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Abstract 

Over the recent years, advances in liquid chromatography coupled with mass 

spectrometry have revolutionized the detailed mapping of all lipid species contained 

in a biological sample through lipidomics, including targeted and untargeted 

approaches. In particular, high-throughput targeted analysis of human plasma has 

become an increasingly popular approach to identify molecular lipid species 

associated with different diseases states. Lipidomics has a potential to predict 

disease risk, inform on the mechanism of disease pathogenesis, identify biomarkers 

and help monitor response to treatment of several disease conditions. While 

dyslipidaemia (high triglycerides or high total cholesterol and/or low high-density 

lipoprotein cholesterol) is a major risk factor for insulin resistance (IR) and type 2 

diabetes (T2D), it does not represent the structurally and functionally diverse lipid 

classes/subclasses and species. Thus, detailed mapping of the plasma lipidome 

associated with these conditions and other cardiometabolic risk factors provides in-

depth knowledge and better biological insight to help identify new biomarkers and/or 

therapeutic targets. 

The overall objective of this thesis was to comprehensively examine the relationship 

of lipid metabolism with cardiometabolic risk factors and outcomes utilizing three 

independent human cohorts: 1) the Australian Diabetes, Obesity and Lifestyle Study 

(AusDiab, n=10, 339); 2) a cohort of young adults recruited in Melbourne (n=246) 

and 3) the Busselton Health Study (BHS) (n=4,207). Targeted lipidomics utilising 

liquid chromatography coupled with a tandem mass spectrometry (LC-MS/MS) was 

used to measure over 600 molecular lipid species across 36 classes/subclasses. We 

identified novel sex-specific lipidomic fingerprints of age and BMI in the AusDiab and 

validated these in a second population cohort, the BHS. Sex-specificity in the 

association of lipids with IR; suggesting the potential involvement of specific lipid 

species in the pathogenesis of IR and possible crosstalk between IR and sex-

specific regulation of lipid metabolism was identified among young adults. Novel 

associations of alkyl-diacylglycerol species with change in WC (particularly in 

women) were identified. Using lipidomic data, we derived metabolic BMI scores 

(mBMI) and showed that metabolic discordant groups where those whose mBMI was 

greater than their real BMI displayed higher risk and unfavourable metabolic health 

profiles compared to those whose mBMI was less than their real BMI despite these 
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groups having a similar real BMI. Finally, a plethora of associations of lipid 

classes/subclasses and species with prevalent and incident T2D, including the 

negative association of lipid species containing monomethyl-branched chain fatty 

acids and linolenate (18:2) and positive associations with atypical sphingolipids such 

as the deoxyceramide species that have not been previously reported in this context. 

We also developed lipidomic risk models and showed improvement of these models 

upon traditional risk factors to predict the onset of T2D.  

In summary, lipidomic analyses of large cohorts help not only identify biomarkers 

and but also asses the risk of cardiometabolic disorders. Indeed, the findings provide 

important insight into the role of lipids in health and disease. 
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Chapter 1. Introduction 

Preface   

The section one of chapter 1 is a summary of the thesis followed by a literature 

review introducing the concept of lipidomics and its role in the characterisation of 

disease. It also reviews recent studies that have examined the dysregulation of lipid 

metabolism in insulin resistance, obesity and type 2 diabetes, followed by the 

hypothesis and aims of the project.  

A specific introduction is also included in each chapter of the thesis.  

1.1. Summary of thesis  

Lipids are crucial components of biological membranes and lipoprotein particles. 

Lipidomics refers to a comprehensive mapping of molecular lipid species including 

metabolic pathways. Advances in liquid chromatography coupled with mass 

spectrometry over the recent years have revolutionized the detailed mapping of all 

lipid species contained in a biological sample through lipidomics, including targeted 

and untargeted approaches.   

 

High-throughput targeted analysis of human plasma using liquid chromatography 

mass spectrometry has become an increasingly popular approach to identify 

molecular lipid species associated with different diseases states. While 

dyslipidaemia (high triglycerides or high total cholesterol and/or low high-density 

lipoprotein cholesterol) is a major risk factor for insulin resistance (IR) and type 2 

diabetes (T2D), it does not represent the structurally and functionally diverse lipid 

classes/subclasses and species. Thus, detailed mapping of the plasma lipidome 

associated with these conditions and other cardiometabolic risk factors provides in-

depth knowledge and better biological insight to help identify new biomarkers and/or 

therapeutic targets. 

 

Large scale lipidomic analysis of population based cohorts provides statistical power 

for association studies and also offers an opportunity to determine the influence and 

interactions of age, sex, clinical and behavioural factors on lipid metabolism in health 

and disease. In chapter 3 of this thesis, we report the lipidomic profiling of a very 

large population cohort: The Australian Diabetes, Obesity and Lifestyle Study  
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(AusDiab, n = 10,339), measuring 706 distinct lipid species spanning 36 different 

classes/subclasses. We identified novel sex-specific lipidomic fingerprints of age and  

BMI and validated these in a second population cohort: The Busselton health study  

(BHS). In chapter 4, we identified, sex-specificity in the association of lipids with IR; 

suggesting the potential involvement of specific lipid species in the pathogenesis of  

IR and possible crosstalk between IR and sex-specific regulation of lipid metabolism.  

 

In chapters 5, lipidomic profiles associated with the risk of increasing waist 

circumference (WC) or body mass index (BMI) over five years were investigated. 

Novel associations of alkyl-diacylglycerol species with change in WC (particularly in 

women) were identified. Branched and odd chain glycerophospholipids predicted 

change in WC and in BMI. In chapter 6, we derived a metabolic BMI score (mBMI) 

and examined its association with clinical risk factors and outcomes. The mBMI 

residuals predicted diabetes and cardiovascular disease (CVD). We identified 

metabolic discordant groups where those with mBMI was greater than their real BMI 

displayed higher risk and unfavourable metabolic health profiles compared to those 

whose mBMI was less than their real BMI despite these groups having a similar real  

BMI.  

 

In chapter 7, we identified a plethora of associations of lipid classes/subclasses and 

species with prevalent and incident T2D, including the negative association of lipid 

species containing monomethyl-branched chain fatty acids and linolenate (18:2) and 

positive associations with atypical sphingolipids such as the deoxyceramide species 

which have not been previously reported. We were able to identify, differential 

associations of certain lipids with impaired fasting glucose (IFG) versus impaired 

glucose tolerant (IGT). Finally, we developed lipidomic risk models and showed 

improvement of these models upon traditional risk factors to predict the onset of  

T2D.   

 

Chapter 8 then provides an overall discussion with future directions for the field 
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1.2. Obesity 

Globally, the prevalence of obesity has increased dramatically over the last few 

decades (1, 2). Recent studies report that over 1.9 billion adults are overweight, of 

which over 650 million are obese. At least 2.8 million people die each year as a 

result of being overweight or obese (2). In Australia, two thirds (67%) of adults were 

overweight or obese in 2017/18 (3). The impact of obesity is immense; having 

adverse social, economic and health outcomes. There is a strong link between 

obesity and insulin resistance (IR), type 2 diabetes (T2D) (4, 5) and cardiovascular 

disease (CVD) (6).   

 

Body mass index (BMI) is widely used as a measure for assessing adiposity and 

identifying patients at an increased risk of metabolic disease and related adverse 

health outcomes. However, BMI alone fails to account for body fat distribution across 

the viscera and the periphery. Body fat distribution (distinctly measured as total body 

fat, regional body fat or visceral fat) has been shown to explain cardiometabolic risk 

more effectively than BMI (7). One of the surrogate measures of central/abdominal 

fat mass is waist circumference (WC). Several studies have demonstrated that, 

central obesity (excess abdominal fat) associated with high WC is a stronger 

predictor of CVD than BMI (8-11). Interestingly, it has been shown that individuals 

having the same level of BMI and total body fat mass tend to have varying risk 

profiles of cardiometabolic outcomes. Of note, obese individuals with IR and 

atherogenic dyslipidaemia such as low levels of high density lipoprotein cholesterol 

(HDL-C), high apolipoprotein B, and high triglycerides and high cholesterol) were 

characterized by excess abdominal fat mass whereas the “metabolically healthy” 

counterparts showed low levels of abdominal adipose fat mass (12). It is likely that 

several other molecular lipid species will be associated with regional body fat 

distribution and thus aid in explaining the heterogeneity of adiposity phenotypes.  

 

1.3. Insulin resistance 

Insulin is a peptide hormone synthesized in pancreatic β cells in the islets of 

Langerhans within the pancreas. It plays a key role in regulating the blood glucose 

levels, lipolysis and fat mass (13). The key mechanisms of insulin action include 1) 

stimulating glucose uptake by skeletal and cardiac muscles, 2) inhibition of hepatic 
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glucose production and very low-density lipoproteins and 3) inhibition of free fatty 

acid release. These processes are required for proper cellular function and integrity. 

IR is a condition in which insulin is unable to trigger cellular glucose uptake leading 

to hyperglycaemia and abnormalities in glucose homeostasis; this is a functional 

defect of the cells. Increased circulating levels of insulin (a condition known as 

hyperinsulinemia) is a common phenomenon that occurs among young adults who 

are insulin resistant; and this has been shown to be due to increased insulin 

secretion and minimal clearance (14). The homeostasis model assessment of insulin 

resistance (HOMA-IR) is an index used to estimate insulin sensitivity and or IR (15). 

 

The aetiology of hyperinsulinemia and IR is complex and largely unknown but is 

likely mediated by several factors. Dysregulation in lipid metabolism occurs in 

conjunction with IR and hyperinsulinemia. The key lipid mediators of IR include: free 

fatty acid, diacylglycerol, ceramide and phospholipids (16-19). Several other lipid 

classes including acylcarnitine, triacylglycerol and sphingomyelin have also been 

implicated (20-26). These will be discussed in the subsequent sections. Regardless 

of its aetiology and evolution, IR is often linked to several pathological conditions and 

metabolic sequelae. IR typically precedes the clinical onset of diabetes and is a key 

predictor of type 2 diabetes (4, 27, 28) and CVD (29). 

 

1.4. Type 2 Diabetes 

Diabetes is a complex metabolic disorder characterized by a persistently higher 

levels of blood glucose (hyperglycaemia). The criteria for the diagnosis of diabetes 

are as follows: fasting blood glucose (FBG) >7.0 mmol/L or two-hour post load 

glucose (2h-PLG) >=11.1 mmol/L during the oral glucose tolerant test (OGTT) (30). 

FBG between 5.6 mmol/L to 6.9 mmol/L indicates impaired fasting glucose (IFG), 

while 2h-PLG during an OGTT of 7.8 mmol/L to 11.0 mmol/L is indicative of impaired 

glucose tolerance (IGT). IFG and IGT are the “pre-diabetic” states where glucose 

level does not meet the criteria for diabetes but is too high to be considered normal 

(31).  Hyperglycaemia usually results from defects in insulin secretion by pancreatic 

-cells, defects in insulin action or both. Chronic hyperglycaemia in diabetes has 

been associated with a myriad of comorbidities and dysfunction of multiple organs; 
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the major adverse outcomes being microvascular and macrovascular complications 

(32).  

 

T2D is the most prevalent type of diabetes accounting for 87-91% of all diabetes 

cases among adult population in the industrialized world. It is a significant public 

health challenge worldwide. Globally, an estimated 500 million prevalent cases of 

T2D were reported in 2018 (33). The Diabetes Atlas of the International Diabetes 

Federation reported that in 2017 nearly, 425 million adults aged between 20-79 

years live with diabetes and 4 million died from diabetes.  An estimated 212.4 million 

people (nearly 50% of all people) remained undiagnosed and some 352 million had 

impaired glucose tolerance (IGT). If the current trend continues, about 629 million 

people (aged 20-79 years), will have diabetes by 2045 (34). The rise in T2D is 

believed to be mostly due to increases in the prevalence of obesity, rates of 

urbanization and population ageing.   

 

In Australia, the prevalence of T2D among adult Australians was estimated to be 5% 

in 2017-18, representing nearly 1.2 million Australians (35). Magliano et al 

conservatively estimated that there will be at least two million adults with T2D by 

2025, (36, 37). This compounded with type 1 diabetes (which accounts for 12 cases 

per 100,000 population) (35) presents an escalating burden on health service 

resources in Australia.  

 

1.5. Dyslipidaemia  

Dyslipidaemia; a condition characterized by increased cholesterol, increased 

triglycerides, increased low density lipoprotein cholesterol (LDL-C) and decreased 

HDL-C, is strongly associated with metabolic diseases. It has been suggested that, 

adipose tissue lipolysis and a subsequent increase in FFA release to circulation 

ultimately leads to an increase in diacylglycerol, triacylglycerol and ceramide 

synthesis within the liver. The elevation in these metabolites in turn induces IR (25, 

38). Several mechanisms through which lipids induce IR in liver and muscle has 

been documented (38, 39). In diabetes, dyslipidaemia is often characterized by 

elevated plasma triglyceride levels commonly referred as hypertriglyceridemia,  or 
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low levels of HDL-C and elevated small dense LDL-C (40). More, importantly 

dyslipidaemia associated with diabetes independently increases risk for CVD (41).  

 

Peripheral IR associated with T2D is the major cause dyslipidaemia in diabetes. 

Dyslipidaemia, particularly hypertriglyceridemia in diabetes is mainly due to an 

increased flux of free fatty acid (FFA) arising primarily from insulin resistant 

adipocytes (42). Moreover, excessive intake of high calorie foods such as sugars 

and fats contribute to hypertriglyceridemia and elevated LDL-C levels (43). Excess 

FFAs that arise from either overconsumption of fats or via hepatic de novo 

lipogenesis (secondary to high carbohydrate intake or as a result of early onset of 

muscle IR) (44) lead to accumulation of fatty acids in the liver. In the liver, FFAs 

promote glycerolipid (diacyl- and triacylglycerol) synthesis with subsequent secretion 

of VLDL-C and apolipoprotein B (ApoB) into circulation. Alternatively, glycerolipids 

synthesized in the liver can be stored as lipid droplets in hepatocytes promoting 

hepatosteatosis; which in turn has been associated with T2D (45). Furthermore, 

sphingolipid and glycerophospholipd synthesis may take place depending on the 

nature of fats and the degree of excessive fat accumulation in the liver. The 

dysregulation in sphingolipid and glycerophospholipd pathways in addition to the 

traditional dyslipidaemia may better explain the pathophysiology of T2D.  

 

1.6. Lipidomics 

Lipids are defined as small hydrophobic or amphipathic molecules that arise entirely 

or partly by carbanion based condensations of thioesters as in fatty acyls, 

glycolipids, glycerophospholipids, sphingolipids, saccharolipids, and polyketides 

and/or by carbocation-based condensations of isoprene units such as phenol lipids 

and sterol lipids (46). Lipids play critical roles in several cellular processes including 

energy generation and storage, signal transduction, chemical communication and as 

structural components of cell membrane (47, 48). According to the LIPIDMAPS 

consortium, lipids fall into eight major categories (Figure 1). These include fatty 

acyls, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, 

saccharolipids and polyketides (46). Each of these categories in turn consist of 

several classes/subclasses and many molecular species. Lipidomics refers to the 

“global” characterization of all lipid species contained in a cell or tissue (49). The 

https://en.wikipedia.org/wiki/Cell_membrane
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term “lipidome” signifies the complete set of lipids with in a cell, tissue, or organism. 

The lipidome is estimated to comprise tens of thousands to hundreds of thousands 

of lipid species at concentrations ranging from pM to mM in circulation  (50). Recent 

advances and developments in analytical platforms such as mass spectrometry (MS) 

and high performance liquid chromatography have revolutionized the field of 

lipidomics (51, 52). These days, lipidomic approaches are gaining popularity for the 

comprehensive analysis of lipids in relation to metabolic disorders. There are two 

major strategies used in lipidomics; 1) shotgun lipidomics that involves direct infusion 

of samples to the mass spectrometer, i.e., without chromatographic separation and 

2) chromatographic separation based approaches that employ either high 

performance liquid chromatography or gas chromatography to separate complex 

lipid mixture before the sample is subjected to mass analysis. Both approaches can 

be used for targeted and untargeted work. While shotgun lipidomics is often 

practiced in untargeted analyses in discovery studies (53, 54), the LC/GC based 

approaches are more applicable for targeted analyses of known lipids in validation 

studies. 

Lipid category Lipid class/subclass        Representative structure  
 

Docosahexaenoic acid   
 
 
 
 
  
      Acylcarnitine 

 
 
 
Fatty acyls  
 
 
 
 
 

Fatty acids and conjugates 
Octadecanoids 
Eicosanoids 
Docosanoids 
Fatty alcohols  
Fatty esters  
Fatty amides 
Fatty nitriles  
Acylcarnitines 
 
 
 
 
 

Glycerolipids  
 
 

Monoacylglycerols  
Diacylglycerols  
Triacylglycerols 

 
                  
 
 
 
 Triacylglycerol 

https://en.wikipedia.org/wiki/File:DHA_numbers.svg
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Lipid category Lipid class/subclass        Representative structure  
 
 
 
Glycerophosphol
ipids  

Phosphatidylcholines 
Phosphatidylethanolamindes 
Glycerophosphoserines  
Glycerophosphoglycerols  
Glycerophosphoinositols 
Glycerophosphates 
 
 

 
                
 
 
                 
 
                   
   Phosphatidylcholine (PC) 

 
 
Sphingolipids 

Sphingoid bases 
Ceramides 
Phosphosphinolipids 
Neutralglycoshingolipids 
Acidicglycoshingolipids 
Basicglycoshphingolipids  
Amphoteric glycosphingolipids 
 
 

 
 
 
 
 
 
 
Ceramide; R – alkyl portion of 
fatty acid 

 
 
Sterol lipids  

 
Sterols  
Steroids 
Bile acids and its derivatives 
Secosteroids 
Steroid conjugates 
 

 
           Cholesterol  

 
 
Prenol lipids  

 
 
Isoprenoids 
Quinones 
Polyprenols 
Hopanoids  
 

 
 
 
 
 
Vitamin A (retinol) – a prenol 
lipid 

 
 
Saccharolipids  
 

 

 
 
Acylaminosugars 
Lipid A 
Lipid X 
Lipopolysaccharides 

 
 
 
 
 
       
 
 
   
              Lipid A 

 
 
Polyketides 

 
Linear polyketides 
Polyenes 
Polyether antibiotics 
Aflatoxins 
 
 
 

 
 
 
 
 
              
               Nystatin – a polyene 

 

Figure 1. Lipid category/classes and structures. Left column (major lipid 

categories), middle columns (lipid class/subclasses) and right column (a 

representative lipid structure within class/subclass). 

https://en.wikipedia.org/wiki/File:Cholesterol.svg
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Lipids are emerging as both early mediators of metabolic dysfunction leading to IR 

and T2D and as markers of the resulting inflammation and oxidative stress. Recently 

our understanding of the pathogenesis of IR, obesity and T2D has implicated a 

number of specific lipids that may prove to be useful biomarkers for the early 

detection disease onset and the monitoring of therapy (25, 26, 53-57). 

Understanding the diverse roles of lipids in health and diseases helps to elucidate 

the mechanisms of lipid related diseases, monitoring therapeutic response, and 

screening for potential biomarkers. As the most downstream end products of 

biological information flow, lipids represent the most amendable biological targets 

that have a potential to be used as predictive, diagnostic, and therapeutic 

biomarkers. Importantly, lipid metabolising enzymes may act as drug targets (58-60). 

As a result, modulation of lipid metabolism and or lipid metabolic pathways may 

confer a therapeutic benefit particularly for those conditions associated with 

dysregulation in lipid metabolism. For instance, lipid lowering drugs such as statins 

target cholesterol metabolism and alleviate CVD (61, 62). Now, it is becoming 

possible that lipid targets other than cholesterol can be identified as our 

understanding of the role of several molecular lipids in diseases is improving. The 

following section discusses the different classes/subclasses of lipids and their 

associations with cardiometabolic risk, IR, obesity and/or T2D.  

  

1.5.1. Free fatty acids (FFAs) 

Free fatty acids can be viewed as those that arise from 1) endogenous biosynthesis 

from acetyl-CoA as an initial substrate ultimately forming palmitoyl-CoA which can 

then undergo further modifications (63); including desaturation by Stearoyl-CoA 

desaturase-1 (SCD-1) to form palmitoleate (16:1 n7) or elongation to form stearate 

(18:0). Subsequent elongation and desaturation processes result in other forms of 

fatty acids.  2) Dietary polyunsaturated fatty acids (PUFAs) such as the omeg-3 and 

omega-6 are essential fatty acids required by the body. These class of fatty acids are 

completely derived from diet, and cannot be endogenously synthesised. Alpha 

linolenic acid (18:3 n3) and linoleic acid (18:2 n6) are the starting fatty acids that are 

further desaturated and elongated to form arachidonic acid (AA, 20:4 n6), 

docosapentaenoic acid (DPA, 22:5 n6), eicosapentaenoic acid (EPA, 20:5 n3) and 
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docosahexaenoic acid (DHA, 22:6 n3). Although these longer, more polyunsaturated 

forms are also taken up in the diet. 

 

Higher levels of circulating FFAs have been associated with hypertension in obese 

and insulin resistant patients (64). For example, a study conducted on children and 

adults with normal glucose tolerance highlighted that there was an increase in 

plasma FFA levels associated with lower insulin secretion and higher incidence of 

IGT and T2D (65) suggesting that, FFAs might have a possible role in impaired 

pancreatic β-cell function. It is also postulated that flux of FFAs resulting from 

adipose tissue lipolysis aggravates IR in liver and muscle through altering insulin 

signalling pathways (66). Moreover, FFAs have been shown to modulate 

transcription by binding peroxisome proliferator-activated receptors leading to 

impaired glucose metabolism (24). In addition to their role in insulin signalling and 

glucose metabolism, FFAs have been also implicated in inflammatory pathways. 

Sears and Perry (67) investigated various inflammatory responses mediated by FFAs 

with resultant IR in different organs such as hypothalamus, liver,  adipose tissue, 

skeletal muscle, pancreas and gastrointestinal environment. As a result of their 

diverse roles in pathophysiology, FFAs could serve as biomarkers of disease.  A 

study that examined the relationship between serum FFAs, IR and cardiovascular 

risk factors in US, identified FFAs associated with IR starting early in young 

adulthood. However, the relationship between FFA and cardiovascular risk factors 

did not become significant until later adulthood (29). This study supports the role of 

ageing in contributing to metabolic changes including FFA metabolism. It has been 

also shown that, there is a linear correlation between FFAs and blood glucose and to 

hepatic glucose in diabetic patients. FFAs induce vascular markers of endothelial 

activation such as myeloperoxidase and PAI-1, vascular inflammation and 

thrombosis in obese and T2D patients (68). 

 

1.5.2. Glycerolipids and cholesteryl esters 

Glycerolipids of major biological importance include DG and TG.  Cholesteryl esters 

(CEs) represent esterified cholesterol.  Elevated levels of plasma TG, DG and CE 

have been implicated as markers of obesity (69-71), prediabetes and T2D (72-74). 

Using a high throughput plasma lipidomic technology, Meikle et al have reported that 
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elevated levels of DG and TG are associated with T2D (73, 75). Further, several 

longitudinal studies have demonstrated the ability of TG species to predict the risk of 

future T2D (72, 75-77). Interestingly, it has been demonstrated that the fatty acid 

composition of the triacylglycerol species determines the direction and strength of 

this association (78, 79). Specific species of plasma TG composed of fewer fatty acyl 

carbons (≤ 52) and fewer double bonds such as monounsaturated or saturated fatty 

acids are better markers of IR and increased risk of T2D, whereas TG species 

containing longer fatty acyl chain and polyunsaturated fatty acids are associated with 

decreased risk (79).  

 

CE species have been implicated as markers of obesity and T2D; the direction of 

association depending on specific fatty acid composition. A positive association 

between serum levels of CE species with saturated or monounsaturated fatty acids 

such as (CE16:0), CE (16:1), CE (18:0) and obesity and T2D have been reported. 

Conversely, CE species composed of linoleic acid CE(18:2) have been found to be 

inversely associated with obesity (80) and with impaired glucose metabolism and 

T2D (81). This implies that the pathogenesis of obesity and T2D might be driven, to 

some extent, by altered cholesteryl ester metabolism driven by specific fatty acids.  

 

In lipidomics research involving CVD outcomes, it has been well documented that 

dysregulation in metabolism of LDL, total cholesterol, TG and HDL underlies the 

pathogenesis of CVD. However, specific molecular lipid signatures associated with 

cardiometabolic risk factors and CVD remain largely unknown. A lipidome based 

approach to CVD risk prediction has begun to show great promise over recent years. 

Lipidomics enables the measurement of several hundreds to thousands of lipid 

species in a given sample and hence provides a detailed view of lipid classes, 

subclasses and individual molecular species. Consequently, advances in MS, 

provided a new platform for the identification of novel molecular lipid species 

associated with several disease conditions including CVD. Employing comparative 

lipidomics, Stegemann et al (82) have demonstrated heterogeneity in the plasma 

lipidome composition in patients with atherosclerotic lesions; accordingly they have 

reported combinations of lipid species that discriminate between patients with stable 

and unstable plaques. In a prospective population-based study, the levels of several 
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species of cholesteryl ester and triacylglycerol, particularly containing saturated or 

monounsaturated fatty acyl chains, were reported to be associated with incident 

CVD (83). Zshir et al examined the plasma lipidome using MS and identified several 

plasma lipid species associated with risk of future CVD and death; of these 

cholesteryl esters, triacylglycerol and diacylglycerol were the major constituents of 

the lipidomic profiles (84). For myocardial infarction (MI), multiple triacylglycerol 

species have been shown to discriminate patients with MI compared to controls (85).  

 

Mechanisms linking dysregulation in lipid metabolism and atherosclerotic CVD have 

been proposed. As discussed above, CEs represent one of the major lipidomic 

biomarkers associated with the risk of CVD. CE carrying monounsaturated fatty 

acids (MUFA) are particularly associated positively with CVD events (83). In 

mammalian systems, enterocytes or hepatocytes expressing acyl-CoA: cholesterol 

acyltransferase 2 (ACAT2)/ Sterol O-Acyltransferase 2 (SOAT2) or SOAT1 (86) and 

plasma Cholesteryl Ester Transfer Protein (CETP) are the main sources of 

circulation CE. Lecithin–cholesterol acyltransferase (LCAT) is also involved in 

generating CE via HDL reverse cholesterol transport (87). ACAT 2 preferentially 

esterifies MUFA generating CEs such as (CE-16:1 & CE-18:1 carried in LDL 

particles), while CETP generates polyunsaturated CE species which are often 

carried in HDL particles. It has been suggested that LDL particles enriched with 

MUFA such as (CE-16:1) enhance atherosclerosis due to high affinity of such LDL 

variants to arterial proteoglycans (88). Further insight into the relationship between 

the perturbation of the lipidome and CVD risk in epidemiological studies is required. 

 

1.5.3. Sphingolipids 

1.5.3.1. Ceramides and dihydroceramides  

A persistent FFA release into circulation induced by IR in obese and or insulin 

resistant subjects makes saturated FFAs available for the de novo synthesis of 

ceramides. Moreover, there is a strong proinflammatory immune response 

characterised by elevated IL-6 (89) and TNF-α (90) and decreased adiponectin (91) 

among other mediators associated with obesity. Inflammatory signals such as TNF-α 

activate sphingomyelinase and hence promote ceramide production by the turnover 

of sphingomyelin in metabolic conditions such as T2D (92). There are three potential 
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pathways that result in the generation of ceramides: the de novo, salvage and 

hydrolytic pathways; these are outlined in Figure 2 below. 

 

 

Figure 2. A simplified sphingolipid biosynthetic pathway. A) De novo pathway in 

which ceramide is synthesized from condensation of serine and palmitoyl-CoA in 

endoplasmic reticulum. B) Salvage pathway. Complex sphingolipids are degraded to 

ceramide which is then degraded to sphingosine. This can exit the lysosome and be 

phosphorylated to S-1-P or can be converted back into ceramide. C) Hydrolytic 

pathway takes place in membranes, Golgi, lysosomes and mitochondria. SMase 

(both acidic and neutral) convert sphingomyelin into ceramide. All substrates and 

enzymes are represented by light blue and green boxes respectively shown by light 

blue and enzymes. SMase, sphingomyelinase; SMS, sphingomyelin synthase; 

CDase, ceramidase; SPPase, sphingosine phosphate phosphatase; SphK, 

sphingosine kinase. 

 

Ceramides are bioactive lipids that play a role in glucose metabolism, insulin 

signalling and diabetes. Plasma ceramides are often contained in circulating 

lipoproteins and are found to be elevated in obesity, IR and T2D (93, 94). Similarly, 

studies have shown higher levels of ceramide species such as Cer(18:1) or Cer 

(d18:1/18:1) in skeletal muscle to be associated with T2D (95). Ceramides have 

been shown to induce apoptosis of pancreatic beta-cells, mainly via inhibition of Akt 
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phosphorylation (22) (96). Apoptosis of beta cells in the islets is also induced by 

such cytokines as (TNF-α), interleukin-1 beta (IL-1β) and interferon-gamma (IFN-γ) 

secreted during inflammatory process (97). Moreover, ceramides impair insulin 

signalling and action, enhance inflammation (via activation of cytokines) resulting in 

IR and T2D. On the other hand, inhibition of ceramide synthesis improved insulin 

signalling and β-cell function (98, 99). The role of individual ceramide species in the 

pathogenesis of IR and T2D is yet to be fully defined.  

 

Moreover, lipidomic studies targeting selected lipid classes have demonstrated 

strong associations with CVD risk. Of note, targeted lipidomic profiling has identified 

distinct serum ceramide species such as Cer(d18:1/16:0), Cer(d18:1/18:0), 

Cer(d18:1/24:0), and Cer(d18:1/24:1 that can predict major adverse cardiovascular 

events among apparently health people in a population based cohort in Finland 

(100). It has been suggested that ceramide molecular species with a specific acyl 

chain and double bond composition play a role as potential predictive biomarkers of 

CVD outcomes (101). In a plasma lipidomic profiling epidemiological study aimed at 

identifying abundant ceramide species, the ratio of Cer(C24:0)/(Cer C16:0) have 

been shown to be inversely associated with incident coronary heart disease and all-

cause mortality (102).  

 

Dihydroceramides are precursors of ceramides that play a major role in insulin 

signalling the pathogenesis of diabetes. Examining plasma lipids using shotgun 

lipidomics, researchers have reported dihydroceramide biomarkers that predicted 

progression to diabetes. A specific set of dihydroceramide species containing long 

chain fatty acids were significantly elevated in individuals who progressed to 

diabetes (103). Lipidomic profiling was performed on plasma of Mexican families in 

the US at high risk for obesity and T2D in the San Antonio Family Heart Study (104) 

and plasma dihydroceramide levels were shown to be strongly associated with WC 

independent of several cardiometabolic risk factors (105). Using targeted lipidomics 

we have also previously shown that plasma dihydroceramide levels predicted T2D 

(74).   
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1.5.3.2. Deoxysphingolipids 

Deoxysphingolipids are a specific class of lipids that arise from a non-canonical 

sphingolipid synthetic pathway by the action of serine-palmitoyltransferase (SPT). 

They are formed from the condensation of palmitoyl-CoA with alanine instead of 

serine; hence in contrast to canonical sphingolipids, they lack a hydroxyl (OH) group 

at the C1 position, and so cannot be further modified by nor  degraded via the 

classical sphingolipid pathway (106) (Figure 3). The 1-deoxysphingolipids have 

been shown to cause cell death of neurons and pancreatic β-cells (106). Indeed, the 

1-deoxysphingolipids play a role as biomarkers in T2D (107-109). Othman et al. 

reported a significantly higher concentration of 1-deoxysphingolipids in patients with 

T2D comparted to normal individuals. The 1-deoxysphingolipids also independently 

predicted the risk of developing T2D over 8 years of follow up (109). During a five 

year follow up of non-obese, non-diabetic population in the CoLaus study, 1-

deoxysphingolipids predicted incident T2D (108), signifying the relevance of these 

cytotoxic lipids as early biomarkers of T2D.    

 

Figure 3. A simplified sphingolipid biosynthetic pathway. A) The usual 

(canonical pathway) where typical sphingolipids are synthesized. B). Non-canonical 

pathway in which deoxyceramides are synthesized from condensation of palmitoyl-

CoA with the amino acid alanine instead of serine.  

 

1.5.3.3. Sphingomyelin 

Sphingomyelin (SM) is the most abundant of all sphingolipids.  SMs accounts for 

~10% of all lipids in mammalian cells (110) and 18% of total plasma phospholipid 
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(111). They are important components of cell membrane and lipoproteins, and are 

enriched in myelin sheaths.  The synthesis of SM is catalysed by sphingomyelin 

synthase; an enzyme that transfers phosphorylcholine from phosphatidylcholine to 

ceramide resulting in SM and diacylglycerol. Several studies indicate that SMs play a 

role as markers of cardiometabolic risk and associated outcomes, in particular, 

specific molecular species of SM, rather than the total SM pool have been shown to 

be associated with metabolic abnormalities. A study examining the relationship 

between individual SM species, with obesity IR and dyslipidaemia, has demonstrated 

that a distinct set of SM species containing saturated acyl chains such as  C18:0, 

C20:0, C22:0 and C24:0) were positively associated with obesity and also strongly 

correlated with IR and atherogenic parameters (112). In line with this, it was reported 

in genetically obese mice that, metabolic enzymes promoting ceramide 

accumulation, such as SPT were significantly upregulated, resulting in elevated 

levels of SM, ceramides, sphingosine and sphingosine-1-phosphate in plasma (113).  

In a large population cohort, lipidomic profiling performed by Weir et al. identified a 

significant association of sphingomyelin and ceramide with age, gender and BMI 

(114).  A study in rats has suggested that feeding conditions, gender and age also 

affect the plasma lipidomic profile (115). In an lipidomic study in healthy white adults 

which was stratified by age, investigators showed significantly higher levels of 

sphingomyelin species in females than in males, irrespective of age and matrix type 

(116). Dysregulation of the sphingomyelin metabolic pathway has been proposed to 

trigger hypertension in metabolic syndrome (117). SMs have been also implicated in 

identifying individuals with an increased risk for T2D. Using mass spectrometric 

analysis, Floegel et al. have found that, SM(d18:1/16:1) was associated with low risk 

of T2D in the European Prospective Investigation into Cancer and Nutrition (EPIC)-

Potsdam study with 800 incident cases of T2D and sub-cohort of 2,282 adults 

participants  followed for  7 years (118). In a similar case-cohort study involving a 

population of high cardiovascular risk, species of sphingomyelin were found to be 

inversely associated with the risk of T2D. It is also likely that sphingomyelin 

metabolism is altered during atherosclerosis development. There is compelling 

evidence that shows altered SM levels associated with cardiovascular disease and 

related conditions. A recent human study has revealed higher plasma levels of SM  

as well as a higher SM to PC ratio among patients with coronary artery disease 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Floegel%20A%5BAuthor%5D&cauthor=true&cauthor_uid=23043162
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(CAD) compared to the control group (119). These findings may suggest that 

sphingolipid metabolism particularly, the SM biosynthetic pathway would be a 

potential target for therapeutic intervention. 

 

1.5.3.4. Hexosylceramides and GM3 gangliosides 

Hexosylceramide (including mono-, di- and trihexosylceramide); precursors of 

broader glycosphingolipids and complex gangliosides are formed by the initial 

addition of glucose to ceramide (120). The GM3 ganglioside (monosialodi-

hexosylganglioside) is a precursor for many complex ganglioside species and is the 

most studied in settings of metabolic diseases. Hyperinsulinemia, hyperlipidemia and 

hyperglycemia have been shown to be associated with elevated levels of specific 

serumm GM3 gangliosides; suggesting that GM3 ganglioside metabolism is affected 

by glucose homeostasis and lipid metabolism (121). Patients with T2D were also 

shown to have higher muscle GM3 ganglioside concentrations (122). Marked 

elevations of GM3 gangliosides in visceral tissue of obese women have been 

reported (123). This suggests that gangliosides may play a role in the pathogenesis 

of central obesity. Moreover, GM3 ganglioside and glucosylceramide impair insulin 

signaling (23, 124). Consequently, pharmacological interventions targeting GM3 

gangliosides may pave the way for the treatment of IR and T2D. Of note, the 

absence of GM3 ganglioside synthesis in mutant mice lacking GM3 synthase, has 

resulted in animals with improved insulin sensitivity (125), decreased fasting blood 

glucose levels and improved glucose tolerance compared to wild-type mice (125). In 

addition, pharmacological inhibition of glucosylceramide synthase in mice has 

resulted in markedly reduced glucose levels, improved oral glucose tolerance, 

reduced glycated haemoglobin, improved insulin sensitivity (126). While there are 

accumulating data on the role of hexosylceramides and gangliosides in mediating or 

aggravating IR in animal models, epidemiological studies demonstrating the potential 

of these complex lipids as markers of cardiometabolic disease are scarce. 

    

1.5.4. Glycerophospholipids 

1.5.4.1. Phosphatidylcholines and Phosphatidylethanolamines 

Glycerophospholipds are a diverse group of phospholipids.  Glycerophospholipds 

typically contain a three carbon glycerol backbone with two long chain fatty acids and 
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a phosphatidic acid moiety attached. They make up the major components of 

biological membranes. Glycerophospholipids having choline and ethanolamine head 

groups bound to the phosphate group are termed phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) respectively. The fatty acid composition of 

glycerophospholipids varies in the carbon chain length and degree of unsaturation. 

In humans, the acyl chain lengths typically span between 12 to 26 carbons 

containing from none to one or more double bonds. De novo synthesised or dietary 

fatty acids provide the fatty acid content of these lipids. PC and PE are the most 

abundant phospholipids in mammalian membranes. The synthesis is mostly via the 

cytidine 5ʹ‑diphosphate (CDP)-choline pathway, and an analogous (CDP-

ethanolamine) pathway. In addition, decarboxylation of phosphatidylserine by 

phosphatidylserine decarboxylase, a mitochondrial enzyme can result in the 

synthesis of PE (127, 128). 

 

In several studies it has been documented that glycerophospholipids such as PC or 

PE are associated with IR and or T2D (129-131).  As demonstrated with TGs, it is 

likely that the fatty acid carbon number and double bond content influence the 

relationship of PC with cardiometabolic diseases. Consequently, Zhao et al. have 

identified PC species contain docosahexaenoic acid (DHA) fatty acids such as 

PC(22:6_20:4) to be inversely associated with the risk of diabetes (130). Plasma 

lipidomic studies in human subjects have also demonstrated a strong association of 

PE with obesity (123), prediabetes and T2D (73). The relative abundance of PC and 

PE phospholipids may also play a role in glucose homeostasis and insulin signalling. 

One study has clearly demonstrated the distinct role of total PC and the PC to PE 

ratio (PC:PE); where the total muscle PC was positively associated with insulin 

sensitivity while the PC: PE ratio was inversely associated (132, 133).  

 

Recently, LC-MS/MS based profiling of serum glycerophosphocholine metabolites 

has uncovered a novel association of glycerophosphocholine species with multiple 

CVD risk factors among 990 adolescents. In this population based cohort study, the 

phosphatidylcholine species PC(16:0/2:0) was shown to be negatively associated 

with visceral fat, blood pressure and fasting triglycerides. While, the 

lysophosphatidylcholine species PC(14:1/0:0) was positively associated with visceral 
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fat, fasting insulin levels, and triglycerides (134). A study conducted by Meikle et al. 

has reported a positive association of PE with T2D (73) and with CAD (135). In a 

population-based prospective epidemiological study, plasma lipidomic profiling 

revealed an association of baseline PE levels with increased risk of CVD (136). 

Dietary consumption of PC has been shown to be associated with increased risk of 

all cause and CVD mortality among US men and women (137). These studies 

suggest that the PC and PE phospholipids may either be positively or negatively 

associated with CVD risk depending on the specific acyl chain composition and 

double bond content. Moreover, the PC: PE ratio have been indicated as a key 

determinant in regulating cellular membrane integrity and playing a role in disease 

progression such as into steatohepatitis (138). The relative distribution of PC and PE 

across the membrane leaflet varies; outer leaflet having more PC compared to the 

inner leaflet. In contrast, inner leaflet has a higher PE level. Thus, a low PC: PE ratio 

presents a stress to membrane integrity by shifting more PE to outer leaflet. This 

phenomenon may alter membrane permeability to proteins leading to changes in the 

in downstream biological activities (26). For instance, improved insulin signalling 

associated with a lower PC:PE ratio has been demonstrated (139).  

 

1.5.4.2. Lysoglycerophospholipids  

Lysophosphatidylcholine (LPC) is the most common bioactive lipid belonging to 

lysoglycerophospholipids. There are several mechanisms in which LPC is generated 

in pathophysiological conditions; 1) hydrolysis of phosphatidylcholine (PC) by an 

enzyme called phospholipase A2 (PLA2) on LDL (140) , 2) cleavage of HDL-PC by 

endothelial lipases (EL) (141) and 3) by the action of lecithin cholesterol 

acyltransferase (LCAT) on to transfer of an acyl chain from phoshatidylcholine to 

cholesterol to produce cholesteryl esters in HDL particles (142). Circulating LPC 

levels has been implicated in the pathophysiology of several metabolic conditions 

including adiposity, T2D and CVD. An increase in LPC level in plasma associated 

with proinflammatory conditions and a decrease in ether phospholipids were 

reported in obese young adults (143).  In another study, a reduction in plasma LPC 

levels were reported in high fat diet induced obesity in mice and humans with obesity 

and T2D (144). LPC also plays a role in inflammation (145), IR (146) and T2D (147-

149). The relationship between LPC and IR and or diabetes remains unknown and 
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the results of previous studies from animal models and human cohorts are mixed. Of 

note, Sook Han et al. (146) reported LPC to induce FFA mediated IR. Others 

reported that LPC level is reduced in obesity and T2D (71, 150-152). The number 

and nature of LPC species measured vary greatly between studies; and diet and 

adiposity greatly affect LPC levels. This calls for diet-controlled studies in future to 

improve our understanding of the role of LPC in disease process. Indeed, the 

involvement of lysophospholipids in myriad pathological conditions as discussed 

above implies their potential role as biomarkers and therapeutic targets.  

 

Glycerophospholipids whose alkyl chain is linked to s1 position of glycerol via ether 

bond are termed alkylphospholipids aka ether lipids. A similar class of ether lipids 

called alkenylphospholipids (plasmalogens) containing a vinyl ether linkage at the 

sn1 position of glycerol, are of particular interest in settings of metabolic diseases. 

These lipid classes originate from peroxisomes and the endoplasmic reticulum via a 

complex synthetic pathway (55).  Plasmalogens have been shown to play a 

protective role in inflammation (153). Using a high throughput plasma lipidomic 

profiling, Meikle et al. (73) have reported an inverse association of alkyl and 

alkenylphosphatidylcholine species in prediabetes and T2D. A case-cohort study 

examining 250 incident cases of T2D and 692 controls during 3.8 years of median 

follow-up period identified lysophospholipids and PC-plasmalogens to be associated 

with lower risk of T2D in the PREDIMED trial (154). Moreover, a decrease in PE 

plasmalogen and an increased in lipid peroxidation has been documented in the LDL 

of patients with T2D (155). Some studies have also indicated a negative association 

of alkylphosphatidylethanolamine (PE(O)), alkenylphosphatidylethanolamine 

(PE(P)), alkylphosphatidylcholine (PC(O)) and alkenylphosphatidylcholine (PC(P)) 

with stable CAD in clinical cohorts (135). Thus, modulation of plasmalogens is likely 

to confer a therapeutic benefit. In mice studies, plasmalogen supplementation 

protected from inflammation, oxidative stress and atherosclerosis (156, 157).  Many 

of the unique roles of plasmalogens are related to their vinyl ether bonds that are 

susceptible to oxidation and so are thought to provide protection to other lipids and 

proteins against oxidative stress(158). It is also suggested that plasmalogens play a 

role in cholesterol homeostasis (159, 160) and cell survival (161).  

 

http://www.jlr.org/search?author1=Myoung+Sook+Han&sortspec=date&submit=Submit
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1.5.5. Acylcarnitines  

Acylcarnitines are esterified forms of L-carnitine with fatty acids (21). A mitochondrial 

enzyme; carnitine palmitoyltransferase 1 (CPT 1) catalyses the exchange of the acyl 

moiety of acyl-CoA with carnitine generating acylcarnitines followed by the 

translocation of acylcarnitine into the mitochondrial matrix by carnitine acylcarnitine 

translocase (CACT) (Figure 4) (21). Acylcarnitines are therefore, required to 

transport long chain fatty acyl-CoA across mitochondrial membrane for subsequent 

β-oxidation  Dysregulation in acylcarnitine metabolism; leading to the accumulation 

of these lipids reflects a defect in mitochondrial function associated with disease 

conditions such as IR (21). Evidence from human studies have also shown a positive 

association of acylcarnitine species with prediabetes (162) and T2D (56, 163, 164). 

Acylcarnitines have emerged as important predictive biomarkers for T2D.It has been 

shown that acylcarnitines improved the early prediction of T2D based on baseline 

plasma levels in population-based studies (56, 165). In the diabetic state, 

mitochondrial function is impaired (166) and this may be linked  to incomplete fatty 

acid oxidation (FAO) leading to the accumulation of the acylcarnitine. A study in mice 

fed with 4-thia fatty acid tetradecylthiopropionic acid have demonstrated a reduction 

in β-oxidation associated with hepatic mitochondrial function, and increased 

acylcarnitine levels (167). Moreover, acylcarnitine can be proinflammatory via the 

induction of cyclooxygenase-2 (20).  

  

Figure 4. Acylcarnitine metabolism. CPT1 exchanges the CoA moiety for carnitine 

resulting in the formation of acylcarnitine (AC) in mammalian cells. Acylcarnitine is 

then transported into the mitochondrion by CACT. Inside, the mitochondrion, CPT2 

breaks down acylcarnitine back to free carnitine and acyl-CoA which goes to β-
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oxidation. The free carnitine can be transported back via mitochondrial membrane to 

cytosol to repeat the cycle.  

 

1.7. Mass spectrometry and plasma lipidomics   

1.7.1. The human plasma lipidome 

Plasma is one of the most commonly evaluated biological materials in lipidomic 

studies. The plasma lipid species we measure using lipidomic approaches are 

primarily derived from circulating lipoprotein particles (Figure 4). The lipoprotein 

structure is a complex assembly with the most outer layer composed of 

apolipoproteins together with various phospholipids, sphingolipids and un-esterified 

cholesterol. The inner core is primarily composed of hydrophobic and neutral lipids 

such as triacylglycerol, diacylglycerol and cholesteryl esters (Figure 5). 

Conventionally, the lipoprotein particle as a whole has been viewed as either HDL-C 

“a good cholesterol” or LDL-a “bad cholesterol”. However, detailed characterization 

based on size, density and lipid to protein ratio shows that there are several classes 

and subclasses of lipoproteins. These include but not limited to very low-density 

lipoprotein (VLDL) and intermediate-density lipoprotein (IDL). Each of these classes 

in turn encompass several subclasses based on size (e.g. LDL particle ranges from 

very large to small), and the VLDL ranges from very large to small VLDL particles 

(168, 169).  

 

Conventional measures of HDL-C or triglycerides obtained as part of clinical lipid 

panel only reflect the sum of these lipids carried across lipoproteins. Further insight 

into the particle size and subclass concentration of lipoproteins is relevant in 

distinguishing various subtypes of cardiovascular disease (170). Yet, the lipoprotein 

class/subclass analysis, does not take into account the composition such as 

sphingolipids and phospholipids and hence fail to explain the complexity of the 

altered lipid metabolism associated cardiovascular risk. Several plasma lipidomic 

studies have shown association of molecular lipids with T2D and cardiovascular 

diseases independent of lipoprotein profile (83, 84, 171). The individual lipid profile of 

each lipoprotein particle is substantially different and therefore, a more detailed 

characterization of the association of lipid classes, subclasses and individual lipid 

species with cardiometabolic risk factors and outcomes could be more informative. 
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The introduction of analytical platforms such as the LC-MS/MS has made it possible 

to measure several hundreds to thousands of lipid species in clinical samples. A brief 

introduction on the LC-MS/MS methodology for lipidomic analysis is discussed in the 

subsequent section. 

 

Figure 5. Lipoprotein structure. The surface coat of lipoprotein is composed of a 

mainly phospholipid monolayer. Phosphatidylcholine, phosphatidylethanolamine and 

sphingomyelin are the predominant phospholipids that make up the phospholipid 

monolayer of plasma lipoprotein particles while the inner core is essentially 

composed of neutral/non-polar lipids such as cholesteryl ester, triacylglycerol and 

diacylglycerol species. 

 

1.7.2. LC-MS/MS based lipidomics 

Analytical technologies such as MS coupled with complex chromatographic 

separation techniques (51, 172, 173), nuclear magnetic resonance (NMR) (174, 

175), fluorescence spectroscopy (176) and microfluidic platforms (177) have been 

used in lipidomics in order to detect, identify and quantify lipids. Amongst, these 

analytical platforms, MS is widely used in lipidomic studies. Mass spectrometric 

based approaches primarily measure the mass of a given molecular lipid species 
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and produce information in the form of mass spectra; the intensity of which is directly 

related to the concentration of analyte present in a given sample.  

 

The ultimate goal of lipidomics is to fully characterize, identify and quantify the 

molecular lipid species in a sample. Powerful analytical technologies are often 

required to characterize such diverse molecular lipid species. There are two main 

lipidomic strategies to effect this; “untargeted lipidomics” where the aim is to provide 

relative measurements of  a wide range of lipids including unknown species for the 

purpose of identifying new biomarkers and “targeted lipidomics” in which a specific 

known set of lipids are quantified, typically using internal standards of some sort 

(54). Untargeted analyses involve the global examination of all detectable lipid 

species (both known and unknown) and are mainly meant for hypothesis generation 

and qualitative studies. In contrast, targeted lipidomics is aimed at identifying and 

quantifying known list of metabolites. Each of these approaches presents with its 

own advantages and disadvantages. Here, all steps involved in targeted lipidomic 

profiling are discussed in detail. 

 

1.7.2.1. Lipid extraction and liquid chromatography 

A typical LC-MS/MS analysis starts with lipid extraction from a given sample such as 

plasma (Figure 6). A single phase 1:1 (v/v) BUME extraction method is one of the 

popular techniques shown to be efficient to recover a wide range of polar and non-

polar lipid species (178). This method is highly reproducible, less time consuming 

than its counterparts and thus is better suited for high throughput lipidomic analysis 

of large population cohorts. The singe phase BUME method is also suitable for 

automated lipid extraction (178). Several lipid extraction methods have been devised 

in the past; the ‘Folch’ method being the most popular classical approach (179).  The 

‘Folch’ method and its modified versions such as Bligh-Dyer (180) and acidic ‘Folch’ 

method (181) are based on bi-phasic liquid-liquid extraction using mixture of 

chloroform: methanol. These methods are less safe, time consuming and less 

reproducible compared to the butanol-methanol (BUME) method. Moreover, in the 

classical methods, lipid partition occurs between the phases or sit at the interface 

and therefore, this leads to poor and irreproducible recoveries. 
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Following extraction, the lipid extract is subjected to liquid chromatography (LC) 

system; such as ultra-performance liquid chromatography (UPLC). In HPLC reverse 

phase columns facilitate separation of individual lipids based on their hydrophobic 

interaction with a stationary and mobile phases. Recent developments in this area 

make use of column matrices of smaller particle size and higher operating pressure, 

and thereby provide superior resolving power and faster chromatography. The level 

of hydrophobicity of lipid species is influenced by the fatty acid chain length and 

degree of unsaturation; and hence enable us to separate molecules that vary in their 

acyl chain length and unsaturation (182).  

 

Chromatographically separated metabolites need to be exposed to an ion source as 

MS essentially detects molecules once they are ionized. There are several 

techniques of ionization; a mechanism where gaseous phase ions/charged lipid 

molecules are generated (183). Electrospray ionization (ESI) techniques is the most 

commonly used interface to ionize molecules before they are subjected to MS (183). 

As the working condition of LC system (the liquid environment) and MS (the vacuum 

system) are incompatible, an interface is required to transfer the separated 

components from the LC column into the MS ion source. Moreover, the interface is 

required to remove a significant portion of the mobile phase used in LC while 

preserving the chemical identity of the chromatographic products. The advent of soft 

ionization techniques such as ESI and coupling this technique with tandem MS has 

revolutionized LC-MS based lipidomics.  
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Figure 6.  Overview of LC-MS based targeted lipidomics workflow. Lipid is 

extracted using organic solvents such as 1:1 (v/v) BUME from a complex biological 

matrix (e.g. human plasma). The crude lipid extract (a complex mixture of all lipids 

present in the sample) is separated using liquid chromatography (HPLC systems) 

and then subjected to MS for further analysis and detection. Identification and 

quantification of lipids is made using integration software, typically provided by the 

instrument vendor. Computational biology and statistical tools are applied to identify 

associations with disease outcomes, determine significant correlations, identify and 

validate potential biomarkers, and to integrate these with existing biological 

knowledge. 

 

1.7.2.2. Targeted lipidomic analysis using LC-MS/MS 

Targeted LC-MS/MS lipidomics combines liquid chromatographic separation with 

MRM experiments on a known set of lipids. It makes use of commercially available 

stable isotopes or non-physiological internal standards to quantify lipids with a known 

fragmentation pattern (184-186). In tandem MS like triple quadrupole (QQQ) 

instruments, scan modes such as the product ion scan, precursor ion scan and 

neutral ion loss are employed to identify lipids. Such MS instruments consist of two 

quadrupole mass analyzers (in Q1 and Q3) for sequential mass filtration and non-

mass-resolving collision cell (Q2) between them. Product ion scan is used to analyse 

the masses of the fragments generated from a selected parent ion of interest from 

https://en.wikipedia.org/wiki/Quadrupole_mass_analyzers
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collision-induced dissociation in quadrupole 2 (Q2). Whereas, precursor ion scanning 

is used to analyse the mass-to-charge ratio (m/z) of precursor ions that generate a 

selected daughter ion of interest. Similarly, neutral loss scan, is where the second 

mass analyser (Q3) detects daughter ions that are a specified mass smaller than the 

parent ion scanned in Q1 (Figure 7) 

Q1 Q2 Q3 Detector

+ +
+

 

Figure 7. Analysis of lipids on QQQ MS; overview of MRM experiment. In the 

first mass analyser (Q1) a single m/z for the parent ion of interest is selected. The 

subsequent quadrupole (Q2) is essentially a collision cell where the parent ion of 

interest undergoes collision-induced dissociation (CID) resulting in fragmentation of 

the molecule.  The 2nd mass filter/analyser (Q3) a single m/z of the selected daughter 

ion is monitored, and a signal is detected by the mass detector. In a typical QQQ 

mass spectrometer, several scan modes exist, e.g. a precursor ion scan involves 

scanning structurally similar ions (in Q1) with a common fragment ion selected in Q3. 

In a product ion scan mode, a selected m/z in Q1 is scanned for fragmentation 

patterns in Q3. In a MRM experiment, ion masses are fixed in the Q1 and Q3 for a 

sensitive detection of a targeted panel of analytes.  

  

In the Metabolomics Laboratory at the Baker Institute, we employ LC-ESI-MS/MS 

with MRM experiments to identify and characterise over 700 individual lipid species 

belonging to 36 classes/subclasses in human plasma samples using a 15 minute 

analysis time (a single run in a positive ionization mode). This comprehensive 

targeted list of lipids was achieved iteratively over many years of development work 

in the Metabolomics Laboratory. We choose targeted lipidomics over untargeted 

lipidomics as our aim was to measure and quantify defined set of lipids and utilize 

these for assessment of cardiometabolic risk. We have performed lipid identification 

at least to the bond type level such as whether a given lipid species has an acyl, 
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alkyl or alkenyl linkage using different scan modes (84, 114) and subsequently rely 

on retention time coupled with MRM analysis to quantify these species.  In the most 

recent methodology, chromatographic separation of the sn1 and sn2 isomers of 

glycerophospholipids as well as the n-3 and n-6 fatty acid containing lipids was 

demonstrated (187). In this methodology, information on fatty acid composition of 

each lipid species, i.e, the fatty acid chain length and or number of double bonds 

present in each fatty acyl chain can also be obtained, e.g. diacylglycerol (DG) 

16:1/18:1, sphingomyelin (SM) SM(d18:2/14:0). Triacylglycerol (TG) species were 

measured as both the neutral loss (NL) of specific fatty acids and as the sum 

composition of all species of a specific m/z using single ion monitoring (SIM). Such 

NL measurements reveal the structural diversity in TG species and provide a 

comparative quantification of the different fatty acyl species. While the SIM 

measurements provide a more accurate absolute quantification of TG species.   

 

Despite the level of characterisation of lipid species possible in current lipidomic 

research,  there remain a number of analytical challenges (52). For instance, an in-

depth structural characterization, such as to identify lipid species that differ, for e.g. 

in the double bond position of fatty acyl chain (e.g. 9Z or 11Z) is possible but not 

practical in a high throughput quantitative assay. Determining the precise structural 

composition all lipid species in a given cell, organ or bio-fluid remains a key limitation 

in lipidomic studies. This is because, the lipid extract by itself contains an extremely 

complex mixture of individual molecular lipid species with huge structural diversity. 

Moreover, accurate quantification of each lipid species in a given biological matrix 

presents a significant challenge, partly due to lack of stable isotope standards for 

each lipid species and that the concentrations of each lipid species ranges across 

multiple orders of magnitude. Furthermore, sample extraction conditions, ionization 

efficiencies, and the detector responses affect ion abundances, and hence the 

precise quantitative determination of individual lipid species.  

 

Further to the analytical challenges, there are also issues related to the presentation 

and interpretation of lipidomic data. Lipid profile is affected not only by biological 

factors (such as age, gender, ethnicity, microbiome, diet and life style) (188-190) but 

also by other factors such as sample handling (sample collection techniques, freeze-
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thaw cycle, storage time, temperature fluctuations etc.). Metabolomics data is also 

prone to unwanted variations due to batch effects and long run time with in each 

batch for large datasets. Thus, the interpretation of lipidomic data and its 

associations with outcomes needs to consider the aforementioned factors. To 

achieve biologically sound associations, some of the challenges such as unwanted 

variations in lipidomic data could be overcome by normalization approaches such as 

median centring using QC samples. In large population cohorts where the lipidomic 

analysis is run in many different batches, the  batch effects can be corrected using a 

median centring approach utilising PQC (191). Many lipid species comprising the 

lipidome are correlated each other, hence the issue of collinearity presents a 

challenge in statistical modelling. To handle the collinearity problem, models such as 

the ridge regression could be utilized. With the use of linear models such as the 

ridge regression we have shown the potential of lipidomic data to generate metabolic 

risk scores that help assess cardiometabolic risk. 

 

Despite the above limitations, quantification of lipids at class/subclass or species 

level as well as the possibility of identifying individual lipid species containing 

different fatty acids (that vary in acyl chain length and saturation level) by LC-ESI-

MS/MS allows for a comprehensive understanding of lipid metabolism. Advances in 

analytical technologies over the past few decades have enabled detailed profiling of 

the individual lipid species present in the lipidome of a given biological system and 

also quantitative determination of known lipids (173, 187, 192). In addition, the 

possible elucidation of their biological roles and interactions with other metabolites is 

also explored with this technology (193, 194). Importantly, lipidomic profiling can 

facilitate our understanding of the comprehensive biochemical mechanisms 

underlying lipid metabolism and lipid associated diseases including obesity, T2D and 

CVD. Lipidomics plays an important role in discovery of lipid biomarkers for disease 

prediction, diagnosis, prognostic monitoring and new drug targets for therapeutic 

interventions (57). Furthermore, the lipidomic data has a potential to generate 

metabolic risk scores that help assess cardiometabolic risk.    
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1.8. Clinical significance of lipidomics  

Dyslipidaemia (the raised total cholesterol, plasma triglycerides and LDL-cholesterol, 

and decreased HDL-cholesterol) is an independent risk factor for metabolic 

diseases. However, there is a compelling evidence that these ‘classical’ lipid 

measures alone do not adequately explain the complex dysregulation of lipid 

metabolism associated cardiometabolic risk factors, nor do they represent the 

structurally and functionally diverse lipid species associated with the pathogenesis of 

IR, obesity or T2D. As a consequence, these markers alone do not provide the full 

spectrum of metabolic effects on lipid metabolism and do not suffice as diagnostic, 

prognostic and predictive biomarkers. 

 

Currently, comprehensive plasma lipidomic profiling on large population cohorts 

using robust analytical instrumentation is limited. There are relatively few studies that 

utilize high throughput lipidomic analysis but these studies highlighted the 

significance of such an approach for the identification of candidate lipidomic 

biomarkers in relation to cardiometabolic risk factors, IR and diabetes. Accumulating 

evidence also shows a strong relationship of plasma lipid species with prediabetes 

and T2D (73). The potential of a lipidomic risk score to predict T2D (74) and improve 

upon traditional risk factors to classify disease risk has also been documented (75, 

195, 196). Most of the existing data is however, based on smaller sample sizes, 

models with a limited number of lipid species, and are derived from cross-sectional 

studies or studies with short follow up.  

 

In this thesis, comprehensive plasma lipidomic analysis using the LC-MS/MS 

methodology was performed. Three independent human cohorts were utilised to 

define the relationship of lipid metabolism with cardiometabolic risk factors and 

outcomes; 1) a cohort of healthy young adults, 2) the Australian Diabetes, Obesity 

and Lifestyle Study (AusDiab) and 3) the Busselton Health Study cohort (BHS). 

These data were systematically analysed to define the relationship between plasma 

lipid classes/subclasses and species and different cardiometabolic traits and 

outcomes.  
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1.9. Hypothesis 

The central hypotheses of this project is that the comprehensive examination of the 

human plasma lipidome is useful to identify new markers associated with 

cardiometabolic risk factors and outcomes. 

The specific hypotheses include:-  

 The human lipidomic profile is different between men and women and hence 

there is sex interaction in the association of lipidome with cardiometabolic risk 

factors. 

 The lipidome is perturbed in hyperinsulinemia and insulin resistance among 

young adults with no known diabetes.   

 Lipidomic profiling of incident obesity will provide insight into the metabolic 

drivers and consequences of obesity. 

 Lipidomic data has the potential to provide metabolic measures of obesity that 

will be better a predictor of disease risk.  

 Changes in the plasma lipid profile precede the clinical onset of T2D and will 

be useful biomarkers for risk assessment and early diagnosis of type 2 

diabetes and prediabetes. 

 

1.10. Aims 

1. To perform a comprehensive plasma lipidomic analysis of a large population 

cohort to identify plasma lipid species associated with cardiometabolic risk 

factors including age, sex and BMI and health outcomes.  

2.  To examine the relationship between the plasma lipidome and IR in a cohort 

of healthy young individuals.  

3. To identify baseline metabolic phenotype associated with future change in 

WC and BMI. 

4.  To construct a metabolic BMI score and examine its association with 

metabolic disease risk. 

5. To examine the relationship of plasma lipidome with prediabetes and T2D. To 

determine whether lipids can improve upon existing markers to predict the 

risk of type 2 diabetes. 
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Chapter 2. General Methods 

The general methods used in this thesis are described below. The detailed 

description of methods relating to specific chapters and the statistical analysis can 

be found in each chapter. 

 

Three independent human cohorts have been studied in this project: 1) the 

Australian Diabetes, Obesity and Lifestyle Study (AusDiab cohort) (chapters 3, 5, 6 

and 7); 2) a cohort of young adults recruited in Melbourne (chapter 4) and 3) the 

Busselton Health Study cohort (BHS) (chapters 3 and 6). The general methodology 

for lipidomic profiling of each cohort remained the same although, the number of lipid 

species being measured varied in each cohort.  

 

1.11. Lipid extraction 

We extracted lipids in human plasma using a standard butanol-methanol method as 

described previously (1). The extraction process (including pipetting) was assisted by 

the liquid handling robot (MicroLAB STAR, Hamilton, Biosystems, Inc). Briefly, 10µL 

of plasma was collected by the machine and mixed with 100µL with 1-butanol and 

methanol (1:1 v/v) containing the relevant internal standard mix and 5mM ammonium 

formate (Chapter 3, Table 1). The resulting mixture was thoroughly vortexed for 

about 10 seconds before sonicated for 60 min at 25oC in a sonic water bath and 

centrifuged at 16,000xg for 10 minutes maintain the temperature at 20oC. The 

supernatant containing lipids was finally transferred to 0.2ml glass tubes with Teflon 

inserts. The extract was screw capped and stored at -80oC.  

 

Blanks (10 μl MilliQ water  per each extraction with or without internal standards) and    

and two different types QCs (plasma quality control (PQC) and samples from the 

national institute of standards technology (NIST 1950 reference plasma samples), 

were included in the extraction process to monitor the quality of lipid extraction 

process. Technical quality control samples (TQCs) were included with the patient 

samples during the run in order to assess the performance of liquid chromatography-

mass spectrometry analysis. Below is a simplified illustration of the robot assisted 

lipid extraction (Figure 2.1). 
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Figure 2.1.  A simplified illustration of the robot assisted lipid extraction and mass 

analysis (applied for each cohort). 

 

1.12. Liquid chromatography mass spectrometry (LC-MS/MS). 

Prior to analysis, the complex mixture of lipids in the crude lipid extract was 

subjected to a high performance liquid chromatography (HPLC) (Agilent 1290 series 

HPLC system and a ZORBAX eclipse plus C18 column (2.1x100mm 1.8μm) to 

separate individual lipid species. Tandem mass spectrometry (MS/MS) (Agilent 6490 

triple quadrupole (QQQ)) mass spectrometer with electrospray ionization interphase 

was utilized to analyse lipid species using positive ion mode. The mobile phase 

included solvent A and solvent B. Solvent A composed of 50% water, 30%, 

acetonitrile, 20% isopropanol (v/v/v) and solvent B with 1% water, 9% acetonitrile, 

90% isopropanol (v/v/v) each containing 10mM ammonium formate were used 

applying a linear gradient over 14-minute run time per each sample (Figure 2.2). A 

1μL of sample was injected to MS. 

 

The chromatographic gradient starts with 10% B solvent at a flow rate of 0.4 mL/min 

linearly increasing to 45% over 2.7 min, then to 53% for 0.1 min, to 65% for 6.2 min, 

to 89% over 0.1 min, to 92% over 1.9 min and finally to 100% over 0.1 min before 

holding at 100% for 0.8 min. Equilibration was then achieved by decreasing 100% B 

to 10% B over 0.1 min and then held for an 0.9 min. Finally, the flow rate was 

switched to 0.6 ml/min for 1 min followed by holding to 0.4 mL/min over 0.1 min. The 

MS column temperature was set to a thermostat of 60°C. The following MS condition 

was used; gas temperature, 150oC, flow rate 17 L/min, nebulizer 20psi, sheath gas 

temperature 200oC and flow rate, 10L/min and capillary voltage of 3500V. The 
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detailed mass spectrometry settings and MRM transitions can be found elsewhere 

(2). 
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Figure 2.2. The solvent system and chromatography gradient profile for LC-MS/MS 

analysis. 

 

1.13. Lipid quantification, batch correction and outlier detection 

The chromatographic peaks were integrated using the Mass Hunter (B.07.00, Agilent 

Technologies) software. Each peak was assigned to the corresponding species it 

stands for based on MRM (precursor/product) ion pairs and retention time. The 

relative concentration of each lipid species was determined by comparing the peak 

areas to relevant internal standard (Chapter 3, Table 1). Response factors generated 

previously in same lab were applied for each of cholesteryl ester species to estimate 

their true concentrations (3). Batch correction was achieved using median centring 

for PQC samples, as explained in detail elsewhere (4). 

 

Principal component analysis (PCA) and scatter plots of all samples were used to 

visualize the possible outliers. Each sample that falls outside the 99-percentile 

eclipse of the PCA plot were manually checked whether the peak peaking was 

correct, or whether the vials contain the right amount of extract and so on. For few 

samples where incorrect peak integration was detected, peak peaking was redone. 

Samples suspected of having technical problems including missed injection 

(associated with no peak or signal intensity as background), faulty sample volume, 
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empty vials were excluded. All other samples were real after checking and are 

included in the downstream analysis. 

 

1.14. Statistical analysis 

Statistical analyses were performed using R software (version 3.6.1), Excel, Graph 

Pad Prism 8 or STATATM v14 (StataCorp LP, Inc., Texas, USA) as necessary. The 

lipidomic dataset was log10 transformed prior to statistical analysis and scaled to SD 

where necessary. The associations between lipids and cardiometabolic traits and 

outcomes were determined using linear regression, logistic regression, or cox 

regression adjusting for appropriate covariates. To identify associations independent 

of lipoprotein profile, models were adjusted for total cholesterol, HDL-C and 

triglycerides on top age, sex and BMI. The β-coefficients from linear regression 

analyses and 95% confidence intervals were converted to percentage differences 

(percentage difference = (10^β-coefficient – 1) x 100) where necessary. P-values 

were corrected for multiple comparisons using the Benjamini and Hochberg 

procedure (5). Linear models with regularization such as ridge, lasso and elastic net 

were employed to model BMI and the ridge regression to predict incident type 2 

diabetes. 
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Chapter 3. High-coverage plasma lipidomics reveals 

novel sex-specific lipidomic fingerprints of age and 

BMI: Evidence from two large population cohort 

studies 

 
 
 
  
 
Preface  

We sought to comprehensively analyse the human plasma lipidome (measuring over 

700 lipid species) in large population cohorts to define the relationship of lipid 

metabolism with common anthropometric risk factors. This chapter investigated the 

complex effects of age and sex on lipid metabolism in a population setting. Utilizing 

two independent large population cohorts, we determined novel age and sex-specific 

lipidomic fingerprints of obesity. This chapter was also aimed at mapping enzyme 

pathways perturbed with disease risk by utilizing a specific lipid ratios as a proxy for 

enzyme activity.   

 

  

 

Chapter 3 has been published in Plos Biology 

 

 

  

To facilitate a better flow between chapters within this thesis, the Supplementary 

Tables for this chapter have been moved to the Appendix I.   
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Chapter 3. Supplementary figures 
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S1 Fig. CV (%). The CVs for each lipid species were computed separately for men 

(blue circles) and women (pink circles) as follows: (SD/mean concentration) × 100. 

Each circle represents individual lipid species. See S1 Data for underlying data. CV, 

coefficient of variation.  

 

 

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000870#pbio.3000870.s037
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Chapter 3. S2 Fig. Pearson’s correlation coefficients between all lipid species in the whole 

cohort (men and women combined). 

Pearson’s correlation coefficients were calculated between all pairs of lipid species. 

The correlation coefficients were plotted as a heat map. The colour scale illustrates 

the magnitude and direction of correlation between lipid species: red, positive 

correlations and blue, negative correlations. 

https://doi.org/10.1371/journal.pbio.3000870.s002  

 

Chapter 3. S3 Fig. Pearson’s correlation coefficients between all lipid species in men.  

Pearson’s correlation coefficients were calculated between all pairs of lipid species. 

The correlation coefficients were plotted as a heat map. The colour scale illustrates 

the magnitude and direction of correlation between lipid species: red, positive 

correlations and blue, negative correlations. 

https://doi.org/10.1371/journal.pbio.3000870.s003  

 

Chapter 3. S4 Fig. Pearson’s correlation coefficients between all lipid species in women.  

Pearson’s correlation coefficients were calculated between all pairs of lipid species. 

The correlation coefficients were plotted as a heat map. The colour scale illustrates 

the magnitude and direction of correlation between lipid species: red, positive 

correlations and blue, negative correlations. 

https://doi.org/10.1371/journal.pbio.3000870.s004  

 

Chapter 3. S5 Fig. Differences (men relative to women) in the Pearson’s correlation 

coefficients between all lipid species.  

The differences in the Pearson’s correlation coefficients were calculated for all pairs 

(men correlation coefficients subtracted from women’s correlation coefficients). The 

differences in the correlation coefficients were plotted as a heat map. The colour 

scale illustrates the magnitude and direction of difference in the correlation of lipid 

species in men and women. https://doi.org/10.1371/journal.pbio.3000870.s005  

 

 

 

 

 

 

 

 

 

https://journals.plos.org/plosbiology/article/file?type=supplementary&id=info:doi/10.1371/journal.pbio.3000870.s002
https://doi.org/10.1371/journal.pbio.3000870.s002
https://journals.plos.org/plosbiology/article/file?type=supplementary&id=info:doi/10.1371/journal.pbio.3000870.s003
https://doi.org/10.1371/journal.pbio.3000870.s003
https://journals.plos.org/plosbiology/article/file?type=supplementary&id=info:doi/10.1371/journal.pbio.3000870.s004
https://doi.org/10.1371/journal.pbio.3000870.s004
https://journals.plos.org/plosbiology/article/file?type=supplementary&id=info:doi/10.1371/journal.pbio.3000870.s005
https://doi.org/10.1371/journal.pbio.3000870.s005
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S6 Fig. Correlation between regression coefficients of lipids associated with sex. The 

regression coefficients on x axis (AusDiab) and y axis (Busselton) cohorts have an R2 = 

0.8398. See S1 Data for underlying data. AusDiab, Australian Diabetes, Obesity and 

Lifestyle Study. 
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S7 Fig. Associations between age and plasma lipid species. A random-effect meta-

analysis between age and log-transformed lipid species concentration was 

performed on 10,339 individuals (from the AusDiab cohort) and 4,207 participants 

(from the BHS cohort) adjusting for sex, BMI, and cholesterol, HDL-C, and 

triglyceride levels. The pooled effect size as percentage difference per year for each 

lipid species is displayed on the x axis. Open circles show nonsignificant species, 

grey circles show species with p < 0.05, and brown circles show the 30 most 

significant species after correction for multiple comparisons (6.29 × 10−60). Whiskers 

represent 95% confidence intervals. See S1 Data for the underlying data. AusDiab, 

Australian Diabetes, Obesity and Lifestyle Study; BHS, Busselton Health Study; BMI, 

body mass index; HDL-C, high-density lipoprotein cholesterol.  

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000870#pbio.3000870.s037
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S8 Fig. The cohort was stratified into women (n = 5,685, top panel) and men (n = 4,654, 

bottom panel). Average lipid class levels were calculated for each 1-year age interval group 

and then centred and scaled to a ‘reference’ group (25- to 34-year–old participants). Age 

groups (by 1-year intervals) are displayed on the y axis and the lipid class on the x axis. The 

analysis was adjusted for BMI and clinical lipids. Colour intensities represent the number of 

standard deviations away from the mean lipid levels of the reference group (25–34 years 

old). AusDiab, Australian Diabetes, Obesity and Lifestyle Study; BMI, body mass index.  
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Chapter 3. S9 Fig. Age-related, sex differences in plasma lipid species levels in the AusDiab 

cohort.  

The cohort was stratified into men (n = 4,654, left panel) and women (n = 5,685, right 

panel). Average lipid species levels were calculated for each 1-year age interval and 

then centred and scaled to a ‘reference’ group corresponding to the 25- to 34-year–

old participants. Age groups (by 1-year intervals) are displayed on the x axis and the 

lipid species on the y axis. Colour intensities represent the number of standard 

deviations away from the mean lipid levels of the reference group (25–34 years old). 

AusDiab, Australian Diabetes, Obesity and Lifestyle Study. 

https://doi.org/10.1371/journal.pbio.3000870.s009 
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S10 Fig. Regression coefficients between lipid species and BMI in the AusDiab and 

Busselton cohorts. The correlation between regression coefficients of each lipid species 

associated with BMI in the AusDiab (x axis) and in the Busselton cohort (y axis) was 

examined. See S1 Data for underlying data. AusDiab, Australian Diabetes, Obesity and 

Lifestyle Study; BMI, body mass index. https://doi.org/10.1371/journal.pbio.3000870.s010 

https://journals.plos.org/plosbiology/article/file?type=supplementary&id=info:doi/10.1371/journal.pbio.3000870.s009
https://doi.org/10.1371/journal.pbio.3000870.s009
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S11 Fig. Correlation between metabolic risk factors. Pearson's correlation 

coefficients were calculated for each pair of risk factors. Colour intensities show the 

strength of correlation. Significant correlations at p-value *p < 0.05, **p < 0.01, and 

***p < 0.001, respectively 
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S12 Fig. Association of BMI, WC, and WHR with lipid species. Linear regression 

analyses of BMI (A), WC (B), and WHR (C) with lipid species were performed 

adjusting for age, sex, cholesterol, HDL-C, and triglycerides. Open grey symbols, 

closed grey symbols, and closed orange symbols show lipid species with corrected 

p-values >0.05, <0.05, and <1 × 10−11, respectively. Whiskers represent 95% 

confidence intervals. See S1 Data for the underlying data. BMI, body mass index; 

HDL-C, high-density lipoprotein cholesterol; WC, waist circumference; WHR, 

waist/hip ratio. 
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S13 Fig. Association between BMI, WC, or WHR and the plasma lipidome. A linear 

regression between log-transformed lipid concentration and BMI or WC or WHR was 

performed on 10,339 subjects adjusting for age, sex, total cholesterol, HDL-C, and 

triglycerides. (A) Venn diagram showing overlaps and unique associations of lipid 

species with BMI, WC, and WHR. (B), (C), and (D) show lipid species significantly 

associated with BMI only, WHR, only, and WC only, respectively. See S1 Data for 

the underlying data. BMI, body mass index; HDL-C, high-density lipoprotein 

cholesterol; WC, waist circumference; WHR, waist/hip ratio.  
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S14 Fig. Association of smoking with plasma lipidomic profile. A logistic regression 

analysis between smoking status and log10-transformed lipid species concentrations 

was performed adjusting for age, sex, BMI, total cholesterol, HDL-C, and 

triglycerides. Grey circles show nonsignificant species (p > 0.05), and grey and pink 

circles show species with p < 0.05 and p < 2.95 × 10−9, respectively, after correction 

for multiple comparisons. The whiskers represent 95% confidence intervals. See S1 

Data for underlying data. BMI, body mass index; HDL-C, high-density lipoprotein 

cholesterol.  

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000870#pbio.3000870.s037
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000870#pbio.3000870.s037
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S15 Fig. Correlation matrix between fatty acid composition of lysophospholipids. Pearson's 

correlation analysis was performed between 27 fatty acids. Blue coloured eclipses in each 

square represent positive correlations, and orange show negative correlations. See S1 Data 

for the underlying data.  
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S16 Fig. Association between age, sex, and BMI with plasma 

lysophosphatidylcholine fatty acids. Multivariable linear regression analysis of age 

(A), sex (B), and BMI (C) with log-transformed lipid composition data was performed 

on 10,339 AusDiab participants adjusting for BMI, age, and sex (as appropriate) 

together with total cholesterol, HDL-C, and triglycerides. Open grey circles represent 

nonsignificant fatty acids (corrected p > 0.05). Orange circles show fatty acids 

associated with BMI, age, or sex (corrected p < 0.05). Bars represent the 95% 

confidence intervals. See S1 Data for the underlying data. AusDiab, Australian 

Diabetes, Obesity and Lifestyle Study; BMI, body mass index; HDL-C, high-density 

lipoprotein cholesterol.  

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000870#pbio.3000870.s037
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S17 Fig. Selected lipid ratios and sphingolipid metabolic pathway associated with 

BMI. A linear regression adjusted for age, sex, total cholesterol, HDL-C, and 

triglycerides was performed between individual lipids or lipid concentration ratios and 

BMI. Each of the panels from (A)–(F) represent association of BMI with a given lipid 

ratio and individual lipids species that make up the ratio. (G) An overview of the 

sphingolipid biosynthetic pathway. (H) FADS3 as a sphingoid base desaturase 

responsible for increased d18:2/d18:1 sphingolipid ratio. BMI, body mass index; 

DEGS, dihydroceramide desaturase; FADS3, fatty acid desaturase 3; GCS, 

glucosylceramide synthase; HDL-C, high-density lipoprotein cholesterol; SMase, 

sphingomyelinase; SMS, sphingomyelin synthase.  
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S18 Fig. The d18:2 to d18:1 ratios of sphingolipid species associated with sex.A 

linear regression adjusted for age, BMI, total cholesterol, HDL-C, and triglycerides 

was performed between individual lipids or lipid concentration ratios and sex. (A) 

Represents association of sex with the ratio between d18:2/d18:1 sphingolipid. (B) 

FADS3 as a sphingoid base desaturase responsible for the conversion of 

d18:2/d18:1 sphingolipid. BMI, body mass index; FADS3, fatty acid desaturase 3; 

HDL-C, high-density lipoprotein cholesterol.  
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S19 Fig. Association of BMI with the ratio between PE(P)/PE(O). A linear regression 

adjusted for age, sex, total cholesterol, HDL-C, and triglycerides was performed 

between BMI and individual lipid or lipid concentration ratio. BMI, body mass index; 

HDL-C, high-density lipoprotein cholesterol; PE(O), alkylphosphatidylethanolamine; 

PE(P), alkenylphosphatidylethanolamine.  
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Chapter 4. Mapping the Associations of the Plasma 

Lipidome with Insulin Resistance and Response to an Oral 

Glucose Tolerance Test 

  

  

Preface  

A perturbation in lipid metabolism associated with insulin resistance in adults with 

established disease such as type 2 diabetes is well documented. However, it is not 

well known whether molecular lipid metabolism is dysregulated in young healthy 

adults with hyperinsulinemia during the oral glucose tolerant test (OGTT). In Chapter 

4 of this thesis, we explored the link between lipidomic signatures and insulin 

resistance and the oral glucose challenge during the OGTT. Several molecular lipid 

species perturbed in response to OGTT and species associated in a sex-specific 

manner with insulin resistance were identified.  In addition, the changes in lipid levels 

during the OGTT were also studied. 

  

Chapter 4 has been published in the Journal of Clinical Endocrinology and 

Metabolism (JCEM).   

  

To improve the flow between chapters within this thesis, the Supplementary Tables 

for this chapter has been moved to the Appendix II. 
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Chapter 4.  Supplementary Figure 
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Chapter 4.  Figure S1. Sex-specific association of the insulin AUC with lipid classes. 

Linear regression between insulin AUC including a sex*insulin AUC interaction term further 

adjusted for age and BMI was performed. Percentage difference per SD of insulin AUC is 

displayed on x-axis. Blue and brown circles represent associations in men and women 

respectively. Non-significant classes are denoted by open circles. Lipid classes with 

interaction p-value <0.05 are labeled. Whiskers show 95% confidence intervals. 
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Chapter 5. Circulating lipidomic signatures of 

changes in adiposity: A large prospective study of 

5,849 adults from the AusDiab cohort 

  

  

Preface  

Chapter 5 explores the relationship between the plasma lipidomic profile and change 

in WC and in BMI over a 5-year follow-up in the AusDiab longitudinal study. The 

chapter focuses on understanding the baseline metabolic phenotype associated with 

waist or BMI gain. We also examined the interaction of sex in these associations. 

Finally, we attempted to build multivariate models including lipid species and asked 

whether these models improve upon the traditional risk factors to predict the risk of 

gaining waist. The outcomes from this chapter provide an overview of the plasma 

lipid associations and the potential of metabolic phenotype to predict obesity. 

 

  

Chapter 5 has been prepared for submission to the International Journal of Obesity 

(IJO)   

 

  

The Supplementary Tables for this chapter are presented separately (Appendix III).   
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Abstract  

Background 

Lipid metabolism is tightly linked to adiposity and weight gain. Previously, we have 

reported a profound perturbation in lipid metabolism associated with measures of 

obesity. Here, we investigated the association between the human plasma lipidome 

and changes in waist circumference (WC) and body mass index (BMI) over time to 

understand how baseline lipidomic signatures associate with risk of gaining weight or 

increasing WC. We also evaluated whether the baseline metabolic profile predicts 

the risk of increase in WC. The identification individuals at a greater risk of gaining 

weight based on their basal metabolic state could benefit targeted prevention.      

 

Methods and findings 

Adults (2,653 men and 3,196 women), 25-95 years old who attended the baseline 

survey of the Australian Diabetes, Obesity and Lifestyle Study (AusD iab) and 

the 5-year follow-up were included. A targeted lipidomic approach was used to 

quantify 706 distinct molecular lipid species in the plasma samples. The relationship 

between the baseline lipidomic profile and changes in two different measures of 

obesity (WC and BMI) over a 5-year follow-up were estimated using multiple linear 

regression models adjusted for baseline age, sex, WC or BMI, clinical lipid profiles 

and other covariates. P-values were corrected for multiple comparisons using the 

Benjamini-Hochberg procedure. Metabolic scores for change in WC were generated 

using a ridge regression model. We identified lipid species associated with change in 

WC (134 species) and BMI (156 species). Alkyl-diacylglycerol levels at baseline 

were associated with WC gain, with TG(O-50:2) [NL-18:1] displaying the strongest 

association (β- coefficient=0.125 SD increment per 1 cm increase in WC, p = 2.78E-

11). Many lipid species containing linoleate (18:2) fatty acids were negatively 

associated with both WC and BMI gain. While associations with changes in BMI also 

showed strong associations with lipid species containing odd carbon number or 

branched chain fatty acids. The association of alkyl-diacylglycerols with WC gain 

showed a strong sex interaction (associated in women only). Finally, we report that 

multivariate models containing lipid species compared to traditional models identify 

individuals at a greater risk of gaining WC. Models including clinical variables and 
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the lipid species predicted the risk of gaining WC; top quintile relative to bottom 

quintile (odds ratio, 95% CI = 5.5, 4.2 – 7.2 for women and 2.4, 1.6 – 2.8 for men). 

 

Conclusions 

Our findings define metabolic profiles that characterise individuals at risk of weight 

gain or WC increase and represent potential biomarkers for these outcomes. 

Detailed mechanistic studies are now needed to better understand the interplay 

between lipid metabolism (as defined by the lipidomic profiles) and changes in 

weight and WC. Further investigations are also need to clarify the potential utility of 

the baseline metabolic profile for guiding weight gain management programs.   

 

Introduction 

The prevalence of obesity has increased dramatically over the past few decades and 

now represents up to 25% of the population in developed countries (1). Obesity and 

weight gain significantly increase the risk of diabetes and cardiovascular disease 

(CVD). Obesity can be defined using different approaches; the simplest measures 

include but are not limited to body mass index (BMI) (2), waist circumference (WC) 

and waist to hip ratio (WHR). Measures such as WC and WHR are better able to 

inform on body fat distribution such as abdominal fat; WC in particular correlates well 

with computed tomography (CT) or dual energy x-ray absorptiometry (DXA) that 

reflect intraperitoneal adiposity. WC and WHR show stronger associations with risk 

of type 2 diabetes compared to BMI (3, 4). 

 

Lipidomics enable the measurement of several hundreds to thousands of molecular 

lipid species and can facilitate the identification of biomarkers for the assessment of 

disease risk, including weight gain (5). High throughput lipidomic analysis in large 

population cohorts can be useful not only to identify biomarkers but also to better 

understand the underlying lipid metabolism in obesity and associated co-morbidities. 

Recently, Lamichhane and colleagues have demonstrated the relationship of plasma 

lipid species with weight gain in patients with psychosis (6). In addition, a study on 

the metabolic signature of obesity has highlighted that the human metabolome is a 

stronger predictor of metabolic health compared to genetic estimates of obesity and 

BMI (7).  
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Traditional clinical chemistry approaches or nuclear magnetic resonance (NMR) 

technologies have been used in a number of studies to define the associations 

between metabolite levels and prospective changes in measures of adiposity (8-10). 

However, few studies have reported the association of molecular lipid species with 

changes in BMI (10, 11). These reports were based on small sample sizes and 

limited coverage of the lipidome and have not adequately defined how baseline 

lipidomic measures relate to changes in adiposity over time. 

 

The aim of this study was therefore to determine the relationship between baseline 

lipidomic profiles and the 5-year change in WC and BMI utilizing a large population 

cohort; the Australian Diabetes, Obesity and Lifestyle Study (AusDiab).  

 

Methods 

Study design and participants  

The AusDiab is a population-based cohort study of diabetes and associated risk 

factors on Australian adults. During the baseline survey conducted in 1999/2000, 11 

247 subjects who were >= 25 years were recruited (23). In the subsequent follow-up 

during 2004/2005, 6 400 participants were re-examined (24). In this analysis, of the 

10 358 subjects who had a baseline fasting plasma sample, 4 509 were excluded 

due to (1) being loss to follow-up (n=4 458), (2) having insufficient amount of plasma 

samples for analysis (n=13), (3) technical issues during MS analysis (n=19). Thus, 5 

849 subjects who had a complete data at baseline and at the 5-year follow-up were 

included. Annual change in each metric (BMI or WC) was calculated as the 

difference in the metric between the baseline and 5-year follow-up divided by the 

follow-up duration in years.   

 

Data collection and laboratory measurements 

The collection of demographic and behavioural characteristics of the participants has 

been described in detail elsewhere (11, 12). Fasting blood samples were taken and 

BMI, weight and WC were measured at baseline and follow-up (12). Collection of 

physical activity levels (13) and TV viewing time (14) have been described 

previously. Smoking status as smokers (current) and non-smokers (never smoked) 
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and (ex‑smokers) and daily energy intake (kJ/day) have also been described (15). 

Fasting plasma cholesterol and lipoprotein concentration including total cholesterol, 

high density cholesterol, (HDL-C), low density lipoprotein (LCL-C) and triglycerides, 

fasting plasma glucose (FPG) and 2 hour post load glucose (2h-PLG) were 

measured using standard protocols (16). Dietary information was collected using a 

validated food frequency questionnaire (FFQ) (11). The study was approved by the 

Human Research Ethics Committee at the Alfred Hospital, Melbourne, Australia. 

 

Plasma lipidomic profiling 

Lipid extraction 

Plasma lipids were extracted as described previously (17) but was assisted by an 

automated liquid handling robot (MicroLAB STAR, Hamilton, Biosystems, Inc.). In 

brief, 10μL of plasma was mixed with 100μL of butanol:methanol (1:1) containing 

10mM ammonium formate in Eppendorf tubes. Internal standards (22) representing 

major lipid classes (Table S1) were included in the extraction mix. Samples were 

vortexed thoroughly and sonicated in a sonicator bath for 1 hour maintained at (< 

20oC) and then centrifuged (14,000g, 10 min, 20oC). A 100μL aliquot of the lipid 

extract was then transferred into 2mL vials with glass inserts. 

 

Liquid chromatography tandem mass spectrometry (LC-MS/MS) 

Lipid analysis was performed by LC ESI-MS/MS using a triple quadruple mass 

spectrometer (Agilent 6490 QQQ mass spectrometer with an Agilent 1290 series 

HPLC system and a ZORBAX eclipse plus C18 column (2.1x100mm x 1.8mm).  

Mass spectrometry analysis was performed in a positive ion mode with dynamic 

scheduled multiple reaction monitoring (MRM) as described previously (18). TGs 

were monitored as SIMs associated with a specific fatty acid neutral loss (NL).  

There were however, some modification to our previous method; we utilized a dual 

column setup (in which one of the column is set to equilibrate while the other is 

running a sample). The temperature was reduced to 45oc from 60oc with 

modifications to the chromatography to enable similar level of separation as in 

previous method. The mobile phase included solvent A and solvent B. Solvent A 

composed of 50% water, 30%, acetonitrile, 20% isopropanol (v/v/v) and solvent B 

with 1% water, 9% acetonitrile, 90% isopropanol (v/v/v) each containing 10mM 
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ammonium formate were used. Starting at 15% solvent B and increasing to 50% B 

over 2.5 minutes, then quickly ramping to 57% B for 0.1 minutes. For 6.4 minutes, 

%B was increased to 70%, then increased to 93% over 0.1 minutes and increased to 

96% over 1.9 minutes.  The gradient was quickly ramped up to 100% B for 0.1 

minutes and held at 100% B for a further 0.9 minutes. This is a total run time of 12 

minutes. The column is then brought back down to 15% B for 0.2 minutes and held 

for another 0.7 minutes prior to switching to the alternate column for running the next 

sample. The column that is being equilibrated is run as follows: 0.9 minutes of 15% 

B, 0.1 minutes increase to 100% B and held for 5 minutes, decreasing back to 15% 

B over 0.1 minutes and held until it is switched for the next sample. We used a 1-μL 

injection per sample with the following mass spectrometer conditions were used: gas 

temperature, 150˚C; gas flow rate, 17 L/min; nebuliser, 20 psi; sheath gas 

temperature, 200˚C; capillary voltage, 3,500 V; and sheath gas flow, 10 L/min. The 

detailed mass spectrometry conditions are presented in the supplementary file 

(Table S1). Given the large sample size, samples were run across several batches, 

as described above. Quality control samples; Plasma Quality Control samples (PQC) 

and Technical Quality Control samples (TQC), were included in the run to assess the 

assay performance.     

 

Lipid classes/subclasses and species       

A total of 706 distinct molecular lipid species excluding SIMs across 36 

classes/subclasses, representing sphingolipids, glycerophospholipids, glycerolipids 

and sterols were measured (Table S2). The number of lipid species in each 

class/subclass ranged from 1 free cholesterol (COH) to 77 triacylglycerol (TG) 

species.  

  

Data processing and statistical analysis 

The chromatographic peaks were integrated using the Mass Hunter (B.07.00, Agilent 

Technologies) software and assigned to a specific lipid species based on MRM 

(precursor/product) ion pairs and retention time. The relative concentration of each 

lipid species was determined by comparing their peak areas to the relevant internal 

standard (Table S1). Previously generated response factors for each species were 

used (19). Lipid data were log10 transformed and standardised prior to analysis. Each 
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species was examined for the association with annualized changes in WC or BMI 

using linear models adjusted for baseline age, sex and baseline WC/BMI and 

additionally for the same covariates plus total cholesterol, HDL-C, triglycerides, 

exercise time, smoking status and TV viewing time. Additional models were adjusted 

for daily total energy, dairy, saturated fat, fibre and protein intake to observe whether 

the associations were independent of dietary intake. We also examined if the 

associations between changes in WC or BMI were sex-specific by testing for sex 

interactions (i.e. by including sex as an interaction term in the models). P-values 

were corrected for multiple comparisons using the Benjamini-Hochberg procedure 

(20). A nominal p-value of 0.05 was considered as suggestive of an interaction. 

 

Multivariate model development 

Lipids were scaled to the standard deviation after mean centring prior to modelling. 

We used ridge regression model to generate metabolic scores. A 10-fold cross 

validation was employed for the generation metabolic scores (i.e. models trained on 

the 9/10th and used to predict the metabolic score in holdout 1/10th of the cohort). 

This was iterated so that each sample obtained a metabolic score. Metabolic scores 

for change in WC were derived from either traditional clinical risk factors (age, sex, 

WC, total cholesterol, HDL-C, triglycerides, education, smoking, exercise time, TV 

viewing time and energy intake) (Model 1) or these factors plus lipid species (Model 

2) for men and women separately and for men and women combined. Following the 

generation of the scores, participants were stratified into quintiles. The relative risk 

(i.e. the risk of gaining >5% WC from baseline) adjusted for age, sex and baseline 

WC, was then computed for each quintile. All statistical analyses were performed in 

R version 3.6.1. 

 

Results 

Characteristics of subjects 

The participant’s characteristics at baseline (1999-2000) and changes in obesity 

metrics are shown in Table 1. The overall mean annual BMI change was 0.16 

kg/m2/year (95% CI = 0.15 – 0.17) and that of WC was 0.43 cm/year (95% CI = 0.40 

– 0.46). The annual change in BMI for women was 0.18 kg/m2/year and 0.14 

kg/m2/year for men, p= 3.00E-04. On average, WC increased by 0.51 cm/year and 
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0.33 cm/year, p= 3.54E-08 in men and women, respectively. The mean annual 

increase in BMI and WC differed by age group (Fig. S1, Table 1). 
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Table 1. Baseline characteristics of participants associated with changes in 

WC or BMI 

Characteristics   n 
Annualized 
BMI change 
(Kg/m2) (SD)  

^P value 
Annualized 
WC change 
(cm) (SD) 

^P value 

Overall 5,849 0.16 (0.41) 
 

0.43 (1.30) 
 

Sex      

Men 2,653 0.14 (0.38) 3.00E-04 0.33 (1.51) 3.54E-08 

Women 3,196 0.18 (0.40) 
 

0.51 (1.40) 
 

Age group 
     

>=55 2,241 0.09 (0.34) 2.20E-16 0.29 (1.32) 1.03E-10 

<55 3,608 0.20 (0.41) 
 

0.51 (1.26) 
 

Education       

High-school and below 2,178 0.17 (0.37) 7.53E-01 0.46 (1.31) 3.88E-01 

Certificate and diploma 2,544 0.16 (0.39)  0.41 (1.30)  

Bachelor degree and 
above 

1,129 0.16 (0.37)  0.42 (1.27)  

BMI category* 
     

Normal 2,207 0.18 (0.30) 8.20E-03 0.49 (1.19) 5.18E-03 

Overweight 2,397 0.15 (0.38) 
 

0.39 (1.29) 
 

Obese 1,245 0.16 (0.52) 
 

0.37 (1.47) 
 

WC category#      

Low risk 2,336 0.18 (0.30) 5.50E-03 0.67 (1.12) 6.47E-34 

Moderate risk 1,529 0.15 (0.36)  0.36 (1.23)  

High risk 2,015 0.15 (0.49)  0.19 (1.47)  

Smoking 
     

Current smoker 664 0.22 (0.55) 2.90E-05 0.54 (1.39) 8.23E-04 

Ex-smoker 1,694 0.13 (0.39) 
 

0.33 (1.29) 
 

Non-smoker 3,401 0.17 (0.37) 
 

0.45 (1.28) 
 

TV viewing time (minutes per week) 

Tertile 1 (less than 420) 1,960 0.20 (0.36) 8.36E-07 0.51 (1.28) 3.01E-04 

Tertile 2 (420-900) 1,938 0.15 (0.37) 
 

0.41 (1.26) 
 

Tertile 3 (> 900) 1,929 0.14 (0.42) 
 

0.36 (1.34) 
 

Diabetes 
     

      Yes 327 0.06 (0.41) 4.67E-06 0.33 (1.24) 8.03E-02 

      No 5,522 0.17 (0.38) 
 

0.44 (1.30) 
 

Exercise status based on exercise time (min/week) 

Sedentary (zero min) 909 0.17 (0.41) 5.32E-01 0.39 (1.28) 5.45E-01 

Insufficient (0-150) 1,793 0.17 (0.39) 
 

0.45 (1.29) 
 

Sufficient (over 150min) 3,127 0.16 (0.38) 
 

0.43 (1.27) 
 

Total energy intake (KJ/day) 

    Tertile 1 (<6430.5) 1,836 0.17 (0.40) 8.00E-02 0.51 (1.35) 4.15E-04 

    Tertile 2 (6430.5- 8671) 1,901 0.17 (0.39)  0.42 (1.27)  

    Tertile 3 (> 8671) 1,900 0.15 (0.37)  0.36 (1.27)  
^P values are derived from Student's t-test for dichotomous characteristics, or one way ANOVA as necessary  
* BMI category: Normal weight, 18.5–24.9 kg/m2; overweight, 25–29.9 kg/m2; obese: ≥30 kg/m2. 
# WC categories: low risk, <94 cm for men, <80 for women; moderate risk: 94–101.9 for men, 80–87.9 for women; high risk: 
≥102 for men, ≥88 for women. 
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Association of lipid species with change in WC 

There were 134 lipid species (excluding TG measures using single ion monitoring) 

associated with WC change after adjusting for baseline age, sex and WC in the 

whole cohort. These include species of acylcarnitine (7), diacylglycerol (8), 

lysophosphatidylcholine (12), phosphatidylcholine (13), triacylglycerol (29 including 

SIMs) and alkyl-diacylglycerol (14 including SIMs) (Fig. 1A, Table S3). 

Glycerophospholipid species containing 18:2 or 18:3 fatty acids typically showed a 

strong negative association with increasing WC (i.e. lower baseline levels predicted 

an increase in WC) (Fig. 1A and 1B). The species positively associated with WC 

change were dominantly acylcarnitine and glycerolipids (diacylglycerol, 

triacylglycerol and alkyl-diacylglycerol species) with TG(O-50:2) [NL-18:1] 

representing the most significant species (0.125 SD increment per 1 cm increase in 

WC change per year, p= 2.78E-11). Additional adjustment for total cholesterol, HDL-

C, triglycerides, exercise time, educational attainment, smoking and television 

viewing time resulted in fewer significant lipid species and lowering of effect sizes 

(Fig. 1B, Table S3). While some phospholipid and most TG and DG signatures were 

lost upon adjustment for clinical lipids, the TG(O) and the 18:2 fatty acid profile were 

not substantially modified (Fig. 1B, Table S3).  

 

The baseline metabolic phenotype associated with increasing WC is independent of 

dietary intake (Fig. S2). The correlation of beta-coefficients of lipids before and after 

accounting for diet is shown in Fig. S2. In secondary analyses performed after 

excluding individuals who lost more than 5% of their WC from baseline (n=748), we 

found many significant associations (Table S4, Fig S3); the pattern of which is similar 

to what was observed in the whole cohort except for few species. The lipidomic 

signatures associated with change in WC and the signature associated with the 

baseline WC were not highly correlated (r2 = 0.163) (Fig. S4). Generally, the 

lipidomic associations with baseline WC were stronger and span across all lipid 

classes/subclasses with 561 species significantly associated with baseline WC 

(Table S5) compared to associations with change in WC.   
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Fig. 1 Association of lipid species with change in waist circumference. Linear 

regression analyses of SD normalised lipid species against annualized change in 

waist circumference were performed, adjusting for baseline age, sex and baseline 

WC (panel A) or for baseline age, sex, baseline WC, total cholesterol, HDL-C, 

triglycerides, smoking status, education, exercise time and television viewing time 

(panel B). The β-coefficients (95% CIs) represent the change in WC per year 

associated with a SD difference of the lipid species at baseline. Open circles show 

lipid species with corrected p>0.05, closed circles show corrected p<0.05 and 
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orange circles show lipid species with the lowest corrected p-values. Whiskers 

represent the 95% confidence intervals. 

 

Association of lipid species with change in BMI 

After adjusting for baseline age, sex and BMI, there were 63 lipid species positively 

associated with change in BMI and 93 lipid species showing a negative association. 

(Fig. 2A, Table S6). LPC(O-22:1) displayed the strongest association (annual 

change in BMI = 0.027 kg/m2 per SD increase, corrected p-value = 7.70E-05) (Fig. 

2A, Table S6). Strong associations were observed with species of triacylglycerol, 

deoxyceramide, and several phospholipid classes. A model adjusted for age, sex, 

BMI, total cholesterol, HDL-C, triglycerides, smoking status, education, physical 

activity time and TV viewing time resulted in relatively weaker associations (Fig 2B). 

A further adjustment for dietary intake (including daily total energy, dairy, saturated 

fat, fiber and protein intake) did not materially change the pattern. The cross-

sectional associations of the lipidome with baseline BMI were different from 

associations with changes in BMI over time (Fig. S5, Table S7).  
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Fig. 2 Association of lipid species with change in BMI. Linear regression 

analyses of SD normalised lipid species against annualized change in BMI were 

performed adjusting for baseline age, sex and baseline BMI (panel A) or for baseline 

age, sex, baseline BMI ,total cholesterol, HDL-C, triglycerides, education, smoking 

status, exercise time and television viewing time (panel B). The β-coefficients (95% 

CIs) represent the change in BMI per year associated with a SD difference of the 

lipid species level at baseline. Open circles show lipid species with corrected p>0.05, 

closed circles show corrected p<0.05 and orange circles show lipid species with the 

lowest corrected p-values. Whiskers represent the 95% confidence intervals. 
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Overlapping associations of lipid species with change in WC and change in 

BMI over time 

Change in BMI and change in WC over follow up were significantly correlated (R2 = 

0.48) (Fig. S6). We assessed whether the pattern of association between lipid 

species and change in WC was different from that with change in BMI. In age, sex 

and baseline WC or BMI adjusted models, 22 species were associated with both 

change in BMI and WC; 8 TG(O) species (enriched for O-18:1 alkyl chains, identified 

as [NL-17:1] species in Tables S3) in opposite direction and the rest in same 

direction (Fig S7). While 30 species were associated with both change in WC and 

BMI in age, sex, baseline BMI or WC plus other risk factors adjusted model (Fig 3) 

excluding lipid measurements based on SIMs which represent composite measures. 

While lipid species, particularly those containing the 18:2 fatty acid, were more 

strongly associated with changes in WC than with changes in BMI (Table S3, Table 

S6, Fig. 3), the odd and branched chain fatty acid containing lipid species were 

associated mainly with change in BMI. The associations of lipid species with 

changes in WC were correlated with the associations with changes in BMI as shown 

in Fig 3 (R2 = 0.3). 
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Fig. 3 Association of lipid species with change in waist circumference and 

BMI. Linear regression analyses of SD normalised lipid species concentrations 

against annualized change in WC or BMI were performed, adjusting for baseline 

age, sex, baseline WC/BMI, total cholesterol, HDL-C, triglycerides, education, 

smoking status, exercise time and television viewing time.  The β-coefficients of the 

associations with change in BMI were plotted against the β-coefficients of the 

associations with change in WC. β-coefficients for lipid species that were associated 

with both a change in WC and change in BMI are shown in green. β-coefficients for 

lipid species that were associated only with a change in BMI are orange and only 

with a change in WC are blue. The whiskers represent 95% confidence intervals.  

 

The associations between baseline lipidomic profiles and change in WC were sex-

specific. A total of 54 lipid species (excluding TG and TG(O) species monitored by 

SIMs) showed a nominally significant interaction with sex in predicting change in WC 

(Table S8). All TG(O) species showed a positive association with change in WC in 

women, while no species showed a significant association in men. Certain 

phospholipids and ether-linked phospholipid species, enriched in the 20:4 fatty acid 
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tend to be negatively associated with change in WC in men but positively associated 

in women (Fig 4, Table S8). In contrast to WC, only 25 lipid species showed a 

nominal sex interaction in the association with change in BMI after controlling for 

age, sex, baseline BMI, total cholesterol, HDL-C, triglycerides, education, smoking 

status, exercise time and television viewing time (Table S9). 

 

Fig. 4 The interaction of sex in the associations of lipid species with change in 

WC. Linear regression analyses of lipid species with change in WC were performed 

in models adjusting for age, sex, baseline WC, cholesterol, HDL-C, triglycerides, 

smoking, education, physical exercise time and TV viewing time including an 

interaction term for sex. The change in WC (an outcome) was annualized and each 
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lipid (a predictor) was scaled to SD prior analysis. The β- coefficients for each sex 

where the associations with change in WC showed a significant interaction 

(interaction p<0.05) are plotted.  Grey circles (for men) and orange (for women) 

represent 1cm increase in WC per year per SD increase in the lipid predictor. Error 

bars show 95% confidence intervals. 

 

Multivariate modelling to predict change in waist circumference 

We developed multivariate models to generate scores for change in WC and 

subsequently predicted the risk of gaining waist circumference (>5% increase from 

baseline) during the 5-year follow up time. The scores for change in WC were 

derived either from: (1) the base model (Model 1) including baseline age, sex, WC, 

total cholesterol, HDL-C, triglycerides, education, smoking, exercise time, TV viewing 

time and energy intake or (2) Model 2 (Model 1 plus lipid species). The risk of 

gaining WC by more than 5% was 2.1 times higher among men in the top quintile 

relative to those in the bottom quintile (odds ratio, 95% CI = 2.1, 1.6 – 2.8). Base on 

the Model 2, the risk of >5% WC gain in the Q5 relative to Q1 was 2.4 times higher 

(Odds ratio, 95% CI = 2.4, 1.6 – 2.8) which is comparable to the base model (Table 

2). 
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Table 2. Multivariate models predicting gain in WC in men 

Quintiles of 
WC change 
score 

Age  
years (SD) 
  

Baseline 
WC cm 
mean (SD) 

Follow up 
WC cm mean 
(SD) 

Change in 
WC  
% (SD) 
  

Risk >5% WC 
change  
relative to Q1 
(Odds ratio, 95% 
CI) 
  

Model 1 (Base model)  

Q1 (N=531) 59.5 (12.3) 109.5 (10.0) 110.3 (11.9) 0.7 (5.9) 1.0 (reference) 

Q2 (N=531) 55.3 (12.0) 100.8 (7.0) 101.9 (8.7) 1.1 (5.6) 1.1 (0.9 – 1.5) 

Q3 (N=531) 52.3 (11.3) 97.1 (6.6) 98.4 (8.3) 1.4 (5.6) 1.1 (0.8– 1.5) 

Q4 (N=530) 49.5 (10.6) 92.2 (6.8) 94.2 (8.6) 2.3 (6.2) 1.4 (1.1– 1.8)* 

Q5 (N=530) 42.4 (10.9) 86.5 (7.4) 89.5 (8.7) 3.3 (6.2) 2.1 (1.6 – 2.8)* 

Model 2 (Model 1+lipids#)  

Q1 (N=531) 55.2 (12.2) 102.6 (10.9) 102.9 (12.5) 0.32 (5.7) 1.0 (reference) 

Q2 (N=531) 53.4 (12.3) 100.0 (10.0) 101.0 (11.3) 0.98 (5.6) 1.2 (0.9– 1.6)  

Q3 (N=531) 52.6 (12.6) 97.4 (10.3) 98.7 (11.0) 1.4 (5.8) 1.4 (1.1– 1.9)* 

Q4 (N=530) 50.4 (12.5) 94.9 (9.6) 97.3 (10.7) 2.7 (5.8) 1.8 (1.4 –2.4)* 

Q5 (N=530) 47.4 (12.9) 91.1 (10.0) 94.2 (11.0) 3.5 (6.4)  2.4 (1.6– 2.8)* 

Base model: age, sex, WC, total cholesterol, HDL-C, triglycerides, smoking, exercise time, TV viewing time, 
energy intake. 
#lipids - all the lipid species associated with change in WC in the univariate analyses 
*Significant at p<0.05 
 

The WC trajectory across the quintiles derived from Model 1 (Fig. 5A) and Model 2 

(Fig 5B) are only slightly different for men. The risk of gaining >5% of WC was 

greater among the four quintiles (Q2 to Q5) relative to Q1 in Model 2 compared to 

the Model 1 (Fig 5C).   

 

 

Fig 5. Risk of gaining WC across quintiles of metabolic scores in men. (A) Baseline 

and follow up WC measures (mean ± SD) across quintiles of the metabolic score 
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derived from the base model, Model 1; and (B) from the base model plus lipids, 

Model 2. (C) The relative risk of a >5% WC change across quintiles of the metabolic 

score. Base model, age, sex, WC, total cholesterol, HDL-C, triglycerides, smoking, 

exercise time, TV viewing time, energy intake; lipids, all the lipid species associated 

with change in WC. 

 

Based on Model 1, the risk of >5% WC change in Q2-Q5 relative to Q1 was 

consistently higher among women relative to men. The addition of lipids to the base 

model particularly improved the risk of gaining WC among Q5 to Q1 (odds ratio, 95% 

CI = 5.5, 4.2 – 7.2) (Table 3).  

Table 3. Multivariate models predicting gain in WC in Women 

Quintiles of 
WC change 
score 

Age  
years (SD) 
  

Baseline 
WC cm 
mean (SD) 

Follow up WC 
cm mean 
(SD) 

Change 
in WC  
% (SD) 
  

Risk  >5% WC 
change  
relative to Q1 
(Odds ratio, 95% 
CI) 
  

Model 1 (Base model)  

Q1 (N=640) 58.6 (12.1) 103.0 (9.9) 103.3 (12.2) 0.3 (7.7) 1.0 (reference) 

Q2 (N=639) 55.5 (11.8) 90.2 (6.3) 91.8 (9.1) 1.8 (7.8) 1.6 (1.2 – 2.1)* 

Q3 (N=639) 52.9 (11.2) 83.1 (6.1) 86.2 (9.2) 3.7 (8.2) 2.3 (1.8 – 3.0)* 

Q4 (N=639) 47.7 (10.3) 77.5 (5.5) 80.7 (7.8) 4.3 (8.1) 2.7 (2.1– 3.4)* 

Q5 (N=639) 41.2 (9.0) 70.9 (5.0) 75.4 (7.3) 6.5 (8.3) 3.7 (2.9 – 4.8)* 

Model 2 (Model 1+lipids#)  

Q1 (N=640) 55.8 (12.4) 95.7 (13.8) 94.9 (15.0) -0.7 (8.1) 1.0 (reference) 

Q2 (N=639) 53.8 (12.6) 87.1 (11.5) 88.9 (13.2) 2.1 (7.5) 1.9 (1.5 – 2.5) *  

Q3 (N=639) 51.3 (12.4) 84.0 (11.9) 86.6 (12.4) 3.3 (7.7) 2.5 (1.9 – 3.3) *  

Q4 (N=639) 49.1 (11.3) 81.6 (10.5) 85.4 (11.4) 4.8 (7.4) 3.8 (2.9 –4.9)* 

Q5 (N=639) 46.0 (11.3) 76.3 (9.0) 81.6 (10.5) 7.2 (8.5) 5.5 (4.2 – 7.2) * 

Base model: age, sex, WC, total cholesterol, HDL-C, triglycerides, smoking, exercise time, TV viewing time, 
energy intake. 
#lipids - all the lipid species associated with change in WC in the univariate analyses 
*Significant at p<0.05 

 

The WC trajectories across the quintiles derived from Model 1 (Fig. 6A) and Model 2 

(Fig 6B) for women show similar pattern as for men but magnitudes were different. 

Model 2 compared to Model 1 identified higher proportion of individuals with >5% 

WC change across quintiles of the metabolic score (Fig 6C).   
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Fig 6. Risk of gaining WC across quintiles of metabolic scores in women. (A) 

Baseline and follow up WC measures (mean ± SD) across quintiles of the metabolic 

score derived from the base model, Model 1; and (B) from the base model plus 

lipids, Model 2. (C) The relative risk of a >5% WC change across quintiles of the 

metabolic score. Base model (age, sex, WC, total cholesterol, HDL-C, triglycerides, 

smoking, exercise time, TV viewing time, energy intake);  

lipids, all the lipid species associated with change in WC. 

 

In the men and women combined analysis, the addition of lipid species to the base 

model captured a larger proportion of individuals with the risk of gaining >%5 WC 

particularly in the top quintile. We observed a 4.5 fold higher risk (Q5 vs Q1) using 

Model 2 compared to only a 3.2 fold increased risk using the Model 1 (Tables S10).  

 

Examining the baseline and follow up WC by quintiles, we observed a wide spread 

WC between quintiles in Model 1 (Fig. S8A). In contrast there is a narrower range in 

the WC measure between quintiles when lipid species were included in the model 

(Model 2, Fig. S8B). The odds of gaining >5% of WC was greater in Q2 to Q5 

relative to Q1 in Model 2 (containing lipid species) compared to the base model with 

no lipid species (Model 1, Table S10 and Fig S8C).   

 

Discussion 

Perturbations across-multiple lipid classes were associated with change in WC and 

change in BMI over five years. Many of these lipid classes and subclasses have 

been associated with cardiometabolic disorders such as obesity (7, 21-24) and 

diabetes (23, 25-27). However, the profiles associated with change in WC and BMI 
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did not resemble the profiles associated with baseline WC and BMI.  We also found 

that the baseline lipidomic profile associated with change in WC or BMI appears to 

be sex-dependent. Some of the lipid species (particularly in the alkyl-diacylglycerol 

class) showed contrasting associations with WC change and change in BMI, 

although the direction of association of most lipid species were common between the 

two measures of obesity. Importantly, we show that the lipidomic profile associated 

with change in BMI or WC was independent of dietary intake. Overall, our findings 

suggest that the risk of increasing WC or BMI is associated with a specific metabolic 

phenotype in the general population and this might be predicted using baseline 

lipidomic profiles.  

 

Several phosphatidylcholine species, particularly those containing linoleic acid (18:2) 

such as PC(18:0_18:2), PC(18:2_18:2) and PC(18:2_20:5) were negatively 

associated with both change in BMI and WC suggesting a common mechanism. 

Indeed circulating linoleic acid (LA) levels have been shown to be inversely 

associated with type 2 diabetes (25, 28). LA is an essential fatty acid completely 

derived from diet (such as vegetable oils). Upon dietary intake LA can be esterified 

to form lipids such as triacylglycerols, cholesteryl esters and phospholipids. 

Although, we have no dietary information for LA in our cohort, adjusting out for 

common dietary variables such as energy, fat and protein did not affect the observed 

association of LA with change in obesity.  While the negative association of LA with 

change in obesity suggests a protective role against waist or BMI gain, this will 

require testing in clinical trials in order to make dietary recommendations.  

 

Phosphatidylcholine and other phospholipid species such as lysophosphatidylcholine 

containing odd and monomethyl branched chain fatty acids (mmBCFAs) like PC(15-

MHDA_18:1) and LPC(15-MHDA) were positively associated, mainly with changes in 

BMI) but also with change in WC. This suggests not only the potential role of these 

fatty acids as biomarkers for predicting future waist and BMI gain but also as drivers 

of changes in obesity. The altered odd and mmBCFAs with changes in WC and BMI 

could be related to mitochondrial function. Although previously thought to be entirely 

derived from ruminant diary fat (29), odd chain fatty acids can be endogenously 

synthesized from the products of branched chain amino acid (BCAA) catabolism 
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which occurs in the mitochondria mainly in adipose tissue. Using differentiating 3T3-

L1 adipocytes, Green et al  have demonstrated the biosynthesis of  C15:0 and C17:0 

fatty acids from propionyl CoA produced from mitochondrial BCAA catabolism (30). 

Other groups have reported that the adipose tissue mitochondrial BCAA metabolism 

modulates circulating levels of mmBCFAs (31). Thus, the imbalance in mitochondrial 

BCAA catabolism in adipose tissue associated with altered levels of odd and 

branched chain fatty acids appear to precede changes in adiposity. Indeed, altered 

BCAA catabolism (i.e increased levels) have been implicated in insulin resistance 

and type 2 diabetes (32, 33) while we observed negative associations with WC 

change. Serum levels of odd and branched chain fatty acids have been also 

associated with excessive weight (34). Whether the altered mitochondrial function or 

the mmBCFA themselves might be causal in the subsequent weight gain remains to 

be determined.    

 

A further novel observation in this study was that the baseline plasma alkyl-

diacylglycerol levels and some ether lipids strongly predicted future waist gain, 

especially in women. Alkyl-diacylglycerols contain an alkyl group and two acyl chains 

attached to a glycerol backbone. Alkylglycerols are ether lipids mostly found in high 

abundance in shark liver oil (35); but in humans, they have not been well 

characterized. Studies show that alkylglycerols exhibit anti-diabetic and anti-

inflammatory properties (36, 37). However, data on the role of alky-diacylglycerols in 

weight gain and obesity is lacking. Ether lipids in general are derived from 

peroxisomes that are implicated in the regulation of adipocyte thermogenesis and 

dynamics (38). Peroxisomes are particularly abundant in brown adipose tissue (BAT) 

relative to white adipose tissue (WAT) and alkylglycerols have been shown to 

maintain beige adipose tissue in early life in a mouse model (39). It has been shown 

that there is a sex-difference in the abundance of BAT (higher in women compared 

to men) (40) and women had a higher WC increase compared to men. Thus, it could 

be the interplay between peroxisomal dynamics associated with altered ether lipid 

metabolism (presumably in abdominal fat) that is driving changes in WC in women. 

The strong positive association of alkyl-diacylglycerol (mainly the O-18:1 species) 

with change in WC in women may indicate a differential metabolic regulation of these 

lipids (O-18:1 alkyl-diacylglycerols) with WC change according to sex.  
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We observed sex-specificity of the association of many lipid species with change in 

WC and BMI. Age and sex-specificity in the association of lipidome with changes in 

obesity had not been previously documented. However, sex-specificity in the 

association of free fatty acids with insulin resistance (41), and phospholipids with 

metabolic syndrome have been reported (42, 43). Further to these reports, a recent 

study identified sex-differences of metabolic profiles in BAT and WAT (44). There is 

a growing interest on sex- dimorphism particularly for those disorders associated 

with metabolic perturbations. There is a sex-specificity in the risk of CVD (45, 46) 

and lipid metabolism in obesity (43, 47). Such differences in disease risk are 

potentially reflected in metabolic profiles. The underlying mechanism for sex-

specificity in the association of lipids with WC or BMI change observed here is not 

clear but it is possible that the endocrine system and genetics underpin these 

differences. Generally, younger participants, particularly women tend to gain WC and 

BMI over time (48) thus, it is likely that the underlying metabolic state associated with 

changes in obesity in men and women or in younger compared to older people are 

different. These sex-specific associations have important implications for sex-

stratification during biomarker discovery and personalized interventions in weight 

loss management.   

 

Multivariate models developed to generate risk scores for change in WC over a 5-

year follow-up showed that the addition of lipid species (comprising of a mixture of 

sphingolipid, phospholipid, glycerolipid and other lipids) to the base model improved 

the stratification of individuals at high and low risk of gaining >5% WC. Our modelling 

suggests that the base model primarily captures the effect of age, sex and baseline 

WC on the risk of WC change, while the model containing lipid species captures the 

metabolic disturbance associated with weight gain. A logistic regression analyses 

between quintiles of risk revealed that the addition of lipid species to the traditional 

risk factors identified individuals in the top quintile with a higher odds of gaining WC. 

In an earlier study in the European Prospective Investigation into Cancer and 

Nutrition (EPIC) study a C-statistic of only 0.57 was reported using risk models with 

common cardiometabolic risk factors to predict a substantial weight gain (as defined 

by more than 10% increase from baseline during 5 year follow up) (49). However, 
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the EPIC study lacked the metabolic profile component that would have improved 

the predictive power of the model. Weight or waist gain are highly dynamic and 

complex processes driven by genetics, environment, dietary and life style factors. 

The human lipidome captures aspects of all these factors and therefore may be 

useful to identify those individuals at greater risk of waist gain to aid clinicians to 

make informed early decisions on appropriate interventions. Indeed, WC has 

become a vital marker in clinical practice and is an important target for reducing 

adverse health outcomes (50, 51).  

  

The strengths of this study include the large national population-based sample which 

facilitates the generalizability of our findings. In addition to this, the plasma lipidome 

coverage was broad (measuring over 700 lipid species across 36 lipid 

classes/subclass) using the state-of-the-art LC-MS/MS technology. The potential 

limitations include, lack of a similar population-based cohort for replication of our 

findings and the fact that lipidomic profiles were measured only at baseline as 

opposed to the measures of obesity which were obtained at baseline and 5-year 

follow-up. Moreover, low initial response rate and modest loss to follow up in the 

AusDiab study may have led to a selection bias.  Nevertheless, this study is the first 

of its kind to explore the potential of baseline lipidomic profiles to define and predict 

future gain in measures of obesity (WC and BMI) and to further explore whether 

these are sex-specific.  

 

In conclusion, our study identified plasma lipidomic signatures that were potential 

predictors of future WC or BMI gain in a large population cohort. The observed 

associations between the baseline lipid levels and longitudinal changes in weight 

and WC may have implications not only for identification of individuals who are at 

risk of gaining weight or WC but also to shed light on the metabolic basis of obesity 

progression over time. The distinct nature of the lipidomic profiles that predict 

change in BMI compared to those that predict change in WC in the present study 

suggest the metabolic dysregulation preceding each is quite distinct and further 

studies may provide insight into effective interventions.  
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Chapter 5.  Supplementary Figures 

 

 

Fig. S1. Annual waist circumference (WC) change by age and sex.  Mean 

annualized WC change (cm/year) is shown on y-axis for men and women further 

stratified by age (< 55 years and >55 years) 
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Fig. S2 the correlation between beta-coefficients of lipids associated with 

change in WC before and after accounting for diet. Linear regression analyses of 

SD normalised lipid species against annualized change in waist circumference were 

performed, adjusting for age, sex, baseline WC, total cholesterol, HDL-C, 

triglycerides, smoking status, education, exercise time and television viewing time, 

energy intake, total fat, saturated fat, protein, dairy and fiber (y-axis). Linear 

regression analyses of SD normalised lipid species against annualized change in 

waist circumference were performed, adjusting for age, sex, baseline WC, total 

cholesterol, HDL-C, triglycerides, smoking status, education, exercise time and 

television viewing time (y-axis). The β-coefficients represent the change in WC per 

year associated with a SD difference of the lipid species at baseline. 
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Fig. S3 Association of lipid species with change in WC.  Linear regression 

analyses of SD normalised lipid species against annualized change in waist 

circumference were performed, adjusting for age, sex and baseline WC (left panel) 

and for age, sex, baseline WC , total cholesterol, HDL-C, triglycerides, smoking 

status, education, exercise time and television viewing time (excluding those 

subjects who lost more than 5% of their WC from the baseline) (right panel).  The β-

coefficients (95% CIs) represent the change in WC per year associated with a SD 

difference of the lipid species at baseline. Open circles show lipid species with 

corrected p>0.05, closed circles show corrected p<0.05 and orange circles show 

lipid species with the lowest corrected p-values. Whiskers represent the 95% 

confidence intervals. 
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Fig. S4 the correlation between beta-coefficients for WC and change in WC. 

Linear regression analyses of SD normalised lipid species against baseline WC were 

performed, adjusting for age, sex, total cholesterol, HDL-C, triglycerides, smoking 

status, education, exercise time and television viewing time. Linear regression 

analyses of SD normalised lipid species against annualized change in WC were 

performed, adjusting for age, sex, baseline WC, total cholesterol, HDL-C, 

triglycerides, smoking status, education, exercise time and television viewing time (y-

axis). 
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Fig. S5 the correlation between beta-coefficients for baseline BMI and change 

in BMI. Linear regression analyses of SD normalised lipid species against change in 

BMI were performed, adjusting for age, sex, baseline BMI, total cholesterol, HDL-C, 

triglycerides, smoking status, education, exercise time and television viewing time (y-

axis). Linear regression analyses of SD normalised lipid species against baseline 

BMI were performed, adjusting for age, sex, total cholesterol, HDL-C, triglycerides, 

smoking status, education, exercise time and television viewing time (x-axis). 
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Fig S6. The correlation between change in BMI and change in WC. A linear 

relationship between change in BMI (kg/m2/year on y-axis) and the change in WC 

(cm/year on x-axis) was assessed by smooth scatter plot 

 

 

 

 

 

 

 

 

 

 



152 
 

 

Fig. S7 Association of lipid species with change in WC and BMI. Linear 

regression analyses of SD normalised lipid species concentrations against 

annualized change in WC (adjusting for baseline age, sex and WC) or BMI (adjusting 

for baseline age, sex and BMI) were performed.  The β-coefficients of the 

associations with change in BMI were plotted against the β-coefficients of the 

associations with change in WC. β-coefficients for lipid species that were associated 

with both a change in WC and change in BMI are shown in green. β-coefficients for 

lipid species that were associated only with a change in BMI are orange and only 

with a change in WC are blue 
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Fig. S8 Risk of gaining WC across quintiles of metabolic scores. (A) Baseline and follow 

up WC measures (mean ± SD) across quintiles of the metabolic score derived from the base 

model, Model 1; and (B) from the base model plus lipids, Model 2. (C) The relative risk of a 

>5% WC change across quintiles of the metabolic score.  
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Chapter 6. Metabolic Phenotyping of BMI to Assess 

Cardiometabolic Risk 

  

  

Preface  

BMI is strongly associated with cardiometabolic risk. Yet, two individuals with the 

same BMI can display different health risk profiles. This variance can be captured in 

part by the individual’s metabolic profile. In Chapter 6 we derived a metabolic BMI 

score (mBMI) using lipidomic dataset in the AusDaib and validated the model on the 

BHS cohort. We, then examined at the associations of mBMI residuals with disease 

outcomes independent of the real/measured BMI. Findings from this study signify the 

role of mBMI to improve up on BMI in assessing health risk and in identifying a 

specific group of people at higher risk for cardiometabolic diseases.  

  

 

Chapter 6 is being prepared for submission to the journal of clinical investigation 

(JCI).   

 

  

 

To facilitate a better flow between chapters within this thesis, the Supplementary 

Tables for this chapter has been presented separately (Appendix IV).  
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Abstract  

Body mass index (BMI) is one of the key determinants of cardiometabolic disorders.  

Yet, two individuals with similar BMI can display varying risk profiles. This makes the 

use of BMI alone an imperfect measure of obesity and the associated metabolic 

disturbance. Here, we derived a metabolic BMI score, mBMI using lipidomic data 

and assessed it’s utility to phenotype obesity and characterize metabolic health risk.  

The mBMI modelling improves our understanding of the metabolic basis of obesity 

and this in turn facilitates the identification of a specific group of individuals who at 

high risk for personalized interventions 

 

Introduction  

Obesity is strongly associated with an increased risk of cardiometabolic disorders 

including type 2 diabetes (T2D) (1, 2) and cardiovascular disease (CVD) (3, 4). The 

increasing burden of excess body weight is partly explained by high calorie intake 

coupled with insufficient physical exercise (5, 6). Several studies have identified 

metabolic signatures including lipids to be associated with obesity (7-9). In addition, 

we have previously shown that the plasma lipidome is strongly associated with BMI 

(where several hundreds of plasma lipid species in large population cohorts were 

identified) (10, 11). 

 

Body mass index (BMI) is an accessible surrogate measure of obesity. Compared to 

“gold standard” measures of obesity, BMI is a simple to measure and interpret, using 

WHO classifications. Despite not directly measuring body composition, BMI strongly 

associates with cardiometabolic outcomes (12). Yet, it has been recognized that not 

all individuals who are obese/overweight just based on measured BMI present with 

an increased risk of metabolic complications (13). The fact that there is a substantial 

variability among individuals with the same BMI to develop different disease 

complications (14, 15) calls for new insight towards obesity estimation to improve 

disease phenotyping and characterization of cardiometabolic risk in large population 

cohorts. Such an approach is of paramount importance to facilitate identification of 

obesity markers for personalized management (15-17).  
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Genetics so far explains <3% of phenotypic variation of BMI (18). Metabolic profiling, 

on the other hand, explain up to 47% of BMI variability (8, 9). To precisely estimate 

the risk of cardiometabolic diseases and improve the precision of diagnosing obesity 

and quantifying associated risk, better surrogate markers such as the metabolome 

based risk scores are needed. The human metabolome contains several hundreds to 

thousands of molecular species that can be utilized to estimate metabolome based 

BMI score; the “metabolic BMI”.  Metabolic BMI (mBMI), as opposed to the real BMI 

can reflect metabolic health status better and be a more precise target for 

intervention of obesity as it helps select a specific group of people who are at higher 

risk of disease complications regardless of what their real BMI is (8).   

 

Using the human metabolome, Cirulli et al showed that metabolomics approaches 

could develop models that effectively predict BMI in a way that better captures the 

metabolic disturbance associated with body fat (8). Cirulli et al devised mBMI score 

and demonstrated that the metabolome profile was a stronger indicator of metabolic 

health compared to the genetic risk score and BMI. The human lipidome also 

captures obesity-related metabolic alterations more accurately compared to classical 

clinical risk factors (9). Existing studies on this approach are very few and are limited 

by small number of participants or lack of validation on external independent cohorts. 

Thus, there is a need to build up on the previous studies and further information on 

the ability of the metabolome to predict BMI and whether this BMI better defines 

cardiometabolic health compared to the measured BMI  

 

Here we extend upon the existing evidence to demonstrate in two large population 

studies that a metabolic BMI not only captures metabolic disturbance associated with 

obesity but that this disturbance is associated with poor cardiometabolic outcomes. 

We hypothesize that the plasma lipidome could provide a novel measure of obesity 

related metabolism - the mBMI score - which captures the metabolic health risk of 

individuals that BMI fails to do. The mBMI will also improve characterization of 

cardiometabolic risk, i.e., better discrimination of groups that differ in their health 

outcomes. Based on these hypotheses, we aimed 1) to construct mBMI using the 

human plasma lipidomic data in the AusDiab study cohort and validate this on an 

independent cohort; the Busselton Health Study cohort (BHS); 2) assess whether 
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mBMI and or mBMI residuals better correlate with metabolic traits (WC, FBG, 2h-

PLG, HbA1C, HOMA-IR, cholesterol, LDL-C, HDL-C, triglycerides compared to true 

BMI; 3) to examine the relationship of mBMI or mBMI residuals and cardiometabolic 

outcome (prevalent diabetes, incident diabetes and CVD events).  

 

Methods 

Participants  

The AusDiab study 

The AusDiab cohort is a prospective population study that was established to study 

the prevalence and risk factors of diabetes and CVD in an Australian adult 

population. The baseline survey was conducted in 1999/2000 with 11,247 

participants aged ≥ 25 years randomly selected from the six states and the Northern 

Territory comprising 42 urban and rural areas of Australia using a stratified cluster 

sampling method. The detailed description of study population, methods, and 

response rates of the AusDiab study is found elsewhere (19). Measurement 

techniques for clinical lipids including fasting serum total cholesterol, HDL-C and 

triglycerides as well as for height, weight, BMI and other behavioural risk factors 

have been described previously (20). We utilized all baseline fasting plasma samples 

from the AusDiab cohort (n = 10,339) after excluding samples from pregnant women 

(n =19), those with missing data (n= 279), or whose fasting plasma samples were 

unavailable (n=591). The mean (SD) age was 51.3 (14.3) years with women 

constituting 55% of the cohort. In the AusDiab Study cohort, 590 incident 

cardiovascular events (including fatal and non-fatal events) were recorded over 10 

years of follow-up (Table S1). Additionally there were 577 prevalent CVD (history of 

heart attack and stroke combined) at baseline (Table S2).  All the CVD events were 

ascertained through linkage to the National Death Index and medical records. The 

specific end points included fatal events, myocardial infarction (MI), cerebrovascular 

accident (CVA), coronary artery bypass grafting (CABG) and percutaneous 

transluminal coronary angioplasty (PTCA). The detailed baseline characteristics of 

the participants is presented in Table 1. The present study was approved by the 

Alfred Human Research Ethics Committee, Melbourne, Australia (project approval 

number, 41/18).  
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The Busselton health study (BHS) 

The Busselton Health Study is a community-based study in the town of Busselton, 

Western Australia; the participants are predominantly of European origin. A total of 

4,492 subjects in the 1994/95 survey of the ongoing epidemiological study were 

included. The mean (SD) age was 50.8 (17.4) years with women constituting 56% of 

the cohort. The details of the study and measurements for HDL-C, LDL-C, 

triglycerides, total cholesterol and BMI are described elsewhere (21, 22). The 

characteristics of study participants is shown in Table 1. We utilized the Busselton 

Health Study (BHS) cohort as a validation cohort. The BHS cohort consisted of 575 

CVD events. The baseline characteristics of events and controls are summarized in 

Table S1. The BHS study was approved by the University of Western Australia 

Human Research Ethics Committee (UWA HREC). 

 

Lipidomic data 

Lipid extraction  

A butanol/methanol extraction method described previously (23) was used to extract 

lipids from human plasma. Briefly, 10µL of plasma was mixed with 100µL of a 1-

butanol and methanol (1:1 v/v) solution containing 5mM ammonium formate and the 

relevant internal standards (Table S3). The resulting mix was vortexed (10 seconds) 

and sonicated (60 min, 25°C) in a sonic water bath. Immediately after sonication, the 

mix was centrifuged (16,000xg, 10 mins, 20°C). The supernatant was transferred 

into samples tubes containing 0.2ml glass inserts and Teflon seals. The extracts 

were stored at -80oC until analysed by liquid chromatography tandem mass 

spectrometry (LC-MS/MS). 

 

Liquid chromatography mass spectrometry 

Targeted lipidomic analysis was performed using liquid chromatography electrospray 

ionization tandem mass spectrometry (LC-ESI-MS/MS). An Agilent 6490 triple 

quadrupole (QQQ) mass spectrometer [(Agilent 1290 series HPLC system and a 

ZORBAX eclipse plus C18 column (2.1x100mm 1.8μm, Agilent)] in positive ion mode 

was used [details of the  method and chromatography gradient have been described 

previously (10)]. Compared to our earlier study, we modified the methodology to 

enable a dual column setup (while one column runs a sample, the other is 
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equilibrated). In brief, the temperature was reduced to 45oc from 60oc with 

modifications to the chromatography to enable similar level of separation. Starting at 

15% solvent B and increasing to 50% B over 2.5 minutes, then quickly ramping to 

57% B for 0.1 minutes. For 6.4 minutes, %B was increased to 70%, then increased 

to 93% over 0.1 minutes and increased to 96% over 1.9 minutes.  The gradient was 

quickly ramped up to 100% B for 0.1 minutes and held at 100% B for a further 0.9 

minutes. This is a total run time of 12 minutes. The column is then brought back 

down to 15% B for 0.2 minutes and held for another 0.7 minutes prior to switching to 

the alternate column for running the next sample. The column that is being 

equilibrated is run as follows: 0.9 minutes of 15% B, 0.1 minutes increase to 100% B 

and held for 5 minutes, decreasing back to 15% B over 0.1 minutes and held until it 

is switched for the next sample. We used a 1-μL injection per sample with the 

following mass spectrometer conditions were used: gas temperature, 150˚C; gas 

flow rate, 17 L/min; nebuliser, 20 psi; sheath gas temperature, 200˚C; capillary 

voltage, 3,500 V; and sheath gas flow, 10 L/min. Given the large sample size, 

samples were run across several batches, as described above. The LC-MS/MS 

conditions and settings with the respective MRM transitions for each lipid can be 

found in Table S3. 

 

Data pre-processing  

Integration of the chromatograms for the corresponding lipid species was performed 

using Agilent Mass Hunter version 8.0. Relative quantification of lipid species was 

determined by comparing the peak areas of each lipid in each patient sample with 

the relevant internal standard (Table S3). A median centring approach was carried 

out to correct for batch effect using PQC samples (24). More than 90% of the lipid 

species were measured with a coefficient of variation <20% (based on PQC, 

samples). Only technical outliers (n = 19) were excluded from the downstream 

analysis.  

 

Statistical analysis 

Lipid data was scaled to unit variance prior to statistical analysis. A ridge regression 

model including age, sex and the lipidome (comprising 569 lipid species common to 

the AusDiab and the BHS cohorts) was employed to predict BMI. In addition, elastic 
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net and least absolute shrinkage and selection operator (LASSO) models were 

developed to predict BMI. A 10-fold cross validation was employed for the generation 

metabolic scores (i.e. models trained on the 9/10th and used to predict BMI in 

holdout 1/10th of the cohort). This was iterated so that each sample obtained a 

predicted BMI score using the glmnet R package. Models were developed using the 

AusDiab cohort and validated in the BHS cohort. A metabolic BMI (mBMI) was 

derived from the predicted BMI as follows: mBMI = BMI + (predicted BMI – line of 

best fit). The difference between the mBMI and the BMI, termed the ‘mBMI residual’, 

was then used to stratify individuals into five groups (obese-metabolically obese, 

overweight-metabolically overweight and normal weight-metabolically healthy in 

these cases the BMI was within the standard BMI ranges (18.5-25.0; 25.0-30.0; 

>30.0), while the mBMI fell between -2 and 2 Kg/m2 of the BMI. The two remaining 

groups were those with mBMI>BMI (mBMI > BMI + 2Kg/m2) and mBMI<BMI (mBMI 

< BMI - 2Kg/m2). A logistic regression model was used to assess the relationship 

between BMI or the mBMI residual and T2D (prevalent and incident) and prevalent 

CVD adjusted for age and sex or age and sex plus clinical lipids. Cox regression 

models were fitted to compute hazard ratios (HRs) associated with future CVD 

events, using age as the time scale and adjusting for sex, smoking status and T2D 

with and without clinical lipids. Analyses were performed in STATATM v14 

(StataCorp LP, Inc., Texas, USA) or R (version 3.6.1).  

 

Results 

Participants’ characteristics 

The baseline characteristics for the study subjects in the AusDiab and the Busselton 

cohorts are presented in Table 1.  
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Table 1. Characteristics of the study populations 

 AusDiab BHS 

Characteristics (N=10,339) (N=4,492) 

Age (years) 51.3 (14.3) 50.8 (17.4) 

Women, n (%) 5685 (55.0) 2516 (56.0) 

BMI (kg/m2) 26.9 (4.9) 26.0 (4.1) 

WC (cm) 90.8 (13.8) 86.1 (12.8) 

Cholesterol (mmol/L) 5.7 (1.1) 5.6 (1.1) 

LDL-C (mmol/L) 3.5 (0.9) 3.6 (1.0 

HDL-C (mmol/L) 1.4 (0.4) 1.4 (0.4) 

Triglycerides (mmol/L)* 1.3 (1.0) 1.1 (0.8) 

SBP (mmHg) 129.2 (18.6) 123.5 (18.0) 

DBP (mmHg) 70.1 (11.7) 74.5 (10.4) 

Diabetes (%) 6.6 5.7 

Smoking (%) 15.9 14.4 

* data in median (IQR) 

 

Modelling metabolic BMI 

We (10, 11) and other groups have previously reported the associations of BMI with 

the plasma lipidome (25, 26). Here, we constructed linear models predicting BMI 

from the lipidomic data and used these to derive a mBMI. Models using ridge 

regression, elastic net and LASSO were performed and these resulted in 

comparable performances in terms of R2 values for prediction of BMI (Table S4). The 

ridge model was chosen for further analyses as it provides beta coefficients for all 

lipid species and hence captures more biology at the same time it is highly suitable 

to handle multicollinearity in lipidomic data . The mBMI was predicted from the whole 

plasma lipidome (lipid species, n=569 common to the AusDiab and BHS cohorts) 

using ridge regression (lambda = 0.017), including age and sex. The correlation 

analysis between mBMI and BMI in the test population (AusDiab) yielded a R2 = 81% 

(Fig 1A) and in the validation cohort (BHS) the same model produced a R2 = 65% 

(Fig 1B). Modelling of BMI using the common risk factors (age, sex, HDL-C, total 

cholesterol and triglycerides) explained only 15.6 and 10.2% variability of the 

variation of BMI in the AusDiab and in the BHS cohort respectively (Table S4).  
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Fig 1.  The correlation between mBMI and BMI. A ridge regression model was 

created using the whole lipidome (569 lipids species common to the AusDiab and 

BHS cohorts) to predict BMI, adjusting for age, sex, total cholesterol, HDL-C and 

triglycerides. A) The mBMI was plotted against the BMI for all individuals in the 

AusDiab cohort (n=10,339, and B) the same model was used to determine mBMI for 

individuals in the Busselton cohort (n = 4,492). The metabolic discordant groups are 

highlighted: pink (mBMI>BMI) and blue (mBMI<BMI). Blue and pink represent 

discordant groups: mBMI<BMI and mBMI>BMI respectively. 

 

Characterizing obesity 

In order to assess the relationship between mBMI and related risk factors, we 

classified the participants in to 5 groups based on the mBMI residual cut of +/-2 BMI 

units (Fig 2). The first three groups constitute subjects whose lipidome accurately 

predicted their BMI (i.e., mBMI residuals between -2 and 2 BMI units of their 

measured BMI). These include, normal weight-metabolically healthy (NW-MH, 18.5< 

BMI <25.0), overweight-metabolically overweight (OW-MOW, 25 ≤ BMI < -30.0 and 

obese-metabolically obese (O-MO, BMI ≥30) individuals. The remaining two 

discordant groups were the mBMI<BMI group (whose mBMI is less than their true 

BMI, mBMI residuals < -2) and the mBMI>BMI group (whose mBMI is greater than 

true BMI, mBMI residuals > 2). The distributions of BMI (Fig 2, left panel) and mBMI 

(Fig 2, right panel) for the 5 groups are shown.  
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Fig 2. The distribution of BMI and mBMI across obesity groups. Density 

histograms of BMI (left panel) and mBMI (right panel) are depicted for each group.  

 

The OW-MOW group constitute the largest proportion (25.0%) followed by the NW-

MH (24.1%). The two discordant groups (mBMI>BMI & mBMI<BMI) make up 38.2% 

of the total population. These groups had a comparable median BMI and mean age, 

while their mBMI score was substantially different. The median (IQR) mBMI for the 

group whose mBMI>BMI was 30.7 and 22.7 for those with mBMI<BMI (Table 2). 
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Table 2. The characteristics of subjects across different obesity groups 

Group  n (%) BMI,  

median (IQR) 

mBMI, 

median 

(IQR) 

Age (year), 

mean, SD 

% Women 

NW-MH 2495 (24.1) 22.7 (2.7) 22.5 (3.1) 48.3 (14.8) 62.9 

OW-MOW 2584 (25.0) 27.1 (2.4) 27.2 (2.7) 52.4 (14.2) 42.1 

O-MO 1312 (12.7) 32.6 (3.9) 32.9 (4.0) 52.0 (13.0) 54.5 

mBMI<BMI 1970 (19.1) 25.9 (6.9) 22.7 (6.7) 50.8 (14.2) 60.2 

mBMI>BMI 1978 (19.1) 27.2 (5.4) 30.7 (5.9) 53.8 (14.0) 57.3 

 

Cardiometabolic traits associate with having mBMI different from BMI 

The five different groups of obesity appear to display distinct characteristics (Fig 3). 

We performed one way ANOVA with Tukey’s test for post-hoc analysis. P-values 

adjusted for multiple comparisons were computed. Unless indicated, all pair-wise 

comparisons were statistically different. Non-significant pairs are indicated by bars 

connecting the two pairs. Individuals in the O-MO group (i.e., those with a 

combination of high BMI and high mBMI) are characterized by unfavourable 

lipoprotein profiles (high cholesterol, high triglycerides and low HDL-C) (Fig 3A), as 

well as being more insulin resistant, having higher FBG, 2h-PLG, HBA1 and high 

blood pressure compared to the NW-MH and OW-MOW groups (Fig 3B).  Individuals 

with a higher mBMI than their BMI (i.e., the mBMI>BMI group) showed values of 

cardiometabolic traits that resemble those of O-MO group, while those in the 

mBMI<BMI group had profiles of cardiometabolic traits similar to that of NW-MH 

group (Fig 3A & Fig 3B). Moreover, despite having similar median BMIs, the 

mBMI>BMI groups have significantly different mBMI, cholesterol, triglycerides, 

HOMA-IR and 2h-PLG levels. 
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Fig 3. Cardiometabolic traits associated with different obesity phenotypes. Z-

score values for each cardiometabolic trait were calculated as follows (z = x-

mean)/SD to allow better comparison across groups. Box plots represent the 

distribution of z-scores of the respective cardiometabolic trait in each group.  BMI, 

body mass index, HDL-C, high density cholesterol, HOMA-IR, homeostatic model 

assessment of insulin resistance, FBG, fasting blood glucose, 2H-PLG, 2 hour post 

load glucose, SBP, systolic blood pressure, DBP, diastolic blood pressure, HbA1C, 

haemoglobin A1c. Pairwise comparisons where adjusted p-value was >0.05 are 

show by solid bars connecting the two groups.  

 

To assess the cardiometabolic risk between the two discordant groups, we 

performed a logistic regression analysis (with cardiometabolic features as predictors 

and the discordant groups as the outcome), adjusted for age, sex and BMI or age, 

sex and BMI and clinical lipids (total cholesterol, HDL-C and triglycerides). The 

metabolic traits differed substantially in their metabolic health risk profiles between 

the discordant groups despite these groups having a similar BMI. Lower HDL-C 

(odds ratio 95% CI = 0.4, 0.3–0.5), elevated triglycerides (odds ratio 95% CI = 2.3, 
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2.1–2.5), elevated 2h-PLG (odds ratio 95% CI = 1.7, 1.6–1.9) and high HOMA-IR 

(odds ratio 95% CI = 2.9, 2.5–3.3) were significantly associated with the mBMI>BMI 

group relative to mBMI<BMI group (Table 3). Except for FBG and HBA1C, all the 

associations remained significant after further adjustment for clinical lipids (although 

the effect size was reduced in most cases) (Table 3, right panel).  

 

Table 3. Association of cardiometabolic risk factors with metabolic discordant 

groups. 

 

Risk factors 

mBMI>BMI relative to 

mBMI<BMI
1
 

mBMI>BMI relative to 

mBMI<BMI
2
 

Odds ratio (95% CI) P Odds ratio (95% CI) P 

Cholesterol 1.3 (1.2–1.4) 2.24E-12 1.2 (1.1–1.3) 1.75E-07 

HDL-C 0.4 (0.3–0.5) 1.16E-90 0.5 (0.4–0.6) 4.83E-55 

Triglycerides 2.3 (2.1–2.5) 2.76E-63 1.5 (1.4–1.7) 4.47E-14 

FBG 1.2 (1.1–1.3) 4.57E-02 1.1 (0.9–1.2) 4.45E-01 

2h-PLG 1.7 (1.6–1.9) 1.41E-37 1.5 (1.4–1.7) 1.02E-21 

HbA1c 1.2 (1.1–1.4) 2.32E-03 1.0 (0.9–1.1) 9.59E-01 

HOMA-IR 2.9 (2.5–3.3) 7.30E-63 2.2 (1.9–2.5) 5.78E-33 

SBP 1.3 (1.2–1.4) 1.56E-08 1.2 (1.1–1.3) 3.22E-06 

DBP 1.2 (1.1–1.3) 1.21E-08 1.2 (1.1–1.3) 1.33E-04 

1Logistic regression between discordant groups (mBMI>BMI relative to mBMI<BMI) and metabolic risk factors 

adjusted for age, sex and BMI 

2Logistic regression between discordant groups (mBMI>BMI relative to mBMI<BMI) and metabolic risk factors 

adjusted for age, sex, BMI and clinical lipids (total cholesterol, HDL-C and triglycerides). 

 

The findings observed in the AusDiab cohort were validated on the BHS cohort 

(except for the 2h-PLG and the HbA1C measures which were not available in the 

BHS cohort). Consequently, individuals in the mBMI>BMI group had a significantly 

elevated levels of triglycerides (odds ratio 95% CI = 2.0, 1.7– 2.4), HOMA-IR (odds 

ratio 95% CI = 2.1, 1.6–2.9) and cholesterol (odds ratio 95% CI = 1.4, 1.2–1.6) and 

lower HDL-C (odds ratio 95% CI = 0.7, 0.6–0.8) relative to those in the mBMI<BMI 
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group (Fig 4A). These associations remained significant after adjusting out for the 

effect of clinical lipids (Fig 4B).   

 

Fig 4. Association of cardiometabolic risk factors with metabolic discordant 

groups (mBMI>BMI relative to mBMI<BMI). A logistic regression analysis between the 

discordant groups as outcomes and metabolic traits as predictors was performed 

adjusting for age and sex (A) and age, sex and clinical lipids (B). Orange and dark 

squares represent results in the AusDiab the BHS cohorts respectively. The 

whiskers represent 95% confidence intervals.  

 

The risk of diabetes and CVD significantly differ between metabolic discordant 

groups 

In a subgroup analysis involving the discordant groups, individuals in the mBMI>BMI 

group relative to those in the mBMI<BMI group had greater odds of prevalent 

diabetes (odds ratio 95% CI = 3.2, 2.3 – 4.6). The risk of incident diabetes was just 

over two times higher among mBMI>BMI group relative to mBMI<BMI (odds ratio 

95% CI = 2.3, 1.4–3.7) (Table 4). Comparing the risk of CVD between the metabolic 

discordant groups, we observed that those with mBMI>BMI had a significantly 

greater risk of prevalent and incident CVD compared to their counterparts with 
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mBMI<BMI. Individuals whose mBMI>BMI had 1.8 times higher odds of prevalent 

CVD (Table 4). A Cox proportional hazard regression against CVD events showed a 

differential risk of CVD between the discordant groups, adjusting for baseline age 

(time scale) and for sex, BMI, diabetes and smoking status (HR 95% CI = 1.8, 1.3–

2.6) (Table 4). Additional adjustment for clinical lipids on top of baseline age, sex, 

BMI, smoking and diabetes status had a minimal effect on the associations with CVD 

outcomes. We validated the associations with CVD (particularly prevalent disease) in 

the BHS cohort (Table S5). 

 

Table 4. The association between metabolic discordant groups and disease 

outcomes 

  

Outcome 

mBMI>BMI relative to 

mBMI<BMI
1
  

mBMI>BMI relative to 

mBMI<BMI
2
  

Odds ratio  

(95% CI) 
P 

Odds ratio 

(95% CI) 
P 

Prevalent diabetes 3.2 (2.3–4.6) 3.95E-11 2.5 (1.7–3.6) 9.69E-07 

Incident diabetes 2.3 (1.4–3.7) 5.89E-04 1.7 (1.0–2.8) 5.25E-02 

Prevalent CVD* 1.8 (1.3–2.7) 1.98E-03 1.8 (1.3–2.9) 2.57E-03 

 

Hazard ratio  

(95% CI) 
P 

Hazard ratio 

(95% CI) 
P 

Incident CVD* 1.8 (1.3–2.6) 8.98E-04 1.7 (1.2–2.4) 8.92E-03 

1Logistic/Cox regression between cardiometabolic outcomes and metabolic discordant groups (mBMI>BMI 

relative to mBMI<BMI) adjusted for age, sex and BMI 

2Logisti /Cox regression between cardiometabolic outcomes and metabolic discordant groups (mBMI>BMI 

relative to mBMI<BMI) adjusted for age, sex, BMI and clinical lipids (total cholesterol, HDL-C and triglycerides). 

*The model is adjusted for diabetes status and smoking in addition to age, sex and BMI or age sex, BMI and 

clinical lipids  

 

Metabolic BMI residuals predict cardiometabolic outcomes independent of BMI   

The mBMI residuals calculated for each individual in the whole cohort showed 

significant associations with T2D (both prevalent and incident) and with CVD events. 

Akaike’s information criterion (AIC) and Likelihood ratio test (LRT) were calculated to 

compare the two competing nested models (i.e., one containing mBMI residuals the 
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other without mBMI residuals). Using these approaches, we showed that models 

with mBMI residuals fit better in predicting cardiometabolic outcomes. E.g. Models 

with residuals show smaller AIC (AIC = 2563.1) compared to models without mBMI 

residuals to predict prevalent diabetes (AIC = 2652.4) and p-value for LRT of 2.6E-

06. In predicting incident diabetes, the model with mBMI residuals fit significantly 

better (AIC = 1726.3) than the model without residuals (AIC = 1742.4) and p-value 

for LRT = 8.38E-06 (Table S6). In general, mBMI residuals were positively 

associated with higher risk of prevalent T2D (odds ratio 95% CI = 1.7, 1.5 – 1.9) after 

accounting for age, sex and BMI. The residuals also predicted incident diabetes 

(odds ratio 95% CI = 1.3, 1.2 – 1.5) (Table 5).  
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Table 5. The association of mBMI residuals, mBMI and BMI with disease outcomes 

 mBMI 
residual

1 BMI
2 mBMI

3 

Outcome 
Odds  ratio 
(95% CI) P Odds  ratio 

(95% CI) P Odds  ratio 
(95% CI) P 

Prevalent diabetes 1.7 
(1.5–1.9) 6.48E-21 2.4 

(2.1–2.6) 1.38E-55 2.6 
(2.4–3.0) 5.11E-62 

Incident diabetes 1.3 
(1.2–1.5) 2.34E-05 1.8 

(1.6–2.1) 2.46E-19 2.0 
(1.7–2.2) 1.62E-21 

Prevalent CVD
7 

1.3 
(1.2–1.4) 5.53E-05 1.3 

(1.1–1.5) 2.59E-04 1.4 
(1.2–1.6) 1.74E-09 

  
Hazard 

ratio 
(95% CI) 

P Hazard ratio 
(95% CI) P Hazard ratio 

(95% CI) P 

Incident CVD
7 

1.2 
(1.1–1.3) 3.13E-03 1.2 

(1.0–1.3) 3.19E-02 1.2 
(1.1–1.4) 1.03E-03 

  
  

mBMI 

residual
4  

BMI
5 

 
mBMI

6 

Odds  ratio 
(95% CI) P Odds  ratio 

(95% CI) P Odds  ratio 
(95% CI) P 

Prevalent diabetes 1.6 
(1.4–1.8) 3.78E-14 2.2 

(1.9–2.5) 2.20E-37 2.3 
(2.0–2.5) 3.36E-39 

Incident diabetes 1.3 
(1.1–1.5) 1.55E-03 1.7 

(1.5–2.0) 1.12E-13 1.7 
(1.5–2.0) 3.72E-13 

Prevalent CVD
7 

1.3 
(1.1–1.4) 1.40E-04 1.3 

(1.1–1.5) 6.83E-04 1.4 
(1.2–1.6) 1.80E-05 

  
Hazard 

ratio 
(95% CI) 

P Hazard ratio 
(95% CI) P Hazard ratio 

(95% CI) P 

Incident CVD
7 

1.1 
(1.0–1.2) 6.15E-02 1.1 

(0.9–1.2) 3.42E-01 1.1 
(1.0–1.3) 1.01E-01 

1Logistic/Cox regression between cardiometabolic outcomes and mBMI residuals adjusted for age, sex and BMI. 

 
2
Logistic/Cox regression between cardiometabolic outcomes and BMI adjusted for age, sex and mBMI residuals.   

 
3
Logistic/Cox regression between cardiometabolic outcomes and mBMI adjusted for age and sex.   

 
4, 5, 6 

additionally adjusted for clinical lipids (total cholesterol, HDL-C and triglycerides) on top of age, sex and 
BMI/mBMI residuals 
 7the model includes diabetes status and smoking as covariates.  

 

We also tested if mBMI residuals associate with prevalent CVD (such as history of 

heart attack and or stroke) and incident CVD after adjusting for age, sex, BMI, 

smoking status and diabetes status. Metabolic BMI residuals were positively 
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associated with prevalent CVD (odd ratio 95% CI = 1.3, 1.2–1.4) and higher risk of 

incident CVD event (HR 95% CI = 1.2, 1.1–1.3) (Table 5). Many of the associations 

of mBMI residuals with outcomes were independent of lipoprotein measures (Table 

5). The odds ratios of BMI and mBMI associated with outcomes are also presented 

(Table 5). In the BHS validation cohort we found similar findings (particularly before 

accounting for clinical lipid measures) (Table S7). 

 

The mBMI residuals associate with lipidomic profiles 

In age and sex adjusted analyses, we found significant association of mBMI 

residuals with the plasma lipidome (480 out of 569 lipid species). While 

diacylglycerol and triacylglycerol species were particularly strongly associated in 

positive direction with mBMI residuals, most hexosylceramides, lyso and ether 

phospholipids were negatively associated (Fig 5A, Table S8). E.g. LPC(18:2)[sn1] 

decrease by 3.5% per unit increase in mBMI residual, p = 9.72E-147. Of the 

triacylglycerol species, TG(52:1)[NL-18:0] was the strongest predictor (8.7% 

increase per unit of mBMI residual, p= 5.53E-185) (Fig 5, Table S8). Further 

adjustment for clinical lipids (cholesterol, HDL-C and triglycerides resulted in weaker 

effect sizes but most associations remained significant except for few the 

triacylglycerol and diacylglycerol species (Fig 5B, Table S8).  

 

Many associations appear to be dependent on fatty acyl chain composition. Lipids 

containing the 18:2 and odds or branched chain fatty acids were negatively 

associated while saturated species were positively associated with mBMI residuals. 

Considering phosphatidylcholine class, some of the contrasting associations of 

saturated and even chain fatty acids and odd chain fatty acids with mBMI residuals 

are shown in (Fig 5C). Finally, we report similar association of lipidome with BMI and 

mBMI residuals (Table S9). The effect sizes of lipids associated with BMI and mBMI 

residuals were highly correlated (Fig 5D). But it appears from the regression results 

that mBMI residuals have stronger effect sizes compared to BMI. 
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Fig. 5 Association of mBMI residuals with plasma lipidomic profile. Linear 

regression analysis between mBMI residuals and lipid species concentrations 

adjusting for age and sex (A) or age, sex, total cholesterol, HDL-C and triglycerides 

(B). Grey open circles show species (p>0.05), grey and purple closed circles show 

species with p<0.05 and p<2.29E-12 respectively, after correction for multiple 

comparisons using BH. The whiskers represent 95% confidence intervals. (C) 

Association of phospholipid fatty acids with mBMI residuals. (D) Correlation between 

effect sizes associated with BMI versus mBMI residuals.  

 

Discussion 

Lipidomics and metabolomics studies show that BMI is strongly associated with 

dysregulation in lipid metabolism (8, 9, 25, 27). This had inspired several groups to 

investigate whether the metabolite signatures can be used to estimate BMI; the 

“mBMI” and if this presents a portable surrogate measure to phenotype obesity and 
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characterise cardiometabolic risk (8, 9).  In the present study, we constructed a 

holistic lipidome based BMI score that represents the mBMI of an individual. The 

mBMI reflects the metabolic consequences of obesity and hence provides additional 

information over measured BMI for a reliable assessment of cardiometabolic risk. 

Given the complex nature of obesity, mBMI can also serve to characterize obesity. 

We here report key associations of mBMI residuals and metabolic discordant groups 

with cardiometabolic traits, diabetes and CVD. 

 

Recently, using ridge regression, a mBMI score was constructed using 650 urinary 

metabolites that were measured by untargeted approach and this explained 49% of 

the variation in BMI (8). In another study, a 47% variability was noted when utilizing 

lipid species to predict BMI using Lasso model (9). In the present study, the lipidome 

(including 569 lipid species spanning across the sphingolipid, phospholipid and 

glycerolipid classes) explained 64.9% of BMI variability, implying that dysregulation 

in lipid metabolism could be largely driven by obesity. Compared to previous 

modelling studies, we report a higher proportion of BMI variance explained by the 

lipidome in the present study. While, previous studies used stringently associated 

metabolites to predict BMI, we here included all the measured lipids in model to 

determine how well the entire lipidome explains BMI, rather than focusing on those 

that are associated with BMI. Moreover, our BMI model was built based on targeted 

LC-MS/MS based lipidomics, while previous studies used non-targeted and shot gun 

lipidomics (8, 9). Therefore, the observed difference in the BMI variance being 

explained in our study and others could be related to the number of predictors being 

included in the model, population setting, experimental design and modelling 

approaches. Generally, models based on limited set of metabolites result in weaker 

variance in BMI being explained compared to models of richer metabolite profiles (8). 

 

Despite its simplicity and convenience, BMI alone does not capture the myriad health 

consequences of heterogeneous obesity phenotypes (28). Many metabolic and 

clinical studies have uncovered that people with the same or similar BMI display a 

substantial difference in their metabolic health outcomes (29, 30). For instance, 

Ruderman et al have identified a subset of individuals whose BMI was within normal 

range but show features of cardiovascular risk such as insulin resistance, high 
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triglycerides and coronary heart disease (31, 32). There are also metabolically 

healthy people (with no known metabolic abnormalities) who are overweight or 

obese based on their BMI (33). Thus, relying on BMI alone as a marker for obesity 

and associated metabolic health consequences leads to unreliable risk assessment. 

Here, with the rich source of sample size (n=10,339) we have attempted to stratify 

individuals into different groups based on the disparity between mBMI and BMI. The 

groups with discordant mBMI while having a comparable BMI displayed distinct 

health risk profiles. Indeed, we recognize that there are many possible BMI-mBMI 

combinations for fine phenotyping of obesity in larger population cohorts.  

 

Interestingly, individuals with a substantially lower mBMI compared to their actual 

BMI present with a more favourable metabolic health profile that resembles the 

normal weight and healthy metabolome group. E.g., the mBMI<BMI group displayed 

a lower triglyceride, higher HDL-C, lower HOMA-IR and lower 2h-PLG values. In 

contrary, those individuals whose mBMI is greater than BMI had cardiometabolic 

features similar to the obese-metabolically obese phenotype. These findings agree 

with the findings of Cirulli and colleagues who did similar analysis (8). Several prior 

studies had attempted to identify individuals who are normal weight on the basis of 

their weight and height but obese/overweight based on their metabolic profile (32, 

34, 35). Inline to the existing data, we observed that, mBMI was highly correlated 

with features of dyslipidaemia. These findings furthermore, highlight a relatively 

stronger link between mBMI and metabolic health risk relative to measured BMI in a 

certain group of population. 

 

Overweight and obesity are considered risk factor for diabetes (36-38). In most 

cases, the risk of diabetes increases with BMI. However, existing data have also 

shown high prevalence of diabetes among normal weight people (39, 40). This 

indicates that lean individuals could have metabolic disturbances responsible for the 

pathophysiology of T2D and these can be captured by making use of mBMI. In the 

current study, we noted that, compared to the measured BMI, mBMI was more 

strongly associated with the risk of diabetes (particularly with prevalent diabetes). 

Interestingly, the group whose mBMI is greater than their true BMI had 3 time higher 

odds of having diabetes, compared to the group whose mBMI was lower than true 
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BMI. But, we did not observe a statistically significant difference in the risk of incident 

diabetes between the discordant groups after adjusting out for clinical lipids 

presumably due to the small number of incident cases in these groups. 

 

While BMI is an independent risk factor for CVD (41, 42), not every obese or 

overweight subject shows abnormal cardiovascular risk profiles. There is a 

remarkable metabolic heterogeneity in obesity, and hence the risk of CVD (43-45) 

that present a significant challenge for management. Thus, the BMI measure as a 

marker of metabolic risk particularly in CVD settings fall short in many ways. For 

instance, in Framingham CVD risk scores, BMI had never become a component of 

the discriminatory features in predicting CVD outcomes (46). Moreover, a significant 

portion of obese individuals (31.7%) have been shown to remain free of CVD for life 

(i.e., metabolically healthy) (47). Furthermore, a recent debate over obesity paradox 

(in which obesity is rather associated with reduced risk of CVD and or improved 

survival (48-50) arises partly due to the use of BMI as a single measure to assess 

CVD risk. In the present study, we found that, mBMI residuals predicted CVD risk 

independent of BMI and clinical lipids. This sheds light on the importance of 

metabolite BMI scores to improve upon the inherent pitfalls of BMI as a tool for CVD 

risk assessment. 

 

Finally, we examined the relationship of mBMI residuals with the lipidomic profile. 

The majority of plasma lipid class/subclasses were significantly associated with 

mBMI residuals. While, lipids representative of glycosphingolipids and phospholipids 

were generally negatively associated, most ceramide, diacylglycerol and 

triacylglycerol species were positively associated. Previously, we have found 

ceramide,  dihydroceramide and triacylglycerol species to be associated with insulin 

resistance in young adults (51). Indeed, most of the lipid classes/subclasses 

associated with mBMI residuals observed in the present study have been associated 

with T2D and CVD (27, 52-54) and BMI (11). The lipidome association with BMI and 

mBMI residuals are very similar, although the effect sizes for residuals appear to be 

stronger.  This suggests, that the mBMI residuals reliably capture the metabolic 

dysregulation associated with disease outcomes.    
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The rich lipidomic data and large sample size being utilized are the major strengths 

of the present study. However, there are limitations to mention: 1) we modelled 

mBMI using ridge regression which like other linear models assumes the relationship 

between the outcome and predictors is always linear. 2)  Lack of some outcome 

measures in the BHS validation cohort, thus the observed associations requires 

further replication. 3) While the mBMI was validated in an independent cohort, its 

association with actual BMI was weaker than in the development cohort. There could 

be several reasons for this, such as the presence of unwanted variation and 

biological/population differences between the cohorts. These factors were not 

examined in details in this manuscript. 

 

In summary, our results suggest the potential of lipidomic datasets to construct 

mBMI score for better risk assessment and characterize cardiometabolic outcomes 

associated with metabolic complications. Indeed, the mBMI mirrors BMI related 

metabolic alterations and captures additional biological information over measured 

BMI. Furthermore, mBMI and or mBMI residuals helps stratify obesity into groups; 

the identification of different obesity phenotypes in large samples not only improves 

the assessment of disease risk but also provide new insights into the biology and 

mechanisms that lead disease outcomes.  
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Chapter 7. Plasma lipidomics improves risk 

prediction for type 2 diabetes 

 

Chapter 7 examines the entire AusDiab cohort (including the cross-sectional and 

longitudinal endpoints). Using both the cross-sectional and longitudinal data, we 

elucidated plasma lipid species associated with prevalent outcomes (diabetes and 

prediabetes) and incident diabetes. We further examine distinct lipidomic profiles 

associated with impaired glucose tolerance and impaired fasting blood glucose. 

Finally, we generated metabolic risk scores for glycemic measures and subsequently 

tested whether multivariate models with the inclusion of these scores improve upon 

to the traditional risk markers to predict incident type 2 diabetes in the whole 

population or among otherwise healthy individuals with normal fasting glucose 

(<6.1mmol/L) at baseline.  

  

 

Chapter 7 has been prepared for submission to Nature Communications.   

 

  

 

To facilitate a better flow between chapters within this thesis, the Supplementary 

Tables for this chapter has been presented separately (Appendix V).  
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Abstract 

There is a global obesity epidemic; associated with this is a dramatic increase in the 

incidence of type 2 diabetes (T2D). Early detection of T2D or the identification of 

those at increased risk of T2D provides the opportunity for early intervention to 

prevent onset or progression of the disease. Here, utilizing a high-throughput 

lipidomic analysis, we systematically investigated the association of molecular lipids 

with prediabetes and diabetes in the Australian Obesity and Diabetes study cohort 

(AusDiab). Using metabolic risk score modelling, we were able to improve 5 year 

incident T2D risk prediction over risk prediction tools using conventional clinical risk 

factors.  

 

Introduction 

Diabetes is a major public health threat across the globe. Over 463 million prevalent 

cases of diabetes were reported in 2019 (1). An estimated 212.4 million people 

(50.0%) of all people remained undiagnosed and some 352 million had impaired 

glucose tolerance (IGT). In order to combat this public health threat, importance of 

identifying individuals at risk for T2D has been ranked as one of the top research 

priority towards diabetes prevention (2).   

 

Existing diagnostic markers for prediabetes and diabetes are currently based on 

thresholds of fasting blood glucose (FBG) or 2-hour post glucose levels (2h-PLG), 

with the latter obtained from an oral glucose tolerance test (OGTT). Elevated levels 

of glucose initially lead to the prediabetic state (where elevated FBG is classified as 

impaired fasting glucose (IFG, 6.1 ≤ FBG ≤ 6.9 mmol/L) and elevated 2h-PLG is 

classified as IGT, 7.8 ≤ 2h-PLG ≤ 11.1mmol/L). The prediabetic state is considered 

heterogeneous, where both IFG and IGT can exist independently of each other 

(usually termed isolated IFG and isolated IGT respectively (3)) and reflect differential 

metabolic dysregulation. While IFG is characterised by raised hepatic glucose output 

and a defect in early insulin secretion, IGT is often seen as peripheral insulin 

resistance (3). These differences in dysregulated metabolic states results in 

relatively low co-prevalence and are coupled with disproportionate incidence levels 

in age groups and sexes, where IGT is more often seen in older individuals and 
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women (4).  T2D is diagnosed when either fasting glucose ≥7.0 mmol/l or 2h-PLG 

≥11.1 mmol/l.   

 

As IGT can exist independently of IFG, it is often difficult to identify individuals with 

IGT within a population. The gold standard OGTT is an inconvenient test to apply, 

limiting its use as a screening tool unlike FBG. However, FBG does not correlate 

with 2h-PLG and is a poor marker of individuals who have IGT. This results in a large 

majority of individuals with isolated IGT, whom have a similar risk profile to develop 

T2D and its complications as people with IFG not being identified until later in the 

disease progression. Both measures have different relationships with the key 

complications of diabetes such as cardiovascular disease (CVD). Although, diabetes 

mellitus prevention program works better on IGT (5), there is no quick way to identify 

them.  

 

Lipids are small structurally diverse biological molecules that are essential to life. 

Lipid species have been associated with both prediabetes and T2D (6-10). We have 

previously reported differing plasma lipid associations with FBG and 2h-PLG in a 

small subset of the Australian Diabetes, Obesity and Lifestyle (AusDiab).  Study. As 

lipids associate differently with fasting and post load glucose, this raises the 

possibility of capturing individuals at risk of T2D without the need for difficult assays 

such as an OGTT. Metabolic scoring by using the plasma lipidome to estimate 

measures of glucose, particularly 2h-PLG, may be a novel method to obtain clinically 

relevant information. 

 

We have recently refined our lipidomic methodology (11), offering greater granularity 

to a broader range of lipid classes, and have applied it to the entire AusDiab baseline 

cohort (12).The AusDiab is a longitudinal population based study (n = 11,247) which 

was designed to determine the prevalence of chronic disease in Australia, 

particularly diabetes, obesity and CVD. Here we report the relationship between the 

plasma lipidome, risk factors and outcomes of impaired glucose tolerance. We also 

report a series of multivariate models to capitalize on the unique lipidome signature 

to predict T2D from both the general population and in high-risk individuals not likely 

captured by traditional screening tools. 
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Material and methods 

Participants and samples 

The AusDiab is a prospective study examining the prevalence and risk factors of 

T2D, obesity  and CVD in the Australian adult population (13). T2D was defined as 

fasting glucose measurement (FBG) of 7.0 mmol/L or greater or a 2-hour post load 

glucose measurement (2h-PLG) of 11.1 mmol/L or greater or on medication for 

diabetes. Prediabetes was defined as either impaired fasting glucose (FBG = 6.1 to 

6.9 mmol/L), impaired glucose tolerance (2h-PLG = 7.8 to 11 mmol/L), or a 

combination of both. According to the current definition some proportion of 

individuals diagnosed as IGT overlap with IFG. Thus, we term individuals with only 

IGT but otherwise normal FBG levels as isolated IGT. Similarly, individuals with IFG 

but normal 2h-PLG were termed isolated IFG. We utilized all the AusDiab 

participants (n=10, 339) after excluding (n=908) ineligible participants either due 

insufficient amount of plasma samples (n=13), missing data (n=876) or technical 

issues during MS analysis (n=19). 

 

Prevalent diabetes and prediabetes: At baseline there were 7,733 normal glucose 

tolerant individuals (NGT), 1920 subjects with prediabetes (613 IFG, 988 IGT and 

319 with both) and 395 newly diagnosed T2D included in these analyses. There 

were 291 individuals with known T2D excluded from the analyses. Characteristics of 

the study cohort are described in Supplementary Table 1.  

 

Incident diabetes: Participants who attended baseline and follow up studies 

(n=5,572) were evaluated for incident diabetes after 5 years of follow up from 

1999/2000. Individuals with known diabetes at baseline were excluded. Based on the 

WHO criteria described above, 218 subjects were diagnosed with T2DM during the 5 

year follow-up period (Table 1) and 5,354 did not have diabetes (controls). 

 

Plasma lipid extraction and lipidomics 

Lipids from plasma were extracted using 1-butanol:methanol (1:1, v/v) method 

(BUME) containing the relevant internal standards as described previously (14). In 

brief, 10μL of plasma was mixed with 100μL of butanol:methanol (1:1) with 10mM 

ammonium formate and a set of internal standards. Samples were vortexed 
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thoroughly and set in a sonicator bath for 1 hour maintained at room temperature. 

Samples were then centrifuged (14,000xg, 10 min, 20C) before being transferred 

into sample vials with glass inserts for analysis. The entire extraction process 

including pipetting of the 10 μL plasma, transferring this to 100 μL BUME solution 

was assisted by the liquid handling robot (Hamilton, INC).  

 

Plasma lipids were measured using positive ionization mode with dynamic scheduled 

multiple reaction monitoring (MRM) on an Agilent 6490 QQQ mass spectrometer 

with an Agilent 1290 series reverse-phase HPLC system and a ZORBAX eclipse 

plus C18 column (2.1x100mm 1.8μm, Agilent) with the thermostat set at 45°C. 

Details of this method is described in our previous work (11) but adapted to a dual 

column set up (total run time, 14 minutes). The peaks of each lipid were integrated 

using MassHunter (Agilent). 

 

Plasma quality control (PQC, plasma from a pooled set of 10 healthy individuals) 

were included at 1 PQC per 20 plasma samples as well as standard reference 

samples from the national institute of standards and technology (NIST1950) were 

incorporated into the analysis to assess potential variations in extraction process and 

instrument performances. Technical quality control samples (TQC) pooled from PQC 

extracts were included 1 per every 20th sample to provide a measure of technical 

variation from the mass spectrometer. TQCs were used to monitor changes in peak 

area, peak width and retention time to determine the performance of the LC-MS/MS 

instrument and eventually to align for differences in the analytical performances 

across batches.  

 

Naming convention of lipid species 

The nomenclature of lipid species used here follows the guidelines established by 

the Lipid MAPS Consortium and the shorthand notation (15-17) and expanded upon 

by Liebisch et al [10]. Where it is impossible to fully characterize the fatty acid 

content and double bond position of glycerophospholipids, which typically contain 

two fatty acid chains the lipid is expressed as the sum composition of carbon atoms 

and double bonds (e.g. PC(38:6). In cases where the acyl chain composition is 

known, the naming convention reflects the detailed characterisation of the lipid; e.g. 
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PC(38:6) will be expressed as PC(16:0_22:6). Still PC(16:0_22:6) lacks further 

structural details such as the sn1 and sn2 positions.  It will become PC(16:0/22:6) 

where the sn positions are known). This applies to several other lipid classes and 

subclasses. Lipid species with (a) and (b) designations represent species that are 

separated chromatographically but incompletely characterised. E.g., in PC(P-

17:0/20:4) (a) and PC(P-17:0/20:4) (b) (a) and (b) indicate the elution order. 

Triglyceride species are monitored as a single neutral loss and the sum composition 

with their neutral loss experiment. e.g. TG(56:2) [NL-18:2]) refers to a triacylglycerol 

species with a total of 56 carbons and two double bonds accompanied with the 18:2 

acyl chain as a neutral loss.  

 

Statistical analysis  

Statistical analyses were performed in R (3.4.1). Batch effects were corrected using 

median centring for PQC. Lipid data was log10 transformed, mean centred and 

scaled to its standard deviation prior to analysis. Logistic regression models were 

used to examine the association of each lipid species (as a predictor) with diabetes 

or prediabetes (as an outcome). Models were adjusted for age, sex, BMI. We also 

explored associations further adjusted for total cholesterol, HDL cholesterol and 

clinical triglycerides. We excluded any samples with missing clinical variables in 

each analysis. P-values were corrected for multiple comparisons using the Benjamini 

and Hochberg FDR correction (18). 

 

Lipid model development 

The lipid data was scaled to the standard deviation and centred to the mean prior to 

model development. We then generated a series of metabolic risk scores by using all 

the individual lipid species (747) in ridge regression models to predict different 

clinical measurements amenable to T2D risk (fasting glucose, 2h-PLG and HbA1c). 

The scores were generated using all non-diabetic individuals and are collectively 

termed “metabolic scores”. This resulted in three additional metabolic scores for 

each individual (metabolic FBG= mFBG, metabolic PLG=mPLG and metabolic 

HbA1c= mHbA1c).  
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Subsequently, we examined the added benefit of these scores in identifying 

individuals likely to develop T2D. We limited the analysis to incident diabetes over 

the 5-year follow-up. Base reference models were comprised of either AUSDRISK 

alone (19) or AUSDRISK with conventional glycaemic screening measurements 

(FBG and HbA1c). The benefit of adding the metabolic scores to the base model 

was assessed by comparing the Area under the Curve (AUC, specificity/sensitivity) 

and the net reclassification index (NRI) relative to the base models. This was done in 

both the entire non-diabetic population and also in a subset with normal fasting 

glucose (< 6.1mmol/L). 

 

Results  

Lipids are highly associated with prevalent T2D 

We examined the relationship between plasma lipids in the AusDiab cohort and 

prevalent type 2 diabetes. We utilised newly diagnosed T2D at baseline (not existing 

T2D, where treatment is already underway at the time of blood collection). Cross 

sectional analysis with logistic regression between NGT (n=7,733) and newly 

diagnosed T2D (n=395) adjusting for age, sex and BMI identified 572 lipids 

(including TG and TG species monitored as SIMs) out of 747 measured species 

associated with disease (after correction for multiple comparisons). A summary of 

the results and key associations are presented in Figure 1a. The strongest positive 

associations were seen in sphingolipid (predominately deoxyceramide, ceramide and 

dihydroceramide) and glycerolipid (diacylglycerol, triacylglycerol species). 

Conversely, lysophospholipids, including species of lysophosphatidylcholine, 

lysoalkylphosphatidylcholine and lysoalkenylphosphatidylcholine were negatively 

associated with T2D as were other alkyl and alkenyl subclasses (Supplementary 

Table 2).  

 

T2D is often coupled with dyslipidaemia characterised by elevated triglyceride and 

lowered HDL-C. To observe lipid associations independent of bulk changes driven 

by differences in circulating lipoproteins, we further adjusted for clinical lipids (total 

cholesterol, HDL-C and triglycerides). In this analysis, 463 species were significantly 

associated after correction for multiple comparisons (Figure 1b, Supplementary 

Table 2).  
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Figure 1 – Associations of individual lipid species with prevalent T2D. Logistic 

regression of lipid species against T2D (n = 395 cases versus 7,733 NGT controls) 

was performed adjusting (A) for age, sex, and BMI and (B) age, sex, BMI, total 

cholesterol, HDL-C and triglycerides. Associations are presented as forest plots; 

each circle represents the odds ratio for a lipid species, whiskers are the 95% 

confidence intervals. Open circles, not significant after FDR correction; grey circles, 
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significant after FDR correction; red and blue circles, top 10 species from each 

analysis (corrected p-value < 1.09 x 10-39 and 3.96 x 10-31 respectively). 

 

 

The prediabetic lipidome presents with a similar signature to T2D. 

We examined the associations of the baseline lipidomic profile with prediabetes (n = 

1920 vs 7,733 NGT controls). We observed a similar, but slightly weaker, association 

profile with prediabetes compared to T2D (i.e. lower odds ratio, Figure 2). Lipid 

species containing an 18:2 fatty acid were particularly negatively associated with 

prediabetes once adjusted for clinical covariates. Detailed results can be found in 

Supplementary Table 3. 
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Figure 2 – Associations of individual lipid species with prediabetes. Logistic 

regression of lipid species against prediabetes (n = 1920 cases versus 7,733 NGT 

controls) was performed adjusting (A) for age, sex, and BMI and (B) age, sex, BMI, 

total cholesterol, HDL-C and triglycerides. Associations are presented as forest plots; 

each circle represents the odds ratio for a lipid species, whiskers are the 95% 

confidence intervals. Open circles, not significant after FDR correction; grey, 

significant after FDR correction; light blue and orange circles, top 10 species from 

each analysis (corrected p-value < 1.09 x 10-33 and 3.96 x 10-25 respectively). 
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There is heterogeneity in the lipidome of individuals with IFG and IGT. 

We examined the association with isolated IGT (n = 988) and IFG (n = 613) relative 

to NGT (n = 7,733) using the AusDiab cohort. The lipid associations between NGT 

and IGT were much stronger than NGT and IFG. There were 128 lipid species that 

were associated with both IFG and IGT (15 species positive, 113 species negative). 

In contrast there were 263 species that were only associated with IGT and 86 

species only associated with IFG (Fig. 3). In addition, 31 species (excluding SIMs) 

were positively associated with IFG but negatively associated with IGT while 44 

species were negative with IFG and positive with IGT, (Supplementary Table 4). 

 

Several associations were common between the two prediabetic states, these 

include the d18:2 sphingomyelins and several ether lipids including 

alkenylphosphatidylcholine species (Fig. 3). The negative associations with omega-6 

fatty acids with IGT were similar to those with T2D (Fig. 3, Supplementary Table 4), 

with glycerophospholipid species esterified with 18:2 associated with IGT but not 

IFG. Deoxyceramide species were positively associated with only IGT. Similarly, the 

long chain acylcarnitines contrasting associations (negatively associated with IFG 

(Supplementary Table 4) and positively associated with IGT. Most of the branched 

and odd-chain lysoglycerophospholipids were negatively associated with IFG and 

IGT as with prediabetes and T2D.  
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Figure 3 – Heterogeneous associations of lipid species with different pre-

diabetic states. (A) Scatter plot of odds ratios between two different analysis 

examining associations with prediabetes, either IGT (corrected p < 0.05, green) or 

IFG (corrected p < 0.05, orange). Lipids that were common with IGT and IFG are 

highlighted in dark grey (with large circles showing the most significant species). (B) 

Selected lipids (based on smallest p-values) showing contrasting associations with 

IFG and IGT. (C) Venn diagram showing the number of unique and overlapped 

associations between IFG and IGT. 

 

The mean adjusted concentrations for selected lipid species across the different 

glucose tolerance states are shown in Fig 4. These further reflect the metabolic 

heterogeneity associated with the pathogenesis of diabetes.  
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Fig. 4 Adjusted concentrations between the 4 different diagnostic groups of glucose 

impairment. ANCOVA analysis was performed adjusting for covariates; age, sex, BMI, total 

cholesterol, HDL-C and triglycerides. The mean adjusted concentration in nM are depicted 

on y-axis and groups on x-axis. Whiskers represent 95% confidence intervals. 

 

Lipids are associated with future onset of T2D 

Next we sought to determine whether lipid species at baseline were associated with 

future onset of T2D. In models adjusted for age, sex and BMI only, the associations 

of lipid species with incident T2D were similar to those observed for prevalent T2D, 

where many of the glycerolipid species were positively associated. 

 

In addition, ceramide species with a d16:1, d18:1 or d20:1 sphingoid base were 

positively associated with incident T2D, including Cer(d18:1/18:0), odds ratio 1.3 

(95% CI, 1.12-1.51, corrected p-value 1.75E-03) and Cer(d20:1/22:0), odds ratio 

1.38 (95% CI, 1.19-1.60, corrected p-value 1.16E-04). However, most species with a 

d18:2 and d19:1 sphingoid base were not associated (Fig. 5a). Upon adjustment for 

clinical lipids, most of the of ceramide species with d18:2 and d17:1 displayed 

negative associations; e.g., Cer(d18:2/24:1), odds ratio 0.75 (95% CI, 0.64-0.88, 
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corrected p-value 3.66E-03) (Fig. 5b, Supplementary Table 5). Similar findings to this 

were observed in analyses with prevalent T2D (Supplementary Table 2). 

 

Most sphingomyelin species were negatively associated with incident T2D, typically 

this effect was driven by species with a d17:1 or d18:2 base. Due to the nature of 

sphingomyelins, many of these species are not routinely separated when measured, 

i.e. SM(d18:1/24:1) and SM(d18:2/24:0). While the majority of sphingomyelin species 

measured in this study were separated, several others were not fully characterized 

i.e. SM(d18:1/18:0) and SM(d16:1/20:0). Sphingomyelins that were fully resolved 

without a d18:1 base were typically negatively associated with incident T2D, while 

those with a d18:1 or d18:0 were not significant except SM(18:0/22:0) which was 

positively associated with incident T2D odds ratio 1.52 (95% CI, 1.32-1.76, corrected 

p-value = 1.29E-07) (Fig. 5, Supplementary Table 5). In addition to the sphingoid 

based dependent associations, we observed strong positive associations with 

species of sphingolipids that arise from an atypical sphingolipid biosynthetic 

pathway, the deoxysphingolipids (synthesised from the condensation of alanine 

instead of serine with palmitoyl-CoA). We observed all 11 species of 

deoxyceramides to be strongly associated with the 5 year risk of T2D when adjusted 

for age, sex and BMI and 7 of the 11 remained significant after adjusting for clinical 

lipids (Fig. 5, Supplementary Table 5).  
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Figure 5– Associations of individual lipid species with incident T2D. Logistic 

regression of lipid species against  incident T2D (n = 218 cases versus 5,354 NGT 

controls) was performed adjusting (A) for age, sex, and BMI and (B) age, sex, BMI, 

total cholesterol, HDL-C and triglycerides. Associations are presented as forest plots. 

Each circle represents the odds ratio for a lipid species, whiskers are the 95% 

confidence intervals. Open circles, not significant after FDR correction; grey, 

significant after FDR correction; orange, most significant species from each analysis 

(corrected p-value < 2.29 x 10-12). 
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Generation of a metabolic score and improved risk prediction for type 2 

diabetes 

We next sought to determine the benefit in adding plasma lipids into existing risk 

scores for identifying individuals at risk of T2D.  We utilised the AUSDRISK score as 

the base model and examined the benefit in adding conventional glucose measures 

(FBG and HbA1c) followed by the addition of metabolic scores generated with the 

lipidomics data.  

 

Starting with scores generated using the AUSDRISK (Model 1), we observed a cross 

validated AUC of 0.763 (95% CI, 0.756 – 0.769, Table 1). Addition of FBG and 

HbA1c with the AUSDRISK score (Model 2), resulted in an AUC of 0.839 (0.832 – 

0.846) corresponding to NRI’s of 0.407 and 0.467 for events and non-events 

respectively (Table 1).  We then tested  Model 3, where mFBG, mPLG and mHbA1c 

was added to model 2. This resulted in a further improvement with an average AUC 

of 0.872 (0.867 – 0.878) corresponding to NRI’s of 0.207 and 0.229 for events and 

non-events over Model 2 (Table 1).  

 

We subsequently explored the added benefit of the metabolic scores in those 

individuals with normal fasting glucose only (FBG is < 6.1 mmol/L). We report that 

Model 1 (AUSDRISK alone) had an average AUC of 0.721, Model 2 (Model 1 + FBG 

+ HbA1c) had an average AUC of 0.777 and Model 3 (Model 2 with metabolic 

scores) was 0.821 (Table 1).  
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Table 1 – Results of multivariate modelling using plasma lipid species to 

predict incident T2D. 

Outcome Model AUC 
NRI 

Continuous^ 

NRI 

event^ 

NRI 

non-event^ 

Incident T2D  

over 5 years (All) 

Model 1 – AUSDRISK 
0.763 

(0.756 – 0.769) 
- - - 

Model 2 – Model 1 + FBG + 

HbA1c 

0.839  

(0.832 – 0.846) 

0.874  

(0.849 – 0.900) 

0.407 

 (0.180 – 0.434) 

0.467 

(0.461 – 0.473) 

Model 3 – Model 2 + 

Metabolic Scores* 

0.872 

(0.867 – 0.878) 

0.436 

(0.408 – 0.464) 

0.207 

(0.177 – 0.237) 

0.229 

(0.222 – 0.236) 

Incident T2D  

over  5 years  

(<6.1 FBG only) 

Model 1 – AUSDRISK 
0.721 

(0.711 – 0.732) 
- - - 

Model 2 – Model 1 + FBG + 

HbA1c 

0.777  

(0.768 – 0.787) 

0.874  

(0.849 – 0.900) 

0.407 

 (0.180 – 0.434) 

0.467 

(0.461 – 0.473) 

Model 3 – Model 2 + 

Metabolic Scores* 

0.821 

(0.813 – 0.829) 

0.460 

(0.423 – 0.497) 

0.203 

(0.164 – 0.243) 

0.256 

(0.249 – 0.264) 

     ^ Net reclassification index is calculated relative to the previous model 
     * Metabolic scores comprise of metabolic FBG, metabolic 2h-PLG and metabolic HbA1c.  

 

Discussion  

In the present study, we have provided detailed characterisation the lipidomic 

signatures associated with both prevalent and incident T2D and prediabetes, 

including isolated IGT and IFG, using the very large AusDiab cohort. The lipidomic 

profile of associations with IGT was distinct from that of IFG. Characterizing the 

metabolic differences across the spectrum of glucose impairment states may enable 

the identification of specific pathways guiding the way to personalized medicine. We 

show that metabolic scores derived from the lipidomic dataset provided a meaningful 

improvement upon tradition clinical risk factors to predict the onset of T2D. The key 

findings describing the cross-sectional associations and multivariate modelling 

approaches are discussed below.  

 

Negative association of odd and branched chain fatty acids with prediabetes 

and type 2 diabetes   

We have previously described these lipid species containing odd and branched 

chain fatty acids (11). The de novo biosynthesis of odd chain fatty acids such as 15:0 

and 17:0 has been shown to occur in mammalian system, using tracer experiments 

(carbon-13 labelled isoleucine and valine) (20). Recently, it was further 
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demonstrated that mmBCFAs are de novo synthesized via mitochondrial BCAA 

catabolism and much of the pool was independent of the contribution from 

microbiota (21). These findings provide compelling evidence that odd or mmBCFAs, 

are endogenously synthesized in mammals from the breakdown of BCAAs. While 

the catabolism of the BCAA occurs in the mitochondria, the products of this are then 

exported to the cytoplasm and used in the synthesis of odd and branched chain fatty 

acids. 

 

Impaired BCAA catabolism (associated with elevated BCAAs) has been implicated in 

development of metabolic diseases (22). In humans, it has been repeatedly reported 

that elevated levels of BCAAs are associated with insulin resistance and T2D (23-

26). However, only few studies have examined the possible relationship between the 

catabolic products of BCAAs (such as the methylpropanyl-CoA and methylbutryl CoA 

which is subsequently used in the synthesis of mmBCFA) in insulin resistance and 

T2D. One study found a strong positive correlation between adipose tissue 

mmBCFA and skeletal muscle insulin sensitivity (27). Examining serum odd‑ and 

branched‑chain fatty acids Mika et al. identified significantly lower levels of odd chain 

fatty acids (OCFAs) and BCFAs among people with excessive weight, and also a 

negative correlation of serum content of iso-branched fatty acids with serum insulin 

(28). Moreover, a remarkably reduced level of mmBCFAs in obese animals have 

been reported (21).  

 

A potential casual association between BCAA and T2D has been established using 

Mendelian randomisation examining the genes linked with BCAA levels in 16,596 

individuals (29). Genes, particularly PPM1K, an activator of BCKD, were strongly 

associated with BCAA levels and T2D. These genes are likely involved in the 

regulation of downstream products of BCAAs, such as the mmBCFAs. Indeed, the 

likely cause of the negative association between odd and mmBCFAs is impaired 

catabolism of BCAAs. Whether defects in this unique and newly reported pathway 

has any causal effect on T2D pathogenesis needs to be investigated further.  

 

Sphingolipid species containing the d18:2 base are negatively associated with 

prediabetes and type 2 diabetes 
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Our current chromatographic conditions allows the separation of multiple 

sphingolipid isomers (11). Owing to initial assumptions that serine 

palmitoyltransferase (SPT) was specific to palmitoyl-CoA, the resulting downstream 

sphingolipids have been typically reported as d18:1 bases. Evidence now 

demonstrates that the catalytic activity of serine palmitoyltransferase is not limited to 

palmitic acid (30) and further work has highlighted SPTLC3 as the predominate 

driver of plasma concentrations of odd and branched isoforms of sphingoid bases. A 

recent work by Karsai et al have shown that that only 57% of the sphingoid base in 

human plasma are sphingosine (d18:1), followed by d18:2 (21%), d16:1 (5%), and 

d17:1 (4.2%) (31). Our results indicate that almost all sphingolipids (typically 

ceramides and sphingomyelin) containing the d18:2 sphingoid base were associated 

with lower odds of both prediabetes and T2D. Ceramides have been shown to be 

associated with T2D (32-34) and several mechanism have been proposed (35-37). 

However, none of the existing studies have explored if the association of 

sphingolipids with disease is dependent on sphingoid base composition.  

 

Here, we show that many ceramides with the d18:1 and d20:1 sphingoid bases, 

arising from palmitate and stearate respectively, were increased in prevalent T2D 

and prediabetes. In contrast, many d18:2 ceramides presented with negative 

associations. Sphingomyelin in general as a class were strongly negatively 

associated with diabetes (prevalent and incident) and prediabetes (with d18:2 

species showing stronger associations). Although,  our current methodology is 

unable to identify the position of the second double bond on the sphingoid base, a 

recent study by Karsai et al has demonstrated fatty acid desaturase 3 (FADS3) to be 

responsible for introducing the second double bond at the Δ14Z position forming 

d18:2 from d18:1 (31). This suggests a down regulation of FADS3 in T2D. 

 

Deoxyceramide species are strongly associated with type 2 diabetes and 

prediabetes 

Serine is not the only substrate for SPT, alanine and glycine incorporation has also 

been reported, leading to deoxyceramides (38), a subclass of sphingolipids lacking a 

hydroxyl group (-OH) at the carbon 1 position of classical ceramide species (39). 

Due to this structural deficit, deoxysphingolipids are unable to be phosphorylated to 
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SM nor glycosylated to glycosphingolipids, instead they accumulate in cells causing 

toxicity to insulin producing pancreatic β-cells (40)  and other cell types (41). 

Accumulating evidence shows a positive association of the deoxysphingolipid 

subclass with the risk of T2D (40, 42, 43).  The cytotoxic behaviour has been 

reported. Previously, we have reported a positive association between 

deoxyceramide species with age and BMI (12). In the present study, we observed 

the same species associate with prediabetes and T2D, even after controlling for the 

effect of age, sex, BMI, and clinical lipid measures. Whether there are causal 

relationships between deoxysphingolipids and cardiometabolic disorders such as 

T2D remains to be elucidated.  

 

Heterogeneous lipidomic profiles associated with different prediabetic states 

The two distinct diagnostic groups of prediabetes, IFG and IGT, have heterogeneous 

aetiologies. The distinction of these groups has implications for the management of 

people with diabetes (44). While, people with IFG often have hepatic insulin 

resistance with normal skeletal muscle insulin sensitivity, IGT is predominantly 

characterised by moderate to severe muscle and peripheral insulin resistance and 

normal to mild hepatic insulin resistance (45, 46). Generally, isolated IGT is 

associated with high triglyceride levels and cardiovascular risk, whereas isolate IFG 

had considerably weaker associations (47-49). Given these difference, it is also likely 

that these two groups are accompanied by distinct metabolic traits. There has been 

a limited attempt to explore the metabolic differences between IFG and IGT. 

Generally, we found that the plasma lipidome alteration are more pronounced in IGT 

(with many lipid associations) while fewer lipids associate with IFG.   

 

It has been consistently reported in literature that there is strong negative association 

between levels of plasma linoleic acid (18:2) and T2D (50-52). Here, we show that 

the negative association of linoleic acid is largely driven by IGT, with almost no 

association seen with IFG. This suggests a differential role of the omega-6 fatty acid 

in the pathophysiology of IGT versus IFG. Linoleic acid is an essential fatty acid 

completely derived from diet. High intake of linoleic acid has been shown to be 

associated with lower risk of T2D and improved glycaemic control or insulin 
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sensitivity (53, 54). Potentially any benefits of linoleic acid may be limited to 

individuals developing T2D from IGT and not individuals who are predominately IFG.  

 

Impaired mitochondrial function and fatty acid beta oxidation (FAO) has been 

proposed to lead to the progression and development of insulin resistance (55, 56). 

Previously, Koves et al. have identified lipid induced mitochondrial stress 

accompanied with increases in specific acylcarnitine species (such as 16:0 and 18:1) 

linked to skeletal muscle insulin resistance (likely due to shuttling of these fatty acids 

into the mitochondria) among high fat fed mice (56). Incomplete FAO has also been 

reported in people with muscle insulin resistance (57)  with high intramyocellular fatty 

acid content likely due to dysregulation of FAO (58). In the present study, we show 

that IGT drives increased long chain acylcarnitine species, particularly those that 

arise from partial oxidation (16:1 and 14:1). Together with the negative associations 

observed with BCFAs (where the association was much stronger in IGT), this 

suggests mitochondrial dysfunction leading to IGT. Unlike IGT, the IFG appears to 

be negatively associated with many acylcarnitine species, indicating that a rise in 

fasting glucose, without a mitochondrial dysfunction or muscle insulin resistance 

would rather result in complete FAO without accumulation of these intermediary 

metabolites. 

 

Metabolic modelling and approaches to risk prediction 

Metabolic risk scores generated from lipidomic data contain information about 

metabolic dysregulation of lipid metabolism and hence we hypothesized that these 

scores will improve upon traditional risk factors to predict the risk of developing T2D. 

Due to the impracticability of an OGTT test and that 2h-PLG is a stronger predictor of 

all-cause mortality, the generation of a metabolic score for 2h-PLG using fasted 

plasma samples is an attractive solution to improve risk assessment for T2D. 

Conventional multivariate models (typically a combination of anthropometric 

measures, family history, clinical lipids and fasting blood glucose) capture some 

aspects of lifestyle and to a lesser extent genetic predisposition. Glucose 

measurements or HbA1c rely on detecting the early changes (i.e. insulin resistance) 

leading to T2D and so have a more restricted predictive capability. However, the 

inclusion of a metabolite profile to traditional markers has been shown to improve 
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model performance in several studies (60-62). Recent studies in using polygenetic 

risk scores (63, 64) observed little benefit when fasting glucose is included in these 

models. Our approach demonstrates not only improvements over a multivariate 

model that includes fasting glucose, but HbA1c as well. 

 

One key benefit of the generation of metabolic scores, rather than modelling the 

outcome directly, is the increased power from modelling for a continuous variable 

across larger sample sizes. Modelling against the outcome directly would utilise all 

lipids to try to capture a signature from a small number of samples in this instance (n 

< 300). A further advantage is that the lipidomic models for the glucose measures 

likely capture a combination of genetic and environmental effects driving metabolic 

dysregulation that is in turn driving the progression towards T2D. In contrast the 

glucose measures themselves are likely a reflection of these processes and so have 

less predictive capacity. Consequently, this approach resulted in marked 

improvement to AUC and NRI over conventional clinical models. 

 

Strengths and limitations  

We were able to characterise many more lipid species in this data set, improving 

upon our original 259 species (34) to over 700 in this large population-based sample. 

With improved separation, additional structural detail can be inferred from 

fragmentation experiments performed on the same chromatography. While this 

approach also has its limitations, it provides improved detail to aid in interpretation of 

results. 

 

Despite the large sample size, and high coverage of the plasma lipidome, the results 

presented here are from a single cohort. An external validation cohort, particularly 

from another demographic, would enable us to confirm the added benefit of plasma 

lipids in identifying individuals at risk of future T2D onset. Moreover, the Ausdiab 

suffers from the normal healthy volunteer bias (i.e where people who participated on 

average are likely to be healthier than people who don't). While we identified quite 

striking associations between the plasma lipidome and T2D, the role of lipids in T2D 

still remains to be fully elucidated. Identifying whether any of the lipids associated 
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with T2D fall within causal pathways and whether modulation of these species are 

able to prevent the onset of T2D and its complications needs further investigation. 

 

Conclusion 

Type 2 diabetes is a complex and heterogeneous disease. Early intervention has 

been demonstrated to reduce the burden of disease complications. Using a 

combination of a well phenotyped population-based cohort with comprehensive 

lipidomics profiling, we were able to map out the lipidome associated with 

prediabetes and T2D. The identification of different biological pathways between IFG 

and IGT better defines the dysregulation of lipid metabolism associated with the 

disease aetiology, potentially offering more specific treatment approaches. Lastly, we 

demonstrate that the lipidome obtained from fasting plasma, provides improvements 

in identifying individuals at risk of future T2D onset over conventional measures.  
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Chapter 8. General discussion  

Preface  

The major objective of my PhD thesis was to perform a comprehensive targeted 

lipidomic analysis using state-of-the-art LC-MS/MS technology and examine the 

relationship between the plasma lipidome and cardiometabolic risk factors (age, sex, 

BMI, insulin resistance) and type 2 diabetes. We generated a comprehensive plasma 

lipidomic dataset in a large population-based cohort with well-phenotyped metabolic 

risk factors and disease outcomes. This was supplemented with two additional 

datasets: a smaller healthy cohort and a second population-based cohort that 

provided validation of our findings. The lipidomic datasets served to (i) to define 

dysregulation of lipid metabolism associated with health risk at the population level 

and (ii) act as a resource for future studies. Below, the major findings, main 

strengths, implications, limitations of this thesis and future directions of the work are 

discussed.   

 

Overview of the major findings 

The central hypotheses of this project was that the comprehensive examination of 

the human plasma lipidome is useful to identify new markers associated with 

cardiometabolic risk factors and outcomes. In chapter 3 of this thesis, we examined 

at the relationship between lipid species and common cardiometabolic risk factors 

including age, sex, BMI using a comprehensive plasma lipidomic dataset in two large 

population-based cohorts. We also explored the effect of smoking and menopause 

associated with perturbation in lipid metabolism and the role of lipid ratios in 

dissecting enzymatic pathways associated with cardiometabolic risk. In chapter 4, 

the association of the plasma lipidome with IR and the response to an OGTT was 

evaluated in healthy young adults. In the fifth and sixth chapters, we explored the 

lipidomic profiles of obesity to gain insight into the metabolic drivers of obesity and 

provide metabolic measures of obesity that are shown to be better predictors of 

disease risk. Finally, in the seventh chapter we elucidated that the changes in the 

plasma lipidomic profile precede the clinical onset of T2D and are useful to predict 

five year incident T2D. 
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Sex-differences in lipid metabolism 

We initially hypothesized that lipidomics would provide important insight into the 

dysregulation of lipid metabolism associated with cardiometabolic disease and the 

interactions with age and sex. The large population-based samples utilized in the 

present studies enabled us to perform sex-stratified analyses and reliably define sex-

related differences in lipid metabolism. Thus, one of the major finding of this thesis 

was the characterization of novel sex-specific lipidomic signatures of age and BMI 

which were validated on an independent cohort (chapter 3). We found that the 

plasma lipidome is highly sex-specific as published in chapter 3. Having identified 

the strong association of lipid metabolism with sex, we subsequently performed sex-

specific analyses in assessing the association of lipid species with obesity (chapter 

3), insulin resistance (chapter 4) and changes in obesity (chapter 5).  

 

The difference between the sexes is one of the fundamental factors responsible for 

biological variation (1). Therefore, it is not surprising as men and women differ in 

several key aspects of metabolism in addition to their sex hormones. Sex differences 

in glucose and energy metabolism (2-4), the transcriptome (5) and the microbiome 

(6) are well recognized. Such sex-disparity is often overlooked in biomedical 

research including metabolomics studies. Until recently, many clinical and preclinical 

studies have been conducted in males only; while extrapolating the findings from one 

sex to the whole population (7). The potential consequence of this is a failure to 

discover sex-specific physiological processes which in turn leads to missing 

opportunities in identifying novel sex-specific disease control and therapeutic 

strategies in the era of precision medicine. There are several potential mechanisms 

leading to sex differences in lipid metabolism. These include, but are not limited to:  

 

1) Differences in enzymatic activities. For instance, in the sphingolipid 

biosynthetic pathway, FADS3 was recently discovered to be responsible for 

introducing a double bond at omega-4 position of sphingoid bases (i.e, converting 

the d18:1 to d18:2 sphingoid bases) (8). The expression of FADS3 was significantly 

higher in women, thus, sex-differences in sphingolipid levels, particularly those 

related to the d18:2 species are likely driven by the action of this enzyme (8). In 

support of this, we have observed higher d18:2 to d18:1 ratios for all sphingolipids in 
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women with a significant p-gain. In chapter 3 of this thesis we have also highlighted 

the importance of using lipid ratios in these association studies to dissect lipid 

metabolic pathways and identify enzyme activities. Using the p-gain statistic, 

computed as described previously (9),  we report that the ratio between two lipid 

concentrations carries more information than the two corresponding metabolite 

concentrations alone. Metabolite ratios can represent a proxy measure for enzyme 

activity. Lipid pairs provide superior information compared to individual lipids in the 

association with a given outcome (9, 10).  

 

2) Influence of sex hormones. One of the reasons for the exclusion of females in 

clinical and preclinical studies has been the belief that there is a significant variability 

in biological processes in females attributable to differences in sex hormones (11). 

Failure to include both sexes in clinical studies potentially leads to ignorance of the 

role of sex-hormones in disease pathophysiology. Several mechanisms exist by 

which hormones can drive sex differences in metabolic regulation. For instance, 

sexual dimorphism in estrogen signalling partly explains difference in physiological 

processes in adipose tissue, liver and muscle (12). Estrogen promotes insulin 

sensitivity and reduces the risk of T2D in premenopausal women compared to men 

(13). Moreover, sex difference in triglyceride metabolism is well recognized and is 

partly mediated by estrogen signalling (14). Estrogen has also been shown to induce 

Phosphatidylethanolamine N-methyltransferase (PEMT) leading to a shift in the PC 

acyl species (15). Of note female mice relative male mice have been shown to 

generate higher phosphatidylcholine via the PEMT pathway (16). Earlier studies 

have also highlighted that there is a link between estrogen signalling and peroxisome 

proliferation (17, 18) which may explain some of the sex-related differences in lipid 

biosynthesis. Estrogen also upregulates the hepatic synthesis of long-chain 

polyunsaturated fatty acids (LCPUFAs) via ELOVL5 regulation (19). Isotope labelling 

studies with U-(13)C α-linolenic acid (ALA) has revealed a substantial increase in the 

conversion rate of ALA to n-3 (omega-3) LC-PUFAs in women than in men (20); 

foetal demand for lipids during pregnancy appear to be met by these adaptations.  

Moreover, sex hormones may affect important mediators of lipoprotein metabolism 

such as Apolipoprotein E (apoE) and lipoprotein lipase (LPL). Upon the 
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overexpression of these genes, sex-specific response to high cholesterol diet and 

atherosclerosis have been demonstrated (21, 22).   

 

3) Gut microbiota. The human gut microbiome is a complex and dynamic totality of 

microbial biomass consisting 10–100 trillion microorganisms in the gastrointestinal 

tract (GIT) (23). Recent reports uncover a substantial difference in gut microbiome 

between male and female mainly in mice (24, 25) and this in turn influences sex 

dimorphism in metabolism and metabolic health (26). While, the microbiome 

influences several metabolic processes including obesity, glucose homeostasis and 

lipid metabolism (25, 26), the mechanism of sex-specific microbiome composition 

and how this might modify lipid metabolism is not well known. Baars et al. showed 

that, the microbiome modulated bile acid metabolism in male and female differently 

(26) suggesting that the microbiome contributes to sex-disparity in lipid metabolism. 

One of the potential mechanisms for the variation of gut microbiome between sexes 

have been suggested to be the difference in obesity and fat distribution between 

male and female. Recently, Min et al. have demonstrated sex-specificity in the 

association of microbiome composition and fat distribution (25) suggesting that there 

is a complex interplay between the microbiome and gender which potentially alters 

susceptibility to cardiometabolic diseases in male and female.   

 

4) Difference in muscle mass and fat distribution. In general, men have a 

significantly higher skeletal muscle mass than women (27), while women have a 

significantly greater percent fat mass (28). Fat distribution and fatty acid kinetics in 

men and women contribute to sex-specificity in substrate metabolism (29). 

Importantly, these sex-related differences modify susceptibility to cardiometabolic 

disorders in men and women.  For instance, in age and BMI matched analyses, men 

tend to display a higher visceral adipose tissue and hence are at higher risk to 

cardiovascular disease relative to women (28). 

 

5) Difference in dietary intake between men and women  

One of the considerable sex-specific differences constitutes dietary intake. For 

instance, women compared to men tend to eat more sugar and total fat and 

carbohydrate (that exceeded dietary recommendations). In contrast, men have been 
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shown to achieve the minimum recommended intake amount  for polyunsaturated fat 

and total carbohydrate (30). Evidence from earlier study also shows that 16:1n-7 is a 

biomarker of long term consumption of carbohydrate (e.g. low fat/high carbohydrate 

diets) (31).  Thus, during lipogenesis, the palmitate flux and substrate mass action 

could be responsible for some of the shifts in lipid species. Understanding the sex-

specific dietary preferences and the outcome on lipid metabolism can potentially lead 

to new insight into the differential impact of diet on health in women and men.  

In summary, the key factors driving sex-specific lipid metabolism are related not only 

to sex hormones but to the microbiota, enzyme activity, body composition, and diet 

and life style factors. Understanding the interplay between these factors and sex-

specific lipid metabolism can potentially lead to new insight into the mechanisms of 

disease. 

 

Common pathways perturbed in obesity, IR and T2D  

We identified many common pathways altered in same direction in obesity (chapter 

3), IR (chapter 4) and type 2 diabetes (chapter 7). These common pathways span 

several lipid classes/subclasses within the categories: sphingolipids, phospholipids 

and glycerolipids. As it was hypothesized initially, a strong perturbation in the 

lipidome was found in hyperinsulinemia and insulin resistance among young adults 

with no known diabetes.  We report in chapter 3, simple sphingolipids such as 

dihydroceramide were increased with BMI in adults. The same trend was observed 

in IR among young adults (chapter 4) and T2D (chapter 7). SM and complex 

glycosphingolipids generally show strong negative association with diabetes (both 

prevalent and incident) in older adults (chapter 7), but interestingly did not show 

significant associations with measures of insulin resistance in young healthy people 

(chapter 4). These differences could be due to differences in sample size, age 

composition and health status of participants. The study on the association of lipids 

and IR (chapter 4) was based on young and apparently healthy adults (18-34 years 

old) with a relatively smaller sample size (n=241) compared older adults (>=25 

years, n=10, 339) in the AusDiab. Thus, it is likely that SM and complex 

sphingolipids such as hexosylceramides and gangliosides could be markers of 

glucose dysregulation (such as in prediabetes) and established T2D rather than 

insulin resistance per se, as we did not observe significant changes in these 
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metabolites among young adults. However, the possible age effect should also be 

considered.      

 

Glycerolipids (triacylglycerol and diacylglycerol species) were also found to be 

independent markers of several outcomes (obesity, IR and T2D). We have 

consistently observed the positive association of glycerolipids, independent of their 

acyl chain component, with all the three cardiometabolic conditions namely: obesity 

(chapter 3), insulin resistance (chapter 4) and T2D (chapter 7) particularly before 

accounting for clinical lipids. However, most of these associations were significantly 

attenuated upon adjusting for clinical measures of total cholesterol, triglyceride and 

HDL cholesterol levels. This is partly due to the fact that diacylglycerol and 

triacylglycerol classes are closely correlated with clinical triglycerides. Still, there 

were many triacylglycerol species that remain significantly associated with obesity, 

IR and T2D after adjusting for clinical lipid/triglyceride levels suggesting the 

importance of the fatty acid composition of the TG species when investigating the 

underlying associations with health and disease. Of note, the positive association of 

TG species containing saturated and monounsaturated fatty acids with BMI (chapter 

3) and T2D (chapter 7) was evident after controlling for clinical triglycerides.  

 

The specific mechanisms related to an increase in plasma triacylglycerol levels in 

obesity, IR and T2D remain unclear. However, the increase in free fatty acids (FFAs) 

is likely to be a major contributor. Interleukin 6 (IL-6) and TNF-α observed in obesity 

and insulin resistance are strongly associated with elevated FFAs (33). IL-6, aside 

from regulating immune functions, has been shown to stimulate secretion of 

triglycerides in the liver subsequently inducing hypertriglyceridemia (34). Similarly, in 

metabolic conditions, TNF-α stimulates lipolysis resulting in elevated circulating 

FFAs (35). The rise in circulating FFAs means that more can enter into cells and get 

re-esterified raising triacylglycerol levels (36). We also observed an increase in 

phosphatidylethanolamine (PE), with insulin resistance, BMI and T2D before 

controlling for clinical lipids. The associations with measures of IR such as HOMA-IR 

and the iAUC were lost when adjusting for clinical measures of cholesterol, 

triglyceride and HDL cholesterol levels. However, many PE and other phospholipid 

species remain associated with both BMI and T2D independent of the clinical 
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measures of cholesterol, HDL-C and triglycerides. These, associations also highlight 

the fatty acid composition dependence. 

 

Phospholipid species containing the methyl-branched chain and odd chain fatty 

acids (OCFAs) such as 15-methylhexadecanoic acid (15-MHDA) were negatively 

associated with BMI (chapter 3) and T2D (chapter 7). A similar finding (negative 

association with odd and branched chain fatty acids with BMI) has been reported 

previously in a smaller set of the AusDiab cohort (37). It is generally proposed that, 

the decrease in branched and odd chain fatty acids in plasma is related to an 

increase in branched chain amino acid (BCAA) levels due to reduced mitochondrial 

catabolism. Increase in plasma BCAA levels during IR, obesity (38-40) and T2D (40-

42) have been consistently reported. BCAAs constitute leucine, isoleucine, and 

valine that are essential amino acids derived from proteinaceous foods. Many 

enzymes exist in the mitochondria that are able to catabolise BCAAs (43). These 

include mitochondrial branched-chain amino-transferase (mBCAT) which is 

responsible for the conversion of BCAAs to branched-chain alpha-ketoacids 

(BCKAs). The branched-chain alpha-ketoacid dehydrogenase (BCKDH) then 

catalyses oxidative decarboxylation of branched alpha-keto acids to form 

odd/branched chain fatty acids endogenously. While even chain fatty acids arise 

from the de novo lipogenesis (with acetyl-CoA as a starting material), the source of 

OCFAs other than ruminant fats or dairy was until recently unclear (44, 45). 

Although, considered to be biomarkers of dietary intake (45-47), the OCFAs such as 

15:0 and 17:0 could be derived from  endogenous biosynthetic pathway either 

through the mitochondrial catabolism of BCAAs; i.e from valine and isoleucine 

derived propionyl-CoA (48) or via peroxisomal α-oxidation, particularly for the 17:0 

(49). Thus, a mitochondrial dysfunction associated with impaired BCAA catabolism 

could be linked to lower levels of odd or branched chain fatty acids observed in 

obesity and T2D. Indeed, a study has shown that hypoxia associated with metabolic 

conditions such as obesity suppresses mitochondrial BCAA catabolism and 

subsequently leads to substantially lower levels of mmBCFAs (50). Understanding 

the potential endogenous biosynthetic pathways for OCFAs and mmBCAAs and the 

connection between BCAA metabolism and lipid metabolism leads to better 

characterization of the metabolic basis of disease pathogenesis.  



219 
 

The tight associations observed between the lipidome and obesity (both with cross-

sectional and longitudinal measures) has inspired us to further investigate the 

metabolic phenotyping of BMI. Consequently, in chapter 6, we derived a metabolic 

BMI score from the lipidomic dataset and this informed about the metabolic drivers of 

cardiometabolic risk.  We report that the metabolic BMI residuals explained the risk 

of diabetes and CVD independent of the measured BMI (chapter 6). Genetics have 

never shown the expected level of correlation with BMI variability (explains <3% of 

BMI variability) (51). Only few genetic defects such as mutations in the melanocortin 

4 receptor (MC4R) has been linked to extreme obese phenotype (52). However, 

such gene defects are rare and therefore, unlikely to be useful in obesity risk 

assessment in the general population. Instead, the metabolite readouts seem to 

carry better information about BMI compared to the genetic profile. This suggests the 

potential use of metabolic BMI to assess obesity and the associated metabolic 

complications. Indeed, the metabolic BMI residuals tend to predict diabetes and CVD 

independent of measured BMI. One of the potential explanation for this could be the 

fact that the mBMI score essentially captures metabolic dysregulation associated 

with cardiometabolic disorders and hence carries additional information upon BMI. 

These observations provide an important insight into the role of mBMI for 

characterization of cardiometabolic risk in large population cohorts. Of particular 

interest, individuals with the same BMI but having a significantly different mBMI were 

identified. As such, individuals having higher mBMI than BMI compared to those 

having lower mBMI than BMI were found to have higher risk of diabetes and CVD. In 

line with our initial hypothesis, multivariate models including metabolic scores 

derived from lipid species showed improvements in the AUC, sensitivity and 

specificity upon the existing risk models in predicting the 5-year risk of incident T2D 

(chapter 7). These models have the potential to distinguish individuals who are at 

higher risk of progressing to T2D independent of the commonly used measures such 

as FBG, PLG and HbA1c both in the high risk population  and among individuals with 

baseline fasting blood glucose of <6.1mmol/L. The implications further to the 

lipidomic profiling would provide insight into the metabolic drivers and consequences 

of obesity and provide metabolic measures of obesity that will be better predictors of 

disease. 
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Implications of the findings 

The results in this thesis have several implications which span clinical medicine and 

public health. Firstly, the profound age and sex-dependent alteration in the plasma 

lipidome as reported in chapter 3 has implications for future large epidemiological 

studies: 1) The age and sex specific patterns may be important and this may lead to 

better phenotyping for precision medicine; 2) Revisit study designs in large scale 

metabolomics studies separately for men and women and or older and younger 

populations. Although, many age and sex-specific association studies have been 

documented (53-56), these had been predominantly based on small set of 

metabolite/lipid classes/subclasses or species.  3) Highlight the importance of age 

and sex disparity in the dysregulation of lipid metabolism and associated metabolic 

diseases. Consequently, the findings call for sex-stratification during biomarker 

discovery and establishing reference materials and selecting individuals for clinical 

trials. Indeed, evidence shows that the burden of metabolic disorders such as 

obesity, diabetes and CVD differ significantly between men and women. Secondly, 

as outlined in chapter 4, altered lipid metabolism occurs not only among those with 

established disease but among apparently healthy young adults with 

hyperinsulinemia and IR. This warrants intervention in young individuals. Detection 

of such metabolic perturbations in young people enables timely intervention to 

prevent lipid induced metabolic complications such as T2D and CVD in later life. 

 

Thirdly, the findings in chapter 5 showed a strong relationship between baseline lipid 

metabolism and risk of gaining WC or BMI over 5 years, suggesting that individuals 

with a specific metabolic phenotype at baseline might be at greater risk of increasing 

their WC or BMI. Consequently, groups of individuals can be targeted for intervention 

to prevent future WC or weight gain and associated metabolic consequences. The 

results in chapter 6 indicate that the lipidome can be utilized to derive a metabolic 

BMI score; a measure that mirrors the metabolic dysregulation associated with 

health risk. Metabolic BMI gives insight into the metabolic health status of individuals 

independent of the measured BMI. Thus, it provides additional information upon BMI 

in order to identify individuals at greater risk of metabolic diseases and stratify 

people into clinically relevant phenotypes for personalized intervention. The findings 

in Chapter 7 showed a significant heterogeneity in the lipidome of IFG and IGT which 
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has implications for the stratification and diagnosis of different subtypes of glucose 

impairments for personalized management of diabetes. Finally, the models including 

metabolic scores derived from fasting samples substantially improved upon FBG and 

HBbA1C to predict the onset of T2D and these findings have implications for 

screening people who are at high risk of future T2D without the need to perform 

technically demanding tests such as the OGTT. 

 

Major strengths of this thesis 

This thesis has several strengths. Firstly, we utilized the largest population-based 

cohorts in Australia: the AusDiab study (n=10,339) as a discovery and the BHS 

(n=4,492) as a validation cohort. Both cohorts are rich sources of well phenotyped 

outcomes and clinical covariates (chapter 3, 5, 6, 7). Consequently, we have 

performed a comprehensive plasma lipidomic analysis to define and understand lipid 

biology and metabolism at a population level including sex-stratified analyses with a 

reasonably high statistical power. Secondly, we used high-throughput LC-MS/MS 

methodology measuring over 700 lipid species. This improved lipidome coverage 

(compared to smaller set of lipids reported in literature) enabled us to identify new 

species associated with health and disease which have not been previously 

reported. Thirdly, the longitudinal study design of the AusDiab study allowed for the 

assessment of the temporal relationship between baseline lipidomic profile and 

changes in obesity during five year follow up (chapter 5) and incident type 2 diabetes 

(Chapter 7).  

 

Potential limitations of the present studies 

Despite the unprecedented advances in separation techniques and analytical 

platforms such as mass spectrometry, the current lipidomic studies suffer from 

several limitations that need to be overcome. One of the limitations in high coverage 

lipidomic methodology is the potential of isomeric overlaps which could affect 

associations with some outcomes. To overcome this, either the chromatographic 

gradient can be improved or different adducts or ionization systems could be 

adopted to selectively monitor these isomers, although this would likely impact on 

the coverage and high-throughput nature of the analyses. The other limitation is 

related to the source of plasma lipids. The plasma lipidome reflects a highly dynamic 
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and concerted effect of multi-organ system involved in the synthesis, breakdown, 

storage and distribution of lipids. While the bulk of lipids measured by mass 

spectrometry are derived from the lipoprotein particles, the origin for many atypical 

lipid species (for instance those of odd or branched chain fatty acids) is unclear. Last 

but not the least, the targeted lipidomic approach used here has a limited potential to 

discover new compounds, although it is ideal for understanding and validation of 

existing lipid biomarkers. 

 

Lipidomic studies are largely hypothesis generating. The exact mechanisms and 

causal pathways leading to the observed alterations in lipidomic profiles associated 

with cardiometabolic risk factors and diseases outcomes need to be determined in 

in-vivo or in-vitro models. However, the validity of the cross-sectional associations 

observed in the AusDiab cohort is tested on independent cohort such as the BHS. 

Moreover, the use of lipid pairs such as lipid ratios rather than a single lipid, provided 

information that is a proxy for mechanistic studies. Lipid ratios can be used as a 

surrogate for enzymatic activity, and hence identify specific enzyme activity 

responsible for changes in lipids associated with disease risk. We have also 

examined whether baseline lipid levels predict longitudinal measurements such as 

changes in WC or BMI or incident type 2 diabetes. Although, these might not 

necessary reflect a casual pathway. Last but not the least, the AusDiab suffers from 

selection bias and the participants may be healthy and more educated that the 

general population. 

 

Despite these limitations, the robust high-throughput targeted lipidomic approach 

(measuring 747 lipid species) on large population-based cohorts (with a size of 

10,339 people in the AusDiab and 4,492 in the BHS) represents the largest study in 

the lipidomics field. Such large cohort studies offered statistical power and are 

crucial to identify and validate candidate biomarkers with confidence.  

 

Future directions 

The findings in this project raise interesting future possibilities for “–omics” research. 

While the lipidomic methodology used in this project was sensitive enough to 

separate a wide range of molecular lipid species, it is still open to further 
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improvements. Of note, the current HPLC column (Agilent, 100mm x 2.1mm, 1.8m 

C18) could be replaced by a longer column to ensure a greater resolution. The 

mobile phase flow rates and or solvent composition and run time can also be 

modified and tested if these result in better separation of molecular isomers. Longer 

run time compared to shorter run time (keeping all other conditions constant) yields 

cleaner peaks and detailed structural features contributing to the overall data quality, 

although this might not be suitable for large sample sizes. 

 

Combining both targeted and untargeted lipidomic approaches in future studies 

could offer opportunities for both the discovery of novel compounds and 

determination of their relative concentration in biological samples to facilitate 

breakthroughs in understanding the role of lipids in disease and health. Untargeted 

lipidomics focuses on all the possible detectable lipids in including those previously 

unknown. But targeted lipidomics involves measurement of known/ previously 

defined lipids. Merging these two approaches is achievable (57). It is also possible to 

combine the lipidomics with metabolomics so that a wider range of metabolites 

including the polar and non-polar lipids can be analysed (58). 

 

The identification of the strong association of the lipidome with disease outcomes 

and risk factors in this thesis is a key step for future studies to further dissect the 

direct mechanisms leading to the alteration of lipid levels in health and disease.  

Moreover, the results of the present studies inform future studies about the potential 

application of large scale lipidomic analysis to identify lipid biomarkers for diagnosis, 

prognosis and prediction of disease risk. In future, it is also possible that lipids 

associated with disease outcomes could be targeted for therapeutic benefit to 

prevent the progression and or onset of metabolic diseases.    

 

Conclusions 

High-throughput lipidomic analysis of large epidemiological cohorts offers an 

opportunity to identify novel lipidomic fingerprints in health and disease but also 

shape our understanding of the biology of lipid metabolism at a population setting. 

Utilizing two large population-based cohorts, we identified lipid signatures of age, 

and obesity that differ by sex: findings signifying the need to define sex-specificity in 
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the dysregulation of lipid metabolism associated with metabolic disorders. Further to 

this, the lipid alteration associated with IR seen among young adults without overt 

clinical outcomes suggest that metabolic perturbations occur prior to the onset of 

disease outcomes such as T2D. By extending our studies to longitudinal outcomes, 

we report plasma lipidomic signatures associated with changes in WC and in BMI 

over 5 years. These findings provide insight into the baseline metabolic phenotype 

associated with risk of increasing WC and or BMI.  

 

Having observed a profound perturbation of lipidome in obesity, we derived a 

metabolic BMI (mBMI) score using the lipidomic dataset. The mBMI mirrors the 

dysregulation in lipid metabolism associated with health risk. Using this score, we 

identified individuals having comparable BMIs but different mBMI displayed different 

metabolic health risk profile. This approach is important for phenotyping risk in large 

cohorts, selecting individuals for clinical trials and has implications for personalized 

medicine. Finally, we extend the metabolic score concept to show that models 

containing metabolic scores directly derived from lipid species show improvements 

upon traditional risk factors to predict the onset of T2D. These findings not only 

assist in identifying those individuals at a higher risk of developing diabetes for 

targeted intervention, but also shed light on dysregulation in lipid metabolism 

associated with the pathogenesis of T2D. 
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Appendix 

Appendix I.  Chapter 3. Supplementary Tables and Data 

Chapter 3. S1 Data. Numerical data underlying figures and supplemental figures. 

https://doi.org/10.1371/journal.pbio.3000870.s037     

Chapter 3. S1 Table. The correlation structure between all lipid species in the whole cohort  

(men and women combined). 

https://doi.org/10.1371/journal.pbio.3000870.s020  

Chapter 3. S2 Table. The correlation structure between all lipid species in men. 

https://doi.org/10.1371/journal.pbio.3000870.s021 

Chapter 3. S3 Table. The correlation structure between all lipid species in women. 

https://doi.org/10.1371/journal.pbio.3000870.s022 

Chapter 3. S4 Table. Differences in the Pearson's correlations (men relative to women) for 

all lipid species. 

https://doi.org/10.1371/journal.pbio.3000870.s023 

Chapter 3. S5 Table. Validation of the association between sex and lipid species. 

https://doi.org/10.1371/journal.pbio.3000870.s024 

Chapter 3. S6 Table. Characteristics of women participants. 
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Chapter 3. S7 Table. Validation of the association of BMI with lipid species. 
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Chapter 3. S8 Table. Association of BMI with lipid concentration ratios. 

https://doi.org/10.1371/journal.pbio.3000870.s027 

Chapter 3. S9 Table. Association of plasma phospholipid fatty acid composition with BMI, 

age, or sex. 

https://doi.org/10.1371/journal.pbio.3000870.s028 

Chapter 3. S10 Table. Association of age with lipid concentration ratios. 
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Chapter 3. S11 Table. Association of sex with lipid concentration ratios. 
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Chapter 3. S12 Table. Association of sphingolipid ratios with BMI, age, or sex. 
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Chapter 3. S13 Table. Association of the d182:1/d181 sphingoid base ratios with BMI, age, 

or sex. 

https://doi.org/10.1371/journal.pbio.3000870.s032 

Chapter 3. S14 Table. Association of the PE(P)/PE(O) ratios with BMI, age, or sex. 

https://doi.org/10.1371/journal.pbio.3000870.s033 
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Chapter 3. S15 Table. SwissLipids identifiers for lipid species. 

https://doi.org/10.1371/journal.pbio.3000870.s034 

Chapter 3. S16 Table. Characteristics of study participants. 

https://doi.org/10.1371/journal.pbio.3000870.s035 

Chapter 3. S17 Table. MRM transitions and conditions for examined lipid species. 

MRM, multiple reaction monitoring. 
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Chapter 3. S1 Data. Numerical data underlying figures and supplemental figures. 
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