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I  Abstract 

Abstract 

 

Tunnel boring machine (TBM) is one of the widely used equipment in tunnel 

construction, although TBM has many advantages over drilling and blasting method, 

its poor adaptability to geological conditions has always been the main problem it faces. 

Moreover, with the increase of the tunnel service life, the tunnel will face a series of 

safety problems, such as water leakage and cracks of tunnel lining, which will 

seriously affect the safety and life of the tunnel and cause irreversible damage.  

Therefore, this thesis focuses on the application of deep neural networks in 

underground projects, referring to some classic performance prediction frameworks, 

convolutional neural network (CNN) network and characteristics, proposes using the 

deep learning-based algorithm on recurrent neural network (RNN) to predicted the 

performance of tunnel boring machine and convolutional neural network to detect 

defects of the underground tunnel.  

The Long Short-Term Memory (LSTM) algorithm is applied to the prediction of TBM 

performance. LSTM is a prediction method based on RNN which uses the gate system 

to control the hidden layer and improve the prediction accuracy. The hyperparameters 

in the LSTM model are optimized to achieve better prediction results for TBM 

operating parameters, the average prediction accuracy is increased by 7%. Based on the 

existing TBM operation data, the improved LSTM machine learning method can 

effectively predict the TBM tunnelling parameters. The mean absolute percentage errors 

(MAPE) are less than 12% and the fitting degree 𝑅2  is greater than 0.89, which has 

relatively high prediction accuracy and can provide guidance for the parameter selection 

of TBM during the stability excavation section.  

The Faster Regional convolutional neural network (Faster R-CNN) and the YOLOv3 

(You Only Look Once version 3) are applied to the detection of TBM lining cracks. 

Faster R-CNN is a two-stage method of object detection that uses regional proposals 

to achieve higher detection accuracy. However, the detection speed of the algorithm 

cannot satisfy the real-time monitoring requirement. Therefore, the YOLOv3 is 

applied to the detection of TBM lining cracks. The algorithm of the YOLO series is a 

typical representative algorithm based on the one-stage method, and the characteristics 

of the one-stage method are it has a relatively faster detection speed compared with 



Keywords  II 

the two-stage. Both of the algorithms are optimized according to the characteristic of 

cracks and the detection accuracy of R-CNN and YOLO are 0.88 and 0.84, 

respectively. In addition, to test the robustness of the algorithm, noise is added to the 

test image set. The results of detection show that compared with YOLO, the R-CNN 

algorithm has better robustness when facing images of tunnel cracks containing noise, 

and expect to have better working performance in the underground tunnel. 
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1  Introduction 

 Introduction 

 

 Research Background and Significance 

With the development and population growth of the metropolitan area, ground 

transportation is becoming more and more congested. As a part of urban traffic, the 

underground tunnel greatly relieves the pressure of surface traffic and plays a 

significant role in the modern transportation system. 

Tunnel boring machine (TBM) is one of the widely used equipment in tunnel 

construction, it has many advantages over conventional tunnelling methods (e.g., 

drilling and blasting method), such as fast excavation speed, environment friendly 

construction and continuous (non-cyclic) operation. However, its poor adaptability to 

geological conditions and high dependence on rock mass parameters has always been 

the main problem it faces. If the excavation plan hasn’t adjusted effectively and on 

time once the geological condition change, the TBM failure may occur, cause 

unpredictable loss. Therefore, the adaptable adjustment of TBM to optimized the 

operating status for preventing potential damage to TBM has become a research focus. 

Since the prediction of tunnel geological conditions is still challenging before 

excavation, the prediction of important TBM operating parameters plays an important 

role in the research on TBM adaptable adjustment. Accurate prediction of TBM 

performances is required for time planning, cost control and choice of excavation 

method in order to make tunnelling economical. The TBM performance prediction is 

certainly a broad topic, both of the TBM operating parameters and the rock mass 

parameters are going to significantly affect the prediction results. The successful 

prediction could make underground tunnelling excavation economical and prevent 

potential hazards. However, the various parameters of TBM have a complex 

relationship, which is difficult to create a simple mathematical model. Fortunately, 

neural networks offer an alternative tool for establishing the relationship between 

different parameters. 

Moreover, after the tunnel construction is completed and opened to traffic, with the 

increase of service life, the quality of the tunnel will inevitably suffer from the erosion 

and damage of external forces and natural factors, resulting in the hidden dangers such 

as cracks, seepage, peeling and other defects. Defects arising in the tunnel are 
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inevitable, therefore it requires inspection of tunnels and discovers defects in time to 

repair them. In the early period, the routine inspection of tunnels mainly relies on 

manpower, however, it has servals disadvantages such as low detection efficiency, 

strong subjectivity, low accuracy, high labour cost, the unfavourable working 

environment of labour, etc. With the rapid development of computer technology, many 

technologies based on computer vision and image processing emerge, the research of 

tunnel defects detection is gradually changing from the traditional non-destructive 

detection technology to the detection and recognition based on image processing. The 

existing machine learning based algorithms have good recognition performance on the 

simple crack image while it requires intervention and empirical judgment by experts. 

Moreover, the underground tunnel has inadequate working conditions for electronic 

devices such as high temperature, cold weather, high humidity and the image collect 

from the site may experience uneven illumination cause lots of noise exist on graph 

while the lining has complex texture features. Those factors lead it is difficult to 

achieve higher accuracy of defects recognition and to meet the industrial requirement 

for field application. Therefore, it is necessary to have an intelligent and efficient way 

to detect the defects of tunnels.  

Recently, deep learning represents the state of the art of artificial intelligence, which 

has successfully been applied to different aspects such as image recognition, text 

translation, natural language processing, etc., and achieves huge success. The 

conventional machine learning based image detection and recognition methods have 

been gradually replaced by more intelligent and effective deep learning algorithms. 

Deep learning is the further development of the artificial neural network. By pre-

training the neural network layer by layer, the feature expression of different levels 

can be learned, and the feature expression of each layer is obtained through the 

previous expression propagation, then all the layers are composite to form a deep 

convolutional neural network. Compared with the conventional machine-learning and 

image classification algorithm, the deep convolutional neural network has superior 

performance in parameter prediction and image classification. It is suitable for 

processing of a large amount of data, which is not only can be used TBM operating 

parameters prediction but also could be used in the detection of tunnel complex defects 

for underground projects. 
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 Research Aim and Objects 

Therefore, this thesis focuses on the application of deep neural networks in 

underground projects, referring to some classic performance prediction frameworks, 

convolutional neural network (CNN) network and characteristics, proposes using the 

deep learning-based algorithm on recurrent neural network (RNN) to predicted the 

performance of tunnel boring machine and CNN to detect defects of the underground 

tunnel. The main contents of this thesis are as follows: 

1. The Long Short-Term Memory (LSTM) algorithm is applied to the prediction of 

TBM performance. LSTM is a prediction method based on RNN which uses the 

gate system to control the hidden layer and improve the prediction accuracy. The 

results show that LSTM accurately predicted the performance of TBM. 

2. The Faster Regional convolutional neural network (Faster R-CNN) is applied to 

the detection of TBM lining cracks. Faster R-CNN is a two-stage method of object 

detection that uses regional proposals to achieve higher detection accuracy. 

However, the detection speed of the algorithm cannot satisfy the real time 

monitoring requirement. In order to test the robustness of the algorithm, noise is 

added to the test image set. The result shows that the Faster R-CNN algorithm has 

better robustness when facing images of tunnel cracks containing noise, and expect 

to have better working performance in the underground tunnel.  

3. The YOLOv3 (You Only Look Once version 3) algorithm is applied to the 

detection of TBM lining cracks. The algorithm of the YOLO series is a typical 

representative algorithm based on the one-stage method, and the characteristics of 

the one-stage method are it has a relatively faster detection speed compared with 

the two-stage. the parameters in the algorithm are adjusted to suit of detect small 

objects such as cracks. The test results show that the improved algorithm has better 

detection accuracy than before, and the detection speed could satisfy the real-time 

detection requirements. In addition, the noise is added to the test image set for 

testing the robustness of the algorithm. The results show that the YOLO algorithm 

has poor performance when processing images of tunnel cracks with noise. 
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  Thesis Outline 

In this thesis, the application of deep learning in TBM operating parameters prediction 

and defects detection during tunnel maintenance is proposed. The remainder of this 

thesis is organized as follows. The next four chapters have a logical progression, but 

they may be read independently.  

Chapter 2 introduces the basic knowledge about TBM, the development of deep 

learning and its application in underground engineering. 

Chapter 3 is the establishment of the TBM operating parameters prediction model and 

its application on operating parameters prediction. The LSTM model based on RNN 

is established for TBM operating parameters prediction. 

Chapter 4 is the application of tunnel defects detection based on two stage object 

detection algorithm and an extra robustness test of the model. The two-stage 

algorithm-based R-CNN model is established to detect the cracks in concrete walls. 

Moreover, the artificial noises are added to the test sets to verify the robustness of the 

model. 

Chapter 5 is the application of tunnel defects detection based on one stage object 

detection algorithm and an extra robustness test of the model. The two-stage 

algorithm-based YOLO model is established to detect the cracks in concrete walls. 

Moreover, the artificial noises are also added to the test sets to verify the robustness of 

the model. 

Chapter 6 is the conclusion and future work. 

Figure 1.1 demonstrates the thesis structure. 
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Figure 1.1 Thesis structure 
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 Literature Review 

 

 Empirical TBM Performance Prediction Model 

Tunnel boring machine (TBM) is underground engineering equipment (Nelson, 1983, 

Bruland, 2000) that integrates the functions of tunnelling, guidance, support, mucking, 

ventilation, transportation, etc (Zhao et al., 2007a). TBM has fast excavation speed 

and safe and reliable construction quality compared with traditional drilling and 

blasting methods (Rostami and Ozdemir, 1993), which can greatly shorten the project 

period. Figure 2.1 demonstrates the structure and components of TBM. 

 

 

Figure 2.1 Structure and components of TBM (Herrenknecht) 

 

TBM can be divided into two main types according to the different structure of the 

machine. According to its different application scenarios, it can be divided into two 

major types: One is shield machine which is using segment lining to support the tunnel, 

and the other is open type tunnel boring machine that can excavate rock geology that 

without segment lining support (ITA, 2000). The specific classification of TBM is 

shown in Figure 2.2. and Table 2.1 summarize the specific classification of TBMs and 

its application scenarios. 
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Figure 2.2 Classification of TBM  

 

 

Table 2.1 Classification of TBM, modified type, suitable grounds and support structures 

TBM 

Type 

Common 

Name 

Modified Type (Note) Suitable Ground  Tunnel Support 

Non-

Shield 

Gripper  
 

Competent rocks Bolt, shotcrete, 

wiremesh, steel set 

Shield EPB 

Shield 

 
Clayey-silty soils Segmental lining 

EPB Mix-Shield (with 

roller cutters) 

Clayey soil-rock 

mixed 

Slurry 

Shield 

 
Sandy-gravelly soils 

Slurry Mix-Shield (with 

roller cutters) 

Sandy soil-rock 

mixed 

Open 

Face 

Shield 

(Often with mechanical 

face support) 

Firm soils 

Open Mix-Shield (with 

roller cutters) 

Firm soil-rock mix 

Double 

Shield 

(Mix of gripper with any 

shield type) 

Soil-rock mix 

Multi-

Mode 

Shield 

(Mix of EPB, slurry and 

open modes) 

Clayey-sandy-firm 

soils 

Note. EPB=Earth Pressure Balance. 

 

 

TBMs

Open

Shield

Gripper TBM

EPB Shield TBM

Slurry Shied TBM

Open Face Shield TBM

Double Shield TBM

Multi-Mode Shield TBM

(Herrenknecht)

(Herrenknecht)

(Robbins)

(Herrenknecht)

(Herrenknecht)

(Robbins)
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Generally, the shield machine uses scrapers to excavate soft soil, and the focus point 

is the ground subsidence and the instability of the working face. While the hard rock 

tunnel boring machine uses the disc cutters to excavate the rock, and the key problem 

to be addressed is the excavation efficiency (Rostami and Ozdemir, 1993, Barton, 1999, 

Benardos and Kaliampakos, 2004).   

The TBM is generally composed of two parts, the rear supporting system and the main 

engine system (Bruland, 2000, Yagiz and Karahan, 2011). The principle of hard rock 

TBM excavating tunnel is (Gong et al., 2006, Ghasemi et al., 2014, Zhao, 2006): when 

the TBM excavates the tunnel, the cutter head continuously rotates, and the disc cutters 

on the cutter head continuously cut the rock under the action of the propulsion force 

provided by the propulsion system. Each disc cutter creates a circular cutting track of 

different sizes on the face of the tunnel, and the rock will continuously broke and fallen 

off by the disc cutters and turns into slag (Bruland, 2000). The stone slag will be 

automatically collected, sent to the main belt conveyor by the slag shovel device on 

the cutter head, then the stone slag transported to the auxiliary belt conveyor of the 

supporting system through the main belt conveyor, and transported to the slag truck 

(Herrenknecht, CRCHI, CREG, Robbins). When the driving rod of the propulsion 

system reaches a certain length, the TBM will stop excavation, and the rear supporting 

system will move forward. The driving force of the propulsion system is provided by 

the friction between the boot and the wall of the tunnel. At present, TBM has been 

widely used in tunnel excavation, mining, water conservancy and hydropower projects 

(Li et al., 2017). 

Tunnel boring machine (TBM) is one of the widely used equipment in tunnel 

construction, it has many advantages over conventional tunnelling method (e.g., 

drilling and blasting method), such as fast excavation speed, environment friendly 

construction and continuous (non-cyclic) operation (Rostami and Ozdemir, 1993, 

Barton, 1999, Bruland, 2000, Gong et al., 2006, Zhao et al., 2007b, Li et al., 2017). 

However, its poor adaptability to geological conditions and high dependence on rock 

mass parameters has always been the main problem it faces. If the excavation plan 

hasn’t adjusted effectively and on time once the geological condition change, the TBM 

failure may occur, cause unpredictable loss. Therefore, the adaptable adjustment of 

TBM to optimized the operating status for preventing potential damage to TBM has 

become a research focus. Since the prediction of tunnel geological conditions is still 
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challenging before excavation, the prediction of important TBM operating parameters 

plays an important role in the research on TBM adaptable adjustment. Accurate 

prediction of tunnel boring machine (TBM) performances are required for time 

planning, cost control and choice of excavation method in order to make tunnelling 

economical. 

However, TBM has poor adaptability to geological conditions and high dependence 

on rock mass parameters has always been the main problem it faces (Li et al., 2017, 

Zhang et al., 2019). If the excavation plan hasn’t adjusted effectively and on time once 

the geological condition change, the TBM failure may occur, cause unpredictable loss. 

Therefore, the adaptable adjustment of TBM to optimized the operating status for 

preventing potential damage to TBM has become a research focus. Since the prediction 

of tunnel geological conditions is still challenging before excavation, the prediction of 

important TBM operating parameters plays an important role in the research on TBM 

adaptable adjustment. Accurate prediction of tunnel boring machine (TBM) 

performances is required for time planning, cost control and choice of excavation 

method in order to make tunneling economical. 

The prediction of TBM operating parameter has been studied for many years and 

various predictive model has been developed. The existing prediction model could be 

divided into theoretical and empirical models (Sapigni et al., 2002). Among the 

Colorado School of Mines (CSM) model proposed by Rostami and Ozdemir (1993) is 

the most typical theoretical model (Rostami, 1997, Hassanpour et al., 2011). The 

model is based on the rock strength index, the cutter spacing and the corresponding 

grooving depth to estimate the TBM penetration rate. Table 2.2 summarizes the 

advantages and disadvantages of different types of models for performance prediction 

of hard rock TBMs. 
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Table 2.2 Advantages and disadvantages of different types of models for performance prediction of 

rock TBMs (Rostami, 2016) 

Model types  Advantages Disadvantages 

Theoretical  Flexible with cutter geometry 

and machine specifications 

Unable to easily account for rock mass 

parameters 

Can be used in trade-off 

between thrust and torque and 

optimization 

Lack of accounting for joints  

Can be used for cutter head 

design and improvements  

Can be off by a good margin in jointed 

rock 

Can explain the actual working 

condition of the discs and 

related forces 

Inability to account for required field 

adjustments 

Empirical Proven based on observed field 

performance of the TBMs in the 

field 

Lower accuracy when used in cases 

when input parameters are beyond what 

was in the original field performance 

database 

Accounts for TBM as the whole 

system  

Many of field adjustments are 

(i.e., average cutter conditions) 

implied 

Unable to account for variations in cutter 

and cutter head geometry, i.e. cutter tip 

width, diameter, spacing, gage 

arrangement 

Ability to account for rock joints 

and rock mass properties 

Extremely sensitive to rock joint 

properties 

 

However, the laboratory test is difficult to simulate the geological conditions of the 

rock mass comprehensively and accurately at the excavation site, while the prediction 

error usually exceeds the requirement (Gong et al., 2006, Zhao et al., 2007b). 

Compared with the theoretical model, the establishment of the empirical model is 

generally based on a large volume number of field measured data, the factors 

considered are more comprehensive, and the prediction accuracy is higher under 

similar stratum conditions, thus occupying the mainstream of performance prediction 

research (Yagiz and Karahan, 2015). Early empirical models were based solely on a 

single rock mass strength index and presented empirical expressions of TBM 

performance indicators (Graham, 1976, Farmer and Glossop, 1980, Hughes, 1986). 
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Table 2.3 summarizes the different model of TBM operation parameters predictions 

by the empirical method. 

 

Table 2.3 Different models of TBM operation parameters predictions by the empirical method 

Method Applications Parameters Model Reference 

Empirical 

method 

Penetration rate Mechanical data and 

Geological Data 

CSM (Rostami and Ozdemir, 

1993) 

Penetration rate Mechanical data and 

Geological Data 

NTNU (Bruland, 2000) 

Penetration rate Mechanical data and 

Geological Data 

SRMBI (Gong and Zhao, 2009) 

Penetration rate Mechanical data and 

Geological Data 

NTNU (Benato and Oreste, 2015) 

Penetration rate Mechanical data and 

Geological Data 

HC (Liu et al., 2017) 

Penetration rate 

Advance rate 

Mechanical data and 

Geological Data 

Qtbm (Barton, 1999) 

Field Penetration 

Index (FPI) 

Mechanical data and 

Geological Data 

RMR (Khademi Hamidi et al., 

2010) 

Field Penetration 

Index (FPI) 

Mechanical data and 

Geological Data 

Regression 

Analysis 

(Hassanpour et al., 2011) 

Note. CSM= Colorado School of Mines, SRMBI= Specific Rock Mass Boreability Index, NTNU= 

Norwegian University of Science and Technology, HC= Hydropower Classification, RMR= Rock Mass 

Rating. 

 

Researchers have successively proposed complex models with multiple factors. a 

series of empirical relationships on TBM excavation performance based on a large 

number of on-site measured data are proposed by Bruland of the Norwegian University 

of Science and Technology (NTNU), through regression analysis of rock mass 

parameter and TBM data (Bruland, 2000). P.P.Nelson divided the field collected data 

into four databases according to the detailed data, and used the probabilistic method to 

simulate the operating parameters of the TBM,  and then established a probability 

model to predict the construction performance of the TBM (Nelson, 1983). Gong and 

Zhao (2009) combining the rock mass conceptual model for evaluating rock mass 

boreability with the established database, a statistical prediction model of TBM 

penetration rate is set up by performing a nonlinear regression analysis. In addition, 

empirical models with rock mass grades as input parameters have also been widely 
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used, such as Qtbm, Rock Mass Rating (RMR) (Barton, 1999, Khademi Hamidi et al., 

2010). These models are generally created on the grounds of knowledge acquired and 

information collected from previous tunnelling projects to derive the complicated and 

non-linear connection between the TBM operating parameters and the parameters of 

rock mass affecting. Table 2.4 summarizes the different models of TBM performance 

prediction. 

 

Table 2.4 Different models of TBM performance prediction 

 
Example Advantages Disadvantages 

Simple models (Graham, 1976) •Easy to apply •Might underestimate due to 

lack of joint parameters 

•Limited range of application 

Multiple 

parameters 

models 

CSM (Rostami and Ozdemir, 

1993, Rostami, 1997), NTNU 

(Bruland, 

2000), QTBM (Barton, 1999) 

•Accounting for both rock 

mass and TBM parameters 

•Relying on good database 

•Several parameters 

•Complex relationships 

•Using uncommon tests 

Probabilistic 

models 

(Laughton, 1998) •Accounting for randomness 

and approximation 

•Lack of detailed information 

from a like-case tunnel 

Computer-aided 

models 

Neural network models 

(Alvarez Grima, 2000, Zhao 

et al., 2007b, Gong and Zhao, 

2009) 

•Relying on good database •Complex underlying structure 

•Over fitting 

•Usually not available in public 

domain 

 

With the development of TBM, there are dozens of kinds of data directly collected by 

TBM through sensors, including a variety of parameter types that have a great 

influence on the tunnelling speed, such as total thrust, penetration, cutterhead speed 

and cutterhead torque. The reasonable use of these data has become a key issue. 
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 Machine Learning Based TBM Performance Prediction 

Model 

Correlation analysis of TBM operating parameters and prediction of advance speed is 

an important research topic of TBM excavation, among them, the selection of 

geological parameters, mechanical parameters and operating parameters of TBM 

could significantly influence the excavation efficiency of TBM (Yagiz and Karahan, 

2011, Wang et al., 2012, Li et al., 2017, Liu et al., 2017, Gong and Zhao, 2007). During 

the excavation period, the sensors installed on TBM record massive operating data of 

TBM, however, due to the existing model could not utilize such a huge data set, thus 

a large number of field excavation data are sealed up, resulting in waste. Compared 

with the conventional methods, machine learning can effectively use a large amount 

of data as training sets, so that the field collected data can be utilized without being 

wasted (Zhao et al., 2007b, Yagiz and Karahan, 2011, Zhang et al., 2019, Gao et al., 

2020, Wei et al., 2020). Moreover, compared with the conventional methods, machine 

learning has higher training efficiency, which means it has potential higher prediction 

accuracy. 

Artificial intelligence originally proposed in the 1950s (Rosenblatt, 1958), refers to the 

idea of the neural network from the biological model of the human brain, the brain is 

made up of an infinite number of neurons, each of which plays its own role. a series 

of neurons are used to simulate the neural network structure of the human brain which 

is the artificial neural network. It was constructed by heuristic simulation of the human 

brain mechanism, and researchers used computer code to realize this network structure. 

The artificial neural network is based on the mechanism of simulating the information 

transmission of neurons in the human brain. Biological studies show that the synaptic 

part of neurons is the key to information transmission, and the activity of information 

transmission between two neurons is positively correlated with the connection 

intensity of the synapses between them. The smallest unit of an artificial neural 

network is a single neuron. Figure 2.3 shows the structure of different neural networks. 
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(a) Perceptron (b) Feed Forward 

  

(c) Deep Feed Forward (d) Back propagation 

Figure 2.3 Structure of different neural networks (Lipton, 2015) 

 

The artificial neural network is divided into three parts which are the input layer, the 

hidden layer and the output layer (Rosenblatt, 1958, LeCun et al., 2015, Lipton, 2015). 

Every single layer has a series of neurons that are not connected to each other in the 

same layer while the hidden layer can have multiple layers. The network extracts the 

feature of expression from a large amount of input data through the hidden layer to 

cope with different tasks for the data processing required in the application.  

Machine learning uses algorithms to analyse data, train from it, then make decisions 

and predictions based on previous data (Hinton et al., 2012). Different from the 

traditional software programs to solve specific tasks, machine learning uses a lot of 

data to "train" and uses various algorithms to learn how to complete tasks from the 

data. In terms of learning methods, machine learning algorithms can be divided into 

supervised learning (such as classification problems), unsupervised learning (such as 

clustering problems), semi supervised learning, integrated learning, deep learning and 

reinforcement learning. 

Perceptron

Input Output

Feed Forward

Input Hidden Output

Deep Feed Forward

Input Hidden Output

Back Propagation

Input Hidden Output

Back 

propagation
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At present, with the development of artificial intelligence technology, a large number 

of machine learning methods are widely used to deal with the regression relationship 

between rock mass conditions and operating parameters to establish TBM 

performance prediction models, such as the artificial neural network (ANN) (Eftekhari 

et al., 2010, Mohammadi et al., 2015, Afradi et al., 2019), particle swarm optimization 

(PSO) (Yagiz and Karahan, 2011), Support Vector Machine (SVM) (Mahdevari et al., 

2014, Fattahi and Babanouri, 2017, Afradi et al., 2019) and Fuzzy Logic (FL) 

(Ghasemi et al., 2014, Yagiz and Karahan, 2015). The above machine learning models 

have been verified by engineering and have practical value in engineering. Table 2.5 

summarizes the method of the TBM performance prediction model. 

 

Table 2.5 Different model of TBM operation parameters predictions by conventional machine 

learning 

Method Applications Parameters Model Reference 

Conventional 

Machine-

Learning 

Penetration rate Mechanical data and 

Geological Data 

ANN (Eftekhari et al., 2010) 

Penetration rate Mechanical data and 

Geological Data 

ANFIS (Alvarez Grima et al., 2000) 

Penetration rate Mechanical data and 

Geological Data 

ANN, SVM (Afradi et al., 2019) 

Penetration rate Mechanical data and 

Geological Data 

ICA-ANN, 

PSO-ANN 

(Armaghani et al., 2017) 

Penetration rate Geological Data Fuzzy Logic (Ghasemi et al., 2014) 

Penetration rate Mechanical data and 

Geological Data 

ANN/fuzzy 

logic 

(Yagiz and Karahan, 2015) 

Penetration rate Geological Data PSO (Yagiz and Karahan, 2011) 

Penetration rate Geological Data ELM (Shao et al., 2013) 

Penetration rate Mechanical data and 

Geological Data 

SVR (Mahdevari et al., 2014) 

Penetration rate Geological Data Random 

Forests 

(Tao et al., 2015) 

Penetration rate Geological Data Bayesian 

inference 

(Adoko et al., 2017) 

Penetration rate Geological Data SVR (Fattahi and Babanouri, 2017) 

Note. ANN = Artificial Neural Network, ANFIS= Adaptive Neuro Fuzzy Inference System, SVM= 

Support Vector Machine, ICA= Imperialist Competitive Algorithm, PSO= Particle Swarm Optimization, 

ELM= Extreme Learning Machine, SVR= Support Vector Regression.  
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 Inspection of TBM Segments Defects  

During TBM tunnel excavation, precast concrete segment linings are be used for lining 

and supporting (Herrenknecht). Because the tunnel excavation radius is larger than the 

segment support radius, there is a gap between the surrounding rock and the lining 

segment support. After the tunnel is in contact with the surrounding rock, the lining 

segment and surrounding rock bear the surrounding rock pressure (Zhou et al., 2019, 

Gall et al., 2018). Therefore, the tunnel lining will appear irreversible cracks with the 

increased service life of the tunnel. The seemingly insignificant minor cracks may 

lead to major safety hazards, directly affect the operation of the underground 

transport, and even lead to life and property safety threats when serious accidents 

occur. Therefore, it is necessary to detect cracks efficiently and accurately. Figure 

2.4 demonstrates the tunnel lining in underground tunnel construction by TBM. 

 

  

(a) Tunnel lining segments (b) Segments assemble by TBM 

  

(c) Constructed tunnel by TBM (d) Cracks on lining 

Figure 2.4 Tunnel lining in underground tunnel construction by TBM (RailProjectVictoria) 
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The current research on detection and recognition of TBM tunnel lining cracks can be 

divided into two categories. One is the fixed crack detection method based on 

deformation data (Li et al., 2015), another is a crack detection method based on image 

processing (Davoudi et al., 2018). In most fixed crack detection methods, the sensor 

that collects crack deformation data is installed directly on the tunnel, certain 

algorithms are used to evaluate them to obtain the current situation of crack 

propagation and the damage level once the corresponding data are detected. This 

method requires installing the sensor in the tunnel and it is resources consuming, 

therefore the engineers proposed methods based on computer vision for cracks 

detection. Cracks detection methods based on computer vision do not need to install 

any sensors in the tunnel, it usually builds a mobile platform with cameras and light 

sources to collect the image set of tunnels. Certain algorithms are used to recognize 

and locate the feature of cracks in the image (Jiang et al., 2019). The advantage of the 

method is it has higher detection efficiency compare with the fixed crack detection 

method and less financial cost. 
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 Conventional Machine Learning Object Detection 

Method 

In the early period, the routine inspection of the tunnel mainly relies on manpower. 

This rather intrusive way of inspection not only places workers in great danger but 

can also result in subjective and low-precision observations. Therefore, the vision-

based inspection that assists operators with advanced optical devices to record the 

conditions via images or videos and analyse with computer-based techniques has 

been greatly promoted (Attard et al., 2018). 

The vision-based crack identification methods can be roughly divided into two 

main categories, the conventional machine learning based algorithm (Gall et al., 2018) 

and the novel deep learning-based algorithm. The conventional algorithm is generating 

bounding boxes by selective search method to extract features, then the classifier is 

used to identify the objects in the image and classify the cattery of the objects. The 

deep learning-based algorithm has a powerful ability of feature extraction and 

classification. The disadvantage of it is that it contains a large number of parameters 

and complex network structures, and the model training is time consuming and 

requires large computing power. Therefore, it is necessary to use high-performance 

computing platforms and massive data sets to assist the learning and training of neural 

networks. 

Traditional machine learning can be dividing into three steps (LeCun et al., 2015, Dalal 

and Triggs, 2005). Firstly, using the selective search method to acquire the object in 

the image and generate the bounding boxes. Then, a specific algorithm is used to 

extract the features of the object for analysis and comparison. Finally, the features of 

the object are feed into the pre-trained classifier to indicate the category of object and 

mark the position of the object.  
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2.4.1  Bounding Box Generate. 

Figure 2.5 shows the process of conventional machine learning based object detection 

method 

 

 

Figure 2.5 Process of conventional machine learning based object detection method 

 

The first step in the machine learning method is to select the object area in the image 

and generate a bounding box. There are serval methods for generating bounding boxes 

such as selective search (Uijlings et al., 2013), sliding windows (Zitnick and Dollár, 

2014), etc. Considering that the object may appear in any region of the image and its 

size and aspect ratio are not fixed, it is necessary to set a specific scale proportion to 

improve the accuracy of different objects. The sliding window is a common method to 

detect the target object in the image in the machine learning algorithm due to its 

versatility. Figure 2.6 shows the process of the sliding window method. 

 

 

 

Figure 2.6 Process of sliding window method 
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First, the input image is divided into different sizes of the window, then the pre-trained 

classifier is used for classification. Each window will be scored by the classifier in 

order to estimate the probability of the object existing in the window. For instance, if 

the current window has a high classification probability, which is higher than a certain 

threshold, it is considered that the target object has been detected, a prediction box will 

be generated. When there are numbers of windows, more similar prediction boxes may 

be output on the same object. To make the results more concise, the similar prediction 

bounding boxes can be remove but leave one unique detection box by using the non-

maximum suppression (NMS) (Hosang et al., 2017) method. However, the 

disadvantage of the sliding windows is it using the method of similarity exhaustion to 

search subregions of an image, which most subregions are not contained objects. As a 

result, the method is time-consuming and inefficient which not ideal for real time 

object detection. 

2.4.2  Feature Extraction 

Different objects often have different forms and are susceptible to light conditions, 

noise and background effects, it is hard to have a feature extract method that works for 

all objects which makes it difficult to design a feature that works for all objects. 

Therefore, different features extract method should be designed according to the actual 

detection scenarios and requirements. Common feature extractor includes Scale-

invariant feature transform (SIFT) (Lowe, 1999), Histogram of Oriented Gradient 

(HOG) (Dalal and Triggs, 2005), Haar-like (Papageorgiou et al., 1998), etc. 

SIFT is a classic feature extract method (Lowe, 1999) which uses the difference of 

Gaussian function to build different scale spaces for detecting the feature points under 

these scales, while the local feature points are being processed. It has a very high 

tolerance for image rotation change, illumination brightness change and other 

interfering factors, and can reduce the impact of object deformation during processing. 

Therefore, the SIFT method has excellent robustness when facing interference.  

HOG is a feature extraction method that has better performance on extract partial 

information of object shape which ideal for boundary extraction (Dalal and Triggs, 

2005). The process of HOG is the image normalized to adjust the uneven brightness 

in the image at the initial stage, then the image is divided into different cell units to 

calculate its gradient histogram. In the final stage, the results are combined into the 



21  Literature Review 

feature and the features represent the input image. HOG method focuses on the 

gradient information of the image and has a certain tolerance for some other 

interference factors. For example, it can allow a certain degree of geometric and optical 

deformation of the image, and also resist the influence of illumination and noise. 

Usually, the HOG method is combined with the SVM classifier which has excellent 

performance on pedestrian detection. 

The Haar-like method is proposed by Papageorgiou (1998), which is a feature 

extraction method based on the grayscale of the image. The feature of the object 

is described according to the change of the grayscale between different pixel points 

in the image and it is usually used on face recognition.  

2.4.3  Classifier 

In object detection, there are many conventional classifiers with different emphases. 

Classifiers play an important role in distinguishing the object and the non-object and 

the selection of classifiers determines whether the object can be quickly and accurately 

distinguished according to the image features. Therefore, it is very important to select 

the appropriate classifier for the specific object detection application. 

Common classifiers including Naive Bayes (Ravindran et al., 2013), decision tree 

(Quinlan, 1986), random forest (Tin Kam, 1995), Adaboost (Freund and Schapire, 

1999), support vector machine (SVM) (Cortes and Vapnik, 1995), etc. Both of them 

have their own advantages and disadvantages in different application scenarios. For 

instance, The SVM is mainly used to classify the data sets, the method finds a partition 

hyperplane and separates the samples into different categories. It can be used for multi-

class text classification, text recognition and segmentation and other scenarios. The 

decision tree method is based on the tree structure to determine the input data. and 

based on tree decision it processes the data and output the probability for the potential 

outcome. Usually, it used in business aspects such as stock market and lottery market 

to provide the recommendation to customers. 

2.4.4  The Activation Function of the Neural Network 

Activation function, also known as excitation function, is an important part of the 

neural network. It is used to perform a linear or nonlinear transformation on the 

input data. Generally, the only non-linear activation function is used in the neural 

network due to the final expression would turn to linear if the linear function is 
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used which limited function expression. Therefore, it is necessary to use nonlinear 

activation function to function mapping to the data which could improve the 

expression ability of deep neural networks and it can theoretically approach any 

function. 

Most neural networks are optimized by some form of gradient descent, and 

activation functions need to be differentiable. In addition, complex activation 

functions may cause some gradient disappearance or explosion problems. 

Therefore, neural networks tend to deploy several specific activation functions to 

avoid problems. Figure 2.7 demonstrates four common activation functions in the 

neural networks. 

  

(a) (b) 

  

(c) (d) 

Figure 2.7 Common activation function (a) Sigmoid. (b) Tanh. (c) ReLU. (d) Leaky ReLU 
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1. Sigmond 

The sigmoid function, also known as the logistic function, has an output range of 

(0,1) for any input. The equation is:  

1
( )

1 z
Sigmond z

e−
=

+
                                                      (2–1) 

Sigmoid is very much like a smooth version of the step function.  

It has many advantages: 

1. It's non-linear. 

2. Unlike binary output, sigmoid can input any value between 0 and 1 which can 

be used to represent the probability. 

3.  The output value of sigmoid is in a certain range, which means that it does not 

output infinite numbers. 

However, the sigmoid activation function also has disadvantages, when the input 

value is infinity close to 1 or 0, the gradients disappear would happen which means 

the network stop learning from data. And another disadvantage of the sigmoid is it 

using the exponent arithmetic which is computation consuming. 

2.Tanh Function 

Tanh or hyperbolic tangent is another activation function that commonly used in 

deep neural networks. Similar to the sigmoid function, it also converts the input to 

an output range. For any input, the tanh will produce a value between -1 and 1. 

The equation is: 

( )
z z

z z

e e
Tanh z

e e

−

−

−
=

+
                                                     (2–2) 

The tanh activation function is similar to the sigmoid function. It is a nonlinear 

function and the output is in a range, where it is (-1, 1). Also, it has the same 

drawbacks as sigmoid such as the problem of the gradient disappearing, and it also 

consumes large computation when performing exponent arithmetic. 
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3. ReLU Function 

ReLU as the most popular activation function in CNN dut to it is efficient. When 

processing for any input is less than 0, the output would be 0 while other input value 

does not change. The equation is: 

( ) max(0, )ReLU z z=                                                   (2–3) 

ReLU is a non-linear activation function and is faster than sigmoid and tanh 

(Krizhevsky et al., 2012). In addition, ReLU is known for avoiding the gradient 

vanishing problem. However, ReLU has a fatal flaw called "dying ReLU ". Dying 

ReLU is the permanent death of neurons in a network due to their inability to function 

in forwarding propagation. Specifically, this problem occurs when the activation 

function of neurons outputs zero in forwarding propagation, resulting in a zero gradient 

for its weight. Thus, when performing backpropagation, the weights of the neurons 

will never be updated and specific neurons will never be activated. 

4. Leaky ReLU Function 

In order to solve the phenomenon of dying ReLU, the Leaky ReLU is proposed, the 

output of this function has a small slope to the negative input. Since the derivative is 

always non-zero, this reduces the presence of dying neurons, allows gradient-based 

learning, and solves the problem of neurons not learning when the ReLU function 

enters a negative range. 
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 Methods Based on Traditional Image Processing 

Under the category of image processing, researchers have done a lot of research on the 

effectiveness of various algorithms for tunnel defect recognition. Some researchers use 

simple classical image processing methods such as image segmentation and 

morphological processing to process defects images, while others use complex 

theories such as wavelet transform, NSCT algorithm and machine learning based on 

mathematical theories. The research on various algorithms are summarized as follows: 

Attard (2018) proposed a detection method that combining the difference of 

neighborhood image, binary pixel comparison and optical flow method, which can 

detect the defects of tunnels and predict the propagation of cracks. 

Muduli (2013) designed an improved crack detection algorithm based on image fusion. 

For cracks image boundary detection, the improved canny operator and HBT were 

used to detect the boundary of the image contain defects. Then, Haar wavelet is used 

to decompose and the image fusion algorithm is used to the unified fusion for reduce 

the sensitivity of background noise, enhanced boundary effect and adapt to crack 

image features to improve the detection accuracy of cracks detection. It has a better 

performance compared with other boundary detection methods, however, when the 

image interfered by the noise, the detection accuracy of the algorithm would decrease. 

Lee (2008) proposed an efficient recognition method based on computer vision for 

concrete bridge cracks. The median filter is used to filter the image noise, and the 

isolated noise points are filtered, then the morphological corrosion operation with 

multiple iterations is used to ensure the connectivity between the crack’s segmentation 

areas. Through this processing, the connected cracks information is obtained. The 

fracture tracking method is based on the 8 of the points of the pixel intensity in the 

neighbourhood to determine the position of the next pixel point according to the 

direction of the minimum intensity. This algorithm has better performance for single 

crack identification, but has poor performance for multiple cracks. 
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 Deep Learning 

With the development of artificial intelligence, the concept of deep learning is 

proposed. Deep learning is not an independent learning method (Hinton et al., 2012, 

Krizhevsky et al., 2012, LeCun et al., 2015), it also uses supervised and unsupervised 

learning methods to train the deep neural network. However, due to the rapid 

development of this field in recent years, some unique learning methods (such as the 

residual network) have been proposed (He et al., 2016), therefore more researchers 

regard it as a learning method alone. 

The original deep learning was a learning process that used deep neural networks to 

solve the problem of feature expression. Deep neural network itself is not a new 

concept, which can be roughly recognized as a neural network structure containing 

multiple hidden layers. In order to optimize the training effect of the deep neural 

networks, the connection method and activation function of neurons need to adjust 

according to the specific tasks. There were many ideas in the early period during 

artificial intelligence, but due to insufficient training data and low computing capacity, 

the result could not satisfy the requirement. Figure 2.8 shows the relationship between 

artificial intelligence, machine learning and deep learning.  

 

Figure 2.8 Relationship between artificial intelligence, machine learning and deep learning 

(Goodfellow et al., 2016) 
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Machine learning has been researched for many years and various model has been 

developed for multiple purposes. Minsky and Papert (1969) developed the first 

practical model Perceptron which is the oldest neural network (Schmidhuber, 1992). 

Recently, due to the development of computational power and artificial intelligence 

technology, representational learning methods represented by deep learning, have 

gradually emerged recent years (Bengio and Delalleau, 2011). Compared with 

traditional machine learning, deep learning has many advantages such as strong 

adaptability and required less feature extraction (could self-feature extraction). It has 

been successfully applied in many information technology aspects, such as image 

classification (Maggiori et al., 2017), speech recognition (Hinton et al., 2012), natural 

language processing (Yin et al., 2017) and the time sequence analysis (Guo et al., 

2016). Although the architecture of deep neural networks is complex and widely used, 

most of them depend on some simple deep models, such as deep belief network (DBN) 

(Hinton et al., 2006), convolutional neural network (CNN) (LeCun et al., 2015), 

Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) and recurrent 

neural network (RNN) (Graves et al., 2013). Figure 2.9 demonstrates the brief history 

of machine learning.  

 

 

Figure 2.9 Belief history of machine learning 

 

1
9

5
8

1
9

8
5

1
9

8
9

1
9

9
5

1
9

9
7

2
0

1
2

2
0

1
3 NOW

Perceptron
• The oldest neural network still  

in use today.

Convolutional NN
• LeCun(1989)

LSTM
• Hochreiter&   

Schmidhuber(1997 )
Deep Neural Network

Back Propagation SVR 

Random Forest

Deep Belief Networks



Literature Review  28 

In 2012, Alex Krizhevsky (2012) designed the AlexNet neural network based on 

the convolutional neural network and won the ILSVRC challenge in the lmageNet, 

and the deep learning convolutional neural network began to be valued. 

CNN can iteratively learn feature expression from a large number of sample 

images. Its network units are divided into three categories, which are convolution 

layer, pooling layer and fully connected layer. The convolutional layer is used to 

extract image feature express. The pooling layer generally follows the 

convolutional layer and integrates the features extracted by the convolution in the 

previous layer, and extract the most representative features while reducing the 

parameters, in order to reduce the training time and enhance the network learning 

efficiency. Figure 2.10 shows the structure of CNN. 

 

 

Figure 2.10 Structure of CNN (Lecun et al., 1998) 

 

The fully connected layer is equivalent to the hidden layer in the artificial neural 

network and it is usually placed behind the convolution layer and the pooling layer 

to extract the features from the network for further analysed and obtain the 

corresponding concise expression, which acts as a "classifier" in the whole 

network. The CNN network structure (Hinton et al., 2012) has created three 

characteristics of CNN: Local receptive field, weight sharing and sub-sampling. 

CNN is one of the most advanced deep learning methods at present, showing great 

potential in natural language information processing such as speech, image, video, and 

text (Collobert and Weston, 2008, LeCun et al., 2015). Since AlexNet (Krizhevsky et 

al., 2012) achieved outstanding results in the ImageNet competition in 2012, deep 

learning has attracted attention in the industry and has been used in all walks of life 
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and demonstrated strong capabilities. In image processing, CNN networks such as 

Resnet (He et al., 2016) and U-Net (Graves, 2012, Ronneberger et al., 2015) have 

achieved significant results and successfully applied in areas such as security, 

transportation, medicine (Han and Ye, 2017), and finance (Sundermeyer et al., 2012) 

Figure 2.11 demonstrates the structure of Long-short term memory. 

 

 

Figure 2.11 Structure of LSTM (Hochreiter and Schmidhuber, 1997) 

 

LSTM is of variety Recurrent neural network (RNN) (Hochreiter and Schmidhuber, 

1997) while it is a class of artificial neural networks where connections between nodes 

form a directed graph along a temporal sequence. This allows it to exhibit temporal 

dynamic behaviour. Unlike feedforward neural networks, RNNs can use their internal 

state (memory) to process sequences of inputs. However, RNN faces the problem of 

gradient disappearance when training with backpropagation algorithms, which causes 

RNN to fail to capture long-term dependencies. LSTM changed the internal structure 

of RNN, introduced the door to control the input of information, and successfully 

solved the problem of RNN, which has become a mainstream architecture of RNN. 

Table 2.6 summarizes the different models of TBM operation parameters predictions 

by conventional machine learning. 
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Table 2.6 Different models of TBM operation parameters predictions by conventional machine 

learning 

Method Prediction Parameters Model Reference 

Deep 

Learning 

Based Method 

Penetration rate Mechanical data and 

Geological Data 

DNN (Koopialipoor et al., 2019) 

Penetration rate Mechanical data and 

Geological Data 

LSTM (Gao et al., 2020) 

Torque, Thrust, 

Penetration rate 

Mechanical data and 

Geological Data 

RNN (Gao et al., 2019) 

Field Penetration 

Index (FPI) 

Mechanical data and 

Geological Data 

DBN (Chen et al., 2020) 

Note. DNN= Deep Neural Network, LSTM= The Long Short-Term Memory, RNN= Recurrent neural 

network, DBN= Deep Belief Network. 

 

Some researchers apply the deep learning based algorithms on TBM operating 

parameters prediction. Koopialipoor (2019) build deep neural networks (DNN) model 

to predict the penetration rate of the TBM, and the DNN model demonstrated better 

performance for penetration rate estimation compared with the ANN model and. Gao 

(2020) propose using LSTM to predict the penetration rate of TBM, and the network 

model has the better overall performance especially in the rapidly increasing period of 

the penetration rate compared with RNN based model and traditional time-series 

prediction model autoregressive integrated moving average with explanation variables 

(ARIMAX), the overall performance on proposed model is better. Gao (2019)using 

three different varieties of RNN (including traditional RNN, LSTM networks and 

gated recurrent unit (GRU) networks) to predict the TBM penetration rate, torque and 

thrust. The experimental results show that the proposed three kinds of RNN-based 

predictors can provide accurate prediction values of some important TBM operating 

parameters during the next period including the torque, the velocity, the thrust and the 

chamber pressure. Compared with the conventional methods, the application of the 

deep learning algorithm could utilize more data hence improved the accuracy of 

prediction. 
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 Types of Object Detection Based on Deep Learning 

Because of the conventional methods cannot identify the specific objects in the image 

quickly and accurately, the conventional image processing methods are not very 

practical in defect detection. With the development of computer science, object 

detection algorithms based on deep learning have been further developed, which 

makes it possible to detect TBM lining defects by computer vision. 

Object detection is the process of recognizing and classifying a specific object in an 

image. Not only the category information of the object in the image needs to be 

obtained, but also the position information of the object should be pointed out. For the 

application of object detection on different objects, the shape, size, texture and other 

features of the object itself are different, and its position in the image is uncertain, so 

the detection performance on different objects is different.  

The object detection based on the deep learning method has many advantages over the 

conventional detection method. For instance, it has powerful feature extraction and 

learning ability, also it could achieve automatic object detection without manual 

extraction of features. The convolution neural network with the specific structure can 

achieve fast detection speed and high accuracy, which draws lots of attention in the 

research field of object detection. 

There are two main types of object detection algorithms based on deep learning. 

One is based on the two-stage detection algorithm, and another one is based on the 

one-stage detection algorithm. Specifically, the idea of the two stage detection 

method is to extract the bounding boxes that may contain objects at the initial stage 

(region proposal) and then conduct feature extraction and classification operations 

on these generated bounding boxes. R-CNN, Fast R-CNN, Faster R-CNN, etc 

(Girshick et al., 2014, Girshick, 2015, Ren et al., 2017) are object detection 

algorithm based on the two stage method.  

The idea of the one stage detection method is to directly perform regression 

processing by the neural network on the entire input image, outputs the prediction 

box and category information of the corresponding object in the image. YOLO 

series algorithm and Single Shot MultiBox Detector (SSD) (Liu et al., 2016, 

Redmon et al., 2016, Redmon and Farhadi, 2017) series algorithm is a typical base 



Literature Review  32 

on one stage end-to-end algorithm idea, which directly generate the bounding box 

of the objects in the image by using the regression method and get the category 

information at the same time, without using the method such as region proposal 

and sliding window to extract features, therefore it has faster detection speed. 

In general, the two-stage object detection algorithm usually has a high accuracy 

rate, because its focus is on processing the extracted candidate box, and it will 

often get a more accurate detection box while the single-stage object detection 

algorithm is faster, due to its focus is to get the position and category information 

of the detection box by "looking once" the input image through regression 

operation. 
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 Overview of Two Stage Object Detection Methods           

Because the background and foreground of the image has significant differences, while 

the condition of detection is relatively complex. The image may contain multiple 

interference sources, which is not suitable for the recognition of the entire image. 

Hence, the object detection method is more suitable for defect recognition and locating.       

At present, the object detection method based on deep learning can be divided into two 

ways. The first one is a two-stage algorithm represented by the R-CNN algorithm 

series. Those kinds of algorithms need to generate a large number of bounding boxes 

at the interested region during the initial stage, and then uses the detection branch 

network in the network structure to convolute and pooling the interested region. At the 

last stage, the classification network is used to identify the specific category of the 

object and the corresponding score value. Figure 2.12 shows the typical process of two 

stage algorithms. 

 

 

Figure 2.12 Typical two stage algorithm process 

 

In general, the two-stage object detection algorithms are more focused on the 

accuracy of detection, while the other method is a one-stage end-to-end algorithm 

represented by the YOLO series, which more focused on the speed of detection. 
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2.8.1  R–CNN 

In 2014, Girshick (2014) proposed the R-CNN algorithm, which surpassed the end-to-

end method OverFeat algorithm proposed by Yann Lecun at the same period, and its 

algorithm structure became the classic structure of the subsequent two stages algorithm. 

Figure 2.13 shows the process of R-CNN. 

 

 

Figure 2.13 Process of R-CNN (Girshick et al., 2014) 

 

R-CNN algorithm uses the selective search algorithm to evaluate the feature similarity 

of adjacent image subblocks, by scoring the similar image areas after merging, the 

candidate blocks of the region of interest are selected as a sample and input into the 

convolutional neural network structure, eigenvector is formed by positive and negative 

sample features composed of network learning candidate and calibration blocks, then 

the classifier designed by support vector machine is used to classify the eigenvector. 

Finally, the border regression operation is completed for the candidate and calibration 

blocks to achieve the object detection locating purpose. Although the R-CNN 

algorithm achieves 50% performance improvement compared with the traditional 

object detection algorithm, it has some drawbacks: The candidate blocks of positive 

and negative samples in the training network are generated by the conventional 

algorithm, which limits the speed of the algorithm. The convolutional neural network 

needs to carry out feature extraction for each generated candidate region at one time, 

which leads to a lot of repetitive operations, restrict the performance of the algorithm. 
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2.8.2  Spatial Pyramid Pooling Network (SPP-Net) 

To address the problem of repetitive operation in R-CNN architecture, in 2015, He 

(2015) proposed an algorithm called SPP-Net, by adding a spatial pyramid pooling 

structure between the convolutional layer and the fully connected layer to replace 

method in the R-CNN algorithm which the candidate blocks were clipped and scaled 

to make the size of the image subblocks consistent before the input of the convolutional 

neural network. Figure 2.14 shows the structure of the spatial pyramid pooling layer. 

 

 

Figure 2.14 Spatial pyramid pooling layer (He et al., 2015) 

 

The spatial pyramid pooling structure can effectively avoid the problem of incomplete 

clipping and shape distortion (He et al., 2015) caused by the R-CNN algorithm, more 

importantly, it solves the problem of repeated feature extraction of images by the 

convolutional neural network, greatly improves the speed of producing candidate 

blocks, and reduce the total amount of computation. However, the image size of the 

training data is not consistent with the R-CNN algorithm, which leads the candidate 

blocks to have a larger region of interest perception field, and the weight cannot be 

updated efficiently by using the backpropagation method.  
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2.8.3  Fast R-CNN 

To solve the problem of the SPP-net algorithm, Girshick (2015) proposed an improved 

algorithm called Fast R-CNN in late 2015. Based on the SPP-net algorithm structure, 

a pooling layer structure of Region of Interest (ROI) pooling is designed, which 

effectively solves the problem that the R-CNN algorithm must cut and scale the image 

area to the same size. Figure 2.15 shows the process of the Fast R-CNN. 

 

 

Figure 2.15 Process of Fast R-CNN (Girshick, 2015) 

 

The algorithm proposes the idea of the multi-task loss function, combines 

classification loss and border regression loss with unified training and learning, and 

outputs corresponding classification and border coordinates. Moreover, instead of 

requiring additional disk space to store features of the middle layer, gradients can be 

propagated directly through the region of interest pooling layer. However, it still does 

not solve the problem of generating positive and negative sample candidate blocks by 

the selective search algorithm.  
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 Overview of One Stage Object Detection Methods     

Due to the existence of RPN in network structure, the two-stage method represented 

by the R-CNN algorithm, although it has higher detection accuracy, its speed has 

encountered a bottleneck, and it is difficult to meet the requirements of real-time 

detection for the specific situation. Therefore, an object detection algorithm of one 

stage based on the regression method was proposed. Figure 2.16 shows the typical 

process of one stage algorithm. 

 

 

Figure 2.16 Typical one stage algorithm process 

 

Different from the step-by-step shared detection feature training of the two-stage 

method, the one-stage method can achieve complete single training sharing features 

and the detection speed is greatly improved under the premise of ensuring a certain 

accuracy. 
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2.9.1  OverFeat 

Yann Lecun (2014) came up with the famous OverFeat algorithm in 2013, it uses 

sliding windows and fixed size blocks to generate bounding boxes,  with the multi-

scale sliding window is used to increase the detection results to solve the problem of 

complex shape and the different size of objects in images. Finally, the convolution 

neural network and the regression model are used to classify and locate the object. 

Figure 2.17 shows the structure of OverFeat. 

 

 

Figure 2.17 Structure of OverFeat (Sermanet et al., 2014) 

 

For the first time, the object detection algorithm combines three computer vision tasks: 

classification, positioning and detection, won the title of ILSVRC 2013 task 3 

(classification + positioning) (Sermanet et al., 2014) in the same year, however, it was 

soon replaced by the R-CNN algorithm. 
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2.9.2  You Only Look Once (YOLO) 

The You Only Look Once (YOLO) algorithm proposed by Redmon (2016) is an one 

stage method based on regression which inherited the OverFeat algorithm, with 

detection speed could up to 45 frames per second, soon it became the state of art in 

end-to-end methods due to its speed advantage. Figure 2.18 shows the detection 

process of the YOLO algorithm. 

 

 

Figure 2.18 Detection process of YOLO algorithm (Redmon et al., 2016) 

 

The YOLO algorithm makes predictions based on the global information of the image, 

and the overall network structure is uncomplicated. The input image was resized to a 

fixed size of 448×448 pixels, and the image was divided into a 7×7 grid area. Features 

were extracted by the convolutional neural network, and the border coordinates and 

confidence of each category in each grid were directly predicted. P-Relu activation 

function was used in the training. However, there are some shortcomings such as 

inaccurate positioning and recall rate, which are not as good as the region proposal 

method. Moreover, it has a poor detection effect for objects in close proximity and 

small objects, and its generalization ability is relatively weak. 
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For the first version of YOLO, the backbone network architecture was based on the 

GoogLeNet model, and some modifications have been made to it. It contains 24 

convolutional layers and two fully connected layers, and it also uses the structure of 

the network in the network. Its detailed convolutional network structure is shown in 

Figure 2.19. 

 

 

Figure 2.19 Convolutional network structure of YOLOv1 (Redmon et al., 2016) 
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2.9.3  Single Shot MultiBox Detector (SSD)  

In order to solve the problem of the positioning accuracy for the YOLO algorithm, in 

December 2016, Liu (2016) proposed the Single Shot Detector (SSD) algorithm, 

which combined the regression idea from YOLO with the anchor box mechanism from 

Faster R-CNN. Figure 2.20 demonstrates the structure of the SSD. 

 

 

Figure 2.20 Structure of SSD (Liu et al., 2016) 

 

By predicting the object region on the feature map of different convolutional layers, 

output discrete multi-scale and multi-ratio default box coordinates, and the small 

convolution kernel is used to predict the frame coordinate compensation of a series of 

candidate boxes and the confidence of each category. 

In multi coordinates of the whole image, the local feature map of the multi-scale region 

is used for border regression, this ensures maintaining the fast characteristics of YOLO 

algorithm, and achieve similar positioning mechanism of Faster R-CNN. However, 

due to the use of multi-level feature classification, and the last convolution layer has a 

large range of sensing fields, thus the small target features are not obvious lead to it is 

difficult to detect small objects. 
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2.9.4  YOLOv2 & YOLO9000 

After the improvement of Redmon and Farhadi (2017), YOLOv2 and YOLO9000 

algorithms were proposed on CVPR in 2017 and were nominated for the best algorithm 

paper. The new version of the algorithm is focusing on solving the errors in recall rate 

and positioning accuracy. Darknet-19 was used as the backbone network, batch 

normalization pre-treatment was added, and fine-tuning after ImageNet pre-training 

model was trained with 224×224 and 448×448 in two stages. Figure 2.21 demonstrates 

the architecture of YOLOv2. 

 

 

Figure 2.21 The architecture of YOLOv2 (Sang et al., 2018) 

 

Compare with the original YOLO which use the full connection layer to directly 

predict the coordinates of the bounding box, YOLOv2 uses the idea of Faster R-CNN 

for reference, introduced the anchor mechanism and using the K - Means clustering 

approach in training to calculate a better anchor template. Moreover, it uses the anchor 

boxes operation in the convolution layer, increases the prediction of candidate boxes, 

and uses the strong constraint positioning method to improve the recall rate of the 

algorithm. Combined with the fine-grained feature of the image, the shallow feature is 

connected with the deep feature, which is helpful for the detection of small-sized 

targets. 
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  Methods Based on Deep Learning Algorithm 

The researchers introduced the idea of deep learning algorithms to deal with defects 

detection in the tunnel.  However, the network with fewer hidden layers is often unable 

to extract enough image features, while the deeper network is easy to overfit. Network 

training and parameter tuning during deep learning will significantly affect the 

accuracy of detection performance. 

Oullette (2004) proposed a method for fracture extraction based on the convolutional 

neural network. The classical Genetic Algorithm (GA) is used to make the model 

ignore the local minimum and converge to the global optimum. This method requires 

good data, sufficient training time, massive parameter calculation and adjustment. 

Mallatl (2004) implemented the recognition of image texture features by using deep 

learning theory and achieved good classification performance. The scattering 

invariance algorithm of rotation, scale and deformation is used to provide a novel 

method for tunnel crack recognition. 

Correia (2013) built a two-layer neural network. The first layer is using for 

classification and the second layer of the neural network is used to distinguish the 

cracks feature texture. A new crack marking method was designed to measure the 

crack width and compared it with the artificial observation results. Two networks are 

used to detect cracks and calculate widths respectively and achieve higher detection 

accuracy. 

Matsuoka (2016) used the spectral clustering method to identify cracks based on the 

continuity features of cracks. Firstly, the Gabor filter operator is used to convolute the 

image and its directional energy is calculated. the average value of 8 directional 

convolutions is defined as the oriented energy. Then, the affinity matrix is calculated 

according to the information. The affinity matrix is described by the difference of 

adjacent pairs of pixels. Due to the continuity characteristics of cracks, the image 

cracks can be extracted from the affinity matrix. 
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 Frameworks of Deep Learning 

Several deep learning frameworks have been published by research institutions 

and companies, the open source framework could implement the algorithm of 

computer vision with less bug. With the frameworks, researchers could spend 

more time on parameters of the algorithm and optimize the framework according 

to different requirements, without repetitive code work, and these frameworks 

could satisfy most research requirements in most aspects of deep learning. 

Common dreamwork including TensorFlow, PyTorch, Keras, Theano, 

Deeplearning4j, Mxnet, etc. Table 2.7 shows the statistics of 2019 Github 

framework star and fork time. 

 

Table 2.7 Summary of the statistics of 2019 GitHub framework star and fork (GitHub, 2020) 

Framework Developer Supported language Stars Forks 

TensorFlow Google Python/C+ +/Go/… 130540 75929 

Caffe BVLC C++/Python 28495 17204 

Keras Google Python 42504 16187 

CNTK Microsoft C+ + 16258 4318 

MxNet DMLC Python/C+ +/ R/… 17316 6145 

PyTorch Facebook Lua /Python 29635 7167 

Theano U. Montreal Python 8834 2493 

PaddlePaddle Baidu python 9246 2484 

Leaf AutumnAI Rust 4562 216 

Lasagne Lasgne Python 2749 761 

DL4J Deeplearning4J Java/Scala 10966 4697 

 

1.PyTorch: PyTorch is a Python toolkit released by Facebook's AI team and is a 

deep learning tensor library using GPU and CPU optimizations. The framework 

formed after developer port the Torch develop kit based on Lua language to the 

Python language with better generality. It could replace the NumPy module and 
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GPU could speed up the computation of the tensors which generate by the torch if 

there is an appropriate GPU setting. Moreover, PyTorch has a simple user interface 

compared with other frameworks and due to its relatively newer code architecture, 

it has a relatively faster processing speed. Meanwhile, the PyTorch framework 

based on the Windows system can directly use the Python interface to conduct data 

training and testing, which is easy to operate and easy for beginners to get started, 

and the results are intuitive. 

2. Theano is a kind of the first deep learning development framework. Theano 

started in 2007, just after the rise of the artificial intelligence wave in 2006. It was 

once regarded as the industry benchmark by developers and researchers. Theano 

uses Python's API interface, which is similar to the framework PyTorch (Torch is 

developed after Theano!). It can also efficiently define the network, optimize data 

calculation, computation based on GPU, and perform rapid iterative processing of 

mathematical expressions. Many early deep learning researchers and developers 

have still used the Theano framework. 

3. Caffe: The lightweight open source deep learning framework for fast feature 

embedding developed by the University of California, Berkeley's vision and 

learning center (BVLC) is a complete deep learning kit that can be directly used 

for the build of convolutional neural network models, data training and testing, as 

well as cross-platform structural adjustment. Caffe means convolutional 

architecture for fast feature embedding. 

Simple design, focus on CNN and computer vision are Caffe's obvious features. 

Caffe's concept is different from that of TensorFlow. Instead of the graph, Caffe 

uses a directed acyclic graph (DAG), which the graph-shaped network requires 

several components, including Blob, Layer and Net. Blob means "block" and 

serves as the basic unit for loading data at Caffe, and the input and output of a 

network are referred to by Blob. The layer is a single-layer network, which can be 

any one of the fully connected layers, convolutional layer and pooling layer. 

Different forms of network layers have different characteristics, which are 

completely designed and derived from the layer base class. Deep learning has 

forward and backward propagation algorithm, because the layer structure naturally 

requires forward and backward propagation operations. Net is a complete network 
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model class in the Caffe framework, which is described as a combination of 

various layers. 

Caffe has an efficient code process that comes from the native features of the C++ 

development language. Also, Caffe is powerful in GPU-based development. Its 

internal code is written by CUDA interface and developers develop multiple API 

based on other coding languages such as Python, MATLAB, etc. which also could 

achieve the same simplicity and efficiency.  

4. TensorFlow: An artificial intelligence learning system developed by Google 

based on its internal deep learning development system, based on the data flow 

graph concept of tensor and flow, provides an excellent operating platform for 

machine learning personnel and deep learning researchers. The system builds a 

deep network model in the form of a static graph, which can be used for complex 

data processing. It has strong deployment capability in application scenarios, 

which can be deployed to the server side (supported by CPU or GPU devices). 

Even in some mobile apps, it can be used concisely, which reduces the cost of 

developing applications for companies and institutes the secondary development 

of users. Open source features are especially important for a wide range of users, 

this means that any individual or enterprise can use it to develop. Based on the 

extensive use of community influence, the TensorFlow framework is popular in a 

variety of application aspects, including speech, image recognition, etc. 

5. Keras: Keras is an open source artificial neural network framework powered by 

python, which can be used as a high-level application program interface of TensorFlow, 

Microsoft CNTK and Theano to design, debug, evaluate, apply and visualize the deep 

learning model. 

The code structure of Keras is written by the object-oriented method, which is 

completely modular and extensible. Its operation mechanism and instruction 

documents take user experience and difficulty into account and try to simplify the 

difficulty of the implementation of complex algorithms. Keras supports mainstream 

algorithms in the aspect of artificial intelligence, including neural networks with 

feedforward and recursive structures, and can also participate in the construction of 

statistical learning models through encapsulation. In terms of hardware and 

development environment, Keras supports multi-GPU parallel computing under 
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multiple operating systems, which can be converted into components under 

TensorFlow, Microsoft-CNTK and other systems according to background Settings. 

 

 Summary 

This chapter introduces the structure of TBM and its application in underground 

engineering, and reviewes the conventional method for TBM parameters prediction 

and object detection. Then, algorithms based on the deep learning concept are 

introduced, some commonly used activation functions and deep learning framework 

are briefly described, and their application scope, advantages, and disadvantages are 

pointed out. Based on existing literatures, the summaries are as follows: 

1. The LSTM model is suited for TBM operating parameters prediction not only 

based on time series prediction but also could deal with a large volume of data.  

2. For lining defects detection, the different algorithm has different structures, while 

both two stage based and one stage based algorithm has their advantages, 

disadvantages and application scenarios. Therefore, both R-CNN and YOLO could 

apply to lining defects detection. 
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 Prediction of TBM Operating 

Parameters 

 

This chapter shows the experimental results of the proposed LSTM-based model of 

the prediction for TBM operating parameters. Due to the increase of TBM data volume, 

the traditional empirical method could not effectively use the large numbers of TBM 

data and conventional machine learning algorithms cannot effectively train the model 

with large numbers of data and unable to meet the requirements of fast and accurate 

prediction of TBM operating conditions. Therefore, the prediction model based on 

deep learning is proposed. 

 

 Long Short-Term Memory (LSTM) Model 

LSTM is a variant of RNN. In RNN, there is a chain structure of repetitive neural 

network modules, which records the time change characteristics of data and transmits 

them to the next time node, thus the neural network has the memory function. However, 

due to the gradient descent algorithm adopted by the recurrent neural network, there 

are problems of gradient vanishing and gradient explosion. Therefore, Hochreiter 

(1997) proposed the LSTM neural network. 

LSTM is an improved recurrent neural network, which is very suitable for dealing with 

the problems highly related to time series (Hochreiter and Schmidhuber, 1997). 

Compare with RNN, the LSTM can carry out long-term memory is mainly due to its 

unique cellular structure. The traditional RNN only has a very simple cell structure, 

such as a tanh layer, while LSTM has a unique cell structure, as shown in Figure 3.1. 
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Figure 3.1 Structure diagram of Long Short-Term Memory cell  

 

Figure 3.1 illustrates the detailed cell structure of LSTM. It can be seen that LSTM 

contains three gate structures and cell states: input gate (red module), forget gate (green 

module), output gate (blue module) and cell state (grey module). The three gate 

structures have different functions in LSTM structure: 

Input gate: The input gate is used to update cell status. Initially, the information of the 

hidden state of the previous layer and the current input information is transferred to 

the specific function. The value is adjusted to a specific range (normally 0 to 1) to 

determine which information needs to be updated. If the value is closer to 0 which 

means it is less important. In another way, it is closer to 1 which means the value is 

important. 

t i t-1 t i[ ( , ) ]=  +i W h x b                                                               (3–1) 

Cell state: It is used to control the filtering and updating of information, and decide 

whether to keep information. Firstly, the cell state of the previous layer is multiplied 

by the forgetting vector point by point. If it is multiplied by a value close to zero, it 

means that the information needs to be discarded in the new cellular state. Then the 

value is added to the output value of the input gate point by point, and the new 

information generated by the neural network is updated to the cell state. At this point, 

the updated cell state is obtained. 

t C t-1 t Ctanh[ ( , ) ]
~
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Forget gate: The function of the forget gate is to decide which information should be 

discarded or retained, and selectively forget the information which has less influence 

on prediction parameters in cells through specific functions. 

t f t-1 t f[ ( , ) ]f W h x b=  +                                                            (3–4) 

Output gate: The output gate is used to determine the value of the next hidden state, 

therefore the final output includes both cell state and input, and its results are updated 

to the next hidden layer. 

t o t-1 t o[ ( , ) ]o W h x b=  +                                                           (3–5) 

t t ttanh( )h o C=                                                               (3–6) 

In the equation: Wi is the connection weight of the input gate; bi is the offset factor of 

the input gate; WC is the connection weight of cell state; bC is the offset coefficient of 

cell state; Wo is the connection weight of the output gate; bo is the offset factor of the 

output gate; ht-1 it is the output information of the cell state at the previous stage; xt is 

the input information of the current stage; σ is the activation function; ft is the output 

information of the forget gate; it is the output information of the input gate; Ct is the 

current cell state; Ct-1 is the previous cell state;  ot is the output information of input 

gate; ht is the current output information of cell state. The optimal individual is 

obtained by calculating through the network, and the initial weights and thresholds of 

the network will be updated. After training, the network outputs the prediction results. 
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 Project Background and Data 

The data used in this thesis are all from the Jilin Yinsong Water Supply Tunnel Project. 

The Yinsong water supply project of the central city in Jilin Province is a self-flow 

tunnel with a maximum of 1.04 billion m3 annual flow rate. The total length of the 

tunnel is 69.855km, and the frequent depth of the tunnel is from 50 to 100 m, while 

the maximum buried depth is 260 m. The construction method is using the TBM as 

the main method while drilling and blasting are for the auxiliary method. The datasets 

are provided by the China Railway Engineering Equipment Group (CREG) TBM 

cloud management platform, which collected and stored all data during the TBM 

excavation period from 2015.08 to 2017.09 including 199 parameters and up to 1 

billion data. Figure 3.2 demonstrates the location and geology maps of the Yinsong 

project.  

 

 

(a) 

 

(b) 

Figure 3.2 Location and geology maps of the study area: (a) Location of the Yinsong Project, (b) 

longitudinal section of the study area 
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The research data in this thesis are from TBM3 (From Fengman reservoir to Yinma 

River) of the fourth section of the main trunk line. The crossing rock strata of the 

project can be divided into limestone and granite, with the starting mileage of 71 + 476 

and the ending mileage of 51 + 705, with a total length of 19771m, including the length 

of drilling and blasting section of 2283m and the length of TBM excavation section of 

17488m. The starting and ending time of TBM excavation is 31 months, which 

consists of 928 days. After deducting the maintenance and shutdown time in adverse 

geological conditions, the effective driving days of TBM are 728 days.  

The TBM of this project is manufactured by the CREG. The specification of TBM is 

shown in table 3.1.  

 

Table 3.1 Specification of Yinsong Project “Yongji” TBM 

Parameters Specification 

TBM Diameter(mm) 8,030 

Number of cutters 56 

Cutter spacing (mm) 84 

Cutter diameter (mm) 483 

Maximum thrust (kN) 23,260 

Maximum torque (breakout torque) (kN·m):  12,615 

Cutterhead power (kW) 3,500 

Cutterhead Rotation Speed (RPM) 0-7.6 

Boring stroke (m) 1.8 

 

  



53  Prediction of TBM Operating Parameters 

During the excavation period, sensors are installed on the TBM to record each second 

operating data of TBM (e.g., thrust, torque and speed.) for analysis. The example of 

record data sets is shown in Figure 3.3. 

 

 

Figure 3.3 Example of normal excavation period record data 

 

As shown in Figure 3.3, the data sets contain more than millions of records. The raw 

data of TBM records are massive and unclassified. Therefore, eliminating invalid data 

from datasets that consist of billions of records of data and properly classify data into 

different groups and purpose is a fundamental work for TBM machine learning. Figure 

3.4 illustrates the composition of raw data.  

 

 

Figure 3.4 Composition of raw data 
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Generally, the raw data of TBM records can be divided into the following categories: 

(1) Useless data including TBM malfunction and standby period.  

(2) Normal excavation period data. The normal excavation period means that the 

excavation process during this period is steady with high efficiency. That kind of data 

would screen out as training samples for neural network model training.  

(3) Extraordinary excavation period data. After manually remove the useless data and 

normal excavation period data, the remaining data can be divided into the following 

categories: 

1. The advance movement of TBM is less than 0.1 meters. 

2. The excavation process is neither steady nor high efficiency, the potential 

reason is the operator is inexperienced.  

3. Due to mechanical defects and unexpected geological conditions, the 

excavation process is relatively unstable with lower efficiency. 

4. The excavation period with major geological defects while excavation is 

difficult and potential accidents may occur. 

This thesis focused on the TBM operating performance prediction during the stable 

excavation period, therefore, the normal excavation period data are separated out for 

training the model. 
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3.2.1  Partition Normal Excavation Period Data 

The excavation period data including three periods, the idling period, rising period, 

and stable excavation period. This study would focus on TBM performance and rock 

mass parameter prediction of a stable period. Therefore, the partition of different 

period data is necessary. The criterion of partition the data would be the advance speed 

and TBM continuously steady operating more than 500 seconds could recognize stable 

period. Figure 3.5 illustrates the partition of the normal excavation period. 
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Figure 3.5 Partition of normal excavation period 

 

3.2.2  Extraordinary Data of Advance Speed Correction. 

The analysis of the TBM operating parameters indicates that there is some abnormal 

value during the excavation period. Those extraordinary values must be processed 

otherwise it will seriously affect the subsequent data analysis.  

Generally, the deviation of advance speed should not exceed 5 times of the average. 

However, in the datasets, there is some extremely high value that TBM could not 

achieve. According to the manufacturer CREG’s engineering report, this phenomenon 

may cause by fault sensor measurement.  The value of the abnormal will be replaced 

with a previous normal record manually. Moreover, during the excavation, there are 
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few data are missing. The reason for the missing may cause by the failure of data 

collection or storage under specific situations, such as data storage failure, memory 

corruption, transmission failure and so on. The missing values are processed by linear 

interpolation.  Figure 3.6 demonstrates the processed TBM record data. 
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Figure 3.6 Record data of TBM during stable excavation period 
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 Model Selection 

3.3.1  Prediction Model 

In this study, the LSTM neural network model is used to predict TBM parameters. 

Compare with backpropagation neural network (BPNN) and traditional RNN, when 

the BPNN model is used to predict a set of data, due to the back-propagation 

characteristic, it does not consider the impact of previous data sets, while RNN has 

better performance in dealing with short-term dependence problems. However, once 

the data volume increases, the gradient disappears phenomenon may occur (could not 

update the data to the cells). LTSM is a time-recursive neural network. It is suitable 

for processing and predicting important events with relatively long intervals and delays 

in time series. Also, it can learn faster when dealing with time series data. 

Figure 3.7 shows the structure of the model, which contains three parts, the input layer, 

hidden layer and output layer.  

 

 

Figure 3.7 LSTM Structure (X: Parameters. C: Cell status. H: Hidden layer. P: Hidden layer output.) 

 

 

 

 

Prediction of stable period (e.g. Thrust, torque)

Iteration

P1 P2 PL

X1 X2 XL

Data pre–processing, normalization, data partition

Data

Prediction Results

Output

Input
Training

Adam 

Optimization

Hidden 

Output

Theoretical 

Output

Loss 

Function

…

…

…

C1

H1

C2
CL-1

H2
HL-1

LSTM1 LSTM1 LSTM1Hidden



Prediction of TBM Operating Parameters  58 

3.3.2  Input Data and Output Prediction 

The data in neural network could roughly divide into two part, the input data and output 

prediction. Generally, the input data is the data that currently recorded known data, 

and the output prediction is the data generated by the neural network after input the 

known data. In this thesis, the input data can be dividing into two parts. One is TBM 

operating parameters collected during excavation, another group is the rock mass 

parameters. Six categories of TBM operation data are selected as input data for train 

the proposed model which are Torque (kN·m), Thrust (kN), Power (kW), Penetration 

(mm/rpm), PR (mm/min) and RPM and five categories of rock data are selected as 

input data which are Uniaxial Compressive Strength (UCS), Brittleness Index (BI), 

Brazilian Tensile Strength (BTS) and Distance between Planes of Weakness (DPW) 

and orientation of discontinuities (α). And output prediction is one of the torque, thrust, 

penetration rate or advance rate of TBM operating parameters. The category of output 

prediction will not use as input data. For instance, if the output prediction of neural 

network is torque, the input data would consist the rock data and TBM operation data 

exclude the torque. Figure 3.8 demonstrate the input data and output prediction of the 

neural network. 

 

Figure 3.8 Input data and output prediction structure of the neural network 
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1800 different stable excavation period is selected for training the model, and the input 

data are dividing into three sets, one is the training set with 1440 period to training the 

neural network model while others are validation set with 360 periods. The purpose of 

the validation set is to improve the model to achieve higher accuracy by examining the 

prediction results at the end of each training period. The test set is used to evaluate the 

prediction accuracy of the model after the entire training period ends, while the data 

of the test set will not feed into the model during the training period. 
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3.3.3  Model Parameter Setting 

Before the model training of deep learning, the software environmental selection and 

construction of the scientific research platform should be considered. The Windows 

system has a higher versatility of command scripts programs and there are a large 

number of supporting programs, so it does not need to be familiar with the new 

compiling environment, therefore it is very suitable for doing some research 

experiments related to the field of deep learning, thus the Python language in the 

Windows operating system is chosen to build the deep learning platform for scientific 

research. 

Specifically, the deep learning platform used for object detection of this thesis is 

Windows 10, Python 3.7.4, Keras 2.13, platform hardware configuration is CPU Intel 

i7 5960X, 64GB of memory, configuration for graphics cards consist two NVIDIA 

GTX1080Ti, 11GB of video memory, while CUDA10.0 and NVIDIA cuDNN7.4.2 

for GPU acceleration. Considering the graphic card of the deep learning platform is 

not designed for large sample deep learning, to avoid the phenomenon of out of 

memory, the network structure parameters of LSTM have adjusted appropriately, 

hence insufficient video memory would not be caused by a large number of samples 

during the period of the training model. 

The hyperparameters are the parameters used to modify the algorithm when the model 

is established, and these parameters will not be changed in the process of neural 

network training. Before training the models, the values of hyperparameters need to 

be assigned. The hyperparameter setting of the model is critical during neural network 

training. Proper model parameter setting could not improve the prediction accuracy, 

but also reduce the training time which could improve the efficiency. Through multiple 

pre-training, the optimal value of super parameters can be determined. Figure 3.9 

shows the results of hyperparameters pre-training. 
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Figure 3.9 Results of hyperparameters pre-training 

 

The results of the hyperparameters pre-training process indicate the optimal value for 

the model. Moreover, there are some optimization function could apply to the network 

to achieve specific tasks. The specific model parameter settings are shown in Table 

3.2: 

Table 3.2 Summary of neural network training environment 

Model parameter setting: Dataset: 

Batch size: 16 

Optimization: Adam   

Learning rate: 0.001 

Time step: 10 

Dropout: 0.5 

Loss function: Mean Squared Error 

L2 Regularization 

1800 stable excavation with 6 TBM operating 

parameters 

Train: 80% 

Validation: 20% 

Test: 180 random data 
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Loss function: After the output is calculated by the model, the neural network 

obtains the difference between the predicted value and the actual value of the output 

by calculating the loss function value, then performs backpropagation and update 

weight. Common loss functions including Mean Squared Error (MSE), Mean 

Absolute Error (MAE), Cross Entropy and so on. Among the above, MSE has been 

widely used in regression problems of neural networks. The formula is: 

'( )
n

i ii
y y

MSE
n

−
=


                                                     (3–7) 

   In the equation, yi is the predicted value while '

iy  is the actual value. 

Optimization algorithm: The optimization algorithm is the method for adjusting 

parameters according to loss function and gradient during backpropagation. Common 

algorithms including Stochastic Gradient Descent algorithm (SGD), Momentum 

algorithm, Adam algorithm with adaptive learning rate, RMSProp algorithm, AdaDelta 

algorithm and so on. According to the characteristics of the dataset, the model needs 

to maintain a relatively large learning rate in the early stage and a small learning rate 

in the later stage. Therefore, the Adam algorithm is adopted due to it can calculate the 

exponential mean of the gradient with attenuate and have an adaptive learning rate.  

L2 Regularization: In order to prevent model over-fitting due to weight in the 

model being too complex, L2 Regularization adding a parameter that is related to 

the complexity of the model after loss function. The formula is: 

21
2

2
iL =                                                          (3–8) 

In the equation, λ is the setting parameter, θ is the parameter of the training model. 

Batch Normalization: Batch Normalization is the method of transforming the 

distribution of input data to a form which is more suit for the activation function. It 

not only could boost up the training of neural networks. But also reduce impact 

during weight adjustment from the front layer to the later layer, to improve the 

network. 

Dropout: The dropout method refers to randomly drop hidden layer cells according 

to a certain probability during the training process of the deep learning network, to 

provide different training object for each epoch in networks. Apply dropout can 
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alleviate the model's dependence on specific neurons, thereby preventing 

overfitting. 

 

 Results 

Three formulas are used to calculate the differences between prediction values and 

realistic values to measure the accuracy of the trained model. The formulas are: 

Root Mean Square Error (RMSE) 

1 ' 21
( )i in

RMSE y y
n

= −                                            (3–9) 

In the equation, yi is the predicted value while '

iy  is the actual value. 

Mean Absolute Error (MAE) 
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i ii
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= −                                                  (3–10) 

In the equation, yi is the predicted value while '

iy  is the actual value. 

Mean Absolute Percentage Error (MAPE)   
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In the equation, yi is the predicted value while '

iy  is the actual value. 

Goodness of Fitting (R2)   
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In the equation, yi is the predicted value, iy is the mean value and '

iy  is the actual 

value. 
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(1) Results of Prediction of TBM Performance Parameters 

Figure 3.10 illustrates the prediction of TBM operating parameters by optimized 

LSTM model, which contains both measured and predicted data.  

0 20 40 60
0

500

1000

1500

2000

2500

3000

3500

4000

Time (s)

 

T
o
rq

u
e 

(k
N

·m
)

 Measured

 Predicted

 

0 20 40 60
4000

8000

12000

16000

20000

 

T
h
ru

st
 (

k
N

)
Time (s)

 Measured

 Predicted
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(g) Penetration Prediction (h) Advance Rate Prediction 

Figure 3.10 Results for TBM performance prediction 

 

It can be seen from Figure 3.10 that the model can accurately predict the results on the 

test set, including servals extreme high value or very low value points in terms of 

average torque and average thrust. Those fitting proves the accuracy and effectiveness 

of the model. There are two main reasons explained the accuracy of the model: Firstly, 

the dropout layer is used in the network model to effectively prevent over fitting. 

Secondly, cross validation after prediction is adopted in the network structure, which 

effectively extracts the features relevant to the output and improves the prediction 

accuracy. Table 3.3 demonstrates the result for TBM operating parameters prediction. 
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Table 3.3 Results for TBM operating parameters prediction 

Summary Parameters RMSE MAE MAPE (%) 
R

2

 

Without 

optimization 

Torque 367.12 281.43 10.2% 0.89 

Trust 2143.337 755.2 9.5% 0.86 

Penetration 1.12 0.86 9.26% 0.85 

Advance rate 8.38 6.24 11.15% 0.82 

With 

optimization 

Torque 354.12 262.93 9.85% 0.94 

Trust 1956.265 705.3 8.68% 0.90 

Penetration 1.07 0.74 8.75% 0.91 

Advance rate 7.67 6.02 10.28% 0.89 

Overall improve percentage 6.30% 7.67% 6.34% 6.46% 
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Figure 3.11 Results comparison of TBM performance prediction errors 

 

Table 3.3 shows the statistics of evaluation indexes of TBM tunnelling parameters 

prediction results in stable section and Figure 3.11 illustrate the performance 

comparison between the original LSTM model and Optimized LSTM model. Four 

indexes, root mean square error (RMSE), mean absolute error (MAE), mean absolute 

percentage error (MAPE) and goodness of fit R2, are selected to evaluate the prediction 

effect of the model. It can be seen from the table that the goodness of fit of the four 
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driving parameters is relatively high, among which the fitting degree of three 

equipment control parameters is above 0.9, the goodness of fit of cutter head torque T 

is 0.94, and the goodness of fit of penetration rate n is 0.91, which indicates that the 

prediction accuracy of equipment parameters is high. For the other two equipment 

parameters: the goodness of fit of total thrust F is 0.90, while the advance speed V is 

0.89, the prediction accuracy is slightly lower than the other three parameters. 

Considering the magnitude range of each parameter of TBM, the other three error 

indicators RMSE, MAE and MAPE the average absolute relative errors are less than 

12%. In general, after the improvement and optimization, the LSTM model based on 

RNN achieved higher prediction rate for TBM operating parameters. 
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(2) Results of Prediction of Rock Mass Parameters 

During the excavation process, it is also important to predict the current geological 

condition. The accurate prediction of the geological condition of the construction 

working face can not only further confirm the engineering geological and 

hydrogeological conditions until the construction is carried out successfully, but also 

reduce the probability and prevent geological disasters. At the same time, it can 

provide the geological basis for optimizing engineering design and provide geological 

data for maintenance after completion of excavation. The rock parameters are obtained 

by experiments on the core obtained during the tunnel excavation period (e.g., UCS, 

BTS and Bi).  
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(a) UCS Prediction (b) BTS Prediction 

Figure 3.12 Results for rock mass parameter prediction   

 

Figure 3.12 illustrates the comparison of the measured value and the prediction results 

of the model.  The model can accurately predict the results on the test set, however, 

for servals extreme high value or very low value point in terms of average the 

prediction results has relatively higher errors. 
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Table 3.4 Results for rock mass parameter prediction 

Summary Parameters RMSE MAE MAPE (%) R2 

Without 

optimization 

UCS 13.66 10.56 25.22% 0.78 

BTS 0.66 0.47 8.47% 0.90 

With 

optimization 

UCS 12.17 10.12 22.43% 0.80 

BTS 0.62 0.43 7.73% 0.93 

Overall improve percentage 8.48% 6.34% 9.90% 2.95% 
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Figure 3.13 Results comparison of rock mass parameters prediction errors 

 

Table 3.4 shows the statistics of evaluation indexes of rock mass parameters prediction 

results in the stable section and Figure 3.13 illustrate the performance comparison 

between the original LSTM model and optimized LSTM model. Four indexes, root 

mean square error (RMSE), mean absolute error (MAE), mean absolute percentage 

error (MAPE) and goodness of fit R2, are selected to evaluate the prediction effect of 

the model as same as previous. The prediction results indicated that the model has 

accurately predicted the BTS with the goodness of fitting 0.93. However, the results 

of UCS prediction have a higher error rate than BTS. This may recognize as the 

influence index of UCS is more complex. Both accuracies of prediction are improved 

after optimization of the model, which proves the optimization of the model is effective.  
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 Conclusion 

This chapter mainly focuses on the application of neural networks in TBM operating 

parameters prediction during the tunnel excavation period. The reason for choosing 

LSTM is that it is an algorithm based on the RNN, which is very effective for data 

with sequence characteristics and it can extract timing information and semantic 

information in data, while the LSTM solves the gradient explosion problem existing 

in RNN by introducing the gate system.  

In consideration of the lithology, surrounding rock type and groundwater activity of the 

excavation scope, through the machine learning of TBM data and rock data, the 

equipment operating parameters of the TBM stable operating section are predicted. The 

conclusions are as follows: 

(1) Based on the existing TBM operation data, the improved LSTM machine learning 

method based on RNN can effectively predict the TBM tunnelling parameters. The 

mean absolute percentage errors (MAPE) are less than 12% and the fitting degree 𝑅2 

is greater than 0.89, which has relatively high prediction accuracy and can provide 

guidance for the parameter selection of TBM during the stability excavation section.  

(2) The hyperparameters in the LSTM model are optimized to achieve better 

prediction results for TBM operating parameters, and the improved algorithm had 

higher prediction accuracy compared with the original. Through the improvement 

and optimization of the prediction model, the average prediction accuracy is 

increased by 7%, which proves that the improvement of the model is effective. 

(3) The LSTM model proposed in this thesis has high prediction accuracy for thrust and 

torque T in stable excavation section, and the goodness of fitting is greater than 0.9. 

Among other equipment parameters, the prediction accuracy of penetration is higher, 

and the fitting degree is 0.91; the goodness of fitting of prediction of propulsion speed 

V is 0.89, which is lower than the other three parameters. In terms of rock mass 

parameters, the goodness of fitting for BTS is achieved 0.93, however, the error 

prediction of UCS is significantly higher than other parameters. It is preliminarily 

speculated that the influence factor of UCS is more complex. 
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 TBM Segments Defects Detection 

Based on Two Stage Object 

Method 

 

This chapter introduces the R-CNN algorithm and its application to TBM lining 

defects detection. Also, its specific parameters are adjusted to improve detection 

performance. Faster R-CNN is an algorithm based on the Fast R-CNN algorithm with 

adjusted and optimized network structure. From the structural aspect, Faster R-CNN 

belongs to the two-stage algorithm, and compare with the previous two-stage 

algorithm, Faster R-CNN has integrated feature extraction, proposal extraction, 

bounding box regression and classification into one network, which significantly 

improves the comprehensive performance, and improves the detection accuracy and 

speed in detection. 

 

 Faster R- CNN 

After the R-CNN and Fast R-CNN, Girshick (2017) proposed a new algorithm called 

Faster R-CNN in 2016. Faster R-CNN solved the problem of timing is not ideally 

caused by that Fast R-CNN still needed to extract the region proposal in advance. 

Figure 4.1 shows the structure of Faster R-CNN. 

 

 

Figure 4.1 Structure of Faster R-CNN (Deng et al., 2018) 
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In the structure aspect, Faster R-CNN has integrated feature extraction, proposal 

extraction, bounding boxes regression and classification into the Region Proposal 

Network (RPN), which greatly improves the comprehensive performance, especially 

in terms of detection speed.  

1. Feature Pyramid Network (FPN) 

Feature Pyramid Network (FPN) is a network structure that comprehensively uses the 

information of multi-scale feature images to detect the object (Lin et al., 2017). Many 

algorithms are using the top feature map of FPN for object detection such as Fast R-

CNN, R-FCN and other algorithm based one region proposal (two-stage algorithm). 

One disadvantage of the method is that the top feature map may not contain the feature 

of interested objects. Some small objects in the image after a convolution layer of the 

neural network and max pooling layer, the receptive field of the feature map at the top 

layer will become extremely large, and it will gradually lose its sensitivity to small 

objects. Figure 4.2 demonstrates the structure of the FPN. 

 

 

Figure 4.2 Structure of Feature Pyramid Network 

 

A typical FPN consist of 3 layers, which are: 

1. Bottom-top pathway: It refers to a process in which ordinary CNN features are 

condensed and expressed layer by layer from bottom to top. The lower layer 

reflects the shallower level of image information features such as boundary; The 

higher layer reflects the deeper image features such as object shape and specific 

category. 

2. Top-bottom pathway: In general, the feature map size of the upper feature output 

is relatively small, but it can represent the picture information of a larger 
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dimension (and higher level). This kind of high-level information has been proved 

by experiments to play an important role in subsequent tasks such as object 

detection and classification. Therefore, when processing the information of each 

layer, the high-level information of the previous layer will be referred as its input. 

3. The representation relation between the CNN layer features and the output of each 

level: FPN author point out that the use of 1x1 Conv can generate better output 

features, which can effectively reduce the number of channels in the middle layer. 

Finally, these 1x1 Convs result in the same number of channels for each feature 

map with different dimensions. 

FPN mainly solves the multi-scale problem in object detection. Through simple 

network connection changes, it greatly improves the performance of small object 

detection without increasing the computation amount of the original model. 

2.Region Proposal Networks (RPN) 

Classic detection methods are time-consuming to generate bounding boxes. For 

example, OpenCV Adaboost uses the sliding window and the image pyramid to 

generate bounding boxes. Another one is R-CNN using the selective search method to 

generate the bounding box. However, Faster R-CNN abandons both the traditional 

sliding window and selective search method, directly use Region Proposal Network to 

generate the bounding boxes, which is a huge advantage of Faster R-CNN and it can 

significantly improve the generation speed of bounding box. 

RPN was first proposed by Ren (2017) and applied to the Fast RCNN algorithm, it is 

combined with the Fast R-CNN algorithm to greatly improve the computation 

efficiency of the network. It is a self-contained, fully convoluted network that could 

take any size of the original image, outputs a bunch of bounding boxes, and scores 

each box. The method of generating the regional proposal box is to use a small sliding 

window to convolve the sliding on the top layer of the convolutional network and 

transfer the acquired feature vectors into the regression layer and classification layer 

of the bounding box. The purpose of the two fully connected layers is different. For 

the regression layer, it is to generate bounding boxes, while for the classification layer, 

it is to score the region proposed. The figure 4.3 shows the structure of region proposal 

networks. 
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Figure 4.3 Structure of region proposal networks (Deng et al., 2018) 

 

It clearly shows that the RPN is divided into two lines, the top one getting the positive 

and negative categories with the SoftMax category anchors, the bottom one is used to 

calculate the evaluation box regression offset for anchors to get an accurate proposal. 

The final proposal layer is responsible for combining the positive anchors and the 

corresponding evaluation box regression offset to get the proposals while eliminating 

proposals that are too small and out of bounds. When the entire network moving to the 

proposal layer, the function equivalent to object positioning is completed. 

3. Anchors 

Anchor plays an important role in RPN. Anchors are a set of rectangles generated by 

the RPN code, and the multi-scale approach is often used in instrumentation. Figure 

4.4 shows the typical anchor in the R-CNN network. 

 

 

Figure 4.4 Schematic of Anchors with size 32,16 and 8 

 

In Faster R-CNN, iterate over the feature maps are computed by convolutional layers, 

with the nine anchors as the initial detection box for each point. Since it is not accurate 

to get the bounding boxes by anchors, the bounding box position needs to be modified 
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twice by bounding box regression. The parameters of the nine anchors are not shared, 

but the parameters of each sliding window position are shared. Figure 4.5 shows the 

anchor in RPN. 

 

 

Figure 4.5 Anchors in region proposal networks (Ren et al., 2017) 

 

In general, RPN is to set dense candidate anchor on the scale of the original drawing, 

and then use CNN to determine which anchor is the positive (anchor with the object) 

and which is the negative (anchor without the object). The structure of the network 

could roughly define as binary classification. 

 

Table 4.1 Neural network structure comparison 

 R-CNN Fast R-CNN Faster R-CNN 

Test time per image with proposals 50 seconds 2 seconds 0.2 seconds 

Speedup 1x 25x 250x 

mAP (VOC 2007) 66.0 66.9 66.9 

 

Table 4.1 shows that Faster R-CNN designed a network RPN to extract candidate 

regions, which replaced the time-consuming selective search algorithm and greatly 

improved the detection speed. Compared with the previous algorithm, the detection 

speed was qualitatively improved. 
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4. Post Processing 

Since anchors generally overlap, there is also overlap between proposals for the same 

object. In order to solve the problem of overlapping proposals, the NMS algorithm is 

used to discard the proposal with a higher score and the Intersection over Union (IoU) 

is greater than the preset threshold. 

After filtering the IOU threshold, the NMS further iteratively optimizes the boundary 

of the bounding box. Firstly, the score of probability information of all reserved 

prediction boundary boxes is sorted, then all prediction boundary boxes are traversed 

expect one with the highest score, the percentage of overlap reigion between boxes is 

calculated, next delete the prediction bounding boxes which are larger than a certain 

threshold value, repeat this step repeatedly in order to filter out a large number of false, 

inaccurate, overlapping prediction bounding boxes, and retain the prediction boundary 

box that appropriately describes the object position. Figure 4.6 describes the process 

of NMS. 

 

 

Figure 4.6 Process of Non-Maximum Suppression (NMS) 

 

While the NMS may seem simple, the default of the IoU threshold needs to be handled 

with caution. If the IoU value is too small, too many proposals of objects may appear. 

If the IoU value is too large, some proposals of the objects may be lost. In the Faster 

R-CNN, the typical IoU value is 0.7.  

After NMS processing, proposals are sorted according to scores. The proposal with the 

highest score would appear as a bounding box to indicate the object's location. The 

number of proposals generated during RPN is set by the user. In the thesis of Faster 

R-CNN, the number of proposals is set as 2000.  
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5. Region of Interest (RoI) Pooling 

After RPN processing, there are several different size object proposals without the 

class scores. How to use these boundary boxes and classify them is the key issue under 

current situation. One of the simplest ways is to crop each proposal and send it into the 

pre-trained base network to extract the features, then the features will be extracted to 

train the classifier, but this method requires all proposals to be computed which is 

inefficiently and slowly. Therefore, the region of interest pooling (RoI Pooling) was 

proposed in Faster R-CNN to solve this problem. Figure 4.7 shows the RoI pooling in 

Faster R-CNN. 

 

 

Figure 4.7 Region of Interest (RoI) pooling in Faster R-CNN 

 

Faster R-CNN uses the conv feature map to speed up the calculation efficiency, which 

is RoI Pooling is used to extract the feature map of fixed size for each proposal while 

R-CNN is used for the classification of feature map with a fixed size. 
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 Improvement of Faster R-CNN for Cracks Detection 

Although Faster R-CNN has better detection accuracy in objects, however the 

algorithm is not designed for cracks detection while during the pre-test period it shows 

that there are several bounding boxes for a single crack in the test image, and the 

position of the bounding box is not very accurate, the false results of detection are 

relatively high and the detection results could not satisfy the requirement. Therefore, 

the network needs further modification to improve the accuracy in order to achieve a 

better detection effect. 

Due to the inhomogeneity of concrete material, the texture of the normal surface is 

generally uneven. Therefore, the background texture of the collected fracture image 

itself has significant differences. In addition, the length, width and depth of cracks vary 

with the severity of cracks. If there are larger particles with a similar or even brighter 

colour to the background, the texture of the crack image will be change. Generally, the 

crack image is darker than the ordinary concrete surface. The number of pixels 

representing cracks are significantly less than that of the background and the grey 

value of the ordinary surface overlaps with that of crack. For the grey image with 

cracks taken by the camera, it often includes non-uniform illumination and slow 

change part formed by the imaging system, that is the change of image from middle 

bright to surrounding dark, which is a signal with low frequency and high amplitude. 

Based on the long and narrow geometric features of cracks, the grey outline features 

along the fracture direction and the crack width variation characteristics along the 

fracture length direction can be obtained. 

In the process of training and testing of model with images, cracks occupy a small area 

in the image while most areas are backgrounds, while the shape of the cracks is 

irregular, and there is no uniform shape. Most of the cracks are elongated and need to 

be covered by a rectangle with a relatively large aspect ratio. 

Considering that the size of anchors in Faster R-CNN is relatively large, initially it was 

not designed for detecting small objects, therefore, the size of the anchor is adjusted. 

Originally there are three different sizes of the anchors which are 32, 16, 8, respectively. 

To achieve better small object detection performance, one extra smaller size anchor is 

added. Figure 4.8 demonstrates the improvement of Faster R-CNN.  
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Figure 4.8 Improvement of Faster R-CNN model by adding an extra anchor 

 

The new anchor in Faster R-CNN is modified with 4 different sizes, a relatively 

smaller size is added to provide the alibility of capture the smaller objects during the 

detection stage. Moreover, the IoU threshold was adjusted from 0.7 to 0.5 to obtain a 

better crack detection effect and higher detection accuracy. Figure 4.9 shows the 

structure of Faster R-CNN for crack detection. 

 

 

Figure 4.9 Structure of Faster R-CNN for cracks detection 
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 Image Database, Model Training 

Image annotation is an important task in deep learning models and application 

construction. In order to make deep learning algorithms have the ability to recognize 

certain objects, it is necessary to provide a large number of labeled data to train the 

network, and the labeled data is feed to the network to help the network to gain the 

ability to recognize the cracks. The method of annotation for the image is to let the 

professional civil engineering technicians classify the cracks manually to ensure that 

there is no deviation between the crack image and the non-crack image of the tunnel. 

Figure 4.10 demonstrates the processing of data annotation by using LabelImg 

software. 

 

 

Figure 4.10 Processing of data annotation 

 

The image database of cracks contains 7143 images, some of the images are from the 

online image database ImageNet. In order to effectively train and verify the detection 

ability of the network model, 7000 images were selected as the training database for 

network training and the remaining 143 were used for blind test of the model. In order 

to better train the model and improve the accuracy, 5500 of the 7000 training images 

were used as the training set and the remaining 1500 as the validation set. Figure 4.11 

shows the test set of cracks. 

1. Raw Image 2. Crack Area Selection

3. Annotation of cracks by 
LabelImg

Flip

Crop

Stretch
4. Annotated images

Annotated image datasets

• Total Images: 7143

• Training sets: 5500, Validation sets: 1500,          

Test sets: 143.
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(a) (b) (c) 

   

(d) (e) (f) 

  

(g) (h) 

Figure 4.11 Test sets of cracks (a) Image of cracks with handwriting and white paint. (b) Image of 

cracks with wall peeling off. (c) Image of cracks with two different propagation direction. (d) Image 

of cracks with wall joint. (e) Image of cracks with multi direction. (f) Image of cracks with hole. (g) 

Image of tunnel with large scale cracks (DANANGToday, 2017). (h) Image of TBM segments with 

cracks 

 

 Results of Faster R-CNN 

Before optimized the Faster R-CNN algorithm, the setting of training iterations, step 

length, learning rate and other parameters required by the algorithm is set, then the 

initial Faster R-CNN training result model can be obtained during the training of the 

neural network, and then the experimental result can be used as the baseline. After 

improving the Faster R-CNN algorithm, the results can be also obtained for 

comparison and the new trained model can be used for cracks detection of tunnels. The 
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following shows the detection performance of the improved Faster R-CNN algorithm 

on some tunnel cracks, as shown in Figure 4.12. 

 

  

 

Figure 4.12 Detection performance of the model on the test set 

 

Conduct visual analysis on the training log files generated during the training process. 

The curve of the Loss function chart during the training process and the final Precision 

and Recall (PR) curve can be obtained. The meaning of the Loss curve refers to the 

change in the value of the Loss function during the training process. The trend of the 

change is continuously downward from high to low, indicating that the training process 

is gradually tending to the state of convergence, and the training model in the state of 

convergence has a better detection effect. Figure 4.13 shows the Loss Curves of Faster 

R-CNN during model training and Figure 4.14 shows the P-R Curve of Faster R-CNN 

during model training. 
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Figure 4.13 Faster R-CNN Loss Curves. 
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Figure 4.14 Faster R-CNN P-R Curves 

 

The definition of PR curve is the curve of accuracy and recall, the abscissa is the recall 

rate (which ranges from 0 to 1) while the vertical coordinate is the precision (with 

values ranging from 0 to 1). When drawing the PR curve, points are divided according 

to the samples of each test set as the threshold, different recall rate and precision rate 

values can be obtained, then connect these different points and a two-dimensional PR 

curve are obtained. The area enclosed between the PR graph, the x-coordinate axis and 

the y-coordinate axis is the value of AP, which is a comprehensive index used to 
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measure the detection effect of the object. The larger the value, the better the 

performance of the detection algorithm.  

In the performance measurement of object detection, the common way is to use the 

Mean Average Precision (mAP) value to evaluate the algorithm's object detection 

performance. The evaluation target is not the whole image, but the prediction bounding 

box generated in the image to participate in the loss function calculation and forward 

and backward propagation during the process of network training.  

True Positive (TP) indicates that the prediction bounding box is correctly labelled on 

the positive samples, which is the image with positive samples has been successfully 

predicted as positive samples. 

False Positive (FP) indicates that the prediction bounding box is incorrectly labelled 

on the negative samples, which is the image with negative samples has been 

successfully predicted as positive samples. 

False Negative (FN) indicates that the prediction bounding box is incorrectly labelled 

on the positive samples, which is the image with positive samples has been incorrectly 

predicted as negative samples. 

True Negative (TN) indicates that the prediction bounding box is correctly labelled on 

the negative samples, which is the image with negative samples has been successfully 

predicted as negative samples. Table 4.2 shows the classification of results. 

 

Table 4.2 Classification of results 

 Actual 

True False 

 

Predict 

True True Positive 

(TP) 

False Positive 

 (FP) 

False False Negative 

(FN) 

True Negative 

 (TN) 

 

The full name of IOU is intersection over union. IOU calculates the ratio of the 

intersection and union of predicted and real borders. Figure 4.15 demonstrates the IOU 

and how to classify TP, FP, TN and TN. 



TBM Segments Defects Detection Based on Two Stage Object Method 84 

 

Figure 4.15 Calculation of Intersection Over Union (IOU) and TP, FP, TP and TN 

 

IOU is a standard for measuring the accuracy of detecting corresponding objects in a 

specific data set. Once a bound box generated in the output result, it can be measured 

with IOU. In order to use IOU to measure objects of any size and shape, there are two 

things are required: 

1. Ground-truth bounding boxes (manually mark the approximate range of the object 

to be detected in the training set image). 

2. The output prediction range of algorithms. 

This standard is used to measure the correlation between reality and prediction. the 

higher the value, The higher the correlation. The following equation shows the 

calculation process of IOU:  

Intersection
IntersectionOverUnion=

Union
                                 (4–1) 

The precision reflects the percentage of detected in the prediction bounding box with 

the correct label, which is the ratio of the number that detected category has been 

successfully predicted and the number of object detection of this category in the 

bounding box. the following equation shows the calculation process of precision:  

TP
Percision=

TP+FP
                                                          (4–2) 
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Recall reflects the percentage of correctly predicted bounding boxes containing the 

category of object to the number of objects with the positive labels in this image, and 

the calculation process is shown in the following equation. 

TP
Recall=

TP+FN
                                                       (4–3) 

The missed inspection rate reflects the percentage of undetected in the predicted 

boundary box of the object category in the number of the object with the positive label 

in the category, which is inversely changing with the recall rate. The calculation of the 

missed inspection rate is shown in the following equation. 

FN
MissedInsepction= =1-Recall

TP+FN
                                (4–4) 

False inspection rate reflects the percentage of incorrectly detected in the predicted 

boundary box of the object category in the number of the object in the category, which 

is inversely changing with the precision rate. The calculation of false inspection rate 

is shown in the following equation: 

FP
FalseInspection= =1-Percision

TP+FP
                         (4–5) 

F1 Score is defined based on precision and recall, it reflected the performance of the 

model. The following equation shows the calculation process of the F1 Score: 

2PR
F1Score=

P+R
                                                              (4–6) 

Average precision (AP) reflects the average accuracy of detection. When the validation 

set contains N images, it is the mean precision rate of the object category in each image, 

and the following equation shows the calculation process of Average precision: 

N

i=1
Percision

AP=
N


                                                         (4–7) 

The above method provides the performance measurement for object detection, 

however, in the underground project defects detection, it concerned about whether all 

defects are detected, and whether the location and label of detection object are correct, 
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which is recall and precision, while for safety concerned, recall is more important. 

Table 4.3 summarizes the detailed results of the trained model on test sets. 

Table 4.3 Results of the trained model on tests sets 

Algorithm Sample  TP FP FN TN Precision Recall F1 

Score 

AP 

Faster R-CNN 143 100 10 22 11 0.909 0.819 0.861 0.82 

Improved Faster 

R-CNN 

143 110 7 19 7 0.94 0.85 0.892 0.88 

 

As shown from the table, compared with the original algorithm, the number of TP and 

TN is increased while the FP and FN are decreased. Four performance indicators 

(Precision, Recall, F1 score, AP) are all increased to varying levels.  
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(c) Results comparison of original Faster R-CNN and improved Faster R-CNN 

Figure 4.16 Detection Results of the image with Noise 

Figure 4.16 demonstrates the detection results of the original model and the improved 

model. It clearly shows that compared with the original one, the improved model has 

higher performance on image sets. Both four indicators are increased which indicates 

the improvement of the model could increase the accuracy of crack detection and 

achieve higher performance. 

After optimized the R-CNN, the performance index indicated that improvement could 

increase the performance of the model. Moreover, according to the AP index, compare 

with the original data, the detection accuracy is increased approximately 8% while the 

tested image and PR curve graph also indicate that the Faster R-CNN algorithm has a 

better performance compared with the original one. Overall, the improved R-CNN 

achieved higher detection performance on cracks. 

 

 Robustness Test 

In underground engineering projects, due to the environmental effect and lighting 

conditions, the image is vulnerable to all kinds of interference, resulting in a decline 

in the detection effect. Image noise is some isolated pixels in an image, which will 

disturb the actual visibility of the image, making the image fuzzy. Figure 4.17 

demonstrates an example of how noise disturbs the computer vision classification. 

 

 

Figure 4.17 Noise disturbs the computer vision classification (Goodfellow et al., 2014) 
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The original image at left contains a panda, while the model recognized it as a panda 

with 57.7% confidence. However, after adding less than 1% of the noise, the neural 

network considered it as a gibbon. But from a point of view of human beings, there is 

no difference between the two pictures. Therefore, the robustness test for the model 

under noise interference is necessary. 

Common image noises include Gaussian Noise, Salt and Pepper Noise, Poisson Noise, 

etc. Gaussian noise is a kind of noise whose probability density function obeys the 

Gaussian distribution. Salt and pepper noise, also known as pulse noise, contains salt 

noise and pepper noise. From the visual perception aspect, salt noise is generally white 

noise, while pepper noise is generally black noise. The two kinds of noise present in 

the image at the same time are black and white miscellaneous points. Figure 4.18 

demonstrates the original image and image with a different noise. 

 

   

(a) (b) (c) 

Figure 4.18 Original image and image with different types of noise. (a) Original Image. (b) Image 

with Salt and Pepper noise. (c) Image with Gaussian Noise. 

 

In order to verify whether the improved Faster R-CNN algorithm is robust when facing 

the image of the defect with noise, two different types of noises are added into the 

image sets at a certain rate. The 0.05 proportion of salt and pepper noise and 10ς rate 

of Gaussian noise are added into two separate image sets, respectively. Then these 

images with different noise were tested by the detection model to acquire average 

precision. Figure 4.19 and 4.20 shows the image with Gaussian Noise and Salt and 

Pepper Noise. 
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Figure 4.19 Images with Gaussian Noise 

 

 

Figure 4.20 Images with Salt and Pepper Noise 
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After adding the noise into the test sets, Figure 4.21 indicates the AP value is dropped 

from 0.8873 to 0.7811, and after adding salt and pepper noise, the AP value is dropped 

from 0.8873 to 0.7433. the detection accuracy of the model is decreased after noises 

interfere.  
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Figure 4.21 P-R curves of the model of the image with Noise 

 

Table 4.4 summarizes the detailed detection results of the cracks and the performance 

indicators. As shown from the table, the number of TP and TN are decreased while the 

FP and FN are increased. Four performance indicators (Precision, Recall, F1 score, 

AP) are all decreased to a varying level. 

 

Table 4.4 Results of the trained model on the image with noise 

Noise Sample  TP F

P 

FN TN Precision Reca

ll 

F1 

Score 

AP 

Faster R-

CNN 

143 110 7 19 7 0.94 0.85 0.892 0.88 

Gaussian 

Noise 

143 93 1

7 

27 16 0.84 0.775 0.806 0.78 

Salt and 

Pepper 

143 87 2

1 

28 17 0.805 0.756 0.779 0.74 
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(a) Results of Faster R-

CNN 

(b) Results with gaussian 
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(d) Results comparison of R-CNN and image with different noise 

Figure 4.22 Detection Results of the image with Noise 

 

Figure 4.22 demonstrates the detection results of the original image and image with 

noises. It clearly shows that compared with the noiseless data set, the model has lower 

performance on image sets with noise. Both noises decrease the detection accuracy of 

the model while the image salt and pepper noise have less performance than the image 

with Gaussian noise. Figure 4.23 and Figure 4.24 demonstrate the detection results of 

Gaussian noise and salt and pepper noise. 
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Figure 4.23 Detection results of image with Gaussian Noise 

 

 

Figure 4.24 Detection results of the image with Salt and Pepper Noise 
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After adding noise to the test set, the performance index indicated that both noises 

could decrease the performance of the model. However, according to the AP index, 

compare with the original data set, the detection accuracy is reduced approximately 

10% while the tested image and PR curve graph also indicate that faster R-CNN 

algorithm has robustness when dealing with noise, the precision of detection under 

noise disturbance has less variation and shows less affected by the noise, which can 

resist the noise interference to a certain range and obtain a better result of cracks 

detection. 

 

 Conclusion 

This chapter mainly focuses on the fundamental principles of the two stages algorithms 

and their application in the detection of cracks of tunnels. The reason for choosing 

Faster R-CNN is that it is a detection algorithm based on the two-stage, which could 

focus more processing on the extracted bounding boxes and with further processing. 

The algorithm sacrifices detection speed in order to achieve excellence of detection 

accuracy and shows extraordinary robustness under noise. Relative to the previous 

object detection algorithm such as Fast R-CNN, Faster R-CNN integrated with RPN 

and adjust the location of RoI Pooling in the network, which provides the algorithm 

has the ability to share the parameter more adequately hence improve the detection 

speed and accuracy. The anchor size of RPN in the Faster R-CNN algorithm was 

improved by combining the characteristics of cracks, and the improved algorithm 

achieved higher detection accuracy. 
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 TBM Segments Defects Detection 

Based on One Stage Method  

 

Essentially, the Faster R-CNN algorithm is two-stage object detection, the advantage 

of the two-stage detection method is that it can achieve high detection accuracy. 

Despite the R-CNN algorithm has higher detection accuracy, its low detection 

efficiency makes it difficult to apply to real-time monitoring. Therefore, one stage-

based You Only Look Once (YOLO) algorithm is proposed. YOLO algorithm is an 

end-to-end method, it regards object recognition as a regression problem. The 

advantage of this method is that the category information and position information of 

the target object in the image can be output after the detection of the neural network. 

Hence compare with two stage method it has a higher detection speed, which is terrific 

for real time detection. 

 

 You Only Look Once (YOLO) v3 Algorithm 

5.1.1  YOLOv3 Structure 

YOLOv3 is a further improvement of the YOLO series algorithm (Redmon and 

Farhadi, 2018), with the most significant change is the new algorithm use darknet-53 

as a backbone network, which is deeper than the previous darknet-19 network. It is 

named darknet-53 because it has 52 convolutional layers plus one fully connected layer 

at the end of the network. In version v2, during the process of forwarding propagation 

of the image, the transformation of its size was carried out through the maximum 

pooling layer, which was operated 5 times in total. But in the v3 version, the picture 

in the forward propagation process, through layers of convolution processing, its size 

is implemented by changing the parameters of convolution kernels of step length. 

Figure 5.1 shows the structure of Darknet-53. 
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Figure 5.1 Structure of Darknet-53 (Redmon and Farhadi, 2018) 

 

The process of YOLOv3 is resizing the input image as a certain size based on setting, 

then, after five downsampling, the feature image is reduced to 13*13. In short, the 

backbone network will shrink the output feature image to 1/32 the size of the input 

image. Figure 5.2 demonstrates the structure of YOLOv3. 



TBM Segments Defects Detection Based on One Stage Method 96 

 

Figure 5.2 Structure of YOLOv3 (Kathuria, 2018) 

 

There only one prediction layer in YOLOv2 while the YOLOv3 version contains 3 

prediction layers, the v2 version only uses the top feature images to make predictions, 

which are less effective on small objects. This is the result of when the feature image 

becomes small, the receptive field of the neural network becomes larger which is more 

sensitive to the global information and larger object. Therefore, the v2 version has poor 

performance detecting small objects while facing large scale feature images due to it 

has a relatively smaller receptive field.  

YOLO v3 adopts upsample and fusion method (similar to FPN), fusing 3 scales (13*13, 

26*26 and 52*52), independently testing on the fusion feature map of multiple scales, 

and finally significantly improving the detection performance on small objects.  

In YOLOv3, the anchor box is increased from 5 to 9, while its initial value is still 

generated by the k-means clustering algorithm. Three anchor boxes are allocated at 

each scale, and three bounding boxes are predicted for each cell (corresponding to 

three anchor boxes). Each cell outputs (1+4+C) *3 values (4 positioning information, 

1 confidence score, and C conditional category probabilities), which is also the depth 

of the final output feature tensor at each scale. Although YOLOv3 predicts three 

bounding boxes per cell, there are many more bounding boxes than in previous 

versions because YOLOv3 uses multi-scale feature fusion (the same number of 
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bounding boxes need to be predicted at each scale). Figure 5.3 shows the multi-scale 

on images in YOLOv3. 

 

 

Figure 5.3 Multi-scale on images in YOLOv3 (Kathuria, 2018) 

 

Taking the input image as 416*416 as an example, a picture in YOLOv2 needs to 

predict 13*13*5=845 bounding boxes, while in YOLOv3 needs to predict 

(13*13+26*26+52*52) *3=10647 bounding boxes. 

YOLOv3 contains many residual units, and it also uses the feature pyramid network 

idea for reference. The network structure can be made deeper and stable while the 

gradient would not disappear during model training because the residual units contain 

skip structure functions. Due to the skip structure function of these modules, the 

network structure can be made deep, and the gradient will not disappear, making the 

network structure more robust. And because of the deep hierarchy of the network 

structure and the multi-scale feature map fusion method, the network has a stronger 

ability to extract and learn features from images and can extract crack features from 

multiple scales to make the network learn more fully. Therefore, the network 

architecture of YOLOv3 is better than the previous version. With the deeper network 

structure and the multi-scale feature image fusion method, the network has a stronger 

ability to extract and learn features from images and can extract more features from 

multi-scales to make the model with higher leaning ability. Therefore, the network 

architecture of YOLOv3 is better than the previous version which has better 

performance on object detection. 
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5.1.2  Residual Neural Network  

Residual Neural Network (ResNet) was first proposed by He et al. (2016), and its basic 

unit is the residual block. The residual network proposed to solving the problem in a 

deeper network when increasing the layer of the network structure, the accuracy of the 

training set will not rise but it will decrease. While this phenomenon has nothing 

related to overfit, because if it is caused by overfitting, then model accuracy of the 

network in training should appear extremely high, therefore it may cause disappear 

gradient and makes the network training process cannot continue, lead to the training 

set lose accurately. Compared with the conventional plain network structure, residual 

networks add the skip connections between every two layers, form a residual block so 

that later layers can learn residuals directly from the previous. This network structure 

can form a deep residual network and solve the problem of decreasing accuracy during 

model training. Figure 5.4 demonstrates the structure of the Residual Neural Network. 

 

 

Figure 5.4 Structure of Residual Neural Network (He et al., 2016) 

 

There are two mappings in ResNet, one is the identity mapping, which refers to the 

input data x itself, which is represented as a curve in the figure, and the other is the 

residual mapping, which refers to the rest part of the network. The advantage of ResNet 

is the network structure contains skip connection, make sure the network could be 

trained normally while the gradient would not disappear, the layer of the convolutional 

neural network can be deeper and the error rate of network training will not increase. 
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5.1.3  Improvement of YOLOv3 for Cracks Detection 

Compare with Faster R-CNN, the YOLO algorithm has a different structure, and it has 

no regional proposal. Therefore, the detection accuracy of YOLO is heavily dependent 

on grid size. Finer grid size provides higher detection accuracy for small objects. 

Considering that the size of the bounding box and grid size in YOLOv3, is relatively 

large for detecting cracks while most of the cracks are thin and long, therefore, one 

extra finer layer in FPN is added to extract more detailed information to provide higher 

accuracy of detected smaller objects. Figure 5.5 demonstrates the improved FPN in 

YOLO V3. 

 

 

Figure 5.5 Improvement of YOLO V3 model 

 

Originally, the feature map in YOLO v3 is three layers, while the size is 13x13, 26x26, 

52x52. one extra layer is added to the feature map at the bottom with size 104x104. 

The finer feature map is used to achieve finer feature extraction in order to make sure 

model that could detect the cracks accurately. Figure 5.6 shows the structure of 

YOLOv3 for crack detection. 
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Figure 5.6 Structure of YOLOv3 for cracks detection 

 

Moreover, the YOLO v3 algorithm is also to be tested. The reason for choose YOLOv3 

is that it is a detection algorithm based on the one-stage, which could focus on 

detection speed and could meet the real-time monitoring requirement.  Relative to the 

previous object detection algorithm such as YOLOv2 and SSD, v3 integrated with 

RPN and ResNet in the network, which provides the algorithm can build deeper 

network without gradient disappear hence improve the detection accuracy on the small 

objects, to achieve higher precision of cracks detection. 
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 Image Database, Model Training 

The Deep learning platform and data based are the same as Faster R-CNN one and the 

image database have remained the same. The image database of cracks contains 7143 

images and 7000 images were selected as the training database for network training 

while the remaining 143 were used for blind test of the model. In order to better train 

the model and improve the accuracy, 6500 of the 7000 training images were used as 

the training set and the remaining 1500 as the validation set. Figure 5.7 shows the test 

set of cracks. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

  

(g) (h) 

Figure 5.7 Test sets of cracks (a) Image of cracks with handwriting and white paint. (b) Image of 

cracks with wall peeling off. (c) Image of cracks with two different propagation direction. (d) Image 

of cracks with wall joint. (e) Image of cracks with multi direction. (f) Image of cracks with hole. (g) 

Image of tunnel with large scale cracks (DANANGToday, 2017). (h) Image of TBM segments with 

cracks 
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 Results of YOLO v3 

Before optimized the YOLOv3 algorithm, the setting of training iterations, step length, 

learning rate and other parameters required by the algorithm is set, then the initial 

YOLOv3 training result model can be obtained during the training of the neural 

network, and then the experimental result can be used as the baseline. After improving 

the YOLOv3 algorithm, the results can be also obtained for comparison and the new 

trained model can be used for cracks detection of tunnels. The following shows the 

detection performance of the improved YOLOv3 algorithm on some tunnel cracks, as 

shown in Figure 5.8. 

 

  

Figure 5.8 Detection performance of the model on the test set 

 

Conduct visual analysis on the training log files generated during the training process. 

The curve of the Loss function chart during the training process and the final Precision 

and Recall (PR) curve can be obtained. The meaning of the Loss curve refers to the 

change in the value of the Loss function during the training process. The trend of the 

change is continuously downward from high to low, indicating that the training process 
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is gradually tending to the state of convergence, and the training model in the state of 

convergence has a better detection effect. Figure 5.9 shows the Loss Curves of 

YOLOv3 during model training.  

 

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

 

L
o
ss

Epoch

 After Optimization

 Before Optimization

 

Figure 5.9 YOLOv3 Loss Curves 
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Figure 5.10 YOLOv3 P-R Curves 

 

Figure 5.10 shows the P-R Curve of YOLOv3 during model training. The definition 

of PR curve is the curve of accuracy and recall, the abscissa is the recall rate (which 

ranges from 0 to 1) while the vertical coordinate is the precision (with values ranging 
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from 0 to 1). When drawing the PR curve, points are divided according to the samples 

of each test set as the threshold, different recall rate and precision rate values can be 

obtained, then connect these different points and a two-dimensional PR curve are 

obtained. The area enclosed between the PR graph, the x-coordinate axis and the y-

coordinate axis is the value of AP, which is a comprehensive index used to measure 

the detection effect of the object. The larger the value, the better the performance of 

the detection algorithm. Table 5.1 summarizes the results of the trained model on test 

sets. 

 

Table 5.1 Results of the trained model on tests sets 

Algorithm Sample  TP FP FN TN Precision Recall F1 Score AP 

YOLOv3 143 87 20 24 12 0.813 0.783 0.798 0.78 

Improved 

YOLOv3 

143 98 16 20 9 0.859 0.83 0.844 0.84 

 

As shown from Table 5.1, compared with the original algorithm, the number of TP 

and TN are increased while the FP and FN are decreased. Four performance indicators 

(Precision, Recall, F1 score, AP) are all increased to varying levels.  
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(a) Detection results of original YOLO V3 (b) Detection results of improved YOLO V3 
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(c) Results comparison of original YOLO and improved YOLO 

Figure 5.11 Detection results of YOLOv3 

 

Figure 5.11 demonstrates the detection results of the original model and the improved 

model. It clearly shows that compared with the original one, the improved model has 

higher performance on image sets. Both four indicators are increased which indicates 

the improvement of the model could increase the accuracy of crack detection and 

achieve higher performance. 

After optimized the YOLOv3, the performance index indicated that improvement 

could increase the performance of the model. Moreover, according to the AP index, 

compare with the original data, the detection accuracy is increased approximately 8% 

while the tested image and PR curve graph also indicate that YOLO algorithm has a 

better performance compared with the original one. Overall, the improved YOLO 

achieved higher detection performance on cracks. 
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 Robustness Test 

In the underground engineering project, due to the environmental effect and lighting 

conditions, the image is vulnerable to all kinds of interference, resulting in a decline 

in the detection effect. Image noise is some isolated pixels in an image, which will 

disturb the actual visibility of the image, making the image fuzzy. Common image 

noises include Gaussian Noise, Salt and Pepper Noise, Poisson Noise, etc. Gaussian 

noise is a kind of noise whose probability density function obeys the Gaussian 

distribution. Salt and pepper noise, also known as pulse noise, it contains salt noise 

and pepper noise. From the visual perception aspect, salt noise is generally white noise, 

while pepper Noise is generally black noise. The two kinds of noise present on the 

image at the same time are black and white miscellaneous points. Figure 5.12 and 5.13 

demonstrate the image with Gaussian Noise and Salt and Pepper Noise. 

 

 

Figure 5.12 Images with Gaussian Noise 
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Figure 5.13 Images with Salt and Pepper Noise 

 

In order to verify whether the improved YOLOv3 algorithm is robust when face the 

image of the defect with noise, gaussian noise and salt and pepper noise were added to 

all of the test set images and the test sets is same as Faster R-CNN, then these images 

with different noise were tested by the detection model to acquire average precision.  
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Figure 5.14 P-R curves of the model of the image with Noise 
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Figure 5.14 indicates after adding gaussian noise to the test image, the AP value is 

dropped from 0.8421 to 0.723, and after adding salt and pepper noise, the AP value is 

dropped from 0.8421 to 0.5813, and Figure 5.15 shows the detection results of the 

cracks. Table 5.2 summarizes the results of the trained model on test sets. 

 

Table 5.2 Results of the trained model on the image with noise 

Noise Sample  TP FP FN TN Precision Recall F1 

Score 

AP 

YOLOv3 143 98 16 20 9 0.859 0.83 0.844 0.842 

Gaussian 

Noise 

143 70 29 32 12 0.707 0.68 0.693 0.723 

Salt and 

Pepper 

143 55 39 34 15 0.585 0.618 0.601 0.581 

 

Table 5.2 summarizes the detailed detection results of the cracks and the performance 

indicators. As shown from table, the number of TP and TN are decreased while the FP 

and FN are increased. Four performance indicators (Precision, Recall, F1 score, AP) 

are all decreased to varying level. 



109                               TBM Segments Defects Detection Based on One Stage Method 

  

   

(a) Results of YOLO V3 (b) Results with gaussian 

noise 

(c) Results with S&P 

noise 

0.859

0.83
0.844 0.842

0.707

0.68
0.693

0.723

0.585

0.618
0.601

0.581

Precision Recall F1 Score AP

0.6

0.8

1.0

 
 

 

 YOLO v3

 Gaussian Noise

 Salt and Pepper

 

(d) Results comparison of YOLO and image with different noise 

Figure 5.15 Detection Results of YOLO v3 for the image with Noise 

 

Figure 5.15 demonstrates the detection results of original image and image with noises. 

It clearly shows that compared with the noiseless data set, the model has lower 

performance on image sets with noise. Both noises decrease the detection accuracy of 

the model while the image salt and pepper noise have less performance than image 

with gaussian noise. Figure 5.16 and 5.17 demonstrates the detection results of 

gaussian noise and salt and pepper noise, respectively. 
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Figure 5.16 Detection results of image with Gaussian Noise 

 

 

Figure 5.17 Detection results of the image with Salt and Pepper Noise 
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After adding noise to the test set, the performance index indicated that both noises 

could decrease the performance of the model. Moreover, according to the AP index, 

compare with the original data set, the detection accuracy is reduced approximately 

31% while the tested image and PR curve graph also indicate that YOLOv3 algorithm 

has poor robustness when dealing with noise, the precision of detection under noise 

disturbance has higher variation and shows it is affected by the noise, which could not 

resist the noise interference to a certain range and obtain an unsatisfactory result of 

cracks detection. 

 

 Conclusion 

This chapter mainly focus on the fundamental principles of YOLOv3 algorithm and 

its application in the detection of cracks of tunnels. The reason for choose YOLOv3 is 

that it is detection algorithm based on the one-stage, which could focus detection speed 

and could meet the real-time monitoring requirement. Relative to the previous object 

detection algorithm such as YOLOv2 and SSD, YOLOv3 integrated with RPN and 

ResNet in network, which provide the algorithm has ability to build deeper network 

without gradient disappear hence improve the detection accuracy on small object, to 

achieve higher precision of cracks detection. 
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 Conclusions and Future Work 

 

 Conclusions 

This thesis focuses on the application of deep neural networks in underground projects, 

and has two major applications. One TBM performance prediction by using neural 

networks and another is using neural networks to extract the feature of underground 

space cracks, identify and locate the cracks on the TBM lining and the tunnels. 

Through the research, the following conclusions are obtained:  

A literature review has been done on TBM performance prediction by using the neural 

networks and proposed a method of prediction for TBM performance and rock mass 

parameter by input multiple feature data into a neural network based on the LSTM 

model. By adjust the specification of the neural network model, the number of neurons, 

the timesteps, the learning rate, the random dropout rate and use optimization function 

to improve the prediction accuracy of the model. In consideration of the lithology, 

surrounding rock type and groundwater activity of the excavation scope, through the 

machine learning of TBM data and rock data, the equipment operating parameters of the 

TBM stable operating section are predicted. Based on the existing TBM operation data, 

the improved LSTM machine learning method based on RNN can effectively predict the 

TBM tunneling parameters. Overall, the proposed model is extendable and can be 

suited for other relatively engineering aspects. 

Moreover, based on the research of image recognition and combining with the deep 

learning algorithm, this thesis conducts model training based on large amount of image 

sets, determines whether there are cracks in the image and labels the position of cracks 

in the complex image. It can provide a novel technical theory for high precision 

intelligent detection of complex tunnel defects which has good research and 

development potential. Furthermore, based on the different requirements of purpose 

for deep learning detection algorithms, this thesis adopts two different deep learning 

frameworks. Pytorch is used for the implementation of the Faster R-CNN algorithm, 

while the YOLOv3 algorithm use darknet-53 which is a relatively lightweight Keras 

based deep learning framework. Both frameworks have their own advantages and 

disadvantages, therefore, for specific object detection algorithms, it is necessary to 

adopt the corresponding deep learning framework platform for these algorithms to 
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achieve their maximum potential, and obtain better performance on detecting the 

cracks in the underground space. Compared with the conventional crack detection 

method based on machine learning, the method adopted in this thesis is more efficient 

and accurate. The final results of the comparative test indicate the accurate 

identification and real-time localization of the underground crack, which can meet the 

real-time detection requirements. 

The Faster R-CNN algorithm is applied to TBM lining defects detection in 

underground space and its specific parameters are adjusted to improve the detection 

performance. Faster R-CNN is an algorithm based on the Fast R-CNN algorithm with 

adjusted and optimized network structure. From structure aspect, Faster R-CNN 

belongs to the two-stage algorithm, and compare with the previous two-stage 

algorithm, Faster R-CNN has integrated feature extraction, proposal extraction, 

bounding box regression and classification into one network, which significantly 

improves the comprehensive performance, and improves the detection accuracy and 

speed of cracks in underground space. The research mainly combined with the 

characteristic of tunnel cracks itself which is relatively thin and long, improves the 

Faster R-CNN algorithm and optimized the specific parameter. The results of test 

indicate that the improved algorithm has better performance on crack detection. 

Moreover, due to the environmental condition of the underground site, the collected 

image of tunnels may exist noise interference and out of clarity. Therefore, the noise 

is added to the image of the test set before detection in order to test the robustness of 

the algorithm. The detection results show that the Faster R-CNN algorithm is robust 

when facing images with noise. 

The YOLOv3 algorithm is applied to crack detection in underground space. YOLO is 

a typical representative algorithm of the one stage method, it outputs the category of 

the object and its corresponding position based on the one stage idea, therefore its 

detection speed is faster than those algorithms based on the regional proposal method 

which could satisfy the real time monitoring requirement. Compared with YOLO v2, 

YOLO v3 has more detection units. It improves the network architecture and replaces 

the loss function in v2 (from SoftMax loss to logistic loss), as a result, YOLOv3 has 

better detection performance on small objects while maintaining the same detection 

speed. Moreover, Gaussian noise and salt and pepper noise are added to all cracks test 

images before detection to test the robustness of the YOLOv3 algorithm. The results 



Conclusions and Future Work  114 

show that compared with the two stage Faster R-CNN algorithm, the YOLOv3 

algorithm based on one stage is less robust to the image of the crack containing noise. 

 

 Application of Deep Learning in TBM and Tunnel 

Inspection 

The objective of this research is to apply deep learning to TBM and tunnel inspection. 

For the construction of tunnels by TBM, the application of deep learning based on the 

prediction system could divide into different stages. In the initial stage, the operating 

data of TBM is collected by the sensors and send to the analysis center, the data is 

analysed by the trained model based on the existing TBM operating model. Based on 

the current data the model will output the prediction of TBM for the operator to assist 

the decision. In the next stage, the TBM will integrate the prediction system that 

currently collected data could use for real time training of the model without exchange 

data to the analysis center. The ultimate objective of the prediction system is, the TBM 

subsystem including prediction and AI assisted decision making method could be 

developed to assist self-adjustment for TBM operating parameters which make TBM 

could operating automatically to make underground tunnelling excavation economical 

and prevent potential hazards.  

For tunnel inspection, the application of computer vision-based inspection can be 

divided into different stages. For the initial stage, the conventional inspection is 

performed during the maintenance period by the manual inspection. A mobile device 

integrated with the vision device collected the image of the lining during the 

maintenance period and send it to the data analysis center to detect and mark the cracks 

in the image. With further technology development, in the next stage, the device 

integrated with the image processing unit that could detect the cracks of linings without 

sending the data to the analysis center. The image processing unit integrated on the 

devices could automatically analysis the video, detect and mark the location of the 

cracks while the operator could use a cellular data exchange system to remotely control 

and monitoring the device with streaming video transmission. The ultimate 

development of the device is, the Unmanned Aerial Vehicle integrates with the vision 

and image processing unit that could automatically inspect the tunnel according to the 



115  Conclusions and Future Work 

preset routine and detect, mark the cracks without any manual operation the tunnel 

remains operated. This inspection method not only ensures the safety of the operator 

but also reduces the maintenance time of the tunnel, which makes the utilization rate 

of the tunnel increase greatly. 

 

 Limitation and Future Work 

However, apply the research into the practice is the following objects could improve 

in future research:  

For the construction of tunnel by TBM, the LSTM solve the existing problem such as 

gradient explosion and vanish in RNN by introducing the gate system, however, the 

model is using existing collected data to train the model while different geological 

condition and different TBM model has a significant influence of TBM performance. 

Moreover, the current model could not assist the operator to decide during the TBM 

operating period. Therefore, in the future, one main task is using the currently collected 

data to instant train and validate the model.  And another is to develop a function in 

the model that could be based on prediction results of data to guide and warn the 

extraordinary status of the operator during the excavation period. 

For TBM lining defects detection, there are two kinds of neural network algorithm for 

crack detection of tunnels are used in this thesis, the first method is two stage Faster 

R-CNN which based on region proposal. Compare with the previous two stage method, 

the detection speed is improved by maximizing the parameter sharing the position 

sensitive fraction graph is proposed to solve the balance problem between object 

position invariance and position variability. However, the algorithm still takes a long 

time to process image cracks in the tunnel and detection speed is too slow to meet the 

requirement of real time crack detection. Therefore, it is considered to further optimize 

its network structure to improve its detection speed in order to satisfy the real time 

detection requirement. 

The second method used in this thesis is the YOLO algorithm, which is an end-to-end 

detection algorithm based on the single-stage method. Therefore, compared with the 

two-stage algorithm, it has significant advantage in the detection speed. However, for 

smaller objects, the detection accuracy is relatively lower. The algorithm is optimizing 
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by changing the specific parameters in the algorithm to achieve higher accuracy of 

crack detection. however, the amount of computation is also increased, which leads to 

the detection speed decreasing. Therefore, it is necessary to improve the detection 

accuracy as much as possible while satisfying the detection speed, and achieve a 

balance between the detection speed and the detection accuracy. 

Compared with the conventional machine learning image classification, the algorithm 

based on CNN has higher accuracy and detection efficiency. Currently, it is only used 

for the detection of cracks. In the future, the algorithm can be optimized to evaluate 

the damage level of the detected tunnel crack defects (such as light crack, heavy crack, 

crack zone with seepage, etc.). Moreover, by adding different training sets, the model 

is except detecting other different defects such as peeling and seepage. 
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