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ABSTRACT

A graph is a connected network of nodes and edges. This type of graph-
structured data is a fundamental mathematical representation and ubiquitous.
They found applications in virtually all aspects of our daily lives from pandemic
outburst response, information retrieval to circuit design, to name a few. In ma-
chine learning and data science, learning and inference from graphs have been one
of the most important research topics. However, as data grow unprecedentedly in
volume and complexity in modern time, traditional learning methods for graph
are mostly inadequate to model increasing complexity, to harness rich contextual
information as well as to scale with large-scale graphs. The recent rise of deep
learning, and in turn, of representation learning field has radically advanced ma-
chine learning research in general, and pushing the frontier of graph learning. In
particular, the notion of graph representation learning has recently emerged as
a new promising learning paradigm, which aims to learn a parametric mapping
function that embeds nodes, subgraphs, or the entire graph into low-dimensional
continuous vector spaces. The central challenge to this endeavor is to learn rich
classes of complex functions to capture and preserve the graph structural informa-
tion as much as possible and also be able to geometrically represent the structural
information in the embedded space.

In the quest to this research challenge, the first goal in this thesis is to develop
new effective learning and embedding methods for undirected graphs, that can
exploit side, context and relational information as well as new representation
space. Consequently, we propose a new graph neural network model which, by
leveraging a transformer self-attention network, induces a powerful aggregation
function to improve graph classification performance. We further present two
new unsupervised embedding models to learn effective embeddings not only for
existing nodes but also for new nodes. Lastly, to enrich the space in which graph
representation operates, we introduce a novel form of quaternion graph neural



networks to move beyond the Euclidean space to the Quaternion space, hence
reducing the model size and improving the embedding quality.

Our second research goal is to develop advanced embedding models that can
better encode relationships and correlate information in knowledge graphs. To this
end, we propose two new embedding models to capture global relationships and
translation characteristics between entities and relations. We also present another
advanced embedding model to enhance relation-aware correlations between head
and tail entities within the Quaternion space. Furthermore, we consider two other
applications of triple classification and search personalisation and introduce a
new embedding model to memorise and encode potential dependencies among
relations and entities.

In all cases, the thesis has focused on developing novel and advanced embed-
ding models to address the challenges for the two most popular types of graphs:
undirected graph and knowledge graph, with extensive experimental evaluation,
benchmarking with current state-of-the-art methods, and post-analysis to demon-
strate the merits of the proposed methodologies.
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Chapter 1

Introduction

1.1 Motivations

Graph-structured data is ubiquitous with countless real-world applications. In general, a

graph can be viewed as a network of nodes and edges, wherein nodes represent the individual

entities, and edges encode relationships among those entities. One example is in an online

forum, wherein a discussion thread can be constructed as a graph of nodes representing the

users and edges indicating the interactions such as responses and reactions between users

(Yanardag and Vishwanathan, 2015). Besides, the graph structures found in social networks,

molecular networks, biological protein-protein networks, recommender systems could be

extremely complicated. Hence, it is worth exploring prospective mechanisms to deal with

the unprecedented growth in volumes and problem complexity of graph-structured data.

Early machine learning models have limitations to work on graph-structured data.

A common approach is to extract structural information such as summary graph statis-

tics, e.g., kernel functions (Gärtner et al., 2003). Another approach is to carefully design

hand-engineered features to measure the local neighbourhood structures (Liben-Nowell and

Kleinberg, 2007). These methods, however, suffer from two significant drawbacks. First, de-

signing good features requires prior knowledge, hence needs domain experts, and is usually

time-consuming. Second, hand-engineered features are inflexible and not straightforward

1
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to adapt to the graphs evolving over time.

Graph representation learning has recently emerged as a new promising learning

paradigm, which has been offering numerous successful applications such as semantic

searching and ranking (Kasneci et al., 2008; Schuhmacher and Ponzetto, 2014; Xiong et al.,

2017), question answering (Zhang et al., 2016; Hao et al., 2017), traffic prediction (Cui

et al., 2018), learning physics engines (Sanchez-Gonzalez et al., 2018), and advertising and

recommending items to users (Ying et al., 2018a; Wang et al., 2018). The key idea is to

learn a parametric mapping function that embeds the nodes, the subgraphs, or the entire

graph into low-dimensional continuous vector spaces; hence the learned vectors can be

useful for downstream tasks. The challenge is that the learned embedding function needs

to capture and preserve the graph structural information as much as possible and also be

able to geometrically represent the structural information in the embedded space. In this

thesis, we develop novel and advanced embedding models to address six research questions

for the two most popular types of graphs: undirected graph and knowledge graph.

1.1.1 Representation learning for undirected graph

Figure 1.1: Illustration of a molecular graph. This figure is drawn based on (Nouleho Ilemo
et al., 2019).

Undirected graphs contain bidirectional edges that do not have a direction. Undirected
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graphs are predominant and have been utilised in many necessary fields, e.g., they can be

used as a representation for molecules (Gärtner et al., 2003), as illustrated in Figure 1.1.

Thus, learning node and graph vector representations is essential in both industry and

academic applications (Cai et al., 2018; Chen et al., 2018a; Zhang et al., 2018b).

Recently, graph neural networks (GNNs) have become a central strand to learn

low-dimensional continuous embeddings for nodes and graphs (Hamilton et al., 2017b;

Wu et al., 2019b). Compared to early approaches such as graph kernel-based methods

(Gärtner et al., 2003) and word embedding-based models (Perozzi et al., 2014), GNN-

based approaches provide faster and practical training, higher accuracy, and state-of-the-art

results on benchmark datasets for downstream tasks such as node and graph classifications

(Kipf andWelling, 2017; Xu et al., 2019). Therefore, we raise three needed research questions

and propose novel models to address these research questions (RQ).

Figure 1.2: Illustration of an aggregation operation. This figure is drawn based on (Hamil-
ton et al., 2017a).

• RQ 1. In general, GNNs use an aggregation function to update the vector repre-

sentation of each node by transforming and aggregating the vector representations of its

neighbours (Kipf and Welling, 2017; Hamilton et al., 2017a; Veličković et al., 2018), as

illustrated in Figure 1.2. Then GNNs apply a graph-level pooling function (i.e., a read-

out operation such as simple sum pooling) to obtain graph embeddings (Gilmer et al.,

2017; Zhang et al., 2018a; Ying et al., 2018b; Verma and Zhang, 2018; Xu et al., 2019).

To further improve the GNN performance, our first research question is: “How can we

develop an advanced aggregation function to better update node representations from their
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neighbours? ”

• RQ 2. Existing GNN models mainly focus on the transductive setting, where a

model is trained using the entire input graph, i.e., the model requires all nodes with a fixed

graph structure during training and lacks the flexibility in inferring embeddings for new

nodes (Perozzi et al., 2014; Wang et al., 2016; Kipf and Welling, 2017). By contrast, a more

important setup, but less mentioned, is the inductive setting, where only a part of the input

graph is used to train the model, and then the learned model is used to infer embeddings

for new nodes (Yang et al., 2016). Several attempts have additionally been made for the

inductive settings (Duran and Niepert, 2017; Hamilton et al., 2017a). Working on the

inductive setting is particularly more difficult than that on the transductive setting due to

lacking the ability to generalise to the graph structure for new nodes. Hence, our second

research question is: “How can we develop an effective learning process to infer embeddings

for new nodes? ”

• RQ 3. It is worth to note that most of the existing GNNs learn node and graph

embeddings within the Euclidean vector space. However, for complex graphs such as

protein interaction networks and social networks, the learned Euclidean embeddings have

high distortion (Chami et al., 2019). It also has been noted in (Xu et al., 2019; Pei et al.,

2020) that the Euclidean embeddings of different nodes (or different graphs) can become

increasingly more similar when constructing multiple GNN layers, hence degrading the

graph representation quality. Furthermore, when increasing the number of hidden layers,

the existing GNNs (Kipf and Welling, 2017; Hamilton et al., 2017a; Veličković et al., 2018;

Xu et al., 2019) are not working very efficiently anymore since the number of parameters

grows quickly. Our third research question is: “How can we move beyond the Euclidean

space to learn better graph representations and reduce the number of model parameters? ”

1.1.2 Knowledge graph embeddings

Knowledge graphs (KGs) can be viewed as directed multi-relational networks to represent

directional relationships between entities in the form of triples (head, relation, tail) denoted
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as (h, r, t), e.g., (Patti, born_in, Miami), as illustrated in Figure 1.3. KGs are useful

resources for many NLP and information retrieval applications such as semantic search

and question answering (Wang et al., 2017). However, large knowledge graphs, such as

YAGO (Suchanek et al., 2007) and Freebase (Bollacker et al., 2008), even at the scale of

billions of triples, are still incomplete, i.e., missing a lot of valid triples (West et al., 2014).

For example, in Freebase, 71% of the roughly 3 million people have no known place of

birth, 94% have no known parents, and 99% have no known ethnicity (West et al., 2014).

Therefore, existing research efforts have focused on inferring missing triples in KGs, i.e.,

predicting whether a triple not in KGs is likely to be valid or not (Bordes et al., 2011).

Consequently, many knowledge graph embedding models have been proposed to learn

vector representations for entities and relations and return a score for each triple, such

that valid triples have higher scores than invalid ones (Bordes et al., 2013; Socher et al.,

2013a), e.g., the score of the valid triple (Melbourne, city_Of, Australia) is higher than

the score of the invalid one (Melbourne, city_Of, Germany). To this end, we also concern

three important research questions and introduce novel KG embedding models to deal

with these questions.

Figure 1.3: Illustration of an incomplete knowledge graph. This figure is drawn based on
(Nguyen, 2020).

• RQ 4. Conventional embedding models often employ simple linear operators such

as addition, subtraction, and multiplication. For example, TransE (Bordes et al., 2013),

the most well-known embedding model for KGs, uses translations within a latent space to

capture relationships between the head and tail entities, so that the embedding vh of the
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Figure 1.4: Illustration of translation-based models. This figure is drawn based on (Wang
et al., 2014; Lin et al., 2015b).

head entity plus the embedding vr of the relation is close to the embedding vt of the tail

entity, i.e., vh + vr ≈ vt, where vh, vr, and vt ∈ Rn, as illustrated in Figure 1.4. TransE

leads to expand early embedding models such as TransH (Wang et al., 2014), TransR (Lin

et al., 2015b), TransD (Ji et al., 2015), STransE (Nguyen et al., 2016), DISTMULT (Yang

et al., 2015), and ComplEx (Trouillon et al., 2016). Since ConvE (Dettmers et al., 2018)

has successfully leveraged convolutional neural networks (LeCun et al., 1998) to score

the triples and obtain state-of-the-art results for knowledge graph completion, we see a

potential strategy of developing deep neural networks for knowledge graph embeddings.

Our fourth research question is: “How can we develop deep KG embedding approaches to

better model relationships among entities? ”

• RQ 5. Most of the existing models focus on embedding entities and relations within

the Euclidean vector space (Bordes et al., 2013; Wang et al., 2014; Lin et al., 2015b; Yang

et al., 2015; Dettmers et al., 2018; Nguyen et al., 2018). Moving beyond the Euclidean

vector space, ComplEx (Trouillon et al., 2016) and RotatE (Sun et al., 2019) consider

the complex vector space, MuRP (Balažević et al., 2019a) and AttH (Chami et al.,

2020) leverage the hyperbolic space, and QuatE (Zhang et al., 2019) embeds entities and

relations within the Quaternion space. However, these existing models have a limitation

in capturing the correlations between the head and tail entities. Thus, our fifth research

question is: “How can we increase the correlations between the entities in KGs beyond the

Euclidean space? ”

• RQ 6. The existing KG embedding models show promising performances mainly for
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knowledge graph completion, where the goal is to infer a missing entity given a relation and

another entity. But in other applications, less mentioned, such as triple classification (Socher

et al., 2013a) that aims to predict whether a given triple is valid, and search personalisation

(Vu et al., 2017) that aims to re-rank the relevant documents returned by a user-oriented

search system given a query, these models do not effectively capture potential dependencies

among entities and relations from existing triples to predict new triples. As a consequence,

our last research question is: “How can we develop an advanced KG embedding model for

two other applications of triple classification and search personalisation? ”

1.2 Aims and Contributions

By investigating the research questions mentioned above, this thesis aims to:

• Develop new graph neural networks for undirected graphs.

• Develop advanced embedding models for knowledge graphs.

To accomplish these aims, we present a novel class of graph embedding models to

address RQ 1, 2, and 3 in Chapter 3 and introduce our new KG embedding models to

address RQ 4, 5, and 6 in Chapter 4. The main contributions of this thesis are highlighted

as follows:

• RQ 1: Graph transformer self-attention networks. The transformer self-attention

network (Vaswani et al., 2017; Dehghani et al., 2019) has been extensively used in

research domains such as computer vision, image processing, and natural language

processing. But it has not been actively used in GNNs where constructing an ad-

vanced aggregation function is essential. Our proposed model, named U2GNN , is

an effective GNN model which, by leveraging a transformer self-attention mecha-

nism followed by a recurrent transition, induces a powerful aggregation function

to learn graph representations. Our U2GNN achieves state-of-the-art accuracies on

benchmark datasets for the graph classification task.
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• RQ 2: Learning node embeddings for new nodes. We propose two new unsu-

pervised embedding models – SANNE and Caps2NE – whose central ideas are

to employ a transformer self-attention network (Vaswani et al., 2017) and a capsule

network (Sabour et al., 2017) respectively. Our two models aim to produce effective

embeddings not only for existing nodes but also for new nodes. The proposed SANNE

and Caps2NE obtain state-of-the-art results on well-known benchmark datasets for

the node classification task.

• RQ 3: Quaternion graph neural networks.We propose quaternion graph neural

networks (QGNN ) to generalise graph convolutional networks (Kipf and Welling,

2017) within the Quaternion space to learn quaternion embeddings for nodes and

graphs. The Quaternion space, a hyper-complex vector space, provides powerful

computations through Hamilton product compared to the Euclidean and complex

vector spaces. As a result, our QGNN can reduce the model size up to four times and

learn better graph representations. QGNN produces state-of-the-art accuracies on a

range of well-known benchmark datasets for three downstream tasks, including graph

classification, semi-supervised node classification, and text (node) classification.

• RQ 4: Deep knowledge graph embedding models. We propose a new embed-

ding model, named ConvKB , which advances state-of-the-art models by employing

a convolutional neural network (LeCun et al., 1998). ConvKB aims to capture global

relationships and translation characteristics among entities and relations in knowl-

edge graphs. Besides, we introduce CapsE , an extension of ConvKB, to explore

a novel application of the capsule network (Sabour et al., 2017). Unlike the tradi-

tional modelling design of the capsule network where capsules are constructed by

splitting feature maps, we use capsules to model the entries at the same dimension

in the entity and relation embeddings. Both ConvKB and CapsE achieve better

performance than previous KG embedding models on benchmark datasets for the

knowledge graph completion task.

• RQ 5: Relation-aware quaternions for knowledge graph embeddings. We
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propose an effective embedding model, named QuatRE , to learn quaternion em-

beddings for entities and relations in knowledge graphs. QuatRE aims to enhance

correlations between head and tail entities given a relation within the Quaternion

space. QuatRE achieves this goal by further associating each relation with two

relation-aware rotations, which are used to rotate quaternion embeddings of the

head and tail entities, respectively. QuatRE produces state-of-the-art results also for

the knowledge graph completion task.

• RQ 6: Memory network for triple classification and search personalisa-

tion. We introduce a new KG embedding model, named R-MeN , that explores a

transformer-based memory network (Santoro et al., 2018) to memorise and encode

the potential dependencies among relations and entities. Our R-MeN considers each

triple as a sequence of 3 input vectors that recurrently interact with memory using a

transformer self-attention mechanism (Vaswani et al., 2017). R-MeN obtains better

performance than previous models for triple classification and search personalisation.

1.3 Outline and Origins

The remaining parts of this thesis is outlined as follows:

• Chapter 2 presents necessary background and related work for graph representation

learning and knowledge graph embeddings.

• Chapter 3 describes our proposed models for graph neural networks. This chapter is

based on:

- Dai Quoc Nguyen, Tu Dinh Nguyen and Dinh Phung. Universal Graph Trans-

former Self-Attention Networks. arXiv preprint arXiv:1909.11855, 2019.

- Dai Quoc Nguyen, Tu Dinh Nguyen and Dinh Phung. 2020. A Self-Attention

Network based Node Embedding Model. In Proceedings of the European Confer-

ence on Machine Learning and Principles and Practice of Knowledge Discovery in
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Databases (ECML-PKDD 2020). https://doi.org/10.1007/978-3-030-67664-3_

22

- Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen and Dinh Phung. 2020.

A Capsule Network-based Model for Learning Node Embeddings. In Proceedings of

the 29th ACM International Conference on Information and Knowledge Management

(CIKM 2020). https://doi.org/10.1145/3340531.3417455

- Dai Quoc Nguyen, Tu Dinh Nguyen and Dinh Phung. Quaternion Graph Neural

Networks. arXiv preprint arXiv:2008.05089.

• Chapter 4 details our proposed models for knowledge graph embeddings. This chapter

is based on:

- Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen and Dinh Phung. 2018.

A Novel Embedding Model for Knowledge Base Completion Based on Convolutional

Neural Network. In Proceedings of the 2018 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Human Language Technologies

(NAACL-HLT 2018), pages 327-333.

- Dai Quoc Nguyen, Dat Quoc Nguyen, Tu Dinh Nguyen and Dinh Phung. 2019.

A Convolutional Neural Network-based Model for Knowledge Base Completion and

Its Application to Search Personalisation. Semantic Web, 10(5):947-960, 2019. DOI:

10.3233/SW-180318. (SCIE, JCR IF 2019: 3.524).

- Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen, Dat Quoc Nguyen and Dinh

Phung. 2019. A Capsule Network-based Embedding Model for Knowledge Graph

Completion and Search Personalisation. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies (NAACL-HLT 2019), pages 2180-2189.

- Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen and Dinh Phung. QuatRE:

Relation-Aware Quaternions for Knowledge Graph Embeddings. arXiv preprint

https://ecmlpkdd2020.net
https://doi.org/10.1007/978-3-030-67664-3_22
https://doi.org/10.1007/978-3-030-67664-3_22
https://www.cikm2020.org
https://doi.org/10.1145/3340531.3417455
http://naacl2018.org/
http://naacl2019.org/
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arXiv:2009.12517.

- Dai Quoc Nguyen, Tu Dinh Nguyen and Dinh Phung. 2020. A Relational

Memory-based Embedding Model for Triple Classification and Search Personalisation.

In Proceedings of the 58th Annual Meeting of the Association for Computational

Linguistics (ACL 2020), pages 3429–3435.

• Chapter 5 provides concluding remarks by giving a summary of our work and future

developments.

This thesis consists of six original papers published in peer-reviewed conferences and

journals and three other preprint papers. Furthermore, the extended abstracts of the

following two papers, “Quaternion Graph Neural Networks” and “QuatRE: Relation-Aware

Quaternions for Knowledge Graph Embeddings”, have also been accepted to the NeurIPS

2020 Workshop on Differential Geometry meets Deep Learning (DiffGeo4DL).

https://acl2020.org
https://sites.google.com/view/diffgeo4dl/
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In this chapter, we review the literature related to this thesis. There are two main sections,

wherein the first presents a brief overview of graph representation learning approaches,

and the second provides a background of knowledge graph embedding methods.

2.1 Graph Representation Learning

Learning representations for graph-structured data is an important topic that has gained

a substantial amount of attention recently (Hamilton et al., 2017b; Zhou et al., 2018). The

common goal is to construct low-dimensional vectors for nodes, subgraphs, or the entire

graph. Existing approaches can be categorised into three groups: (i) graph kernel-based

methods, (ii) word embedding-based models, and (iii) graph neural networks.

Methods in the first group build vectors of frequencies of “atomic subgraphs” decom-

12
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posed from a given graph. Typical types of atomic subgraphs include random walks (Gärt-

ner et al., 2003; Kashima et al., 2003; Vishwanathan et al., 2010), shortest paths (Borgwardt

and Kriegel, 2005), graphlets (Shervashidze et al., 2009), and Weisfeiler-Lehman subtree

patterns (Shervashidze et al., 2011). In the second direction, several word embedding-based

models (Perozzi et al., 2014; Tang et al., 2015; Grover and Leskovec, 2016) sample a large

set of random walks, then treat each walk as a document whose words are nodes, and

finally apply Word2Vec (Mikolov et al., 2013b) on such random walk set to learn node

embeddings. Meanwhile, some other ones aim to obtain the embeddings of the atomic

subgraphs (Yanardag and Vishwanathan, 2015), and the entire graphs (Narayanan et al.,

2017; Ivanov and Burnaev, 2018) by aggregating node embeddings learned by Word2Vec

or using Doc2Vec (Le and Mikolov, 2014). Recently, graph neural networks (GNNs) be-

come an essential strand, forming the third direction to learn low-dimensional continuous

representations for nodes and graphs, and achieve state-of-the-art performances for node

and graph classification tasks (Scarselli et al., 2009; Hamilton et al., 2017b; Zhou et al.,

2018; Wu et al., 2019b; Zhang et al., 2020).

In what follows, we first introduce the graph kernel-based methods in Section 2.1.1,

then describe the word embedding-based models in Section 2.1.2, and finally focus on

presenting graph neural networks in Section 2.1.3.

2.1.1 Graph kernel-based methods

In general, graph kernel-based approaches decompose graphs into “atomic subgraphs” to

measure the similarities among graphs (Gärtner et al., 2003). Common types of atomic sub-

graphs consist of random walks (Gärtner et al., 2003; Kashima et al., 2003; Vishwanathan

et al., 2010), shortest paths (Borgwardt and Kriegel, 2005), graphlets (Shervashidze et al.,

2009), and Weisfeiler-Lehman subtree patterns (Shervashidze et al., 2011). Here we view

each atomic substructure as a word term and each graph as a text document. Next, we

represent a collection of graphs as a document-term matrix whose elements are the nor-

malised frequency of terms in documents. We then derive a valid kernel, for example, a
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linear one by taking inner product of every two documents, i.e., two graphs, and finally

employ a kernel method such as Support Vector Machines (SVM) (Hofmann et al., 2008)

to work on the graph classification problem.

In particular, graphlet kernel (Shervashidze et al., 2009) partitions graphs into graphlets

(Pržulj, 2007) which are non-isomorphic induced subgraphs of size-k. The graphlet kernel

between two graphs G and G ′ is defined as:

KGK (G,G) = fTG fG′ (2.1)

where fG (resp. fG′) is the normalised vector of frequencies of graphlets occurring in G
(resp. G ′).

Weisfeiler-Lehman (WL) kernel (Shervashidze et al., 2011) decomposes graphs into

subtree patterns using a relabeling procedure. The main idea is to look at the label of each

node and labels of its neighbours, sorted in a particular order, to form a new compressed

label, and use that as the new label for such node at next iteration. This compressed label

represents a subtree pattern rooted at such node. After repeatedly doing this process for

several iterations, the WL kernel computes the frequencies of labels in both graphs across

each iteration to construct the kernel matrix. This procedure is equivalent to counting the

corresponding subtree patterns. The WL kernel between two labelled graphs G and G ′ is
defined as:

KWL (G,G) = fTG(0)fG′(0) + fTG(1)fG′(1) + ...+ fTG(h)fG′(h) (2.2)

where h is the number of iterations, and fG(i) (resp. fG′
(i)
) is the vector of frequencies of

labels assigned to nodes in G (resp. G ′) at the i-th iteration.

Another method is to split graphs into shortest paths to form feature triples (Borgwardt

and Kriegel, 2005). Let (l(u); l(v); p(u,v)) denote a feature triple which represents the label

l(u) of the starting node u, the label l(v) of the ending node v, and the shortest length

p(u,v) between u and v. The shortest path kernel between two labelled graphs G and G ′ is
defined as:

KSP (G,G) = fTG fG′ (2.3)
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where fG (resp. fG′) is the vector of frequencies of the triples (l(u); l(v); p(u,v)) occurring

in G (resp. G ′).
Lastly, random walk kernel (Gärtner et al., 2003; Kashima et al., 2003) decomposes

graphs into random walks to produce label sequences and then calculates the frequencies

of label sequences to construct the kernel matrix. It is worth to note that there are other

graph kernel-based approaches, but we refer the readers to the surveys of graph kernels

in (Nikolentzos et al., 2019; Kriege et al., 2019), rather than presenting here because they

are outside of the scope of this thesis.

2.1.2 Word embedding-based models

There have been several ideas adopting the word embedding frameworks such as Word2Vec

(Mikolov et al., 2013b) and Doc2Vec (Le and Mikolov, 2014) to learn the embeddings for

nodes and graphs. In the following sections, we briefly describe both Word2Vec and

Doc2Vec and then present word embedding-based models.

2.1.2.1 Word embeddings

Word embeddings are the distributed vector representations of words, where each word

is mapped to a unique real-valued vector in such a way that similar words will have

similar embedding vectors (Bengio et al., 2003; Collobert and Weston, 2008; Mikolov et al.,

2013a,b; Pennington et al., 2014; Levy and Goldberg, 2014). Word embedding models have

contributed numerous successfuly NLP applications such as sentiment analysis, question

answering, topic models, machine translation, and sequence labeling (Socher et al., 2013b;

Sutskever et al., 2014; Weston et al., 2015; Nguyen et al., 2015; Schnabel et al., 2015; Ma

and Hovy, 2016).

Among those word embedding models, Word2Vec (Mikolov et al., 2013a,b) is the

most well-known toolkit coming with two variants – Word2Vec Continuous Bag-of-Words

(CBOW) and Word2Vec Skip-gram – as shown in Figure 2.1. Word2Vec CBOW aims to

predict a target word from its context words, while Word2Vec Skip-gram uses a target
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word to predict its context words.

Figure 2.1: Illustration of Word2Vec. This figure is drawn based on (Mikolov et al., 2013a).

We denote vw and ṽw as the “target” and “context” vector representations of the word

type w in the word vocabulary W , respectively. Given a word sequence w1, w2, ..., wM ,

Word2Vec Skip-gram is to minimise the loss function as:

LSkip−gram = − 1

M

M∑

t=1

∑

−k≤j≤k,j 6=0

log P (wt+j|wt) (2.4)

where k is the window size of a target word wt, and wt+j is one of the context words of

wt. In general, the probability P (c|w) of the context word c given the target word w in

Equation 2.4 is computed using the softmax function as:

P (c|w) = exp(ṽTc vw)∑
c′∈V exp(ṽTc′vw)

(2.5)

The cost of computing P (c|w) over every training instance is very expensive and impractical

to large-scale datasets. One can resort to approximate Equation 2.5 using negative sampling

(Mikolov et al., 2013b) as:

E = log σ
(
ṽTc vw

)
+

K∑

i=1

Eci∼PW

[
log σ

(
−ṽTcivw

)]
(2.6)
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where the sigmoid function σ (u) = 1
1+e−u , and {ci}Ki=1 are K randomly chosen context

words which are sampled from an unigram distribution PW raised to the 3/4 power.

The other model, Word2Vec CBOW, averages the vector representations of the context

words into a vector ṽavg to predict the target word. Word2Vec CBOW is to minimise the

loss function as:

LCBOW = − 1

M

M∑

t=1

log P (wt|wt−k, ..., wt−1, wt+1, ..., wt+k)

= − 1

M

M∑

t=1

log P (wt|avg)

= − 1

M

M∑

t=1

log
exp(vTwt

ṽavg)∑
w′∈V exp(vTw′ṽavg)

(2.7)

Word2Vec models are then trained using stochastic gradient descent.

Figure 2.2: Illustration of Doc2Vec. This figure is drawn based on (Le and Mikolov, 2014).

It is worth to learn meaningful embeddings for variable-length pieces of texts such as

sentences, paragraphs, and documents in some cases. A common way is taking a weighted

average of word embeddings learned byWord2Vec in the text, but it loses information about

word order. Doc2Vec (Le and Mikolov, 2014) is proposed to address such problem and learn

a unique embedding vector for each document. Figure 2.2 illustrates two Doc2Vec variants,

including Distributed Memory Model of Paragraph Vectors (PV-DM) and Distributed

Bag of Words version of Paragraph Vector (PV-DBOW). PV-DV can either average or

concatenate the document embedding and the word embeddings to predict the next word
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in a context window, while PV-DBOW aims to use the document embedding to predict

the words within a sampled window.

2.1.2.2 Learning node representations

DeepWalk (Perozzi et al., 2014) aims to generate random walks from a given graph

by starting with a random node (uniformly sampled), and then repeat sampling (also

uniformly) the next node from the neighbours of the last visited node in the walk until

reaching the maximum length of the walk. In particular, let vi denote the i-th node in the

walk and v0 is the root node, then vi is sampled following the distribution:

P(vi|vi−1) =





1
Z
if (vi−1, vi) ∈ E

0 otherwise
(2.8)

where Z is the constant and E denotes a set of edges. After that, each random walk

can be seen as a sequence of (word) nodes, hence we then uses Word2Vec to learn node

embeddings.

Node2Vec (Grover and Leskovec, 2016) utilises a biased random walk strategy of using

interpolation between two sampling fashions: Breadth-First Sampling (BFS) and Depth-

First Sampling (DFS), hence capturing the diversity of connectivity patterns observed in

networks. Node2Vec computes the edge weights to form a 2nd order random walk with

two parameters p and q when sampling the next nodes as:

πvi,vi+1
= αpq(vi−1, vi+1) · τvi,vi+1

(2.9)

where vi+1 ∈ Nvi , τvi,vi+1
is the static edge weight between nodes vi and vi+1, and:

αpq(vi−1, vi+1) =





1
p
if dvi−1,vi+1

= 0

1 if dvi−1,vi+1
= 1

1
q
if dvi−1,vi+1

= 2

(2.10)
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where dvi−1,vi+1
, valued in {0, 1, 2}, is the shortest path distance between vi−1 and vi+1.

Parameter p controls an immediate re-visitation to a node in the walk. Setting p > max(q, 1)

is less likely to come back an already-visited node in the following two steps, while setting

p < min(q, 1) is to lead the random walk to backtrack one step. Parameter q helps to

explore neighbours in a BFS as well as DFS. If q > 1, the random walk is biased towards

nodes which are close to the (i− 1)-th node w.r.t BFS, while if q < 1, the walk is biased

towards nodes which are far away from the (i− 1)-th node w.r.t DFS. As a result, vi+1 is

sampled following the distribution:

P(vi+1|vi) =





πvi,vi+1

Z
if (vi, vi+1) ∈ E

0 otherwise
(2.11)

LINE (Tang et al., 2015) can be seen as an extension of Word2Vec to induce edge

weights between two nodes. The proposed model aims to minimise a loss function which

extends Equation 2.4 as:

LLINE = −
∑

v∈V

∑

v′∈Nv

τv,v′ log P (v′|v) (2.12)

where V denotes a set of nodes; Nv is the set of neighbours of v; and τv,v′ is the edge

weight between v and v′ and can be pre-defined through algorithms such as PageRank

(Page et al., 1999).

DDRW (Li et al., 2016a) is a semi-supervised model using node labels during jointly

training DeepWalk (Perozzi et al., 2014) with L2-regularised L2-loss Support Vector Clas-

sification (L2-SVC) (Fan et al., 2008). DDRW simultaneously minimises both the loss

functions of DeepWalk and L2-SVC as:

LDDRW = ηLDeepWalk + LL2−SV C (2.13)

where η is a balancing parameter, LDeepWalk is taken from the loss function of Word2Vec
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(Mikolov et al., 2013a,b), and LL2−SV C is defined as:

LL2−SV C =
1

2
wTw + C

|V|∑

i=1

(
max

(
0, 1− yiw

Tvvi
))2 (2.14)

where C > 0 is a regularisation parameter, w is a weight vector to adjust the parameter

C, yi is the node label of node vi, and vvi denotes the node embedding of vi.

2.1.2.3 Learning graph representations

Deep graph kernel (Yanardag and Vishwanathan, 2015) applies Word2Vec to learn the

embeddings for atomic substructures such as the graphlets, the Weisfeiler-Lehman subtree

patterns, and the shortest paths, and then derives the kernel between two graphs G and

G ′ as:
KSP (G,G ′) = fTGMfG′ (2.15)

where fG (resp. fG′) is the vector of frequencies of the atomic substructures occurring in

G (resp. G ′), andM is the diagonal matrix whereMii is computed as vTsivsi for the i-th

atomic substructure si with its own embedding vsi produced by Word2Vec.

Anonymous walk embedding (Ivanov and Burnaev, 2018) maps each random walk into

an “anonymous walk” where each state is recorded by its first occurrence index in the

random walk, then views each anonymous walk as a word token, and utilises Doc2Vec to

achieve the graph embeddings to compute the graph similarities to construct the kernel

matrix. Graph2Vec (Narayanan et al., 2017) employs Doc2Vec on the Weisfeiler-Lehman

subtree patterns to obtain the graph embeddings, which are then fed to SVM classifier

training.

2.1.3 Graph neural networks

This section is used to summarise common GNN methods, wherein the material is partially

based on (Wu et al., 2019b).

We represent each graph G = (V , E , {hv}v∈V), where V is a set of nodes, E is a set of
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edges, and hv (i.e., h(0)
v ) represents the feature vector of node v ∈ V .

Node classification. We consider a graph G where each node belongs to one of class

labels. We are given the labels of a subset of V. The task is to predict the labels of

remaining nodes.

Graph classification. Given a set of M disjoint graphs {Gm}Mm=1 and their corre-

sponding class labels {ym}Mm=1 ⊆ Y , the task is to learn an embedding eGm for each entire

graph Gm to predict its label ym.

In general, GNNs use an aggregation function, which aims to update the vector represen-

tation of each node by recursively propagating the vector representations of its neighbours

(Scarselli et al., 2009; Kipf and Welling, 2017; Hamilton et al., 2017a; Veličković et al.,

2018). GNNs then utilise a readout pooling function to obtain the graph embeddings,

which are fed to multiple fully-connected layers followed by a softmax layer to predict the

graph labels. Mathematically, given a graph G, we formulate GNNs as follows:

h(k+1)
v = Aggregation

({
h(k)
u

}
u∈Nv∪{v}

)
(2.16)

eG = ReadOut
({{

h(k)
v

}K
k=0

}

v∈V

)
(2.17)

where h(k)
v is the vector representation of node v at the k-th iteration/layer; Nv is the set

of neighbours of node v; and h(0)
v = hv.

2.1.3.1 Aggregation functions

There have been many designs for the aggregation functions proposed in recent litera-

ture. In this section, we briefly summarise several common approaches to construct the

aggregation functions.

Graph Convolutional Network (GCN) (Kipf and Welling, 2017) updates vector repre-

sentation for a given node v ∈ V from its neighbours, using multiple layers stacked on top
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Figure 2.3: Illustration of GCN. This figure is drawn based on https://tkipf.github.
io/graph-convolutional-networks/.

of each other as illustrated in Figure 2.3 as:

H(k+1) = g
(
AH(k)W(k)

)
(2.18)

or in another form of:

h(k+1)
v = g


 ∑

u∈Nv∪{v}
av,uW(k)h(k)

u


 ,∀v ∈ V (2.19)

where k is the layer index; av,u is an edge constant between nodes v and u in the re-

normalised adjacency matrix D̃
1
2 ÃD̃

1
2 , wherein Ã = A + I where A is the adjacency

matrix, I is the identity matrix, and D̃ is the diagonal node degree matrix of Ã; W(k) is

a weight matrix; h(0)
u is a feature vector of node u; g is a nonlinear activation function

such as ReLU; and Nv is the set of neighbours of node v. After that, to perform the

semi-supervised node classification task, at the last layer, g is replaced by a softmax layer

to predict the node labels. The model parameters are then learned by minimizing the

cross-entropy loss function.

Graph Attention Network (Veličković et al., 2018) extends GCN to compute edge

https://tkipf.github.io/graph-convolutional-networks/
https://tkipf.github.io/graph-convolutional-networks/
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weights following the standard attention technique (Bahdanau et al., 2015) as:

h(k+1)
v = g


 ∑

u∈Nv∪{v}
τ (k)v,uW

(k)h(k)
u


 ,∀v ∈ V (2.20)

where g is the sigmoid function σ (x) = 1
1+e−x ; and τ

(k)
v,u is an edge weight between nodes v

and u, which is computed as:

τ (k)v,u = softmax
(
LeakyReLU

(
a(k)T

[
W(k)h(k)

v ;W(k)h(k)
u

]))
(2.21)

where [;] denotes a vector concatenation. Besides, GAT employs the multi-head attention

technique (Vaswani et al., 2017) to further stabilise the learning process, except the final

(prediction) layer where GAT uses averaging.

While Simple Graph Convolution (Wu et al., 2019a) is a simplified variant of GCN

without using the non-linear activation function g, Graph Isomorphism Network (Xu et al.,

2019) uses a more powerful aggregation function based on a multi-layer perceptron (MLP)

network of two fully-connected layers as:

h(k+1)
v = MLP(k)


 ∑

u∈Nv∪{v}
h(k)
u


 ,∀v ∈ V (2.22)

Node sampling procedures. Regarding a faster learning, GraphSAGE (Hamilton

et al., 2017a) extends GCN to use a node-wise procedure of uniformly sampling a fixed

number of neighbours for each node at each layer as illustrated in Figure 2.4 as:

h(k+1)
v = g

(
W(k)

[
h(k)
v ;h(k)

N ′v

])
,∀v ∈ V (2.23)
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Figure 2.4: Illustration of GraphSAGE. This figure is drawn based on (Hamilton et al.,
2017a).

where [;] denotes a vector concatenation, and h(k)
N ′v can be obtained using an element-wise

max-pooling operation as:

h(k)
N ′v = max

({
g
(
Wpoolh

(k)
u + b

)}
u∈N ′v

)
(2.24)

where N ′v is defined as a fixed-size, uniformly sampled from Nv of v. Besides,N ′v is sampled

differently through each layer.

Moreover, FastGCN (Chen et al., 2018b) utilises a layer-wise procedure of sampling

V ′ (i.e., a fixed number of nodes) from V independently for each GCN layer as:

h(k+1)
v = g


 |V|
|V ′(k)|

∑

u∈Nv∪{v}
av,uW(k)h(k)

u


 ,∀v ∈ V ′(k) (2.25)

where V ′(k) is uniformly sampled from V , or:

h(k+1)
v = g


 1

|V ′(k)|
∑

u∈Nv∪{v}

av,u
qu

W(k)h(k)
u


 ,∀v ∈ V ′(k) (2.26)

where V ′(k) is sampled according to a probability distribution q for all the nodes in V . In
another work, Adapt (Huang et al., 2018) introduces an adaptive layer-wise procedure of
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sampling nodes in the lower layers conditioned on the higher layers, and further adds a

skip connection between the 2-hops layers to maintain the information over distant nodes.

Figure 2.5: Illustration of Graph U-Net’s node sampling procedure (gPool). This figure is
drawn based on (Gao and Ji, 2019).

Furthermore, Graph U-Net (Gao and Ji, 2019) presents an advanced layer-wise sampling

procedure, named gPool, to retain a portion of the input nodes as illustrated in Figure 2.5

as:

y = H(k)p(k)/‖p(k)‖

idx = rank (k, n)

ỹ = σ (y[idx])

H̃
(k)

= H(k)[idx, :]

H(k+1) = H̃
(k) � ỹ (2.27)

A(k+1) =
(
A(k)A(k)

)
[idx, idx]

where n is the number of retained nodes; idx is a list of indices of top n-largest values

for n retained nodes; the sigmoid function σ (x) = 1
1+e−x ; � denotes the element-wise

multiplication where the j-th row of H(k+1) is the product of the j-th row of H̃
(k)

and the

j-th scalar value of ỹ; and A(k)A(k) results in the 2nd graph power to increase the graph

connectivity. The output adjacency matrix A(k+1) and the output matrix H(k+1) of node
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representations are new inputs for next GCN layers. Graph U-Net then utilises an unpooling

procedure (gUnpool) followed by GCN layers to produce final node representations, as

illustrated in Figure 2.6. Note that the gUnpool is used to reconstruct the original graph

structure by fulfilling empty vectors for unselected nodes.

Figure 2.6: Illustration of Graph U-Net. This figure is drawn based on (Gao and Ji, 2019).

Other approaches. Jumping Knowledge Network (Xu et al., 2018) considers several

ways to construct the final representation of node v over the different representations at

the different layers as:

ev = φ

({
h(k)
v

}K
k=1

)
(2.28)

where φ(.) can be a vector concatenation, a element-wise max-pooling operation, or a

bi-directional LSTM (Hochreiter and Schmidhuber, 1997).

Deep Graph Infomax (Velickovic et al., 2019) leverages Deep InfoMax (Hjelm et al.,

2018) to learn node representations by maximizing mutual information between patch

representations and corresponding high-level summaries of graphs. Graph Transformer

Network (Yun et al., 2019) identifies useful meta-paths (Wang et al., 2019b) to transform

graph structures and applies GCN (Kipf and Welling, 2017) to learn the node embeddings

for the node classification task on heterogeneous graphs.

The Graph Neural Network (Scarselli et al., 2009) updates the vector representations of

nodes by recursively propagating their neighbours’ vector representations, using a recurrent

function until convergence, wherein the hidden states and the outputs of node v are
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computed as:

h(t+1)
v = f

(
lv, {lu}u∈Nv , {lv,u}u∈Nv , {h(t)

u }u∈Nv

)
; o(t)v = g

(
lv,h

(t)
v

)
(2.29)

where lv is the node label of v; lv,u is the edge label between v and u; f is a parametric

function called “local transition function”; and g is the local output function.

Gated Graph Neural Network (GGNN) (Li et al., 2016b) adopts Gated Recurrent Units

(GRUs) (Cho et al., 2014), unrolls the recurrence for a fixed number T of timesteps, and

removes the need to constrain parameters to ensure convergence. The recurrent function

in GGNN is given as:

h(1)
v =

[
xT
v ,0
]T

a(t+1)
v = AT

v:

[
h(t)T
1 ...h(t)T

|V|

]T
+ b

z(t+1)
v = σ

(
Wza(t+1)

v +Uzh(t)
v

)

r(t+1)
v = σ

(
Wra(t+1)

v +Urh(t)
v

)

h̃(t+1)
v = tanh

(
Wa(t+1)

v +U
(
r(t+1)
v � h(t)

v

))

h(t+1)
v =

(
1− z(t+1)

v

)
� h(t)

v + z(t+1)
v � h̃(t+1)

v (2.30)

where xv denotes the label annotations of node v.

Message Passing Neural Network (MPNN) (Gilmer et al., 2017) updates the hidden

states h(t+1)
v for node v based on messages m(t+1)

v as:

m(t+1)
v =

∑

u∈Nv

Mt

(
h(t)
v ,h

(t)
u , ev,u

)

h(t+1)
v = Ut

(
h(t)
v ,m

(t+1)
v

)
(2.31)

where the message functions Mt, node update functions Ut are learnable differentiable

functions. MPNN can generalise several existing networks such as Gated Graph Neural

Network (Li et al., 2016b), Deep Tensor Neural Network (Schütt et al., 2017), and GCN
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(Kipf and Welling, 2017).

Structural Deep Network Embedding (SDNE) (Wang et al., 2016) is proposed to pre-

serve both local and global graph structures. SDNE constructs an unsupervised component

using the auto-encoder architecture to preserve the global structure as:

Lunsup =

|V|∑

i=1

‖ (x̂v − xv)� bi‖22 (2.32)

where x̂v is the reconstructed vector representation of node v; � is the Hadamard product;

and bi is a learnable weight vector, which is used to impose more penalty to the recon-

struction error of the non-zero elements. SDNE uses a supervised component to constrain

the similarities between node representations to capture the local structure as:

Lsup =
∑

(v,u)

xij‖y(K)
v − y(K)

u ‖22 (2.33)

SDNE jointly optimise both Lunsup and Lsup with L2 regularisation Lreg into the following

loss function:

LSDNE = Lunsup + αLsup + νLreg (2.34)

Figure 2.7: Illustration of Planetoid. This figure is drawn based on (Yang et al., 2016). Each
dotted arrow represents a feed-forward network. Solid arrows denote direct connections.

Planetoid (Yang et al., 2016) introduces two training procedures including a transduc-
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tive setting and an inductive setting, as shown in Figure 2.7. The transductive setting is

used in most of the existing GNN approaches, where all nodes are present during training.

By contrast, a more important setup, but less mentioned, is the inductive setting, wherein

only a part of the input graph is used to train the model, i.e., a certain percentage of the

nodes are removed and become unseen during training, hence they are new nodes during

testing. The trained model is used to infer embeddings for these nodes. Planetoid defines

the loss function for the transductive setting as:

LTrans = −
1

|V|
∑

v∈V
log P (yv|hv,vv)− λE(v,v′,γ) log σ

(
γṽTv′vv

)
(2.35)

And the loss function for the inductive setting is defined as:

LInd = −
1

|V|
∑

v∈V
log P (yv|hv)− λE(v,v′,γ) log σ

(
γṽTv′g (Whv + b)

)
(2.36)

where P (yv|hv,vv) = softmax
(
wT
yv

[
h(M)
v ;v

(N)
v

])
; yv is the label of v; λ is a constant weight;

v′ is a context node uniformly sampled for target node v; vv is the embedding of node

v, and ṽv′ is the context embedding of node v′; γ = +1 denotes (v, v′) is a positive pair,

while γ = −1 denotes (v, v′) is a negative pair; g is a non-linear function (such as, ReLU);

and after training, g (Whv + b) is used to produce the embeddings for new nodes v in the

inductive setting.

2.1.3.2 Graph-level readout poolings

In this section, we briefly describe several common graph-level poolings to obtain the

graph embeddings.

Graph Isomorphism Network (GIN-0) (Xu et al., 2019), as mentioned in Equation 2.22,

follows Jumping Knowledge Network (Xu et al., 2018) to employ a concatenation over the

different representations at the different layers to obtain the final representation ev for

node v as:

ev =
[
h(0)
v ;h(1)

v ;h(2)
v ; ...;h(K)

v

]
,∀v ∈ V (2.37)
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where K is the index of the last layer.1 The graph-level readout function can be a simple

sum pooling as GIN-0 leverages the sum pooling to obtain competitive accuracies. Thus,

we can utilise the sum pooling to obtain the embedding eG of the entire graph G as:

eG =
∑

v∈V
ev =

∑

v∈V

[
h(1)
v ;h(2)

v ; ...;h(K)
v

]
(2.38)

Deep Graph Convolutional Neural Network (DGCNN) (Zhang et al., 2018a) applies

GCN (Kipf and Welling, 2017) to horizontally concatenate the vector representations

of each node at the different layers to output a tensor H(1):(K), which is then fed to a

SortPooling layer to produce sorted node representations. These sorted representations

are passed to a convolutional layer (LeCun et al., 1998) followed by a fully-connected layer

then with a softmax layer to predict the graph label. In particular, SortPooling uses a

row-wise sorting on H(K) in a descending order to sort nodes. If two nodes have the same

value, SortPooling continues comparing these nodes based on H(K−1), H(K−2), and so on

until broken. After sorting, SortPooling utilises an unified function to unify graphs with

different number of nodes to the same size for the convolutional layer.

Hierarchical pooling (HgPool) (Cangea et al., 2018) leverages the Graph U-Net’s node

sampling gPool (Gao and Ji, 2019) (as mentioned in Equation 2.28) to retain a portion

of input nodes with the output matrix H(k) at the k-th layer. HgPool then produces the

graph embedding eG as:

eG =
K∑

k=1

e(k)G =
K∑

k=1


 1

|V(k)|
∑

v∈V(k)

h(k)
v ;max

({
h(k)
v

}
v∈V(k)

)

 (2.39)

where [;] denotes a vector concatenation; V(k) is the set of remaining nodes at the k-th

layer; and max denotes the element-wise max-pooling operation.

As shown in Figure 2.8, Self-Attention Graph Pooling (Lee et al., 2019) re-implements

the general architectures from DGCNN (Zhang et al., 2018a) and HgPool (Cangea et al.,

2018) with using the Graph U-Net’s node sampling gPool (Gao and Ji, 2019) as the

1It is optional to include hv (i.e., h(0)v ) into ev.
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Figure 2.8: Illustration of model architectures re-implemented in SAGPool. This figure is
drawn based on (Lee et al., 2019).

graph-level pooling layer.

Differentiable Pooling (DiffPool) (Ying et al., 2018b) utilises a differentiable cluster

assignment to map nodes at the k-th layer to a set of coarsened clusters at the (k + 1)-th

layer, where each cluster is then treated as an input node. Mathematically, DiffPool

constructs the two following functions as:

H(k+1) = S(k)TGraphSAGE
(l)
embed

(
A(k),H(k)

)
(2.40)

A(k+1) = S(k)TA(k)S(k) (2.41)

where S(k) denotes the learnable cluster assignment matrix to provide a soft assignment

of each node at the k-th layer to a cluster at the (k + 1)-th layer. S(k) is defined as:

S(k) = softmax
(
GraphSAGE

(l)
pool

(
A(k),H(k)

))
(2.42)

DiffPool assigns all nodes at the final layer to a single cluster to generate the final

embedding eG of the entire graph G.
Gated Graph Neural Network (Li et al., 2016b) defines a graph-level readout pooling

function as:

eG = tanh

(∑

v∈V
σ
(
fi

([
h(K)
v ;xv

]))
� tanh

(
fj

([
h(K)
v ;xv

])))
(2.43)
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where h(K)
v is returned by Equation 2.30; σ

(
fi

([
h(K)
v ;xv

]))
can be seen as a soft attention

mechanism to decide which nodes are relevant to the graph-level task; fi and fj are neural

networks with the input
[
h(K)
v ;xv

]
. This pooling function is also utilised in Message

Passing Neural Network (Gilmer et al., 2017).

PATCHY-SAN (Niepert et al., 2016) adapts a graph labeling procedure (such as

Weisfeiler-Lehman (WL) relabeling process) to generate fixed-length sequences of nodes

from a given graph. PATCHY-SAN then orders k-hop neighbours for each node in each

generated sequence according to their graph labelings. After that, PATCHY-SAN selects

a fixed number of ordered neighbours for each node and applies a convolutional neural

network (LeCun et al., 1998) to predict the graph label.2

2.2 Knowledge Graph Embeddings

A knowledge graph G is a collection of valid factual triples in the form of (head, relation,

tail) denoted as (h, r, t) such that h, t ∈ E and r ∈ R where E is a set of entities and R is a

set of relations. In general, knowledge graph (KG) embedding models have been proposed

to embed entities and relations to a low-dimensional vector space. On such space, one can

define a score function f to score every triple (h, r, t) such that the valid triples obtain

higher scores than the invalid triples.

The following sections introduce necessary background and a brief overview of existing

KG embedding models.

2.2.1 Common loss and sampling functions

2.2.1.1 Loss functions

Let G and G ′ denote collections of valid and invalid triples respectively, wherein G ′ is
generated by corrupting valid triples in G. Let θ be the model parameters. To θ, we can

often minimise one of the following loss functions:
2Regarding other graph representation learning approaches, we refer the readers to the overview articles

in (Hamilton et al., 2017b; Zhou et al., 2018; Zhang et al., 2018b; Wu et al., 2019b; Zhang et al., 2020).
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• The margin-based loss function with L2 regularisation on θ:

Lmargin =
∑

(h,r,t)∈G
(h′,r,t′)∈G′

max (0, γ − f (h, r, t) + f (h′, r, t′)) + λ‖θ‖22 (2.44)

where γ is the margin hyper-parameter; and λ is the regularisation rate.

• The logistic-based loss function (Trouillon et al., 2016) with L2 regularisation on θ:

Lsoftplus =
∑

(h,r,t)∈{G∪G′}
log
(
1 + exp

(
−l(h,r,t) · f(h, r, t)

))
+ λ‖θ‖22 (2.45)

in which, l(h,r,t) =





1 for (h, r, t) ∈ G
−1 for (h, r, t) ∈ G ′

(2.46)

• The negative log-likelihood-based loss function (Toutanova and Chen, 2015):

LNLL = −
∑

(h,r,t)∈G
log

(
exp (f(h, r, t))∑

t′∈E\{t} exp (f(h, r, t
′))

)
−
∑

(h,r,t)∈G
log

(
exp (f(h, r, t))∑

h′∈E\{h} exp (f(h
′, r, t))

)

(2.47)

• The binary cross-entropy loss function:

Lcross−entropy = −
∑

(h,r,t)∈{G∪G′}

(
l(h,r,t) log

(
p(h,r,t)

)
+
(
1− l(h,r,t)

)
log
(
1− p(h,r,t)

))

(2.48)

in which, l(h,r,t) =





1 for (h, r, t) ∈ G
0 for (h, r, t) ∈ G ′

where p(h,r,t) = σ (f(h, r, t)), i.e., applying the sigmoid function σ(.) to the score.

• The cross-entropy loss function (Sun et al., 2019) with negative sampling (Mikolov

et al., 2013b):

Lneg = −
∑

(h,r,t)∈G

(
log σ (γ − f (h, r, t)) + 1

n

K∑

i=1

log σ (f (h′i, r, t
′
i)− γ)

)
(2.49)
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where n is the embedding dimension, and (h′i, r, t
′
i) is the i-th invalid triple.

Among these functions, the margin and logistic-based losses are commonly used in

translation-based approaches and later KG embedding models.

2.2.1.2 Sampling procedures

Common sampling strategies to generate G ′ are summarised as follows:

• Uniform negative sampling: one can replace the head entity or the tail entity by a

random entity uniformly sampled from E , but not both at the same time.

• Bernoulli negative sampling (Wang et al., 2014): Given each relation r, let ηh denote

the averaged number of head entities per tail entity whilst ηt denote the averaged

number of tail entities per head entity. Given a valid triple (h, r, t) of relation r,

we then generate a new head entity h′ with probability ηt
ηh+ηt

to form an invalid

triple (h′, r, t) and a new tail entity t′ with probability ηh
ηh+ηt

to form an invalid triple

(h, r, t′). The Bernoulli negative sampling procedure is widely used in KG embedding

models later on.

• Self-adversarial negative sampling (Sun et al., 2019): it is a recent method proposed

to sample invalid triples from the following distribution:

p
(
(h′j, r, t

′
j)|{(hi, ri, ti)}

)
=

expαf(h′j, r, t
′
j)∑

i expαf(h
′
i, r, t

′
i)

where α is the temperature of sampling.

Note that for a fair comparison, we should apply the same negative sampling procedure

for the baseline models as well as the proposed models.
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2.2.2 Applications and evaluation protocols

2.2.2.1 Knowledge graph completion

In the knowledge graph completion task (Bordes et al., 2013), the goal is to predict a

missing entity given another entity and their relation, e.g., inferring a head entity h given

(r, t) or inferring a tail entity t given (h, r). The results are calculated by ranking the

scores produced by the score function f on triples in the test set.

In particular, following Bordes et al. (2013), for each valid test triple (h, r, t), we replace

either h or t by each of other entities to create a set of corrupted triples. We use the “Filtered”

setting protocol (Bordes et al., 2013), i.e., not including any corrupted triples that appear

in the graph. We rank the valid test triple and corrupted triples in descending order based

on their scores. We employ several metrics: mean rank (MR), mean reciprocal rank (MRR),

and Hits@k (the proportion of the valid triples ranking in top k predictions). The final

scores on the test set are reported for the model which obtains the highest Hits@10 on the

validation set. Lower MR, higher MRR, and higher Hits@k indicate better performance.

2.2.2.2 Triple classification

The triple classification task is to predict whether a given triple (s, r, o) is valid or not

(Socher et al., 2013a). Each relation r has a threshold θr determined by maximizing the

micro-averaged classification accuracy on the validation set. If the score of a given triple

(s, r, o) is above θr, then this triple is classified as a valid triple, otherwise it is classified

as an invalid one. Note that this application was popular during 2013-2016, but nowadays

it is not as widely used as the knowledge graph completion task.

2.2.2.3 Search personalisation

Personalised search systems utilise the historical interactions between the user and the

systems, such as submitted queries and clicked documents to tailor returned results to the

need of that user (Teevan et al., 2005, 2009). Widely used approaches to build effective

search systems consist of two separated steps: (1) building the user profile from user’s
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historical interactions; and then (2) learning a ranking function to re-rank the search

results based on user profile (Bennett et al., 2012; White et al., 2013; Harvey et al., 2013;

Vu et al., 2015). Given a submitted query for a user, the goal is to re-rank the documents

returned by a search system, so that the more the returned documents are relevant for

that query, the higher their ranks are. In this case, apart from the user profile, dozens of

other features have been proposed as the input of a learning-to-rank algorithm (Bennett

et al., 2012; White et al., 2013).

Alternatively, we can follow Vu et al. (2017)’s prospective strategy of extending KG

embedding models (e.g., TransE (Bordes et al., 2013)) to improve the ranking quality of the

search personalisation systems, by viewing a relationship of the submitted query, the user

and the returned document as a (s, r, o)-like triple (query, user, document). Experimental

results in (Vu et al., 2017) demonstrate that TransE outperforms the standard ranker as

well as competitive search personalisation baselines (Teevan et al., 2011; Bennett et al.,

2012; Vu et al., 2015). Therefore, we now can evaluate a KG embedding model via the

search personalisation task as follows: (i) first train the model and use the trained model

to compute a score for each (query, user, document) triple; (ii) then sort the scores in the

descending order to obtain a new ranked list; (iii) finally employ two standard evaluation

metrics: mean reciprocal rank (MRR) and Hits@1. For each metric, the higher value

indicates better ranking performance.

2.2.3 Knowledge graph embedding approaches

This section is used to summarise existing KG embedding methods, wherein the material

is partially based on (Nguyen, 2020). Table 2.1 illustrates the score functions f(h, r, t) in

some previous approaches.

2.2.3.1 Translation-based approaches

Early translation-based approaches exploit a translational characteristic so that the embed-

ding of tail entity t should be close to the embedding of head entity h plus the embedding
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Model The score function f(h, r, t)

TransE −‖vh + vr - vt‖p where vh, vr, and vt ∈ Rn; ‖v‖p denotes the p-norm of vector v

STransE −‖Wr,1vh + vr - Wr,2vt‖p where Wr,1 and Wr,2 ∈ Rn×n

ConvE vTt ReLU (Wvec (ReLU ([v̂h; v̂r] ∗Ω))) where ∗ denotes a convolution operator;

Ω denotes a set of filters; vec(.) denotes a vectorisation;

[; ] denotes a vector concatenation; and v̂ denotes a 2D reshaping of v

ConvKB wTconcat (ReLU ([vh,vr,vt] ∗Ω)) where concat denotes a concatenation of feature maps;

[vh,vr,vt] denotes the 3-column embedding matrix of the input triple

TuckER W ×1 vh ×2 vr ×3 vt where ×d denotes the tensor product along the d-th mode

DistMult 〈vh,vr,vt〉 =
∑n

i vhivrivti where 〈〉 denotes a multiple-linear dot product

ComplEx Re (〈vh,vr,v∗t 〉) where Re(c) denotes the real part of the complex c

vh, vr, and vt ∈ Cn; v∗ denotes the conjugate of the complex vector v

RotatE −‖vh ◦ vr - vt‖p where vh, vr, and vt ∈ Cn; and ◦ denotes the element-wise product

QuatE (vh ⊗ v/r) • vt where vh, vr, and vt ∈ Hn; • denotes a quaternion-inner product

⊗ denotes the Hamilton product; the superscript / denotes the normalised embedding

QuatRE
((
vh ⊗ v/r,1

)
⊗ v/r

)
•
(
vt ⊗ v/r,2

)
where vh, vr, vt, vr,1, and vr,2 ∈ Hn

Table 2.1: Score functions. The table is adapted from (Nguyen, 2020).

of relation t. For example, TransE (Bordes et al., 2013) defines a score function:

fTransE(h, r, t) = −‖vh + vr − vt‖p (2.50)

where vh, vr, and vt ∈ Rn are vector embeddings of h, r and t respectively; and ‖v‖p
denotes the p-norm of vector v. The TransE is suitable for 1-to-1 relationships, but not

well-adapted for Many-to-1, 1-to-Many, and Many-to-Many relationships. Therefore, some

translation-based methods, as illustrated in Figure 1.4, have been proposed to deal with

this issue.

The first method is TransH (Wang et al., 2014) that extends TransE to allow entities

playing different roles given different relations. Each relation r is associated with a relation-

specific hyperplane wr, and then the embeddings of h and t are projected to this hyperplane.

TransH constructs a score function as:

fTransH (h, r, t) = −‖vh⊥ + vr − vt⊥‖p (2.51)
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where vh⊥ = vh − wT
r vhwr and vt⊥ = vt − wT

r vtwr are the projected embeddings of h

and t on wr respectively.

Later on, TransR (Lin et al., 2015b) extends TransH to associate each relation r with

a projection matrix Wr, which is used to project the entity embeddings into the vector

space of relations as:

fTransR (h, r, t) = −‖Wrvh + vr −Wrvt‖p (2.52)

STransE (Nguyen et al., 2016) extends TransR to associate the head and tail entities

with their own projection matrices respectively as:

fSTransE (h, r, t) = −‖Wr,1vh + vr −Wr,2vt‖p (2.53)

2.2.3.2 Tensor-based approaches

Tensor-based approaches have produced potential performance for the knowledge graph

completion task. Notably, DistMult (Yang et al., 2015) is also viewed as using a multiple-

linear dot product to score the triples as:

fDistMult (h, r, t) = 〈vh,vr,vt〉 =
n∑

i

vhivrivti (2.54)

where 〈〉 denotes a multiple-linear dot product.

SimplE (Kazemi and Poole, 2018) considers two separate embeddings for each entity

to be learned dependently. Then SimplE extends DistMult to define a score function as:

fSimplE (h, r, t) =
1

2
(〈vh,1,vr,vt,2〉+ 〈vt,1,vr−1 ,vh,2〉) (2.55)

where r−1 denotes the inverse relation of r to allow a new inverse triple (t, r−1, h).

TuckER (Balažević et al., 2019b) is based on Tucker decomposition to factorise the
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binary tensor of triples into a core tensor multiplied by a matrix along each mode as:

fTuckER (h, r, t) =W ×1 vh ×2 vr ×3 vt (2.56)

where ×d denotes the tensor product along the d-th mode.

HolE (Nickel et al., 2016) employs a circular correlation product to define a score

function as:

fHolE (h, r, t) = σ
(
vTt (vh ? vr)

)
(2.57)

where σ denotes the sigmoid function, and ? denotes the circular correlation product.

2.2.3.3 Neural network-based approaches

Neural Tensor Network (NTN) (Socher et al., 2013a) utilises a bilinear tensor layer across

multiple dimensions to compute the score as:

fNTN (h, r, t) = vTr tanh
(
vThW

[1:k]
r vt +Vr [vh;vt] + br

)
(2.58)

where W[1:k]
r ∈ Rn×n×k is a tensor; the bilinear tensor product vThW

[1:k]
r vt results in a

vector in Rk; Vr ∈ Rk×2n; and [; ] denotes a vector concatenation.

ER-MLP (Dong et al., 2014) concatenates the embeddings of h, r, and t into a vector,

which is then fed to a multi-layer perceptron network with one-neuron output layer as:

fER−MLP (h, r, t) = σ
(
wTtanh (W[vh;vr;vt])

)
(2.59)

A more recent trend is to apply deep neural networks to calculate the triple scores

(Dettmers et al., 2018; Schlichtkrull et al., 2018; Nguyen et al., 2018; Vashishth et al.,

2020a). For example, ConvE (Dettmers et al., 2018) uses a convolution layer (LeCun

et al., 1998) on a 2D input matrix of reshaping the embeddings of both the head entity

and relation to produce feature maps that are then vectorised and computed with the
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embedding of the tail entity to return the score. ConvE defines a score function as:

fConvE (h, r, t) = v
T
t ReLU (Wvec (ReLU ([v̂h; v̂r] ∗Ω))) (2.60)

where ∗ denotes a convolution operator; Ω denotes a set of filters; vec(.) denotes a vectori-

sation; [; ] denotes a concatenation; and v̂ denotes a 2D reshaping of v.

Our proposed ConvKB (Nguyen et al., 2018), presented in Chapter 4, applies a convo-

lutional layer on the 3-column embedding matrix of the input triple. It then concatenates

the feature maps into a single vector, which is computed with a weight vector to produce

the score. ConvKB proposes the following score function:

fConvKB (h, r, t) = wTconcat (ReLU ([vh,vr,vt] ∗Ω)) (2.61)

where [vh,vr,vt] denotes the 3-column embedding matrix of the input triple; and concat

denotes a vector concatenation of feature maps.

GNN-based approaches. Furthermore, graph neural networks (GNNs)-based KG em-

bedding approaches have been proposed to encode features from the neighbourhood struc-

tures (Schlichtkrull et al., 2018; Shang et al., 2019). In general, these GNN-based models

adopt an encoder-decoder architecture, wherein the encoder module leverages GNNs to

update the vector representations of entities and relations, and then the decoder module

utilises a score function (e.g., as employed in TransE, DistMult, and ConvE) to measure

the triples. For example, R-GCN (Schlichtkrull et al., 2018) modifies GCNs (Kipf and

Welling, 2017) to introduce a specific encoder to update only entity embeddings as:

v(k+1)
e = σ


∑

r∈R

∑

e′∈N r
e

1

ce,r
W(k)

r v
(k)
e′ +W(k)v(k)e


 (2.62)

where N r
e denotes the set of entity neighbours of entity e via relation edge r; and ce,r is

a problem-specific normalisation that can either be fixed to |N r
e | or learned as a model
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parameter. R-GCN then uses DistMult as its decoder module.

SACN (Shang et al., 2019) proposes a weighted graph convolutional network (WGCN)

as the encoder module as:

v(k+1)
e = σ


∑

r∈R

∑

e′∈N r
e

α(k)
r W(k)v

(k)
e′ +W(k)v(k)e


 (2.63)

where α(k)
r is a learnable parameter weight for the relation edge r at the k-th layer. SACN

then introduces Conv-TransE as the decoder module, which employs a convolutional layer

on the 2-column matrix of vector representations of h and r and then concatenates the

output feature maps into a single vector. This vector is fed to a single fully-connected

layer to produce a vector, which is multiplied by the vector representation of t to return a

score. Formally, SACN defines the decoder module, named Conv-TransE, as:

fConv−TransE (h, r, t) = v
T
t ReLU (Wconcat (ReLU ([vh,vr] ∗Ω))) (2.64)

where [vh,vr] denotes the 2-column matrix of vector representations of h and r.

KB-GAT (Nathani et al., 2019) adapts GAT (Veličković et al., 2018) to construct the

encoder module as:

v(k+1)
e = σ


∑

r∈R

∑

e′∈N r
e

τ
(k)
e,r,e′W

(k)
0

[
v(k)e ;v(k)r ;v

(k)
e′

]

 (2.65)

v(k+1)
r = W(k)

1 v
(k)
r (2.66)

where τ (k)e,r,e′ is an edge weight, which is computed as:

τ
(k)
e,r,e′ = softmaxr,e′

(
LeakyReLU

(
a(k)TW(k)

0

[
v(k)e ;v(k)r ;v

(k)
e′

]))
(2.67)

where [;] denotes a vector concatenation. Similar to GAT, KB-GAT also employs the multi-

head attention technique (Vaswani et al., 2017), except the last layer using averaging. To
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avoid losing the initial embedding information, the encoder module in KB-GAT returns

the vector representation ve for entity e as:

ve = v
(K)
e +W2v

(0)
e (2.68)

where K is the index of the last layer. After that, KB-GAT adopts our ConvKB (Nguyen

et al., 2018) as the decoder module.

CompGCN (Vashishth et al., 2020b) extends GCNs to consider composition operations

between entities and relations in the encoder module as follows:

v(k+1)
e = g


 ∑

(e′,r)∈Ne

W(k)
dir(r)φ

(
v
(k)
e′ ,v

(k)
r

)

 (2.69)

v(k+1)
r = W(k)v(k)r (2.70)

where Ne is extended with inverse and self-looping relations; W(k)
dir(r) denotes direction

specific weights as:

W(k)
dir(r) =





W(k)
O for r ∈ R

W(k)
I for r ∈ R−1

W(k)
S r is a self-loop

(2.71)

where R−1 denotes the set of inverse relation edges r−1 of r. CompGCN explores the

composition functions (φ) inspired from TransE (Bordes et al., 2013), DistMult (Yang

et al., 2015), and HolE (Nickel et al., 2016) as:

φ (a,b) =





a− b if using subtraction

a ◦ b if using multiplication

a ? b if using circular correlation

(2.72)

where ◦ denotes the element-wise product; and ? denotes the circular correlation product.

CompGCN then applies ConvE (Dettmers et al., 2018) as the decoder module.

Compared to the vanilla GCNs in Equation 2.19, we see that R-GCN does not comprise
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relation embeddings and CompGCN does not treat each relation as an individual node

in the encoder module. These limitations also exist in other GNN-based models such as

SACN (Shang et al., 2019) and KB-GAT (Nathani et al., 2019). Therefore, arguably these

could lower the performance of the existing GNN-based models.

Transformer-based approaches. More recently, KG-BERT (Yao et al., 2019), CoKE

(Wang et al., 2019a), K-BERT (Liu et al., 2020), and our proposed R-MeN (Nguyen

et al., 2020c) are among the first models to leverage the transformer (Vaswani et al.,

2017) for knowledge graph embeddings. Our R-MeN, presented in Chapter 4, utilises a

transformer-based memory network (Santoro et al., 2018) to capture the triples for the

triple classification task, while the latter work, CoKE, adapts the transformer encoder

to model the triples for the knowledge graph completion task. Besides, KG-BERT and

K-BERT employ BERT (Devlin et al., 2018) with textual mentions derived from a large

external corpus.

2.2.3.4 Complex vector-based approaches

Several works have moved beyond the Euclidean vector space to the hyper-complex vector

spaces. ComplEx (Trouillon et al., 2016) extends DistMult to use the multiple-linear dot

product on the complex vector embeddings of entities and relations as:

fComplEx (h, r, t) = Re (〈vh,vr,v∗t 〉) (2.73)

where Re(c) denotes the real part of the complex c; vh, vr, and vt ∈ Cn; and v∗ denotes

the conjugate of the complex vector v. In addition, RotatE (Sun et al., 2019) considers

each relation as a rotation-based translation from the head entity to the tail entity within

the complex vector space as:

fRotatE (h, r, t) = −‖vh ◦ vr − vt‖p (2.74)

where vh, vr, and vt ∈ Cn; and ◦ denotes the element-wise product.
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QuatE (Zhang et al., 2019) is proposed to learn entity and relation embeddings within

the Quaternion space. QuatE is considered as one of the recent state-of-the-art models as

it outperforms up-to-date baselines for knowledge graph completion. In particular, QuatE

uses a Hamilton product-based rotation followed by a quaternion-inner product to produce

the triple score. Mathematically, QuatE computes the score of the triple (h, r, t) as:

fQuatE (h, r, t) = (vh ⊗ v/r) • vt (2.75)

where ⊗ denotes the Hamilton product; • denotes the quaternion-inner product; and vh,

vr, and vt ∈ Hn, QuatE, however, has a limitation in capturing the correlations between

the head and tail entities. Our QuatRE (Nguyen et al., 2020e), presented in Chapter 4, is

proposed to overcome this limitation by integrating relation-aware rotations to increase

the correlations between the entities.

2.2.3.5 Other approaches.

Some approaches utilises relation paths between entities to attain contextual information

to improve the task performance. For example, CCP (Luo et al., 2015) generates sequences

of entities and relations occurring in the pattern and then applies Word2Vec to learn

embeddings for entities and relations; then these learned embeddings are used to initialise

entity and relation embeddings in TransE. In addition, PTransE-ADD (Lin et al., 2015a)

and TransE-comp (Guu et al., 2015) consider multiple-step relation paths connecting

two entities and define an additional function as:

f(h, path, t) = −‖vh + vr1 + vr2 + ...+ vrl − vt‖p (2.76)

where path denotes a sequence of relations {r1, r2, ..., rl} between h and t. Besides, as

mentioned in Section 2.2.3.3, CoKE (Wang et al., 2019a) is used to model the triples for

the knowledge graph completion task, it also leverages the relation paths (h, path, t) for

the transformer encoder to answer path queries on KGs (Guu et al., 2015). Moreover, some
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other approaches incorporate textual mentions derived from a large external corpus to

further increase the performance (Toutanova et al., 2015; Wang and Li, 2016; García-Durán

and Niepert, 2017; Yao et al., 2019; Liu et al., 2020).

2.3 Summary

In this chapter, we have briefly introduced the necessary background and related work for

graph representation learning in Section 2.1 and knowledge graph embeddings in Section

2.2. These background and related work are the foundation for our new models proposed

in Chapters 3 and 4. Figure 2.9 shows a taxonomy of our contributions in this thesis.
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Figure 2.9: Contribution taxonomy.
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In this chapter, we briefly introduce our proposed models to learn node and graph embed-

dings in Section 3.1 and then present our research contributions in Section 3.2.

3.1 Introduction

Graph neural networks (GNNs) have become a leading research direction to learn low-

dimensional continuous embedding vectors for nodes and graphs (Scarselli et al., 2009;

Hamilton et al., 2017b; Wu et al., 2019b; Zhang et al., 2020). In general, GNNs utilise

an aggregation function to update the vector representation of each node by aggregating

those of its neighbours (Kipf and Welling, 2017; Hamilton et al., 2017a; Veličković et al.,

2018). GNNs also apply a graph-level pooling function such as a simple sum pooling (Xu

et al., 2019) to obtain graph embeddings. To further improve the GNN performance, we

propose U2GNN that leverages the transformer self-attention network (Vaswani et al.,

2017; Dehghani et al., 2019) to induce a more advanced aggregation function. The model

47
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details are presented in Section 3.2.1.

Existing GNN models mainly focus on the transductive setting, where a model is trained

using the entire input graph, i.e., all nodes with a fixed graph structure are present during

training (Kipf and Welling, 2017). On the other hand, limited research has been conducted

for an inductive setting (Yang et al., 2016), where embeddings are required for new nodes

– a setting encountered commonly in practical applications of deep learning for graph

networks. This significantly affects the performances of downstream tasks such as node

classification. To that end, we introduce SANNE and Caps2NE – two unsupervised

learning models – which aim to learn node embeddings in both the transductive and

inductive settings. The details of our two models SANNE and Caps2NE are described in

Section 3.2.2.

Note that most of the existing GNNs learn node and graph embeddings within the

Euclidean vector space. However, for complex graphs such as protein interaction networks

and social networks, the learned Euclidean embeddings have high distortion (Chami et al.,

2019). Furthermore, when increasing the number of hidden layers, the existing GNNs (Kipf

and Welling, 2017; Hamilton et al., 2017a; Veličković et al., 2018; Xu et al., 2019) are

not working very efficiently anymore since the number of parameters grows quickly. To

this end, we present a novel model, named QGNN , to learn node and graph embeddings

within the Quaternion space. The details of our QGNN are given in Section 3.2.3.

3.2 Research Contribution

3.2.1 Graph transformer self-attention networks

• Dai Quoc Nguyen, Tu Dinh Nguyen and Dinh Phung. Universal Graph Transformer

Self-Attention Networks. arXiv preprint arXiv:1909.11855, 2019.

Contribution. The transformer self-attention network (Vaswani et al., 2017; Dehghani

et al., 2019) has been widely applied as a novelty in research domains such as computer

vision and NLP. Similarity, we also consider the successful use of this recent advanced
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technique to a new domain, i.e., graph neural networks (GNNs), as a novel application.

Moreover, as also discussed in (Xu et al., 2019), constructing an powerful aggregation

mechanism is essential for GNNs. To this end, we present U2GNN (Nguyen et al., 2019b)

to induce an advanced aggregation function, using the universal transformer network

(Dehghani et al., 2019) consisting of a self-attention mechanism (Vaswani et al., 2017)

followed by a recurrent transition (Trans) with adding residual connections (He et al.,

2016) and layer normalisation (LNorm) (Ba et al., 2016). In particular, given an input

graph, we uniformly sample a set of neighbours for each node, which is fed to the U2GNN

aggregation function of using multiple layers stacked on top of each other. We then apply a

vector concatenation across the layers to obtain the final embeddings of nodes. After that,

we sum all these final node embeddings to get the final embedding of the entire graph.

We feed the graph embedding to a single fully-connected layer followed by a softmax layer

to predict the graph label. The proposed U2GNN obtains state-of-the-art accuracies on

well-known benchmark datasets for the graph classification task. The code is available at:

https://github.com/daiquocnguyen/Graph-Transformer.

https://github.com/daiquocnguyen/Graph-Transformer
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Abstract. The transformer self-attention network has been extensively
used in research domains such as computer vision, image processing,
and natural language processing. The transformer, however, has not
been actively used in graph neural networks, where constructing an
advanced aggregation function is essential. To this end, we present an
effective model, named U2GNN, which – by leveraging a transformer
self-attention mechanism followed by a recurrent transition – induces an
advanced aggregation function to learn graph representations. Exper-
imental results show that U2GNN achieves state-of-the-art accuracies
on well-known benchmark datasets for graph classification. Our code is
available at: https://github.com/daiquocnguyen/Graph-Transformer.

Keywords: Graph neural networks · Graph classification · Transformer
· Self-attention

1 Introduction

A graph is a connected network of nodes and edges. This type of graph-structured
data is a fundamental mathematical representation and ubiquitous. They found
applications in virtually all aspects of our daily lives from pandemic outburst
response, information retrieval to circuit design, to name a few. In machine
learning and data science, learning and inference from graphs have been one of
the most important research topics. However, as data grow unprecedentedly in
volume and complexity in modern time, traditional learning methods for graph
are mostly inadequate to model increasing complexity, to harness rich contextual
information as well as to scale with large-scale graphs. The recent rise of deep
learning, and in turn, of representation learning field has radically advanced
machine learning research in general, and pushing the frontier of graph learning.
In particular, the notion of graph representation learning has recently emerged as
a new promising learning paradigm, which aims to learn a parametric mapping
function that embeds nodes, subgraphs, or the entire graph into low-dimensional
continuous vector spaces [17,59]. The central challenge to this endeavor is to learn
rich classes of complex functions to capture and preserve the graph structural
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information as much as possible and also be able to geometrically represent the
structural information in the embedded space.

Existing approaches can be categorised into three groups: (i) graph kernel-
based methods, (ii) word embedding-based models, and (iii) graph neural net-
works. Methods in the first group build vectors of frequencies of “atomic sub-
graphs” decomposed from a given graph. Typical types of atomic subgraphs
include random walks [13,22,45], shortest paths [3], graphlets [39], and Weisfeiler-
Lehman subtree patterns [38]. In the second direction, several word embedding-
based models [35,40,15] sample a large set of random walks, then treat each walk
as a document whose words are nodes, and finally apply Word2Vec [31] on such
random walk set to learn node embeddings. Meanwhile, some other ones aim
to obtain the embeddings of the atomic subgraphs [52], and the entire graphs
[32,20] by aggregating node embeddings learned by Word2Vec or using Doc2Vec
[26].

Recently, graph neural networks (GNNs) become an essential strand, form-
ing the third direction to learn low-dimensional continuous representations for
nodes and graphs [36,17,59,48,55]. In general, GNNs use an aggregation function
to update the vector representation of each node by transforming and aggregat-
ing the vector representations of its neighbours [24,16,43]. Then GNNs apply
a graph-level pooling function (i.e., a readout operation such as simple sum
pooling) to obtain graph embeddings [14,57,53,44,50]. GNN-based approaches
provide faster and practical training, higher accuracy, and state-of-the-art re-
sults on benchmark datasets for downstream tasks such as graph classification
[24,50].

To further improve the classification performance, it is worth developing an
advanced aggregation function for GNNs to better update representations of
nodes from their neighbours, as also discussed in [50]. Nowadays, there are novel
applications of the transformer self-attention network [42,8] recognized, pub-
lished, and used successfully in research domains such as computer vision, image
processing, and natural language processing. Hence we consider the use of the
transformer to a new domain such as GNNs as a novelty. Inspired by this self-
attention network, we present U2GNN, an effective GNN model, which induces
an advanced aggregation function leveraging a self-attention mechanism [42] fol-
lowed by a recurrent transition, to update the vector representations of nodes
from their neighbors. In particular, our U2GNN is different from related work
as follows:

– The concurrent work – Hyper-SAGNN [58] – utilizes the transformer self-
attention network for hypergraphs that have diverse and different struc-
tures, hence requiring a different model architecture. Besides, the later work,
Graph-BERT [56], is an extension of our U2GNN for semi-supervised node
classification.

– Graph Attention Network (GAT) [43] borrows the standard attention tech-
nique from [2] in using a single-layer feedforward neural network parametrized
by a weight vector and then applying the non-linearity function followed
by the softmax to compute the importance weights of neighbors of a given
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node. Note that our U2GNN adopts a scaled dot-product attention mecha-
nism which is more robust and efficient than the attention technique used in
GAT.

– Regarding the model architecture, Graph Transformer Network [54] identi-
fies useful meta-paths [46] to transform graph structures and applies GCN
[24] to learn the node embeddings for the node classification task on hetero-
geneous graphs. Self-Attention Graph Pooling [27] re-implements the general
architectures from Deep Graph Convolutional Neural Network [57] and Hi-
erarchical Pooling [5] with using the Graph U-Net’s node sampling [12] as
the graph-level pooling layer.

– To this end, we note that U2GNN is entirely different from GAT [43], Graph
Transformer Network [54], and Self-Attention Graph Pooling [27], except
similar titles.

Contributions. Our main contributions in this paper are as follows:

– We propose U2GNN, an effective GNN model, leveraging the transformer
self-attention network to construct an advanced aggregation function to learn
the graph representations. To the best of our knowledge, our work is one of
the firsts to explore transformer to graphs.

– Experimental results show that U2GNN obtains state-of-the-art accuracies
on well-known benchmark datasets for the graph classification task.

2 Related work

Graph kernel-based methods

Graph kernel-based approaches decompose graphs into “atomic subgraphs” to
measure the similarities among graphs [13]. Common types of atomic subgraphs
consist of random walks [13,22,45], shortest paths [3], graphlets [39], and Weisfeiler-
Lehman subtree patterns [38]. Here we view each atomic substructure as a word
term and each graph as a text document. Next, we represent a collection of
graphs as a document-term matrix whose elements are the normalised frequency
of terms in documents. We then derive a valid kernel, for example, a linear one
by taking inner product of every two documents, i.e., two graphs, and finally
employ a kernel method such as Support Vector Machines (SVM) [19] to work
on the graph classification problem. We refer the readers to the surveys of graph
kernels in [34,25].

Word embedding-based models

There have been several methods adopting the word embedding frameworks
such as Word2Vec [31] and Doc2Vec [26] to learn the embeddings for nodes
and graphs to deal with the graph classification task. Deep graph kernel [52]
applies Word2Vec to learn the embeddings for atomic substructures such as the
graphlets, the Weisfeiler-Lehman subtree patterns, and the shortest paths, and
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then derives the kernel between two graphs. Anonymous walk embedding [20]
maps each random walk into an “anonymous walk” where each state is recorded
by its first occurrence index in the random walk, then views each anonymous
walk as a word token, and utilizes Doc2Vec to achieve the graph embeddings to
compute the graph similarities to construct the kernel matrix. Graph2Vec [32]
employs Doc2Vec on the Weisfeiler-Lehman subtree patterns to obtain the graph
embeddings, which are then fed to SVM classifier training.

Graph neural networks

Recently, graph neural networks (GNNs) turn out to be a leading research di-
rection to learn low-dimensional continuous embedding vectors for nodes and
graphs [36,17,48,55]. In general, GNNs utilize an aggregation function to update
the vector representation of each node by aggregating those of its neighbours
[24,16,43]. GNNs also apply a graph-level pooling function such as a simple sum
pooling [50] to obtain graph embeddings.

We represent each graph G = (V, E , {hv}v∈V), where V is a set of nodes, E
is a set of edges, and hv (i.e., h(0)v ) represents the feature vector of node v ∈ V.

Given a set of M disjoint graphs {Gm}Mm=1 and their corresponding class labels

{ym}Mm=1 ⊆ Y, the graph classification task is to learn an embedding eGm for
each entire graph Gm to predict its label ym. Mathematically, given a graph G,
we formulate GNNs as follows:

h(k+1)
v = Aggregation

({
h(k)u

}
u∈Nv∪{v}

)
(1)

eG = ReadOut

({{
h(k)v

}K

k=0

}

v∈V

)
(2)

where h(k)v is the vector representation of node v at the k-th iteration/layer; Nv

is the set of neighbours of node v; and h(0)v = hv.
There have been many designs for the aggregation functions proposed in re-

cent literature. For example, Graph Convolutional Network (GCN) [24] updates
vector representation for a given node v ∈ V from its neighbours, using multiple
layers stacked on top of each other as:

h(k+1)
v = g


 ∑

u∈Nv∪{v}
av,uW

(k)h(k)u


 ,∀v ∈ V (3)

where k is the layer index; av,u is an edge constant between nodes v and u in the

re-normalised adjacency matrix D̃
1
2 ÃD̃

1
2 , wherein Ã = A + I where A is the

adjacency matrix, I is the identity matrix, and D̃ is the diagonal node degree
matrix of Ã; W(k) is a weight matrix; h(0)u is a feature vector of node u; g is a
nonlinear activation function such as ReLU; and Nv is the set of neighbours of
node v.
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GraphSAGE [16] extends GCN to use a node-wise procedure of uniformly
sampling a fixed number of neighbours for each node at each layer as:

h(k+1)
v = g

(
W(k)

[
h(k)v ;h

(k)
N ′v

])
,∀v ∈ V (4)

where [;] denotes a vector concatenation, and h
(k)
N ′v can be obtained using an

element-wise max-pooling operation as:

h
(k)
N ′v = max

({
g
(
Wpoolh

(k)
u + b

)}
u∈N ′v

)
(5)

where N ′v is defined as a fixed-size, uniformly sampled from Nv of v. Besides, N ′v
is sampled differently through each layer.

Graph Attention Network [43] extends GCN to compute edge weights follow-
ing the standard attention technique [2] as:

h(k+1)
v = g


 ∑

u∈Nv∪{v}
τ (k)v,u W

(k)h(k)u


 ,∀v ∈ V (6)

where g is the sigmoid function σ (x) = 1
1+e−x ; and τ

(k)
v,u is an edge weight between

nodes v and u, which is computed as:

τ (k)v,u = softmax
(
LeakyReLU

(
a(k)T

[
W(k)h(k)v ;W(k)h(k)u

]))
(7)

where [;] denotes a vector concatenation. Besides, GAT employs the multi-head
attention technique [42] to further stabilise the learning process, except the final
(prediction) layer where GAT uses averaging.

While Simple Graph Convolution [47] is a simplified variant of GCN without
using the non-linear activation function g, Graph Isomorphism Network [50]
constructs an aggregation function based on a multi-layer perceptron (MLP)
network of two fully-connected layers as:

h(k+1)
v = MLP(k)


 ∑

u∈Nv∪{v}
h(k)u


 ,∀v ∈ V (8)

Following [51,50], we also employ a concatenation over the vector represen-
tations of node v at the different layers to construct a final vector representation
ev for each node v as:

ev =
[
h(1)v ;h(2)v ; ...;h(K)

v

]
,∀v ∈ V (9)

where K is the index of the last layer.
The graph-level readout function can be a simple sum pooling or a compli-

cated pooling such as hierarchical pooling [5], and differentiable pooling [53].
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As the sum pooling produces competitive results [50], we use the simple sum
pooling to obtain the embedding eG of the entire graph G as:

eG =
∑

v∈V
ev =

∑

v∈V

[
h(1)v ;h(2)v ; ...;h(K)

v

]
(10)

After that, we can follow [50] to feed the graph embeddings eG to a single
fully-connected layer followed by a softmax layer to predict the graph labels.

3 U2GNN: Universal Graph Transformer Self-Attention
Networks

The transformer self-attention network [42,8] has widely applied as a novelty in
research domains such as computer vision and NLP. Similarity, we also consider
the successful use of this recent advanced technique to a new domain, i.e., graph
neural networks (GNNs), as a novel application. Moreover, as also discussed
in [50], constructing an powerful aggregation mechanism is essential for GNNs.
To this end, we induce an advanced aggregation function, using the universal
transformer network [8] consisting of a self-attention mechanism [42] followed by
a recurrent transition (Trans) with adding residual connections [18] and layer
normalization (LNorm) [1], as illustrated in Figure 1.

Fig. 1: Illustration of our U2GNN.

The residual connections [18] are used to add useful information learned in
the lower layers to the higher layers, and more importantly, to allow gradients
to directly pass through the layers to avoid vanishing gradient or exploding gra-
dient problems. The layer normalization (LNorm) [1] is used to normalize the
inputs across the feature dimensions to stabilize the network to enable smoother
gradients and faster training. The residual connections and the layer normaliza-
tion are commonly used in many architectures and thus are omitted in the paper
for simplicity.

Formally, given an input graph G, we uniformly sample a set Nv of neighbors
for each v ∈ V and then input Nv∪{v} to the U2GNN learning process. Note that
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we sample a different Nv for node v at each training batch. We also construct
multiple layers stacked on top of each other in our U2GNN. Regarding the k-th
layer, given a node v ∈ V, at each step t, we induce a transformer self-attention-
based function to aggregate the vector representations for all nodes u ∈ Nv∪{v}
as:

h
(k)
t,u = Transformer-Aggregation

(
h
(k)
t−1,u

)
(11)

In particular,

x
(k)
t,u = LNorm

(
h
(k)
t−1,u + ATT

(
h
(k)
t−1,u

))
(12)

then,

h
(k)
t,u = LNorm

(
x
(k)
t,u + Trans

(
x
(k)
t,u

))
(13)

where h
(k)
t,u ∈ Rd; Trans(.) and ATT(.) denote a MLP network (i.e., two fully-

connected layers) and a self-attention network respectively:

Trans
(
x
(k)
t,u

)
= W

(k)
2 ReLU

(
W

(k)
1 x

(k)
t,u + b

(k)
1

)
+ b

(k)
2 (14)

where W
(k)
1 ∈ Rs×d and W

(k)
2 ∈ Rd×s are weight matrices, and b

(k)
1 and b

(k)
2

are bias parameters, and:

ATT
(
h
(k)
t−1,u

)
=

∑

u′∈Nv∪{v}
α
(k)
u,u′

(
V (k)h

(k)
t−1,u′

)
(15)

where V (k) ∈ Rd×d is a value-projection weight matrix; αu,u′ is an attention
weight, which is computed using the softmax function over scaled dot products
between nodes u and u′:

α
(k)
u,u′ = softmax




(
Q(k)h

(k)
t−1,u

)T (
K(k)h

(k)
t−1,u′

)

√
d


 (16)

where Q(k) ∈ Rd×d and K(k) ∈ Rd×d are query-projection and key-projection
matrices, respectively.

After T steps, we feed h
(k)
T,v ∈ Rd to the next (k + 1)-th layer as:

h
(k+1)
0,v = h

(k)
T,v,∀v ∈ V (17)

Note that h
(0)
0,v = h(0)v ∈ Rd is the feature vector of node v.

We apply the vector concatenation across the layers to obtain the vector
representations ev of nodes v following Equation 9 as:

ev =
[
h
(1)
0,v ;h

(2)
0,v ; ...;h

(K)
0,v

]
,∀v ∈ V (18)

where K is the number of layers. We use ev as the final embedding of node v ∈ V
and then sum all the final embeddings of nodes in G to get the final embedding
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Algorithm 1: The U2GNN learning process.

1 Input: G =
(
V, E , {h(0)

v }v∈V
)

with its label y

2 for k = 0, 1, ...,K − 1 do
3 for v ∈ V do
4 Sample Nv for v
5 for t = 1, 2, ..., T do
6 ∀u ∈ Nv ∪ {v}
7 x(k)t,u ← LNorm

(
h(k)
t−1,u + ATT

(
h(k)
t−1,u

))

8 h(k)
t,u ← LNorm

(
x(k)t,u + Trans

(
x(k)t,u

))

9 h(k+1)
0,v ← h(k)

T,v ∈ Rd

10 ev ←
[
h(1)
0,v ; h(2)

0,v ; ...; h(K)
0,v

]
, ∀v ∈ V (w.r.t Equation 18)

11 eG ←
∑

v∈V ev
12 y← softmax (WeG + b)

eG of the entire graph G. We feed eG to a single fully-connected layer followed
by a softmax layer to predict the graph label as:

ŷG = softmax (WeG + b) (19)

Finally, we learn the model parameters by minimizing the cross-entropy loss
function. We briefly present the supervised learning process of our U2GNN in
Algorithm 1.

3.1 Discussion

We discuss some findings in our proposed U2GNN as follows:

– If we set T to 1, α
(k)
u,u′ to 1, V (k) to the identity matrix in Equation 15, and

do not use both the residual connections and the layer normalization, we
simplify our U2GNN aggregation function (from Equations 17 and 13) as:

h
(k+1)
1,v = Trans

(
ATT

(
h
(k+1)
0,v

))

= Trans


 ∑

u∈Nv∪{v}
h
(k+1)
0,u




= Trans


 ∑

u∈Nv∪{v}
h
(k)
1,u


 (20)

where Trans(.) denotes the MLP network of two fully-connected layers (as
defined in Equation 14). Thus, this implies that our U2GNN can be sim-
plified (w.r.t Equation 20) to be equivalent to Graph Isomorphism Network
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(GIN-0) [50] (w.r.t Equation 8) – one of the recent state-of-the-art GNNs.
Experimental results presented in Section 5.3 show that U2GNN outperforms
GIN-0 on benchmark datasets for the graph classification task.

– We would probably construct a complex architecture using a complicated
graph-level pooling such as hierarchical pooling [5] followed by multiple fully-
connected layers [6,30] to predict the graph labels. However, we refrained
from doing that. Our key purpose is to introduce a single, unified, and ef-
fective model that can work well and produce competitive performances on
the benchmark datasets. For that purpose, we followed [50] to use the simple
sum pooling followed by a single fully-connected layer in our U2GNN.

– As established empirically, our results shown in Section 5.3 imply that the
U2GNN self-attention-based aggregation function is a powerful computation
process compared to other existing functions.

4 Experimental datasets

Table 1: Statistics of the experimental benchmark datasets. #G denotes the
numbers of graphs. #Cls denotes the number of class labels. Avg#N denotes
the average number of nodes per graph. Avg#E denotes the average number
of neighbors per node. d is the dimension of feature vectors. Note that d is also
equal to the node embedding size at each U2GNN layer.

Dataset #G #Cls Avg#N Avg#E d

COLLAB 5,000 3 74.5 65.9 –

IMDB-M 1,500 3 13.0 10.1 –

IMDB-B 1,000 2 19.8 9.8 –

DD 1,178 2 284.3 5.0 82

PROTEINS 1,113 2 39.1 3.7 3

PTC 344 2 25.6 2.0 19

MUTAG 188 2 17.9 2.2 7

We use seven well-known datasets consisting of three social network datasets
(COLLAB, IMDB-B, and IMDB-M) and four bioinformatics datasets (DD, MU-
TAG, PROTEINS, and PTC). The social network datasets do not have available
node features; thus, we follow [33,57] to use node degrees as features.

– Social networks datasets: COLLAB is a scientific dataset, where each
graph represents a collaboration network of a corresponding researcher with
other researchers from each of 3 physics fields; each graph is labeled to a
physics field that the researcher belongs to. IMDB-B and IMDB-M are movie
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collaboration datasets, where each graph is derived from actor/actress and
genre information of different movies on IMDB; nodes correspond to ac-
tors/actresses, and each edge represents a co-appearance of two actors/actresses
in the same movie; each graph is assigned to a genre.

– Bioinformatics datasets: DD [9] is a collection of 1,178 protein network
structures with 82 discrete node labels, where each graph is classified into
enzyme or non-enzyme class. MUTAG [7] is a collection of 188 nitro com-
pound networks with 7 discrete node labels, where classes indicate a mu-
tagenic effect on a bacterium. PROTEINS comprises 1,113 graphs obtained
from [4] to present secondary structure elements (SSEs). PTC [41] consists of
344 chemical compound networks with 19 discrete node labels where classes
show carcinogenicity for male and female rats.

Table 1 reports the statistics of these datasets.

5 Experimental results

5.1 Training protocol

We vary the number K of U2GNN layers in {1, 2, 3}, the number of steps T
in {1, 2, 3, 4}, the number of neighbors (|Nv| = N) sampled for each node
in {4, 8, 16}, and the dimension s of Trans(.) (in Equation 14) in {128, 256,
512, 1024} (in Equation 14). We set the batch size to 4. We apply the Adam
optimizer [23] to train our U2GNN and select the Adam initial learning rate
lr ∈

{
5e−5, 1e−4, 5e−4, 1e−3

}
. We run up to 50 epochs to evaluate our U2GNN.

5.2 Evaluation protocol

We follow [50,49,29,37,6] to use the same data splits and the same 10-fold cross-
validation scheme to calculate the classification performance for a fair compar-
ison. We compare our U2GNN with up-to-date strong baselines. We report the
baseline results taken from the original papers or published in [20,44,49,11,6,37,50].

5.3 Main results

Table 2 presents the experimental results of U2GNN and other strong baseline
models for the benchmark datasets. In general, our U2GNN gains competitive
accuracies on the social network datasets. Especially, U2GNN produces state-of-
the-art accuracies of 77.04% and 53.60% on IMDB-B and IMDB-M respectively,
which outperform those of other existing models.

On the bioinformatics datasets, U2GNN obtains the highest accuracies of
80.23%, 78.53%, and 69.63% on DD, PROTEINS, and PTC, respectively. More-
over, U2GNN achieves a competitive accuracy compared with those of the base-
line models on MUTAG. Additionally, there are no significant differences between
our U2GNN and the baselines on MUTAG as this dataset only consists of 188
graphs, which explains the high variance in the results.
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Table 2: Graph classification results (% accuracy). The best scores are in bold.
Model COLLAB IMDB-B IMDB-M DD PROTEINS MUTAG PTC

GK [39] 72.84 ± 0.28 65.87 ± 0.98 43.89 ± 0.38 78.45 ± 0.26 71.67 ± 0.55 81.58 ± 2.11 57.26 ± 1.41

WL [38] 79.02 ± 1.77 73.40 ± 4.63 49.33 ± 4.75 79.78 ± 0.36 74.68 ± 0.49 82.05 ± 0.36 57.97 ± 0.49

PSCN [33] 72.60 ± 2.15 71.00 ± 2.29 45.23 ± 2.84 77.12 ± 2.41 75.89 ± 2.76 92.63 ± 4.21 62.29 ± 5.68

GCN [24] 79.00 ± 1.80 74.00 ± 3.40 51.90 ± 3.80 – 76.00 ± 3.20 85.60 ± 5.80 64.20 ± 4.30

GFN [6] 81.50 ± 2.42 73.00 ± 4.35 51.80 ± 5.16 78.78 ± 3.49 76.46 ± 4.06 90.84 ± 7.22 –

GraphSAGE [16] 79.70 ± 1.70 72.40 ± 3.60 49.90 ± 5.00 65.80 ± 4.90 65.90 ± 2.70 79.80 ± 13.9 –

GAT [43] 75.80 ± 1.60 70.50 ± 2.30 47.80 ± 3.10 – 74.70 ± 2.20 89.40 ± 6.10 66.70 ± 5.10

DGCNN [57] 73.76 ± 0.49 70.03 ± 0.86 47.83 ± 0.85 79.37 ± 0.94 75.54 ± 0.94 85.83 ± 1.66 58.59 ± 2.47

SAGPool [27] – – – 76.45 ± 0.97 71.86 ± 0.97 – –

PPGN [29] 81.38 ± 1.42 73.00 ± 5.77 50.46 ± 3.59 – 77.20 ± 4.73 90.55 ± 8.70 66.17 ± 6.54

CapsGNN [49] 79.62 ± 0.91 73.10 ± 4.83 50.27 ± 2.65 75.38 ± 4.17 76.28 ± 3.63 86.67 ± 6.88 –

DSGC [37] 79.20 ± 1.60 73.20 ± 4.90 48.50 ± 4.80 77.40 ± 6.40 74.20 ± 3.80 86.70 ± 7.60 –

GCAPS [44] 77.71 ± 2.51 71.69 ± 3.40 48.50 ± 4.10 77.62 ± 4.99 76.40 ± 4.17 – 66.01 ± 5.91

IEGN [30] 77.92 ± 1.70 71.27 ± 4.50 48.55 ± 3.90 – 75.19 ± 4.30 84.61 ± 10.0 59.47 ± 7.30

GIN-0 [50] 80.20 ± 1.90 75.10 ± 5.10 52.30 ± 2.80 – 76.20 ± 2.80 89.40 ± 5.60 64.60 ± 7.00

U2GNN 77.84 ± 1.48 77.04 ± 3.45 53.60 ± 3.53 80.23 ± 1.48 78.53 ± 4.07 89.97 ± 3.65 69.63 ± 3.60

It is worth noting that the superior performance of our method over up-
to-date baseline models such as GIN-0 indicates that the self-attention-based
aggregation function in U2GNN is an advanced computation process to improve
the classification performance of supervised GNNs.

Visualization. To qualitatively demonstrate the effectiveness of our U2GNN,
we use t-SNE [28] to visualize the node embeddings learned by GIN-0 and our
U2GNN on PTC where the node labels are available. Compared to GIN-0, Figure
2 shows that our U2GNN produces a higher quality of learned node embeddings
wherein the nodes are well-clustered according to the node labels.
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Fig. 2: A t-SNE visualization of the node embeddings learned by GIN-0 and our
U2GNN on the PTC dataset.
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6 Conclusion

We introduce an effective graph neural network model, named U2GNN, one of
the firsts to explore transformer to graphs. In particular, U2GNN develops an
advanced aggregation function leveraging the transformer self-attention network
to improve the graph classification performance. We evaluate our U2GNN using
the same data splits, the same 10-fold cross-validation scheme, and the standard
evaluation settings on the well-known benchmark datasets. Experimental results
demonstrate that U2GNN outperforms up-to-date models and produces state-
of-the-art accuracies on these datasets.1
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43. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
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A Unsupervised Graph Neural Networks

The unsupervised learning is essential in both industry and academic applica-
tions, where expanding unsupervised GNN models is more suitable due to the
limited availability of class labels. Therefore, we introduce a new unsupervised
learning to train GNNs for the graph classification task.

A.1 Learning process

Most of the recent approaches have focused on the supervised learning where
they use the graph labels during the training process [49,50,6,30,37]. In a sit-
uation where no graph labels are available during training, some works (such
as DGK [52], Graph2Vec [32], and AWE [20]) have considered the unsupervised
learning, where they can have access to all nodes from the entire dataset (i.e.,
additionally using all nodes in the test set during training). But they produce
lower classification accuracies compared to the supervised approaches.

Algorithm 2: The unsupervised learning.

1 Input: G = (V, E , {hv}v∈V)
2 for k = 0, ...,K − 1 do
3 for v ∈ V do

4 h(k+1)
v = Aggregation

({
h(k)
u

}
u∈Nv∪{v}

)

5 ev ←
[
h(1)
v ; h(2)

v ; ...; h(K)
v

]
, ∀v ∈ V (with respect to Equation 9)

6 ov ← ev (with respect to Equation 21)
7 eG ←

∑
v∈V ov

To this end, we propose a new unsupervised learning to train GNNs for the
graph classification task. We can see ev in Equation 9 as a vector representa-
tion encoded for the substructure around node v. The goal of our unsupervised
learning is to guide GNNs to recognize and distinguish the sub-graph structural
information within each graph, leading to improve the classification accuracies
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of unsupervised models. To achieve this goal, we consider a final embedding ov
for each node v, and make the similarity between ev and ov higher than that be-
tween ev and the final embeddings of the other nodes, by minimizing the sampled
softmax loss function [21] applied to node v as:

LU2GNN (v) = − log
exp(oTv ev)∑

v′∈V′ exp(oTv′ev)
(21)

where V ′ is a subset sampled from {∪Vm}Mm=1. Node embeddings ov are learned
implicitly as model parameters. After that, we sum all the final embeddings ov
of nodes v in G to obtain the graph embedding eG . We then use the logistic
regression classifier [10] with setting the termination criterion to 0.001 to eval-
uate our model. We outline the general process of our unsupervised learning in
Algorithm 2.

A.2 Training protocol

We follow some unsupervised approaches such as DGK [52] and AWE [20] to
train our unsupervised U2GNN on all nodes from the entire dataset (i.e., con-
sisting of all nodes from the test set during training) for a fair comparison. The
hyper-parameters are varied as same as in Section 5.1.

We also train our GCN baseline following our unsupervised learning. We set
the batch size to 4 and vary the number of GCN layers in {1, 2, 3} and the
hidden layer size in {32, 64, 128, 256}. We also use the Adam optimizer [23] to
train this unsupervised GCN up to 50 epochs.

A.3 Evaluation protocol

We utilizes the logistic regression classifier [10] with using the 10-fold cross-
validation scheme to evaluate our models. We compare our unsupervised GCN
(denoted as uGCN) and U2GNN with the baselines: Deep Graph Kernel (DGK)
[52] and Anonymous Walk Embedding (AWE) [20].

A.4 Experimental results

Table 3 presents the experimental results in the unsupervised learning. We en-
courage a re-evaluation to examine the existing GNNs from the supervised learn-
ing to our new unsupervised learning to see negative results. For example, re-
garding the supervised learning, as shown in Table 2, our supervised U2GNN
outperforms GCN on the bioinformatics datasets. However, regarding the unsu-
pervised learning, as shown in Table 3, our uGCN works better than our un-
supervised U2GNN on PROTEINS, MUTAG, and PTC. These three datasets
are much sparse, and node neighbors have a similar effect on each other. Hence,
without using the graph labels during training, U2GNN does not increase the
similar effects on node neighbors, leading to be outperformed by our uGCN on
these datasets.
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Table 3: Graph classification results (% accuracy) in the unsupervised learning.
The best scores are in bold. uGCN denotes our unsupervised GCN. Note that we
do not make any direct comparison between the unsupervised approaches and
the supervised ones because of the difference in the training data.

Model COLLAB IMDB-B IMDB-M DD PROTEINS MUTAG PTC

DGK [52] 73.09 ± 0.25 66.96 ± 0.56 44.55 ± 0.52 73.50 ± 1.01 75.68 ± 0.54 87.44 ± 2.72 60.08 ± 2.55

AWE [20] 73.93 ± 1.94 74.45 ± 5.83 51.54 ± 3.61 71.51 ± 4.02 – 87.87 ± 9.76 –

uGCN 93.28 ± 0.99 94.50 ± 2.79 81.66 ± 3.16 94.31 ± 1.71 89.09 ± 3.25 95.36 ± 2.64 92.67 ± 4.60

U2GNN 95.62 ± 0.92 96.41 ± 1.94 89.20 ± 2.52 95.67 ± 1.89 80.01 ± 3.21 88.47 ± 7.13 91.81 ± 6.61
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Fig. 3: A visualization of the node and graph embeddings learned by our unsu-
pervised U2GNN on the DD dataset.

In general, both our unsupervised U2GNN and uGCN obtain the state-of-
the-art accuracies on the benchmark datasets. The significant gains demonstrate
a notable impact of our unsupervised learning. It aims to guide GNNs to identify
the sub-graph structural information for every node; hence, the models can mem-
orize the structural differences among graphs to produce the plausible node and
graph embeddings as visualized in Figure 3, leading to improve the unsupervised
performance. We hope that future GNN works can consider the unsupervised
learning beside the supervised one.
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Fig. 4: Effects of the number of timesteps (T ) and the number of neighbors
sampled for each node (N = |Nv|) in the unsupervised learning.
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Hyper-parameter analysis. We investigate the effects of the number of
timesteps (T ) and the number of neighbors sampled for each node (N = |Nv|)
in Figure 4. We see similar findings for both the supervised and unsupervised
training settings. In general, we find that higher T can help on most of the
datasets as we may use more steps T to encode the graph structures better.
Furthermore, the social network datasets are denser than the bioinformatics
ones; hence we should use more sampled neighbors (i.e., using higher N) on the
social network datasets rather than on the bioinformatics ones.
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3.2.2 ECML-PKDD 2020 & CIKM 2020 - Learning node embed-

dings for new nodes

•Dai Quoc Nguyen, Tu Dinh Nguyen and Dinh Phung. 2020. A Self-Attention Network

based Node Embedding Model. In Proceedings of the European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD

2020). https://doi.org/10.1007/978-3-030-67664-3_22

• Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen and Dinh Phung. 2020. A

Capsule Network-based Model for Learning Node Embeddings. In Proceedings of the 29th

ACM International Conference on Information and Knowledge Management (CIKM 2020).

https://doi.org/10.1145/3340531.3417455

Contribution. We present SANNE (Nguyen et al., 2020d) – a new unsupervised learning

model that adapts a transformer self-attention network (Vaswani et al., 2017) to learn

node embeddings. SANNE uses random walks (generated for every node) as inputs for a

stack of attention layers. Each attention layer consists of a self-attention sub-layer followed

by a feed-forward sub-layer, wherein the self-attention sub-layer is constructed using query,

key and value projection matrices to compute pairwise similarities among nodes. SANNE

then samples a set of neighbours for each node in the random walk and uses output vector

representations from the last attention layer to infer embeddings for these neighbours. As a

consequence, our SANNE produces the effective node embeddings for both the transductive

and inductive settings. The code is available at: https://github.com/daiquocnguyen/

Walk-Transformer.

Inspired by the advanced capsule networks (Sabour et al., 2017), we also propose

Caps2NE (Nguyen et al., 2020a) – another new unsupervised embedding model that

utilises a capsule network to learn node embeddings. Caps2NE aims to capture k-hops

context neighbours to predict a target node from generated random walks. In particular,

Caps2NE consists of two capsule layers with connections from the first to the second

layer, but no connections within layers. The first layer constructs capsules to encapsulate

https://ecmlpkdd2020.net
https://ecmlpkdd2020.net
https://doi.org/10.1007/978-3-030-67664-3_22
https://www.cikm2020.org
https://doi.org/10.1145/3340531.3417455
https://github.com/daiquocnguyen/Walk-Transformer
https://github.com/daiquocnguyen/Walk-Transformer
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context neighbours. Then a routing process is used to aggregate the feature information

from capsules in the first layer to only one capsule in the second layer. After that, the

second layer produces a continuous vector which is used to infer an embedding for the

target node. As a result, our Caps2NE can generate high-level features to infer effective

node embeddings for the transductive and inductive settings. The code is available at:

https://github.com/daiquocnguyen/Caps2NE.

https://github.com/daiquocnguyen/Caps2NE
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Abstract. Despite several signs of progress have been made recently,
limited research has been conducted for an inductive setting where em-
beddings are required for newly unseen nodes – a setting encountered
commonly in practical applications of deep learning for graph networks.
This significantly affects the performances of downstream tasks such as
node classification, link prediction or community extraction. To this end,
we propose SANNE – a novel unsupervised embedding model – whose
central idea is to employ a transformer self-attention network to iteratively
aggregate vector representations of nodes in random walks. Our SANNE
aims to produce plausible embeddings not only for present nodes, but
also for newly unseen nodes. Experimental results show that the proposed
SANNE obtains state-of-the-art results for the node classification task
on well-known benchmark datasets.

Keywords: Node Embeddings · Transformer · Self-Attention Network ·
Node Classification.

1 Introduction

Graph-structured data appears in plenty of fields in our real-world from social
networks, citation networks, knowledge graphs and recommender systems to
telecommunication networks, biological networks [11, 3–5]. In graph-structured
data, nodes represent individual entities, and edges represent relationships and
interactions among those entities. For example, in citation networks, each docu-
ment is treated as a node, and a citation link between two documents is treated
as an edge.

Learning node embeddings is one of the most important and active research
topics in representation learning for graph-structured data. There have been many
models proposed to embed each node into a continuous vector as summarized
in [29]. These vectors can be further used in downstream tasks such as node
classification, i.e., using learned node embeddings to train a classifier to predict
node labels. Existing models mainly focus on the transductive setting where

? The final authenticated version is available online at https://doi.org/10.1007/

978-3-030-67664-3_22.
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a model is trained using the entire input graph, i.e., the model requires all
nodes with a fixed graph structure during training and lacks the flexibility in
inferring embeddings for unseen/new nodes, e.g., DeepWalk [22], LINE [24],
Node2Vec [8], SDNE [27] and GCN [15]. By contrast, a more important setup,
but less mentioned, is the inductive setting wherein only a part of the input
graph is used to train the model, and then the learned model is used to infer
embeddings for new nodes [28]. Several attempts have additionally been made
for the inductive settings such as EP-B [6], GraphSAGE [10] and GAT [26].
Working on the inductive setting is particularly more difficult than that on the
transductive setting due to lacking the ability to generalize to the graph structure
for new nodes.

One of the most convenient ways to learn node embeddings is to adopt the idea
of a word embedding model by viewing each node as a word and each graph as a
text collection of random walks to train a Word2Vec model [19], e.g., DeepWalk,
LINE and Node2Vec. Although these Word2Vec-based approaches allow the
current node to be directly connected with k-hops neighbors via random walks,
they ignore feature information of nodes. Besides, recent research has raised
attention in developing graph neural networks (GNNs) for the node classification
task, e.g., GNN-based models such as GCN, GraphSAGE and GAT. These GNN-
based models iteratively update vector representations of nodes over their k-hops
neighbors using multiple layers stacked on top of each other. Thus, it is difficult
for the GNN-based models to infer plausible embeddings for new nodes when
their k-hops neighbors are also unseen during training.

The transformer self-attention network [25] has been shown to be very powerful
in many NLP tasks such as machine translation and language modeling. Inspired
by this attention technique, we present SANNE – an unsupervised learning
model that adapts a transformer self-attention network to learn node embeddings.
SANNE uses random walks (generated for every node) as inputs for a stack of
attention layers. Each attention layer consists of a self-attention sub-layer followed
by a feed-forward sub-layer, wherein the self-attention sub-layer is constructed
using query, key and value projection matrices to compute pairwise similarities
among nodes. Hence SANNE allows a current node at each time step to directly
attend its k-hops neighbors in the input random walks. SANNE then samples
a set of (1-hop) neighbors for each node in the random walk and uses output
vector representations from the last attention layer to infer embeddings for these
neighbors. As a consequence, our proposed SANNE produces the plausible node
embeddings for both the transductive and inductive settings.

In short, our main contributions are as follows:

– Our SANNE induces a transformer self-attention network not only to work
in the transductive setting advantageously, but also to infer the plausible
embeddings for new nodes in the inductive setting effectively.

– The experimental results show that our unsupervised SANNE obtains better
results than up-to-date unsupervised and supervised embedding models on
three benchmark datasets Cora, Citeseer and Pubmed for the transductive
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and inductive settings. In particular, SANNE achieves relative error reductions
of more than 14% over GCN and GAT in the inductive setting.

2 Related work

DeepWalk [22] generates unbiased random walks starting from each node, con-
siders each random walk as a sequence of nodes, and employs Word2Vec [19]
to learn node embeddings. Node2Vec [8] extends DeepWalk by introducing a
biased random walk strategy that explores diverse neighborhoods and balances
between exploration and exploitation from a given node. LINE [24] closely follows
Word2Vec, but introduces node importance, for which each node has a different
weight to each of its neighbors, wherein weights can be pre-defined through
algorithms such as PageRank [21]. DDRW [17] jointly trains a DeepWalk model
with a Support Vector Classification [7] in a supervised manner.

SDNE [27], an autoencoder-based supervised model, is proposed to preserve
both local and global graph structures. EP-B [6] is introduced to explore the
embeddings of node attributes (such as words) with node neighborhoods to infer
the embeddings of unseen nodes. Graph Convolutional Network (GCN) [15],
a semi-supervised model, utilizes a variant of convolutional neural networks
(CNNs) which makes use of layer-wise propagation to aggregate node features
(such as profile information and text attributes) from the neighbors of a given
node. GraphSAGE [10] extends GCN in using node features and neighborhood
structures to generalize to unseen nodes. Another extension of GCN is Graph
Attention Network (GAT) [26] that uses a similar idea with LINE [24] in assigning
different weights to different neighbors of a given node, but learns these weights
by exploring an attention mechanism technique [2]. These GNN-based approaches
construct multiple layers stacked on top of each other to indirectly attend k-
hops neighbors; thus, it is not straightforward for these approaches to infer the
plausible embeddings for new nodes especially when their neighbors are also not
present during training.

3 The proposed SANNE

Let us define a graph as G = (V, E), in which V is a set of nodes and E is a set of
edges, i.e., E ⊆ {(u, v)|u, v ∈ V}. Each node v ∈ V is associated with a feature
vector xv ∈ Rd representing node features. In this section, we detail the learning
process of our proposed SANNE to learn a node embedding ov for each node
v ∈ V. We then use the learned node embeddings to classify nodes into classes.

SANNE architecture. Particularly, we follow DeepWalk [22] to uniformly
sample random walks of length N for every node in V. For example, Figure 1
shows a graph consisting of 6 nodes where we generate a random walk of length
N = 4 for node 1, e.g., {1, 2, 3, 4}; and then this random walk is used as an input
for the SANNE learning process.

Given a random walk w of N nodes {vw,i}Ni=1, we obtain an input sequence
of vector representations {u0vw,i

}Ni=1: u0vw,i
= xvw,i

. We construct a stack of K
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Fig. 1. Illustration of our SANNE learning process with d = 3, N = 4 and M = 2.

attention layers [25], in which each of them has the same structure consisting of a
multi-head self-attention sub-layer followed by a feed-forward sub-layer together
with additionally using a residual connection [12] and layer normalization [1]
around each of these sub-layers. At the k-th attention layer, we take an input

sequence {u(k−1)vw,i }Ni=1 and produce an output sequence {u(k)vw,1}Ni=1, u
(k)
vw,1 ∈ Rd as:

u(k)vw,i
= Walk-Transformer

(
u(k−1)vw,i

)

In particular, u(k)vw,i
= LayerNorm

(
y(k)vw,i

+ FF
(
y(k)vw,i

))

with y(k)vw,i
= LayerNorm

(
u(k−1)vw,i

+ Att
(
u(k−1)vw,i

))

where FF(.) and Att(.) denote a two-layer feed-forward network and a multi-head
self-attention network respectively:

FF
(
y(k)vw,i

)
= W

(k)
2 ReLU

(
W

(k)
1 y(k)vw,i

+ b
(k)
1

)
+ b

(k)
2

where W
(k)
1 and W

(k)
2 are weight matrices, and b

(k)
1 and b

(k)
2 are bias parameters.

And:

Att
(
u(k−1)vw,i

)
= W(k)

[
h(k),1vw,i

;h(k),2vw,i
; ...;h(k),Hvw,i

]

where W(k) ∈ Rd×Hs is a weight matrix, H is the number of attention heads, and
[; ] denotes a vector concatenation. Regarding the h-th attention head, h(k),hvw,i

∈ Rs

is calculated by a weighted sum as:

h(k),hvw,i
=

N∑

j=1

α
(k)
i,j,h

(
W

(k),V
h u(k−1)vw,j

)
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where W
(k),V
h ∈ Rs×d is a value projection matrix, and α

(k)
i,j,h is an attention

weight. α
(k)
i,j,h is computed using the softmax function over scaled dot products

between i-th and j-th nodes in the walk w as:

α
(k)
i,j,h = softmax




(
W

(k),Q
h u

(k−1)
vw,i

)T (
W

(k),K
h u

(k−1)
vw,j

)

√
k




where W
(k),Q
h and W

(k),K
h ∈ Rs×d are query and key projection matrices

respectively.
We randomly sample a fixed-size set of M neighbors for each node in the

random walk w. We then use the output vector representations u
(K)
vw,i from the

K-th last layer to infer embeddings o for sampled neighbors of vw,i. Figure 1
illustrates our proposed SANNE where we set the length N of random walks to
4, the dimension size d of feature vectors to 3, and the number M of sampling
neighbors to 2. We also sample different sets of neighbors for the same input
node at each training step.

Algorithm 1: The SANNE learning process.

1 Input: A network graph G = (V, E).
2 for v ∈ V do
3 Sample T random walks of length N rooted by v.

4 for each random walk w do
5 for k = 1, 2, ..., K do
6 ∀v ∈ w

7 y(k)v ← LayerNorm
(
u(k−1)
v + Att

(
u(k−1)
v

))

8 u(k)
v ← LayerNorm

(
y(k)v + FF

(
y(k)v

))

9 for v ∈ w do
10 Sample a set Cv of M neighbors of node v.

11 ov′ ← u(K)
v , ∀v′ ∈ Cv

Training SANNE: We learn our model’s parameters including the weight
matrices and node embeddings by minimizing the sampled softmax loss func-
tion [13] applied to the random walk w as:

LSANNE (w) = −
N∑

i=1

∑

v′∈Cvw,i

log
exp(oTv′u

(K)
vw,i )

∑
u∈V′ exp(oTu u

(K)
vw,i )

where Cv is the fixed-size set of M neighbors randomly sampled for node v, V ′ is
a subset sampled from V, and ov ∈ Rd is the node embedding of node v,∀v ∈ V.
Node embeddings ov are learned implicitly as model parameters.
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We briefly describe the learning process of our proposed SANNE model
in Algorithm 1. Here, the learned node embeddings ov are used as the final
representations of nodes v ∈ V . We explicitly aggregate node representations from
both left-to-right and right-to-left sides in the walk for each node in predicting
its neighbors. This allows SANNE to infer the plausible node embeddings even
in the inductive setting.

Algorithm 2: The embedding inference for new nodes.

1 Input: A network graph G = (V, E), a trained model SANNEtrained for G, a set
Vnew of new nodes.

2 for v ∈ Vnew do
3 Sample Z random walks {w i}Zi=1 of length N rooted by v.
4 for i ∈ {1, 2, ..., Z} do
5 u(K)

v,i ← SANNEtrained (wi) [0]

6 ov ← Average
(
{u(K)

v,i }Zi=1

)

Inferring embeddings for new nodes in the inductive setting: After
training our SANNE on a given graph, we show in Algorithm 2 our method to
infer an embedding for a new node v adding to this given graph. We randomly
sample Z random walks of length N starting from v. We use each of these walks as
an input for our trained model and then collect the first vector representation (at
the index 0 corresponding to node v) from the output sequence at the K-th last
layer. Thus, we obtain Z vectors and then average them into a final embedding
for the new node v.

4 Experiments

Our SANNE is evaluated for the node classification task as follows: (i) We train
our model to obtain node embeddings. (ii) We use these node embeddings to
learn a logistic regression classifier to predict node labels. (iii) We evaluate the
classification performance on benchmark datasets and then analyze the effects of
hyper-parameters.

4.1 Datasets and data splits

Datasets We use three well-known benchmark datasets Cora, Citeseer [23]
and Pubmed [20] which are citation networks. For each dataset, each node
represents a document, and each edge represents a citation link between two
documents. Each node is assigned a class label representing the main topic of
the document. Besides, each node is also associated with a feature vector of a
bag-of-words. Table 1 reports the statistics of these three datasets.
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Table 1. Statistics of the experimental datasets. |Vocab.| denotes the vocabulary size.
Avg.W denotes the average number of words per node.

Dataset |V| |E| #Classes |Vocab.| Avg.W

Cora 2,708 5,429 7 1,433 18

Citeseer 3,327 4,732 6 3,703 31

Pubmed 19,717 44,338 3 500 50

Data splits We follow the same settings used in [6] for a fair comparison. For
each dataset, we uniformly sample 20 random nodes for each class as training
data, 1000 different random nodes as a validation set, and 1000 different random
nodes as a test set. We repeat 10 times to have 10 training sets, 10 validation sets,
and 10 test sets respectively, and finally report the mean and standard deviation
of the accuracy results over 10 data splits.

4.2 Training protocol

Feature vectors initialized by Doc2Vec For each dataset, each node repre-
sents a document associated with an existing feature vector of a bag-of-words.
Thus, we train a PV-DBOW Doc2Vec model [16] to produce new 128-dimensional
embeddings xv which are considered as new feature vectors for nodes v. Using
this initialization is convenient and efficient for our proposed SANNE compared
to using the feature vectors of bag-of-words.

Positional embeddings We hypothesize that the relative positions among
nodes in the random walks are useful to provide meaningful information about
the graph structure. Hence we add to each position i in the random walks a
pre-defined positional embedding ti ∈ Rd, i ∈ {1, 2, ..., N} using the sinusoidal
functions [25], so that we can use u0vw,i

= xvw,i
+ ti where ti,2j = sin(i/100002j/d)

and ti,2j+1 = cos(i/100002j/d). From preliminary experiments, adding the posi-
tional embeddings produces better performances on Cora and Pubmed; thus,
we keep to use the positional embeddings on these two datasets.

Transductive setting This setting is used in most of the existing approaches
where we use the entire input graph, i.e., all nodes are present during training. We
fix the dimension size d of feature vectors and node embeddings to 128 (d = 128
with respect to the Doc2Vec-based new feature vectors), the batch size to 64, the
number M of sampling neighbors to 4 (M = 4) and the number of samples in
the sampled loss function to 512 (|V ′| = 512). We also sample T random walks
of a fixed length N = 8 starting from each node, wherein T is empirically varied
in {16, 32, 64, 128}. We vary the hidden size of the feed-forward sub-layers in
{1024, 2048}, the number K of attention layers in {2, 4, 8} and the number H
of attention heads in {4, 8, 16}. The dimension size s of attention heads is set to
satisfy that Hs = d.
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Inductive setting We use the same inductive setting as used in [28, 6]. Specifi-
cally, for each of 10 data splits, we first remove all 1000 nodes in the test set from
the original graph before the training phase, so that these nodes are becoming
unseen/new in the testing/evaluating phase. We then apply the standard train-
ing process on the resulting graph. From preliminary experiments, we set the
number T of random walks sampled for each node on Cora and Pubmed to 128
(T = 128), and on Citeseer to 16 (T = 16). Besides, we adopt the same value
sets of other hyper-parameters for tuning as used in the transductive setting to
train our SANNE in this inductive setting. After training, we infer the embedding
for each unseen/new node v in the test set as described in Algorithm 2 with
setting Z = 8.

Training SANNE to learn node embeddings For each of the 10 data splits,
to learn our model parameters in the transductive and inductive settings, we use
the Adam optimizer [14] to train our model and select the initial learning rate
in {1e−5, 5e−5, 1e−4}. We run up to 50 epochs and evaluate the model for every
epoch to choose the best model on the validation set.

4.3 Evaluation protocol

We also follow the same setup used in [6] for the node classification task. For
each of the 10 data splits, we use the learned node embeddings as feature inputs
to learn a L2-regularized logistic regression classifier [7] on the training set. We
monitor the classification accuracy on the validation set for every training epoch,
and take the model that produces the highest accuracy on the validation set to
compute the accuracy on the test set. We finally report the mean and standard
deviation of the accuracies across 10 test sets in the 10 data splits.

Baseline models: We compare our unsupervised SANNE with previous
unsupervised models including DeepWalk (DW), Doc2Vec and EP-B; and previous
supervised models consisting of Planetoid, GCN and GAT. Moreover, as reported
in [9], GraphSAGE obtained low accuracies on Cora, Pubmed and Citeseer,
thus we do not include GraphSAGE as a strong baseline.

The results of DeepWalk (DW), DeepWalk+BoW (DW+BoW), Planetoid,
GCN and EP-B are taken from [6].1 Note that DeepWalk+BoW denotes a
concatenation between node embeddings learned by DeepWalk and the bag-
of-words feature vectors. Regarding the inductive setting for DeepWalk, [6]
computed the embeddings for new nodes by averaging the embeddings of their
neighbors. In addition, we provide our new results for Doc2Vec and GAT using
our experimental setting.

1 As compared to our experimental results for Doc2Vec and GAT, showing the statisti-
cally significant differences for DeepWalk, Planetoid, GCN and EP-B against our
SANNE in Table 2 is justifiable.
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4.4 Main results

Table 2 reports the experimental results in the transductive and inductive settings
where the best scores are in bold, while the second-best in underline. As discussed
in [6], the experimental setup used for GCN and GAT [15, 26] is not fair enough
to show the effectiveness of existing models when the models are evaluated only
using the fixed training, validation and test sets split by [28], thus we do not rely
on the GCN and GAT results reported in the original papers. Here, we do include
the accuracy results of GCN and GAT using the same settings used in [6].

Table 2. Experimental results on the Cora, Pubmed and Citeseer test sets in the
transductive and inductive settings across the 10 data splits. The best score is in bold,
while the second-best score is in underline. “Unsup” denotes a group of unsupervised
models. “Sup” denotes a group of supervised models using node labels from the training
set during training. “Semi” denotes a group of semi-supervised models also using node
labels from the training set together with node feature vectors from the entire dataset
during training. ∗ denotes the statistically significant differences against our SANNE
at p < 0.05 (using the two-tailed paired t-test). Numeric subscripts denote the relative
error reductions over the baselines. Note that the inductive setting [28, 6] is used to
evaluate the models when we do not access nodes in the test set during training. This
inductive setting was missed in the original GCN and GAT papers which relied on
the semi-supervised training process for Cora, Pubmed and Citeseer. Regarding the
inductive setting on Cora and Citeseer, many neighbors of test nodes also belong to the
test set, thus these neighbors are unseen during training and then become new nodes in
the testing/evaluating phase.

Transductive Cora Pubmed Citeseer

U
n
su

p

DW [22] 71.11 ± 2.70∗33.6 73.49 ± 3.00∗23.3 47.60 ± 2.34∗43.0
DW+BoW 76.15 ± 2.06∗19.6 77.82 ± 2.19∗8.3 61.87 ± 2.30∗21.8
Doc2Vec [16] 64.90 ± 3.07∗45.4 76.12 ± 1.62∗14.9 64.58 ± 1.84∗15.8
EP-B [6] 78.05 ± 1.49∗12.6 79.56 ± 2.100.5 71.01 ± 1.35−2.9

Our SANNE 80.83 ± 1.94 79.67 ± 1.28 70.18 ± 2.12

S
e
m
i GCN [15] 79.59 ± 2.026.1 77.32 ± 2.66∗10.4 69.21 ± 1.253.1

GAT [26] 81.72 ± 2.93−4.8 79.56 ± 1.990.5 70.80 ± 0.92−2.1

Planetoid [28] 71.90 ± 5.33∗31.7 74.49 ± 4.95∗20.3 58.58 ± 6.35∗28.0

Inductive Cora Pubmed Citeseer

U
n
su

p DW+BoW 68.35 ± 1.70∗26.5 74.87 ± 1.23∗20.6 59.47 ± 2.48∗23.1
EP-B [6] 73.09 ± 1.75∗13.6 79.94 ± 2.300.5 68.61 ± 1.690.7

Our SANNE 76.75 ± 2.45 80.04 ± 1.67 68.82 ± 3.21

S
u
p

GCN [15] 67.76 ± 2.11∗27.9 73.47 ± 2.48∗24.8 63.40 ± 0.98∗14.8
GAT [26] 69.37 ± 3.81∗24.1 71.29 ± 3.56∗30.5 59.55 ± 4.21∗22.9
Planetoid [28] 64.80 ± 3.70∗33.9 75.73 ± 4.21∗17.8 61.97 ± 3.82∗18.0

Regarding the transductive setting, SANNE obtains the highest scores on
Cora and Pubmed, and the second-highest score on Citeseer in the group
of unsupervised models. In particular, SANNE works better than EP-B on
Cora, while both models produce similar scores on Pubmed. Besides, SANNE
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produces high competitive results compared to the up-to-date semi-supervised
models GCN and GAT. Especially, SANNE outperforms GCN with relative error
reductions of 6.1% and 10.4% on Cora and Pubmed respectively. Furthermore, it
is noteworthy that there is no statistically significant difference between SANNE
and GAT at p < 0.05 (using the two-tailed paired t-test)on these datasets.

EP-B is more appropriate than other models for Citeseer in the transductive
setting because (i) EP-B simultaneously learns word embeddings from the texts
within nodes, which are then used to reconstruct the embeddings of nodes from
their neighbors; (ii) Citeseer is quite sparse; thus word embeddings can be
useful in learning the node embeddings. But we emphasize that using a significant
test, there is no difference between EP-B and our proposed SANNE on Citeseer;
hence the results are comparable.

More importantly, regarding the inductive setting, SANNE obtains the high-
est scores on three benchmark datasets, hence these show the effectiveness of
SANNE in inferring the plausible embeddings for new nodes. Especially, SANNE
outperforms both GCN and GAT in this setting, e.g., SANNE achieves absolute
improvements of 8.9%, 6.6% and 5.4% over GCN, and 7.3%, 8.7% and 9.3%
over GAT, on Cora, Pubmed and Citeseer, respectively (with relative error
reductions of more than 14% over GCN and GAT).
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Fig. 2. A visualization of the learned node embeddings in the transductive and inductive
settings on Cora.

Compared to the transductive setting, the inductive setting is particularly
difficult due to requiring the ability to align newly observed nodes to the present
nodes. As shown in Table 2, there is a significant decrease for GCN and GAT
from the transductive setting to the inductive setting on all three datasets,
while by contrast, our SANNE produces reasonable accuracies for both settings.
To qualitatively demonstrate this advantage of SANNE, we use t-SNE [18] to
visualize the learned node embeddings on one data split of the Cora dataset in
Figure 2. We see a similarity in the node embeddings (according to their labels)
between two settings, verifying the plausibility of the node embeddings learned
by our SANNE in the inductive setting.
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4.5 Effects of hyper-parameters
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Fig. 3. Effects of the number T of random walks, the number K of attention layers and
the number H of attention heads on the validation sets. We fixed the same value for one
hyper-parameter and tune other hyper-parameters for all 10 data splits of each dataset.

We investigate the effects of hyper-parameters on the Cora, Pubmed, and
Citeseer validation sets of 10 data splits in Figure 3, when we use the same
value for one hyper-parameter and then tune other hyper-parameters for all 10
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data splits of each dataset. Regarding the transductive setting, we see that the
high accuracies can be generally obtained when using T = 128 on Cora and
Pubmed, and T = 16 on Citeseer. This is probably because Citeseer are
more sparse than Cora and Pubmed, especially the average number of neighbors
per node on Cora and Pubmed are 2.0 and 2.2 respectively, while it is just
1.4 on Citeseer. This is also the reason why we set T = 128 on Cora and
Pubmed, and T = 16 on Citeseer during training in the inductive setting.
Besides, regarding the number K of attention layers for both the transductive
and inductive settings, using a small K produces better results on Cora. At the
same time, there is an accuracy increase on Pubmed and Citeseer along with
increasing K. Regarding the number H of attention heads, we achieve higher
accuracies when using H = 8 on Cora in both the settings. Besides, there is not
much difference in varying H on Pubmed and Citeseer in the transductive
setting. But in the inductive setting, using H = 4 gives high scores on Pubmed,
while the high scores on Citeseer are obtained by setting H = 16.

4.6 Ablation analysis

Table 3. Ablation results on the validation sets in the transductive setting. (i) Without

using the feed-forward sub-layer: u(k)
v = LayerNorm

(
u(k−1)
v + Att

(
u(k−1)
v

))

(ii) Without using the multi-head self-attention sub-layer: u(k)
v =

LayerNorm
(
u(k−1)
v + FF

(
u(k−1)
v

))
. ∗ denotes the statistically significant dif-

ferences at p < 0.05 (using the two-tailed paired t-test).

Transductive Cora Pubmed Citeseer

Our SANNE 81.32 ± 1.20 78.28 ± 1.24 70.77 ± 1.18

(i) w/o FF 80.77 ± 1.34 77.90 ± 1.76 70.36 ± 1.32

(ii) w/o ATT 77.87 ± 1.09∗ 74.52 ± 2.66∗ 65.68 ± 1.31∗

We compute and report our ablation results on the validation sets in the
transductive setting over two factors in Table 3. There is a decrease in the
accuracy results when not using the feed-forward sub-layer, but we do not see a
significant difference between with and without using this sub-layer (at p < 0.05
using the two-tailed paired t-test). More importantly, without the multi-head self-
attention sub-layer, the results degrade by more than 3.2% on all three datasets,
showing the merit of this self-attention sub-layer in learning the plausible node
embeddings. Note that similar findings also occur in the inductive setting.

5 Conclusion

We introduce a novel unsupervised embedding model SANNE to leverage from
the random walks to induce the transformer self-attention network to learn node
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embeddings. SANNE aims to infer plausible embeddings not only for present
nodes but also for new nodes. Experimental results show that our SANNE
obtains the state-of-the-art results on Cora, Pubmed, and Citeseer in both
the transductive and inductive settings. Our code is available at: https://github.
com/daiquocnguyen/Walk-Transformer.2
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ABSTRACT
In this paper, we focus on learning low-dimensional embeddings
for nodes in graph-structured data. To achieve this, we propose
Caps2NE – a new unsupervised embedding model leveraging a
network of two capsule layers. Caps2NE induces a routing process
to aggregate feature vectors of context neighbors of a given target
node at the first capsule layer, then feed these features into the
second capsule layer to infer a plausible embedding for the tar-
get node. Experimental results show that our proposed Caps2NE
obtains state-of-the-art performances on benchmark datasets for
the node classification task. Our code is available at: https://github.
com/daiquocnguyen/Caps2NE.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems→ Social networks.
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1 INTRODUCTION
Numerous real-world and scientific data are represented in forms
of graphs, e.g. data from knowledge graphs, recommender systems,
social and citation networks as well as telecommunication and
biological networks [1, 4]. Recent years have witnessed many suc-
cessful downstream applications of utilizing the graph-structured
data such as for improving information extraction and text classi-
fication systems [13], traffic learning and forecasting [5] and for
advertising and recommending relevant items to users [22, 24]. This
is largely boosted by a surge of methodologies that learn embedding
representations to encode graph structures [3].

One of the most important tasks in learning graph represen-
tations is to learn low-dimensional embeddings for nodes in the
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graph-structured data [26]. These embedding vectors can then be
used in a downstream task such as node classification, i.e., using
the learned node embeddings as feature inputs to train a classifier
to predict node labels [10].

A simple and effective approach is to treat each node as a word
token and each graph as a text collection; hence we can apply a
word embeddingmodel such asWord2Vec [15] to learn node embed-
dings such as DeepWalk [18] and Node2Vec [8]. Recent work has
developed deep neural networks (DNN) for the node classification
task, e.g., GCN [13], GraphSAGE [10] and GAT [21]. We see that the
DNN-based approaches are showing state-of-the-art performances,
but not well-efficient to exploit the structural dependencies among
nodes.

In this paper, inspired by the advanced capsule networks [19],
we present Caps2NE – a new unsupervised embedding model that
adapts capsule network to learn node embeddings. Caps2NE aims
to capture k-hops context neighbors to predict a target node. In
particular, Caps2NE consists of two capsule layers with connections
from the first to the second layer, but no connections within layers.
The first layer constructs capsules to encapsulate context neighbors.
Then a routing process is used to aggregate the feature information
from capsules in the first layer to only one capsule in the second
layer. After that, the second layer produces a continuous vector
which is used to infer an embedding for the target node. Note
that encapsulating the context neighbors into the corresponding
capsules aims to preserve node properties more efficiently. And
the routing process aims to generate high-level features to infer
plausible node embeddings effectively.

Our main contributions are as follows:
• We investigate the advanced use of capsule networks for the
graph-structured data and propose a new embedding model
Caps2NE to learn node embeddings.
• We evaluate the performance of the proposed Caps2NE on
benchmark datasets for the node classification task.
• The experimental results show that that our Caps2NE pro-
duces state-of-the-art accuracy results on these datasets.

2 THE PROPOSED CAPS2NE
This section presents our Caps2NE model. In particular, we detail
how to sample data from an input graph, then how to construct
Caps2NE to learn node embeddings.

Definition 1. A network graph G is defined as G = (V, E), in
whichV is a set of nodes, E ⊆ {(v, v′)|v, v′ ∈ V} is a set of edges,
and each node v ∈ V is associated with a feature vector xv ∈ Rd .
We aim to learn a node embedding ov for each node v.
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Figure 1: Processes in our Caps2NE with q = 6,d = 4,k = 3 for an illustration purpose. Note that in this illustration, we use
numbered subscripts to denote nodes themselves, not indexes of nodes or capsules. The indexes of capsules are fixed from 1
to (q − 1), not depending on the indexes of the context neighbors. With v be the target node 3, we have Cv = {v1 = 1, v2 = 2, v3 =
4, v4 = 5, v5 = 6}.

Sampling input pairs. We follow Perozzi et al. [18] to uni-
formly sample a number T of random walks of length q for every
node inV . From each random walk, we randomly sample a target
node v, treat (q − 1) remaining nodes as the context neighbors of
node v, and construct an input pair of (Cv, v), where we denote
Cv be the list of context neighbors vi of the target node v (here,
i ∈ {1, 2, ...,q − 1} and |Cv | = q − 1).

Figure 1 shows an example of a graph consisting of 6 nodes.
If we sample a random walk of length q = 6 for node 1 such as
{1, 2, 3, 4, 5, 6} and select node 3 as the target node v, then the
remaining nodes {1, 2, 4, 5, 6} are treated as the context neighbors
of node 3, i.e., Cv = {v1 = 1, v2 = 2, v3 = 4, v4 = 5, v5 = 6}.

Definition 2. A capsule is a group of neurons. A capsule layer
is a group of capsules without connections among capsules in the
same layer [19]. Two continuous capsule layer is connected using
a routing process.

Constructing Caps2NE. We build our Caps2NE with two cap-
sule layers. In the first layer, we construct (q−1) capsules, where the
feature vector of each context neighbor vi is encapsulated by the
i-th corresponding capsule (with i ∈ {1, 2, ...,q − 1}). In the second
layer, we construct one capsule to produce a vector representation
which is then used to infer an embedding for the target node v.

The first capsule layer consists of (q − 1) capsules, in which the
i-th capsule use a non-linear squashing function to transform the
feature vector xvi of the context neighbor vi into u(i)vi as:

u(i)vi = squash
(
xvi

)
=
∥xvi ∥2

1 + ∥xvi ∥2
xvi
∥xvi ∥

(1)

The squashing function ensures that the orientation of each feature
vector is unchanged while its length is scaled down to below 1.

Vectors u(i)vi are then linearly transformed using weight matrices
Wi ∈ Rk×d to produce vectors û(i)vi ∈ Rk . These vectors û

(i)
vi are

weighted to sum up to return a vector sv ∈ Rk for the capsule
in the second layer (recall that the second layer consists of only
one capsule). This capsule then performs the non-linear squashing

function to produce a vector ev ∈ Rk . Formally, we have:

ev = squash (sv) ; sv =
∑
i
ci û
(i)
vi ; û(i)vi =Wiu

(i)
vi (2)

where ci are coupling coefficients determined by the routing process
as presented in Algorithm 1. Here, ci aims to weight u(i)vi of the i-th
capsule in the first layer.

As we use one capsule in the second layer, we make two differ-
ences in our routing process in Algorithm 1: (i) we apply softmax
in a direction from all capsules in the previous layer to each of
capsules in the next layer, (ii) thus, we propose a new update rule
(bi ← û(i)vi · ev) instead of employing (bi ← bi + û

(i)
vi · ev) originally

used by Sabour et al. [19].

Algorithm 1: The Caps2NE routing process.
1 for i = 1, 2, ..., q-1 do
2 bi ← 0
3 for iteration = 1, 2, ..., m do
4 c← softmax (b)
5 sv ←

∑
i ci û

(i)
vi

6 ev ← squash (sv)
7 for i = 1, 2, ..., q-1 do
8 bi ← û(i)vi · ev

Learning model parameters. The vector representation ev is
then used to infer the final embedding ov ∈ Rk of the target node v,
as shown in Equation 3. We learn all model parameters (including
the node embeddings ov) by minimizing the sampled softmax loss
function [11] applied to the target node v as:

LCaps2NE (v) = − log
exp(oTvev)∑

v′∈V′ exp(oTv′ev)
(3)

whereV ′ is a subset sampled fromV .

3.2. Research Contribution 85



Algorithm 2: The Caps2NE learning process.
1 Input: A network graph G = (V, E)
2 for v ∈ V do
3 Sample T random walks of length q starting at v
4 for each random walk do
5 Sample a node v as a target node
6 Cv ← Remaining nodes
7 for i = 1, 2, ..., q-1 do
8 u(i)vi ← squash

(
xvi

) ∀vi ∈ Cv

9 ev ← Routing
({
u(i)vi

}q−1
i=1

)
10 ov ← ev

We briefly represent the general learning process of our proposed
Caps2NE model in Algorithm 2 whose main steps 3, 7–9 and 10 are
previously detailed in parts “Sampling input pairs”, “Constructing
Caps2NE” and “Learning model parameters”, respectively.

We illustrate our model in Figure 1 where the length q of random
walks, the dimension sized of the feature vectors and the dimension
sizek of output node embeddings are equal to 6, 4 and 3, respectively.
Thus, the first capsule layer has 5 capsules, each with 4 neurons,
and the second capsule layer has 1 capsule with 3 neurons. For the
target node 3 in the illustration, the vector output of the capsule
in the second layer is used to infer the embedding of node 3. Our
Caps2NE aims to aggregate feature information from the context
neighbors (i.e., k-hops neighbors) to infer the target node 3; hence
this helps our proposed model to infer the structural dependencies
among nodes to produce the plausible node embeddings effectively.

Algorithm 3: The inference process for new nodes.
1 Input: A graph G = (V, E), a trained model Caps2NEtrained ,

a setVtest of new nodes.
2 for v ∈ Vtest do
3 Sample Z pairs {pj }Zj=1 of (Cv , v)
4 for j ∈ {1, 2, ..., Z } do
5 e(v, j) ← Caps2NEtrained

(
pj
)

6 ov ← Average
(
{e(v, j)}Zj=1

)

Inferring embeddings for new nodes in the inductive set-
ting. Algorithm 3 shows how we infer an embedding for a new
node v adding to an existing graph. After training our model, we
generate random walks of length q to extract Z pairs of (Cv , v). We
use each of these pairs as an input for our trained model and then
collect the output vector e from the second capsule layer. Thus, we
obtain Z vectors associated with node v and then average them
into an embedding representation of v .

3 EXPERIMENTAL RESULTS ON PPI, POS,
AND BLOGCATALOG

3.1 Datasets and data splits
PPI [2] is a subgraph of the Protein-Protein Interaction network for
Homo Sapiens, and its node labels represent biological states. POS
[14] is a co-occurrence network of words from theWikipedia dump,
and its node labels represent the part-of-speech tags. BlogCatalog
[25] is a social network of relationships of the bloggers listed on
the BlogCatalog website, and its node labels represent bloggers’
interests. PPI, POS and BlogCatalog are given without node fea-
tures, in which each node is assigned with one or more class labels.
These datasets are used for the multi-label node classification task.
Table 1 presents the statistics of these benchmark datasets.

Table 1: Statistics of the experimental datasets.

Dataset |V| |E | #Classes
PPI 3,890 76,584 50
POS 4,777 184,812 40
BlogCatalog 10,312 333,983 39

A certain fraction γ of nodes is provided to train a classifier
which is then used to predict the labels of the remaining nodes.

3.2 Training protocol
We only use the transductive setting for these three datasets. We
uniformly sample 64 random walks (T = 64) of length 10 (q = 10)
for each node in the graph. In each random walk, we rotationally
select each node in the walk as a target node and 9 remaining
nodes as its context nodes. We also run up to 50 training epochs
and use the batch size to 128, the embedding size k = 128 and
|V ′ | = 256 in Equation 3. We vary the Adam initial learning rate
lr ∈ {1e−5, 5e−5, 1e−4}. Nodes are given without pre-computed
features, hence we set the size d of feature vectors xvi to 128 (d =
128), and these vectors are randomly initialized uniformly, and
updated during training.

3.3 Evaluation protocol
We follow the same experimental setup used for themulti-label node
classification task from Perozzi et al. [18] and Duran and Niepert
[6] where we uniformly sample a fraction γ of nodes at random as
training set for learning a one-vs-rest logistic regression classifier.
The learned node embeddings after each Caps2NE training epoch
are used as input feature vectors for this logistic regression classifier.
We use default parameters for learning this classifier from Perozzi
et al. [18]. The classifier is then used to categorize the remaining
nodes. We monitor the Micro-F1 and Macro-F1 scores of the classi-
fier after each Caps2NE training epoch, for which the best model
is chosen by using 10-fold cross-validation for each fraction value.
We repeat this manner 10 times for each fraction value, and then
compute the averaged Micro-F1 and Macro-F1 scores. We show
final scores w.r.t. each value γ ∈ {10%, 50%, 90%}. The baseline
results are taken from Duran and Niepert [6].
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Table 2: Multi-label classification results on PPI, POS and BlogCatalog.

Method POS PPI BlogCatalog
(Micro-F1) γ = 10% γ = 50% γ = 90% γ = 10% γ = 50% γ = 90% γ = 10% γ = 50% γ = 90%
DeepWalk 45.02 49.10 49.33 17.14 23.52 25.02 34.48 38.11 38.34
LINE 45.22 51.64 52.28 16.55 23.01 25.28 34.83 38.99 38.77
Node2Vec 44.66 48.73 49.73 17.00 23.31 24.75 35.54 39.31 40.03
EP-B 46.97 49.52 50.05 17.82 23.30 24.74 35.05 39.44 40.41
Our Caps2NE 46.01 50.93 53.92 18.52 23.15 25.08 34.31 38.35 40.79

Method POS PPI BlogCatalog
(Macro-F1) γ = 10% γ = 50% γ = 90% γ = 10% γ = 50% γ = 90% γ = 10% γ = 50% γ = 90%
DeepWalk 8.20 10.84 12.23 13.01 18.73 20.01 18.16 22.65 22.86
LINE 8.49 12.43 12.40 12,79 18.06 20.59 18.13 22.56 23.00
Node2Vec 8.32 11.07 12.11 13.32 18.57 19.66 19.08 23.97 24.82
EP-B 8.85 10.45 12.17 13.80 18.96 20.36 19.08 25.11 25.97
Our Caps2NE 9.71 13.16 14.11 15.20 19.63 20.27 18.40 24.80 26.63

3.4 Overall results
We show in Table 2 the Micro-F1 and Macro-F1 scores on test sets
in the transductive setting. Especially, on POS, Caps2NE produces
a new state-of-the-art Macro-F1 score for each of the three fraction
values γ , the highest Micro-F1 score when γ = 90% and the second
highest Micro-F1 scores when γ ∈ {10%, 50%}. Caps2NE obtains
new highest F1 scores on PPI and BlogCatalog when γ = 10% and
γ = 90%, respectively. On PPI, Caps2NE also achieves the highest
Macro-F1 score when γ = 50% and the second highest Micro-F1
score when γ = 90%. On BlogCatalog, Caps2NE also achieves the
second highest Macro-F1 scores when γ ∈ {10%, 50%}.

In short, from Table 2, Caps2NE obtains top performances on
these three datasets: producing the highest scores in 9 over 18
comparison groups (3 datasets × 3 values of the fraction γ × 2
metrics), the second highest scores in 5/18 groups and competitive
scores in the remaining 4 groups.

4 EXPERIMENTAL RESULTS ON CORA,
CITESEER, AND PUBMED

4.1 Datasets and data splits
Cora, Citeseer [20] and Pubmed [16] are citation networks where
each node represents a document (here, each node is associated
with a class labeling the main topic of the document), and each edge
represents a citation link between two documents. Each node is also
associated with a feature vector of a bag-of-words, i.e. the feature
vectors xvi in the first capsule layer (Equation 1) are pre-computed
based on bag-of-words features and fixed during training. Table 3
presents the statistics of these three benchmark datasets.

Duran and Niepert [6] show that the experimental setup used
in [13, 21] is not fair to show the effectiveness of existing models
when thesemodels are evaluated using the fixed & pre-split training,
validation and test sets from the Planetoid model [23]. Therefore,
for a fair comparison, we follow the same experimental setup used
in [6, 17]. In particular, for each dataset, we uniformly sample 20
random nodes for each class as training data, 1000 different random

Table 3: Statistics of the experimental datasets. d is the di-
mension size of the feature vectors.

Dataset |V| |E | #Classes d

Cora 2,708 5,429 7 1,433
Citeseer 3,327 4,732 6 3,703
Pubmed 19,717 44,338 3 500

nodes as a validation set and 1000 different random nodes as a test
set. We then repeat this manner 10 times to produce 10 data splits
of training-validation-test sets.

4.2 Training protocol
Transductive setting. We set the embedding size k to 128 (k =
128) and the number of samples in the sampled softmax loss func-
tion to 256 (|V ′ | = 256 in Equation 3). We also set the batch size to
64 for both Cora and Citeseer and to 128 for Pubmed. We use a
fixed walk length q = 10 for uniformly sampling T random walks
starting from each node. We may get slightly better results when
we rotationally selecting each node in the random walk as a target
node. But we aim to save training time due to the limitation of com-
putation resources, thus we only select target nodes at indexes of
{3, 4, 5, 6}. We optimize the loss function using the Adam optimizer
[12] and select the initial learning rate lr ∈ {1e−5, 5e−5, 1e−4}.
We vary the number T of random walks T ∈ {8, 16, 32, 64} and
the number m of iterations in the routing process (Algorithm 1)
m ∈ {1, 3, 5, 7}. We run up to 50 epochs and evaluate the model for
each epoch to choose the best model on the validation set. We use
the same values of hyper-parameters above for all data splits.

Inductive setting. We use the same inductive setting as used
in [6, 23] where we firstly remove all nodes in the test set from the
original graph before training phase, thus these nodes are unseen/new
in the testing/evaluating phase.We then apply the standard train-
ing process on the remaining of the graph. Here, we use the same
set of hyper-parameters tuned for the transductive setting to train
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Caps2NE in the inductive setting. After training, we infer the em-
bedding for each node v in the test set as in Algorithm 3 using a
fixed value Z = 10.

4.3 Evaluation protocol
We also follow the same setup used in Duran and Niepert [6] use to
evaluate our Caps2NE. For each of 10 data splits, the learned node
embeddings after each Caps2NE training epoch are used as input
features for learning a L2-regularized logistic regression classifier
[7] on the training set.We monitor the node classification accu-
racy on the validation set for every Caps2NE training epoch and
then choose the model that produces the highest accuracy on the
validation set to compute the accuracy on the test set. We finally
report the average of the accuracies across 10 test sets from the
10 data splits. We compare Caps2NE with strong baseline models
BoW (Bag-of-Words), DeepWalk, DeepWalk+BoW, EP-B [6], Plane-
toid, GCN and GAT. As reported in [9], GraphSAGE obtained low
accuracies on Cora, Pubmed and Citeseer, thus we do not include
GraphSAGE as a strong baseline.

4.4 Overall results
Transductive setting. Table 4 reports the experimental results of
our proposed Caps2NE and other baselines. BoW is evaluated by
directly using the bag-of-words feature vectors for learning the
classifier. DeepWalk+BoW concatenates the learned embedding of
a node from DeepWalk with the BoW feature vector of the node.
As discussed in Duran and Niepert [6], the experimental setup used
to evaluate GCN and GAT is not fair for existing models when
they are evaluated using the fixed & pre-split training, validation
and test sets from Yang et al. [23]. Thus we report results, and also
fine-tune and re-evaluate GAT, using the same experimental setup
used in Duran and Niepert [6]. The results of other baselines (e.g.,
BoW, DeepWalk+BoW, EP-B, Planetoid and GCN) are taken from
Duran and Niepert [6].

Table 4: Accuracies on theCora,Citeseer and Pubmed test
sets in the transductive setting. “Unsup” denotes unsuper-
vised graph embedding models, where the best score is in
bold while the second best score is in underline. “Semi” de-
notes a group of semi-supervised models using node labels
from the training set together with feature vectors of nodes
from the entire dataset during training.

Model Cora Citeseer Pubmed

U
ns

up

BoW 58.63 58.07 70.49
DeepWalk 71.11 47.60 73.49
DeepWalk+BoW 76.15 61.87 77.82
EP-B 78.05 71.01 79.56
Our Caps2NE 80.53 71.34 78.45

Se
m
i GAT 81.72 70.80 79.56

GCN 79.59 69.21 77.32
Planetoid 71.90 58.58 74.49

Caps2NE obtains the highest scores on Cora and Citeseer and
the second highest score on Pubmed against other unsupervised

baseline models. In addition, we also compare our unsupervised
Caps2NE to the semi-supervised models GCN, Planetoid and GAT,
for which Caps2NE works better than GCN and Planetoid on these
three datasets, and outperforms GAT on Citeseer.

Table 5: Accuracies on theCora,Citeseer and Pubmed test
sets in the inductive setting. “Unsup” denotes unsupervised
graph embedding models, where the best score is in bold
while the second best score is in underline. “Sup” denotes a
group of supervisedmodels using node labels from the train-
ing set during training.

Model Cora Citeseer Pubmed

U
ns

up

DeepWalk+BoW 68.35 59.47 74.87
EP-B 73.09 68.61 79.94
Our Caps2NE 76.54 69.84 78.98

Su
p

GAT 69.37 59.55 71.29
GCN 67.76 63.40 73.47
Planetoid 64.80 61.97 75.73

Inductive setting: Table 5 reports the experimental results of
our Caps2NE and other baselines in the inductive setting. Note that
the inductive setting is used to evaluate the models when we do not
access nodes in the test set during training. This inductive setting
was missed in the original GCN and GAT papers which relied on
the semi-supervised training process. Regarding Cora and Citeseer
in the inductive setting, many neighbors of test nodes also belong
to the test set, thus these neighbors are unseen during training and
then become new nodes in the testing/evaluating phase. Table 4
also shows that under the inductive setting, Caps2NE produces new
state-of-the-art scores of 76.54% and 69.84% on Cora and Citeseer
respectively, and also obtains the second highest score of 78.98% on
Pubmed. As previously discussed in the last paragraph in the “The
proposed Caps2NE” section, we re-emphasize that our unsupervised
Caps2NE model notably outperforms the supervised models GCN
and GAT for this inductive setting. In particular, Caps2NE achieves
4+% absolute higher accuracies than both GCN and GAT on the
three datasets, clearly showing the effectiveness of Caps2NE to
infer embeddings for unseen nodes.

Discussion. EP-B is the best model on Pubmed: (i) EP-B simulta-
neously learns word embeddings on texts from all nodes. Then the
embeddings of words from each node are averaged into a new fea-
ture vector which is then used to reconstruct the node embedding.
(ii) On Pubmed, neighbors of unseen nodes in the test set are fre-
quently present in the training set. Therefore, these are reasons why
on Pubmed, EP-B obtains higher performance than Caps2NE and
other models (but, note that we only make use of the bag-of-words
feature vectors).

4.5 Ablation analysis on the routing update
The routing process presented in Algorithm 1 can be considered
as an attention mechanism to compute the coupling coefficient ci
which is used to weight the output of the i-th capsule in the first
layer. Sabour et al. [19] use (bi ← bi + û(i)vi · ev) for the image
classification task, but this might not be well-suited for graph-
structured data because of the high order variant among different

3.2. Research Contribution 88



1e−5 5e−5 1e−4

70

75

80

77.9

80.46 80.33

71.9 72.28 72.22

73.79

76.38 76.53

lr

Ac
cu
ra
cy

Cora Citeseer Pubmed

8 16 32 64

70

75

80
78.66

79.73
80.51

79.75

71.45
71.87 71.88 72.03

74.74

76.24 76.16 76.37

T

Ac
cu
ra
cy

Cora Citeseer Pubmed

1 3 5 7

70

75

80
80.48

79.98 80.21 79.96

71.99 71.94 72 72.04

76.34 76.09 76.23 76.22

m

Ac
cu
ra
cy

Cora Citeseer Pubmed

Figure 2: Effects of the Adam initial learning rate lr (left figure), the numberT of randomwalks sampled for each node (central
figure), and the numberm of iterations in the routing process (right figure) on the validation sets in the transductive setting.
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Figure 3: Effects of the Adam initial learning rate lr (left figure), the numberT of randomwalks sampled for each node (central
figure), and the numberm of iterations in the routing process (right figure) on the validation sets in the inductive setting.

Table 6: Accuracy results on the Cora validation sets w.r.t
each data split and each value m > 1 of routing iterations
for the transductive and inductive settings. Regarding Algo-
rithm 1 whenm > 1, “Ours” denotes our update rule (bi ←
û(i)vi ·ev), while “Sab.” denotes the update rule (bi ← bi+û

(i)
vi ·ev)

originally used by Sabour et al. [19].

Split
Transductive Inductive

m=3 m=5 m=7 m=3 m=5 m=7
Ours Sab. Ours Sab. Ours Sab. Ours Sab. Ours Sab. Ours Sab.

1st 80.1 80.1 80.2 79.6 79.7 79.3 70.2 70.3 70.2 69.2 70.6 68.3
2nd 79.4 79.6 79.7 78.9 79.7 78.6 66.0 65.9 65.7 64.4 65.6 64.3
3rd 78.5 78.5 78.6 78.6 78.5 78.4 68.2 67.6 68.3 68.4 69.2 67.6
4th 81.3 80.8 81.1 80.1 81.1 79.3 66.5 66.3 66.5 65.4 66.4 65.9
5th 81.9 81.6 81.7 81.5 81.7 80.9 69.4 68.7 69.9 68.5 69.5 68.1
6th 78.6 79.0 78.8 78.7 78.7 78.0 66.7 67.1 66.7 66.2 67.5 65.3
7th 80.1 80.2 80.5 80.0 79.9 79.4 70.4 70.1 70.4 69.9 70.4 68.8
8th 81.8 82.1 82.1 81.5 82.3 81.2 69.6 69.0 68.7 67.8 69.7 67.5
9th 79.3 79.4 79.7 78.1 78.6 77.8 71.2 70.8 71.5 71.7 72.2 70.1
10th 78.8 79.3 79.7 78.9 79.4 78.7 70.3 69.7 69.5 68.8 69.9 68.3
Overall 79.98 80.06 80.21 79.59 79.96 79.16 68.85 68.55 68.74 68.03 69.10 67.42

nodes. Therefore, we propose to use the new update rule (bi ←
û(i)vi ·ev) as this new rule generally helps obtain a higher performance
for each setup. Table 6 shows a comparison between the accuracy

results of these two update rules on the Cora validation sets w.r.t
each data split and the numberm (m > 1) of routing iterations.

4.6 Effects of hyper-parameters
Figures 2 and 3 presents effects of the Adam initial learning rate
lr , the number T of random walks sampled for each node and the
number m of iterations in the routing process on the validation
sets in the transductive and inductive settings respectively. In these
experiments, for the 10 data splits of each dataset, we apply the
same value of one hyper-parameter and then tune other hyper-
parameters.

We find that in general using lr = 1e−4 produces the top scores
on the validation sets to both transductive and inductive settings.
We also find that we generally obtain high accuracies with a high
value of T at either 32 or 64. However, there is an exception in
the inductive setting, where using T = 16 produces the highest
accuracy on Citeseer. A possible reason might come from the
fact that Citeseer is more sparse than Cora and Pubmed: the
average number of neighbors per node on Citeseer is 1.4 which is
substantially smaller than 2.0 on Cora and 2.2 on Pubmed.

Furthermore, usingm = 1 usually obtains the top performances
in both the settings. But we also note that the best configurations
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of hyper-parameters over 10 data splits are not always relied on
usingm = 1.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we present a new unsupervised embedding model
Caps2NE based on the capsule network to learn node embeddings
from the graph-structured data. Our proposed Caps2NE aims to
effectively use context neighbors in random walks to infer plausi-
ble embeddings for target nodes. Experimental results show that
Caps2NE obtains state-of-the-art performances on benchmark datasets
for the node classification task.
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3.2.3 Quaternion graph neural networks

• Dai Quoc Nguyen, Tu Dinh Nguyen and Dinh Phung. Quaternion Graph Neural

Networks. arXiv preprint arXiv:2008.05089.

Contribution. We propose our quaternion graph neural networks (QGNN) (Nguyen

et al., 2020b) to generalise GCNs (Kipf and Welling, 2017) within the Quaternion space.

The Quaternion space allows highly expressive computations through Hamilton product

compared to the Euclidean and complex vector spaces, by sharing the inputs’ quaternion

components during multiplication. This characteristic helps to reduce the number of

model parameters significantly. Besides, any slight change in any of the quaternion input

components results in an entirely different output (Parcollet et al., 2019), leading to a

different performance. This innovation enhances capturing potential relations within each

hidden quaternion layer and between the different hidden layers to increase the embedding

quality. QGNN obtains superior accuracies compared to GCN and up-to-date baseline

models for the tasks of graph classification, semi-supervised node classification, and text

(node) classification.

Furthermore, an extended abstract of the submitted paper has been accepted to the

NeurIPS 2020 Workshop on Differential Geometry meets Deep Learning (DiffGeo4DL).

The code is available at: https://github.com/daiquocnguyen/QGNN.

https://sites.google.com/view/diffgeo4dl/
https://github.com/daiquocnguyen/QGNN
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Abstract

Recently, graph neural networks (GNNs) be-
come a principal research direction to learn low-
dimensional continuous embeddings for nodes and
graphs to predict node and graph labels, respec-
tively. Most of the existing GNNs learn node and
graph embeddings within the Euclidean vector
space. However, for complex graphs such as pro-
tein interaction networks and social networks, the
learned Euclidean embeddings have high distor-
tion. Furthermore, when increasing the number of
hidden layers, the existing GNNs are not work-
ing very efficiently anymore since the number of
parameters grows quickly. Therefore, we move
beyond the Euclidean space to a hyper-complex
vector space to improve graph representation qual-
ity and reduce the number of model parameters.
To this end, we propose quaternion graph neu-
ral networks (QGNN) to generalize GCNs within
the Quaternion space to learn quaternion embed-
dings for nodes and graphs. The Quaternion space,
a hyper-complex vector space, provides highly
meaningful computations through Hamilton prod-
uct compared to the Euclidean and complex vector
spaces. As a result, our QGNN can reduce the
model size up to four times and learn better graph
representations. Experimental results show that the
proposed QGNN produces state-of-the-art accura-
cies on a range of well-known benchmark datasets
for three downstream tasks, including graph classi-
fication, semi-supervised node classification, and
text (node) classification.

1 INTRODUCTION

Graph representation learning is one of the most important
topics for graph-structured data [Hamilton et al., 2017b,

Zhou et al., 2018, Wu et al., 2019b, Zhang et al., 2020],
where a goal is to learn vector embeddings for nodes and
graphs. Recently, graph neural networks (GNNs) become an
essential strand to learn low-dimensional continuous embed-
dings of nodes and graphs to predict node and graph labels,
respectively [Scarselli et al., 2009, Hamilton et al., 2017b,
Wu et al., 2019b, Zhang et al., 2020]. GNNs use an AGGRE-
GATION function [Kipf and Welling, 2017, Hamilton et al.,
2017a, Veličković et al., 2018, Nguyen et al., 2019] over
neighbors of each node to update its vector representation
iteratively, and then apply a graph-level READOUT pooling
function to obtain graph embeddings [Gilmer et al., 2017,
Zhang et al., 2018, Ying et al., 2018, Verma and Zhang,
2018, Xu et al., 2019]. We note that the GNNs have been
producing state-of-the-art accuracy performances for node
and graph classification tasks.

It is noted that most of the existing GNNs learn embeddings
for nodes and graphs within the Euclidean vector space.
However, for complex graphs such as protein interaction
networks and social networks, the learned Euclidean embed-
dings have high distortion [Chami et al., 2019]. It also has
been noted in [Xu et al., 2019, Pei et al., 2020] that the Eu-
clidean embeddings of different nodes (or different graphs)
can become increasingly more similar when constructing
multiple GNN layers, hence degrading the graph representa-
tion quality. Furthermore, when increasing the number of
hidden layers, the existing GNNs [Kipf and Welling, 2017,
Hamilton et al., 2017a, Veličković et al., 2018, Xu et al.,
2019] are not working very efficiently anymore since the
number of parameters grows quickly. While it has been
considered under other contexts, in this paper, we address
the following research question: Can we move beyond the
Euclidean space to learn better graph representations and
reduce the number of model parameters?

To this end, we present a novel approach to learn node
and graph embeddings within the Quaternion space. Some
quaternion-based methods have been applied in image classi-
fication [Gaudet and Maida, 2018, Zhu et al., 2018], speech
recognition [Parcollet et al., 2018, 2019b] and knowledge
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graph [Zhang et al., 2019]. The closely related work is ap-
plying quaternion networks for natural language processing
[Tay et al., 2019]. However, to the best of our knowledge,
our work is the first to investigate quaternion embeddings for
general graphs with diverse and different structures, hence
requiring a different solution approach.

In general, our strategy can be flexibly applied to existing
AGGREGATION functions such as in Graph Convolutional
Network (GCN) [Kipf and Welling, 2017]. Note that GCN
is one of the simplest yet state-of-the-art GNNs for the semi-
supervised node classification task. As noted in [Xu et al.,
2019, Chen et al., 2019], GCN also outperforms Graph-
SAGE [Hamilton et al., 2017a] and GAT [Veličković et al.,
2018], and produces competitive accuracies compared to
other up-to-date GNN models [Xu et al., 2019, Du et al.,
2019] for the graph classification task. Therefore, we pro-
pose our quaternion graph neural networks (QGNN) to
generalize GCNs within the Quaternion space. Note that
the same procedure can be applied for other GNNs such
as Simple Graph Convolution [Wu et al., 2019a] or Graph
Isomorphism Network [Xu et al., 2019].

The Quaternion space allows highly expressive computa-
tions through Hamilton product compared to the Euclidean
and complex vector spaces, by sharing the inputs’ quater-
nion components during multiplication. This characteristic
helps to reduce the number of model parameters signifi-
cantly. Besides, any slight change in any of the quaternion
input components results in an entirely different output [Par-
collet et al., 2019a], leading to a different performance. This
enhances capturing potential relations within each hidden
quaternion layer and between the different hidden layers to
increase the embedding quality.

Graphs are ubiquitous in science, engineering, and real-life
applications. They are fundamental to, for example, the
study of disease outbreak, human dynamics, biological net-
works, social networks, information retrieval, to name a few.
Our work provides basic building blocks for such studies,
hence applicable and relevant to many research problems be-
yond computer science and machine learning. As the work
represents a fundamental research problem in representing
graphs, we believe it does not put anyone at disadvantages.
Our proposed QGNN has demonstrated to achieve superior
performances through extensive experimental evaluations,
making state-of-the-art performances on a wide range of
benchmark datasets for three downstream tasks.

Contributions. In summary, our main contributions can be
highlighted as follows:

• We propose to learn the node and graph embeddings
within the Quaternion space and introduce our quater-
nion graph neural networks (QGNN) to generalize
GCNs within the Quaternion space. QGNN can reduce
the model size and improve the embedding quality.

• We evaluate the effectiveness of our proposed QGNN
on a variety of well-known benchmark datasets for
the tasks of graph classification, semi-supervised node
classification, and text (node) classification.

• Experimental results show that QGNN obtains superior
accuracies compared to GCN and up-to-date baseline
models, especially producing state-of-the-art accura-
cies on these benchmark datasets.

2 RELATED WORK

We represent each graph G = (V ,E ,{hv}v∈V ), where V

is a set of nodes, E is a set of edges, and hv (i.e., h(0)v )
represents the Euclidean feature vector of node v ∈ V .

Node classification. We consider a graph G , where each
node belongs to one of the class labels. Given the labels of
a subset of V , the task is to predict the labels of remaining
nodes.

Graph classification. Given a set of M disjoint graphs
{Gm}M

m=1 and their corresponding class labels {ym}M
m=1 ⊆

Y , the task is to learn an embedding eGm for each entire
graph Gm to predict its label ym.

Recent work on graph representation learning has focused
on using graph neural networks (GNNs). In general, GNNs
update the vector representation of each node by recur-
sively aggregating and transforming the vector represen-
tations of its neighbors [Kipf and Welling, 2017, Hamilton
et al., 2017a, Veličković et al., 2018]. After that, GNNs use
a READOUT pooling function to obtain the vector repre-
sentation of the entire graph [Gilmer et al., 2017, Zhang
et al., 2018, Ying et al., 2018, Verma and Zhang, 2018, Xu
et al., 2019]. Mathematically, given a graph G , we formulate
GNNs as follows:

h(l+1)
v = AGGREGATION

({
h(l)u

}
u∈Nv∪{v}

)
(1)

eG = READOUT

({{
h(l)v

}L

l=0

}

v∈V

)
(2)

where h
(l)
v is the vector representation of node v at the l-th

iteration/layer, Nv is the set of neighbors of node v, and
h
(0)
v = hv.

There have been many designs for the AGGREGATION func-
tions proposed in recent literature. The widely-used one is
introduced in Graph Convolutional Network (GCN) [Kipf
and Welling, 2017] as:

h(l+1)
v = g

(
∑

u∈Nv∪{v}
av,uW(l)h(l)u

)
,∀v ∈ V (3)
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where av,u is an edge constant between nodes v and u in the

re-normalized adjacency matrix D̃
1
2 ÃD̃

1
2 ; W(l) is a weight

matrix; and g is a nonlinear activation function.

While Simple Graph Convolution [Wu et al., 2019a] is a
simplified variant of GCN without using the non-linear acti-
vation function g, Graph Isomorphism Network [Xu et al.,
2019] uses a more powerful AGGREGATION function based
on a multi-layer perceptron (MLP) network of two fully-
connected layers as:

h(l+1)
v =MLP(l)

(
∑

u∈Nv∪{v}
h(l)u

)
,∀v ∈ V (4)

Following [Xu et al., 2018, 2019], we also employ a con-
catenation over the vector representations of node v at the
different layers to construct the node embedding ev as:

ev =
[
h(1)v ;h(2)v ; ...;h(L)v

]
,∀v ∈ V (5)

where L is the index of the last layer. The graph-level
READOUT function can be a simple sum pooling or a com-
plex pooling such as sort pooling [Zhang et al., 2018], hi-
erarchical pooling [Cangea et al., 2018], and differentiable
pooling [Ying et al., 2018]. As the sum pooling often pro-
duces competitive performances [Xu et al., 2019], we utilize
the sum pooling to obtain the embedding eG of the entire
graph G as:

eG = ∑
v∈V

ev = ∑
v∈V

[
h(1)v ;h(2)v ; ...;h(L)v

]
(6)

3 QUATERNION GRAPH NEURAL
NETWORKS

3.1 QUATERNION BACKGROUND

The hyper-complex vector space has recently been consid-
ered on the Quaternion space [Hamilton, 1844] consisting
of one real and three separate imaginary axes. It provides
highly expressive computations through the Hamilton prod-
uct compared to the Euclidean and complex vector spaces.
The Quaternion space has been applied to image classifi-
cation [Zhu et al., 2018, Gaudet and Maida, 2018], speech
recognition [Parcollet et al., 2018, 2019b], knowledge graph
[Zhang et al., 2019], and natural language processing [Tay
et al., 2019].

We provide key notations and operations related to the
Quaternion space required for our later development. Addi-
tional details can further be found in [Parcollet et al., 2019a].

A quaternion q ∈ H is a hyper-complex number consist-
ing of one real and three separate imaginary components
[Hamilton, 1844] defined as:

q = qr +qii+q jj+qkk (7)

where qr,qi,q j,qk ∈ R, and i, j,k are imaginary units that
i2 = j2 = k2 = ijk=−1. Correspondingly, a n-dimensional
quaternion vector q ∈Hn is defined as:

q = qr +qii+q jj+qkk (8)

where qr,qi,q j,qk ∈ Rn. The operations for the Quaternion
algebra are defined as follows:

Addition. The addition of two quaternions q and p is de-
fined as:

q+ p= (qr+ pr)+(qi+ pi)i+(q j+ p j)j+(qk+ pk)k (9)

Norm. The norm ‖q‖ of a quaternion q is defined as:

‖q‖=
√

q2
r +q2

i +q2
j +q2

k (10)

And the normalized or unit quaternion q/ is defined as:

q/ =
q
‖q‖ (11)

Scalar multiplication. The multiplication of a scalar λ and
a quaternion q is defined as:

λq = λqr +λqii+λq jj+λqkk (12)

Conjugate. The conjugate q∗ of a quaternion q is defined
as:

q∗ = qr−qii−q jj−qkk (13)

Hamilton product. The Hamilton product ⊗ (i.e., the
quaternion multiplication) of two quaternions q and p is
defined as:

q⊗ p = (qr pr−qi pi−q j p j−qk pk)

+ (qi pr +qr pi−qk p j +q j pk)i

+ (q j pr +qk pi +qr p j−qi pk)j

+ (qk pr−q j pi +qi p j +qr pk)k (14)

We can express the Hamilton product of q and p in the
following form:

q⊗ p =




1
i
j
k




>


qr −qi −q j −qk
qi qr −qk q j
q j qk qr −qi
qk −q j qi qr







pr
pi
p j
pk


 (15)

We note that the Hamilton product is not commutative, i.e.,
q⊗ p 6= p⊗q.

Concatenation. In our approach, we further define a con-
catenation of two quaternion vectors q and p as:

[q; p] = [qr; pr]+ [qi; pi] i+
[
q j; p j

]
j+[qk; pk]k (16)
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3.2 THE PROPOSED QGNN

Note that we use the superscript Q to denote the Quaternion
space in this section, e.g., h(0),Qv is the quaternion feature
vector of node v.

It is worth to note that the existing GNNs [Kipf and Welling,
2017, Hamilton et al., 2017a, Veličković et al., 2018, Xu
et al., 2019] are not working very efficiently anymore since
the number of parameters grows quickly when increasing
the number of hidden layers. Furthermore, as mentioned in
[Xu et al., 2019, Pei et al., 2020], the Euclidean embeddings
of the different nodes (or the different graphs) become more
and more similar when we increase the number of layers.
This is partially explained in [Chami et al., 2019] that, for
complex graphs with scale-free and hierarchical structures
such as protein interaction networks and social networks,
the learned Euclidean embeddings have high distortion. This
motivates us to consider the hyper-complex vector space
and propose QGNN, a generalized variant of GCNs within
the Quaternion space, to deal with these issues.
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Figure 1: Illustration of our QGNN.

Specifically, as illustrated in Figure 1, the AGGREGATION
function in our proposed QGNN is defined as:1

h(l+1),Q
v = g

(
∑

u∈Nv∪{v}
av,uW(l),Q⊗h(l),Qu

)
,∀v∈V (17)

where av,u is an edge constant between nodes v and u in

the re-normalized adjacency matrix D̃
1
2 ÃD̃

1
2 , wherein Ã =

A+ I where A is the adjacency matrix, I is the identity
matrix, and D̃ is the diagonal node degree matrix of Ã.
We use the superscript Q to denote the Quaternion space;
W(l),Q is a quaternion weight matrix; h(0),Qv is the quaternion
feature vector of node v; and g can be a nonlinear activation
function (such as ReLU or tanh) and can be adopted to each
quaternion element [Parcollet et al., 2019b] as:

g(q) = g(qr)+g(qi)i+g(q j)j+g(qk)k (18)

1In practice, similar to GCN, we also implement QGNN effi-
ciently using sparse matrix multiplications.

Correspondingly, we represent the quaternion vector h(l),Qu ∈
Hn and the quaternion weight matrix W(l),Q ∈Hm×n as:

h(l),Qu = h
(l)
u,r +h

(l)
u,ii+h

(l)
u, jj+h

(l)
u,kk (19)

W(l),Q = W(l)
r +W(l)

i i+W(l)
j j+W(l)

k k (20)

where h
(l)
u,r, h

(l)
u,i, h

(l)
u, j, and h

(l)
u,k ∈ Rn; and W(l)

r , W(l)
i , W(l)

j ,

and W(l)
k ∈ Rm×n. We now express the Hamilton product ⊗

between W(l),Q and h
(l),Q
u derived from Equation 15 as:

W(l),Q⊗h
(l),Q
u =




1
i
j
k




>



W(l)
r −W(l)

i −W(l)
j −W(l)

k

W(l)
i W(l)

r −W(l)
k W(l)

j

W(l)
j W(l)

k W(l)
r −W(l)

i

W(l)
k −W(l)

j W(l)
i W(l)

r







h
(l)
u,r

h
(l)
u,i

h
(l)
u, j

h
(l)
u,k




(21)

The four quaternion components W(l)
r , W(l)

i , W(l)
j , and W(l)

k
are shared when performing the Hamilton product; while in
the Euclidean space, all the elements of the weight matrix
are different parameter variables [Tay et al., 2019]. Thus, we
can reduce the number of model parameters up to four times
within the Quaternion space, similar to the parameter saving
reported in [Parcollet et al., 2019b, Tay et al., 2019]. This
parameter reduction can also be applied for other existing
AGGREGATION functions such as in GIN-0 (Equation 4) or
Simple Graph Convolution [Wu et al., 2019a].

Note that the quaternion components of W(l),Q are also
shared across the four quaternion components h

(l)
u,r, h

(l)
u,i,

h
(l)
u, j, and h

(l)
u,k. Therefore, if we use any slight change in the

input h(l),Qu , we get an entirely different output [Parcollet
et al., 2019a], leading to a different performance. This phe-
nomenon is one of the crucial reasons why the Quaternion
space provides highly expressive computations through the
Hamilton product compared to the Euclidean and complex
vector spaces. The phenomenon enforces the model to learn
the potential relations within each hidden layer and between
the different hidden layers, hence increasing the graph rep-
resentation quality. Our qualitative and experimental results
verify that this learning helps our QGNN to outperform
GCN using similar architectures.

QGNN for node classification. We consider h
(L),Q
v ,

which is the quaternion vector representation of node v

at the last L-th QGNN layer. We vectorize h
(L),Q
v to obtain

the node representation x
(L)
v as:

x(L)v = VEC
(
h(L),Qv

)
=
[
h
(L)
v,r ;h(L)v,i ;h(L)v, j ;h(L)v,k

]
(22)

where VEC(.) denotes a concatenation of the four compo-
nents of the quaternion vector. Note that the learning process
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to predict the class labels is in the Euclidean space. There-
fore, to perform the semi-supervised node classification
task, on top of the last L-th QGNN layer, we construct a
prediction layer followed by a softmax layer as follows:

ŷv = softmax

(
∑

u∈Nv∪{v}
av,uW1x

(L)
u

)
,∀v ∈ V (23)

QGNN for graph classification. Following [Xu et al.,
2019] as shown in Equations 5 and 6, we obtain the quater-
nion embedding eQ

G of the entire graph G as:

eQ
G = ∑

v∈V
eQ
v = ∑

v∈V

[
h(1),Qv ;h(2),Qv ; ...;h(L),Qv

]
(24)

xG = VEC
(
eQ

G

)
(25)

To perform the graph classification task, we also use the
VEC(.) to vectorize eQ

G to obtain the final graph embedding
xG , which is fed to a single fully-connected layer followed
by the softmax layer to predict the graph label as:

ŷG = softmax(W2xG +b) (26)

We then learn the model parameters for both the classifica-
tion tasks by minimizing the cross-entropy loss function.

Parameter initialization. Parcollet et al. [2019b] and
Zhang et al. [2019] used a specialized scheme to initial-
ize the parameters in the quaternion weight matrices, while
Zhu et al. [2018] and Tay et al. [2019] applied the Glorot
initialization [Glorot and Bengio, 2010] that is also used
in previous GNN works such as GCN [Kipf and Welling,
2017]; hence we use the Glorot initialization for a fair com-
parison with the previous works.

The quaternion feature vectors h
(0),Q
v . As shown in

Equation 17, we consider how to initialize the quaternion
feature vectors h(0),Qv of nodes v. Note that we evaluate our
QGNN on benchmark datasets where the Euclidean feature
vectors hv are typically given and pre-fixed. We see that
each vector element within the feature vector hv specifies an
individual node attribute that lives in an independent space.
Therefore, we also aim to learn latent relations among these
node attributes to strengthen the graph representations. To
this end, we set the same hv to the four components of h(0),Qv

as:
h
(0)
v,r = h

(0)
v,i = h

(0)
v, j = h

(0)
v,k = hv (27)

The four components of h(0),Qv are shared when performing
the Hamilton product; so we could achieve our aim in higher
layers. In our pilot experiments, we find that using this
simple mapping scheme produces competitive accuracies.

Discussion. We refrained from constructing a complex
architecture within the Quaternion space using the com-
plicated AGGREGATION and READOUT functions, as our
main goal is to introduce a simple and effective framework
that works well and produces competitive performances on
the benchmark datasets. Thus, it is reasonable to propose
our QGNN as a generalized variant of GCNs within the
Quaternion space.

4 EXPERIMENTAL SETUP AND
RESULTS

We conduct experiments to evaluate our proposed QGNN
on the tasks of graph classification, semi-supervised node
classification, and text (node) classification. Table 1 reports
the statistics of benchmark datasets used for the three tasks.

To demonstrate the effectiveness of our QGNN, we use the
similar architectures and the same optimal hyper-parameters
taken from the original papers that we follow for the tasks
of node classification and text (node) classification (i.e., we
do not tune our QGNN’s hyper-parameters for these two
tasks).

Table 1: Statistics of the benchmark datasets. Avg#N denotes
the average number of nodes per graph. #d denotes the
dimension of feature vectors. #Cls denotes the number of
class labels.

GRAPH #Graphs Avg#N #d #Cls
COLLAB 5,000 74.5 – 3
IMDB-B 1,000 19.8 – 2
IMDB-M 1,500 13.0 – 3
DD 1,178 284.3 82 2
PROTEINS 1,113 39.1 3 2
PTC 344 25.6 19 2
MUTAG 188 17.9 7 2

NODE #Nodes #Edges #d #Cls
CORA 2,708 5,429 1,433 7
CITESEER 3,327 4,732 3,703 6
PUBMED 19,717 44,338 500 3

TEXT (node) #Docs #Words #Nodes #Cls
20NG 18,846 42,757 61,603 20
R8 7,674 7,688 15,362 8
R52 9,100 8,892 17,992 52
OHSUMED 7,400 14,157 21,557 23
MR 10,662 18,764 29,426 2

4.1 GRAPH CLASSIFICATION

Datasets. We use well-known datasets that are three social
network datasets (consisting of COLLAB, IMDB-B and
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Table 2: Graph classification accuracies (%). The best scores are in bold.

Model COLLAB IMDB-B IMDB-M DD PROTEINS MUTAG PTC
GK [2009] 72.84 ± 0.28 65.87 ± 0.98 43.89 ± 0.38 78.45 ± 0.26 71.67 ± 0.55 81.58 ± 2.11 57.26 ± 1.41

WL [2011] 79.02 ± 1.77 73.40 ± 4.63 49.33 ± 4.75 79.78 ± 0.36 74.68 ± 0.49 82.05 ± 0.36 57.97 ± 0.49

DGK [2015] 73.09 ± 0.25 66.96 ± 0.56 44.55 ± 0.52 73.50 ± 1.01 75.68 ± 0.54 87.44 ± 2.72 60.08 ± 2.55

AWE [2018] 73.93 ± 1.94 74.45 ± 5.83 51.54 ± 3.61 71.51 ± 4.02 – 87.87 ± 9.76 –

PSCN [2016] 72.60 ± 2.15 71.00 ± 2.29 45.23 ± 2.84 77.12 ± 2.41 75.89 ± 2.76 92.63 ± 4.21 62.29 ± 5.68

GraphSAGE [2017a] 79.70 ± 1.70 72.40 ± 3.60 49.90 ± 5.00 65.80 ± 4.90 65.90 ± 2.70 79.80 ± 13.9 –

GAT [2018] 75.80 ± 1.60 70.50 ± 2.30 47.80 ± 3.10 – 74.70 ± 2.20 89.40 ± 6.10 66.70 ± 5.10

DGCNN [2018] 73.76 ± 0.49 70.03 ± 0.86 47.83 ± 0.85 79.37 ± 0.94 75.54 ± 0.94 85.83 ± 1.66 58.59 ± 2.47

CapsGNN [2019] 79.62 ± 0.91 73.10 ± 4.83 50.27 ± 2.65 75.38 ± 4.17 76.28 ± 3.63 86.67 ± 6.88 –

IEGN [2019b] 77.92 ± 1.70 71.27 ± 4.50 48.55 ± 3.90 – 75.19 ± 4.30 84.61 ± 10.0 59.47 ± 7.30

PPGN [2019a] 81.38 ± 1.42 73.00 ± 5.77 50.46 ± 3.59 – 77.20 ± 4.73 90.55 ± 8.70 66.17 ± 6.54

GFN [2019] 81.50 ± 2.42 73.00 ± 4.35 51.80 ± 5.16 78.78 ± 3.49 76.46 ± 4.06 90.84 ± 7.22 –

GIN-0 [2019] 80.20 ± 1.90 75.10 ± 5.10 52.30 ± 2.80 – 76.20 ± 2.80 89.40 ± 5.60 64.60 ± 7.00

GCN [2017] 79.00 ± 1.80 74.00 ± 3.40 51.90 ± 3.80 – 76.00 ± 3.20 85.60 ± 5.80 64.20 ± 4.30

QGNN 81.36 ± 1.31 77.56 ± 2.45 53.78 ± 3.83 79.92 ± 3.54 78.47 ± 3.30 92.59 ± 3.59 69.92 ± 2.59

IMDB-M) [Yanardag and Vishwanathan, 2015] and four
bioinformatics datasets (consisting of DD, MUTAG, PRO-
TEINS, and PTC). The social network datasets do not have
available node features; thus, we follow [Niepert et al., 2016,
Zhang et al., 2018] to use node degrees as features on these
datasets.

Evaluation protocol. We follow [Xu et al., 2019, Xinyi
and Chen, 2019, Maron et al., 2019a, Seo et al., 2019, Chen
et al., 2019] to use the same data splits and the same 10-
fold cross-validation scheme to calculate the classification
performance for a fair comparison. We compare our QGNN
with up-to-date strong baselines and report the baseline
results published in the original papers or reported in [Ivanov
and Burnaev, 2018, Verma and Zhang, 2018, Xinyi and
Chen, 2019, Chen et al., 2019, Seo et al., 2019, Xu et al.,
2019].

Training protocol. We vary the number of hidden lay-
ers in {1, 2, 3, 4, 5}, and the hidden size (i.e., the num-
ber of quaternions in the hidden layers) in {8, 16, 32,
64}. We set the batch size to 4 and use the Adam opti-
mizer [Kingma and Ba, 2015] with the initial learning rate
∈
{

5e−5,1e−4,5e−4,1e−3
}

. We run up to 100 epochs to
evaluate our trained model.

Experimental results. Table 2 presents the graph classifi-
cation results of our QGNN and other up-to-date baselines.
In general, our QGNN produces state-of-the-art accuracies
on most datasets; hence this demonstrates a notable impact
of our model. In particular, QGNN outperforms all base-
line models on IMDB-B, IMDB-M, DD, PROTEINS, and
PTC. QGNN obtains competitive accuracies on COLLAB
and MUTAG, but there are no significant differences be-
tween our QGNN and the best models on these two datasets.

Furthermore, compared to GCN, the obtained results demon-
strate the effectiveness of QGNN to generalize GCN within
the Quaternion space for the graph classification task.

4.2 NODE CLASSIFICATION

Datasets. We use three benchmark datasets consisting of
CORA, CITESEER [Sen et al., 2008] and PUBMED [Namata
et al., 2012] that are citation networks. Each node represents
a document in each dataset, and each edge represents a
citation link between two documents. Each node is also
associated with a feature vector of a bag-of-words. Each
node is assigned a class label representing the main topic of
the document.

Evaluation protocol. As mentioned in [Fey and Lenssen,
2019, Pei et al., 2020], the experimental setup used in [Kipf
and Welling, 2017, Veličković et al., 2018] is not fair to
show the effectiveness of existing GNN models when only
using one fixed data split of training, validation, and test sets
from [Yang et al., 2016]. Therefore, for a fair comparison,
we use the same 10 random data splits used in [Pei et al.,
2020], where each data split consists of 60%, 20%, 20%
numbers of nodes, equally distributed for each node class,
for training, validation, and testing, respectively. We also
follow [Pei et al., 2020] to report the average accuracy on
the test sets across the 10 data splits.

Training protocol. The architecture used by Pei et al.
[2020] is a 2-layer GCN, wherein the hidden sizes are 16
for CORA and CITESEER, and 64 for PUBMED. Hence, we
construct 1-layer QGNN followed by a prediction layer
and then a softmax layer (referring to our QGNN for node
classification as mentioned in Equation 23). We use the
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corresponding hidden sizes of 4 for CORA and CITESEER,
and 16 on PUBMED. We also set the same Adam initial
learning rate to 0.05, and the same number of epochs to 100
for both CORA and CITESEER; while they are 0.1 and 200
respectively for PUBMED. Similarity, we also provide the
accuracy results of Hyperbolic Graph Convolutional Neural
Networks (HGCN) [Chami et al., 2019] following these
evaluation and training protocols.

Table 3: Node classification accuracies (%).

Dataset GAT GCN HGCN QGNN
CORA 86.37 85.77 86.09 ± 1.34 87.48 ± 1.08
CITESEER 74.32 73.68 74.84 ± 2.03 76.03 ± 1.89
PUBMED 87.62 88.13 87.13 ± 0.89 87.65 ± 0.47

Experimental results. Table 3 presents the node classifi-
cation accuracies, where the results of GCN and GAT are
also taken from [Pei et al., 2020].2 As mentioned in the
evaluation protocol, we use exactly the same experimental
settings used in [Pei et al., 2020], where each dataset has 10
random data splits, wherein each data split has 60%, 20%,
20% numbers of nodes, equally distributed for each class,
for training, validation and testing respectively. We achieve
the accuracies of 87.48%, 76.03%, and 87.65% on CORA,
CITESEER, and PUBMED respectively. In particular, our
QGNN outperforms GCN, GAT and HGCN on CORA and
CITESEER, and produces competitive results on PUBMED.

4.3 TEXT (NODE) CLASSIFICATION

Datasets. Yao et al. [2019] proposed to transform a collec-
tion of text documents into a graph that considers words and
documents as nodes with one-hot feature vectors. Each edge
between two word nodes is weighted using point-wise mu-
tual information. Each edge between a document node and a
word node is weighted using the term frequency-inverse doc-
ument frequency, to construct the adjacency matrix. Hence
we could use GNNs to predict the class labels of the doc-
ument nodes (i.e., becoming the node classification task).
We also follow [Yao et al., 2019] to use the same data splits
and the evaluation scheme for five benchmarks – 20NG, R8,
R52, OHSUMED, and MR – which are medical abstract, web
mining, and social network datasets.

Evaluation protocol. We follow [Yao et al., 2019] to report
the mean and standard deviation over 10 runs.

Training protocol. Yao et al. [2019] also used 2-layer GCN
to perform the text (node) classification with the hidden
size of 200. Similarity, we utilize 1-layer QGNN followed
by a prediction layer and then a softmax layer, using the
quaternion hidden size of 50. We also use the same hyper-
parameter settings; those are 0.02 Adam learning rate and

2Pei et al. [2020] did not report the standard deviation.

200 training epochs.

Table 4: Text (node) classification accuracies (%).

Dataset GCN QGNN
20NG 86.34 ± 0.09 86.40 ± 0.12
R8 97.07 ± 0.10 97.09 ± 0.15
R52 93.56 ± 0.18 93.97 ± 0.20
OHSUMED 68.32 ± 0.56 68.49 ± 0.42
MR 76.74 ± 0.20 76.67 ± 0.21

Experimental results. Table 4 presents the text (node) clas-
sification accuracies for GCN and our QGNN, wherein the
results of GCN are also taken from [Yao et al., 2019]. As
mentioned above, we also use exactly the same experimen-
tal settings used in [Yao et al., 2019]. In general, QGNN
works better than GCN on four datasets, except MR.

4.4 COMPARED WITH GCN

Table 5: Number of learnable parameters for GCN and our
QGNN on IMDB-B when using the hidden size of 256 in
GCN.

Model GCN QGNN
1-layer 17,152 17,152
2-layer 83,200 34,048
3-layer 149,248 50,944
4-layer 215,296 67,840
5-layer 281,344 84,736

Model size. We report the total number of learnable parame-
ters for the GCN and QGNN using the similar architectures
on IMDB-B in Table 5, wherein the GCN’s hidden size
is set to 256; accordingly, the QGNN’s hidden size is 64.
It is worth to note that GCN and QGNN have the same
complexity.

As mentioned in Equation 27, we set the feature vectors hv
to the four components of the quaternion feature vectors
h
(0),Q
v of nodes v, hence the 1-layer QGNN and the 1-layer

GCN have the same number of parameters. For deeper archi-
tectures, we see a remarkable difference between the model
sizes of GCN and QGNN, e.g., the 5-layer GCN size is ap-
proximately four times larger than the 5-layer QGNN size.
For this reason, our proposal for employing the Quaternion
space helps to reduce the model parameters significantly.

Qualitative result. To qualitatively demonstrate the effec-
tiveness of our QGNN, we use t-SNE [Maaten and Hinton,
2008] to visualize the node representations learned at the
first layer of GCN and QGNN on CORA in Figure 2, where
colors denote the class labels. We concatenate the four com-
ponents of the quaternion node embeddings to have the
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QGNN

Figure 2: Visualization of node representations on CORA.

real-valued vector inputs for t-SNE. The figure shows that
our QGNN has a better class separation, implying the higher
quality of the learned node representations.

Discussion. Our QGNN generalizes GCN within the Quater-
nion space. Note that we use the similar network architec-
tures and the same optimal hyper-parameters directly taken
from [Pei et al., 2020] and [Yao et al., 2019] for the tasks of
node classification and text (node) classification respectively,
i.e., we do not need to tune our QGNN’s hyper-parameters
for these two tasks and our QGNN still works better than
GCN. In general, the performance gains of QGNN over
GCN on the three tasks indicate that QGNN strengthens the
node and graph embeddings, as visualized in Figure 2.

5 CONCLUSION

In this paper, we aim to increase the graph representation
quality and reduce the number of model parameters. There-
fore, we propose to learn node and graph embeddings within
the Quaternion space. We study this strategy by introducing
our quaternion graph neural networks (QGNN) to general-
ize GCNs within the Quaternion space. The experimental
results demonstrate that our QGNN obtains state-of-the-art
accuracies on a range of well-known benchmark datasets
for the three tasks of graph classification, semi-supervised
node classification, and text (node) classification.
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Chapter 4

Knowledge Graph Embeddings
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4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
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4.2.3 ACL 2020 - Memory network for triple classification and search

personalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

In this chapter, Section 4.1 presents an introduction and motivation for knowledge graph

embeddings, and the details of our research contributions are described in Section 4.2.

4.1 Introduction

Knowledge graphs (KGs) are constructed to represent the genuine relationships among

entities in the form of triples (head, relation, tail) denoted as (h, r, t). However, large

KGs are still incomplete, i.e., missing a lot of valid triples (West et al., 2014). To tackle

this issue, research efforts have been made to predict whether a triple not in a knowledge

graph is likely to be valid or not, which then helps to improve the graph completeness.

More specifically, many embedding models have been proposed to learn entity and relation

embeddings and return a score for each triple (h, r, t), such that valid triples have higher

scores than invalid ones (Bordes et al., 2011, 2013; Socher et al., 2013a).
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Early embedding models such as TransE (Bordes et al., 2013), TransH (Wang et al.,

2014), TransR (Lin et al., 2015b), TransD (Ji et al., 2015), DISTMULT (Yang et al.,

2015) and ComplEx (Trouillon et al., 2016) often employ simple linear operators such

as addition, subtraction and multiplication. Since ConvE (Dettmers et al., 2018) has

successfully adapted convolutional neural networks (LeCun et al., 1998) to produce the

triple scores and obtain state-of-the-art results for knowledge graph completion, we realise

a potential strategy of advancing deep neural networks for knowledge graph embeddings.

To this end, we present two new KG embedding models, named ConvKB and CapsE ,

whose architectures are based on convolutional neural networks and capsule networks

(Sabour et al., 2017), respectively. The details of these two models are given in Section

4.2.1.

While most of the existing embedding models have worked in the Euclidean vector

space, several works have moved beyond that to the complex vector space such as ComplEx

(Trouillon et al., 2016) and RotatE (Sun et al., 2019), the hyperbolic space such as MuRP

(Balažević et al., 2019a) and AttH (Chami et al., 2020), and the Quaternion space as

in QuatE (Zhang et al., 2019). These models, however, encounter a common problem of

struggling to strengthen the relation-aware correlations between the head and tail entities.

Our key contribution is to overcome this limitation by integrating relation-aware rotations

to increase the correlations between the entities, resulting in another new embedding

model, named QuatRE . The details of our QuatRE are described in Section 4.2.2.

It is worth noting that the knowledge graph completion task is commonly used to

evaluate the KG embedding models, wherein the goal is to predict a missing entity given

a relation with another entity, e.g., inferring a head entity h given (r, t) or inferring a

tail entity t given (h, r). But, for other applications of triple classification (Socher et al.,

2013a) and search personalisation (Vu et al., 2017), the existing models often suffer from a

limitation of generalisation capability in which they just simply memorise valid triples to

predict new ones. Hence, we present R-MeN – a new KG embedding model to capture and

encode the potential dependencies among relations and entities for these two applications.

The details of our proposed R-MeN are presented in Section 4.2.3.
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4.2 Research Contribution

4.2.1 NAACL-HLT 2018 & SWJ 2019 & NAACL-HLT 2019 -

Deep knowledge graph embedding models

• Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen and Dinh Phung. 2018. A

Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural

Network. In Proceedings of the 2018 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies (NAACL-HLT

2018), pages 327-333.

• Dai Quoc Nguyen, Dat Quoc Nguyen, Tu Dinh Nguyen and Dinh Phung. 2019. A

Convolutional Neural Network-based Model for Knowledge Base Completion and Its Ap-

plication to Search Personalisation. Semantic Web, 10(5):947-960, 2019. DOI: 10.3233/SW-

180318. (SCIE, JCR IF: 3.524).

• Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen, Dat Quoc Nguyen and Dinh Phung.

2019. A Capsule Network-based Embedding Model for Knowledge Graph Completion

and Search Personalisation. In Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies

(NAACL-HLT 2019), pages 2180-2189.

Contribution. Our proposed ConvKB (Nguyen et al., 2018) utilises a convolutional layer

on the 3-column embedding matrix of the input triple to produce feature maps. These

feature maps are then concatenated into a single vector, which is computed with a weight

vector to return the triple score. Our ConvKB works better than previous embedding

models on benchmark datasets for the knowledge graph completion task. Moreover, in

the journal paper (Nguyen et al., 2019a), we extend and demonstrate the effectiveness of

the ConvKB for triple classification and search personalisation tasks, where our model

outperforms up-to-date baselines and produces state-of-the-art performance. The code is

available at: https://github.com/daiquocnguyen/ConvKB.

Instead of using the vector concatenation over the feature maps in ConvKB, our

http://naacl2018.org/
http://naacl2018.org/
http://naacl2019.org/
https://github.com/daiquocnguyen/ConvKB
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proposed CapsE (Nguyen et al., 2019c) leverages a capsule network (Sabour et al., 2017) to

reconstruct the feature maps into corresponding capsules, which are then routed to another

capsule to produce a continuous vector. The length of this vector is used to compute the

triple score. Our CapsE obtains better performance than up-to-date embedding models for

the tasks of knowledge graph completion and search personalisation. The code is available

at: https://github.com/daiquocnguyen/CapsE.

https://github.com/daiquocnguyen/CapsE
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Abstract

In this paper, we propose a novel embedding
model, named ConvKB, for knowledge base
completion. Our model ConvKB advances
state-of-the-art models by employing a convo-
lutional neural network, so that it can capture
global relationships and transitional character-
istics between entities and relations in knowl-
edge bases. In ConvKB, each triple (head en-
tity, relation, tail entity) is represented as a 3-
column matrix where each column vector rep-
resents a triple element. This 3-column matrix
is then fed to a convolution layer where multi-
ple filters are operated on the matrix to gener-
ate different feature maps. These feature maps
are then concatenated into a single feature vec-
tor representing the input triple. The feature
vector is multiplied with a weight vector via
a dot product to return a score. This score
is then used to predict whether the triple is
valid or not. Experiments show that ConvKB
achieves better link prediction performance
than previous state-of-the-art embedding mod-
els on two benchmark datasets WN18RR and
FB15k-237.

1 Introduction

Large-scale knowledge bases (KBs), such as
YAGO (Suchanek et al., 2007), Freebase (Bol-
lacker et al., 2008) and DBpedia (Lehmann et al.,
2015), are usually databases of triples represent-
ing the relationships between entities in the form
of fact (head entity, relation, tail entity) denoted as
(h, r, t), e.g., (Melbourne, cityOf, Australia). These
KBs are useful resources in many applications
such as semantic searching and ranking (Kasneci
et al., 2008; Schuhmacher and Ponzetto, 2014;
Xiong et al., 2017), question answering (Zhang
et al., 2016; Hao et al., 2017) and machine reading
(Yang and Mitchell, 2017). However, the KBs are

still incomplete, i.e., missing a lot of valid triples
(Socher et al., 2013; West et al., 2014). There-
fore, much research work has been devoted to-
wards knowledge base completion or link predic-
tion to predict whether a triple (h, r, t) is valid or
not (Bordes et al., 2011).

Many embedding models have proposed to
learn vector or matrix representations for entities
and relations, obtaining state-of-the-art (SOTA)
link prediction results (Nickel et al., 2016a).
In these embedding models, valid triples obtain
lower implausibility scores than invalid triples.
Let us take the well-known embedding model
TransE (Bordes et al., 2013) as an example. In
TransE, entities and relations are represented by k-
dimensional vector embeddings. TransE employs
a transitional characteristic to model relationships
between entities, in which it assumes that if (h, r, t)
is a valid fact, the embedding of head entity h plus
the embedding of relation r should be close to the
embedding of tail entity t, i.e. vh + vr ≈ vt (here,
vh, vr and vt are embeddings of h, r and t respec-
tively). That is, a TransE score ‖vh + vr − vt‖p
of the valid triple (h, r, t) should be close to 0 and
smaller than a score ‖vh′ + vr′ − vt′‖p of an in-
valid triple (h’, r’, t’). The transitional characteris-
tic in TransE also implies the global relationships
among same dimensional entries of vh, vr and vt.

Other transition-based models extend TransE to
additionally use projection vectors or matrices to
translate head and tail embeddings into the rela-
tion vector space, such as: TransH (Wang et al.,
2014), TransR (Lin et al., 2015b), TransD (Ji
et al., 2015), STransE (Nguyen et al., 2016b) and
TranSparse (Ji et al., 2016). Furthermore, DIST-
MULT (Yang et al., 2015) and ComplEx (Trouil-
lon et al., 2016) use a tri-linear dot product to com-
pute the score for each triple. Recent research
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has shown that using relation paths between en-
tities in the KBs could help to get contextual in-
formation for improving KB completion perfor-
mance (Lin et al., 2015a; Luo et al., 2015; Guu
et al., 2015; Toutanova et al., 2016; Nguyen et al.,
2016a). See other embedding models for KB com-
pletion in Nguyen (2017).

Recently, convolutional neural networks
(CNNs), originally designed for computer vision
(LeCun et al., 1998), have significantly received
research attention in natural language processing
(Collobert et al., 2011; Kim, 2014). CNN learns
non-linear features to capture complex relation-
ships with a remarkably less number of parameters
compared to fully connected neural networks.
Inspired from the success in computer vision,
Dettmers et al. (2018) proposed ConvE—the first
model applying CNN for the KB completion task.
In ConvE, only vh and vr are reshaped and then
concatenated into an input matrix which is fed to
the convolution layer. Different filters of the same
3 × 3 shape are operated over the input matrix
to output feature map tensors. These feature
map tensors are then vectorized and mapped into
a vector via a linear transformation. Then this
vector is computed with vt via a dot product to
return a score for (h, r, t). See a formal definition
of the ConvE score function in Table 1. It is
worth noting that ConvE focuses on the local
relationships among different dimensional entries
in each of vh or vr, i.e., ConvE does not observe
the global relationships among same dimensional
entries of an embedding triple (vh, vr, vt), so that
ConvE ignores the transitional characteristic in
transition-based models, which is one of the most
useful intuitions for the task.

In this paper, we present ConvKB—an embed-
ding model which proposes a novel use of CNN
for the KB completion task. In ConvKB, each
entity or relation is associated with an unique k-
dimensional embedding. Let vh, vr and vt denote
k-dimensional embeddings of h, r and t, respec-
tively. For each triple (h, r, t), the corresponding
triple of k-dimensional embeddings (vh, vr, vt)
is represented as a k × 3 input matrix. This in-
put matrix is fed to the convolution layer where
different filters of the same 1 × 3 shape are used
to extract the global relationships among same di-
mensional entries of the embedding triple. That
is, these filters are repeatedly operated over ev-
ery row of the input matrix to produce different

Model The score function f(h, r, t)

TransE ‖vh + vr - vt‖p
DISTMULT 〈vh,vr,vt〉
ComplEx Re (〈vh,vr,vt〉)
ConvE g (vec (g (concat (v̂h, v̂r) ∗Ω))W ) · vt
ConvKB concat (g ([vh,vr,vt] ∗Ω)) ·w

Table 1: The score functions in previous SOTA models
and in our ConvKB model. ‖v‖p denotes the p-norm
of v. 〈vh,vr,vt〉 =

∑
i vhivrivti denotes a tri-linear

dot product. g denotes a non-linear function. ∗ denotes
a convolution operator. · denotes a dot product. concat
denotes a concatenation operator. v̂ denotes a 2D re-
shaping of v. Ω denotes a set of filters.

feature maps. The feature maps are concatenated
into a single feature vector which is then computed
with a weight vector via a dot product to produce
a score for the triple (h, r, t). This score is used to
infer whether the triple (h, r, t) is valid or not.

Our contributions in this paper are as follows:

• We introduce ConvKB—a novel embedding
model of entities and relationships for knowl-
edge base completion. ConvKB models the
relationships among same dimensional en-
tries of the embeddings. This implies that
ConvKB generalizes transitional characteris-
tics in transition-based embedding models.

• We evaluate ConvKB on two benchmark
datasets: WN18RR (Dettmers et al., 2018)
and FB15k-237 (Toutanova and Chen, 2015).
Experimental results show that ConvKB ob-
tains better link prediction performance than
previous SOTA embedding models. In partic-
ular, ConvKB obtains the best mean rank and
the highest Hits@10 on WN18RR, and pro-
duces the highest mean reciprocal rank and
highest Hits@10 on FB15k-237.

2 Proposed ConvKB model

A knowledge base G is a collection of valid fac-
tual triples in the form of (head entity, relation,
tail entity) denoted as (h, r, t) such that h, t ∈ E
and r ∈ R where E is a set of entities and R is a
set of relations. Embedding models aim to define a
score function f giving an implausibility score for
each triple (h, r, t) such that valid triples receive
lower scores than invalid triples. Table 1 presents
score functions in previous SOTA models.

We denote the dimensionality of embeddings by
k such that each embedding triple (vh, vr, vt) are
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Figure 1: Process involved in ConvKB (with the em-
bedding size k = 4, the number of filters τ = 3 and the
activation function g = ReLU for illustration purpose).

viewed as a matrix A = [vh,vr,vt] ∈ Rk×3. And
Ai,: ∈ R1×3 denotes the i-th row of A. Suppose
that we use a filter ω ∈ R1×3 operated on the
convolution layer. ω is not only aimed to exam-
ine the global relationships between same dimen-
sional entries of the embedding triple (vh, vr, vt),
but also to generalize the transitional characteris-
tics in the transition-based models. ω is repeatedly
operated over every row of A to finally generate a
feature map v = [v1, v2, ..., vk] ∈ Rk as:

vi = g (ω ·Ai,: + b)

where b ∈ R is a bias term and g is some activation
function such as ReLU.

Our ConvKB uses different filters ∈ R1×3 to
generate different feature maps. Let Ω and τ de-
note the set of filters and the number of filters,
respectively, i.e. τ = |Ω|, resulting in τ feature
maps. These τ feature maps are concatenated into
a single vector ∈ Rτk×1 which is then computed
with a weight vector w ∈ Rτk×1 via a dot prod-
uct to give a score for the triple (h, r, t). Figure 1
illustrates the computation process in ConvKB.

Formally, we define the ConvKB score function
f as follows:

f(h, r, t) = concat (g ([vh,vr,vt] ∗Ω)) ·w

where Ω and w are shared parameters, indepen-

Dataset | E | | R | #Triples in train/valid/test
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

Table 2: Statistics of the experimental datasets.

dent of h, r and t; ∗ denotes a convolution opera-
tor; and concat denotes a concatenation operator.

If we only use one filter ω (i.e. using τ = 1)
with a fixed bias term b = 0 and the activa-
tion function g(x) = |x| or g(x) = x2, and fix
ω = [1, 1,−1] and w = 1 during training, Con-
vKB reduces to the plain TransE model (Bordes
et al., 2013). So our ConvKB model can be viewed
as an extension of TransE to further model global
relationships.

We use the Adam optimizer (Kingma and Ba,
2014) to train ConvKB by minimizing the loss
function L (Trouillon et al., 2016) with L2 regu-
larization on the weight vector w of the model:

L =
∑

(h,r,t)∈{G∪G′}
log
(
1 + exp

(
l(h,r,t) · f (h, r, t)

))

+
λ

2
‖w‖22

in which, l(h,r,t) =
{

1 for (h, r, t) ∈ G
−1 for (h, r, t) ∈ G′

here G′ is a collection of invalid triples generated
by corrupting valid triples in G.

3 Experiments

3.1 Datasets

We evaluate ConvKB on two benchmark datasets:
WN18RR (Dettmers et al., 2018) and FB15k-
237 (Toutanova and Chen, 2015). WN18RR and
FB15k-237 are correspondingly subsets of two
common datasets WN18 and FB15k (Bordes et al.,
2013). As noted by Toutanova and Chen (2015),
WN18 and FB15k are easy because they contain
many reversible relations. So knowing relations
are reversible allows us to easily predict the ma-
jority of test triples, e.g. state-of-the-art results
on both WN18 and FB15k are obtained by us-
ing a simple reversal rule as shown in Dettmers
et al. (2018). Therefore, WN18RR and FB15k-
237 are created to not suffer from this reversible
relation problem in WN18 and FB15k, for which
the knowledge base completion task is more real-
istic. Table 2 presents the statistics of WN18RR
and FB15k-237.
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Method WN18RR FB15k-237
MR MRR H@10 MR MRR H@10

IRN (Shen et al., 2017) – – – 211 – 46.4
KBGAN (Cai and Wang, 2018) – 0.213 48.1 – 0.278 45.8
DISTMULT (Yang et al., 2015) [?] 5110 0.43 49 254 0.241 41.9
ComplEx (Trouillon et al., 2016) [?] 5261 0.44 51 339 0.247 42.8
ConvE (Dettmers et al., 2018) 5277 0.46 48 246 0.316 49.1
TransE (Bordes et al., 2013) (our results) 3384 0.226 50.1 347 0.294 46.5
Our ConvKB model 2554 0.248 52.5 257 0.396 51.7
KBLRN (Garcı́a-Durán and Niepert, 2017) – – – 209 0.309 49.3
R-GCN+ (Schlichtkrull et al., 2017) – – – – 0.249 41.7
Neural LP (Yang et al., 2017) – – – – 0.240 36.2
Node+LinkFeat (Toutanova and Chen, 2015) – – – – 0.293 46.2

Table 3: Experimental results on WN18RR and FB15k-237 test sets. MRR and H@10 denote the mean reciprocal
rank and Hits@10 (in %), respectively. [?]: Results are taken from Dettmers et al. (2018) where Hits@10 and MRR
are rounded to 2 decimal places on WN18RR. The last 4 rows report results of models that exploit information
about relation paths (KBLRN , R-GCN+ and Neural LP) or textual mentions derived from a large external corpus
(Node+LinkFeat). The best score is in bold, while the second best score is in underline.

3.2 Evaluation protocol
In the KB completion or link prediction task (Bor-
des et al., 2013), the purpose is to predict a missing
entity given a relation and another entity, i.e, infer-
ring h given (r, t) or inferring t given (h, r). The
results are calculated based on ranking the scores
produced by the score function f on test triples.

Following Bordes et al. (2013), for each valid
test triple (h, r, t), we replace either h or t by
each of other entities in E to create a set of cor-
rupted triples. We use the “Filtered” setting pro-
tocol (Bordes et al., 2013), i.e., not taking any
corrupted triples that appear in the KB into ac-
counts. We rank the valid test triple and corrupted
triples in ascending order of their scores. We em-
ploy three common evaluation metrics: mean rank
(MR), mean reciprocal rank (MRR), and Hits@10
(i.e., the proportion of the valid test triples ranking
in top 10 predictions). Lower MR, higher MRR or
higher Hits@10 indicate better performance.

3.3 Training protocol
We use the common Bernoulli trick (Wang et al.,
2014; Lin et al., 2015b) to generate the head or
tail entities when sampling invalid triples. We also
use entity and relation embeddings produced by
TransE to initialize entity and relation embeddings
in ConvKB. We employ a TransE implementation
available at: https://github.com/datquocnguyen/
STransE. We train TransE using a grid search
of hyper-parameters: the dimensionality of em-
beddings k ∈ {50, 100}, SGD learning rate

∈ {1e−4, 5e−4, 1e−3, 5e−3}, l1-norm or l2-norm,
and margin γ ∈ {1, 3, 5, 7}. The highest Hits@10
scores on the validation set are when using l1-
norm, learning rate at 5e−4, γ = 5 and k = 50
for WN18RR, and using l1-norm, learning rate at
5e−4, γ = 1 and k = 100 for FB15k-237.

To learn our model parameters including en-
tity and relation embeddings, filters ω and the
weight vector w, we use Adam (Kingma and
Ba, 2014) and select its initial learning rate ∈
{5e−6, 1e−5, 5e−5, 1e−4, 5e−4}. We use ReLU
as the activation function g. We fix the batch
size at 256 and set the L2-regularizer λ at 0.001
in our objective function. The filters ω are ini-
tialized by a truncated normal distribution or by
[0.1, 0.1,−0.1]. We select the number of filters
τ ∈ {50, 100, 200, 400, 500}. We run ConvKB
up to 200 epochs and use outputs from the last
epoch for evaluation. The highest Hits@10 scores
on the validation set are obtained when using k
= 50, τ = 500, the truncated normal distribu-
tion for filter initialization, and the initial learning
rate at 1e−4 on WN18RR; and k = 100, τ = 50,
[0.1, 0.1,−0.1] for filter initialization, and the ini-
tial learning rate at 5e−6 on FB15k-237.

3.4 Main experimental results

Table 3 compares the experimental results of our
ConvKB model with previous published results,
using the same experimental setup. Table 3 shows
that ConvKB obtains the best MR and highest
Hits@10 scores on WN18RR and also the highest
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MRR and Hits@10 scores on FB15k-237.
ConvKB does better than the closely related

model TransE on both experimental datasets, es-
pecially on FB15k-237 where ConvKB gains sig-
nificant improvements of 347 − 257 = 90 in
MR (which is about 26% relative improvement)
and 0.396 − 0.294 = 0.102 in MRR (which
is 34+% relative improvement), and also ob-
tains 51.7 − 46.5 = 5.2% absolute improve-
ment in Hits@10. Previous work shows that
TransE obtains very competitive results (Lin et al.,
2015a; Nickel et al., 2016b; Trouillon et al., 2016;
Nguyen et al., 2016a). However, when compar-
ing the CNN-based embedding model ConvE with
other models, Dettmers et al. (2018) did not exper-
iment with TransE. We reconfirm previous find-
ings that TransE in fact is a strong baseline model,
e.g., TransE obtains better MR and Hits@10 than
ConvE on WN18RR.

ConvKB obtains better scores than ConvE on
both datasets (except MRR on WN18RR and MR
on FB15k-237), thus showing the usefulness of
taking transitional characteristics into accounts. In
particular, on FB15k-237, ConvKB achieves im-
provements of 0.394 − 0.316 = 0.078 in MRR
(which is about 25% relative improvement) and
51.7 − 49.1 = 2.6% in Hits@10, while both
ConvKB and ConvE produce similar MR scores.
ConvKB also obtains 25% relatively higher MRR
score than the relation path-based model KBLRN
on FB15k-237. In addition, ConvKB gives bet-
ter Hits@10 than KBLRN , however, KBLRN gives
better MR than ConvKB. We plan to extend Con-
vKB with relation path information to obtain bet-
ter link prediction performance in future work.

4 Conclusion

In this paper, we propose a novel embedding
model ConvKB for the knowledge base comple-
tion task. ConvKB applies the convolutional neu-
ral network to explore the global relationships
among same dimensional entries of the entity and
relation embeddings, so that ConvKB generalizes
the transitional characteristics in the transition-
based embedding models. Experimental results
show that our model ConvKB outperforms other
state-of-the-art models on two benchmark datasets
WN18RR and FB15k-237. Our code is available
at: https://github.com/daiquocnguyen/ConvKB.

We also plan to extend ConvKB for a new appli-
cation where we could formulate data in the form

of triples. For example, inspired from the work
by Vu et al. (2017) for search personalization, we
can also apply ConvKB to model user-oriented re-
lationships between submitted queries and docu-
ments returned by search engines, i.e. modeling
triple representations (query, user, document).
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Abstract. In this paper, we propose a novel embedding model, named ConvKB, for knowledge base completion. Our model
ConvKB advances state-of-the-art models by employing a convolutional neural network, so that it can capture global relationships
and transitional characteristics between entities and relations in knowledge bases. In ConvKB, each triple (head entity, relation,
tail entity) is represented as a 3-column matrix where each column vector represents a triple element. This 3-column matrix is
then fed to a convolution layer where multiple filters are operated on the matrix to generate different feature maps. These feature
maps are then concatenated into a single feature vector representing the input triple. The feature vector is multiplied with a weight
vector via a dot product to return a score. This score is then used to predict whether the triple is valid or not. Experiments show
that ConvKB obtains better link prediction and triple classification results than previous state-of-the-art models on benchmark
datasets WN18RR, FB15k-237, WN11 and FB13. We further apply our ConvKB to a search personalization problem which aims
to tailor the search results to each specific user based on the user’s personal interests and preferences. In particular, we model
the potential relationship between the submitted query, the user and the search result (i.e., document) as a triple (query, user,
document) on which the ConvKB is able to work. Experimental results on query logs from a commercial web search engine
show that ConvKB achieves better performances than the standard ranker as well as strong search personalization baselines.

Keywords: Knowledge base completion, Convolutional neural network, ConvKB, Link prediction, Triple classification, Search
personalization

1. Introduction

Large-scale knowledge bases (KBs), such as YAGO
[41], Freebase [3] and DBpedia [25], are usually
databases of triples representing the relationships be-
tween entities in the form of fact (head entity, relation,

*Corresponding author. E-mail: dai.nguyen@monash.edu. The
final publication is available at IOS Press through http://dx.doi.org/
10.3233/SW-180318.

tail entity) denoted as (h, r, t), e.g., (Melbourne, cityOf,
Australia). These KBs are useful resources in many
applications such as semantic searching and ranking
[21, 38, 60], question answering [17, 66] and ma-
chine reading [61]. However, the KBs are still incom-
plete, i.e., missing a lot of valid triples [40, 55]. There-
fore, much research work has been devoted towards
knowledge base completion or link prediction to pre-
dict whether a triple (h, r, t) is valid or not [4].

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved
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Many embedding models have proposed to learn
vector or matrix representations for entities and rela-
tions, obtaining state-of-the-art (SOTA) link prediction
results [35]. In these embedding models, valid triples
obtain lower implausibility scores than invalid triples.
Let us take the well-known embedding model TransE
[5] as an example. In TransE, entities and relations
are represented by k-dimensional vector embeddings.
TransE employs a transitional characteristic to model
relationships between entities, in which it assumes that
if (h, r, t) is a valid fact, the embedding of head entity
h plus the embedding of relation r should be close to
the embedding of tail entity t, i.e. vh + vr ≈ vt (here,
vh, vr and vt are embeddings of h, r and t respectively).
That is, a TransE score ‖vh + vr − vt‖p of the valid
triple (h, r, t) should be close to 0 and smaller than
a score ‖vh′ + vr′ − vt′‖p of an invalid triple (h’, r’,
t’). The transitional characteristic in TransE also im-
plies the global relationships among same dimensional
entries of vh, vr and vt. Other transition-based mod-
els extend TransE to use additional projection vectors
or matrices to translate head and tail embeddings into
the relation vector space, such as: TransH [54], TransR
[27], TransD [19], STransE [33] and TranSparse [20].
Furthermore, DISTMULT [62] and ComplEx [48] use
a tri-linear dot product to compute the score for each
triple. Recent research has shown that using relation
paths between entities in the KBs could help to get
contextual information for improving KB completion
performance [16, 26, 29, 32, 47]. See other embedding
models for KB completion in Nguyen [31].

Recently, convolutional neural networks (CNNs),
originally designed for computer vision [24], have sig-
nificantly received research attention in natural lan-
guage processing [9, 22]. CNN learns non-linear fea-
tures to capture complex relationships with a remark-
ably less number of parameters compared to fully
connected neural networks. Inspired from the suc-
cess in computer vision, Dettmers et al. [10] proposed
ConvE—the first model applying CNN for KB com-
pletion. In ConvE, only vh and vr are reshaped and then
concatenated into an input matrix which is fed to the
convolution layer. Different filters of the same 3 × 3
shape are operated over the input matrix to output fea-
ture map tensors. These feature map tensors are then
vectorized and mapped into a vector via a linear trans-
formation. Then this vector is computed with vt via a
dot product to return a score for (h, r, t). See a formal
definition of the ConvE score function in Table 1. It is
worth noting that ConvE focuses on the local relation-
ships among different dimensional entries in each of vh

or vr, i.e., ConvE does not observe the global relation-
ships among same dimensional entries of an embed-
ding triple (vh, vr, vt), so that ConvE ignores the transi-
tional characteristic in transition-based models, which
is one of the most useful intuitions for KB completion.

In this paper, we present ConvKB—a novel embed-
ding model which proposes a novel use of CNN for
the KB completion task. In ConvKB, each entity or re-
lation is associated with an unique k-dimensional em-
bedding. Let vh, vr and vt denote k-dimensional em-
beddings of h, r and t, respectively. For each triple (h,
r, t), the corresponding triple of k-dimensional embed-
dings (vh, vr, vt) is represented as a k× 3 input matrix.
This input matrix is fed to the convolution layer where
different filters of the same 1× 3 shape are used to ex-
tract the global relationships among same dimensional
entries of the embedding triple. That is, these filters are
repeatedly operated over every row of the input matrix
to produce different feature maps. The feature maps
are concatenated into a single feature vector which is
then computed with a weight vector via a dot product
to produce a score for the triple (h, r, t). This score is
used to infer whether the triple (h, r, t) is valid or not.

Our contributions in this paper are as follows:

– We introduce ConvKB—a novel embedding model
of entities and relationships for knowledge base
completion. ConvKB models the relationships
among same dimensional entries of the embed-
dings. This implies that ConvKB generalizes tran-
sitional characteristics in transition-based embed-
ding models.

– We evaluate ConvKB on two benchmark datasets
WN18RR [10] and FB15k-237 [45], and show
that ConvKB obtains better link prediction perfor-
mance than previous SOTA embedding models.
In particular, ConvKB obtains the best mean rank
and the highest Hits@10 on WN18RR, and pro-
duces the highest mean reciprocal rank and high-
est Hits@10 on FB15k-237.

– We also evaluate ConvKB for triple classification
on two benchmark datasets WN11 and FB13 [40].
The goal is to classify whether a given triple is
valid or not. ConvKB also does better than previ-
ous SOTA models, obtaining the best and second
best accuracies on WN11 and FB13, respectively.

– We adapt ConvKB to search personalization
where the search results for a query from a user
are driven toward the personal needs of that user
by exploiting historical interactions (e.g., submit-
ted queries, clicked documents) between the user
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and the system [1, 18, 42, 43, 56]. Our general
aim is to re-rank the documents returned by the
search system in such a way that the more rel-
evant documents are ranked higher. More spe-
cially, we train our ConvKB to measure a score
for each triple (query, user, document), and to
reward higher plausibility scores for more rele-
vant documents. We then verify this application
of ConvKB on the query logs of a commercial
web search engine. Experimental results show
that ConvKB significantly improves the ranking
quality over the strong baselines.

The paper is organized as follows. We provide re-
lated work in Section 2. We then describe our proposed
model ConvKB in Section 3. We evaluate and compare
ConvKB with previous models on the link prediction
and triple classification tasks in Section 4. The appli-
cation of ConvKB to search personalization is intro-
duced in Section 5. The conclusion is finally presented
in Section 6.

2. Related work

TransH [54] extends TransE to allow entities play-
ing different roles in different relations. Each relation
r is associated with a relation-specific hyperplane wr,
and then the embeddings of h and t are projected to this
hyperplane. The TransH score function is defined as:

fTransH (h, r, t) = ‖vh⊥ + vr − vt⊥‖p

where vh⊥ = vh − wT
r vhwr and vt⊥ = vt − wT

r vtwr are
the projected embeddings of h and t on wr respectively.

TransR [27] extends TransH to perform projections
where each relation r is associated with a projection
matrix Wr which is used to map entity embeddings
into the vector space of relations:

fTransR (h, r, t) = ‖Wrvh + vr −Wrvt‖p

Both TransH and TransR use only one vector or ma-
trix to perform projections, ignoring the fact that head
and tail entities have different properties to each re-
lation. Therefore, head and tail entities should be as-
sociated with their own projection vectors or ma-
trices as presented in direct extensions of TransH
and TransR such as TransD [19], STransE [33], lpp-
TransD [65], TransR-FT [12], TranSparse [20] and
ITransF[59]. The transitional characteristics in these
transition-based models can be intuitively defined as:
if (h, r, t) is a valid fact, the projected embedding of h
plus the embedding of r is close to the projected em-

Table 1
The score functions in previous models and in our ConvKB model.
‖v‖p denotes the p-norm of v. 〈vh, vr , vt〉 =

∑
i vhi vri vti denotes a

tri-linear dot product. v = Re(v) − ıIm(v) with Re(v) and Im(v)
corresponding to the real and imaginary parts of the complex-valued
vector v, and ı denoting the square root of -1. In addition, g denotes
a non-linear function. ∗ denotes a convolution operator. · denotes a
dot product. concat denotes a concatenation operator. v̂ denotes a 2D
reshaping of v. Ω denotes a set of filters.

Model The score function f (h, r, t)

TransE ‖vh + vr - vt‖p

DISTMULT 〈vh, vr, vt〉
ComplEx Re (〈vh, vr, vt〉)
ConvE g (vec (g (concat (v̂h, v̂r) ∗Ω))W) · vt

Our ConvKB concat (g ([vh, vr, vt] ∗Ω)) · w

bedding of t. This reflects global relationships among
same dimensional entries of projected entity embed-
dings with relation embedding. In our ConvKB model,
each filter with the shape of 1 × 3 is responsible for
mapping head, tail and relation embeddings to the rela-
tion vector space. So ConvKB can generalize the tran-
sitional characteristics in the transition-based models.

DISTMULT [62] and ComplEx [48] use a tri-linear
dot product to compute the score for each triple. See
formal definitions of DISTMULT and ComplEx in Ta-
ble 1. In addition, NTN [40] uses a bilinear tensor
operator into a neural network to compute the triple
score. Recent approaches also show that using rela-
tion paths between entities in the KBs could help
to get contextual information for improving the KB
completion performance [16, 26, 32, 47]. For exam-
ple, PTransE-ADD [26] and TransE-COMP [16] rep-
resent each path by summing up the embeddings of
all relations in the path, while Bilinear-COMP [16] and
PRUNED-PATHS [47] represent each relation in the
path by a matrix and directly use matrix multiplication
to modeling relation path. Some approaches also incor-
porate textual mentions derived from a large external
corpus for improving the performance [14, 45, 46, 53].
See other methods for learning from KBs in [31, 35].

3. Proposed ConvKB model

A knowledge base G is a collection of valid factual
triples in the form of (head entity, relation, tail en-
tity) denoted as (h, r, t) such that h, t ∈ E and r ∈ R
where E is a set of entities and R is a set of relations.
Embedding models aim to define a score function f
giving an implausibility score for each triple (h, r, t)
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Figure 1. Process involved in the proposed ConvKB (with k = 4 and τ = 3 for illustration purpose).

such that valid triples receive lower scores than invalid
triples. Table 1 presents score functions in previous
SOTA models.

We denote the dimensionality of embeddings by k
such that each embedding triple (vh, vr, vt) are viewed
as a matrix A = [vh, vr, vt] ∈ Rk×3. And Ai,: ∈ R1×3

denotes the i-th row of A. Suppose that we use a fil-
ter ω ∈ R1×3 operated on the convolution layer. ω
is not only aimed to examine the global relationships
between same dimensional entries of the embedding
triple (vh, vr, vt), but also to generalize the transitional
characteristics in the transition-based models. ω is re-
peatedly operated over every row of A to finally gen-
erate a feature map v = [v1, v2, ..., vk] ∈ Rk as:

vi = g (ω · Ai,: + b)

where b ∈ R is a bias term and g is a non-linear acti-
vation function such as ReLU.

Our ConvKB uses different filters ∈ R1×3 to gener-
ate different feature maps. Let Ω and τ denote the set
of filters and the number of filters, respectively, i.e. τ =
|Ω|, resulting in τ feature maps. These τ feature maps
are concatenated into a single vector ∈ Rτk×1 which is
then computed with a weight vector w ∈ Rτk×1 via a
dot product to give a score for the triple (h, r, t). Figure
1 illustrates the computation process in ConvKB.

Formally, we define the ConvKB score function f as
follows:

f (h, r, t) = concat (g ([vh, vr, vt] ∗Ω)) · w

where Ω and w are shared parameters, independent of
h, r and t; ∗ denotes a convolution operator; and concat
denotes a concatenation operator.

If we only use one filter ω (i.e. using τ = 1) with
a fixed bias term b = 0 and the activation function
g(x) = |x| or g(x) = x2, and fix ω = [1, 1,−1]
and w = 1 during training, ConvKB reduces to the
plain TransE model [5]. So our ConvKB model can
be viewed as an extension of TransE to further model
global relationships.

We use the Adam optimizer [23] to train ConvKB
by minimizing the loss function L [48] with L2 regu-
larization on the weight vector w of the model:

L =
∑

(h,r,t)∈{G∪G′}
log
(
1 + exp

(
l(h,r,t) · f (h, r, t)

))

+
λ

2
‖w‖22

in which, l(h,r,t) =

{
1 for (h, r, t) ∈ G
−1 for (h, r, t) ∈ G′
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Input: knowledge base G, set of entities E , set of relationsR, set of filters Ω, weight vector w, batch size
batch_size, L2-regularizer λ, boolean init_ f ilter_normal, pre-trained entity and relation k-dimensional
embeddings produced by TransE [5].
// Initialize variables.

for e ∈ E do
ve ← embeddings_by_TransE(e)

for r ∈ R do
vr ← embeddings_by_TransE(r)

// Using a truncated normal distribution with init_ f ilter_normal = True while

using [0.1, 0.1,−0.1] with init_ f ilter_normal = False.

for ω ∈ Ω do
Initialize(ω, init_ f ilter_normal)

w← uniform
(
−

√
6√

k×|Ω|+1
,

√
6√

k×|Ω|+1

)

// Optimization step.

for epoch = 1, 2, ..., 200 do
for i = 1, 2, ..., |G|

batch_size + 1 do
Sample a vaild_batch of batch_size triples (h, r, t) from G.
invalid_batch = {}
for (h, r, t) ∈ vaild_batch do

invalid_batch← invalid_batch ∪ sample_invalid_triple(h, r, t)
batch← vaild_batch ∪ invalid_batch

for (h, r, t) ∈ batch do
Compute f (h, r, t) = concat (g ([vh, vr, vt] ∗Ω)) · w
if (h, r, t) is valid then

l(h,r,t) = 1

else
l(h,r,t) = −1

Compute gradient∇Lbatch w.r.t batch: ∇∑(h,r,t)∈batch log
(
1 + exp

(
l(h,r,t) · f (h, r, t)

))
+ λ

2‖w‖22
Update entity and relation embeddings, weight vector w and filters w.r.t∇Lbatch.

Algorithm 1: Parameter optimization for ConvKB in the KB completion.

here G′ is a collection of invalid triples generated by
corrupting valid triples in G. We use the common
Bernoulli trick [27, 54] to generate the head or tail en-
tities for invalid triples. For each relation r, let ηh de-
note the averaged number of head entities per tail en-
tity whilst ηt denote the averaged number of tail enti-
ties per head entity. Given a valid triple (h, r, t) of re-
lation r, we then generate a new head entity h′ with
probability ηt

ηt+ηh
to form an invalid triple (h′, r, t) and

a new tail entity t′ with probability ηh
ηt+ηh

to form an
invalid triple (h, r, t′). Algorithm 1 details the learning
process of our ConvKB model.

4. KB completion evaluation

We evaluate ConvKB on two KB completion tasks:
the link prediction task [5] and the triple classifica-
tion task [40]. We use benchmark datasets WN18RR
[10] and FB15k-237 [45] for link prediction, and
datasets FB13 and WN11 [40] for triple classification.
WN18RR and FB15k-237 are subsets of two common
datasets WN18 and FB15k [5], respectively. As noted
by Toutanova and Chen [45], WN18 and FB15k are
easy because they contain many reversible relations.
So knowing relations are reversible allows us to easily
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Table 2
Statistics of the experimental datasets. In both WN11 and FB13,
each validation and test set also contains the same number of incor-
rect triples as the number of correct triples. It is to note that the FB13
test set is filtered to only contain 7 relations taken from 13 relations
appearing in the FB13 training set.

Dataset | E | | R | #Triples in train/valid/test
FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
FB13 75,043 13 316,232 5,908 23,733
WN11 38,696 11 112,581 2,609 10,544

predict the majority of test triples, e.g. state-of-the-art
results on both WN18 and FB15k are obtained by us-
ing a simple reversal rule as shown in Dettmers et al.
[10]. Therefore, WN18RR and FB15k-237 are created
to not suffer from this reversible relation problem in
WN18 and FB15k, for which the knowledge base com-
pletion task is more realistic. It is also worth noting that
when constructing datasets FB13 and WN11, Socher
et al. [40] filtered out triples from the test set if either
or both of their head and tail entities also appear in the
training set in a different relation type or order. Table
2 gives statistics of the experimental datasets.

4.1. Link prediction

4.1.1. Task description
In the KB completion or link prediction task [5], the

purpose is to predict a missing entity given a relation
and another entity, i.e, inferring h given (r, t) or infer-
ring t given (h, r). The results are calculated based on
ranking the scores produced by the score function f on
test triples. Following Bordes et al. [5], for each valid
test triple (h, r, t), we replace either h or t by each of
other entities in E to create a set of corrupted triples.
We use the “Filtered” setting protocol [5], i.e., not tak-
ing any corrupted triples that appear in the KB into
accounts. We rank the valid test triple and corrupted
triples in ascending order of their scores.

We employ three common evaluation metrics: mean
rank (MR), mean reciprocal rank (MRR), and Hits@10
(i.e., the proportion of the valid test triples ranking in
top 10 predictions). Lower MR, higher MRR or higher
Hits@10 indicate better performance. We report the fi-
nal scores on the test set for the model obtaining the
highest Hits@10 score on the validation set.1

1Some previous works also reported Hits@1. However, the for-
mulas of MRR and Hits@1 show a strong correlation between these

4.1.2. Training protocol
We use the common Bernoulli trick [27, 54] to

generate the head or tail entities when sampling in-
valid triples. We also use entity and relation embed-
dings produced by TransE to initialize entity and re-
lation embeddings in ConvKB.2 We train TransE us-
ing a grid search of hyper-parameters: the dimension-
ality of embeddings k ∈ {50, 100}, SGD learning rate
∈ {1e−4, 5e−4, 1e−3, 5e−3}, l1-norm or l2-norm, and
margin γ ∈ {1, 3, 5, 7}. The highest Hits@10 scores
on the validation set are when using l1-norm, learning
rate at 5e−4, γ = 5 and k = 50 for WN18RR, and using
l1-norm, learning rate at 5e−4, γ = 1 and k = 100 for
FB15k-237.

To learn our model parameters including entity and
relation embeddings, filtersω and the weight vector w,
we use Adam [23] and select its initial learning rate
∈ {5e−6, 1e−5, 5e−5, 1e−4, 5e−4}. We use ReLU as
the activation function g. We fix the batch size at 256
and set the L2-regularizer λ at 0.001 in our objective
function. The filters ω are initialized by a truncated
normal distribution or by [0.1, 0.1,−0.1]. We select the
number of filters τ ∈ {50, 100, 200, 400, 500}. We run
ConvKB up to 200 epochs and use outputs from the
last epoch for evaluation. The highest Hits@10 scores
on the validation set are obtained when using k = 50,
τ = 500, the truncated normal distribution for filter
initialization, and the initial learning rate at 1e−4 on
WN18RR; and k = 100, τ = 50, [0.1, 0.1,−0.1] for
filter initialization, and the initial learning rate at 5e−6

on FB15k-237.

4.1.3. Main experimental results
Table 3 compares the experimental results of our

ConvKB model with previous published results, using
the same experimental setup. Table 3 shows that Con-
vKB obtains the best MR and highest Hits@10 scores
on WN18RR and also the highest MRR and Hits@10
scores on FB15k-237.

ConvKB does better than the closely related model
TransE on both experimental datasets, especially on
FB15k-237 where ConvKB gains significant improve-
ments of 347 − 257 = 90 in MR (which is about
26% relative improvement) and 0.396 − 0.294 =
0.102 in MRR (which is 34+% relative improvement),
and also obtains 51.7% − 46.5% = 5.2% absolute

two scores. So using Hits@1 does not really reveal any additional
information for this task.

2We employ a TransE implementation available at: https://
github.com/datquocnguyen/STransE
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Table 3
Link prediction results on WN18RR and FB15k-237 test sets. MRR and H@10 denote the mean reciprocal rank and Hits@10 (in %), respectively.
[?]: Results are taken from Dettmers et al. [10] where Hits@10 and MRR are rounded to 2 decimal places on WN18RR. The last 4 rows
report results of models that exploit information about relation paths (KBLRN , R-GCN+ and Neural LP) or textual mentions derived from a large
external corpus (Node+LinkFeat). The best score is in bold, while the second best score is in underline.

Method
WN18RR FB15k-237

MR MRR H@10 MR MRR H@10
IRN [39] – – – 211 – 46.4
KBGAN [7] – 0.213 48.1 – 0.278 45.8
DISTMULT [62] [?] 5110 0.43 49 254 0.241 41.9
ComplEx [48] [?] 5261 0.44 51 339 0.247 42.8
ConvE [10] 5277 0.46 48 246 0.316 49.1
TransE [5] (our results) 3384 0.226 50.1 347 0.294 46.5
Our ConvKB model 2554 0.248 52.5 257 0.396 51.7
KBLRN [14] – – – 209 0.309 49.3
R-GCN+ [37] – – – – 0.249 41.7
Neural LP [63] – – – – 0.240 36.2
Node+LinkFeat [45] – – – – 0.293 46.2
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Figure 2. Hits@10 (in %) on the FB15k-237 test set w.r.t each relation category.

improvement in Hits@10. Previous work shows that
TransE obtains very competitive results [26, 32, 36,
48]. However, when comparing the CNN-based em-
bedding model ConvE with other embedding models,
Dettmers et al. [10] did not experiment with TransE.
We reconfirm previous findings that TransE in fact is a
strong baseline model, e.g., TransE obtains better MR
and Hits@10 than ConvE on WN18RR.

ConvKB obtains better scores than ConvE on both
datasets (except MRR on WN18RR and MR on
FB15k-237), thus showing the usefulness of taking
transitional characteristics into accounts. In particu-

lar, on FB15k-237, ConvKB achieves improvements of
0.394 − 0.316 = 0.078 in MRR (which is about 25%
relative improvement) and 51.7% − 49.1% = 2.6%
in Hits@10, while both ConvKB and ConvE produce
similar MR scores. ConvKB also obtains 25% rela-
tively higher MRR score than the relation path-based
model KBLRN on FB15k-237. In addition, ConvKB
gives better Hits@10 than KBLRN , however, KBLRN

gives better MR than ConvKB. We plan to extend Con-
vKB with relation path information to obtain better
link prediction performance in future work.
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Figure 3. Hits@10 and MRR on the WN18RR test set w.r.t each relation. The right y-axis is the percentage of triples corresponding to relations.

Following Bordes et al. [5], we explore the Hits@10
results on the FB15k-237 test set corresponding to the
relation categories. For each relation r, we calculate
the averaged number ηh of heads per tail and the av-
eraged number ηt of tails per head. If ηh <1.5 and
ηt <1.5, r is classified as one-to-one (1-1). If ηh <1.5
and ηt >1.5, r is classified as one-to-many (1-M). If
ηh >1.5 and ηt <1.5, r is classified as many-to-one (M-
1). If ηh >1.5 and ηt >1.5, r is classified as many-to-
many (M-M). We find that 17, 26, 81 and 113 relations
are classified as 1-1, 1-M, M-1 and M-M, respectively.
And 0.9%, 6.3%, 20.5% and 72.3% of the FB15k-237
test triples have their relations classified as 1-1, 1-M,
M-1 and M-M, respectively.

Figure 2 shows the Hits@10 results for separately
predicting head and tail entities on the FB15k-237 test
set with respect to (w.r.t.) each relation category. We
find that ConvKB is outperformed by TransE in 1-1 as
1-1 relations are relatively rare. We also find that both
TransE and ConvKB are easier to predict entities on
the relational “side 1” triples (i.e., predicting head en-
tities in 1-1 and 1-M, and predicting tail entities in 1-
1 and M-1). However, TransE is not good at predict-
ing head entities in M-1 and M-M where TransE ob-
tains the Hits@10 scores of 9.9% and 39.8%, while
ConvKB is better in achieving the Hits@10 scores of
38.6% and 47.5%, respectively. A reason is probably
that ConvKB could bring a generalization of project-
ing the embedding triples into the vector space of rela-
tions rather than TransE. Hence, this helps ConvKB to
better modeling M-1 and M-M relations.

For a more concrete example, Figure 3 presents
Hits@10 and MRR scores on WN18RR w.r.t. each re-
lation type. member_meronym and hypernym are 1-M

and M-1 relations, respectively. We find that TransE
encounters a difficulty when dealing with these rela-
tion types. E.g., for 1,251 triples containing the rela-
tion hypernym from 3,134 test triples in the WN18RR
test set, TransE only obtains the Hits@10 and MRR
scores of 17.4% and 0.076 respectively, while ConvKB
performs better than TransE and gets the Hits@10 and
MRR scores of 22.5% and 0.121 respectively. In sum-
mary, figures 2 and 3 show that ConvKB are better at
modeling 1-M, M-1 and M-M relations than TransE.

4.2. Triple classification

4.2.1. Task description
The triple classification task aims to predict whether

a given triple (h, r, t) is valid or not [40]. Each rela-
tion r is associated with a threshold θr. For an unseen
test triple (h, r, t), if its score is below θr then it will be
classified as valid, otherwise invalid. Following Socher
et al. [40], the relation-specific threshold θr is obtained
by maximizing the micro-averaged classification accu-
racy on the validation set.

4.2.2. Training protocol
Similar to the training protocol in Section 4.1.2,

we sample invalid triples using the common Bernoulli
trick and also train TransE to produce entity and re-
lation embeddings for initializing embeddings in Con-
vKB. The best accuracies obtained by TransE on the
validation set are when using l1-norm, learning rate at
0.01, γ = 7 and k = 50 for WN11, and using l2-norm,
learning rate at 0.01, γ = 1 and k = 100 for FB13. We
then use a grid search to choose the hyper-parameter
for ConvKB. We monitor the accuracy after each train-
ing epoch, and obtain the best accuracies on validation
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Table 4
Accuracy results (in %) on the WN11 and FB13 test sets. The last 4
rows report accuracies of the models that use relation paths or incor-
porate with a large external corpus. The best score is in bold while
the second best score is in underline. “Avg.” denotes the averaged
accuracy over two datasets.

Method WN11 FB13 Avg.
NTN [40] 70.6 87.2 78.9
TransH [54] 78.8 83.3 81.1
TransR [27] 85.9 82.5 84.2
TransD [19] 86.4 89.1 87.8
TransR-FT [12] 86.6 82.9 84.8
TranSparse-S [20] 86.4 88.2 87.3
TranSparse-US [20] 86.8 87.5 87.2
ManifoldE [57] 87.5 87.2 87.4
TransG [58] 87.4 87.3 87.4
lppTransD [65] 86.2 88.6 87.4
TransE [5] (our results) 86.5 87.5 87.0
Our ConvKB model 87.6 88.8 88.2

TransE-NMM [32] 86.8 88.6 87.7
TEKE_H [53] 84.8 84.2 84.5
Bilinear-COMP [16] 77.6 86.1 81.9
TransE-COMP [16] 80.3 87.6 84.0

set when using k = 50, τ = 200, the truncated nor-
mal distribution for filter initialization, and the initial
learning rate at 5e−4 on WN11; and k = 100, τ = 200,
also the truncated normal distribution for filter initial-
ization, and the initial learning rate at 5e−5 on FB13.
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Figure 4. Accuracy results on the FB13 test set w.r.t each relation.
The right y-axis is the number of triples corresponding to relations.

4.2.3. Main results
Table 4 presents the accuracy results of our ConvKB

model and previous published results on the WN11
and FB13 datasets. On WN11, ConvKB obtains an
accuracy of 87.6% which outperforms all other mod-
els. On FB13, ConvKB gains a second highest accu-
racy of 88.8% which is 0.3% outperformed by TransD.
Compared to TransE, ConvKB absolutely improves by
1.1% on WN11 and 1.3% on FB13. Overall, ConvKB
yields the best performance averaged over these two
benchmark datasets. This also indicates the generaliza-
tion of ConvKB over different datasets.

Regarding to TransE, Table 4 demonstrates that
we obtain very competitive accuracies of 86.5% and
87.5% on WN11 and FB13 respectively. On WN11,
TransE is comparable with TransD, TransR-FT and
TranSparse-S while it scores better than lppTransD
and TransE-COMP. On FB13, TransE performs slightly
better than ManifoldE and TransG while it achieves
similar scores in comparison with TransE-COMP and
TranSparse-US. Note that TransR, TranSparse-S/US
and TransD also perform the embedding initialization
using TransE outputs (but these models do not report
their TransE accuracy results). Hence, these models
might get better results when using our TransE results
as shown in this paper.

Figure 4 visualizes the accuracy results of different
relations on FB13 for TransE and ConvKB. Relations
institution and profession can be categorized as M-M
where ConvKB is about 2.3% absolute higher accu-
racy than TransE, while remaining relations can be cat-
egorized as M-1. In short, Figure 4 shows that Con-
vKB performs equal to or better than TransE for all 7
relations in the FB13 test set.

5. Application for search personalization

Search personalization, an important feature of
commercial search engines, has been recently attracted
much attention from both academia [6, 8, 11, 28, 30,
49, 51, 64] and industry (e.g., Bing, Google, Airbnb
[15]). Unlike classical searching methods, personal-
ized search systems utilize the historical interactions
such as submitted queries and clicked documents be-
tween a user and the systems to tailor returned search
results to the needs of that user [1, 18, 42, 43, 56].
That historical information can be used to build the
user profile, which is crucial to effective personaliza-
tion [42, 43, 50, 52].
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Table 5
Basic statistics of the dataset [51].

# users 106
#distinct queries 6,632
#SAT clicks 8,052
#distinct documents 33,591

Given a user, a submitted query and the documents
returned by a search system for that query, our ap-
proach is to re-rank the returned documents so that the
more relevant documents should be ranked higher. Fol-
lowing Vu et al. [51], we represent the relationship be-
tween the submitted query, the user and the returned
document as a (h, r, t)-like triple (query, user, docu-
ment). The triple captures how much interest a user
puts on a document given a query. Therefore, we can
also evaluate the effectiveness of our ConvKB model
for the search personalization task.

We evaluate ConvKB using the search results re-
turned by a commercial search engine. We use the
same dataset of query logs of 106 anonymous users
from Vu et al. [51]. A log entity consists of a user iden-
tifier, a query, top-10 returned documents ranked by
the search engine and clicked documents along with
the user’s dwell time. Vu et al. [51] employed the SAT
criteria [13] to identify whether or not a clicked docu-
ment is relevant from the query logs (i.e., a SAT click).
They then assigned a relevant label to a returned docu-
ment if it is a SAT click and also assigned irrelevant la-
bels to the remaining top-10 documents. The rank po-
sition of the relevant labeled documents is used as the
ground truth to evaluate the search performance before
and after re-ranking. As a result, the dataset contains
8,052 valid triples (query, user, relevant document) in
which 5,658, 1,184 and 1,210 valid triples are used
for training, validation and test, respectively. Table 5
presents the dataset statistics.

5.1. Evaluation protocol

Our ConvKB model is used to re-rank the original
list of top-10 documents returned by the commercial
search engine as follows: (1) We train ConvKB and use
the trained model to calculate a score for each triple
(question, user, document). (2) We then sort the scores
in the ascending order to achieve a new ranked list. To

evaluate the performance, we use two common metrics
in document ranking: MRR and Hits@1.3

5.2. Training protocol

5.2.1. Query and document embedding initialization
We initialize query and document embeddings for

ConvKB and the baseline TransE, then fix query and
document embeddings (i.e. not updating these embed-
dings) during training.

To initialize document embeddings, we follow Vu
et al. [51] to train a LDA topic model [2] with 200 top-
ics only on the relevant documents (i.e., SAT clicks)
extracted from the query logs. We then use the trained
LDA model to infer the probability distribution over
topics for each document. We use the topic propor-
tion vector of each document as its document em-
bedding (i.e. k = 200). In particular, the zth element
(z = 1, 2, ..., k) of the vector embedding for document
d is: vd,z = P(z | d) where P(z | d) is the probability of
the topic z given the document d.

We also represent each query by a probability dis-
tribution vector over topics. Let Dq = {d1, d2, ..., dn}
be the set of top n ranked documents returned for
a query q (here, n = 10). The zth element of the
vector embedding for query q is defined as in [51]:
vq,z =

∑n
i=1 λiP(z | di), where λi =

δi−1∑n
j=1 δ

j−1 is the
exponential decay function of i which is the rank of di

in Dq. And δ is the decay hyper-parameter (0 < δ < 1).

5.2.2. Hyper-parameter tuning
Similar to the training protocol presented in Section

4.1.2, we run model up to 200 epochs and perform a
grid search to choose optimal hyper-parameters on the
validation set. Following Vu et al. [51], we use δ = 0.8.
We also monitor the MRR score after each training
epoch and obtain the highest MRR score on the val-
idation set when using the margin at 5, l1-norm and
learning rate at 5e−3 for TransE; and using τ = 500,
the truncated normal distribution for filter initializa-
tion, and the initial learning rate at 5e−4 for ConvKB.

5.3. Results

Table 6 presents the experimental results of Con-
vKB, TransE and the previous published results of
other strong baselines, in which ConvKB obtains high-
est MRR and Hits@1 scores. In particular, ConvKB

3We re-rank the list of top-10 documents returned by the search
engine, so all models obtain the same Hits@10 scores.
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Table 6
Experimental results on the test set. ? denotes the results reported in
Vu et al. [51]. SE: The original rank is returned by the search engine.
CI: This baseline use a personalized navigation method based on
previously clicking returned documents [44]. SP: A search personal-
ization method makes use of the short-term profiles [1, 50]. The sub-
scripts denote the relative improvement over the baseline TransE.

Model MRR Hits@1 (%)
SE [?] 0.559 38.5
CI [44] [?] 0.597 41.6
SP [1, 50] [?] 0.631 45.2
TransE [5] [?] 0.645 48.1
STransE [33] [?] 0.656 50.1
TransE (our results) 0.669 50.9
Our ConvKB model 0.750+12.1% 59.9+17.7%

does significantly better than TransE with relative im-
provements at 12.1% for MRR and 17.7% for Hits@1.
It is probably because our model not only can cap-
ture richer relational characteristics within the triple
but also generalize the transitional relationships be-
tween embeddings of user queries and relevant docu-
ments for user profiles. We also obtain higher TransE
results than those reported in Vu et al. [51]. The rea-
son is that for each valid triple, rather than using only
one invalid triple as in [51], we take into account its
all invalid triples to train TransE (each valid or invalid
triple contains a relevant- or irrelevant-labelled docu-
ment, respectively).

6. Conclusion

In this paper, we propose a novel embedding model
ConvKB for the knowledge base completion task.
ConvKB applies the convolutional neural network to
explore the global relationships among same dimen-
sional entries of the entity and relation embeddings, so
that ConvKB generalizes the transitional characteris-
tics in the transition-based embedding models. Exper-
imental results show that our ConvKB model outper-
forms other state-of-the-art models on two benchmark
datasets WN18RR and FB15k-237 for the link predic-
tion task, and on two other benchmark datasets WN11
and FB13 for the triple classification task. ConvKB
obtains the best mean rank and the highest Hits@10
on WN18RR and obtains the highest mean reciprocal
rank and Hits@10 on FB15k-237. In addition, Con-
vKB produces the best accuracy on WN11 and the sec-
ond best accuracy on FB13. Moreover, we show the

effectiveness of ConvKB for search personalization, in
which ConvKB outperforms the strong baselines on
the query logs of a commercial web search engine.

In the future work, we plan to extend ConvKB
with relation path information to achieve better perfor-
mance. We will also adapt ConvKB to other personal-
ization tasks where we can model each task as a triple
relationship, e.g. in personalized query suggestion or
auto-completion.

Our ConvKB implementation is available at: https:
//github.com/daiquocnguyen/ConvKB.
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Abstract

In this paper, we introduce an embedding
model, named CapsE, exploring a capsule net-
work to model relationship triples (subject, re-
lation, object). Our CapsE represents each
triple as a 3-column matrix where each col-
umn vector represents the embedding of an
element in the triple. This 3-column matrix
is then fed to a convolution layer where mul-
tiple filters are operated to generate different
feature maps. These feature maps are recon-
structed into corresponding capsules which are
then routed to another capsule to produce a
continuous vector. The length of this vector
is used to measure the plausibility score of
the triple. Our proposed CapsE obtains better
performance than previous state-of-the-art em-
bedding models for knowledge graph comple-
tion on two benchmark datasets WN18RR and
FB15k-237, and outperforms strong search
personalization baselines on SEARCH17.

1 Introduction

Knowledge graphs (KGs) containing relationship
triples (subject, relation, object), denoted as (s,
r, o), are the useful resources for many NLP and
especially information retrieval applications such
as semantic search and question answering (Wang
et al., 2017). However, large knowledge graphs,
even containing billions of triples, are still incom-
plete, i.e., missing a lot of valid triples (West et al.,
2014). Therefore, much research efforts have fo-
cused on the knowledge graph completion task
which aims to predict missing triples in KGs, i.e.,
predicting whether a triple not in KGs is likely to
be valid or not (Bordes et al., 2011, 2013; Socher
et al., 2013). To this end, many embedding models
have been proposed to learn vector representations
for entities (i.e., subject/head entity and object/tail
entity) and relations in KGs, and obtained state-
of-the-art results as summarized by Nickel et al.

(2016a) and Nguyen (2017). These embedding
models score triples (s, r, o), such that valid triples
have higher plausibility scores than invalid ones
(Bordes et al., 2011, 2013; Socher et al., 2013).
For example, in the context of KGs, the score for
(Melbourne, cityOf, Australia) is higher than the
score for (Melbourne, cityOf, United Kingdom).

Triple modeling is applied not only to the KG
completion, but also for other tasks which can
be formulated as a triple-based prediction prob-
lem. An example is in search personalization, one
would aim to tailor search results to each spe-
cific user based on the user’s personal interests
and preferences (Teevan et al., 2005, 2009; Ben-
nett et al., 2012; Harvey et al., 2013; Vu et al.,
2015, 2017). Here the triples can be formulated as
(submitted query, user profile, returned document)
and used to re-rank documents returned to a user
given an input query, by employing an existing KG
embedding method such as TransE (Bordes et al.,
2013), as proposed by Vu et al. (2017). Previous
studies have shown the effectiveness of modeling
triple for either KG completion or search person-
alization. However, there has been no single study
investigating the performance on both tasks.

Conventional embedding models, such as
TransE (Bordes et al., 2013), DISTMULT (Yang
et al., 2015) and ComplEx (Trouillon et al., 2016),
use addition, subtraction or simple multiplication
operators, thus only capture the linear relation-
ships between entities. Recent research has raised
interest in applying deep neural networks to triple-
based prediction problems. For example, Nguyen
et al. (2018) proposed ConvKB—a convolutional
neural network (CNN)-based model for KG com-
pletion and achieved state-of-the-art results. Most
of KG embedding models are constructed to mod-
eling entries at the same dimension of the given
triple, where presumably each dimension captures
some relation-specific attribute of entities. To the
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best of our knowledge, however, none of the exist-
ing models has a “deep” architecture for modeling
the entries in a triple at the same dimension.

Sabour et al. (2017) introduced capsule net-
works (CapsNet) that employ capsules (i.e., each
capsule is a group of neurons) to capture entities in
images and then uses a routing process to specify
connections from capsules in a layer to those in
the next layer. Hence CapsNet could encode the
intrinsic spatial relationship between a part and a
whole constituting viewpoint invariant knowledge
that automatically generalizes to novel viewpoints.
Each capsule accounts for capturing variations of
an object or object part in the image, which can be
efficiently visualized. Our high-level hypothesis
is that embedding entries at the same dimension
of the triple also have these variations, although it
is not straightforward to be visually examined.

To that end, we introduce CapsE to explore a
novel application of CapsNet on triple-based data
for two problems: KG completion and search per-
sonalization. Different from the traditional mod-
eling design of CapsNet where capsules are con-
structed by splitting feature maps, we use capsules
to model the entries at the same dimension in the
entity and relation embeddings. In our CapsE, vs,
vr and vo are unique k-dimensional embeddings
of s, r and o, respectively. The embedding triple
[vs, vr, vo] of (s, r, o) is fed to the convolution
layer where multiple filters of the same 1×3 shape
are repeatedly operated over every row of the ma-
trix to produce k-dimensional feature maps. En-
tries at the same dimension from all feature maps
are then encapsulated into a capsule. Thus, each
capsule can encode many characteristics in the
embedding triple to represent the entries at the
corresponding dimension. These capsules are then
routed to another capsule which outputs a contin-
uous vector whose length is used as a score for the
triple. Finally, this score is used to predict whether
the triple (s, r, o) is valid or not.

In summary, our main contributions from this
paper are as follows:
•We propose an embedding model CapsE using

the capsule network (Sabour et al., 2017) for mod-
eling relationship triples. To our best of knowl-
edge, our work is the first consideration of explor-
ing the capsule network to knowledge graph com-
pletion and search personalization.
• We evaluate our CapsE for knowledge graph

completion on two benchmark datasets WN18RR

(Dettmers et al., 2018) and FB15k-237 (Toutanova
and Chen, 2015). CapsE obtains the best mean
rank on WN18RR and the highest mean reciprocal
rank and highest Hits@10 on FB15k-237.
•We restate the prospective strategy of expand-

ing the triple embedding models to improve the
ranking quality of the search personalization sys-
tems. We adapt our model to search personaliza-
tion and evaluate on SEARCH17 (Vu et al., 2017)
– a dataset of the web search query logs. Ex-
perimental results show that our CapsE achieves
the new state-of-the-art results with significant im-
provements over strong baselines.

2 The proposed CapsE

Let G be a collection of valid factual triples in the
form of (subject, relation, object) denoted as (s, r,
o). Embedding models aim to define a score func-
tion giving a score for each triple, such that valid
triples receive higher scores than invalid triples.

We denote vs, vr and vo as the k-dimensional
embeddings of s, r and o, respectively. In our
proposed CapsE, we follow Nguyen et al. (2018)
to view each embedding triple [vs, vr, vo] as a
matrix A = [vs,vr,vo] ∈ Rk×3, and denote
Ai,: ∈ R1×3 as the i-th row of A. We use a filter
ω ∈ R1×3 operated on the convolution layer. This
filter ω is repeatedly operated over every row of
A to generate a feature map q = [q1, q2, ..., qk] ∈
Rk, in which qi = g (ω ·Ai,: + b) where · de-
notes a dot product, b ∈ R is a bias term and g
is a non-linear activation function such as ReLU.
Our model uses multiple filters ∈ R1×3 to gener-
ate feature maps. We denote Ω as the set of fil-
ters and N =| Ω | as the number of filters, thus
we have N k-dimensional feature maps, for which
each feature map can capture one single character-
istic among entries at the same dimension.

We build our CapsE with two single capsule
layers for a simplified architecture. In the first
layer, we construct k capsules, wherein entries at
the same dimension from all feature maps are en-
capsulated into a corresponding capsule. There-
fore, each capsule can capture many characteris-
tics among the entries at the corresponding dimen-
sion in the embedding triple. These characteris-
tics are generalized into one capsule in the second
layer which produces a vector output whose length
is used as the score for the triple.

The first capsule layer consists of k capsules, for
which each capsule i ∈ {1, 2, ..., k} has a vector
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Figure 1: An example illustration of our CapsE with k = 4, N = 5, and d = 2.

output ui ∈ RN×1. Vector outputs ui are mul-
tiplied by weight matrices Wi ∈ Rd×N to pro-
duce vectors ûi ∈ Rd×1 which are summed to
produce a vector input s ∈ Rd×1 to the capsule
in the second layer. The capsule then performs the
non-linear squashing function to produce a vector
output e ∈ Rd×1:

e = squash (s) ; s =
∑

i

ciûi ; ûi = Wiui

where squash (s) = ‖s‖2
1+‖s‖2

s
‖s‖ , and ci are cou-

pling coefficients determined by the routing pro-
cess as presented in Algorithm 1. Because there
is one capsule in the second layer, we make only
one difference in the routing process proposed
by Sabour et al. (2017), for which we apply the
softmax in a direction from all capsules in the pre-
vious layer to each of capsules in the next layer.1

for all capsule i ∈ the first layer do
bi ← 0

for iteration = 1, 2, ..., m do
c← softmax (b)

s←∑
i ciûi

e = squash (s)

for all capsule i ∈ the first layer do
bi ← bi + ûi · e

Algorithm 1: The routing process is extended

from Sabour et al. (2017).

1The softmax in the original routing process proposed
by Sabour et al. (2017) is applied in another direction from
each of capsules in the previous layer to all capsules in the
next layer.

We illustrate our proposed model in Figure 1
where embedding size: k = 4, the number of fil-
ters: N = 5, the number of neurons within the
capsules in the first layer is equal to N, and the
number of neurons within the capsule in the sec-
ond layer: d = 2. The length of the vector output
e is used as the score for the input triple.

Formally, we define the score function f for the
triple (s, r, o) as follows:

f (s, r, o) = ‖capsnet (g ([vs,vr,vo] ∗Ω)) ‖
where the set of filters Ω is shared parameters
in the convolution layer; ∗ denotes a convolution
operator; and capsnet denotes a capsule network
operator. We use the Adam optimizer (Kingma
and Ba, 2014) to train CapsE by minimizing the
loss function (Trouillon et al., 2016; Nguyen et al.,
2018) as follows:

L =
∑

(s,r,o)∈{G∪G′}
log
(
1 + exp

(
−t(s,r,o) · f (s, r, o)

))

in which, t(s,r,o) =
{

1 for (s, r, o) ∈ G
−1 for (s, r, o) ∈ G′

here G and G′ are collections of valid and invalid
triples, respectively. G′ is generated by corrupting
valid triples in G.

3 Knowledge graph completion
evaluation

In the knowledge graph completion task (Bordes
et al., 2013), the goal is to predict a missing entity
given a relation and another entity, i.e, inferring a
head entity s given (r, o) or inferring a tail entity
o given (s, r). The results are calculated based on
ranking the scores produced by the score function
f on test triples.
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3.1 Experimental setup
Datasets: We use two recent benchmark datasets
WN18RR (Dettmers et al., 2018) and FB15k-237
(Toutanova and Chen, 2015). These two datasets
are created to avoid reversible relation problems,
thus the prediction task becomes more realistic
and hence more challenging (Toutanova and Chen,
2015). Table 1 presents the statistics of WN18RR
and FB15k-237.

Dataset #E #R #Triples in train/valid/test
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

Table 1: Statistics of the experimental datasets. #E is
the number of entities. #R is the number of relations.

Evaluation protocol: Following Bordes et al.
(2013), for each valid test triple (s, r, o), we re-
place either s or o by each of all other entities to
create a set of corrupted triples. We use the “Fil-
tered” setting protocol (Bordes et al., 2013), i.e.,
not taking any corrupted triples that appear in the
KG into accounts. We rank the valid test triple
and corrupted triples in descending order of their
scores. We employ evaluation metrics: mean rank
(MR), mean reciprocal rank (MRR) and Hits@10
(i.e., the proportion of the valid test triples ranking
in top 10 predictions). Lower MR, higher MRR or
higher Hits@10 indicate better performance. Final
scores on the test set are reported for the model ob-
taining the highest Hits@10 on the validation set.
Training protocol: We use the common Bernoulli
strategy (Wang et al., 2014; Lin et al., 2015b)
when sampling invalid triples. For WN18RR, Pin-
ter and Eisenstein (2018)2 found a strong evidence
to support the necessity of a WordNet-related se-
mantic setup, in which they averaged pre-trained
word embeddings for word surface forms within
the WordNet to create synset embeddings, and
then used these synset embeddings to initialize en-
tity embeddings for training their TransE associa-
tion model. We follow this evidence in using the
pre-trained 100-dimensional Glove word embed-
dings (Pennington et al., 2014) to train a TransE
model on WN18RR.

2Pinter and Eisenstein (2018) considered WN18RR and
evaluated their M3GM model only for 7 relations as they em-
ployed the inverse rule model (Dettmers et al., 2018) for 4
remaining symmetric relations. Regarding a fair comparison
to other models, we use the M3GM implementation released
by Pinter and Eisenstein (2018) to re-train and re-evaluate
the M3GM model for all 11 relations. We thank Pinter and
Eisenstein (2018) for their assistance running their code.

We employ the TransE and ConvKB implemen-
tations provided by Nguyen et al. (2016b) and
Nguyen et al. (2018). For ConvKB, we use a new
process of training up to 100 epochs and monitor
the Hits@10 score after every 10 training epochs
to choose optimal hyper-parameters with the
Adam initial learning rate in {1e−5, 5e−5, 1e−4}
and the number of filters N in {50, 100, 200, 400}.
We obtain the highest Hits@10 scores on the vali-
dation set when using N= 400 and the initial learn-
ing rate 5e−5 on WN18RR; and N= 100 and the
initial learning rate 1e−5 on FB15k-237.

Like in ConvKB, we use the same pre-trained
entity and relation embeddings produced by
TransE to initialize entity and relation embeddings
in our CapsE for both WN18RR and FB15k-237
(k = 100). We set the batch size to 128, the num-
ber of neurons within the capsule in the second
capsule layer to 10 (d = 10), and the number of it-
erations in the routing algorithm m in {1, 3, 5, 7}.
We run CapsE up to 50 epochs and monitor the
Hits@10 score after each 10 training epochs to
choose optimal hyper-parameters. The highest
Hits@10 scores for our CapsE on the validation
set are obtained when using m = 1, N = 400 and
the initial learning rate at 1e−5 on WN18RR; and
m = 1, N = 50 and the initial learning rate at
1e−4 on FB15k-237.

3.2 Main experimental results

Table 2 compares the experimental results of
our CapsE with previous state-of-the-art pub-
lished results, using the same evaluation proto-
col. Our CapsE performs better than its closely
related CNN-based model ConvKB on both ex-
perimental datasets (except Hits@10 on WN18RR
and MR on FB15k-237), especially on FB15k-
237 where our CapsE gains significant improve-
ments of 0.523 − 0.418 = 0.105 in MRR
(which is about 25.1% relative improvement), and
59.3% − 53.2% = 6.1% absolute improvement
in Hits@10. Table 2 also shows that our CapsE
obtains the best MR score on WN18RR and the
highest MRR and Hits@10 scores on FB15k-237.

Following Bordes et al. (2013), for each relation
r in FB15k-237, we calculate the averaged num-
ber ηs of head entities per tail entity and the aver-
aged number ηo of tail entities per head entity. If
ηs <1.5 and ηo <1.5, r is categorized one-to-one
(1-1). If ηs <1.5 and ηo ≥1.5, r is categorized
one-to-many (1-M). If ηs ≥1.5 and ηo <1.5, r is
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Method WN18RR FB15k-237
MR MRR H@10 MR MRR H@10

DISTMULT (Yang et al., 2015) 5110 0.425 49.1 254 0.241 41.9
ComplEx (Trouillon et al., 2016) 5261 0.444 50.7 339 0.247 42.8
ConvE (Dettmers et al., 2018) 4187 0.433 51.5 244 0.325 50.1
KBGAN (Cai and Wang, 2018) – 0.213 48.1 – 0.278 45.8
M3GM (Pinter and Eisenstein, 2018) 1864 0.311 53.3 – – –
TransE (Bordes et al., 2013) 743? 0.245? 56.0? 347 0.294 46.5
ConvKB (Nguyen et al., 2018) 763? 0.253? 56.7? 254? 0.418? 53.2?

Our CapsE 719 0.415 56.0 303 0.523 59.3

Table 2: Experimental results on the WN18RR and FB15k-237 test sets. Hits@10 (H@10) is reported in %.
Results of DISTMULT, ComplEx and ConvE are taken from Dettmers et al. (2018). Results of TransE on FB15k-
237 are taken from Nguyen et al. (2018). Our CapsE Hits@1 scores are 33.7% on WN18RR and 48.9% on
FB15k-237. Formulas of MRR and Hits@1 show a strong correlation, so using Hits@1 does not really reveal any
additional information for this task. The best score is in bold, while the second best score is in underline. ? denotes
our new results for TransE and ConvKB, which are better than those published by Nguyen et al. (2018).
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Figure 2: Hits@10 (in %) and MRR on the FB15k-237 test set w.r.t each relation category.
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Figure 3: Hits@10 and MRR on the WN18RR test set w.r.t each relation. The right y-axis is the percentage of
triples corresponding to relations.

categorized many-to-one (M-1). If ηs ≥1.5 and
ηo ≥1.5, r is categorized many-to-many (M-M).
As a result, 17, 26, 81 and 113 relations are la-
belled 1-1, 1-M, M-1 and M-M, respectively. And
0.9%, 6.3%, 20.5% and 72.3% of the test triples in
FB15k-237 contain 1-1, 1-M, M-1 and M-M rela-
tions, respectively.

Figure 2 shows the Hits@10 and MRR results
for predicting head and tail entities w.r.t each rela-
tion category on FB15k-237. CapsE works better
than ConvKB in predicting entities on the “side
M” of triples (e.g., predicting head entities in M-1

and M-M; and predicting tail entities in 1-M and
M-M), while ConvKB performs better than CapsE
in predicting entities on the “side 1” of triples (i.e.,
predicting head entities in 1-1 and 1-M; and pre-
dicting tail entities in 1-1 and M-1).

Figure 3 shows the Hits@10 and MRR
scores w.r.t each relation on WN18RR.
also see, similar to, verb group and
derivationally related form are symmet-
ric relations which can be considered as M-M
relations. Our CapsE also performs better than
ConvKB on these 4 M-M relations. Thus, results
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m 10 20 30 40 50
1 48.37 52.60 53.14 53.33 53.21
3 47.78 52.34 52.93 52.99 52.86
5 47.03 52.25 45.80 45.99 45.76
7 40.46 45.36 45.79 45.85 45.93

Table 3: Hits@10 on the WN18RR validation set with
N = 50 and the initial learning rate at 1e−5 w.r.t each
number of iterations in the routing algorithm m and
each 10 training epochs.

shown in Figures 2 and 3 are consistent. These
also imply that our CapsE would be a potential
candidate for applications which contain many
M-M relations such as search personalization.

We see that the length and orientation of each
capsule in the first layer can also help to model
the important entries in the corresponding dimen-
sion, thus CapsE can work well on the “side M”
of triples where entities often appear less fre-
quently than others appearing in the “side 1” of
triples. Additionally, existing models such as
DISTMULT, ComplEx and ConvE can perform
well for entities with high frequency, but may not
for rare entities with low frequency. These are rea-
sons why our CapsE can be considered as the best
one on FB15k-237 and it outperforms most exist-
ing models on WN18RR.

Effects of routing iterations: We study how
the number of routing iterations affect the per-
formance. Table 3 shows the Hits@10 scores on
the WN18RR validation set for a comparison w.r.t
each number value of the routing iterations and
epochs with the number of filters N = 50 and
the Adam initial learning rate at 1e−5. We see
that the best performance for each setup over each
10 epochs is obtained by setting the number m of
routing iterations to 1. This indicates the opposite
side for knowledge graphs compared to images. In
the image classification task, setting the numberm
of iterations in the routing process higher than 1
helps to capture the relative positions of entities in
an image (e.g., eyes, nose and mouth) properly. In
contrast, this property from images may be only
right for the 1-1 relations, but not for the 1-M, M-
1 and M-M relations in the KGs because of the
high variant of each relation type (e.g., symmetric
relations) among different entities.

4 Search personalization application

Given a user, a submitted query and the documents
returned by a search system for that query, our

approach is to re-rank the returned documents so
that the more relevant documents should be ranked
higher. Following Vu et al. (2017), we represent
the relationship between the submitted query, the
user and the returned document as a (s, r, o)-like
triple (query, user, document). The triple captures
how much interest a user puts on a document given
a query. Thus, we can evaluate the effectiveness of
our CapsE for the search personalization task.

4.1 Experimental setup
Dataset: We use the SEARCH17 dataset (Vu
et al., 2017) of query logs of 106 users collected
by a large-scale web search engine. A log en-
tity consists of a user identifier, a query, top-
10 ranked documents returned by the search en-
gine and clicked documents along with the user’s
dwell time. Vu et al. (2017) constructed short-term
(session-based) user profiles and used the profiles
to personalize the returned results. They then em-
ployed the SAT criteria (Fox et al., 2005) to iden-
tify whether a returned document is relevant from
the query logs as either a clicked document with a
dwell time of at least 30 seconds or the last clicked
document in a search session (i.e., a SAT click).
After that, they assigned a relevant label to a re-
turned document if it is a SAT click and also as-
signed irrelevant labels to the remaining top-10
documents. The rank position of the relevant la-
beled documents is used as the ground truth to
evaluate the search performance before and after
re-ranking.

The dataset was uniformly split into the train-
ing, validation and test sets. This split is for the
purpose of using historical data in the training set
to predict new data in the test set (Vu et al., 2017).
The training, validation and test sets consist of
5,658, 1,184 and 1,210 relevant (i.e., valid) triples;
and 40,239, 7,882 and 8,540 irrelevant (i.e., in-
valid) triples, respectively.
Evaluation protocol: Our CapsE is used to re-
rank the original list of documents returned by a
search engine as follows: (i) We train our model
and employ the trained model to calculate the
score for each (s, r, o) triple. (ii) We then sort
the scores in the descending order to obtain a
new ranked list. To evaluate the performance of
our proposed model, we use two standard evalu-
ation metrics: mean reciprocal rank (MRR) and
Hits@1.3 For each metric, the higher value indi-

3We re-rank the list of top-10 documents returned by the
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cates better ranking performance.
We compare CapsE with the following base-

lines using the same experimental setup: (1) SE:
The original rank is returned by the search en-
gine. (2) CI (Teevan et al., 2011): This baseline
uses a personalized navigation method based on
previously clicking returned documents. (3) SP
(Bennett et al., 2012; Vu et al., 2015): A search
personalization method makes use of the session-
based user profiles. (4) Following Vu et al. (2017),
we use TransE as a strong baseline model for the
search personalization task. Previous work shows
that the well-known embedding model TransE, de-
spite its simplicity, obtains very competitive re-
sults for the knowledge graph completion (Lin
et al., 2015a; Nickel et al., 2016b; Trouillon et al.,
2016; Nguyen et al., 2016a, 2018). (5) The CNN-
based model ConvKB is the most closely related
model to our CapsE.
Embedding initialization: We follow Vu et al.
(2017) to initialize user profile, query and doc-
ument embeddings for the baselines TransE and
ConvKB, and our CapsE.

We train a LDA topic model (Blei et al., 2003)
with 200 topics only on the relevant documents
(i.e., SAT clicks) extracted from the query logs.
We then use the trained LDA model to infer the
probability distribution over topics for every re-
turned document. We use the topic proportion vec-
tor of each document as its document embedding
(i.e. k = 200). In particular, the zth element
(z = 1, 2, ..., k) of the vector embedding for doc-
ument d is: vd,z = P(z | d) where P(z | d) is the
probability of the topic z given the document d.

We also represent each query by a probabil-
ity distribution vector over topics. Let Dq =
{d1, d2, ..., dn} be the set of top n ranked docu-
ments returned for a query q (here, n = 10). The
zth element of the vector embedding for query
q is defined as in (Vu et al., 2017): vq,z =∑n

i=1 λiP(z | di), where λi = δi−1∑n
j=1 δ

j−1 is the
exponential decay function of i which is the rank
of di in Dq. And δ is the decay hyper-parameter
(0 < δ < 1). Following Vu et al. (2017), we use
δ = 0.8. Note that if we learn query and document
embeddings during training, the models will over-
fit to the data and will not work for new queries
and documents. Thus, after the initialization pro-
cess, we fix (i.e., not updating) query and docu-
ment embeddings during training for TransE, Con-

search engine, so Hits@10 scores are same for all models.

vKB and CapsE.
In addition, as mentioned by Bennett et al.

(2012), the more recently clicked document ex-
presses more about the user current search inter-
est. Hence, we make use of the user clicked docu-
ments in the training set with the temporal weight-
ing scheme proposed by Vu et al. (2015) to initial-
ize user profile embeddings for the three embed-
ding models.
Hyper-parameter tuning: For our CapsE model,
we set batch size to 128, and also the number of
neurons within the capsule in the second capsule
layer to 10 (d = 10). The number of iterations in
the routing algorithm is set to 1 (m = 1). For
the training model, we use the Adam optimizer
with the initial learning rate ∈ {5e−6, 1e−5, 5e−5,
1e−4, 5e−4}. We also use ReLU as the activa-
tion function g. We select the number of filters
N ∈ {50, 100, 200, 400, 500}. We run the model
up to 200 epochs and perform a grid search to
choose optimal hyper-parameters on the validation
set. We monitor the MRR score after each training
epoch and obtain the highest MRR score on the
validation set when using N = 400 and the initial
learning rate at 5e−5.

We employ the TransE and ConvKB implemen-
tations provided by Nguyen et al. (2016b) and
Nguyen et al. (2018) and then follow their train-
ing protocols to tune hyper-parameters for TransE
and ConvKB, respectively. We also monitor the
MRR score after each training epoch and attain the
highest MRR score on the validation set when us-
ing margin = 5, l1-norm and SGD learning rate at
5e−3 for TransE; and N = 500 and the Adam ini-
tial learning rate at 5e−4 for ConvKB.

4.2 Main results

Table 4 presents the experimental results of the
baselines and our model. Embedding models
TranE, ConvKB and CapsE produce better rank-
ing performances than traditional learning-to-rank
search personalization models CI and SP. This in-
dicates a prospective strategy of expanding the
triple embedding models to improve the ranking
quality of the search personalization systems. In
particular, our MRR and Hits@1 scores are higher
than those of TransE (with relative improvements
of 14.5% and 22% over TransE, respectively).
Specifically, our CapsE achieves the highest per-
formances in both MRR and Hits@1 (our im-
provements over all five baselines are statistically
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Method MRR H@1
SE [?] 0.559 38.5
CI [?] 0.597 41.6
SP [?] 0.631 45.2
TransE [?] 0.645 48.1
TransE (ours) 0.669 50.9
ConvKB 0.750+12.1% 59.9+17.7%

Our CapsE 0.766+14.5% 62.1+22.0%

Table 4: Experimental results on the test set. [?] de-
notes the results reported in (Vu et al., 2017). Hits@1
(H@1) is reported in %. In information retrieval,
Hits@1 is also referred to as P@1. The subscripts de-
note the relative improvement over our TransE results.
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Figure 4: Learning curves on the validation set with the
initial learning rate at 5e−5.

significant with p < 0.05 using the paired t-test).
To illustrate our training progress, we plot per-

formances of CapsE on the validation set over
epochs in Figure 4. We observe that the perfor-
mance is improved with the increase in the num-
ber of filters since capsules can encode more use-
ful properties for a large embedding size.

5 Related work

Other transition-based models extend TransE to
additionally use projection vectors or matrices to
translate embeddings of s and o into the vector
space of r, such as: TransH (Wang et al., 2014),
TransR (Lin et al., 2015b), TransD (Ji et al., 2015)
and STransE (Nguyen et al., 2016b). Furthermore,
DISTMULT (Yang et al., 2015) and ComplEx
(Trouillon et al., 2016) use a tri-linear dot prod-
uct to compute the score for each triple. More-
over, ConvKB (Nguyen et al., 2018) applies con-
volutional neural network, in which feature maps
are concatenated into a single feature vector which
is then computed with a weight vector via a dot

product to produce the score for the input triple.
ConvKB is the most closely related model to our
CapsE. See an overview of embedding models for
KG completion in (Nguyen, 2017).

For search tasks, unlike classical methods, per-
sonalized search systems utilize the historical in-
teractions between the user and the search system,
such as submitted queries and clicked documents
to tailor returned results to the need of that user
(Teevan et al., 2005, 2009). That historical infor-
mation can be used to build the user profile, which
is crucial to an effective search personalization
system. Widely used approaches consist of two
separated steps: (1) building the user profile from
the interactions between the user and the search
system; and then (2) learning a ranking function
to re-rank the search results using the user profile
(Bennett et al., 2012; White et al., 2013; Harvey
et al., 2013; Vu et al., 2015). The general goal is
to re-rank the documents returned by the search
system in such a way that the more relevant doc-
uments are ranked higher. In this case, apart from
the user profile, dozens of other features have been
proposed as the input of a learning-to-rank algo-
rithm (Bennett et al., 2012; White et al., 2013).
Alternatively, Vu et al. (2017) modeled the po-
tential user-oriented relationship between the sub-
mitted query and the returned document by apply-
ing TransE to reward higher scores for more rele-
vant documents (e.g., clicked documents). They
achieved better performances than the standard
ranker as well as competitive search personaliza-
tion baselines (Teevan et al., 2011; Bennett et al.,
2012; Vu et al., 2015).

6 Conclusion

We propose CapsE—a novel embedding model
using the capsule network to model relationship
triples for knowledge graph completion and search
personalization. Experimental results show that
our CapsE outperforms other state-of-the-art mod-
els on two benchmark datasets WN18RR and
FB15k-237 for the knowledge graph completion.
We then show the effectiveness of our CapsE for
the search personalization, in which CapsE out-
performs the competitive baselines on the dataset
SEARCH17 of the web search query logs. In ad-
dition, our CapsE is capable to effectively model
many-to-many relationships. Our code is available
at: https://github.com/daiquocnguyen/CapsE.
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4.2.2 Relation-aware quaternions for knowledge graph embeddings

• Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen and Dinh Phung. QuatRE: Relation-

Aware Quaternions for Knowledge Graph Embeddings. arXiv preprint arXiv:2009.12517.

Contribution. We propose an effective embedding model, named QuatRE (Nguyen

et al., 2020e), to learn the quaternion embeddings for entities and relations. QuatRE

further utilises two relation-aware rotations for the head and tail embeddings through

the Hamilton product, respectively. As a result, QuatRE strengthens the correlations

between the head and tail entities. Our QuatRE obtains state-of-the-art performances on

well-known benchmark datasets for the knowledge graph completion task; thus, it can act

as a new strong baseline for future works.

Furthermore, an extended abstract of the submitted paper – entitled “QuatRE: Relation-

Aware Quaternions for Knowledge Graph Embeddings” – has been accepted to the NeurIPS

2020 Workshop on Differential Geometry meets Deep Learning (DiffGeo4DL). The code

is available at: https://github.com/daiquocnguyen/QuatRE.

https://sites.google.com/view/diffgeo4dl/
https://github.com/daiquocnguyen/QuatRE
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Abstract

We propose an effective embedding model to
learn quaternion embeddings for entities and
relations in knowledge graphs. Our model
aims to enhance correlations between head
and tail entities given a relation within the
Quaternion space with Hamilton product. The
model achieves this goal by further associat-
ing each relation with two relation-aware rota-
tions, which are used to rotate quaternion em-
beddings of the head and tail entities, respec-
tively. Experimental results show that our pro-
posed model produces state-of-the-art perfor-
mances on well-known benchmark datasets for
knowledge graph completion.

1 Introduction

Knowledge graphs (KGs) are constructed to repre-
sent relationships between entities in the form of
triples (head, relation, tail) denoted as (h, r, t). A
typical problem in KGs is the lack of many valid
triples (West et al., 2014); therefore, research ap-
proaches have been proposed to predict whether
a new triple missed in KGs is likely valid (Bor-
des et al., 2011, 2013; Socher et al., 2013). These
approaches often utilize embedding models to com-
pute a score for each triple, such that valid triples
have higher scores than invalid ones. For example,
the score of the valid triple (Melbourne, city_Of,
Australia) is higher than the score of the invalid
one (Melbourne, city_Of, Germany).

Most of the existing models focus on embedding
entities and relations within the real-valued vec-
tor space (Bordes et al., 2013; Wang et al., 2014;
Lin et al., 2015; Yang et al., 2015; Dettmers et al.,
2018; Nguyen et al., 2018). Moving beyond the
real-valued vector space, ComplEx (Trouillon et al.,
2016) and RotatE (Sun et al., 2019) consider the
complex vector space, while MuRP (Balažević
et al., 2019) and ATTH (Chami et al., 2020) lever-
age the hyperbolic space.

Recently the use of hyper-complex vector space
has been considered on the Quaternion space H
consisting of a real and three separate imaginary
axes (Zhu et al., 2018; Gaudet and Maida, 2018;
Parcollet et al., 2018, 2019; Tay et al., 2019). QuatE
(Zhang et al., 2019) – one of the recent state-of-
the-art models – is proposed to embed entities and
relations in KGs within the Quaternion space. How-
ever, QuatE is not completely effective at capturing
the correlations between the head and tail entities.
For example, given a relation “has positive test’”,
QuatE does not capture fully the correlations be-
tween the attributes (e.g., age, gender, and medical
record) of the head entity (e.g., “Donald Trump”)
and the attributes (e.g., transmission rate and clini-
cal characteristics) of the tail entity (e.g., “COVID-
19”). Some early translation-based models such
as TransR (Lin et al., 2015) and STransE(Nguyen
et al., 2016) can partially address this issue by asso-
ciating each relation with translation matrices, but
growing model parameters significantly.

Addressing these problems, we propose an ef-
fective embedding model, named QuatRE, to learn
the quaternion embeddings for entities and rela-
tions. QuatRE further utilizes two relation-aware
rotations for the head and tail embeddings through
the Hamilton product, respectively. As a result,
QuatRE strengthens the correlations between the
head and tail entities. Experimental results demon-
strate that our QuatRE obtains state-of-the-art per-
formances on well-known benchmark datasets for
the knowledge graph completion task; thus, it can
act as a new strong baseline for future works.

2 The approach

2.1 Quaternion background

We provide key notations and operations related
to quaternion space required for our model. Ad-
ditional details can further be found in the supple-
mentary material.
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A quaternion q ∈ H is a hyper-complex number
consisting of a real and three separate imaginary
components (Hamilton, 1844) defined as: q = qr +
qii + qjj + qkk, where qr, qi, qj, qk ∈ R, and i, j, k
are imaginary units that ijk = i2 = j2 = k2 = −1,
leads to noncommutative multiplication rules as
ij = k, ji = −k, jk = i, kj = −i, ki = j, and ik =
−j. Correspondingly, a n-dimensional quaternion
vector q ∈ Hn is defined as: q = qr + qii+ qjj+
qkk, where qr, qi, qj, qk ∈ Rn.

Norm. The normalized quaternion vector q/ of
q ∈ Hn is computed as:

q/ =
qr + qii+ qjj+ qkk√
q2r + q

2
i + q

2
j + q

2
k

(1)

Hamilton product. The Hamilton product of
two vectors q and p ∈ Hn is computed as:

q ⊗ p = (qr ◦ pr − qi ◦ pi − qj ◦ pj − qk ◦ pk)
+ (qi ◦ pr + qr ◦ pi − qk ◦ pj + qj ◦ pk)i
+ (qj ◦ pr + qk ◦ pi + qr ◦ pj − qi ◦ pk)j
+ (qk ◦ pr − qj ◦ pi + qi ◦ pj + qr ◦ pk)k

(2)

where ◦ denotes the element-wise product. We note
that the Hamilton product is not commutative, i.e.,
q ⊗ p 6= p⊗ q.

Quaternion-inner product. The quaternion-
inner product • of two quaternion vectors q and
p ∈ Hn returns a scalar, which is computed as:

q • p = qT
r pr + q

T
i pi + q

T
j pj + q

T
kpk (3)

QuatE: QuatE (Zhang et al., 2019) computes the
score of the triple (h, r, t) as: (vh ⊗ v/r)•vt, where
vh, vr, and vt ∈ Hn. However, only using vh,
vr, vt in QuatE to obtain the triple score is not
completely effective at modeling the correlations
between the head and tail entities. Our key contri-
bution is to overcome the limitation of QuatE by
integrating relation-aware rotations to increase the
correlations between the entities.

2.2 The proposed QuatRE
A knowledge graph (KG) G is a collection of valid
factual triples in the form of (head, relation, tail)
denoted as (h, r, t) such that h, t ∈ E and r ∈
R where E is a set of entities and R is a set of
relations. KG embedding models aim to embed
entities and relations to a low-dimensional vector

Figure 1: An illustration of our proposed QuatRE. Us-
ing relation-aware rotations enhances correlations be-
tween head and tail entities.

space to define a score function f . This function is
to give a score for each triple (h, r, t), such that the
valid triples obtain higher scores than the invalid
triples.

Given a triple (h, r, t), QuatRE also represents
the embeddings of entities and relations within the
Quaternion space. QuatRE further associates each
relation r with two quaternion vectors vr,1 and
vr,2 ∈ Hn. QuatRE then uses the Hamilton product
to rotate vh and vt by the normalized vectors v/r,1
and v/r,2 respectively as:

vh,r,1 = vh ⊗ v/r,1 (4)

vt,r,2 = vt ⊗ v/r,2 (5)

After that, QuatRE also utilizes a Hamilton product-
based rotation for vh,r,1 by the normalized quater-
nion embedding v/r , then followed by a quaternion-
inner product with vt,r,2 to produce the triple score.
The quaternion components of input vectors are
shared during computing the Hamilton product, as
shown in Equation 2. Therefore, QuatRE uses two
rotations in Equations 4 and 5 for vh and vt to
increase the correlations between the head h and
tail t entities given the relation r, as illustrated in
Figure 1.

Formally, we define the QuatRE score function
f for the triple (h, r, t) as:

f(h, r, t) = (vh,r,1 ⊗ v/r) • vt,r,2 (6)

=
((
vh ⊗ v/r,1

)
⊗ v/r

)
•
(
vt ⊗ v/r,2

)

Proposition. If we fix the real components of
both vr,1 and vr,2 to 1, and fix the imaginary com-
ponents of both vr,1 and vr,2 to 0, our QuatRE
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Method WN18RR FB15k-237
MR MRR H@10 H@3 H@1 MR MRR H@10 H@3 H@1

TransE (2013) 3384 0.226 50.1 – – 357 0.294 46.5 – –
DistMult (2015) 5110 0.430 49.0 44.0 39.0 254 0.241 41.9 26.3 15.5
ConvE (2018) 5277 0.460 48.0 43.0 39.0 246 0.316 49.1 35.0 23.9
ConvKB (2018) 2741 0.220 50.8 – – 196 0.302 48.3 – –
NKGE (2018) 4170 0.450 52.6 46.5 42.1 237 0.330 51.0 36.5 24.1
InteractE (2020) 5202 0.463 52.8 – 43.0 172 0.354 53.5 – 26.3
AutoSF (2020) – 0.490 56.7 – 45.1 – 0.360 55.2 – 26.7
ComplEx (2016) 5261 0.440 51.0 46.0 41.0 339 0.247 42.8 27.5 15.8
RotatE (2019) 3277 0.470 56.5 48.8 42.2 185 0.297 48.0 32.8 20.5
MuRP (2019) – 0.481 56.6 49.5 44.0 – 0.335 51.8 36.7 24.3
ATTH (2020) – 0.486 57.3 49.9 44.3 – 0.348 54.0 38.4 25.2
ROTH (2020) – 0.496 58.6 51.4 44.9 – 0.344 53.5 38.0 24.6
QuatE (2019) 2314 0.488 58.2 50.8 43.8 87 0.348 55.0 38.2 24.8
QuatRE 1986 0.493 59.2 51.9 43.9 88 0.367 56.3 40.4 26.9
GC-OTE (2020) – 0.491 58.3 51.1 44.2 – 0.361 55.0 39.6 26.7
ReInceptionE (2020) 1894 0.483 58.2 – – 173 0.349 52.8 – –
RotatEAdv (2019) 3340 0.476 57.1 49.2 42.8 177 0.338 53.3 37.5 24.1
R-GCN+ (2018) – – – – – – 0.249 41.7 26.4 15.1

Table 1: Experimental results on WN18RR and FB15k-237. Hits@k (H@k) is reported in %. The best scores
are in bold, while the second best scores are in underline. The results of TransE are taken from (Nguyen et al.,
2018). The results of DistMult and ComplEx are taken from (Dettmers et al., 2018). We note that GC-OTE and
RotatEAdv apply a self-adversarial negative sampling, which is different from the common negative sampling used
in the previous baselines, QuatE and our QuatRE. Furthermore, GC-OTE, ReInceptionE, and R-GCN+ integrate
information about relation paths. For a fair comparison, we do not compare our QuatRE with these models.

is simplified to QuatE. Hence QuatRE is viewed
as an extension of QuatE. Furthermore, given the
same embedding dimension, QuatE and our Qua-
tRE have comparable numbers of parameters. Be-
sides, an advantage of QuatRE is to change the
common use of translation matrices in translation-
based models such as TransR (Lin et al., 2015)
and STransE(Nguyen et al., 2016), hence reducing
computation significantly.

Learning process. We employ the Adagrad op-
timizer (Duchi et al., 2011) to train our proposed
QuatRE by minimizing the following loss function
(Trouillon et al., 2016) with the regularization on
model parameters θ as:

L =
∑

(h,r,t)∈{G∪G′}
log

(
1 + exp

(
−l(h,r,t) · f(h, r, t)

))

+ λ‖θ‖22 (7)

in which, l(h,r,t) =
{

1 for (h, r, t) ∈ G
−1 for (h, r, t) ∈ G′

where we use l2-norm with the regularization rate
λ; and G and G′ are collections of valid and invalid
triples, respectively. G′ is generated by corrupting
valid triples in G.

3 Experimental results

We evaluate our QuatRE on two benchmark
datasets WN18RR (Dettmers et al., 2018) and
FB15k-237 (Toutanova and Chen, 2015) for the
knowledge graph completion task (Bordes et al.,
2013), which aims to predict a missing entity given
a relation with another entity, e.g., inferring a head
entity h given (r, t) or inferring a tail entity t given
(h, r). We present the evaluation protocol and the
training protocol in the supplementary material.

Main results. We report the experimental re-
sults on the datasets in Table 1. In general, Qua-
tRE outperforms up-to-date baselines for all met-
rics except the second-best MRR and the Hits@1
on WN18RR and the second-best MR on FB15k-
237. Especially when comparing with QuatE, on
WN18RR, QuatRE gains significant improvements
of 2314− 1986 = 328 in MR (which is about 14%
relative improvement), and 1.0% and 1.1% absolute
improvements in Hits@10 and Hits@3 respectively.
Besides, on FB15k-237, QuatRE achieves improve-
ments of 0.367 − 0.348 = 0.019 in MRR (which
is 5.5% relative improvement) and obtains abso-
lute gains of 1.3%, 2.2%, and 2.1% in Hits@10,
Hits@3, and Hits@1 respectively.
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Figure 2: Visualization of the learned entity embed-
dings on WN18RR.

Correlation analysis. To qualitatively demon-
strate the correlations between the entities, we use
t-SNE (Maaten and Hinton, 2008) to visualize the
learned quaternion embeddings of the entities on
WN18RR for QuatE and QuatRE. We select all enti-
ties associated with two relations consisting of “in-
stance_hypernym” and “synset_domain_topic_of”.
We then vectorize each quaternion embedding us-
ing a vector concatenation across the four compo-
nents; hence, we obtain a real-valued vector repre-
sentation for applying t-SNE. The visualization in
Figure 2 shows that the entity distribution in our
QuatRE is denser than that in QuatE; hence this
implies that QuatRE strengthens the correlations
between the entities.
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Figure 3: MRR and Hits@10 on FB15k-237 for QuatE
and our QuatRE with respect to each relation category.

Relation analysis. Following Bordes et al.
(2013), for each relation r, we calculate the av-
eraged number ηh of head entities per tail entity
and the averaged number ηt of tail entities per head
entity. If ηh <1.5 and ηt <1.5, r is categorized one-
to-one (1-1). If ηh <1.5 and ηt ≥1.5, r is catego-
rized one-to-many (1-M). If ηh ≥1.5 and ηt <1.5,
r is categorized many-to-one (M-1). If ηh ≥1.5
and ηt ≥1.5, r is categorized many-to-many (M-
M). Figure 3 shows the MRR and H@10 scores for
predicting the head entities and then the tail entities

Relation QuatE QuatRE
hypernym 0.173 0.190
derivationally_related_form 0.953 0.943
instance_hypernym 0.364 0.380
also_see 0.629 0.633
member_meronym 0.232 0.237
synset_domain_topic_of 0.468 0.495
has_part 0.233 0.226
member_of_domain_usage 0.441 0.470
member_of_domain_region 0.193 0.364
verb_group 0.924 0.867
similar_to 1.000 1.000

Table 2: MRR score on the WN18RR test set with re-
spect to each relation.

with respect to each relation category on FB15k-
237, wherein our QuatRE outperforms QuatE on
these relation categories. Furthermore, we report
the MRR scores for each relation on WN18RR in
Table 2, which shows the effectiveness of QuatRE
in modeling different types of relations.

Model
WN18RR FB15k-237

MRR H@10 MRR H@10((
vh ⊗ v/r,1

)
⊗ v/r

)
•
(
vt ⊗ v/r,2

)
0.493 59.2 0.367 56.3

(i)
((
vh ⊗ v/r,1

)
⊗ v/r

)
• vt 0.491 58.9 0.364 56.0

(ii) (vh ⊗ v/r) •
(
vt ⊗ v/r,2

)
0.491 58.8 0.364 56.1

QuatE: (vh ⊗ v/r) • vt 0.488 58.2 0.348 55.0

Table 3: Ablation results for two different variants of
our QuatRE. (i) With only using vr,1. (ii) With only
using vr,2.

Ablation analysis. We report our ablation results
for two variants of our QuatRE in Table 3. In partic-
ular, the results degrade on both datasets when only
using either of vr,1 and vr,2. However, these two
variants of QuatRE still outperforms QuatE, hence
clearly showing the advantage of further using the
relation-aware rotations in our QuatRE to enhance
the correlations in knowledge graphs.

4 Conclusion

In this paper, we propose QuatRE – an advanta-
geous knowledge graph embedding model – to
learn the embeddings of entities and relations
within the Quaternion space with the Hamilton
product. QuatRE further utilizes two relation-
aware rotations to strengthen the correlations be-
tween the head and tail entities. Experimental
results demonstrate that QuatRE outperforms up-
to-date embedding models and produces state-of-
the-art performances on well-known benchmark
datasets for the knowledge graph completion task.
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A Related work

Existing embedding models (Bordes et al., 2013;
Wang et al., 2014) have been proposed to learn
the vector representations of entities and relations
for the knowledge graph completion task, where
the goal is to score valid triples higher than in-
valid triples. As an example, Table 4 illustrates the
score functions f(h, r, t) in previous state-of-the-
art models as well as our proposed model.

Early translation-based approaches exploit a
translational characteristic so that the embedding
of tail entity t should be close to the embedding
of head entity h plus the embedding of relation t.
For example, TransE (Bordes et al., 2013) defines
a score function: f(h, r, t) = −‖vh + vr - vt‖p,
where vh, vr, and vt ∈ Rn are vector embeddings
of h, r and t respectively; and ‖v‖p denotes the
p-norm of vector v. As a result, TransE is suit-
able for 1-to-1 relationships, but not well-adapted
for Many-to-1, 1-to-Many, and Many-to-Many re-
lationships. To this end, some translation-based
methods have been proposed to deal with this issue
such as TransH (Wang et al., 2014), TransR (Lin
et al., 2015), TransD (Ji et al., 2015), and STransE
(Nguyen et al., 2016). Notably, DistMult (Yang
et al., 2015) employs a multiple-linear dot product
to score the triples as: f(h, r, t) =

∑n
i vhi

vrivti .
One of the recent trends is to apply deep neural

networks to measure the triples (Dettmers et al.,
2018; Schlichtkrull et al., 2018; Nguyen et al.,
2018; Vashishth et al., 2020). For example, ConvE
(Dettmers et al., 2018) uses a convolution layer on
a 2D input matrix of reshaping the embeddings of
both the head entity and relation to produce feature
maps that are then vectorized and computed with
the embedding of the tail entity to return the score.
While most of the existing models have worked in
the real-valued vector space, several works have

4.2. Research Contribution 143



Model The score function f(h, r, t)

TransE −‖vh + vr - vt‖p where vh, vr, and vt ∈ Rn; ‖v‖p denotes the p-norm of vector v

ConvE vTt g (Wvec (g (concat (v̂h, v̂r) ∗Ω))) where ∗ denotes a convolution operator
Ω denotes a set of filters; concat denotes a concatenation operator
g denotes a non-linear function; v̂ denotes a 2D reshaping of v

ConvKB wTconcat (g ([vh,vr,vt] ∗Ω))

DistMult 〈vh,vr,vt〉 =
∑n

i vhi
vrivti where 〈〉 denotes a multiple-linear dot product

ComplEx Re (〈vh,vr,v∗t 〉) where Re(c) denotes the real part of the complex c
vh, vr, and vt ∈ Cn; v∗ denotes the conjugate of the complex vector v

RotatE −‖vh ◦ vr - vt‖p where vh, vr, and vt ∈ Cn; and ◦ denotes the element-wise product

QuatE (vh ⊗ v/r) • vt where vh, vr, and vt ∈ Hn; • denotes a quaternion-inner product
⊗ denotes the Hamilton product; the superscript / denotes the normalized embedding

Our QuatRE
((
vh ⊗ v/r,1

)
⊗ v/r

)
•
(
vt ⊗ v/r,2

)
where vh, vr, vt, vr,1, and vr,2 ∈ Hn

Table 4: The score functions in previous models. The table is adapted from (Nguyen, 2017).

moved beyond the real-valued vector space to the
complex vector space such as ComplEx (Trouillon
et al., 2016) and RotatE (Sun et al., 2019). Com-
plEx extends DistMult to use the multiple-linear
dot product on the complex vector embeddings of
entities and relations. Besides, RotatE considers a
rotation-based translation within the complex vec-
tor space.

Recently the use of hyper-complex vector space
has considered on the Quaternion space consist-
ing of a real and three separate imaginary axes. It
provides highly expressive computations through
the Hamilton product compared to the real-valued
and complex vector spaces. Zhu et al. (2018) and
Gaudet and Maida (2018) embed the greyscale and
each of RGB channels of the image to the real
and three separate imaginary axes of the Quater-
nion space and achieve better accuracies compared
real-valued convolutional neural networks with
same structures for image classification tasks. The
Quaternion space has also been successfully ap-
plied to speech recognition (Parcollet et al., 2018,
2019), and machine translation (Tay et al., 2019).
Regarding knowledge graph embeddings, Zhang
et al. (2019) has recently proposed QuatE, which
aims to learn entity and relation embeddings within
the Quaternion space with the Hamilton product.
QuatE, however, has a limitation in capturing the
correlations between the head and tail entities. Our
key contribution is to overcome this limitation by
integrating relation-aware rotations to increase the
correlations between the entities as illustrated in

Figure 1.

B Quaternion background

For completeness, we briefly provide a background
in quaternion, which has also similarly described
in recent works (Zhu et al., 2018; Parcollet et al.,
2019; Zhang et al., 2019; Tay et al., 2019). A
quaternion q ∈ H is a hyper-complex number con-
sisting of a real and three separate imaginary com-
ponents (Hamilton, 1844) defined as:

q = qr + qii+ qjj+ qkk (8)

where qr, qi, qj, qk ∈ R, and i, j, k are imaginary
units that ijk = i2 = j2 = k2 = −1, leads to non-
commutative multiplication rules as ij = k, ji =
−k, jk = i, kj = −i, ki = j, and ik = −j. Cor-
respondingly, a n-dimensional quaternion vector
q ∈ Hn is defined as:

q = qr + qii+ qjj+ qkk (9)

where qr, qi, qj, qk ∈ Rn. The operations for the
Quaternion algebra are defined as follows:

Conjugate. The conjugate q∗ of a quaternion q
is defined as:

q∗ = qr − qii− qjj− qkk (10)

Addition. The addition of two quaternions q and
p is defined as:

q+p = (qr+pr)+(qi+pi)i+(qj+pj)j+(qk+pk)k
(11)
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Figure 4: An illustration of QuatE versus our proposed QuatRE.

Scalar multiplication. The multiplication of a
scalar λ and a quaternion q is defined as:

λq = λqr + λqii+ λqjj+ λqkk (12)

Norm. The norm ‖q‖ of a quaternion q is defined
as:

‖q‖ =
√
q2r + q2i + q2j + q2k (13)

The normalized or unit quaternion q/ is defined as:

q/ =
q

‖q‖ (14)

And the normalized quaternion vector q/ of q ∈
Hn is computed as:

q/ =
qr + qii+ qjj+ qkk√
q2r + q

2
i + q

2
j + q

2
k

(15)

Hamilton product. The Hamilton product ⊗
(i.e., the quaternion multiplication) of two quater-
nions q and p is defined as:

q ⊗ p = (qrpr − qipi − qjpj − qkpk)
+ (qipr + qrpi − qkpj + qjpk)i

+ (qjpr + qkpi + qrpj − qipk)j
+ (qkpr − qjpi + qipj + qrpk)k (16)

The Hamilton product of two quaternion vectors q
and p ∈ Hn is computed as:

q ⊗ p = (qr ◦ pr − qi ◦ pi − qj ◦ pj − qk ◦ pk)
+ (qi ◦ pr + qr ◦ pi − qk ◦ pj + qj ◦ pk)i
+ (qj ◦ pr + qk ◦ pi + qr ◦ pj − qi ◦ pk)j
+ (qk ◦ pr − qj ◦ pi + qi ◦ pj + qr ◦ pk)k

(17)

where ◦ denotes the element-wise product. We note
that the Hamilton product is not commutative, i.e.,
q ⊗ p 6= p⊗ q.

Quaternion-inner product. The quaternion-
inner product • of two quaternion vectors q and
p ∈ Hn returns a scalar, which is computed as:

q • p = qT
r pr + q

T
i pi + q

T
j pj + q

T
kpk (18)

C Experimental setup

In the knowledge graph completion task (Bordes
et al., 2013), the goal is to predict a missing entity
given a relation with another entity, for example,
inferring a head entity h given (r, t) or inferring
a tail entity t given (h, r). The results are calcu-
lated by ranking the scores produced by the score
function f on triples in the test set.

C.1 Datasets
We evaluate our proposed QuatRE on benchmark
datasets: WN18RR (Dettmers et al., 2018) and
FB15k-237 (Toutanova and Chen, 2015), which are
derived to eliminate the reversible relation problem
to create more realistic and challenging prediction
tasks.

C.2 Evaluation protocol
Following Bordes et al. (2013), for each valid test
triple (h, r, t), we replace either h or t by each of
other entities to create a set of corrupted triples. We
use the “Filtered” setting protocol (Bordes et al.,
2013), i.e., not including any corrupted triples that
appear in the KG. We rank the valid test triple

4.2. Research Contribution 145



and corrupted triples in descending order of their
scores. We employ evaluation metrics: mean rank
(MR), mean reciprocal rank (MRR), and Hits@k
(the proportion of the valid triples ranking in top
k predictions). The final scores on the test set are
reported for the model which obtains the highest
Hits@10 on the validation set. Lower MR, higher
MRR, and higher Hits@k indicate better perfor-
mance.

C.3 Training protocol
We implement our QuatRE based on Pytorch
(Paszke et al., 2019) and test on a single GPU.
We set 100 batches for all datasets. We then
vary the learning rate α in {0.02, 0.05, 0.1}, the
number s of negative triples sampled per training
triple in {1, 5, 10}, the embedding dimension n
in {128, 256, 384}, and the regularization rate λ
in {0.05, 0.1, 0.2, 0.5}. We train our QuatRE up to
8,000 epochs on WN18RR and 2,000 epochs on
FB15k-237. We monitor the Hits@10 score after

each 400 epochs on WN18RR and each 200 epochs
on FB15k-237. We select the hyper-parameters
using grid search and early stopping on the vali-
dation set with Hits@10. We present the statistics
of the datasets in Table 5 and the optimal hyper-
parameters on the validation set for each dataset in
Table 6.

Dataset | E | | R | #Triples in train/valid/test
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

Table 5: Statistics of the experimental datasets.

Dataset α n λ s

WN18RR 0.1 256 0.5 5
FB15k-237 0.1 384 0.5 10

Table 6: The optimal hyper-parameters on the valida-
tion sets.
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pages 3429–3435.

Contribution. We leverage a transformer-based memory network (Santoro et al., 2018)

to propose R-MeN (Nguyen et al., 2020c) to infer a valid fact of new triples. R-MeN

transforms each triple along with adding positional embeddings into a sequence of three

input vectors. R-MeN then uses a transformer self-attention mechanism (Vaswani et al.,

2017) to guide the memory to interact with each input vector to produce an encoded vector.

As a result, R-MeN feeds these three encoded vectors to a convolutional neural network

(CNN)-based decoder to return the triple score. R-MeN obtains better performance than

up-to-date embedding models for the tasks of triple classification and search personalisation.

The code is available at: https://github.com/daiquocnguyen/R-MeN.

https://acl2020.org
https://github.com/daiquocnguyen/R-MeN
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Abstract

Knowledge graph embedding methods often
suffer from a limitation of memorizing valid
triples to predict new ones for triple classi-
fication and search personalization problems.
To this end, we introduce a novel embed-
ding model, named R-MeN, that explores a
relational memory network to encode poten-
tial dependencies in relationship triples. R-
MeN considers each triple as a sequence of
3 input vectors that recurrently interact with
a memory using a transformer self-attention
mechanism. Thus R-MeN encodes new in-
formation from interactions between the mem-
ory and each input vector to return a corre-
sponding vector. Consequently, R-MeN feeds
these 3 returned vectors to a convolutional neu-
ral network-based decoder to produce a scalar
score for the triple. Experimental results show
that our proposed R-MeN obtains state-of-the-
art results on SEARCH17 for the search per-
sonalization task, and on WN11 and FB13 for
the triple classification task.

1 Introduction

Knowledge graphs (KGs) – representing the gen-
uine relationships among entities in the form of
triples (subject, relation, object) denoted as (s, r, o)
– are often insufficient for knowledge presentation
due to the lack of many valid triples (West et al.,
2014). Therefore, research work has been focusing
on inferring whether a new triple missed in KGs
is likely valid or not (Bordes et al., 2011, 2013;
Socher et al., 2013). As summarized in (Nickel
et al., 2016; Nguyen, 2017), KG embedding mod-
els aim to compute a score for each triple, such that
valid triples have higher scores than invalid ones.

Early embedding models such as TransE (Bordes
et al., 2013), TransH (Wang et al., 2014), TransR
(Lin et al., 2015), TransD (Ji et al., 2015), DIST-
MULT (Yang et al., 2015) and ComplEx (Trouil-
lon et al., 2016) often employ simple linear oper-

ators such as addition, subtraction and multiplica-
tion. Recent embedding models such as ConvE
(Dettmers et al., 2018) and CapsE (Nguyen et al.,
2019b) successfully apply deep neural networks to
score the triples.

Existing embedding models are showing promis-
ing performances mainly for knowledge graph com-
pletion, where the goal is to infer a missing entity
given a relation and another entity. But in real appli-
cations, less mentioned, such as triple classification
(Socher et al., 2013) that aims to predict whether
a given triple is valid, and search personalization
(Vu et al., 2017) that aims to re-rank the relevant
documents returned by a user-oriented search sys-
tem given a query, these models do not effectively
capture potential dependencies among entities and
relations from existing triples to predict new triples.

To this end, we leverage the relational mem-
ory network (Santoro et al., 2018) to propose R-
MeN to infer a valid fact of new triples. In par-
ticular, R-MeN transforms each triple along with
adding positional embeddings into a sequence of
3 input vectors. R-MeN then uses a transformer
self-attention mechanism (Vaswani et al., 2017)
to guide the memory to interact with each input
vector to produce an encoded vector. As a result,
R-MeN feeds these 3 encoded vectors to a convo-
lutional neural network (CNN)-based decoder to
return a score for the triple. In summary, our main
contributions are as follows:

• We present R-MeN – a novel KG embedding
model to memorize and encode the potential
dependencies among relations and entities for
two real applications of triple classification
and search personalization.

• Experimental results show that R-MeN ob-
tains better performance than up-to-date em-
bedding models, in which R-MeN produces
new state-of-the-art results on SEARCH17
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for the search personalization task, and a new
highest accuracy on WN11 and the second-
highest accuracy on FB13 for the triple classi-
fication task.

2 The proposed R-MeN

Embedding Positional Encoding

s r o

CNN

score

M MLP g M MLP g M MLP g

+ + +

Figure 1: Processes in our proposed R-MeN for an il-
lustration purpose. “M” denotes a memory. “MLP” de-
notes a multi-layer perceptron. “g” denotes a memory
gating. “CNN” denotes a convolutional neural network-
based decoder.

Let G be a KG database of valid triples in the
form of (subject, relation, object) denoted as (s, r,
o). KG embedding models aim to compute a score
for each triple, such that valid triples obtain higher
scores than invalid triples.

We denote vs, vr and vo ∈ Rd as the embed-
dings of s, r and o, respectively. Besides, we hy-
pothesize that relative positions among s, r and o
are useful to reason instinct relationships; hence
we add to each position a positional embedding.
Given a triple (s, r, o), we obtain a sequence of 3
vectors {x1, x2, x3} as:

x1 = W (vs + p1) + b
x2 = W (vr + p2) + b
x3 = W (vo + p3) + b

where W ∈ Rk×d is a weight matrix, and p1,p2
and p3 ∈ Rd are positional embeddings, and k is
the memory size.

We assume we have a memory M consisting
of N rows wherein each row is a memory slot.
We use M (t) to denote the memory at timestep t,
and M (t)

i,: ∈ Rk to denote the i-th memory slot

at timestep t. We follow Santoro et al. (2018) to
take xt to update M (t)

i,: using the multi-head self-
attention mechanism (Vaswani et al., 2017) as:

M̂
(t+1)
i,: = [M̂

(t+1),1
i,: ⊕ M̂ (t+1),2

i,: ⊕
...⊕ M̂ (t+1),H

i,: ]

with M̂
(t+1),h
i,: = αi,N+1,h

(
Wh,V xt

)

+

N∑

j=1

αi,j,h

(
Wh,VM

(t)
j,:

)

where H is the number of attention heads, and
⊕ denotes a vector concatenation operation. Re-
garding the h-th head, Wh,V ∈ Rn×k is a value-
projection matrix, in which n is the head size and
k = nH . Note that {αi,j,h}Nj=1 and αi,N+1,h are
attention weights, which are computed using the
softmax function over scaled dot products as:

αi,j,h =
exp (βi,j,h)∑N+1

m=1 exp (βi,m,h)

αi,N+1,h =
exp (βi,N+1,h)∑N+1
m=1 exp (βi,m,h)

with βi,j,h =

(
Wh,QM

(t)
i,:

)T (
Wh,KM

(t)
j,:

)

√
n

βi,N+1,h =

(
Wh,QM

(t)
i,:

)T (
Wh,Kxt

)
√
n

where Wh,Q ∈ Rn×k and Wh,K ∈ Rn×k are
query-projection and key-projection matrices, re-
spectively. As following Santoro et al. (2018), we
feed a residual connection between xt and M̂ (t+1)

i,:

to a multi-layer perceptron followed by a memory
gating to produce an encoded vector yt ∈ Rk for
timestep t and the next memory slot M (t+1)

i,: for
timestep (t+ 1).

As a result, we obtain a sequence of 3 encoded
vectors {y1, y2, y3} for the triple (s, r, o). We then
use a CNN-based decoder to compute a score for
the triple as:

f (s, r, o) = max (ReLU ([y1, y2, y3] ∗Ω))T w

where we view [y1, y2, y3] as a matrix in Rk×3;
Ω denotes a set of filters in Rm×3, in which m is
the window size of filters; w ∈ R|Ω| is a weight
vector; ∗ denotes a convolution operator; and max
denotes a max-pooling operator. Note that we use
the max-pooling operator – instead of the vector
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concatenation of all feature maps used in ConvKB
(Nguyen et al., 2018) – to capture the most impor-
tant feature from each feature map, and to reduce
the number of weight parameters.

We illustrate our proposed R-MeN as shown in
Figure 1. In addition, we employ the Adam opti-
mizer (Kingma and Ba, 2014) to train R-MeN by
minimizing the following loss function (Trouillon
et al., 2016; Nguyen et al., 2018):

L =
∑

(s,r,o)∈{G∪G′}
log
(
1 + exp

(
−t(s,r,o) · f (s, r, o)

))

in which, t(s,r,o) =
{

1 for (s, r, o) ∈ G
−1 for (s, r, o) ∈ G′

where G and G′ are collections of valid and invalid
triples, respectively. G′ is generated by corrupting
valid triples in G.

3 Experimental setup

3.1 Task description and evaluation
3.1.1 Triple classification
The triple classification task is to predict whether
a given triple (s, r, o) is valid or not (Socher et al.,
2013). Following Socher et al. (2013), we use two
benchmark datasets WN11 and FB13, in which
each validation or test set consists of the same num-
ber of valid and invalid triples. It is to note in the
test set that Socher et al. (2013) did not include
triples that either or both of their subject and object
entities also appear in a different relation type or
order in the training set, to avoid reversible relation
problems. Table 1 gives statistics of the experimen-
tal datasets.

Dataset #E #R #Triples in train/valid/test
FB13 75,043 13 316,232 11,816 47,466
WN11 38,696 11 112,581 5,218 21,088

Table 1: Statistics of the experimental datasets. #E is
the number of entities. #R is the number of relations.

Each relation r has a threshold θr computed by
maximizing the micro-averaged classification ac-
curacy on the validation set. If the score of a given
triple (s, r, o) is above θr, then this triple is classi-
fied as a valid triple, otherwise, it is classified as an
invalid one.

3.1.2 Search personalization
In search personalization, given a submitted query
for a user, we aim to re-rank the documents re-
turned by a search system, so that the more the

returned documents are relevant for that query, the
higher their ranks are. We follow (Vu et al., 2017;
Nguyen et al., 2019a,b) to view a relationship of
the submitted query, the user and the returned docu-
ment as a (s, r, o)-like triple (query, user, document).
Therefore, we can adapt our R-MeN for the search
personalization task.

We evaluate our R-MeN on the benchmark
dataset SEARCH17 (Vu et al., 2017) as follows: (i)
We train our model and use the trained model to
compute a score for each (query, user, document)
triple. (ii) We sort the scores in the descending or-
der to obtain a new ranked list. (iii) We employ two
standard evaluation metrics: mean reciprocal rank
(MRR) and Hits@1. For each metric, the higher
value indicates better ranking performance.

3.2 Training protocol

3.2.1 Triple classification

We use the common Bernoulli strategy (Wang
et al., 2014; Lin et al., 2015) when sampling in-
valid triples. For WN11, we follow Guu et al.
(2015) to initialize entity and relation embeddings
in our R-MeN by averaging word vectors in the
relations and entities, i.e., vamerican arborvitae =
1
2 (vamerican + varborvitae), in which these word
vectors are taken from the Glove 50-dimensional
pre-trained embeddings (Pennington et al., 2014)
(i.e., d = 50). For FB13, we use entity and relation
embeddings produced by TransE to initialize entity
and relation embeddings in our R-MeN, for which
we obtain the best result for TransE on the FB13
validation set when using l2-norm, learning rate at
0.01, margin γ = 2 and d = 50.

Furthermore, on WN11, we provide our new
fine-tuned result for TransE using our experimen-
tal setting, wherein we use the same initialization
taken from the Glove 50-dimensional pre-trained
embeddings to initialize entity and relation embed-
dings in TransE. We get the best score for TransE
on the WN11 validation set when using l1-norm,
learning rate at 0.01, margin γ = 6 and d = 50.

In preliminary experiments, we see the highest
accuracies on the validation sets for both datasets
when using a single memory slot (i.e., N = 1); and
this is consistent with utilizing the single memory
slot in language modeling (Santoro et al., 2018).
Therefore, we set N = 1 to use the single memory
slot for the triple classification task. Also from
preliminary experiments, we select the batch size
bs = 16 for WN11 and bs = 256 for FB13, and

4.2. Research Contribution 150



set the window size m of filters to 1 (i.e., m = 1).
Regarding other hyper-parameters, we vary

the number of attention heads H in {1, 2, 3},
the head size n in {128, 256, 512, 1024}, the
number of MLP layers l in {2, 3, 4}, and the
number of filters F = |Ω| in {128, 256, 512,
1024}. The memory size k is set to be nH =
k. To learn our model parameters, we train our
model using the Adam initial learning rate lr in
{1e−6, 5e−6, 1e−5, 5e−5, 1e−4, 5e−4}. We run up
to 30 epochs and use a grid search to select the
optimal hyper-parameters. We monitor the ac-
curacy after each training epoch to compute the
relation-specific threshold θr to get the optimal
hyper-parameters (w.r.t the highest accuracy) on
the validation set, and to report the final accuracy
on the test set.

3.2.2 Search personalization
We use the same initialization of user profile, query
and document embeddings used by Nguyen et al.
(2019b) on SEARCH17 to initialize the corre-
sponding embeddings in our R-MeN respectively.
From the preliminary experiments, we set N = 1,
bs = 16 and m = 1. Other hyper-parameters are
varied as same as used in the triple classification
task. We monitor the MRR score after each train-
ing epoch to obtain the highest MRR score on the
validation set to report the final scores on the test
set.

4 Main results

4.1 Triple classification

Table 2 reports the accuracy results of our R-MeN
model and previously published results on WN11
and FB13. R-MeN sets a new state-of-the-art accu-
racy of 90.5% that significantly outperforms other
models on WN11. R-MeN also achieves a second
highest accuracy of 88.9% on FB13. Overall, R-
MeN yields the best performance averaged over
these two datasets.

Regarding TransE, we obtain the second-best
accuracy of 89.2% on WN11 and a competitive
accuracy of 88.1% on FB13. Figure 2 shows the ac-
curacy results for TransE and our R-MeN w.r.t each
relation. In particular, on WN11, the accuracy for
the one-to-one relation “similar to” significantly
increases from 50.0% for TransE to 78.6% for R-
MeN. On FB13, R-MeN improves the accuracies
over TransE for the many-to-many relations “insti-
tution” and “profession”.

Method WN11 FB13 Avg.
NTN (Socher et al., 2013) 86.2 87.2 86.7
TransH (Wang et al., 2014) 78.8 83.3 81.1
TransR (Lin et al., 2015) 85.9 82.5 84.2
TransD (Ji et al., 2015) 86.4 89.1 87.8
TransR-FT (Feng et al., 2016) 86.6 82.9 84.8
TranSparse-S (Ji et al., 2016) 86.4 88.2 87.3
TranSparse-US (Ji et al., 2016) 86.8 87.5 87.2
ManifoldE (Xiao et al., 2016a) 87.5 87.2 87.4
TransG (Xiao et al., 2016b) 87.4 87.3 87.4
lppTransD (Yoon et al., 2016) 86.2 88.6 87.4
ConvKB (Nguyen et al., 2019a) 87.6 88.8 88.2
TransE (Bordes et al., 2013) (ours) 89.2 88.1 88.7
Our R-MeN model 90.5 88.9 89.7
TransE-NMM (Nguyen et al., 2016) 86.8 88.6 87.7
TEKE H (Wang and Li, 2016) 84.8 84.2 84.5
Bilinear-COMP (Guu et al., 2015) 87.6 86.1 86.9
TransE-COMP (Guu et al., 2015) 84.9 87.6 86.3

Table 2: Accuracy results (in %) on the WN11 and
FB13 test sets. The last 4 rows report accuracies of
the models that use relation paths or incorporate with a
large external corpus. The best score is in bold while
the second best score is in underline. “Avg.” denotes
the averaged accuracy over two datasets.
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Figure 2: Accuracies for R-MeN and TransE w.r.t each
relation on WN11 and FB13.

4.2 Search personalization

Table 3 presents the experimental results on
SEARCH17, where R-MeN outperforms up-to-
date embedding models and obtains the new high-
est performances for both MRR and Hits@1 met-
rics. We restate the prospective strategy proposed
by Vu et al. (2017) in utilizing the KG embedding
methods to improve the ranking quality of the per-
sonalized search systems.
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Method MRR H@1
SE (Original rank) 0.559 38.5
CI (Teevan et al., 2011) 0.597 41.6
SP (Vu et al., 2015) 0.631 45.2
TransE (Bordes et al., 2013) 0.669 50.9
ConvKB (Nguyen et al., 2019a) 0.750 59.9
CapsE (Nguyen et al., 2019b) 0.766 62.1
Our R-MeN 0.778 63.6

Table 3: Experimental results on the SEARCH17 test
set. Hits@1 (H@1) is reported in %. Our improve-
ments over all baselines are statistically significant with
p < 0.05 using the paired t-test.
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Figure 3: Effects of the head size n and the number H
of attention heads on the validation sets.

4.3 Effects of hyper-parameters

Next, we present in Figure 3 the effects of hyper-
parameters consisting of the head size n, and the
number H of attention heads. Using large head
sizes (e.g., n = 1024) can produce better perfor-
mances on all 3 datasets. Additionally, using multi-
ple heads gives better results on WN11 and FB13,
while using a single head (i.e., H = 1) works best
on SEARCH17 because each query usually has a
single intention.

4.4 Ablation analysis

For the last experiment, we compute and report
our ablation results over 2 factors in Table 4.
In particular, the scores degrade on FB13 and
SEARCH17 when not using the positional embed-
dings. More importantly, the results degrade on

Model WN11 FB13 SEARCH17
Our R-MeN 91.3 88.8 0.792

(a) w/o Pos 91.3 88.7 0.787
(b) w/o M 89.6 88.4 0.771

Table 4: Ablation results on the validation sets. (i)
Without using the positional embeddings. (ii) Without
using the relational memory network, thus we define
f (s, r, o) = max (ReLU ([vs, vr, vo] ∗Ω))

T
w.

all 3 datasets without using the relational memory
network. These show that using the positional em-
beddings can explore the relative positions among
s, r and o; besides, using the relational memory net-
work helps to memorize and encode the potential
dependencies among relations and entities.

5 Conclusion

We propose a new KG embedding model, named R-
MeN, where we integrate transformer self-attention
mechanism-based memory interactions with a
CNN decoder to capture the potential dependencies
in the KG triples effectively. Experimental results
show that our proposed R-MeN obtains the new
state-of-the-art performances for both the triple
classification and search personalization tasks. In
future work, we plan to extend R-MeN for multi-
hop knowledge graph reasoning. Our code is
available at: https://github.com/daiquocnguyen/
R-MeN.
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Chapter 5

Conclusion

This thesis has set out to develop new embedding models to learn representations for graph-

structured data, focusing on undirected graphs and knowledge graphs. In this chapter, we

summarise our solutions and contributions for the research questions we have articulated

in Chapter 1. We then discuss possible directions for future work.

5.1 Contributions

In Chapter 3, we addressed the research questions on developing new graph neural networks

(GNNs) for undirected graphs:

RQ 1: How can we develop an advanced aggregation function to better update node

representations from their neighbours?

We introduced U2GNN (Nguyen et al., 2019b) – an advantageous variant of GNNs –

which induces a powerful aggregation function leveraging the transformer self-attention

network (Vaswani et al., 2017; Dehghani et al., 2019) to improve the graph classification

performance. We demonstrated that U2GNN outperforms up-to-date models and produces

state-of-the-art accuracies on well-known benchmark datasets.

Another research question we addressed focused on inferring embeddings for new nodes:

RQ 2: How can we develop an effective learning process to infer embeddings for new

nodes?
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We presented two new unsupervised models SANNE (Nguyen et al., 2020d) and

Caps2NE (Nguyen et al., 2020a) that generate random walks and then leverage the trans-

former self-attention network (Vaswani et al., 2017) and the capsule network (Sabour

et al., 2017) respectively, to learn node embeddings. Both models aim to infer effective

embeddings not only for existing nodes but also for new nodes. We showed that both

SANNE and Caps2NE obtain state-of-the-art accuracy results for the node classification

task.

Besides, in Chapter 3, we addressed another research question of moving beyond the

Euclidean space to increase representation capability:

RQ 3: How can we move beyond the Euclidean space to learn better graph representa-

tions and reduce the number of model parameters?

We proposed to learn node and graph embeddings in the Quaternion space as this

space provides highly expressive computations through the Hamilton product compared

to the Euclidean and complex vector spaces. We studied our strategy by introducing

our quaternion graph neural networks (Nguyen et al., 2020b) to generalise GCNs (Kipf

and Welling, 2017). Our proposed model obtains state-of-the-art accuracies on a range

of well-known benchmark datasets for three downstream tasks of graph classification,

semi-supervised node classification, and text (node) classification.

In Chapter 4, we addressed the following research question for knowledge graphs:

RQ 4: How can we develop deep KG embedding approaches to better model relationships

among entities?

We introduced two new embedding models, ConvKB (Nguyen et al., 2018, 2019a) and

CapsE (Nguyen et al., 2019c), to capture global relationships and translation characteristics

between entities and relations. The former leverages a convolutional layer to output the

feature maps, which are then concatenated and computed with a weight vector to calculate

the triple score. The latter extends ConvKB in using a capsule network (Sabour et al.,

2017) to reconstruct the feature maps into the corresponding capsules, which are then

routed to another capsule whose length is used to return the triple score. We showed

that our models perform better than previous embedding models for the knowledge graph
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completion task.

Furthermore, we focused on another research question on enhancing the relation-aware

correlations between the entities:

RQ 5: How can we increase the correlations between the entities in KGs beyond the

Euclidean space?

We presented QuatRE (Nguyen et al., 2020e) to learn the embeddings of entities and

relations within the Quaternion space with the Hamilton product. In particular, QuatRE

utilises two relation-aware rotations to strengthen the correlations between the head and

tail entities. Experimental results demonstrated that our proposed QuatRE outperforms up-

to-date embedding models and produces state-of-the-art performances for the knowledge

graph completion task.

Also, in Chapter 4, we addressed the last research question regarding two other tasks

of triple classification and search personalisation:

RQ 6: How can we develop an advanced KG embedding model for two other applications

of triple classification and search personalisation?

We proposed a new KG embedding model, named R-MeN (Nguyen et al., 2020c), to

effectively capture and encode the potential dependencies among relations and entities.

To this end, R-MeN integrates a transformer-based memory network with a CNN-based

decoder to compute the triple score. We found that our proposed R-MeN obtains new

state-of-the-art performances for both the triple classification and search personalisation

tasks.

5.2 Future work

This thesis broadly covers both graph neural networks and knowledge graph embeddings,

which have been received significant attention from the scientific community because of

their limitless potentials in many real-world applications. In what follows, we highlight

some promising directions for future work.

Regarding GNNs, as pointed out in Section 3.2.3, to the best of our knowledge, our
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proposed QGNN is the first work that takes advantages of quaternion embedding space to

GNNs, and proves the effectiveness in the downstream tasks of graph classification, semi-

supervised node classification, and text (node) classification. It would also be valuable to

develop QGNN-based methods for open graph benchmark (Hu et al., 2020). Furthermore,

it is worth noting that most of the existing applications using GCN (Kipf and Welling,

2017) can also adopt our framework. Thus, we plan to further investigate QGNN for other

applications in computer vision, natural language processing, and healthcare.

Regarding KG embeddings, as mentioned in Section 2.2.3.3, beside conventional em-

bedding models such as TransE (Bordes et al., 2013), DistMult (Yang et al., 2015), Com-

plEx (Trouillon et al., 2016), and ConvE (Dettmers et al., 2018), recent approaches have

adapted GNNs for knowledge graph completion (Schlichtkrull et al., 2018; Shang et al.,

2019; Nathani et al., 2019; Vashishth et al., 2020b). In general, vanilla GNNs are modi-

fied and utilised as an encoder module to update vector representations for entities and

relations before feeding to a decoder module that adopts a score function (e.g., as em-

ployed in TransE, DistMult, and ConvE) to return the triple scores. For example, R-GCN

(Schlichtkrull et al., 2018) modifies GCNs (Kipf and Welling, 2017) to build a specific en-

coder to update only entity embeddings. CompGCN (Vashishth et al., 2020b) customises

GCNs to adapt composition operations between entities and relations in the encoder

module. These GNN-based embedding models, however, are still outperformed by other

conventional models such as TuckER (Balažević et al., 2019b) on challenging and difficult

benchmark datasets. We note that none of them treats each relation as an individual node

to consider coherences among entities and relations in the encoder module; hence this

could lower their performance. Therefore, a potential direction for KG embeddings is to

develop a GNN-based embedding model by integrating node coherences among entities

and relations.
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