0 67
tnelec 0.00356 0 31 0.00356 0 31
wisdm 0.13278 0.00013 561 0.11152 0.00013 785

Unique Wins 10 8

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.75966

Confidence
Interval:
0.24396

— 1

Table 18: Adaptive Random Forest - Shuffled UCI streams

Streams VFDT Base EFDT Base
Error Variance Error Variance

airlines 0.40058 0.00033 0.39267 0.00028
aws—price-discretized 0.18202 0.00021 0.19533 0.00027
chess 0.70999 0.00062 0.63728 0.00046
covertype 0.2876 0.00024 0.2796 0.00025
covpokelec 0.48633 0.00075 0.44633 0.00054
fonts 0.80344 5e-04 0.68368 0.00081
hhar 0.82982 0.00054 0.33478 0.00069
kdd 0.00191 0 0.00284 0
localization 0.43867 0.00031 0.43129 0.00056
miniboone 0.10704 0.00014 0.10339 0.00011
nbaiot 0.28421 0.00232 0.11822 0.00154
nswelec 0.22344 0.00021 0.2238 2e-04
pamap2 0.21005 0.00036 0.27404 0.00324
poker 0.37042 0.00031 0.35486 0.00029
pucrio 0.16029 0.00033 0.0893 0.00017
sensor—home-activity 0.32884 0.00049 0.28902 0.00044
sensor—CO-discretized 0.39529 5e-04 0.32805 0.00044
skin 0.19835 0.00033 0.04533 0.00023
tnelec 0.35672 0.01894 0.28284 0.00168
wisdm 0.22926 0.00045 0.1882 0.00032

Unique Wins 4 16

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00591

Confidence
Interval:
0.59897

— 1

98

26 Chaitanya Manapragada et al.

Table 19: OzaBoost - Shuffled UCI streams

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

airlines 0.38601 0.00024 9872 0.39146 0.00025 11529
aws—price-discretized 0.14527 0.00012 5513 0.13761 0.00012 7952
chess 0.90007 1e-04 9 0.90007 1e-04 81
covertype 0.26591 0.00022 50 0.25115 0.00021 72
covpokelec 0.29062 0.00053 112 0.34335 0.0013 76
fonts 0.00107 0 244 0.00107 0 245
hhar 0.02277 7e-05 2207 0.00953 1e-05 4025
kdd 0.00034 0 347 0.00035 0 414
localization 0.33213 5e-04 50 0.31382 0.00072 103
miniboone 0.09859 0.00021 49 0.10123 0.00012 41
nbaiot 0.02137 0.00022 99 0.00879 0.00013 81
nswelec 0.23942 0.00029 25 0.24197 0.00031 25
pamap2 0.08673 0.00015 143 0.08794 0.00014 294
poker 0.23568 0.00032 63 0.24227 0.00075 88
pucrio 0.07653 3e-04 21 0.02393 4e-05 52
sensor—home-activity 0.04266 7e-05 216 0.02925 6e-05 263
sensor—CO-discretized 0.15979 0.00071 398 0.13586 0.00056 538
skin 0.00485 1e-05 39 0.0033 1e-05 47
tnelec 0.0065 2e-05 31 0.0065 2e-05 31
wisdm 0.17925 0.00022 245 0.1267 0.00014 600

Unique Wins 7 10

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.31453

Confidence
Interval:
0.36401

— 1

Table 20: OzaBoostADWIN - Shuffled UCI streams

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

airlines 0.43251 0.00028 6946 0.4347 0.00029 5690
aws—price-discretized 0.14084 0.00019 7638 0.1388 0.00013 8993
chess 0.89967 0.00011 30 0.89985 1e-04 80
covertype 0.26289 0.00035 183 0.26169 0.00034 83
covpokelec 0.34818 0.00481 1191 0.40584 0.00587 231
fonts 0.00107 0 244 0.00107 0 245
hhar 0.02243 0.00012 2693 0.01147 2e-05 3763
kdd 0.00072 5e-05 305 0.00061 0 358
localization 0.33738 0.0014 84 0.31842 0.00141 102
miniboone 0.10724 0.00014 87 0.12055 2e-04 18
nbaiot 0.02992 0.00104 103 0.00998 0.00033 77
nswelec 0.26887 0.00045 37 0.27118 0.00041 26
pamap2 0.06545 0.00018 443 0.09245 0.00027 270
poker 0.27171 0.00135 571 0.305 0.0026 164
pucrio 0.0417 5e-04 60 0.02821 5e-05 52
sensor—home-activity 0.03694 0.00039 231 0.03507 0.00016 217
sensor—CO-discretized 0.16919 0.00097 706 0.1599 0.00142 476
skin 0.00362 1e-05 39 0.00329 1e-05 37
tnelec 0.00787 0.00026 31 0.00787 0.00026 31
wisdm 0.14083 0.00052 440 0.12696 0.00014 559

Unique Wins 7 11

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.24034

Confidence
Interval:
0.39216

— 1

99

An Eager Splitting Strategy for Online Decision Trees 27

Table 21: ADOB - Shuffled UCI streams

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

airlines 0.38375 0.00025 9965 0.38679 0.00025 11128
aws—price-discretized 0.14249 0.00012 5435 0.13355 0.00012 7628
chess 0.89206 0.00177 8 0.75812 0.02005 81
covertype 0.2607 0.00021 45 0.24908 2e-04 64
covpokelec 0.27884 0.00043 108 0.3403 0.00113 70
fonts 0.00102 1e-05 244 0.00102 1e-05 245
hhar 0.02323 8e-05 2176 0.00933 1e-05 4133
kdd 0.00032 0 240 0.00033 0 420
localization 0.33964 0.00042 51 0.32868 0.00093 99
miniboone 0.10164 0.00039 49 0.10128 0.00012 40
nbaiot 0.01748 0.00064 96 0.0053 7e-05 85
nswelec 0.2455 0.00033 24 0.2483 0.00035 27
pamap2 0.08814 0.00015 142 0.08401 0.00016 319
poker 0.22355 0.00044 57 0.2413 0.00089 93
pucrio 0.06842 0.00025 19 0.02511 5e-05 59
sensor—home-activity 0.04036 9e-05 218 0.02613 6e-05 264
sensor—CO-discretized 0.14869 0.00075 372 0.12618 0.00043 527
skin 0.00552 2e-05 36 0.00384 1e-05 42
tnelec 0.00646 2e-05 31 0.00646 2e-05 31
wisdm 0.17089 2e-04 240 0.12382 0.00013 602

Unique Wins 5 13

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.04813

Confidence
Interval:
0.50217

— 1

Table 22: BOLE - Shuffled UCI streams

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

airlines 0.38375 0.00025 9965 0.3868 0.00025 11128
aws—price-discretized 0.14249 0.00012 5435 0.13355 0.00012 7628
chess 0.83787 0.00973 8 0.60847 0.00046 81
covertype 0.26065 0.00021 45 0.24906 2e-04 64
covpokelec 0.27706 0.00041 108 0.33397 0.00093 70
fonts 0.00087 0 244 0.00087 0 245
hhar 0.02299 4e-05 2176 0.00933 1e-05 4133
kdd 0.00032 0 240 0.00033 0 420
localization 0.33935 0.00041 51 0.32839 0.00092 99
miniboone 0.10164 0.00039 49 0.10127 0.00012 40
nbaiot 0.01617 2e-04 96 0.0053 7e-05 85
nswelec 0.2455 0.00033 24 0.2483 0.00035 27
pamap2 0.08814 0.00015 142 0.08401 0.00016 319
poker 0.22348 0.00044 57 0.24122 0.00088 93
pucrio 0.0684 0.00025 19 0.02508 5e-05 59
sensor—home-activity 0.04023 6e-05 218 0.02611 6e-05 264
sensor—CO-discretized 0.14675 0.00022 372 0.12573 0.00029 527
skin 0.00551 2e-05 36 0.00382 1e-05 42
tnelec 0.00583 0 31 0.00583 0 31
wisdm 0.17085 2e-04 240 0.12378 0.00013 602

Unique Wins 5 13

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.04813

Confidence
Interval:
0.50217

— 1

100

28 Chaitanya Manapragada et al.

Table 23: OnlineSmoothBoost - Shuffled UCI streams

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

airlines 0.35598 0.00023 8766 0.35792 0.00023 12326
aws—price-discretized 0.14553 0.00012 4922 0.13925 0.00012 5972
chess 0.6674 0.00023 1 0.58559 0.00035 101
covertype 0.27164 0.00021 40 0.26133 0.00021 61
covpokelec 0.3003 3e-04 94 0.33391 0.00073 70
fonts 0.00068 0 245 0.00068 0 245
hhar 0.05521 8e-05 1712 0.0363 4e-05 3342
kdd 0.00106 0 149 0.00082 0 187
localization 0.34715 0.00032 54 0.32556 9e-04 138
miniboone 0.10497 0.00011 39 0.10297 0.00015 29
nbaiot 0.03079 0.00032 52 0.01775 0.00174 103
nswelec 0.23471 0.00021 23 0.23173 0.00021 31
pamap2 0.12848 0.00017 154 0.10889 0.00019 379
poker 0.26615 0.00027 49 0.2724 0.00084 66
pucrio 0.12499 0.00039 17 0.05627 0.00045 57
sensor—home-activity 0.07077 0.00012 215 0.03824 0.00012 353
sensor—CO-discretized 0.18328 0.00023 333 0.16407 0.00028 516
skin 0.01677 3e-05 22 0.01178 2e-05 32
tnelec 0.00588 1e-05 31 0.00588 1e-05 31
wisdm 0.18723 0.00022 222 0.13099 0.00018 522

Unique Wins 3 15

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00377

Confidence
Interval:
0.62332

— 1

Table 24: Plain single learners (no ensemble) - Shuffled UCI streams

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

airlines 0.35926 0.00023 9233 0.36099 0.00023 14143
aws—price-discretized 0.14715 0.00013 5050 0.14139 0.00012 6134
chess 0.67174 0.00022 1 0.60706 0.00058 99
covertype 0.28618 0.00023 46 0.27648 0.00022 69
covpokelec 0.32762 0.00044 110 0.37454 0.00207 74
fonts 0.00068 0 245 0.00068 0 245
hhar 0.07311 8e-05 1824 0.05113 6e-05 3483
kdd 0.00114 0 165 0.00094 0 190
localization 0.35944 0.00025 46 0.33857 0.00128 152
miniboone 0.1163 0.00015 46 0.11875 0.00022 36
nbaiot 0.0381 0.00165 51 0.02908 0.00275 103
nswelec 0.24141 0.00027 27 0.24057 0.00023 38
pamap2 0.15764 0.00032 169 0.15672 3e-04 385
poker 0.28636 0.00032 59 0.30909 0.00142 49
pucrio 0.13639 5e-04 20 0.08329 0.00084 67
sensor—home-activity 0.11511 0.00022 241 0.0955 0.00187 333
sensor—CO-discretized 0.23193 4e-04 387 0.2432 0.00145 542
skin 0.01908 3e-05 26 0.01359 3e-05 37
tnelec 0.00586 1e-05 31 0.00586 1e-05 31
wisdm 0.1888 0.00021 231 0.13637 0.00019 532

Unique Wins 5 13

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.04813

Confidence
Interval:
0.50217

— 1

101

An Eager Splitting Strategy for Online Decision Trees 29

5.2 Synthetic Streams

Table 25: OzaBag - Synthetic streams with concept drift

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.1968 0.00031 533 0.18373 0.00031 806
recurrent—led 0.32315 0.00027 54 0.32699 0.00026 303
recurrent—randomtree 0.21247 0.0022 1041 0.20024 0.00299 1243
recurrent—sea 0.14635 0.00014 150 0.13948 0.00013 168
recurrent—stagger 0.17477 0.00123 23 0.17949 0.00078 23
recurrent—waveform 0.16931 0.0015 149 0.16033 0.0012 147
hyperplane—1 0.10901 0.00019 277 0.10626 0.00014 196
hyperplane—2 0.15844 0.00119 326 0.12861 0.00056 83
hyperplane—3 0.10194 0.00012 275 0.10271 0.00011 226
hyperplane—4 0.15448 0.00349 304 0.12442 0.00131 96
rbf—drift-1 0.07945 0.00032 381 0.07194 0.00026 266
rbf—drift-2 0.18388 0.00088 434 0.16055 0.00094 705
rbf—drift-3 0.11286 0.00063 355 0.10982 6e-04 258
rbf—drift-4 0.36223 0.00134 272 0.35289 0.00127 320
recurrent—abrupt—222 0.3431 0.02363 4 0.33746 0.02201 4
recurrent—abrupt—322 0.37099 0.01543 4 0.35744 0.03263 4
recurrent—abrupt—332 0.3459 0.08753 8 0.32838 0.10325 8
recurrent—abrupt—333 0.36143 0.01448 27 0.35037 0.04007 27
recurrent—abrupt—334 0.39642 0.00214 64 0.3698 0.05898 62
recurrent—abrupt—335 0.39614 0.00314 121 0.38665 0.04395 123
recurrent—abrupt—422 0.34057 0.02736 4 0.34205 0.04047 4
recurrent—abrupt—444 0.40099 0.00751 228 0.36757 0.01922 226
recurrent—abrupt—522 0.33857 0.0361 4 0.34167 0.07319 4
recurrent—abrupt—555 0.40625 0.00469 1299 0.35437 0.00596 1705

Unique Wins 5 19

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00331

Confidence
Interval:
0.61086

— 1

Tables 25 through 35 compare EFDT and VFDT based ensembles on a large number of
parameterized synthetic concept drift streams found in the literature.

With bagging ensembles, EFDT as a base learner demonstrates an advantage with OzaBag
(Table 25, p-value 0.00331), Leveraging Bagging without ADWIN (Table 27, p-value 0.00077),
and Adaptive Random Forest (Table 29, p-value < 0.00001). EFDT has no advantage as a base
learner with OzaBagADWIN (Table 26, p-value 0.41941, arising from 13 wins for EFDT to 11
for VFDT) and Leveraging Bagging (Table 28, p-value 0.84627 arising from 10 wins for EFDT
to 14 for VFDT).

These two cases may be explained as follows. When EFDT replaces a test, there is a risk
that the model as a whole will derease in accuracy in the short term, as the substrees that
have been removed, while suboptimal, may be better than the simple split with which they
are replaced. Ensembles with change detection use ADWIN change detectors to determine if
change is occurring, and if so, replace trees with poor performance. The change detectors are
triggered when accuracy drops. When there is drift, EFDT is likely to replace nodes (and thus
corresponding subtrees)—triggering change detectors due to loss of accuracy. Thus, EFDT’s
response to drift, in which it is already adjusting the tree to the new distribution, will trigger
total removal of the tree.

Therefore in settings with concept drift (as all our synthetic streams are), where ensembles
happen to feature both a bagging component and an ADWIN change detector, a tree created by
EFDT is more likely to be removed when a change is detected without the tree growing large
enough or persisting long enough to meaningfully contribute to prediction.

102

30 Chaitanya Manapragada et al.

Table 26: OzaBagADWIN - Synthetic streams with concept drift

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.11929 0.00097 60 0.12652 0.00042 137
recurrent—led 0.26175 2e-04 4 0.26285 2e-04 28
recurrent—randomtree 0.09511 0.00212 207 0.0846 0.00232 273
recurrent—sea 0.11452 0.00023 49 0.11262 0.00018 69
recurrent—stagger 0.00172 0.00014 15 0.00299 0.00065 15
recurrent—waveform 0.15625 0.00021 37 0.14762 0.00015 55
hyperplane—1 0.10114 0.00012 115 0.10371 0.00012 119
hyperplane—2 0.10998 0.00019 38 0.11387 0.00019 52
hyperplane—3 0.09972 0.00011 170 0.10153 0.00011 163
hyperplane—4 0.10515 0.00029 26 0.10753 0.00031 40
rbf—drift-1 0.07738 0.00029 275 0.07201 0.00026 220
rbf—drift-2 0.13282 0.00082 15 0.11136 0.00059 41
rbf—drift-3 0.11143 0.00062 261 0.10947 6e-04 185
rbf—drift-4 0.30834 0.00193 2 0.29876 0.00209 2
recurrent—abrupt—222 0.12285 0.03384 3 0.11331 0.03473 3
recurrent—abrupt—322 0.16658 0.02614 4 0.15517 0.02375 4
recurrent—abrupt—332 0.11804 0.04584 7 0.12188 0.05251 7
recurrent—abrupt—333 0.14935 0.01806 24 0.14827 0.02198 24
recurrent—abrupt—334 0.1531 0.04044 61 0.17691 0.03843 59
recurrent—abrupt—335 0.18661 0.0267 112 0.15904 0.05559 111
recurrent—abrupt—422 0.12408 0.03756 4 0.1336 0.04196 4
recurrent—abrupt—444 0.17194 0.01932 182 0.15267 0.04052 185
recurrent—abrupt—522 0.11097 0.04375 4 0.11422 0.04112 4
recurrent—abrupt—555 0.29009 0.00912 418 0.15781 0.01077 777

Unique Wins 11 13

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.41941

Confidence
Interval:
0.35756

— 1

Table 27: LevBagNoADWIN - Synthetic streams with concept drift

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.2001 0.00046 1697 0.1739 0.00048 1625
recurrent—led 0.32774 0.00024 236 0.31783 0.00033 665
recurrent—randomtree 0.19747 0.00163 3020 0.18482 0.00199 2605
recurrent—sea 0.14106 0.00013 463 0.13493 0.00015 411
recurrent—stagger 0.19141 0.00029 23 0.1926 0.00016 23
recurrent—waveform 0.16861 0.00146 877 0.16064 0.00085 423
hyperplane—1 0.1141 0.00019 1235 0.11174 0.00014 522
hyperplane—2 0.16105 0.00108 1478 0.1276 0.00042 193
hyperplane—3 0.10639 0.00013 1223 0.10955 0.00012 618
hyperplane—4 0.15599 0.00347 1380 0.12183 0.00098 217
rbf—drift-1 0.06514 0.00017 1366 0.06263 0.00017 525
rbf—drift-2 0.15039 0.00048 1890 0.11581 0.00051 1408
rbf—drift-3 0.09594 0.00043 1339 0.09147 0.00038 681
rbf—drift-4 0.30655 0.001 1554 0.29518 0.00124 1588
recurrent—abrupt—222 0.32199 0.03015 4 0.3104 0.02955 4
recurrent—abrupt—322 0.37013 0.01279 4 0.36394 0.02985 4
recurrent—abrupt—332 0.34405 0.08873 8 0.32268 0.09904 8
recurrent—abrupt—333 0.35421 0.00811 27 0.35155 0.04098 27
recurrent—abrupt—334 0.39439 0.00079 64 0.37892 0.05352 63
recurrent—abrupt—335 0.39358 0.00095 124 0.37639 0.04541 123
recurrent—abrupt—422 0.31978 0.0289 4 0.32019 0.0455 4
recurrent—abrupt—444 0.39685 0.00128 239 0.37445 0.04024 239
recurrent—abrupt—522 0.33077 0.03754 4 0.33627 0.05462 4
recurrent—abrupt—555 0.3999 0.00472 1939 0.34243 0.01166 1915

Unique Wins 4 20

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00077

Confidence
Interval:
0.65819

— 1

EFDT based ensembles demonstrate superior prequential accuracy performance within a
significance level of 0.05 when used as a base learner with all boosting strategies: OzaBoost

103

An Eager Splitting Strategy for Online Decision Trees 31

Table 28: LevBag - Synthetic streams with concept drift

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.11408 0.00043 310 0.10205 0.00066 307
recurrent—led 0.26217 2e-04 6 0.28177 0.00034 3
recurrent—randomtree 0.06448 0.00103 400 0.0642 0.0013 441
recurrent—sea 0.10672 0.00011 111 0.10639 0.00011 96
recurrent—stagger 0.00137 3e-05 18 0.00141 3e-05 17
recurrent—waveform 0.15119 0.00016 223 0.15233 0.00016 155
hyperplane—1 0.10714 0.00013 563 0.11024 0.00013 388
hyperplane—2 0.11543 2e-04 163 0.11736 2e-04 144
hyperplane—3 0.10488 0.00012 822 0.10881 0.00012 510
hyperplane—4 0.10807 0.00031 86 0.10908 0.00032 88
rbf—drift-1 0.0605 0.00015 708 0.06153 0.00017 323
rbf—drift-2 0.08728 0.00029 84 0.0825 0.00027 95
rbf—drift-3 0.08917 0.00037 719 0.08741 0.00035 352
rbf—drift-4 0.18823 9e-04 8 0.17382 0.00075 16
recurrent—abrupt—222 0.08568 0.03789 3 0.09068 0.03983 3
recurrent—abrupt—322 0.15231 0.02417 4 0.15752 0.01998 4
recurrent—abrupt—332 0.11588 0.04298 7 0.11655 0.04618 7
recurrent—abrupt—333 0.15151 0.02658 24 0.16132 0.02506 25
recurrent—abrupt—334 0.21071 0.00723 61 0.17869 0.03142 61
recurrent—abrupt—335 0.20627 0.01275 115 0.1693 0.04913 114
recurrent—abrupt—422 0.10922 0.04752 4 0.11094 0.05145 4
recurrent—abrupt—444 0.17353 0.02142 219 0.12842 0.06028 198
recurrent—abrupt—522 0.11904 0.04243 4 0.13362 0.05295 4
recurrent—abrupt—555 0.13153 0.01712 977 0.08684 0.01581 968

Unique Wins 14 10

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.84627

Confidence
Interval:
0.24639

— 1

Table 29: Adaptive Random Forest - Synthetic streams with concept drift

Streams VFDT Base EFDT Base
Error Variance Error Variance

recurrent—agrawal 0.34164 0.00079 0.23287 0.00131
recurrent—led 0.28165 0.00065 0.26301 2e-04
recurrent—randomtree 0.24865 0.0037 0.21096 0.00363
recurrent—sea 0.15533 0.00024 0.14944 0.00023
recurrent—stagger 0.08174 0.00094 0.00365 0.00028
recurrent—waveform 0.15365 0.00017 0.15474 0.00016
hyperplane—1 0.13866 3e-04 0.13727 0.00015
hyperplane—2 0.13581 3e-04 0.13454 0.00026
hyperplane—3 0.14088 0.00021 0.13967 0.00015
hyperplane—4 0.14896 0.00222 0.12455 0.00042
rbf—drift-1 0.17788 0.00129 0.16278 0.00143
rbf—drift-2 0.16438 0.00119 0.14905 0.00121
rbf—drift-3 0.16781 0.0011 0.15322 0.00115
rbf—drift-4 0.20026 0.00079 0.18832 0.00076
recurrent—abrupt—222 0.11886 0.01174 0.00548 0.00033
recurrent—abrupt—322 0.07783 0.00916 0.0182 0.00182
recurrent—abrupt—332 0.16737 0.01644 0.06472 0.01184
recurrent—abrupt—333 0.21102 0.01086 0.11341 0.0059
recurrent—abrupt—334 0.22163 0.01839 0.15657 0.00494
recurrent—abrupt—335 0.28508 0.01309 0.15258 0.00231
recurrent—abrupt—422 0.09237 0.01104 0.01034 0.00065
recurrent—abrupt—444 0.43723 0.01824 0.21796 0.01087
recurrent—abrupt—522 0.06868 0.00863 0.01917 0.00181
recurrent—abrupt—555 0.67892 0.00197 0.58899 0.01103

Unique Wins 1 23

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
<

0.00001

Confidence
Interval:
0.81711

— 1

(Table 30, p-value 0.00014), OzaBoostADWIN (Table 31, p-value 0.01133), ADOB, BOLE and

104

32 Chaitanya Manapragada et al.

Table 30: OzaBoost - Synthetic streams with concept drift

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.1812 0.00087 962 0.15742 0.00042 1247
recurrent—led 0.33442 0.00043 59 0.33533 0.00041 237
recurrent—randomtree 0.14317 0.00089 898 0.13294 0.00115 1269
recurrent—sea 0.13049 0.00012 298 0.12719 0.00013 329
recurrent—stagger 0.10382 0.00238 23 0.08442 0.00194 22
recurrent—waveform 0.17132 0.00086 167 0.16516 0.00044 119
hyperplane—1 0.10869 0.00014 309 0.11215 0.00016 298
hyperplane—2 0.13259 0.00037 321 0.12523 0.00028 291
hyperplane—3 0.10511 0.00012 308 0.11043 0.00015 302
hyperplane—4 0.12736 0.00093 319 0.11864 0.00058 297
rbf—drift-1 0.06847 0.00018 363 0.06664 0.00017 396
rbf—drift-2 0.14149 0.00039 391 0.13559 0.00036 552
rbf—drift-3 0.10352 0.00039 350 0.10126 0.00038 363
rbf—drift-4 0.31758 0.00094 339 0.31195 0.00088 363
recurrent—abrupt—222 0.24091 0.08901 4 0.22166 0.08186 4
recurrent—abrupt—322 0.21457 0.05245 4 0.17571 0.06421 4
recurrent—abrupt—332 0.2061 0.05159 8 0.09681 0.04476 8
recurrent—abrupt—333 0.21236 0.01179 27 0.11988 0.02705 26
recurrent—abrupt—334 0.21905 0.00198 63 0.10993 0.02107 61
recurrent—abrupt—335 0.21731 0.00135 121 0.12118 0.02446 117
recurrent—abrupt—422 0.2311 0.08934 4 0.18369 0.08844 4
recurrent—abrupt—444 0.2074 0.013 227 0.05954 0.00795 210
recurrent—abrupt—522 0.2181 0.06227 4 0.18467 0.06745 4
recurrent—abrupt—555 0.3756 0.02529 1259 0.11939 0.00508 1472

Unique Wins 3 21

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00014

Confidence
Interval:
0.70773

— 1

Table 31: OzaBoostADWIN - Synthetic streams with concept drift

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.16874 0.001 581 0.1748 0.00088 370
recurrent—led 0.27943 6e-04 90 0.28262 0.00156 58
recurrent—randomtree 0.13345 0.00305 886 0.12445 0.00323 500
recurrent—sea 0.16147 0.00044 567 0.1449 0.00038 177
recurrent—stagger 0.00152 0.00011 13 0.01347 0.00807 13
recurrent—waveform 0.18972 0.00032 109 0.18629 0.00031 68
hyperplane—1 0.16723 0.00032 560 0.15898 0.00028 167
hyperplane—2 0.188 0.00051 482 0.16057 0.00042 141
hyperplane—3 0.16682 3e-04 599 0.15808 0.00033 174
hyperplane—4 0.17259 0.00081 492 0.14838 0.00062 165
rbf—drift-1 0.07998 0.00027 480 0.07398 0.00022 269
rbf—drift-2 0.13404 0.00096 111 0.11857 0.00057 132
rbf—drift-3 0.11905 0.00052 476 0.10793 0.00039 276
rbf—drift-4 0.2341 0.00145 17 0.22421 0.00128 13
recurrent—abrupt—222 0.07473 0.0385 3 0.09672 0.04831 3
recurrent—abrupt—322 0.01106 0.00578 4 0.03094 0.02574 4
recurrent—abrupt—332 0.00034 4e-05 6 0.00031 4e-05 6
recurrent—abrupt—333 0.00053 1e-05 22 0.00042 0 20
recurrent—abrupt—334 0.00243 0.00014 49 0.00093 2e-05 48
recurrent—abrupt—335 0.00475 0.00113 91 0.0023 3e-04 89
recurrent—abrupt—422 0.08024 0.0799 4 0.02032 0.02003 4
recurrent—abrupt—444 0.04236 0.01526 153 0.01399 0.00533 142
recurrent—abrupt—522 0.01728 0.01396 4 0.0188 0.01558 4
recurrent—abrupt—555 0.41908 0.06705 580 0.17661 0.02764 565

Unique Wins 6 18

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.01133

Confidence
Interval:
0.56531

— 1

OnlineSmoothBoost (Tables 32, 33, and 34, all three p-values 0.00077 on account of 20 wins and
4 losses).

105

An Eager Splitting Strategy for Online Decision Trees 33

Table 32: ADOB - Synthetic streams with concept drift

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.17084 0.00025 1010 0.15346 0.00019 1566
recurrent—led 0.31423 0.00025 60 0.30981 0.00041 243
recurrent—randomtree 0.13912 0.00104 865 0.1323 0.00104 1187
recurrent—sea 0.12015 0.00011 166 0.11842 0.00011 187
recurrent—stagger 0.09834 0.00252 23 0.06311 0.00206 22
recurrent—waveform 0.17092 0.00075 159 0.16448 0.00043 124
hyperplane—1 0.11168 0.00012 249 0.11396 0.00013 285
hyperplane—2 0.12744 0.00027 280 0.12698 0.00025 238
hyperplane—3 0.11004 0.00013 244 0.11241 0.00012 278
hyperplane—4 0.12168 0.00057 277 0.11813 0.00046 204
rbf—drift-1 0.06694 0.00017 370 0.06479 0.00016 422
rbf—drift-2 0.13939 0.00039 386 0.13468 0.00037 554
rbf—drift-3 0.10173 0.00036 350 0.09913 0.00034 351
rbf—drift-4 0.3171 0.00092 338 0.31098 0.00089 365
recurrent—abrupt—222 0.12251 0.03055 4 0.12888 0.03745 4
recurrent—abrupt—322 0.15083 0.05514 4 0.12394 0.04509 4
recurrent—abrupt—332 0.12366 0.02724 8 0.05914 0.02407 8
recurrent—abrupt—333 0.17282 0.01709 27 0.10713 0.01841 27
recurrent—abrupt—334 0.17084 0.00555 63 0.08981 0.01511 61
recurrent—abrupt—335 0.1672 0.00628 122 0.09548 0.01524 120
recurrent—abrupt—422 0.15191 0.04498 4 0.14134 0.04526 4
recurrent—abrupt—444 0.11911 0.00339 228 0.04105 0.00638 207
recurrent—abrupt—522 0.1249 0.03142 4 0.13476 0.04532 4
recurrent—abrupt—555 0.32364 0.0243 1240 0.08112 0.00314 1525

Unique Wins 4 20

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00077

Confidence
Interval:
0.65819

— 1

Table 33: BOLE - Synthetic streams with concept drift

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.17084 0.00025 1010 0.15346 0.00019 1566
recurrent—led 0.31417 0.00025 60 0.30975 0.00041 243
recurrent—randomtree 0.13912 0.00104 865 0.1323 0.00104 1187
recurrent—sea 0.12015 0.00011 166 0.11841 0.00011 187
recurrent—stagger 0.09834 0.00252 23 0.06311 0.00206 22
recurrent—waveform 0.17092 0.00075 159 0.16447 0.00043 124
hyperplane—1 0.11168 0.00012 249 0.11396 0.00013 285
hyperplane—2 0.12744 0.00027 280 0.12698 0.00025 238
hyperplane—3 0.11004 0.00013 244 0.11241 0.00012 278
hyperplane—4 0.12168 0.00057 277 0.11813 0.00046 204
rbf—drift-1 0.06694 0.00017 370 0.06479 0.00016 422
rbf—drift-2 0.13939 0.00039 386 0.13468 0.00037 554
rbf—drift-3 0.10173 0.00036 350 0.09913 0.00034 351
rbf—drift-4 0.3171 0.00092 338 0.31099 0.00089 365
recurrent—abrupt—222 0.12248 0.03055 4 0.12743 0.03735 4
recurrent—abrupt—322 0.1498 0.05508 4 0.12291 0.04503 4
recurrent—abrupt—332 0.12366 0.02724 8 0.05914 0.02407 8
recurrent—abrupt—333 0.17282 0.01709 27 0.10713 0.01841 27
recurrent—abrupt—334 0.17083 0.00555 63 0.08965 0.01502 61
recurrent—abrupt—335 0.16706 0.00622 122 0.0949 0.01492 120
recurrent—abrupt—422 0.15191 0.04498 4 0.14134 0.04526 4
recurrent—abrupt—444 0.11737 0.00302 228 0.03993 0.00592 207
recurrent—abrupt—522 0.12386 0.03136 4 0.13373 0.04526 4
recurrent—abrupt—555 0.29368 0.01059 1240 0.07874 0.00196 1525

Unique Wins 4 20

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00077

Confidence
Interval:
0.65819

— 1

Plain EFDT outperforms plain VFDT on 16 synthetic streams (Table 35, with VFDT out-
performing on the remaining 8.

106

34 Chaitanya Manapragada et al.

Table 34: OnlineSmoothBoost - Synthetic streams with concept drift

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.19145 0.00037 435 0.17937 0.00038 813
recurrent—led 0.31266 0.00027 55 0.32583 0.00036 302
recurrent—randomtree 0.20745 0.00268 1064 0.19807 0.0023 1355
recurrent—sea 0.1442 0.00013 146 0.13578 0.00013 163
recurrent—stagger 0.17514 0.00101 23 0.18746 0.00046 23
recurrent—waveform 0.1712 0.00148 127 0.16125 0.00119 139
hyperplane—1 0.10209 0.00017 244 0.098 0.00013 169
hyperplane—2 0.14834 0.00104 282 0.12153 0.00054 76
hyperplane—3 0.09573 0.00011 241 0.09475 1e-04 205
hyperplane—4 0.14618 0.00297 273 0.1171 0.00112 92
rbf—drift-1 0.084 0.00035 344 0.07305 0.00027 278
rbf—drift-2 0.18332 0.00084 424 0.15977 0.00076 745
rbf—drift-3 0.11502 0.00058 322 0.10907 0.00057 239
rbf—drift-4 0.33978 0.00122 288 0.33032 0.0012 345
recurrent—abrupt—222 0.33921 0.02677 4 0.33905 0.02662 4
recurrent—abrupt—322 0.3587 0.01792 4 0.36061 0.02554 4
recurrent—abrupt—332 0.32643 0.05302 8 0.30822 0.06033 8
recurrent—abrupt—333 0.35755 0.0149 27 0.34818 0.0266 27
recurrent—abrupt—334 0.38918 0.00202 64 0.35711 0.03683 63
recurrent—abrupt—335 0.38905 0.00225 121 0.37848 0.02378 123
recurrent—abrupt—422 0.32939 0.03697 4 0.32422 0.04199 4
recurrent—abrupt—444 0.38303 0.00529 231 0.36083 0.01028 233
recurrent—abrupt—522 0.32769 0.04879 4 0.32929 0.04613 4
recurrent—abrupt—555 0.39253 0.00499 1358 0.34937 0.0076 1867

Unique Wins 4 20

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.00077

Confidence
Interval:
0.65819

— 1

Table 35: Plain single learners (no ensemble) - Synthetic streams with concept drift

Streams VFDT Base EFDT Base
Error Variance Leaves Error Variance Leaves

recurrent—agrawal 0.20846 0.00043 482 0.19639 0.00062 829
recurrent—led 0.33838 0.00068 54 0.34679 0.00037 320
recurrent—randomtree 0.22404 0.00231 1155 0.21817 0.00219 1432
recurrent—sea 0.15251 0.00016 164 0.14958 0.00019 183
recurrent—stagger 0.1882 0.00047 23 0.19043 0.00047 23
recurrent—waveform 0.19355 0.00171 147 0.18957 0.00135 156
hyperplane—1 0.11566 0.00021 285 0.11677 2e-04 187
hyperplane—2 0.16785 0.00117 333 0.14056 0.00069 76
hyperplane—3 0.1074 0.00013 284 0.11208 0.00015 234
hyperplane—4 0.16309 0.00359 316 0.13384 0.00147 109
rbf—drift-1 0.11462 0.00053 397 0.11255 0.00063 310
rbf—drift-2 0.2858 0.00155 482 0.2623 0.00171 766
rbf—drift-3 0.13821 0.00068 365 0.14308 0.00087 278
rbf—drift-4 0.40874 0.00141 288 0.40597 0.00144 343
recurrent—abrupt—222 0.35403 0.02056 4 0.35381 0.02053 4
recurrent—abrupt—322 0.37862 0.01248 4 0.37596 0.03198 4
recurrent—abrupt—332 0.3504 0.08913 8 0.33376 0.10312 8
recurrent—abrupt—333 0.36505 0.01499 27 0.36583 0.04067 27
recurrent—abrupt—334 0.39687 0.00217 64 0.39001 0.04158 62
recurrent—abrupt—335 0.39622 0.00319 121 0.3945 0.02991 123
recurrent—abrupt—422 0.33416 0.02931 4 0.33569 0.04239 4
recurrent—abrupt—444 0.40671 0.00636 235 0.38967 0.02007 236
recurrent—abrupt—522 0.3309 0.03999 4 0.33374 0.04749 4
recurrent—abrupt—555 0.46461 0.00584 1405 0.40866 0.01097 1891

Unique Wins 8 16

A bold value indicates higher accuracy, and bold italics indicate a tie.

The test is a one-tailed binomial test to determine the probability that
the strategy in the rightmost column would achieve so many wins if wins
and losses were equiprobable.

Test
Statistics

p-value:
0.07579

Confidence
Interval:
0.47858

— 1

6 Conclusions

EFDT has an advantage relative to VFDT in 28 out of 30 ensemble/stream combination settings
when employed as the base learner for online ensembling techniques. For 21 of these settings, the

107

An Eager Splitting Strategy for Online Decision Trees 35

Table 36: Summary of results

Ensembles UCI Streams UCI Shuffled Streams Synthetic Streams
VFDT
wins

EFDT
wins

p-value VFDT
wins

EFDT
wins

p-value VFDT
wins

EFDT
wins

p-value

OzaBag 2 16 0.00066 3 15 0.00377 5 19 0.00331
OzaBagAdwin 3 15 0.00377 3 15 0.00377 11 13 0.41941
LevBag without Adwin 6 13 0.08353 7 11 0.24034 4 20 0.00077
LevBag 5 13 0.04813 10 8 0.75966 14 10 0.84627
ARF 3 15 0.00377 4 16 0.00591 1 23 <0.00001
OzaBoost 6 12 0.11894 7 10 0.31453 3 21 0.00014
OzaBoostAdwin 8 11 0.3238 7 11 0.24034 6 18 0.01133
ADOB 5 13 0.04813 5 13 0.04813 4 20 0.00077
BOLE 5 13 0.04813 5 13 0.04813 4 20 0.00077
OnlineSmoothBoost 5 15 0.02069 3 15 0.00377 4 20 0.00077
Plain (no ensemble) 7 13 0.13159 5 13 0.04813 8 16 0.07579

EFDT largely outperforms VFDT as a base learner for ensembles, achieving significance at a standard 0.05 level with 7
ensembles on UCI streams, 6 ensembles on shuffled UCI streams, and 8 ensembles on the synthetic testbench.

The test is a one-tailed binomial test to determine the probability that EFDT-based ensembles would achieve so many wins
if wins and losses were equiprobable.

advantage is within a statistically significant level of 0.05. For the 2 (out of 30) ensemble/scenario
combinations for which EFDT “loses” (LevBag with synthetic and shuffled UCI streams), the
win for VFDT does not reach statistical significance.

EFDT shows promise as a base learner for both boosting and bagging ensembles in synthetic
concept-drifting scenarios, achieving lower error than VFDT within a 0.05 significance level with
8 out of 10 ensembles. However, in concept-drifting scenarios, given EFDT’s greater short term
instability, interactions between EFDT and change detectors may cause some EFDT ensemble
components to be prematurely terminated, leading to an erosion of advantage. This interaction
needs further study. The influence of change detectors appears to be negligible when concept
drift is not present.

On UCI data streams that are not shuffled, using EFDT as a base learner leads to significant
wins for 7 ensembles at the 0.05 significance level, with the remaining results falling outside
the level of significance. Results on shuffled versions of the streams are similar, with significant
wins for EFDT on 6 ensembles. Bagging ensembles are overwhelmingly favored, with four out
of five achieving significance for unshuffled streams; however, three boosting strategies, ADOB,
BOLE, and OnlineSmoothBoost, with rationalized weighting mechanisms also lead to a win
for the EFDT base learner within the 0.05 significance level. The indication seems to be that
rationalized regimes for weighting, as noted in ADOB, BOLE and OnlineSmoothBoost, interact
positively with HATT to deliver a performance gain over the boosting regimes that weight more
naively—OzaBoost and OzaBoostAdwin.

The observations that EFDT does not work well with change detectors based on model error
under concept drift, and that it can revise models without requiring a change detector both
suggest that bespoke EFDT-based ensemble methods might be effective under concept drift.
Existing online ensemble techniques have been developed for the rigid unrevisable models of
VFDT. New online ensemble techniques that exploit the flexibility of EFDT provide a promising
direction for future research.

Tangentially, while we have not explicitly compared the general performance of bagging and
boosting strategies in this paper, as our focus is on the impact of using EFDT as a base learner in
ensemble techniques, we offer the hypothesis that strategies that rationalize weighting in boosting
meta-algorithms using base learners with limited instability might reduce the performance gap
between online bagging and online boosting ensembles pointed out in [6].

Leveraging Bagging is significantly advantaged by an EFDT base learner over a VFDT base
learner when mild concept drift is present, as in UCI streams, but the advantage erodes when
one moves to a scenario with a more uniform, non-evolving stream, as noted in Section 5.1.2.

108

36 Chaitanya Manapragada et al.

This erosion appears to result mostly from the change of Poisson λ value to 6 (from 1, thus
ensuring 34% of instances are not discarded by drawing a 0), hinting at the thesis that when the
generating distribution is uniform, online bagging with EFDT is advantaged through a batch-like
bagging process that mimics leaving out a third of the input instances for each base learner—but
when mild concept drift is present the extra instances are more helpful for learning. In a scenario
with larger and more continual concept drift, as with our synthetic streams, interaction with
change detectors appears to work adversely for EFDT with Leveraging Bagging.

We posit that the outperformance of ensembles with HATT as a base learner over those with
HT as a base learner is due to the greater amount of short term instability in HATT, allowing for
greater component diversity—which is associated with more effective error reduction—making
HATT particularly suitable for use as a base learner in ensembled approaches.

To sum up, our results show that Hoeffding AnyTime Tree (implemented as Extremely Fast
Decision Tree, EFDT) significantly outperforms Hoeffding Tree (implemented as Very Fast Deci-
sion Tree, VFDT) on prequential accuracy as a base learner for bagging and boosting ensembles
on a large set of real and synthetic testbenches, and never underperforms with significance.

References

[1] Rakesh Agrawal, Sakti Ghosh, Tomasz Imielinski, Balakrishna Iyer, and Arun Swami (Jan.
1992). “An Interval Classifier for Database Mining Applications.” In: pp. 560–573.

[2] R.S.M. de Barros, S.G.T. de Carvalho Santos, and P. M. G. Junior (July 2016). “A
Boosting-like Online Learning Ensemble”. In: 2016 International Joint Conference on Neu-
ral Networks (IJCNN), pp. 1871–1878. doi: 10.1109/IJCNN.2016.7727427.

[3] Rajen Bhatt and Abhinav Dhall (2012). Skin Segmentation Dataset: UCI Machine Learning
Repository. url: https://archive.ics.uci.edu/ml/datasets/skin+segmentation.

[4] Albert Bifet and Ricard Gavalda (2007). “Learning from time-changing data with adaptive
windowing”. In: Proceedings of the 2007 SIAM International Conference on Data Mining.
SIAM, pp. 443–448.

[5] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer (2010). “Moa: Mas-
sive online analysis”. In: Journal of Machine Learning Research 11.May, pp. 1601–1604.

[6] Albert Bifet, Geoff Holmes, and Bernhard Pfahringer (2010). “Leveraging bagging for evolv-
ing data streams”. In: Joint European conference on machine learning and knowledge dis-
covery in databases. Springer, pp. 135–150.

[7] Albert Bifet, Geoff Holmes, Bernhard Pfahringer, Richard Kirkby, and Ricard Gavaldà
(2009). “New ensemble methods for evolving data streams”. In: Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining. ACM,
pp. 139–148.

[8] — (n.d.). CovPokElec Dataset from “New Ensemble Methods for Evolving Data
Streams”, KDD ’09. url: https://www.openml.org/d/149.

[9] Albert Bifet and Elena Ikonomovska (n.d.). Airlines Dataset. url: https://www.openml.
org/d/1169.

[10] Jock Blackard and Denis Dean (Dec. 1999). “Comparative Accuracies of Artificial Neural
Networks and Discriminant Analysis in Predicting Forest Cover Types from Cartographic
Variables”. In: 24, pp. 131–151.

[11] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone (1984). Classification and regres-
sion trees. Chapman and Hall, New York.

[12] Leo Breiman (1996). “Bagging predictors”. In: Machine learning 24.2, pp. 123–140.

109

An Eager Splitting Strategy for Online Decision Trees 37

[13] Javier Burgués, Juan Manuel Jiménez-Soto, and Santiago Marco (Feb. 2018). “Estima-
tion of the limit of detection in semiconductor gas sensors through linearized calibration
models”. In: Analytica Chimica Acta 1013. doi: 10.1016/j.aca.2018.01.062.

[14] Javier Burgués and Santiago Marco (2018). “Multivariate estimation of the limit of de-
tection by orthogonal partial least squares in temperature-modulated MOX sensors”. In:
Analytica Chimica Acta 1019, pp. 49–64. issn: 0003-2670. doi: https://doi.org/10.
1016/j.aca.2018.03.005. url: http://www.sciencedirect.com/science/article/
pii/S0003267018303702.

[15] Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu (2012). “An online boosting algorithm
with theoretical justifications”. In: arXiv preprint arXiv:1206.6422.

[16] Thomas G Dietterich (2000). “Ensemble methods in machine learning”. In: International
workshop on multiple classifier systems. Springer, pp. 1–15.

[17] Pedro Domingos and Geoff Hulten (2000). “Mining high-speed data streams”. In: Proceed-
ings of the sixth ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, pp. 71–80.

[18] Dheeru Dua and Casey Graff (2017). UCI Machine Learning Repository. url: http://
archive.ics.uci.edu/ml.

[19] Johannes Gehrke, Venkatesh Ganti, Raghu Ramakrishnan, and Wei-Yin Loh (1999).
“BOAT—Optimistic Decision Tree Construction”. In: Proceedings of the 1999 ACM SIG-
MOD International Conference on Management of Data. SIGMOD ’99. Philadelphia, Penn-
sylvania, USA: ACM, pp. 169–180. isbn: 1-58113-084-8. doi: 10.1145/304182.304197.
url: http://doi.acm.org/10.1145/304182.304197.

[20] Johannes Gehrke, Raghu Ramakrishnan, and Venkatesh Ganti (2000). “RainForest—a
framework for fast decision tree construction of large datasets”. In: Data Mining and
Knowledge Discovery 4.2-3, pp. 127–162.

[21] Heitor M Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabricio Enembreck, Bern-
hard Pfahringer, Geoff Holmes, and Talel Abdessalem (2017a). “Adaptive random forests
for evolving data stream classification”. In: Machine Learning 106.9-10, pp. 1469–1495.

[22] Heitor Murilo Gomes, Jean Paul Barddal, Fabricio Enembreck, and Albert Bifet (2017b).
“A survey on ensemble learning for data stream classification”. In: ACM Computing Sur-
veys (CSUR) 50.2, pp. 1–36.

[23] Heitor Murilo Gomes, Jesse Read, and Albert Bifet (2019). “Streaming Random Patches
for Evolving Data Stream Classification”. In: 2019 IEEE International Conference on
Data Mining, ICDM 2019, Beijing, China, November 8-11, 2019. Ed. by Jianyong Wang,
Kyuseok Shim, and Xindong Wu. IEEE, pp. 240–249. doi: 10.1109/ICDM.2019.00034.
url: https://doi.org/10.1109/ICDM.2019.00034.

[24] M Harries, J Gama, and A Bifet (n.d.). NSW Electricity dataset. url: https://www.
openml.org/d/151.

[25] Verena Heidrich-Meisner and Christian Igel (2009). “Hoeffding and Bernstein races for
selecting policies in evolutionary direct policy search”. In: Proceedings of the 26th Annual
International Conference on Machine Learning, pp. 401–408.

[26] Wassily Hoeffding (1963). “Probability inequalities for sums of bounded random variables”.
In: Journal of the American statistical association 58.301, pp. 13–30.

[27] Ramon Huerta, Thiago Mosqueiro, Jordi Fonollosa, and Nikolai Rulkov (2016). “Online
decorrelation of humidity and temperature in chemical sensors for continuous monitoring”.
In: Chemometrics and Intelligent Laboratory Systems 157, pp. 169–176.

[28] Geoff Hulten, Laurie Spencer, and Pedro Domingos (2001). “Mining time-changing data
streams”. In: Proceedings of the seventh ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pp. 97–106.

110

38 Chaitanya Manapragada et al.

[29] Earl Busby Hunt, Janet Marin, and Philip James Stone (1966). Experiments in Induction.
Academic Press. url: https://books.google.com.au/books?id=60NDAAAAIAAJ.

[30] Bostjan Kaluza, Violeta Mirchevska, Erik Dovgan, Mitja Lustrek, and Matjaz Gams (Oct.
2010). “An Agent-Based Approach to Care in Independent Living”. In: pp. 177–186. doi:
10.1007/978-3-642-16917-5_18.

[31] Ludmila I Kuncheva (2003). “That elusive diversity in classifier ensembles”. In: Iberian
conference on pattern recognition and image analysis. Springer, pp. 1126–1138.

[32] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore (2010). “Activity recognition
using cell phone accelerometers”. In: Proceedings of the Fourth International Workshop on
Knowledge Discovery from Sensor Data, pp. 10–18.

[33] Richard Lyman (2016). Character Font Images Data Set: UCI Machine Learning Reposi-
tory. url: https://archive.ics.uci.edu/ml/datasets/Character+Font+Images.

[34] Chaitanya Manapragada, Geoffrey I Webb, and Mahsa Salehi (2018). “Extremely fast
decision tree”. In: Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, pp. 1953–1962.

[35] Chaitanya Manapragada, Geoffrey I Webb, Mahsa Salehi, and Albert Bifet (2020). Emer-
gent and Unspecified Behaviors in Streaming Decision Trees. arXiv: 2010.08199 [cs.LG].

[36] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Asaf Shabtai, Dominik
Breitenbacher, and Yuval Elovici (July 2018). “N-BaIoT—Network-Based Detection of IoT
Botnet Attacks Using Deep Autoencoders”. In: IEEE Pervasive Computing 17, pp. 12–22.
doi: 10.1109/MPRV.2018.03367731.

[37] Rodrigo F de Mello, Chaitanya Manapragada, and Albert Bifet (2019). “Measuring the
Shattering coefficient of Decision Tree models”. In: Expert Systems with Applications 137,
pp. 443–452.

[38] Nikunj C. Oza (Oct. 2005). “Online Bagging and Boosting”. In: International Conference
on Systems, Man, and Cybernetics, Special Session on Ensemble Methods for Extreme
Environments. Ed. by Mo Jamshidi. New Jersey: Institute for Electrical and Electronics
Engineers, pp. 2340–2345.

[39] John Ross Quinlan (1979). “Discovering rules by induction from large collections of exam-
ples”. In: Expert systems in the micro electronics age.

[40] — (1983). “Learning efficient classification procedures and their application to chess end
games”. In: Machine learning. Springer, pp. 463–482.

[41] — (1992). C4.5: programs for machine learning. San Mateo, CA: Morgan Kaufmann.
url: http://cds.cern.ch/record/2031749.

[42] Attila Reiss and Didier Stricker (2012). “Introducing a new benchmarked dataset for ac-
tivity monitoring”. In: Wearable Computers (ISWC), 2012 16th International Symposium
on. IEEE, pp. 108–109.

[43] Byron Roe, Haijun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon McGregor (Sept.
2004). “Boosted Decision Trees as an Alternative to Artificial Neural Networks for Particle
Identification”. In: Nuclear Instruments and Methods in Physics Research A 543. doi:
10.1016/j.nima.2004.12.018.

[44] Silas Garrido Teixeira de Carvalho Santos, Junior Paulo Mauricio Gonçalves, Geyson Daniel
dos Santos Silva, and Roberto Souto Maior” de Barros (2014). “Speeding Up Recovery from
Concept Drifts”. In: Machine Learning and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part
III. Ed. by Toon Calders, Floriana Esposito, Eyke Hüllermeier, and Rosa Meo. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 179–194. doi: 10.1007/978-3-662-44845-
8_12.

111

An Eager Splitting Strategy for Online Decision Trees 39

[45] Robert E Schapire (1990). “The strength of weak learnability”. In: Machine learning 5.2,
pp. 197–227.

[46] Jeffrey Schlimmer and Douglas Fisher (1986). “A case study of incremental concept induc-
tion”. In: AAAI. Vol. 86, pp. 496–501.

[47] Jeffrey Schlimmer and Richard Granger (1986). “Incremental learning from noisy data”.
In: Machine Learning 1.3, pp. 317–354. issn: 1573-0565. doi: 10.1007/BF00116895. url:
http://dx.doi.org/10.1007/BF00116895.

[48] Rocco A Servedio (2003). “Smooth boosting and learning with malicious noise”. In: Journal
of Machine Learning Research 4.Sep, pp. 633–648.

[49] SIGKDD (2015). 2015 KDD Test of Time Award Winners. url: https://www.kdd.org/
awards/view/2015-kdd-test-of-time (visited on 12/10/2019).

[50] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Prentow, Mikkel Kjaergaard,
Anind Dey, Tobias Sonne, and Mads Jensen (2015). “Smart Devices Are Different: Assess-
ing and Mitigating Mobile Sensing Heterogeneities for Activity Recognition”. In: Proceed-
ings of the 13th ACM Conference on Embedded Networked Sensor Systems. SenSys ’15.
Seoul, South Korea: ACM, pp. 127–140. isbn: 978-1-4503-3631-4.

[51] W Nick Street and YongSeog Kim (2001). “A streaming ensemble algorithm (SEA) for
large-scale classification”. In: Proceedings of the seventh ACM SIGKDD international con-
ference on Knowledge discovery and data mining. ACM, pp. 377–382.

[52] Wallace Ugulino, Débora Cardador, Katia Vega, Eduardo Velloso, Ruy Milidiu, and Hugo
Fuks (Oct. 2012). “Wearable Computing: Accelerometers’ Data Classification of Body Pos-
tures and Movements”. In: vol. 7589. isbn: 978-3-642-34458-9. doi: 10.1007/978-3-642-
34459-6_6.

[53] Paul E Utgoff (1989). “Incremental induction of decision trees”. In: Machine learning 4.2,
pp. 161–186.

[54] Benjamin Visser and Henry Gouk (n.d.). AWS Dataset. url: https://www.openml.org/
d/41424.

[55] Larry Wasserman (n.d.). Lecture Notes 3 — Review: Bounded Random Variables - Hoeffd-
ing’s bound. url: https://www.stat.cmu.edu/~larry/=stat705/Lecture3.pdf.

[56] Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean (2016).
“Characterizing concept drift”. In: Data Mining and Knowledge Discovery 30.4, pp. 964–
994.

[57] David H Wolpert and William G Macready (1997). “No Free Lunch Theorems for Op-
timization”. In: IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1.1,
p. 67.

[58] — (2005). “Coevolutionary free lunches”. In: IEEE Transactions on Evolutionary Com-
putation 9.6, pp. 721–735.

[59] David H. Wolpert (1996). “The Lack of A Priori Distinctions Between Learning Algo-
rithms”. In: Neural Computation 8.7, pp. 1341–1390. doi: 10.1162/neco.1996.8.7.1341.
eprint: https://doi.org/10.1162/neco.1996.8.7.1341. url: https://doi.org/10.
1162/neco.1996.8.7.1341.

A CPU Time comparison

112

40 Chaitanya Manapragada et al.

Table 37: Real data streams, unshuffled: CPU Times in Seconds

(a) See Table 1 for key to data streams

Learners ↓ Streams → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 ARF EFDT 154 4135 2 213 669 1692 1297 479 11 20 1609 6 497 70 11 50 200 4 2 390

2 ARF VFDT 98 2694 2 143 426 1526 1004 430 8 18 1118 4 456 53 7 35 179 4 2 337

3 ADOB EFDT 48 2325 2 136 453 1398 997 273 11 9 853 3 490 69 5 28 229 2 3 292

4 ADOB VFDT 39 1719 2 96 300 1398 1592 314 6 10 760 3 448 48 7 41 270 2 3 266

5 BOLE EFDT 51 2325 2 136 439 1446 1047 222 10 11 845 3 520 69 6 28 329 2 3 282

6 BOLE VFDT 39 1579 3 93 258 1127 1245 266 6 10 773 2 438 50 7 36 279 2 2 302

7 LevBagNoAdwin EFDT 97 4323 3 235 826 5414 2626 690 22 20 2066 5 881 110 11 59 796 3 5 475

8 LevBagNoAdwin VFDT 43 2173 3 132 333 3914 2622 340 11 16 1581 4 752 47 10 52 401 3 4 246

9 LeveragingBag EFDT 211 5850 2 208 642 4094 1477 556 14 16 1473 6 548 63 12 47 330 5 5 435

10 LeveragingBag VFDT 149 2598 2 143 425 2130 1073 493 9 20 1432 4 480 51 9 37 252 4 5 404

11 OnlineSmoothBoost EFDT 73 3012 3 169 659 3787 2671 718 27 18 2368 4 841 97 12 58 644 3 5 471

12 OnlineSmoothBoost EFDT 46 2023 2 112 365 5038 1978 532 11 17 1596 3 921 56 11 48 340 3 4 360

13 OzaBag EFDT 54 2364 2 123 438 3060 1675 470 16 13 1502 3 606 48 8 38 547 3 3 307

14 OzaBag VFDT 31 1483 2 72 228 2304 1256 313 7 12 792 2 513 34 8 35 247 2 3 175

15 OzaBagAdwin EFDT 145 2874 1 148 403 2653 756 392 7 15 1032 4 438 46 9 35 224 4 2 296

16 OzaBagAdwin VFDT 113 2011 1 135 345 2506 1199 421 7 18 1079 2 417 43 8 24 245 3 3 356

17 OzaBoost EFDT 49 2762 3 128 445 1210 1025 282 10 11 724 2 461 66 6 27 341 2 3 301

18 OzaBoost VFDT 39 1820 2 70 302 1142 1552 348 7 10 953 2 484 40 7 39 260 2 3 268

19 OzaBoostAdwin EFDT 147 2908 1 207 702 1591 1005 305 9 13 916 4 354 77 5 25 190 4 1 422

20 OzaBoostAdwin VFDT 148 2273 1 154 543 1233 731 266 7 13 784 4 306 65 4 24 203 3 2 331

21 Plain EFDT 9 362 1 25 86 609 370 91 4 4 413 1 109 9 2 7 91 1 1 54

22 Plain VFDT 7 251 1 16 50 463 296 89 2 4 443 1 144 6 2 8 55 1 1 45

Table 38: Real data streams, shuffled: Average CPU Times in Seconds

(a) See Table 1 for key to data streams

Learners ↓ Streams → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 ARF EFDT 128 3894 5 235 700 40692 4616 1109 13 82 13049 5 5153 84 40 124 1122 8 8 962

2 ARF VFDT 125 2832 5 127 273 33697 2489 824 14 46 20393 4 2974 89 32 89 792 6 6 606

3 ADOB EFDT 45 2672 3 178 750 3293 3011 397 11 45 3160 3 2493 102 24 107 941 4 5 398

4 ADOB VFDT 41 1655 3 96 319 2452 1975 383 9 26 2292 2 1282 70 22 69 539 4 5 325

5 BOLE EFDT 44 2826 4 169 763 3156 4778 442 11 41 3428 3 2326 73 25 104 804 4 6 418

6 BOLE VFDT 42 1756 3 98 363 2450 2028 382 10 26 2701 2 1239 73 22 69 504 3 6 326

7 LevBagNoAdwin EFDT 103 4767 5 379 2300 6559 5563 1310 17 91 9014 6 4399 152 40 208 1740 7 7 791

8 LevBagNoAdwin VFDT 55 2639 4 124 438 4742 2409 557 12 40 4182 4 1187 78 23 75 732 4 6 338

9 LeveragingBag EFDT 152 4551 5 345 995 7005 5789 1185 13 82 10610 5 4735 126 39 176 1487 8 7 778

10 LeveragingBag VFDT 145 2708 5 128 448 4658 2540 612 14 45 9802 4 4905 84 22 82 764 5 6 320

11 OnlineSmoothBoost EFDT 81 3508 5 224 1435 7114 5038 1119 14 58 10257 4 4425 133 36 171 1338 6 7 559

12 OnlineSmoothBoost EFDT 44 1985 4 91 378 5160 2230 773 11 26 5626 2 1852 65 29 77 709 4 7 386

13 OzaBag EFDT 70 2269 4 142 928 4557 3963 884 9 44 5811 2 2563 80 20 126 820 5 4 380

14 OzaBag VFDT 40 1412 3 72 277 2893 1833 391 8 23 3262 2 1176 50 17 52 450 2 4 244

15 OzaBagAdwin EFDT 135 2858 5 165 601 4698 3919 987 12 44 6411 3 3123 108 30 118 852 5 7 447

16 OzaBagAdwin VFDT 96 1853 5 101 340 3473 2455 634 12 23 17646 2 1526 83 20 67 617 5 7 311

17 OzaBoost EFDT 56 2805 3 172 1006 3318 2478 334 10 41 3287 3 2219 88 23 103 872 3 6 592

18 OzaBoost VFDT 41 1902 2 104 293 2170 2076 513 10 27 2437 2 961 70 20 58 560 3 6 329

19 OzaBoostAdwin EFDT 92 3615 3 173 625 3287 3001 501 9 44 3929 3 3307 89 23 95 817 5 5 506

20 OzaBoostAdwin VFDT 69 2350 3 96 314 2268 2384 382 10 31 2747 3 1371 73 21 57 562 4 6 329

21 Plain EFDT 10 354 1 19 74 997 459 105 2 8 881 1 320 11 4 16 100 1 1 66

22 Plain VFDT 6 252 1 16 54 797 336 106 2 6 704 1 194 6 3 11 65 1 1 50

113

An Eager Splitting Strategy for Online Decision Trees 41

Table 39: Synthetic data streams: Average CPU Times in Seconds

(a) See Table 2 for key to data streams

Learners ↓ Streams → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 ARF EFDT 133 306 143 64 64 635 126 128 133 112 112 116 115 128 17 17 19 22 22 23 20 39 19 47

2 ARF VFDT 121 171 95 68 76 332 83 79 77 73 79 80 80 85 16 18 17 20 21 21 19 26 19 29

3 ADOB EFDT 123 233 100 70 48 364 73 82 72 71 88 110 88 109 6 7 9 11 11 12 7 19 7 44

4 ADOB VFDT 105 173 77 62 64 254 48 51 44 46 51 64 52 65 5 6 7 9 10 11 6 14 7 27

5 BOLE EFDT 109 264 107 61 55 346 78 78 71 71 88 109 88 107 6 7 9 10 12 13 7 19 8 45

6 BOLE VFDT 105 139 80 62 64 241 44 49 47 50 54 67 54 69 5 7 7 8 9 11 7 15 7 28

7 LevBagNoAdwin EFDT 144 453 264 75 59 647 152 139 152 109 194 195 194 196 8 7 12 14 16 13 8 20 8 64

8 LevBagNoAdwin VFDT 93 198 105 63 55 383 81 80 86 89 73 90 76 89 6 7 7 8 8 11 6 16 6 33

9 LeveragingBag EFDT 108 283 136 73 67 635 156 141 168 129 198 164 208 134 15 17 19 22 23 26 17 37 17 81

10 LeveragingBag VFDT 90 158 99 76 54 341 93 89 92 89 99 106 99 97 16 16 16 17 20 21 13 26 16 43

11 OnlineSmoothBoost EFDT 113 370 132 78 50 555 111 101 123 100 147 163 149 139 7 8 12 14 15 16 9 27 10 64

12 OnlineSmoothBoost EFDT 88 186 103 80 65 360 67 76 71 65 66 77 64 72 6 6 9 10 10 11 7 15 8 30

13 OzaBag EFDT 86 262 105 68 55 375 77 70 78 71 95 114 94 91 5 6 8 10 11 12 6 19 6 48

14 OzaBag VFDT 66 136 77 51 52 228 45 46 49 46 45 53 46 44 4 4 6 5 7 8 5 11 5 24

15 OzaBagAdwin EFDT 81 204 107 64 63 427 93 82 103 77 103 100 101 65 14 14 18 18 20 21 14 31 16 56

16 OzaBagAdwin VFDT 71 178 84 59 60 275 63 59 67 61 63 70 62 64 14 14 14 15 17 18 14 23 14 30

17 OzaBoost EFDT 105 267 106 69 55 326 76 83 76 77 85 109 91 109 6 7 9 10 11 12 6 19 7 44

18 OzaBoost VFDT 79 152 83 58 46 245 50 55 51 50 53 65 54 65 5 6 7 9 9 10 6 13 6 27

19 OzaBoostAdwin EFDT 106 203 133 70 61 400 82 83 82 84 90 105 93 109 11 13 16 17 17 19 13 25 14 42

20 OzaBoostAdwin VFDT 97 143 87 76 53 291 65 66 61 62 61 77 61 92 13 13 14 16 18 18 12 21 13 29

21 Plain EFDT 53 62 57 49 47 90 9 8 9 8 11 12 8 10 1 1 2 2 2 2 1 2 1 6

22 Plain VFDT 51 59 52 48 47 71 6 6 6 6 6 8 6 7 1 1 1 1 1 2 1 2 1 3

114

Chapter 7

Conclusions

This work studies the problem of learning from evolving data streams without making strong
assumptions on the nature of data generating streams. We summarize our findings below.

Note that we assume a significance level of 0.05 for our tests, which are one-tailed binomial tests
to determine the probability that the winning strategy would have achieved as many wins on as
many streams if wins and losses were equiprobable.

7.1 Findings

• Our online decision tree Hoeffding AnyTime Tree (HATT) is statistically more
efficient than the state-of-the-art Hoeffding Tree (HT), converges to the ideal
batch tree while Hoeffding Tree does not, and obtains improved prequential ac-
curacy on a standard testbench.

Extremely Fast Decision Tree (EFDT, the concrete implementation of the theoretical con-
struct HATT) outperforms Very Fast Decision Tree (VFDT, the implementation of the theo-
retical construct HT) on prequential accuracy on a testbench consisting of real and synthetic
data streams, with a small overhead due to split revision that results in a minimal increase
the order of time complexity.

EFDT is both more statistically efficient at learning a stationary distribution and faster to
adjust in the face of concept drift.

On the stability-plasticity spectrum, EFDT is more plastic than VFDT, choosing intermediate
splits on the basis of available data, and allowing splits to be revised after they have been
made—in contrast to VFDT which fixes each split irreversibly and therefore waits to achieve
greater certainty that a split will be indefinitely stable before splitting.

EFDT chooses to split if the Hoeffding Test determines an attribute better than the current
split attribute is available to split upon, while VFDT only splits if the Hoeffding Test deter-
mines that the top attribute is better than the second best one. Consequently, EFDT achieves
greater statistical efficiency by growing tree structure earlier, and because it revises splits, it
converges to the ideal batch tree.

115

• Compared to Hoeffding Tree, HATT achieves superior prequential accuracy as
a base learner across boosting and bagging ensembles on real streams with and
without concept drift, and on a synthetic concept drift testbench. This supports
the idea that greater plasticity in base learners, and thus greater ensemble diver-
sity is advantageous for online learning.

Ensembles of decision trees are widely used in practice; decision trees are highly interpretable,
and diversity of base models in ensembles is considered beneficial for learning as diverse base
models would be able to capture different aspects of a concept. Thus it was important to study
how EFDT performed as a base learner for ensembles; we conducted a large experimental
study of the use of EFDT as a base learner with online boosting and bagging ensembles,
including random forests, on UCI and synthetic data streams.

We found that EFDT offers significantly improved prequential accuracy performance on most
settings within a significance level of 0.05 on our testbench compared to VFDT. EFDT never
underperforms with significance. This improved performance is possibly due to the greater
plasticity of EFDT—plasticity of the base learner is hypothesized to improve ensemble diver-
sity and hence boost ensemble performance.

• Extremely Fast Decision Adaptive Tree (EFAT), which uses the eager splitting
strategy of EFDT together with the adaptive subtree substitution mechanism
from Hoeffding Adaptive Tree (HAT), outperforms HAT on prequential accuracy
on real streams with and without concept drift, and on a synthetic concept drift
testbench.

It is possible that building structure rapidly enables a higher quality classifier to be deployed
sooner—reinforcing the idea that there might be an unsubstantiated bias in the development
of machine learning for building highly stable classifiers.

• Unspecified features and emergent behaviors in implementations of the state-of-
the-art online tree learner Hoeffding Tree have significant previously unknown
effects on its behavior and prequential accuracy performance

Unspecified details left to interpretation can significantly and consequentially influence algo-
rithm behavior, and the true reasons for the experimental success of algorithms can deviate
significantly from the theoretical justifications (as demonstrated in this work in Chapter 3).
Therefore, even the assumption that an algorithm performs well in practice because of its
demonstrated theoretical properties is subject to scrutiny. For instance, proving bounded
divergence from an ideal batch tree is only useful in the scenario where streams are assumed
to be stationary, and in practice, unspecified implementation details and associated emergent
behaviors may unexpectedly account for a large portion of performance, as demonstrated in
this work.

– Inherent amnesia in Hoeffding Tree aids recovery from concept drift

116

– The unspecified feature of “re-splitting” on attributes that have already been used leads
to a significant prequential accuracy improvement for MOA’s VFDT (p-value < 0.00001
on a large concept drift testbench)

– The unspecified approximation of infogain (by choosing n as the number of data in-
stances and not the number of ∆Gt computations) appears to have no effect on VFDT
prequential accuracy with concept-drifting streams

– Using the weight seen at leaf nodes instead of the actual number of node timesteps—that
is, the number of examples that have actually been seen at the node—does not seem to
have an effect on VFDT prequential accuracy under concept drift

– Combining all the unspecified strategies leads to a win (p-value 0.00002) implying they
interact in an overall beneficial manner for VFDT prequential accuracy under concept
drift

– We demonstrate “node evisceration”, a strategy of deliberately clearing both node statis-
tics and the class distribution within a leaf node when a previously used attribute emerges
as the best one, and suggest that it be formally incorporated into VFDT as a policy for
natural drift resilience in VFDT (on account of its improved prequential accuracy per-
formance; p-value 0.00002) in lieu of the unspecified feature of “re-splitting”

• Unspecified features and emergent behaviors in the state-of-the-art adaptive tree
learner Hoeffding Adaptive Tree have significant previously unknown effects on
its behavior and prequential accuracy performance under concept drift

– Because Hoeffding Adaptive Tree (HAT) is derived from Hoeffding Tree, the unspecified
strategy of “re-splitting” on attributes that have already been used also benefits HAT.
This strategy leads to a significant prequential accuracy improvement for MOA’s HAT
(p-value 0.00024, well within a significance level of 0.05 on a large concept drift testbench
with significant diversity in streams)

– While the base HAT algorithm makes no provision for alternates voting, the unspecified
strategy in the implementation of allowing them to do so provides the system with a form
of lookahead wherein alternate subtrees under development—concepts being developed
as potential future replacements—begin to take part in providing predictions instead of
waiting until a replacement has taken place to start doing so. Allowing a single alternate
to vote results in significant improved prequential accuracy for HAT (p-value 0.01133)

– When alternates of alternates are also allowed to vote, there is a deterioration compared
to allowing only a single alternate to vote (p-value 0.02452)

– The unspecified strategy in the HAT implementation of not allowing single leaves to
vote but otherwise allowing multiple alternates to vote is outperformed on prequential
accuracy by allowing multiple alternates, including single leaves, to vote (p-value 0.03196)

– The unspecified strategy in the HAT implementation of weighting examples with weights
drawn from a Poisson(1) distribution outperforms not weighting instances (p-value 0.00331)

– Using the weight seen at leaf nodes instead of the actual number of node timesteps—
that is, the number of examples that have actually been seen at the node—does not

117

improve HAT prequential accuracy under concept drift (performance is identical on our
testbench)

– The unspecified approximation of infogain (by choosing n as the number of data instances
and not the number of ∆Gt computations) appears to favor HAT prequential accuracy
on concept-drifting streams (p-value 0.04657)

– The unspecified feature of replacing the root when a root alternate splits leads to a
decline in prequential accuracy for HAT compared to a baseline HAT

– The unspecified feature of a non-root alternate replacing its corresponding mainline
node when it splits also leads to a decline in prequential accuracy for HAT compared to
a baseline HAT

– The combination of the unspecified features relating to root and non-root replacement
upon splitting reverses the decline in prequential accuracy performance!

– Combining the unspecified features from Hoeffding Tree leads to a significant improve-
ment in prequential accuracy performance for HAT over a baseline HAT (p-value 0.00002)

7.2 Future Work

I have undertaken a very detailed investigation into the utility of many detailed learning mechanisms
in the context of concept drift and proposed a new statistically efficient alternative to Hoeffding
Trees. These productive lines of research open many avenues for further exploration.

• Ensemble methods tailored to work with EFDT might be worth exploring. The observations
that EFDT doesn’t work well with change detectors based on model error, but that it can
revise models without requiring a change detector to replace them both suggest that bespoke
EFDT-based ensemble methods might be effective under concept drift.

• The creation of a standardized testbench for online learning is a pressing matter for the devel-
opment of the field. At present, small testbenches with limited diversity in data characteristics
are used to validate hypotheses about strategies. While we massively expand the testbench
size in our work, providing a discriminative testbench that was able to extract differences in
algorithm behavior due to a host of unspecified as well as designed features, we believe this
is only the start of a long line of work deliberating and proposing testbenches that enable a
critical examination of differences in algorithm behavior and performance.

• While the development of the field has focused on decision tree models, it might be instructive
to understand how other classes of learning models behave in online scenarios.

• The advantages and disadvantages of using adaptive models as opposed to simpler strate-
gies of periodically rebuilding models without rationalised adaptation need to be understood.
Adaptive models are far outnumbered by their counterparts designed for static streams, possi-
bly because there is little understanding of the relative utility of adaptive models with respect
to periodically rebuilding static models.

118

• There is a great need to develop evaluation methods for online learning that offer a useful
and usable quantification of their utility. Measuring online learners by batch-learning stan-
dards of generalizability and divergence will not allow us to assess the true utility of online
learners in the scenarios that they are designed for—scenarios with unpredictable change in
the generating concept.

• The relative performance of ensembles needs to be studied, in particular, whether boosting en-
sembles may approach bagging ensembles in performance with carefully designed and rational
weighting mechanisms for instances and ensemble components.

• Characterizations and measurements of concept drift need to be applied to real streams in
order to generate a repository of examples of concept drift in real data streams.

• The assumption of identically and independently distributed data must be done away with to
the extent possible if we are to take larger steps towards the goal of strong artificial intelligence.

119

120

Appendices

121

.1 Publication on Shattering Coefficient

123

Expert Systems With Applications 137 (2019) 443–452

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Measuring the Shattering coefficient of Decision Tree models

Rodrigo F. de Mello

a , ∗, Chaitanya Manapragada

b , Albert Bifet c

a Av. Trabalhador Saocarlense, 400, São Carlos, SP 13560-970, Brazil
b Monash University, Wellington Rd, Clayton VIC 3800, Australia
c LTCI, Télécom ParisTech, Office: C201-2, 46 rue Barrault, Paris, Cedex 13 75634, France

a r t i c l e i n f o

Article history:

Received 16 May 2019

Revised 1 July 2019

Accepted 6 July 2019

Available online 8 July 2019

Keywords:

Shattering coefficient

Decision Trees

Statistical Learning Theory

Learning guarantees

a b s t r a c t

In spite of the relevance of Decision Trees (DTs), there is still a disconnection between their theoreti-

cal and practical results while selecting models to address specific learning tasks. A particular criterion

is provided by the Shattering coefficient, a growth function formulated in the context of the Statistical

Learning Theory (SLT), which measures the complexity of the algorithm bias as sample sizes increase.

In attempt to establish the basis for a relative theoretical complexity analysis, this paper introduces a

method to compute the Shattering coefficient of DT models using recurrence equations. Next, we assess

the bias of models provided by DT algorithms while solving practical problems as well as their overall

learning bounds in light of the SLT. As the main contribution, our results support other researchers to

decide on the most adequate DT models to tackle specific supervised learning tasks.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

As important as the empirical validation is the process involved

in justifying the choice of a model over another given some su-

pervised learning task (Langley, 1988), in that sense, theoretical

results establish incontrovertible truths about learning guarantees

(de Mello & Ponti, 2018; Vapnik, 1995) and model complexities

(Bousquet & Herrmann, 2003; Valiant, 1984). The most prominent

example is the Statistical Learning Theory (SLT) which provides

theoretical guarantees for supervised learning by using concentra-

tion inequalities (Devroye, Györfi, & Lugosi, 1996). Based on such

a framework, one can formulate and analyze the learning conver-

gence in the context of a static (fixed) joint probability distribu-

tion from which data are identically and independently sampled

(de Mello & Ponti, 2018; Vapnik, 1995).

Theoretical proofs and guarantees have also been provided us-

ing a different set of tools, for instance, Schaffer (1994) provided

the Machine Learning version of the No Free Lunch Theorem,

Schapire (1990) confirmed boosting approaches the Bayes Error

from weak learners that simply do better than random guess-

ing, Oza and Russell (2001) showed that online bagging converges

to its batch equivalent, Dempster, Laird, and Rubin (1977) proved

the convergence of the Expectation Maximization algorithm, while

∗ Corresponding author.

E-mail addresses: mello@icmc.usp.br (R.F. de Mello), chaitanya.manapragada@

monash.edu (C. Manapragada), albert.bifet@telecom-paristech.fr (A. Bifet).

Lee and Seung (2001) used an analogous argument to prove the

convergence of algorithms using non-negative matrix factorization.

From the theoretical point of view, Decision Trees (DTs) have

particularly motivated proofs due to the easy interpretation of their

results in terms of the most relevant attributes and their corre-

sponding intervals or values. This motivated attempts at deter-

mining conditions for pruning such learning models in order to

gain predictive advantage (Kim & Koehler, 1994; Schaffer, 1991),

at proving that binary DTs that optimally minimize the number

of tests are NP-complete (Laurent & Rivest, 1976), and at show-

ing that the divergence for online Hoeffding trees from batch DTs

is bounded (Domingos & Hulten, 20 0 0). Yíldíz (2015) prove the

lower bounds of the Vapnik–Chervonenkis dimension for a univari-

ate DT hypothesis class. Complementarily, a theoretical comparison

of Gini and Information Gain for DTs concluded that over typically

tested datasets, such two attribute-selection mechanisms present

small divergences, backing up experimental evidences (Raileanu &

Stoffel, 2004).

DTs are also versatile as confirmed by their great variety of ap-

plications in domains specially involving classification, but also re-

gression, feature selection and even clustering (Breiman, Friedman,

Olshen, & Stone, 1984; Pandya, Pandya, & Infotech, 2015). In ad-

dition, they also have the ability of handling different data types,

such as nominal, numeric and textual (Rokach & Maimon, 2008),

and are particularly effective in ensembles, as a large related liter-

ature confirms (Lucchese et al., 2017; Mashayekhi & Gras, 2017).

In spite of the relevance of DTs and the mentioned attempts at

formalizing relevant aspects of them, there is still a disconnection

https://doi.org/10.1016/j.eswa.2019.07.012

0957-4174/© 2019 Elsevier Ltd. All rights reserved.

124

4 4 4 R.F. de Mello, C. Manapragada and A. Bifet / Expert Systems With Applications 137 (2019) 443–452

between theoretical results, after the SLT, and practical decisions

on how to select the best tree model to address some learning

task. In real scenarios, we see the importance of deciding whether

one given tree model is more or less complex than another, and

from that building up some partial order or complexity rankings

among DTs which, in conjunction with typical performance mea-

surements (e.g. accuracy), support the model selection while ad-

dressing specific learning tasks.

One particularly useful indicator of relative complexity pro-

vided by the SLT is the Shattering coefficient (or growth function)

(de Mello & Ponti, 2018; Vapnik & Chervonenkis, 1971) that mea-

sures how quickly the space of admissible functions (a.k.a. algo-

rithm bias) grows as the sample size increases. Thus, a smaller

coefficient corresponds to a less complex bias, so that less func-

tions are considered by the algorithm when building up classifiers

and regressors. While this is a central aspect of the SLT, in order

to pick a classification or regression function with such a lower

coefficient, we must first know all those growth functions for all

algorithms under comparison. This has been left somewhat unex-

plored, even though the notion of a Shattering coefficient has ex-

isted for decades (Vapnik & Chervonenkis, 1971).

In an attempt to fill out this gap, we propose in this paper a

method to numerically compute the Shattering coefficient of Deci-

sion Tree models to establish the basis for their relative theoret-

ical complexity analysis (Vapnik, 1995). DTs are among the most

commonly used supervised algorithms in Machine Learning and,

to the best of our knowledge, this is the first time such a detailed

theoretical analysis has been performed based on such growth

function defining the space of admissible functions (a.k.a. bias)

of DTs. The only remotely similar class of studies we have come

across either aim to minimize message/description lengths for cod-

ing trees (Mehta, Rissanen, & Agrawal, 1995; Quinlan & Rivest,

1989; Wallace & Patrick, 1993), or provide a taxonomy of vari-

ous types of algorithmic complexity (Buhrman & de Wolf, 2002).

Both threads provide a very different view of “complexity” than in

this manuscript, one that does not consider directly the size of the

space of admissible functions.

In summary, our contribution estimates the Shattering coeffi-

cient from specific tree models rather than the overall complexity

of a DT algorithm as a whole. The reader will observe throughout

this paper that our computation is based on tree structures pro-

duced after applying a DT algorithm, most specially the fractions

of training examples assigned to each tree node, including leaves.

In order to understand the practical impacts of the Shattering

coefficient, we employed the following SLT bound after the Empir-

ical Risk Minimization Principle (EMRP) (de Mello & Ponti, 2018):

P (sup

f∈F
| R emp (f) − R (f) | ≥ ε) ≤ 2 N (F, n) exp (−2 nε2) ,

in which ε ∈ [0, 1] defines some acceptable divergence in between

the empirical risk (or error) R emp (f) ∈ [0 , 1] and its expected value

R (f) ∈ [0, 1], f is any classification or regression function contained

in the algorithm bias F , n is the sample size, and N (F , n) is the

Shattering coefficient (or growth function) defining the size of the

algorithm bias as n → ∞ .

In this regard, by having a method for computing the Shatter-

ing Coefficient of DTs, one can take a set of tree models and de-

fine their relative complexity in terms of their spaces of admissible

functions or, simply, the size of the bias of the algorithms respon-

sible for producing those models. Of course the Shattering coeffi-

cient must be combined with model performance measurements,

so that if models provide close enough accuracies but one of them

has a significantly smaller coefficient, it should be selected as its

bias is less complex but still efficient for representing the prob-

lem. On the other hand, one could have a DT model resultant from

some simpler bias but providing insufficient representation to the

target task, so that underfitting would happen.

We see this work as a starting point for a rigorous and thor-

ough analysis of such growth functions for various commonly

used classes of algorithms, so that the machine learning discourse

would more frequently adopt the use of diligent theoretical argu-

ments for performance comparisons in addition to the meticulous

experimental arguments that have been considered in the current

mainstay.

This paper is organized as follows: the necessary background

on the Statistical Learning Theory is provided in Section 2 . Our

approach for measuring the complexity of DTs is introduced

in Section 3 . Experimental results are shown and discussed in

Section 4 . Finally, Section 6 presents our conclusions and future

work.

2. Background

The Statistical Learning Theory (SLT) employs probabilistic con-

vergence in conjunction with concentration inequalities to en-

sure supervised learning guarantees for general-purpose algo-

rithms (von Luxburg & Schölkopf, 2011). SLT considers an input

space X and an output space Y in which every x i ∈ X corresponds

to a data example (or feature vector) and y i ∈ Y is an expected

class label. In order to ensure learning, this theoretical framework

assumes a joint probability distribution (JPD) P (X × Y) mapping all

possible combinations of input examples into their corresponding

classes. Learning is then defined as the process of finding a classi-

fier f : X → Y, providing the minimum error or loss as possible so

that it best represents P (X × Y) .

In order to complement, supervised learning requires the defi-

nition of a loss function to measure the risk of a classifier f ∈ F , in

which F corresponds to the algorithm bias, i.e., the set of admis-

sible functions used by the supervised learning algorithm to rep-

resent every possible classifier. The two most common functions

used in supervised learning are the 0 − 1 loss and the squared-

error functions (de Mello & Ponti, 2018). Algorithms typically em-

ploy the gradient descent method to adapt hyperparameters in or-

der to minimize such loss functions (Bergstra, Bardenet, Bengio, &

Kégl, 2011).

Five assumptions are taken by the SLT in order to ensure a

supervised learning algorithm performs similarly on training data

as on unseen examples (Vapnik, 1998; von Luxburg & Schölkopf,

2011): (i) examples must be independent from each other and

sampled in an identical manner; (ii) no assumption is made about

the joint probability distribution, otherwise one could simply esti-

mate its parameters; (iii) labels can assume nondeterministic val-

ues due to noise and class overlapping; (iv) the joint probability

distribution is fixed, i.e., it cannot change along time; and (v) this

distribution is still unknown at the time of training, thus it must

be estimated using training examples.

From those assumptions, Vapnik (1998) satisfied all necessary

properties to employ the Law of Large Numbers (Devroye et al.,

1996) to define the Empirical Risk Minimization Principle (ERMP):

P (| R (f) − R emp (f) | > ε) → 0 , n → ∞ , (1)

according to which the empirical risk of a classifier R emp (f) prob-

abilistically converges to the risk R (f) (also known as real risk

or expected risk) as the sample size n tends to infinity, con-

sidering some ε ∈ R + (those two risks are in range [0,1]). The

empirical risk is here seen as the training error, which is calcu-

lated based on the training sample, defined as follows R emp (f) =

1
n

∑ n
i =1 � (x i , y i , f (x i)) , and the (expected) risk is given by R (f) =

E (l(X , Y, f (X))) , in which E(.) is the expected value, and � (x i , y i ,

f (x i)) is the loss function that measures the divergence between

125

R.F. de Mello, C. Manapragada and A. Bifet / Expert Systems With Applications 137 (2019) 443–452 445

the expected y i versus the obtained label f (x i) for some input

example x i .

Inequality 1 was obtained after the definition of generalization

in form | R (f) − R emp (f) | , meaning that a classifier f is expected to

result in a similar risk or error over unseen examples as it pro-

vides over training data, otherwise it overfits the training sample

and, thus, it does not produce a general-purpose model for the tar-

get problem. Notice that some classifier presenting a good gener-

alization capacity is not necessarily the one producing a low risk

but the one in which the empirical risk (training error) is a good

estimator for the expected risk.

Using this formulation, Vapnik obtained an upper limit for such

probability in terms of Chernoff’s bound (Devroye et al., 1996), en-

suring learning for any supervised algorithm:

P (sup

f∈F
| R (f) − R emp (f) | > ε) ≤ 2 N (F, n) e −nε2 / 4 , (2)

taking into account that the worst possible classifier f ∈ F con-

tained in the algorithm bias converges to the best, inside the same

function space, as the sample size n → ∞ , if and only if the algo-

rithm bias F is characterized by a polynomial Shattering coefficient

N (F , n) . According to this result, such a coefficient (or function)

must have a polynomial trend, otherwise learning could never be

ensured by the ERMP.

The Shattering coefficient of a supervised algorithm is a growth

function that relates the sample size (number of examples in X)

to its maximum number of distinct classifications, according to the

capacity of F in creating different space regions in X . Since ev-

ery distinct classification corresponds to a function, the Shattering

coefficient effectively provides us a measurement of the hypothe-

ses space (cardinality) F in terms of sample sizes. Depending on

the rate at which this coefficient grows, one has learning guar-

antees or not. That coefficient also provides a capacity measure

called the Vapnik–Chervonenkis dimension, which informs up until

which sample size one has an exponential number of distinct clas-

sifications, afterwards it becomes polynomial, however such mea-

sure does not provide any additional detail on the growth of such

a function. In brief, the smaller the growth is, the stronger are the

learning guarantees. Of course that is not enough given without ac-

curacy performances, the simple focus on the Shattering coefficient

could lead to underfitting scenarios (de Mello & Ponti, 2018).

This is one of the most important formal steps (if not the most)

for the area of ML, because it ensures the learning conditions for

supervised algorithms. From that theoretical foundation, Vapnik

derived the Generalization Bound (de Mello & Ponti, 2018; Vap-

nik, 1995), which can be related to other theoretical results such as

the Large-Margin Bound, the Tikhonov complexity, the Rademacher

complexity, and PAC Learning (von Luxburg & Schölkopf, 2011).

3. Theoretical framework

Let n training examples be organized in some k -dimensional

space X

k , a Decision Tree (DT) classifies such a sample by dividing

each of those space axes using one or more hyperplanes. Every hy-

perplane of a DT builds up an orthogonal decision boundary along

one of the axes of X

k , so that the Shattering coefficient N (F , n) of a

DT must be computed in terms of the maximal number of distinct

classifications provided by such orthogonal boundaries on X

k .

As a simple example, consider the input space X

2 ⊆ R

2 having

n = 1 , 2 , 3 training examples, as shown in Fig. 1 . Observe that for a

single hyperplane on a binary classification problem, there are two

distinct classification possibilities for n = 1 , which may be writ-

ten as 2 1 . For n = 2 , we obtain 2 2 = 4 and, for n = 3 , there are

six possibilities. This makes evident the Vapnik–Chervonenkis di-

mension is 2 when a single hyperplane is taken (de Mello & Ponti,

2018; Vapnik, 1998). However, such a capacity measure is not our

Fig. 1. Binary classification problem having a single hyperplane. Attempt to classify

three collinear samples using DTs.

main goal, but the growth function responsible for measuring the

number of different classifications a.k.a. Shattering coefficient, so

that we can compare the complexity of different learning models

as sample sizes increase.

Algorithm 1 Function F (s, n, h) to compute the Shattering

coefficient N (F , n) of a DT for h hyperplanes dividing along

the same dimension of X

k . Parameter s refers to a counter,

which is set as zero when performing the first call. The

source code is available at https://drive.google.com/file/d/1qFp-

XPhKpIouHuUENET3eKzWVq0L _ _ VQ/view?usp=sharing . In order to

run it, firstly the user must install the Java SDK, then open the

command line and run “R CMD javareconf” in order to configure

a wrapper in between Java and R. Next, the user must install the

packages rJava and RWeka inside the R Statistical Software.

Require: n ≥ 0 , s ≥ 0 , s < n ;
s = 0 ;
for (i = s ; i < n ; i + +) do

s + + ;
s = s + F (s + 1 , n, h − 1) ;

end for

Return s ;

The pseudocode in Algorithm 1 represents the solution for h

hyperplanes of a DT dividing along a single (same) dimension of

X

k , given a sample size equals to n and using parameter s to count

the number of operations. Based on this procedure, we formulated

the following recurrent equation:

F (s, n, h) =

n −1 ∑

i = s
F (s + 1 , n, h − 1) + 1

= (n − s) × F (s + 1 , n, h − 1) + (n − s) × 1

to provide the number of distinct classifications obtained for sev-

eral hyperplanes dividing along a single space axis. We remind

the reader this formulation results in the worst-case scenario as

typically expected from the Shattering coefficient, as discussed in

Vapnik (1998) , von Luxburg and Schölkopf (2011) and de Mello and

Ponti (2018) . Notice that points could be collinear and parallel to

the separating hyperplane so that the growth function would de-

crease, but that is not indeed the Shattering coefficient for general

purpose scenarios (see Fig. 2). Thus, we found the following recur-

rent equation:

F (s, n, h) = (n − s) × F (s + 1 , n, h − 1) + (n − s) × 1

to represent the Shattering coefficient for any number of hyper-

planes and given any sample size, but still limited to a single space

126

446 R.F. de Mello, C. Manapragada and A. Bifet / Expert Systems With Applications 137 (2019) 443–452

Fig. 2. Set of collinear points (black dots) parallel to the separating hyperplane

(dashed line), resulting in a smaller number of distinct classifications.

Fig. 3. Solving the recurrence equation with Tree Method (Cormen et al., 2009).

axis. To solve it, we employed discrete math in conjunction with

the Tree Method (Cormen, Leiserson, Rivest, & Stein, 2009; Knuth,

1997) (see Fig. 3) to obtain the following:

F (s, n, h) =

h ∑

i =0

n !

(n − i)!

= e

(
�(n + 1 , 1) − �(n + 1)�(n − h, 1)

�(n − h)

)
, (3)

resulting in the Shattering coefficient, having �(.) as the gamma

function and �(., .) as the incomplete gamma function. Observe the

tree (based on the Tree Method (Cormen et al., 2009; Knuth, 1997)

and not on DTs) from Fig. 3 grows until h = 1 , meaning the assess-

ment of the last hyperplane, assuming the sample size is greater

than the total number of hyperplanes considered, what is a fair

condition, otherwise overfitting would be a natural result as dis-

cussed in de Mello and Ponti (2018) .

From Eq. (3) , we found:

F (s, n, h) =

h ∑

i =0

n !

(n − i)!
= 1 + n + n (n − 1)

+ · · · + n (n − 1) × . . . × (n − (h − 1))

≤ cn (n − 1)(n − 2) × . . . × (n − (h − 1)) ,

so that the equation is upper bounded by the polynomial term

at the greatest order multiplied by some constant c > 0, allow-

ing us to define the upper bound complexity using the typi-

cal time complexity notation as O (g(n)) = O (n h) , given g(n) = cn h

(Cormen et al., 2009).

Based on this partial solution, we formulated the Shattering co-

efficient for any DT after assuming two axioms: i) any node of a

DT builds up h hyperplanes to divide a given space axis into h + 1

regions. For example, a single hyperplane would produce two re-

gions, thus two hyperplanes would produce at most three regions

along such an axis and so on; and ii) every space region defined

by a DT node receives a fraction of the training examples. For in-

stance, a DT node could somehow divide one space axis to produce

half examples on each side of it.

Fig. 4. Computing the Shattering coefficient on a DT example.

In this context, every DT node passes ahead a given fraction of

its training examples, reducing the sample size for additional de-

cision boundaries built up along other space axes. Therefore, our

numerical computation of the Shattering coefficient is given by a

product of functions according to the division built up by hyper-

planes from the root node to the DT leaves (see Fig. 4), thus addi-

tional nodes and/or increments in the tree height directly impact

on the DT model complexity. From this simple example, we com-

pute the Shattering coefficient as follows:

N DT 1 (F, n) = F (s = 0 , n, h = 2) × [1 + F (s = 0 , p 1 n, h = 1)

+ F (s = 0 , p 2 n, h = 2) + F (s = 0 , p 3 n, h = 1)]

=

2 ∑

i =0

n !

(n − i)!
×

(

1 +

1 ∑

i =0

(p 1 n)!

(p 1 n − i)!
+

2 ∑

i =0

(p 2 n)!

(p 2 n − i)!

+

1 ∑

i =0

(p 3 n)!

(p 3 n − i)!

)

,

in which p 1 , p 2 , p 3 are fractions or probability terms to character-

ize the number of training examples passed ahead to a next tree

node level for further assessment. The number one multiplied by

F (s = 0 , n, h = 2) makes sure there is at least such a division on the

input data space. The precision of this formulation is directly de-

pendent on the sample size used to induce the decision tree, so the

more data is considered, the greater is such a precision as also for-

malized in the context of the SLT (de Mello & Ponti, 2018; Vapnik,

1998). In addition, observe h defines the number of hyperplanes at

a given node, s is always set to be equal to zero (see Algorithm 1).

From this formulation, we can compare the complexity of different

Decision Trees while modeling the same training examples.

This multiplication-based formulation is motivated by a sim-

ple scenario. Consider an R

2 data space whose points are spread

out around the traditional orthogonal basis. In that situation, con-

sider that a first and consequently more discriminative hyperplane

is used to separate points along the x axis and it is placed on x = 0 .

Thus, we now have two regions of such a space, to mention x ≥ 0

and x < 0 (for the sake of simplicity, we consider all points lying

on the hyperplane as belonging to one of the regions). Now let

a second and less discriminative hyperplane lie on y = 0 , so that

we have also two regions y ≥ 0 and y < 0. Based on this simple ex-

ample, we notice that the two classes of the first hyperplane or

two-halve spaces can still be divided to form 4 possibilities, a nat-

ural result of the multiplication of the half spaces built up with

two hyperplanes, this is 2 × 2 = 4 . Of course that if we had an-

other space dimension, this is, if points were on R

3 , and another

hyperplane were lying on z = 0 whose dot product to any other

hyperplane would be equals to zero, we would have 2 3 = 8 possi-

bilities as expected of this product of regions. In fact, we adopted

the same estimation in this paper to formulate the complexity of

DT models.

The reader may ask what happens if the same space dimension

is divided in several regions using two or more hyperplanes, which

would not end up in a direct multiplication of hyperplane regions,

i.e., it would not provide a direct power of two, however that was

already solved using the recurrence equation representing a set of

127

R.F. de Mello, C. Manapragada and A. Bifet / Expert Systems With Applications 137 (2019) 443–452 447

Fig. 5. A second Decision Tree to support an additional analysis.

hyperplanes orthogonally dividing along the same space axis (see

Eq. (3)).

For instance, consider the comparison of the DTs from

Figs. 4 and 5 , knowing the latter has basically an additional node.

The Shattering coefficient of this second tree (Fig. 5) is given by:

N DT 2 (F, n) = F (s = 0 , n, h = 2) × [1 + F (s = 0 , p 1 n, h = 1)

× [1 + F (s = 0 , p 4 n, h = 2)] + F (s = 0 , p 2 n, h = 2)

+ F (s = 0 , p 3 n, h = 1)]

= N DT 1 (F, n) + F (s = 0 , n, h = 2)

× F (s = 0 , p 1 n, h = 1) × F (s = 0 , p 4 n, h = 2) ,

confirming an additional complexity in case probabilities p 1 , p 2
and p 3 are maintained along both trees and p 4 > 0.

From this perspective, we can now compare DT models and

take conclusions about their relative complexities even though

our approach only gets more accurate as sample sizes used to

induce trees also grow. To complement our study, the reader

must remember that such complexity measurement must be com-

bined with a risk quantification, as detailed in Vapnik (1998) and

de Mello and Ponti (2018) . Following the same principle, we must

analyze the effects of the tree complexity in conjunction with its

empirical risk, as provided by the Generalization Bound (a di-

rect result from Inequality (2) as discussed in (von Luxburg &

Schölkopf, 2011)):

R (f) ≤ R emp (f) +

√

4

n

(log 2 N (F, n) − log δ) , (4)

taking into consideration the worst possible classifier f ∈ F (algo-

rithm bias) as the sample size n → ∞ , some polynomial Shattering

coefficient N (F , n) , and finally some probability δ for which the

following holds:

P (sup

f∈F
| R (f) − R emp (f) | > ε) ≤ δ. (5)

Inequality 4 is analyzed in depth by Vapnik (1998) , von Luxburg

and Schölkopf (2011) and de Mello and Ponti (2018) , confirming

some supervised model must be assessed in terms of its empirical

risk R emp (f) in conjunction with

√

4
n (log 2 N (F , n) − log δ) , so that

we can ensure an upper bound for the expected risk R (f), i.e., for

unseen examples experienced in real-world scenarios.

In order to illustrate, consider the two DT models previously

analyzed provided the accuracies and the empirical risks (this is

the same as one minus the accuracy) listed in Table 1 . The same

table shows the Shattering coefficient for those trees after setting

up p 1 = p 2 = p 3 =

1
3 and p 4 =

1
6 (this last value is only used on the

second tree). Then, consider δ is equal to 0.1, meaning Inequality

(5) will be studied to ensure a probability of 0.9 (in 90% of cases)

that the empirical risk is a good estimate for the expected risk,

given some divergence factor ε. So, let ε be equal to 0.05 which is

the same as saying that any divergence greater than 5% between

those risks will be considered as a fault.

Table 1

Using accuracies and Shattering coefficients to assess two Decision

Tree models: n is the sample size (empirical risks are computed as

one minus accuracy).

DT Acc R emp (f) N (F, n)

4-node DT 0.95 0.05 1
9

n 4 +

2
3

n 3 +

37
9

n 2 +

2
3

n + 4

5-node DT 0.955 0.045 1
108

n 5 +

5
36

n 4 +

109
108

n 3 +

185
36

n 2

+ n + 5

If one simply analyzes accuracies from Table 1 , the clear con-

clusion is that the 5-node DT is better (see Fig. 5). However, if we

analyze the Generalization Bound (Inequality (4)) after the SLT as

illustrated in Fig. 6 , we conclude the 5-node DT is more complex

and requires many more training examples to provide the same

theoretical guarantee as the 4-node DT. This happens because the

5-node DT needs a greater sample size to amortize the complexity

of its Shattering coefficient. Fig. 7 shows the growth of the Shat-

tering coefficients for both DTs. The function growing faster is as-

sociated to the more complex model, this is the 5-node DT. From

this simple introductory analysis, we conclude that: (i) by having

Fig. 6. Assessing the Generalization Bound (Inequality (4)) using information pro-

vided in Table 1 . Solid line corresponds to the 4-node DT. Crossed points are related

with the 5-node DT.

Fig. 7. Illustrating the Shattering coefficients as the sample size increases. Solid line

corresponds to the 4-node DT. Crossed points are related with the 5-node DT.

128

448 R.F. de Mello, C. Manapragada and A. Bifet / Expert Systems With Applications 137 (2019) 443–452

Fig. 8. J48 pruned version: DT built from the Iris dataset.

the Shattering coefficient, one can compare the sizes of algorithm

biases, i.e. what are their relative complexities; (ii) one can take

advantage of the Generalization Bound to understand which DT

model converges faster, so that its learning guarantee would be

tighter (greater); and (iii) assess if according to the current sam-

ple size, which DT model is the best to tackle a particular learning

task.

Next section introduces some experimental results to make ev-

ident the relevance of computing the Shattering coefficients while

assessing DT models.

4. Experimental results

In this section, we applied the J48 algorithm in its pruned and

unpruned versions available with Weka (Hall et al., 2009) on the

Iris and the Abalone datasets (Dheeru & Karra Taniskidou, 2017). 1

We start with the Iris dataset which was at first modeled using

all examples, providing the trees illustrated in Figs. 8 (pruned)

and 9 (unpruned), from which we computed the Shattering coeffi-

cient for the pruned tree:

N (F pruned , n) = G

(
150

150

n

)
×

[
1 + G

(
100

150

n

)
×

(
1 + G

(
54

100

n

)
×

(
1 + G

(
6

54

n

)))]
,

and for its unpruned version:

N (F unpruned , n) = G

(
150

150

n

)
×

[
1 + G

(
100

150

n

)
×

(
G

(
54

100

n

)

×
(

G

(
48

54

n

)
×

(
1 + G

(
3

48

n

))
+ G

(
6

54

)
×

(
1 + G

(
3

6

n

)))

+ G

(
46

100

n

)
×

(
1 + G

(
3

46

n

)))]
,

having G (n) = F (s = 0 , n, h = 1) , F (s = 0 , n, h = 1) =

∑ h =1
i =0

n !
(n −i)!

=

n + 1 , and the probabilities associated with the sample sizes

passed along the tree nodes. From that, we conclude the Shattering

1 The source codes are available at https://drive.google.com/file/d/1qFp-

XPhKpIouHuUENET3eKzWVq0L _ _ VQ/view?usp=sharing .

Table 2

Iris: Average of accuracies and their vari-

ances after a leave-one-out procedure.

DT model Accuracy Variance

J48 pruned 0.953 0.0447

J48 unpruned 0.940 0.0567

Table 3

Abalone: Distribution of examples according to class labels (“#

exmps” corresponds to the number of examples).

Class # exmps Class # exmps Class # exmps

1 1 11 487 21 14

2 1 12 267 22 6

3 15 13 203 23 9

4 57 14 126 24 2

5 115 15 103 25 1

6 259 16 67 26 1

7 391 17 58 27 2

8 568 18 42 28 0

9 689 19 32 29 1

10 634 20 26 Total 4,177

coefficients are:

N (F pruned , n) =

1

25

n

4 +

1207

1350

n

3 +

5461

1350

n

2 +

1618

225

n + 4

N (F unpruned , n) =

1

25

n

5 +

12059

10800

n

4 +

3182789

4 96 800

n

3 +

2490247

165600

n

2

+

153711

9200

n + 7 ,

confirming the bias for the unpruned tree is greater and there-

fore more complex than for the pruned tree. This first result con-

firms other studies that have already concluded about the addi-

tional complexity of unpruned trees, but now having the numerical

representation as the main contribution of this paper.

According to the Statistical Learning Theory (SLT), such a

greater bias should impact the Generalization Bound (Inequality

(4)) bringing greater variance to the expected risk R (f). In such a

way, we proceeded with an additional experiment 2 to measure the

accuracies and their variances, as a way of analyzing the right-side

term of Inequality (4) .

As the results listed in Table 2 confirm, the unpruned decision

tree provides a lower accuracy and a greater variance among all

experiments performed using a leave-one-out procedure to hold

out every example of the training set, thus totaling 150 experi-

ments (the Iris dataset has 150 examples). This indicates the un-

pruned model suffers from an additional complexity resultant of a

greater space of admissible functions (algorithm bias), which leads

to a smaller accuracy, and therefore a greater probability of data

overfitting, and a larger variance due to the increase in the car-

dinality of the algorithm bias (i.e. more unnecessary classification

functions are available to build up such model).

After this first example, we performed the same sort of analysis

considering the Abalone dataset, which is composed of 4,177 ex-

amples, 8 attributes, and 29 unbalanced class labels (see Table 3).

The main objective of this experiment is the analysis of more com-

plex DT models built upon an unbalanced scenario, what should

impact accuracies and their relative variances as confirmed in

Table 4 . Those results were computed after performing 100 train-

ing stages considering 70% of data and the remaining 30% disjoint

examples for testing. The leave-one-out strategy used before would

2 Source code is available at https://drive.google.com/file/d/1qFp-

XPhKpIouHuUENET3eKzWVq0L _ _ VQ/view?usp=sharing .

129

R.F. de Mello, C. Manapragada and A. Bifet / Expert Systems With Applications 137 (2019) 443–452 449

Fig. 9. J48 unpruned version: DT built from the Iris dataset.

Table 4

Abalone: Average accuracies and their vari-

ances after performing 100 iterations con-

sidering 70% of data for training and the

remaining 30% of disjoint examples for

testing (resampling).

DT model Accuracy Variance

J48 pruned 0.208 0.00013

J48 unpruned 0.194 0.00016

require too many computational resources to tackle this task, so

we decided to build up several models using different data sam-

ples (resampling) and assess the overall accuracy and its relative

variance. Similarly as before, the accuracy for the pruned model is

superior and its variance is also smaller as expected.

Next we decided to analyze the Shattering coefficient for the

pruned and unpruned DTs given all dataset examples, however that

proved to be unfeasible once the resulting trees were huge and so

difficult to be illustrated in this paper. For the sake of information,

the DT obtained on the whole Abalone dataset had 1,179 leaves

after pruning, while the most complex model, i.e. without prun-

ing, reached a total of 2,250 leaves, already depicting the differ-

ence in terms of their relative complexities. Therefore, instead of

analyzing those huge trees, we decided to consider only 1% of the

available examples to illustrate the difference in the pruned and

unpruned model complexities, as shown in Figs. 10 and 11 . First of

all, we mention the difference in terms of the number of leaves per

tree. While the pruned tree had 13 leaves, the unpruned needed 25

leaves, an average number after building up one hundred models.

After computing their Shattering coefficient, we obtained the fol-

lowing:

N (F pruned , n) = F (s = 0 , n, h = 1) × (1 + F (s = 0 ,
11

41

n, h = 1)

× (1 + F (s = 0 ,
9

11

n, h = 1) × (1 + F (s = 0 ,
7

9

n, h = 1)))

+ F (s = 0 ,
30

41

n, h = 1) × (1 + F (s = 0 ,
18

30

n, h = 2))

× (1 + F (s = 0 ,
6

18

n, h = 1) + F (s = 0 ,
9

18

n, h = 1))

+ F (s = 0 ,
12

30

n, h = 1) × (1 + F (s = 0 ,
9

12

n, h = 1)

× (1 + F (s = 0 ,
4

9

n, h = 1)))))

N (F unpruned , n) = F (s = 0 , n, h = 1) × (1 + F (s = 0 ,
11

41

n, h = 1)

× (1 + F (s = 0 ,
9

11

n, h = 1) × (1 + F (s = 0 ,
7

9

n, h = 2)))

+ F (s = 0 ,
30

41

n, h = 1) × (1 + F (s = 0 ,
18

30

n, h = 2))

× (1 + F (s = 0 ,
6

18

n, h = 1) × (1 + F (s = 0 ,
4

6

n, h = 1)

× (F (s = 0 ,
2

4

n, h = 1)) + F (s = 0 ,
3

18

n, h = 1)

× (1 + F (s = 0 ,
2

3

n, h = 1))) + F (s = 0 ,
9

18

n, h = 1)

× (1 + F (s = 0 ,
2

9

n, h = 1) + F (s = 0 ,
7

9

n, h = 1)))

+ F (s = 0 ,
12

30

n, h = 1) × (1 + F (s = 0 ,
9

12

n, h = 1)

× (1 + F (s = 0 ,
4

9

n, h = 1) × (1 + F (s = 0 ,
3

4

n, h = 1))

+ F (s = 0 ,
5

9

n, h = 1)) + F (s = 0 ,
3

12

n, h = 1)

× (1 + F (s = 0 ,
2

3

n, h = 1))))) ,

and their Shattering coefficients:

N (F pruned , n) =

9

41

n

5 +

397

246

n

4 +

1235761

202950

n

3 +

3473501

202950

n

2

+

1031813

40590

n + 13 N (F unpruned , n) =

8

205

n

7 +

1634

3075

n

6

+

6401

2050

n

5 +

83278277

7306200

n

4 +

431011481

14612400

n

3

+

818845747

14612400

n

2 +

5058299

81180

n + 27 ,

130

450 R.F. de Mello, C. Manapragada and A. Bifet / Expert Systems With Applications 137 (2019) 443–452

Fig. 10. J48 pruned version: DT built from the Abalone dataset (only for illustration purposes).

Fig. 11. J48 unpruned version: DT built from the Abalone dataset (only for illustration purposes).

thus their relative difference in terms of algorithm biases is
8

205 n
7 +

1634
3075 n

6 +

5951
2050 n

5 +

71487377
7306200 n

4 +

342036689
14612400 n 3 +

22750147
584496 n 2 +

272243
7380 n + 14 , again confirming the additional complexity provided

by the unpruned model.

This second experiment illustrates the Shattering coefficients

and their relative complexities, allowing us to remind that every

time a coefficient is greater than another its relative space of ad-

missible functions (algorithm bias) is more relaxed and thus it con-

tains more functions to model some dataset. By having more func-

tions, the algorithm is capable of expressing more complex clas-

sification or regression functions, something necessary when the

target problem is more complex (de Mello & Ponti, 2018). If the

target learning task is less complex, by having less functions the

algorithm is already enough to provide a fair accuracy. However, if

accuracy is still low, we should at least try to increase such space

of functions, making the bias more complex in attempt to better

express the target problem.

5. Complementary discussions

It is still relevant to compare our approach to

Breiman et al. (1984) , who formulated Pruning in Section 8.5.1 of

their book, defining the error-complexity measure R α(T) of a given

tree T as:

R α(T) = R (T) + α| T | ,
given the number of leaves of such a tree in form | T | and a con-

stant α > 0. This result is used by the authors to analyze the con-

vergence of R α(T), or simply one minus the tree accuracy, as the

number of leaf nodes increase, being directly connected to the

overall complexity of the tree. Then, they use some criterion to

prune the tree, by reducing nodes from leaves to the root up to

some point, without excessively increasing R α(T).

We simply mention that this result is different from ours, in the

sense we consider the probabilistic convergence bound provided

131

R.F. de Mello, C. Manapragada and A. Bifet / Expert Systems With Applications 137 (2019) 443–452 451

by the Statistical Learning Theory (Inequality (2)), which is not as-

sociated with the model simplification itself but it formulates how

a given classification function f converges to the best as possible

function inside some algorithm bias F as the sample size tends to

infinity n → 0. For Breiman et al. (1984) , there is no mention on

how the sample size growth affects tree model complexities, on

the other hand we can indeed say that pruning works as a model

adaptation in attempt to find the best classifier inside some space

of admissible functions.

It is also worth to mention the work by Ye (1998) , who takes

advantage of the concept of degrees of freedom to measure model

complexities, in attempt to obtain an unbiased estimate of the er-

ror variance, and for comparison of different models. The proposed

concept of generalized degrees of freedom is based on the sum

of the sensitivities to data perturbations, based on expected val-

ues and variances. The same research line was still extended by

Efron (2004) , who also formulated data variances using a similar

tool set. Both approaches were formulated from the point of view

of Statistics, without taking into account the probabilistic conver-

gence of classification functions according to some algorithm bias.

In our point of view, our manuscript is complementary to all those

discussed in this additional section once it gives a different per-

spective on the subject of DT which has classically been tackled

from distinct points of view. Finally, our approach allows to con-

nect DT to the general-purpose theoretical framework provided by

SLT (de Mello & Ponti, 2018; Vapnik, 1995), which can be used to

study any supervised learning algorithm and not only DTs.

In terms of scalability, we recognize that it is still necessary

some further studies on how to estimate the Shattering coeffi-

cient when considering large datasets. Computations may indeed

produce large numbers, however, if a given tree has only small

changes, it can be considered stable, even after receiving many

more training examples n , then the same Shattering result (or

complexity) will be obtained. It is also relevant to mention that

the Shattering coefficient is a function of the input size (size of the

dataset) so that it cannot be represented by single numbers. That

is, in fact, another advantage of our complexity measure, because it

should become stable even after training the DT model with more

examples. Therefore, the Shattering coefficient will represent the

probabilistic convergence of the empirical risk to its expected value

as the sample size increases (von Luxburg & Schölkopf, 2011).

An additional aspect on the comparison of DT models in terms

of our Shattering formulation is that, in case of producing too com-

plex polynomials, one can decide to compute only the polynomial

of the difference between DT models, so that only the complex-

ity divergence of them is represented. This would help researchers

interested in relatively ranking models according to their corre-

sponding divergences, without the need of fully measuring the in-

dividual coefficients of each tree.

6. Concluding remarks

This paper proposed an approach to numerically compute the

Shattering coefficient of DT models, expressing their inherent com-

plexities, i.e. the number of distinct classifications as the sample

size increases. Our main contribution is the ability of computing

such growth functions and compare the complexity differences of

DT models built upon the same training set. In addition, we show

how the Generalization Bound (Inequality (4)) can be used to an-

alyze when a bias is enough or it should consider more functions

(more complex) while tackling some target learning task.

Experimental results were performed on two commonly consid-

ered datasets from the literature. While using the Iris dataset, we

simply had the intention to illustrate and compare complexities,

the Abalone dataset confirmed the difficulty in manually comput-

ing the Shattering coefficients, a natural consequence of addressing

a more complex problem. In attempt to improve the practical re-

sults of this paper, we will focus our future work to develop an

automatic approach to compute the growth functions based on the

DT models built up with Weka (Hall et al., 2009), which counts

on wrappers for different and quite used languages such as R and

Python.

Declaration of Competing Interest

Authors state that there is no conflict of interest to be men-

tioned.

Credit authorship contribution statement

Rodrigo F. de Mello: Conceptualization, Data curation, Formal

analysis, Methodology, Project administration, Software, Validation,

Writing - original draft. Chaitanya Manapragada: Data curation,

Investigation, Project administration, Software, Supervision, Valida-

tion, Writing - original draft. Albert Bifet: Conceptualization, Inves-

tigation, Methodology, Funding acquisition, Supervision, Validation,

Writing - review & editing.

Acknowledgments

We acknowledge sponsorships of FAPESP (São Paulo Research

Foundation) and CNPq (National Counsel of Technological and

Scientific Development) , Brazil, under grants 2017/16548-6 and

302077/2017-0 . Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors and

do not necessarily reflect the views of FAPESP nor CNPq.

References

Bergstra, J. S. , Bardenet, R. , Bengio, Y. , & Kégl, B. (2011). Algorithms for hyper-pa-
rameter optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,

& K. Q. Weinberger (Eds.), Advances in neural information processing systems: 24
(pp. 2546–2554). Curran Associates, Inc. .

Bousquet, O., & Herrmann, D. (2003). On the complexity of learning the kernel ma-
trix. Max-Planck-GesellschaftCambridge, MA, USA. Advances in neural informa-

tion processing systems 15, 399–406, The MIT Press.

Breiman, L. , Friedman, J. H. , Olshen, R. A. , & Stone, C. J. (1984). Classification and
regression trees . Wadsworth .

Buhrman, H., & de Wolf, R. (2002). Complexity measures and decision tree
complexity: a survey. Theoretical Computer Science, 288 , 21–43. doi: 10.1016/

S0304-3975(01)00144-X .
Cormen, T. H. , Leiserson, C. E. , Rivest, R. L. , & Stein, C. (2009). Introduction to algo-

rithms (3rd ed.). The MIT Press .

Dempster, A. P. , Laird, N. M. , & Rubin, D. B. (1977). Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical Society, Series

B, 39 , 1–38 .
Devroye, L. , Györfi, L. , & Lugosi, G. (1996). A probabilistic theory of pattern recognition .

Springer .
Dheeru, D., & Karra Taniskidou, E. (2017). UCI machine learning repository.

Domingos, P. , & Hulten, G. (20 0 0). Mining high-speed data streams. In Proceedings

of the sixth ACM SIGKDD international conference on knowledge discovery and data
mining (pp. 71–80). ACM .

Efron, B. (2004). The estimation of prediction error: covariance penalties and cross–
validation. Journal of the American Statistical Association , 99–467 .

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009).
The weka data mining software: an update. SIGKDD Explorations Newsletter, 11 ,

10–18. doi: 10.1145/1656274.1656278 .

Kim, H. , & Koehler, G. J. (1994). An investigation on the conditions of pruning an
induced decision tree. European Journal of Operational Research, 77 , 82–95 .

Knuth, D. E. (1997). The art of computer programming. Fundamental algorithms : 1.
Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc. .

Langley, P. (1988). Machine learning as an experimental science. Machine Learning,
3 , 5–8. doi: 10.1023/A:1022623814640 .

Laurent, H. , & Rivest, R. L. (1976). Constructing optimal binary decision trees is np–
complete. Information Processing Letters, 5 , 15–17 .

Lee, D. D. , & Seung, H. S. (2001). Algorithms for non-negative matrix factorization.

In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information
processing systems: 13 (pp. 556–562). MIT Press .

Lucchese, C. , Nardini, F. M. , Orlando, S. , Perego, R. , Tonellotto, N. , & Ven-
turini, R. (2017). Quickscorer: efficient traversal of large ensembles of decision

trees. In Y. Altun, K. Das, T. Mielikäinen, D. Malerba, J. Stefanowski, J. Read,

132

452 R.F. de Mello, C. Manapragada and A. Bifet / Expert Systems With Applications 137 (2019) 443–452

. . . S. Džeroski (Eds.), Machine learning and knowledge discovery in databases
(pp. 383–387). Cham: Springer International Publishing .

Mashayekhi, M. , & Gras, R. (2017). Rule extraction from decision trees ensembles:
New algorithms based on heuristic search and sparse group lasso methods. In-

ternational Journal of Information Technology & Decision Making, 16 .
Mehta, M. , Rissanen, J. , & Agrawal, R. (1995). Mdl-based decision tree pruning. In

Proceedings of the first international conference on knowledge discovery and data
mining, KDD’95 (pp. 216–221). AAAI Press .

de Mello, R. F., & Ponti, M. A. (2018). Machine learning - a practical approach on the

statistical learning theory . Springer. doi: 10.1007/978- 3- 319- 94989-5 .
Oza, N. C. , & Russell, S. (2001). Online bagging and boosting. In In artificial intelli-

gence and statistics: 2001 (pp. 105–112). Morgan Kaufmann .
Pandya, R. , Pandya, J. , & Infotech, K. P. D. (2015). C5.0 algorithm to improved deci-

sion tree with feature selection and reduced error pruning. International Journal
of Computer Applications, 117 .

Quinlan, J. R. , & Rivest, R. L. (1989). Inferring decision trees using the minimum

description length principle. Information and Computation, 80 , 227–248 .
Raileanu, L. E., & Stoffel, K. (2004). Theoretical comparison between the gini index

and information gain criteria. Annals of Mathematics and Artificial Intelligence, 41 ,
77–93. doi: 10.1023/B:AMAI.0 0 0 0 018580.96245.c6 .

Rokach, L. , & Maimon, O. Z. (2008). Data mining with decision trees: Theory and ap-
plications : 69. World scientific .

Schaffer, C. (1991). When does overfitting decrease prediction accuracy in induced

decision trees and rule sets?. In Y. Kodratoff (Ed.), Machine learning — EWSL-91
(pp. 192–205). Berlin, Heidelberg: Springer Berlin Heidelberg .

Schaffer, C. (1994). A conservation law for generalization performance. In Proceed-
ings of the eleventh international conference on international conference on ma-

chine learning, ICML’94 (pp. 259–265). San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc .

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5 , 197–
227. doi: 10.1023/A:1022648800760 .

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27 ,
1134–1142. doi: 10.1145/1968.1972 .

Vapnik, V. N. (1995). The nature of statistical learning theory . Berlin, Heidelberg:

Springer-Verlag .
Vapnik, V. N. (1998). Statistical learning theory (1st ed.). Wiley .

Vapnik, V. N. , & Chervonenkis, A. Y. (1971). On uniform convergence of the frequen-
cies of events to their probabilities. Teoriya Veroyatnostei i ee Primeneniya, 16 ,

264–279 .
von Luxburg, U. , & Schölkopf, B. (2011). Statistical learning theory: Models, concepts,

and results. In D. M. Gabbay, S. Hartmann, & J. Woods (Eds.), Handbook of the

history of logic, vol. 10: Inductive logic: vol. 10 (pp. 651–706). Amsterdam, Nether-
lands: Elsevier North Holland .

Wallace, C., & Patrick, J. (1993). Coding decision trees. Machine Learning, 11 , 7–22.
doi: 10.1023/A:1022646101185 .

Ye, J. (1998). On measuring and correcting the effects of data mining and model
selection. Journal of the American Statistical Association, 93 , 120–131 .

Yíldíz, O. T. (2015). Vc-dimension of univariate decision trees. IEEE Transactions

on Neural Networks and Learning Systems, 26 , 378–387. doi: 10.1109/TNNLS.2014.
2385837 .

133

134

Bibliography

[1] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning From Data.
AMLBook, 2012. isbn: 1600490069, 9781600490064.

[2] Rakesh Agrawal et al. “An Interval Classifier for Database Mining Applications.” In: Jan.
1992, pp. 560–573.

[3] P. Almeida et al. “Handling Concept Drifts Using Dynamic Selection of Classifiers”. In: 2016
IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI). Nov. 2016,
pp. 989–995. doi: 10.1109/ICTAI.2016.0153.

[4] Manuel Baena-Garcia et al. “Early drift detection method”. In: (2006).

[5] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. “Searching for exotic particles in high-
energy physics with deep learning”. In: Nature communications 5 (2014), p. 4308.

[6] Pierre Baldi et al. “Parameterized neural networks for high-energy physics”. In: The Euro-
pean Physical Journal C 76.5 (2016), p. 235.

[7] Jean Paul Barddal et al. “On Dynamic Feature Weighting for Feature Drifting Data Streams”.
In: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II. Ed. by
Paolo Frasconi et al. Cham: Springer International Publishing, 2016, pp. 129–144. isbn: 978-
3-319-46227-1. doi: 10.1007/978-3-319-46227-1_9. url: http://dx.doi.org/10.1007/
978-3-319-46227-1_9.

[8] R.S.M. de Barros, S.G.T. de Carvalho Santos, and P. M. G. Junior. “A Boosting-like Online
Learning Ensemble”. In: 2016 International Joint Conference on Neural Networks (IJCNN).
July 2016, pp. 1871–1878. doi: 10.1109/IJCNN.2016.7727427.

[9] Rajen Bhatt and Abhinav Dhall. Skin Segmentation Dataset: UCI Machine Learning Repos-
itory. 2012. url: https://archive.ics.uci.edu/ml/datasets/skin+segmentation.

[10] Albert Bifet and Ricard Gavalda. “Learning from time-changing data with adaptive window-
ing”. In: Proceedings of the 2007 SIAM International Conference on Data Mining. SIAM.
2007, pp. 443–448.

[11] Albert Bifet and Ricard Gavaldà. “Adaptive learning from evolving data streams”. In: In-
ternational Symposium on Intelligent Data Analysis. Springer. 2009, pp. 249–260.

[12] Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. “Leveraging bagging for evolving
data streams”. In: Joint European conference on machine learning and knowledge discovery
in databases. Springer. 2010, pp. 135–150.

135

[13] Albert Bifet and Elena Ikonomovska. Airlines Dataset. url: https://www.openml.org/d/
1169.

[14] Albert Bifet et al. CovPokElec Dataset from “New Ensemble Methods for Evolving Data
Streams”, KDD ’09. url: https://www.openml.org/d/149.

[15] Albert Bifet et al. “Efficient Online Evaluation of Big Data Stream Classifiers”. In: Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’15. Sydney, NSW, Australia: ACM, 2015, pp. 59–68. isbn: 978-1-4503-3664-2.
doi: 10.1145/2783258.2783372. url: http://doi.acm.org/10.1145/2783258.2783372.

[16] Albert Bifet et al. “Moa: Massive online analysis”. In: Journal of Machine Learning Research
11.May (2010), pp. 1601–1604.

[17] Albert Bifet et al. “New ensemble methods for evolving data streams”. In: Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM. 2009, pp. 139–148.

[18] Albert Bifet et al. “Pitfalls in Benchmarking Data Stream Classification and How to Avoid
Them”. In: Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part I.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 465–479. isbn: 978-3-642-40988-2.
doi: 10.1007/978-3-642-40988-2_30. url: http://dx.doi.org/10.1007/978-3-642-
40988-2_30.

[19] Jock Blackard and Denis Dean. “Comparative Accuracies of Artificial Neural Networks and
Discriminant Analysis in Predicting Forest Cover Types from Cartographic Variables”. In:
24 (Dec. 1999), pp. 131–151.

[20] Zoran Bosnic et al. “Enhancing data stream predictions with reliability estimators and ex-
planation”. In: Engineering Applications of Artificial Intelligence 34 (Sept. 2014), pp. 178–
192. doi: 10.1016/j.engappai.2014.06.001.

[21] L. Breiman et al. Classification and regression trees. Chapman and Hall, New York, 1984.

[22] Leo Breiman. “Bagging predictors”. In: Machine learning 24.2 (1996), pp. 123–140.

[23] Leo Breiman. “Statistical modeling: The two cultures (with comments and a rejoinder by
the author)”. In: Statistical science 16.3 (2001), pp. 199–231.

[24] Dariusz Brzezinski and Jerzy Stefanowski. “Classifiers for Concept-drifting Data Streams:
Evaluating Things That Really Matter”. In: Real-World Challenges for Data Stream Mining
(2013), p. 10.

[25] Dariusz Brzezinski and Jerzy Stefanowski. “Prequential AUC for Classifier Evaluation and
Drift Detection in Evolving Data Streams”. In: New Frontiers in Mining Complex Patterns:
Third International Workshop, NFMCP 2014, Held in Conjunction with ECML-PKDD
2014, Nancy, France, September 19, 2014, Revised Selected Papers. Ed. by Annalisa Appice
et al. Cham: Springer International Publishing, 2015, pp. 87–101. isbn: 978-3-319-17876-9.
doi: 10.1007/978-3-319-17876-9_6. url: http://dx.doi.org/10.1007/978-3-319-
17876-9_6.

[26] Dariusz Brzezinski and Jerzy Stefanowski. “Reacting to different types of concept drift: The
accuracy updated ensemble algorithm”. In: IEEE Transactions on Neural Networks and
Learning Systems 25.1 (2014), pp. 81–94.

136

[27] Peter Bühlmann and Torsten Hothorn. “Boosting algorithms: Regularization, prediction and
model fitting”. In: Statistical Science (2007), pp. 477–505.

[28] Javier Burgués, Juan Manuel Jiménez-Soto, and Santiago Marco. “Estimation of the limit of
detection in semiconductor gas sensors through linearized calibration models”. In: Analytica
Chimica Acta 1013 (Feb. 2018). doi: 10.1016/j.aca.2018.01.062.

[29] Javier Burgués and Santiago Marco. “Multivariate estimation of the limit of detection by
orthogonal partial least squares in temperature-modulated MOX sensors”. In: Analytica
Chimica Acta 1019 (2018), pp. 49–64. issn: 0003-2670. doi: https://doi.org/10.1016/
j.aca.2018.03.005. url: http://www.sciencedirect.com/science/article/pii/
S0003267018303702.

[30] G. A. Carpenter and S. Grossberg. “The ART of adaptive pattern recognition by a self-
organizing neural network”. In: Computer 21.3 (1988), pp. 77–88. doi: 10.1109/2.33.

[31] Shang-Tse Chen, Hsuan-Tien Lin, and Chi-Jen Lu. “An online boosting algorithm with
theoretical justifications”. In: arXiv preprint arXiv:1206.6422 (2012).

[32] A. P. Dawid. “Present Position and Potential Developments: Some Personal Views: Statisti-
cal Theory: The Prequential Approach”. In: Journal of the Royal Statistical Society. Series
A (General) 147.2 (1984), pp. 278–292. issn: 00359238. url: http://www.jstor.org/
stable/2981683.

[33] A. Philip Dawid and Ambuj Tewari. On Learnability under General Stochastic Processes.
2020. arXiv: 2005.07605 [stat.ML].

[34] Thomas G Dietterich. “Ensemble methods in machine learning”. In: International workshop
on multiple classifier systems. Springer. 2000, pp. 1–15.

[35] Pedro Domingos. “Occam’s Two Razors: The Sharp and the Blunt”. In: Proceedings of the
Fourth International Conference on Knowledge Discovery and Data Mining. KDD’98. New
York, NY: AAAI Press, 1998, pp. 37–43. url: http://dl.acm.org/citation.cfm?id=
3000292.3000299.

[36] Pedro Domingos and Geoff Hulten. “Mining high-speed data streams”. In: Proceedings of
the sixth ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM. 2000, pp. 71–80.

[37] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. url: http : / /

archive.ics.uci.edu/ml.

[38] Yoav Freund and Robert E Schapire. “A decision-theoretic generalization of on-line learning
and an application to boosting”. In: Journal of computer and system sciences 55.1 (1997),
pp. 119–139.

[39] Yoav Freund and Robert E Schapire. “Experiments with a new boosting algorithm”. In:
Citeseer. 1996.

[40] Joao Gama, Ricardo Fernandes, and Ricardo Rocha. “Decision trees for mining data streams”.
In: Intelligent Data Analysis 10.1 (2006), pp. 23–45.

[41] João Gama and Pedro Medas. “Learning decision trees from dynamic data streams”. In:
Journal of Universal Computer Science 11 (Jan. 2005), pp. 1353–1366.

137

[42] João Gama, Ricardo Rocha, and Pedro Medas. “Accurate Decision Trees for Mining High-
speed Data Streams”. In: Proceedings of the Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. KDD ’03. Washington, D.C.: ACM, 2003,
pp. 523–528. isbn: 1-58113-737-0. doi: 10.1145/956750.956813. url: http://doi.acm.
org/10.1145/956750.956813.

[43] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. “Issues in evaluation of stream
learning algorithms”. In: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM. 2009, pp. 329–338.

[44] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. “On Evaluating Stream Learn-
ing Algorithms”. In: Mach. Learn. 90.3 (Mar. 2013), pp. 317–346. issn: 0885-6125. doi:
10.1007/s10994-012-5320-9. url: http://dx.doi.org/10.1007/s10994-012-5320-9.

[45] João Gama et al. “A survey on concept drift adaptation”. In: ACM Computing Surveys
(CSUR) 46.4 (2014), p. 44.

[46] João Gama et al. “Learning with drift detection”. In: Brazilian Symposium on Artificial
Intelligence. Springer. 2004, pp. 286–295.

[47] Johannes Gehrke, Raghu Ramakrishnan, and Venkatesh Ganti. “RainForest—a framework
for fast decision tree construction of large datasets”. In: Data Mining and Knowledge Dis-
covery 4.2-3 (2000), pp. 127–162.

[48] Johannes Gehrke et al. “BOAT—Optimistic Decision Tree Construction”. In: Proceedings
of the 1999 ACM SIGMOD International Conference on Management of Data. SIGMOD
’99. Philadelphia, Pennsylvania, USA: ACM, 1999, pp. 169–180. isbn: 1-58113-084-8. doi:
10.1145/304182.304197. url: http://doi.acm.org/10.1145/304182.304197.

[49] 2.7–Sources of random data. 2018. url: https://www.gnu.org/software/coreutils/
manual/html_node/Random-sources.html.

[50] Heitor M Gomes et al. “Adaptive random forests for evolving data stream classification”.
In: Machine Learning 106.9-10 (2017), pp. 1469–1495.

[51] Heitor Murilo Gomes, Jesse Read, and Albert Bifet. “Streaming Random Patches for Evolv-
ing Data Stream Classification”. In: 2019 IEEE International Conference on Data Mining,
ICDM 2019, Beijing, China, November 8-11, 2019. Ed. by Jianyong Wang, Kyuseok Shim,
and Xindong Wu. IEEE, 2019, pp. 240–249. doi: 10.1109/ICDM.2019.00034. url: https:
//doi.org/10.1109/ICDM.2019.00034.

[52] Heitor Murilo Gomes et al. “A survey on ensemble learning for data stream classification”.
In: ACM Computing Surveys (CSUR) 50.2 (2017), pp. 1–36.

[53] Paulo M Gonçalves et al. “A comparative study on concept drift detectors”. In: Expert
Systems with Applications 41.18 (2014), pp. 8144–8156.

[54] Jonathan Gratch. “Sequential inductive learning”. In: Proceedings of the thirteenth national
conference on Artificial intelligence-Volume 1. AAAI Press. 1996, pp. 779–786.

[55] Stephen Grossberg. “Nonlinear neural networks: Principles, mechanisms, and architectures”.
In: Neural networks 1.1 (1988), pp. 17–61.

[56] Peter D. Grünwald, In Jae Myung, and Mark A. Pitt. Advances in Minimum Description
Length: Theory and Applications (Neural Information Processing). The MIT Press, 2005.
isbn: 0262072629.

138

[57] M Harries, J Gama, and A Bifet. NSW Electricity dataset. url: https://www.openml.org/
d/151.

[58] Verena Heidrich-Meisner and Christian Igel. “Hoeffding and Bernstein races for selecting
policies in evolutionary direct policy search”. In: Proceedings of the 26th Annual International
Conference on Machine Learning. 2009, pp. 401–408.

[59] Wassily Hoeffding. “Probability inequalities for sums of bounded random variables”. In:
Journal of the American statistical association 58.301 (1963), pp. 13–30.

[60] Stefan Hoeglinger and Russel Pears. “Use of hoeffding trees in concept based data stream
mining”. In: Information and Automation for Sustainability, 2007. ICIAFS 2007. Third
International Conference on. IEEE. 2007, pp. 57–62.

[61] T Ryan Hoens, Robi Polikar, and Nitesh V Chawla. “Learning from streaming data with
concept drift and imbalance: an overview”. In: Progress in Artificial Intelligence 1.1 (2012),
pp. 89–101.

[62] Ramon Huerta et al. “Online decorrelation of humidity and temperature in chemical sen-
sors for continuous monitoring”. In: Chemometrics and Intelligent Laboratory Systems 157
(2016), pp. 169–176.

[63] Geoff Hulten, Laurie Spencer, and Pedro Domingos. “Mining time-changing data streams”.
In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge dis-
covery and data mining. ACM. 2001, pp. 97–106.

[64] Earl Busby Hunt. Concept learning: An information processing problem. John Wiley and
Sons Inc, 1962.

[65] Earl Busby Hunt, Janet Marin, and Philip James Stone. Experiments in Induction. Academic
Press, 1966. url: https://books.google.com.au/books?id=60NDAAAAIAAJ.

[66] Elena Ikonomovska et al. “Speeding-up hoeffding-based regression trees with options”. In:
ICML. 2011.

[67] Ruoming Jin and Gagan Agrawal. “Efficient decision tree construction on streaming data”.
In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM. 2003, pp. 571–576.

[68] Bostjan Kaluza et al. “An Agent-Based Approach to Care in Independent Living”. In: Oct.
2010, pp. 177–186. doi: 10.1007/978-3-642-16917-5_18.

[69] Bartosz Krawczyk et al. “Ensemble learning for data stream analysis: A survey”. In: Infor-
mation Fusion 37 (Sept. 2017), pp. 132–156. doi: 10.1016/j.inffus.2017.02.004.

[70] Georg Krempl et al. “Open Challenges for Data Stream Mining Research”. In: SIGKDD
Explor. Newsl. 16.1 (Sept. 2014), pp. 1–10. issn: 1931-0145. doi: 10.1145/2674026.2674028.
url: http://doi.acm.org/10.1145/2674026.2674028.

[71] Ludmila I Kuncheva. “That elusive diversity in classifier ensembles”. In: Iberian conference
on pattern recognition and image analysis. Springer. 2003, pp. 1126–1138.

[72] Vitaly Kuznetsov and Mehryar Mohri. “Generalization bounds for non-stationary mixing
processes”. In: Machine Learning 106.1 (2017), pp. 93–117.

[73] Vitaly Kuznetsov and Mehryar Mohri. “Time series prediction and online learning”. In:
COLT. 2016.

139

[74] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A. Moore. “Activity recognition using cell
phone accelerometers”. In: Proceedings of the Fourth International Workshop on Knowledge
Discovery from Sensor Data. 2010, pp. 10–18.

[75] Moshe Lichman. UCI Machine Learning Repository. 2013. url: http://archive.ics.uci.
edu/ml.

[76] Jing Liu, Xue Li, and Weicai Zhong. “Ambiguous decision trees for mining concept-drifting
data streams”. In: Pattern Recognition Letters 30.15 (2009), pp. 1347–1355.

[77] Richard Lyman. Character Font Images Data Set: UCI Machine Learning Repository. 2016.
url: https://archive.ics.uci.edu/ml/datasets/Character+Font+Images.

[78] Chaitanya Manapragada, Geoffrey I Webb, and Mahsa Salehi. “Extremely fast decision
tree”. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM. 2018, pp. 1953–1962.

[79] Chaitanya Manapragada et al. Emergent and Unspecified Behaviors in Streaming Decision
Trees. 2020. arXiv: 2010.08199 [cs.LG].

[80] Llew Mason et al. “Boosting algorithms as gradient descent”. In: Advances in neural infor-
mation processing systems. 2000, pp. 512–518.

[81] Llew Mason et al. “Boosting Algorithms as Gradient Descent in Function Space”. In: (1999).

[82] Yair Meidan et al. “N-BaIoT—Network-Based Detection of IoT Botnet Attacks Using Deep
Autoencoders”. In: IEEE Pervasive Computing 17 (July 2018), pp. 12–22. doi: 10.1109/
MPRV.2018.03367731.

[83] Rodrigo F de Mello, Chaitanya Manapragada, and Albert Bifet. “Measuring the Shatter-
ing coefficient of Decision Tree models”. In: Expert Systems with Applications 137 (2019),
pp. 443–452.

[84] Martial Mermillod, Aurélia Bugaiska, and Patrick BONIN. “The stability-plasticity dilemma:
investigating the continuum from catastrophic forgetting to age-limited learning effects”. In:
Frontiers in Psychology 4 (2013), p. 504. issn: 1664-1078. doi: 10.3389/fpsyg.2013.00504.
url: http://journal.frontiersin.org/article/10.3389/fpsyg.2013.00504.

[85] Nikunj C. Oza. “Online Bagging and Boosting”. In: International Conference on Systems,
Man, and Cybernetics, Special Session on Ensemble Methods for Extreme Environments.
Ed. by Mo Jamshidi. New Jersey: Institute for Electrical and Electronics Engineers, Oct.
2005, pp. 2340–2345.

[86] Russel Pears, Sripirakas Sakthithasan, and Yun Sing Koh. “Detecting concept change in
dynamic data streams”. In: Machine Learning 97.3 (2014), pp. 259–293. issn: 1573-0565.
doi: 10.1007/s10994-013-5433-9. url: http://dx.doi.org/10.1007/s10994-013-
5433-9.

[87] Bernhard Pfahringer, Geoffrey Holmes, and Richard Kirkby. “New Options for Hoeffding
Trees”. In: AI 2007: Advances in Artificial Intelligence: 20th Australian Joint Conference
on Artificial Intelligence, Gold Coast, Australia, December 2-6, 2007. Proceedings. Ed. by
Mehmet A. Orgun and John Thornton. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 90–99. isbn: 978-3-540-76928-6. doi: 10.1007/978-3-540-76928-6_11. url: http:
//dx.doi.org/10.1007/978-3-540-76928-6_11.

140

[88] John Ross Quinlan. C4.5: programs for machine learning. San Mateo, CA: Morgan Kauf-
mann, 1992. url: http://cds.cern.ch/record/2031749.

[89] John Ross Quinlan. “Discovering rules by induction from large collections of examples”. In:
Expert systems in the micro electronics age (1979).

[90] John Ross Quinlan. “Induction of Decision Trees”. In: MACH. LEARN 1 (1986), pp. 81–106.

[91] John Ross Quinlan. “Learning efficient classification procedures and their application to
chess end games”. In: Machine learning. Springer, 1983, pp. 463–482.

[92] Jesse Read et al. “Streaming Multi-label Classification”. In: Proceedings of the Second Work-
shop on Applications of Pattern Analysis. Ed. by Tom Diethe et al. Vol. 17. Proceedings of
Machine Learning Research. CIEM, Castro Urdiales, Spain: PMLR, Oct. 2011, pp. 19–25.
url: http://proceedings.mlr.press/v17/read11a.html.

[93] Attila Reiss and Didier Stricker. “Introducing a new benchmarked dataset for activity mon-
itoring”. In: Wearable Computers (ISWC), 2012 16th International Symposium on. IEEE.
2012, pp. 108–109.

[94] Byron Roe et al. “Boosted Decision Trees as an Alternative to Artificial Neural Networks
for Particle Identification”. In: Nuclear Instruments and Methods in Physics Research A 543
(Sept. 2004). doi: 10.1016/j.nima.2004.12.018.

[95] Leszek Rutkowski et al. “Decision trees for mining data streams based on the McDiarmid’s
bound”. In: IEEE Transactions on Knowledge and Data Engineering 25.6 (2012), pp. 1272–
1279.

[96] Sripirakas Sakthithasan, Russel Pears, and Yun Sing Koh. “One Pass Concept Change De-
tection for Data Streams”. In: Advances in Knowledge Discovery and Data Mining: 17th
Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia, April 14-17, 2013, Proceed-
ings, Part II. Ed. by Jian Pei et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 461–472. isbn: 978-3-642-37456-2. doi: 10.1007/978-3-642-37456-2_39. url: http:
//dx.doi.org/10.1007/978-3-642-37456-2_39.

[97] Sripirakas Sakthithasan, Russel Pears, and Yun Sing Koh. “One pass concept change de-
tection for data streams”. In: Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer. 2013, pp. 461–472.

[98] S.L. Salas and Einar Hille. Calculus: One and Several Variable. New York: John Wiley and
Sons, 1978.

[99] Silas Garrido Teixeira de Carvalho Santos et al. “Speeding Up Recovery from Concept
Drifts”. In: Machine Learning and Knowledge Discovery in Databases: European Confer-
ence, ECML PKDD 2014, Nancy, France, September 15-19, 2014. Proceedings, Part III.
Ed. by Toon Calders et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 179–
194. doi: 10.1007/978-3-662-44845-8_12.

[100] Cullen Schaffer. “A Conservation Law for Generalization Performance”. In: Proceedings of
the Eleventh International Conference on International Conference on Machine Learning.
ICML’94. New Brunswick, NJ, USA: Morgan Kaufmann Publishers Inc., 1994, pp. 259–265.
isbn: 1-55860-335-2. url: http://dl.acm.org/citation.cfm?id=3091574.3091606.

[101] Robert E Schapire. “The strength of weak learnability”. In: Machine learning 5.2 (1990),
pp. 197–227.

141

[102] Jeffrey Schlimmer and Douglas Fisher. “A case study of incremental concept induction”. In:
AAAI. Vol. 86. 1986, pp. 496–501.

[103] Jeffrey Schlimmer and Richard Granger. “Incremental learning from noisy data”. In: Machine
Learning 1.3 (1986), pp. 317–354. issn: 1573-0565. doi: 10.1007/BF00116895. url: http:
//dx.doi.org/10.1007/BF00116895.

[104] Rocco A Servedio. “Smooth boosting and learning with malicious noise”. In: Journal of
Machine Learning Research 4.Sep (2003), pp. 633–648.

[105] Ammar Shaker and Eyke Hüllermeier. “Recovery analysis for adaptive learning from non-
stationary data streams: Experimental design and case study”. In: Neurocomputing 150
(2015), pp. 250–264.

[106] Richard M. Shiffrin et al. “A Survey of Model Evaluation Approaches With a Tutorial on
Hierarchical Bayesian Methods”. In: Cognitive Science 32.8 (2008), pp. 1248–1284. issn:
1551-6709. doi: 10.1080/03640210802414826. url: http://dx.doi.org/10.1080/

03640210802414826.

[107] SIGKDD. 2015 KDD Test of Time Award Winners. 2015. url: https://www.kdd.org/
awards/view/2015-kdd-test-of-time (visited on 12/10/2019).

[108] Sakthithasan Sripirakas and Russel Pears. “Mining recurrent concepts in data streams us-
ing the discrete fourier transform”. In: International Conference on Data Warehousing and
Knowledge Discovery. Springer. 2014, pp. 439–451.

[109] Allan Stisen et al. “Smart Devices Are Different: Assessing and Mitigating Mobile Sensing
Heterogeneities for Activity Recognition”. In: Proceedings of the 13th ACM Conference on
Embedded Networked Sensor Systems. SenSys ’15. Seoul, South Korea: ACM, 2015, pp. 127–
140. isbn: 978-1-4503-3631-4.

[110] W Nick Street and YongSeog Kim. “A streaming ensemble algorithm (SEA) for large-scale
classification”. In: Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM. 2001, pp. 377–382.

[111] Matthew J Streeter. “Two broad classes of functions for which a no free lunch result does
not hold”. In: Genetic and Evolutionary Computation Conference. Springer. 2003, pp. 1418–
1430.

[112] Wallace Ugulino et al. “Wearable Computing: Accelerometers’ Data Classification of Body
Postures and Movements”. In: vol. 7589. Oct. 2012. isbn: 978-3-642-34458-9. doi: 10.1007/
978-3-642-34459-6_6.

[113] Paul E Utgoff. “Incremental induction of decision trees”. In: Machine learning 4.2 (1989),
pp. 161–186.

[114] Jean-Philippe Uzan. “The fundamental constants and their variation: observational and
theoretical status”. In: Reviews of modern physics 75.2 (2003), p. 403.

[115] Vladimir Vapnik. “The Nature of Statistical Learning Theory”. In: vol. 8. Jan. 2000, pp. 1–
15. isbn: 978-1-4419-3160-3. doi: 10.1007/978-1-4757-3264-1_1.

[116] João Vinagre, Aĺıpio Mário Jorge, and João Gama. “An overview on the exploitation of time
in collaborative filtering”. In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 5.5 (2015), pp. 195–215.

[117] Benjamin Visser and Henry Gouk. AWS Dataset. url: https://www.openml.org/d/41424.

142

[118] Larry Wasserman. Lecture Notes 3 — Review: Bounded Random Variables - Hoeffding’s
bound. url: https://www.stat.cmu.edu/~larry/=stat705/Lecture3.pdf.

[119] Geoffrey I Webb. “Further experimental evidence against the utility of Occam’s razor”. In:
Journal of Artificial Intelligence Research 4 (1996), pp. 397–417.

[120] Geoffrey I Webb et al. “Characterizing concept drift”. In: Data Mining and Knowledge
Discovery 30.4 (2016), pp. 964–994.

[121] Geoffrey I Webb et al. “Understanding Concept Drift”. In: arXiv preprint arXiv:1704.00362
(2017).

[122] Gerhard Widmer and Miroslav Kubat. “Learning in the presence of concept drift and hidden
contexts”. In: Machine learning 23.1 (1996), pp. 69–101.

[123] David H Wolpert and William G Macready. “Coevolutionary free lunches”. In: IEEE Trans-
actions on Evolutionary Computation 9.6 (2005), pp. 721–735.

[124] David H Wolpert and William G Macready. “No Free Lunch Theorems for Optimization”.
In: IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1.1 (1997), p. 67.

[125] David H. Wolpert. “The Lack of A Priori Distinctions Between Learning Algorithms”. In:
Neural Computation 8.7 (1996), pp. 1341–1390. doi: 10.1162/neco.1996.8.7.1341. eprint:
https://doi.org/10.1162/neco.1996.8.7.1341. url: https://doi.org/10.1162/
neco.1996.8.7.1341.

[126] Indrė Žliobaitė et al. “Evaluation methods and decision theory for classification of streaming
data with temporal dependence”. In: Machine Learning 98.3 (2015), pp. 455–482. issn: 1573-
0565. doi: 10.1007/s10994-014-5441-4. url: http://dx.doi.org/10.1007/s10994-
014-5441-4.

143

