
Reverse Nearest Neighbourhood Search

in Spatial Databases

Nasser Allheeib

A thesis submitted for the degree of Doctor of Philosophy at

Monash University in 2020

Faculty of Information Technology

Copyright Notice

c©Nasser Allheeib (2020)

I certify that I have made all reasonable efforts to secure copyright permissions for

third-party content included in this thesis and have not knowingly added copyright

content to my work without the owner’s permission.

i

I dedicate this thesis to my loving parents who value knowledge above

all.

ii

Declaration

This thesis contains no material which has been accepted for the award of any

other degree or diploma at any university or equivalent institution and that, to

the best of my knowledge and belief. I have duly acknowledged all the sources of

information which have been used in the thesis

Nasser Ibrahim Allheeib

Signature:

Date: 29 October 2020

iii

Publications during Enrolment

Publications arising from this thesis include:

iv

Acknowledgements

First and foremost, I would like to thank God for his blessing and guidance in

my life, without which I could not have finished this thesis.

I am thankful to my dad and mum (Ibrahim and Latifa) who have been un-

wavering in their support, and have always been ready with enormous patience to

catch me when I fall. Having you both behind me has made me stronger, and I

totally understand being far from you has not been easy and it was also a difficult

time for you, so just saying “thank you” to parents does not do justice to the way I feel.

I thank Associate Professor David Taniar, my main supervisor, who has consis-

tently guided me, always with patience and encouragement. He directed me in this

project since the first day of my PhD journey up until the submission date of my

thesis. He constantly gave constructive feedback for all my work and helped me face

and overcome exciting challenges. I would not have been able to succeed in this

undertaking without his advice.

I also wish to express my gratitude to Dr. Muhammad Aamir Cheema, my

co-supervisor, who has directed me in my PhD and has provided valuable academic

and moral support. I also thank Dr. Saiful Islam, my external supervisor, who has

offered me much valuable advice in regard to my work during my PhD candidature.

Despite living in a different state, he willingly made time for meetings whenever

he visited Melbourne and encouraged me to strive for excellence. Also, I am very

grateful for my colleague in spatial databases research, Dr. Kiki Maulana, for his

patience and trust in me, and for his guidance and advice which was always much

appreciated.

I thank all my family members for encouraging me to study overseas and always

giving me their support, in particular, my brothers and sisters in Saudi Arabia who

have assisted me during the most difficult times. I thank them for their advice,

prayers and support during this difficult time overseas. Thank you to my two

beautiful children (Azzam and Jory) who have been very patient with their father

during this PhD study. Thank you for my family and everyone who was with me in

Australia and support me during my PhD journey.

v

Again, I would like to thank everyone who has been a part of my life throughout

my PhD journey. I cannot name all of you individually, but each one of you has

contributed to the person I am today.

Nasser Ibrahim Allheeib

Monash University

October 2020

vi

Abstract

Spatial databases have become a critical part of modern applications such as

the Geographic Information System (GIS), targeted marketing, and optimization of

urban planning. There are a lot of applications where a particular facility needs to

retrieve a group of points of interest and the points of interest within the same group

need to be geographically close to each other. Unfortunately, most spatial queries

are intended to retrieve the points of interest individually. In this thesis, the focus

is on the retrieval of a group of points that are geographically close to each other,

instead of on individual and widely dispersed points. We present efficient algorithms

to retrieve a group of points, named Neighbourhood. A neighbourhood is a collection

of m-chained points within the maximum distance (d) between a pair of points. We

are the first to introduce the definition of neighbourhood to compute Reverse Nearest

Neighbourhood (RNNH) Query. Results obtained from an extensive experimental

study demonstrate that our algorithm is very efficient when compared to the naive

algorithm or traditional spatial queries.

We extend our static RNNH algorithm for continuous monitoring of RNNH

queries in cases where the queries are continuously moving. We propose a neighbour-

hood safe region method for monitoring continuous Reverse Nearest Neighbourhood

(RNNH) queries. We use the techniques in our algorithm to efficiently compute the

safe region of queries. Our extensive experimental results on datasets with different

densities demonstrate the efficiency and accuracy of the proposed approaches.

Also, we are the first to present a generic algorithm for the processing of the

neighbourhood on real road networks. We propose a new efficient technique for

computing the neighbourhood on road networks, which we named Reverse Nearest

Neighbourhood on Road networks (RNNH-RN) queries. In our study, we explain

the unique definition of neighbourhood in the road network setting and we propose

the RNNH-RN algorithm. Our experimental study shows that our algorithm is

significantly feasible when applied to a spatial road network.

vii

Contents

1 Introduction 1

1.1 Aims and Background . 1

1.1.1 Aims . 1

1.1.2 Background . 2

1.2 Problem Definitions . 10

1.3 Research Objectives . 11

1.4 Contributions . 12

1.4.1 Reverse Nearest Neighbourhood Queries 13

1.4.2 Continuous Reverse Nearest Neighbourhood Queries 14

1.4.3 Reverse Nearest Neighbourhood on Road Networks Queries . 14

1.5 Thesis Structure . 15

2 Literature Review 17

2.1 Overview . 17

2.2 Spatial Query Processing . 17

2.2.1 Range Queries . 17

2.2.2 Nearest Neighbour Queries 19

2.2.3 Reverse Nearest Neighbour Queries 23

2.3 Reducing Communication Cost for Continuous Queries 28

2.4 Clustering in Spatial Databases . 30

2.5 Limitations . 34

2.5.1 Limitation of Existing Works in Traditional Spatial Queries 34

2.5.2 Limitation of Existing Works in Monitoring Continuous Spatial

Queries . 35

2.5.3 Limitation of Existing Works in Spatial Road Networks . . . 35

3 Reverse Nearest Neighbourhood (RNNH) Queries 36

3.1 Overview . 36

3.2 Motivation . 36

3.3 Notations and Definitions . 40

viii

3.4 Proposed Framework . 45

3.4.1 Possible Solutions . 45

3.4.2 Proposed Algorithm . 46

3.5 Experimental Results . 50

3.5.1 Experimental Setup . 50

3.5.2 Evaluating Performance on Synthetic datasets 51

3.5.3 Evaluating Performance on Real Datasets 55

3.6 Conclusion . 56

4 Continuous Reverse Nearest Neighbourhood Queries 58

4.1 Overview . 58

4.2 Motivation . 58

4.3 Proposed Framework . 62

4.3.1 Basic Safe Region . 62

4.3.2 Enhanced Safe Region . 66

4.3.3 Extended Safe Region . 68

4.3.4 Algorithms for Safe Regions 69

4.4 Calculating the Area of the Safe Region 72

4.4.1 Calculating the Two Circles 72

4.4.2 Using the Monte-Carlo Simulation to Calculate SR Area . . . 74

4.5 Experimental Results . 74

4.5.1 Accuracy of Simulation-based Method 75

4.5.2 Memory Usage . 77

4.5.3 Size of the Safe Region . 77

4.5.4 Effectiveness of proposed algorithm 78

4.6 Conclusion . 79

5 Reverse Nearest Neighbourhood Queries On Road Networks 80

5.1 Overview . 80

5.2 Motivation . 80

5.3 Notations and Definitions . 83

5.4 Proposed Framework . 87

5.5 Experimental Results . 92

5.5.1 Low-density Experiment . 94

5.5.2 Medium-density Experiment 99

5.5.3 High-density Experiment . 107

5.6 Conclusion . 114

ix

6 Conclusion and Future Works 115

6.1 Overview . 115

6.2 Conclusion . 115

6.3 Future Work . 117

6.3.1 Reverse Spatial Top-k Neighbourhood Query 117

6.3.2 Improving the Effectiveness of Safe Region for Reverse Nearest

Neighbourhood Query . 118

6.3.3 Reverse Nearest Neighbourhood on Road Network RNNH −
RO Query for Moving Queries 118

References . 118

Appendix A 135

Appendix B 136

B.1 Monash University Dataset . 139

B.1.1 Sample data for vertices . 139

B.1.2 Sample data for edges . 141

B.1.3 Sample data for users . 142

B.1.4 Sample data for facilities . 142

B.1.5 Data Analysis . 143

B.2 Melbourne City Dataset . 144

B.2.1 Sample data for vertices . 144

B.2.2 Sample data for edges . 146

B.2.3 Sample data for users . 147

B.2.4 Sample data for facilities . 148

B.2.5 Data Analysis . 148

B.3 South-East Melbourne City Dataset 150

B.3.1 Sample data for vertices . 150

B.3.2 Sample data for edges . 152

B.3.3 Sample data for users . 153

B.3.4 Sample Data for Facilities 154

B.3.5 Data Analysis . 154

x

List of Figures

1.1 k Nearest Neighbour queries . 3

1.2 Reverse Nearest Neighbour query . 5

1.3 Group spatial query . 6

1.4 Example of chained objects . 7

1.5 Continuous monitoring query . 8

1.6 Example of euclidean group nearest neighbour query 9

1.7 Example of obstacles in spatial databases 15

2.1 Example of a range query . 18

2.2 Range query in a spatial network database 19

2.3 Range query with R-tree [1] . 20

2.4 Example of a 3NN query . 21

2.5 A Road Network . 22

2.6 Example of RNN query . 24

2.7 Example of the concept of influence zone 25

2.8 Six-regions algorithm [2] . 25

2.9 TPL [2] . 26

2.10 SLICE prunes larger space with more partitions [3] 27

2.11 Voronoi diagram in spatial road network 28

2.12 Safe region . 30

2.13 Comparisons between DBSCAN and CLARANS [4] 31

2.14 GRNN(p4, p4, p5) =
{
u1, u3, u4, u11

}
. 32

2.15 An example of the Nearest Neighborhood query (k = 3) 33

3.1 Example of a reverse nearest neighbourhood query 37

3.2 Example of a boolean range query 42

3.3 Example of neighbourhood queries NH(d = 3,m = 3) 43

3.4 Neighbourhood distance . 43

3.5 Influence zone of q . 45

3.6 Effect of varying the number of d 52

xi

3.7 Effect of varying the number of facilities 53

3.8 Effect of varying the number of users 54

3.9 Effect of varying the number of d 55

3.10 Effect of varying the number of facilities 56

3.11 Effect of varying the number of users 56

4.1 Centralised systems versus P2P systems 59

4.2 Two types of communications in RNNH based P2P network systems 60

4.3 Basic safe region . 63

4.4 RNNH for the current location of q and the corresponding basic safe

region . 64

4.5 Query q moves to q′ : dist(q, p1) < Fd and dist(q′, p1) > Fd 65

4.6 Lemma 6 . 66

4.7 Enhanced safe region . 67

4.8 Query moves 2Fd distance. 68

4.9 Extended safe region . 69

4.10 Types of extended safe regions . 73

4.11 Area of intersection of two circles . 73

4.12 Simulation model vs. equation method 76

4.13 Demonstration of software calculating the area of safe region corre-

sponding to a static query . 76

4.14 Memory usage . 77

4.15 Low-density environment . 78

4.16 Medium-density environment . 78

4.17 High-density environment . 78

4.18 Construct CPU time needed for safe regions in three different density

environments . 78

5.1 Reverse Nearest Neighbour on a road network 81

5.2 An example of euclidean Reverse Nearest neighbourhood 82

5.3 RNNH-RN for Wholesale distributor 82

5.4 A Road Networks . 85

5.5 Reverse Nearest Neighbourhood query on Road Networks 86

5.6 Lemma 1 . 88

5.7 Reveres Nearest Neighbourhood framework 90

5.8 Monash University -Clayton Campus- 94

5.9 Spatial query results on Map A . 95

5.10 RNNH-RN result for d = 0.5km 96

5.11 RNNH-RN result for m = 6 . 96

5.12 Variety of d values . 97

xii

5.13 Variety of m values . 97

5.14 Analysis for Monash University campus 98

5.15 Comparison RNNH and RNNH-RN algorithm for Monash University

campus . 99

5.16 Melbourne City, Australia . 100

5.17 Spatial query results on Map B . 101

5.18 Green POI belongs only one NH, red POI belongs two NHs, Melbourne

City . 102

5.19 RNNH-RN result for d = 0.5km . 103

5.20 RNNH-RN result for m = 4 . 104

5.21 Variety of d values . 104

5.22 Variety of m values . 105

5.23 Analysis for Melbourne City . 106

5.24 Comparison RNNH and RNNH-RN algorithm for Melbourne City . 106

5.25 Stores located in South-East Melbourne, Victoria, Australia 107

5.26 Spatial query results on Map C . 109

5.27 RNNH-RN result for d = 0.200km 110

5.28 RNNH-RN result for m = 6 . 110

5.29 Green POI belongs only one NH, red POI belongs two NHs, South

East area . 111

5.30 Variety of d values . 112

5.31 Variety of m values . 112

5.32 Analysis for South-East Melbourne 113

5.33 Comparison RNNH and RNNH-RN algorithm for South-East Mel-

bourne . 114

A.1 Sample of synthetic dataset . 135

B.1 kml file . 136

B.2 Snapshot code 1 . 137

B.3 Snapshot code 2 . 138

B.4 Snapshot code 3 . 138

B.5 Monash University Map . 139

B.6 Melbourne City Map . 144

B.7 South-East Melbourne Map . 150

xiii

List of Tables

3.1 Notation and Definitions . 41

3.2 Experiment Dataset . 51

4.1 Experiment Dataset . 75

4.2 Experimental Parameters . 75

5.1 Notation . 84

5.2 Experiment Dataset . 92

5.3 Experiment Parameters . 93

5.4 Experimental Analysis for Nearest Neighbour - Monash University- 93

5.5 Experimental analysis Nearest Neighbour -Melbourne City- 100

5.6 Experimental analysis for Nearest Neighbour South-East Melbourne 108

B.1 Sample data for vertices . 140

B.2 Sample data for edges . 141

B.3 Sample data for users . 142

B.4 Sample data for facilities . 142

B.5 Analysis for Furthest point Monash University 143

B.6 Analysis for Nearest Neighbour Monash University 143

B.7 Sample data for vertices . 145

B.8 Sample data for edges . 146

B.9 Sample data for users . 147

B.10 Sample data for facilities . 148

B.11 Analysis for Furthest point Melbourne City 149

B.12 Analysis Nearest Neighbour Melbourne City 149

B.13 Sample data for vertices . 151

B.14 Sample data for edges . 152

B.15 Sample data for users . 153

B.16 Sample data for facilities . 154

B.17 Analysis for Furthest point South-East Melbourne 155

B.18 Analysis for Nearest Neighbour South-East Melbourne 155

xiv

Chapter 1

Introduction

1.1 Aims and Background

1.1.1 Aims

Over the last two decades, spatial databases have attracted much interest in their now

considered important applications [5]. A spatial database is defined as an optimised

database that stores data which in turn defines the geographic space. Although

the concept of spatial databases first emerged in 1997, recently it has become an

active area of research [6] [7]. Furthermore, the rapid development of Geographic

Information Systems (GIS) has enabled spatial data query technology to play an

increasingly important role in real life. We can see that the spatial database has

become very popular in most modern applications such as location-based social

networks that employ GPS to locate users and allow them to broadcast their location

and share information via their mobile devices [8]. Therefore, a strong and thorough

understanding of spatial data is required. In general, a spatial query is intended

to retrieve geographic objects that meet specific requirements for answering the

query, and it comes as either a point of interest (POI) or a region. To retrieve the

queried objects, the query can be processed in two ways: point-to-point calculation

or region-based calculation [9]. In a point-to-point calculation, the query is answered

by choosing appropriate objects from a dataset that can be used to answer the query.

In a region-based calculation, the query is answered by means of constructing the

region that contains the correct objects that answer the query. This method returns

a group of objects in the region. Region-based calculation has one major advan-

tage over point-to-point calculation in that it does not check each point one-by-one.

Consequently, this method will not suffer from degraded performance where there

is a large number of objects [10]. Also, region-based calculation returns a group of

1

objects as a result. A Voronoi diagram is a commonly used method that applies

region-based calculation. This method divides the space area into smaller spaces

(cells) based on the distance to facility objects [11]. In the Voronoi cell of q, all

objects inside of this cell of q consider q as the nearest facility. These objects are

considered to be members of the q region. Even though a Voronoi diagram returns

these objects as a group of objects (region members), there are many applications

where a group of objects needs to be retrieved, and the objects in the same group

need to be geographically close to each other. Reverse Nearest Neighbour queries are

one type of notable solution but unfortunately, Reverse Nearest Neighbour queries

and their variants are not suitable for these kinds of applications because they

have some limitations: (1) the objects in the same group are sparse objects, so

the distance between objects in the same group can very markedly, (2) the objects

are not clustered[12]. Unfortunately, previous studies have not addressed these issues.

In this thesis, we discuss the queries in the context of a group version of Reverse

Nearest Neighbour queries known as a Neighbourhood. A neighbourhood is a collec-

tion of chained objects within the maximum distance between a pair of neighbourhood

members. In the neighbourhood context, instead of fetching dispersed objects as in

Reverse Nearest Neighbour queries, we are interested in finding neighbourhoods of

objects. The neighbourhood finds a given query as their nearest facility among all

the existing facilities, and neighbourhood members within the same neighbourhood

are geographically close to each other.

Therefore, we present and propose new novel queries in the context of

a group version of Reverse Nearest Neighbour (RNN) queries, we named

it the Reverse Nearest Neighbourhood Query that can be applied for

continuous queries and in road network environment.

1.1.2 Background

Apart from the exponential increase in the acceptance of smart phones, inexpensive

position locators and location-based services (LBS) are becoming increasingly popu-

lar. Consequently, the spatial database has become a critical component of modern

applications. One common query that can be posed by users of applications based on

location-based service (LBS) is “Find the nearest object of interest”. As an example,

we consider a problem involving customers and a store. The problem concerns

the delivery of online orders during COVID 19, where both stores and customers

are in lock-down. A store (or supermarket) is a business that sells products to

customers, and it has warehouses in various locations. The customer in this instance

2

is the person ordering items online and requiring home delivery. The overall cost

of items is the price of each product plus the delivery cost (determined by the

distance between the customers and the store). The query posed by a store (query

point) is: “Find customers who are located near the store’s warehouse”. There are

two ways to answer this question. From a facility perspective, it is important to

find the important object p for a given query. We assume p is considered to be

important if it is the closest point to q. This kind of query is known as k Nearest

Neighbour (kNN) query in the spatial database. Given a query point q ∈ F , an inte-

ger k and a set of points P , a kNN query returns k closest points p to q, where p ∈ P .

Figure 1.1: k Nearest Neighbour queries

To illustrate the idea of a k Nearest Neighbour kNN query, consider the example

depicted in Figure 1.1. Assume there is a store (e.g. Coles supermarket), that has

six warehouses, and the number of customers is represented by green markers. Coles

(query point) is searching for customers, who have ordered online and who are located

close to a warehouse. A spatial database is able to manage information about the

store’s warehouses and the customers, and it can provide information about the

customers who are closest to the store’s warehouse. In order to answer this kind

of query, the entire distance between the store’s warehouse (query point) and all

customers is calculated. Basically, this query is solved by means of a point-to-point

calculation.

Figure 1.1 shows the nearest neighbour query for Coles’ warehouse (q). In this

example, the nearest neighbour is customer A, which is the closest to the warehouse

(q). If the warehouse wants to obtain the groups comprised of as certain number

of customers (e.g. five customers), then the kNN query based on point-to-point

3

calculation returns A,B,C,D and E. However, although this approach suffers from

performance degradation because checking is done point by point, it also returns

some points of interest that have less influence on the query, such as customer E

who does not consider the query point (q) to be the nearest of all facilities. Also, the

kNN query result returns customers that are dispersed geographically.

Another way that a spatial query can be addressed is from the user’s/customer’s

perspective. This query aims to retrieve the important objects or users from the

user’s point of view. This approach identifies the potential objects for which the

query is considered important (i.e. the closest) for them. This query is known as a

Reverse Nearest Neighbour (RNN) query in spatial databases. Given a query facility

q and a set of points p, an RNN query returns every user/customer p ∈ P which

considers q as the nearest of all facilities. When considering the example of a store

warehouse and customers, all the potential customers closest to the store’s warehouse

(query) are considered. In this case, information about the potential customers of

a store’s warehouse can be used to make decisions or target market analysis. for

example, distribution deals or promotions can target certain customers who are more

likely to be influenced by deals.

The RNN query returns only those objects who consider the query point is the

nearest facility of all facilities, even if it far away. Figure 1.2(a) shows an example

of a RNN query-based point-to-point calculation. The RNN query of q store’s

warehouse comprises: A,B,C,D and F as customers who consider q as the nearest

facility among all the existing facilities. It does not return customer E because there

is another warehouse which is much closer to the customer E than the query point.

The reverse nearest neighbour has received much research attention in recent years

because it influences objects by query point. The Reverse Nearest Neighbour (RNN)

query has a good advantage in that it can be answered through point-to-point and

region-based calculations.

The Voronoi diagram is one of the most commonly employed methods that use

to answer the Reverse Nearest Neighbour (RNN) query by region-based calculation.

The Voronoi diagram of a point set F , which is donated by V D(F), is a unique

diagram that consists of a set of a collection of Voronoi polygons (Voronoi cells)

V F s. Each Voronoi polygon is associated with a point in F (called generator point)

and contains the locations of all points in the Euclidean space that are closer to

the generator point of the Voronoi cell than any other generator point in F . The

Voronoi cell of q is an area surrounded by the boundary in a convex polygon shape

4

(a) Based on Point-to-Point Calculation (b) Voronoi Diagram

Figure 1.2: Reverse Nearest Neighbour query

where every object located in this area will always consider query point q as the

nearest facility point as shown in Figure 1.2(b). Since these objects: A,B,C,D and

F are located in the Voronoi cell of q, they are the answer to the V D(q) query. Any

objects located outside the Voronoi cell of q will not consider q as the nearest facility

point. However, even though this kind of query based on region-based calculation

returns points that exert great influence on the query, there are some points just

outside the border of V D(q), but it is better to include them as part of influence

points of q such as (G and L) in Figure 1.2(b). This does not mean that these two

points always move to the Voronoi cell of q and do not belong to their nearest facility.

This is certainly not suggested. It means these two points belong to their nearest

facility and also constitute some of the influence points for the q point. The second

problem associated with the Voronoi diagram, is that points located in a Voronoi

cell are dispersed objects. Thus, travelling from one point to another point is a

costly computation because these points are dispersed within a particular area. In

delivering orders during lookdown, the travel involved in going from one point to

another point is costly because these points are dispersed.

Another approach that can be used in spatial databases to overcome the problem

of dispersed objects is that instead of returning the individual single point of interest

(POI), points of interest (POIs) (group objects) are found which are not dispersed;

this is referred to as a Group Nearest Neighbour (GNN) query. This kind of query

returns the centre of the circle that includes a group of points, and is based on the

nearest smallest enclosing circle; hence, it is a geometric approach. This approach

is used to find clustered points that are located close to each other geographically.

This kind of query seeks a certain number of points of interest (minimum number is

pre-defined by user query) that are geographically close to each other to minimise

the cost of travelling between group members. A typical example of a group nearest

neighbour query is “Find the group of customers closest to a query point”. Consider

5

the example of a store and its customers. A common question that can be posed at

the store’s warehouse location is “Where is the nearest area that includes a group of

customers (e.g. at least four)”. Finding a group of points of interest (POIs) is crucial

for a decision system, as it can explore and discover the surrounding clustered points

of interest.

The usual search query such as the nearest neighbor query, will return the nearest

customer or a sparse group of k nearest customers. However, the group nearest

neighbour will return clustered customers. This is done by finding the location of the

nearest group of points, and returning the centre of the circle that includes the group

of points using the geometric approach of the Nearest Enclosing Circle (NEC). Figure

1.3(a) depicts an example of a group nearest neighbour, if the store warehouse (query

point) wants to target a cluster of customers, it may help the store warehouse to

launch promotions targeting this particular group of customers. The Group Nearest

Neighbour (GNN) query returns the center of circle c that includes H, I, J and K

customer. This approach aims to minimise efficiently the travel time between group

members. Another spatial query has been presented is the Group Reverse kNN

Query [13], it returns group of points of interest. However, Group Reverse kNN

query (GRKNN) is must issue from a set of query points (multi-query points) to

find the objects that consider the set of query points as their nearest facility points.

Figure 1.3(b) shows result of GRNN(f1, f2, f3) =
{
K, I, L,G,D,H, J

}
.

(a) Group Nearest Neighbour query (b) Group Reverse kNN Query

Figure 1.3: Group spatial query

The main weaknesses of these methods are as follows: (1) both methods return

only one group of objects, (2) the group that return could be located any where in

space. This is because the GNN query uses the geometric approach of the Nearest

Enclosing Circle (NEC); hence, it is unlikely to find a nearby group of objects within

the smallest enclosing circle. Instead, it would usually be far away from the query

6

point as shown in Figure 1.3(a). (3) GRKNN query uses more than one query point,

and (4) in (GNN) query, it is unable to include very close points of interest from

the boundary of circle (such as G point), the diameter of the circle is 0.85km in the

example of Figure 1.3(a), but if we increase a little bit of the diameter to be 1.3KM ,

we are able to include the G point. Unfortunately, none of the previous spatial

queries is able to handle these issues.

Therefore, it is a great opportunity for us to propose a novel technique for solving

these particular problems. Thus, instead of forming the group of objects based on

the Nearest Enclosing Circle (NEC) approach or using multiple query points, we can

form the group of objects in chained objects form and return numbers of group of

objects result for one query point. We name the approach of group of objects as

“Neighbourhood”. An example of a neighbourhood is shown in Figure 1.4. Here these

are two two neighbourhoods, and they are located close to the query point (q).

Figure 1.4: Example of chained objects

In all the previous scenarios, the query point is a static query which is one that

requires the result to be computed only once based on a current snapshot of the

data. Another approach that can be used for a spatial database is the continuous

query. A continuous query involves points of interest that change their locations over

time, and requires a higher update frequency [14]. The continuous query concept

has been widely investigated over the last decade, which is why most of the current

studies concentrate more on monitoring such queries [15]. Most of the studies on the

continuous monitoring of spatial queries use a client and server model. Continuous

queries send their locations to the server after every time unit and the server computes

the result of the query accordingly and sends them back to the query point.

7

To illustrate the need for monitoring continuous query, let us consider a real-life

example of disaster management involving bushfires which pose great danger to the

affected areas, and need to be handled swiftly and reliably [16]. In Australia, during

the summer months, dozens of fires burn across the country and residents brace

themselves for catastrophic conditions [17]. As shown in Figure 1.5, people living

in bushfire-prone areas often have to leave dangerous areas as a matter of urgency;

therefore support for people in these locations must be maximised. During this kind

of natural disaster, local people are disconnected from the centralized network station

and communication between people can be achieved via short-range device such as

Bluetooth or WiFi.

In this example there are two neighbourhoods each one with four people as shown

in Figure 1.5. In one neighbourhood, neighbourhood members can communicate

with each other via a short-range device. People in this disaster area can use this

short-range device to contact the drone flying within its communication range to

obtain information, such as the location of the nearest shelters or the latest update

about the direction of fire. Drones fly around area to collect and send information to

neighbourhood members. In this scenario, a flying drone is considered as a continuous

object because it frequently change its location over time, which requires a huge level

of updating in the drone center’s database server for monitoring. Also, when the

drone flies long distances and is far away from its current location, this could change

the query point (flying drone) and requires the allocation of a new neighbourhood

by the server.

Figure 1.5: Continuous monitoring query

Monitoring the continuous query plays a significant role in query processing, as

8

results must be kept up to date. There are two main challenges in monitoring the

continuous query efficiently: the first is to reduce the computation cost. The query

results may need to be recomputed whenever a query point changes its location.

This may result in a huge computation cost for every single new query point location.

The second challenge is to reduce the communication cost, since the query point is

required to report its location to the server every time it changes its location. So, the

aim is to present a comprehensive approach to the monitoring of continuous spatial

queries. Over the last few years, several safe-region-based approaches [18, 19, 15]

have been introduced to monitor various continuous spatial queries. The aim of the

safe region algorithm is to return an area or zone such that the results of the query

remain unchanged as long as the query remains inside the safe region. Hence, the

results of the query do not need to be updated unless the query leaves its safe region.

To the best of our knowledge, all these previous approaches concen-

trate on traditional queries such as kNN, RNN and range query; none

of the works is concerned with the continuous query in the context of a

neighbourhood version of a neighbourhood version of RNN queries.

Figure 1.6: Example of euclidean group nearest neighbour query

In spatial databases, there are two different types of environments: Euclidean

space and road networks. All previous studies are concerned with Euclidean space.

However, to obtain a reliable result, the road network approach is more realistic,

because Euclidean space is not always accurate. The problem becomes more compli-

cated when we use networks distance. To illustrate this point, consider the example

in Figure 1.6, where the query of Group Nearest Neighbour 4GNN returns the

group nearest neighbour that consists of four points (E,H,F,G) in Euclidean space.

9

However, in reality, these points of interest are not the nearest neighbours to the

query, because the query would have to travel around the river and the buildings

to reach these points (E,H,F,G). It is very clear that the distance measurement

in Euclidean space depends only on the relative positions of two points of interest,

whereas the real distance measurement on a road network does not depend solely

on the relative positions, but on the road links (sections) between the two points of

interest while taking into consideration any obstacles such as rivers and/or buildings.

Recently, spatial queries on road networks have been widely studied, the most

commons works being on Nearest Neighbor (NN), k Nearest Neighbor (kNN),

Continuous Nearest Neighbor CNN , and Reverse Nearest Neighbor (RNN) query

[20]. However, all these previous studies focus on finding, processing and

retrieving the points of interest individually on a road network; no work

has attempted to find the points of interest on a road network by consid-

ering a neighbourhood.

1.2 Problem Definitions

In this study, our aim is to address the shortcomings of current methods by proposing

a group version of RNN queries as a neighbourhood. This research studies and

proposes a novel approach called Reverse Nearest Neighbourhood query where a

neighbourhood considers the query as the nearest facility. Given the limitations

of the approaches described above, this thesis will focus on the closeness of the

neighbourhood members (clustered points), and minimise the distance between them.

Another aim is to minimise the distance between the query and neighbourhood. To

accomplish this goal, it is important to understand several research challenges:

• Challenge 1: Limitation in the Definition of Neighbourhood

There are many applications where the query needs to retrieve a neighbourhood

whose members need to be geographically close to each other and close to

the query point. One good example would be targeted marketing, whereby

the query can design special promotion plans or deals for customers within a

certain neighbourhood. Members in the neighbourhood are not far from each

other geographically, and the neighbourhood is not far from the query. The

query could minimise delivery costs when offering promotions to customers

to help increase revenue. Hence, the first challenge and one that is the most

crucial, is how to define the neighbourhood that meets the given description.

10

• Challenge 2: Expensive Cost of Finding Neighbourhood

The existing methods applied to Reverse Nearest Neighbour queries cannot

retrieve a neighbourhood. To the best of our knowledge, to date, no algorithm

has been proposed for solving Reverse Nearest Neighbourhood queries. Unfor-

tunately, the baseline algorithm that can be used for neighbourhood queries is

computationally expensive. Therefore, the next challenge is to reduce the cost

of finding a neighbourhood.

• Challenge 3: Reducing the Computation and Communication Cost

In continuous queries, the query results may need to be recomputed whenever

a query changes its location. This may incur a huge computation cost. Also,

to maintain the correctness of the query results, a query is required to report

its location to the server every time it changes its location, in which case the

communication cost may increase significantly as well. Therefore, the challenge

here is to reduce the computation and communication cost incurred by the

monitoring of continuous queries.

• Challenge 4: Creating the Neighbourhood in a Spatial Road Net-

work

Many studies on spatial databases focus on Euclidean space and road networks.

In real life, the Euclidean distance-based approach is not always accurate

[21]because it ignores obstacles such as buildings or a lake. However, in road

networks, obstacles are considered. Therefore, the last challenge for this study

is to design a neighbourhood for a road networks environment.

1.3 Research Objectives

To address the aforementioned research challenges, this section states the primary

aim which is to propose efficient techniques to solve Reverse Nearest Neighbourhood

queries. In order to achieve this key goal, we establish specific objectives, formulated

as research questions.

• RQ1 - How can the Reverse Nearest Neighbourhood RNNH queries be better

captured and efficiently computed?

11

This work is motivated by our observation that RNN may fail to retrieve a

neighbourhood of objects. We show that RNN query may be unable to retrieve

neighbourhood of objects that are geographically close to each other. To better

capture the notion of neighbourhood, we aim to return a neighbourhood that

considers the query is the nearest facility and neighbourhood members need

to be geographically close to each other. This research question addresses the

first and second challenges and published in [22], more details of which are

presented in Chapter 3.

• RQ2 - How to efficiently monitor continuous Reverse Nearest Neighbourhood

(RNNH) queries?

In this work, we aim to monitor RNNH query in a scenario where the query

is continuously moving and users’ locations are stationary. We propose a

safe-region technique to monitor queries with a minimal computation cost.

Therefore, the third challenge is addressed by this research question and pub-

lished in [23]. More details are presented in Chapter 4.

• RQ3 - How can the Reverse Nearest Neighbourhood queries on road networks

be computed?

This work is also motivated by our observation that RNNH queries can-

not be directly implemented into a spatial road network and RNNH fails to

find accurate Reverse Nearest Neighbourhoods on road networks. Euclidean

distance does not take obstacles into consideration, and therefore it is totally

inappropriate for road networks. Consequently, it is important to have an

efficient algorithm that is applicable to road networks. The fourth challenge

is addressed by this research question, more details of which are presented in

Chapter 5.

1.4 Contributions

In this section, we summarise the contribution that this thesis makes to this body of

knowledge. Each of the above-mentioned research objectives are detailed below.

12

1.4.1 Reverse Nearest Neighbourhood Queries

Currently, we are experiencing huge volumes of spatial objects data in many applica-

tions such as mobile social networks, and the location-based mobile community can

be typically formed by a group or neighbourhood comprising mobile subscribers. An

understanding of these spatial data is crucial for the locations-based service providers.

Thus, the trend emphasises the need to understand the neighbourhood instead of an

individual object; however, firstly it is essential to define the neighbourhood.

Hence, we formally define a Reverse Nearest Neighbourhood query in a spatial

database, and propose a novel query called Reverse Nearest Neighbourhood (RNNH)

query for two-dimensional location data. That is, instead of retrieving dispersed

objects as occurs with RNN queries, we find a neighbourhood of objects which find

a given facility which is the nearest one of all existing facilities. A neighbourhood

is a collection of chained objects within the maximum distance between a pair of

neighbourhood members. The neighbourhood members are influential objects for the

given point that are clustered and not sparse objects. Also, the objects returned by

a Voronoi diagram in a RNN query are not the only influential points for the query

point [24]. In fact, other objects can exert a great influence on the given query point.

As an example, we consider a problem involving customers and a store in a

scenario where online order is being delivered. The problem arises when several

customers are ordering items from the nearest store and each customer is paying indi-

vidual delivery fees. The store might be able to reduce the delivery cost by grouping

under a single dispatch the orders of all customers who are close to each other. A

store can take into consideration the price of the goods and the distance between

the customers in the delivery cost. As discussed, the RNN query using a Voronoi

diagram can return B and D customers as chained objects in one neighbourhood that

consider q as the nearest facility. However, we can see that the best option for L and

G customers is to join with customers (B,D) in a nearby group in one neighbourhood

to reduce the delivery costs as shown in Figure 1.4. Therefore, in this case, the

store’s warehouse (query point) will be able to offer the lowest delivery cost for the

neighbourhood of B,D,L and G. Our extensive and comprehensive experiments

on synthetic and real datasets demonstrate the effectiveness and efficiency of our

proposed algorithm.

13

1.4.2 Continuous Reverse Nearest Neighbourhood Queries

In this study, we extended our work on snapshot RNNH queries for the continuous

RNNH queries. The moving query is assumed to be constantly moving. Minimising

the frequent updates of the query location and keeping costs low while monitoring

the moving query are the two main challenges for researchers. These challenges are

addressed by using the safe region concept. The safe region is an area where the

result of query does not change as long as the query remains inside it.

The aim of the safe region is to reduce the number of query location updates

to the server. The query does not communicate with the server once it enters the

safe region, and even the server is not aware of the direction of the query. It reports

to the server only when the query leaves its safe region or when the server requests

it. In this thesis, we present our technique using safe region for monitoring RNNH

query, which is known as the RNNH safe region. The aim here is to prevent any

communication between the query and server while the query is moving inside its

safe region. We conduct extensive experiments to demonstrate the effectiveness and

efficiency of our approach.

1.4.3 Reverse Nearest Neighbourhood on Road Networks Queries

During the review of literature on Reverse Nearest Neighbourhood queries, we noticed

that the efficacy of this algorithm has not been investigated in the context of spatial

road networks. The algorithm of Reverse Nearest Neighbourhood in Euclidean dis-

tance cannot be implemented directly in spatial road networks, as the characteristics

of a spatial road network differ from those of Euclidean distance. When computing

distances, algorithms applied to Euclidean distance ignore the impact of obstacles

such as buildings and lakes. Take as an example a city center with a river and

buildings (off-roads space) as shown in Figure 1.7. The algorithm in Euclidean space

returns one neighbourhood that has a collection of chained objects with a maximum

distance between a pair of neighbourhood members of two km. As shown in the

Figure, the neighbourhood has A,B,C and D objects. Unfortunately, Euclidean

space does not take into account obstacles such as the river in this example. The

actual distance between object B and C,is not within two km; it is more than ten

km. Realistically, objects c or d would have to travel around the river to get to q.

Hence, we found that the distance in Euclidean space depends solely on the relative

positions of two points, while the distance in a spatial road network depends not

only on relative positions, but on sections of road between two points.

14

Figure 1.7: Example of obstacles in spatial databases

Therefore, in this study, we introduce an algorithm which takes obstacles into

account. We propose the Reverse Nearest Neighbourhood on Road Networks

(RNNHRN) queries for finding neighbourhoods in a road network. To the best

of our knowledge, this is the first study to propose an algorithm for retrieving a

neighbourhood on road networks. Road networks are usually represented as a graph

(a web of roads) that consists of edges and vertices (nodes). An edge is a line that

links two vertices or nodes. Computing the distance between two nodes in a road

network involves calculating the distance of edges that link two nodes. We conduct

extensive experiments to demonstrate that the proposed solution is applicable for

network datasets with low, medium and high levels of population density.

1.5 Thesis Structure

The structure of this thesis is given below.

• Chapter 2 reviews the related studies that motivated us to conduct research

on reverse nearest neighbourhood.

• Chapter 3 describes our work on spatial Euclidean distance, where we propose

and define the concept of a neighbourhood in Reverse Nearest Neighbour Query,

which we have called Reverse Nearest Neighbourhood (RNNH) query.

• Chapter 4 presents a new method for monitoring continuous reverse nearest

neighbourhood queries. The moving query requests the constant reporting of

its results which extend from the registration of the query to its cancellation.

15

Over this time, the query results must be continuously updated according to its

location. So, we construct a new technique to reduce the need for continuous

monitoring of the query, and eliminate the need for the query to follow a defined

path.

• Chapter 5 describes our examination of reverse nearest neighbourhood queries

to road networks. Since a road network is generally represented as a graph,

finding the neighbourhood in Euclidean distance is not the same as in road

networks. Consequently, it is important to devise an algorithm for Reverse

Nearest Neighbourhood on Road Networks, known as the RNNH −RN query.

• Chapter 6 summarises the outcomes of our studies and concludes our research.

This chapter also includes several suggestions for possible directions for future

work

16

Chapter 2

Literature Review

2.1 Overview

Presented in this chapter is a review of the relevant studies, so that we obtain a good

understanding of some of the key elements in the spatial queries field. We start by

discussing and providing background information on query processing that is based

on Euclidean space. We discuss the fundamental spatial queries, range query, nearest

neighbour query, reverse nearest neighbour query and group nearest neighbour query.

Furthermore, the related work concerning the monitoring continuous spatial queries

is discussed, and an overview of the relevant work on the safe region is presented. We

review several relevant studies dealing with spatial queries based on road networks.

Finally, we summarise the limitations of the studies that have been reviewed.

2.2 Spatial Query Processing

2.2.1 Range Queries

A range query in spatial databases is used to find and retrieve objects of interest

within a given radius. In this research, we focus on the static radius range query (for

the sake of simplicity we name it ‘range query’) which is applied when the query

is not moving. A range query depends on the current location of the query, and

it can be defined as follows: Given a set of facilities F , a query facility q ∈ F , a

set of points P and a positive value d, a range query retrieves all points that lie

within distance d from q. Formally, a range query returns every point p for which

dist(q, p) ≤ d, where dist(q, p) represents the distance between q and p.

17

Range queries have recently been investigated in various environments: Euclidean

space and road networks [25, 26, 27, 28, 29, 30], and their results are computed where

the static location of the points and facilities is taken into account [25, 27, 29]. In

Euclidean space, the range query depends on the relative positions of two points of

interest to calculate the distance. Figure 2.1 below gives an example of a range query

in Euclidean space, while the points of interest (i.e., restaurants) are represented by

the green marker. The customer (query point) wants to know all restaurants within

2km from where he/she is standing. The highlighted points of interest shown in red

represent the restaurant location that will be obtained by the user (listed by numbers

1 to 7), and the highlighted points of interest shown by the green marker represent

restaurants outside the range that will, therefore, not be included in the final result.

Figure 2.1: Example of a range query

Most range query processing depends on Euclidean distance to provide the relative

position of the spatial object [31]. However, in some circumstances, the location

of spatial objects may need to be specified by the underlying network and not by

Euclidean space. Thus, researchers [32, 33, 34, 35] investigated the concept of range

query using network distance. The aim of this query is to find points of interest

which are based on the distance of the road network, not Euclidean distance. To

give an example of a range query in a road network, consider Figure 2.2 where the

points of interest (i.e., restaurants) are listed from 1 to 17. The customer’s request

is for all restaurants within 1.5km from where he/she is standing. The red objects

represent the answer to the range query in the road network because their network

distance is less than 1.5km from the location of the query point.

18

Figure 2.2: Range query in a spatial network database

Most literature on range query is based on R-tree proposed [1] in 1984 and and

consistently applied due to its efficiency and good performance. R-tree indexing can

index multidimensional objects. It is based on their closeness and binds them in a

minimum rectangle. The processing of a range query using an R-Tree index is an

efficient method. [1] demonstrates the processing of a range query using R-tree, as

shown in the example in Figure 2.3. The range query typically represents a circular

area with a specific radius [25], a query point is the centre of the circle and all

objects falling within that area would be the result of the range query. The R-tree

traversal starts with the root to answer the query range. First, entries that overlap

the range are retrieved (in this example they are E1 and E2). Then, it expands from

the root to all the entries that overlap the query range (E6). Entries that do not

overlap the range (e.g., E3, E4, E5) are skipped. This process is repeated until it re-

trieves all of the leaf nodes that have equal or less distance d from the query point[25].

2.2.2 Nearest Neighbour Queries

In the last two decades, the problem regarding the nearest neighbour query has

been the subject of significant research attention and especially in terms of data

analysis and information retrieval [36]. Nearest neighbour query is motivated by the

importance of using these queries in many fields such as geographical information

systems (GIS) and learning theory. The k-nearest neighbour (kNN) query is a

method of finding the k closest objects to the query point, and the best first search

19

Figure 2.3: Range query with R-tree [1]

algorithm was proposed by [37] and subsequently refined by [38]. kNN queries have

been studied in a variety of environmental settings such as Euclidean space, where

the distance is measured as the straight line distance between two objects [39, 40, 41]:

firstly, in road networks, where distance is the length of the shortest path between

two objects’ locations [42, 43, 44, 45, 46, 47, 48]; secondly, in indoor space, where

distance measurement considers indoor entities, such as rooms and doors, which

enable and constrain indoor movement [49, 50, 51, 52]; and thirdly, in obstructed

space, where distance is measured as the shortest path connecting two objects with-

out crossing any obstacle [53, 54, 55, 56]. Specifically, we highlight the k Nearest

Neighbour (KNN) query in Euclidean space and road networks environments. The

the k Nearest Neighbour (KNN) query in Euclidean and road networks space has

been widely applied in many fields including spatial databases and been investigated

in various settings, such as static queries, where the results are computed based

on the stationary locations of the objects [14, 57, 58, 39, 59, 60, 61, 41, 62, 63].

It has also been implemented for continuous queries, where the query results are

continuously monitored [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76].

In a spatial database, there are a number of common index structures used for

K Nearest Neighbour queries: R-tree [37], SR-tree [77] which is the enhancement

of R-tree, PK-tree [78] which is based on quadtree, and PK+tree [79] which is an

enhancement of PK-Tree. The most common kNN algorithm search is done using

R-tree. R-tree groups the spatial objects based on their closeness and binds them

within a minimum rectangle. The grouping continues until the top level consists of a

single root. It prunes unnecessary candidates in order to reduce the processing time.

When searching, the traversal on R-tree starts from the root in a depth-first manner

to retrieve points of interest [38].

To illustrate the processing of a kNN query, consider the example depicted

20

Figure 2.4: Example of a 3NN query

in Figure 2.4. In this example, the query point q is looking for the nearest three

neighbours, so query issues the k Nearest Neighbour (KNN) query where k = 3. In

kNN query, the main aim is to find the three objects that are nearest to the query

point where the Euclidean distance is used as the metric. The Euclidean distance

between an object and the query point is indicated by a circle with q as the centre.

From this example, A is the first nearest Neighbour (1NN) of q, C is the second

nearest neighbour of q and B is the third nearest neighbour of q. Hence, the nearest

objects three to q are A,B and C.

A road network is another common space model in the spatial database field [80].

In Euclidean space, the distance between two objects is a straight line. However, this

is not the case in road networks, where the distance between two objects is restricted

to the shortest path as a real road network. [32] was the first author to introduce

the nearest neighbour query on road networks. Incremental Euclidean Restriction

(IER) [32] is a kNN method that uses a simple Euclidean distance heuristic. IER

retrieves Euclidean kNNs as candidates and computes network distances to each

one using a shortest path algorithm. Recent survey experimental work for KNN on

road networks has been undertaken [80], the main finding of which was the surprising

performance of IER and the implications this has for heuristics used in kNN query.

In particular, spatial databases represent the spatial data in the road network

in graph G, and the graph consists of vertices and edges, where each vertex is an

object and each edge is a road or link from one intersection to another. An object

21

in a spatial road network can be a road intersection, curved road, connected and

disconnected roads or object location [81]. We highlight the underacted weighted

graph. In our road network study, the graph is denoted by G = (V,E), where V

is a set of vertices and E is a set of edges. The set of points of interest comprises

P =
{
p1, p2, ..pn

}
, a set of facilities F = {f1, f2, ...fk}, and a query point q ∈ F

that reside in G. Each edge (vi, vj) ∈ E has a weight (distance travel) [82], which

is a positive value. If given a source vertex vi and destination vertex vj , the sum

of weights of edges along the path is called the distance of the path in the road

network, and it is denoted by dist(vi, vj). The distance between two objects in a

road network is calculated by computing the shortest paths. The Dijkstra algorithm

[83] is a commonly applied algorithm for computing the shortest path in a graph,

and it is undeniably one of the best methods for solving the shortest path problem,

the Dijkstra algorithm has been used for decades, and many applications today are

adopting it, including Google Maps [84]. Figure 2.5 depicts a road network. Every

vertex or node represents a point of interest. The red nodes represent facility points

and the green nodes are users/customers. The weight of the edge (P7, P9) is 2. Thus,

the shorter path from q point to f3 is through the path of
{
P1, P4, P5

}
, which is

denoted by dist(q, f3) = 5, i.e. dist(q, f3) = (1 + 2 + 1 + 1). In other words, the

shorter path from f4 to f3 is calculated thorough the path of
{
P4, P5

}
, and not from

node p13, because the distance is shorter through this path
{
P4, P5

}
.

Figure 2.5: A Road Network

22

2.2.3 Reverse Nearest Neighbour Queries

One of the most common and fundamental queries in spatial databases is Reverse

Nearest Neighbour (RNN) search [85, 34, 86, 87], which has been extensively studied

[88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99] ever since it was introduced in [100].

It has proven to be useful for various purposes, such as decision support systems,

profile-based marketing, referral systems, and maintenance of document repositories

[80]. The Reverse Nearest Neighbour (RNN) query is a method used to retrieve

the objects closest to the query point from the object’s perspective. Given a set of

facilities F , a set of points p as users, and a query point q where q ∈ F , Reverse

Nearest Neighbour (RNN) returns every point p in P which considers q as one of

the closest facilities.

The RNN query can be processed using two approaches: point-to-point and

region-based. The RNN query based on the point-to-point approach was introduced

by [101], where he presented the concept of the Influence Set of RNN Queries. Figure

2.6 shows an example of RNN query, it is shown searching for a set of customers

that consider the supermarket for example, ALDI -query point- as the closest facility

based on where customers are located. In this situation we need to compare the

distance between the location of each customer to their nearest facilities. If each

customer is closer to the ALDI supermarket compared to other facilities, this is a

result of RNN query. In this example, the RNN result set for query point (ALDI)

is (A and D) customers. Computing the point-to-point approach is in fact quite

expensive.

The region-based approach is another method that has been proposed for answer-

ing RNN queries [10]. Several studies have been conducted on spatial databases for

RNN using the region approach, such as the Voronoi diagram and Influence Zone.

The Voronoi diagram has been widely used for processing spatial query [35, 35],

specifically to answer an RNN query [12]. The Voronoi diagram works by dividing

the data space into some regions; each region has a generator point where any objects

inside the corresponding region consider the generator point as their closest generator

point compared to the points in the other regions. Several previous studies have used

the properties of a Voronoi diagram to solve the RNN query (see [102] and [103]). If

a generator point in this diagram is considered as the query point, then the Voronoi

cell for this generator point is considered as the region of RNN query and all objects

within this region will be considered as the answer to an RNN query. The concept

of Influence Zone which was introduced by [24] is also used to solve RNN queries.

The Influence Zone approach finds the influence area of each query object, and all

objects within this area will always see the query object as their nearest neighbour.

23

Figure 2.6: Example of RNN query

The Influence Zone computes the Influence Set efficiently, where a whole region is

defined, rather than each object being verified one by one. The Influence Zone is

created simply by having a perpendicular bisector at every point in the facility set

(F) with the query point. Below, Figure 2.7 shows an example of an Influence Zone

and Influence Set.

In general, the Reverse Nearest Neighbour query has been investigated in various

settings: static queries, moving queries, Euclidean space and on road networks. Static

RNN queries have been widely used in many applications and are introduced in two

ways without pre-computation and pre-computing [100]. Some of the most notable

algorithms and techniques have been proposed without using pre-computation to

solve the static RNN query: Six-regions [91], TPL , TPL ++ [93], FINCH [92],

SLICE [99] and InfoZone [24], are all algorithms based on an R-tree index. Every

algorithm has a different technique for processing and addressing RNN queries,

and each algorithm also processes RNN in two phases: the filtering phase and the

verification phase [104]. In the filtering phase, each algorithm should use the facilities

set to filter the search space that cannot be part of the result of RNN query. Hence,

the algorithm does not filter more search space because this entails an extensive

search, and a costly one at that.

In contrast, the algorithm that filters a larger space search can obtain results

more quickly. Two pruning techniques can be used for filtering: Region-based [91]

and Half-space pruning [93]. The Region-based technique requires less computing

24

Figure 2.7: Example of the concept of influence zone

time, but the Half-space technique can prune a larger area. In the verification phase,

after obtaining the candidate points of the RNN query, this phase is responsible for

confirming whether or not this point can be an RNN result.

Figure 2.8: Six-regions algorithm [2]

Six-regions is the first technique proposed for solving RNN query and it does

not require any pre-computation; nor does it rely on the Region-based technique. It

was introduced by [105]. The six-regions algorithm [105] defines the pruning area by

dividing the whole data space centred around query point q into equal regions of 60
◦ (S0 to S5) as shown in Figure 2.8.

25

Figure 2.9: TPL [2]

The TPL technique is the first algorithm to be based on the concept of Half-

space pruning for computing RNN query [106]. This algorithm is created using a

perpendicular bisector between the q and F facilities point. Consider the example

given in Figure 2.9, where a bisector between q and a is indicated Ba:q which divides

the space into two half-spaces. The Half-space that contains a is denoted as Ha:q

and the Half-space containing q is denoted as Hq:a. Any point that lies within the

Half-space Ha:q is always closer to a than to q and cannot be the RNN for this

reason. In the containment phase, TPL retrieves the points of interest within the un-

pruned area by traversing an R-tree that indexes the locations of the points of interest.

The TPL++ [107] is the most current method proposed for solving RNN queries.

It utilises and enhances the TPL strategy by adding optimisation features. It im-

proves filtering in TPL O(km) to O(m). As in TPL, FINCH [108] uses Half-space

pruning to define the pruning area. However, instead of using facility objects to

filter the entries, it employs a convex polygon that approximates the unpruned area.

Any object that lies outside the polygon can be pruned. The FINCH algorithm

approximates a convex polygon to avoid expensive subset filtering. Clearly, the

containment checking is cheaper than TPL.

The SLICE technique [107] applies the region-based technique as a filtering

strategy for solving RNN query. Unlike the six-region approach which always has six

partitions, SLICE divides data space into arbitrary partitions as shown in Figure

2.10. The pruning strategy of SLICE is more powerful than that of the six-region

because the SLICE algorithm can prune a much larger area.

The INFZONE technique represents an improvement of the technique employed

in FINCH, and was introduced by [24]. The INFZONE technique uses the Half-space

26

Figure 2.10: SLICE prunes larger space with more partitions [3]

approach, and generates an Influence zone where any objects within this zone are

guaranteed to be the result of RNN query. It is generated based on bisector lines,

where the bisector line divides the area into two equal segments called Half-spaces

[10]. The INFZONE was devised to improve the verification in RNN query. FINCH

differs from the InfoZone in that it has no verification phase. In other words, once

the influence zone is computed all points which lie within the InfoZone can be the

answer to the RNN query.

Continuous RNN queries in spatial queries have been studied extensively in

recent research such as [57], [14] and [64]. Since the continuous monitoring of moving

queries has a significant role in studies related to spatial databases, many scientists

such as [109], [65] and [110], have investigated the monitoring of continuous objects .

The first work to present the continuous RNN was [111], which assumed the objects’

speeds were known. Although many studies have extended this approach, they did

not consider the motion patterns of the object [24]. [112] and [113] were the first to

address continuous RNN query based on six-regions and a TPL algorithm has been

proposed without considering objects’ speeds. The solution given in [112] is based

on the approach of the six 60◦ regions to monitor RNN query results, while [113]

proposed a monitoring algorithm called TPL for continuous RNN query based on

a bisector approach. [114] and [97] proposed a strategy monitoring for continuous

RNN . The concept of Lazy Updates was introduced by [97], and it is the best

known algorithm for continuously monitoring RNN queries. Lazy Updates not only

reduces the computation cost but also significantly decreases the communication cost.

In addition, the Reverse Nearest Neighbour query can be implemented in a road

network environment [115]. As mentioned earlier, a spatial road network has settings

that differ from Euclidean space, so spatial road networks can be formally represented

27

by a graph in RNN queries. Compared to KNN queries, in the literature, there are

still a few ways to find RNN on a road networks [116]. One of the most common

methods employed to find RNN query in road network is the Network Voronoi

Diagram (NVD)[12], which was undertaken by [103, 35], and [117]. The Network

Voronoi Diagram (NVD) is utilised to answer continuous queries on road networks

[118] and, generally, it has been created using the actual network distances, not

the Euclidean distance between objects. A formal definition of Network Voronoi

Diagram (NVD) is found in [119] and [39]: “A Network Voronoi Diagram, termed

NVD, is defined as graphs and is a specialization of Voronoi diagrams, where the

location of objects is restricted to the links that connect the nodes of the graph

and the distance between objects is defined as their shortest path in the network

rather than their Euclidean distance”, Figure 2.11 shows an example of Network

Voronoi Diagram based on Network Distance, where the ”Xs” are the generator points.

Figure 2.11: Voronoi diagram in spatial road network

2.3 Reducing Communication Cost for Continuous

Queries

In spatial databases, continuous monitoring queries have been investigated in regard

to various types of query, such as Nearest Neighbour (NN) query [120, 121, 75, 122,

123, 124, 125, 126], range query [127, 128, 129, 130, 131, 30] and Reverse Nearest

Neighbour (RNN) query [71, 73, 132, 133, 108, 3, 134]. Referring to continuous

28

query, the problem of dealing with data that are continuously changing is based on

the position of continuously moving objects. Most existing works on the continuous

monitoring of spatial queries focus on reducing computation cost, yet the reduction of

communication cost has not received much attention. Some works that concentrate

on reducing communication cost include [129], [135], [136], [137] and [138]. [129]

introduced MobiEyes to reduce the computation and communication costs of range

query monitoring.

Another generic framework for the continuous monitoring of spatial queries is

known as “ safe region”. The concept of safe region can slash communication and

computation costs. In a safe region, a query point does not need to be connected to

the server. It needs to update its location only upon leaving the safe region. Several

studies such as [139] and [15] have identified various types of safe regions . [15]

presents the safe region-based approach in an effort to monitor the moving skyline

queries in Euclidean space, while [140] addresses the safe region concept on road

networks for finding the safest paths. Additionally, [141] addressed the safe region

concept by reporting the query locations to the server after t time and d distance.

The study assumed that d and t units will establish the parameters of the safe region,

thereby reducing the communication overhead between moving clients and the server.

[142] examined the safe region concept, but limited it to a rectangular safe region

that is not appropriate for a moving, circular safe region. Although the first study

to address the circular safe region issue is [143], it omitted the calculation of area, as

the server was in stand-by mode at a certain distance. Finally, [144] investigated

circular safe regions for range queries using the Monte-Carlo method, mainly due to

the irregular shape of the safe region. However, it should be noted that this method

can be applied only to the range of moving queries.

Assume in Figure 2.12 that a person or customer wants to know the closest two

fuel stations as he/she moves along. In this scenario, the customer (at position q)

poses a query to the server returning points p1 and p2 as the nearest two fuel stations.

After processing the query, the server returns the answer to the customer. The reason

for introducing the safe region is to keep this result the same as long as the customer

remains within a certain area around the initial position, which we refer to using a

shaded area. In addition to the query result, the server has to return the dimensions

of the query’s safe region, so that consequently, there is no need to contact the server

side as long the query moves inside the safe region. Thus, the implementation of a

safe region has advantages in terms of cost, and it reduces the communication and

computation costs between the server and clients.

29

Figure 2.12: Safe region

The study conducted by [137] and [138] presents a rectangular-shaped safe zone

for each continuous query in order to minimise the communication cost between

clients and server in the continuous reverse nearest neighbour queries. This is done

through the safe region which is intended to reduce the updating costs when a query

is continuously moving inside the safe region. This is because the set of objects of

interest does not change as long as the continuous query remains in this region. In this

regard, many safe region methods have been proposed to achieve efficient evaluation

by reducing the communication and updating costs. Some of these methods apply

only time-based techniques [145], whereby objects need to report their query locations

to the server after every t time units to obtain up-to-date information. Meanwhile

others employ only distance-based techniques [146], whereby users need to report

their query locations to the server after every d distance units. However, we note

that these studies were designed to handle specific types of spatial queries, not all

queries.

2.4 Clustering in Spatial Databases

Clustering is the process of grouping objects such that the objects in a group are

similar (or related) to each other and different from (or unrelated to) objects in other

groups. Clustering methods can be broadly classified into five groups: Partitioning,

Density-based, Hierarchical, Grid-based and Model-based. Although cluster process-

ing is not a new concept, there is not much published literature on clustering for

spatial databases [147]. The examples of algorithms that consider spatial information

are K-Means, K-medoids and Density-based clustering. K-Means clustering works

involve arbitrarily choosing K point (centroids) which is K number of clusters.

30

Initially, K-Means randomly selects k number of points as centroids. Clustering

points are then based on the distance to the centroids. If the points are closer to the

centroids, then they belong to the core point. The updating of cluster centroids is

based on the current assignments. The iteration cluster process continues until no fur-

ther change occurs to the centroids. The K-Means approach has two limitations: it is

sensitive, and it is efficient only when applied to small to medium-sized datasets [148].

CLARANS is another popular clustering algorithm and is intended to cluster a set

of data based on randomized search [149]. Although this method is an improvement

on the K-medoid method, it is still not efficient for medium-sized and large data

sets. Nonetheless, none of the previous algorithms is able to cluster data in the most

efficient way [150].

Figure 2.13: Comparisons between DBSCAN and CLARANS [4]

DBSCAN is a well-known density-based clustering algorithm which is involves

partitioning points into dense regions [151]. [4] presented DBSCAN in a paper that

received the highest impact award. It relies on a density-based notion of clusters.

It uses two parameters Eps and MinPts, Eps values as the maximum radius of the

group members. MinPts is the minimum number of group members in the Eps

group of point. DBSCAN arbitrarily selects point q, from q and retrieves all points

31

density-reachable with respect to Eps and MinPts value. From density-reachable

points p is selected; if p is a core point then the cluster is formed. However, if p is

a border point , DBSCAN visits the next point in the database for investigation

and the process continues until all of the points have been processed. DBSCAN is

significantly more effective in discovering clusters of an arbitrary shape better than

the well-known algorithm [150] as shown in 2.13. If the spatial index is used, the

computational complexity of DBSCAN will be O(nlong) instead of O(n).

Several spatial queries have used the clusters based on the traditional queries,

especially kNN queries [100] and [152], and a few are based on Reverse Nearest

Neighbour (RNN) query [152] such as group nearest neighbour [9, 153] and Nearest

Neighborhood (NNH) query [154]. Recently, several studies have investigated group

nearest neighbour, which is a spatial query returning a group of points, proposed by

[9] and further studied by others [155, 156] and [157]. [155] presents Group-KNN

query, where the author handles multiple query objects instead of a single query

such as the traditional range query and kNN query. In Group-KNN , given a set of

query points, the query returns a single target object that has the minimum distance

to all of the query points. Also, [158] studies the problem of finding group (k) points

using a predefined measurement such as the distance between members.

Figure 2.14: GRNN(p4, p4, p5) =
{
u1, u3, u4, u11

}
Another interesting solution that has have been provided in the context of group

points is Group Reverse kNN query, which was introduced by [159, 13]. Group

Reverse kNN query is the method of finding points in p where k number is considered

to be the query points in a set of F as their k nearest facility points. It is a special

32

modification of the RNN query. The Group Reverse kNN query is issued from a set

of query points and the main goal is to find the objects that consider the set of query

points as their nearest generator points. This type of query is illustrated in Figure

2.14. In this example, the query is issued from p3, p4 and p5, and the objective is to

find all users u who consider these query points as their kNN . To answer the group

reverse query, this kind of query returns
{
u1, u3, u4, u11

}
users.

Another interesting query is known as Nearest Neighbourhood Search (NNH),

which is an extended version of the NN query by proposing the use of nearest

neighbourhood (NNH) query in spatial databases. Rather than returning the sin-

gle closest neighbour, they present methods for finding the location of the nearest

group of points, returning the centre of the circle that includes the group of points

using the Nearest Enclosing Circle (NEC) geometric approach. [154] defines Nearest

Neighbourhood query as follows: given a set p of points, a query point q, a positive

number k, and a circle C of a given radius, the NNH query returns the nearest

location (centre) of C such that the number of points covered (enclosed) by C is at

least k. Let us consider Figure 2.15 which depicts NNH query and demonstrates

the difference between NNH query and NN query. Suppose k = 3 and p1 is closer

to q than other points. Then the answer to the normal NN query is p1. However,

the NNH query will return c, which is the centre of the r-radius circle enclosing

three points, p2, p4, and p5, shown with a broken line. In other words, the NNH

query presents a solution by clustering the nearest set of query objects that are close

to each other.

Figure 2.15: An example of the Nearest Neighborhood query (k = 3)

33

Although all these methods provide solutions that can be applied to cases in-

volving Euclidean space, they are not appropriate for road networks which have

particular non-Euclidean characteristics. The distance in a Euclidean space depends

solely on the relative positions of two points, whereas the distance on a road network

depends not only on the relative positions but on the section of road between the two

points. To the best of our knowledge, little of the previous research has considered

the notions of group or neighbourhood in spatial road networks.

2.5 Limitations

Based on the above discussion of published studies on spatial query processing in

Euclidean and road networks environments, we found that several limitations need

to be addressed. These are explained in more detail below.

2.5.1 Limitation of Existing Works in Traditional Spatial Queries

• L1 : Using a point-to-point-based calculation method for clustering the points

makes the query processing very time-consuming.

• L2 : A region-based calculation method can be applied to a Reverse Nearest

Neighbour RNN query; however, the candidate region members are widely

dispersed members, and also it does not return all the influenced points for

answering the query.

• L3 : The candidates of returning a group of points using Group Nearest

Neighbour (GNN) query or nearest neighbourhood search would usually be

far from the query. Furthermore, it does not consider the query point as the

nearest of all facilities.

• L4 : The existing solutions and techniques used to define the group focus

mainly on finding a group in a circular cluster using the Nearest Enclosing

Circle (NEC) geometric approach; no existing work deals with a collection of

several chained objects.

To address these issues, we cluster the points as a neighbourhood, which is a

collection of a number of chained objects within a certain maximum distance between

a pair of objects. The neighbourhood must ensure that these candidate points are

not widely dispersed. Our proposed method uses a region-based method to improve

the efficiency of our approach.

34

2.5.2 Limitation of Existing Works in Monitoring Continuous

Spatial Queries

• L1 : The monitoring of continuous queries incurs very high communica- tion

and computation costs.

• L2 : Existing analyses on continuous monitoring of spatial queries focus

on reducing either computation or communication costs, while some studies

concentrate on both. However, they pay little attention to the monitoring of

spatial queries for a group version of points.

• L3 : Safe region studies were designed to handle only specific types of spatial

queries.

In response to existing issues, we introduce the concept of safe region (SR) for con-

tinuous query point that keeps the reverse nearest neighbourhood result unchanged.

Our proposed method aims to reduce the updating costs when a query is continuously

moving in a safe region. This can continue as long as a query point in a safe region,

query point (q), does not communicate to the server and the result of the point of

interest does not change.

2.5.3 Limitation of Existing Works in Spatial Road Networks

• L1 : The previous proposed method involving Euclidean distance cannot

be implemented directly in spatial road networks because there is a major

difference between Euclidean space and road networks in terms of the distance

metric used.

• L2 : To date, no study has considered the spatial road networks environment

for computing Reverse Nearest Neighbourhood queries.

Hence, in this study, we develop solutions that can address the limitations of

previous research on this topic. We propose a modified algorithm for reverse nearest

neighbourhood query in road network settings.

35

Chapter 3

Reverse Nearest Neighbourhood

(RNNH) Queries

3.1 Overview

The widespread use of location-aware services and technologies which retrieve or

answer spatial queries has received much attention in today’s society. An increasing

number of popular applications, such as digital maps, make use of spatial databases

and associated technologies. One of the most important branches of traditional spatial

queries is the Reverse Nearest Neighbour (RNN) search. This search retrieves points

of interest that consider the query facility as the nearest facility. Most of the existing

works on spatial databases focus only on the retrieval of points of interest. Very

little work has been done on grouping points of interest or on neighborhood retrieval.

In this chapter, we introduce the concept of a group version of the Reverse Nearest

Neighbour query called Reverse Nearest Neighborhood (RNNH) query. The RNNH

query finds all possible reverse nearest neighborhoods where all the neighbourhoods

consider the query facility as the nearest facility. We propose an efficient algorithm

for processing snapshot RNNH queries by using an R-tree index. The proposed

algorithm incrementally retrieves all reverse nearest neighbourhoods of the query

facility. We have conducted exhaustive experiments on both real and synthetic

datasets to demonstrate the superiority of the proposed algorithm.

3.2 Motivation

Spatial databases play an important role in modern software applications. Even in

daily activities, we often rely on the aid of spatial databases such as digital maps

when traveling from one place to another. Also, location-based services (LBS) are

highly popular among some people as they provide location information in response

36

to queries [160]. Spatial databases also have applications in decision support systems,

marketing strategies, and social networks.

The Reverse Nearest Neighbour (RNN) search is a fundamental issue that has been

extensively studied in spatial databases for surveys [85, 12, 34, 161, 92, 89, 162, 24].

RNN finds every point of interest that considers the given query point q as the

nearest point. Since q is close to such data points,it has a strong influence on these

points. Hence, the set of points that constitutes the RNNs of a query point is called

its influence set. RNN search queries can be exploited to gather information about

the target customers of a facility or centre. If a facility or a centre is able to identify

its target customers, then this can have a positive impact on their profitability. For

example, location-based promotions can be offered to the target customers. However,

because there may be a large number of customers in the vicinity of specific facilities

or centres, it can be difficult to identify and reach individual customers (i.e., the

point of interest). A Neighbourhood or a group of points of interest (GOI) is a

concept which can assist in understanding the environment surrounding of the facility

points and facilitating access to a cluster of customers. Therefore, the identification

of neighbourhood can help with the development of GOI-oriented recommendation

systems for spatial database applications.

Figure 3.1: Example of a reverse nearest neighbourhood query

For example, consider a set of schools and a number of students ,as shown in Fig.

3.1 ,where each school attempts to attract students for enrollment. Some students

can still choose school A due to the influence of their friends although school A could

be further than other schools from the students’ locations. This is probably because

37

a student receives a strong recommendation from his/her closest friend who goes

to the same school. The Reverse Nearest Neighbour (RNN) identifies the students

based on their proximity to the school. In this example, RNN query can identify

only the students {s1, s2, s3, s4, s5, s6, s7, s8} who are represented by the red points

as the influence set of school A.

However, people consider various factors such as price, product quality, reputation

and convenience factors in addition to distance from their location, and they typically

choose a facility which best matches their preferences [15]. If we look at student s9,

can this student choose to go to school A instead of school B? If student s9 looks up

the most popular school in his area (around him), he can obtain school A because

most students around him go to school A which is closer to them. School A can be

one of the top choices for s9 because the students who live around s9 might strongly

recommend school A to s9. Therefore, we can say that student s9 is close to other

students who may prefer school A than the nearest school which is school B. In the

neighbourhood concept, points are joined to one group based on their proximity. We

name this Reverse Nearest Neighbourhood query (RNNH).

The example given in Fig. 3.1 shows the difference between the Reverse Nearest

Neighbourhood query and the traditional spatial databases query. In this scenario,

the output of the RNN will be the cluster of points s1, s2, s3, s4, s5, s6, s7 and s8.

However, the neighbourhood will be the cluster of points s1, s2, s3, s4, s5, s6, s7,

s8, s9, s10, s11, s12 and s13. All these students are clustered and returned in three

groups NH1, NH2 and NH3 based on their proximity to a neighbourhood. At first

glance, it is obvious that a Reverse Nearest Neighbourhood query can be processed

by clustering points using a sophisticated clustering algorithm, and finding all the

clusters that are reverse nearest to the query point.

Nearest Neighbourhood vs. Reverse Nearest Neighbourhood Searches.

The very first work on GOI-based data retrieval in spatial databases is nearest neigh-

bourhood (NNH) retrieval [154]. The nearest neighbourhood (NNH) query finds

m points closest to a given point and combines them into a neighbourhood. The

authors model the nearest neighbourhood (NNH) by using the geometric Nearest

Enclosing Circle (NEC) approach. NEC finds the centre of a circle nearest to q

that has at least m points inside the circle. The resultant neighbourhood is a high

density neighbourhood that has at least m points. The NEC method is capable of

identifying one neighbourhood. However, RNNH is capable of identifying multiple

neighbourhoods. Also, one of the unique features of RNNH is that in the instances

where multiple neighbourhoods are identified, the neighbourhoods resemble chain

38

neighbours as opposed to density neighbours. The output from the NNH query is such

that a scenario resembles density neighbours. As opposed to density neighbourhoods,

chain neighbourhoods are more closely aligned with the spread of real-life physical

structures like houses and strip shops. This means that the result of an RNNH query

is more realistic.

DBSCAN vs. Reverse Nearest Neighbourhood Search. Another popu-

lar approach to clustering is the DBSCAN algorithm. [4] presented DBSCAN in a

the research paper that received the highest impact paper award which is a testament

to the popularity of the algorithm. The algorithm is based on partitioning points

into neighbourhoods based on their density. It uses two parameters, Eps and MinPts,

where, Eps is the maximum radius of the neighbourhood, and MinPts is the criterion

for the minimum number of point’s per neighbourhood. One of the shortcomings

of the DBSCAN algorithm is that it considers only one kind of data point (e.g.,

user points), whereas, our approach considers multiple kinds of points (comprising

users and facilities). The facilities can be one’s own or associated with competition.

Another limitation of DBSCAN is that it needs to access all points and continue

processing until all points have been covered. Our algorithm utilises R-tree indexing

and a pruning technique to prune the space, thus making our algorithm more efficient

than DBSCAN in terms of CPU and IO costs.

Applications of Reverse Nearest Neighbourhood Search. This neigh-

bourhood can play an important role in many applications of spatial databases. .

Several examples of such are given below.

• Decision Support System. Many companies and business owners prefer to

determine the influence of certain data points when they want to open a new

store [100]. This is done to maximize the chances of the new store succeed-

ing. Our proposed algorithm could be applied to identify the trade areas of a

supermarket and its competitors if the geocoded locations of all supermarket

customers is known. Instead of assigning each customer to a facility based

on proximity, our algorithm will first identify clusters of customers and then

assign those clusters to the respective facility. The supermarket can use such

information to increase its market share and/or when planning new sites. In

another example, clustering data near a specific hospital can give better insights

into where accidents and emergencies mostly occur.

39

• Mobile Social Network. RNNH can be applied to social networks. By set-

ting the radius parameter d at a certain value, the RNNH query can be utilized

to extract a mobile community close to a user’s location. For example, if there

are tourist attractions such as a museums, it is assumed that each tourist will

visit the closest museum. However, in reality, tourists usually look up the most

popular museums the other people visit. A person might visit one museum

which is not the one closest to him/her but is closer to other people. Therefore,

choice of a museum can be influenced by a group of tourist attractions and

places whose distances from each other are less than a particular threshold [163].

• Targeted Marketing. RNNH queries can be very helpful for discovering

and identifying the neighborhood and area of influence. For example, if a

restaurant, supermarket or gas station is a query point, it can be explored to

discover the nearby neighborhoods prior to designing special promotion plans

or deals. This requires that neighborhood members not be far from each other

geographically. The query could minimize its travel cost associated with the

promotion strategy, thereby possibly increase its revenue.

Contributions. The main contributions of this work are summarised below.

• We propose and define the concept of a group version of reverse nearest

neighbour query, which we call reverse nearest neighbourhood (RNNH) query.

• We propose an efficient algorithm to process snapshot RNNH queries using

R-tree data indexing.

• Our extensive experiments on real and synthetic datasets demonstrate the

superiority of the proposed algorithm.

3.3 Notations and Definitions

Consider a set of facilities F = {f1, f2, ...fk}, a query point q ∈ F , a set of points

P =
{
p1, p2, ..pn

}
as the points of interest. Query point q where q ∈ F . Table 3.1

lists other notations used in this study.

Given a set of facilities F , a query facility q ∈ F and a set of points P , the

reverse nearest neighbour (RNN) query seeks points of interest p ∈ P that consider

the query point as the nearest of all facilities f ∈ F . Consider the example given in

Figure 3.1, where s1, s2, s3, s4, s5, s6, s7 and s8 are the only points that consider q

as their nearest facility. The RNN query result is denoted by RNN(q).

40

Table 3.1: Notation and Definitions

Notation Definition

q the query point

P =
{
p1, p2, p3,pn

}
a set of points, where n is a positive number

F =
{
f1, f2, f3,fk

}
a set of facility points, where k is a positive number

pi a point p with ID i

pipj a section of a line between two endpoints pi and pj

Zq the Voronoi diagram of the query q

Zp the points located inside the Voronoi diagram of the query q

|Zq| the number of points located inside the Voronoi diagram of the query q

Bq:f a perpendicular bisector between points q and f

Hq:f a half-plane defined by Bq:f containing the query q

NH(d,m) a neighbourhood consisting of a group of at least m points

d a Euclidean distance parameter between two points

m a parameter of minimum number of points inside a neighbourhood

|NH(d,m)| the number of points located inside the neighbourhood NH(d,m)

fpi the nearest facility to pi

dist(pi, pj) the minimum Euclidean distance between points pi and pj

dH(pi, NH) the minimum Euclidean distance between a point (pi) and

a neighbourhood NH(d,m)

Definition 3.1 (Boolean Range Query) Given a set of facilitates F and a dis-

tance constraint d, a boolean range query is denoted by boolRangeQuery(pi, d, F),

where pi ∈ P , returns TRUE if there is any facility f ∈ F such that dist(pi, f) ≤ d,

otherwise returns FALSE.

For example, consider the dataset given in Fig. 3.2. The Boolean range query for

s9 with distance constraint d = 5 returns TRUE as dist(s9, B) ≤ 5 (as shown in Fig.

3.2), but with distance constraint d = 3 it returns FALSE.

Definition 3.2 (Neighbourhood) Given two parameters m and d, a neighbourhood

refers to a group of at least m member points where the distance between a member

point pi and the nearest member point pj in the group does not exceed d, i.e.,

d(pi, pj) ≤ d. The neighbourhood is denoted by NH(d,m).

41

Figure 3.2: Example of a boolean range query

The neighbourhood NH(d,m) =
{
p1, p2.., pm

}
∈ P refers to a neighbourhood

with Cartesian coordinates
{

(x11, x12), .., (xm1, xm2)
}

in the spatial data space for

P , where 1 < m ≤ n and pi 6= pj , ∀i, j ∈ {1, 2, ...,m}. The distance parameter d

denotes the maximum distance between a member point of NH(d,m) and its nearest

member point in NH(d,m) and the cardinality constraint m refers to the minimum

number of neighbourhood members. For notational simplicity, here we use NH

instead of NH(d,m).

Figure 3.3 gives an example of neighbourhood queries in spatial databases. As-

sume that we are looking for only those neighbourhoods that satisfy the constraints

m = 3 and d = 3. Then, NH1 =
{
p1, p2, p3, p4

}
and NH2 =

{
p6, p7, p8, p9

}
are

neighbourhoods that contain a group of points that has at least three members with

each group member having a threshold distance (d = 3) to the nearest group member.

The point p15 is not part of NH1 because the distance between p15 and its closest

point p1 in NH1 is > 3. The group of points
{
p10, p11

}
is not a neighbourhood

as the number of neighbourhood members is only two, which does not satisfy the

cardinality constraint m ≥ 3.

Definition 3.3 (Neighbourhood Distance) Given a neighbourhood NH(d,m)

and a point pi, where pi being a point of interest or facility, the neighbourhood

distance refers to the distance between the point pi and the closest point in the neigh-

bourhood NH(d,m). This distance is denoted by dH(pi, NH) and can be formalized

as:

dH(pi, NH) = min{dist(pi, pj)|pj ∈ NH(d,m)} (3.1)

42

q

A

B

D

C

E

p1

p2

p3

p4

p9
p8

p7

p6

NH1

NH2

p10

p11

p5

p12

p13

p14

p15

p16

p17

Figure 3.3: Example of neighbourhood queries NH(d = 3,m = 3)

Figure 3.4 illustrates an instance of neighbourhood distance, where NH = {p1,
p2, p3, p4} is a neighbourhood. Now, dH(p10, NH) is the distance between p10

and the nearest member point of NH to p10, i.e. the distance between p10 and

p2 (dist(p10, p2)). Similarly, dH(E,NH) is the distance between E and the nearest

member point of NH to E, i.e, dist(E, p4). Again, dH(q,NH) is the distance be-

tween q and the nearest point of NH to q, which is dist(q, p1).

q

A

B

D

C

E

p1p2
p3

p4
p7

p10

p5

p9

p6

p11

p12

p13

p14

p15

p16

p17 p8

Figure 3.4: Neighbourhood distance

43

Definition 3.4 (NNH Query) Given a a query facility q, a set of points P , two

constraints d and m, and neighbourhoods S = {NH1, NH2,, NHn′}, where NHi

⊆ P , ∀i ∈ {1, 2, ...n′}, a nearest neighbourhood (NNH) query for q returns the

neighbourhood NHi ∈ S such that dh(q,NHi) ≤ dh(q,NHj), ∀NHj ∈ S \NHi. The

NNH query is denoted by NNH(q, d,m, P).

Consider the neighbourhood example illustrated in Figure 3.3. Here, NH1 is

the neighbourhood, which is the nearest neighbourhood for q for parameters d = 3

and m = 3. It should be noted that there could be a tie in the NNH query result.

In this case, we can apply random selection to break the tie. As long as there is a

neighbourhood in the dataset P for the given parameters d and m, the NNH query

result can never be empty.

Definition 3.5 (Reverse Nearest Neighbourhood (RNNH) Query) Given a

set of facilities F , a query facility q ∈ F , a set of points P , two constraints d and

m, and neighbourhoods {NH1, NH2,, NHn′}, a reverse nearest neighbourhood

(RNNH) query for q returns all neighbourhoods {NHi} such that: (i) the distance of

a point pj ∈ NHi to its nearest neighbour point pk ∈ NHi is less than or equal to d

value, i.e., dist(pj , pk) ≤ d; (ii) ∀pj ∈ NHi, dH(pj , NHi) ≤ dist(pj , fpj), where fpj is

the nearest facility of pj in F ; (iii) |NHi| ≥ m; and (iv) NHi finds the query facility

q as their nearest facility among all facilities in F , i.e., dH(q,NHi) ≤ dH(f,NHi),

∀f ∈ F \ q. The RNNH query is denoted by RNNH(q, d,m, P, F).

In simplest terms, the RNNH query retrieves neighbourhoods {NHi} that con-

sider the query point as the nearest of all the other facilities. Consider the facilities

{A,B, ..., E} and the points {p1, p2, ..., p16} in the space as depicted in Figure 3.3.

Here, the result of RNNH query for the query facility q is NH1 for parameters d = 3

and m = 3 as dH(q,NH1) ≤ dH(f,NH1), ∀f ∈ {A,B, ..., E}. The neighbourhood

NH2 is not a reverse nearest neighbourhood of q as dH(B,NH2) < dH(q,NH2). It

should be noted that there could be zero or more reverse nearest neighbourhoods of

a query facility q in a given dataset P ∪ F as opposed to the nearest neighbourhood.

Unlike an NNH query, with a RNNH query, we also need to deal with the competitor

facilities.

Definition 3.6 (Influence Zone) Given a set of facilities F , a query facility

q ∈ F and a set of Points P , an influence zone of q, denoted by Z(q), is an area

44

Figure 3.5: Influence zone of q

which is a convex polygon and every point pi in this area considers the query facility

q as the nearest facility, i.e., ∀u ∈ Z(q), dist(pi, q) ≤ dist(pi, f), ∀f ∈ F \ q [24].

Consider the dataset given in Fig. 3.1. The influence zone of the query facility q

is shown in Fig. 3.5 which contains red dots.

3.4 Proposed Framework

3.4.1 Possible Solutions

Obviously, a simple approach for the RNNH query is to use the baseline algorithm

which computes the neighbourhoods by starting with any point p ∈ P . From this

selected point, the neighbourhood NHi is established as a starting point. This NHi

expands by doing a range query for each point in NHi. Hence, each neighbourhood

is expanded by repeatedly executing the range query for each user pi ∈ NHi until

|NHi| = m and follows the distance constraint d and conditions given in Defini-

tion 5.4. For each neighbourhood NHi is dH(pi, NHi) ≤ dH(pi, f) and dH(q,NHi)

≤ dH(f,NH1), ∀ui ∈ NHi and ∀f ∈ F \ q. If the p is not satisfied in Definition

5.4, then add p to S (i.e., this is not a valid neighbourhood of q). This step will

require only O(m log n) which is much faster than the combination dataset. Next,

we repeatedly start new iterations for each point p that has not been covered in

any previous valid neighbourhood of q and p 6∈ S by forming neighbourhoods and

expanding it by doing a range query. There is a possibility of some users obtaining

overlapping neighbourhoods in some cases. Once all neighbourhoods have been

formed, then we start to maximize a neighbourhood by including as many additional

users as possible by executing a range query as per Definition 5.3 and Definition 5.4.

45

Unfortunately, the baseline algorithm that we described is computationally expen-

sive. In a practical situation, the baseline algorithm is too large to be preprocessed in

an index structure or to be processed on the fly. One possible solution for this problem

is invoking incremental nearest neighbour to form RNNH (KnnRNNH). Given a query

point q, retrieve the first nearest neighbour point ui. If the point satisfies the distance

constraint d and conditions given in Definition 5.4: (a) dH(pi, NHi) ≤ dist(pi, f)

and (b) dH(q,NHi) ≤ dH(f,NHi), ∀pi ∈ NHi and ∀f ∈ F \ q, then form a neigh-

bourhood. From pi invoke the kNN query. Mark as visited all the points that have

been retrieved. Any of the retrieved points that satisfy the same constraints, form a

neighbourhood. When the distance between a retrieved point and pi is greater than d,

then stop invoking the kNN query for pi. Repeat these processes for each element in

the neighbourhood until all users satisfy the distance constraint d and the conditions

given in Definition 5.4. The formation of the first neighbourhood is terminated when

the retrieved users of a kNN query for each element of the neighbourhood is greater

than the d value. Then start forming the next neighbourhood by invoking the second

nearest user from the query that is not included in first neighbourhood. The RNNH

stops forming neighbourhoods when the nearest neighbour visited from the query

point is greater than d value. We use this approach (KnnRNNH) to compare it with

our algorithm. In the baseline algorithm, the probability of getting a reverse nearest

neighbourhood (RNNH) is low because the selection of the initial point of interest is

random.

In our algorithm, we use the influence zone to skip the process of iteratively

selecting the points. The initial points of interest are selected within the influence

zone. The probability of a group of points being selected from within the influence

zone, and these selected points of interest belonging to the same RNNH is very high.

This approach makes our algorithm much faster than the baseline algorithm. Our

propsed RNNH algorithm utilises R-tree indexing and pruning techniques to prune

the space. In terms of computational complexity, the R-tree indexing of RNNH

saves time otherwise spent in creating of the influence zone. Additionally, the use

of pruning in RNNH makes this algorithm less complex than any other clustering

algorithm such as DBSCAN as it does not have to go through the entire space.

3.4.2 Proposed Algorithm

In this chapter, we have extended the RNN query by considering a group version of

this query. We have named the resultant query, RNNH. The goal of RNNH is to find

the location of the nearest group of points based on preferences specified in the query.

46

RNNH returns a number of neighbourhoods that have a group of points which is

different from returning individual points of interest as most other traditional spatial

queries do.

Based on the definition of 5.4, the aim is to identify groups of points, often

represented as a cluster of points, which are generally closer to q. In other words,

the clusters identified will be those in which the points are close not only to each

other, but also to q. RNNH retrieves all the groups of points that only consider q as

the nearest facility.

To address the challenge of processing a RNNH query, we have proposed an

R-tree based algorithm to obtain better performance. Initially, the InfoZone Z is

created based on the RNN [24]. It is generated based on the bisector of the dataset

of F . Consequently, any points in Hq:f can be part of the RNNH answer. The

algorithm for retrieving the points inside Z has been discussed in [24]. Every point

on the boundary of Z, it is u ∈ Z. Hence, if the Z of a query q is empty (Z = ∅),
then there is no reverse nearest neighbourhood for q.

Lemma 1 If the influence set of a query location q, denoted by Zq, is empty, then

there is no reverse nearest neighborhood for q.

Proof 1 Given facilities F and points P such as q ∈ F and ∀p ∈ P . The influence

zone is created by placing the bisectors between the q and other facilities. There is

no RNNH result, if there are no points of interest within Z, which means Zq = ∅.
In this case, all the points could not consider the q as the nearest facility. Hence,

the nearest point p to q is in the Hf :q (i.e., dist(p, f) < dist(p, q)). So, ∀NH(d,m)

dH(q,NH(d,m)) 6≤ dH(f,NH(d,m). Therefore, in this case, all nearest points to q

do not consider q as the nearest facility. This is because the nearest point of interest

p to q is dist(p, f) < dist(p, q). Thus, ∀p ∈ P , dist(p, q) 6≤ dist(p, f).

Once, Zq is created and a point is retrieved, RNNH starts processing the first

neighbourhood by picking up the first point from inside Zq. RNNH starts at the

point close to q to generate the first neighbourhood taking into account the minimum

number neighbourhood members m, and the distance between a point to the nearest

point d inside a neighbourhood. 1

1It should be noted that there could be more than one candidate in Zp that has the same distance
to q. We randomly pick one of them to break the tie.

47

Algorithm 1 Computing Reverse Nearest neighbourhood

Input: P : set of points, F : set of facilities, d: distance constraint, m: minimum

neighbourhood members and q: q ∈ F
Output: RNNH-RN(d,m, q)

Zq ← Calculate Influence zone of q

InfZonePoint ← get all points in Zq

h ← store with key mindist(InfZonePoint, q))

while h is not empty do
de-heap an entry pi

if pi /∈ RNNHs(d,m, q) then
mark pi as visited

initialize NHi ← {pi}
dist← dH(q,NHi)

validationList ← rangeQuery(pi, d, P)

while validationList is not empty do
de-heap an entry ci

if ci ∈ NVDp then
mark ci as visited

NHi ← append(ci)

end

else if isV alid(ci, dist, q,NHi) then
NH1 ← append(c)

L← rangeQuery(c, d, U)

validationList ← append(L)

end

if |NHi| ≥ m then
RNNH(d,m, q, P, F)← append(NHi);

end

end

end

Algorithm 1 is the algorithm used for processing the RNNH query based on the

incremental retrieval of nearest neighbours resulting from the initial query. It uses

different techniques to maintain sets of retrieved nearest points from q, such as the

use of multi-heap technique to track the result set. Whenever the Z is created, the

algorithm puts the points, which are inside the Z, in the min heap in order of the

minimum distance to q (line 6). It then starts processing from the nearest point to

q. Line 9 checks each point to determine wheather or not it belongs to a previous

neighbourhood; if it does, then it is ignored. Otherwise, a new neighbourhood is

initialized and puts this point in this neighbourhood (line 10). Line 11 is the function

48

for obtaining the dH(q,NH) which is the distance between q point to NHi. In line

12, a range query is executed for the entry pi.

The result of the range query is inserted in the heap (Validationlist) with the

key minimum distance to the query. From the validation list, points are iteratively

retrieved from the front of the heap(Line 14). Any point which has already been

processed is ignored. Otherwise, it is checked to establish whether or not it is eligible

of the NH. For each point in the validation list (Line 18) is checked before being

added to the NH. This process ensures that the point is not closer to any another

facility than to q as per the definition in 5.4 and 5.3. If the point is valid. it is added

to NHi; after that the validationlist is updated using a range query.

Pre-computation. We pre-computed the nearest facility to each user with the

distance to improve the efficiency of the algorithm. The RNNH algorithm needs

to do a validation for the set U to validate the users as per the definition in 5.4.

The pre-compute process helps with the validation by ensuring that each user pi is

dH(pi, NH1) ≤ dist(pi, f) . It improves the performance of the algorithm in terms

of the IO cost with regards to validating the user.

Lemma 2 For any retrieved point e where e ∈ Zq. Then, an entry e is a valid entry

if the distance between e and NH1 is ≤ d .

Proof 2 To prove that e is a valid entry, given the set of facilities f ∈ F , q ∈ F and

set of points p ∈ P . e is inside of Z. This means e lies on Hq:f . As per the definition

of the bisector [162], any points in Hq:f considers q is the nearest facility among any

other facilities which means that dist(pi, q) < dist(pi, fi) as per the definition 5.4.

Hence, we do not need to check the validation of points in Zq , because any point that

is there has already been validated as per definition 5.4 and added to NHi.

This lemma shows how we can address the points if the entry of the validation

list is inside Z; such a point does not require extra processing, therby, improving the

performance of the algorithm.

Influence Zone Optimisation. For any point inside of Z, there is no need to

check the validation process for these points as per lemma 10.

Once the neighbourhood NHi has been completely processed, check whether

NHi is satisfied with the m, then add it to RNNH. Otherwise, start another point

from Zq that has not been processed.

49

The function of isValid is precomputed function. It is how to make sure whether

the point is valid based on the two constraints given in the definition 5.4. The first

constraint is the distance between the neighbourhood and query, and the second con-

straint is the distance between the point and the nearest point in the neighbourhood.

The grater of the two constraint values is used as a value of checking. If that is true

then add this point to NHi. The isV alid function guarantees that the NHi is not

much closer to any competitor facilities. The idea here is to make sure that no point

is closer in distance compared to the competitor facility.

MaxDist Optimisation. Here, instead of doing a double check for the two

constraints, we take the maximum distance between dH(q,NH) and the distance

between the point to the nearest point inside NH. This improves the performance

of this algorithm. We need to make sure that there is no competitor facility closer

than q point or current neighbourhood. We consider the maximum distance between

dH(q,NH) and dH(pi, NH) and do one check instead of two validations. Assume that

the nearest facility of each point p ∈ P , denoted by NF (p), is precomputed. Then,

line 20 of Algorithm 1 can be optimized as follows: if maxDist < dist(c,NF (c)),

then return false. As a result of this approach, our algorithm (ORNNH) is optimized

compared to the non optimized algorithm and it is cheaper, as demonstrated by the

results reported in the experimental section.

3.5 Experimental Results

3.5.1 Experimental Setup

In this section, we provide the detailed experimental evaluations of our proposed

methods in comparison with other competitors.

Competitor. All algorithms were implemented in C++ and experiments were

run on Intel Core I 5 2.3GHz PC with 8GB memory running on Ubuntu Linux. To

the best of our knowledge, currently there is no algorithm available for dealing with

RNNH queries. We have considered a naive algorithm (KnnRNNH) query and have

made reasonable efforts to devise a significantly improved version of KnnRNNH, as

explained below.

Given a query point q, retrieve nearest neighbor user p from q such that the dis-

tance between q and u is less than the distance between u and the nearest competitor

facility. A kNN query is invoked to retrieve any user p1 where the distance between p1

50

Table 3.2: Experiment Dataset

Datasets Description #Points

SY N1 Synthetic Normal Distribution 65 K
SY N2 Synthetic Normal Distribution 130 K
SY N3 Synthetic Normal Distribution 650 K
SY N4 Synthetic Normal Distribution 1.3 M
NA North America 175 K
LA Los Angeles 2.6 M

and p is less than d. Meanwhile, the distance between p1 and the nearest competitor

facility must be greater than dH(q,NH). After that, for each newly retrieved user,

a kNN query is conducted to find the users that satisfy the same constraints. All

retrieved users are marked as visited and form part of as a neighborhood. When

no more users can be added, then this neighbourhood is returned as the result. For

unvisited users, the nearest user to q is retrieved and then the process is repeated

to find the neighborhood. The process terminates when all users are marked as vis-

ited or the distance of the nearest user to q is greater than the distance to a competitor.

Datasets. We generated several synthetic data sets containing 70,000 to 125,000,

700,000 and 1.3 million points following normal distributions. Table 1 shows the

details of the synthetic data sets that were used for the experiments. The number of

the points shown in Table 1 for each data set is randomly divided into two sets of 25

percent and 75 percent, one corresponding to the facility points and the other to the

user points. In addition to the synthetic data sets, we also conducted experiments

on two real data sets. We used real data sets containing 175,812 points from all

across North America (called NA data set hereafter), 2.6 million points from the

city of Los Angeles (LA) in North America. The page size of each R*-Tree [164] was

set to 4,096 Bytes. We randomly selected 50 points from the facility data set and

treated them as query points. The default value of d is 0.005 and 20% is facility

percentage and 75% is the percentage of users in the whole data set. We considered

two algorithms in our experiments: RNNH, and KnnRNNH. As we explained in the

previous section, we used a optimization technique in our RNNH solution. In this

experiments section, we compare three algorithms: the Optimized RNNH algorithm,

the RNNH algorithm, and the KnnRNNH algorithm.

3.5.2 Evaluating Performance on Synthetic datasets

In this section we evaluate the performance of our algorithms for snapshot RNNH

queries. All three algorithms need to traverse facilities and users utilizing R*-tree

51

indexing. We conducted experiments by varying three parameters: d value (0.001,

0.005, 0.01 and 0.015), percentage of facilities (0.1, 0.15, 0.2 and 0.25) and percentage

of users (0.15, 0.35, 0.55 and 0.75). The results from the experiments are summarized

in Figure 3.6 to 3.8.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.001 0.005 0.01 0.015

E
x

e
c

u
ti

o
n

 t
im

e
 (

M
S

)

D value (SY)

 SYN1: users= 75%, facility=20% Optimized RNNH

0
.0

0
0

5
0

3
4

6
0

0

0
.0

0
5

1
6

0
8

2
0

0

0
.0

1
0

2
8

4
8

6
0

0

0
.0

1
9

3
1

2
3

8
0

0

RNNH

0
.0

0
0

5
6

0
4

8
0

0

0
.0

1
2

9
0

0
3

8
0

0

0
.0

3
8

5
5

7
1

4
0

0

0
.0

7
7

6
9

5
5

6
0

0

KnnRNNH

0
.
0
0
0
3
8
2
0
6
0
0

0
.
1
4
1
4
2
4
3
4
0
0

0
.
6
8
8
4
0
5
5
4
0
0

2
.
0
2
1
5
0
2
4
0
0
0

(a) SYN 1: 65K

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.001 0.005 0.01 0.015
E

x
e

c
u

ti
o

n
 t

im
e

 (
M

S
)

D value (SY)

 SYN2: users= 75%, facility=20% Optimized RNNH

0
.0

0
0

5
0

3
4

6
0

0

0
.0

0
5

1
6

0
8

2
0

0

0
.0

1
0

2
8

4
8

6
0

0

0
.0

1
9

3
1

2
3

8
0

0

RNNH

0
.0

0
0

5
6

0
4

8
0

0

0
.0

1
2

9
0

0
3

8
0

0

0
.0

3
8

5
5

7
1

4
0

0

0
.0

7
7

6
9

5
5

6
0

0

KnnRNNH

0
.
0
0
0
3
8
2
0
6
0
0

0
.
1
4
1
4
2
4
3
4
0
0

0
.
6
8
8
4
0
5
5
4
0
0

2
.
0
2
1
5
0
2
4
0
0
0

(b) SYN 2: 130K

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.001 0.005 0.01 0.015

E
x

e
c

u
ti

o
n

 t
im

e
 (

M
S

)

D value (SY)

 SYN3: users= 75%, facility=20% Optimized RNNH

0
.0

0
2

5
7

6
4

8
0

0

0
.0

1
3

4
0

7
7

4
0

0

0
.0

4
7

0
2

9
4

8
0

0

0
.1

2
9

0
5

2
5

0
0

0

RNNH

0
.0

0
4

2
4

2
7

2
0

0

0
.0

5
5

3
9

3
4

6
0

0

0
.1

7
8

5
1

2
6

6
0

0

0
.3

4
2

8
2

8
6

4
0

0

KnnRNNH

0
.
0
1
2
5
5
9
4
0
0
0

0
.
8
0
5
4
0
3
2
0
0
0

5
.
1
8
4
8
1
2
2
0
0
0

1
8
.
4
9
5
7
5
3
5
2
0
0

(c) SYN 3: 650K

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.001 0.005 0.01 0.015

E
x

e
c

u
ti

o
n

 t
im

e
 (

M
S

)

D value (SY)

 SYN4: users= 75%, facility=20% Optimized RNNH

0
.0

0
4

7
4

1
2

6
0

0

0
.0

1
8

8
4

2
1

0
0

0

0
.0

8
2

2
6

1
0

2
0

0

0
.2

6
3

1
4

4
5

2
0

0

RNNH

0
.0

0
9

3
9

6
3

0
0

0

0
.1

0
1

4
8

5
1

0
0

0

0
.2

9
0

4
8

7
2

0
0

0

0
.5

7
3

4
4

1
2

4
0

0

KnnRNNH

0
.
0
4
1
0
2
7
0
4
0
0

1
.
7
4
3
9
9
7
5
0
0
0

1
3
.
2
3
2
6
3
2
4
8
0
0

(d) SYN 4: 1.3M

Figure 3.6: Effect of varying the number of d

Varying d: We evaluated the performance of RNNH query on both real-world

and synthetic datasets. We varied d in increments of 0.001, 0.005, 0.01 and 0.015. The

processing time in 4 synthetic data sets are shown in Figure 3.6. Several conclusions

were drawn. Firstly, the average processing time for an RNNH query achieved by

the optimization RNNH algorithm is the shortest of the three algorithms. With the

increasing value of d, the difference becomes much larger. As we can see from Figure

3.6(a), the optimization RNNH algorithm and KnnRNNH algorithm perform almost

the same when the value of d is small. However, when the value of d increases, the

RNNH algorithm is superior to the RNNH algorithm. This is because with small

values of d the resultant neighbourhood is not big, which means that it is not able to

process more points.

52

However, when the values of d increase, the differences between the RNNH

algorithm and the knnRNNH algorithm in terms of performance increase, where

the much faster RNNH outperforms KnnRNNh algorithm. As expected, the run-

ning time of each algorithm increases with an increase in the value of d in all the

data sets. Secondly, in Figure 3.6(c), we can see the difference between RNNH

and knnRNNH algorithms, even with a small d value. As mentioned before, the

reason behind that RNNH algorithm outperform otheralgorithms is that it works

better with large data sets and KnnRNNh starts processing many points compared

with the RNNH algorithm, which starts processing only the point close to q which

is inside the Z area. This is also demonstrated in Figure 3.6(d) with 1.3 million points.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.10 0.15 0.20 0.25

E
x

e
c

u
ti

o
n

 t
im

e
 (

M
S

)

Percentage of facilities

 SYN1: D= 0.005, users= 75%,
Optimized RNNH

0
.6

8
3

8
8

8
2

0
0

0

0
.0

0
5

7
8

3
1

0
0

0

0
.0

0
3

7
0

4
5

0
0

0

0
.0

0
0

8
3

0
8

0
0

0

RNNH

0
.9

9
5

8
0

2
9

0
0

0

0
.0

1
3

2
5

2
7

0
0

0

0
.0

1
0

4
0

8
2

0
0

0

0
.0

0
2

2
5

1
1

0
0

0

KnnRNNH

0
.
1
3
5
7
4
6
8
0
0
0

0
.
0
5
6
7
9
9
5
0
0
0

0
.
0
0
8
4
0
3
7
0
0
0

(a) SYN 1: 65K

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.10 0.15 0.20 0.25

E
x

e
c

u
ti

o
n

 t
im

e
 (

M
S

)

Percentage of facilities

 SYN2: D= 0.005, users= 75%,
Optimized RNNH

0
.0

2
7

5
7

4
8

0
0

0

0
.0

0
8

0
1

8
3

0
0

0

0
.0

0
1

2
2

3
1

0
0

0

RNNH

0
.0

8
5

4
1

3
6

0
0

0

0
.0

1
8

5
3

0
6

0
0

0

0
.0

0
3

4
9

6
5

0
0

0

KnnRNNH

1
.
0
3
1
0
9
6
2
0
0
0

0
.
1
9
3
8
3
5
2
0
0
0

0
.
0
0
2
7
8
5
8
0
0
0

(b) SYN 2: 130K

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.10 0.15 0.20 0.25

E
x

e
c

u
ti

o
n

 t
im

e
 (

M
S

)

Percentage of facilities

 SYN3: D= 0.005, users= 75%, Optimized RNNH

0
.1

3
2

2
7

4
1

0
0

0

0
.0

1
6

6
5

6
2

0
0

0

0
.0

0
6

0
2

2
9

0
0

0

RNNH

0
.5

8
6

3
3

3
9

0
0

0

0
.0

7
6

8
0

8
8

0
0

0

0
.0

2
1

9
6

8
9

0
0

0

KnnRNNH

0
.
7
1
1
3
8
4
8
0
0
0

0
.
1
9
2
2
2
0
8
0
0
0

(c) SYN 3: 650K

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.10 0.15 0.20 0.25

E
x

e
c

u
ti

o
n

 t
im

e
 (

M
S

)

Percentage of facilities

 SYN4: D= 0.005, users= 75%, Optimized RNNH

0
.1

0
3

6
6

0
0

0
0

0

0
.0

3
0

9
5

4
5

0
0

0

0
.0

1
1

9
8

1
5

0
0

0

RNNH

0
.4

3
2

2
6

6
3

0
0

0

0
.1

6
0

5
5

6
4

0
0

0

0
.0

5
1

9
0

2
0

0
0

0

KnnRNNH

3
.
5
7
8
8
4
5
7
0
0
0

0
.
8
8
9
5
7
4
6
0
0
0

(d) SYN 4: 1.3M

Figure 3.7: Effect of varying the number of facilities

Varying percentage of facilities: In Figure 3.7, we varied the percentages

of facilities in 10%, 15%, 20% and 25% of the total of dataset. As shown in Figure

3.7(a), SYN1 is a small data set, however the RNNH is superior in the context of

varying the number of facilities in all the patterns of percentage. Secondly, it is very

clear as we have seen in Figure 3.7(d) that the CPU cost declines with an increase

in the number of facilities. The overall trend is that the smaller the percentage of

53

facilities, the longer is the execution time. This is because the overall number of

processing points increases as the number of facilities decreases.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.15 0.35 0.55 0.75

E
x

e
c

u
ti

o
n

 t
im

e
 (

M
S

)

Number of Users

 SY1: D= 0.005, Facility= 20%
Optimized RNNH

0
.0

0
0

2
1

1
3

0
0

0

0
.0

0
0

4
6

3
3

0
0

0

0
.0

0
1

1
3

8
5

0
0

0

0
.0

0
3

7
1

5
3

0
0

0

RNNH

0
.0

0
0

2
9

4
8

0
0

0

0
.0

0
0

8
2

3
3

0
0

0

0
.0

0
2

3
3

7
5

0
0

0

0
.0

1
0

4
3

7
8

0
0

0

KnnRNNH

0
.
0
0
0
2
2
7
5
0
0
0

0
.
0
0
1
5
9
2
6
0
0
0

0
.
0
0
8
3
6
5
5
0
0
0

0
.
0
5
6
7
9
8
0
0
0
0

(a) SYN 1: 65K

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.15 0.35 0.55 0.75

E
x

e
c

u
ti

o
n

 t
im

e
 (

M
S

)

Number of Users

 SY2: D= 0.005, Facility= 20%
Optimized RNNH

0
.0

0
0

1
8

4
8

0
0

0

0
.0

0
0

3
6

8
7

0
0

0

0
.0

0
0

5
2

7
9

0
0

0

0
.0

0
7

9
2

9
3

0
0

0

RNNH

0
.0

0
0

2
3

6
3

0
0

0

0
.0

0
0

6
7

7
4

0
0

0

0
.0

0
1

1
8

1
0

0
0

0

0
.0

1
8

4
8

8
8

0
0

0

KnnRNNH

0
.
0
0
0
1
9
2
2
0
0
0

0
.
0
0
1
1
6
5
9
0
0
0

0
.
0
0
3
0
8
8
0
0
0
0

0
.
1
9
5
0
0
0
4
0
0
0

(b) SYN 2: 130K

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.15 0.35 0.55 0.75

E
x

e
c

u
ti

o
n

 t
im

e
 (

M
S

)

Number of Users

 SY3: D= 0.005, Facility= 20%
Optimized RNNH

0
.0

0
0

3
0

7
5

0
0

0

0
.0

0
0

8
2

1
5

0
0

0

0
.0

0
2

4
1

6
9

0
0

0

0
.0

1
6

7
7

2
7

0
0

0

RNNH

0
.0

0
0

8
1

8
8

0
0

0

0
.0

0
3

4
6

7
9

0
0

0

0
.0

1
1

5
8

6
2

0
0

0

0
.0

7
6

6
7

1
4

0
0

0

KnnRNNH

0
.
0
0
1
6
0
9
0
0
0
0

0
.
0
1
4
8
4
7
6
0
0
0

0
.
0
8
6
2
4
8
0
0
0
0

0
.
7
0
2
1
5
8
2
0
0
0

(c) SYN 3: 650K

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.15 0.35 0.55 0.75

E
x

e
c

u
ti

o
n

 t
im

e
 (

M
S

)

Number of Users

 SY4: D= 0.005, Facility= 20%
Optimized RNNH

0
.0

0
0

3
0

2
3

0
0

0

0
.0

0
1

4
7

0
2

0
0

0

0
.0

0
3

5
8

9
2

0
0

0

0
.0

3
1

7
9

8
4

0
0

0

RNNH

0
.0

0
1

2
2

0
7

0
0

0

0
.0

0
8

5
5

2
3

0
0

0

0
.0

1
8

9
2

0
4

0
0

0

0
.1

6
2

0
5

0
5

0
0

0

KnnRNNH
0
.
0
0
1
8
9
7
9
0
0
0

0
.
0
6
0
7
8
3
0
0
0
0

0
.
2
1
8
2
5
9
4
0
0
0

3
.
4
8
0
9
7
4
3
0
0
0

(d) SYN 4: 1.3M

Figure 3.8: Effect of varying the number of users

Varying the percentage of users : We evaluated the performance by varying

the number of users and observing the effect on the CPU cost. This is shown in

Figure 3.8. The percentages of users are 15%, 35%, 55% and 75% of the data set.

We can see in Figure 3.8 that the processing time increases as the number of users

increases. This is because there is a correlation between the number of users and the

execution time: when the number of users increases, the execution time increases.

Also, it becomes worse for the knnRNNH algorithm because it is processing many

more points compared with RNNH algorithm which only processes points that are

closed to q.

Secondly, in Figure 3.8(a), we can see that for a small percentage of users, all

three algorithms performed equally well. However, the CPU cost increases with an

increase in the number of users. This is because when the total number of points,

facilities and users are similar, the size of the neighbourhood will be small and this

54

decreases the processing time. Finally, for the KnnRNNH algorithm the rise is very

dramatic compared to our algorithm.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.001 0.005 0.01 0.015

E
x
e
c
u

ti
o

n
 t

im
e
 (

M
S

)

D value (NA)

 NA: Facility= 20%, Users= 75%
Optimized RNNH

0
.0

0
0

5
4

0
4

0
0

0

0
.0

0
1

8
0

2
9

0
0

0

0
.0

0
3

6
3

9
9

0
0

0

0
.0

0
6

3
9

4
1

0
0

0

RNNH

0
.0

0
0

8
3

5
7

0
0

0

0
.0

0
6

7
2

7
1

0
0

0

0
.0

1
4

7
1

6
3

0
0

0

0
.0

2
3

5
1

3
5

0
0

0

KnnRNNH

0
.
0
0
2
1
3
8
5
0
0
0

0
.
0
6
4
5
1
8
8
0
0
0

0
.
2
6
7
6
4
9
9
0
0
0

0
.
7
2
7
3
8
9
3
0
0
0

(a) NA : 175K

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.001 0.005 0.01 0.015

E
x
e
c
u

ti
o

n
 t

im
e
 (

M
S

)

D value (LA)

 LA: Facility= 20%, Users= 75% Optimized RNNH

0
.0

0
1

9
3

4
7

0
0

0

0
.0

1
2

6
0

5
9

0
0

0

0
.0

9
7

7
2

0
4

0
0

0

0
.5

2
8

6
3

5
0

0
0

0

RNNH

0
.0

0
6

2
3

2
9

0
0

0

0
.0

5
8

3
2

9
6

0
0

0

0
.2

7
2

1
2

0
9

0
0

0

0
.9

3
1

7
0

1
0

0
0

0

KnnRNNH

0
.
0
3
7
0
0
7
2
0
0
0

1
.
9
4
2
9
9
3
2
0
0
0

2
0
.
4
2
5
1
4
6
1
0
0
0

8
7
.
8
7
8
0
0
5
8
0
0
0

(b) LA : 2.6M

Figure 3.9: Effect of varying the number of d

3.5.3 Evaluating Performance on Real Datasets

Figures 3.9 to 3.11 show the effect of varying the number of d, percentage of facilities

and users on real datasets (NA and LA). Note that the NA dataset is much smaller

than the LA dataset (175k vs 2.6 million, respectively). In terms of the effect of

varying the number of d, as expected, the general execution time for all three algo-

rithms was less for the NA data set than for the LA data set as shown in Figure 3.9.

Secondly, for both data sets, optimized RNNH had the shortest execution time, and

the differences between the execution times for KnnRNNH, RNNH and optimized

RNNH are much greatest for the LA data set. This indicates that as the data sets

become larger, RNNH and optimized RNNH are more efficient than KnnRNNH

algorithm.

Figure 3.10 shows the effect of varying the number of facilities. The execution

time for all three algorithms was less for the NA data set than for the LA data set.

This because there is a correlation between the number of points and the execution

time. Secondly, for both data sets, the optimized RNNH had the least execution

time, this was followed by RNNH, and finally, KnnRNNH. However, the difference

between the execution times for KnnRNNH, and optimized RNNH and RNNH is

much greater for the LA data set. Figure 3.11 shows the effect of varying the number

of users, the general execution time for all three algorithms was less for the NA data

set compared to the LA data set. For both data sets, the optimized RNNH had

the least execution time, this was followed by RNNH, and finally, the KnnRNNH

algorithm.

55

10
-3

10
-2

10
-1

10
0

10
1

10
2

0.10 0.15 0.20 0.25

E
x
e
c
u

ti
o

n
 t

im
e
 (

M
S

)

Percentage of facilities

 NA: D= 0.005, Users= 75% Optimized RNNH

0
.0

0
9

5
6

5
3

0
0

0

0
.0

0
2

8
4

3
7

0
0

0

0
.0

0
1

9
5

3
9

0
0

0

0
.0

0
1

5
8

0
8

0
0

0

RNNH

0
.0

2
7

4
4

7
5

0
0

0

0
.0

1
0

6
8

5
2

0
0

0

0
.0

0
9

2
2

2
6

0
0

0

0
.0

0
6

6
7

8
7

0
0

0

KnnRNNH

0
.
5
5
0
9
7
9
8
0
0
0

0
.
1
1
4
8
7
9
3
0
0
0

0
.
0
7
2
8
3
6
6
0
0
0

0
.
0
5
6
0
2
4
9
0
0
0

(a) NA : 175K

10
-2

10
-1

10
0

10
1

10
2

0.1 0.15 0.2 0.25

E
x
e
c
u

ti
o

n
 t

im
e
 (

M
S

)

Percentage of facilities

 LA: D= 0.005, Users= 75% Optimized RNNH

0
.2

2
1

7
9

3
6

0
0

0

0
.1

4
7

1
6

1
1

0
0

0

0
.0

2
1

9
4

3
8

0
0

0

0
.0

1
1

5
3

3
1

0
0

0

RNNH

0
.6

8
1

0
6

2
1

0
0

0

0
.4

4
1

3
5

9
6

0
0

0

0
.0

7
9

4
5

3
8

0
0

0

0
.0

6
1

1
8

8
5

0
0

0

KnnRNNH

4
9
.
7
9
7
3
2
5
3
0
0
0

2
7
.
9
7
3
3
8
8
6
0
0
0

3
.
6
8
1
9
7
7
4
0
0
0

1
.
8
3
1
0
6
2
8
0
0
0

(b) LA : 2.6M

Figure 3.10: Effect of varying the number of facilities

However, the difference between the execution times for KnnRNNH, and RNNH

and optimized RNNH is much greater for the LA data set. When comparing the

RNNH and optimized RNNH, the LA data set had a much larger difference between

the efficiency of optimized RNNH and RNNH compared to the NA dataset but the

difference decreased as the number of users increased. This indicates that as the

data sets become larger, the optimized RNNH is the most efficient, followed closely

by RNNH , and finally, KnnRNNH.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.15 0.35 0.55 0.75

E
x
e
c
u

ti
o

n
 t

im
e
 (

M
S

)

Number of Users

 NA: D= 0.005, Facility= 20%
Optimized RNNH

0
.0

0
0

1
9

3
9

0
0

0

0
.0

0
0

3
8

4
8

0
0

0

0
.0

0
1

1
6

8
0

0
0

0

0
.0

0
1

8
3

0
0

0
0

0

RNNH

0
.0

0
0

3
8

8
8

0
0

0

0
.0

0
0

9
5

4
6

0
0

0

0
.0

0
4

3
7

6
5

0
0

0

0
.0

0
6

7
2

6
7

0
0

0

KnnRNNH

0
.
0
0
0
8
7
2
1
0
0
0

0
.
0
0
4
2
4
1
3
0
0
0

0
.
0
3
0
8
7
9
4
0
0
0

0
.
0
6
4
3
5
7
2
0
0
0

(a) NA : 175K

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0.15 0.35 0.55 0.75

E
x
e
c
u

ti
o

n
 t

im
e
 (

M
S

)

Number of Users

 LA: D= 0.005, Facility= 20%
Optimized RNNH

0
.0

0
0

4
5

8
9

0
0

0

0
.0

0
2

0
1

8
8

0
0

0

0
.0

0
4

4
6

0
4

0
0

0

0
.0

1
2

5
1

4
5

0
0

0

RNNH

0
.0

0
5

1
7

7
7

0
0

0

0
.0

2
1

4
8

2
6

0
0

0

0
.0

3
4

3
5

6
7

0
0

0

0
.0

5
8

5
7

1
4

0
0

0

KnnRNNH

0
.
0
0
9
1
1
3
2
0
0
0

0
.
1
7
6
3
7
3
1
0
0
0

0
.
4
9
2
1
7
0
9
0
0
0

1
.
9
4
2
9
3
4
2
0
0
0

(b) LA : 2.6

Figure 3.11: Effect of varying the number of users

3.6 Conclusion

In this chapter, we have introduced the concept of a group version of Reverse Nearest

Neighbour called Reverse Nearest Neighbourhood (RNNH). We proposed RNNH

56

algorithms using R-tree indexing. This algorithm is used for the incremental retrieval

of reverse nearest neighbours. It finds all possible reverse nearest neighbourhoods

instead of only the nearest reverse points. All the neighbourhoods consider the

query as the nearest facility. We have conducted exhaustive experiments on real and

synthetic datasets to demonstrate the results of these proposed methods. The results

found that the proposed algorithm minimizes the total running time to process and

find all the nearest reverse groups.

57

Chapter 4

Continuous Reverse Nearest

Neighbourhood Queries

4.1 Overview

In a continuous RNNH query, the points of interest do not change their locations

although the queries are continuously moving. We assume a client-server paradigm

in peer-peer systems. In most P2P systems, peers are connected by means of a

limited range of uniform networks, leading to issues when some connected peers are

isolated from the others. In order to address such issues, isolated peers rely on devices

with long-range networks to relay their messages. However, since long-range devices

can move freely, the set of connected peers may lose their connection. Hence, it is

important not only to identify, but also to maximize the area known as the safe region

(SR) where a long-range device can move freely while still maintaining connection

with its peers. This chapter presents an innovative and generic monitoring framework

that addresses the issues related to the frequent updating of query location using a

systematic approach. In our approach, we apply the Reverse Nearest Neighbourhood

(RNNH) concept in a P2P environment to efficiently identify and maximise the

irregularly shaped area of the SR up to four times for the potential movement of the

long-range devices. It was found that there is no need for costly re- computation

when the query is retained within the SR. Experimental results demonstrate the

effectiveness and efficiency of our approach.

4.2 Motivation

The growing importance of location-based services has led to a new range of real-time

services such as location-based social networking that uses GPS to locate users and

enables them to broadcast their locations and share information via their mobile

58

devices. Many of these systems have a central base station [6],[7] (see Figure. 4.1(a));

i.e., the entire system relies on one central point. Therefore, if the central point is

unavailable or shut down, the whole network becomes unavailable. Another problem

is that some points may not be reachable from the base station if they are outside

its range, such as p5 as shown in Figure. 4.1(a). These centralised systems are

susceptible to base station failures and isolated points issues.

(a) Centralised systems (b) P2P systems

Figure 4.1: Centralised systems versus P2P systems

In response to the limitations of centralised systems, the emergence of mobile

peer-to-peer (P2P) systems offers a promising solution. P2P overcomes the cen-

tral failure (base station) and isolated points, where points can communicate or

exchange information with their reachable surrounding points via short-range wireless

communication (e.g. Bluetooth, Ad-Hoc WiFi etc.) [165]. These interconnected

peers in a P2P system form a neighbourhood [22]. Figure 4.1(b) shows how a P2P

environment can overcome the failure of a centralised base station issue by elimi-

nating the need for such stations and allowing more points, such as p5 (similarly

p6, p7, p8 and p9), to communicate with the network environment. Although the

P2P system has overcome problems related to the centralised base station and

isolated points, this method can still cause a new isolation problem such as the

isolation of neighbourhoods as illustrated in Figure 4.1(b). Here, the neighborhoods

are unable to communicate with each other due to their limited communication range.

Most studies on P2P systems focus on short-range communication systems, lead-

ing to the isolated neighbourhoods problem. However, one study has proposed

the design of a LoRa wireless mesh network system that combines two types of

communication: short-range and long-range [166]. With two types of communication,

a system can overcome the problem of isolated neighbourhoods by enabling the two

59

Figure 4.2: Two types of communications in RNNH based P2P network systems

neighbourhoods to communicate with each other through long-range communication.

The short-range communication device enables communication among the peers

within a neighbourhood. On the other hand, the long-range device serves as a bridge

that transfers information between neighbourhoods and ensures that the entire net-

work is connected. This system differs from the base station in a centralized system,

in that the base station is solely responsible for transferring information from one

point to another point; hence, when a base station is down, the whole network fails.

In the proposed RNNH-based P2P networks, neighbourhood members with

short-range communication rely on long-range devices to build a complete network

environment as presented in Figure 4.2, where long-range and short-range communi-

cations are depicted by the dashed lines and solid lines, respectively. However, the

movement of a long-range device away from the short-range members can affect the

communication between the short-range members and the long-range device. The

long-range device may move to link with other neighbourhoods but, if it moves too

far away, it could lose its own neighbourhood members. The main goal, therefore,

is to avoid losing the current neighbourhoods when the long-range device moves.

To handle this issue, we propose to find a safe region (SR) for a moving long-range

device: a boundary within which a long-range device can move freely. Finding an SR

for a moving long-range device is an important aspect of keeping its neighbourhoods

unchanged and a solution for ensuring that the neighbourhood members remain

connected to the long-range device when it moves.

60

To illustrate the need for SRs in RNNH-based P2P networks, let us consider

a real-life example of disaster management involving bushfires which pose great

danger to those affected, and need to be handled swiftly and reliably [16]. Dur-

ing the Australian summer, dozens of fires burn across the country and residents

brace themselves for catastrophic conditions [17]. In Figure 4.2, people living in

bushfire-prone areas often have to leave dangerous areas as a matter of urgency;

therefore, support for people in these locations must be maximized. In this kind of

natural disaster, local people are disconnected from the centralized base station and

communication between people in one neighbourhood can be achieved via Bluetooth

or WiFi (short-range device). A resident in that area can take advantage of his

short-range device to contact other people within his communication range and find

out, for example, the location of the nearest shelter. It is likely that some people in

his area already have such information, and that their mobile devices have stored

the answer to his query. A moving long-range device operated by the rescuer enables

communication between two neighbourhoods and passes instructions and information

between victims. The rescuer must therefore move within the limits of a certain

region between the neighbourhoods in order to keep in touch with his neighbourhood

members. Therefore, in order to manage such disasters, the rescuer must have an

SR within which he can move freely in order to make and maintain contact without

losing any connection with the neighbourhoods. This scenario demonstrates how

two types of communication, namely short-range and long-range communications, in

RNNH-based P2P network environments, can assist the affected residents to maintain

contact with other residents and with rescuers during a natural disaster.

We summarize our main contributions as follows.

• We introduce the concept of safe region (SR) for continuous query point that

keeps the RNNH result unchanged.

• We introduce three types of safe regions: basic, enhanced, and extended.

• We compare the basic, enhanced, and extended safe regions to obtain the

maximum safe region within which a query can move freely.

• We conduct an extensive experimental study, applying the Monte-Carlo method

to estimate the aggregate area of irregularly-shaped SRs. The performances of

the three proposed SRs, the basic, enhanced, and extended, were compared by

calculating the total area of SR(s) produced by them.

61

4.3 Proposed Framework

This study considers a systematic approach that can continuously monitor the moving

RNNH query in spatial databases. In this approach, the location of the moving

query is known by the server and the query location is updated only if the query

leaves its safe region (SR). We propose three types of SRs with different trade-offs

within which a query can move without changing its neighbourhood members. An

irregularly-shaped area is implemented in this work to represent and to maximize

the SR, where the set of objects of interest that are part of the neighbourhood of a

query do not change as long as the query point stays within the area. In the case of

a bushfire (refer to Figure 4.2), the decision regarding the safe region to have for the

rescuer is a trade-off between the size of the safe region and the computation cost.

The best safe region will be determined by the most important factors and priorities

of the authorities who manage this kind of disaster.

4.3.1 Basic Safe Region

In this approach, the SR of an arbitrary query point (long- range network device) is

computed at the server side according to the closest point (firstclose) to the query

in reverse nearest neighbourhood. After that, the computed SR is sent by the server

to the moving query. The objective of the basic SR technique is to construct an SR

for the query point which is computationally very fast. In our approach, this basic

SR is generated based on two parameters: (i) Fd and (ii) firstclose, where Fd is the

distance between the nearest competitor facility and the reverse nearest neighbour-

hood of the query q, while firstclose refers to the closest point of the query q in the

reverse nearest neighbourhood. The basic SR refers to the circular region around

firstclose with Fd as the radius. The centre of the basic SR is located at firstclose

since firstclose is the nearest point of the query in the reverse nearest neighbourhood.

Let us consider the example given in Figure 4.3, which shows the reverse nearest

neighbourhood result for the query q, i.e., NH = {p1, p2, p3, p4}, where the neigh-

bourhood points are connected by solid lines. In Figure 4.3, Fd is the distance

between p4 and facility E, where facility E is the nearest competitor facility for the

reverse nearest neighbourhood NH of q and p1 is the firstclose of q in the reverse

nearest neighbourhood NH = {p1, p2, p3, p4}. It is easy to verify that the query point

can move freely within the Fd vicinity from p1 (in any direction) thereby eliminating

the need to re-compute of the reverse nearest neighborhood members of q as its

reverse nearest neighborhood NH = {p1, p2, p3, p4} stays the same.

62

q

A

B

D

C

E

p1
p2

p3

p4

Fd

Fd

Figure 4.3: Basic safe region

When the query q moves out of the shaded area in Figure 4.3, the current neigh-

borhood NH might no longer be the RNNH for the query point q. This is because

the NH = {p1, p2, p3, p4} might become closer to another competitor facility. For

example, when the query point moves north by more than the distance Fd from p1,

the NH does not consider q as its closest facility as the distance between p4 and

the facility E is shorter than the distance between p1 and the query point q (i.e.,

dH(q,NH)). If the query moves out, the RNNH of the query point is re-computed

as {p1, p2, p3} as shown in Figure 4.4. If the query point moves out in any direction

within the shadowed area as shown in Figure 4.3, for which the radius must be less

than Fd, the RNNH i.e., NH = {p1, p2, p3, p4} still considers the query point q as

the closest facility and its neighborhood NH does not change.

In summary, the current RNNH of the query remains valid as long as the query

stays within the basic SR, i.e., Fd vicinity from the firstclose of q (shadowed area

as shown in Figure 4.3). When the query q moves out of the basic SR (exceeding the

distance Fd from the firstclose of the query q), the query updates the server with

its location information. The server then computes the new SR and RNNH result

for the query point q. This new SR is then sent to the moving query q.

Lemma 3 The shortest (travel) path of a query to change the original set of RNNH

points occurs when it moves in a direction opposite to its firstclose to exit the SR.

63

q

A

B

D

C

E

p1
p2

p3

p4 Fd

Fd

Figure 4.4: RNNH for the current location of q and the corresponding basic safe
region

Proof 3 (By inspection) Since the firstclose object ap- pears to be the point closest

to the original query q, moving away from this point in a straight line (in the direction

of original query) offers the shortest travel path for the query to exit the SR.

Lemma 4 An object is discarded from the moving query RNNH result if its distance

from a competitor facility is less than dist(q,NH).

Proof 4 Assume that there are four points in the neighbourhood NH = {p1, p2, p3, p4}
(as illustrated Figure 4.5). The distance between p1 and q, dist(q, p1) (i.e., dH(q,NH))

is lower than the radius (i.e., Fd) of the SR of the query q, Fd. Consider that the

query moves to the new location q′, which is outside the SR of the current location of

q. In this case, the distance between p4 and the competitor facility E of q becomes

less than dist(q′, p1), i.e., dist(p4, E) < dist(q, p1) = dH(q′, NH). In this case, p4 is

excluded from the NH of q.

Lemma 5 Query point q can move in any direction within the Fd distance from

the firstclose of the query q in a reverse nearest neighbourhood NH without being

connected to the server to update its RNNH result.

Proof 5 Assume that p1 is the firstclose and the distance between p1 and q (dist(p1, q))

is less than Fd. Let (qx, qy) be the coordinates of the query q and (p1x, p1y) be the

coordinates of p1, which is the firstclose, then we get the following.

64

q

A

B

D

C

E

p1
p2

p3

p4

q’

Fd

Fd

Figure 4.5: Query q moves to q′ : dist(q, p1) < Fd and dist(q′, p1) > Fd

dist(p1, q) =
√

(qx − p1x)2 + (qy − p1y)2 (4.1)

The location of the query point is obtained from dist(p1, q) and Fd as given as

follows.

dist(p1, q)− Fd =


> 0 q outside the SR,

= 0 q on the SR boundary,

< 0 inside the SR boundary.

(4.2)

Based on the definition of RNNH query (on chapter 3), dH(q,NH) ≤ dH(f,NH),

∀p ∈ NH and ∀f ∈ F \ q. If the query point is on the boundary of SR, two configu-

rations must be taken into account: if q lies inside or outside the SR. If and only if q

lies inside the SR,we obtain the following.

(qx − p1x)2 + (qy − p1y)2 − F 2
d ≤ 0 (4.3)

If q lies outside the SR, then a recalculation of the RNNH is needed. Let us

consider the example illustrated in Figure 4.5 for NH = {p1, p2, p3, p4}. If q stays

within the SR, NH is RNNH for q, i.e., dist(p1, q) does not exceed Fd. However,

when dist(p1, q) exceeds Fd (e.g., q moves to q′), the current NH is no longer the

RNNH for q.

65

One of the consequences of the basic safe-region-based approach is that if the

query point moves a distance greater than Fd in the exact direction of the firstclose,

it will remain within the SR; i.e, if a query is moving towards the firstclose this

increases the probability that the query will not leave the SR.

4.3.2 Enhanced Safe Region

The Enhanced SR is an intermediate case between Basic and Extended SRs. The SR

can be created more easily through this method by generating a wider SR enabling

the query to move more freely. The Basic SR considers a query as being within

the SR as its distance away from the firstclose position is less than Fd. Lemma 3

indicates the quickest way that a query can leave the SR is by moving Fd further

away in the opposite direction of the firstclose point. However, the query can move

further than the Fd distance from the current location and still remain within its

RNNH group.

q

A

B

D

C

E

p1
p2

p3

p4 q’

Figure 4.6: Lemma 6

Lemma 6 Since query point q and firstclose are not in the same position, q can

move more than the Fd distance towards the firstclose.

Proof 6 (By inspection) Figure 4.6, (qx; qy) illustrates the location of q. The query

(q) can move to a new location (q′) in the required direction of firstclose. It still

lies within the SR and Fd as the radius. The distance between q and q′ is calculated

66

as follows :

dist(q′, q) =
√

(qx − q′x)2 + (qy − q′y)2 (4.4)

Based on Figure 4.6, we can conclude that dist(q′, q) > Fd.

q

A

B

D

C

E

p1
p2

p3

p4

q’

Figure 4.7: Enhanced safe region

The Basic SR may be improved by considering the two points nearest to the

query, as well as the distance between the nearest competitor facility and RNNH. Let

Fd be the radius of the Basic SR, p1 and p2 be the nearest and the second nearest

points to q, respectively, and the distance between p1 and p2 be less than d. Lemma

3 states that the shortest path that a query takes to change its points of interest

is upon moving the Fd distance (in opposite direction) away from the firstclose.

However, if the query moves a distance of Fd away in the direction of Secondclose,

it retains its objects of interest.

Lemma 7 The query point can move more than the Fd distance away from the

firstclose without being connected to the server to update its RNNH result., if it

moves towards Secondclose.

Proof 7 (By inspection). Based on Lemmas 4 and 6 we can conclude the following

observations from the example displayed in Figure 4.7. Assume that dist(q′, p1) = Pd

and dist(q′, q) = Cd where Cd is greater than Fd (Cd > Fd) and Pd > Fd. The

dH(q′, NH) < dH(fc, NH) where NH =
{
p1, p2, p3, p4

}
and fc is the nearest facility

67

to NH, which is E. Hence, q can move to q′ position Cd, where Cd > Fd, towards

Secondclose and avoid the connection with the server (see Figure 4.7).

q

A

B

D

C

E

p1
p2

p3

p4
q’

Figure 4.8: Query moves 2Fd distance.

In the Basic SR, the centre point is the first point closest to the query, while the

Enhanced SR needs to have two centre points, which are the two points closest to the

query (firstclose, Secondclose). Based on observation, the area of the Enhanced

SR is greater than that of the Basic SR and q can move more freely than Fd distance

from its current location. This is because; the Enhanced SR border is located further

away from the query than is the border of the Basic SR, as shown in Figure 4.7.

4.3.3 Extended Safe Region

This section presents the Extended SR, where a query can move further without the

need for re-computing the RNNH results. As depicted earlier, the fastest way that

a q can leave the SR is by moving away from the firstclose point in the opposite

direction, as stated in Lemma 3.

Lemma 8 A query can move more than 2Fd and points of the RNNH (q) remain

unchanged if the query moves only towards the points of RNNH with the range of Fd

radius.

68

q

A

B

D

C

E

p1
p2

p3

p4

Figure 4.9: Extended safe region

Proof 8 Assume that RNNH =
{
p1, p2, p3, p4

}
, and the minimum distance between

p1 and query point q (dist(p1, q)) is less than the distance of Fd. From Lemmas

4, 6 and 7, we can conclude that query point q can move to the position of q′ (as

illustrated Figure 4.8), where dist(q′, q) > 2Fd. In this scenario, q does not ex-

clude any points of interest, because the distance from q′ to RNNH is ≤ the distances

to other facilities (i.e. dH(NH, fc) > dH(NH, q′)), fc is the nearest facility to NH).

Figure 4.9 depicts an irregular shape that has query point q. More precisely,

the Extended SR has a series of round areas, the centres of which are members of

the RNNH. Hence, q can move freely in any position inside the Extended SR while

holding its RNNH result. This area is dynamically increased and decreased based on

RNNH members. This method reduces (1) the frequency of communication between

query and server, and (2) the frequency of location updates.

4.3.4 Algorithms for Safe Regions

The following subsection presents further details regarding algorithms for Basic,

Enhanced, and Extended SRs.

4.3.4.1 Basic SR Algorithm

Algorithm 3 is used to find the Basic SR where all the neighbourhood-points (RNNH

result) listed in the safe-objects list (SOL) which are first found by RNNH algorithm

[22]. In line 2, Algorithm 3 calls the calculating boundary function (Algorithm 2).

69

In algorithm 2, pi is a point from SOL list. The SOL should be sorted in ascending

order from the query point (line 2). SOL may or may not be inside the Zq, which is

the concept of the Voronoi diagram or the Influence Zone introduced by [24]. In line

4, the nearest facility to pi is determined. In the next step, it checks whether or not

it is inside Zq. If the SOL member is inside Zq, the processing starts by finding the

second nearest facility.

Algorithm 2 Function CalculateBoundary

Input: SOL (Safe Objects List)

Output : boundary

boundary ←∞
sort(SOL,q)

for each pi in SOL do
fc ← NNF (pi)

if fc is Not q then
d← dist(pi, fc)

if d < boundary then
boundary ← d

end

end

else
fc ← 2NNF (pi)

d← dist(pi, fc)

if d < boundary then
boundary ← d

end

end

end

return boundary

In line 12, when processing SOL members that are inside Zq, since the nearest fa-

cility of SOL members is q, one must find the second nearest facility of pi. Otherwise,

if the nearest facility of SOL members is not q, one must seek the nearest facility

to pi (pi outside Zq) and measure its distance to the nearest facility. Lines 6 and

13 calculate the distance between the SOL member and a competitor facility (fc).

If the distance between a competitor facility and SOL members is minimal, then

one can place it within the SR boundary (line 8 and 15). This processing continues

for all SOL members, then the Calculate Boundary function returns the boundary.

Thus, Algorithm 3 obtains the boundary and assigns it to Fd, then the query point

(q) is surrounded by a circle with its centre being the closest point to q, which is pi,

with a radius equal to fd distance (the distance between the RNNH and the nearest

70

competitor facility). The result of this algorithm is the range circle of the moving

query, and its radius is fd from the nearest neighbour of q.

Algorithm 3 Basic Safe Region Algorithm

Input: q : query point

Output : Basic safe region for q

SOL← RNNH(d,m, q, U, F)

Fd ← CalculateBoundary(SOL)

Circle(pi, Fd)

BasicSafeRegion ← Area(Circle)

4.3.4.2 Enhanced SR algorithm

Algorithm 4 is used to find the Enhanced SR for a moving query. Here, the SOL

is calculated by using the RNNH algorithm [22]. In line 2, after calling Algorithm

4.3.4.1 to calculate the boundary, Algorithm 4 conducts the processing steps as we

explained in Algorithm 3, and then should create the Enhanced SR based on the

closest two objects of SOL to the query point. The area of Enhanced SR is formed by

two circles with a radius of Fd, whose centres are the two closest points to q. In this al-

gorithm, q can freely move further away from the Fd distance from its current location.

Algorithm 4 Enhanced Safe Region Algorithm

Input: q : query point

Output : Enhanced safe region for q

SOL← RNNH(d,m, q, U, F)

Fd ← CalculateBoundary(SOL)

Circle1(pi, Fd) EnhancedSafeRegion ← Area(Circle1)

Circle2(pi+1, Fd) EnhancedSafeRegion ← Area(Circle2)

4.3.4.3 Extended SR algorithm

Algorithm 5 calculates the Extended SR for a moving query. First, the set of points

of interest are found (RNNH result) [22] to SOL list. The Extended SR is created

with the steps shown in Algorithm 5. In short, it resembles a series of circles. This

SR is formed by the overlap of each circular region containing q; their centres are

the SOL members. In this algorithm, the query point can move more than 2Fd to its

current location.

71

Algorithm 5 Extended Safe Region Algorithm

Input: q : query point

Output : Extended safe region for q

SOL← RNNH(d,m, q, U, F)

Fd ← CalculateBoundary(SOL)

for each object pi in SOL do
Circlei(pi, Fd)

insert Area(Circlei) into ExtendedSR list

end

4.4 Calculating the Area of the Safe Region

When an SR has one or two objects, the calculation of the area is just a straightforward

geometric issue [144]. If it is the Basic SR, it is calculated based on the following

equation where the radius of the SR is Fd and the centre is the point nearest to the

query:

Rpi = πF 2
d (4.5)

If there are more than two objects, the calculation of SR becomes intricate

because the overlapping areas have more irregular shapes. Hence, this study proposes

the Monte-Carlo approach. Consider a set RP =
{
Rp1, Rp2, ..., Rpn

}
of n circles,

wherein Fd is the radius and the centres are
{
p1, p2, ..., pn

}
. The circles in RP may

partially overlap.

Figure 4.10 illustrates the formation of SRs using four points, P =
{
p1, p2, p3, p5

}
within a space E and RP =

{
Rp1, Rp2, Rp3, Rp5

}
. For instance, (A2, A3, ..., A10)

are SRs derived from the overlap/intersection of some points of interest. When the

query is within the area of an point that does not intersect with any other area, the

point’s whole area becomes a SR for query q, such as the Rp4 area.

dist(pi, q) ≤ Fd and Rpi
⋂
x 6=i

Rpx = θ. (4.6)

4.4.1 Calculating the Two Circles

In many circumstances, the area of two points may intersect and the query can fall

into either one; Rpi or Rpj. It may also fall within the intersecting area of the two

points: Rpi ∩Rpj. In this situation,

72

Figure 4.10: Types of extended safe regions

dist(pi, q) ≤ Fd and Rpi
⋂
x 6=i

Rpx 6= θ. (4.7)

or

dist(pi, q) ≤ Fd and dist(pj, q) ≤ Fd , i 6= j. (4.8)

p3

p5

Rp5

Rp3

A2

A4

A3'

A3''

A3

d

Figure 4.11: Area of intersection of two circles

A2, A3, and A4 (see Figure 4.10) denote the SRs generated by the intersection

of two circles. A3 has two equal half-regions; A3′ = A3′′. The intersection of the two

circles is calculated with Equation 4.7, where d refers to the half distance between

two points, and Fd is the area radius, as illustrated in Figure 4.11.

73

Rpi ∩Rpj = F 2
d arccos(

d

Fd
)− d

√
F 2
d − d2. (4.9)

The calculation of two circles is given by the following equation:

Area of Safe Region = Rpi+Rpj − (Rpi ∩Rpj). (4.10)

4.4.2 Using the Monte-Carlo Simulation to Calculate SR Area

When more than two points are involved, the SR may be irregular in shape. Since

simple analytical expression is insufficient for calculating the shape areas, the Monte-

Carlo simulation [167] can be applied to calculate the area. The calculation of area

demands specified queries with the bounding area being a determined size. The

multiple points in the bounding area are randomly generated, while counting those

within the SR. The area of the SR is calculated as the sum of points in SR, as follows:

sum of points in SR

total random points
× area of bounding region (4.11)

4.5 Experimental Results

This section presents experimental results that demonstrate the effectiveness of the

proposed algorithms. The algorithms were implemented in C++ and the experiments

were run on an Intel Core i7 2.3 GHz PC with 8GB main memory and Ubuntu Linux

system. Synthetic datasets were generated to represent the real world [168]. We

generate synthetic data based on real data to cover all the patterns and possible

scenarios that can occur in real world situations. Three user-point (short-range de-

vice) settings with varied densities were created (low=1000 objects, medium=10000

objects, and high=20000 objects) within data space measuring 100 km × 100 km.

Table 4.1 summarises the synthetic datasets employed in the experiments. The

data points in each dataset are uniformly distributed in the space. Each dataset

was indexed by R*-Tree with a node size set to 4096 bytes. Table 5.3 presents the

parameters applied to the RNNH query processing algorithm and the default values

employed in the experiments.

Three performance measures were adopted in our experiments: (1) the SR area

returned using each algorithm; (2) CPU time and (3) memory usage to construct the

SR by each algorithm. The performance of the proposed algorithms (basic, enhanced

and extended) were assessed by varying the number of facilities (in proportion to

the number of user-points) in order to determine the effect of these facilities on the

construction of an SR. The densities of the facilities indicate various services offered

74

Table 4.1: Experiment Dataset

Datasets Description # Points

SY N1 Synthetic Low Uniform Distribution 1K

SY N2 Synthetic Medium Uniform Distribution 10K

SY N3 Synthetic High Uniform Distribution 20K

by the service provider. Several query facilities (long-range devices) were randomly

generated for low, medium and high-density environments.

Table 4.2: Experimental Parameters

Parameter Range

Max distance between two points in a NH 2 KM

Min number of member points in a NH 8

Number of points 1K, 10K, 20K

Percentage of facility points 33%, 25%, 20%, 16%

Both the size and the number of SRs (each SR refers to a specific RNNH) derived

for the query facility rely on the density of the competitor facilities. These two

aspects were varied in subsequent trials. The performances of the proposed safe

region algorithms, the average size of the SR and the whole size of the data space,

were measured and compared. The purpose of these experiments was to determine

and compare the accuracy of the equation-based and simulation-based methods.

4.5.1 Accuracy of Simulation-based Method

An SR was constructed using different object points. The areas of the SRs were calcu-

lated using the same methods as those illustrated in Section V, while the Monte-Carlo

simulation method is as described in Section 4.4. The area of Basic SR was calculated

using Fd values (radii) 5, 6, 7, 8, 9, 10, 11, and 12 Km. The SRs were calculated 100

times using the Monte-Carlo simulation for each query. Then the average of the calcu-

lation, was compared with the results obtained by the equation method to determine

the accuracy of the simulation method proposed in this study. Figure 4.12 illustrates

the area of Basic SR that was calculated using the Monte-Carlo simulation and

75

 0

 1

 2

 3

 4

 5

5 6 7 8 9 10 11 12

S
iz

e
 o

f
s

a
fe

 r
e

g
io

n
 (

K
M

)

Radius (KM)

simulation method

0
.7

9
1 1
.1

6
5

2
.0

3
9

2
.0

1
2

2
.5

3
6

3
.0

6
1

3
.7

3
4

4
.4

6
4equation method

0
.7

8
5 1
.1

3
1

2
.0

1
0

2
.0

1
0

2
.5

4
4

3
.1

4
0

3
.7

1
9

4
.5

2
3

Figure 4.12: Simulation model vs. equation method

equation method. As shown in Figure 4.12 , the results (exact areas) of the simulation

method were very close to the results obtained by the equation method (Equation 4.5).

Based on the experiments reported in this section, the bounding region was

determined as 100× 100Km2, using 100,000 random points to calculate the SR area.

To determine the accuracy of the method at these settings, a trial was performed on

random queries to calculate the area of Basic SR for a single query with a radius of

2.56 km. In this case, the expected area was 2.56 ×π km2, while the Monte-Carlo

simulation estimated the area of the Basic SR accurately to two decimal places at

0.0514 km2, representing 0.0020 % of the calculated area. Figure 4.13(a) displays a

screen shot of the simulation software that was applied to calculate the SR areas to

be compared with the whole area.

(a) Basic safe region (b) Extended safe region

Figure 4.13: Demonstration of software calculating the area of safe region corre-
sponding to a static query

76

Using the same query radius of 2.56 km, the Monte-Carlo simulation estimated

the area of the Extended SR to be four times greater than the Basic SR, representing

0.0084 % of the calculated area, as evident in Figure 4.13(b).

4.5.2 Memory Usage

In this section, we show the memory consumed by our Basic, Enhanced and Extended

SR algorithms for all the environments with a ratio of 1:4 for the number of user

points to facility points. Figure 4.14 shows the memory used by algorithms for the

various data set densities: Low, Medium and High. The memory consumption of

the safe region is increased with an increase in the size of date set size. Convergence

was also noted in the memory usage in Basic and Enhanced SR for all three density

environments, because the size of the safe region does not show a big gap between

them. Conversely, the memory used by the Extended SR is the largest in all three

density environments, because the Extended SR construct needs to store a larger

area than do the others.

 1.5

 3

 4.5

 6

 7.5

 9

Low Medium High

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

Density of users

Basic

1
.2

8
8

2
.8

0
0

7
.7

8
4Enhanced

1
.3

5
0

2
.8

0
5

7
.6

8
4

Extended

1
.4

0
8

3
.1

8
8

8
.2

1
2

Figure 4.14: Memory usage

4.5.3 Size of the Safe Region

Figures 4.15 - 4.17 illustrate the comparison of the three types of SRs: Basic,

Enhanced, and Extended, in three different environments (low: Figure 4.15, medium:

Figure 4.16, and high: Figure 4.17) with various numbers of facilities; one to three (

33 % of the number of points), one to four (25%), one to five (20%), and one to

six (16%). It was discovered that the size of the Enhanced SR was greater than

that of the Basic SR (see Figure 4.15). The size of the Extended SR was twice the

size of the Enhanced SR. In fact, this was the case for all environment densities,

especially in high-density environments (see Figure 4.17). It was observed that the

77

 15

 30

 45

 60

 75

1:3 1:4 1:5 1:6

A
re

a
 o

f
s

a
fe

 r
e

g
io

n
 (

S
q

u
a

r
M

e
te

r
x

 T
h

o
u

s
a

n
d

)

Ratio Facility: users

Basic

1
6

.9
0

3
2

.5
7

3
9

.7
0

4
7

.1
0

Enhanced

2
1

.0
1

3
8

.6
5

4
6

.1
0

5
4

.8
0

Extended

2
3

.2
5

4
2

.1
6

5
1

.7
2

6
1

.6
2

Figure 4.15: Low-density environment

 0

 20

 40

 60

 80

 100

 120

1:3 1:4 1:5 1:6

A
re

a
 o

f
s

a
fe

 r
e

g
io

n
 (

S
q

u
a

r
M

e
te

r
x

 T
h

o
u

s
a

n
d

)

Ratio Facility: users

Basic

1
.5

3

1
.6

4

1
.7

0

1
.9

2

Enhanced

2
.3

8

2
.5

5

2
.6

5

2
.8

3

Extended

1
1

.8
0

2
3

.2
6

5
2

.3
4

1
1

5
.1

8

Figure 4.16: Medium-density environment

decrease in the number of facilities affected the SR size. This can be clearly seen in

Figure 4.16, where the size of the SR increased subsequent to the reduction in the

number of facilities. This is because, when the number of the facility points is lower,

the number of RNNH members increases as does the SR area.

 0

 20

 40

 60

 80

 100

1:3 1:4 1:5 1:6

A
re

a
 o

f
s

a
fe

 r
e

g
io

n
 (

S
q

u
a

r
M

e
te

r
x

 T
h

o
u

s
a

n
d

)

Ratio Facility: users

Basic

0
.7

3

0
.8

4

0
.8

9

0
.8

6

Enhanced

1
.1

3

1
.3

1

1
.3

5

1
.3

0

Extended

4
.5

2

1
0

.9
7

2
5

.4
8

9
4

.7
2

Figure 4.17: High-density environment

 0

 20

 40

 60

 80

 100

 120

1:3 1:4 1:5 1:6

A
re

a
 o

f
s

a
fe

 r
e

g
io

n
 (

S
q

u
a

r
M

e
te

r
x

 T
h

o
u

s
a

n
d

)

Ratio Facility: users

Basic

1
.5

3

1
.6

4

1
.7

0

1
.9

2

Enhanced

2
.3

8

2
.5

5

2
.6

5

2
.8

3

Extended

1
1

.8
0

2
3

.2
6

5
2

.3
4

1
1

5
.1

8

Figure 4.18: Construct CPU time needed
for safe regions in three different density
environments

4.5.4 Effectiveness of proposed algorithm

A hundred queries were randomly generated in low, medium, and high-density

environments, while the SR was calculated using three different types of SRs. The

experiment was extended to calculate the execution time for all Basic, Enhanced, and

Extended SRs in three density environments. Figure 4.18 displays the execution time

for the three types of SRs for all the environments with a ratio of 1:4 for the number

of user points to facility points. As observed, the running time was linear with respect

to the number of random points used to evaluate the SRs. Convergence was also

78

noted in the execution time of the Enhanced SR for all three density environments.

However, the execution time for the Extended SR was slightly higher than for the

Enhanced SR for medium and high densities, while a narrow gap was noted in

execution time for a low-density environment.

4.6 Conclusion

In this chapter, we propose a safe-region-based method for continuous RNNH queries.

The objective of the safe region is to determine a region within which corresponding

query can move freely, while maintaining an unchanged RNNH result. We proposed

three safe-region based methods called Basic, Enhanced and Extended using geometric

properties to maximize the SRs. The chosen method is a trade-off between the size

of the SR and the corresponding computational cost. The experimental results

show that the widest area of a safe region is the Extended SR, although it requires

more computational time than do the other methods. However, while the Basic SR

requires the lowest computational time, it offers the smallest SR area.

79

Chapter 5

Reverse Nearest Neighbourhood

Queries On Road Networks

5.1 Overview

In a road network environment, the distance measurement depends on the relative

positions and road links between two points of interest. The distance between two

points is the length of the path from one point to another along the road network. In

this chapter, we introduce the concept of reverse nearest neighbourhood for the road

network and propose the RNNH-RN algorithm for processing and answering reverse

nearest neighbourhood queries on road networks. The performance of the proposed

RNNH-RN method has been verified by extensive experiments based on real road

network data. Our experiment results demonstrate that our solutions can be feasibly

used for networks that have low, medium or high levels of population density.

5.2 Motivation

Spatial databases have emerged as an active area of research in the last two decades.

Furthermore, the rapid development of geographic information systems has enabled

spatial data query technology to play an increasingly important role in real life.

Hence, many applications employ spatial data to help us in some of our daily ac-

tivities [159]. Examples of popular applications are the Global Positioning System

(GPS) [169], targeted marketing and the Location-based Service (LBS) system [8].

Recently, the research focus has been extended to spatial road network data where

objects are restricted to a pre-defined path as real road networks contain complex

road components such as intersections, curves, and connected and disconnected roads,

etc [32].

80

One of the most common and fundamental queries in the spatial databases of road

networks is the reverse nearest neighbour query [86]. The reverse nearest neighbour

query is one that given a set of candidate interest points, and a query point, seeks

the interest points that consider the query point as their nearest neighbour [85]. For

instance, in the example of wholesale distributors and retailers, wholesale distribu-

tors normally supply products to retailers, while retailers sell to end customers. In

addition to supplying retailers, wholesale distributors deliver their products to the

retailers’ locations, taking into account the price of the goods as well as the distance

between the warehouse and the retailers. It is costly to charge individual delivery

fees for each retailer, particularly when they are dispersed. Therefore, we suggest

that wholesale distributors might be able to reduce the delivery cost by grouping the

orders of all nearby retailers as a single dispatch instead of charging every retailer

individually. We believe that our suggestion will reduce the cost and time of delivery.

In a spatial database, all potential retailers that are the nearest to the distributor’s

warehouse can usually be found by means of an RNN query. As shown in Figure

5.1, the RNN query for query point q returns points A, B, E, I and J as retailers

for which q is the nearest facility according to the road network. Although these

retailers can be used as one group in the RNN query, they are sparse and treated

individually by wholesale distributors. As a result, wholesale distributors are unable

to reduce the cost of delivery because they do not consider that the retailers could

be geographically close to each other.

Figure 5.1: Reverse Nearest Neighbour on a road network

To overcome the sparsity problem, we adopt the neighbourhood concept intro-

duced by [23]. A neighbourhood is a collection of m nearby objects where the

81

Figure 5.2: An example of euclidean Reverse Nearest neighbourhood

distance between objects must not exceed d. [23] introduced a Euclidean distance-

based Reverse Nearest Neighbourhood (RNNH) query. In real life, the Euclidean

distance-based approach is not always accurate because it does not consider obstacles

such as waterways and buildings. Hence, an authentic road-network-based approach

is more suitable in this case as it takes into account actual roadways that include

geographical obstacles. Although the approach in [23] is capable of identifying the

neighbourhoods of m retail stores, the Euclidean distance is the main drawback

that makes this method inaccurate and ineffective in a road network environment as

shown in Figure 5.2.

Figure 5.3: RNNH-RN for Wholesale distributor

To manage this issue, we propose Reverse Nearest Neighbourhood on road net-

works to find the neighbourhood that considers the query point as the nearest query

and the neighbourhood members’ location is shaped as a chain or strip. Figure 5.3

82

depicts the Reverse Nearest Neighbourhood for road networks (RNNH-RN). In this

example, there are two wholesale distributors: F1 is the red distributor and F2 is

the green distributor. In this example, NH1 and NH2 are two separate neighbour-

hoods of distributor F1, while retail shop s1 does not belong to any neighbourhood.

Meanwhile, NH3 is the neighbourhood of distributor F2. Although, as an individual

shop, s2 is closer to distributor F1, this shop is considered as part of NH3 since it is

located closer to this neighbourhood. Therefore, shop s2 will be included in NH3

where the goods will be delivered from F2.

In this chapter, we propose an algorithm to answer a Reverse Nearest Neighbour-

hood on road networks (RNNH-RN) query. Our proposed solutions are based on a

real dataset application of road networks and utilize the Network Voronoi Diagram

(NVD). To demonstrate the advantages of our proposed algorithm, we conducted a

comprehensive experimental study on different environments, varying the density of

the real dataset for our proposed algorithm, and compared the results with Euclidean

distance outcomes.

5.3 Notations and Definitions

We consider road networks as an underacted weighted graph G = (V,E), where V is

a set of vertices and E is a set of edges. A set of points of interest P =
{
p1, p2, ..pn

}
,

a set of facilities F = {f1, f2, ...fk}, and a query point q ∈ F reside in G. Each edge

(vi, vj) ∈ E has a weight (distance travel) [82], which is a positive value. If given a

source vertex vi and destination vertex vj , the sum of weights of edges along the path

is called the distance of the path in the road network, and is denoted by dist(vi, vj).

Figure 5.4 depicts a road networks. The weight of the edge (P7, P9) is 2. The shorter

path from q point to F3 is through
{
P1, P4, P5

}
, which is denoted by dist(q, f3) = 5,

i.e. dist(q, f3) = (1 + 2 + 1 + 1).

The reverse nearest neighbour search, which is one of the fundamental problems

in spatial databases has been extensively studied. The reverse nearest neighbour

query seeks the points of interest p ∈ P that consider the query point as the nearest

of all facilities f ∈ F . Consider the example given in Figure 5.4, where
{
p1, p2,

p3, p6, p7, p11, p12, p16
}

are the only points that consider q as their nearest facility.

On the other hand, the nearest neighbour query of an arbitrary point pi in a dataset

F finds the closest point f ∈ F such that dist(pi, f) ≤ dist(pi, f ′), ∀f ′ ∈ F \ f . The

nearest neighbour query of a point pi is denoted by NN(pi).

83

Table 5.1: Notation

Notation Definition

q The query point

P =
{
p1, p2, p3,pn

}
A set of points, where n is a positive number

F =
{
f1, f2, f3,fk

}
A set of facility points, where k is a positive number

pi A point p with ID i

NV Dq The Voronoi cell of the query q

NV Dp The points located inside the Voronoi cell of the query q

|NVDq| The number of points located inside the Voronoi cell of the query q

d A network distance parameter between two points

m A parameter of minimum number of points inside a neighbourhood

NHi A neighbourhood consisting of a group of points

|NHi| The number of points located inside the neighbourhood NHi

fpi The nearest facility to pi

dist(vi, vj) The minimum distance between points vi and vj

dH(pi, NH) The minimum distance between a point (pi) and a neighbourhood
NH(d,m)

84

Figure 5.4: A Road Networks

Definition 5.1 Network Voronoi Diagram (NVD) of query: Given a set

of facilities F , a query facility q ∈ F and a set of points P , an NVD of q, denoted

by NVDq, retrieving every point pi in the graph G considers the query facility q as

the nearest facility based on the network distance (e.g., shortest-path) between the

points. i.e., ∀p ∈ NVDq, dist(p, q) ≤ dist(p, f), ∀f ∈ F \ q.

Consider the dataset given in Figure 5.4. The Network Voronoi Diagram of

the query facility q is
{
p1, p2, p3, p6, p7, p11, p12, p16

}
. Given its structure and def-

inition, several of the basic properties of the NVD can be obtained. First, the

Voronoi diagram has a number of Voronoi cells (VCs). Each Voronoi cell has a

generator point (GP) which is located in the centre point of the VCs. Referring

to other properties of the Voronoi Diagram, if point pi is in the Voronoi cell of

q, then the distance from pi to point q is ≤ the distance from pi to other GPs.

For more properties, the distance from any point on the edge of the Voronoi cell

to the query is equal to the distance of the other generator adjacent to the Voronoi cell.

Definition 5.2 Neighbourhood on Road Networks: Given two parameters m

and d, a neighbourhood refers to at least m member points where the road networks

distance between a member point pi and the nearest member point pj in the group

does not exceed d. That is, d(pi, pj) ≤ d. The neighbourhood is denoted by NH(d,m).

85

Figure 5.5: Reverse Nearest Neighbourhood query on Road Networks

The neighbourhood NH(d,m) =
{
p1, p2.., pn

}
∈ P refers to a neighbourhood

where 1 < m ≤ n and pi 6= pj , ∀i, j ∈ {1, 2, ...,m}. The distance parameter d denotes

the maximum road distance between a member point of NH(d,m). Meanwhile, its

nearest member point in NH(d,m) and the cardinality constraint m refer to the

minimum number of neighbourhood members. For notational simplicity, here we use

NH instead of NH(d,m).

To illustrate the neighbourhood concept, Figure 5.4gives an example of neigh-

bourhood queries in spatial databases. Assume that we are looking for only those

neighbourhoods that satisfy the constraints m = 4 and d = 2. Then, NH1 =
{
p3, p12,

p16, p17
}

, NH2 =
{
p2, p6, p7, p9, p10

}
and NH3 =

{
p1, p11

}
are neighbourhoods

that contain a number of points that have at least four members, with each neigh-

bourhood member having a threshold distance (d = 2) to the nearest neighbourhood

member. The point p11 is not part of NH1 because the distance between p11 and

its closest point p12 in NH1 is > 2. These points p1 and p11 do not constitute a

neighbourhood since there are only two members here, thereby not satisfying the

cardinality constraint m ≥ 4.

Definition 5.3 Neighbourhood Distance on Road Networks: Given a neigh-

bourhood NH(d,m) and a point pi, where pi is a point of interest or facility, the

neighbourhood distance refers to distance on the road network between the point pi

and the closest point in the neighbourhood NH(d,m). It is denoted by dH(pi, NH).

86

Figure 5.5 illustrates an instance of neighbourhood road network distance, where

NH1 =
{
p3, p12, p16, p17

}
is a neighbourhood. Now, dH(p11, NH1) is the distance

between p11 and the nearest member point of NH1 to p12, i.e. the road networks

distance between p11 and p12 (dist(p11, p12)). Similarly, dH(f2, NH1) is the road

network distance between f2 and the nearest member point of NH1 to p12; i.e,

dist(f2, p12). Again, dH(q,NH1) is the road networks distance between q and the

nearest point of NH1 to q, which is dist(q, p3).

5.4 Proposed Framework

In simplest terms, the RNNH-RN query is a snapshot query that retrieves neighbour-

hoods {NHi} that consider the query point as the nearest of all the other facilities

in the G graph. Consider the static facilities {f1, f2, f3, f4} and the static points

{p1, p2, ..., p17} in the space as depicted in Figure 5.5 . Here, the result of RNNH-RN

query for the query facility q is NH1 and NH2 for parameters d = 2 and m = 4 as

dH(q,NH1) ≤ dH(f,NH1) and dH(q,NH2) ≤ dH(f,NH2), ∀f ∈ {f1, f2, f3, f4}.
The neighbourhood NH3 is not a reverse nearest neighbourhood of q because

|NH3| ≤ m. 1

Definition 5.4 Reverse Nearest Neighbourhood Query on Road Networks

(RNNH-RN): Given a set of facilities F , a query facility q ∈ F , a set of points

P , two constraints d and m, and neighbourhoods {NH1, NH2,, NHn′}, a reverse

nearest neighbourhood (RNNH-RN) query on road networks for q returns all neigh-

bourhoods {NHi} such that: (i) the road network distance of a point pj ∈ NHi to

its nearest neighbour point pk ∈ NHi is less than or equal to d, i.e., dist(pj , pk) ≤ d;

(ii) ∀pj ∈ NHi, dH(pj , NHi) ≤ dist(pj , fpj), where fpj is the nearest facility of pj in

F ; (iii) |NHi| ≥ m; and (iv) NHi finds the query facility q as their nearest facility

among all facilities in F ; i.e., dH(q,NHi) ≤ dH(f,NHi), ∀f ∈ F \ q, it is denoted

by RNNH-RN(q, d,m, P, F).

In this section, we explain our solution for processing a Reverse Nearest Neigh-

bourhood on Road Networks (RNNH-RN) query. Our algorithm consists of two

phases namely filtering and verification. The goal of the filtering process is to prune

and optimize the processing the data point set, and then remove a large number of

meaningless points [170, 171]. In this phase, we prune the search space instead of

accessing all the nodes. Given a facility f and point pi, f is a competitor facility of q.

A point pi cannot be the answer for RNNH-RN of q if dH(pi, NHi) > dist(pi, f). In

1It should be noted that there could be zero or more reverse nearest neighbourhoods of a query
facility q in a given dataset P ∪ F as opposed to the nearest neighbourhood

87

this case, we say that facility f prunes the point pi. So, in the range query method,

given a set of facilities F and a distance constraint d, a range query is denoted by

rangeQ(q, d, F), where pi ∈ P , returns all the points that are less than or equal

to the road network’s distance from q. The search stops when it encounters any

competitor facility in the G space; even if it does not reach the d distance, the search

stops even if the road network’s distance to f is less than the d value. Additionally,

in the case where NVDq is empty (NVDp = ∅), then there is no reverse nearest

neighbourhood for q. Therefore, the processing must stop and not proceed to any

further nodes to answer the RNNH-RN query. Hence, in this case, the processing of

RNNH-RN stops at a very early stage when NVDp = ∅

Figure 5.6: Lemma 1

Lemma 9 If the NVDq of a query is empty, then there is no reverse nearest

neighbourhood on road networks for q.

Proof 9 Given facilities F and users P such as q ∈ F and ∀pi ∈ P . The NVDq

is created between the q and other facilities. There is no RNNH-RN result, if there

are no points within NVDq, which means that NVDp = ∅. In this case, none of

the points can consider the q as the nearest facility. Hence, the nearest point pi

to q does not consider the q as the nearest facility. (i.e., dist(pi, f) < dist(pi, q)).

Consequently, in this case, we will not have dH(q,NHi) ≤ dH(f,NHi), as all the

nearest points to q do not consider q as the nearest facility. This is because ∀pi ∈ P ,

dist(pi, q) 6≤ dist(pi, f). As shown in Figure 5.6, there is no point located in the

NVD for q, NVDq = ∅, the nearest points to q is P1, and dist(p1, f2) < dist(p1, q).

88

Also, there is no need to check the validation process for any point inside the

Voronoi Network diagram (NVD) of q. This is because this point must answer the

RNNH-RN query with no conditions. The following lemma shows how the point is

processed if it is inside NVDq; it does not require extra validation or verification

processing.

Lemma 10 For any retrieved point pi where pi ∈ NVDq, an entry pi is a candidate

object for reverse nearest neighbourhood query on road networks if the distance between

pi and neighbourhood (NH)is ≤ d.

Proof 10 To prove that pi is a candidate entry, based on one of the properties of the

Voronoi diagram as mentioned earlier, if the q is the generator point of the Voronoi

cell, then the road network’s distance from q to pi is less than the distance to any

other generator point (facility). Consequently, any points in the Voronoi cell of q

considers q to be the nearest facility among any other facilities, which means that

dist(pi, q) < dist(pi, fi). Hence, we do not need to check the validation of points in

NVDq, because any point, such as point P1 and P2 that are there have already been

validated as per definition 5.4.

For the verification phase, a neighbourhood NH must satisfy this: dH(q,NH) ≤
dH(f,NH), ∀f ∈ F \ q to be a RNNH-RN of q. Figure 5.5 shows an example of

the RNNH-RN query result. A näıve RNNH-RN query processing algorithm first

computes a neighbourhood. Then, the algorithm calculates the distance between the

neighbourhood and the query, which is dH(q,NH). Next, for each neighbourhood

member pi ∈ NH the algorithm calculates dist(pi, fpi), where fpi is the nearest

facility to pi. If dH(q,NH) ≤ dist(pi, fpi) for all pi ∈ NH, then the NH is the

RNNH-RN of the query q. The problem with this näıve algorithm is its run-time

complexity. First of all, the algorithm has to enumerate all possible neighbourhoods

NH that satisfy the distance and cardinality constraints d and m, respectively.

Therefore, the näıve algorithm is not a viable and suitable solution for RNNH-RN

query processing.

In order to overcome the issue associated with the näıve query processing al-

gorithm, we propose an algorithm that can perform better for reverse nearest

neighbourhood on road networks. Figure 5.7 shows the main steps for the Reverse

Nearest Neighbourhood on the road networks framework. First, the data is prepared

by placing the points located in the Voronoi cell of the query in a heap. Then,

checking each entry if satisfy the condition of neighbourhood. This process repeated

89

Figure 5.7: Reveres Nearest Neighbourhood framework

until all candidate points have been processed. The algorithm details can be seen in

Algorithm 6.

Algorithm 6 is used to find the reverse nearest neighbourhood on a road network

which is first computed on a network Voronoi diagram [12, 117] of the query facility

q. All points located inside the NVD of q finds the q nearer than any other facility

f ∈ F . The algorithm then retrieves all points p ∈ P that are located inside the

NVD of the query; the points list is denoted by NVDp. Consequently, any points

in NVDq must be part of the RNNH-RN answer, and do not require any extra

validation process.

Upon creating the NVDq for the query facility q and to retrieve the corresponding

NVDp, the algorithm places the points into a min heap to q (line 5). Then, the

algorithm begins to generate the first neighbourhood by retrieving the point nearest

to q (line7). It should be noted that there could be more than one candidate in

NVDp with the same distance to q, so we randomly pick one of them to break the

tie. Line 11 calculates dH(q,NH) which is the road network distance between q and

the nearest point. Next, the algorithm inserts point pi into a temporary list and

retrieves all points from P close to the pi with a road network distance less than

or equal to d. Line 15 checks whether the point is inside the NVD of q; then it is

added to the result set (line 17) based on Lemma 10.

90

Algorithm 6 Computing Reverse Nearest neighbourhood on Road Networks

Input: P : set of points, F : set of facilities, d: distance constraint, m: minimum

users and q: q ∈ F
Output: RNNH-RN(d,m, q)

NVDq ← Calculate Voronoi Cell of q

NV Dp ← insert all points in NVDq

h ← sort(NVDp,q)

while h is not empty do
de-heap an entry pi

if isNotV isited(pi) then
mark pi as visited

initialize NHi ← {pi}
dH(pi, NHi) ← dist(pi, q)

vLst ← rangeQ(pi, d, P)

while vLst is not empty do
de-heap an entry ci

if ci ∈ NVDp then
mark ci as visited

NHi ← append(ci)

vLst ← vLst ∪ rangeQ(ci, d, p)

end

else if dist(ci, NHi) ≤ dist(ci, fci) then

if dH(pi, NHi) ≤ dist(ci, fci) then
NHi ← append(ci)

vLst ← vLst ∪ rangeQ(ci, d, P)

end

end

if |NHi| ≥ m then
RNNH-RN(d,m, q)← append(NHi);

end

end

end

For every point, if the nearest facility is not q and its road network distance to

its nearest facility is greater than dH(q,NH), and its road network distance to the

current NH is less than its distance to its nearest facility, it is added to the list,

otherwise, it is discarded (line from 20 to 23). The points in the list are marked as

visited (line 9 and 16) to prevent any redundant processing. This process is repeated

for all unvisited points in the list and the algorithm stops constructing the current

91

neighbourhood when no more points can be added to the list. If the list has at least

m points, then it becomes the first RNNH-RN of q; otherwise, it is discarded (Line

26). The algorithm then retrieves the next point from NVDp that has not been

included in any previous neighbourhood and continues to find the corresponding

neighbourhood for it. The above neighbourhood construction process is continued

until NVDp becomes empty.

5.5 Experimental Results

This section presents the experimental results that demonstrate the feasibility of

applying the proposed algorithm. The algorithms were implemented in C++ and

the experiments were run on an Intel Core i7 2.3 GHz PC with 8GB main memory

and the Ubuntu Linux system. We examine Reverse Nearest Neighbourhood on road

networks queries on real-world road network graphs.

Table 5.2: Experiment Dataset

Description Density level Users Facilities

Map A : University campus area Low 60 12%

Map B: A medium-sized city Medium 690 3%

Map C: Densely populated of suburbs High 1864 3%

We evaluate our proposed algorithm by simulating scenarios ranging from low-

density to high-density in terms of the number of objects in road networks. The

network covers all types of roads, including local roads and contains real edge weights

for travel distances. We conduct in-depth studies based on datasets for a university

campus (low density), a medium-sized city and a densely popu- lated group of suburbs

(high density). These datasets are listed in Table 5.2.

In our experiments, we use the term ‘low-density’ if the number of objects is less

than one hundred; we use ‘high-density’ if the number of objects is greater than one

thousand [34]. ‘medium-density’ is used when the number of objects is deemed to be

between one hundred and one thousand. The purpose of our experiments is to show

how different factors such as the number of objects determining density and the value

of d and m could affect the results of our algorithm in terms of the number of queries

obtained, the number of neighbourhood members, and the size of the neighbourhood.

92

Table 5.3: Experiment Parameters

NH Parameter Range

d (km) 0.1, 0.3, 0.5, 1, 1.5

m 2, 4, 6, 10, 16

In this chapter, several evaluations of the flexibility of the proposed algorithm and

the correctness and accuracy of results are evaluated in order to examine the results

of the experiments. We evaluate the isolated points of interest and the flexibility of

our proposed algorithm to show their tolerance to the constraint of neighbourhoods

in comparison with the Voronoi cell based on the Reverse Nearest Neighbour (RNN)

algorithm, and the proposed algorithm is proven to be not mutually exclusive. Also,

to evaluate the accuracy of the results and the effectiveness of our approach, we

compared the Euclidean and road network outcomes to evaluate the effectiveness of

our approach to road network queries. We proved that our results are more reliable

because they are based on real datasets. Table 5.3 presents the parameters applied

to RNNH-RN queries in the experiments.

Table 5.4: Experimental Analysis for Nearest Neighbour - Monash University-

Distance from Number of shops

1-100 m 34

200-300 m 2

300-400 m 7

400-600 m 7

600-700 m 2

700 m - 800 m 2

800 m - 900 m 2

above 1 km 4

The maximum distance : 2.11 km
Average distance to nearest shop: 0.3011 km

93

5.5.1 Low-density Experiment

In this experiment, as shown in Figure 5.8, we use the Monash University Clayton

campus and residential area as the dataset. We focus on the campus environment

which consists of a low-density dataset to test the algorithm with a variety of values

for maximum road networks distance (d) and the minimum number of neighbourhood

members (m) value (e.g low d and high m value).

Figure 5.8: Monash University -Clayton Campus-

This dataset has approximately 6600 edges and 8100 vertices, and comprises a

complex of fifty-two shops and stores. The dataset has an area of 5.20 km2. We

evaluate the range of maximum road network distance (d value) and a minimum

number in the neighbourhood in order to determine their impact on the number

of queries obtained, the number of neighbourhoods and the size of neighbourhoods

members concerning each result of the RNNH-RN algorithm.

In this study, we conduct extensive geospatial analysis to achieve a comprehensive

understanding of the behaviour of a low-density dataset. We calculate the network

distance from each point of interest (POI) to the nearest neighbour as shown in Table

B.6. In the graph, the average network distance to the nearest neighbour is 0.3 km

and the maximum network distance to the nearest neighbour is 2.11 km. The total

road network distance to the nearest neighbour in the graph is 16 km. As shown

in Table B.6, most points of interest are less than 100 m to the nearest neighbour,

and only four points of interest have more than 1 km road network distance to the

nearest neighbour.

Figure 5.9 shows the difference between and comparison of the outcome of Eu-

clidean distance and of road networks, for the RNN query and reverse nearest

94

(a) Euclidean RNN query (b) Network RNN query

(c) Euclidean RNNH query (d) Network RNNH-RN query

Figure 5.9: Spatial query results on Map A

neighbourhood (RNNH) query for the purple query, and the RNN query and the

RNNH query for the purple query. The result of the RNN query for Euclidean

distance is different from that obtained for road network distance: it has almost

the same number of neighbourhoods, but it has different neighbourhood members

as shown in Figure 5.9(a) and Figure 5.9(b). Based on the spatial network, the

travelling distance would be much further.

Figure 5.9(c) displays an example of Euclidean reverse nearest neighbourhood

that returns two neighbourhoods (five and three members), which differs from the

reverse nearest neighbourhood on the road networks query which returns the results

for two neighbourhoods (six and three members). The first neighbourhood has

six members on road networks. The Euclidean RNNH does not involve the sixth

point because the Euclidean distance from the point to the competitor facility is a

shorter distance to the query point. Figure 5.9(d) shows the results of the RNNH-

RN purple query pertaining to two neighbourhoods (depicted by circle and triangle).

95

In terms of minimum value in neighbourhood (m), when the value changes and

increases from 4 to 6, the result excludes one neighbourhood based on the query

preferences as shown in Figure 5.10. Also, our findings show how the result changes

according to the d value as depicted in Figure 5.11. Figure 5.11(a) shows an example

of a reverse nearest neighbourhood query when the maximum road distance between

neighbourhoods is 0.300 km: it returns one neighbourhood and excludes the points

that are more than 0.300 km distant from neighbourhood members.

(a) m = 4 (b) m = 6

Figure 5.10: RNNH-RN result for d = 0.5km

(a) d = 0.300 (b) d = 0.500

Figure 5.11: RNNH-RN result for m = 6

We studied the behaviour of the reverse nearest neighbourhood on road networks

(RNNH-RN) with low density, varying the value of the maximum network distance

between neighbourhood members (d), and the minimum number of neighbourhood

members (m). First, we studied the effect of the d factor on the algorithm. Specif-

96

ically, Figure 5.12 shows the number of queries obtaining neighbourhood and the

average of neighbourhood members in each neighbourhood for varying values of (m).

Figures 5.13(a) shows the number of queries that obtain results for the RNNH-RN

algorithm. When the maximum road distance (d value) between neighbourhood

members is less than 1 km, only two queries obtain the RNNH-RN result, increasing

to three queries when d = 1.5 km. The reason for this is that RNNH-RN is obtained

depending on the closeness of points of interest forming the neighbourhood. There-

fore, the chance of obtaining a query result improves when d increases. Our report

shows displays the average number of neighbourhoods in each query; we find that the

average number of neighbourhoods is one neighbourhood when the maximum network

distance is between 0.100 and 0.300 km, and increases to two neighbourhoods when

the maximum networks distance increases.

 2

 4

 6

0.100 0.300 0.500 1 1.5

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

 h
a

s
 R

N
N

H

Max distance KM (d value)

 RNNH-RN Algorithm

2 2 2 2

3

(a) Number of queries with
RNNH

 1

 2

 3

 4

 5

 6

0.100 0.300 0.500 1 1.5

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

 n
o

t
g

e
tt

in
g

 R
N

N
H

Max distance KM (d value)

 RNNH-RN Algorithm

4 4 4 4

3

(b) Number of queries without
RNNH

 0

 1

 2

 3

 4

0.100 0.300 0.500 1 1.5

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

u
rh

o
o

d

Max distance KM (d value)

 RNNH-RN Algorithm

1 1

2 2 2

(c) The average number of neigh-
bourhoods

Figure 5.12: Variety of d values

 0

 2

 4

 6

2 4 6 10 12

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

 h
a

s
 R

N
N

H

Minimum number of neighbourhood (m value)

 RNNH-RN Algorithm

2

3 3

1 1

(a) Number of queries with
RNNH

 0

 1

 2

 3

 4

 5

 6

2 4 6 10 12

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

 h
a

s
 R

N
N

H

Minimum number of neighbourhood (m value)

 RNNH-RN Algorithm

4

3 3

5 5

(b) Number of Queries does
without RNNH

 0

 1

 2

 3

 4

2 4 6 10 12

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

u
rh

o
o

d

Minimum number of neighbourhood (m value)

 RNNH-RN Algorithm

2 2

1 1 1

(c) The average number of neigh-
bourhoods

Figure 5.13: Variety of m values

We also study the effect of the minimum neighbourhood number of members (m)

in the low-density dataset. We find that, generally, when the value of m increases,

the number of queries for neighbourhood decreases dramatically, and the average

number of neighbourhoods decreases. The reason for this is that when the minimum

number of neighbourhood members increases, neighborhoods with a small number of

97

 0

 10

 20

 30

 40

 50

0.100 0.300 0.500 1 1.5

N
u

m
b

e
r

o
f

p
o

in
ts

Max distance KM (d value)

 RNNH-RN Algorithm

3
3

3
5

3
7

4
6

4
2

(a) The number of points belonging to only one
neighbourhood

 0

 10

 20

 30

 40

 50

0.100 0.300 0.500 1 1.5

N
u

m
b

e
r

o
f

p
o

in
ts

Max distance KM (d value)

 RNNH-RN Algorithm

0 0 0 0

7

(b) The number of points belonging to more
than two neighbourhoods

 0

 10

 20

 30

 40

 50

0.100 0.300 0.500 1 1.5

N
u

m
b

e
r

o
f

p
o

in
ts

Max distance KM (d value)

 RNNH-RN Algorithm

1
9

1
7

1
5

6

3

(c) The number of points not belonging to any
neighbourhood

 0

 10

 20

 30

 40

 50

0.100 0.300 0.500 1 1.5

T
h

e
 a

v
ra

g
e
 n

u
m

b
e
r

o
f

N
H

 m
e
m

b
e
rs

Max distance KM (d value)

 RNNH-RN Algorithm

7

1
2

1
5

1
2

1
0

(d) The average number of neighbourhood
members

Figure 5.14: Analysis for Monash University campus

members are excluded. Figures 5.14 illustrates the average number of neighbourhood

members, the number of points belonging to one neighbourhood and the number of

points belonging to more neighbourhoods. The number of neighborhoods increases

dramatically when the d value is increased. This is unlike the number of points not

belonging to any neighbourhood where the number decreases incrementally with an

increase in the d value.

Figure 5.15 shows a comparison between reverse nearest neighbourhood in Eu-

clidean distance and in road networks to show the accuracy obtained for road networks

distance. In Figure 5.15(b), we see the effect of different values of m and d. It is

clear that for both, the number of neighbourhood members decreases dramatically

with an increase in m. This is because there is a correlation between the number

of neighbourhood members and the m value: when m increases, neighbourhoods

that do not satisfy the m value are excluded. We also find that the efficiency of

the RNNH-RN query processing algorithm in road networks improves when the

d increases and the neighbourhood members in Euclidean RNNH are fewer than

98

 30

 45

 60

 75

2 4 6 10 12

T
h

e
 n

u
m

b
e
r
 o

f
N

H
 m

e
m

b
e
r
s

Minimum number of NH member

RNNH-RN Algorithm

5
5

3
7

3
2

2
6

2
6

RNNH Algorithm

5
0

3
3

2
8

2
6

2
6

(a) m value

 35

 70

 105

 140

0.100 0.300 0.500 1 1.5

T
h

e
 n

u
m

b
e
r
 o

f
N

H
 m

e
m

b
e
r
s

Max distance KM (d value)

RNNH-RN Algorithm

1
6

2
3

3
7 4

2

5
5

RNNH Algorithm

2
2

2
2

3
3

2
6

2
6

(b) d value

Figure 5.15: Comparison RNNH and RNNH-RN algorithm for Monash University
campus

RNNH-RN in road networks. This is because for each query, the Euclidean distance

from a point to competitor facilities is mostly shorter compared to the distance in

road networks, which also increases the number of neighbourhood members.

5.5.2 Medium-density Experiment

In this experiment, we use a spatial database of Melbourne city as the dataset.

Melbourne is located on the south coast of the state of Victoria, Australia, and it

is divided into two parts, with a medium density of roads in the centre, and light

density on the western and eastern sides. For this experiment, we use the main roads

that connect the western and eastern points. We use the supermarkets dataset for

Melbourne, represented by the grey dots in Figure 5.16.

This dataset covers 2150 km2, and contains more than 315500 vertices and 321107

edges. It contains approximately 700 supermarkets, which represent points of inter-

est, while eighteen facilities represent suppliers. We conduct a geospatial analysis

to determine the behaviour of the reverse nearest neighbourhood algorithm when

applied to road networks in Melbourne. network.

By means of a graph, we conduct a geospatial analysis of the nearest points,

which are shown in Table B.12. There are 350 points with a network distance of

less than 0.100 km to the nearest point, and there are thirty-five points of interest

(POIs) between 0.100 km and 0.200 km, and thirty-eight points of interest between

0.200 km and 0.300 km.

99

Figure 5.16: Melbourne City, Australia

Also, twenty-five points are between 0.300 km and 0.500 km, and forty points are

between 0.500 km and 0.800 km. There are two hundred and sixty points that are

more than one km from the nearest neighbour. The average distance to the nearest

point is 750 m. The graph shows that the total network distance travelled to the

nearest neighbour is 2092 km. Tables B.12 gives more details about the experiment

conducted for Melbourne city.

Table 5.5: Experimental analysis Nearest Neighbour -Melbourne City-

Distance from Number of shops

1- 100 M 350

100-200 M 29

200-300 M 38

300-400 M 10

400-500 M 13

500-600 M 10

500-800 M 20

800m - 1 km 14

above 1 km 206

The maximum distance : 70 km
Average to nearest shop: 0.750 km

In this study, we randomly select the location of queries on different sides. They

are marked by stars as shown in Figure 5.17, and we take the four queries (blue, pink,

100

yellow, green stars) as examples to explain our findings and observations. Figure

5.17(a) shows the Euclidean Voronoi diagram (VD) for four facilities and the outcome

of the RNN query for the blue query, while Figure 5.17(b) presents the network

Voronoi diagram (NVD). The RNN in the road network excludes several points,

and the road network takes into consideration the road distance which is somewhat

greater than the Euclidean distance. The blue neighbourhood member belongs to

the blue query, the yellow neighbourhood belongs to the yellow query, and the pink

neighbourhood belongs to the pink query.

(a) Euclidean RNN query (b) Network RNN query

(c) Euclidean RNNH query (d) Network RNNH-RN query

Figure 5.17: Spatial query results on Map B

We can see that the results are different because Euclidean distance does not

account for obstacles (such as a lake). Consequently, the result of reverse nearest

neighbourhood (RNNH) when d = 0.500 km and m = 4, will also differ between the

road network distance and the Euclidean distance as shown in Figure5.17(c) and

Figure5.17(d).

101

In terms of the number of neighbourhoods obtained by queries, both Euclidean

and network distance obtain two neighbourhoods when the d = 0.500 (circle and

triangle neighbourhood), but the neighbourhood members are different. Also, we see

that the number of neighbourhood (NH) members in each neighbourhood is different

as shown in Figure 5.17.

(a) d = 0.300 km (b) d = 0.500 km

(c) d = 1 km (d) d = 1.5 km

Figure 5.18: Green POI belongs only one NH, red POI belongs two NHs, Melbourne
City

Figure 5.18 shows the flexibility of our proposed algorithm with different d values

and the m value equals four. The red points are those belonging to two queries,

the green points are those belonging to only one query and the grey points do not

belong to any query. It is very clear that the RNNH-RN algorithm is not mutually

exclusive; hence, the neighbourhood members can belong to two neighbourhoods

for two queries as shown in Figure 5.18. Figure 5.18(a) and Figure 5.18(b) show

the result of RNNH-RN when the d = 0.300 and d = 0.500 km. The results of

RNNH-RN show that for the points belonging to one neighbourhood, the number

102

of neighbourhood members increases when the d value increases. In Figures 5.18(c)

and 5.18(d), the number of red points which belong to more than query increases

when an increase in the d value also occurs.

In terms of minimum value in neighbourhood (m), we study the effect of changing

the m value. When the value changes and increases from two to four, we find that

the result excludes one neighbourhood based on the query preferences. The result

of the orange query has three neighbourhoods: represented by a diamond, circle

and triangle (two, four and six neighbourhood members respectively), when the

m value equals two as shown Figure 5.19(a). On the other hand, Figure 5.19(b)

shows a reverse nearest neighbourhood query when the m value equals four. We

observe that it returns only two neighbourhoods (shaped as circle and triangle) but

excludes the neighbourhoods that do not satisfy the minimum number of neighbour-

hood members. Figure 5.19 illustrates the effect of the m value on RNNH-RN queries.

(a) m = 2 (b) m = 4

Figure 5.19: RNNH-RN result for d = 0.5km

As shown in Figure 5.20, the results change according to the value. Figure 5.20(a)

depicts example of the reverse nearest neighbourhood on road networks (yellow

query) when the d = 0.300 km. It returns one neighbourhood with seven members

located close to each other within 0.300 km. In Figure 5.20(b), when the maximum

networks distance is 0.500 km, the yellow query involves the other two members that

have a road network distance of less than 0.500 km and more than 0.300 km from

the neighbourhood.

We report the results of reverse nearest neighbourhood on road networks based

on the query points with different values of maximum distance (d) and minimum

103

(a) d = 0.300 (b) d = 0.500

Figure 5.20: RNNH-RN result for m = 4

values in neighbourhood (m). The study illustrates how many queries could obtain a

reverse nearest neighbourhood on road networks (RNNH-RN) with varying maximum

distances between neighbourhood members in increments of 0.100, 0.300, 0.500, 1

and 1.50 km as depicted in Figure 5.21(a). Figure 5.21(b) shows how many queries

do not obtain neighbourhoods; it is clear that when the maximum distance value

increases, there is a stronger possibility of obtaining a neighbourhood.

 3

 6

 9

 12

 15

 18

0.100 0.300 0.500 1 1.5

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

 h
a

s
 R

N
N

H

Max distance KM (d value)

 RNNH-RN Algorithm

8

11

12

14

16

(a) Number of queries with
RNNH

 0

 3

 6

 9

 12

 15

 18

0.100 0.300 0.500 1 1.5

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

 n
o

t
g

e
tt

in
g

 R
N

N
H

Max distance KM (d value)

 RNNH-RN Algorithm

11

8

7

5

3

(b) Number of queries without
RNNH

 0

 1

 2

 3

 4

0.100 0.300 0.500 1 1.5

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

u
rh

o
o

d

Max distance KM (d value)

 RNNH-RN Algorithm

2 2

3 3 3

(c) The average number of neigh-
bourhoods

Figure 5.21: Variety of d values

We report the number of neighbourhoods obtained for each query with different

values of maximum distance (d value), which increases when the maximum road

distance increases. The average number of neighbourhoods increases to three when

the maximum network distance reaches 0.500 km as indicated in Figure 5.21(c).

The reason for this is that when the maximum distance (d) value increases, it in

turn increases the chance of obtaining more points of interest in the neighbourhood.

Therefore, there is a better chance of obtaining a better query result , when the

maximum distance (d value) between NH members increases.

104

 0

 4

 8

 12

 16

 20

2 4 6 10 12

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

 h
a

s
 R

N
N

H

Minimum number of neighbourhood (m value)

 RNNH-RN Algorithm

19

12

6

1 1

(a) Number of queries with
RNNH

 0

 4

 8

 12

 16

 20

2 4 6 10 12

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

 n
o

t
g

e
tt

in
g

 R
N

N
H

Minimum number of neighbourhood (m value)

 RNNH-RN Algorithm

19

12

6

1 1

(b) Number of Queries without
RNNH

 0

 2

 4

 6

 8

 10

2 4 6 10 12

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

u
rh

o
o

d

Minimum number of neighbourhood (m value)

 RNNH-RN Algorithm

8

3

2

1 1

(c) The average number of neigh-
bourhoods

Figure 5.22: Variety of m values

Our The experiment results led to the following conclusions. When the maximum

distance (d) between neighbourhood members increases, the possibility of obtaining

more neighbourhoods increases dramatically. Whether or not an RNNH-RN neigh-

bourhood is obtained depends on the closeness of points of interest to each other.

Moreover, the location of network Voronoi diagram of a query is limited by the location

of other competitor facilities, which can limit the number of neighbourhoods obtained.

Conversely, when the value of m increases, the number of queries obtaining NH

decreases dramatically as shown in Figure 5.22. Also, we find that the average

number of neighbourhoods decreases, when the values of m increases. This is because

there is a small group of points in the result set when m decreases.

We also find that the number of points belonging to one neighbourhood or

more neighbourhoods and the average of number neighbourhood members increase

dramatically when the value of d increases. However, the number of points not

belonging to any neighbourhood decreases incrementally with an increase in the

d value. This is because when the d value increases, it in turn increases the like-

lihood of having more points of interest in the neighbourhood as shown in Figure 5.23.

In our study, we examine the accuracy of results and compare the performance

of the reverse nearest neighbourhood algorithm in two environments: road networks

and Euclidean distance. We found that the number of neighbourhood members is

much higher in Euclidean distance than in a road network as shown in Figure 5.24.

This is because obstacles such as lakes, buildings, parks etc. are not taken into

account when processing the neighbour-hood using Euclidean RNNH.

Also, we note that for both the Euclidean distance and the road network al-

gorithms, the number of neighbourhood members decreases dramatically with an

increase in m. However, the number of neighbourhood members increases immedi-

105

 100

 200

 300

 400

 500

0.100 0.300 0.500 1 1.5

N
u

m
b

e
r

o
f

p
o

in
ts

Max distance KM (d value)

 RNNH-RN Algorithm

3
4

4

4
1

3

4
3

5

4
4

9

4
7

0

(a) The number of points belonging to
only one neighbourhood

 0

 20

 40

 60

 80

 100

0.100 0.300 0.500 1 1.5

N
u

m
b

e
r

o
f

p
o

in
ts

Max distance KM (d value)

 RNNH-RN Algorithm

0

1

2

5
1

8
4

(b) The number of points belonging to
more than two neighbourhoods

 100

 200

 300

 400

 500

0.100 0.300 0.500 1 1.5

N
u

m
b

e
r

o
f

p
o

in
ts

Max distance KM (d value)

 RNNH-RN Algorithm

3
3

1

2
6

1

2
3

5

1
7

5

1
2

2

(c) The number of points not belonging
to any neighbourhood

 3

 6

 9

 12

 15

0.100 0.300 0.500 1 1.5

T
h

e
 a

v
ra

g
e
 n

u
m

b
e
r

o
f

N
H

 m
e
m

b
e
rs

Max distance KM (d value)

 RNNH-RN Algorithm

5 5

6

8

1
0

(d) The average number of neighbour-
hood members

Figure 5.23: Analysis for Melbourne City

ately with an increase in the maximum distance between neighbourhood members (d)

for the reverse nearest neighbourhood in both road networks and Euclidean distance.

We find that the efficiency of the RNNH-RN query processing algorithm in road

networks improves when the d increase and the neighbourhood members on road

networks is 9% fewer than for Euclidean RNNH.

 100

 200

 300

 400

 500

2 4 6 10 12

T
h

e
 n

u
m

b
e

r
 o

f
N

H
 m

e
m

b
e

r
s

Minimum number of NH member

RNNH-RN Algorithm

3
7
1

1
3
1

5
8

1
0

1
0

RNNH Algorithm

4
5
4

1
7
5

9
4

5
1

4
1

(a) m value

 150

 300

 450

 600

 750

0.100 0.300 0.500 1 1.5

T
h

e
 n

u
m

b
e

r
 o

f
N

H
 m

e
m

b
e

r
s

Max distance KM (d value)

RNNH-RN Algorithm

4
6

9
6 1

3
1

2
2
2

3
5
8

RNNH Algorithm

7
0

1
2
7 1

7
5

4
2
9

5
4
5

(b) d value

Figure 5.24: Comparison RNNH and RNNH-RN algorithm for Melbourne City

106

Figure 5.25: Stores located in South-East Melbourne, Victoria, Australia

5.5.3 High-density Experiment

In this experiment, we use the dataset for a high-density environment that includes a

variety of stores in the South-East Melbourne area comprising cafés, restaurants and

grocery stores. We choose an area that has a large number of stores in order to test

the solution in a high-density environment. This enables us to test the feasibility

of our algorithm and compare the results with the Euclidean RNNH algorithm in a

high-density scenario.

The area of the South-East dataset is 370 km2, and contains around 1,865 stores.

The graph for this dataset has around 195160 vertices and 215400 edges. The stores

represent points of interest, 3% of which are supplier facilities. We conducted a

geospatial analysis to describe and understand the behaviour of the RNNH-RN

algorithm in a high-density environment.

We conduct a geospatial analysis study of the nearest point in the graph, we

calculate the network distance between each point of interest (POI) to the nearest

neighbour. As shown in the graph the maximum network distance to the nearest

neighbour is 5.13 km, while the average networks distance from one point to the

nearest neighbour approximately is 100 m.

We also calculate the total distance travelled to the nearest point in the graph; it

required 181 km to traverse the whole graph to reach the nearest point. Most points

107

Table 5.6: Experimental analysis for Nearest Neighbour South-East Melbourne

Distance from Number of shops

1-100 m 1458

100-200 m 208

200-300 m 61

300-400 m 29

400-800 m 44

800 m - 1 km 28

1-5 km 31

above 5 km 5

The maximum distance : 5.13 km
Average distance to nearest shop: 0.1021 km

are around 100 m from their nearest neighbour, while only a few points are more

than 5 km from the nearest neighbour. The results of the analysis for the nearest

neighbours are given in Table B.18 with details.

We select one random query, the blue query as an example, from the dataset to

study the outcome of the difference of Reverse Nearest Neighbourhood in Euclidean

distance and road networks, as shown in Figure 5.26. As seen in Figure 5.26(a) and

Figure 5.26(b), the results of reverse nearest neighbour (RNN) in Euclidean and

road networks distance for selected queries are different, where it is clear that the

outcome of the RNN in Euclidean distance involves more points in the result set

than does the road network distance. Also, the outcome obtained by the Voronoi

diagram is different. This is because the Euclidean distance depends on the relative

positions of the two points, while the distance on a road network depends on the

relative positions as well as the sections of road between the two points.

Consequently, this has an impact on the outcome of the reverse nearest neigh-

bourhood query in terms of distance in Euclidean and road networks as shown in

Figure 5.26(c) and Figure 5.26(d). When the set has values of d = 0.200 km and

m = 4 the Euclidean RNNH returns the same number of neighbourhoods as does

the Reverse Nearest Neighbourhood on road networks (RNNH-RN), although it

involves more points because the road network distance is not taken into account. For

instance, the first neighbourhood, has more neighbourhood members in terms of the

108

(a) Euclidean RNN query (b) Network RNN query

(c) Euclidean RNNH query (d) Network RNNH-RN query

Figure 5.26: Spatial query results on Map C

Euclidean distance because these points are less than 0.200 km Euclidean distance.

Conversely, in the road network, these points have more than 0.200 km road distance.

In regard to the minimum number of neighbourhood members (m), we take

the purple query in Figure 5.27 as example. When the value of m changes and

increases from two neighbourhoods to six neighbourhoods at minimum value, one

neighbourhood is excluded based on the query preferences. In Figure 5.27(a), the

minimum value of neighbourhood members is two, then the query returns three

neighbourhoods. Figure 5.27(a) shows the result when the minimum number of

neighbourhood members is six. It returns only two neighbourhoods that have at

least six neighbourhood members. In this example, there is only one neighbourhood.

Figure 5.28 shows the results of varying the value of the maximum network

distance (d). Figure 5.28(a) depicts an example of the RNNH query (purple query)

where d = 100 m. The same number of neighbourhoods is obtained even though

109

(a) m = 2 (b) m = 6

Figure 5.27: RNNH-RN result for d = 0.200km

(a) d = 0.100 (b) d = 0.500

Figure 5.28: RNNH-RN result for m = 6

the maximum network distances are different as shown in Figure 5.28(b). The same

number of neighbourhoods are returned when the maximum network distance is 500

m. This is because in a high-density dataset, the points of interest are located very

close to each other, so the neighbourhood members are within a short range of each

other.

Also, we study the behaviour of the algorithm using different values for the

maximum network distance (d) and a static value for the minimum number of neigh-

bourhood members (m = 4). We study the flexibility of our proposed algorithm and

note how many points are not mutually exclusive in a high-density dataset. The red

points are the points belonging to more than one query, the green points are the

points belonging to only one query, the remaining grey points do not belong to any

110

(a) d = 0.100 km (b) d = 0.200 km

(c) d = 0.300 km (d) d = 0.500 km

Figure 5.29: Green POI belongs only one NH, red POI belongs two NHs, South
East area

query. We see that the number of points of interest belong to only one neighbourhood

(NH) and those in more than one neighbourhood (NH) remain stable even when the

value of d increases by five times from 0.100 km to 0.500 km as depicted in Figure

5.29. This is because the query is distributed and located very close to the cluster of

points of interest (POIs).

In addition, as the density increases, the number of queries required to obtain

RNNH-RN increases as well as the value of d increases. We study the effect of the d

value on the efficiency of RNNH-RN. This study illustrates the number of queries

required to obtain RNNH-RN and the average number of neighbourhoods obtained

by each query with different values of d. We conclude that the possibility of obtaining

reverse nearest neighbourhoods increases dramatically, when the maximum distance

(d) between neighbourhood members increases. Second, we found that the number

of neighbourhoods for each query declines with an increase in the maximum distance

111

 21

 28

 35

 42

0.050 0.100 0.200 0.300 0.500

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

 h
a

s
 R

N
N

H

Max distance KM (d value)

 RNNH-RN Algorithm

25

29

30

32 32

(a) Number of queries with
RNNH

 2

 4

 6

 8

 10

0.050 0.100 0.200 0.300 0.500

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

 n
o

t
g

e
tt

in
g

 R
N

N
H

Max distance KM (d value)

 RNNH-Ro Algorithm

10

6

5

3 3

(b) Number of queries without
RNNH

 1

 2

 3

 4

 5

 6

0.050 0.100 0.200 0.300 0.500

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

u
rh

o
o

d

Max distance KM (d value)

 RNNH-Ro Algorithm

4 4

3 3 3

(c) The average number of neigh-
bourhoods

Figure 5.30: Variety of d values

 18

 21

 24

 27

 30

 33

2 4 6 10 12

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

 h
a

s
 R

N
N

H

Minimum number of neighbourhood (m value)

 RNNH-RN Algorithm

33

32

28

22

20

(a) Number of queries with
RNNH

 0

 4

 8

 12

 16

 20

2 4 6 10 12

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

 n
o

t
g

e
tt

in
g

 R
N

N
H

Minimum number of neighbourhood (m value)

 RNNH-RN Algorithm

2

3

7

13

15

(b) Number of Queries without
RNNH

 0

 2

 4

 6

 8

 10

2 4 6 10 12

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

u
rh

o
o

d

Minimum number of neighbourhood (m value)

 RNNH-RN Algorithm

6

4

3

2 2

(c) The average number of neigh-
bourhoods

Figure 5.31: Variety of m values

between neighbourhood members (d value). When d increases, so does the number of

neighbourhood members, since they are combined together into one neighbourhood

(NH). Figure 5.30 shows the results of varying the d value.

Figure 5.31 illustrates the number of queries required to obtain RNNH-RN

and the average number of neighbourhoods obtained by each query with different

values for the minimum number of neighbourhood members (m). As we have seen

when the value of the minimum number of neighbourhood members increases, the

number of queries required to obtain neighbourhood (NH) and the average number

of neighbourhoods decreases dramatically regardless of the environment. Also, we

conclude that when the value of (m) increases, it reduces the likelihood of having

more neighbourhoods. This excludes, some neighbourhoods but does not satisfy the

criterion regarding maximum network distance value (d) .

Also, we find that the number of points belonging to one or more neighbourhoods

and the average number of neighbourhood members increase dramatically when the

maximum network distance between neighbourhood members (d value) is increased.

Conversely the number of points that do not belong to any neighbourhood decreases

incrementally with an increase in the maximum network distance (d). The reason is

112

 1100

 1200

 1300

 1400

 1500

 1600

0.050 0.100 0.200 0.300 0.500

N
u

m
b

e
r

o
f

p
o

in
ts

Max distance KM (d value)

 RNNH-RN Algorithm

1
1

9
0

1
3

9
1

1
4

7
9

1
4

8
0

1
4

8
1

(a) The number of points belonging to only
one neighbourhood

 50

 100

 150

 200

0.050 0.100 0.200 0.300 0.500

N
u

m
b

e
r

o
f

p
o

in
ts

Max distance KM (d value)

 RNNH-RN Algorithm

2
6

4
7

7
1

1
5

4

1
9

6

(b) The number of points belonging to more
than two neighbourhoods

 0

 100

 200

 300

 400

 500

 600

0.050 0.100 0.200 0.300 0.500

N
u

m
b

e
r

o
f

p
o

in
ts

Max distance KM (d value)

 RNNH-RN Algorithm 5
6

0

3
3

8

2
2

6

1
6

5

1
0

(c) The number of points not belonging to
any neighbourhood

 5

 10

 15

0.050 0.100 0.200 0.300 0.500

T
h

e
 a

v
ra

g
e

 n
u

m
b

e
r

o
f

N
H

 m
e

m
b

e
rs

Max distance KM (d value)

 RNNH-RN Algorithm

9

1
1

1
3

1
4

1
6

(d) The average number of neighbourhood
members

Figure 5.32: Analysis for South-East Melbourne

that, as shown in Figure 5.32, when the maximum distance (d) value increases, this

increases the likelihood of having more points of interest in the neighbourhood.

We have compared Reverse Nearest Neighbourhood in road networks and Eu-

clidean distance algorithm as shown in Figure 5.33. We conclude that in the Euclidean

Reverse Nearest neighbourhood (RNNH) algorithm the number of neighbourhood

members is much higher than for the Reverse Nearest Neighbourhood in road net-

work (RNNH-RN) algorithm in all three experiments. Also, in both algorithms, the

number of neighbourhood members increases immediately with an increase in the

maximum distance between neighbourhood members (d). Furthermore, it decreases

dramatically with an increase in the minimum number of neighbourhood members (m

value) in Euclidean and road networks. This is because when the maximum distance

(d) increases, there is a greater chance of having more neighbourhood members, which

leads to greater search distance and includes these members in the result set. We

examine the accuracy of our proposed algorithm in road networks, and find that the

neighbourhood members on road networks is 30% fewer than for Euclidean RNNH

as the road network reflects actual distances in all scenarios.

113

 1100

 1320

 1540

 1760

 1980

2 4 6 10 12

T
h

e
 n

u
m

b
e

r
 o

f
N

H
 m

e
m

b
e

r
s

Minimum number of NH member

RNNH-RN Algorithm

1
6
2
7

1
3
9
3

1
2
6
6

1
0
4
7

9
6
2

RNNH Algorithm

1
7
9
8

1
6
0
8

1
4
9
6

1
2
7
4

1
2
0
1

(a) m value

 35

 70

 105

 140

0.100 0.300 0.500 1 1.5

T
h

e
 n

u
m

b
e

r
 o

f
N

H
 m

e
m

b
e

r
s

Max distance KM (d value)

RNNH-Ro Algorithm

1
9

4
0

4
7

8
0

1
2
3

RNNH Algorithm

2
2 2

6

2
6

2
6

2
6

(b) d value

Figure 5.33: Comparison RNNH and RNNH-RN algorithm for South-East Melbourne

5.6 Conclusion

In this chapter, we studied the problem of Reverse Nearest Neighborhood in Road

Networks. Reverse Nearest Neighborhood in road networks (RNNH-RN) queries

are motivated by our observation that Reverse Nearest Neighbor queries may be

unable to properly capture the notion of influence points. Hence, we introduced

the concept of a neighborhood version of reverse nearest neighbour as a collection

of chained points that are located along road networks. Our proposed approach is

intended to find the most accessible neighbourhood that considers the query as the

nearest facility on road networks while maintaining all its formal properties (not

mutual exclusiveness). We found that, compared to Euclidean RNNH (chapter 4),

the amount of reduction for neighbourhood members in RNNH on road networks

is twenty percent on average. Extensive experiments were conducted to present a

thorough theoretical analysis of a spatial network and demonstrate a viable solution

for Reverse Nearest Neighborhood in Road Networks queries, which is applicable to

different densities of datasets.

114

Chapter 6

Conclusion and Future Works

6.1 Overview

In this thesis, we have presented efficient techniques for Reverse Nearest Neighbour-

hood queries based on Euclidean and network distances under different settings. This

chapter summarises the overall contribution of the thesis and offers suggestions for

future research on this topic.

6.2 Conclusion

Nowadays, the grouping of spatial data is important because it is essential process

in exploratory spatial data mining. It is a task involving the grouping of a set

of objects in such a way that those in the same group are more similar (in some

sense or another) to each other than to those in other groups. It is used widely by

various applications. Many of our online activities today rely on spatial data such as

Facebook and LinkedIn websites, and they have more than 600 million active users,

and these users have chain connection Friends. At least half of these users log in every

day and they actively access information through enabled location-based service

(LBS) [172]. Therefore, understanding these spatial users is crucially important for

the location-based service providers. The grouping approach is a successful means of

achieving a better understanding of data.

In this thesis, we conducted research and proposed solutions for overcoming the

problems of grouping data in the context of a chained group of objects in reverse

nearest neighbour (RNN) queries. This study is the first to propose a new type of

query, named the Reverse Nearest Neighbourhood Query, one that aims to find the

most influential neighbourhoods for a given query. We have also introduced the first

solution that aims to improve the efficiency of the monitoring of continuous reverse

115

nearest neighbourhood queries. We have verified the effectiveness of these proposed

approaches with extensive empirical evaluations of synthetic and real-world data

sets on road network and Euclidean distances. In this context, this thesis makes

important contributions as detailed below.

In Chapter 3, we propose a new definition of influenced neighbourhood. In our

definition, the neighbourhood has a number of points of interest where point p is said

to be influenced by not only its closest facility but also other facilities that are very

close to p. We are the first to introduce the Reverse Nearest Neighbourhood (RNNH)

query to compute the chained neighbourhood for a given query. The clustering and

grouping of points in our definition of reverse nearest neighbourhood is a unique

clustering approach which has never been attempted previously in spatial databases.

Our approach makes it possible for neighbourhood members to be influenced by the

query point and not be considered as sparse objects. Furthermore, the neighbour-

hood considers the query point as the nearest facility among all the facilities. All

of the above features are unique to our proposed algorithm compared with existing

algorithms in spatial databases such as [13]. We have shown that all existing RNN

algorithms cannot be applied for computing the neighbourhood with the above the

features. We therefore propose more efficient and pruning techniques and use them

in our RNNH algorithm. In our experimental study that using real and synthetic

data sets, we prove that our algorithm is very efficient when compared to the näıve

algorithm or traditional spatial queries. This work was published in [22].

In Chapter 4, we extend our work on static (RNNH) queries for continuous

RNNH queries. The main major challenges for continuous query is monitoring the

query in an efficient way. Consequently, in our study we focused on two main goals:

minimising the frequent updates of the query location; and keeping the neighbourhood

results unchanged while monitoring the moving query. We are the first to propose

a neighbourhood safe region method for monitoring continuous Reverse Nearest

Neighbourhood (RNNH) queries. We demonstrated the uniqueness of our method

as one that avoids supplementary communication between query and server while

the query is in the safe region. This significantly reduces the need for monitoring

continuous (RNNH) query while it is inside the safe region. Also, it eliminates the

need for a query to follow a defined path while it is in the safe region. We have

conducted evaluations on the performance of the neighbourhood safe region method.

Results demonstrate that our safe region method can effectively monitor (RNNH)

queries because it reduces computation and communication costs while at the same

time monitoring continuous queries. Our technique of monitoring the moving query

was published in [23].

116

In Chapter 5, we present a new framework to capture the notion of neigh-

bourhood on spatial road networks. Ours is the first to study the Reverse Nearest

Neighbourhood on road networks. The technique and problem definition investigated

in Chapter 3 is not applicable to a road network environment, calculate the distance

in a road network environment is more complicated. Thus, we propose new efficient

techniques for computing the neighbourhood on road networks, which we named

Reverse Nearest Neighbourhood on Road networks (RNNHRO) queries. In our study,

we explain the unique definition of neighbourhood in the road network setting. Our

experimental study shows that our algorithm is significantly feasible when applied to

spatial road network.

Our proposed framework known as “ Reverse Nearest Neighbourhood search

in spatial databases”, can achieve a better and more meaningful clustering of re-

verse nearest neighbours. It is anticipated this research project will significantly

benefit and add to the continuing improvement of data clustering in spatial databases.

6.3 Future Work

There are several promising directions for future research where our idea could be

extended to include other areas. This section outlines the possible directions for

future works.

6.3.1 Reverse Spatial Top-k Neighbourhood Query

In Chapter 3, we present reverse nearest Neighbourhood queries and the computation

of such queries when distance is the only factor being considered. In many real

world scenarios, users may consider other factors in choosing a facility, such as price,

rating, etc [173, 174, 175]. Hence, it will be interesting to study the reverse nearest

neighbourhood top-k queries where the objective is to consider other factors besides

distance. In other words, the reverse spatial top-k Neighbourhood queries return

every neighbourhood for which the score of the neighbourhood is almost as good as

the most preferred for given query. Also, we can consider multiple factors in RNNH

methods to find the answer for query.

117

6.3.2 Improving the Effectiveness of Safe Region for Reverse

Nearest Neighbourhood Query

In Chapter 4, we propose a safe region which is an area where the query does not need

to send its location to the server as long as it is inside its safe region. As stated in

Chapter 4, we assume that only the query is moving. We are interested in exploring

a scenario where the users are moving; it will be a challenge for such a study to

provide a framework for the continuous monitoring of moving users and facilities. In

fact, it will be very interesting to analyse the trade-off between computation cost

and communication cost.

6.3.3 Reverse Nearest Neighbourhood on Road Network

RNNH −RO Query for Moving Queries

In Chapter 5, we propose Reverse Nearest Neighbourhood on Road Network RNNH−
RO Query. Our technique and algorithm are able to solve the Reverse nearest

neighbourhood on road networks for a stationary query. Possible future research

could investigate the RNNH − RO queries in road network for continuous query.

Many applications can be used in this scenario and such as cab/taxi dispatching

system. In case of a big event held, developing continuous RNNH algorithm in the

road network, will help to know how many cabs can be around the event and it will

reduce the waiting time of the cab drivers to get customers. The problem definition

as noted in Chapter 5 is relevant in road network settings, but it is not applicable

for continuous query. Moreover, we are interested in including the spatial keyword

queries for computing reverse nearest neighbourhood on road networks.

118

Bibliography

[1] Antonin Guttman. R-trees: a dynamic index structure for spatial searching,

volume 14. ACM, 1984.

[2] Muhammad Aamir Cheema. Circulartrip and arctrip: Effective grid access

methods for continuous spatial queries. Master’s thesis, School of Computer

Science and Engineering, The University of New South Wales, Sydney Australia,

3 2007.

[3] Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, and Ying Zhang.

Influence zone: Efficiently processing reverse k nearest neighbors queries. In

ICDE, pages 577–588, 2011.

[4] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-

based algorithm for discovering clusters in large spatial databases with noise.

In KDD, volume 96, pages 226–231, 1996.

[5] David Taniar and Wenny Rahayu. A taxonomy for nearest neighbour queries

in spatial databases. J. Comput. Syst. Sci., 79(7):1017–1039, 2013.

[6] Thao P Nghiem, Kiki Maulana, Kinh Nguyen, David Green, Agustinus Borgy

Waluyo, and David Taniar. Peer-to-peer bichromatic reverse nearest neighbours

in mobile ad-hoc networks. Journal of Parallel and Distributed Computing,

74(11):3128–3140, 2014.

[7] Omar Al-Bayari and Balqies Sadoun. New centralized automatic vehicle location

communications software system under gis environment. Int. J. Communication

Systems, 18(9):833–846, 2005.

[8] Chongsheng Zhang, George Almpanidis, Faegheh Hasibi, and Gaojuan Fan.

Gridvoronoi: An efficient spatial index for nearest neighbor query processing.

IEEE Access, 7:120997–121014, 2019.

[9] Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis. Group

nearest neighbor queries. In Proceedings. 20th International Conference on

Data Engineering, pages 301–312. IEEE, 2004.

119

[10] Kiki Maulana Adhinugraha, David Taniar, and Maria Indrawan. Finding

reverse nearest neighbors by region. Concurrency and Computation: Practice

and Experience, 26(5):1142–1156, 2014.

[11] Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric

data structure. ACM Computing Surveys (CSUR), 23(3):345–405, 1991.

[12] Maytham Safar, Dariush Ibrahimi, and David Taniar. Voronoi-based reverse

nearest neighbor query processing on spatial networks. Multimedia systems,

15(5):295–308, 2009.

[13] Anasthasia Agnes Haryanto, David Taniar, and Kiki Maulana Adhinugraha.

Group reverse knn query optimisation. Journal of Computational Science,

11:205–221, 2015.

[14] Sultan Alamri, David Taniar, and Maytham Safar. A taxonomy for moving

object queries in spatial databases. Future Generation Comp. Syst., 37:232–242,

2014.

[15] Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, and Ying Zhang. A

safe zone based approach for monitoring moving skyline queries. In EDBT,

pages 275–286. ACM, 2013.

[16] Katie Elizabeth Potts, Rohan Mark Bennett, and Abbas Rajabifard. Spatially

enabled bushfire recovery. GeoJournal, 78(1):151–163, 2013.

[17] Raphaele Blanchi, Justin Leonard, Katharine Haynes, Kimberley Opie, Melissa

James, and Felipe Dimer de Oliveira. Environmental circumstances surrounding

bushfire fatalities in australia 1901–2011. Environmental Science & Policy,

37:192–203, 2014.

[18] Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang,

and Wei Wang. Multi-guarded safe zone: An effective technique to monitor

moving circular range queries. In 2010 IEEE 26th International Conference on

Data Engineering (ICDE 2010), pages 189–200. IEEE, 2010.

[19] Sarana Nutanong, Rui Zhang, Egemen Tanin, and Lars Kulik. The v*-diagram:

a query-dependent approach to moving knn queries. Proceedings of the VLDB

Endowment, 1(1):1095–1106, 2008.

[20] Mohammad Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neigh-

bor search for spatial network databases. In Proceedings of the Thirtieth

international conference on Very large data bases-Volume 30, pages 840–851,

2004.

120

[21] Cyrus Shahabi, Mohammad R Kolahdouzan, and Mehdi Sharifzadeh. A road

network embedding technique for k-nearest neighbor search in moving object

databases. GeoInformatica, 7(3):255–273, 2003.

[22] Nasser Allheeib, Md Saiful Islam, David Taniar, Zhou Shao, and Muham-

mad Aamir Cheema. Density-based reverse nearest neighbourhood search in

spatial databases. J. Ambient Intelligence and Humanized Computing, pages

1–12, 2018.

[23] Nasser Allheeib, David Taniar, Haidar Al-Khalidi, Md Saiful Islam, and

Kiki Maulana Adhinugraha. Safe regions for moving reverse neighbourhood

queries in a peer-to-peer environment. IEEE Access, 8:50285–50298, 2020.

[24] Muhammad Aamir Cheema, Xuemin Lin, Wenjie Zhang, and Ying Zhang.

Influence zone: Efficiently processing reverse k nearest neighbors queries. In

ICDE, pages 577–588. IEEE, 2011.

[25] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query pro-

cessing in spatial network databases. In VLDB 2003, Proceedings of 29th

International Conference on Very Large Data Bases, September 9-12, 2003,

Berlin, Germany, pages 802–813, 2003.

[26] Dongsheng Li, Jiannong Cao, Xicheng Lu, and Kaixian Chen. Efficient range

query processing in peer-to-peer systems. IEEE Trans. Knowl. Data Eng.,

21(1):78–91, 2009.

[27] Apostolos Papadopoulos and Yannis Manolopoulos. Multiple range query

optimization in spatial databases. In Advances in Databases and Informa-

tion Systems, Second East European Symposium, ADBIS’98, Poznan, Poland,

Spetember 7-10, 1998, Proceedings, pages 71–82, 1998.

[28] Jing Shan, Donghui Zhang, and Betty Salzberg. On spatial-range closest-pair

query. In Advances in Spatial and Temporal Databases, 8th International Sym-

posium, SSTD 2003, Santorini Island, Greece, July 24-27, 2003, Proceedings,

pages 252–269, 2003.

[29] Hoong Kee Ng and Hon Wai Leong. Path-based range query processing using

sorted path and rectangle intersection approach. In Database Systems for

Advances Applications, 9th International Conference, DASFAA 2004, Jeju

Island, Korea, March 17-19, 2004, Proceedings, pages 184–189, 2004.

[30] Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang,

and Wei Wang. Continuous monitoring of distance-based range queries. IEEE

Trans. Knowl. Data Eng., 23(8):1182–1199, 2011.

121

[31] Shyh-Kwei Chen, Kun-Lung Wu, and Philip Shi-lung Yu. Range query methods

and apparatus, September 24 2013. US Patent 8,543,579.

[32] Dimitris Papadias, Jun Zhang, Nikos Mamoulis, and Yufei Tao. Query pro-

cessing in spatial network databases. In Proceedings 2003 VLDB Conference,

pages 802–813. Elsevier, 2003.

[33] Nasser Ghadiri, Ahmad Baraani-Dastjerdi, Nasser Ghasem-Aghaee, and Mo-

hammad A Nematbakhsh. Optimizing the performance and robustness of

type-2 fuzzy group nearest-neighbor queries. Mobile Information Systems,

7(2):123–145, 2011.

[34] Quoc Thai Tran, David Taniar, and Maytham Safar. Reverse k nearest neighbor

and reverse farthest neighbor search on spatial networks. In Transactions on

large-scale data-and knowledge-centered systems I, pages 353–372. Springer,

2009.

[35] Kefeng Xuan, Geng Zhao, David Taniar, Wenny Rahayu, Maytham Safar, and

Bala Srinivasan. Voronoi-based range and continuous range query processing

in mobile databases. J. Comput. Syst. Sci., 77(4):637–651, 2011.

[36] Michiel Smid. Closest-point problems in computational geometry. In Handbook

of computational geometry, pages 877–935. Elsevier, 2000.

[37] Nick Roussopoulos, Stephen Kelley, and Frédéric Vincent. Nearest neighbor

queries. In ACM Sigmod Record, volume 24, pages 71–79. ACM, 1995.

[38] Gı́sli R Hjaltason and Hanan Samet. Distance browsing in spatial databases.

ACM Transactions on Database Systems (TODS), 24(2):265–318, 1999.

[39] Nick Roussopoulos, Stephen Kelley, and Frédéic Vincent. Nearest neighbor

queries. In Proceedings of the 1995 ACM SIGMOD International Conference

on Management of Data, San Jose, California, May 22-25, 1995., pages 71–79,

1995.

[40] Gı́sli R. Hjaltason and Hanan Samet. Distance browsing in spatial databases.

ACM Trans. Database Syst., 24(2):265–318, 1999.

[41] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neighbor

search. In SIGMOD 1998, Proceedings ACM SIGMOD International Conference

on Management of Data, June 2-4, 1998, Seattle, Washington, USA., pages

154–165, 1998.

[42] Christian S. Jensen, Jan Kolárvr, Torben Bach Pedersen, and Igor Timko.

Nearest neighbor queries in road networks. In GIS, pages 1–8, 2003.

122

[43] M. Kolahdouzan and Cyrus Shahabi. Voronoi-based k nearest neighbor search

for spatial network databases. In VLDB, pages 840–851, 2004.

[44] Mohammad R. Kolahdouzan and Cyrus Shahabi. Continuous k-nearest neighbor

queries in spatial network databases. In Spatio-Temporal Database Management,

2nd International Workshop STDBM’04, Toronto, Canada, August 30, 2004,

pages 33–40, 2004.

[45] Cyrus Shahabi, Mohammad R. Kolahdouzan, and Mehdi Sharifzadeh. A road

network embedding technique for k-nearest neighbor search in moving object

databases. In ACM-GIS, pages 94–10, 2002.

[46] Hyung-Ju Cho and Chin-Wan Chung. An efficient and scalable approach to

cnn queries in a road network. In VLDB, pages 865–876, 2005.

[47] Haibo Hu, Dik Lun Lee, and Jianliang Xu. Fast nearest neighbor search

on road networks. In Advances in Database Technology - EDBT 2006, 10th

International Conference on Extending Database Technology, Munich, Germany,

March 26-31, 2006, Proceedings, pages 186–203, 2006.

[48] Kyriakos Mouratidis, Man Lung Yiu, Dimitris Papadias, and Nikos Mamoulis.

Continuous nearest neighbor monitoring in road networks. In VLDB, pages

43–54, 2006.

[49] Hua Lu, Xin Cao, and Christian S. Jensen. A foundation for efficient indoor

distance-aware query processing. In IEEE 28th International Conference on

Data Engineering (ICDE 2012), Washington, DC, USA (Arlington, Virginia),

1-5 April, 2012, pages 438–449, 2012.

[50] Xike Xie, Hua Lu, and Torben Bach Pedersen. Efficient distance-aware query

evaluation on indoor moving objects. In 29th IEEE International Conference

on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013, pages

434–445, 2013.

[51] Jiao Yu, Wei-Shinn Ku, Min-Te Sun, and Hua Lu. An RFID and particle

filter-based indoor spatial query evaluation system. In Joint 2013 EDBT/ICDT

Conferences, EDBT ’13 Proceedings, Genoa, Italy, March 18-22, 2013, pages

263–274, 2013.

[52] Joon-Seok Kim and Ki-Joune Li. Location k-anonymity in indoor spaces.

GeoInformatica, 20(3):415–451, 2016.

[53] Jun Zhang, Dimitris Papadias, Kyriakos Mouratidis, and Manli Zhu. Query

processing in spatial databases containing obstacles. International Journal of

Geographical Information Science, 19(10):1091–1111, 2005.

123

[54] Chenyi Xia, David Hsu, and Anthony K. H. Tung. A fast filter for obstructed

nearest neighbor queries. In Key Technologies for Data Management, 21st

British National Conference on Databases, BNCOD 21, Edinburgh, UK, July

7-9, 2004, Proceedings, pages 203–215, 2004.

[55] Sarana Nutanong, Egemen Tanin, and Rui Zhang. Visible nearest neighbor

queries. In Advances in Databases: Concepts, Systems and Applications, 12th

International Conference on Database Systems for Advanced Applications,

DASFAA 2007, Bangkok, Thailand, April 9-12, 2007, Proceedings, pages 876–

883, 2007.

[56] Yunjun Gao, Baihua Zheng, Wang-Chien Lee, and Gencai Chen. Continuous

visible nearest neighbor queries. In EDBT 2009, 12th International Conference

on Extending Database Technology, Saint Petersburg, Russia, March 24-26,

2009, Proceedings, pages 144–155, 2009.

[57] Ze Deng, Meng Wang, Lizhe Wang, Xiaohui Huang, Wei Han, Junde Chu, and

Albert Y Zomaya. An efficient indexing approach for continuous spatial approx-

imate keyword queries over geo-textual streaming data. ISPRS International

Journal of Geo-Information, 8(2):57, 2019.

[58] Andreas Henrich. A distance scan algorithm for spatial access structures. In

ACM-GIS, pages 136–143, 1994.

[59] Flip Korn, Nikolaos Sidiropoulos, Christos Faloutsos, Eliot L. Siegel, and

Zenon Protopapas. Fast nearest neighbor search in medical image databases.

In VLDB’96, Proceedings of 22th International Conference on Very Large Data

Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 215–226, 1996.

[60] Apostolos Papadopoulos and Yannis Manolopoulos. Performance of nearest

neighbor queries in r-trees. In Database Theory - ICDT ’97, 6th International

Conference, Delphi, Greece, January 8-10, 1997, Proceedings, pages 394–408,

1997.

[61] Norio Katayama and Shin’ichi Satoh. The sr-tree: An index structure for

high-dimensional nearest neighbor queries. In SIGMOD 1997, Proceedings

ACM SIGMOD International Conference on Management of Data, May 13-15,

1997, Tucson, Arizona, USA., pages 369–380, 1997.

[62] Hanan Samet, Jagan Sankaranarayanan, and Houman Alborzi. Scalable network

distance browsing in spatial databases. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, SIGMOD 2008, Vancouver,

BC, Canada, June 10-12, 2008, pages 43–54, 2008.

124

[63] Surajit Chaudhuri and Luis Gravano. Evaluating top-k selection queries. In

Proceedings of the 25th International Conference on Very Large Data Bases,

VLDB ’99, pages 397–410, San Francisco, CA, USA, 1999. Morgan Kaufmann

Publishers Inc.

[64] Chaluka Salgado, Muhammad Aamir Cheema, and Mohammed Eunus Ali.

Continuous monitoring of range spatial keyword query over moving objects.

World Wide Web, 21(3):687–712, 2018.

[65] Tinghuai Ma, Jing Jia, Yu Xue, Yuan Tian, Abdullah Al-Dhelaan, and Mznah

Al-Rodhaan. Protection of location privacy for moving knn queries in social

networks. Applied Soft Computing, 66:525–532, 2018.

[66] A. Prasad Sistla, Ouri Wolfson, Sam Chamberlain, and Son Dao. Modeling

and querying moving objects. In Proceedings of the Thirteenth International

Conference on Data Engineering, April 7-11, 1997 Birmingham U.K., pages

422–432, 1997.

[67] George Kollios, Dimitrios Gunopulos, and Vassilis J. Tsotras. Nearest neighbor

queries in a mobile environment. In Spatio-Temporal Database Management,

International Workshop STDBM’99, Edinburgh, Scotland, September 10-11,

1999, Proceedings, pages 119–134, 1999.

[68] Zhexuan Song and Nick Roussopoulos. K-nearest neighbor search for moving

query point. In SSTD, pages 79–96, 2001.

[69] Xiaopeng Xiong, Mohamed F. Mokbel, Walid G. Aref, Susanne E. Hambrusch,

and Sunil Prabhakar. Scalable spatio-temporal continuous query processing for

location-aware services. In Proceedings of the 16th International Conference on

Scientific and Statistical Database Management (SSDBM 2004), 21-23 June

2004, Santorini Island, Greece, pages 317–326, 2004.

[70] Yufei Tao and Dimitris Papadias. Time-parameterized queries in spatio-

temporal databases. In SIGMOD Conference, pages 334–345, 2002.

[71] Simonas Saltenis, Christian S. Jensen, Scott T. Leutenegger, and Mario A.

López. Indexing the positions of continuously moving objects. In Proceedings

of the 2000 ACM SIGMOD International Conference on Management of Data,

May 16-18, 2000, Dallas, Texas, USA., pages 331–342, 2000.

[72] Yufei Tao, Dimitris Papadias, and Jimeng Sun. The tpr*-tree: An optimized

spatio-temporal access method for predictive queries. In VLDB 2003, Proceed-

ings of 29th International Conference on Very Large Data Bases, September

9-12, 2003, Berlin, Germany, pages 790–801, 2003.

125

[73] Rimantas Benetis, Christian S. Jensen, Gytis Karciauskas, and Simonas Saltenis.

Nearest and reverse nearest neighbor queries for moving objects. VLDB J.,

15(3):229–249, 2006.

[74] Katerina Raptopoulou, Apostolos Papadopoulos, and Yannis Manolopoulos.

Fast nearest-neighbor query processing in moving-object databases. GeoInfor-

matica, 7(2):113–137, 2003.

[75] Glenn Simmons Iwerks, Hanan Samet, and Kenneth P. Smith. Continuous

k-nearest neighbor queries for continuously moving points with updates. In

VLDB 2003, Proceedings of 29th International Conference on Very Large Data

Bases, September 9-12, 2003, Berlin, Germany, pages 512–523, 2003.

[76] Yufei Tao, Christos Faloutsos, Dimitris Papadias, and Bin Liu. Prediction and

indexing of moving objects with unknown motion patterns. In Proceedings of

the ACM SIGMOD International Conference on Management of Data, Paris,

France, June 13-18, 2004, pages 611–622, 2004.

[77] Norio Katayama and Shin’ichi Satoh. The sr-tree: An index structure for

high-dimensional nearest neighbor queries. ACM Sigmod Record, 26(2):369–380,

1997.

[78] Wei Wang, Jiong Yang, and Richard Muntz. Pk-tree: a spatial index structure

for high dimensional point data. In Information organization and databases,

pages 281–293. Springer, 2000.

[79] Xiaolin Wang, Yingwei Luo, Lishan Yu, and Zhuoqun Xu. Pk+ tree: an

improved spatial index structure of pk tree. In International Conference on

Computational Science, pages 511–514. Springer, 2005.

[80] Tenindra Abeywickrama, Muhammad Aamir Cheema, and David Taniar. K-

nearest neighbors on road networks: a journey in experimentation and in-

memory implementation. arXiv preprint arXiv:1601.01549, 2016.

[81] Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A

search meets graph theory. In SODA, volume 5, pages 156–165, 2005.

[82] Hector Gonzalez, Jiawei Han, Xiaolei Li, Margaret Myslinska, and John Paul

Sondag. Adaptive fastest path computation on a road network: a traffic mining

approach. In 33rd International Conference on Very Large Data Bases, VLDB

2007, pages 794–805. Association for Computing Machinery, Inc, 2007.

[83] Edsger W Dijkstra et al. A note on two problems in connexion with graphs.

Numerische mathematik, 1(1):269–271, 1959.

126

[84] Daniel R Lanning, Gregory K Harrell, and Jin Wang. Dijkstra’s algorithm and

google maps. In Proceedings of the 2014 ACM Southeast Regional Conference,

pages 1–3, 2014.

[85] David Taniar, Maytham Safar, Quoc Thai Tran, Wenny Rahayu, and Jong Hyuk

Park. Spatial network rnn queries in gis. The Computer Journal, 54(4):617–627,

2011.

[86] Shuo Shang, Bo Yuan, Ke Deng, Kexin Xie, and Xiaofang Zhou. Finding the

most accessible locations: reverse path nearest neighbor query in road networks.

In Proceedings of the 19th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems, pages 181–190, 2011.

[87] Xiao-Jun Xu, Jin-Song Bao, Bin Yao, Jing-Yu Zhou, Fei-Long Tang, Min-Yi

Guo, and Jian-Qiu Xu. Reverse furthest neighbors query in road networks.

Journal of Computer Science and Technology, 32(1):155–167, 2017.

[88] Muhammad Aamir Cheema, Xuemin Lin, Wei Wang, Wenjie Zhang, and Jian

Pei. Probabilistic reverse nearest neighbor queries on uncertain data. IEEE

Trans. Knowl. Data Eng., 22(4):550–564, 2010.

[89] Tobias Emrich, Hans-Peter Kriegel, Peer Kröger, Matthias Renz, and Andreas

Züfle. Incremental reverse nearest neighbor ranking in vector spaces. In SSTD,

pages 265–282. Springer, 2009.

[90] Amit Singh, Hakan Ferhatosmanoglu, and Ali Şaman Tosun. High dimensional

reverse nearest neighbor queries. In CIKM, pages 91–98. ACM, 2003.

[91] Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi. Reverse nearest neighbor

queries for dynamic databases. In ACM SIGMOD workshop on research issues

in data mining and knowledge discovery, pages 44–53, 2000.

[92] Wei Wu, Fei Yang, Chee-Yong Chan, and Kian-Lee Tan. Finch: Evaluating

reverse k-nearest-neighbor queries on location data. PVLDB, 1(1):1056–1067,

2008.

[93] Yufei Tao, Dimitris Papadias, and Xiang Lian. Reverse knn search in arbitrary

dimensionality. In VLDB, volume 30, pages 744–755. VLDB Endowment, 2004.

[94] Elke Achtert, Hans-Peter Kriegel, Peer Kröger, Matthias Renz, and Andreas

Züfle. Reverse k-nearest neighbor search in dynamic and general metric

databases. In EDBT, pages 886–897. ACM, 2009.

127

[95] Ioana Stanoi, Mirek Riedewald, Divyakant Agrawal, and Amr El Abbadi.

Discovery of influence sets in frequently updated databases. In VLDB, volume

2001, pages 99–108, 2001.

[96] Muhammad Aamir Cheema, Wenjie Zhang, Xuemin Lin, Ying Zhang, and

Xuefei Li. Continuous reverse k nearest neighbors queries in euclidean space

and in spatial networks. VLDB J., 21(1):69–95, 2012.

[97] Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang, Wei Wang, and Wenjie

Zhang. Lazy updates: An efficient technique to continuously monitoring reverse

knn. PVLDB, 2(1):1138–1149, 2009.

[98] Thomas Bernecker, Tobias Emrich, Hans-Peter Kriegel, Matthias Renz, Stefan

Zankl, and Andreas Züfle. Efficient probabilistic reverse nearest neighbor query

processing on uncertain data. PVLDB, 4(10):669–680, 2011.

[99] Shiyu Yang, Muhammad Aamir Cheema, Xuemin Lin, and Ying Zhang. Slice:

Reviving regions-based pruning for reverse k nearest neighbors queries. In

ICDE, pages 760–771. IEEE, 2014.

[100] Flip Korn and Suresh Muthukrishnan. Influence sets based on reverse nearest

neighbor queries. ACM Sigmod Record, 29(2):201–212, 2000.

[101] Flip Korn and S. Muthukrishnan. Influence sets based on reverse nearest

neighbor queries. In SIGMOD, pages 201–212, 2000.

[102] Bohan Li and Xiaolin Qin. Research on reverse nearest neighbor queries using

ranked voronoi diagram. In 2009 First International Conference on Information

Science and Engineering, pages 951–955. IEEE, 2009.

[103] Geng Zhao, Kefeng Xuan, Wenny Rahayu, David Taniar, Maytham Safar,

Marina L Gavrilova, and Bala Srinivasan. Voronoi-based continuous k near-

est neighbor search in mobile navigation. IEEE Transactions on Industrial

Electronics, 58(6):2247–2257, 2009.

[104] Shiyu Yang, Muhammad Aamir Cheema, Xuemin Lin, and Wei Wang. Reverse

k nearest neighbors query processing: experiments and analysis. PVLDB,

8(5):605–616, 2015.

[105] Ioana Stanoi, Divyakant Agrawal, and Amr El Abbadi. Reverse nearest neighbor

queries for dynamic databases. In ACM SIGMOD Workshop, 2000.

[106] Yufei Tao, Dimitris Papadias, and Xiang Lian. Reverse knn search in arbitrary

dimensionality. PVLDB, pages 744–755, 2004.

128

[107] Shiyu Yang, Muhammad Aamir Cheema, Xuemin Lin, and Ying Zhang. SLICE:

Reviving regions-based pruning for reverse k nearest neighbors queries. In

ICDE, pages 760–771, 2014.

[108] Wei Wu, Fei Yang, Chee Yong Chan, and Kian-Lee Tan. Continuous reverse

k-nearest-neighbor monitoring. In MDM, pages 132–139, 2008.

[109] AL-Khalidi Haidar, David Taniar, and Maytham Safar. Approximate algorithms

for static and continuous range queries in mobile navigation. Computing, 95(10-

11):949–976, 2013.

[110] Mingjin Zhang, Naphtali Rishe, LIU Weitong, Jahkell Lazarre, and Tao

Li. Voronoi diagram-based algorithm for efficient progressive continuous k-

nearest neighbor query for moving objects, February 5 2019. US Patent App.

10/200,814.

[111] Rimantas Benetis, Christian S Jensen, Gytis Karciauskas, and Simonas Saltenis.

Nearest neighbor and reverse nearest neighbor queries for moving objects. In

Database Engineering and Applications Symposium, pages 44–53. IEEE, 2002.

[112] Tian Xia and Donghui Zhang. Continuous reverse nearest neighbor monitoring.

In ICDE, pages 77–77. IEEE, 2006.

[113] James M Kang, Mohamed F Mokbel, Shashi Shekhar, Tian Xia, and Donghui

Zhang. Continuous evaluation of monochromatic and bichromatic reverse

nearest neighbors. In ICDE, pages 806–815. IEEE, 2007.

[114] Tobias Emrich, Hans-Peter Kriegel, Peer Kröger, Matthias Renz, Naixin Xu,

and Andreas Züfle. Reverse k-nearest neighbor monitoring on mobile objects.

In Proceedings of the 18th SIGSPATIAL International Conference on Advances

in Geographic Information Systems, pages 494–497, 2010.

[115] Man Lung Yiu, Dimitris Papadias, Nikos Mamoulis, and Yufei Tao. Reverse

nearest neighbors in large graphs. IEEE Transactions on Knowledge and Data

Engineering, 18(4):540–553, 2006.

[116] Elke Achtert, Christian Böhm, Peer Kröger, Peter Kunath, Alexey Pryakhin,

and Matthias Renz. Efficient reverse k-nearest neighbor search in arbitrary

metric spaces. In SIGMOD Conference, pages 515–526, 2006.

[117] Kefeng Xuan, Geng Zhao, David Taniar, Bala Srinivasan, Maytham Safar, and

Marina Gavrilova. Network voronoi diagram based range search. In 2009 In-

ternational Conference on Advanced Information Networking and Applications,

pages 741–748. IEEE, 2009.

129

[118] Bolong Zheng, Kai Zheng, Xiaokui Xiao, Han Su, Hongzhi Yin, Xiaofang Zhou,

and Guohui Li. Keyword-aware continuous knn query on road networks. In

2016 IEEE 32Nd international conference on data engineering (ICDE), pages

871–882. IEEE, 2016.

[119] Man Lung Yiu, Dimitris Papadias, Nikos Mamoulis, and Yufei Tao. Reverse

nearest neighbors in large graphs. In ICDE, 2005.

[120] Yufei Tao, Dimitris Papadias, and Qiongmao Shen. Continuous nearest neighbor

search. In VLDB, pages 287–298, 2002.

[121] Jun Zhang, Manli Zhu, Dimitris Papadias, Yufei Tao, and Dik Lun Lee.

Location-based spatial queries. In Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data, San Diego, California, USA,

June 9-12, 2003, pages 443–454, 2003.

[122] Mohamed F. Mokbel, Xiaopeng Xiong, and Walid G. Aref. Sina: Scalable

incremental processing of continuous queries in spatio-temporal databases. In

SIGMOD Conference, pages 623–634, 2004.

[123] Xiaopeng Xiong, Mohamed F. Mokbel, and Walid G. Aref. Sea-cnn: Scal-

able processing of continuous k-nearest neighbor queries in spatio-temporal

databases. In ICDE, pages 643–654, 2005.

[124] Kyriakos Mouratidis, Marios Hadjieleftheriou, and Dimitris Papadias. Con-

ceptual partitioning: An efficient method for continuous nearest neighbor

monitoring. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, Baltimore, Maryland, USA, June 14-16, 2005, pages

634–645, 2005.

[125] Xiaohui Yu, Ken Q. Pu, and Nick Koudas. Monitoring k-nearest neighbor

queries over moving objects. In Proceedings of the 21st International Conference

on Data Engineering, ICDE 2005, 5-8 April 2005, Tokyo, Japan, pages 631–642,

2005.

[126] Muhammad Aamir Cheema, Yidong Yuan, and Xuemin Lin. Circulartrip: An

effective algorithm for continuous nn queries. In DASFAA, pages 863–869,

2007.

[127] Iosif Lazaridis, Kriengkrai Porkaew, and Sharad Mehrotra. Dynamic queries

over mobile objects. In EDBT, pages 269–286, 2002.

[128] Ying Cai, Kien A. Hua, and Guohong Cao. Processing range-monitoring queries

on heterogeneous mobile objects. In Mobile Data Management, 2004.

130

[129] Bugra Gedik and Ling Liu. Mobieyes: Distributed processing of continuously

moving queries on moving objects in a mobile system. In EDBT, pages 67–87,

2004.

[130] Xiaoyuan Wang and Wei Wang. Continuous expansion: Efficient processing

of continuous range monitoring in mobile environments. In DASFAA, pages

890–899, 2006.

[131] Haojun Wang, Roger Zimmermann, and Wei-Shinn Ku. Distributed continuous

range query processing on moving objects. In DEXA, pages 655–665, 2006.

[132] Tian Xia and Donghui Zhang. Continuous reverse nearest neighbor monitoring.

In ICDE, pages 77–86, 2006.

[133] James M. Kang, Mohamed F. Mokbel, Shashi Shekhar, Tian Xia, and Donghui

Zhang. Continuous evaluation of monochromatic and bichromatic reverse

nearest neighbors. In ICDE, pages 806–815, 2007.

[134] Muhammad Aamir Cheema, Wenjie Zhang, Xuemin Lin, Ying Zhang, and

Xuefei Li. Continuous reverse k nearest neighbors queries in euclidean space

and in spatial networks. VLDB J., pages 69–95, 2012.

[135] Haibo Hu, Jianliang Xu, and Dik Lun Lee. A generic framework for monitoring

continuous spatial queries over moving objects. In SIGMOD Conference, pages

479–490, 2005.

[136] Kyriakos Mouratidis, Dimitris Papadias, Spiridon Bakiras, and Yufei Tao. A

threshold-based algorithm for continuous monitoring of k nearest neighbors.

TKDE, pages 1451–1464, 2005.

[137] Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang, Wei Wang, and Wenjie

Zhang. Lazy updates: An efficient technique to continuously monitoring reverse

knn. PVLDB, pages 1138–1149, 2009.

[138] Tobias Emrich, Hans-Peter Kriegel, Peer Kröger, Matthias Renz, Naixin Xu,

and Andreas Züfle. Reverse k-nearest neighbor monitoring on mobile objects.

In GIS, pages 494–497, 2010.

[139] Sujin Oh, HaRim Jung, and Ung-Mo Kim. An efficient processing of range

spatial keyword queries over moving objects. In International Conference on

Information Networking, pages 525–530. IEEE, 2018.

[140] Saad Aljubayrin, Jianzhong Qi, Christian S Jensen, Rui Zhang, Zhen He, and

Zeyi Wen. The safest path via safe zones. In ICDE, pages 531–542. IEEE,

2015.

131

[141] Duncan Yung, Man Lung Yiu, and Eric Lo. A safe-exit approach for efficient

network-based moving range queries. Data & Knowledge Engineering, 72:126–

147, 2012.

[142] Jun Zhang, Manli Zhu, Dimitris Papadias, Yufei Tao, and Dik Lun Lee.

Location-based spatial queries. In SIGMOD, pages 443–454. ACM, 2003.

[143] Muhammad Aamir Cheema, Ljiljana Brankovic, Xuemin Lin, Wenjie Zhang,

and Wei Wang. Continuous monitoring of distance-based range queries. IEEE

Trans. Knowl. Data Eng., 23(8):1182–1199, 2011.

[144] AL-Khalidi Haidar, David Taniar, John Betts, and Sultan Alamri. On finding

safe regions for moving range queries. Mathematical and Computer Modelling,

58(5-6):1449–1458, 2013.

[145] Haibo Hu, Jianliang Xu, and Dik Lun Lee. A generic framework for monitoring

continuous spatial queries over moving objects. In Proceedings of the 2005 ACM

SIGMOD international conference on Management of data, pages 479–490,

2005.

[146] Hyung-Ju Cho, Se Jin Kwon, and Tae-Sun Chung. A safe exit algorithm for

continuous nearest neighbor monitoring in road networks. Mobile Information

Systems, 9(1):37–53, 2013.

[147] Ch N Santhosh Kumar, V Sitha Ramulu, K Sudheer Reddy, Suresh Kotha, and

Ch Mohan Kumar. Spatial data mining using cluster analysis. International

Journal of Computer Science & Information Technology, 4(4):71, 2012.

[148] M Emre Celebi, Hassan A Kingravi, and Patricio A Vela. A comparative study

of efficient initialization methods for the k-means clustering algorithm. Expert

Systems with Applications, 40(1):200–210, 2013.

[149] Raymond T. Ng and Jiawei Han. Clarans: A method for clustering objects for

spatial data mining. IEEE Trans. Knowl. Data Eng., 14(5):1003–1016, 2002.

[150] NS Sneha et al. Clustering and noise detection for geographic knowledge

discovery. International Journal of Advances in Engineering & Technology,

7(3):845, 2014.

[151] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei

Xu. Dbscan revisited, revisited: why and how you should (still) use dbscan.

ACM Transactions on Database Systems (TODS), 42(3):1–21, 2017.

[152] Thao P Nghiem, Kiki Maulana, Agustinus Borgy Waluyo, David Green, and

David Taniar. Bichromatic reverse nearest neighbors in mobile peer-to-peer

132

networks. In 2013 IEEE International Conference on Pervasive Computing

and Communications (PerCom), pages 160–165. IEEE, 2013.

[153] Thao P Nghiem, David Green, and David Taniar. Peer-to-peer group k-nearest

neighbours in mobile ad-hoc networks. In 2013 International Conference on

Parallel and Distributed Systems, pages 166–173. IEEE, 2013.

[154] Dong-Wan Choi and Chin-Wan Chung. Nearest neighborhood search in spatial

databases. In ICDE, pages 699–710. IEEE, 2015.

[155] Feifei Li, Bin Yao, and Piyush Kumar. Group enclosing queries. IEEE

Transactions on Knowledge and Data Engineering, 23(10):1526–1540, 2010.

[156] Hongga Li, Hua Lu, Bo Huang, and Zhiyong Huang. Two ellipse-based pruning

methods for group nearest neighbor queries. In Proceedings of the 13th annual

ACM international workshop on Geographic information systems, pages 192–

199, 2005.

[157] Ke Deng, Shazia Sadiq, Xiaofang Zhou, Hu Xu, Gabriel Pui Cheong Fung, and

Yansheng Lu. On group nearest group query processing. IEEE Transactions

on Knowledge and Data Engineering, 24(2):295–308, 2010.

[158] Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and Subhash Suri. Finding k

points with minimum diameter and related problems. Journal of algorithms,

12(1):38–56, 1991.

[159] Yongshan Liu, Xiang Gong, Dehan Kong, Tianbao Hao, and Xiaoqi Yan. A

voronoi-based group reverse k farthest neighbor query method in the obstacle

space. IEEE Access, 8:50659–50673, 2020.

[160] Hiba Jadallah and Zaher Al Aghbari. Spatial cloaking for location-based queries

in the cloud. Journal of Ambient Intelligence and Humanized Computing, pages

1–9, 2018.

[161] Quoc Thai Tran, David Taniar, and Maytham Safar. Bichromatic reverse

nearest-neighbor search in mobile systems. IEEE Systems Journal, 4(2):230–

242, 2010.

[162] David Taniar and Wenny Rahayu. A taxonomy for nearest neighbour queries

in spatial databases. J. Comput. Syst. Sci., 79(7):1017–1039, 2013.

[163] Robert Lübke, Daniel Schuster, and Alexander Schill. Mobilisgroups: Location-

based group formation in mobile social networks. In PERCOM Workshops,

pages 502–507. IEEE, 2011.

133

[164] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

The r*-tree: an efficient and robust access method for points and rectangles.

In Acm Sigmod Record, volume 19, pages 322–331. Acm, 1990.

[165] Abdelkader Hameurlain, Josef Küng, and Roland Wagner. Transactions on

Large-Scale Data-and Knowledge-Centered Systems I, volume 5740. Springer,

2009.

[166] Huang-Chen Lee and Kai-Hsiang Ke. Monitoring of large-area iot sensors using

a lora wireless mesh network system: Design and evaluation. IEEE Trans.

Instrumentation and Measurement, 67(9):2177–2187, 2018.

[167] Brian D Ripley. Stochastic simulation, volume 316. John Wiley & Sons, 2009.

[168] Thomas Brinkhoff. A framework for generating network-based moving objects.

GeoInformatica, 6(2):153–180, 2002.

[169] Thao P Nghiem, Agustinus Borgy Waluyo, and David Taniar. A pure peer-to-

peer approach for knn query processing in mobile ad hoc networks. Personal

and Ubiquitous Computing, 17(5):973–985, 2013.

[170] Ken CK Lee, Wang-Chien Lee, Baihua Zheng, and Yuan Tian. Road: A new

spatial object search framework for road networks. IEEE transactions on

knowledge and data engineering, 24(3):547–560, 2010.

[171] Ken CK Lee, Wang-Chien Lee, and Baihua Zheng. Fast object search on road

networks. In Proceedings of the 12th International Conference on Extending

Database Technology: Advances in Database Technology, pages 1018–1029,

2009.

[172] Weimo Liu, Weiwei Sun, Chunan Chen, Yan Huang, Yinan Jing, and Kunjie

Chen. Circle of friend query in geo-social networks. In International Conference

on Database Systems for Advanced Applications, pages 126–137. Springer, 2012.

[173] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil Nørv̊ag.

Reverse top-k queries. In ICDE, pages 365–376, 2010.

[174] Muhammad Aamir Cheema, Zhitao Shen, Xuemin Lin, and Wenjie Zhang. A

unified framework for efficiently processing ranking related queries. In EDBT,

2014.

[175] Shiyu Yang, Muhammad Aamir Cheema, Xuemin Lin, Ying Zhang, and Wenjie

Zhang. Reverse k nearest neighbors queries and spatial reverse top-k queries.

In VLDB Journal, 2016.

134

Appendix A

During our experimental investigation into Reverse Nearest Neighbourhood queries

on Euclidean distance (detailed in Chapter 3 and 4), we used two types of datasets,

synthetic and real dataset. For synthetic dataset, we used C++ code to generate

synthetic datasets with variety of data sizes and normal distribution setting, each

data set is indexed by an R*-tree with the page size of 4. The generated dataset

has three columns- ID, longitude and latitude for each point of interest. The data is

normalized between 0-1 as shown in Figure A.1.

Figure A.1: Sample of synthetic dataset

For real dataset, we obtain the North America, Los Angeles and Californian

dataset from http://www.cs.utah.edu/ lifeifei/SpatialDataset.htm. The North Amer-

ica dataset consists of 175, 812 points, the Los Angeles and California datasets

contain 2.6 million points and around 25.8 million points Respectively. Also, we used

the code to normalize the real dataset between 0-1 to run the experiment.

135

Appendix B

During our experimental investigation into Reverse Nearest Neighbourhood queries

on Road Networks, (detailed in Chapter 5) we used real dataset in Melbourne city,

Australia. In this appendix section, we describe the dataset and provide some sample

datasets that we use in our experiments in the study of Reverse Nearest neighbour-

hood query on Road Networks.

We used OpenStreetMap (OSM) to get the geographical data (real dataset e.g

Melbourne City). OpenStreetMap (OMS) provides global map data in a unified

tagging schema. The Data of OSM is available for every country in the world, and

the data quality is excellent. we have chosen OSM because it is free data and open

source, it is possible for anybody to download all the data in this database, Figure

shows the sample of the synthetic detest.

Figure B.1: kml file

OSM is built by a community of mappers that contribute and maintain data

about roads, trails, cafés, railway stations, and much more, all over the world. Be-

cause it is so massive (the data is more than 30 GB even when it’s compressed),

it’s nearly impossible to work with all the data at once, we used every map and

dataset separately and we did our experiment separately to report the outcomes. To

get our customized up-to-date OSM data, we used QGIS (formerly Quantum GIS),

136

which is a full-featured, open-source, cross-platform Geographic Information System,

with QGIS we have access up-to-date OSM data. OSM provides the data in kml

format as shown Figure B.1, kml is a file format used to display geographic data, it

is a tag-based structure with nested elements and attributes, usually the kml has

thousands of tags and all tags are case-sensitive.

Figure B.2: Snapshot code 1

In our project, we need to convert OpenStreetMap data from its native format

(i.e kml format) into a format that is convenient for our code (i.e is csv format).

The most important tag is ‘Coordinates’ tag, which has longitude and latitude for

very vertex (also called node). This tag what we exactly need to use in our code to

do the experiment. In order to represent graphs on our code, we need to have two

files from OSM: Edges file and node file. The edges file contains the list of connected

vertex points that represent the graph of road network. The node file is the file has

the Coordinates’ points of interest. The challenge here is how convert these data

from kml format to csv format to allow the code to read these geographical data.

We conducted several codes, to convert the data from kml format to csv format,

and also convert result back to kml format to display it on QGIS, sample of codes

attached below.

137

Figure B.3: Snapshot code 2

Figure B.4: Snapshot code 3

138

Figure B.5: Monash University Map

B.1 Monash University Dataset

In this section, we provide some sample of data that we use in our experiments for the

area of Monash University and residential area. This dataset has approximately 6600

edges and 8055 vertices. It consists of vertices data, edges data and name of roads data.

We calculate the bounding box. That is, the coordinate for the south-west and north-

east corners for each dataset. The bounding box of this dataset is [[[145.1186014135,

-37.9320371072],[145.1446971548,-37.9320371072],[145.1446971548,-37.9052954916],

[145.1186014135,-37.9052954916],[145.1186014135,-37.9320371072]]].

B.1.1 Sample data for vertices

Below we present sample vertices data. The first line indicates the number of vertices

in the dataset, the second line and forward consists of ID vertex, the longitude and

latitude of the corresponding vertex.

139

Table B.1: Sample data for vertices

8055

1 145.1259714 -37.9054102

2 145.1260067 -37.905411

3 145.1281139 -37.9056567

4 145.125709 -37.9063147

5 145.1279413 -37.9065627

7 145.125899 -37.9054271

8 145.1258534 -37.9055065

9 145.1257992 -37.9057933

11 145.1256043 -37.9068522

12 145.1231957 -37.9065771

13 145.1240192 -37.9066723

14 145.1243115 -37.9067062

15 145.1253951 -37.9068268

17 145.1264895 -37.9069517

18 145.1275972 -37.9070744

19 145.1278386 -37.9071019

20 145.1369405 -37.9060953

21 145.1356388 -37.9059476

22 145.1354394 -37.905925

23 145.1348515 -37.9058589

24 145.1346786 -37.9058395

.......

.......

.......

8055 145.135371 -37.9305305

140

B.1.2 Sample data for edges

Below we present sample edges data. The data shows the vertex where the edge

start, the vertex where the edges ends and the edges weight.

Table B.2: Sample data for edges

startVert endVert weight

1 2 0.003099
1 7 0.006626
1 1985 0.005889
2 3 0.190015
3 2009 0.560648
3 2011 0.595481
4 5 0.197837
4 9 0.103206
4 11 0.163592
5 2011 0.662551
5 19 0.723197
7 8 0.014899
8 9 0.045211
9 1330 0.184284
11 15 0.213579
11 17 0.292048
12 13 0.073041
12 5053 0.712266
12 5055 0.840024
13 14 0.098969
13 1315 0.024374
14 15 0.195005
14 5085 0.267418
15 5091 0.267552
17 18 0.390211
17 5093 0.267219
18 19 0.411615
18 5097 0.267199
19 5029 0.077065
...
...

141

B.1.3 Sample data for users

Below we present sample user data. The data shows the longitude and latitude for

users’ dataset.

Table B.3: Sample data for users

LONGITUDE LATITUDE

145.1221929 -37.91403247
145.1284275 -37.92967883
145.1193591 -37.92547642
145.1452244 -37.91733897
145.1471006 -37.91872568
145.1337721 -37.91211046
145.1185602 -37.9262554
145.125774 -37.9139819
145.1297546 -37.92942776
145.1301627 -37.91093746
145.1354394 -37.905925
145.1327241 -37.91152858
145.1483864 -37.91898264
145.1328783 -37.91222305
......................
......................
......................
145.135371 -37.9305305

B.1.4 Sample data for facilities

Below we present sample facilities dataset. The data shows the longitude and latitude

for facilities dataset.

Table B.4: Sample data for facilities

LONGITUDE LATITUDE

145.1370723 -37.91266194
145.1353435 37.91979063
145.1257806 -37.9136487
145.1198387 -37.9242081
145.1495853 -37.91686526
145.1259714 -37.9054102

142

B.1.5 Data Analysis

In this section, we conducted geospatial analysis to describe and understand the

behaviour of the dataset. We calculate the network distance between each point of

interest (POI) to the furthest neighbour, and the network distance between each

(POI) to the nearest neighbour.

Table B.5: Analysis for Furthest point Monash University

Distance from Number of POI

1-5 km 1

5-6 km 8

6-7 km 16

7-8 km 7

8-9 km 28

The maximum distance: 8.90 km
Average distance to nearest shop: 7.44 km

Table B.6: Analysis for Nearest Neighbour Monash University

Distance from Number of POI

1-100 m 34

200-300 m 2

300-400 m 7

400-600 m 7

600-700 m 2

700 m - 800 m 2

800 m - 900 m 2

above 1 km 4

The maximum distance : 2.11 km
Average distance to nearest shop: 0.3011 km

143

Figure B.6: Melbourne City Map

B.2 Melbourne City Dataset

In this section, we provide some sample of data that we use in our experiments for

the Melbourne city dataset. This dataset has approximately contains more than

315500 vertices and 321107 edges. It consists of vertices data, edges data and name

of roads data. The bounding box of Melbourne city’s dataset is [[[144.2878134523,

-38.4206323669],[145.2683432374,-38.4206323669],[145.2683432374,-37.6048346384],[144.2878134523,

-37.6048346384],[144.2878134523,-38.4206323669]]].

B.2.1 Sample data for vertices

Below we present sample vertices data. The first line indicates the number of vertices

in this dataset, the second line and forward consists of ID vertex, the longitude and

latitude of the corresponding vertex.

144

Table B.7: Sample data for vertices

315500

0 144.2504144 -37.0034686
1 144.2503271 -37.00347135
2 144.2502561 -37.00345926
3 144.2501989 -37.0034455
4 144.2501655 -37.00342298
5 146.3379059 -36.35170838
6 146.3383409 -36.35181624
7 146.342193 -36.35314537
8 146.3422708 -36.353174
9 146.345569 -36.35449675
10 146.3459701 -36.35465763
11 146.3463988 -36.35482951
12 146.3500773 -36.35648262
13 146.3531154 -36.35784776
14 146.3591908 -36.3605682
15 146.363331 -36.36236001
16 146.3637699 -36.36255487
17 146.364339 -36.36283619
18 146.3675099 -36.36440271
19 146.3696924 -36.36547879
20 146.3719234 -36.36658956
21 146.3745893 -36.36788101
22 146.3750524 -36.36810479
23 146.3753177 -36.36823549
24 146.3756826 -36.36841407
.......

.......

.......

315499 141.6148451 -38.20887904

145

B.2.2 Sample data for edges

In this section, we present a sample edges data. The data shows the vertex where

the edge start, the vertex where the edges ends and the edges weight.

Table B.8: Sample data for edges

startVert endVert weight

0 19713 0.011482
0 207130 0.005365
1 2 0.00645
2 3 0.005308
3 4 0.003882
4 177827 0.006691
4 207100 0.016611
5 6 0.040774
5 255281 0.018637
6 7 0.375409
7 8 0.007661
8 9 0.330053
9 10 0.040143
10 11 0.042891
11 12 0.377341
12 13 0.311625
13 14 0.622661
14 15 0.420995
15 16 0.044886
16 17 0.059811
17 18 0.333202
18 19 0.229208
19 20 0.234923
20 21 0.278649
20 52431 0.012549
20 268887 0.048949
21 22 0.048369
22 23 0.027856
22 52416 0.402792
...
...

146

B.2.3 Sample data for users

Below we present a sample users data. The data shows the longitude and latitude

for users’ dataset in Melbourne City.

Table B.9: Sample data for users

LONGITUDE LATITUDE

144.9764671 -37.78905832
145.1818192 -37.85544243
145.2411006 -37.87074421
145.2397342 -37.87029505
145.1644634 -37.83390631
145.1646846 -37.83393331
144.8915261 -38.35941223
144.8934445 -38.35887935
145.2794246 -37.79535168
145.2346475 -37.92029071
145.0816855 -37.88876456
145.0829908 -37.88969194
145.0817588 -37.88882966
145.2969608 -37.88828251
144.679175 -37.87708331
144.9669565 -37.7931284
145.249949 -37.89496698
144.9651327 -37.84972237
144.9395153 -37.81094778
144.5379905 -38.24558434
144.7140587 -37.59402499
145.0059933 -37.88907059
......................
......................
......................
145.2945081 -38.04542953

147

B.2.4 Sample data for facilities

Below we present a sample facilities dataset. The data shows the longitude and

latitude for facilities dataset.

Table B.10: Sample data for facilities

LONGITUDE LATITUDE

145.2328663 -37.84688488
144.9878493 -37.91855824
145.1490436 -37.71270798
144.9624603 -37.77733085
144.9643987 -38.33291282
145.2506262 -38.0788901
145.0598959 -37.66723655
144.9912361 -37.77017074
145.0514896 -37.76028328
145.1595414 -37.67429572
145.238979 -38.45057132
144.9981074 -37.78633846
144.8276592 -37.78336412
145.0944776 -37.85028204
144.9975846 -37.81841658
......................
......................
......................
144.9361564 -37.83727669

B.2.5 Data Analysis

In this section, we conducted geospatial analysis to describe and understand the

behaviour of the Melbourne’s dataset. We calculate the network distance between

each point of interest (POI) to the furthest neighbour, and the network distance

between each (POI) to the nearest neighbour.

148

Table B.11: Analysis for Furthest point Melbourne City

Distance up to (km) Number of POI

60 km 51

70 km 210

80 km 136

90 km 110

100 km 71

more than 100 km 93

The maximum distance : 170 km
Average to furthest shop: 79 km

Table B.12: Analysis Nearest Neighbour Melbourne City

Distance up to (km) Number of POI

100 M 350

200 M 29

300 M 38

500 M 23

800 M 40

1 km 14

more than 1 km 206

The maximum distance : 70 km
Average to nearest shop: 0.750 km

149

Figure B.7: South-East Melbourne Map

B.3 South-East Melbourne City Dataset

In this section, we provide some sample of data that we use in our experiments

for the South-East Melbourne city. This dataset has approximately contains more

than 195160 vertices and 215400 edges. It consists of vertices data, edges data

and name of roads data. The bounding box of this dataset is [[[144.9881918703, -

38.2180741131],[145.5649740968,-38.2180741131],[145.5649740968,-37.7504801667],[144.9881918703,

-37.7504801667],[144.9881918703,-38.2180741131]]].

B.3.1 Sample data for vertices

Below we present sample vertices data. The first line indicates the number of vertices

in the dataset, the second line and forward consists of vertex, an ID vertex, the

longitude and latitude of the corresponding vertex.

150

Table B.13: Sample data for vertices

195160

1 145.1491638 -37.8831865
2 145.1494803 -37.8829706
3 145.1496773 -37.8829519
4 145.1505624 -37.883062
5 145.1511042 -37.8831731
6 145.151752 -37.8832398
7 145.1523745 -37.8833077
8 145.1530343 -37.8833532
9 145.1550095 -37.8835849
10 145.1550712 -37.8836198
13 145.1550615 -37.8838192
14 145.15498 -37.8842189
15 145.1549425 -37.884293
18 145.1546367 -37.8842867
19 145.1542706 -37.8842644
20 145.1538924 -37.8842041
21 145.1535397 -37.8841374
22 145.1531789 -37.8841237
23 145.1526156 -37.8840474
24 145.152444 -37.884057
.......

.......

.......

195160 145.1320687 -37.8852786

151

B.3.2 Sample data for edges

Below we present a sample edges data. It shows the vertex where the edge start, the

vertex where the edges ends and the edges weight for South-East Melbourne city.

Table B.14: Sample data for edges

startVert endVert weight

1 2 0.036724
1 34 0.232985
1 107 0.269166
2 3 0.052086
3 4 0.123557
4 5 0.170348
5 6 0.227288
6 7 0.28218
7 8 0.340285
7 75 0.335701
8 9 0.515085
9 10 0.520826
10 13 0.022195
13 14 0.067115
13 14527 0.006995
14 15 0.075725
15 18 0.026854
15 158696 0.020542
18 19 0.059069
19 20 0.092713
20 21 0.124356
21 22 0.15596
22 23 0.206087
23 24 0.220898
24 25 0.23537
25 26 0.241393
26 208442 0.0092
27 28 0.079224
27 63 0.135815
...
...

152

B.3.3 Sample data for users

In this section, we present a sample users data that shows the longitude and latitude

for users’ dataset in South-East Melbourne City.

Table B.15: Sample data for users

LONGITUDE LATITUDE

145.1719519 -37.79025512
144.9764671 -37.78905832
145.1818192 -37.85544243
145.2411006 -37.87074421
145.2397342 -37.87029505
145.1644634 -37.83390631
145.1646846 -37.83393331
144.8915261 -38.35941223
144.8934445 -38.35887935
145.2794246 -37.79535168
145.2346475 -37.92029071
145.0816855 -37.88876456
145.0829908 -37.88969194
145.0817588 -37.88882966
145.2969608 -37.88828251
144.679175 -37.87708331
144.9669565 -37.7931284
145.249949 -37.89496698
145.2945081 -38.04542953
145.1488575 -37.85234353
145.3081223 -37.89355571
145.0022537 -37.95056345
145.1653185 -37.87421299
145.1662942 -37.87720266
145.3018675 -37.82230965
145.3101432 -37.80211338
145.310959 -37.80223016
......................
......................
......................
144.5677605 -37.68573831

153

B.3.4 Sample Data for Facilities

Below we present a sample facilities dataset that shows the longitude and latitude

for facilities dataset.

Table B.16: Sample data for facilities

LONGITUDE LATITUDE

145.2328663 -37.84688488
144.9878493 -37.91855824
145.1490436 -37.71270798
144.9624603 -37.77733085
144.9643987 -38.33291282
145.2506262 -38.0788901
145.0598959 -37.66723655
144.9912361 -37.77017074
145.0514896 -37.76028328
145.1595414 -37.67429572
145.238979 -38.45057132
144.9981074 -37.78633846
144.8276592 -37.78336412
145.0944776 -37.85028204
144.9975846 -37.81841658
......................
......................
......................
144.689448 -37.84210783
144.9361564 -37.83727669

B.3.5 Data Analysis

Also, we conducted geospatial analysis to describe and understand the behaviour

of the Melbourne’s dataset. We calculate the network distance between each point

of interest (POI) to the furthest neighbour, and the network distance between each

(POI) to the nearest neighbour.

154

Table B.17: Analysis for Furthest point South-East Melbourne

Distance up to (km) Number of POI

less than 1 km 18

18 km 30

20 km 53

25 km 679

30 km 400

35 km 467

more than 35 km 16

The maximum distance : 37.23 km
Average distance distance to nearest shop: 25.6 km

Table B.18: Analysis for Nearest Neighbour South-East Melbourne

Distance up to (km) Number of POI

100 m 1458

200 m 108

300 m 61

400 m 29

700 m 31

1 km 13

6 km 36

The maximum distance : 5.13 km
Average distance to nearest shop: 0.1021 km

155

Last Thing

“Begin at the beginning and go on till you come to the end; then stop.“

“I can not go back to yesterday because I was a different person then.”

- Lewis Carroll

156

