
DOCTORAL THESIS

Motion Estimation by Focus Optimisation: Optic
Flow and Motion Segmentation with Event

Cameras

Author:
Timo STOFFREGEN

Supervisor:
A/Prof. Lindsay KLEEMAN

Co-Supervisor:
Prof. Tom DRUMMOND

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Australian Centre for Robotic Vision
Department of Electrical and Computer Systems Engineering

May 4, 2021

https://timostoff.github.io/
https://research.monash.edu/en/persons/lindsay-kleeman
http://twd20g.blogspot.com
www.roboticvision.org
https://www.monash.edu/engineering/departments/ecse

iii

Declaration of Authorship
I, Timo STOFFREGEN, declare that this thesis titled, “Motion Estimation by Focus Optimisation: Op-
tic Flow and Motion Segmentation with Event Cameras” and the work presented in it are my own.
This thesis contains no material which has been accepted for the award of any other degree or diploma
at any university or equivalent institution and that, to the best of my knowledge and belief, this thesis
contains no material previously published or written by another person, except where due reference
is made in the text of the thesis.

Student signature:

Date: 4 December 2020

v

Copyright Notice

Notice 1

c© Timo Stoffregen (2020).

Notice 2

c© Timo Stoffregen (2020).

I certify that I have made all reasonable efforts to secure copyright permissions for third-party
content included in this thesis and have not knowingly added copyright content to my work without
the owner’s permission.

vii

Abstract

Event cameras are a recent revolution in machine visual perception. As opposed to conventional
camera technology, event camera pixels asynchronously report small intensity changes with a high
temporal precision on the order of µs. The benefits of this bio-inspired visual paradigm include high
dynamic range (≈ 120 dB), low power usage (≈ 5 mW), low latency of the order of microseconds
and a vastly decreased propensity for motion blur, due to a per-pixel sampling rate that adapts to the
rate of change of brightness in the scene. The data produced by these sensors is however, novel to the
computer vision community - best visualised in a three-dimensional spatiotemporal volume, events
are more similar to point clouds than image frames. As a result, new algorithms and processing
techniques are required to take advantage of the benefits of event cameras.

Since event cameras report on those parts of the scene which are in motion, they are a natural
choice for tasks that involve producing a description of that motion, such as optic flow estimation,
ego-motion estimation, or motion segmentation. This work develops a new Focus Optimisation (FO)
framework for solving optic flow estimation, object tracking, and motion segmentation problems,
while respecting the unique properties of event-based data. The framework relies on the data associ-
ation that exists between events triggered by a common point feature moving across the image plane.
If the trajectory of the point feature is known, these related events can be transported along the point
trajectories to a reference time to form a motion-compensated image of the events. Since the focus of
that image is maximised when these trajectories are correct, the motion estimates can be optimised
with regard to the measured focus.

In the first chapter, I propose applying FO to a set of events using an optic flow motion model.
Since the dominant motion is captured by the optimisation, it is possible to segment the events ex-
plained by that motion by selecting those regions of the image which are in focus. Continuing in a
greedy manner, the events are segmented by optic flow motion. The resulting segmentation masks and
motion models are used to initialise novel event-based trackers, whose motion estimates are updated
on a per-event basis using a technique similar to particle filtering.

In the second chapter, I improve on this idea by applying a probabilistic approach to the motion
segmentation. In this method, each event has a likelihood of belonging to a particular motion model,
which is not limited to optic flow models. The parameters of the motion models are then optimised
together, with respect to a global focus measurement. Then the likelihoods of the events are updated
to account for the new motion estimates. By applying these steps iteratively, a solution for the motion
segmentation and parametrisation of the events is converged on, similar to Expectation Maximisation
(EM). This method has the advantage that it is not dependent on hyper-parameters and is able to
accept any number and mixture of motion models.

Chapter three examines the choice of focus measure and proposes a simple classification for vari-
ous measures. In this chapter, we mathematically and experimentally show that contrast measures that
reward density have advantages in noise resilience, while those that reward sparsity have advantages
in overcoming aperture uncertainty, a cousin of the aperture problem in conventional vision.

Chapter four shows how state-of-the-art results for optic flow can be achieved by training a Con-
volutional Neural Network (CNN) supervised by simulated events with ground truth optic flow. By
using L1 distance as the loss, the network learns to predict fully dense optic flow, a first in event-based
vision. I also propose a new measure for evaluating event optic flow which does not require ground
truth data, yet is tailored to event-based data.

Finally I conclude the thesis by outlining opportunities for future research based on the previously
described works.

ix

Acknowledgements
My deepest thanks to my advisers Lindsay Kleeman and Tom Drummond for their invaluable help in
performing the research and advice during the writing of this thesis.

I am also indebted to Guillermo Gallego and Davide Scaramuzza of the Robotics and Perception
Group (RPG) for kindly hosting me for a semester at the University of Zurich/ETH Zurich. I benefited
hugely from their enormous well of expertise in event based vision as well as feeling very welcome
in their lab.

Particular thanks to my co-authors Cedric Scheerlinck, Henri Rebecq, and Guillermo Gallego
without whose valuable insights and hard work my publications would have been much poorer. Also
a great thanks to the professors Lindsay Kleeman, Robert Mahoney, Tom Drummond, Nick Barnes,
and Davide Scaramuzza who lent their vast knowledge and experience to these projects.

A shout out to my panel, Bill Corcoran, James Saunderson, and Mehmet Yuce who guided me at
intervals along the way.

Finally, many thanks to my thesis examiners for making the effort to review this work.
This research was supported by an Australian Government Research Training Program (RTP)

Scholarship and the Australian Centre for Robotic Vision.

xi

Contents

Declaration of Authorship iii

Copyright Notice v

Abstract vii

Acknowledgements ix

Glossary xix

Acronyms xxi

Notation xxv

1 Introduction 1
1.1 Overview . 1

1.1.1 Aims of Thesis . 3
1.2 Event Camera Operating Principle . 4

Motivation . 4
1.2.1 Dynamic and Active-pixel VIsion Sensor (DAVIS) 4
1.2.2 Event Processing . 5

1.3 Literature . 6
1.3.1 Optic and Normal Flow . 7

Optic Flow in Event Based Vision Context 7
Literature . 8

1.3.2 Motion and Object Segmentation . 10
1.3.3 Tracking . 12
1.3.4 Focus Optimisation (FO) . 12

1.4 Contributions . 14
Chapter 2 . 14
Chapter 3 . 15
Chapter 4 . 16
Chapter 5 . 16
Appendix B . 17

1.4.1 Outputs . 17
Publications (first author) . 17
Publications (second author) . 18
Misc . 18

2 Simultaneous Optic Flow and Segmentation 19
2.1 Introduction . 19

2.1.1 Contributions . 20
2.2 Method . 21

2.2.1 Focus Optimisation (FO) . 22

xii

2.2.2 Initial Optimisation . 23
Optimisation . 23
Extrema of r . 24
Segmentation . 24

2.2.3 Tracking . 26
2.3 Experiments . 27

2.3.1 Accuracy Comparison . 28
2.3.2 Performance at Different Velocities . 28
2.3.3 Performance with Acceleration . 29
2.3.4 Rotation . 29
2.3.5 Segmentation . 31

2.4 Discussion . 33
2.5 Resources . 33

3 Motion Segmentation using Motion Compensation 35
3.1 Introduction . 35

3.1.1 Literature . 36
3.1.2 Method . 36
3.1.3 Contributions . 37
3.1.4 Individual Contribution . 37

3.2 Method . 38
3.2.1 Problem Statement . 38
3.2.2 Summary of Proposed Solution . 38
3.2.3 Mathematical Formulation . 39
3.2.4 Alternating Optimisation . 40
3.2.5 Initialisation . 40
3.2.6 Discussion of the Segmentation Approach 41
3.2.7 Warp Functions . 41
3.2.8 Sequence Processing . 42

3.3 Experiments . 42
3.3.1 Quantitative Evaluation . 42

Results on Dataset from [58] . 42
Accuracy vs Displacement . 44
Computational Performance . 45

3.3.2 Further Real-World Sequences . 46
3.3.3 Sensitivity to the Number of Clusters . 47

Continuous Depth Variation . 49
3.3.4 Non-rigid Moving Objects . 49

Pedestrian . 49
Popping Balloon . 49

3.4 Additional Motion-Compensation Segmentation Methods 49
3.4.1 Mixture Densities . 50
3.4.2 Problem Formulation . 50

Iterative Solver: EM Algorithm . 52
3.4.3 Fuzzy k-Means . 53

Problem Formulation . 53
3.4.4 Iterative Solver: EM Algorithm . 53
3.4.5 Comparison of Three Motion-Compensation Segmentation Methods 54

3.5 Computational Complexity . 54
3.5.1 Proposed (Layered) Model . 54
3.5.2 Mixture Density Model . 54

xiii

3.5.3 Fuzzy k-means Model . 55
3.6 Comparison to k-means Optic Flow Clustering . 55

Numbers Sequence . 56
Rocks at Different Speeds . 56

3.7 Discussion . 59
3.7.1 Resources . 59

4 Comparison of Focus Measures 61
4.1 Introduction . 61

4.1.1 Focus Optimisation (FO) . 61
4.1.2 Contributions . 63

4.2 Reward Functions . 63
4.2.1 Aperture Problem . 66
4.2.2 Noise Tolerance . 67
4.2.3 Data Sufficiency . 68

4.3 Combined Reward Functions . 68
4.4 Experimental Results . 68

4.4.1 Line Segment Sequence . 71
4.4.2 Circle Sequence . 71
4.4.3 Office Sequence . 73

4.5 Proofs and Additional Experiments . 73
4.5.1 Aperture-Uncertainty of Sparsity vs Magnitude Rewarding 74
4.5.2 Weighted Sums . 78
4.5.3 Blurring σ . 78

4.6 Discussion . 81
4.6.1 Resources . 81

5 Dense Optic Flow using Deep Learning 83
5.1 Introduction . 83

5.1.1 Contributions . 85
5.1.2 Individual Contribution . 85

5.2 Related Works . 85
5.2.1 Video Reconstruction . 85
5.2.2 Optic Flow . 86
5.2.3 Input Representations . 86

5.3 Method . 86
5.3.1 Event Camera Contrast Threshold . 86

Additional means of estimating Contrast Threshold (CT) 87
5.3.2 Training Data . 89
5.3.3 Sequence Length . 89
5.3.4 Loss . 90
5.3.5 Data Augmentation . 90
5.3.6 Architecture . 90
5.3.7 High Quality Frames Dataset . 90

5.4 Experiments . 91
5.4.1 Evaluation . 91

Image . 92
Flow . 99

5.4.2 FireNet . 104
5.4.3 Contrast Thresholds . 109
5.4.4 Training Noise and Sequence Length . 109

xiv

5.5 Discussion . 109
5.5.1 Resources . 111

6 Conclusion 113

A Event Based Vision Concepts 117
A.1 Event Representations . 117

A.1.1 Discretised Event Volume/Voxel Grid . 117
Voxel Formation Methods . 117

A.1.2 Event Image . 118
A.1.3 Image of Warped Events . 118
A.1.4 Surface of Active Events . 118

A.2 Focus Optimisation . 119

B Event Utility Library 121
B.1 Focus Optimisation (FO) . 121

B.1.1 events_cmax.py . 121
B.1.2 objectives.py . 122
B.1.3 warps.py . 123

B.2 Deep Learning . 123
B.2.1 base_dataset.py . 123
B.2.2 hdf5_dataset.py and memmap_dataset.py 125

B.3 Augmentation . 125
B.3.1 event_augmentation.py . 125

B.4 Data Formats . 126
B.4.1 event_packagers.py . 127
B.4.2 h5_to_memmap.py and rosbag_to_h5.py 127
B.4.3 add_hdf5_attribute.py . 127
B.4.4 read_events.py . 127

B.5 Representations . 127
B.5.1 voxel_grid.py . 128
B.5.2 image.py . 128

B.6 Visualisation . 129
B.6.1 draw_event_stream.py . 129

B.7 Util . 131

Bibliography 133

xv

List of Figures

1.1 Event Generation Model . 2
1.2 Comparison of Event-Based vs Conventional Vision Paradigm 2
1.3 DAVIS Pixel Design . 4
1.4 Frequency Response of DAVIS Pixel vs Conventional Pixel 6
1.5 Common Event-Based Data Representations . 7
1.6 Illustration of the aperture problem. 8
1.7 Focus Optimisation and Generation . 14

2.1 Focus Optimisation for optic flow motions . 20
2.2 SOFAS Algorithm Overview . 21
2.3 Grid-Search Optimisation for SOFAS . 24
2.4 Objective function for multiple moving objects . 25
2.5 Objective function change with blurring . 25
2.6 Particle filter event-based tracking . 26
2.7 UR5 Optic Flow Ground Truth . 27
2.8 Lucas-Kanade vs SOFAS optic flow . 28
2.9 SOFAS comparison of velocity vs optic flow error 29
2.10 SOFAS results on pendulum motion . 30
2.11 SOFAS performance on rotations . 30
2.12 Qualitative SOFAS results . 32

3.1 Diagram of Our Layered Motion Segmentation . 37
3.2 Visualisation of Layers in Our Layered Motion Segmentation (LMS) 38
3.3 Qualitative Results of Layered Motion Segmentation on Extreme Event Dataset . . . 43
3.4 Qualitative Results of Layered Motion Segmentation 44
3.5 Sensitivity of Our Layered Motion Segmentation 45
3.6 High Resolution Qualitative Results of Layered Motion Segmentation (LMS) 48
3.7 Sensitivity of Our Layered Motion Segmentation to the Number of Layers Nl 50
3.8 Results of Layered Motion Segmentation on Scene with Continuous Spectrum of

Optic Flow Velocities . 51
3.9 Qualitative Results of Layered Motion Segmentation on Non-Rigid Objects 52
3.10 Qualitative Results of Layered Motion Segmentation on Bursting Balloon Sequence . 52
3.11 Comparison of Our Layered Motion Segmentation vs Fuzzy-K-Means vs Mixture

Densities . 55
3.12 Convergence of Our Layered Motion Segmentation (LMS) vs Fuzzy-k-Means vs

Mixture Densities . 56
3.13 Convergence Visualisation Our Layered Motion Segmentation vs Fuzzy-k-Means vs

Mixture Densities . 57
3.14 Event-Based Motion Segmentation by K-means clustering of Precomuted Optic Flow 58
3.15 Comparison of K-means clustering of Pre-Computed Optic Flow vs Our Layered Mo-

tion Segmentation . 58

4.1 Focus Optimisation concept . 62

xvi

4.2 Sum of Squares Reward Visualised . 63
4.3 Illustration of aperture uncertainty in FO . 66
4.4 Illustration of sparsity rewarding vs magnitude rewarding functions for FO 67
4.5 Aperture uncertainty in various reward functions for FO 67
4.6 Derivative of sum of squares reward as an indication of event lifespan 69
4.7 Predicted optic flow vs displacement using rSoS reward function 69
4.8 Various FO reward functions under varying levels of noise 70
4.9 Experimental setup for various reward functions for FO on line segment and circle

primitives and an office scene . 72
4.10 The event plane represented as a rectangle . 75
4.11 Rotation of the local event plane . 75
4.12 Piecewise modelling of event-plane rotation . 76
4.13 Position of FO optima for various width to height ratios 78
4.14 Comparison of theoretical convergence behaviour of rSoS vs rSoA. 79
4.15 Linear combinations of rSoS and rSoSA at various event-to-noise ratios 80
4.16 Convergence behaviour of various reward functions for FO vs blurring factor 81

5.1 Qualitative results of video reconstruction network on various datasets 84
5.2 Comparison of events

pix·s for various commonly cited datasets and simulation 87
5.3 Motivation for High Quality Frames dataset . 88
5.4 Qualitative exposure comparison of commonly cited datasets 88

A.1 Voxel Grid Bilinear Interpolation . 117
A.2 Methods of voxel formation . 118

B.1 Augmentation of event stream . 126
B.2 Visualisation examples . 130
B.3 Visualisation of slider sequence as events and as voxel grid 131

xvii

List of Tables

1.1 Size of Common Event-Based Vision Datasets . 3
1.2 Event-Based Optic Flow Literature . 10
1.3 Event-Based Segmentation Literature . 11

3.1 Quantitative Comparison of Layered Motion Segmentation with Previous State of the
Art (SotA) . 43

3.2 Performance of Layered Motion Segmentation (LMS) on Central Processing Unit
(CPU) and Graphics Processing Unit (GPU) . 46

4.1 Quantitative results of various reward functions for FO on line segment primitives . . 71
4.2 Quantitative results of various reward functions for FO on circle primitives 73
4.3 Quantitative results of various reward functions for FO on office scene 74

5.1 Calibration sequence for Contrast Threshold estimation 89
5.2 Breakdown of the sequences included in High Quality Frames (HQF) dataset 91
5.3 Details of start and end times of validation sequences for reconstruction and optic flow 92
5.4 Quantiative evaluation of our CNNs for reconstruction and optic flow 93
5.5 Qualitative results of our CNNs on HQF . 96
5.6 Qualitative results of our CNNs on Event Camera Dataset and Simulator (IJRR) . . . 97
5.7 Qualitative results of our CNNs on Multi Vehicle Stereo Event Camera (MVSEC) . . 98
5.8 Qualitative results of our CNNs on Color Event Dataset (CED) 99
5.9 Average Endpoint Error of our optic flow vs estimated ground truth from [118] . . . 100
5.10 Qualitative results of our optic flow CNNs on HQF 102
5.11 Qualitative results of our optic flow CNNs on IJRR 103
5.12 Qualitative results of our optic flow CNNs on MVSEC 104
5.13 Improvements gained by training FireNet on our improved training set 105
5.14 Qualitative results for FireNet+ on HQF . 107
5.15 Qualitative results for FireNet+ on IJRR . 108
5.16 Qualitative results for FireNet+ on MVSEC . 109
5.17 Effect of CT parameter for training data generation on CNN performance 110
5.18 Dynamic range of reconstructed images trained on various CTs 110
5.19 Effect of hyperparameter configurations on reconstruction CNN results 111

xix

Glossary

Discretised Event Volume/Voxel Grid The Discretised Event Volume (DEV) or voxel grid (Figure
1.5b), is a popular event representation for deep learning applications, in which the events are
placed into discretised temporal bins. For additional detail see Appendix A.1. 7, 9, 13, 117,
118

Event Image The event image I0 is a common event representation, formed by adding the events in
a time window at each pixel (Figure 1.5c). For additional detail see Appendix A.1. 7–9, 12, 13,
22, 36, 118, 130

Focus Optimisation Focus optimisation is an event processing framework in which the measured
focus of events warped to an Image of Warped Events (IWE) is optimised w.r.t. the parameters
of the warping operation (Figure 1.7). For additional detail see Appendix A.2. vii, xi, xvi, xvii,
3, 6, 11–16, 20, 22, 23, 33, 35, 36, 38, 44, 50, 59, 61–64, 66, 68, 70, 71, 81, 113–116, 118,
121, 129

Hough transform The Hough transform is a method detecting simple shapes (usually lines or cir-
cles) by per-pixel voting in a parameter space from which object candidates are obtained as
local maxima. 12, 36

Image of Warped Events The Image of Warped Events (IWE), denoted Iω, is the image that is ob-
tained by transporting a set of events E to a common reference time tref through some warping
operationW . The warped events are then formed into an event image, using bilinear interpo-
lation (Figure 1.7). For additional detail see A.1. xv, 12–14, 19, 20, 22–24, 26, 27, 38–41, 45,
48, 51–55, 61–65, 67, 99, 100, 102–104, 113–115, 118, 119, 122

K-means clustering K means is a clustering method in which n data are partitioned into K (deter-
mined a priori) clusters, where each data is assigned to the cluster with the nearest mean. xv,
12, 40, 58

L1 Distance The L1 distance or norm, is the distance between two vectors. For vectors ~p and ~q it is
given as ∑n

i=1 |pi − qi|. vii, 90, 99

Lukas-Kanade A classic optic flow algorithm which uses assumptions of brightness and local flow
constancy to solve a least squares formulation with optic flow as the solution. 7, 8, 15, 28

Optic Flow Optic flow is a vector field over the pixels in a scene that describes the motion of each
pixel, caused by relative motion between the camera and the scene. 7

Surface of Active Events The Surface of Active Events (SAE) (also commonly known as time im-
age) is a common event representation, in which the latest timestamp is recorded at each pixel
location (Figure 1.5d). For additional detail see Appendix A.1. 5, 7–9, 11, 86, 130

xxi

Acronyms

AEE Average Endpoint Error. xvii, 99, 100

AER Address Event Representation. 4, 5

AGV Autonomous Ground Vehicle. 14

ANN Artificial Neural Network. 10, 11, 13

API Application Programming Interface. 4

APS Active Pixel Sensor. 3–5, 10, 12, 85–88, 125

BnB Branch and Bound. 13, 14, 115

CED Color Event Dataset. xvii, 84, 99

CNN Convolutional Neural Network. vii, xvii, 6, 9, 11, 16, 17, 83–86, 113, 114, 116

COCO Common Objects in COntext. 89

CPU Central Processing Unit. xvii, 33, 45, 46, 115

CT Contrast Threshold. xiii, xvii, 1, 2, 5, 17, 19, 84, 85, 87–89, 91, 104, 109, 110, 113, 114

DAVIS Dynamic and Active-pixel VIsion Sensor. xv, 4–6, 12, 17, 19, 27, 29, 42, 43, 51, 68, 72, 83,
85, 88–91, 123

DEV Discretised Event Volume. 117

DoF Degree of Freedom. 11, 13–15, 41–43, 49, 85, 115, 123

DS Direction Selective. 8

DVS Dynamic Vision Sensor. 4, 5, 29, 31–33, 48, 49, 66, 91

E2VID Events to Video. 86, 90, 91, 93, 94, 96, 97, 104, 109–111

EED Extreme Event Dataset. xv, 42, 43, 46

EFK Extended Kalman Filter. 85

EM Expectation Maximisation. vii, xii, 11–13, 15, 35, 40, 49, 52, 53, 114

ESIM Event Camera Simulator [85]. 87–89, 110

FO Focus Optimisation. xi, xiii–xv, 20, 22, 61, 62, 113, 114, 119, 121

FPGA Field Programmable Gate Array. 5, 45, 115

FWL Flow Warp Loss. 16, 85, 91, 93, 99, 110, 114

xxii

GAN Generative Adversarial Network. 13, 17

GCNN Graph Convolutional Neural Network. 11

GPU Graphics Processing Unit. xvii, 17, 45, 46, 115, 121, 125, 127, 128

GRU Gated Recurrent Unit. 84

HATS Histogram of Averaged Time Surfaces. 86

HDF5 Hierarchical Data Format v.5. 123, 125–127, 132

HDR High Dynamic Range. 15, 37, 42, 46, 59, 84

HQF High Quality Frames. xvi, xvii, 1, 83–85, 88, 91–93, 96, 102, 104, 105, 107, 110, 111, 114

HSV Hue-Saturation-Value colourspace. 102–104

ICP Iterative Closest Point. 12

IJRR Event Camera Dataset and Simulator. xvii, 84, 85, 87, 88, 90–93, 97, 103–105, 108–111

IWE Image of Warped Events. 12, 22, 61, 113, 118

jAER Java tools for Address-Event Representation neuromorphic processing. 27

LMS Layered Motion Segmentation. xv, xvii

LPIPS Learned Perceptual Image Patch Similarity. 90–93, 105, 109–111

LSTM Long Short-Term Memory. 84

MSE Mean Squared Error. 92, 93, 105, 110, 111

MVSEC Multi Vehicle Stereo Event Camera. xvii, 84, 86–88, 90–93, 98, 99, 104, 105, 109–111,
116

PCIe Peripheral Component Interconnect express. 115

PDF Probability Density Function. 29

PWM Pulse Width Modulation. 5

RANSAC RAndom SAmple Consensus. 9

ReLU Rectified Linear Unit. 83

RNN Recurrent Neural Network. 84

RoI Region of Interest. 121

ROS Robot Operating System. 91, 126

RPG Robotics and Perception Group, Zurich. 91, 125

SAE Surface of Active Events. 118, 119

SAR Synthetic Aperture Radar. 13, 16

xxiii

SfM Structure from Motion. 11

SLAM Simultaneous Localisation and Mapping. 3, 6, 7

SNN Spiking Neural Network. 6, 116

SoC System on Chip. 115

SOFAS Simultaneous Optic Flow and Segmentation. xv, 19, 28, 29, 31–33, 43

SotA State of the Art. xvii, 3, 13, 16, 17, 27, 37, 43, 44, 83–86, 90, 93, 114, 115

SSIM Structural SIMilarity. 90, 92, 93, 105, 110, 111

UAV Unmanned Aerial Vehicle. 35

VGG Visual Geometry Group network. 90

VO Visual Odometry. 7

xxv

Notation

α Random variable. 89

B The number of bins when forming a DEV from events. 86, 89, 117

δ Kronecker delta function. 118

dIω
dω Derivative of image of warped events. 22

dp Displacement (in pixels) used to calculate the lifetime of events, given a veolcity estimate. 26

∆t A slice/length/difference in time. 22, 26, 41, 42, 66, 89, 117

E A set of events. 20–22, 26, 27, 38, 40, 42, 49, 50, 52, 54, 99, 113, 117–119

e An Event. 5, 19, 21–23, 38–40, 50–54, 62, 66, 86, 89, 117–119

e
′

A warped event. 22, 39, 118

events
pix·s Events per pixel per second is a measure of how many events are generated by a given event

camera and scene. xvi, 87–89, 109

EW A set of warped events. 22, 118

G Gaussian kernel. 26

γ Score of how well an event fits a tracker (tracker score). 21, 26

h Height. 74, 76–79

h Neighborhood of pixel. 21–23

I Image. 7, 20–23, 26, 27, 39, 40, 61–66, 68, 99, 118, 119, 121

I0 Event image. 21–23, 27, 68, 99, 118

Iµ Mean-centered IWE (Iω − µ(Iω)). 64

Iω Image of warped events. 20, 22, 23, 26, 27, 39, 40, 61–66, 99, 118, 119, 121

It The Surface of Active Events (SAE). 119

L The log of the intensity (can be thought of as brightness). 5

` A layer/cluster. 40, 54

λc Threshold to determine whether grid search optimisation has converged. 24

λc Shifting factor for rSoSA reward function for FO. 65

xxvi

λCT Event camera pixel contrast threshold. 2, 5, 86–88, 109

λ−CT Negative event camera contrast threshold. 87, 89

λ+
CT Positive event camera contrast threshold. 87, 89

λerr Threshold of expected events vs actual events, to determine whether a tracker is still valid. 27

λev Threshold to determine if a pixel has enough events to count as a neighboring pixel when deter-
mining whether to perform focus optimisation. 22, 23, 33

λL The number of inputs given to the recurrent CNN at train time. 89, 90

λmaxi Maximum iterations of grid search optimiser. 33

λpix Threshold to determine whether enough neighboring pixels have sufficient events for focus op-
timisation. 22, 23, 33

λsup Support threshold for rSoA. 64, 65

m Mask. 22

µ Mean. 17, 39

na The actual number of events produced in an upcoming time interval. 27

Ne The number of events under consideration. 22, 33, 38–40, 42, 45, 51–55, 62, 65, 89, 115–119

Nit Number of iterations. 45, 54, 55

Nl The number of layers used in our motion segmentation algorithm (Section 3). xv, 36, 38–42,
45–47, 49–55, 59

N Normal distribution. 17, 87, 89, 90

Np Number of pixels. 45, 54, 55, 63

np The number of events predicted to be generated in an upcoming time interval. 27

O Upper bound computational complexity (Bachmann-Landau notation). 54, 55

Ω The continuous image domain. 23, 27, 38, 39, 64, 65

ω Warp params. 20, 22, 23, 26, 27, 37–42, 50–54, 61–66, 99, 115, 118, 119, 121, 122

ωv Angular velocity. 41, 42

P Matrix of event-cluster membership likelihoods. 37, 39, 40, 50, 52–54

P Probability function. 52–54, 90

π Cluster probabilities. 50, 52, 53

p Probability density function. 50–54

φ Angle of rotation around a point of the Surface of Active Events (SAE). 74–79

pkj The probability of the k-th event belonging to the j-th cluster. 39, 40, 54

xxvii

qp State of nature: sequence is paused. 90

qr State of nature: sequence is running. 90

r Focus measure. xi, 20, 22–24, 40, 62, 65, 115, 119

R Real numbers. 53, 118

rMoA Maximum pixel value reward function for FO. 64, 66, 67, 70, 71

rR1 Combined reward for FO. 68, 78, 81, 122

rR2 Combined reward for FO. 68, 71, 78, 81, 122

rσ2 Variance reward function for FO. 63, 64

rSoA Sum of Accumulations reward for FO. xvi, 64–68, 70, 71, 73, 77, 79, 80

rSoE Sum of Exponentials reward function for FO. 64, 66–68, 70, 71

rSoS Sum of Squares reward function for FO. xvi, 64, 66–71, 73, 74, 76–81

rSoSA Sum of Accumulations reward for FO with a suppression mechanism for large values. xvi,
65–68, 70, 71, 78

s Event polarity s ∈ {−1,+1}. 1, 5, 19, 22, 39, 62, 65, 89, 113, 117–119

σ Standard deviation. 17

σ2 Variance. 39, 40, 70, 99

σ The size of the Guassian blur kernel. xiii, 78, 81

T The continuous time domain. 38, 42

T The set of current trackers. 21, 26, 27

t A tracker. 21, 26, 27

t0 Timestamp of the first event e0. 117

θ Optimisation variables. 54

t∗i Event timestamp normalised to the range [0, B− 1]. 89, 117

t Event timestamp. 1, 2, 5, 19, 22, 39, 41, 49, 62, 86, 87, 89, 99, 113, 117–119, 126

tN Timestamp of the Nth event eN . 117

tr Event camera pixel refractory period. 2, 87

tref Reference time. 12, 22, 23, 39, 41, 99, 118

ψ The state of nature of a random variable ([19, Ch.2]). 50–54

V A DEV of events discretised into B bins. 89, 117

Ve The volume containing the set of events E . 38, 40, 50, 51, 53, 54

xxviii

~v Velocity vector. 7, 22–24, 26, 66, 68, 70, 99

vx Optic flow x component. 7, 22, 41, 42, 66, 99

(vx, vy) Optic flow. 7, 20, 22, 41, 70, 99, 119

vy Optic flow y component. 7, 22, 41, 42, 66, 99

W Warping function for the events. 22, 39, 41, 42, 51, 62, 66, 115, 118, 119

w Width. 74, 76–79

W~v Optic flow warp function. 66

x Event position. 5, 19, 21–23, 26, 39, 40, 51, 62, 65, 66

x Event x position. 1, 5, 19, 22, 23, 41, 42, 62, 66, 86, 89, 99, 113, 117–119, 126

x′ Warped event position. 26, 39, 40, 51, 53, 62, 65, 66

xc Center of rotation x component. 41, 42

(xc, yc) Center of rotation. 41

y Event y position. 1, 5, 19, 22, 41, 42, 62, 66, 86, 89, 99, 113, 117–119, 126

yc Center of rotation y component. 41, 42

1

Chapter 1

Introduction

1.1 Overview

Recently, event-based cameras have made a large impact on the computer vision community. Con-
ventionally, visual information has been represented as a series of stills, typically collected at a fixed
sampling rate (frame rate). In these sensors, light is projected through a lens system onto a grid of
light-sensitive photoreceptors, which discretise the visual scene into pixels. The scene is then sam-
pled periodically through the action of a mechanical or electronic shutter. Such systems have been
the default visual sensor for robotic systems despite having several drawbacks over biological visual
sensors. Since the sampling rate is fixed, the camera is not able to adapt to the rate of visual change in
the scene. As a result, static scenes are oversampled, producing redundant data capture. Conversely,
fast changing scenes are undersampled, causing motion blur or even leading the camera to miss im-
portant events entirely. Since pixels are exposed on a common shutter the total dynamic range of the
camera is also limited, resulting in over- and underexposure of parts of the scene.

Event cameras solve several of these issues, by offering a biologically inspired, asynchronous
visual sensing paradigm. In an event camera, each pixel keeps track of its current measured intensity.
When the change in log intensity from the previous measurement exceeds the predefined CT, an event
is triggered and transmitted off-camera (see Figure 1.1). Each event consists of a tuple of the event
location [x, y], polarity s ∈ {−1,+1} (whether the pixel logged a positive or negative brightness
change) and timestamp t (which is resolved to µs resolution in modern event cameras). Since each
pixel is able to report events at any time, independently of other pixels, event cameras are able to take
samples at a dynamic, scene-dependent rate, dependent only on the choice of CT and hold-off time
(refractory period).

Since event data is four-dimensional (three-dimensional if the polarity information is discarded),
it is natural to view it in a three-dimensional spatiotemporal plot, where each event is represented
by its [x, y], t position and coloured by its s polarity (see Figure 1.2). Viewed from this perspective,
event data is much more similar to a point cloud than a series of frames. The generation of the events
is directly dependent on four things: i) scene motion and lighting dynamics, ii) scene texture, iii)
camera noise, and iv) camera parameters (see Figure 1.1b). Of these parameters, the most influential
is the CT, where small variations can result in large changes in the event rate. Since event cameras
only provide updates on changes in the scene they are an efficient means of encoding visual informa-
tion. Conventional cameras undersample the scene when changes occur faster than the set framerate,
resulting in missing occurrences or motion blur. Since event cameras sample the scene at an opti-
mal rate with regard to per-pixel brightness changes, they often generate more data than conventional
cameras, despite being a more efficient means of recording. Large event camera datasets regularly
run into the hundreds of GB - the commonly cited IJRR event camera dataset, recorded with a com-
paratively low spatial resolution of 240× 180 pixels and spanning just under 20 minutes is 13 GB
(events and frames only). Of that, only 19 % is used up by the accompanying frames, taken with
the same resolution at 23 fps. Other datasets are similar (see Table 1.1). Datasets such as the recent
High Quality Frames (HQF) [105] and DDD20 [36], which are more compact than the frame-based
representation contain comparatively slow moving scenes.

2 Chapter 1. Introduction

(a) (b)

Figure 1.1: (1.1a) Plot of the intensity recorded at an event camera pixel. Red and blue circles
(shown as bars on the t axis) represent positive and negative events respectively, which are trig-
gered when the measured intensity crosses the Contrast Threshold (CT). If the intensity crosses the
CT (λCT) before the refractory period (tr) has expired, no event is triggered. (1.1b) In real sensors,
events are caused by motion and lighting variations, texture, camera parameters, and sensor noise
(clockwise from top left).

Figure 1.2: A sequence recorded with a standard camera (top) and with an event camera (bottom).
The events, shown in a spatiotemporal view, are colored red for positive (increasing brightness) and
blue for negative (decreasing brightness) events. Some key advantages of event cameras are imme-
diately obvious; the event camera suffers minimal motion blur and gives a continuous representation
of the visual data.

Conventional computer vision methods can find only limited application to asynchronous, spa-
tiotemporal data; a new visual paradigm requires new algorithms. Currently the literature can be bro-
ken into two methodologies; batch processing and asynchronous processing of the events [26]. Since
individual events do not carry much information, it only makes sense to consider them in aggregate.
Batch processing does this directly, collecting a number of events in a temporal slice of the events and
then processing them at once. Asynchronous processing accepts individual events as inputs and uses
them to update the value of some state. In this case the state information contains the transformed
information of the aggregated previous events. A core problem in both methodologies is to determine
the relevance of historic events. In batch processing this boils down to questions about how wide the
temporal slice should be, in asynchronous processing to how fast the effects of a given event should
decay in the state memory. This is because data association (the fact that successive events are caused
by motions of common point features in the scene), quickly makes old events irrelevant.

1.1. Overview 3

Table 1.1: Size in MB/s of various event camera datasets. The framerate (FR) and size of the
accompanying frames is listed for comparison (frames are the same resolution as event sensor,
grayscale, and uncompressed). Since various compression schemes could be applied to optimize,
an assumption of 1 B per frame pixel and 7 B per event is made (based on [37]).

Dataset Events [MB/s] Frames [MB/s] FR [fps] Resolution
HQF [105] 1.74 2.03 22.6 240× 180
IJRR [64] 8.88 2.08 23.1 240× 180
MVSEC [118] 6.58 3.21 35.7 346× 260
CED [96] 9.38 3.33 37.0 346× 260
DDD20 [36] 1.81 2.58 20.5 346× 260

1.1.1 Aims of Thesis

This thesis aims to exploit the data association between events and leverage it to estimate optic flow,
track objects and perform motion segmentation. Specifically, I aim to:

• Trace events along the trajectories they follow in the spatiotemporal volume as visual features
move across the image plane to infer motion estimates (such as optic flow).

• Develop the theory of this tracing to produce optic flow estimates which are robust to noise and
the aperture problem.

• Segment the seemingly tangled events generated by complex scenes into those generated by
camera motion and individual moving objects.

• Track moving objects in an efficient per-event manner.

• Estimate State of the Art (SotA) pixel-dense optic flow from sparse events without the use of
Active Pixel Sensor (APS) frames.

• Evaluate optic flow estimates without requiring ground-truth optic flow.

Event cameras lend themselves naturally to tasks which describe motion or objects in motion,
such as optic flow estimation, tracking, or motion segmentation. Such descriptions for motions are
important tools in computer vision and robotics as they are integral to tasks such as tracking, Simulta-
neous Localisation and Mapping (SLAM), visual odometry, or depth estimation. This work presents
a focus optimisation technique for processing events which explicitly acknowledges the data associa-
tion between events and makes use of the fine-grained temporal information of the events. The Focus
Optimisation (FO) framework operates by transporting events to a reference time along spatiotem-
poral trajectories, created by the motions of brightness gradients across the image plane. The result
is an image of the events, whose sharpness, or focus, is maximised when the estimated trajectories
are equal to the actual trajectories. Through parametrisation of candidate motions, the focus can be
optimised to reveal estimates of desired properties such as optic flow [104, 120], ego-motion [27, 75],
depth [26], or more generic 3D motions [102].

My work explicitly acknowledges the data association of the events and leverages it to estimate
optic flow, track objects, and perform motion segmentation. I develop a technique of optimising the
focus of motion-compensated events and explore some of the resulting theory to improve results.
In the final chapter, I estimate optic flow from a deep neural network, using simulated events with
ground truth optic flow as a training signal. While it is usually challenging to predict pixel-dense
optic flow from naturally sparse events, this network is able to produce dense optic flow estimates, a
step up from current SotA.

4 Chapter 1. Introduction

(a) [83] (b) [24]

Figure 1.3: 1.3a The hardware of Dynamic and Active-pixel VIsion Sensor (DAVIS) pixels are di-
rectly bio-inspired by the structure of retinal cells. 1.3b A simplified circuit diagram of a DAVIS
pixel, which contains both an Active Pixel Sensor (APS), which is able to record conventional
frames and a Dynamic Vision Sensor (DVS), which reports events. The APS and DVS share a sin-
gle photodiode and are thus perfectly registered to each other. For an in-depth comparison of event
camera pixel design, see [83].

1.2 Event Camera Operating Principle

Motivation

Event cameras were first conceived of in the early 1990s, with pioneering work on the Silicon Retina
and the Address Event Representation (AER) by Misha Mahowald and Carver Mead [54]. The moti-
vation was to build a brain in silicon [24] and to mimic the spiking, asynchronous nature of biological
vision. This first event camera was modelled after the three layer Kufler retina, summarised in Figure
1.3a. Biological retinas have many advantages over conventional cameras, such as high efficiency
and low latency and it soon became apparent that these advantages could become available to artifi-
cial retinas. These bio-inspired origins are the reason why event cameras are also often referred to
as neuromorphic cameras in the literature. At its core, an event camera relies on a smart pixel to
generate events, which are able to keep track of their measured intensity, fire events when appropriate
and reset, adjusting dynamically to changes in luminance in the scene. This dynamism gives rise to
the other common nomenclature Dynamic Vision Sensor.

1.2.1 Dynamic and Active-pixel VIsion Sensor (DAVIS)

The first practical and robust event camera became commercially available in 2008, with the devel-
opment of the Dynamic Vision Sensor (DVS) [45]. This seminal work resulted in the development
of the DAVIS 240 and later the DAVIS 346 event cameras, with a 240× 180 and 346× 240 spatial
sensor resolution respectively. A useful feature of these sensors was that they contained not only a
DVS, but also an APS on the same chip. This allowed recording both events and conventional frames,
perfectly registered and synchronised with each other. This feature in combination with easy to use
Application Programming Interfaces (APIs) resulted in widespread adoption of the DAVIS cameras
in the research community. As a result, they are the most commonly cited event camera hardware in

1.2. Event Camera Operating Principle 5

the literature, despite competition from large industry efforts led by manufacturers such as Prophesee
or Samsung [100].

Figure 1.3 summarised the operating principle of the DAVIS sensor. The APS sensor of each
pixel, while sharing a photodiode with the DVS sensor, operates on a global shutter independently of
the DVS. Each DVS pixel contains a capacitor, which integrates changes in the brightness measured
at the photodiode (via the proxy value of log intensity). The value of the capacitor is amplified and
passed on to a pair of comparators, which trigger when the brightness passes either the positive or
negative preset CTs. The CTs are a key parameter in the DVS as they determine the sensitivity to
brightness changes of the sensor (see Figure 1.1a). If the brightness change is measured positive, the
pixel reports a (+) event, if negative a (−) event. Subsequently the capacitor is drained, resetting the
pixel. A programmable refractory period is then imposed on the pixel, preventing it from generating
new events for a predetermined, short period of time. An event e, written as a tuple

e = {x, t, s} (1.1)

(where x = [x, y] is the position of the event on the image plane, t is the timestamp of the event, and
s is the polarity of the event) is thus triggered whenever

∆L(x, t) = sλCT (1.2)

where L = log intensity and λCT is the parametrisation of the CT.
Events thus generated are sent to an arbiter for readout to a Field Programmable Gate Array

(FPGA), where the events timestamped with µs precision, encoded (typically using the AER [8, 52]),
and sent off chip. The arbitration circuitry operates on a 1 MHz clock, which allows for very low
latency. If too many events are triggered, the bus can become saturated, leading to perturbation of the
event timestamps.

Given this mode of operation, the number of events is clearly dependent on the scene and the
CTs, summarised in Figure 1.1b. More texture, more lighting changes, and more motion will result
in more events being generated. Although the DVS sensors are able to produce events very fast,
they naturally have a limited bandwidth. Although the majority of motions are too slow to bring the
DAVIS cameras to their limits, fast changing light sources can produce extraordinarily large numbers
of events. Unfortunately, with Pulse Width Modulation (PWM) screen dimming or the 50 Hz power
supply causing imperceptible flickering in lightbulbs, such sources of light are quite common. Nev-
ertheless, the bandwidth is much higher than that of standard cameras. This is shown in Figure 1.4;
a sinusoidally modulated light source is recorded with an event camera and plotted against the events
generated per cycle of the light source. With a bright light source, the frequency response of the DVS
is around 3 kHz, the equivalent of an exposure time of 300 µs in a conventional camera. In dim light,
the frequency response drops to 300 Hz, but remains an order of magnitude higher than the 30 Hz
Nyquist frequency of a 60 fps conventional camera [24].

1.2.2 Event Processing

All current methods of processing events require considering events in aggregate, since a single or
few events do not contain much information. Two paradigms have emerged into which the entire
literature can be neatly divided: per-event and batch processing of the events [26]. This division was
used in the foundational survey of event-based vision in [24], which contains an exhaustive list of the
literature up until early 2020.

In the per-event processing paradigm, a state representing the desired output is maintained and
updated by incoming events. The state thus acts as a memory in which the information contained
in the events can be aggregated. The Surface of Active Events (SAE) (Figure 1.5d) is a simple
example of this; in a SAE, each pixel contains the timestamp of the most recent event at that location.
The image represents the state, which is updated by each subsequent incoming event. The SAE thus

6 Chapter 1. Introduction

~300 nit
2:1 contrast

time

V

Function
generator

Light
filter Camera

Lens f/1.2

LED

(a) (b)

Figure 1.4: 1.4a An LED is modulated through a sinusoidal function. The fluctuating brightness is
recorded by a DAVIS event camera. 1.4b The number of events per cycle is shown for both bright
and dark exposure and compared to the transfer function of a 60 fps camera. Courtesy of [24].

aggregates event information into a useful map of event activity. This paradigm has the advantage that
the asynchronous nature of the events is preserved, so that these methods can theoretically achieve
very low latency. Many of the works which fit into this category employ filtering methods to the
events to estimate a state; filters are convenient as they are naturally asynchronous and are, by design,
able to aggregate many different sources of information, such as events.

In batch processing, events are considered in groups to produce an output. This group is usually
a slice of the events cut across the temporal dimension (such as the cyan selection in Figure 1.5).
Unlike per-event processing, this introduces additional latency as events are collected for processing,
although this can be eliminated if the window slides by one event. However doing so may be com-
putationally expensive and often means recomputing the end results from scratch (an exception is
optimisation based processing where the previous result can be used as a starting point for following
estimates). Batch processing has the advantage that previous events can be accessed in a completely
uncompressed way (one can think of the state of per-event processing as compressing the information
of previous events) and can thus take full advantage of the natural associations that exist between
successive events (such as in FO).

1.3 Literature

Processing events to perform useful tasks has been an active area of research due to the novelty of
event data to the research community. In the past decade, event cameras have been applied to di-
verse tasks, such as feature detection and tracking, optic flow estimation, image reconstruction, video
synthesis, image denoising, image superresolution, visual stabilisation and deblurring, stereo and
monocular depth estimation, SLAM, ego-motion estimation, visual odometry, object and motion seg-
mentation, object recognition, gesture recognition regression tasks, deep learning using Convolutional
Neural Networks (CNNs), and Spiking Neural Networks (SNNs) and robot control.

This literature review focuses on the progress of optic flow estimation (Section 1.3.1), motion
segmentation (Section 1.3.2), tracking (Section 1.3.3), and focus optimisation (Section 1.3.4) using
events. For a comprehensive view of the event-based vision landscape, I refer to [26].

1.3. Literature 7

(a) (b)

(c) (d)

Figure 1.5: Several representations of the events taken from the cyan box in 1.5a. 1.5b shows the
Discretised Event Volume (DEV), 1.5c shows the event image and 1.5d the Surface of Active Events
(SAE).

1.3.1 Optic and Normal Flow

Optic Flow in Event Based Vision Context

Optic flow is the apparent motion of objects in a scene caused by relative motion of the camera and
the scene. In conventional cameras, optic flow is estimated through the comparison of consecutive
images and refers to a vector field over the pixels, where each vector represents the motion of that
pixel between the frames. Since optic flow is caused by a combination of 3D scene information
(depth) and camera motion, it is an essential tool in computer vision and robotics with leading roles
in tasks such as Visual Odometry (VO), SLAM, object tracking, image registration, and robot control.
Classically this is done with assumptions of brightness constancy (see Section 1.3.1), which together
with spatial and temporal derivatives of the images (∇I, δI/δt) can be used to solve a formulation of
these terms with optic flow as the solution.

Perhaps the most famous of these methods is Lukas-Kanade [53], which solves the least squares
problem

Ix(q1) Iy(q1)
Ix(q2) Iy(q2)

...
...

Ix(qn) Iy(qn)

[

vx
vy

]
=

−It(q1)
−It(q2)

...
−It(qn)

 (1.3)

for the optic flow ~v = (vx, vy), where each Ix(qi) and It(qi) is the spatial and temporal derivative
respectively of the image at pixel qi. The qs are the pixels in a window centered on the candidate
pixel, which is the assumption of local constancy of the optic flow (which clearly is violated at object
boundaries).

One issue with methods like Lukas-Kanade is that they suffer from the aperture problem. When
viewing a line through a small aperture, such as a local patch, the apparent motion is perceived as
normal to the line segment, since the component of the motion parallel to the segment is indiscernible
(see Figure 1.6). Optic flow methods which do not correct for this effect produce what is known as
normal flow, since the optic flow vectors are normal to line segments in the scene.

8 Chapter 1. Introduction

Figure 1.6: Left Illustration of the aperture prob-
lem. Although the line segment is moving right
(grey dashed arrow), Lukas-Kanade will predict
a flow normal to the segment, since it can only
view the line through the local patch, or aperture
(dashed box). This is also the basis of the barber
pole illusion (Right); although the red line is mov-
ing left to right, it appears to move upward as we
may only observe a small aperture.

In event-based vision, optic flow refers to
an instantaneous velocity vector field describing
the velocity on the image plane of point features
generating events, rather than the displacement
of visual features between successive frames.
Optic flow algorithms for event cameras come
in three flavours, sparse (in which optic flow is
estimated only at select parts of the scene), event
dense (in which optic flow is estimated for each
event) and fully dense (where optic flow is evalu-
ated at each pixel, which do not necessarily have
a recent event at their location).

Literature

An early normal flow algorithm was presented
by [13], in which bioinspired Direction Selec-
tive (DS) filters were used. A DS is essentially a
SAE where the timestamp of an incoming event
is compared to the previous events in the 0◦,
45◦, 90◦, etc. orientation, with the reasoning
that moving edges fire neighbouring events al-
most instantaneously. Thus a small difference
in timestamp between neighbours indicates an
edge, which can be compared to prior edge de-
tections in the SAE to compute the velocity via time-of-flight. This idea was ported to spiking neural
networks by [73] in an implementation that can be thought of as several banks of DS filters. [10] also
use direction selective Gabor filter banks to estimate optic flow and apply normalisation to ameliorate
the aperture problem.

This method, however, only allows for discretised directions; [6] improved on this work by pre-
senting a normal flow in which a histogram of previous events is maintained over a short time window
and updated by subsequent events. The histogram is used to estimate spatial and temporal gradients,
which serve as input to an overdetermined set of equations based on brightness constancy, which can
be then solved for the optic flow vector by least squares. In this way, it is an adaptation of the famous
Lukas-Kanade algorithm 1.3.

[91] improved on this further by providing symmetric gradients by employing central finite differ-
ences. Since the spatiotemporal derivatives of event images are used, this method is quite susceptible
to noise. This is because the event images may take on small values locally due to the potentially
small number of events triggered by edges crossing over the pixels and the natural sparsity of event
data. This makes the derivative estimates quite unreliable, so, to mitigate this effect [91] employ a
Savitsky-Golay filter to smooth the event image. Savitsky-Golay fits a low-order polynomial to adja-
cent points with linear least squares, an operation which is extremely efficient as it may be achieved
with precomputed convolutional kernels.

The following works ([5, 61]) considered methods tailored more specifically to events. The core
idea was, that since edges moving across the image form surfaces in the spatiotemporal volume (the
SAE), fitting a plane to the neighbourhood of each event should reveal the local gradient of the surface.
This gradient is then equivalent to the normal flow of the event at that location.

Since this planar fit is only an approximation of the surface at a given point, the assumption
of constant velocity in the local neighbourhood is made to regularise the process. The planar fit is
achieved through a least squares regression of the plane ax + by + ct + d = 0 to a set of at least
three events (the event plus the local neighbours). Since this method is quite sensitive to noise and

1.3. Literature 9

other sources of outliers, [61] and [91] implement outlier detection (RAndom SAmple Consensus
(RANSAC)), where a plane is computed and then the most distant events from the plane removed,
iteratively until convergence. The velocity can then be given as:[

vx
vy

]
= −c

[1
a
1
b

]
However, this formulation has the obvious defect that a, b must not be zero. In practice ([91]) these
values may be very small however, in the case that the SAE is approximately aligned with the x or y
axis, since this will cause the gradient of the resulting plane fit to vanish on the component along the
edge’s orientation. [5] deal with this by placing a threshold on the magnitude of the plane derivatives.
[10, 91] use the fact that the gradient g = (− a

c ,− b
c) encodes the direction of motion to compute the

velocity. Since a and b are on a different scale (space) than c (time), this requires normalisation of
the gradient vectors first, by dividing by the magnitude of the gradient, |g| =

√
a2+b2

c , followed by
multiplication of the gradient vector length, resulting in the more robust expression[

vx
vy

]
=

1
|g|2 g =

−c
a2 + b2

[
a
b

]
These methods, however, still require the neighbourhood to be a good fit to the scene texture and
dynamics. If the neighbourhood is too small, the plane fit will be arbitrary, if it is too large it will
become inaccurate as the local curvature is not well approximated by the plane.

[3] estimate the optic flow jointly with image intensity. They combine several equations relating
brightness constancy, the relationship of events to brightness (1.2), an optic flow constraint, and
several smoothness constraints to come up with an optimisation problem which produces both optic
flow and intensity estimates when solved. This method, however, does not produce results competitive
with the state-of-the-art .

A highly efficient algorithm for sparse, full optic flow was presented by [51]. This method com-
presses the events into event images using time slices proportional to the previous detected optic flow.
Then, block-matching is used to estimate the optic flow between event images, a technique from clas-
sical computer vision. It is assumed that the appearance of blocks varies only slightly between frames
and thus a similarity metric can be used to find the motion of a block and thus the optic flow.

[104] applied the focus maximisation framework to optic flow estimation (see Section 2). They
then used the flow estimates to segment the events fitting the motion model and refine the estimate.
The resulting estimates were then updated asynchronously by incoming events using a particle filter
approach. This approach has the advantage of being particularly robust to the aperture problem,
since focus maximisation considers all events in aggregate, which also makes the optic flow event-
dense. This idea was taken further in [102], where the segmentation and motion-compensation of the
events is performed in one combined, iterative optimisation. This work showed results on optic flow,
although other motion models were also used. Focus optimisation was also used in a patch-based
manner to estimate sparse optic flow in [26], though again, optic flow was not a principal focus of this
chapter.

[120, 121] bought modern CNNs to the problem of optic flow estimation from events with EV-
FlowNet. In this work, events are aggregated and discretised to a Discretised Event Volume (DEV)
representation which is passed through a UNet [89], a CNN which is fully convolutional and able
to produce per-pixel outputs. The desired output, a H ×W × 2 optic flow tensor, is supervised
by warping the events along the optic flow trajectories as in focus optimisation. The focus of the
resulting image is evaluated and applied as the loss. This work was improved on in [105], where
simulated events with ground truth optic flow were shown to outperform this self-supervised method
on real events. As a further benefit, this flow is actually fully dense as compared to the self-supervised
method.

10 Chapter 1. Introduction

Table 1.2: Breakdown of extant event-based optic flow methods in chronological order (based on
similar table in [24]). Methods are categorized by whether they provide normal (N) or full (F) optic
flow , whether they are sparse (S), event-dense (ED) or fully-dense (FD) (see Section 1.3.1), and
whether they are model based (Model) or employ Artificial Neural Networks (ANNs).

Reference N/F? S/ED/FD? Model?
Delbruck et. al [13, 91] Normal ED Model
Benosman et. al [6, 91] Full ED Model
Orchard et. al [73] Full ED ANN
Benosman et. al [5, 91] Normal ED Model
Barranco et. al [4] Normal ED Model
Brosch et. al [10] Normal ED Model
Bardow et. al [3] Full FD Model
Liu et. al [51] Full S Model
Stoffregen et. al [102, 104] Full ED Model
Gallego et. al [26] Full ED Model
Haessig et. al [33] Normal ED ANN
Zhu et. al [120, 121] Full ED ANN
Almatrafi et. al [1] Full ED Model
Paredes et. al [77] Full ED ANN
Stoffregen et. al [105] Full FD ANN
Pan et. al [75] Full FD Model

Most recently, [75] estimate optic flow using both events and accompanying APS frames (which
may be blurred). In this work, the authors formulate a photometric constancy constraint, which
contains terms for the intensity image, deblurred intensity image, event image, contrast threshold, and
optic flow. Through the addition of smoothness constraints on the optic flow and output image, the
thus parametrised equations can be optimised using the primal-dual algorithm to reveal the deblurred
intensity image and optic flow. This method outputs fully-dense optic flow, but is reliant on intensity
images, making it unsuitable for many models of event camera.

1.3.2 Motion and Object Segmentation

As discussed in the introduction, event cameras are capable of producing large numbers of events,
especially when the camera is moving. It can be difficult in this case to identify the events produced
by objects of interest amongst the general event stream. In a vehicle, for example, one might be
interested in the events produced by moving traffic and pedestrians and not those produced by the
motion of the vehicle. In this case, motion segmentation of the events is required. An overview of the
literature is in Table 1.3.

A method to detect and track circular objects (such as a ball) in the presence of clutter caused
by camera ego-motion was presented in [29]. This work used an adapted directed Hough transform,
where each incoming event contributes to values in Hough space on possible radii of a target circle. In
order to reduce the complexity of the task and to improve the robustness, a directed Hough transform
is used, using estimated normal flow (as in [5]). The assumption is that for a circular object such as a
ball, most of the events are generated at the circumference. The idea was extended in [30] to a particle
filter, which improved the robustness of the tracking. A downside of these methods is of course, that
they require a priori knowledge of the target shape.

[108] detect corners in the event stream from an event camera mounted on a robot. In an a priori
learning stage with a static scene, they learn to estimate the corner’s motion as a function of the robot
joint velocities. In the operation stage, corners are detected and clustered in the event stream; if there

1.3. Literature 11

Table 1.3: Breakdown of extant event-based motion segmentation methods in chronological order.
Methods are categorized by whether they are model based (Model) or employ ANNs.

Reference Model?
Glover et. al [29, 30] Model
Mishra et. al [57] Model
Vasco et. al [108] Model
Stoffregen et. al [102, 104] Model
Mitrokhin et. al [58] Model
Mitrokhin et. al [59, 60] ANN
Parameshwara et. al [76] Model

exists a discrepancy between the motions of these corners and the expected motions, those events
are segmented out. This technique, while able to detect more versatile objects, is dependent on a
pre-learned setting and configuration and only works for scenes and objects with corners and is thus
sparse.

[104] first proposes segmenting an arbitrary number of motions with arbitrary shapes in an event-
dense manner. The method does this by collecting events up to a threshold, then applying focus-
maximisation with a 2-Degree of Freedom (DoF) optic flow motion model. The events belonging
to the dominant motion identified were then removed in a greedy manner and the process repeated.
The thus segmented contours and motions were then used to initialise an asynchronous particle-filter
based tracker. A downside of this approach is that the simple motion model requires breaking the
scene down into many small moving objects if a motion such as rotation is applied.

[58] uses a similar scheme, whereby focus optimisation with a 4-DoF motion model is applied
to a set of events to find the dominant motion, which is assumed to be the camera ego-motion. The
average timestamp of the motion-compensated event image is the computed and discrepancies from
the dominant motion average detected. These discrepancies are assumed to be independently moving
objects and the resulting segmentation is applied to surrounding events by using flood-fill in the event
image. This has the disadvantage that segmentation in densely textured environments or overlapping
moving objects fails.

[102] improves on these results by providing a segmentation framework for arbitrary motion
models and numbers of moving objects. This method uses focus optimisation on multiple motion
models together with a probabilistic model for each event belonging to each model. The motion
parameters and the event probabilities are then updated iteratively in a combined optimisation (w.r.t.
the motion-compensated image focus), in an Expectation Maximisation (EM) approach.

[60] uses an Structure from Motion (SfM) CNN to estimate per-pixel pose, optic flow and motion
segmentation masks. The work is analogous to frame based approaches, the largest difference being
the input representation (a 3-channel image of the positive and negative event images and SAE stacked
together). The loss is supervised by ground truth from a dataset of objects moving in 3D (recorded
using a VICON motion capture system with 3D scanning), as well as a FO warping loss on the optic
flow.

[59] uses a Graph Convolutional Neural Network (GCNN) architecture in which the nodes are
the events. The edges connect nodes within a radius, which are parallel to the event surface. Then,
given a point and its normal on the event surface (in the 3D spatiotemporal volume), only the edges
orthogonal to the normal are retained, within a filtering threshold. This way most of the events
with a data association are connected in the resulting graph, while still remaining compact enough for
tractable computation. Training is supervised on a ground truth dataset and augmented by multiplying
the timestamps by some factor. A disadvantage of this method is that it requires a ground truth dataset
(in this case with only three different moving objects with one background), risking overfitting as

12 Chapter 1. Introduction

well as requiring rather large event slices to work well (potentially introducing a lot of latency and
requiring heavy computational resources).

Finally [76] present a model based approach similar to [58], where a global motion-compensation
is applied to the events, resulting in a sharp background and blurry object boundaries. They then apply
motion tracking to the residual events and use K-means clustering to group the resulting tracklets. K
is set to a large value and so the number of clusters is greater than the number of objects. The clusters
are then merged using a contrast and distance function so that clusters that are far apart or do not
match contrast during motion-compensation are not merged.

1.3.3 Tracking

Feature tracking is a fundamental tool in computer vision, so it is no surprise that it is a popular
research area in event-based vision. Event cameras offer a compelling alternative to conventional
cameras in this task, since they are able to track continuously without blind time between frames.

Early approaches to object tracking assumed a stationary camera, both to simplify the problem
and to demonstrate the low latency and power requirements of event cameras. This allowed for cheap
methods of detecting blob-like sources of events [15, 16, 18, 48, 49] or methods adapted to event
cameras based on the Hough transform [12, 70].

Tracking more complex, yet still a priori user defined contours was shown in several following
works [30, 40, 68, 69]. For example, [68] creates event images in which the value of each pixel is
decayed by an exponential function with the time since the last event as the parameter. The classic
Iterative Closest Point (ICP) algorithm is then used to match a pre-defined contour to these images
and thus track the desired features.

Such methods simplify the tracking problem by incorporating a priori knowledge into the tracking
algorithm, however are usually unsuited outside of their narrow use case. More generic tracking was
proposed by [86, 90], by re-utilising proven trackers from conventional computer vision, by applying
Harris corner detection [35] and conventional tracking [53] on patch-wise computed Images of
Warped Events (IWEs).

[107] proposes a tracker in which conventional frames from the APS of the DAVIS are used to
define model point sets, which are the registered to incoming events. Model point sets are generated
by detecting conventional features in the APS frame and then converting them to point sets by using
Canny edge maps [11] to detect the dominant source of events. So while the tracker is event-based,
initialisation still requires conventional frames. [104] uses a similar technique, in which images of
motion-compensated events are used as templates to which incoming events can be matched. Events
update the estimate by being matched to additional candidate motions in a particle-filter based ap-
proach.

[117] proposes a purely event-based tracker in which event images are formed by integrating
events for a period equal to three times their lifetimes and registering the resulting images using ICP.
A variation of FO is used to estimate the optic flow, where the association between events is modeled
probabilistically. The data association probabilities between events and features, the affine transform
of the features, and the optic flow of the features is then estimated using EM.

1.3.4 Focus Optimisation (FO)

FO, also known as contrast maximisation, is a flexible framework for processing events in a batched
manner. The core idea is that the point trajectories of visual features in the spatiotemporal volume
can be parametrised according to a motion-model. Each visual feature will leave a trail of events as it
moves, which are related through data association. If the events are transported back along the feature
point trajectories to a common time tref, the result is a motion-compensated Image of Warped Events

1.3. Literature 13

(IWE). Intuitively, the more similar the estimated and actual trajectories are, the sharper the motion-
compensated image will be. By optimising the focus of the image w.r.t. the motion parameters, the
trajectories of visual features in the spatiotemporal volume can be estimated (Figure 1.7).

FO was first used in optical astronomy for correcting atmospherically degraded telescope images
[65], interferometry [34], and correcting aberrations in Synthetic Aperture Radar (SAR) [79]. Focus
optimisation has since found widespread use in both conventional [98], sonar [22], and radar imaging
[97].

FO was first applied to event data by [27] to estimate angular camera velocity. The method
worked by defining a 3-DoF motion model of the camera rotation. The variance is selected as the
contrast measure of the motion-compensated images and optimised w.r.t. the motion parameters
using nonlinear conjugate gradient descent [21].

[104] maximised the sum of squares of the pixel values (as [79]) w.r.t. an optic flow motion
model to obtain the optic flow of moving objects. Optimisation of the metric was performed using a
grid-search approach. Since the contrast function of multiple moving objects is not convex, the scene
needed to be segmented into various individual motions.

As mentioned in Section 1.3.3, [117] used FO to track objects, by matching successive motion-
compensated IWEs.

[26] produced the first description of FO as an event-based vision processing framework, show-
casing the flexibility of the method by applying it to single object optic flow, depth estimation, camera
rotation estimation, and planar homography estimation.

[58] uses FO for motion segmentation by optimising the total focus of a set of events w.r.t. to a
4-DoF motion model. A timestamp based focus measure is used to evaluate the focus, although this
has been shown in [25] to be a less accurate measure than other standard measures. The algorithm
then detects which events are not explained by this dominant scene motion and segments them using
clustering. [76] uses this same concept, but builds on the clustering part of the method (see Section
1.3.2).

[102] also uses FO as a core component of motion segmentation, although the dominant motion
and object motions are optimised together using an EM based approach. This method uses variance
as a focus measure and arbitrary mixtures of parametrised motion models, making this approach quite
general. A difference to other methods using FO is that each event is weighted by a cluster likelihood,
which is used in the aggregation of the events into an event image.

[103] analyzed various focus measures for FO and described a natural classification for these
based on their mode of operation. This work also demonstrated that some classes of focus measures
are robust to noise and aperture uncertainty. [25] gives a thorough listing of functions that can be
used as focus measures, with quantitative evaluation and applications on depth estimation, optic flow
estimation, and unsupervised deep learning.

Previously, FO has been used with an explicitly parametrised model. However, the method also
works as a supervisory signal in deep learning with much larger ANN models with millions of param-
eters. [120] used a UNet [89] to estimate optic flow, in which the supervision signal was provided by
the focus of the warped image, measured by the contrast measure in [58]. This work was expanded to
include depth, optic flow, and ego-motion estimation in [121]. [119] describes a Generative Adversar-
ial Network (GAN) approach to generating event DEVs from conventional temporal image pairs. In
this work one of the losses constraining the network is a FO warping loss on the optic flow predicted
by a network with the DEV as input.

Most recently [50] presents a globally optimal variant of FO, which in contrast to previous meth-
ods, guarantees globally optimal convergence and does not require external initialisation. While the
method does require a bound on the maximum angular rate rmax a priori, this parameter can be set
within the reasonable limits of real scenes. The authors apply their method to 3-DoF camera angu-
lar velocity estimation, achieving SotA results. They achieve this by applying the Branch and Bound
(BnB) algorithm [42] to the search space (in this case the variance w.r.t. to the angular velocity motion
model). The lower bound can be trivially found as the current best (possibly sub-optimal) solution,

14 Chapter 1. Introduction

(a)

(b)

(c)

Figure 1.7: Optic flow map with events overlaid (1.7a). If the events are warped along the point tra-
jectories (in cyan), a motion compensated IWE is formed (1.7c). In contrast, the event image (iden-
tical to applyingW = 0) in 1.7b).

the upper bound is derived by providing bounds on the sum of squares and mean of the pixel values
separately, although the bound is dependent on the rotational motion model (i.e. it is a solution which
applies only to the particular motion-model). This work is quite exciting as it implies that it may be
possible to tractably find globally optimal solutions for FO methods. Currently the algorithm runs an
order of magnitude slower than conventional local optimisation (which is itself quite slow), however
the authors see ample opportunity for hardware acceleration.

Almost concurrently, [80] present a similar work, in which BnB is used to perform globally opti-
mal FO. The authors of this work apply their algorithm to finding the motion parameters of a 2-DoF
homographic warping under the assumption of fronto-parallel camera motions. The work expands
on the ideas presented in this thesis, by providing bounds on all of the reward functions presented
in Chapter 4. The idea is finally evaluated by performing visual odometry from a downward facing
camera mounted on an Autonomous Ground Vehicle (AGV). The authors do not quote computational
performance numbers, but imply that the choice of 2-DoF model is influenced by recognition that the
complexity of the BnB optimisation strongly depends on the dimensionality of the search space. It
seems likely that performance would be similar to that quoted in [50].

1.4 Contributions

In the following, we list our contributions in context of the literature. Key contributions are listed,
with a brief discussion of the literature following.

Chapter 2

Chapter 2 presents a method for estimating optic flow from events using FO. The key contributions
of this chapter are:

• A formulation for the recovery of optic flow from events via the optimisation of a focus measure
of the motion-compensated events.

• An initialisation scheme that allows pairing events with their most likely motions to enable
segmentation into motion clusters.

• A method of separating the constituent events for a given solution of the above optimisation
problem (motion segmentation).

1.4. Contributions 15

• A simple tracker for refining and maintaining the motion estimates based on particle filtering.

The main points of this work are a formulation for the recovery of optic flow from events through
the optimisation of a focus measure of the image of the motion-compensated events. Since typical
scenes contain many optic flow motions, we also provide an algorithm for motion segmentation of
the events. These two elements of the method, motion-compensation and segmentation are paired
in a greedy initialisation scheme, which accumulates events from the event stream and decides when
segmentation is appropriate. The resulting segmentation masks and optic flow estimates are then used
to generate instances of a novel, lightweight event-based tracker which is able to process events in an
asynchronous, low latency manner.

In the literature: Our method addresses several shortcomings of preceding works. [13, 73, 91]
show an interesting bioinspired approach, but only produce estimates in discretised directions. Lukas-
Kanade based methods ([6, 91]) suffer from the aperture problem and moreover rely on estimates of
the intensity image from the events in order to compute temporal and spatial gradients. Since this is
usually done by direct integration of the events, the fine-grained temporal information in the events is
lost. Local plane fitting methods [5, 91], while specifically tailored to events, also suffer from aperture
problem and are quite susceptible to noise, relying on outlier detection to increase the robustness of
the planar fits. Our work is tailored to events, making explicit use of the temporal information, while
considering the events globally and avoiding the aperture problem [104].

Earlier in 2017, [27] proposed optimising the focus of motion-compensated event images w.r.t.
motion parameters to estimate 3-DoF rotational velocity. The method, however, was limited to rota-
tional motions of the camera on static scenes. Our work extends the idea to more generic scenes to
estimate optic flow rather than camera rotation.

Chapter 3

Chapter 3 improves on the previously described method by using an EM approach to solving the
motion-compensation and segmentation problem in one iterative optimisation. The key contributions
are:

• A novel, iterative method for segmenting multiple objects based on their apparent motion on
the image plane, producing a per-event classification into space-time clusters described by para-
metric motion models.

• The detection of independently moving objects without having to compute optical flow ex-
plicitly. Thus, we circumvent this difficult and error-prone step toward reaching the goal of
motion-based segmentation.

• A thorough evaluation in challenging, real-world scenarios, such as high-speed and difficult
illumination conditions, which are inaccessible to traditional cameras (due to severe motion
blur and High Dynamic Range (HDR)), outperforming the state-of-the-art by as much as 10 %.

• A method for evaluating the performance of event-based motion segmentation methods in terms
of relative displacement, with the recognition that given a larger time interval the segmentation
problem becomes easier.

We achieve this by assigning a number of clusters, each with an associated motion-model. We
then iteratively apply FO to multiple motion models simultaneously with a formulation for a global
focus measure and then assign event-cluster likelihoods using a novel formulation. Although the
number of motion models and the motions they represent need to be set a priori, overparametrisation
does not break the method. Rather, some clusters will simply not have any events assigned to them at
convergence. Our work provides highly accurate per-pixel motion segmentation, allows for usage of

16 Chapter 1. Introduction

arbitrary mixtures of motion models, and provides a means of quantitatively evaluating the accuracy
of an event-based motion segmentation scheme [102]. This work was SotA on publication and still
offers competitive advantages in that the events are segmented in an extremely fine-grained manner
and that motion models can be mixed arbitrarily, to suit the use-case.

In the literature: A previous work by [58] which improved on [104], produced a motion segmen-
tation paper in which FO was used to motion-compensate the events to identify the dominant motion
as in [104]. On identification of the global motion, out of focus areas were identified by looking at
anomalies in the average timestamp. Connected patches in the motion-compensated image were then
grouped together using flood fill to produce a blob with a known motion, which was then tracked
using a Kalman filter. An evaluation dataset was also included, with hand-labelled bounding boxes
for moving objects. Our method improves on this work both quantitatively and in the output (as our
method allows for the segmentation of occluded objects).

Chapter 4

Chapter 4 provides an analysis of the impact of chosen reward function for FO. Key contributions are:

• A description of two classes of reward function, magnitude and sparsity rewarding for FO.

• A definition of aperture uncertainty, an analogue to the aperture problem in conventional com-
puter vision.

• An explanation why sparsity rewarding functions have a smoother objective function and why
the two classes behave differently w.r.t. aperture uncertainty.

• Proof and experimental evidence of reward function properties.

• Proof that the sum of squares/variance metric does not necessarily have a single maximum.

We propose a simple classification of focus optimising rewards for events and show that one class of
rewards has benefits in terms of noise tolerance while the other class gives benefits in terms of avoid-
ing aperture uncertainty. We provide a definition of the aperture problem in FO and give mathematical
proof together with experimental validation of our findings.

In the literature: FO as a framework for processing events was formally described in [26], however
it still left the choice of contrast measuring function unexamined. In other applications of FO such as
SAR and optical astronomy, this design choice was shown to have significant impact on performance.
Our work was the first, concurrently with [25], to examine the choice of reward in FO.

Chapter 5

Chapter 5 applies deep learning to the problems of video reconstruction and optic flow from events.
Key contributions are:

• A method for simulating training data that yields 20-40 % and up to 15 % improvement for
event-based video reconstruction and optic flow CNNs.

• Dynamic train-time event noise augmentation.

• A novel High Quality Frames dataset.

• Extensive analysis and evaluation of our method.

• An optic flow evaluation metric Flow Warp Loss (FWL), tailored to event data, that does not
require ground truth flow.

1.4. Contributions 17

• Open-source code, training data, and pretrained models.

CNNs have been applied to several tasks in event-based vision, including detection, segmentation,
optic flow, and video reconstruction. An attractive source of training data is the use of simulators,
since they are able to provide large quantities of cheap, accurately labelled training data. Acceptable
results however, require that simulator output matches the target domain adequately. We use the
events per second per pixel measurement as a proxy for the CT to compare different public datasets
and match the settings in the simulator. These improved datasets allow us to train the same SotA
datasets for 40 % and 15 % improvements in video reconstruction and optic flow estimation. Further,
we are able to produce fully-dense optic flow in contrast to previous SotA networks which use focus
losses on the warped events as a supervisory signal.

In the literature: Previous works using CNNs for events on simulated data usually sampled the CT
values from N (µ = 0.18, σ = 0.03), to mirror default settings in the DAVIS camera [88]. However,
we show that these are probably not good assumptions for the most commonly cited datasets. [119]
uses a GAN approach to generate event-voxel grids from frame pairs. The generator takes in image
pairs and outputs voxel grids, while the discriminator attempts to discriminate the generated grid and
one created from real data, in this case events from a DAVIS camera. The downside to this approach
is that it requires a paired dataset for training and that it produces an event representation, rather than
actual events, excluding alternative approaches such as asynchronous networks [56]. Recently, [14]
produced a detailed noise model to greatly improve the realism of simulated events, and also used the
events per pixel per second metric to compare simulation to real data.

Appendix B

As a final contribution, I present the event camera utility library, which provides python libraries for
event-based algorithms. Key capabilities of the library are:

• Focus optimisation,

• Deep learning,

• Data format conversion,

• Event representation generation, and

• Visualisation

for event-based data. Most of the functionality uses pytorch, an open source library for Graphics
Processing Unit (GPU) operations. Thus, the library makes it very easy to run algorithms on the GPU,
all that needs to be done is to load the events onto the computation device in advance. Together with
array broadcasting, which is used wherever possible, the library allows for fast processing of events,
even within python’s interpreter. For details, see Appendix B.

1.4.1 Outputs

Publications (first author)

Timo Stoffregen and Lindsay Kleeman. “Simultaneous Optical Flow and Segmentation (SOFAS) us-
ing Dynamic Vision Sensor”. In: Australasian Conf. Robot. Autom. (ACRA). 2017. URL: https:
//timostoff.github.io/18ACRA (Best Paper Award)

Timo Stoffregen and Lindsay Kleeman. “Event Cameras, Contrast Maximization and Reward Func-
tions: an Analysis”. In: IEEE Conf. Comput. Vis. Pattern Recog. (CVPR). 2019, pp. 12300–12308.

https://timostoff.github.io/18ACRA
https://timostoff.github.io/18ACRA

18 Chapter 1. Introduction

URL: https://timostoff.github.io/19CVPR

Timo Stoffregen, Guillermo Gallego, Tom Drummond, Lindsay Kleeman, and Davide Scaramuzza.
“Event-Based Motion Segmentation by Motion Compensation”. In: Int. Conf. Comput. Vis. (ICCV).
2019, pp. 7244–7253. URL: https://timostoff.github.io/19ICCV

Timo Stoffregen, Cedric Scheerlinck, Davide Scaramuzza, Tom Drummond, Nick Barnes, Lindsay
Kleeman, and Robert Mahony. “Reducing The Sim-to-Real Gap for Event Cameras”. In: Eur. Conf.
Comput. Vis. (ECCV). 2020, pp. 534–549. URL: https://timostoff.github.io/20ecnn

Publications (second author)

Cedric Scheerlinck, Henri Rebecq, Timo Stoffregen, Nick Barnes, Robert Mahony, and Davide Scara-
muzza. “CED: Color Event Camera Dataset”. In: IEEE Conf. Comput. Vis. Pattern Recog. Work-
shops (CVPRW). 2019. URL: https://timostoff.github.io/19CVPRW

Misc

Timo Stoffregen. “Event Camera Utility Library”. In: 2020. URL: https://timostoff.
github.io/projects/ecul

https://timostoff.github.io/19CVPR
https://timostoff.github.io/19ICCV
https://timostoff.github.io/20ecnn
https://timostoff.github.io/19CVPRW
https://timostoff.github.io/projects/ecul
https://timostoff.github.io/projects/ecul

19

Chapter 2

Simultaneous Optic Flow and
Segmentation

Based on [104] (Best Paper Award)

Event cameras are inherently suited to capturing dynamic rather than spatial information of a scene.
For example, if the camera and lighting is static, no events are generated. This is because pixels report
only relative brightness changes, rather than absolute brightness, by triggering events whenever the
brightness at pixels changes above a predefined Contrast Threshold (CT). A natural association exists
between events generated by a common visual feature moving through the scene. We present an
algorithm to extract the dynamics from the events as optic flow by making use of this data association.
We do this by transporting events along their spatiotemporal point trajectories to generate motion-
compensated images. By measuring how in-focus these images are, we are able to determine how
good our motion estimate is and thus optimise the focus w.r.t. the motion estimate to recover the optic
flow parameters. Since our method treats objects globally, we are able to avoid the aperture problem
common to other optic flow estimation methods. Since our optimisation only works for single moving
objects, we also propose a segmentation scheme in order to identify events explained by a single optic
flow trajectory. The result is a set of motion-compensated images (Images of Warped Events (IWEs))
with associated optic flow parameters. We use this output to efficiently track the objects using a
particle filter approach, reducing the computational load of the algorithm. Since we simultaneously
estimate optic flow and motion segmentation of the events, we dub our method Simultaneous Optic
Flow and Segmentation (SOFAS).

2.1 Introduction

Event cameras are asynchronous, data-driven visual sensors which sample the scene at a rate pro-
portional to the rate of change in brightness in the scene (brightness here refers to the log measured
intensity at a given pixel). Event camera pixels achieve this by reporting only relative brightness
changes, rather than absolute brightness, triggering events whenever the brightness at pixels changes
above a predefined CT. Events are described by a tuple e = {x, t, s} where x = (x, y) describes the
position of the event, t is the time at which the event was triggered and s ∈ {−1,+1} denotes the
sign of the brightness change (i.e. brighter or darker). Currently, popular implementations of event
cameras such as the Dynamic and Active-pixel VIsion Sensor (DAVIS) series report timestamps with
microsecond resolution. Although the accuracy and precision of these measurements are not neces-
sarily at the microsecond level, the fine grained temporal data event cameras provide is unparalleled
in computer vision. Because of these properties, the spatial information in the scene is not easily
inferred from events, but needs to be estimated through some form of image reconstruction. The
dynamics of the scene however are constantly reported by the events (or lack thereof). As a result,
event cameras have been a very popular target of optic flow estimation innovations (see Table 1.2).
The fine grained temporal information of the events allows for precise estimates of even high-speed
flow, a domain which is challenging for conventional cameras and usually requires image deblurring.

20 Chapter 2. Simultaneous Optic Flow and Segmentation

Figure 2.1: Left: The events produced by a circular object moving across the image plane, in the
spatiotemporal volume. The blue arrow represents a good optic flow estimate, the red dashed arrow
an incorrect estimate. Middle: Accumulations of events produced by the good and bad motion esti-
mate, together with the IWE. Bottom: The reward landscape for the sum of squares of the IWE, with
the locations of the good and bad estimates marked in red.

Estimating optic flow from events is also convenient, as events already represent edges in the scene,
features for which flow estimation is less ambiguous [24].

Events generated by a common visual feature are naturally related. A feature moving through the
scene will produce events along its trajectory, which, since they all originate from the same feature,
are considered to be associated with one another. We call this relationship the data association be-
tween events. Our algorithm transports events along their spatiotemporal point trajectories, causing
associated events to accumulate at common locations at a reference time. By aggregating the warped
events, we can obtain a motion-compensated image of warped events (IWE) of the scene, whose focus
depends on the quality of the estimated point trajectories. By measuring the focus of the IWE, we are
able to determine how good our motion estimate is and thus optimise the focus w.r.t. the motion esti-
mate to recover the optic flow parameters (Figure 2.1). Because we consider objects globally rather
than only in local patches, we avoid the aperture problem common to optic flow estimation methods.
This Focus Optimisation (FO) approach to processing events was demonstrated in [27] to estimate
camera rotation. We extend on this idea by estimating optic flow, a very general format of motion
description.

Our proposed Focus Optimisation (FO) scheme is only valid for single moving objects, since
additional objects with different motions confuse the objective function landscape by introducing ad-
ditional local extrema. Thus, we need to perform some form of motion segmentation on the events.
We do this by motion-compensating patches of the scene with many events in them and then identify-
ing events that are well explained by that motion. The result is a set of motion-compensated images
(IWEs) with associated optic flow parameters. We use this output to efficiently track the objects using
a particle filter approach, reducing the computational load of the algorithm.

2.1.1 Contributions

We propose making more direct use of the data association between events by optimising the focus
r(Iω) of the motion-compensated image Iω obtained by warping a set of events E by the optic flow
parameters (vx, vy) (for more detail, see Appendix A.2). Since the reward function r of this optimisa-
tion is multi-modal, with a local maximum per object motion in the scene, it is necessary to segment
the events per mode and thus repeat the optimisation per object. This gives us a motion segmented
model of the scene, where each object is represented by the object contours and the object motion.

This model has some predictive power, since, given constant illumination, the events are the
product of spatial image gradients (edges made visible in the IWEs) and the motions of those edges
(the optic flow). This allows us to track the recovered objects using a simple motion model together
with a particle filter applied to the events and using the recovered edges as templates. While the
initial optimisation step requires processing the events in batches, the tracker is very lightweight and
accepts individual events to refine and update the optic flow and edge estimates. Thus, uniquely, our

2.2. Method 21

Figure 2.2: An overview of our proposed method. (a) An incoming event e ∈ E is proposed to
each tracker. Each tracker evaluates the event and produces a score γ which represents how well the
event is predicted by the tracker. If the largest score is greater than 1, the event is attributed to the
tracker. Otherwise, the event is forwarded to (b). (b) e is added to an event image I0. If the sum of
the pixels in the local neighborhood of e in I0 is greater than threshold th0, the events in that neigh-
borhood are motion compensated using contrast maximization. The recovered motion parameters ω
are applied to all events in I0 to produce Iω and dIω

dω is computed. (c) dIω
dω is used to produce a seg-

mentation mask for the events. (d) The segmented events, mask and motion parameters are used to
initialize a new tracker.

method partially allows for asynchronous processing of the events for the estimation of optic flow,
segmentation, and edge recovery.

In summary, the key contributions are:

• A formulation for the recovery of optic flow from events via the optimisation of a focus measure
of the motion-compensated events.

• An initialisation scheme that allows pairing events with their most likely motions to enable
segmentation into motion clusters.

• A method of separating the constituent events for a given solution of the above optimisation
problem.

• A simple tracker for refining and maintaining the motion estimates based on particle filtering.

We also offer an evaluation to contemporaneous methods based on a simple ground truth dataset
as well as qualitative results on public datasets.

2.2 Method

Our method can be broken down into four main stages (see Figure 2.2):
(i) Incoming events ei ∈ E are first compared to a set of possible extant trackers T . Each tracker
tj ∈ T proposes a score, γj(ei), that represents how well the event ei is predicted by tj. The best
tracker, γmax = max(γ0, ...γj), is selected to be updated by that event, if γmax ≥ 1.

(ii) If γmax is less than 1, the event is added to an event image I0 (Appendix A.2). The set of
events accumulated in this event image is referred to as E I0 . The local neighborhood h around xi in

22 Chapter 2. Simultaneous Optic Flow and Segmentation

I0 is computed; if at least λpix pixels contain λev events, the events inside the patch h are motion-
compensated to recover the motion parameters ωh for the local patch, using FO. ωh is then used to
produce an IWE Iω for the entire set of events embedded in I0, E I0 .

(iii) The local contrast of each event in the derivative of the IWE dIω
dω is then used to produce

a segmentation mask for the events which can be attributed to the motion described by ωh. This is
possible, since the derivative shows clearly which parts of the image should expect a large change
given a small change in parameters ωh. Since ωh should be at a local optimum of the total objective
function r, events which are attributed to ωh will have a large gradient magnitude | dIω

dω |.
(iv) After the mask m is obtained, events ek ∈ E I0 are projected onto m using ωh. All events pro-

jected to nonzero elements of the mask are collected into E tj and together with the motion parameters
are used to initialise a new tracker.

SOFAS makes a few key assumptions: first, it is assumed that motions can be approximated
by optic flow motion ((vx, vy) velocity on the image plane). This assumption only holds true over
temporal slices ∆t of the events which are small relative to the magnitude of the motion which those
events describe. Second, it is assumed that events are caused by objects which are rigid over these
small periods ∆t. Interestingly, our method does not require brightness constancy assumptions, which
are typically a cornerstone of optic flow estimation.

2.2.1 Focus Optimisation (FO)

The key component of our method is FO, which allows us to recover the motion parameters on the
image plane from the set of events E generated by a moving object. The core idea is that events
generated by a particular visual feature in motion share a natural association with one another. If
these associated events are transported along their point trajectories in the spatiotemporal volume to
a reference time tref, they will accumulate at common locations. Since these warped events lie on the
same plane at tref, they can be formed into an image Iω by summing the polarities of the events at
each location (the Image of Warped Events (IWE)). Thus, to obtain a set of warped events EW :

EW =W(e, tref; ω) ∀e ∈ E (2.1)

whereW is the warping function parametrised by ω that transports events to tref. If ω = 0, this is
akin to discarding the temporal dimension of the events and forms the event image (I0). To obtain
optic flow estimates, we apply

W(xi, tref;~v) =
[

xi
yi

]
− ∆t

[
vx
vy

]
(2.2)

Where xi = (xi, yi) is the position of the ith event, ∆t = ti − tref is the time between the ith event and
tref and ~v = (vx, vy) is the optic flow velocity vector.

These warped events now lie on a common plane at tref and can be easily formed into an event
image by summing the values of the events at each location. Since the warped pixel locations are not
integer values, this summation is best performed using bilinear voting, to avoid aliasing effects. That
is, given the set of Ne warped events e

′ ∈ EW , the value of each pixel (u, v) ∈ Iω is given as

Iω(u, v) =
Ne

∑
i=1

s
′
i max(0, 1− |x′i − u|)max(0, 1− |y′i − v|) (2.3)

In the case that ~v transports the events along the point trajectories of the common visual features, the
generation of the IWE can be interpreted as a motion-compensation of the events, resulting in a sharp,
focused image of the original object’s contours. If, however, the warping parameters are incorrect,
the resulting IWE will be blurry. By squaring the IWE and summing the pixel values over the image

2.2. Method 23

domain Ω
r = ∑

Ω
Iω

2 (2.4)

we can measure the focus r, since the squaring operation will reward particularly large accumulations
of events at given pixels (such accumulations occurring only in well focused images). We can thus
recover the motion parameters of the moving object by solving the optimisation problem

arg max
~v

r(x, tref;~v) (2.5)

2.2.2 Initial Optimisation

The initialisation of our method needs to perform three tasks:

i Recognise when sufficient events have been collected to proceed with segmentation and flow
estimation.

ii Identify the motion parameters of the dominant motion in the scene.

iii Segment the events which are caused by that motion.

The first task presents a chicken and egg problem, since recognising when sufficient events have been
collected for successful optimisation requires a priori knowledge of object velocities. It is easy to see
that in order to estimate the velocity of an object moving over the image plane, it is necessary for that
object to move at least one pixel, since ~v = ∆x

∆t and the minimal unit of x is 1 (since it measures in
discrete units (pixels)). In practice, we have found that more than this is required for successful optic
flow estimation. On the other hand, accumulating too many events introduces unwanted latency and
risks violating assumptions of linearity with regards to the chosen motion model.

Our solution is to collect events into an event image I0. When an event e is added to I0 we inspect
the neighbourhood h of I0(x) and see if at least λpix pixels contain λev events in h. If this is the case,
FO is performed on the events which lie on the patch h (we use 15× 15 pixels). We set λpix and
λev liberally, since the following optimisation is able to adapt to excessive events but will fail with
insufficient events. We find λpix = 0.05|h|2 (i.e. 0.05× 15× 15) and λev = 10 to work well.

We then perform FO on the events inside the patch h to recover the motion parameters of the
dominant motion in that patch. The reason we restrict ourselves to the patch during FO is that the
reward function r only has exactly one maximum at the location of the correct motion parameter if
there is also exactly one motion causing the events (see Section 2.2.2). Using a local patch of events
improves the chances of capturing events from only one motion or at least disproportionately many
events from one motion such that the patch contains a dominant motion with a clear optimum in r.

Optimisation

We solve the optimisation problem arg maxω r(Iω) using a grid-search approach (see Figure 2.3).
The focus function we use here is the sum of squares, that is

r = ∑
Ω

Iω
2 (2.6)

where Ω is the image domain. We apply a blurring Gaussian kernel to the IWE prior to evaluation
in order to enlarge the basin of convergence and to allow the dominant motion to be revealed as
the solution to the optimisation (see Section 2.2.2). The blurring is then removed for subsequent
fine-tuning.

In the grid search, the search space D is divided into nD points at which r is evaluated. The new
search range is then determined based on the location of the optimal sample - if it is at the edge of the

24 Chapter 2. Simultaneous Optic Flow and Segmentation

Figure 2.3: Right: The set of events to be optimized in the spatiotemporal volume. The arrows indi-
cate the optic flow trajectory, with the motion-compensated image in the back. Middle: Successive
grid searches of our optimization. Each image shows the objective function over the search space
with respect to the optic flow (vx, vy). The red crosses indicate where samples were taken. Left:
The objective function with the search grids overlaid. Although the optimum lies outside the range
of the first search grid (red), it quickly converges on the correct solution.

search space, the new search space is enlarged, with the previous optimal sample just inside the new
search space. Otherwise, the new search space is the region around the optimal sample. Convergence
is achieved once the search space is smaller than a threshold λc (we use λc = 1) or if the maximum
number of iterations is reached. The initial search range is [−500, 500]. We sample the grid using
a logarithmic scale, that is, more samples are taken near the origin than at the outer reaches of the
range.

Extrema of r

Given a single motion that fits the chosen motion model, it is reasonable to assume the sum of squares
reward function will contain only one maximum, at the location of the actual object motion (although
it is possible to construct counterexamples, see Section 4.2.1). Usually however, the reward function
has only one maximum as in Figure 2.4d. Adding additional moving objects however increases the
complexity of the reward landscape and although the correct optic flow solutions may be represented
by peaks in that landscape, additional local maxima can be introduced which actually represent no
valid solution. For example even in the simple case of two circles moving in opposite directions
(Figure 2.4e), the reward landscape has clear peaks at the optic flow velocities of those circles, yet
also contains a local maximum approximately around ~v = (0,−150) (easiest seen in digital copy).
Yet more complicated is the case in which the slider sequence from [64] is overlaid with the circles
from the previous example (Figure 2.4c), with multiple maxima across the reward landscape. This
illustrates the difficulty of the problem and importance of the segmentation stage for accurate optic
flow estimation of the scene and is further why we apply blurring to the reward during the initial op-
timisation steps, in order to mitigate the effect of false maxima and increase the basin of convergence
for correct solutions (Figure 2.5).

Segmentation

Once a dominant motion is identified, the algorithm needs to segment the events which belong to that
motion. We do this by perturbing the motion estimate in each component of ~v and recomputing the
IWE for the perturbed motion parameters. We then inspect the change in local contrast for each event.
If an event belongs to the motion model, its local contrast should decrease in the perturbed IWEs, if
an event does not belong the local contrast should roughly stay the same or even improve. Events that
are explained by the discovered motion parameters are thus identified.

2.2. Method 25

(a) (b) (c)

-200 200vx

-2
0
0

2
0
0

v
y

(d)

-200 200vx

-2
0
0

2
0
0

v
y

(e)

-200 200vx
-2
0
0

2
0
0

v
y

(f)

Figure 2.4: Top row: Events of various scenes (red/blue for positive/negative events, leading events
in black for visibility). A single moving object (2.4a), two objects moving in opposite directions
(2.4b) and a complex slider scene ([64], (2.4c)) blended with the two circles from (2.4b). Bottom
row: The reward landscape of the sum-of-squares reward (2.6) for each scene in the top row. Note
that (2.4d) is concave with a global optimum, but (2.4e) contains two peaks for each optic flow so-
lution, with local maxima clearly visible in the region between them. (2.4f) has a yet more compli-
cated reward function.

-2
0
0

2
0
0

v
y

-200 200vx -200 200vx -200 200vx -200 200vx-200 200vx

Figure 2.5: The reward function from Figure 2.4f is blurred with a Gaussian kernel with various
standard deviations σ. This blurring enlarges the basin of convergence for dominant motions in the
scene and reduces the impact of false maxima in the reward landscape. By applying regressive blur-
ring per optimisation, the dominant motion of a scene can be found.

26 Chapter 2. Simultaneous Optic Flow and Segmentation

(a) (b)

Figure 2.6: 2.6b shows the tracker for the events in 2.6a. Center, the motion-compensated image
representing the current best estimate. Surrounding this are several perturbed estimates, velocity
shown by the size of the surrounding red circle and direction of the line. As events are added, they
are compared to each template.

2.2.3 Tracking

At its core, each tracker tj ∈ T consists of an IWE Iω j, a set of associated events E j and the motion
parameters ω j. Once initialised, each tracker is able to receive events as an input and generate a score,
γj, which is given simply as the local value at the warped pixel location x′ of the blurred IWE:

γ = (Iω ∗ G)(x′) (2.7)

where G is a Gaussian kernel with µ = 0, σ = 1 (I(x) denotes the value of the pixel at location x
in the image I). This score is akin to template matching, where the IWE represents the template to
which the warped events are matched. After the event has been thus evaluated by all trackers, the
event is assigned to the tracker tmax with the highest γ. The event then updates the constituent IWE,
Iωmax, event buffer Emax and motion parameters ωmax.

Solving the optimisation task described in Section 2.2.2 for each event would be prohibitively
expensive and buffering events to perform the optimisation would introduce unwanted additional
latency. Thus, a particle filter approach is proposed. In this scheme each tracker tj holds k samples
representing k prior estimates of ω j. These estimates lie on a circle centered around ω j with a radius
rω (see Figure 2.6). The γ value of the event is computed for each sample. If the largest γ belongs to
a sample, that sample’s ω become the posterior estimate of ω j and rω is expanded by a gain of gω to
gωrω. Otherwise, the estimate of ω j remains unchanged, but rω is shrunk by 1

gω
rω. In this way, the

search space is adapted to give greater precision when the current estimate is good and to encompass
a greater search space when the current estimate is poor. In practice, we found gω = 1.2 to work
well. Thus, Iω j is gradually optimised w.r.t. ω j by additional events.

Incoming events are added to the tracker’s events, Emax, which is updated each time ωmax is
updated. Clearly, if too many events are retained in the tracker’s buffer of events Emax, the assumption
of linear motion is likely to be violated. Conversely, if insufficient events are retained, optimisation of
ω j will fail. To prevent this, a lifetime of events ∆t is used to restrict the number of events retained.
Events outside this lifetime are removed from Emax. The lifetime is set to the time it takes for the
object moving over the image plane to move dp pixels, so

∆t =
dp

|~v| (2.8)

where |~v| is the magnitude of the optic flow estimate. We found dp = 3 to work well. This way
trackers which represent slower motions have longer memory over which to store events than trackers
which represent fast motions.

2.3. Experiments 27

Figure 2.7: A UR5 robot arm with a magnet attached to the end effector moves behind a screen.
A hexagon shape with a magnet attached follows the end effector. Since the velocity of object and
field of view of event camera are known, the ground truth optic flow can be inferred.

Given the IWE Iω j and the motion parameters ω j, the expected number of future events over a
time period ∆t can be predicted as

np = |~v|∆t
∫

Ω

I0 j

∆tI0

(2.9)

where Ω is the image domain, I0 j is the event image formed by the events in E j and ∆tI0 is the time
spanned by E j. If the number of actual events na being added to tj is less than λerrnp (the number of
events predicted multiplied by a preset constant λerr), the tracker is considered to have failed and is
removed from T and the events in E j are added to the initialisation image I0 (Section 2.2.2).

2.3 Experiments

To generate ground truth optic flow for evaluation, we used a UR5 robot arm to move simple shapes
across a screen. The robot was placed behind the screen and moved the objects by means of mag-
nets attached to the end effector (see Figure 2.7. The relationship between distances on the object
plane and distances on the calibrated image plane were easily measured, allowing for exact ground
truth measurements. The dataset was recorded using the Java tools for Address-Event Representation
neuromorphic processing (jAER) toolbox with a DAVIS-240C camera.

Several State of the Art (SotA) event-based optic flow algorithms are already implemented in the
jAER toolbox [92], which motivated the implementation in this Java environment.

Since the algorithm performs several tasks, the tests are broken up into several sections. First
the accuracy of the flow vectors estimated by algorithm is compared to that of Lucas-Kanade on our
ground-truth dataset. We chose to benchmark our algorithm against Lucas-Kanade since it returned
the lowest errors of flow vectors of any of the optic flow implementations in the jAER toolbox.
Having established the competitiveness of our algorithm in comparison to traditional optical flow
estimation algorithms, we then examine the performance of the algorithm at different velocities and
with a rapidly accelerating dataset when compared to ground truth. Having tested the accuracy, we
then show the rate at which the estimate converges and finally we show qualitative results in more
complex scenes for which we were unable to generate ground truth data, but which show the ability
of the algorithm to successfully segment the scene into structures with distinct flow velocities.

Ground truth optical flow data was generated by using a UR5/CB3 robot arm. Magnets were
mounted on the end effector of the robot, so that the robot was able to move simple structures with
magnets attached across a background panel without generating events itself. Motions were fronto-
parallel to the camera and since the camera was calibrated, a direct correspondence between the robot

28 Chapter 2. Simultaneous Optic Flow and Segmentation

Shape Magnitude Angle
SOFAS Lucas-Kanade SOFAS Lucas-Kanade

-80 -40 0 40
Magnitude % Error

-80 -40 0 40
Magnitude % Error

0 40 80 120
Error [degrees]

0 40 80 120
Error [degrees]

Figure 2.8: Comparison of Lukas-Kanade and SOFAS optic flow estimates. Plots show the % mag-
nitude error and absolute angle error of optic flow estimates for both methods as normalised distri-
butions for simplified comparison. The red dotted line indicates the 0 error point on the x axis.

end effector velocity in world coordinates and the end effector velocity on the camera plane could be
determined.

2.3.1 Accuracy Comparison

Here we contrast the percentage error to ground truth of the flow vector magnitudes and the error of
the flow vector directions. The data used four different shapes with a flow velocity of 58 pix/s (a
collection of rectangles (width=120 pixels), a hexagon (width=65 pixels), a large circle (width=70
pixels) and a small circle (width=7 pixels)). The results (Figure 2.8) show that our algorithm not only
had a lower standard deviation of errors, but also was able to avoid the aperture problem. Results from
Lukas-Kanade under-estimated the flow magnitude by about 35 %. This is because Lukas-Kanade,
being a local estimation algorithm (in this case using a 7x7 pixel window), tends to estimate the flow
vectors normal to the image gradients rather than in the direction of optical flow. Therefore, our
method was also far superior in estimating the direction. The exception is for the small circle, where
the methods are roughly even, since most of the object is able to fit into the kernel window in Lucas
Kanade and the aperture problem is therefore avoided.

2.3.2 Performance at Different Velocities

Figure 2.9 shows the effect of varying velocity on SOFAS. We test our algorithm over a range of
velocities (5.8-289 pix/s) using the large hexagon dataset. The results show that the algorithm

2.3. Experiments 29

5.8 pix/s 58 pix/s 289 pix/s

-20 -10 0 10 20
% ErrorMagnitude % Error

-20 -10 0 10 20
% ErrorMagnitude % Error

-20 -10 0 10 20
% ErrorMagnitude % Error

0 4 8 12 16
Error [degrees]Error [degrees]

0 4 8 12 16
Error [degrees]Error [degrees]

0 4 8 12 16
Error [degrees]Error [degrees]

Figure 2.9: % error of flow vector magnitudes and flow vector angle error at a range of velocities
computed using Simultaneous Optic Flow and Segmentation (SOFAS). Distributions normalised as
Probability Density Functions (PDFs).

performs fairly consistently over the full range of velocities. A slightly larger spread in the magni-
tude error at 5.8 pix/s is likely because the DAVIS 240C camera used produces more events during
faster motions than slower ones, over the same path. We are not certain what causes this non-ideal
behaviour.

2.3.3 Performance with Acceleration

The ability of the algorithm to deal with acceleration (which is not explicitly modelled in the projec-
tions, which assume locally constant velocity) was tested by comparing the computed flow magnitude
of a pendulum to the calculated velocity. Since the maximum velocity of a pendulum is given by
vmax =

√
2gL(1− cos(θmax)) and the period by T = 2π

√
L
g where g = 9.82 m/s2, the pendulum

length L = 0.72 m and the maximum starting angle of the pendulum θmax = 23◦, we were able to
fully characterise the velocity and frequency of the pendulum, assuming a lossless sinusoidal motion
model. Since the size of the field of view of the camera was also known, we were able to get ground
truth for the optic flow magnitude. The phase shift was estimated from the footage. As can be seen in
Figure 2.10, the algorithm generates a relatively noisy estimate in cases where there are no constant
velocities, but where the structures are under constant acceleration. Nevertheless, the algorithm is
able to adapt to such circumstances to generate reasonable estimates.

2.3.4 Rotation

In this experiment, two bars were set to rotate in front of the Dynamic Vision Sensor (DVS). Pre-
dictably, SOFAS performs poorly in such circumstances, since the projection does not model rotation
(Figure 2.11). Especially when the rotating bar fills the entire screen, the algorithm suffers some-
what from the aperture problem as indicated by the clearly incorrect flow predictions near the centre
(blue and orange vectors, Figure 2.11b). Nevertheless, the algorithm does attempt to segment the bar

30 Chapter 2. Simultaneous Optic Flow and Segmentation

744 745 746 747 748 749
t [s]

0

100

200

300

400

500

600

Ve
lo

cit
y

[p
ix

el
s/

s]

Figure 2.10: Estimated optic flow magnitude (blue) vs calculated ground truth (red) for the events
generated by a pendulum (length L = 0.72m, starting angle θmax = 23◦)

(a) Short bar

(b) Long bar (filling entire frame)

Figure 2.11: Two bars rotating counterclockwise at 60 rpm. On the left, the segmentation the algo-
rithm performs, on the right the velocity vectors of the optic flow, coloured by direction.

2.3. Experiments 31

lengthwise and for the short bar at least generates reasonable optical flow. This is because over short
enough timeframes it is able to assume the velocity as constant.

2.3.5 Segmentation

Here we aim to showcase the algorithms ability to segment the scene into structures with distinct
velocities. To do this, we show the contours of the Track Planes generated on three datasets; one
in which the UR5/CB3 robot arm moves the circle horizontally, one in which three cockroaches are
moving randomly in a box and one in which the algorithm pans across a simple scene with four
vertical bars at different distances to the DVS. As is clear (Figure 2.12), SOFAS is able to clearly
segment objects by their flow velocities, and event when the same object is segmented into multiple
sections (see frame two of Figure 2.12a), it is able to merge these together again. Because of the nature
of the algorithm, there is some quantisation to the segmentation, though the extent of this is not easily
quantifiable. In particular the result from Figure 2.12c is important, since the effective segmentation
of structures at different distances makes this algorithm a potential candidate for visual odometry in
the future. Indeed, it should be noted how well the segmentation in Figure 2.12c performs, separating
the objects in the scene perfectly. When the tripod in the background is occluded, SOFAS is able to
re-segment it as a structure immediately after reappearance. At the same time in this scene, the edges
of the table are segmented into separate entities as they have distinct optic flow velocities.

32 Chapter 2. Simultaneous Optic Flow and Segmentation

(a) UR5 robot arm bearing a black cardboard circle moves the end effector from right to left in a hori-
zontal, planar motion.

(b) Cockroaches in a box scuttle around aimlessly.

(c) The camera pans past objects at different distances from the DVS. The tripod in the background (or-
ange segmentation) is occluded and immediately recognised as a separate structure upon reappearance
(green segmentation).

Figure 2.12: Qualitative results of SOFAS. The top row shows the calculated flow vectors (see color
wheel for direction), the middle row shows events coloured by segmentation, the bottom row shows
grayscale stills of the scene.

2.4. Discussion 33

2.4 Discussion

This chapter presents an algorithm for detecting the optical flow of events generated by a DVS in
a novel way that, in contrast to previous works, directly makes use of the data association between
events. We do this through the novel method of FO, whereby events are transported along their spa-
tiotemporal trajectories to create motion-compensated images. We evaluate the motion-compensation
result by means of a sum of squares measure. Optimising this measure with respect to the motion pa-
rameters, we are able to recover the optic flow of the events. Since the optimisation result is different
for each moving object, we segment the events by means of a greedy algorithm which identifies
events that can be explained by a candidate motion. We demonstrate that SOFAS is superior in accu-
racy when compared to a traditional optical flow algorithm.

The SOFAS algorithm does have some limitations however. (i) Our method requires motions
to fit the optic flow motion model implemented. We do show in Section 2.3.3-2.3.4 that SOFAS
is robust enough to provide reasonable optic flow estimates, however it would be better to provide
motion models more suited to the target motion. For example, in the rotating bar experiment, SOFAS
discretises the bar into several sections, showing the limits of the approximation. (ii) Our method is
dependent on several hyperparameters, some of which are scene dependent. In particular, λpix and
λev, the thresholds to determine whether sufficient events have been buffered to perform FO, should
ideally be lower for low contrast scenes (when fewer events are triggered) than for high contrast
scenes. (iii) Finally, our implementation is quite slow. This may be partly due to the choice of Java
as implementation language, but the complexity of the optimisation step is potentially quite large,
requiring 4λmaxiNe warping operations in the worst case. Each optimisation sample can be taken
independently of the other however and the events can be warped independently as well, so we see
a large potential for parallelisation and therefore acceleration. Our implementation had an average
throughput of 5600 events per second, running on a 3.4 GHz Central Processing Unit (CPU).

We extend the ideas presented here and address the limitations of SOFAS in Chapter 3.

2.5 Resources

Video and dataset: https://timostoff.github.io/19ACRA

https://timostoff.github.io/19ACRA

35

Chapter 3

Motion Segmentation using Motion
Compensation

Based on [102]

Previous methods for performing motion segmentation of an event stream [58, 104] are dependent on
hyperparameters and spatial or morphological operations such as flood-fill. This has distinct disad-
vantages, since hyperparameters require tuning to the expected scene and morphological operations
are prone to break for textured scenes or occlusions. The previously mentioned methods are also de-
signed to work with one particular motion model in mind. We present a principled way of acquiring
motion segmentation from an event stream which does not require hyperparameter tuning and is inde-
pendent of the choice of motion model. We do this by jointly estimating the event-object associations
(i.e. segmentation) and the motion parameters of the objects by Focus Optimisation (FO) in a man-
ner reminiscent of Expectation Maximisation (EM). We also provide a novel way of experimentally
evaluating the accuracy of motion segmentation algorithms for event cameras, recognising that the
segmentation problem becomes easier the larger the time window under consideration is. We pro-
vide a thorough evaluation of our method on a public dataset, outperforming the state-of-the-art by as
much as 10 % and show that our method is capable of 90 % accuracy at 4 pixels relative displacement
of the moving objects.

3.1 Introduction

Motion segmentation is a particularly significant problem in event-based vision, since the sensor
ultimately only detects parts of the scene which are in motion. In the case of a moving camera this
can result in many events, which can be very difficult to differentiate from events caused not only by
camera ego-motion, but also by independently moving objects. Cases in which such a differentiation
might be vital are not difficult to think of; in a moving vehicle such as a car or Unmanned Aerial
Vehicle (UAV), many events are generated due to ego motion, yet it may be desirable to differentiate
moving objects such as pedestrians or other vehicles. In the case of a static camera, the problem
is simplified but not trivial, since the asynchronous nature of the events require novel processing
methods.

We consider the problem of segmenting a scene viewed by an event-based camera into inde-
pendently moving objects. In the context of traditional cameras, this problem is known as motion
segmentation [114], and it is an essential pre-processing step for several applications in computer
vision, such as surveillance, tracking, and recognition [72]. Its solution consists of analysing two or
more consecutive images from a video camera to infer the motion of objects and their occlusions. In
spite of progress in this field, conventional cameras are not ideally suited to acquiring and analysing
motion; since exposure time is globally applied to all pixels, they suffer from motion blur in fast
moving scenes. Event-based cameras are a better choice since they sample at exactly the rate of scene
dynamics, but conventional techniques cannot be applied to the event data.

36 Chapter 3. Motion Segmentation using Motion Compensation

3.1.1 Literature

Motion segmentation in the case of a static event-based camera is simple, because in this scenario
events are solely due to moving objects (assuming there are no changes in illumination) [49, 69,
82]. More challenging is the case of a moving camera, since in this scenario events are triggered
everywhere on the image plane, produced by both the moving objects as well as the apparent motion
of the static scene induced by the camera’s ego-motion. Hence, event-based motion segmentation
consists of classifying each event into a different object, including the background. However, each
event carries very little information and therefore it is challenging to perform the mentioned per-event
classification. Event-based motion segmentation in the presence of event-clutter caused by camera
ego-motion or many independently moving, overlapping objects has been addressed previously in
[29, 58, 104, 108].

In [29], a method is presented for detection and tracking of a circle in the presence of event clutter.
It is based on the Hough transform using optical flow information extracted from temporal windows
of events. Segmentation of a moving object in clutter was also addressed in [108]. It considered
more generic object types than [29] by using event corners as primitives, and it adopted a learning
technique to separate events caused by camera motion from those due to the object. However, the
method required the additional knowledge of the robot joints controlling the camera.

Segmentation has been recently addressed by [58, 104] using the idea of FO. For example, [104]
first fitted a motion-compensation model to the dominant events, then removed these and fitted another
motion model to the remaining events in a greedy manner. Similarly, [58] detected moving objects
in clutter by fitting a motion-compensation model to the dominant events (i.e. the background) and
detecting inconsistencies in the average timestamp with respect to that motion (i.e. the objects). The
objects were then ‘segmented’ via morphological operations on the warped image, and were used for
tracking. The method could handle occlusions during tracking, but not during detection.

Our method differs from [29] in that we demonstrate segmentation on objects with arbitrary
shapes, and from [108] in that we do not require additional inputs (e.g. robot joints). Our work
is most related to [58, 104]; however, it has the following novelties: (i) it actually performs per-event
segmentation, rather than just providing bounding boxes for detected object regions, (ii) it allows
for general parametric motion models (as those in [26]) to describe each cluster, (iii) it performs
optimisation based on a single objective function (as opposed to two sequential optimisation criteria
in [58]), (iv) it is able to handle occlusions between objects at any point in time. The proposed method
is the first one that jointly estimates the apparent motion parameters of all objects in the scene and
the event-object associations (i.e. segmentation), (v) it does not require setting of scene-dependent
hyperparameters or the usage of morphological or ‘conventional’ vision operations on event images.

3.1.2 Method

We propose a method to tackle the event-based motion segmentation problem in its most general case,
with a possibly moving camera. Inspired by classical layered models [109], our method classifies the
events of a space-time window into separate clusters (i.e. ‘layers’), where each cluster represents a
coherent moving object or background (see Figure 3.1). Our method jointly estimates the motion
parameters of the clusters (each of which represent a parametrised motion model) and the event-
cluster associations (the likelihood of each event belonging to each cluster). Our method is flexible
since it allows for mixtures of different parametric motion models (for example optic flow, rotations,
zooming, or other higher degree combinations). While the number of clusters is fixed a priori, our
method is not sensitive to the number of layers Nl , since overparametrisation simply causes redundant
layers to be assigned no events and ‘mode collapse’.

The method jointly estimates the motion parameters of the clusters and the event-cluster associ-
ations (i.e. likelihood of an event belonging to a cluster) in an iterative, alternating fashion, using

3.1. Introduction 37

Figure 3.1: Our method segments a set of events produced by an event-based camera (Left, with
color image of the scene for illustration) into the different moving objects causing them (Right:
pedestrian, cyclist, and camera’s ego-motion, in color). We propose an iterative clustering algo-
rithm (Middle block) that jointly estimates the motion parameters ω and event-cluster membership
probabilities P to best explain the scene, yielding motion-compensated event images on all clusters
(Right).

an objective function based on motion-compensation [26, 27] (basically, the better the estimated un-
knowns, the sharper the motion-compensated event image of each cluster). Our method is flexible,
allowing for different types of parametric motions of the objects and the scene (translation, rotation,
zooming, etc.).

The method is thoroughly evaluated in challenging, real-world scenarios, such as high-speed and
difficult illumination conditions, which are inaccessible to traditional cameras (due to severe motion
blur and High Dynamic Range (HDR)). Our method quantitatively performs up to 10 % better than
previous State of the Art (SotA) while our qualitative results showcase the capabilities of the sensor
and the proposed method.

3.1.3 Contributions

The key contributions of this chapter are:

• A novel, iterative method for segmenting multiple objects based on their apparent motion on
the image plane, producing a per-event classification into space-time clusters described by para-
metric motion models.

• The detection of independently moving objects without having to compute optical flow ex-
plicitly. Thus, we circumvent this difficult and error-prone step toward reaching the goal of
motion-based segmentation.

• A thorough evaluation in challenging, real-world scenarios, such as high-speed and difficult
illumination conditions, which are inaccessible to traditional cameras (due to severe motion
blur and HDR), outperforming the state-of-the-art by as much as 10 %.

• A method for evaluating the performance of event-based motion segmentation methods in terms
of relative displacement, with the recognition that given a larger time interval the segmentation
problem becomes easier.

As a by-product, our method produces sharp, motion-compensated images of warped events, which
represent the appearance (i.e. shape or edge-map) of the segmented objects (or background) in the
scene (Figure 3.1, Right).

3.1.4 Individual Contribution

This work was a collaboration with Guillermo Gallego, a post-doc at RPG Zurich. Guillermo helped
develop the theoretical framework and was less involved with implementation and experimental
work.

38 Chapter 3. Motion Segmentation using Motion Compensation

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) All clusters

Figure 3.2: Our method splits the events into clusters (one per moving object), producing motion-
compensated images of warped events Images of Warped Events (IWEs), as shown in (a)-(c) for the
three objects in the scene of Figure 3.1. The likelihood of each event is represented by the darkness
of the pixel. Since the likelihoods are nonzero, “ghosts” can be seen in the individual clusters. IWEs
in (a)-(c) are merged into a single image (d), using a different color for each cluster. Segmented
events in upcoming experiments are shown using this colored motion-compensated image repre-
sentation.

3.2 Method

Our method is inspired by the combination of classical layered models [109] and event-based motion-
compensation [26]. In the following we describe the motion segmentation problem addressed and
present our proposed solution.

3.2.1 Problem Statement

Since each event carries little information and we do not assume prior knowledge of the scene, we
process events in packets (or groups) to aggregate sufficient information for estimation. Specifically,
given a set of events E = {ek}Ne

k=1 in a space-time volume of the image plane Ve = Ω× T, we address
the problem of classifying them into Nl clusters (also called ‘layers’), with each cluster representing
a coherent motion, of parameters ω j. We assume that the time slice of the events T is a sufficiently
short interval so that the motion parameters of the clusters ω = {ω j}Nl

j=1 are constant.
The images on both sides of the algorithm block in Figure 3.1 illustrate the above-mentioned

problem and its solution, respectively. Notice that since events have space-time coordinates, clusters
are three-dimensional, contained in Ve. Also, because corresponding events caused by the same point
of a moving edge describe point trajectories in Ve, optimal clusters should contain them and therefore
have a ‘tubular’ shape (Figure 3.1, segmented events). Implicit in motion segmentation, if two objects
share the same motion they belong to the same cluster, regardless of their location.

3.2.2 Summary of Proposed Solution

Leveraging the idea of FO [27, 104], we seek to separate the events E into clusters by maximising
event alignment, i.e. maximising the sharpness of motion-compensated images (one per cluster) of
warped events.

More specifically, the idea of FO is that, as an edge moves on the image plane, it triggers events on
the pixels it traverses. The motion of the edge can be estimated by warping the events to a reference
time and maximising their alignment, producing a sharp IWE. The sharpness can be measured and
thus optimised w.r.t. the parameters of the chosen motion model. In the case of multiple objects with
different motions, maximal event alignment cannot be achieved using a single warp, and so, several
warps (i.e. motion models or ‘clusters’) are required, as well as identifying which events belong
to which object (i.e. ‘event-cluster associations’). The associations are discovered by means of a
formulation which takes into account the ratio of local sharpness of the IWE for each event warped to
each cluster. This is the essence of our approach, which is illustrated in Figure 3.1 and 3.2. Figure 3.1

3.2. Method 39

shows the events produced by three objects in a scene with a moving camera: a pedestrian, a cyclist
and a building facade, which produces events due to camera motion. Each object has a different
motion relative to the camera and triggers events as it moves over the image plane. When events are
warped to a reference time (e.g. tref = 0) according to a candidate motion model, they produce an
IWE. If the candidate motion coincides with the true image-plane motion of the object causing the
events, the warped events align, producing a sharp motion-compensated IWE, as shown in Figure
3.2 using three different motion models (one per object). Otherwise, they do not align, producing
a blurred IWE. We use the sharpness of such IWEs (measured by the variance of the image) as
the main cue to segment the events. Our method jointly identifies the events corresponding to each
independently moving object as well as the object’s motion parameters.

3.2.3 Mathematical Formulation

In contrast to previous methods [58, 104], we explicitly model event-cluster associations in the
motion-compensation framework, i.e. pkj = P(ek ∈ `j) is the probability of the k-th event be-
longing to the j-th cluster. Let P = (pkj) be an Ne × Nl matrix with all event-cluster associations.
The entries of P must be non-negative, and each row must add up to one. Using these associations,
we define the weighted IWE of the j-th cluster as

Iω j(x) =
Ne

∑
k=1

spkj δ(x− x′kj), (3.1)

with x′kj =W(xk, tk; ω j) the warped event location (via warping functionW), and δ the Dirac delta.
Equation (3.1) states that events are warped,

ek = (xk, tk, sk) 7→ e
′
k = (x′k, tref, sk) =W(ek), (3.2)

and the values pkj ≥ 0 (i.e. weights) are accumulated at the warped locations x′k. Event alignment
within the j-th cluster is measured using image contrast [31], which is defined by a sharpness/disper-
sion metric, such as the variance [27]:

σ2(Iω j) =
1
|Ω|

∫
Ω
(Iω j(x)− µIω j)

2dx, (3.3)

where µIω j is the mean of the IWE over the image plane Ω.
We propose to find the associations P and cluster parameters ω that maximise the sum of contrasts

of all clusters by solving the optimisation problem:

(ω∗, P∗) = arg max
(ω,P)

Nl

∑
j=1

σ2(Iω j). (3.4)

Since the optimisation of Equation 3.4 addressed does not admit a closed-form solution, we devise an
iterative, alternating optimisation approach, which we describe in the next section.

The pseudo-code of our method is given in Algorithm 1. From the output of Algorithm 1, it
is easy to compute motion-compensated images of events corresponding to each cluster, i.e. the
weighted IWEs (3.1) shown in Figure 3.2. Each IWE shows the sharp, recovered edge patterns (i.e.
and appearance model) of the objects causing the events.

40 Chapter 3. Motion Segmentation using Motion Compensation

Algorithm 1 Event-based Motion Segmentation

1: Input: events E = {ek}Ne
k=1 in a space-time volume Ve of the image plane, and number of clusters

Nl .
2: Output: cluster parameters ω = {ω j}Nl

j=1 and event-cluster assignments P ≡ pkj
.
= P(ek ∈ `j).

3: Procedure:
4: Initialise the unknowns (ω, P).
5: Iterate until convergence:
6: • Compute the event-cluster assignments pkj using (3.6).
7: • Update the motion parameters of all clusters (3.5).

3.2.4 Alternating Optimisation

Each iteration of Algorithm 1 has two steps (lines 6 and 7), as in a coordinate ascent algorithm. If the
associations P are fixed, we may update the motion parameters

ω ← ω + µ∇ω

(Nl

∑
j=1

σ2(Iω j)
)

(3.5)

by taking a step (µ ≥ 0) in an ascent direction of the objective function (3.4) with respect to the
motion parameters. Motion-compensation methods [26, 58] typically use gradient ascent or line
search to solve for the motion parameters that maximise some objective function of the IWE. In our
case, because the IWE (3.1) depends on both ω and P and we seek to jointly estimate them, we do
not wastefully search for the best ω given the current estimate of P. Instead, we update ω using (3.5),
proceed to refine P (see (3.6)), and iterate.

Fixing the motion parameters ω, we may refine the associations P using a closed-form probability
partitioning law:

pkj =
rj(x′k(ω j))

∑Nl
i=1 ri(x′k(ωi))

, (3.6)

where rj(x) 6= 0 is the local contrast (i.e. sharpness) of the j-th cluster at pixel x, and it is given by
the value of the weighted IWE, rj(x) = Iω j(x). Thus, each event is softly assigned to each cluster
based on how it contributes to the sharpness of all Nl IWEs. The alternating optimisation approach
in Algorithm 1 resembles the EM algorithm, with the E-step given by (3.6) and the M-step given by
(3.5).

3.2.5 Initialisation

The proposed alternating method converges locally in practice (i.e. there is no guarantee of conver-
gence to a global solution), and it requires an appropriate initialisation of ω, P to start the iteration.

Several initialisation schemes are possible, depending on the motion models. For example, if
the warps of all clusters are of optical flow type, one could first extract optical flow from the events
(e.g. using [5, 120]) and then cluster the optical flow vectors (e.g. using the K-means clustering
algorithm). The resulting cluster centres in velocity space would provide an initialisation for the
motion parameters of the clusters ω.

We follow a greedy approach similar to [104]. Essentially the events are motion compensated
using each motion-model and the model that results in the best contrast is chosen to remove events in
the gradient-based manner described in Section 2.2.2.

The difference is that the events, rather than being assigned an absolute segmentation value, are
assigned likelihoods according to the ratio of the local contrast measures to the sum of contrast mea-
sures as in Equation 3.6. The process is repeated for the remaining clusters until all motion parameters
ω and associations P have been filled.

3.2. Method 41

This method works well in practice and results in estimates which are close enough to allow
convergence of the main algorithm. There is no obvious reason our method should not work for
arbitrary motion models and we found it to converge for all motion models we tried.

3.2.6 Discussion of the Segmentation Approach

The proposed approach is versatile, since it allows us to consider diverse parametric motion/warping
models, such as linear motion (optic flow) [26, 104, 117], 3-Degree of Freedom (DoF) rotational mo-
tion [27], 4-DoF motion [58], 8-DoF homographic motion [26], etc. Moreover, each cluster may have
a different motion model, {W j}Nl

j=1, as opposed to having a single model for all events, and therefore,
all clusters. For example, if the camera is rotating, the ‘background’ cluster may be modelled by a ro-
tational warp, while clusters of ‘foreground’ objects may be described by a more appropriate motion
model (such as linear, optical flow motion or a 3-DoF camera rotation model). This characteristic is
unique to our method.

It is also worth noting, that the proposed method classifies events according to motion without
having to explicitly compute optical flow, which is a widespread motion descriptor. Thus, our method
is not simply optical flow clustering. Instead, our method encapsulates motion information in the
warps of each cluster, thus by-passing the error-prone step of optical flow estimation in favour of
achieving the desired goal of motion segmentation of the events.

The edge-like motion-compensated IWEs corresponding to each cluster are, upon convergence,
a description of the intensity patterns (entangled with the motion) that caused the events. Thus our
method recovers fine details of the appearance (e.g. shape) of the objects causing the events without
having to estimate a (computationally expensive) 3D scene representation. In [58] fine details were
only available for the dominant motion cluster.

Finally, the number of clusters Nl is a hyper-parameter that may be tuned by a meta-algorithm
(in the experiments, we set Nl manually). This is a well-known topic in clustering [23]. While
automatically determining the optimal Nl depending on the scene is outside the scope of this chapter,
it should be noted that, as we show in Section 3.3.3, our method is not sensitive to excess clusters Nl .

3.2.7 Warp Functions

We use three warping functions. These are:
a) The optic flow warp:

Wv(x, y, ∆t; ω) =

[
x
y

]
− ∆t

[
vx
vy

]
(3.7)

where the warp parameters ω = (vx, vy) and ∆t is the difference between the event timestamps and
the reference time, t− tref. The Jacobian of this warp is:

∇Wv =

[
−∆t 0

0 −∆t

]
(3.8)

This warp function represents 2D motions of objects on the image plane, not the per-pixel optic flow
of the entire scene. Thus for motions such as rotations a different warp may be appropriate.
b) The pure rotation warp (rotation of angular velocity ωv around a point at (xc, yc):

W rot(x, y, ∆t; ω) =

[
cos(θωv) − sin(θωv)
sin(θωv) cos(θωv)

] [
x− xc
y− yc

]
+

[
xc
yc

]
(3.9)

where the angle travelled is θωv = −ωv∆t, the warp parameters ω = (ωv, xc, yc) and ∆t is the
difference between the event timestamps and the reference time, t− tref. The Jacobian for this warp

42 Chapter 3. Motion Segmentation using Motion Compensation

is:

∇W rot =

[
1− cos(θωv) sin(θωv) (yc − y) cos(θωv) + (xc − x) sin(θωv)
− sin(θωv) 1− cos(θωv) (x− xc) cos(θωv) + (yc − y) sin(θωv)

]
(3.10)

c) The 4-DoF warp from [58], a 4-DoF transform, parametrised by ω which consists of a 2D transla-
tion (vx, vy), followed by a motion toward the image plane vz and a rotation θz around the z axis of
the camera:

W xyzθ(x, y, ∆t; ω) =

[
x
y

]
− ∆t

([
vx
vy

]
+ (vz + 1)

[
cos(θz) − sin(θz)
sin(θz) cos(θz)

] [
x
y

]
−
[

x
y

])
(3.11)

[58]. Since the rotation is preceded by translations and a radial expansion of the events, it is not
necessary to explicitly parameterise for the center of rotation which is accounted for by the shifts.
The Jacobian is:

∇W xyzθ =

[
−∆t 0 ∆t(y sin(θz)− x cos(θz))

0 −∆t ∆t(−x sin(θz)− y cos(θz))

]
(3.12)

3.2.8 Sequence Processing

The above method segments the events E from a short time interval T. To process an entire stream
of events, a sliding window approach is used, splitting the stream into overlapping packets of events
{En}Ne

n=1. We process the n-th packet and then slide the window, thus selecting more recent events.
The motions estimated by clustering En can be propagated in time to predict an initialisation for the
clusters of the next packet, En+1. We use a fixed number of events Ne per window, and slide by half
of it, Ne/2.

3.3 Experiments

Overview

In this section we first provide a quantitative evaluation of our method on a publicly available, real-
world dataset [58], showing that we significantly outperform two baseline methods [58, 104]. We
provide further quantitative results on the accuracy of our method with regard to relative motion
differences and we demonstrate the efficacy of our method on additional, challenging real-world data.
Throughout the experiments, we demonstrate several features of our method, namely that (i) it allows
arbitrary motion models for different clusters, (ii) it allows us to perform motion segmentation on
difficult scenes (high speed and/or HDR), where conventional cameras would fail, (iii) it is robust to
the number of clusters used (Nl), and (iv) that it is able to perform motion segmentation on non-rigid
scenes. The sequences considered cover a broad range of motion speeds, from 12 pixel/s to several
hundred pixel/s. We strongly recommend looking at the accompanying video 1.

The following experiments were carried out with data from a Dynamic and Active-pixel VIsion
Sensor (DAVIS) 240C camera [9], which provide both events and grayscale frames. The frames are
not used in the experiments; they serve only an illustrative purpose.

3.3.1 Quantitative Evaluation

Results on Dataset from [58]

We ran our segmentation method on the Extreme Event Dataset (EED) from [58] and compared
against the results from [58] and [104]. The sequences in the EED dataset showcase a range of scenes

1https://timostoff.github.io/19ICCV

https://timostoff.github.io/19ICCV

3.3. Experiments 43

(a) (b) (c)

Figure 3.3: Several scenes from the EED [58]: (a) Multiple Objects, (b) Occluded Sequence

and (c) What is Background? Moving objects (drones, balls, etc.) are within hand-labeled
bounding boxes. Images have been brightened for visualization.

Table 3.1: Comparison with SotA using the success rate proposed by [58] of detection of moving
objects (in %). Note that there are some inconsistencies in the results posted by [58] (see Section
3.3.1). Success is recorded whenever the estimated bounding box overlaps at least 50 % with the
hand-labelled one and it has more area within the hand-labelled bounding box than outside.

EED Sequence Name SOFAS [104] Mitrokhin [58] Ours (Alg. 1)

Fast moving drone 88.89 92.78 96.30
Multiple objects 46.15 87.32 96.77
Lighting variation 0.00 84.52 80.51
What is Background? 22.08 89.21 100.00
Occluded sequence 80.00 90.83 92.31

(Figure 3.3 and Table 3.1), which are very challenging for conventional cameras. In particular,
they comprise fast moving objects (around 600 pixel/s) in Fast Moving Drone and Multiple

Objects, which are almost indiscernible on the frames provided by the DAVIS camera, as well
as scenes with extreme lighting variations, such as Lighting variation (in which a drone is
tracked despite a strobe light pointing at the camera), and object occlusions. Having object seg-
mentation rather per-event segmentation in mind, the EED dataset provides timestamped bounding
boxes around the moving objects in the scene and proposes to measure object segmentation success
whenever the estimated bounding box overlaps at least 50 % with the hand-labelled one and it has
more area within the hand-labelled bounding box than outside. To compare against [58], we per-
form motion segmentation on the events that occur around the timestamp of the bounding-box and
count success if for a given cluster the above criterion is true for the segmented events. For a fair
comparison, we used the same type of motion models (4-DoF warps) as in [58].

As a side-note, the reliability of the benchmark results in [58] is somewhat unclear, since the
posted results are not always within the set of possible results. For example, for the sequence
Lighting variation, the paper claims to have a score of 84.52 % and the accompanying dataset
contains 76 bounding boxes. Since the score is calculated by number correct bboxes

total bboxes = score, it follows
that for Lighting variation, x

76 = 0.8452 and that x should be an integer value, which it is not
(x = 64.24). The same goes for all of the remaining sequences. Unfortunately, when contacted the
authors were not able to clear up this discrepancy.

Table 3.1 reports the results of the comparison of our method against [104] and [58]. Our method
outperforms [104] in all sequences by a large margin (from 7.41 % to 84.52 %), and improves over
[58] in all but one sequence, where it has comparable performance. In four out of five sequences

44 Chapter 3. Motion Segmentation using Motion Compensation

Ball behind net [58]
Drone, low
light [58]

Traffic scene Buildings and car
Street, facing the

sun
Fan and coin

Figure 3.4: From top to bottom: snapshots (motion-compensated images, as in Figure 2) of events
segmented into clusters on multiple sequences (one per column). Events coloured by cluster mem-
bership. Best viewed in accompanying video.

we achieve accuracy above 92 %, and in one of them, a perfect score, 100 %. Some results of the
segmentation are displayed on the first columns of Figure 3.4. In the What is Background?

scene (1st column of Figure 3.4), a ball is thrown from right to left behind a net while the camera
is panning, following the ball. Our method clearly segments the scene into two clusters: the ball and
the net, correctly handling occlusions. In the Lighting variation (2nd column of Figure 3.4),
a quadrotor flies through a poorly lit room with strobe lightning in the background, and our method
is able to segment the events due to the camera motion (green and blue) and due to the quadrotor
(purple).

Accuracy vs Displacement

While the dataset from [58] provides a benchmark for comparison against the SotA, it does not al-
low us to assess the per-event accuracy of our method. Here we measure segmentation success di-
rectly as a percentage of correctly classified events, thus much more fine-grained than with bounding
boxes. Since we wish to isolate our results from the noise which is usually present in real event data,
we perform the quantitative analysis on event data from a SotA photorealistic simulator [85] (note
that our other experiments are all on real sequences, some abnormally noisy, such as Lighting
variation). Knowing which objects generated which events, allows us to finely resolve the accu-
racy of our method.

However, segmentation accuracy is closely coupled with the observation window over which
events are collected. Intuitively, this makes sense; observing two objects with a relative velocity of
1 pixel/s for only 1 s means that the objects have moved only 0.1 pixels relative to each other, a
difference that is difficult to measure. Observing these two objects for 10 s means a relative displace-
ment of 10 pixels, which is easier to distinguish. Thus, the segmentation problem becomes easier
to solve the larger the observation window is. Larger observation windows however add latency and
can violate the assumptions of linear motion w.r.t. the motion model which FO based algorithms
usually make. Therefore we feel it is important to show how a given method performs w.r.t. relative
displacement.

3.3. Experiments 45

Figure 3.5: Per-event Success Evaluation. Segmentation accuracy vs relative object displacement
on pebbles sequence. Top: A textured image (pebbles) is slid from right to left at various veloci-
ties. The individual images intersect so as to prevent morphological clustering. Top left: image, top
right: successive event images (blue indicates negative, red positive events). Bottom: The success
rate of our method w.r.t. the relative displacement of the pebble images at various relative velocities
vrel = {30, 60, 120}pixel/s). Our method requires around 4 pixels of relative displacement for
90 % segmentation accuracy.

Figure 3.5 evaluates the above effect on a sequence consisting of textured pebbles moving with
different relative velocities. The plot of success rate vs relative displacement for various velocities
shows that as the relative displacement increases, the proportion of correctly classified events, and
therefore, the segmentation accuracy, increases. Our method requires that roughly 4 pixels of relative
displacement have occurred in order to achieve 90 % accuracy. We show the result across a range
of velocities to emphasise that our evaluation depends on relative displacement rather than absolute
motion.

Computational Performance

The complexity of Algorithm 1 is linear in the number of clusters, events, pixels of the IWE and the
number of optimisation iterations, in total, O((Ne + Np)Nl Nit). Our method generally converges in
less than ten iterations of the algorithm, although this clearly depends on several attributes of the data
being processed. Here, we provide a ballpark figure for the processing speed. We ran our method on a
single core, 2.4 GHz Central Processing Unit (CPU) where we got a throughput of 240 000 events/s
for optic flow type warps (Table 3.2). Almost 99 % of the time was spent in warping, which is
in agreement with the performance analysis in [58]. As they point out, this operation can be done in
parallel; they achieved a speedup of 1000× using a Graphics Processing Unit (GPU) implementation.
While we were not able to replicate this result, we were able to achieve five times greater speed-ups
on a Quadro K620 GPU (Table 3.2). The bottleneck during profiling was clearly memory transfer
between the GPU memory and streaming multiprocessors. Using hardware that sits closer to memory,
such as an Field Programmable Gate Array (FPGA), would potentially give much greater speedups.
Using a GeForce 1080 GPU, we achieved a 10× speed-up factor, as reported in Table 3.2. The
bottleneck is not in computation but rather in memory transfer to and from the GPU.

46 Chapter 3. Motion Segmentation using Motion Compensation

Throughput decreases as Nl increases, since all of the events need to be warped for every extra
cluster in order to generate motion-compensated images. Further, extra clusters add to the dimension-
ality of the optimisation problem that is solved during the motion-compensation step.

Table 3.2: Throughput in kilo-events per second (optic flow motion) of Algorithm 1 running on a
single CPU core vs GPU for varying N` (using the test sequence in Figure 3.7).

N` CPU [kevents/s] GPU [kevents/s]

2 239.86 3963.20
5 178.19 1434.66

10 80.93 645.02
20 32.43 331.50
50 12.62 113.78

Regardless of throughput, our method allows exploiting key features of event cameras, such as its
very high temporal resolution and its HDR, as shown in experiments on the EED dataset (Table 3.1)
and on some sequences in Figure 3.4 (Vehicle facing the sun, Fan and coin).

3.3.2 Further Real-World Sequences

We test our method on additional sequences in a variety of real-world scenes, as shown in Figure 3.4.
The third column shows the results of segmenting a traffic scene, with the camera placed parallel to a
street and tilting upwards while vehicles pass by in front of it. The algorithm segmented the scene into
four clusters: three corresponding to the vehicles (blue, red, yellow) and another one corresponding
to the background buildings (ego-motion, in green). Even the cars going in the same direction are
separated (red and yellow), since they travel at different speeds.

The fourth column of Figure 3.4 shows the results of segmenting a scene with a car and some
buildings while the camera is panning. We ran the algorithm to segment the scene into three clusters
using optical flow warps. One cluster segments the car, and the other two clusters are assigned to
the buildings. Note that the algorithm detects the differences in optical flow due to the perspective
projection of the panning camera: it separates the higher speed in the periphery (blue) from the slower
speed in the image center (red).

An HDR scene is shown on the fifth column of Figure 3.4. The camera is mounted on a moving
vehicle facing the sun (central in field of view) while a pedestrian and a skateboarder cross in front of
it. The camera’s forward motion causes fewer events from the background than in previous (panning)
examples. We run the segmentation algorithm with six clusters, allowing the method to adapt to the
scene. Segmented events are coloured according to cluster membership. The algorithm correctly
segments the pedestrian and the skateboarder, producing motion-compensated images of their silhou-
ettes despite being non-rigidly moving objects. Note that none of the previous scenes have a constant
depth, since the depth of the objects changes as the camera moves.

Finally, the last column of Figure 3.4 shows the versatility of our method to accommodate differ-
ent motion models for each cluster. To this end, we recorded a coin dropping in front of the blades of
a ventilator spinning at 1800 rpm. In this case the fan is represented by a rotational motion model and
the coin by a linear velocity motion model. Our method converges to the expected, optimal solution,
as can be seen in the motion-compensated images, and it can handle the occlusions on the blades
caused by the coin.

Figure 3.6 shows that our method also works with a higher resolution (640× 480 pixels) event-
based camera [100].

3.3. Experiments 47

3.3.3 Sensitivity to the Number of Clusters

The following experiment shows that our method is not sensitive to the number of clusters chosen
Nl . We found that Nl is not a particularly important parameter; if it chosen to be too large, the
unnecessary clusters end up not having any events allocated to them and thus mode collapse. This
is a nice feature, since it means that in practice Nl can simply be chosen to be large and then not
be worried about. We demonstrate this on the slider_depth sequence from [64]; where there are
multiple objects at different depths (depth continuum), with the camera sliding past them. Because of
parallax, this results in a continuum of image plane velocities and thus infinitely many clusters would
in theory be needed to segment the scene with an optical flow motion-model. Thus, the sequence can
only be resolved by adding many clusters which discretise the continuum of velocities.

Figure 3.7 demonstrates that our method is robust with regard to the number of clusters chosen (in
Figure 3.7b–3.7d); too few clusters and the method will simply discretise the event cluster continuum,
too many clusters and some clusters will mode collapse, i.e. no events will be assigned to them. By
segmenting with enough clusters and preventing cluster collapse, our method can be used to detect
depth variations; nevertheless, tailored methods for depth estimation [84] are more suitable for such
a task. The experiment also shows that our method deals with object occlusions.

Similarly, Figure 3.7 shows that our method is not sensitive to the mixture of motion models
either. Figure 3.7e shows the result with five clusters of optical flow type and five clusters of rotation
type. As can be seen, our method essentially allocates no event likelihoods to these rotation models
clusters, which clearly do not suit any of the events in this sequence. Figure 3.7f shows the result of
using only rotation motion models, resulting in failure, as expected. As future work, a meta-algorithm
could be used to select which motion models are most relevant depending on the scene.

48 Chapter 3. Motion Segmentation using Motion Compensation

Leaves Carpet Temple
Sc

en
e

C
lu

st
er

1
C

lu
st

er
2

C
lu

st
er

3
..

.
Se

gm
en

ta
tio

n

Figure 3.6: Scenes recorded with a Samsung Dynamic Vision Sensor (DVS) Gen3 event camera
(640× 480 pixels); algorithm run with ten clusters (N` = 10). From top to bottom: scene recorded,
four of the clusters (motion-compensated IWEs, with darkness indicating event likelihoods), and
the accustomed coloured segmentation (as in Figure 3.2). These examples illustrate that our method
can be used to segment the scene according to depth from the camera, although it is not its main
purpose.

3.4. Additional Motion-Compensation Segmentation Methods 49

Continuous Depth Variation

In this experiment, we essentially show a scene similar to that in Figure 3.7. The difference is that
the scene in Figure 3.8 shows a truly continuous depth variation. As can be seen in the results (using
Nl = 15), our method discretises the segmentation, although it is noteworthy that each ‘slice’ of
depth appears to fade toward foreground and background. This is because the method becomes less
certain of the likelihood of events that sit between clusters, the darkness of a region reflecting the
likelihood of a given event belonging to that cluster.

Due to the recent development of new, high resolution event-based cameras [100], we show the
results of our method on the output of a Samsung DVS Gen3 sensor, with a spatial resolution of
640× 480 pixels. In this experiment, we show the segmentation of several scenes (a textured carpet,
some leaves and a temple poster) as the camera moves. Due to ego-motion induced parallax, there is
a continuous gradient in the motion in the scene, i.e. the scenes present a continuum of depths. As
can be seen in Figure 3.6, our method works the same on high-resolution data.

3.3.4 Non-rigid Moving Objects

In the following experiments, we show how our method deals with non-rigid objects. Our algorithm
warps events E according to point-trajectories described by parametric motion models whose param-
eters are assumed constant over the (small) time ∆t spanned by E . Low-dimensional parametric warp
models, such as the patch-based optic flow (2-DoF, linear trajectories), rotational motion in the plane
(1-DoF) or in space (3-DoF) are simple and produce robust results by constraining the dimensionality
of the solution space in the search for optimal point-trajectories. However, simple warp models (both
in event-based vision or in traditional frame-to-frame vision) have limited expressiveness: they are
good for representing rigidly moving objects, but do not have enough degrees of freedom to repre-
sent more complex motions, such as deformations (e.g. pedestrian, birds, etc.). One could consider
using warps able to describe more complex motions, such as part-based warp models [78] or infinite-
dimensional models [112]. But this would make the segmentation problem considerably harder, not
only due to the increased dimensionality of the search space, but also because it could potentially
contain multiple local minima. Even though we do not explore more complex models to segment
such scenes, we are able to achieve acceptable results (although not as good as those on non-rigid
objects).

Pedestrian

Figure 3.9 shows a pedestrian walking past the camera while it is panning. In spite of using simple
warp models, our method does a good job at segmentation: the background (due to camera motion),
the torso of the person and the swinging arms are segmented in separate clusters. This is so, because
during the short time span of E (in the order of milliseconds), the objects move approximately rigidly.

Popping Balloon

In order to test the limits of this assumption, we recorded the popping of a balloon with the event
camera (see Figure 3.10). While the segmentation struggles to give a clear result in the initial mo-
ments of puncturing (3.10b), it still manages to give reasonable results for the fast moving, contracting
fragments of rubber flung away by the explosion (3.10c, 3.10d).

3.4 Additional Motion-Compensation Segmentation Methods

The similarity of our method to classical EM asks the question of how well similar clustering methods
would perform. In this section, we describe how two classical clustering methods (mixture densities

50 Chapter 3. Motion Segmentation using Motion Compensation

(a) Scene (b) Nl = 5×Optic Flow (c) Nl = 10× Optic Flow

(d) Nl = 20×c Flow (e) Nl = 5× OF + 5× Rotation (f) Nl = 10×Rotation

Figure 3.7: Experiment on slider_depth sequence of [64]. Motion-compensated images in 3.7b
to 3.7f show events coloured by cluster. Using Optic Flow (OF) warps (in 3.7b–3.7d), event clusters
correspond to depth planes with respect to the camera. Using as few as five clusters, the events are
discretised and approximately spread over the depth continuum. Using 5, 10 or 20 clusters in 3.7b,
3.7c, 3.7d gives very similar results, showing that our method is not sensitive to the value of Nl cho-
sen. Adding clusters with motion models that do not suit the motion, as in 3.7e, where five clusters
are pure rotational warps, does not disturb the output either as those motions mode collapse. For
reasons why the OF warp fails in this situation, see Section 3.2.7.

and fuzzy k-means) can be modified to tackle the task of event-based motion segmentation, by lever-
aging the idea of FO (Section 3.4.1 and 3.4.3). Examples comparing the three per-event segmentation
models developed (Algorithm 1 to 3) are given in Section 3.4.5, referred to as proposed (or Layered),
Mixture Densities and Fuzzy k-Means, respectively.

3.4.1 Mixture Densities

The mixture models framework [7, 19] can be adapted to solve the segmentation problem addressed.
The idea is to fit a mixture density to the events E , with each mode representing a cluster of events
with a coherent motion.

3.4.2 Problem Formulation

Specifically, following the notation in [19, Ch.10], we identify the elements of the problem: the data
points are the events E without taking into account polarity; thus, feature space is the volume Ve, and,
consequently, the clusters are comprised of events (i.e. they are not clusters of optic flow vectors in
velocity space).

The mixture model states that events ek ∈ Ve are distributed according to a sum of several distri-
butions (clusters), with mixing weights (cluster probabilities) π = {P(ψj)}Nl

j=1:

p(ek|ω) =
Nl

∑
j=1

p(ek|ψj, ω j)P(ψj), (3.13)

3.4. Additional Motion-Compensation Segmentation Methods 51

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 3.8: Sequence from a camera translating past a checkerboard (3.8a-3.8d). These grayscale
frames, provided by the DAVIS [9] are not used by our method; they are just for visualisation pur-
poses. Each image in 3.8f-3.8t shows the IWE of each cluster (15 clusters, optical flow motion mod-
els). 3.8e shows the segmented output (combined IWEs) in the accustomed coloured format.

where ω = {ω j}Nl
j=1 are the parameters of the distributions of each component of the mixture model

and we assumed that the parameters of each cluster are independent of each other: p(ek|ψj, ω) =
p(ek|ψj, ω j). The function p(z|ω) in (3.13), with z ∈ Ve, is a scalar field in Ve representing the

density of events in Ve as a sum of several densities, each of them corresponding to a different cluster,
and each cluster describing a coherent motion.

To measure how well the j-th cluster explains an event (3.13), we propose to use the unweighted
IWE (Appendix A.1.3), to which the probability of z (given ψj, ω j) is proportional:

p(z |ψj, ω j) ∝ Hj
(
x′(z; ω j)

)
(3.14)

Hj (x) =
Ne

∑
m=1

δ
(
x− x′mj

)
(3.15)

with warped event location x′mj = W(xm, tm; ω j). The image point x′(z; ω j) corresponds to the
warped location of point z ∈ Ve using the motion parameters of the j-th cluster.

Notice that the choice (3.14) causes the distribution of each component in the mixture p(z |ψj, ω j)
to be constant along the point trajectories defined by the warping model of the cluster, which agrees
with the ‘tubular’ shape mentioned in the problem statement (Section 3.2.1). The mixture model (3.13)
may not be constant along point trajectories since it is a weighted sum of several distributions, each
with its own point trajectories.

52 Chapter 3. Motion Segmentation using Motion Compensation

(a) Cluster 1 (b) Cluster 2 (c) Cluster 3 (d) All clusters (merged
IWEs)

Figure 3.9: Non-Rigid Scene. A person walks across a room, arms swinging. The room 3.9a, the
body 3.9b and the arms 3.9c are segmented out, with greater uncertainty to the event associations in
areas of deformation (such as elbows), visible in the fact that events are associated to both clusters
(events coloured by cluster in 3.9d).

(a) (b) (c) (d)

Figure 3.10: Non-Rigid Moving Objects. From left to right: snapshots of segmentation of balloon
popping. Run with Nl = 4 clusters, events coloured by cluster membership.

Algorithm 2 Event-based Motion Segmentation using Mixture Density Model

1: Input: events E = {ek}Ne
k=1 in a space-time volume V of the image plane, and number of clusters

Nl .
2: Output: cluster parameters ω = {ω j}Nl

j=1 and mixing weights π
.
= {P(ψj)}Nl

j=1.
3: Procedure:
4: Initialise ω and π.
5: Iterate until convergence:
6: • Update the mixing weights (3.17), using the current motion parameters ω and the mixing

weights from the previous iteration in (3.18).
7: • Update motion parameters ω by ascending on (3.16).

Iterative Solver: EM Algorithm

With the above definitions, it is possible to apply the EM algorithm in [19, Ch.10] to compute the
parameters of the mixture model, by maximising the (log-)likelihood of the mixture density:

(ω∗, π∗) = arg max
(ω,π)

Ne

∑
k=1

log p(ek|ω) (3.16)

subject to the choice of warping models.
In the E-step, the mixing weights π are updated using

P(ψj) =
1

Ne

Ne

∑
k=1

p(ψj|ek, ω j) (3.17)

3.4. Additional Motion-Compensation Segmentation Methods 53

with membership probabilities given by the Bayes formula

p(ψj|ek, ω j) =
p(ek|ψj, ω j)P(ψj)

∑Nl
i=1 p(ek|ψi, ωi)P(ψi)

. (3.18)

In the M-step, gradient ascent or conjugate gradient [71] of the log-likelihood (3.16) with respect to
the warp parameters ω is used to update ω, in preparation for the next iteration.

From the mixing weights and the motion parameters, it is straightforward to compute the event-
cluster assignment probabilities using (3.18). To initialise the iteration, we use the procedure de-
scribed in Section 3.2.5.

Notice that, during the EM iterations, the above method not only estimates the cluster parameters
ω and the mixing weights π but also the distributions p(z|ψi, ωi) themselves, i.e. the ‘shape’ of
the components of the mixture model. These distributions get sharper (more peaky or ‘in focus’)
around the segmented objects as iterations proceed, and blurred around the non-segmented objects
corresponding to that cluster. An example is given in Section 3.4.5.

3.4.3 Fuzzy k-Means

Event-based motion segmentation can also be achieved by designing an objective function similar to
the one used in the fuzzy k-means algorithm [19, Ch.10].

Problem Formulation

This approach seeks to maximise

(ω∗, P∗) = arg max
ω,P

Nl

∑
j=1

Ne

∑
k=1

pb
kjdkj, (3.19)

where b > 1 (e.g. b = 2) adjusts the blending of the different clusters, and the goodness of fit
between an event ek and a cluster j in Ve is given in terms of event alignment (i.e. ‘sharpness’):

dkj = log Hj(x′kj), (3.20)

the value of the unweighted IWE (3.15) at the warped event location using the motion parameters of
the cluster. We use the logarithm of the IWE, as in (3.16), to decrease the influence of large values of
the IWE, since these are counted multiple times if the events are warped to the same pixel location.
Notice that (3.19) differs from (3.1)-(3.4): the responsibilities pkj appear multiplying the IWE (i.e.
they are not included in a weighted IWE), and the sum is over the events (as opposed to over the
pixels (3.3)).

Notice also that this proposal is different from clustering in optic flow space (Figure 3.15). As
mentioned in Section 3.4.1, here the feature space is the space-time volume Ve ∈ R3 (i.e. event
location), rather than the optic flow space (R2) (i.e. event velocity).

3.4.4 Iterative Solver: EM Algorithm

The EM algorithm may also be used to solve (3.19). In the E-step (fixed warp parameters ω) the
responsibilities are updated using the closed-form partitioning formula

Pkj = d
1

b−1
kj

/
Nl

∑
i=1

d
1

b−1
ki . (3.21)

54 Chapter 3. Motion Segmentation using Motion Compensation

Algorithm 3 Event-based Motion Segmentation using the Fuzzy k-Means Method

1: Input: events E = {ek}Ne
k=1 in a space-time volume Ve of the image plane, and number of clusters

Nl .
2: Output: cluster parameters ω = {ω j}Nl

j=1 and event-cluster assignments P ≡ pkj
.
= P(ek ∈ `j).

3: Procedure:
4: Initialisation (as in Section 3.2.5).
5: Iterate until convergence:
6: • Update the event-cluster assignments pkj using (3.21).
7: • Update motion parameters ω by ascending on (3.19).

In the M-step (fixed responsibilities) the warp parameters of the clusters ω are updated using gradi-
ent ascent or conjugate gradient. The pseudo-code of the event-based fuzzy k-means segmentation
method is given in Algorithm 3.

3.4.5 Comparison of Three Motion-Compensation Segmentation Methods

We compare our method with the two above-mentioned methods (Sections 3.4.1 and 3.4.3) that we
also designed to leverage motion-compensation.

Figure 3.11 shows the comparison of the three methods on a toy example with three objects
(a filled pentagon, a star and a circle) moving in different directions on the image plane. In the
mixture density and fuzzy k-means methods, the motion-compensated IWEs do not include the event-
cluster associations P, and so, all objects appear in all IWEs, sharper in one IWE than in the others.
In contrast, in the proposed method (Algorithm 1), the associations are included in the motion-
compensated image of the cluster (weighted IWE), as per equation (3.1), and so, the objects are better
split into the clusters (with minor ghosting effects, as illustrated in Figure 3.2), thus yielding the best
results.

It is worth mentioning that the three per-event segmentation methods are novel: they have not
been previously proposed in the literature.

3.5 Computational Complexity

Next, we analyse the complexity of the three segmentation methods considered (Algorithm 1 to 3),
defined by objective functions (3.4), (3.16) and (3.19), respectively. The core of the segmentation
methods is the computation of the images of warped events (IWEs (3.1) or (3.15); one per cluster),
which has complexity O(NeNl).

3.5.1 Proposed (Layered) Model

The complexity of updating the event assignments using (3.6) is essentially that of computing the
(weighted) IWEs of all clusters, i.e. O(NeNl). The complexity of computing the contrast (3.3) of
a generic image is linear in the number of pixels, O(Np), and so, the complexity of computing the
contrast of one IWE is O(Ne + Np). The computation of the contrast is negligible compared to the
effort required by the warp. Computing the contrast of Nl clusters (corresponding to a set of candidate
parameters) has complexity O

(
(Ne + Np)Nl

)
. Since multiple iterations Nit may be required to find

the optimal parameters, the total complexity of the iterative algorithm used is O
(
(Ne + Np)Nl Nit

)
.

3.5.2 Mixture Density Model

The complexity of updating the mixture weights is that of computing the posterior probabilities
p(ψj|ek, θj), which require computing the IWEs of all clusters, i.e. complexity O(NeNl). The

3.6. Comparison to k-means Optic Flow Clustering 55

Cluster 1 Cluster 2 Cluster 3
Pr

op
os

ed
m

et
ho

d
M

ix
tu

re
de

ns
ity

Fu
zz

y
k-

m
ea

ns

Figure 3.11: Comparison of three methods for event-based Motion Segmentation: Algorithms 1 to 3
(one per row).

complexity of updating the motion parameters is also that of computing the contrasts of the IWEs of
all clusters, through multiple ascent iterations. In total, the complexity is O

(
(Ne + Np)Nl Nit

)
.

3.5.3 Fuzzy k-means Model

The complexity of computing the responsibilities (3.21) is that of computing Nl IWEs (values dkj),
i.e. O(NeNl). The complexity of updating the motion parameters is that of computing the objective
function (3.19), O(NeNl), through multiple iterations. In total, the complexity is O(NeNl Nit).

Figure 3.12 shows the convergence of the three above methods on real data from a traffic sequence
that is segmented into four clusters (Figure 3.13 and third column of Figure 3.4): three cars and the
background due to ego-motion. The top plot, Figure 3.12a, shows the evolution of the sum-of-
contrasts objective function (3.4) vs the iterations. All methods flatten out after ≈ 20 iterations,
and, as expected, the proposed method provides the highest score among all three methods (since it
is designed to maximise this objective function). The Mixture model and Fuzzy k-means methods
do not provide such a large score mostly due to the event-cluster associations, since they are not as
confident to belonging to one cluster as in the proposed method. Figure 3.12b displays the number
of warps (i.e. number of IWEs) that each method computes as the optimisation iterations proceed; as
it can be shown, the relationship is approximately linear, with the proposed method performing the
least warps for a considerable number of iterations, before flattening out (Figure 3.12a).

3.6 Comparison to k-means Optic Flow Clustering

Finally, the following experiments show the comparison of our method against k-means clustering of
optic flow. We first illustrate the difference with a qualitative example and then quantitatively show

56 Chapter 3. Motion Segmentation using Motion Compensation

(a) (b)

Figure 3.12: Comparison of three Methods. We compare the convergence properties of three
motion-compensated event-segmentation methods (Algorithms 1 to 3): proposed (layered) method
(blue), Mixture Density Model (orange) and Fuzzy k-Means (green). Data used is from the Traffic
Sequence (third column of Figure 3.4), the warped events at each iteration are visualised in Figure
3.13.

the ability of our method to resolve small differences in velocities compared to k-means. To this
end, we use an event-based camera mounted on a motorised linear slider, which provides accurate
ground truth position of the camera. Since the camera moves at constant speed in a 1-D trajectory,
the differences in optical flow values observed when viewing a static scene are due to parallax from
the different depths of the objects causing the events.

Numbers Sequence

In this experiment, we placed six printed numbers at different, known depths with respect to the linear
slider. The event-based camera moved back and forth on the slider at approximately constant speed.
Due to parallax, the objects at different depths appear to be moving at different speeds; faster the
closer the object is to the camera. Thus we expect the scene to be segmented into six clusters, each
corresponding to a different apparent velocity.

Figure 3.14 compares the results of k-means clustering optic flow and Algorithm 1. To compute
optical flow we use conventional methods on reconstructed images at a high frame rate [94], with
the optical flow method in [20] producing better results on such event-reconstructed images than
state-of-the-art learning methods [106]. The results show that the velocities corresponding to the six
numbers are too similar to be resolved correctly by the two-step approach (flow plus clustering), as
evidenced by the bad segmentation of the scene (numbers 3, 4 and 5 are clustered together, whereas
three clusters are used to represent the events of the fastest moving number–the zero, closest to the
camera). In contrast, our method accurately clusters the events according to the motion of the objects
causing them, in this case, according to velocities, since we used an optical flow warp (linear motion
on the image plane). The higher accuracy of our method is easily seen in the sharpness of the motion-
compensated images (cf. Figure 3.14d and Figure 3.14f).

Rocks at Different Speeds

We also tested our method on two real sequences with six objects of textured images of pebbles (sim-
ilar to Figure 3.5), in which the relative velocities of the objects were 50 pixels/s and 6 pixels/s,
respectively. Figure 3.15 shows the results. If the objects are moving with sufficiently distinct ve-
locities (Figure 3.15a), the clusters can be resolved by the two-step approach. However, once the
objects move with similar velocities (Figure 3.15a), k-means clustering of optical flow is unable to

3.6. Comparison to k-means Optic Flow Clustering 57

(a) Proposed, iter =
1

(b) iter = 5 (c) iter = 10 (d) iter = 20 (e) iter = 80

(f) Mixture Density,
iter = 1

(g) iter = 5 (h) iter = 10 (i) iter = 20 (j) iter = 80

(k) Fuzzy k-Means,
iter = 1

(l) iter = 5 (m) iter = 10 (n) iter = 20 (o) iter = 80

Figure 3.13: Images of the motion-corrected events for three segmentation methods. From left to
right the images show the state after 1, 5, 10, 20 and 80 iterations respectively. Top Row: Algorithm
1, Middle Row: Algorithm 2, Bottom Row: Algorithm 3.

correctly resolve the different clusters. In contrast, our method works well in both cases; it is much
more accurate: it can resolve differences of 6 pixel/s for objects moving at 50 pixel/s to 80 pixel/s,
given the same slice of events.

58 Chapter 3. Motion Segmentation using Motion Compensation

(a) DAVIS performs linear
translation over a multi-object
scene.

(b) Resulting image and events
(red and blue, indicating polar-
ity).

(c) Clustered volume of events
(colored by cluster number).

(d) Motion-compensated image
(colored by clustered optic
flow).

(e) Clustered volume of events
(colored by cluster number).

(f) Motion-compensated image
(colored by recovered optic
flow).

Figure 3.14: Numbers Sequence. Motion Segmentation by K-means clustering on estimated optic
flow (center row) and by Algorithm 1 (bottom row).

(a) Minimum velocity between objects: 50 pixel/s (b) Minimum velocity between objects: 6 pixel/s

Figure 3.15: Rocks at Different Speeds. Segmentation by k-means clustering of estimated optical
flow (k = 6). The plots show the distribution of optical flow vectors and the six Voronoi diagrams
resulting from k-means clustering on optic flow space. The crossings of red dashed lines indicate
the ground truth optical flow velocity, the dark circles indicate the centroids of the k-means clusters.
The pink circles indicate the cluster’s optical flow estimated by our method (Algorithm 1).

3.7. Discussion 59

3.7 Discussion

In this work we presented the first method for per-event segmentation of a scene into multiple objects
based on their apparent motion on the image plane. We jointly segmented a given set of events and
recovered the motion parameters of the different objects (clusters) causing them. Additionally, as a
by-product, our method produced motion-compensated images with the sharp edge-like appearance
of the objects in the scene, which may be used for further analysis (e.g. recognition). We showed
that our method outperforms two recent methods on a publicly available dataset (with as much as
10 % improvement over the state-of-the-art [58]), and showed it can resolve small relative motion
differences between clusters. Our method achieves this using a versatile cluster model and avoiding
explicit estimation of optical flow for motion segmentation, which is error prone. All this allowed us
to perform motion segmentation on challenging scenes, such as high speed and/or HDR, unlocking
the outstanding properties of event-based cameras.

Our method is not reliant on scene-dependent hyperparameters and even the key parameters of
the number of clusters Nl is not critical as overparametrisation leads to mode collapse of superfluous
clusters. In the next chapter we explore alternative focus measures to the variance and their impact
on FO.

3.7.1 Resources

Video and dataset: https://timostoff.github.io/19ICCV

https://timostoff.github.io/19ICCV

61

Chapter 4

Comparison of Focus Measures

Based on [103]

The variance of the Image of Warped Events (IWE) is the most commonly used reward function in
Focus Optimisation (FO), which has also been shown to have superior convergence properties [25]
to other rewards, such as the sum of squares of the average timestamp image [58]. However, there
are many different rewards which could be employed to estimate the focus of the IWE. In this work,
we construct two classes of focus measuring functions: magnitude and sparsity rewarding. We define
aperture uncertainty, an analogous concept to the aperture problem in conventional computer vision
applied to focus optimisation. We show that sparsity rewarding functions are smoother and are less
prone to aperture uncertainty. We also show why magnitude rewarding functions, such as the variance
may have local or even global maxima at locations which do not represent the location of the desired
solution. We back this theory up with experiments on various examples, from scenes constructed to
display focus measure properties to a more complex office scene.

4.1 Introduction

Events carry little information individually and so are not meaningfully treated in isolation. So far,
event-based algorithms have been in one of two categories; those which operate on individual events
to update some previous state and those which operate on a set of events to perform a given task
or estimate a particular quantity [26]. Those methods which operate on individual events typically
require historic information, contained in the maintained state (e.g. reconstructed grayscale images)
to make inferences. On the other hand, those which operate on a set of events require no external
information. As noted in [26], the former category can be further broken down into those methods
which (a) discard the temporal information carried by the events, for example by accumulating the
events into frames over a temporal window and then performing computations on those frames (such
as [51, 67, 90, 120]) and those which (b) utilise the temporal information of the events (such as
[3, 26, 27, 58, 62, 63, 84, 104, 117, 120]). Since traditional computer vision algorithms are not
usually designed with continuous time, asynchronous data such as events, these methods require
novel techniques.

One such technique is that of Focus Optimisation (FO), whereby events are warped along point
trajectories to the image plane. The trajectories can then be optimised with respect to the resulting
Image of Warped Events (IWE) Iω to recover the point trajectories that best fit the original set of
events.

4.1.1 Focus Optimisation (FO)

As mentioned in Section 2.2.1, FO emerged recently as a promising technique for solving a num-
ber of problems in event-based vision. FO warps events along their motion trajectories to produce
motion-compensated images called the IWE (Figure 4.1d), whose focus is optimal when the estimated
trajectory matches the true spatiotemporal trajectory of the events on the image plane. The focus is

62 Chapter 4. Comparison of Focus Measures

(a) Event camera moves
around a scene.

time[s]

y

x

(b) Events (red) generated
by intensity gradients in
the scene (black).

50 0 50
vx [pixels/second]

50

0

50

v y
 [p

ix
el

s/
se

co
nd

]

Re
wa

rd

(c) Plot of reward vs opti-
cal flow estimate. Ground
truth in red dotted lines,
black circle represents
estimated optical flow
velocity.

(d) Motion-compensating
the events reveals the
original gradients.

Figure 4.1: Focus Optimisation: Events generated by scene and camera motion (4.1a) form a point
cloud in a space-time volume (4.1b). If the events are motion-compensated by some trajectory, the
contrast at that point can be evaluated by some reward r. Since the resulting reward has gradients
with respect to trajectory parameters (4.1c), the original trajectory can be estimated, giving optic
flow and motion-correction (4.1d) in one step.

usually measured via a proxy function such as the variance of the IWE. Since the variance also mea-
sures the contrast of the image, FO is also often referred to as Contrast Maximisation in the literature.
More formally, given an event defined by its image position, time-stamp and sign of intensity change,
en = {xn, tn, sn}, we define the warped location of the event with respect to the warp parameters ω
as

x′n =W(xn, tn; ω), (4.1)

WhereW is the warping function. Thus the image of warped events from Ne events is

Iω =
Ne

∑
n=1

bnδ(x− x′n), (4.2)

[26] where each pixel x sums the warped events x′n that map to it (indicated by δ since they represent
intensity spikes). bn = 1 or bn = sn depending on whether the event polarities should be considered
or not. Since x′ is usually not a discrete value, the events are distributed to the IWE via bi-linear
interpolation, with each pixel (u, v) in the IWE given by:

Iω(u, v) =
Ne

∑
n=1

bn max(0, 1− |x′n − u|)max(0, 1− |y′n − v|) (4.3)

The resulting IWE can then be evaluated using a reward function and optimised w.r.t. the warp
parameters using an off-the-shelf optimiser. Thus, the steps of the FO method are:

• Collect a set of events generated by gradients moving across the image plane.

• Based on a motion model, generate image of warped events Iω.

• Use a reward function to evaluate Iω.

• Optimise the reward with respect to the motion parameters.

An advantage of this method is that the problem of event associations (which events were produced by
the same feature) is solved implicitly. FO is a versatile method and has been recently used to estimate
camera rotation on a static scene [27], estimate optical flow [104], track features in the event stream
[117], estimate camera motion and depth [26], perform moving object detection [58] and provide a
training signal for deep learning using events [120].

4.2. Reward Functions 63

(a) (b)

Figure 4.2: Events from circle moving across the image plane projected along a good (4.2b) and a
poor (4.2a) estimate of the actual trajectory. In 4.2a sum of accumulations squared (rSoS) is 5, 683
while in 4.2b rSoS = 27, 884.

One aspect to FO which has not previously been explored is the choice of focus-measuring func-
tion. In this chapter we look at some additional classes of focus measure and their effect on FO.

4.1.2 Contributions

Our contributions are:

• A description of two classes of reward function, magnitude and sparsity rewarding for FO.

• A definition of aperture uncertainty, an analogue to the aperture problem in conventional com-
puter vision.

• We show why sparsity rewarding functions have a smoother objective function and why the
two classes behave differently w.r.t. aperture uncertainty.

• Proof and experimental evidence of reward function properties.

An unsolved problem with IWE is determining how many events should be processed at once. For
the sake of efficiency the warping model used is typically a linearisation of some higher dimensional
trajectory, thus it is important that the set of events does not span too great a time. However this
duration is dependent on the dynamics of the scene. We propose a new solution to this problem
which is fully compatible with the general IWE framework.

4.2 Reward Functions

In [26, 27] the total variance of I ,

rσ2(Iω) =
1

Np
∑
i,j
(hi,j − µ(Iω)

2) (4.4)

was used to evaluate the warp, (Np is the number of pixels, µ(Iω) the mean of Iω and hi,j is the value
of pixel i, j in Iω. In [104] the sum of squares of Iω (4.5) was used. These two rewards are essentially
equivalent as shown in [27]. The reason these two rewards work is because they disproportionately
reward event accumulations of a high magnitude. (Figure 4.2). This occurs since, at the optimal
trajectory, events are accumulated onto the small set of locations on the image plane at tref that was

64 Chapter 4. Comparison of Focus Measures

occupied by the original gradients at tref. In other words any reward will work that rewards high
accumulations more than the same total accumulations spread across more locations. At the same
time, if most events are accumulated at fewer locations, it means that most locations at tref contain no
events at all. Therefore we propose to explore the benefits of the following rewards for FO:

• Sum of Squares (rSoS):

rSoS(Iω) =
1
|Ω|

∫
Ω

Iω
2. (4.5)

The derivative of this reward with respect to the warp parameters is

∂rSoS

∂ω
=

1
|Ω|

∫
Ω

2Iω
∂Iω

∂ω
(4.6)

Closely related to this reward is the variance:

rσ2(Iω) =
1
|Ω|

∫
Ω
(Iω − µ(Iω))

2 (4.7)

for which the derivative is
∂rσ2

∂ω
=

1
|Ω|

∫
Ω

2Iµ
∂Iµ

∂ω
(4.8)

where Iµ is the mean-centred image Iµ = Iω − µ(Iω) [27]. In practice the mean of the IWE
is usually very small, so that rSoS ≈ rσ2 . We will examine the rSoS in this work but the results
and conclusions are also valid for the variance.

• Sum of Exponentials (rSoE):

rSoE(Iω) =
1
|Ω|

∫
Ω

exp(Iω). (4.9)

Exponentials reward higher numbers even more disproportionately than do polynomials (recall
that limn→∞

nb

an = 0). Therefore, this reward is more ‘extreme’ than rSoS and rσ2 in the sense
that it rewards large values in the IWE yet more disproportionately. The derivative of this
reward with respect to the warp parameters is

∂rSoE

∂ω
=

1
|Ω|

∫
Ω

exp(Iω)
∂Iω

∂ω
(4.10)

• Max of Accumulations (rMoA):

rMoA(Iω) = max
u,v∈Ω

(Iω(u, v)). (4.11)

This reward simply returns the greatest accumulation. Since this reward does not measure other
values in the IWE, it is yet more sensitive to large magnitudes in the IWE than rSoE. Since
the reward function is discontinuous, there is no analytic derivative. Thus, we use numeric
gradients to optimise this function.

• Sum of Accumulations (rSoA):

rSoA(Iω) = −
1
|Ω|

∫
Ω

Iω(u, v) > λsup. (4.12)

This reward counts the number of locations (u, v) ∈ Ω on the IWE containing at least λsup
events. The rSoA is negated in order to frame the the optimisation as a maximisation, in keeping
with the other reward functions. If λsup = 1 (the value we use), the λsup is just a measure of

4.2. Reward Functions 65

the occupancy of the IWE and can be thought of as the support of the IWE. The trade-off with
the threshold λsup is that for low values it is quite sensitive to noise, while for large values it
may not trigger at all unless additional events are collected, which may introduce latency and
motion-blur as well as violations of linear motion assumptions. The derivative is the piecewise
function:

∂rSoA

∂ω
=

1
|Ω|

∫
Ω

{
∂Iω
∂ω Iω(u, v) > λsup

0 else
(4.13)

• Sum of Suppressed Accumulations (rSoSA):

rSoSA(Iω) =
1
|Ω|

∫
Ω

exp(−λc Iω). (4.14)

This reward gives locations with few accumulations in them a higher value than locations with
many accumulations in them and saturates for large values of Iω(u, v). This is to reduce the
noise sensitivity of directly computing the support of the IWE as in the rSoA. This reward is
maximised at the optimal trajectory, since most events are accumulated at few locations and
thus at most locations in the image (u, v) ∈ Ω will return a high value. The factor λc is an
arbitrary shifting factor which decides the saturation point. In this work we used λc = 10. The
derivative for this function is

∂rSoSA

∂ω
=

1
|Ω|

∫
Ω
−λc exp(λc Iω)

∂Iω

∂ω
(4.15)

The problem we are trying to solve with all of these functions is

arg max
ω

r(Iω) (4.16)

where r is the focus-measuring objective function used. Efficient optimisation algorithms make use
of the derivative of the objective function in order to determine the search direction in the objective
function. The generic solution to the gradient of a given objective function w.r.t. to the motion
parameters is given by the chain rule:

∂r(Iω)

∂ω
=

∂r
∂Iω

∂Iω

∂ω
(4.17)

The gradient of the IWE w.r.t. the warp parameters is given by

∂Iω

∂ω
=

Ne

∑
i=1

si∇δ(xi − x′i)
∂x′i
∂ω

(4.18)

[27], with x and x′ being the position of the warped and unwarped event respectively, s the polarity
and∇δ the derivative of the Dirac delta function, as per the usual notation in this thesis. Note that the
polarity s is retained in the expression and that positive and negative events cancel each other. One
can also ignore polarity information (in which case s = 1), however, we find optimisation to be more
robust using polarity [25, 26].

66 Chapter 4. Comparison of Focus Measures

100 0 100
vx [pixels/second]

100

0

100

v
y
[p
ix
e
ls
/s
e
co
n
d
]

R
e
w
a
rd

(a) rSoS of events generated by a
line (motion vector in red).

100 0 100
vx [pixels/second]

100

0

100

v
y
[p
ix
e
ls
/s
e
co
n
d
]

R
e
w
a
rd

(b) rSoS of events generated by a
cross (motion vector in red).

Figure 4.3: The reward function (using rSoS) of the events generated by a straight line segment
(4.3a) shows the effect of aperture problem on contrast maximisation techniques when compared
to the reward function of a cross moving with the same optic flow velocity indicated by red dotted
lines (4.3b)

∂x′ i
∂ω is simply the Jacobian of motion model W , with the value of each Jacobian added to an n

channel image, where n is the size of the Jacobian. For example the optic flow warp functionW~v:

W~v(x, ∆t; ω) =

[
x
y

]
− ∆t

[
vx
vy

]
(4.19)

∇W~v(x, ∆t; ω) =

[
−∆t
−∆t

]
(4.20)

In this case, each event e would contribute −∆t to each location x in a 2-channel image, ∂Iω
∂ω . These

values are distributed to pixels using bilinear voting as described previously.
Of these rewards, rSoS, rSoE and rMoA favour trajectories that result in large accumulations (they

are magnitude-rewarding) and rSoA and rSoSA favour those that result in many locations having few
or no accumulations (they are sparsity-rewarding).

4.2.1 Aperture Problem

The aperture problem arises when optical flow is estimated using only a local region of a moving ob-
ject. In this case it can happen that only a line feature of the object is visible and thus only the velocity
component perpendicular to the local line feature can be estimated (Figure 1.6). FO techniques don’t
suffer from the aperture problem in the way that local optic flow estimators such as Lucas-Kanade
[53] do, since they consider the scene globally.

However, long line segments introduce uncertainty to the optic flow estimates when using FO,
which can be considered analogous to the aperture problem. A line segment moving over the Dynamic
Vision Sensor (DVS) image plane will generate events which lie on a plane in the space-time volume
[61]. Although warping the events along the trajectory of the line segment will generate a large value
in the reward function, trajectories which vary slightly but still lie on the event plane will generate
large values as well. This ’aperture uncertainty’ can be seen in Figure 4.3a; the reward function for
the straight line segment features a long ridge, along which the values are similar to each other.

It is actually worse than this - for scenes with very strong line segments there are likely to be
two local maxima to either side of the true trajectory and none at the true trajectory. As a result, a
good optimisation result would not guarantee a good motion estimate. This is because it is possible
to achieve greater event accumulations when warping over the diagonal of the plane; since greater
accumulations are rewarded in rSoS, these trajectories will maximise the reward function (Figure 4.4).

Once the line segment gains features on other axes, this uncertainty is much reduced, the region
around the ground truth forming a sharp spike, since changing the trajectory slightly in the direction

4.2. Reward Functions 67

t

y

x

Figure 4.4: The plane in x, y, t represents a set of events generated by a line segment moving in the
direction of the y axis. If the events are projected along the velocity vector (dashed arrows), they
accumulate (green double arrow), giving the rISoA1. The integral of those accumulations (green area)
squared is rSoS1. If the events are instead (incorrectly) projected across the diagonal of the plane, the
corresponding accumulations (blue arrow) give rISoA2, which being the inverse of the arrow length
becomes smaller. The rSoS2 (blue area) however becomes larger, since it rewards the larger peak in
the accumulations. Thus maximising the rSoA would give a correct result, the rSoS an incorrect one,
showing how sparsity-rewarding rewards are less susceptible to the aperture problem.

of one of the image gradient’s principal axes will cause events along the other axis to accumulate less
(Figure 4.3b).

For sparsity-rewarding rewards the reward will experience much stronger relative change to slightly
incorrect trajectories and thus suffer less from aperture problem. The reason for this is demonstrated
in Figure 4.4; while warping the events parallel to the plane of events diagonally is not likely to influ-
ence the rSoS strongly, it will cause the events on the resulting IWE to take up substantially more space
and thus strongly affect the rSoA. This effect is validated experimentally in datasets with dominant
line segments (see Section 4.4.1, 4.4.3) and is visualised in Figure 4.5.

rSoS rSoE rMoA rSoA rSoSA

100 0 100

100
50

0
50

100

100 0 100 100 0 100 100 0 100 100 0 100

R
e
w
a
rd

Figure 4.5: Various rewards sampled vs optical velocities vx, vy for a dataset with strong line fea-
tures (see Figure 4.9). Ground truth is indicated by red dotted lines. Note that the magnitude-
rewarding rSoS, rSoE and rMoA are much more prone to having incorrect local maxima, for reasons
illustrated in Figure 4.4 than the sparsity rewarding rSoA and rSoSA.

4.2.2 Noise Tolerance

As sparsity-rewarding methods essentially measure the number of locations containing events in
them, they are susceptible to noise. For example, rSoA becomes entirely meaningless in the worst
case, where the event stream becomes so noisy that every location at tref contains at least one event.

68 Chapter 4. Comparison of Focus Measures

As more noise is added, these rewards become more and more uniform, until they are almost entirely
flat (Figure 4.8). Magnitude rewarding functions are far more robust in this respect, since noise events
are generally distributed evenly across the image sensor (this is not the case for ‘hot’ pixels, which
produce large numbers of events independently of stimulus or camera parameters, but these are eas-
ily removed in a calibration procedure and can be discounted). As a result, they do not cause large
accumulations of their own and are easily overwhelmed by genuine events.

4.2.3 Data Sufficiency

FO falls into the category of algorithms that operate on groups of events [26]. This means that events
need to be collected over some period of time before a meaningful estimate, such as optic flow can
be made. In practice, waiting for a displacement of at least several pixels is necessary for a reliable
estimate (Figure 4.7), which can take a long time for slow moving gradients. Estimating how long
events should be collected before FO is applied is an important task, since most FO methods make
an assumption of constant velocity over small periods of time in order to work. Further, the number
of events generated by gradients in the image is dependent on the relative strength of the gradients,
making simple event-counting methods somewhat scene dependent (as in Chapter 2). In our case,
it is necessary to know how many events the gradient is producing per pixel moved, since the rSoSA
reward contains a shifting parameter, which needs to be tuned according to this value.

We can estimate how many events are produced per pixel moved directly from the rSoS reward, by
examining the image under projection along the zero velocity I0. As a structure begins to move onto
a new pixel, it generates events proportional to the intensity of its gradients. At~v = 0, these events on
the same pixel will accumulate, causing the rSoS reward to grow quadratically. As the structure moves
on to the next pixel, quadratic growth will have to start anew, since the structure will be entering an
empty set of pixels (Figure 4.6c). Thus the rate of change of the rSoS along the ~v = (0, 0) trajectory
should flatten off periodically as the structure moves over the image plane. We can observe this in
real data (Figure 4.6), allowing estimation of whether FO will be able to give an optic flow estimate
given a set of events.

4.3 Combined Reward Functions

We have identified two classes of reward, sparsity- and magnitude-rewarding, that can be used to
optimise the total contrast of an image of warped events and shown that the one class should be much
better at dealing with aperture-uncertainty while the other should be more capable of tolerating noise.
We wish now to use that knowledge to construct a new, hybrid reward, which is able to take the best
from both classes of reward. Since rSoSA gave better results than rSoA (since it is not a binary measure
it is slightly more noise-tolerant), we combined this with a variety of magnitude-rewarding rewards:

• rR1 = rSoS + rSoSA In this reward we use the rSoS reward with the constraint during optimisation
that successive improved estimates must not decrease the rSoSA.

• rR2 = rSoS + rSoSA + rSoE Here we use the same reward as rR1, except that when we have
finally found an estimate, we use it as a starting point for gradient ascent using the rSoE.

The rSoE gives precise and noise-tolerant results, given that the starting point for the optimisation used
is close to the maximum, which is why we incorporate it in the rR2 reward. Given a bad initial point
rSoE performs poorly since it is not sufficiently smooth for most optimisation methods.

4.4 Experimental Results

We tested our rewards on high quality optical flow ground truth data collected from a Dynamic and
Active-pixel VIsion Sensor (DAVIS) 240C event camera [9], using a linear slider to pan over a variety

4.4. Experimental Results 69

(a) rSoS as events are added.

(b) Derivative of 4.6b.

t

x

y

(c) Events (white cubes) are accumulated on the image
plane as an edge (grey) moves in the direction of the
red arrow. The green arrow indicates the first crossing
of a pixel boundary (where d

dx rSoS), the orange arrow
the second.

Figure 4.6: As an edge (grey) moves across the image plane of an idealised event camera, it gener-
ates some number of events proportional to the intensity of the edge. These events can be summed
and squared to give the rSoS and producing quadratic growth in the rSoS as events are added. As the
edge moves onto the next pixel, the rSoS grows at a slower rate, so the derivative of rSoS with respect
to added events becomes close to zero. The minimum number of events required to compute the op-
tic flow is shown by the green arrow. This effect can be seen in real data - in 4.6b can be seen the
rSoS as events are added from the sequence in Section 4.2. In 4.6b the temporal derivative is zero
when the object crosses pixel boundaries.

0 1 2 3 4 5
Displacement [pix]

200

400

600

800

P
re

d
ic

te
d

 O
F

S
p

e
e
d

 [
p

ix
/s

]

Figure 4.7: Predicted optic flow (OF) vs displacement using rSoS reward function (blue). A displace-
ment of around 2 pixels is necessary for optimisation to converge to the correct result (red).

70 Chapter 4. Comparison of Focus Measures

E/N rSoS rSoE rMoA rSoA rSoSA

1/
0

100 0 100

100
50

0
50

100

100 0 100 100 0 100 100 0 100 100 0 100

R
e
w
a
rd

1/
10

100 0 100

100
50

0
50

100

100 0 100 100 0 100 100 0 100 100 0 100

R
e
w
a
rd

1/
10

0

100 0 100

100
50

0
50

100

100 0 100 100 0 100 100 0 100 100 0 100

R
e
w
a
rd

Figure 4.8: FO reward functions measured at varying optical velocities (vx, vy) under various
Event-to-Noise (E/N) ratios. Ground truth indicated by red dotted lines. Note that the magnitude-
rewarding rewards are much more robust at high event to noise ratios, still giving reasonable esti-
mates at 1/100 E/N. The sparsity-rewarding rewards fail, becoming increasingly flat distributions
with the center at ~v = 0, 0.

of scenes. We tested on two simple sequences of a line segment (Table 4.1) and a circle (Table 4.2)
moving across the image plane. The line segment sequence introduces a lot of aperture-uncertainty,
while the circle has none. We also tested the rewards on a real office scene (Table 4.3) to show that the
hypotheses tested in (Table 4.1) and (Table 4.2) have validity in scenes one might find ’in the wild’.
We restricted ourselves to relatively simple scenes, since it made it easier to collect ground truth data
and control the level of aperture uncertainty.

It is not our intent to prove the usefulness of the FO framework on real scenes here, since this
has been done several times in other work [26, 27, 58, 104, 117, 120]. Instead the experiments are
designed to highlight specific properties of the reward functions.

In the experiments we added random noise to the event stream to give us a signal/noise ratio of
1/10. In this way we were able to show the benefits of different rewards with respect to noise, which
can be quite a significant component of current event camera output, as well as the benefits with
respect to aperture-uncertainty.

In all of the experiments the same nonlinear conjugate-gradient optimisation was used (Polak-
Ribiere variant), with numeric gradients derived through the same method. Optimisation was per-
formed on consecutive batches of events, using a sliding window with a width of one pixel displace-
ment with regard to the optic flow velocity, with 100 samples taken per sequence.

Optical flow with respect to events is a slightly different creature from the conventional definition;
usually optic flow measures the displacement of pixels between consecutive frames, hence the usual
way of evaluating optical flow is through looking at the average endpoint error. For events however,
this definition makes less sense, since optical flow relates to the velocity of an event on the image
plane, not the displacement. Instead we will look at the average absolute magnitude error µ(|ME|),
so the average error of the magnitudes of the optical flow vector estimates with respect to ground
truth, and the average angular error µ(AE), so the average error of the estimated vector angles. This
way we can also look at the standard deviation of the errors, σ2(|ME|) and σ2(AE).

4.4. Experimental Results 71

4.4.1 Line Segment Sequence

Table 4.1: Absolute magnitude error |ME| and angular error AE of flow estimate vectors for line
segment sequence

Line Segment Sequence
Event/Noise = 1/0 (No Noise)

r µ(|ME|) σ2(|ME|) µ(AE) σ2(AE)
rSoS 38.29 1.68 -0.311 0.007
rSoE 137.51 14.02 -0.546 0.019
rMoA 22.41 10.92 -0.280 0.038
rISoA 11.36 5.41 -0.204 0.006
rSoSA 12.79 1.02 -0.234 0.006
rR1 10.31 3.26 -0.122 0.003
rR2 10.50 3.14 -0.103 0.004

Event/Noise = 1/10
r µ(|ME|) σ2(|ME|) µ(AE) σ2(AE)

rSoS 49.14 25.48 -0.611 0.077
rSoE 47.64 30.86 -0.712 0.401
rMoA 82.11 33.63 -0.482 0.051
rISoA 88.06 11.25 0.559 1.096
rSoSA 67.05 3.60 -0.635 0.010
rR1 55.33 12.56 -0.547 0.012
rR2 37.48 3.52 -0.440 0.007

The line-segment sequence (Figure 4.9a) illustrates the behaviour of the different rewards when
exposed to data with strong line features (this particular sequence consisting only of line features).
As discussed in Section 4.2.1, one would expect sparsity-rewarding rewards to perform better on this
sequence, at least in the case where the event to noise ratio is high. Indeed, of the conventional
rewards, the sparsity rewarding ones rSoA and rSoSA score best under this extreme case of aperture
uncertainty.

However, as hypothesised, once noise is added to the event stream, the sparsity-rewarding rewards
perform much worse than the magnitude-rewarding ones. It is worth pointing out here the remarkable
robustness of the FO method; even with an order of magnitude more noise polluting the events, the
optic flow estimates are still quite reasonable and only slightly deteriorated. The hybrid methods,
which are able to take advantage of the best properties of both types or reward, perform best under
both normal conditions and with large amounts of noise.

4.4.2 Circle Sequence

In the circle sequence the event camera slides past an image of a circle generating the events visualised
in Figure 4.9e. This sequence illustrates a scene in which there is no aperture-uncertainty, since
there are no dominant line features in the resulting events. In fact, the winner in such a scene is the
commonly implemented rSoS, which performs almost three times better than even our hybrid rewards,
though these have got slightly better accuracy in the average angular error.

Once noise is added to the event stream however, the accuracy of rSoS is two entire orders of
magnitude worse, whereas the hybrid reward rR2 only becomes five times worse, clearly beating
the other methods. Interestingly, the extreme magnitude-rewarding rewards rSoE and rMoA actually
improve as the scene becomes nosier. This is because these reward functions have quite strong peaks
and are thus prone to local convergence issues; the noise effectively blurs the reward function and thus
makes gradient ascent easier. In the interest of a fair comparison, the same amount of smoothing was

72 Chapter 4. Comparison of Focus Measures

(a) Setup (b) Timeslice of events (c) Noise added to the
events

(d) Motion-compensated

(e) Setup (f) Timeslice of events (g) Noise added to the
events.

(h) Motion-compensated

(i) Setup (j) Timeslice of events (k) Noise added to the
events

(l) Motion-compensated

Figure 4.9: Top row: DAVIS 240C camera mounted on a linear slider pans past a line segment prim-
itive. Middle row DAVIS 240C camera mounted on a linear slider pans past a circle primitive. Bot-
tom row DAVIS 240C camera pan over an office scene. Line segment sequence: in the experimen-
tal setup, the event camera is moved past a line segment using a linear slider. Slices of the result-
ing event stream are processed to extract optical flow estimates, both with noise added to the event
stream and once using only the original events.

4.5. Proofs and Additional Experiments 73

applied to all rewards during optimisation; for more details on the effect of smoothing on different
reward types, see the supplementary materials.

Table 4.2: Absolute magnitude error |ME| and angular error AE of flow estimate vectors for circle
sequence

Circle Sequence
Event/Noise = 1/0 (No Noise)

r µ(|ME|) σ2(|ME|) µ(AE) σ2(AE)
rSoS 0.49 0.37 -0.153 0.010
rSoE 72.14 11.20 1.517 0.033
rMoA 73.45 18.32 1.066 0.051
rISoA 2.37 1.91 -0.305 0.034
rSoSA 1.25 0.78 -0.350 0.009
rR1 1.58 1.27 -0.100 0.009
rR2 1.69 1.42 -0.036 0.040

Event/Noise = 1/10
r µ(|ME|) σ2(|ME|) µ(AE) σ2(AE)

rSoS 43.41 2.52 -0.512 0.010
rSoE 23.56 27.46 0.354 0.640
rMoA 11.10 3.83 0.132 0.090
rISoA 89.33 7.76 0.898 1.053
rSoSA 72.79 2.61 -0.737 0.009
rR1 57.95 14.91 -0.531 0.014
rR2 5.29 1.57 0.113 0.053

4.4.3 Office Sequence

The office sequence (Figure 4.9i) consists of panning across an office scene, to which the ground
truth optic flow velocities were hand-annotated afterwards. The sequence serves to illustrate that the
ideas tested in the previous experiments also apply to real scenarios. As is often the case in real
world sequences, there are several strong line features visible in the event stream, due to the edges
of windows, tables etc. As such, it is hardly surprising to see that our hybrid approach is able to
out-compete the existing methods both with and without added noise.

4.5 Proofs and Additional Experiments

In this section we provide some geometric proofs and insights into the findings of the preceding sec-
tions as well as a few additional experiments regarding convergence of the optimisation. In Section
4.5.1 we prove the notion that the magnitude-rewarding function rSoS will perform worse on line fea-
tures than the sparsity-rewarding function rSoA. In Section 4.5.2 we show the results of an experiment
where we test weighted sums of rewards. In Section 4.5.3 we show the results of an experiment to
test various blurring kernel strengths during optimisation.

74 Chapter 4. Comparison of Focus Measures

Table 4.3: Absolute magnitude error |ME| and angular error AE of flow estimate vectors for office
sequence

Office Sequence
Event/Noise = 1/0 (No Noise)

r µ(|ME|) σ2(|ME|) µ(AE) σ2(AE)
rSoS 5.58 3.58 -0.116 0.029
rSoE 17.89 18.43 0.178 0.879
rMoA 19.79 19.68 0.369 0.890
rISoA 16.28 18.64 -0.064 0.365
rSoSA 5.47 3.28 -0.170 0.041
rR1 9.09 12.93 -0.009 0.041
rR2 4.95 3.23 -0.008 0.112

Event/Noise = 1/10
r µ(|ME|) σ2(|ME|) µ(AE) σ2(AE)

rSoS 16.07 5.95 -0.455 0.042
rSoE 15.83 14.98 -0.084 0.766
rMoA 20.26 17.40 -0.139 0.692
rISoA 46.82 3.55 -0.679 1.121
rSoSA 49.09 0.40 -0.993 0.684
rR1 48.66 1.45 -1.119 0.312
rR2 15.08 14.66 -0.048 0.262

4.5.1 Aperture-Uncertainty of Sparsity vs Magnitude Rewarding

In Section 4.2.1 we discuss why magnitude-rewarding rewards are likely to fail on line features (due
to aperture uncertainty), together with a visual example (Figure 4.4) and plots of line features in real
data (Figure 4.6). Here we will prove this notion geometrically. As a line feature moves across the
image, it generates a plane of events. If one only considers event warp trajectories that run parallel to
the plane, the possible trajectories become two-dimensional - we can thus model the event plane as a
rectangle of height h and width w (see Figure 4.10).

Computing the sum of event accumulations along the actual trajectory of the line feature then just
becomes ∫ b

a
hdx, (4.21)

with the rSoS

rSoS =
∫ b

a
h2dx. (4.22)

Likewise, incorrect projections parallel to the plane of events can now be modelled by rotations of the
rectangle around point b by some angle φ (see Figure 4.11) - we rotate the events instead of rotating
the warp vector.

The accumulation of events can now be written as a piecewise function over the regions which
are bounded by the lines f1(x), f2(x), f3(x) and f4(x). If I is set to equal (0, 0), then

I = (0, 0) (4.23)

II = (−w cos(φ), w cos(φ)) (4.24)

III = (−w cos(φ) + h sin(φ), w cos(φ) + h cos(φ)) (4.25)

IV = (h sin(φ), h cos(φ)). (4.26)

4.5. Proofs and Additional Experiments 75

(a)

Figure 4.10: The local event plane modelled as a rectangle in 2D; the actual trajectory of the line
feature is shown as the dashed arrows.

(a)

Figure 4.11: The event plane modelled as a rectangle; possible optic flow trajectories parallel to the
event plane become rotations of the rectangle around point b by rotation φ.

76 Chapter 4. Comparison of Focus Measures

(a)

Figure 4.12: Two situations exist for 0 ≤ φ ≤ π/2: that d ≤ b (black) and b ≤ d (blue).

Thus,

f1(x) = − tan(φ)x (4.27)

f2(x) = w csc(φ) + x cot(φ) (4.28)

f3(x) = h sec(φ)− x tan(φ) (4.29)

f4(x) = cot(φ)x (4.30)

The function for the sum of accumulations can now be written as the piecewise function

fsum(x) =

csc(φ)(w + x sec(φ)) a ≤ x < d
h sec(φ) d ≤ x < b
sec(φ)(h− x csc(φ)) b ≤ x < c

b > d

csc(φ)(w + x sec(φ)) a ≤ x < b
w csc(φ) b ≤ x < d
sec(φ)(h− x csc(φ)) d ≤ x < c

b ≤ d

(4.31)

The double piecewise function is necessary, since there are two distinct cases as φ increases (see
Figure 4.12); that when b > d and that when b ≤ d.

The integral of fsum(x) is

∫ c

a
fsum(x) =

{
h2 tan(φ) + h(w− h tan(φ)) b > d
w2 cot(φ) + w(h− w cot(φ)) b ≤ d,

, (4.32)

which after a bit of rearranging comes out as

∫ c

a
fsum(x) =

{
hw b > d
hw b ≤ d,

(4.33)

(as one would expect, since the area of the original rectangle is invariant). If we now however look as
the rSoS of the rotated rectangle, things are a little more interesting. We simply integrate the square of

4.5. Proofs and Additional Experiments 77

fsum(x):

fsum(x)2 =

csc(φ)2(w + x sec(φ))2 a ≤ x < d
h2 sec(φ)2 d ≤ x < b
sec(φ)2(h− x csc(φ))2 b ≤ x < c

b > d

csc(φ)2(w + x sec(φ))2 a ≤ x < b
w2 csc(φ)2 b ≤ x < d
sec(φ)2(h− x csc(φ))2 d ≤ x < c

b ≤ d

(4.34)

and ∫ c

a
fsum(x)2 =

{
2
3 h3 tan(φ) sec(φ) + sec(φ)h2w b > d
2
3 w3 cot(φ) csc(φ) + csc(φ)w2h b ≤ d

(4.35)

= rSoS (4.36)

This integral is the familiar rSoS. If we plot (4.35) for 0 ≤ φ ≤ π
2 , w = 10 and a range of values for

h (see Figure 4.13), we see that the actual maximum of the rSoS is only at φ = 0 (as it should be),
when h >> w.

In the case of events, the ‘height’ of the event plane is only much greater than the width when a lot
of time passes, since the time axis is the equivalent of h in this analogy. This shows rather neatly, not
only why magnitude-rewarding rewards fail with line features, but that this uncertainty is dependent
on the accumulation time.

We can show this formally too; looking at the equations

2
3

h3 tan(φ) sec(φ) + sec(φ)h2w (4.37)

2
3

w3 cot(φ) csc(φ) + csc(φ)w2h (4.38)

from (4.35), note that (4.37) is monotonically increasing for all values of 0 ≤ φ ≤ π
2 in the range

b > d and that (4.38) is monotonically decreasing for all values of 0 ≤ φ ≤ π
2 in the range b ≤ d (for

fixed values of w and h, a valid assumption since the dimensions of the event plane don’t change).
This means that the maximum of the total function (4.35) is at the point where (4.37) = (4.38). Then

h2

w2 = cot2(φ) (4.39)

and

φ = cot−1

√
h2

w2 . (4.40)

Solving for φ = 0,

0 = cot−1

√
h2

w2 (4.41)

for which no solution exists. However,

lim
n→∞

cot−1√n = 0. (4.42)

Where n = h
w . Therefore the ratio of h

w must be very large in order to get the correct trajectory of a
line feature using magnitude-rewarding rewards.

The analogy for sparsity-rewarding rewards such as the rSoA is of course the length of the range
[a, c], since this corresponds to the count of locations to which events have projected. The equation

78 Chapter 4. Comparison of Focus Measures

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

50

100

150

200

250

r S
oS

w/h = 10/0
w/h = 10/20
w/h = 10/40
w/h = 10/60
w/h = 10/80
w/h = 10/100
w/h = 10/120
w/h = 10/140
w/h = 10/160
w/h = 10/180

Figure 4.13: Plot of the rSoS for various ratios of w/h, over 0 ≤ φ ≤ π/2.

describing this measure is
1

a− b
=

1
h sin(φ) + w cos(φ)

(4.43)

This is a convex function on the range 0 ≤ φ ≤ π
2 , therefore the maximum must lie at either 0 or π

2
for the range 0 ≤ φ ≤ π

2 . Recall that we require the maximum of this function to be at φ = 0, since
this represents no rotation and therefore the actual optic flow velocity. Being interested in those cases
where the value of Equation 4.43 is greater at φ = 0 than φ = π

2 :

1
h sin(0) + w cos(0)

>
1

h sin(π
2) + w cos(π

2)
(4.44)

=
1
w

>
1
h

(4.45)

= h > w (4.46)

This means that a longer observation window (greater h) will produce a better optimisation result.
For a visualisation of this, see the plots in Figure 4.14. The result shows that optimising contrast

with sparsity-rewarding functions can allow convergence to the true trajectory of pure line segments,
whereas magnitude rewarding functions cannot.

4.5.2 Weighted Sums

Since the errors presented in Section 4.4 had varying standard deviations, we thought it would be
worth looking at how weighted combinations of magnitude- and sparsity-rewarding function perform.
To this end we present the following plots in Figure 4.15. To generate these we estimated the optic
flow of the office sequence (see Section 4.4.3) various times using different weighted combinations of
the rSoS and rSoSA. The plots indicate that with no noise it is better to use only rSoSA and otherwise to
use a linear combination. If there is a lot of noise it is better to use rSoS. This supports the conclusions
drawn in the rest of the chapter. Note that the rR1 and rR2 reward are still better than these linear
combinations.

4.5.3 Blurring σ

In practice, convergence in optimising the contrast is greatly aided by applying a blurring kernel to
the image of warped events. In this experiment, we aim to discover which value of σ is best for which
reward. To do this we estimated optical flow on the circle sequence (Section 4.4.2) using various blur

4.5. Proofs and Additional Experiments 79

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

5

10

15

20

25

r S
oS

w/h = 10/0 (rSoS)
w/h = 10/10 (rSoS)
w/h = 10/20 (rSoS)
w/h = 10/30 (rSoS)
w/h = 10/40 (rSoS)

(a) Plot of the rSoS for various ratios of w/h, over 0 ≤ φ ≤ π/2.

0.2 0.4 0.6 0.8 1.0 1.2 1.40.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

r S
oS

w/h = 10/0 (rISoA)
w/h = 10/10 (rISoA)
w/h = 10/20 (rISoA)
w/h = 10/30 (rISoA)
w/h = 10/40 (rISoA)

(b) Plot of the rSoA for various ratios of w/h, over 0 ≤ φ ≤ π/2

Figure 4.14: Comparison of theoretical convergence behaviour of rSoS vs rSoA.

80 Chapter 4. Comparison of Focus Measures

0.
0/
1.
0

0.
1/
0.
9

0.
2/
0.
8

0.
3/
0.
7

0.
4/
0.
6

0.
5/
0.
5

0.
6/
0.
4

0.
7/
0.
3

0.
8/
0.
2

0.
9/
0.
1

1.
0/
0.
0

(w rSoS)/(w rSoSA)

5.70

5.65

5.60

5.55

5.50

(|
M
E
|)

(a) Error for weighted sum for event/noise ratio 1/0 (no noise).

0.
0/
1.
0

0.
1/
0.
9

0.
2/
0.
8

0.
3/
0.
7

0.
4/
0.
6

0.
5/
0.
5

0.
6/
0.
4

0.
7/
0.
3

0.
8/
0.
2

0.
9/
0.
1

1.
0/
0.
0

12

10

8

6

4

2

0

2

(|
M
E
|)

(w rSoS)/(w rSoSA)

(b) Error for weighted sum for event/noise ratio 1/2.

0.
0/
1.
0

0.
1/
0.
9

0.
2/
0.
8

0.
3/
0.
7

0.
4/
0.
6

0.
5/
0.
5

0.
6/
0.
4

0.
7/
0.
3

0.
8/
0.
2

0.
9/
0.
1

1.
0/
0.
0

50

45

40

35

30

25

20

15

(|
M
E
|)

(w rSoS)/(w rSoSA)

(c) Error for weighted sum for event/noise ratio 1/10.

Figure 4.15: Plots for the error of the estimates vs the sum weights for weighted sums of rSoS and
rSoA at different event to noise ratios.

4.6. Discussion 81

0.0 0.5 1.0 1.5 2.0 2.5
50

100

150

200

250

300

P
re

d
ic

te
d
 O

F
S

p
e
e
d
 [

p
ix

/s
]

Ground Truth

rSoS

rSoE

rMoA

rISoA

rSoSA

Blurring

Figure 4.16: Plot for the velocity estimates of various rewards for various values of σ.

sigmas. As can be seen in Figure 4.16, the different rewards have quite different reactions to different
degrees of blurring. However, a value of σ = 1 seems to give reasonable results across all of the
rewards and is the value we used in other experiments.

4.6 Discussion

In this chapter we showed that the underlying assumption made about FO is that good trajectory es-
timates are those where events accumulate in fewer locations. From this observation we were able
to devise two categories of reward function, sparsity and magnitude rewarding functions. Conven-
tionally variance or sum of squares (rSoS) has been used to maximise the contrast, but from our
categorisation we created four other rewards.

Since the different rewards have different standard deviations with regard to their errors, it may
make sense to use a weighted average of rewards or even sensor-fusion techniques such as the Ex-
tended Kalman Filter to further improve the results of combining rewards.

We touched upon the issue of how many events are needed to make good predictions and how
this quantity can be estimated. We showed which kind of data is likely to cause errors due to aperture
uncertainty, analogous to aperture problem in conventional image processing. We then showed that
sparsity-rewarding rewards are much less susceptible to this uncertainty, but are also more prone to
errors introduced by a noisy event stream. We tested various derived reward functions on real data
and confirmed the hypothesised traits of sparsity and magnitude rewarding functions. In order to
capitalise on the properties of both categories, we combined several of our reward functions to create
the rR1 and rR2 rewards.

Experimentally, these perform better than any one of the individual rewards under different con-
ditions of noise and object shape. Thus, we hope that this work will aid future event-based vision
research, providing better reward functions and stimulating discussion about what these rewards fun-
damentally do.

4.6.1 Resources

Video, code and dataset: https://timostoff.github.io/19ICCV

https://timostoff.github.io/19ICCV

83

Chapter 5

Dense Optic Flow using Deep Learning

Based on [105]

Event cameras are paradigm-shifting novel sensors that report asynchronous, per-pixel brightness
changes called ‘events’ with unparalleled low latency. This makes them ideal for high speed, high
dynamic range scenes where conventional cameras would fail. Recent work has demonstrated im-
pressive results using Convolutional Neural Network (CNN)s for video reconstruction and optic flow
with events. In this chapter we present strategies for improving training data for event-based CNNs
that result in 20-40 % boost in performance of existing State of the Art (SotA) video reconstruction
networks retrained with our method, and up to 15 % for optic flow networks (Figure 5.1). While many
methods exist for computing event-dense optic flow (i.e. an optic flow vector exists for each event),
our network is able to compute fully-dense optic flow (i.e. an optic flow vector exists for each pixel
even at locations that do not contain an event). A challenge in evaluating event-based video recon-
struction is lack of quality ground truth images in existing datasets. To address this, we present a new
High Quality Frames (HQF) dataset, containing events and ground truth frames from a Dynamic
and Active-pixel VIsion Sensor (DAVIS) 240C that are well-exposed and minimally motion-blurred.
We evaluate our method on HQF as well as several existing major event camera datasets.

5.1 Introduction

With the recent preponderance of deep learning techniques in computer vision, the question of how to
apply this technology to event data has been the subject of several recent works. Just as CNNs have
set the new SotA in conventional computer vision, recent works have done the same for several tasks
in event-based vision.

CNNs came to prominence in the ImageNet competition in 2012, where a deep CNN was applied
to a data set of around one million images representing 1000 different classes. The CNN (AlexNet)
achieved spectacular results, halving the error rates of the best competing approaches [43]. CNNs
can be thought of as highly parameterised, trainable function approximators [32]. They consist of an
input layer (in this case a voxel grid formed from events) and an output layer (in this case an image
representing video reconstruction frame or optic flow). Connecting input and output are the hidden
layers (the number and nature of which depend on the particular architecture), which take the output
tensor of the previous layer and transform it to produce a new tensor. Layers are parameterised by
weights and are differentiable, which enables efficient training, since the error between the prediction
of the network and the actual value of a training example can be back-propagated through the network
to adjust the weights. Stochastic gradient descent optimisers are used to nudge the network toward a
local minimum. CNNs take their name from convolutional layers, which convolve the input with a
kernel, whose weights are updated during training. The results of the convolution are passed through
an activation function (such as Rectified Linear Unit (ReLU), a function which is y = 0 for x < 0 and
y = x for x ≥ 0) to introduce non-linearity. These convolutions make CNNs well suited to finding
spatial patterns in input tensors. Convolutional layers are usually chained in a CNN, with early layers
detecting low level spatial features and later layers convolving with the resulting feature maps to detect

84 Chapter 5. Dense Optic Flow using Deep Learning

G
ro

un
dt

ru
th

So
tA

O
ur

s

CED IJRR MVSEC MVSEC HQF

Figure 5.1: Top: ground truth reference image. Middle/bottom: state-of-the-art E2VID [88] vs our
reconstructed images from events only. Challenging scenes from event camera datasets: CED [96],
IJRR [64], MVSEC [118] and our HQF dataset.

high level features. One issue with CNNs is that they are not naturally well suited to dealing with
sequential data which requires memory (e.g. speech recognition). A naive approach is to concatenate
the network output with the next input to form a Recurrent Neural Network (RNN), however such
networks tend to have poor long term memory performance. More sophisticated approaches such as
Long Short-Term Memorys (LSTMs) or Gated Recurrent Units (GRUs) contain gates, which allow
the network to decide which information to propagate through the next timestep. Gates can be thought
of as sub-networks which control which information to forget, which new information to add to the
network state and how to combine this information to form a new output. Sub-networks which exhibit
recurrence are called recurrent units.

[120] propose an unsupervised network able to learn optic flow from real event data, while [87,
88] produced SotA video reconstructions from events. [87] also showed that supervised networks
trained on synthetic events transferred well to real event data. Simulation shows promise since data
acquisition and ground truth are easily obtainable, in contrast to using real data. However, mismatch
between synthetic and real data degrades performance, so a key challenge in producing more accurate
results from CNNs is simulating realistic data.

We generate training data that better matches real event camera data by analysing the statistics of
existing datasets to inform our choice of simulation parameters. A major finding is that the contrast
threshold (Contrast Threshold (CT)) - the minimum change in brightness required to trigger an event
- is a key simulation parameter that impacts performance of supervised CNNs. Further, we observe
that the apparent contrast threshold of real event cameras varies greatly, even within one dataset.
Previous works such as event-based video reconstruction [88] choose contrast thresholds that work
well for some datasets, but fail on others. Unsupervised networks trained on real data such as event-
based optic flow [120] may be retrained to match any real event camera - at the cost of new data
collection and training. We show that using CT values for synthetic training data that are correctly
matched to CTs of real datasets is a key driver in improving performance of retrained event-based
video reconstruction and optic flow networks across multiple datasets. We also propose a simple
noise model which yields up to 10 % improvement when added during training.

A challenge in evaluating image and video reconstruction from events is lack of quality ground
truth images registered and time-synchronised to events, because most existing datasets focus on
scenarios where event cameras excel (high speed, High Dynamic Range (HDR)) and conventional

5.2. Related Works 85

cameras fail. To address this limitation, we introduce a new High Quality Frames (HQF) dataset that
provides several sequences in well lit environments with minimal motion blur. These sequences are
recorded with a DAVIS 240C event camera that provides perfectly aligned frames from an integrated
Active Pixel Sensor (APS). HQF also contains a diverse range of motions and scene types, including
slow motion and pauses that are challenging for event-based video reconstruction. We quantitatively
evaluate our method on two major event camera datasets: Event Camera Dataset and Simulator (IJRR)
[64] and HQF [118], in addition to our HQF, demonstrating gains of 20-40 % for video reconstruction
and up to 15 % for optic flow when we retrain existing SotA networks.

5.1.1 Contributions

We present a method to generate synthetic training data that improves generalisability to real event
data, guided by statistical analysis of existing real datasets. We additionally propose a simple method
for dynamic train-time noise augmentation that yields up to 10 % improvement for video reconstruc-
tion. Using our method, we retrain several network architectures from previously published works on
video reconstruction [88, 95] and optic flow [120, 121] from events. We are able to show significant
improvements that persist over architectures and tasks. Thus, we believe our findings will provide
invaluable insight for others who wish to train models on synthetic events for a variety of tasks. We
provide a new comprehensive High Quality Frames dataset targeting ground truth image frames for
video reconstruction evaluation. Finally, we provide our data generation code, training set, training
code, and our pretrained models, together with dozens of useful helper scripts for the analysis of
event-based datasets to make this task easier for fellow researchers.

In summary, our major contributions are:

• A method for simulating training data that yields 20-40 % and up to 15 % improvement for
event-based video reconstruction and optic flow CNNs.

• Dynamic train-time event noise augmentation.

• A novel High Quality Frames dataset.

• Extensive analysis and evaluation of our method.

• An optic flow evaluation metric Flow Warp Loss (FWL), tailored to event data, that does not
require ground truth flow.

• Open-source code, training data and pretrained models.

5.1.2 Individual Contribution

The contributions to the work made by myself and Cedric Scheerlinck are approximately equal. I
contributed more to the training data generation, the analysis and CT estimation of previous datasets,
and the optic flow network training and evaluation. Cedric did more on the image reconstruction
training and evaluation, train-time augmentation, and ablation/FireNet studies.

5.2 Related Works

5.2.1 Video Reconstruction

Video and image reconstruction from events has been a popular topic in the event-based vision liter-
ature. Several approaches have been proposed in recent years; [38] used an Extended Kalman Filter
(EFK) to reconstruct images from a rotating event camera, later extending this approach to full 6-
Degree of Freedom (DoF) camera motions [39]. [3] used a sliding spatiotemporal window of events
to simultaneously optimise both optic flow and intensity estimates using the primal-dual algorithm,

86 Chapter 5. Dense Optic Flow using Deep Learning

although this method remains sensitive to hyperparameters. [66] proposed direct integration with
periodic manifold regularisation on the Surface of Active Events (SAE) [61] to reconstruct video
from events. [93, 94] achieved computationally efficient, continuous-time video reconstruction via
complementary and high-pass filtering. This approach can be combined with conventional frames, if
available, to provide low frequency components of the image. However, if taken alone, this approach
suffers from artefacts such as ghosting effects and bleeding edges.

Recently, CNNs have been brought to bear on the task of video reconstruction. [87, 88] presented
Events to Video (E2VID), a recurrent network that converts events (discretised into a voxel grid) to
video. A temporal consistency loss based on [41] was introduced to reduce flickering artefacts in the
video, due to small differences in the reconstruction of subsequent frames. E2VID is current SotA.
were able to reduce model complexity by 99 % with the FireNet architecture [95], with only minor
trade-offs in reconstruction quality, enabling high frequency inference.

5.2.2 Optic Flow

Since event-based cameras are considered a good fit for applications involving motion [24], much
work has been done on estimating optic flow with event cameras [1, 3, 5, 6, 10, 26, 51, 102, 104].
Recently, [120] proposed a CNN (EV-FlowNet) for estimating optic flow from events, together with
the Multi Vehicle Stereo Event Camera (MVSEC) dataset [118] that contains ground truth optic flow
estimated from depth and ego-motion sensors. The input to EV-FlowNet is a 4-channel image formed
by recording event counts and the most recent timestamps for negative and positive events. The loss
imposed on EV-FlowNet was an image-warping loss [113] that took photometric error between sub-
sequent APS frames registered using the predicted flow. A similar approach was taken by [111], in a
network that estimated depth and camera pose to calculate optic flow. In [121] the authors improved
on prior work by replacing the image-warping loss with an event-warping loss that directly transports
events to a reference time using the predicted flow. We use a similar method to evaluate optic flow
performance of several networks (see Section 5.4.1). [121] also introduced a novel input representa-
tion based on event discretisation that places events into bins with temporal bilinear interpolation to
produce a voxel grid. EV-FlowNet was trained on data from MVSEC [118] and [111] even trained,
then validated on the same sequences; our results (Section 5.4.1) indicate that these networks suffer
from overfitting.

5.2.3 Input Representations

To use conventional CNNs, events must first be transformed into an amenable grid-based represen-
tation. While asynchronous spiking neural networks can process raw events and have been used for
object recognition [44, 74, 81] and optic flow [5, 6], the lack of appropriate hardware or effective error
backpropagation techniques renders them uncompetitive with SotA CNNs. Several grid-based input
representations for CNNs have been proposed: simple event images [55, 120] (events are accumulated
to form an image), SAE [120] (latest timestamp recorded at each pixel), Histogram of Averaged Time
Surfaces (HATS) [99] and even learned input representations, where events are sampled into a grid
using convolutional kernels [28]. [121] and [88] found best results using a voxel grid representation
of events, where the temporal dimension is essentially discretised into B bins in a three-dimensional
grid (Equation A.1).

5.3 Method

5.3.1 Event Camera Contrast Threshold

In an ideal event camera, a pixel at (x, y) triggers an event ei at time ti when the brightness since
the last event ei−1 at that pixel changes by a threshold λCT. Event generation is also limited by

5.3. Method 87

(a) IJRR/MVSEC vs ESIM (b) IJRR vs ESIM (c) MVSEC vs ESIM

Figure 5.2: Each dot represents a sequence from the given dataset (y-axis). 5.2a events
pix·s of IJRR and

MVSEC vs. ESIM training datasets (CT 0.2-1.5) described in Section 5.3.2. 5.2b events
pix·s of IJRR vs.

ESIM events simulated from IJRR APS frames. 5.2c events
pix·s of MVSEC vs. ESIM events simulated

from MVSEC APS frames.

the refractory period tr, the time after the firing of an event for which the pixel is blocked from
firing another event (i.e. t − ti−1 > tr). λCT is referred to as the Contrast Threshold (CT) and
can be typically adjusted in modern event cameras. In reality, the CTs are usually different for the
positive (λ+

CT) and negative (λ−CT) thresholds, (thus λCT really refers to two separate thresholds λCT =
{λ−CT, λ+

CT}), nor are the values for λCT constant in time or homogeneous over the image plane. In
simulation (e.g. using the Event Camera Simulator [85] (ESIM) [85]), CTs are typically sampled
from the normal distribution N (µ=0.18, σ=0.03) to model this variation [28, 87, 88]. The CT is an
important simulator parameter since it determines the number and distribution of events generated
from a given scene. We found that the refractory period made essentially no difference in simulation,
unless it was raised to absurdly high values.

While the real CTs of previously published datasets are unknown, one method to estimate CTs
is via the proxy measurement of average events per pixel per second (events

pix·s). Intuitively, higher CTs
tend to reduce the events

pix·s for a given scene. While other methods of CT estimation exist (see Section
5.3.1, we found that tuning the simulator CTs to match the events

pix·s of real data worked well. Since
this measure is affected by scene dynamics (i.e. faster motions increase events

pix·s independently of CT),
we generated a diverse variety of realistic scene dynamics. The result of this experiment (Figure
5.2a) indicates that a contrast threshold setting of between 0.2 and 0.5 would be more appropriate for
sequences from the IJRR dataset [64]. The larger diversity of motions is also apparent in the large
spread of the events

pix·s compared to MVSEC [118] whose sequences are tightly clustered.
As an alternative experiment to determine CTs of existing datasets, we measured the events

pix·s of
events simulated using the actual APS (ground truth) frames of IJRR and MVSEC sequences. Given
high quality images with minimal motion blur and little displacement, events can be simulated through
image interpolation and subtraction. Given an ideal image sequence, the simulator settings should
be tunable to get the exact same events

pix·s from simulation as from the real sensor. Unfortunately APS
frames are not usually of a very high quality (Figure 5.3), so we were limited to using this approach on
carefully curated snippets (Figure 5.4). The results of this experiment in Figure 5.2b and 5.2c indicate
similar results of lower contrast thresholds for IJRR and higher for MVSEC, although accuracy is
limited by the poor quality APS frames.

Additional means of estimating CT

As outlined in Section 5.3, we propose several methods for estimating the CTs for a given event-based
dataset. In total, we tried three different methods:

• Creating a simulator scene with similar texture and range of motions as the real sequence and
adjusting the CTs until the events

pix·s match.

88 Chapter 5. Dense Optic Flow using Deep Learning

(a) IJRR (b) IJRR (c) MVSEC (d) MVSEC (e) HQF

Figure 5.3: Note that in many sequences from the commonly used IJRR and MVSEC datasets, the
accompanying APS frames are of low quality. The top row shows the APS frames, the bottom row
overlays the events. As can be seen, many features are not visible in the APS frames, making quan-
titative evaluation difficult. This motivates our own High Quality Frames dataset.

(a) Poorly exposed from IJRR and MVSEC

(b) Well exposed from IJRR and MVSEC

Figure 5.4: Examples of frames from IJRR and MVSEC after local histogram equalisation, with
poorly exposed sequences in 5.4a, and better exposed images in 5.4b.

• Simulating events from the APS frames (if they are available) and adjusting the CTs until the
events
pix·s match the real sequence.

• Creating a calibration scene in the simulator, recording this scene on-screen and adjusting the
CT of the event camera to match the events

pix·s of the simulation.

We describe the first two approaches in the main chapter. These approaches indicate CTs of approxi-
mately 0.3 and 0.75 for IJRR and MVSEC respectively.

We also produced a calibration sequence in an attempt to match the simulator to our particular
DAVIS 240C at default settings. For this, we moved a checkerboard across the image plane in ESIM,
using various CTs. The scene was played on a high-refresh screen and recorded by our DAVIS. The
resulting event-rate for each sequence, shown in Table 5.1, suggest a λCT ≈ 0.5 to match the camera
to the simulator. This is however in conflict with the events

pix·s (8.2) of the real sequences compared to
the events

pix·s of the best training data CT (19.6). In other words, there seems to be a mismatch for this
method of calibration, perhaps stemming from a difference in recording events from real scenes to
recording scenes from a screen as was done for the checkerboard calibration sequence.

5.3. Method 89

Table 5.1: Comparison of the events
pix·s for simulated sequences at various CT settings with the events

pix·s of
a real calibration sequence. The sequence consists of a checkerboard in motion. The same sequence
is also recorded by a real event camera (DAVIS 240C) using default bias settings. The result sug-
gests that a CT value around 0.5 would be appropriate to match the simulator to the real camera.

CT 0.2 0.5 0.75 1.0 1.5 Real
events
pix·s 26.5 19.6 16.2 10.8 7.2 8.2

LPIPS 0.289 0.285 0.289 0.311 0.316 -

5.3.2 Training Data

We used an event camera simulator, ESIM [85] to generate training sequences for our network.
There are several modes of simulation available, of which we used ‘Multi-Object-2D’ that facili-
tates moving images in simple 2D motions, restricted to translations, rotations and dilations over
a planar background. This generates sequences reminiscent of Flying Chairs [17], where objects
move across the screen at varying velocities. In our generation scheme, we randomly selected im-
ages from Common Objects in COntext (COCO) dataset [47] and gave them random trajectories over
the image plane. Our dataset contains 280 sequences, 10 s in length. Sequences alternate between
four archetypal scenes; slow motion with 0-5 foreground objects, medium speed motion with 5-10
foreground objects, fast speed with 5-20 foreground objects and finally, full variety of motions with
10-30 foreground objects. This variety encourages networks to generalise to arbitrary real world
camera motions, since a wide range of scene dynamics are presented during training. Sequences
were generated with contrast thresholds (CTs) between 0.1 and 1.5 in ascending order. Since real
event cameras do not usually have perfectly balanced positive and negative thresholds, the positive
threshold λ+

CT = λ−CT · α, α ∈ N (µ = 1.0, σ = 0.1).
The events thus generated were discretised into a voxel grid representation. In order to ensure

synchronicity with the ground truth frames of our training set and later with the ground truth frames
of our validation set, we always take all events between two frames to generate a voxel grid. Given
Ne events ei = {xi, yi, ti, si}i=0,...,Ne spanning ∆t = tNe − t0 seconds, a voxel grid V with B bins can
be formed through temporal linear interpolation via

Vk∈[0,B−1] =
Ne

∑
i=1

si max(0, 1− |t∗i − k|) (5.1)

where t∗i is the timestamp normalised to the range [0, B− 1] via t∗i = ti−t0
∆t (B− 1) and the bins are

evenly spaced over the range [t0, tNe]. This method of forming voxels has some limitations; it is easy
to see that the density of the voxels can vary greatly, depending on the camera motion and frame rate
of the camera. Thus, it is important to train the network on a large range of event rates events

pix·s and
voxel densities. During inference, other strategies of voxel generation can be employed, as further
discussed in Appendix A.1.1. We used B = 5 throughout the experiments in this chapter. In earlier
experiments we found values of B = 2, 5, 15 produced no significant differences.

5.3.3 Sequence Length

To train recurrent networks, we sequentially passed λL inputs to the network and computed the loss
for each output. Finally, the losses were summed and a backpropagation update was performed based
on the gradient of the final loss with respect to the network weights. Since recurrent units in the
network are initialised to zero, lower values of λL restrict the temporal support that the recurrent
units see at train time. To investigate the impact of sequence length λL, we retrain our networks

90 Chapter 5. Dense Optic Flow using Deep Learning

using λL = 40 (as in E2VID [88]) and λL = 120. In the case of non-recurrent networks such as
EV-FlowNet [120, 121], we ignore the sequence length parameter.

5.3.4 Loss

For our primary video reconstruction loss function we used ‘learned perceptual image patch simi-
larity’ (Learned Perceptual Image Patch Similarity (LPIPS)) [116]. LPIPS is a fully differentiable
similarity metric between two images that compares hidden layer activations of a pretrained network
(e.g. Alex-Net or Visual Geometry Group network (VGG)), and was shown to better match human
judgment of image similarity than photometric error or Structural SIMilarity (SSIM) [110]. Since
our event tensors were synchronised to the ground truth image frames by design (the final event in
the tensor matches the frame timestamp), we computed the LPIPS distance between our reconstruc-
tion and the corresponding ground truth frame. As recommended by the authors [116], we used the
Alex-Net variant of LPIPS. We additionally imposed a temporal consistency loss [41] that measures
photometric error between consecutive images after registration based on optic flow, subject to an
occlusion mask. For optic flow, we used the L1 distance between our prediction and ground truth as
the training loss.

5.3.5 Data Augmentation

During training, [88] occasionally set the input events to zero and performed a forward-pass step
within a sequence, using the previous ground truth image frame to compute the loss. The probability
of initiating a pause when the sequence is running P(qp|qr) = 0.05, while the probability of main-
taining the paused state when the sequence is already paused P(qp|qp) = 0.9 to encourage occasional
long pauses. This encourages the recurrent units of the network to learn to ‘preserve’ the output image
in absence of new events. We used pause augmentation to train all recurrent networks.

Event cameras provide a noisy measurement of brightness change, subject to background noise,
refractory period after an event and hot pixels that fire many spurious events. To simulate real event
data, we applied a refractory period of 1 ms. At train time, for each sequence of λL input event tensors
we optionally added zero-mean Gaussian noise (N (µ=0, σ = 0.1)) to the event tensor to simulate
uncorrelated background noise, and randomly elected a few ‘hot’ pixels. The number of hot pixels
was drawn from a uniform distribution from 0 to 0.0001, multiplied by the total number of pixels. Hot
pixels have a random value (N (µ=0, σ=0.1)) added to every temporal bin in each event tensor within
a sequence. To determine whether augmenting the training data with noise benefits performance on
real data, we retrained several models with and without noise (Table 5.19).

5.3.6 Architecture

To isolate the impact of our method from choice of network architecture, we retrained SotA video
reconstruction network E2VID [88] and SotA optic flow network EV-FlowNet described in [120,
121]. Thus, differences in performance for each task are not due to architecture. Additionally, we aim
to show that our method generalises to multiple architectures. While we believe architecture search
may further improve results, it is outside the scope of this work.

5.3.7 High Quality Frames Dataset

To evaluate event camera image reconstruction methods, we compared reconstructed images to tem-
porally synchronised, registered ground truth reference images. Event cameras such as the DAVIS
[9] can capture image frames (in addition to events) that are timestamped and registered to the events,
that may serve as ground truth. Previous event camera datasets such as IJRR [64] and MVSEC [118]

5.4. Experiments 91

Table 5.2: Breakdown of the sequences included in HQF. To provide some inter-device variability,
the dataset is taken with two separate DAVIS 240C cameras, 1 and 2.

Sequence Length
[s] Cam. Frames

[k]
Events

[M] Description

bike_bay_hdr 99.0 1 2.4 19.8 Camera moves from dim to bright
boxes 24.2 1 0.5 10.1 Indoor light, translations
desk 65.8 2 1.5 13.5 Natural light, various motions
desk_fast 32.0 2 0.7 12.6 Natural light, fast motions
desk_hand_only 20.6 2 0.5 0.8 Indoor light, static camera
desk_slow 63.3 2 1.4 1.9 Natural light, slow motions
engineering_posters 60.7 1 1.3 15.4 Indoor light, text and images
high_texture_plants 43.2 1 1.1 14.6 Outdoors, high textures
poster_pillar_1 41.8 1 1.0 7.1 Outdoors, text and images
poster_pillar_2 25.4 1 0.6 2.5 Outdoors, text and images, long pause
reflective_materials 28.9 1 0.6 7.8 Natural light, reflective objects
slow_and_fast_desk 75.6 1 1.7 15.0 Natural light, diverse motion
slow_hand 38.9 1 0.9 7.6 Indoor, slow motion, static camera
still_life 68.1 1 1.2 42.7 Indoors, Indoor light, 6DOF motions

contain limited high quality DAVIS frames, while many frames are motion-blurred and or under/over-
exposed (Figure 5.3). As a result, [88] manually rejected poor quality frames, evaluating on a smaller
subset of IJRR.

We present a new HQF aimed at providing ground truth DAVIS frames that are minimally motion-
blurred and well exposed. In addition, our HQF covers a wider range of motions and scene types than
the evaluation dataset used for E2VID, including: static/dynamic camera motion vs. dynamic camera
only, very slow to fast vs. medium to fast and indoor/outdoor vs. indoor only. To record HQF,
we used two different DAVIS 240C sensors to capture data with different noise/CT characteristics.
We used default bias settings loaded by the Dynamic Vision Sensor (DVS) Robot Operating System
(ROS) driver from Robotics and Perception Group, Zurich (RPG) 1, and set exposure to either auto or
fixed to maximise frame quality. Our HQF provides temporally synchronised, registered events and
DAVIS frames (further details in Table 5.2).

5.4 Experiments

5.4.1 Evaluation

We evaluated our method by retraining two state-of-the-art event camera neural networks: E2VID
[87, 88], and EV-FlowNet [120, 121]. Our method outperforms previous state-of-the-art in image
reconstruction and optic flow on several publicly available event camera datasets including IJRR [64]
IJRR and MVSEC [118], and our new HQF.

For video reconstruction on the datasets HQF, IJRR and MVSEC (Table 5.4) we obtained a 40 %,
20 % and 28 % improvement over E2VID [88] respectively, using LPIPS. For optic flow we obtained
a 12.5 %, 10 % and 16 % improvement over EV-FlowNet [120] on flow warp loss (Flow Warp Loss
(FWL), Equation 5.3). Notably, EV-FlowNet was trained on MVSEC data (outdoor_day2 se-
quence), while ours was trained entirely on synthetic data, demonstrating the ability of our method to
generalise to real event data.

1https://github.com/uzh-rpg/rpg_dvs_ros

https://github.com/uzh-rpg/rpg_dvs_ros

92 Chapter 5. Dense Optic Flow using Deep Learning

Table 5.3: Start and end times for sequences in IJRR and MVSEC that we present validation statis-
tics on. While both IJRR and MVSEC contain more sequences than the ones listed, those not in-
cluded had very low quality accompanying frames (see Figure 5.3).

IJRR MVSEC

Sequence Start [s] End [s] Sequence Start [s] End [s]

boxes_6dof 5.0 20.0 indoor_flying1 10.0 70.0
calibration 5.0 20.0 indoor_flying2 10.0 70.0
dynamic_6dof 5.0 20.0 indoor_flying3 10.0 70.0
office_zigzag 5.0 12.0 indoor_flying4 10.0 19.8
poster_6dof 5.0 20.0 outdoor_day1 0.0 60.0
shapes_6dof 5.0 20.0 outdoor_day2 100.0 160.0
slider_depth 1.0 2.5

Image

As in [88] we compared our reconstructed images to ground truth (DAVIS frames) on three metrics;
mean squared error (Mean Squared Error (MSE)), structural similarity [110] (SSIM) and perceptual
loss [115] (LPIPS) that uses distance in the latent space of a pretrained deep network to quantify
image similarity.

Since many of these datasets show scenes that are challenging for conventional cameras, we
carefully selected sections of those sequences where frames appeared to be of higher quality (less
blurred, better exposure etc.). The exact cut times of the IJRR and MVSEC sequences can be found
in the Table 5.3. However, we were also ultimately motivated to record our own dataset of high
quality frames (HQF, Section 5.3.7) of which we evaluated the entire sequence.

5.4. Experiments 93

Table 5.4: Comparison of SotA methods of video reconstruction and optic flow to networks trained
using our dataset on HQF, IJRR and MVSEC. Best in bold.

Sequence
MSE SSIM LPIPS FWL

E2VID Ours E2VID Ours E2VID Ours EVFlow Ours

HQF
bike_bay_hdr 0.16 0.0299 0.41 0.5202 0.51 0.3038 1.22 1.2302
boxes 0.11 0.0345 0.50 0.5923 0.38 0.2575 1.75 1.8020
desk_6k 0.15 0.0300 0.51 0.5966 0.39 0.2213 1.23 1.3515
desk_fast 0.12 0.0354 0.54 0.6062 0.40 0.2504 1.43 1.4956
desk_hand_only 0.12 0.0480 0.53 0.5709 0.63 0.3864 0.9469 0.85
desk_slow 0.16 0.0410 0.53 0.6218 0.47 0.2480 1.01 1.0756
engineering_posters 0.13 0.0300 0.42 0.5710 0.47 0.2560 1.50 1.6479
high_texture_plants 0.16 0.0314 0.37 0.6476 0.38 0.1392 0.13 1.6809
poster_pillar_1 0.14 0.0318 0.38 0.4990 0.54 0.2672 1.20 1.2413
poster_pillar_2 0.15 0.0350 0.40 0.4745 0.56 0.2625 1.1621 0.96
reflective_materials 0.13 0.0334 0.44 0.5544 0.44 0.2802 1.45 1.5748
slow_and_fast_desk 0.16 0.0286 0.48 0.6237 0.45 0.2475 0.93 0.9893
slow_hand 0.18 0.0375 0.41 0.5652 0.57 0.3023 1.6353 1.56
still_life 0.09 0.0261 0.51 0.6263 0.35 0.2243 1.93 1.9815

Mean 0.14 0.0326 0.46 0.5791 0.46 0.2562 1.20 1.3540

IJRR
boxes_6dof_cut 0.0406 0.04 0.63 0.6392 0.29 0.2479 1.42 1.4571
calibration_cut 0.07 0.0315 0.61 0.6245 0.22 0.1805 1.20 1.3057
dynamic_6dof_cut 0.17 0.0525 0.45 0.5275 0.38 0.2673 1.37 1.3922
office_zigzag_cut 0.07 0.0369 0.49 0.5082 0.31 0.2599 1.1302 1.11
poster_6dof_cut 0.07 0.0307 0.60 0.6567 0.26 0.1947 1.50 1.5551
shapes_6dof_cut 0.03 0.0168 0.7982 0.77 0.26 0.2234 1.15 1.5699
slider_depth_cut 0.08 0.0308 0.54 0.6240 0.35 0.2434 1.73 2.1723

Mean 0.07 0.0344 0.61 0.6364 0.28 0.2240 1.32 1.4545

MVSEC
indoor_flying1_data_cut 0.25 0.0840 0.19 0.3635 0.72 0.4534 1.02 1.1380
indoor_flying2_data_cut 0.23 0.0931 0.18 0.3581 0.71 0.4530 1.13 1.3592
indoor_flying3_data_cut 0.25 0.0896 0.18 0.3650 0.73 0.4440 1.06 1.2291
indoor_flying4_data_cut 0.21 0.0784 0.23 0.3622 0.72 0.4475 1.24 1.4999
outdoor_day1_data_cut 0.32 0.1274 0.31 0.3395 0.66 0.5179 1.15 1.2719
outdoor_day2_data_cut∗ 0.30 0.0963 0.29 0.3394 0.57 0.4285 1.2149 1.20

Mean 0.29 0.1052 0.27 0.3461 0.65 0.4670 1.12 1.29962

*Removed from mean tally for EV-FlowNet, as this sequence is part of the training set.

94 Chapter 5. Dense Optic Flow using Deep Learning

E2VID Ours Groundtruth
bike_bay_hdr

boxes

desk_6k

desk_fast

desk_hand_only

desk_slow

engineering_posters

5.4. Experiments 95

high_texture_plants

poster_pillar_1

poster_pillar_2

reflective_materials

slow_and_fast_desk

slow_hand

96 Chapter 5. Dense Optic Flow using Deep Learning

still_life

Table 5.5: Qualitative results for HQF. Random selection, not cherry picked.

E2VID Ours Groundtruth
boxes_6dof_cut

calibration_cut

dynamic_6dof_cut

office_zigzag_cut

poster_6dof_cut

shapes_6dof_cut

5.4. Experiments 97

slider_depth_cut

Table 5.6: Qualitative results for IJRR. Random selection, not cherry picked.

E2VID Ours Groundtruth
indoor_flying1_data_cut

indoor_flying2_data_cut

indoor_flying3_data_cut

indoor_flying4_data_cut

outdoor_day1_data_cut

98 Chapter 5. Dense Optic Flow using Deep Learning

outdoor_day2_data_cut

Table 5.7: Qualitative results for MVSEC. Random selection, not cherry picked.

E2VID Ours Groundtruth
Fruit

Keyboard

Carpet

Jenga

Object

5.4. Experiments 99

Table 5.8: Qualitative results for Color Event Dataset (CED) [96]. Random selection, not cherry
picked. As a matter of interest, the Jenga sequence shows a region of the scene where there is only
blank wall, so few events have been generated, resulting in the peculiar artefacts seen in the top left
corner.

Flow

A warping loss (similar to [27]) was used as a proxy measure of accuracy as it doesn’t require ground
truth flow. Events E = (xi, yi, ti, si)i=1,...,N are warped by per-pixel optical flow ~v = (vx, vy)ᵀ to a
reference time tref via

Iω =

(
x′i
y′i

)
=

(
xi
yi

)
+ (tref − ti)

(
vx
vy

)
. (5.2)

where ω = ~v. The resulting Image of Warped Events (IWE) Iω becomes sharper if the flow is correct,
as events are motion-compensated. Sharpness can be evaluated using the variance of the IWE σ2(Iω)
[25, 103], where a higher value indicates a better flow estimate. Since image variance σ2(I) depends
on scene structure and camera parameters, we normalise by the variance of the unwarped event image
I0 to obtain the Flow Warp Loss (FWL):

FWL :=
σ2(Iω)

σ2(I0)
. (5.3)

FWL < 1 implies the flow is worse than a baseline of zero flow. FWL enables evaluation on datasets
without ground truth optic flow. While we used ground truth from the simulator during training, we
evaluated on real data using FWL (Table 5.4). We believe training on ground truth (L1 loss) rather
than FWL encourages fully-dense flow predictions. This is because a network which only produces
optic flow estimates where there are events present, will perform equally well as a network which
produces flow estimates on every pixel, providing no incentive for the FWL trained network. L1 loss
on the other hand will punish incorrect estimates on all pixels.

Table 5.9 shows Average Endpoint Error (AEE) of optic flow on MVSEC [118]. MVSEC provides
optic flow estimates computed from lidar depth and ego motion sensors as ‘ground truth’, allowing us
to evaluate AEE using code provided in [120]. However, lidar + ego motion derived ground truth is
subject to sensor noise, thus, AEE may be an unreliable metric on MVSEC. For example, predicting
zero flow achieves near state-of-the-art in some cases on MVSEC using AEE, though not with our
proposed metric FWL (by construction, predicting zero flow yields FWL = 1.0).

Interestingly, zero loss (doing nothing) is still the best overall at reducing outliers and is a strong
contender for AEE (especially in the flying sequences), showing the importance of reporting the
relative improvement as in our FWL (by construction, predicting zero flow would yield FWL = 1.0).

100 Chapter 5. Dense Optic Flow using Deep Learning

Table 5.9: Comparison of various methods to optic flow estimated from Lidar depth and ego-motion
sensors [118]. The Average Endpoint Error (AEE) to the Lidar estimate and the percentage of pixels
with AEE above 3 and greater than 5 % of the magnitude of the flow vector (%Outlier) are presented
for each method (lower is better, best in bold). The time between frames is dt=1. Zeros is the base-
line error resulting from always estimating zero flow.

Dataset
outdoor_day1 outdoor_day2 indoor_flying1 indoor_flying2 indoor_flying3

AEE %Outlier AEE %Outlier AEE %Outlier AEE %Outlier AEE %Outlier

Zeros 4.31 0.39 1.07 0.91 1.10 1.00 1.74 0.89 1.50 0.94
EVFlow [120] 0.49 0.20 - - 1.03 2.20 1.72 15.10 1.53 11.90
EVFlow+ [121] 0.32 0.0 - - 0.58 0.0 1.02 4.00 0.87 3.00
Gehrig [28] - - - - 0.96 0.91 1.38 8.20 1.40 6.47
Ours 0.68 0.99 0.82 0.96 0.56 1.00 0.66 1.00 0.59 1.00

ECN* [111] 0.35 0.04 - - 0.21 0.01 - - - -

*ECN is trained on 80 % of the sequence and evaluated on the remaining 20 %. This prevents direct com-
parison, however we include their result for completeness sake.

EVFlow Ours EVFlow IWE Ours IWE
bike_bay_hdr

boxes

desk_6k

desk_fast

desk_hand_only

5.4. Experiments 101

desk_slow

engineering_posters

high_texture_plants

poster_pillar_1

poster_pillar_2

reflective_materials

slow_and_fast_desk

102 Chapter 5. Dense Optic Flow using Deep Learning

slow_hand

still_life

Table 5.10: Qualitative results for HQF. Left: optic flow vectors represented in HSV color space,
right: image of warped events (IWE). Random selection, not cherry picked.

EVFlow Ours EVFlow IWE Ours IWE
boxes_6dof

calibration

dynamic_6dof

office_zigzag

5.4. Experiments 103

poster_6dof

shapes_6dof

slider_depth

Table 5.11: Qualitative results for IJRR. Left: optic flow vectors represented in HSV color space,
right: image of warped events (IWE). Random selection, not cherry picked.

EVFlow Ours EVFlow IWE Ours IWE
indoor_flying1_data

indoor_flying2_data

indoor_flying3_data

104 Chapter 5. Dense Optic Flow using Deep Learning

indoor_flying4_data

outdoor_day1_data

outdoor_day2_data

Table 5.12: Qualitative results for optic flow on MVSEC. Left: optic flow vectors represented in
HSV color space, right: image of warped events (IWE). Random selection, not cherry picked.

5.4.2 FireNet

[95] propose a lightweight network architecture for fast image reconstruction with an event camera
(FireNet) that has 99.6 % fewer parameters than E2VID [88] while achieving similar accuracy on
IJRR [64]. We retrain FireNet using our method and evaluate the original (FireNet) vs retrained
(FireNet+) on IJRR, MVSEC and HQF (Table 5.13). FireNet+ performs better on HQF and MVSEC
though worse on IJRR. One possible explanation is that the limited capacity of a smaller network
limits generalisability over a wider distribution of data, and the original FireNet overfits to data similar
to IJRR, namely low CTs. If our hypothesis is correct, it presents an additional disadvantage to small
networks for event cameras. Comprehensive evaluation (HQF + IJRR + MVSEC) reveals bigger
performance gap between FireNet (Table 5.13) and E2VID (Table 5.4) architectures than shown in
[95] (IJRR only). Qualitatively (Figure 5.14), FireNet+ looks noisier in textureless regions, while
FireNet produces lower contrast images.

5.4. Experiments 105

Table 5.13: Mean MSE, SSIM [110] and LPIPS [116] on our HQF dataset, IJRR [64] and MVSEC
[118], for original FireNet vs. retrained with our method (FireNet+).

Model
HQF IJRR MVSEC

MSE SSIM LPIPS MSE SSIM LPIPS MSE SSIM LPIPS

FireNet 0.052 0.5136 0.387 0.0554 0.6296 0.2566 0.182 0.3201 0.594
FireNet+ 0.0485 0.477 0.3494 0.058 0.503 0.327 0.1568 0.288 0.5507

FireNet FireNet+ Groundtruth
bike_bay_hdr

boxes

desk_6k

desk_fast

desk_hand_only

desk_slow

106 Chapter 5. Dense Optic Flow using Deep Learning

engineering_posters

high_texture_plants

poster_pillar_1

poster_pillar_2

reflective_materials

slow_and_fast_desk

5.4. Experiments 107

slow_hand

still_life

Table 5.14: Qualitative results for HQF. Random selection, not cherry picked.

FireNet FireNet+ Groundtruth
boxes_6dof_cut

calibration_cut

dynamic_6dof_cut

office_zigzag_cut

poster_6dof_cut

108 Chapter 5. Dense Optic Flow using Deep Learning

shapes_6dof_cut

slider_depth_cut

Table 5.15: Qualitative results for IJRR. Random selection, not cherry picked.

FireNet FireNet+ Groundtruth
indoor_flying1_data_cut

indoor_flying2_data_cut

indoor_flying3_data_cut

indoor_flying4_data_cut

5.5. Discussion 109

outdoor_day1_data_cut

outdoor_day2_data_cut

Table 5.16: Qualitative results for MVSEC. Random selection, not cherry picked.

5.4.3 Contrast Thresholds

We investigated the impact of the simulator CTs by retraining several networks on simulated datasets
with CTs ranging from 0.2 to 1.5. Each dataset contained the same sequences, differing only in CT.
Table 5.17 shows that for reconstruction (evaluated on LPIPS), IJRR is best on a lower λCT ≈ 0.2,
while MVSEC is best on high λCT ≈ 1.0. Best or runner up performance was achieved when a
wide range of CTs was used, indicating that exposing a network to additional event statistics outside
the inference domain is not harmful, and may be beneficial. We believe training with low CTs (thus
higher events

pix·s) reduces dynamic range in the output images (Table 5.18), perhaps because the network
becomes accustomed to a high density of events during training but is presented with lower events

pix·s data
at inference. When retraining the original E2VID network, dynamic range increases with CTs (Table
5.18).

5.4.4 Training Noise and Sequence Length

To determine the impact of sequence length and noise augmentation during training, we retrained
E2VID architecture using sequence length 40 (L40) and 120 (L120), with and without noise aug-
mentation (N) (see Table 5.19). Increasing sequence length from 40 to 120 didn’t impact results sig-
nificantly. Noise augmentation during training improved performance of L40 models by ∼ 5-10 %,
while giving mixed results on different datasets for L120 models. Qualitatively, adding more noise
encourages networks to smooth outputs, while less noise may encourage the network to ‘reconstruct’
noise events, resulting in artifacts (Figure 5.1) observed in E2VID [88] (trained without noise).

5.5 Discussion

The significant improvements gained by training models on our synthetic dataset exemplify the im-
portance of reducing the sim-to-real gap for event cameras in both the event rate induced by varying

110 Chapter 5. Dense Optic Flow using Deep Learning

Table 5.17: Evaluation of image reconstruction and optic flow networks trained on simulated
datasets with a variety of CTs from 0.2 to 1.5. ‘All’ is a dataset containing the full range of CTs
from 0.2 to 1.5. All networks are trained for 200 epochs and evaluated on datasets HQF (excluding
desk_hand_only on FWL), IJRR [64], MVSEC [118]. We report mean squared error (MSE),
structural similarity (SSIM) [110] and perceptual loss (LPIPS) [116] for reconstruction and FWL for
optic flow. Key: best | second best.

Contrast
threshold

HQF IJRR MVSEC

MSE SSIM LPIPS FWL MSE SSIM LPIPS FWL MSE SSIM LPIPS FWL

0.20 0.05 0.50 0.38 1.93 0.04 0.60 0.25 1.453 0.10 0.35 0.55 1.15
0.50 0.04 0.51 0.36 1.90 0.04 0.57 0.27 1.42 0.10 0.31 0.52 1.19
0.75 0.05 0.51 0.36 1.90 0.05 0.56 0.28 1.44 0.11 0.29 0.53 1.2238
1.00 0.05 0.48 0.36 1.91 0.05 0.53 0.29 1.42 0.12 0.27 0.51 1.18
1.50 0.05 0.47 0.38 1.9272 0.06 0.52 0.30 1.44 0.09 0.30 0.52 1.14
All 0.05 0.50 0.36 1.9617 0.04 0.59 0.27 1.459 0.08 0.34 0.51 1.2434

Table 5.18: Dynamic range (DR) of reconstructed images from IJRR [64]: original E2VID [88] vs
E2VID retrained on simulated datasets covering a range of contrast thresholds CTs. We report the
mean dynamic range of the 10th-90th percentile of pixel values.

Original [88] Retrained

CT ∼0.18 0.2 0.5 0.75 1.0 1.5 All
DR 77.3 89.2 103.7 105.9 104.8 100.0 103.3

the contrast thresholds and the dynamics of the simulation scenes. Our results are quite clear on this,
with consistent improvements across tasks (reconstruction and optic flow) and architectures (recurrent
networks like E2VID, and U-Net based flow estimators) of up to 40 %.

We believe this highlights the importance for researchers to pay attention to the properties of the
events they are training on; are the settings of the camera or simulator such that they are generating
more or less events? Are the scenes they are recording representative of the wide range of scenes that
are likely to be encountered during inference?

In particular, it seems that previous works inadvertently overfit their models to the events found
in the chosen target dataset. EV-FlowNet performs better on sequences whose dynamics are similar
to the slow, steady scenes in MVSEC used for training, examples being poster_pillar_2 or
desk_slow from HQF that feature long pauses and slow motions, where EV-FlowNet is on par or
better than ours. For researchers looking to use an off-the-shelf pretrained network, our model may be
a better fit, since it targets a greater variety of sensors and scenes. A further advantage of our model
that is not reflected in the FWL metric, is that training in simulation allows our model to predict dense
flow, a challenge for prior self-supervised methods.

Similarly, our results speak for themselves on image reconstruction. While we outperform E2VID
[88] on all datasets, the smallest gap is on IJRR, the dataset we found to have lower CTs. E2VID
performs worst on MVSEC that contains higher CTs, consistent with our finding that performance is
driven by similarity between training and evaluation event data.

In conclusion, future networks trained with synthetic data from ESIM or other simulators should
take care to ensure the statistics of their synthetic data match the final use-case, using large ranges of
CT values and appropriate noise and pause augmentation in order to ensure generalised models.

5.5. Discussion 111

Table 5.19: Mean LPIPS [116] on our HQF dataset, IJRR [64] and MVSEC [118], for various train-
ing hyperparameter configurations. E2VID architecture retrained from scratch in all experiments.
Key: L40/L120=sequence length 40/120, N=noise augmentation during training.

Model
HQF IJRR MVSEC

MSE SSIM LPIPS MSE SSIM LPIPS MSE SSIM LPIPS

L40 0.044 0.5826 0.296 0.042 0.6497 0.229 0.151 0.330 0.526
L40N 0.0326 0.579 0.2562 0.0344 0.636 0.2240 0.105 0.3461 0.4670
L120 0.040 0.544 0.279 0.038 0.619 0.237 0.132 0.311 0.478
L120N 0.036 0.547 0.290 0.040 0.608 0.241 0.0990 0.344 0.498

5.5.1 Resources

Video, code and datasets: https://timostoff.github.io/20ecnn

https://timostoff.github.io/20ecnn

113

Chapter 6

Conclusion

Event cameras are a novel, bioinspired mode of visual sensing and a paradigm shift from synchronous,
conventional absolute intensity images to asynchronous update, low-latency, events. By reporting
only changes in intensity, event camera pixels unlock several advantages of biological vision - low
latency (on the order of µs), low power usage (on the order of mW), and high dynamic range (≈
120 dB). Events are reported as a tuple of (x, y) position, polarity of brightness change s and time
t, which provides each event with a fine-grained timestamp. Due to their mode of operation, event
camera pixels take samples at exactly the rate of change of brightness of the scene, limited only by the
Contrast Threshold (CT) (the brightness change threshold required to trigger an event) and refractory
period (the period after firing during which a pixel may not generate a new event).

Since event cameras respond only to the dynamics of the scene, they are a natural fit for algorithms
which describe motion, such as optic flow estimators, object tracking, or motion segmentation. How-
ever, because events do not encode spatial patterns and relationships in the intuitive way that camera
frames do, many of the methods that are standard in event-based vision cannot be directly applied to
events. This thesis has helped to fill this knowledge gap by demonstrating how optic flow and motion
segmentation can be estimated by using Focus Optimisation (FO), proposing new objective func-
tions for the optimisation with benefits for convergence and noise tolerance and providing a means
of adapting simulation parameters to real world datasets to provide Convolutional Neural Networks
(CNNs) with high quality, well generalised, fully dense optic flow.

The Focus Optimisation (FO) approach to processing events has proved to be a versatile, pow-
erful tool in event-based vision, with the ability to solve problems from camera rotation estimation,
deep learning, optic flow, depth estimation, and motion segmentation. It does this by warping events
along point trajectories which model the actual trajectories of event-generating point features in the
spatiotemporal volume. This warping operation produces an Image of Warped Events (IWE), which
becomes more focused as the parameters of the warp model align more closely to the actual trajecto-
ries of the events. The focus which can be measured by any number of sharpness measuring functions
(such as the variance) can be used as an objective which is optimised w.r.t. the motion parameters of
point trajectories.

Chapter 2 presents the first work to apply FO to the problem of optic flow estimation and one of
the first works to use FO for event-based vision. Since the optimisation problem has multiple local
maxima for more than one moving object, we need to also estimate motion segmentation over the
events. We solve this via a greedy segmentation algorithm in which all of the events in the set E are
first motion-compensated, then those events which belong to the discovered motion estimate removed.
The process is then repeated for the remaining events until no events remain. The segmentation and
motion estimates were then used to initialise asynchronous, event-based trackers to handle incoming
events. Key contributions of this work were: (i) the description of a focus optimisation framework for
optic flow estimation, (ii) a segmentation scheme for separating events into their respective motions,
(iii) an asynchronous event-based motion tracker that makes use of motion-compensated Images of
Warped Events (IWEs) and their associated motion parameters in a particle-filter approach, (iv) the
fusion of per-event and batching event processing paradigms. We showed that this approach per-
formed better than previous Lucas-Kanade [53] based methods [91]. Uniquely, our approach was

114 Chapter 6. Conclusion

able to consider moving objects globally (insofar that they matched the set of motions modelled by
our optic flow motion model), largely eliminating the aperture problem. However, our method was
dependent on several scene-dependent hyper-parameters and was designed to work explicitly with
optic flow motions models, restricting our method to simpler scenes.

Chapter 3 extended and improved on the ideas in Chapter 2 by applying a probabilistic approach
to the motion segmentation. In this method, each event has a likelihood of belonging to a particular
motion model, which is not limited to optic flow models. The parameters of the motion models are
then optimised together, with respect to a global focus measurement. Subsequently, the likelihoods
of the events are updated to account for the new motion estimates. By applying these steps iteratively,
a solution for the motion segmentation and parametrisation of the events is converged on, similar to
Expectation Maximisation (EM). This method has the advantage that it is not dependent on hyper-
parameters and is able to accept any number and mixture of motion models. The key contributions
are (i) an iterative method for segmenting multiple objects based on their apparent motion on the
image plane, producing a per-event classification into space-time clusters described by parametric
motion models, (ii) the detection of independently moving objects without having to compute optical
flow explicitly, (iii) the ability to mix motion models at will to suit the expected scene, (iv) a method
for evaluating the performance of event-based motion segmentation methods in terms of relative
displacement, with the recognition that given a larger time interval the segmentation problem becomes
easier. We evaluated our method on custom scenes as well as on a public motion segmentation dataset,
showing that our method outperformed State of the Art (SotA). We also showed the sensitivity of our
method via a novel relative-displacement experiment.

Integral to the work in Chapters 3 and 2 is the concept of FO. Chapter 4 takes a deeper dive into FO
by examining the choice of focus measure and proposes a simple classification for various measures.
We mathematically and experimentally showed that contrast measures that reward density in the IWE
have advantages in noise tolerance, while those that reward sparsity have excelled in overcoming
aperture uncertainty, a cousin of the aperture problem in conventional vision. Key contributions of
this work are: (i) a classification of reward functions based on whether they operate by rewarding
density or sparsity in the IWE, (ii) proof and experimental evidence that rewarding density provides
noise tolerance and rewarding sparsity decreases aperture uncertainty, (iii) a method of estimating
how much event data needs to be buffered to be able to accurately perform FO, (iv) the definition
of aperture uncertainty, an analogue to the aperture problem. Our results show that by using these
rewards in combination, we can achieve improvements in terms of noise tolerance and optimisation
convergence.

Finally, Chapter 5 shows how performance and generalisability of event-based CNNs can be
drastically improved for video reconstruction and optic flow, by reducing the sim-to-real gap between
simulated training data and real events. Our key findings and contributions were: (i) that using a
wide range of CTs during training data generation improves the performance of SotA models, (ii)
that previous works may inadvertently overfit their models to evaluation datasets, (iii) producing a
High Quality Frames (HQF) dataset to allow better evaluation of video reconstruction from events,
(iv) constructing an optic flow CNN that produces SotA fully dense optic flow, (v) defining a novel
evaluation metric Flow Warp Loss (FWL) for event-based optic flow which does not require ground
truth, in recognition of the limitations of current ground truth optic flow datasets for event cameras.
Since all of the improvement gains we report are on existing SotA architectures, I feel confident in
attributing the large margins of our improvements (40 % and 15 % for reconstruction and optic flow
respectively) to the improvements in our training data. We also discussed options for approximately
matching the CTs of simulation to target data and provided experimental evidence that even if the
exact target CTs are unknown, simply using a large range of simulation CTs provides desired im-
provements (i.e. there is no downside to using a wider range of CTs in training data than in target
data).

My results have set the benchmark for optic flow estimation and motion segmentation from event

Chapter 6. Conclusion 115

cameras, as well as expanding to the theory of FO. Still I see room for additional research and im-
proved performance. With regards to FO as a framework, I see three major challenges which remain
unsolved.

The first has to do with the application of focus optimisation to efficient hardware accelerators,
such as an Field Programmable Gate Array (FPGA). Currently the algorithms described in this thesis
and in the larger literature which employ FO do not run in real-time and in some cases are very
slow. There is a lot of potential for speedups by implementing FO on hardware however, since
many operations integral to the method can be performed in parallel. Some obvious opportunities for
parallel processing can be found in:

Event Warping: since each event is warped independently, they can all be warped simultane-
ously with potential speedups on the order of the number of events (Ne) warped.

IWE Generation: When events are coalesced into an IWE, most events can be added simultane-
ously and independently. Events which occupy the same location cannot be added simultane-
ously, but use of parallel reduction techniques and atomic operations can still provide significant
speedup.

Multiple Focus Evaluation: Optimisation almost always requires sampling the focus mea-
sure (r) for various parametrisations (ω) of the warping function (W). For optimisers such
as Branch and Bound (BnB), grid-search or line search in conjugate-gradient methods, many
different samples can be taken simultaneously.

While we have tried to take some steps in this direction by implementing parts of our algorithms on
Graphics Processing Units (GPUs), this is not suitable for some applications, since the event-based
power efficiency is lost as well as the low latency, due to the bottlenecks found in data-transfer rate
between the event camera, Central Processing Unit (CPU), and then GPU (usually via Peripheral
Component Interconnect express (PCIe)). Since events can be streamed to dedicated hardware such
as FPGA or other heterogeneous System on Chips (SoCs) via a low-latency direct interface, they are
likely to be a better fit for event-based vision, though substantially more difficult to implement.

A further challenge is finding methods which allow for global convergence of the objective func-
tion, potentially without constraints such as linear motion assumptions. Currently, FO methods re-
quire either a starting point that is reasonably near the optimum to be within the basin of convergence,
or significant smoothing of the objective function. Our work also takes steps in this direction by ob-
serving that certain focus measuring functions produce a friendlier objective function and providing
some patch-based methods for finding initial optimisation estimates as in Chapter 3. New ground is
currently being broken in this field by two recent papers which apply the BnB algorithm to guarantee
global convergence of the optimisation problem [50, 80]. The work by [80] tackles the problem of
3-Degree of Freedom (DoF) angular velocity estimation with an event camera, for which the authors
achieve SotA results, while [50] apply the method to 2-DoF fronto-parallel motions. This approach is
exciting, since it elegantly resolves many of the issues of FO using gradient-based optimisers, espe-
cially the issue of linear motion assumptions and the finding of incorrect solutions due to initialisation
outside the basin of convergence. Future work will involve calculating the optimisation bounds for
a wider variety of motion models and applying the problem to dedicated hardware (such as FPGA),
since demonstrations of these methods have been somewhat slow (as with many FO works).

A further problem with FO which has not yet been addressed is the problem of identifying the
best time window for optimisation and the effect that this time window might have. To our knowledge
we are the only ones who acknowledge this aspect of the problem, by analysing our segmentation
performance against relative displacement of moving objects (Figure 3.5). Conversely, there are
many examples of works in the literature in which the time window is chosen to be very large, which
can enormously simplify the problem being solved. The choice of time window is important, since it
has an impact on the size of the basin of convergence, the violation of assumptions of linear motion,

116 Chapter 6. Conclusion

and the sensitivity of segmentation. For example, an approach to training CNNs for the purpose of
optic flow is to use a focus measure as a training loss [121]. However, such losses depend on the time
slice of events to be the same during training, since larger time slices will naturally give larger losses,
which subsequently have a larger impact on the network. This works well on datasets where the
dynamics of the scene are homogeneous (such as in Multi Vehicle Stereo Event Camera (MVSEC)),
but not for more heterogeneous datasets. I believe that finding losses that are invariant to Ne will be
important to increase the robustness of FO.

Powerful results can be achieved by processing events in batches, however this methodology can
introduce unwanted additional latency. Though using sliding windows of one event theoretically
eliminates this issue, it is hard to picture an implementation where this will be computationally fea-
sible. I believe that an exciting new step in FO will be to find intersections with per-event processing
methods, for example as training signals for asynchronous Spiking Neural Networks (SNNs).

My research reveals that events, when considered together, are rich in information, embedded
in their high temporal resolution and in the natural associations that exist between events emitted
by a common stimulus. This information is sufficient to produce high quality optic flow, motion
segmentation and video reconstructions. I believe that this work will help put event cameras at the
forefront of mobile robotics, from self-driving cars to mobile phones. The recent explosion in the
capabilities of computer vision, deep learning and robotics makes this an exciting time to be working
at the forefront of a new frontier in machine vision. This thesis has helped lay the foundations of this
burgeoning field, allowing the exploitation of the natural associations that exist between events.

117

Appendix A

Event Based Vision Concepts

A.1 Event Representations

A.1.1 Discretised Event Volume/Voxel Grid

The Discretised Event Volume (DEV) or voxel grid (Figure 1.5b), is a popular representation in deep
learning applications. Many powerful deep learning architectures expect three-dimensional tensors as
input. The DEV makes these architectures accessible to event data, although it does lose some of the
temporal information in the events. By spreading events to the temporal bins by bilinear interpolation,
less temporal information is lost than through simple binning (see Figure A.1). Given a set E of Ne
events ei = {xi, yi, si, ti}i=0,...,Ne−1 spanning ∆t = tN − t0 seconds, a DEV V with B bins can be
formed via

Vk∈[0,B−1](E) =
Ne

∑
i=1

si max(0, 1− |t∗i − k|) (A.1)

where t∗i is the timestamp normalised to the range [0, B− 1] via t∗i = ti−t0
∆t (B− 1) and the bins are

evenly spaced over the range [t0, tN]. Since negative and positive events cancel out in this formulation
it is common to generate two separate voxel grids, one for each polarity.

Voxel Formation Methods

Two natural choices for generating Discretised Event Volume (DEV) grids from the event stream are
fixed rate and fixed events (Figure A.2). In fixed rate, DEVs are formed from t second wide slices of
the event stream (variable event count), endowing the resulting inference with a fixed frame rate. This
has the downside that inference cannot adapt to changing scene dynamics, a disadvantage shared by
conventional cameras. A special case of fixed rate is between frames where all events between two
image frames are used to form a DEV grid.

In fixed events, one waits for Ne events before making a DEV grid no matter how long it takes
(variable duration). Fixed events has the downside that if the camera receives few events, either

Figure A.1: A Discretised Event Volume (DEV) is formed by assigning the events (red and blue
dashes, top) into temporal bins (red/blue boxes, bottom). Each event is assigned to the neighboring
bins via bi-linear interpolation - for example, the cyan event is spread in the ratio 0.8:0.2 to the bin it
is 20 % and 80 % distant to respectively.

118 Appendix A. Event Based Vision Concepts

Figure A.2: Events (blue and red lines) on a timeline are discretised into voxels below (squares)
according to: a) fixed rate, b) fixed events, c) between frames (frames denoted by black lines).

because the scene has little texture or the motion is slow, the inference rate can slow to a crawl.
This method allows matching the value Ne to the average Ne of the training set during inference,
potentially benefiting the network. As an example, the average events per DEV in the training set for
chapter 5 is 0.0564 events per voxel.

A.1.2 Event Image

The event image I0 is formed by a set of Ne events e ∈ E by

I0(E) =
Ne

∑
i=1

siδ(x− xi, y− xi) (A.2)

where each event is given by the tuple ei = {xi, yi, ti, si} and δ is the Kronecker delta (see Figure
1.5c). Positive and negative events cancel, though in some works separate images are formed for the
positive and negative events respectively. The event image can be seen as a special case of the Image
of Warped Events (IWE) Iω with motion parameters ω = 0.

A.1.3 Image of Warped Events

The Image of Warped Events (IWE), denoted Iω, is the image that is obtained by transporting a set of
events E to a common reference time tref through some warping operationW . This warping operation
is usually parameterised by a set of parameters ω. The warping operationW thus consists of a map
from the events in R3 to a new location in R3. The set of warped events is:

EW =W(e, tref; ω) ∀e ∈ E (A.3)

These warped events now lie on a common plane at tref and can be easily formed into an event image
by summing the values of the events at each location. Since the warped pixel locations are not integer
values, this summation is best performed using bilinear voting, to avoid aliasing effects. That is, given
the set of Ne warped events e

′
= {x′ , y

′
, t
′
, s
′} ∈ EW , the value of each pixel (u, v) ∈ Iω is given as

Iω(u, v) =
Ne

∑
i=1

s
′
i max(0, 1− |x′i − u|)max(0, 1− |y′i − v|) (A.4)

In the case that W transports the events along the point trajectories of the common visual features,
the generation of the IWE can be interpreted as a motion-compensation of the events (see Focus
Optimisation (FO)).

A.1.4 Surface of Active Events

The Surface of Active Events (SAE) (also commonly known as time image) is a common event
representation, in which the latest timestamp is recorded at each pixel location (see Figure 1.5d).

A.2. Focus Optimisation 119

Formally, given a set of Ne events e = {x, y, s, t} ∈ E , each pixel u, v of the SAE is given by:

It(u, v) = max(t0 f (e0, u, v), t1 f (e1, u, v), . . . tNe−1 f (eNe−1, u, v)) (A.5)

where
f (e, u, v) = min(0, |x− u|)min(0, |y− v|) (A.6)

Since the absolute timestamp value is somewhat arbitrary (the relative timing of the events being the
important part), the SAE is often normalised. A popular normalisation scheme is sort normalisation
[2], as this is independent of actual timestamp values. This is important, since if even a single pixel
does not receive any new events over a long period, the normalisation range can become very large.
Sort normalisation has been shown to be robust in several applications and can be computed and
updated in an efficient and asynchronous manner [46].

A.2 Focus Optimisation

Focus Optimisation (FO) is an event processing framework which has been fruitful across a range
of tasks [26]. FO makes direct use of the data association between events generated by a common
visual feature, by warping these common events to one point on an Image of Warped Events (IWE)
(see Figure 1.7). The warp function W should be parameterised by parameters ω and chosen to
correlate with the desired property of the event stream to be ascertained. For example, if optic flow
is the desired output, W should represent on optic flow motion model (vx, vy). A good estimate of
ω should correspond to a focused Iω, essentially motion-compensating the events. The focus can be
measured and when optimised should reveal the correct (vx, vy). The problem is thus formulated:

arg max
ω

r(Iω) (A.7)

where r is the function used to measure the focus of the IWE. The variance of the sample image is
often used for r, which effectively measures the contrast of the image, which correlates with focus
[25].

121

Appendix B

Event Utility Library

The event utility library (https://github.com/TimoStoff/event_utils) contains sev-
eral libraries for event-based vision implemented in the Python programming language. These li-
braries contain utilities for Focus Optimisation (FO) (Section B.1), deep learning (Section B.2),
augmentation (Section B.3), data format conversion (Section B.4), event representation generation
(Section B.5) and visualisation (Section B.6) of event-based data. Most of the functionality uses
pytorch, an open source library for Graphics Processing Unit (GPU) operations, making most of
the library functionality easily accessible on GPU. Together with array broadcasting, which is used
wherever possible, the library allows for fast processing of events, despite Python’s interpreter, which
is traditionally thought of as quite slow compared to compiled languages such as C++.

The following is a brief description of the functionality of the library. The purpose is to give
a rough overview of the capabilities, without gong deep into the API and implementation details.
As a result, not every little helper and private function is listed, only those that might be of imme-
diate interest to event camera researchers. The library is documented using Doxygen conventions
and auto-generated documentation can be found at the project website for those interested in a full
documentation of the project.

B.1 Focus Optimisation (FO)

The FO library contains code that allows the user to perform FO on events. The important files of this
library are:

B.1.1 events_cmax.py

This file contains code to perform FO. The most important functionality is provided by:

• grid_search_optimisation: Performs the grid search optimisation described in Chap-
ter 2.

• optimize: Performs gradient based FO on the input events, given an objective function and
motion model (Chapter 3).

• grid_cmax: Given a set of events, splits the image plane into Region of Interests (RoIs) of
size roi_size. Performs FO on each RoI separately.

• segmentation_mask_from_d_iwe: Retrieve a segmentation mask for the events as de-
scribed in Chapter 2 based on dIω

dω .

• draw_objective_function: Draw the objective function for a given set of events, mo-
tion model and objective function. Produces plots as in Figure 2.4d.

• main: Demo showing various capabilities and code examples.

https://github.com/TimoStoff/event_utils

122 Appendix B. Event Utility Library

B.1.2 objectives.py

This file implements various objective functions described in this thesis as well as some other com-
monly cited works. Objective functions inherit from the parent class objective_function. The
idea is to make it as easy as possible to add new, custom objective functions by providing a common
API for the optimisation code. This class has several members that require initialisation:

• name: The name of the objective function (e.g. ‘variance’).

• use_polarity: Whether to use the polarity of the events in generating Images of Warped
Events (IWEs).

• has_derivative: Whether this objective has an analytical derivative w.r.t. ω.

• default_blur: What σ should be default for blurring.

• adaptive_lifespan: An innovative feature to deal with linearisation errors. Many im-
plementations of contrast maximisation use assumptions of linear motion wrt the chosen mo-
tion model. A given estimate of the motion parameters implies a lifespan of the events. If
adaptive_lifespan: is True, the number of events used during warping is cut to that lifes-
pan for each optimisation step, computed using pixel_crossings. e.g. If motion model
is optic flow velocity and the estimate = 12 pixels/second and pixel_crossings= 3, then
the lifespan will be 3

12 = 0.25s.

• pixel_crossings: Number of pixel crossings used to calculate lifespan.

• minimum_events: The minimal number of events that the lifespan can cut to.

The required function that inheriting classes need to implement are:

• evaluate_function: Evaluate the objective function for given parameters, events etc.

• evaluate_gradient: Evaluate the objective function and the gradient of the objective
function w.r.t. motion parameters for given parameters, events etc.

The objective functions implemented in this file are:

• variance_objective: Variance objective (see [27]).

• rms_objective: Root Mean Squared objective.

• sos_objective: See Chapter 4, Equation 4.5.

• soe_objective: See Chapter 4, Equation 4.9.

• moa_objective: See Chapter 4, Equation 4.11.

• soa_objective: See Chapter 4, Equation 4.12.

• sosa_objective: See Chapter 4, Equation 4.14.

• zhu_timestamp_objective: Objective function defined in [121].

• r1_objective: Combined objective function rR1 in Chapter 4.

• r2_objective: Combined objective function rR2 in Chapter 4.

B.2. Deep Learning 123

B.1.3 warps.py

This file implements warping functions described in this thesis as well as some other commonly cited
works. Objective functions inherit from the parent class warp_function. The idea is to make
it as easy as possible to add new, custom warping functions by providing a common API for the
optimisation code. Initialisation requires setting member variables:

• name: Name of the warping function, e.g. optic_flow.

• dims: Degree of Freedom (DoF) of the warping function.

The only function that needs to be implemented by inheriting classes is warp, which takes events,
a reference time and motion parameters as input. The function then returns a list of the warped
event coordinates as well as the Jacobian of each event w.r.t. the motion parameters. Warp functions
currently implemented are:

• linvel_warp: 2-DoF optic flow warp.

• xyztheta_warp: 4-DoF warping function from [58] ((x, y, z) velocity and angular velocity
θ around the origin).

• pure_rotation_warp: 3-DoF pure rotation warp (x, y, θ where x, y are the center of rota-
tion and θ is the angular velocity).

B.2 Deep Learning

The deep learning code can be found in the data_loaders library. It contains code for loading
events and transforming them into voxel grids in an efficient manner as well as code for data augmen-
tation. Actual networks and objective functions described in this thesis are not implemented in the
library but at the project page for that paper.

data_loaders provides a highly versatile pytorch dataloader, which can be used across
various storage formats for events (.txt, Hierarchical Data Format v.5 (HDF5), memmap etc.). As a
result, it is very easy to implement new dataloader for a different storage format. The output of the
dataloader was originally to provide voxel grids of the events, but can be used just as well to output
batched events, due to a custom pytorch collation function. As a result, the dataloader is useful
for any situation in which it is desirable to iterate over the events in a storage medium and is not
only useful for deep learning. For instance, if one wants to iterate over the events that lie between all
the frames of a Dynamic and Active-pixel VIsion Sensor (DAVIS) sequence, the following code is
sufficient:

dloader = DynamicH5Dataset(path_to_events_file)
for item in dloader:

print(item[‘events’].shape)

B.2.1 base_dataset.py

This file defines the base dataset class (BaseVoxelDataset), which defines all batching, aug-
mentation, collation and housekeeping code. Inheriting classes (one per data format) need only to
implement the abstract functions for providing events, frames and other data from storage. These
abstract functions are:

• get_frame(self, index): Given an index n, return the nth frame.

• get_flow(self, index): Given an index n, return the nth optic flow frame.

124 Appendix B. Event Utility Library

• get_events(self, idx0, idx1): Given a start and end index idx0 and idx1, return
all events between those indices.

• load_data(self, data_path): Function which is called once during initialisation,
which creates handles to files and sets several class attributes (number of frames, events etc.).

• find_ts_index(self, timestamp): Given a timestamp, get the index of the nearest
event.

• ts(self, index): Given an event index, return the timestamp of that event.

The function load_data must set the following member variables:

• self.sensor_resolution: Event sensor resolution.

• self.has_flow: Whether or not the data has optic flow frames.

• self.t0: The start timestamp of the events.

• self.tk: The end timestamp of the events.

• self.num_events: The number of events in the dataset.

• self.frame_ts: The timestamps of the time-synchronised frames.

• self.num_frames: The number of frames in the dataset.

The constructor of the class takes following arguments:

• data_path: Path to the file containing the event/image data.

• transforms: Python dict containing the desired augmentations.

• sensor_resolution: The size of the image sensor.

• num_bins: The number of bins desired in the voxel grid.

• voxel_method: Which method should be used to form the voxels.

• max_length: If desired, the length of the dataset can be capped to max_length batches.

• combined_voxel_channels: If True, produces one voxel grid for all events, if False,
produces separate voxel grids for positive and negative channels.

• return_events: If true, returns events in output dict.

• return_voxelgrid: If true, returns voxel grid in output dict.

• return_frame: If true, returns frames in output dict.

• return_prev_frame: If true, returns previous batch’s frame to current frame in output
dict.

• return_flow: If true, returns optic flow in output dict.

• return_prev_flow: If true, returns previous batch’s optic flow to current optic flow in
output dict.

• return_format: Which output format to use (options=‘numpy’ and ‘torch’).

B.3. Augmentation 125

The parameter voxel_method defines how the data is to be batched. For instance, one might wish
to have data returned in windows t seconds wide, or to always get all data between successive Ac-
tive Pixel Sensor (APS) frames. The method is given as a dict, as some methods have additional
parametrisations. The current options are:
i) k_events: Data is returned every k events. The dict is given in the format:
method = {

‘method’:‘k_events’,
‘k’: value_for_k,
‘sliding_window_w’:value_for_sliding_window

}.
The parameter sliding_window_w defines by how many events each batch overlaps.
ii) t_seconds: Data is returned every t seconds. The dict is given in the format
method = {

‘method’:‘t_seconds’,
‘t’: value_for_t,
‘sliding_window_t’: value_for_sliding_window }.

The parameter sliding_window_t defines by how many seconds each batch overlaps.
iii) between_frames: All data between successive frames is returned. Requires time-synchronised
frames to exist. The dict is given in the format
method={‘method’:‘between_frames’}.
Generating the voxel grids can be done very efficiently and on the GPU (if the events have been loaded
there) using the pytorch function target.index_put_(index, value, accumulate
= True). This function puts values from value into target using the indices specified in
indices using highly optimised C++ code in the background. accumulate specifies if values
in value which get put in the same location on target should sum (accumulate) or overwrite
one another. In summary, BaseVoxelDataset allows for very fast, on-device data-loading and
on-the-fly voxel grid generation.

B.2.2 hdf5_dataset.py and memmap_dataset.py

Currently the library contains implementations for loading events saved in the HDF5 format used
at Monash University and Australia National University and events saved in the memmap format
commonly used at Robotics and Perception Group, Zurich (RPG).

B.3 Augmentation

While the deep learning library (Appendix B.2) contains some code for tensor augmentation (such as
adding Gaussian noise, rotations, flips, random crops etc.), the augmentation library allows for these
operations to occur on the raw events. This functionality is contained within
event_augmentation.py.

B.3.1 event_augmentation.py

The following augmentations are available:

• add_random_events: Generates N new random events, drawn from a uniform distribution
over the size of the spatiotemporal volume.

• remove_events: Makes the event stream more sparse, by removing a random selection of
N events from the original event stream.

126 Appendix B. Event Utility Library

(a) (b) (c)

(d) (e) (f)

Figure B.1: Various augmentations of the events (events in red/blue with initial events in black for
easier viewing). B.1a The original events from slider_depth [64]. B.1b The events are doubled
using random correlated events. B.1c The events are doubled using random events. B.1d The events
are halved using random selection. B.1e The events are flipped around the x axis. B.1f The events
are rotated 45◦ around the center of the image (and cropped to fit sensor size).

• add_correlated_events: Makes the event stream more dense by adding N new events
around the existing events. Each original event is fitted with a Gaussian bubble with standard
deviation σxy in the x, y dimension and σt in the t dimension. New events are drawn from these
distributions. Note that this also ‘blurs’ the event stream.

• flip_events_x: Flip events over x axis.

• flip_events_y: Flip events over y axis.

• crop_events: Spatially crop events either randomly, to a desired amount and either from
the origin or as a center crop.

• rotate_events: Rotate events by angle θ around a center of rotation a, b. Events can then
optionally be cropped in the case that they overflow the sensor resolution.

Figure B.1 shows some examples of possible augmentations. Since the augmentations are imple-
mented using vectorisation, the heavy lifting is done in optimised C/C++ backends and is thus very
fast.

B.4 Data Formats

The data_formats provides code for converting events in one file format to another. Even though
many candidates have appeared over the years (rosbag, AEDAT, .txt, HDF5, pickle, cuneiform clay
tablets, just to name a few), a universal storage option for event-based data has not yet crystallised.
Some of these data formats are particularly useful within particular operating systems or program-
ming languages. For example, rosbags are the natural choice for C++ programming with the Robot
Operating System (ROS) environment. Since they also store data in an efficient binary format, they

B.5. Representations 127

have become a very common storage option. However, they are notoriously slow and impractical to
process in Python, which has become the de-facto deep-learning language and is commonly used in
research due to the rapid development cycle. More practical (and importantly, fast) options are the
HDF5 and numpy memmap formats. HDF5 is a more compact and easily accessible format, since it
allows for easy grouping and metadata allocation, however it’s difficulty in setting up multi-threading
access and subsequent buggy behaviour (even in read-only applications) means that memmap is more
common for deep learning, where multi-threaded data-loaders can significantly speed up training.

B.4.1 event_packagers.py

The data_formats library provides a packager abstract base class, which defines what a
packager needs to do. packager objects receive data (events, frames etc.) and write them to the
desired file format (e.g. HDF5). Converting file formats is now much easier, since input files now
need only to be parsed and the data sent to the packager with the appropriate function calls. The
functions that need to implemented are:

• package_events: A function which given events, writes them to the file/buffer.

• package_image: A function which given images, writes them to the file/buffer.

• package_flow: A function which given optic flow frames, writes them to the file/buffer.

• add_metadata: Writes metadata to the file (number of events, number of negative/positive
events, duration of sequence, start time, end time, number of images, number of optic flow
frames).

• set_data_available: What data is available and needs to be written (i.e. events, frames,
optic flow).

A packager for HDF5 and memmap is implemented.

B.4.2 h5_to_memmap.py and rosbag_to_h5.py

The library implements two converters, one for HDF5 to memmap and one for rosbag to HDF5.
These can be easily called from the command line with various options that can be found in the
documentation.

B.4.3 add_hdf5_attribute.py

add_hdf5_attribute.py allows the user to add or modify attributes to existing HDF5 files.
Attributes are the manner in which metadata is saved in HDF5 files.

B.4.4 read_events.py

read_events.py contains functions for reading events from HDF5 and memmap. The functions
are:

• read_memmap_events.

• read_h5_events.

B.5 Representations

This library contains code for generating representations from the events in a highly efficient, GPU
ready manner.

128 Appendix B. Event Utility Library

B.5.1 voxel_grid.py

This file contains several means for forming and viewing voxel grids (Appendix A.1.1) from events.
There are two versions of each function, representing a pure numpy and a pytorch implementation.
The pytorch implementation is necessary for GPU processing, however it is not as commonly
used as numpy, which is so frequently used as to barely be a dependency any more. Functions for
pytorch are:

• voxel_grids_fixed_n_torch: Given a set of n events, return a voxel grid with B bins
and with a fixed number of events.

• voxel_grids_fixed_t_torch: Given a set of events and a duration t, return a voxel
grid with B bins and with a fixed temporal width t.

• events_to_voxel_timesync_torch: Given a set of events and two times t0 and t1,
return a voxel grid with B bins from the events between t0 and t1.

• events_to_voxel_torch: Given a set of events, return a voxel grid with B bins from
those events.

• events_to_neg_pos_voxel_torch: Given a set of events, return a voxel grid with B
bins from those events. Positive and negative events are formed into two separate voxel grids.

Functions for numpy are:

• events_to_voxel: Given a set of events, return a voxel grid with B bins from those events.

• events_to_neg_pos_voxel: Given a set of events, return a voxel grid with B bins from
those events. Positive and negative events are formed into two separate voxel grids.

Additionally:

• get_voxel_grid_as_image:Returns a voxel grid as a series of images, one for each bin
for display.

• plot_voxel_grid: Given a voxel grid, display it as an image.

Voxel grids can be formed both using spatial and temporal interpolation between the bins.

B.5.2 image.py

image.py contains code for forming images from events in an efficient manner. The functions allow
for forming images with both discrete and floating point events using bilinear interpolation. Images
currently supported are event images (Appendix A.1.2) and timestamp images using either numpy or
pytorch. Functions are:

• events_to_image: Form an image from events using numpy. Allows for bilinear interpo-
lation while assigning events to pixels and padding of the image or clipping of events for events
which fall outside of the range.

• events_to_image_torch: Form an image from events using pytorch. Allows for bi-
linear interpolation while assigning events to pixels and padding of the image or clipping of
events for events which fall outside of the range.

• image_to_event_weights: Given an image and a set of event coordinates, get the pixel
value of the image for each event using reverse bilinear interpolation.

B.6. Visualisation 129

• events_to_image_drv: Form an image from events and the derivative images from the
event Jacobians (with options for padding the image or clipping out-of-range events). Of par-
ticular use for FO where analytic gradients motion models are known.

• events_to_timestamp_image: Method to generate the average timestamp images from
Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. “Unsupervised
Event-based Learning of Optical Flow, Depth, and Egomotion”. In: IEEE Conf. Comput.
Vis. Pattern Recog. (CVPR). 2019, pp. 989–997 using numpy. Returns two images, one for
negative and one for positive events.

• events_to_timestamp_image_torch: Method to generate the average timestamp im-
ages from Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. “Unsuper-
vised Event-based Learning of Optical Flow, Depth, and Egomotion”. In: IEEE Conf. Comput.
Vis. Pattern Recog. (CVPR). 2019, pp. 989–997 using pytorch. Returns two images, one for
negative and one for positive events.

B.6 Visualisation

The visualization library contains methods for generating figures and movies from events. The
majority of figures shown in the thesis were generated using this library. Two rendering backends are
available, the commonly used matplotlib plotting library and mayavi, which is a VTK based
graphics library. The API for both of these is essentially the same, the main difference being the
dependency on matplotlib or mayavi. matplotlib is very easy to set up, but quite slow,
mayavi is very fast but more difficult to set up and debug. I will describe the matplotlib version
here, although all functionality exists in the mayavi version too (see the code documentation for
details).

B.6.1 draw_event_stream.py

The core work is done in this file, which contains code for visualising events and voxel grids (see
Figure B.2 for examples). The function for plotting events is plot_events. Input parameters
for this function are:

• xs: x coords of events.

• ys: y coords of events.

• ts: t coords of events.

• ps: p coords of events.

• save_path: If set, will save the plot to here

• num_compress: Takes num_compress events from the beginning of the sequence and
draws them in the plot at time t = 0 in black. This aids visibility (see Figure B.1).

• compress_front: If True, display the compressed events in black at the front of the spa-
tiotemporal volume rather than the back

• num_show: Sets the number of events to plot. If set to -1 will plot all of the events (can be
potentially expensive). Otherwise, skips events in order to achieve the desired number of events

• event_size: Sets the size of the plotted events.

• elev: Sets the elevation of the plot.

130 Appendix B. Event Utility Library

(a) (b)

(c) (d)

Figure B.2: Several visualisations made using the visualization library. B.2a shows event visualisa-
tion, B.2b shows a voxel grid, B.2c shows the event image and B.2d the Surface of Active Events
(SAE).

• azim: Sets the azimuth of the plot.

• imgs: A list of images to draw into the spatiotemporal volume.

• img_ts: A list of the position on the temporal axis where each image from imgs is to be
placed.

• show_events: If False, will not plot the events (only images).

• show_plot: If True, display the plot in a matplotlib window as well as saving to disk.

• crop: A crop, if desired, of the events and images to be plotted.

• marker: Which marker should be used to display the events (default is ’.’, which results in
points, but circles ’o’ or crosses ’x’ are among many other possible options).

• stride: Determines the pixel stride of the image rendering (1=full resolution, but can be
quite resource intensive).

• invert: Inverts the colour scheme for black backgrounds.

• img_size: The size of the sensor resolution. Inferred if empty.

• show_axes: If True, draw axes onto the plot.

The analogous function for plotting voxel grids is:

• xs: x coords of events.

• ys:y coords of events.

• ts: t coords of events.

• ps: p coords of events.

B.7. Util 131

(a)

(b)

Figure B.3: Slider sequence [64] visualised as video sequence. B.3a as event cloud with frames,
B.3b as voxels.

• bins: The number of bins to have in the voxel grid.

• frames: A list of images to draw into the plot with the voxel grid.

• frame_ts: A list of the position on the temporal axis where each image from frames is to
be placed.

• sensor_size: Event sensor resolution.

• crop: A crop, if desired, of the events and images to be plotted.

• elev: Sets the elevation of the plot.

• azim: Sets the azimuth of the plot.

To plot successive frames in order to generate video, the function plot_events_sliding can be
used. Essentially, this function renders a sliding window of the events, for either the event or voxel
visualisation modes. Similarly, plot_between_frames can be used to render all events between
frames, with the option to skip every nth event. To generate such plots from the command line, the
library provides the scripts:

• visualize_events.py

• visualize_voxel.py

• visualize_flow.py

These provide a range of documented commandline arguments with sensble defaults from which plots
of the events, voxel grids and events with optic flow overlaid can be generated. For example,
python visualize_events.py /path/to/slider_depth.h5
produces plots of the slider_depth [64] sequence (Figure B.3a). Invoking:
python visualize_voxel.py /path/to/slider_depth.h5
produces voxels of the slider_depth [64] sequence (Figure B.3b).

B.7 Util

This library contains some utility functions used in the rest of the library. Functions include:

132 Appendix B. Event Utility Library

• infer_resolution: Given events, guess the resolution by looking at the max and min
values.

• events_bounds_mask: Get a mask of the events that are within given bounds.

• clip_events_to_bounds: Clip events to the given bounds.

• cut_events_to_lifespan: Given motion model parameters, compute the speed and thus
the lifespan, given a desired number of pixel crossings.

• get_events_from_mask: Given an image mask, return the indices of all events at each
location in the mask.

• binary_search_h5_dset: Binary search for a timestamp in an HDF5 event file, without
loading the entire file into RAM.

• binary_search_torch_tensor: Binary search implemented for pytorch tensors (no
native implementation exists).

• remove_hot_pixels: Given a set of events, removes the ‘hot’ pixel events. Accumulates
all of the events into an event image and removes the num_hot highest value pixels.

• optimal_crop_size: Find the optimal crop size for a given max_size and
subsample_factor. The optimal crop size is the smallest integer which is greater or equal
than max_size, while being divisible by 2max_subsample_factor.

• plot_image_grid: Given a list of images, stitch them into a grid and display/save the grid.

• flow2bgr_np: Turn optic flow into an RGB image.

133

Bibliography

[1] Mohammed Mutlaq Almatrafi and Keigo Hirakawa. “DAViS Camera Optical Flow”. In: IEEE
Trans. Comput. Imaging (2019), pp. 1–11. DOI: 10.1109/tci.2019.2948787.

[2] Ignacio Alzugaray and Margarita Chli. “ACE: An efficient asynchronous corner tracker for
event cameras”. In: 3D Vision (3DV). 2018, pp. 653–661. DOI: 10.1109/3DV.2018.
00080.

[3] Patrick Bardow, Andrew J. Davison, and Stefan Leutenegger. “Simultaneous Optical Flow
and Intensity Estimation From an Event Camera”. In: IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR). 2016, pp. 884–892. DOI: 10.1109/CVPR.2016.102.

[4] Francisco Barranco, Cornelia Fermuller, and Yiannis Aloimonos. “Contour Motion Estima-
tion for Asynchronous Event-Driven Cameras”. In: Proc. IEEE 102.10 (Oct. 2014), pp. 1537–
1556. DOI: 10.1109/jproc.2014.2347207.

[5] Ryad Benosman, Charles Clercq, Xavier Lagorce, Sio-Hoi Ieng, and Chiara Bartolozzi. “Event-
Based Visual Flow”. In: IEEE Trans. Neural Netw. Learn. Syst. 25.2 (2014), pp. 407–417.
DOI: 10.1109/TNNLS.2013.2273537.

[6] Ryad Benosman, Sio-Hoi Ieng, Charles Clercq, Chiara Bartolozzi, and Mandyam Srinivasan.
“Asynchronous frameless event-based optical flow”. In: Neural Netw. 27 (2012), pp. 32–37.
DOI: 10.1016/j.neunet.2011.11.001.

[7] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc.,
2006.

[8] Kwabena A. Boahen. “A Burst-Mode Word-Serial Address-Event Link-I: Transmitter De-
sign”. In: IEEE Trans. Circuits Syst. I 51.7 (July 2004), pp. 1269–1280. DOI: 10.1109/
TCSI.2004.830703.

[9] Christian Brandli, Raphael Berner, Minhao Yang, Shih-Chii Liu, and Tobi Delbruck. “A
240x180 130dB 3us Latency Global Shutter Spatiotemporal Vision Sensor”. In: IEEE J.
Solid-State Circuits 49.10 (2014), pp. 2333–2341. DOI: 10.1109/JSSC.2014.2342715.

[10] Tobias Brosch, Stephan Tschechne, and Heiko Neumann. “On event-based optical flow de-
tection”. In: Front. Neurosci. 9 (Apr. 2015), p. 137. DOI: 10.3389/fnins.2015.00137.

[11] John Canny. “A Computational Approach to Edge Detection”. In: IEEE Trans. Pattern Anal.
Mach. Intell. PAMI-8.6 (Nov. 1986), pp. 679–698. DOI: 10.1109/TPAMI.1986.4767851.

[12] Jörg Conradt, Matthew Cook, Raphael Berner, Patrick Lichtsteiner, Rodney J. Douglas, and
Tobi Delbruck. “A Pencil Balancing Robot using a Pair of AER Dynamic Vision Sensors”.
In: IEEE Int. Symp. Circuits Syst. (ISCAS). 2009, pp. 781–784. DOI: 10.1109/ISCAS.
2009.5117867.

[13] Tobi Delbruck. “Frame-free dynamic digital vision”. In: Proc. Int. Symp. Secure-Life Elec-
tron. 2008, pp. 21–26.

[14] Tobi Delbruck, Yuhuang Hu, and Zhe He. “V2E: From video frames to realistic DVS event
camera streams”. In: arXiv e-prints (July 2020). URL: http://arxiv.org/abs/2006.
07722.

http://dx.doi.org/10.1109/tci.2019.2948787
http://dx.doi.org/10.1109/3DV.2018.00080
http://dx.doi.org/10.1109/3DV.2018.00080
http://dx.doi.org/10.1109/CVPR.2016.102
http://dx.doi.org/10.1109/jproc.2014.2347207
http://dx.doi.org/10.1109/TNNLS.2013.2273537
http://dx.doi.org/10.1016/j.neunet.2011.11.001
http://dx.doi.org/10.1109/TCSI.2004.830703
http://dx.doi.org/10.1109/TCSI.2004.830703
http://dx.doi.org/10.1109/JSSC.2014.2342715
http://dx.doi.org/10.3389/fnins.2015.00137
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/ISCAS.2009.5117867
http://dx.doi.org/10.1109/ISCAS.2009.5117867
http://arxiv.org/abs/2006.07722
http://arxiv.org/abs/2006.07722

134 BIBLIOGRAPHY

[15] Tobi Delbruck and Manuel Lang. “Robotic Goalie with 3ms Reaction Time at 4% CPU Load
Using Event-Based Dynamic Vision Sensor”. In: Front. Neurosci. 7 (2013), p. 223. DOI: 10.
3389/fnins.2013.00223.

[16] Tobi Delbruck and Patrick Lichtsteiner. “Fast Sensory Motor Control Based on Event-Based
Hybrid Neuromorphic-Procedural System”. In: IEEE Int. Symp. Circuits Syst. (ISCAS). 2007,
pp. 845–848. DOI: 10.1109/ISCAS.2007.378038.

[17] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Häusser, Caner Hazırbaş, Vladimir
Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox. “FlowNet: Learning Opti-
cal Flow with Convolutional Networks”. In: Int. Conf. Comput. Vis. (ICCV). 2015, pp. 2758–
2766. DOI: 10.1109/ICCV.2015.316.

[18] David Drazen, Patrick Lichtsteiner, Philipp Häfliger, Tobi Delbrück, and Atle Jensen. “To-
ward real-time particle tracking using an event-based dynamic vision sensor”. In: Experiments
in Fluids 51.5 (2011), pp. 1465–1469. DOI: 10.1007/s00348-011-1207-y.

[19] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley, 2000.
ISBN: 978-0471056690.

[20] Gunnar Farnebäck. “Two-Frame Motion Estimation Based on Polynomial Expansion”. In:
Scandinavian Conf. on Im. Analysis (SCIA). 2003, pp. 363–370.

[21] R. Fletcher and C. M. Reeves. “Function minimization by conjugate gradients”. In: The Com-
puter Journal 7.2 (Jan. 1964), pp. 149–154. ISSN: 0010-4620. DOI: 10.1093/comjnl/7.
2.149.

[22] S. A. Fortune, M. P. Hayes, and P. T. Gough. “Contrast optimisation of coherent images”. In:
IEEE OCEANS. Vol. 5. 2003, pp. 2622–2628.

[23] C. Fraley. “How Many Clusters? Which Clustering Method? Answers Via Model-Based Clus-
ter Analysis”. In: The Computer Journal 41.8 (Aug. 1998), pp. 578–588. DOI: 10.1093/
comjnl/41.8.578.

[24] Guillermo Gallego, Tobi Delbruck, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea
Censi, Stefan Leutenegger, Andrew Davison, Jörg Conradt, Kostas Daniilidis, and Davide
Scaramuzza. “Event-based Vision: A Survey”. In: IEEE Trans. Pattern Anal. Mach. Intell.
(2020).

[25] Guillermo Gallego, Mathias Gehrig, and Davide Scaramuzza. “Focus Is All You Need: Loss
Functions For Event-based Vision”. In: IEEE Conf. Comput. Vis. Pattern Recog. (CVPR).
2019, pp. 12280–12289.

[26] Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza. “A Unifying Contrast Maximiza-
tion Framework for Event Cameras, with Applications to Motion, Depth, and Optical Flow
Estimation”. In: IEEE Conf. Comput. Vis. Pattern Recog. (CVPR). 2018, pp. 3867–3876. DOI:
10.1109/CVPR.2018.00407.

[27] Guillermo Gallego and Davide Scaramuzza. “Accurate Angular Velocity Estimation with an
Event Camera”. In: IEEE Robot. Autom. Lett. 2.2 (2017), pp. 632–639. DOI: 10.1109/
LRA.2016.2647639.

[28] Daniel Gehrig, Antonio Loquercio, Konstantinos G. Derpanis, and Davide Scaramuzza. “End-
to-End Learning of Representations for Asynchronous Event-Based Data”. In: Int. Conf.
Comput. Vis. (ICCV). 2019, pp. 5633–5643.

[29] Arren Glover and Chiara Bartolozzi. “Event-driven ball detection and gaze fixation in clutter”.
In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2016, pp. 2203–2208. DOI: 10.1109/
IROS.2016.7759345.

http://dx.doi.org/10.3389/fnins.2013.00223
http://dx.doi.org/10.3389/fnins.2013.00223
http://dx.doi.org/10.1109/ISCAS.2007.378038
http://dx.doi.org/10.1109/ICCV.2015.316
http://dx.doi.org/10.1007/s00348-011-1207-y
http://dx.doi.org/10.1093/comjnl/7.2.149
http://dx.doi.org/10.1093/comjnl/7.2.149
http://dx.doi.org/10.1093/comjnl/41.8.578
http://dx.doi.org/10.1093/comjnl/41.8.578
http://dx.doi.org/10.1109/CVPR.2018.00407
http://dx.doi.org/10.1109/LRA.2016.2647639
http://dx.doi.org/10.1109/LRA.2016.2647639
http://dx.doi.org/10.1109/IROS.2016.7759345
http://dx.doi.org/10.1109/IROS.2016.7759345

BIBLIOGRAPHY 135

[30] Arren Glover and Chiara Bartolozzi. “Robust visual tracking with a freely-moving event
camera”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2017, pp. 3769–3776. DOI:
10.1109/IROS.2017.8206226.

[31] Rafael C. Gonzalez and Richard Eugene Woods. Digital Image Processing. Pearson Educa-
tion, 2009. ISBN: 978-0131687288.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[33] Germain Haessig, Andrew Cassidy, Rodrigo Alvarez-Icaza, Ryad Benosman, and Garrick
Orchard. “Spiking Optical Flow for Event-based Sensors Using IBM’s TrueNorth Neurosy-
naptic System”. In: IEEE Trans. Biomed. Circuits Syst. 12.4 (Aug. 2018), pp. 860–870. DOI:
10.1109/TBCAS.2018.2834558.

[34] J. P. Hamaker, J. D. O’Sullivan, and J. E. Noordam. “Image sharpness, Fourier optics, and
redundant-spacing interferometry”. In: J. Opt. Soc. Am. 67.8 (Aug. 1977), pp. 1122–1123.
DOI: 10.1364/JOSA.67.001122.

[35] Chris Harris and Mike Stephens. “A combined corner and edge detector”. In: Proc. Fourth
Alvey Vision Conf. Vol. 15. 1988, pp. 147–151. DOI: 10.5244/C.2.23.

[36] Yuhuang Hu, Jonathan Binas, Daniel Neil, Shih-Chii Liu, and Tobi Delbruck. “DDD20 End-
to-End Event Camera Driving Dataset: Fusing Frames and Events with Deep Learning for Im-
proved Steering Prediction”. In: IEEE Int. Conf. on Intelligent Transportation Systems (Sept.
2020).

[37] Inivation. DAVIS240 User Guide. Accessed: 22/08/2020. 2020. URL: https://inivation.
github.io/inivation-docs/Hardwareuserguides/User_guide_-_DAVIS240.
html\#aer-format.

[38] Hanme Kim, Ankur Handa, Ryad Benosman, Sio-Hoi Ieng, and Andrew J. Davison. “Si-
multaneous Mosaicing and Tracking with an Event Camera”. In: British Mach. Vis. Conf.
(BMVC). 2014, pp. 1–12. DOI: 10.5244/C.28.26.

[39] Hanme Kim, Stefan Leutenegger, and Andrew J. Davison. “Real-Time 3D Reconstruction and
6-DoF Tracking with an Event Camera”. In: Eur. Conf. Comput. Vis. (ECCV). 2016, pp. 349–
364. DOI: \protect{10.1007/978-3-319-46466-4_21}.

[40] Xavier Lagorce, Cédric Meyer, Sio-Hoi Ieng, David Filliat, and Ryad Benosman. “Asyn-
chronous Event-Based Multikernel Algorithm for High-Speed Visual Features Tracking”. In:
IEEE Trans. Neural Netw. Learn. Syst. 26.8 (Aug. 2015), pp. 1710–1720. DOI: 10.1109/
TNNLS.2014.2352401.

[41] Wei-Sheng Lai, Jia-Bin Huang, Oliver Wang, Eli Shechtman, Ersin Yumer, and Ming-Hsuan
Yang. “Learning Blind Video Temporal Consistency”. In: Eur. Conf. Comput. Vis. (ECCV).
2018, pp. 170–185.

[42] A. H. Land and A. G. Doig. “An Automatic Method of Solving Discrete Programming Prob-
lems”. In: Econometrica 28.3 (1960), pp. 497–520.

[43] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature 521 (2015),
pp. 436–444.

[44] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. “Training Deep Spiking Neural Net-
works Using Backpropagation”. In: Front. Neurosci. 10 (2016), p. 508. DOI: 10.3389/
fnins.2016.00508.

[45] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbruck. “A 128×128 120 dB 15 µs latency
asynchronous temporal contrast vision sensor”. In: IEEE J. Solid-State Circuits 43.2 (2008),
pp. 566–576. DOI: 10.1109/JSSC.2007.914337.

http://dx.doi.org/10.1109/IROS.2017.8206226
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/TBCAS.2018.2834558
http://dx.doi.org/10.1364/JOSA.67.001122
http://dx.doi.org/10.5244/C.2.23
https://inivation.github.io/inivation-docs/Hardware user guides/User_guide_-_DAVIS240.html\#aer-format
https://inivation.github.io/inivation-docs/Hardware user guides/User_guide_-_DAVIS240.html\#aer-format
https://inivation.github.io/inivation-docs/Hardware user guides/User_guide_-_DAVIS240.html\#aer-format
http://dx.doi.org/10.5244/C.28.26
http://dx.doi.org/\protect{10.1007/978-3-319-46466-4_21}
http://dx.doi.org/10.1109/TNNLS.2014.2352401
http://dx.doi.org/10.1109/TNNLS.2014.2352401
http://dx.doi.org/10.3389/fnins.2016.00508
http://dx.doi.org/10.3389/fnins.2016.00508
http://dx.doi.org/10.1109/JSSC.2007.914337

136 BIBLIOGRAPHY

[46] Shijie Lin, Fang Xu, Xuhong Wang, Wen Yang, and Lei Yu. “Efficient Spatial-Temporal Nor-
malization of SAE Representation for Event Camera”. In: ral 5.3 (2020), pp. 4265–4272.

[47] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick,
James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. “Microsoft
COCO: Common Objects in Context”. In: Eur. Conf. Comput. Vis. (ECCV). 2014, pp. 740–
755. DOI: 10.1007/978-3-319-10602-1_48.

[48] Martin Litzenberger, Ahmed Nabil Belbachir, N. Donath, G. Gritsch, H. Garn, B. Kohn,
Christoph Posch, and Stephan Schraml. “Estimation of Vehicle Speed Based on Asynchronous
Data from a Silicon Retina Optical Sensor”. In: IEEE Intell. Transp. Sys. Conf. 2006, pp. 653–
658. DOI: 10.1109/ITSC.2006.1706816.

[49] Martin Litzenberger, Christoph Posch, D. Bauer, Ahmed Nabil Belbachir, P. Schön, B. Kohn,
and H. Garn. “Embedded Vision System for Real-Time Object Tracking using an Asyn-
chronous Transient Vision Sensor”. In: Digital Signal Processing Workshop. 2006, pp. 173–
178. DOI: 10.1109/DSPWS.2006.265448.

[50] Daqi Liu, Alvaro Parra, and Tat-Jun Chin. “Globally Optimal Contrast Maximisation for
Event-based Motion Estimation”. In: IEEE Conf. Comput. Vis. Pattern Recog. (CVPR) (2020),
pp. 6349–6358.

[51] Min Liu and Tobi Delbruck. “Adaptive Time-Slice Block-Matching Optical Flow Algorithm
for Dynamic Vision Sensors”. In: British Mach. Vis. Conf. (BMVC). 2018.

[52] Shih-Chii Liu, Tobi Delbruck, Giacomo Indiveri, Adrian Whatley, and Rodney Douglas.
Event-Based Neuromorphic Systems. John Wiley & Sons, 2015.

[53] Bruce D. Lucas and Takeo Kanade. “An Iterative Image Registration Technique with an Ap-
plication to Stereo Vision”. In: Int. Joint Conf. Artificial Intell. (IJCAI). 1981, pp. 674–679.

[54] Misha Mahowald. “VLSI Analogs of Neuronal Visual Processing: A Synthesis of Form and
Function”. PhD thesis. Pasadena, California: California Institute of Technology, May 1992.

[55] Ana I. Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso García, and Davide Scara-
muzza. “Event-based Vision meets Deep Learning on Steering Prediction for Self-driving
Cars”. In: IEEE Conf. Comput. Vis. Pattern Recog. (CVPR). 2018, pp. 5419–5427. DOI:
10.1109/CVPR.2018.00568.

[56] Nico Messikommer, Daniel Gehrig, Antonio Loquercio, and Davide Scaramuzza. “Event-
based Asynchronous Sparse Convolutional Networks”. In: Eur. Conf. Comput. Vis. (ECCV)
(2020), pp. 415–431.

[57] Abhishek Mishra, Rohan Ghosh, Jose C. Principe, Nitish V. Thakor, and Sunil L. Kukreja. “A
Saccade Based Framework for Real-Time Motion Segmentation Using Event Based Vision
Sensors”. In: Front. Neurosci. 2017, pp. 83–93.

[58] Anton Mitrokhin, Cornelia Fermuller, Chethan Parameshwara, and Yiannis Aloimonos. “Event-
based Moving Object Detection and Tracking”. In: IEEE/RSJ Int. Conf. Intell. Robot. Syst.
(IROS). 2018, pp. 1–9.

[59] Anton Mitrokhin, Zhiyuan Hua, Cornelia Fermuller, and Yiannis Aloimonos. “Learning Vi-
sual Motion Segmentation using Event Surfaces”. In: IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR). 2020, pp. 14414–14423.

[60] Anton Mitrokhin, Chengxi Ye, Cornelia Fermuller, Yiannis Aloimonos, and Tobi Delbruck.
“EV-IMO: Motion Segmentation Dataset and Learning Pipeline for Event Cameras”. In:
IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS). 2019, pp. 6105–6112.

[61] Elias Mueggler, Christian Forster, Nathan Baumli, Guillermo Gallego, and Davide Scara-
muzza. “Lifetime Estimation of Events from Dynamic Vision Sensors”. In: IEEE Int. Conf.
Robot. Autom. (ICRA). 2015, pp. 4874–4881. DOI: 10.1109/ICRA.2015.7139876.

http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1109/ITSC.2006.1706816
http://dx.doi.org/10.1109/DSPWS.2006.265448
http://dx.doi.org/10.1109/CVPR.2018.00568
http://dx.doi.org/10.1109/ICRA.2015.7139876

BIBLIOGRAPHY 137

[62] Elias Mueggler, Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza. “Continuous-
Time Visual-Inertial Odometry for Event Cameras”. In: IEEE Trans. Robot. 34.6 (Dec. 2018),
pp. 1425–1440. DOI: 10.1109/tro.2018.2858287.

[63] Elias Mueggler, Guillermo Gallego, and Davide Scaramuzza. “Continuous-Time Trajectory
Estimation for Event-based Vision Sensors”. In: Robotics: Science and Systems (RSS). 2015.
DOI: 10.15607/RSS.2015.XI.036.

[64] Elias Mueggler, Henri Rebecq, Guillermo Gallego, Tobi Delbruck, and Davide Scaramuzza.
“The Event-Camera Dataset and Simulator: Event-based Data for Pose Estimation, Visual
Odometry, and SLAM”. In: Int. J. Robot. Research 36.2 (2017), pp. 142–149. DOI: 10.
1177/0278364917691115.

[65] Richard A. Muller and Andrew Buffington. “Real-time correction of atmospherically de-
graded telescope images through image sharpening”. In: J. Opt. Soc. Am. 64.9 (Sept. 1977),
pp. 1200–1210. DOI: 10.1364/JOSA.64.001200.

[66] Gottfried Munda, Christian Reinbacher, and Thomas Pock. “Real-Time Intensity-Image Re-
construction for Event Cameras Using Manifold Regularisation”. In: Int. J. Comput. Vis.
126.12 (July 2018), pp. 1381–1393. DOI: 10.1007/s11263-018-1106-2.

[67] Anh Nguyen, Thanh-Toan Do, Darwin G. Caldwell, and Nikos G. Tsagarakis. “Real-Time
6DOF Pose Relocalization for Event Cameras with Stacked Spatial LSTM Networks”. In:
IEEE Conf. Comput. Vis. Pattern Recog. Workshops (CVPRW). 2019, pp. 1–8.

[68] Zhenjiang Ni, Aude Bolopion, Joel Agnus, Ryad Benosman, and Stéphane Régnier. “Asyn-
chronous Event-Based Visual Shape Tracking for Stable Haptic Feedback in Microrobotics”.
In: IEEE Trans. Robot. 28.5 (2012), pp. 1081–1089. DOI: 10.1109/TRO.2012.2198930.

[69] Zhenjiang Ni, Sio-Hoï Ieng, Christoph Posch, Stéphane Régnier, and Ryad Benosman. “Vi-
sual Tracking Using Neuromorphic Asynchronous Event-Based Cameras”. In: Neural Com-
putation 27.4 (2015), pp. 925–953. DOI: 10.1162/NECO_a_00720.

[70] Zhenjiang Ni, Cécile Pacoret, Ryad Benosman, Sio-Hoï Ieng, and Stéphane Régnier. “Asyn-
chronous event-based high speed vision for microparticle tracking”. In: J. Microscopy 245.3
(2012), pp. 236–244. DOI: 10.1111/j.1365-2818.2011.03565.x.

[71] Jorge Nocedal and S. Wright. Numerical Optimization. Springer-Verlag New York, 2006.

[72] Björn Ommer, Theodor Mader, and Joachim M. Buhmann. “Seeing the Objects Behind the
Dots: Recognition in Videos from a Moving Camera”. In: Int. J. Comput. Vis. 83.1 (Feb.
2009), pp. 57–71. DOI: 10.1007/s11263-009-0211-7.

[73] Garrick Orchard, Ryad Benosman, Ralph Etienne-Cummings, and Nitish V. Thakor. “A spik-
ing neural network architecture for visual motion estimation”. In: IEEE Biomed. Circuits Syst.
Conf. (BioCAS). 2013, pp. 298–301. DOI: 10.1109/biocas.2013.6679698.

[74] Garrick Orchard, Cedric Meyer, Ralph Etienne-Cummings, Christoph Posch, Nitish Thakor,
and Ryad Benosman. “HFirst: A Temporal Approach to Object Recognition”. In: IEEE Trans.
Pattern Anal. Mach. Intell. 37.10 (2015), pp. 2028–2040. DOI: 10.1109/TPAMI.2015.
2392947.

[75] Liyuan Pan, Miaomiao Liu, and Richard Hartley. “Single Image Optical Flow Estimation with
an Event Camera”. In: IEEE Conf. Comput. Vis. Pattern Recog. (CVPR) (2020), pp. 1672–
1681.

[76] Chethan M. Parameshwara, Nitin J. Sanket, Arjun Gupta, Cornelia Fermuller, and Yiannis
Aloimonos. “MOMS with Events: Multi-Object Motion Segmentation With Monocular Event
Cameras”. In: arXiv e-prints (2020). URL: https://arxiv.org/abs/2006.06158.

http://dx.doi.org/10.1109/tro.2018.2858287
http://dx.doi.org/10.15607/RSS.2015.XI.036
http://dx.doi.org/10.1177/0278364917691115
http://dx.doi.org/10.1177/0278364917691115
http://dx.doi.org/10.1364/JOSA.64.001200
http://dx.doi.org/10.1007/s11263-018-1106-2
http://dx.doi.org/10.1109/TRO.2012.2198930
http://dx.doi.org/10.1162/NECO_a_00720
http://dx.doi.org/10.1111/j.1365-2818.2011.03565.x
http://dx.doi.org/10.1007/s11263-009-0211-7
http://dx.doi.org/10.1109/biocas.2013.6679698
http://dx.doi.org/10.1109/TPAMI.2015.2392947
http://dx.doi.org/10.1109/TPAMI.2015.2392947
https://arxiv.org/abs/2006.06158

138 BIBLIOGRAPHY

[77] Federico Paredes-Valles, Kirk Y. W. Scheper, and Guido C. H. E. de Croon. “Unsupervised
Learning of a Hierarchical Spiking Neural Network for Optical Flow Estimation: From Events
to Global Motion Perception”. In: IEEE Trans. Pattern Anal. Mach. Intell. (2019). DOI: 10.
1109/TPAMI.2019.2903179.

[78] M. Pawan Kumar, P. H. S. Torr, and Andrew Zisserman. “Learning Layered Motion Segmen-
tations of Video”. In: Int. J. Comput. Vis. 76.3 (Mar. 2008), pp. 301–319. DOI: 10.1007/
s11263-007-0064-x.

[79] R G Paxman and J. C Marron. “Aberration Correction Of Speckled Imagery With An Image-
Sharpness Criterion”. In: Statistical Optics. Ed. by G. Michael Morris. Vol. 0976. Interna-
tional Society for Optics and Photonics. SPIE, 1988, pp. 37 –47. DOI: 10.1117/12.
948527.

[80] Xin Peng, Yifu Wang, Ling Gao, and Laurent Kneip. “Globally-Optimal Event Camera Mo-
tion Estimation”. In: Aug. 2020, pp. 6349–6358. DOI: 10.1007/978-3-030-58574-
7_4.

[81] José A. Perez-Carrasco, Bo Zhao, Carmen Serrano, Begoña Acha, Teresa Serrano-Gotarredona,
Shouchun Chen, and Bernabé Linares-Barranco. “Mapping from Frame-Driven to Frame-
Free Event-Driven Vision Systems by Low-Rate Rate Coding and Coincidence Processing–
Application to Feedforward ConvNets”. In: IEEE Trans. Pattern Anal. Mach. Intell. 35.11
(Nov. 2013), pp. 2706–2719. DOI: 10.1109/tpami.2013.71.

[82] Ewa Piatkowska, Ahmed Nabil Belbachir, Stephan Schraml, and Margrit Gelautz. “Spa-
tiotemporal multiple persons tracking using Dynamic Vision Sensor”. In: IEEE Conf. Comput.
Vis. Pattern Recog. Workshops (CVPRW). 2012, pp. 35–40. DOI: 10.1109/CVPRW.2012.
6238892.

[83] Christoph Posch, Teresa Serrano-Gotarredona, Bernabe Linares-Barranco, and Tobi Delbruck.
“Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras With Spiking Output”. In:
Proc. IEEE 102.10 (Oct. 2014), pp. 1470–1484. DOI: 10.1109/jproc.2014.2346153.

[84] Henri Rebecq, Guillermo Gallego, Elias Mueggler, and Davide Scaramuzza. “EMVS: Event-
based Multi-View Stereo—3D Reconstruction with an Event Camera in Real-Time”. In: Int. J.
Comput. Vis. 126.12 (Dec. 2018), pp. 1394–1414. DOI: 10.1007/s11263-017-1050-
6.

[85] Henri Rebecq, Daniel Gehrig, and Davide Scaramuzza. “ESIM: an Open Event Camera Sim-
ulator”. In: Conf. on Robot. Learning (CoRL). 2018, pp. 969–982.

[86] Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza. “Real-time Visual-Inertial Odom-
etry for Event Cameras using Keyframe-based Nonlinear Optimization”. In: British Mach.
Vis. Conf. (BMVC). 2017.

[87] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide Scaramuzza. “Events-to-Video: Bring-
ing Modern Computer Vision to Event Cameras”. In: IEEE Conf. Comput. Vis. Pattern Recog.
(CVPR). 2019, pp. 3857–3866.

[88] Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide Scaramuzza. “High Speed and High
Dynamic Range Video with an Event Camera”. In: IEEE Trans. Pattern Anal. Mach. Intell.
(2020).

[89] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolutional networks for
biomedical image segmentation”. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. 2015, pp. 234–241.

http://dx.doi.org/10.1109/TPAMI.2019.2903179
http://dx.doi.org/10.1109/TPAMI.2019.2903179
http://dx.doi.org/10.1007/s11263-007-0064-x
http://dx.doi.org/10.1007/s11263-007-0064-x
http://dx.doi.org/10.1117/12.948527
http://dx.doi.org/10.1117/12.948527
http://dx.doi.org/10.1007/978-3-030-58574-7_4
http://dx.doi.org/10.1007/978-3-030-58574-7_4
http://dx.doi.org/10.1109/tpami.2013.71
http://dx.doi.org/10.1109/CVPRW.2012.6238892
http://dx.doi.org/10.1109/CVPRW.2012.6238892
http://dx.doi.org/10.1109/jproc.2014.2346153
http://dx.doi.org/10.1007/s11263-017-1050-6
http://dx.doi.org/10.1007/s11263-017-1050-6

BIBLIOGRAPHY 139

[90] Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschaefer, and Davide Scaramuzza. “Ultimate
SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High
Speed Scenarios”. In: IEEE Robot. Autom. Lett. 3.2 (Apr. 2018), pp. 994–1001. DOI: 10.
1109/LRA.2018.2793357.

[91] Bodo Rueckauer and Tobi Delbruck. “Evaluation of Event-Based Algorithms for Optical
Flow with Ground-Truth from Inertial Measurement Sensor”. In: Front. Neurosci. 10.176
(2016). DOI: 10.3389/fnins.2016.00176.

[92] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu.
“Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for
Image Classification”. In: Front. Neurosci. 11 (2017), p. 682. DOI: 10.3389/fnins.
2017.00682.

[93] Cedric Scheerlinck, Nick Barnes, and Robert Mahony. “Asynchronous Spatial Image Convo-
lutions for Event Cameras”. In: IEEE Robot. Autom. Lett. 4.2 (Apr. 2019), pp. 816–822. DOI:
10.1109/lra.2019.2893427.

[94] Cedric Scheerlinck, Nick Barnes, and Robert Mahony. “Continuous-time Intensity Estimation
Using Event Cameras”. In: Asian Conf. Comput. Vis. (ACCV). Dec. 2018, pp. 308–324. DOI:
10.1007/978-3-030-20873-8_20.

[95] Cedric Scheerlinck, Henri Rebecq, Daniel Gehrig, Nick Barnes, Robert Mahony, and Da-
vide Scaramuzza. “Fast Image Reconstruction with an Event Camera”. In: IEEE Winter Conf.
Appl. Comput. Vis. (WACV). 2020, pp. 156–163.

[96] Cedric Scheerlinck, Henri Rebecq, Timo Stoffregen, Nick Barnes, Robert Mahony, and Da-
vide Scaramuzza. “CED: Color Event Camera Dataset”. In: IEEE Conf. Comput. Vis. Pat-
tern Recog. Workshops (CVPRW). 2019. URL: https://timostoff.github.io/
19CVPRW.

[97] T. J. Schulz. “Optimal Sharpness Function for SAR Autofocus”. In: IEEE Signal Processing
Letters 14.1 (2007), pp. 27–30.

[98] Loren Shih. “Autofocus survey: a comparison of algorithms”. In: Digital Photography III. Ed.
by Russel A. Martin, Jeffrey M. DiCarlo, and Nitin Sampat. Vol. 6502. International Society
for Optics and Photonics. SPIE, 2007, pp. 90 –100. DOI: 10.1117/12.705386.

[99] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, and Ryad Benosman.
“HATS: Histograms of Averaged Time Surfaces for Robust Event-Based Object Classifica-
tion”. In: IEEE Conf. Comput. Vis. Pattern Recog. (CVPR). 2018, pp. 1731–1740.

[100] Bongki Son, Yunjae Suh, Sungho Kim, Heejae Jung, Jun-Seok Kim, Changwoo Shin, Keunju
Park, Kyoobin Lee, Jinman Park, Jooyeon Woo, Yohan Roh, Hyunku Lee, Yibing Wang, Ilia
Ovsiannikov, and Hyunsurk Ryu. “A 640x480 dynamic vision sensor with a 9um pixel and
300Meps address-event representation”. In: IEEE Intl. Solid-State Circuits Conf. (ISSCC).
2017. DOI: 10.1109/ISSCC.2017.7870263.

[101] Timo Stoffregen. “Event Camera Utility Library”. In: 2020. URL: https://timostoff.
github.io/projects/ecul.

[102] Timo Stoffregen, Guillermo Gallego, Tom Drummond, Lindsay Kleeman, and Davide Scara-
muzza. “Event-Based Motion Segmentation by Motion Compensation”. In: Int. Conf. Com-
put. Vis. (ICCV). 2019, pp. 7244–7253. URL: https://timostoff.github.io/
19ICCV.

[103] Timo Stoffregen and Lindsay Kleeman. “Event Cameras, Contrast Maximization and Re-
ward Functions: an Analysis”. In: IEEE Conf. Comput. Vis. Pattern Recog. (CVPR). 2019,
pp. 12300–12308. URL: https://timostoff.github.io/19CVPR.

http://dx.doi.org/10.1109/LRA.2018.2793357
http://dx.doi.org/10.1109/LRA.2018.2793357
http://dx.doi.org/10.3389/fnins.2016.00176
http://dx.doi.org/10.3389/fnins.2017.00682
http://dx.doi.org/10.3389/fnins.2017.00682
http://dx.doi.org/10.1109/lra.2019.2893427
http://dx.doi.org/10.1007/978-3-030-20873-8_20
https://timostoff.github.io/19CVPRW
https://timostoff.github.io/19CVPRW
http://dx.doi.org/10.1117/12.705386
http://dx.doi.org/10.1109/ISSCC.2017.7870263
https://timostoff.github.io/projects/ecul
https://timostoff.github.io/projects/ecul
https://timostoff.github.io/19ICCV
https://timostoff.github.io/19ICCV
https://timostoff.github.io/19CVPR

140 BIBLIOGRAPHY

[104] Timo Stoffregen and Lindsay Kleeman. “Simultaneous Optical Flow and Segmentation (SO-
FAS) using Dynamic Vision Sensor”. In: Australasian Conf. Robot. Autom. (ACRA). 2017.
URL: https://timostoff.github.io/18ACRA.

[105] Timo Stoffregen, Cedric Scheerlinck, Davide Scaramuzza, Tom Drummond, Nick Barnes,
Lindsay Kleeman, and Robert Mahony. “Reducing The Sim-to-Real Gap for Event Cameras”.
In: Eur. Conf. Comput. Vis. (ECCV). 2020, pp. 534–549. URL: https://timostoff.
github.io/20ecnn.

[106] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. “PWC-Net: CNNs for Optical
Flow Using Pyramid, Warping, and Cost Volume”. In: IEEE Conf. Comput. Vis. Pattern
Recog. (CVPR). 2018, pp. 8934–8943.

[107] David Tedaldi, Guillermo Gallego, Elias Mueggler, and Davide Scaramuzza. “Feature De-
tection and Tracking with the Dynamic and Active-pixel Vision Sensor (DAVIS)”. In: Int.
Conf. Event-Based Control, Comm. Signal Proc. (EBCCSP). 2016, pp. 1–6. DOI: 10.1109/
EBCCSP.2016.7605086.

[108] Valentina Vasco, Arren Glover, Elias Mueggler, Davide Scaramuzza, Lorenzo Natale, and
Chiara Bartolozzi. “Independent motion detection with event-driven cameras”. In: IEEE Int.
Conf. Adv. Robot. (ICAR). 2017, pp. 530–536.

[109] John YA Wang and Edward H Adelson. “Layered representation for motion analysis”. In:
IEEE Conf. Comput. Vis. Pattern Recog. (CVPR). 1993, pp. 361–366.

[110] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. “Image Quality As-
sessment: From Error Visibility to Structural Similarity”. In: IEEE Trans. Image Process. 13.4
(Apr. 2004), pp. 600–612. DOI: 10.1109/tip.2003.819861.

[111] Chengxi Ye, Anton Mitrokhin, Chethan Parameshwara, Cornelia Fermüller, James A. Yorke,
and Yiannis Aloimonos. “Unsupervised Learning of Dense Optical Flow and Depth from
Sparse Event Data”. In: arXiv e-prints (2019). URL: http://arxiv.org/abs/1809.
08625.

[112] Anthony J. Yezzi and Stefano Soatto. “Deformotion: Deforming Motion, Shape Average and
the Joint Registration and Approximation of Structures in Images”. In: Int. J. Comput. Vis.
53.2 (July 2003), pp. 153–167. DOI: 10.1023/A:1023048024042.

[113] Jason Yu, Adam Harley, and Konstantinos Derpanis. “Back to basics: Unsupervised learning
of optical flow via brightness constancy and motion smoothness”. In: Eur. Conf. Comput. Vis.
Workshops (ECCVW). 2016, pp. 3–10.

[114] Luca Zappella, Xavier Lladó, and Joaquim Salvi. “Motion Segmentation: A Review”. In:
Conf. Artificial Intell. Research and Development. 2008, pp. 398–407.

[115] Linguang Zhang and Szymon Rusinkiewicz. “Learning to Detect Features in Texture Images”.
In: IEEE Conf. Comput. Vis. Pattern Recog. (CVPR). 2018, pp. 6325–6333.

[116] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. “The Unrea-
sonable Effectiveness of Deep Features as a Perceptual Metric”. In: IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR). 2018, pp. 586–595.

[117] Alex Zihao Zhu, Nikolay Atanasov, and Kostas Daniilidis. “Event-Based Feature Track-
ing with Probabilistic Data Association”. In: IEEE Int. Conf. Robot. Autom. (ICRA). 2017,
pp. 4465–4470. DOI: 10.1109/ICRA.2017.7989517.

[118] Alex Zihao Zhu, Dinesh Thakur, Tolga Ozaslan, Bernd Pfrommer, Vijay Kumar, and Kostas
Daniilidis. “The Multivehicle Stereo Event Camera Dataset: An Event Camera Dataset for 3D
Perception”. In: IEEE Robot. Autom. Lett. 3.3 (July 2018), pp. 2032–2039. DOI: 10.1109/
lra.2018.2800793.

https://timostoff.github.io/18ACRA
https://timostoff.github.io/20ecnn
https://timostoff.github.io/20ecnn
http://dx.doi.org/10.1109/EBCCSP.2016.7605086
http://dx.doi.org/10.1109/EBCCSP.2016.7605086
http://dx.doi.org/10.1109/tip.2003.819861
http://arxiv.org/abs/1809.08625
http://arxiv.org/abs/1809.08625
http://dx.doi.org/10.1023/A:1023048024042
http://dx.doi.org/10.1109/ICRA.2017.7989517
http://dx.doi.org/10.1109/lra.2018.2800793
http://dx.doi.org/10.1109/lra.2018.2800793

BIBLIOGRAPHY 141

[119] Alex Zihao Zhu, Ziyun Wang, Kaung Khant, and Kostas Daniilidis. “EventGAN: Leveraging
Large Scale Image Datasets for Event Cameras”. In: arxiv (2020). eprint: 1912.01584.
URL: http://arxiv.org/abs/1912.01584.

[120] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. “EV-FlowNet: Self-
Supervised Optical Flow Estimation for Event-based Cameras”. In: Robotics: Science and
Systems (RSS). 2018. DOI: 10.15607/RSS.2018.XIV.062.

[121] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. “Unsupervised
Event-based Learning of Optical Flow, Depth, and Egomotion”. In: IEEE Conf. Comput. Vis.
Pattern Recog. (CVPR). 2019, pp. 989–997.

1912.01584
http://arxiv.org/abs/1912.01584
http://dx.doi.org/10.15607/RSS.2018.XIV.062

