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I. Abstract 
Introduction: 

Interrupted time series (ITS) designs are frequently used in public health research to examine 

whether an intervention or exposure has impacted on health outcomes. However, little guidance 

is available for choosing the most appropriate statistical method for analysis or how best to 

visually report the results of the analysis. One key aspect necessary to account for in ITS studies 

is the correlation of data points over time, known as autocorrelation. The magnitude of 

autocorrelation impacts on sample size calculations for planning ITS studies in addition to the 

performance of statistical methods, yet there is little guidance in the literature as to its typical 

values. 

Aim: 

The aim of the research presented in this thesis was to assess the design, reporting quality and 

statistical methods used in ITS studies, and to subsequently provide tools and guidance that may 

facilitate improvement. The thesis focused on ITS studies in public health. 

Methods: 

Several methodologies were used in this thesis. A review was undertaken to examine the design 

characteristics and statistical methods used in ITS evaluating public health interruptions. 

Information was extracted on study characteristics, statistical models, estimation methods, effect 

metrics, parameter estimates, and presentation of results. Seminal data visualisation resources 

were examined to inform the development of recommendations for graphically presenting data 

and results from ITS studies. Using the graphs identified in the review, an assessment was made 

as to whether the graphs met the recommendations. A simulation study was undertaken to 

investigate the performance of statistical methods commonly used for analysing ITS data. Data 

were simulated under a range of conditions, which were informed by the review. An empirical 

study was undertaken to investigate the impact of using the different statistical methods on real-

world data, and estimates of autocorrelation were calculated.  

Results: 

The review identified 200 ITS studies, comprising 230 separate time series, and determined that 

the reporting of ITS studies could be substantially improved, due to statistical analysis methods 

(especially the handling of autocorrelation) often being inadequately described. Assessment of 

the quality of the time series graphs included in the review showed that they were frequently 

missing key components. Findings from the simulation study showed that autocorrelation was 

underestimated by all statistical methods. Furthermore, while all statistical methods yielded 

unbiased estimates of the effects of the interruption under study, they differed in their ability to 

accurately estimate the standard errors, particularly in the presence of autocorrelation. Findings 

from the empirical study demonstrated that autocorrelation is frequently present. 
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Conclusion: 

The research in this thesis demonstrates that there is substantial need to improve the quality of 

reporting of statistical analysis methods in ITS studies. Implementation of the proposed graphing 

recommendations may facilitate improved interpretation. Autocorrelation was found to be 

frequently present, and as such, this should be considered in the design, analysis and 

interpretation of findings of ITS studies in public health. Further research is required to develop 

statistical methods for ITS analysis that handle autocorrelation more appropriately. 
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  Introduction 

1.1 Introduction 
Randomised controlled trials (RCTs) are the gold standard study design for investigating the 

impact of an intervention (1-4). When RCTs are well designed and conducted, they minimise bias, 

and as such, any observed differences in the outcome between groups can be more confidently 

ascribed to the intervention. For this reason, RCTs have a pivotal role in informing clinical 

decision making through their inclusion in systematic reviews and clinical practice guidelines. 

However, RCTs cannot always be used to study public health questions, such as those 

examining policy or programmes targeted at the population level, or the impact of exposures such 

as natural disasters or pandemics (1-8).  

 

The interrupted time series (ITS) design provides an alternative study design for assessing the 

impact of interventions and exposures and is considered one of the strongest non-randomised 

experimental designs (1, 3, 5, 8-10). In an ITS study, data are collected at multiple time points 

before and after an interruption (intervention or exposure). Data from the pre-interruption interval 

can be used to create a counterfactual outcome for what would have occurred in the absence of 

the interruption, analogous to the control group in an RCT. 

 

The aim of the research presented in this thesis was to assess the design, reporting quality and 

statistical methods used in ITS studies, and to subsequently provide tools and guidance that may 

facilitate improvement. The outputs of this thesis include a review of ITS studies, examining the 

design characteristics, statistical models, estimation methods and quality of reporting; 

recommendations for graphing ITS data; and recommendations for statistical methods to analyse 

ITS. It is hoped that that these outputs may facilitate improvement in the design, conduct and 

reporting of ITS studies. 

 

This first chapter contextualises the research presented in this thesis by giving an overview of ITS 

study design, describing key considerations in the design and implementation of these studies; 

summarising previous reviews of the design, analysis and reporting of ITS studies; and providing 

an overview of statistical methods commonly used to analyse ITS data. The chapter concludes 

with the aims and objectives of the research and presents an outline of the thesis. 
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1.2 Overview of the interrupted time series study design and analysis 
In an ITS study, data for an outcome are collected over a period of time. The data may be 

collected at different levels (e.g. individual, organisation, country), continually or at specific points 

in time, and be of different data types (e.g. binary, count). Often the data are aggregated using a 

summary statistic for the purpose of analysis (e.g. proportion of individuals that have been 

vaccinated, infection rate per 1000 patient days) within a time interval (e.g. weekly, monthly, 

annually). The time series is interrupted at a defined time by an intervention or exposure, 

separating the series into pre-interruption and post-interruption segments.  The interruption may 

be intended (e.g. an anti-smoking mass media intervention), or unintended (e.g. an exposure 

such as a global pandemic).  

 

An ITS design is often adopted when it is not possible to use randomisation, which can arise for 

many reasons. Ethical considerations may preclude randomisation. For example, when 

investigating the effects of introducing smoking bans in public locations it would be unethical to 

randomise a group to a location with known health risks (11). Some interruptions may preclude 

separating a population into two groups because being exposed to the intervention or not can 

never occur contemporaneously. Examples of this include government policies that impact an 

entire population (12), an interruption that occurred historically (e.g., a retrospective evaluation in 

which the researcher has no control over the target population group or timing (13)), a natural 

event such as a global financial crisis (14) or a natural disaster like an earthquake (15) or 

pandemic (16). Furthermore, it may be economically or practically infeasible to use an RCT, for 

example, when examining the effects of an interruption on a rare outcome requiring populations 

on a state or national scale in order to have a sufficient sample size (14).  

 

The impact of the interruption can be investigated by the comparison of statistics between the 

pre- and post-interruption segments. A simple but naïve analysis involves comparing the mean 

levels of the data points before the interruption to those after the interruption, which is known as a 

before-after or pre-post analysis. However, this type of analysis does not account for any trends 

over time in the data and, in the presence of a trend, may over- or under-estimate the impact of 

the interruption. An ITS analysis allows for the pre-interruption trend to be accounted for in 

estimating the impact of the interruption. When the pre-interruption trend is modelled correctly 

and extrapolated into the post-interruption period, a “counterfactual” (an estimate of what would 

have happened in the absence of the interruption) can be established. The impact of the 

interruption can then be investigated by the comparison of statistics between the counterfactual 

trend and the observed post-interruption trend.  
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Statistical methods can be used to estimate a range of effect measures that characterise the 

impact of the interruption. Two commonly used effect measures are the immediate level change 

(representing the change immediately following the interruption); and change in slope 

(representing the difference in trends pre- and post-interruption) (17) (Figure 1). Segmented 

regression methods are commonly used in the analysis of ITS designs and are the focus of this 

thesis (9, 17-19). 

 
Figure 1: A two-period interrupted time series design with a segmented linear regression model. Trends (solid blue 

lines) based on the observed data (blue crosses) can be estimated in the segments before and after the interruption 

(vertical dashed red line). A counterfactual (extrapolation of the pre-interruption trend line shown as a dashed blue line) 

enables different effect measures (e.g. changes in level or slope) between the expected and observed to be estimated 

over a range of times. 

1.3 Complexities of interrupted time series designs and analyses 
There are a range of issues that need to be considered in the design and analysis of ITS studies. 

Key design issues include consideration of the potential impact of events other than the 

interruption being investigated and the length of the series. Key analysis issues include the need 

for valid estimation of the counterfactual and consideration of the potential for correlation between 

the data points.  
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Co-interruptions, extraneous events or changes to the environment that occur around the time of 

the interruption may bias the estimated effects from an ITS study. One way to guard against 

these factors is to include one or more control time series in the analysis (20, 21). If a large effect 

(e.g. level change) is observed in the interruption series but not in the control series, this provides 

more certainty that the interruption has caused the impact. If the effect is seen in both series, this 

suggests that another factor may be responsible. A range of types of controls are available 

including: location (e.g. a different area where the interruption is absent), outcome (e.g. an 

outcome not affected by the interruption), behaviour (e.g.  a group of individuals who never 

performed the behaviour being investigated), characteristic (e.g. a group not targeted by an 

interruption designed to target a group holding a certain characteristic) and, historical (e.g. 

comparing a previous age group to a current age group) (20). While uncontrolled ITS are the 

focus of this thesis, the frequency with which controls are used in ITS evaluating public health 

interruptions is investigated. 

 

The length of the time series is an important design consideration because it will impact how 

precisely the trends, and therefore effects, are estimated (22) (Figure 2). Various 

recommendations for the length of time series have been proposed, including a minimum of 8 in 

each segment (8), 9 in each segment (9),12 in each segment (10, 23) and a general 

acknowledgement that longer series are better (3, 23, 24). A focus of this thesis is to examine the 

impact of series length on the accuracy of effect. 

 
Figure 2: Interrupted time series graph showing an example of the difference in trend lines when estimated using a 

short data series (orange) versus a longer data series (blue). 
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The validity of effect estimates is dependent on the validity of the counterfactual. The key 

assumption is that in the absence of any interruption, the pre-interruption trend continues without 

deviation into the post-interruption period (1, 3). This may be not always be a sensible 

assumption, particularly in situations when trends cannot assume to hold over indefinitely long 

periods of time (1, 10). For example, when assessing the impact of social distancing measures on 

the increase in pandemic cases it cannot not be assumed that the number of infections would 

increase indefinitely in the absence of an interruption (16). 

 

A feature of data collected over time is that the data points tend to be correlated. This is known as 

autocorrelation or serial correlation (25). This association could be positive (whereby data points 

close together in time are more similar than data points further apart) or, rarely, negative 

(whereby data points close together are more dissimilar than data points further apart). If positive 

autocorrelation is present and not accounted for, this may lead to standard errors (SEs) that are 

too small, with resulting confidence intervals (CIs) that are too narrow and p-values that are too 

small (26). A specific type of autocorrelation that may be observed in ITS designs with data 

collected over a long period of time is seasonality, which refers to periodic, repetitive, and 

predictable patterns in the levels of the time series. Influenza rates, for example, may 

demonstrate patterns of higher levels in winter and lower levels in summer months, recurring 

every calendar year (Figure 3). The time gap between autocorrelated data points is often denoted 

by lag-x (e.g. lag-1 refers to correlation with the previous time point, lag-12 could be used for 

annual, 12-monthly correlation). The magnitude of autocorrelation is a key parameter in sample 

size calculations; in the presence of autocorrelation, a larger sample size is required to achieve a 

given power (27). Autocorrelation may be handled in different ways in the analysis. For example, 

by inclusion of covariates in the model to try and explain the autocorrelation (e.g. time-varying 

predictors, terms for seasonality), adjustment of the standard errors to account for 

autocorrelation, or by directly modelling the error term. The latter two analysis approaches are the 

focus of the research presented in this thesis.  

 
Figure 3: Interrupted time series graph displaying seasonality. 
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1.4 Overview of reviews examining design, analysis and reporting 

characteristics of ITS studies 
Five reviews have been undertaken examining the design characteristics, statistical methods and 

reporting of ITS studies. Two of these were published at the time of undertaking this thesis (9, 

24). The five reviews differ in the types of interruptions investigated and the years in which the 

included ITS studies were published. Ramsay et al (24) included ITS studies published from 1976 

to 1998 from two systematic reviews (one examining the impact of a mass media campaign, one 

examining the dissemination of clinical guidelines and implementation strategies). Jandoc et al (9) 

included 220 ITS studies investigating healthcare interventions on drug utilisation (published 

between 1994 and 2013). Hudson et al (17) included 116 ITS studies published in 2015 that 

assessed the impact of healthcare interventions. Ewusie et al (19) performed a review of 1365 

studies that used an ITS design or analysis for assessing a health-related intervention that had 

been published prior to September 2017. Hategeka et al (18) included 120 ITS studies examining 

the effects of health system quality improvement interventions that had been published prior to 

June 2018. 

 

The design characteristics examined in the reviews included use of control groups and series 

length (Table 1). Approximately one-fifth to one-third of studies included a comparison or control 

series (9, 18, 19), though no details of the type of control group were reported in the reviews. 

Series lengths tended to be short, with the median number of points less than 20 per segment (9, 

17-19, 24). Details of multiple segment studies (i.e. those with more than two segments), which 

may arise, for example, from multiple interruptions or the inclusion of an additional segment to 

allow time for the interruption to take effect, were rarely examined in these reviews. 
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Table 1: Study characteristics identified by ITS reviews. Abbreviations IQR: inter-quartile range, CI: confidence interval, 

SE: standard error. 

Design Characteristics 
   

 Control series Included a control series  
  

Jandoc et al (9) 35% (77/220) 
  

  
Ewusie et al (19) 17% (237/1365) 

  

  
Hategeka et al (18) 18% (22/120) 

  

 
Series lengths Number of data points  

(pre-interruption median) 
Number of data points  
(post-interruption median) 

Number of data points  
(other)   

Ramsay et al (24) 9 6 
 

  
Ramsay et al (24) 10 12 

 

  
Jandoc et al (9) 

  
Total series length range: 3 to 72 

  
Hudson et al (17) 18 (IQR 12-32) 19 (IQR 12-34) 

 

  
Ewusie et al (19) 

  
10% (141/1365) of studies 
included fewer than 16 points   

Hategeka et al (18) 18 (range 3-120) 20 (range 4-90) 
 

Statistical Characteristics 
  

 Segmented regression Analyses used segmented regression  
  

Jandoc et al (9) 67% (134/220) 
  

  
Hudson et al (17) 78% (90/116) 

  

  
Ewusie et al (19) 65% (889/1365) 

  

  
Hategeka et al (18) 63% (75/120) 

  

 
Unspecified method Analysis method was unspecified  

 

  
Jandoc et al (9) 43% (58/134) 

  

  
Ewusie et al (19) 20% (267/1365) 

  

  
Hategeka et al (18) 12% (14/120) 

  

 
Autocorrelation Considered autocorrelation 

 

  
Jandoc et al (9) 33% (74/220) 

  

  
Hudson et al (17) 55% (63/116) 

  

  
Ewusie et al (19) 60% (812/1365) 

  

  
Hategeka et al (18) 55% (66/120) 

  

Reporting Characteristics 
   

 
Measure of precision Reported a CI or SE with effect estimates 

 

  
Jandoc et al (9) 70% (153/220) 

  

  
Hudson et al (17) 76% (74/97) 

  

  
Hategeka et al (18) 80% (60/75) 

  

 
Graph Included a graph 

 

  
Jandoc et al (9) 84% (184/220) 

  

  
Hudson et al (17) 95% (109/116) 

  

  
Ewusie et al (19) 89% (1218/1365) 

  

  
Hategeka et al (18) 93% (111/120) 

  

 

Statistical methods were examined in all reviews. Ramsay et al (24) concluded that the ITS 

studies included in their review were often incorrectly analysed. When re-analysed using 

appropriate methods, almost half of the studies that had reported statistically significant effect 

estimates were shown to have no statistically significant differences in slope or level. Segmented 

linear regression was the most common statistical method; across the reviews, its use ranged 

from 63% to 78% (9, 17-19, 24) (Table 1). In three reviews, it was noted that in many studies, the 

statistical method was not specified (ranging from 12% to 43%) (9, 18, 19). Autocorrelation was 
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commonly not considered (9, 17-19). However, although these reviews made some assessment 

of how autocorrelation was handled in the studies, they (except Hudson et al (17)) did not 

examine how autocorrelation was accounted for (e.g. including an autoregressive error term, 

using an appropriate statistical method) and none assessed whether estimates of autocorrelation 

were reported. 

 

Aspects of reporting that were consistently examined across the reviews were completeness of 

reporting of effect estimates, and whether graphical displays were used (Table 1). Measures of 

precision, such as CIs or SEs were not always reported with the effect measure (included in 70% 

to 80% of studies) (9, 17, 18). Graphical displays were frequently used, with the percentage of 

studies including a graphical display ranging from 84% to 95% across the reviews (9, 17-19). 

None of the reviews examined the characteristics of the graphs included in the studies. 

 

A common theme of these reviews was that the reporting of ITS studies was generally 

incomplete, with limited information provided about details of the statistical methods and 

considerations such as autocorrelation. This thesis extended this existing body of knowledge by 

investigating design characteristics, statistical methods and completeness of reporting of ITS 

studies of public health interventions and exposures.  

1.5  Graphing ITS data 
The ITS design inherently lends itself to a visual display, and when well presented, allows readers 

to easily assess the impacts of the interruption on the outcome (3, 8, 10, 18). Recognition of the 

usefulness of graphing ITS data is borne out by the majority of ITS study publications presenting 

a graph (9, 17-19). A further benefit of visually displaying data from an ITS study is that it allows 

systematic reviewers to extract the data (e.g. using digitising software) and undertake a re-

analysis (9, 28). This is particularly important for reviewers wishing to perform a meta-analysis, 

where consistency in effect measures across studies and effect estimates with SEs are required, 

but not always provided (9, 17, 18, 28). While general visualisation guidance exists (29-36), no 

specific guidance was available for how to graph ITS data to best facilitate interpretation and data 

extraction; this forms a part of the research presented in this thesis.  

1.6  Statistical methods used to analyse ITS studies 
Many statistical methods can be employed in the analysis of ITS studies. In this thesis, statistical 

methods that are commonly used (ordinary least squares (OLS), generalised least squares (GLS) 

and autoregressive integrated moving average (ARIMA)) (9, 17-19), as well as a method which 

has been suggested for its potential to reduce bias in estimating the magnitude of autocorrelation 

(restricted maximum likelihood (REML) (37)), were examined. These methods are now described 

in further detail. 
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Using OLS regression to fit a segmented linear regression model yields unbiased estimates of the 

regression parameters (2). However, this method does not account for autocorrelation and so, in 

the presence of (likely) positive autocorrelation, the SEs of the effect estimate are underestimated 

(38). The Newey-West (NW) estimator of the variance of the regression parameters (39), 

estimated using OLS, is used to try and account for autocorrelation (for any number of lag times). 

However, it has been shown to still underestimate the SEs in time series (40). The extent to which 

this underestimation occurs in estimating regression parameters in ITS studies is currently 

unknown. 

 

Other regression methods are available that account for autocorrelation, including GLS methods 

such as Prais-Winsten (PW) and Cochrane-Orcutt (CO) (2, 41). For both methods, the residuals 

from an OLS regression model are used to estimate the lag-1 autocorrelation. This estimate is 

then used to transform the data and remove the autocorrelation from the errors, upon which the 

regression parameters are then estimated from the transformed data. The CO method applies the 

transformation from the second observation onwards (t = 2, 3, …, n). The PW method is a 

modification to the CO method in which a transformed value is used for the first observation. The 

PW method is therefore likely to be more efficient in small series since it does not discard the first 

observation. The sampling properties of the estimators of the regression parameters are likely to 

be adversely affected when the series length is small due to poor estimation of the 

autocorrelation. The performance of GLS methods when analysing ITS studies, which are often 

short, has not been previously investigated. 

 

In an ARIMA model, information from past values, including lagged values of the dependent 

variable and errors, are explicitly modelled (42, 43). This is achieved by including regression 

coefficients for these variables in the ARIMA model. The lagged values can be from a range of 

previous time points, extending beyond lag-1 models. By explicitly modelling the influence of data 

from previous time points, their impact at subsequent times is quantified and estimates of the 

magnitude of autocorrelation can be obtained along with regression parameter estimates. ARIMA 

models are frequently recommended for time series data and for ITS studies (5, 44). The 

performance of ARIMA methods compared to other statistical methods when analysing ITS 

studies has not previously been investigated. 

 

It is well known that maximum likelihood estimators of variance components are biased in small 

samples because they do not account for the degrees of freedom (d.f.) used when estimating the 

fixed effect regression parameters (45). Restricted maximum likelihood (REML) is a variant of 

maximum likelihood (ML) estimation and attempts to address the bias by separating the log-

likelihood into two terms; one that involves the mean and variance parameters, and one which is 

only dependent on the variance parameters. By maximising the latter term first with the 
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appropriate number of d.f., an estimate of the variance parameter can be obtained which can be 

used when maximising the former, thus correctly accounting for the d.f. (37, 46). Both ML and 

REML methods can estimate and account for autocorrelation extending beyond lag-1 models. 

Although REML methods have been investigated for time series data, it is unknown how they 

compare with other methods in ITS studies. 

 

There are few resources available to guide researchers analysing ITS studies as to the choice of 

statistical method, and which method may be preferable for series with particular characteristics 

(e.g. short ITS). The Cochrane Effective Practice and Organisation of Care (EPOC) guide 

recommends using a regression analysis with adjustment for autocorrelation or an ARIMA 

method (47). Penfold and Zhang (8) and Wagner et al (10) advise that a method that can control 

for autocorrelation should be used, and suggest the PROC AUTOREG procedure in the SAS 

program, which implements GLS methods (48). If the outcome is count data, Lopez-Bernal et al 

(3) and Gebski et al (25) suggest using Poisson regression, though if autocorrelation is present 

Lopez-Bernal add that PW or ARIMA models should be used, and Gebski et al (25) note that in 

this circumstance different modelling may be required. While these resources suggest a variety of 

methods for the analysis of ITS studies, there have been no statistical simulation studies that 

have compared the performance of different statistical estimation methods for ITS studies, 

therefore, this was an avenue of research explored in this thesis. 

1.7  Sample size methods for interrupted time series studies  
There has been little investigation or development of sample size methods for ITS. McLeod and 

Vingilis (49) derived a sample size formula to detect a level change (difference in means between 

the pre- and post-interruption periods) using ARIMA models and either an autoregressive term of 

1 or an integrated moving average term of 1. They noted that the sample size was strongly 

dependent on the magnitude of autocorrelation. Zhang et al (50) conducted a simulation study in 

which time series were generated based on modifications of existing SAS algorithms, including 

autocorrelation (51). They estimated the power to detect various target differences in 

standardised level and slope changes for different sample sizes, under a range of scenarios. 

They investigated the impact of autocorrelations ranging from -0.9 to 0.9, and the impact of an 

unequal series length between periods. They found that power increased with increasing sample 

size or effect size, but decreased as autocorrelation increased. They also noted that unequal 

series length between periods had a detrimental effect on power in some situations. Liu et al (27) 

conducted a simulation study for count outcomes in which they estimated the power for various 

sample sizes, using Poisson and negative binomial methods including both level and slope 

changes. They examined autocorrelation ranging from -0.9 to 0.9, and concluded that power was 

affected by autocorrelation, decreasing as autocorrelation increased. 
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Estimates of effect size and autocorrelation are key parameters for sample size calculation of ITS 

series, yet there is little guidance available to inform the typical size of these effects that might be 

seen in ITS of public health interruptions; this forms a part of the research presented in this 

thesis. 

1.8 Research aims and objectives 
The design characteristics, models and statistical methods being used to analyse ITS with public 

health impacts are currently unknown. There is limited information available to inform the design 

of ITS studies, with key parameters required for sample size calculation, such as the likely 

magnitude of autocorrelation, generally being unavailable. ITS studies are particularly amenable 

to visual display; however, no guidelines are available to assist researchers in the creation of ITS 

graphs that accurately depict the data. There are also few studies evaluating and comparing the 

performance of different statistical methods for analysing ITS data, and how their performance is 

influenced by characteristics of the time series (e.g. magnitude of autocorrelation, series length). 

Further guidance for how to best design, analyse and report the results of ITS studies is 

particularly important in public health, where other study designs are often not feasible. 

 

Therefore, the aims of this thesis were to assess the design, reporting and statistical methods 

used in recent ITS studies that have evaluated the impact of interventions or exposures on public 

health outcomes; examine the properties of graphs presented in ITS studies and provide 

recommendations for visualising ITS data; evaluate the performance of a range of statistical 

methods that can be used to analyse ITS data; and provide tools and guidance for the design, 

conduct and reporting of ITS studies. The specific objectives include: 

• Objective 1: Assess the design, statistical methods, and reporting used in recent ITS 

studies that evaluate the impact of interruptions on public health-related outcomes by 

reviewing the: 

- study and design characteristics; 

- types of health-related outcomes being investigated; 

- models used; 

- statistical methods employed; 

- effect measures reported; and, 

- graphs included. 
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• Objective 2: Examine the properties of graphs presented in ITS studies and provide 

recommendations for graphing ITS data by: 

- proposing recommendations for graphing ITS data adapted from graphing 

recommendations from the seminal data visualisation literature; 

- assessing whether graphs from recently published ITS studies met these 

recommendations; 

- demonstrating the use of the recommendations by applying them in two examples; 

and, 

- providing computer code to implement the recommendations. 

• Objective 3: Investigate the performance of a set of statistical methods used in analysing 

ITS data by: 

- simulating continuous outcome data under a range of realistic scenarios which 

included a single interruption at the mid-point of the series, different level and slope 

changes, varying lengths of series, constant variance and, varying magnitudes of 

lag-1 autocorrelation. 

- assessing the performance of statistical methods using a range of criteria (e.g. 

bias, empirical SE, model based SE, 95% CI coverage and power); 

- assessing autocorrelation estimates from the statistical methods as well as the 

commonly used Durbin-Watson (DW) test for detecting autocorrelation. 

- investigating the impact of scenario parameters (level changes, slope changes, 

series length and autocorrelation) on statistical method performance. 

• Objective 4: Investigate how the results of a set of statistical methods compare in practice 

by: 

- fitting segmented linear regression models with a continuous outcome, a single 

interruption, and allowing for lag-1 autocorrelation, to each dataset of a large 

sample of real-world ITS studies; 

- applying each of the statistical methods to each of the datasets; 

- comparing level change and slope change estimates, SEs, CIs and p-values; and, 

- comparing estimates of autocorrelation. 

• Objective 5: Create a large repository of ITS data by collating published and digitally 

extracted time series data used in ITS studies. 
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1.9 Outline of the thesis 
This thesis includes three published manuscripts and two manuscripts that have been submitted 

for publication.  

• Chapter 2 details a protocol for a review of ITS studies. The review aimed to examine the 

design characteristics, statistical methods and completeness of reporting in a random 

sample of recent ITS studies examining interruptions with public health impacts. This 

protocol has been published in BMJ Open (52).  

• Chapter 3 presents the results of the review of 200 ITS studies published between 2013 

and 2017, examining characteristics of the study, design, outcome, model, statistical 

methods and reported effect measures and their components. The review has been 

published in the Journal of Clinical Epidemiology (53).  

• Chapter 4 examines the properties of plots presented in ITS studies and provides 

recommendations for graphing ITS data along with two examples and computer code to 

aid implementation of the recommendations. This study has been published in Research 

Synthesis Methods (54). 

• Chapter 5 describes the methods and results of a statistical simulation study comparing a 

set of statistical methods used to analyse ITS studies. A manuscript has been submitted 

to the Biometrical Journal and is available as a pre-print (55). 

• Chapter 6 describes the methods and presents the results of an empirical evaluation that 

compares the results from a set of statistical methods applied to a large sample of real-

world ITS studies. A manuscript has been submitted to BMC Medical Research 

Methodology. 

• Chapter 7 presents a summary of the findings and suggestions for further research. 
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  Design characteristics and statistical methods used 

in interrupted time series studies evaluating public health 

interventions: protocol for a review 
This chapter presents a protocol for a review of the design characteristics and statistical methods 

used in a random sample of contemporary ITS studies examining public health interventions or 

exposures that impact on health-related outcomes. This review was necessary to understand how 

the ITS design is being used in current practice and to inform the subsequent chapters of this 

thesis. 

 

The aim of the review was to examine the design characteristics, statistical methods and 

completeness of reporting in a random sample of ITS studies examining interruptions with public 

health impacts. 

 

The protocol presented in this chapter provides a description of the review methods. This includes 

details of the eligibility criteria, the search strategy, study and outcome selection processes, 

methods for data extraction and management, as well as data extraction items. 

 

Chapter 2 is presented as a manuscript, which was published in BMJ Open in October, 2018 (52).  

The complete list of data extraction items developed for this review, and referred to as 

`Supplementary Additional file 1’ in the manuscript, is appended to this thesis in Appendix A. 
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  Design characteristics and statistical methods used 

in interrupted time series studies evaluating public health 

interventions: a review 
This chapter presents the results of the review of ITS studies evaluating public health 

interruptions. The protocol for the review is provided in Chapter 2. At the time of undertaking this 

research, two previous reviews examining design and analysis characteristics of ITS studies had 

been undertaken; the focus of these reviews was on ITS studies examining the impact of health 

services interventions (24) and health-care interventions on drug utilisation (9). This review 

extended the previous research, with a focus on ITS studies in public health and with more in-

depth examination of certain design, analysis and reporting aspects. Results from this study 

informed subsequent chapters of the thesis. 

 

In Chapter 3 the following aspects of the review are presented: results of the search; 

characteristics of the included studies; characteristics of the designs; outcome types; 

characteristics of the models; characteristics of the statistical methods; and, reported effect 

measures and their components. In the discussion, issues surrounding the design, methods and 

analysis, and reporting are addressed. Implications of the research are also discussed.  

 

Chapter 3 is presented as a manuscript, published in the Journal of Clinical Epidemiology in 

February 2020 (53). 

 

Additional files referred to in the manuscript are appended to this thesis as follows: 

Location in thesis Referred to in manuscript Content of appendix 
Appendix B Additional File 1 Deviations, additions and amendments to 

the protocol 
Appendix C Additional File 2 Review search terms 
Appendix D Additional File 3 Citation details of the 200 studies from 

which data were extracted 
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  Creating effective interrupted time series graphs: 

review and recommendations 
In this chapter the properties of plots presented in ITS studies were examined and 

recommendations for graphing ITS data were provided. Data from ITS studies are particularly 

amenable to visual display and, when clearly depicted, can readily show the short- and long- term 

impact of the interruption. In addition, the importance of the construction of the graphs extends 

beyond the individual study, since well-constructed graphs can facilitate the inclusion of the study 

in systematic reviews and meta-analyses. 

 

This research stemmed from the observation that there was a wide variety of graphical displays 

being used in the ITS studies included in the review (Chapter 3) and that many did not clearly 

depict the results (e.g. level change). Further, digital extraction of the data from the graphs for the 

research presented in Chapter 6, highlighted issues in the plotting of the data that compromised 

the digital extraction for some graphs.  

 

In Chapter 4, graphing recommendations for ITS graphs are suggested, based on seminal 

visualisation resources. The quality of the graphs from the ITS studies included in the review 

(Chapter 3) are formally evaluated by comparing their features against the recommendations. 

Applications of the recommendations are applied to two published graphs, to demonstrate how 

improvements can be made. Computer code is provided (using the statistical package Stata 15.0 

(56)), to allow users to easily implement the recommendations in their own work. 

 

Chapter 4 is presented as a manuscript, published in Research Synthesis Methods in July 2020 

(54). The computer code for generating the demonstration data sets and creating the figures 

within the manuscript, referred to as `Supporting File 1’ in the manuscript, is attached as 

Appendix E in this thesis. 
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  Evaluation of statistical methods used in the 

analysis of interrupted time series studies: a simulation study 
This chapter presents the results of a simulation study investigating the performance of a set of 

statistical methods used in analysing ITS data. Data were simulated under a range of scenarios 

which included different level and slope changes, varying lengths of time series and magnitudes 

of autocorrelation. The statistical methods investigated and values for the simulation parameters 

were informed by the review of ITS studies (Chapter 3).  

 

In Chapter 5 details of the ITS model and estimation methods used in the simulation study are 

given, along with the simulation study methods. Results of the comparisons between statistical 

methods are summarised using the performance measures bias, empirical SE, model-based SE, 

CI coverage and power. Estimates of autocorrelation are also compared, along with the 

performance of the DW test. The findings led to recommendations for choice of statistical method, 

and how this choice may differ given the series length. 

 

Chapter 5 is presented as a manuscript, which has been submitted to the Biometrical Journal and 

is available as a pre-print (55). Supporting computer code (using the statistical package Stata 

15.0 (56)) required to create and analyse the simulated data sets and produce the graphs used in 

the manuscript can be found on the online repository figshare: https://doi.org/10.26180/13284329 

(57). 

 

Additional files referred to in the manuscript are appended to this thesis as follows: 
Location in thesis Referred to in manuscript Content of appendix 
Appendix F Supplementary 1.1 Interrupted time series graphs showing different 

magnitudes of autocorrelation 
 Supplementary 1.2 Graphs of slope change estimate distributions 
 Supplementary 1.3 Graphs showing the variation of bias, empirical 

standard error, model based standard error, 
coverage and autocorrelation estimates for all 
parameter combinations 

 Supplementary 1.4 Graph of standard error of level change 
estimates from OLS by autocorrelation 

 Supplementary 1.5 Graphs of the ratio of empirical and model-
based standard errors by series length for slope 
change 

 Supplementary 1.6 Graphs of power for level and slope change 
 Supplementary 1.7 Graphs of standard error of autocorrelation 

estimates 
 Supplementary 1.8 Graphs of convergence of estimation methods 
 Supplementary 1.9 Graphs of coverage by autocorrelation bias for 

slope change 
Appendix G Supplementary 2 Computer code to create and analyse simulated 

data sets 
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Abstract 
Interrupted time series (ITS) studies are frequently used to evaluate the effects of population-level 

interventions or exposures. To our knowledge, no studies have compared the performance of 

different statistical methods for this design. We simulated data to compare the performance of a 

set of statistical methods under a range of scenarios which included different level and slope 

changes, varying lengths of series and magnitudes of autocorrelation. We also examined the 

performance of the Durbin-Watson (DW) test for detecting autocorrelation. All methods yielded 

unbiased estimates of the level and slope changes over all scenarios. The magnitude of 

autocorrelation was underestimated by all methods, however, restricted maximum likelihood 

(REML) yielded the least biased estimates. Underestimation of autocorrelation led to standard 

errors that were too small and coverage less than the nominal 95%. All methods performed better 

with longer time series, except for ordinary least squares (OLS) in the presence of autocorrelation 

and Newey-West for high values of autocorrelation. The DW test for the presence of 

autocorrelation performed poorly except for long series and large autocorrelation. From the 

methods evaluated, OLS was the preferred method in series with fewer than 12 points, while in 

longer series, REML was preferred. The DW test should not be relied upon to detect 

autocorrelation, except when the series is long. Care is needed when interpreting results from all 

methods, given confidence intervals will generally be too narrow. Further research is required to 

develop better performing methods for ITS, especially for short series. 

Keywords 
Autocorrelation, Interrupted Time Series, Public Health, Segmented Regression, Statistical 

Methods, Statistical Simulation  
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1 Background 
Interrupted time series (ITS) studies are frequently used to evaluate the impact of interventions or 

exposures that occur at a particular point in time (Ramsay, Matowe et al. 2003, Jandoc, Burden et 

al. 2015, Ewusie, Soobiah et al. 2020, Turner, Karahalios et al. 2020). Although randomised trials 

are the gold standard study design, randomisation may be infeasible or undesirable in the case of 

policy evaluation or interventions that are implemented at a population level. Randomization also 

is not an option for retrospective evaluation of interventions or exposures such as natural 

disasters or pandemics. The use of an ITS design may be considered in these situations, as they 

are one of the strongest non-randomised experimental designs (Wagner, Soumerai et al. 2002, 

Penfold and Zhang 2013, Jandoc, Burden et al. 2015, Kontopantelis, Doran et al. 2015, Lopez 

Bernal, Cummins et al. 2016, Hudson, Fielding et al. 2019). 

 

In an ITS study, observations are collected at regular time points before and after an interruption, 

and often analysed in aggregate using a summary statistic (e.g. mean, proportion) within a time 

interval (e.g. weekly, monthly, or annually). A key feature of the design is that data from the pre-

interruption interval can be used to estimate the underlying secular trend. When this trend is 

modelled correctly, it can be projected into the post-interruption interval, providing a 

counterfactual for what would have occurred in the absence of the interruption. From this 

counterfactual, a range of effect measures can be constructed that characterise the impact of the 

interruption. Two commonly used measures include the ‘change in level’ – which represents the 

change immediately after the interruption, and the ‘change in slope’ – which represents the 

difference in trends before and after the interruption.  

 

A key feature of time series data is that there is the potential for non-independence of consecutive 

data points (serial autocorrelation) (Gebski, Ellingson et al. 2012). In the presence of positive 

autocorrelation, statistical methods that do not account for this correlation will give spuriously 

small standard errors (SEs) (Huitema and McKean 2007). Several statistical methods are 

available to account for autocorrelation, such as Prais-Winsten generalised least squares or the 

Newey-West correction to SEs, or to directly model the error, such as autoregressive integrated 

moving averages (ARIMA). Further, several methods are available for testing for the presence of 

autocorrelation, with the Durbin-Watson test being the most commonly used (Hudson, Fielding et 

al. 2019, Turner, Karahalios et al. 2020). While the performance of some of these methods has 

been examined for time series data (Smith and McAleer 1994, Alpargu and Dutilleul 2003), their 

performance in the context of ITS studies has received relatively little attention. 

 

In this study, we therefore aimed to examine the performance of a range of statistical methods for 

analysing uncontrolled ITS studies using segmented linear models. We restrict our evaluation to 

ITS designs where there is a single interruption, with an equal number of time points pre and post 
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interruption, and with first order autoregressive errors. The structure of the paper is as follows: In 

Section 2, we begin by introducing a motivating example for this research. In Section 3, we 

describe the statistical model and estimation methods used in our simulation study. In Sections 4 

and 5, we present the methods and results from the statistical simulation study. In Section 6, we 

return to our motivating example and demonstrate the impact of applying the methods outlined in 

Section 3. Finally, in Section 7 we present key findings and implications for practice. 

1.1 Motivating example 
Healthcare-associated infections (HAIs) are a common complication affecting patients in 

hospitals. Clostridium difficile (C difficile) infection is an example of one such infection that can 

cause serious gastrointestinal disease. As such, many countries require mandatory surveillance 

of C difficile infection rates in hospitals. When outbreaks of C difficile occur, the cleaning and 

disinfection regimes in hospitals are often changed in an attempt to reduce the infection rate. The 

routine collection of data in this context has led to many retrospective investigations of the effects 

of different interventions (e.g. novel disinfectants) to reduce C difficile infection using ITS data 

(Brennan 2017). Hacek et al (Hacek, Ogle et al. 2010) provides an example of such a study, 

where they examined the effect of terminal room cleaning with dilute bleach (Figure 1) on the rate 

of patients (per 1000 patient days) with a positive test for C difficile. Data were aggregated at 

monthly intervals. The series was relatively short – a scenario which is not atypical of these 

studies – with 10 data points pre and 24 post the intervention (Brennan 2017). In the context of 

HAIs, there is a tendency for consecutive data points to be more similar to each other, 

manifesting as ‘clusters’ of data points in time (Figure 1). Fitting a segmented linear regression 

model to the data shows an apparent immediate decrease in the infection rate (level change), as 

well as a decrease in the trend (slope change). In the following section, we outline different 

statistical methods to estimate the model parameters and return to this example in Section 6, 

where we apply these methods and compare the results.  

 
Figure 1: Rate of Clostridium difficile infections (per 1000 patient-days) pre and post bleach disinfection intervention per 
month. 
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2 Methods 
2.1 Interrupted time series (ITS): model and estimation methods 

We begin by describing the statistical model and parameters used in our simulation study 

followed by a brief description of some common statistical estimation methods and the Durbin-

Watson test for autocorrelation. 

2.1.1 Statistical model 

We use a segmented linear regression model with a single interruption, which can be written 

using the parameterisation proposed by Huitema and McKean (Huitema 2011) as: 

𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝛽𝛽2𝐷𝐷𝑡𝑡 + 𝛽𝛽3[𝑡𝑡 − 𝑇𝑇𝐼𝐼]𝐷𝐷𝑡𝑡 + 𝜀𝜀𝑡𝑡 (1) 

where 𝑌𝑌𝑡𝑡 represents the outcome at time point 𝑡𝑡 of 𝑁𝑁 time points. 𝐷𝐷𝑡𝑡 is an indicator variable that 

represents the post-interruption interval (i.e. 𝐷𝐷𝑡𝑡 =  1 (𝑡𝑡 ≥ 𝑇𝑇𝐼𝐼) where 𝑇𝑇𝐼𝐼  represents the time of the 

interruption). The model parameters, 𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2 and 𝛽𝛽3 represent the intercept (e.g. baseline rate), 

slope in the pre-interruption interval, the change in level and the change in slope, respectively. 

The error term, εt, represents deviations from the fitted model, which are constructed as: 

𝜀𝜀𝑡𝑡 = 𝜌𝜌𝜀𝜀𝑡𝑡−1 + 𝑤𝑤𝑡𝑡 (2) 

where 𝑤𝑤𝑡𝑡 represents “white noise” that is normally distributed 𝑤𝑤𝑡𝑡~𝑁𝑁(0,𝜎𝜎2), and 𝜌𝜌 is the lag-1 

autocorrelation of the errors which can range from -1 to +1. A lag-1 error means that the influence 

of errors on the current error is restricted to the value immediately prior. Longer lags are possible 

but in this paper we confine attention to lag-1 only (AR(1) errors). 

2.1.2 Estimation methods 

A range of statistical estimation methods are available for estimating the model parameters. 

These methods account for autocorrelation in different ways and are briefly described below. We 

focus on statistical methods that have been more commonly used (Ordinary Least Square (OLS), 

Generalised Least Squares (GLS), Newey-West (NW), Autoregressive Integrated Moving 

Average (ARIMA))(Jandoc, Burden et al. 2015, Hudson, Fielding et al. 2019, Ewusie, Soobiah et 

al. 2020, Turner, Karahalios et al. 2020). In addition, we have included Restricted Maximum 

Likelihood (REML) (with and without the Satterthwaite adjustment), which although is not a 

method in common use, is included because of its potential for reduced bias in the estimation of 

the autocorrelation parameter, as has been discussed for general (non-interrupted) time series 

(Cheang and Reinsel 2000). Further details and equations can be found in Appendix 1. 

2.1.2.1 Ordinary Least Squares 

Estimates of the regression parameters and their variances from model (1) can be obtained from 

fitting a segmented linear regression model using OLS (Appendix 1.1). In the presence of 

autocorrelation, the OLS estimators for the regression parameters are unbiased; however, the 

SEs will be incorrect (Kutner, Nachtscheim et al. 2008). 
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2.1.2.2 Newey-West 

The NW estimator of the variance of the regression parameters estimated using OLS  

accommodates autocorrelation and heteroskedasticity of the error terms in the regression model 

(1) (Newey and West 1987) (Appendix 1.2).  

2.1.2.3 Generalised least squares 

Two common GLS methods for estimating the regression parameters and their variances are 

Cochrane-Orcutt (CO) and Prais-Winsten (PW). For both methods, a regression model is first 

fitted using OLS and an estimate of the autocorrelation is calculated from the residuals. This 

estimate is then used to transform the data and remove the autocorrelation from the errors, upon 

which the regression parameters are then estimated from the transformed data. If there is still 

some residual autocorrelation these steps are iterated until a criterion is met (e.g., the estimated 

value for autocorrelation has converged (StataCorp 2017)). The CO method applies the 

transformation from the second observation onwards (t=2, 3, … n). The PW method is a 

modification to the CO method in which a transformed value is used for the first observation 

(Appendix 1.3). The PW method is therefore likely to be more efficient in small series since it 

does not discard the first observation. The sampling properties of the estimators of the regression 

parameters are likely to be adversely affected when the series length is small due to poor 

estimation of the autocorrelation. 

2.1.2.4 Restricted maximum likelihood 

It is well known that maximum likelihood estimators of variance components are biased in small 

samples due to not accounting for the degrees of freedom (d.f.) used when estimating the fixed 

effect regression parameters (Singer and Willett 2003). Restricted maximum likelihood is a variant 

of maximum likelihood estimation and attempts to address the bias by separating the log-

likelihood into two terms; one that involves the mean and variance parameters, and one which is 

only dependent on the variance parameters. By maximising the latter term first with the 

appropriate number of d.f., an estimate of the variance parameter can be obtained which can be 

used when maximising the former, thus correctly accounting for the d.f. (Thompson 1962, Cheang 

and Reinsel 2000).  

For small samples, there is greater uncertainty in the estimation of the SE of the regression 

parameters. To account for this uncertainty in making inferences about the regression 

parameters, the Satterthwaite adjustment can be used to adjust the t-distribution d.f. used in 

hypothesis testing and calculation of confidence limits (Satterthwaite 1946).  
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2.1.2.5 Autoregressive integrated moving average 

In an ARIMA model, information from past values, including lagged values of the dependent 

variable and errors, are explicitly modelled. This is achieved by including regression coefficients 

for these variables in the ARIMA model. The lagged values can be from a range of previous time 

points, extending beyond lag-1 models. By explicitly modelling the influence of data from previous 

time points, their impact at subsequent times is quantified and estimates of the magnitude of 

autocorrelation can be obtained along with regression parameter estimates. Here we consider 

ARIMA models with only a first order autoregressive term (an ARIMA(1,0,0) model) estimated via 

maximum likelihood. ARIMA models have been shown to not perform well with fewer than fifty 

points (Nelson 1998).  Further details about the method can be found in Appendix 1.4, Nelson 

(Nelson 1998) and Box et al (Box 2016). 

2.1.3 Durbin-Watson test for autocorrelation 

The Durbin-Watson (DW) test is commonly used for detecting autocorrelation in time series. 

Often, the test is used as part of a two-stage analysis strategy to determine whether to use a 

method that adjusts for autocorrelation or use OLS (which does not adjust for autocorrelation). 

The null hypothesis is that there is no autocorrelation (𝐻𝐻0: 𝜌𝜌 =  0) against the alternative that 

autocorrelation is present (𝐻𝐻1: 𝜌𝜌 ≠  0). The DW-statistic can range between zero and four, with 

values close to two indicating no autocorrelation. The DW-statistic is compared to critical values 

to determine whether there is evidence of autocorrelation, no autocorrelation, or the test is 

inconclusive. The critical values differ by series length, significance level and the d.f. in the 

regression model. Further details are available in Appendix 1.5, Kutner et al (Kutner, 

Nachtscheim et al. 2008) and Durbin and Watson (Durbin and Watson 1950). 

2.2 Simulation study methods 
We undertook a numerical simulation study, examining the performance of a set of statistical 

methods under a range of scenarios which included different level and slope changes, varying 

lengths of series and magnitudes of autocorrelation. Design parameter values were combined 

using a fully factorial design with 10,000 data sets generated per combination. A range of criteria 

were used to evaluate the performance of the statistical methods. We now describe the methods 

of the simulation study using the ADEMP (defining aims, data-generating mechanisms, 

estimands, methods and performance measures) structure (Morris, White et al. 2019). 

2.2.1 Data Generating Mechanisms 

We simulated data from ITS studies by randomly sampling from a parametric model (equation 1), 

with a single interruption at the midpoint, and first order autoregressive errors (examples shown in 

Supplementary 1.1). We multiplied the first error term, 𝜀𝜀1, by � 1
1−𝜌𝜌2

 so that the variance of the 

error term was constant at all time points.  
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We created a range of simulation scenarios including different values of the model parameters 

and different numbers of data points per series (Table 1). These values were informed by our 

review of ITS studies (Turner, Karahalios et al. 2020), where we reanalysed available data sets to 

estimate level and slope changes (standardised by the residual standard deviation), and 

autocorrelation. We found a median standardised level change of 1.5 (inter-quartile range (IQR): 

0.6 to 3.0), n=190), median standardised slope change of 0.13 (IQR: 0.06 to 0.27, n=190) and 

median autocorrelation 0.2 (IQR: 0 to 0.6, n=180). We therefore constructed models with level 

changes (𝛽𝛽2) of 0, 0.5, 1 and 2, and slope changes (𝛽𝛽3) of 0 and 0.1. We did not examine 

negative level or slope changes since we did not expect this to influence the performance metrics. 

Autocorrelation was varied between 0 and 0.8 in increments of 0.2 to cover the full range of 

autocorrelations observed in the ITS studies included in the review. The number of data points 

per series was varied from 6 to 100, equally divided before and after the interruption, informed by 

the number of data points observed in the ITS studies (median 48, IQR: 30 to 100, n=230). The 

increment size was varied; initially it was small (i.e. 2) so as to detect changes in the performance 

metrics that were expected to arise with smaller sample sizes and was increased to 4 and then 

20. All combinations of the factors in Table 1 were simulated, leading to 800 different simulation 

scenarios (Table 1, Figure 2).  

Table 1: Simulation parameters 

Parameter Symbol Parameter Values 
Intercept 𝛽𝛽0 0 
Pre-interruption slope 𝛽𝛽1 0 
Level change 𝛽𝛽2 0, 0.5, 1, 2 
Change in slope post-interruption 𝛽𝛽3 0, 0.1 
Autocorrelation coefficient 𝜌𝜌 0, 0.2, 0.4, 0.6, 0.8 
Variance of white noise error 
component 

𝜎𝜎2 1 

Number of data points  6, 8, 10, 12, 14, 16, 18, 20 
24, 28, 32, 36, 40, 44, 48, 52, 56 
60, 80, 100 

 
Figure 2: Structure of the eight models constructed from different combinations of the model input parameters  
(Table 1). 
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2.2.2 Estimands and other targets 

The primary estimands of the simulation study are the parameters of the model, 𝛽𝛽2 (level change) 

and 𝛽𝛽3 (slope change) (Equation 1). These were chosen as they are commonly reported effect 

measures (Hudson, Fielding et al. 2019, Turner, Karahalios et al. 2020). We also examined the 

autocorrelation coefficient, 𝜌𝜌, and the value of the Durbin Watson statistic. 

2.2.3 Statistical Methods to analyse ITS studies 

Segmented linear regression models were fitted using the estimation methods described in 

Section 2.2. We evaluated estimation methods designed to estimate the model parameters under 

lag-1 autocorrelation (see Table 2 for details). For GLS, we restricted our investigation to the PW 

method, because it was expected to have better performance than the CO method (on which PW 

is based) given the PW method utilises all data points. For REML with the Satterthwaite 

adjustment, we substituted d.f. of 2 when the computed d.f. were less than 2, to avoid overly 

conservative confidence limits and hypothesis tests. We also investigated the commonly used 

Durbin-Watson method for detecting autocorrelation at a significance level of 0.05 (Durbin and 

Watson 1950). 

 

Table 2 summarises the methods and model variations used to adjust for autocorrelation. Details 

of the Stata code used for generating the simulated data and the analysis code can be found in 

Supplementary File 2. 
Table 2: Statistical methods and adjustments for autocorrelation. 

Method Autocorrelation adjustment 
Ordinary Least Squares None 
 Newey-West SE adjustment (lag-1) 
Generalised least squares Prais-Winsten 
Restricted maximum likelihood Lag-1 autocorrelation 
 Lag-1 autocorrelation with small sample 

Satterthwaite approximation 
Autoregressive integrated moving 
average 

Lag-1 autocorrelation (i.e. ARIMA(1,0,0)) 

2.2.4 Performance Measures 

The performance of the methods was evaluated by examining bias, empirical SE, model-based 

SE, 95% confidence interval coverage and power (see Appendix 2 for formulae). Confidence 

intervals were calculated using the simsum package (White 2010) with t-distribution critical 

values. For each simulation scenario, we used 10,000 repetitions in order to keep the Monte 

Carlo Standard Error (MCSE) below 0.5% for all potential values of coverage and type I error 

rate. Model non-convergence was recorded and tabulated. 
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2.2.5 Coding and Execution 

The statistical software Stata version 15 (Stata 2017) was used for the generation of the 

simulated data. A random seed was set at the beginning of the process and the individual random 

state was recorded for each repetition of the simulated data sets. Each dataset was 

independently simulated, using consecutive randomly generated numbers from the starting seed. 

We used a “burn in” period between each dataset of 300 random number generations so that any 

lag effects specific to the computer-generated series had time to dissipate (Huitema and McKean 

2007).  

 

Prior to running the simulations, we undertook initial checks to confirm that the data generation 

mechanism was working as expected. This involved fitting series of length 100,000 to check the 

estimated 𝛽𝛽 parameters matched the input parameters. A larger sample of 1,000 datasets was 

then simulated and checked using summary statistics and graphs. When we were satisfied that 

the simulations were operating as expected, the full number of datasets were simulated. 

2.2.6 Analysis of the simulated datasets 

Analyses were performed using Stata version 15 (Stata 2017). A range of visual displays were 

constructed to compare the performance of the statistical methods. Frequency distributions were 

plotted to visualise the level- and slope-change estimates, autocorrelation coefficient estimates, 

and the results of the Durbin-Watson test for autocorrelation. Scatter plots were used to display 

the mean values for empirical and model-based SEs, coverage, power and autocorrelation 

coefficient estimates. Line plots were used to show confidence intervals for the level and slope 

change estimates. Results and summaries of the analyses were summarised (using the simsum 

package (White 2010)) and graphed using Stata version 15 (Stata 2017). 

3 Results of the simulation study 
3.1 Bias of level and slope change estimates 

All methods yielded approximately unbiased estimates of level change and slope change across 

all simulation scenarios. Figure 3 presents level change estimates specific to the scenario of a 

level change of 2 and a slope change of 0.1 (Supplementary Figure S2 shows slope change 

estimates), but the other 7 combinations of level and slope changes were virtually identical 

(Supplementary 1.3.1 for level change, Supplementary 1.3.2 for slope change). Note that the 

Satterthwaite and NW adjustments do not impact the parameter estimates of level or slope 

change, hence distributions of these parameter estimates are not shown in Figures 3 and S2.  
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Figure 3: Distributions of level change estimates calculated from four statistical methods, from top to bottom: 
autoregressive integrated moving average (ARIMA) (purple), ordinary least squares regression (OLS) (blue), Prais-
Winsten (PW) (green) and restricted maximum likelihood (REML) (orange). The vertical axis shows the length of the 
time series. The five vertical columns display the results for different values of autocorrelation. The vertical black line 
represents the true parameter value (β2). Each subset of four curves shows the distribution from a different analysis 
method for a given combination of time series length and autocorrelation. The simulation combination presented is for a 
level change of 2 and slope change of 0.1; however, other structures give similar results. The Satterthwaite adjustment 
to the REML method and the Newey-West adjustment to the OLS method do not impact the estimate of level or slope 
change, hence these parameter estimates are not shown. 

3.2 Standard errors of level and slope change estimates 

3.2.1 Empirical standard errors 

Figure 3 and Supplementary Figure S2 visually indicate the precision of the estimators in terms of 

the spread of the distributions therein. To enable a direct quantitative assessment, we plotted the 

empirical SE of the level and slope changes for each method against selected series lengths and 

autocorrelation parameter sizes for a level change of 2 and slope change of 0.1 (Figure 4 and 

Figure 5). The size of the empirical SE of the level change was dependent on the underlying 

autocorrelation, length of the series and statistical method (Figure 4). Of note, the estimates 

obtained from the ARIMA and PW models yield almost identical empirical SEs. For each 

magnitude of autocorrelation, the empirical SE decreased as the length of the time series 

increased, as would be expected. An exception to this occurred for the OLS estimator (and to a 

lesser extent ARIMA) which exhibited unusual behaviour for an autocorrelation of 0.8, with the SE 

initially increasing with an increasing number of points in the series, and then decreasing. 

Supplementary simulations were undertaken to examine the behaviour of the OLS estimator for 

surrounding correlations (0.7 and 0.9), which showed a similar pattern of increasing SEs with an 

increasing number of points (Supplementary 1.4). The relationship between autocorrelation and 

the empirical SE was modified by the length of series. For small series (< 10 data points), the 

empirical SE decreased with increasing autocorrelation, while for longer series (≥ 10 data points) 

this relationship was reversed, with SEs increasing with increasing autocorrelation.  
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Figure 4: Empirical standard error (SE) of the level change. The horizontal axis shows the length of the time series, the 
vertical axis shows the empirical SE. The five vertical columns display the results for different values of autocorrelation. 
The simulation combination presented is for a level change of 2 and slope change of 0.1; however, other combinations 
give similar results. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; 
PW, Prais-Winsten; REML, restricted maximum likelihood. 

The size of the empirical SE for slope change was dependent on the underlying autocorrelation 

and length of the series (Supplementary Figure S2 and Figure 5). The empirical SE decreased 

with increasing series length, but increased with increasing autocorrelation, as would be 

expected. In contrast to the level change, there were no important differences in the empirical 

SEs across the statistical methods, even when the autocorrelation was large. The observed 

patterns did not differ for any of the eight level and slope change combinations (Supplementary 

1.3.3 for level change, Supplementary 1.3.4 for slope change). 

 
Figure 5: Empirical standard error (SE) of the slope change. The horizontal axis shows the length of the time series, the 
vertical axis shows the empirical SE. The five vertical columns display the results for different values of autocorrelation. 
The simulation combination presented is for a level change of 2 and slope change of 0.1; however, other combinations 
give similar results. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; 
PW, Prais-Winsten; REML, restricted maximum likelihood. 
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3.2.2 Comparison between empirical and model-based standard errors 

To enable appropriate confidence interval coverage and size of significance tests, the model-

based SE needs to be similar to the empirical SE (Morris, White et al. 2019). In this section we 

present the comparison between the empirical and model-based SEs; results for the model-based 

SEs alone can be found in S1.3.5 for level change and S1.3.6 for slope change.  

 

For the level change parameter (𝛽𝛽2) estimated by OLS, the ratio of model-based to empirical SEs 

were close to one (indicating the empirical and model-based SEs were similar) for all series 

lengths when there was no underlying autocorrelation (Figure 6). However, as autocorrelation 

increased, as expected, the OLS model-based SEs became increasingly smaller relative to the 

empirical SEs, indicating the model-based SEs is are downwardly biased. The NW method 

performed only slightly better than the OLS (except when the autocorrelation was zero); however, 

the NW model-based SEs were still downwardly biased across all scenarios, were worse than 

OLS for small series lengths, and only marginally better than OLS for large series lengths. 

Although the empirical SEs of the ARIMA and PW methods were similar, they had quite different 

model-based SEs. The PW model-based SEs were smaller than the empirical SEs for all 

magnitudes of autocorrelation, though the model-based SEs approached the empirical SEs with 

increasing series length. The ARIMA model-based SEs were larger than the empirical SEs for 

small series (fewer than 24 points) at small underlying values of autocorrelation (𝜌𝜌 <  0.4) and 

also for larger series (more than 24 points) at higher magnitudes of autocorrelation (𝜌𝜌 > 0.4). 

Aside from these scenarios, the ARIMA model-based SEs were approximately equal to the 

empirical SEs. The REML method behaved similarly to the PW method but, relatively, did not 

underestimate the SEs to the same extent. For small values of underlying autocorrelation (𝜌𝜌 <

0.4) and series greater than 30 points, the model-based SEs were similar to the empirical SEs. 
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Figure 6: Scatter plots of the ratio of model-based standard error (SE) to the empirical SE for the level change 
parameter with different levels of autocorrelation and series length. The horizontal axis represents the number of points 
in the time series, the vertical axis shows the ratio of model-based to empirical SE. The five vertical columns display the 
results for different values of autocorrelation. The simulation combination presented is for a level change of 2 and slope 
change of 0.1; however, other combinations give similar results. The first two series lengths are not shown for the 
ARIMA method due to extreme values. The Satterthwaite adjustment to the REML does not impact the estimate of SE, 
hence details of this method are not shown. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, 
ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood. 

For the slope change parameter (𝛽𝛽3), the ratios of model-based to empirical SEs followed similar 

patterns as for the level change parameter (𝛽𝛽2). For any given series length, as the magnitude of 

autocorrelation increased, model-based SEs became increasingly smaller compared with the 

empirical SEs for most statistical methods (Supplementary 1.5). Model-based and empirical SEs 

tended towards equivalence as series lengths increased, with the exception of OLS and NW at 

high values of autocorrelation (𝜌𝜌 > 0.6). For REML and ARIMA, the pattern of ratios of model-

based to empirical SEs for 𝛽𝛽3 slightly differed compared with 𝛽𝛽2. Specifically, the REML model-

based SEs were smaller than the empirical SEs for small series, and then increased to be slightly 

larger as the number of points increased. For ARIMA, the model-based SEs were smaller than 

the empirical SEs for large underlying values of autocorrelation (𝜌𝜌 ≥ 0.6 ) for small to moderate 

length series. The observed patterns did not differ for any of the eight level and slope change 

combinations (S 1.3.5 for level change, S 1.3.6 for slope change). 
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3.3 Confidence interval coverage 
For all combinations of level change, slope change, number of time points and autocorrelation, 

most methods had coverage (percentage of 95% confidence intervals including the true 

parameter) that was less than the nominal 95% level for both level and slope change  (Figure 7 

for level change and Figure 8 for slope change, both with a level change of 2 and slope change of 

0.1, Supplementary 1.3.7 for level change and Supplementary 1.3.8 for slope change for other 

parameter combinations). The exceptions were OLS when there was no underlying 

autocorrelation, and REML with the Satterthwaite adjustment for moderate to large length series. 

In general, mean values of coverage decreased with increasing autocorrelation and increased 

with increasing series length. However, coverage of the OLS method decreased with increasing 

autocorrelation as well as with increasing series length (with the exception of the zero 

autocorrelation scenario). The NW method exhibited a similar pattern to OLS, but generally had 

better coverage (except for small autocorrelations), although coverage was often poor (under 

90% for all but the longest series with low autocorrelation, 𝜌𝜌 < 0.4). REML with the Satterthwaite 

small sample adjustment yielded coverage greater than the nominal 95% level when the number 

of data points was greater than 30 in the presence of autocorrelation. Confidence interval 

coverage patterns generally reflected those observed with the comparisons between the model-

based and empirical SE. 

 
Figure 7: Coverage for the level change parameter. Each point is the proportion of the 10,000 simulations in which the 
95% confidence interval included the true value of the parameter. The solid black line depicts the nominal 95% 
coverage level. The simulation combination presented is for a level change of 2 and slope change of 0.1; however, 
other combinations give similar results. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, 
ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, 
Satterthwaite. 
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Figure 8: Coverage for the slope change parameter. Each point is the proportion of the 10,000 simulations in which the 
95% confidence interval included the true value of the parameter. The solid black line depicts the nominal 95% 
coverage level. The simulation combination presented is for a level change of 2 and slope change of 0.1; however, 
other combinations give similar results. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, 
ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, 
Satterthwaite. 

3.4 Power 
Coverage was less than the nominal 95% level in the majority of scenarios (except for the OLS 

model in the absence of autocorrelation and some scenarios involving the REML method with 

Satterthwaite adjustment). In scenarios where coverage is less than 95%, examining power is 

misleading. Due to there being only a very small number of configurations in Figure 7 and 

Supplementary 1.6 in which 95% coverage was achieved, we adopt a more liberal approach and 

consider configurations in which the coverage was at least 90%. As such, the results presented 

below should be viewed as approximate power only and will generally be lower than the value 

observed if coverage was at least 95%. 

 

For scenarios with a level change of two, power was low for series with a small number of points, 

but predictably, increased as the number of points increased for all methods, except the REML 

method with Satterthwaite adjustment (Figure 9). As the magnitude of autocorrelation increased 

its power decreased, to a point where it became lower than for other methods. This was due to 

the REML method with Satterthwaite adjustment having greater than 95% coverage in these 

situations and hence substantially lower than 5% Type I error rates. For smaller values of the 

level change parameter, predictably, power decreased (Supplementary 1.6.1). Similar patterns 

were observed for slope change (Supplementary 1.6.2). 
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Figure 9: Power for level change. Each point is the mean number of times the 95% confidence interval of the estimate 
did not include zero from 10,000 simulations. The simulation combination presented is for a level change of 2 and slope 
change of 0.1. Power for other model combinations is available in Supplementary 1.8.1. Abbreviations: ARIMA, 
autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, 
restricted maximum likelihood; Satt, Satterthwaite; NW, Newey-West. 

3.5 Autocorrelation Coefficient 
Most of the statistical methods yield an estimate of the autocorrelation coefficient. All methods 

underestimated the autocorrelation for series with a small number of points (Figure 10 and Figure 

11 show parameter values of 2 for level change and 0.1 for slope change). However, 

underestimation was most pronounced for scenarios with small series and large underlying 

autocorrelation. The REML method always yielded estimated autocorrelations closer to the true 

underlying autocorrelation compared with the other methods. The empirical SEs for 

autocorrelation generally decreased as the series length increased for all methods (except for 

small series with fewer than 20 points) (Supplementary 1.7). The observed patterns did not differ 

for any of the eight level and slope change combinations (Supplementary 1.3.9). 
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Figure 10: Autocorrelation coefficient estimates. The horizontal axis shows the estimate of autocorrelation coefficient. 
The vertical axis shows the length of the time series. The five vertical columns display the results for different values of 
autocorrelation ranging from 0 to 0.8 (the value of autocorrelation is shown by a vertical red line). Each coloured curve 
shows the distribution of autocorrelation coefficient estimates from 10,000 simulations. Each subset of four curves 
shows the results from a different analysis method for a given combination of time series length and autocorrelation. 
The simulation combination presented is for a level change of 2 and slope change of 0.1; however, other combinations 
give similar results. From top to bottom the methods are autoregressive integrated moving average (ARIMA) (purple), 
Prais-Winsten (PW) (green) and restricted maximum likelihood (REML) (orange). 

 
Figure 11: Autocorrelation coefficient estimates. The horizontal axis shows the length of the time series. The vertical 
axis shows the mean estimate of the autocorrelation coefficient across 10,000 simulations. The five plots display the 
results for different values of autocorrelation ranging from 0 to 0.8 (the true value of autocorrelation is shown by a 
horizontal black line). Each coloured point shows the mean autocorrelation estimate for a given combination of true 
autocorrelation coefficient and number of points in the data series. The simulation combination presented is for a level 
change of 2 and slope change of 0.1; however, other combinations give similar results. Abbreviations: ARIMA, 
autoregressive integrated moving average; OLS, ordinary least squares; PW, Prais-Winsten; REML, restricted 
maximum likelihood. 
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3.5.1 Durbin-Watson test for autocorrelation 

The DW test for detecting autocorrelation performed poorly except for long data series and large 

underlying values of autocorrelation (Figure 12). For series of moderate length (i.e. 48 points), 

with an underlying autocorrelation of 0.2, the DW test gave an “inconclusive” result in 30% of the 

simulations, incorrectly gave a value of no autocorrelation in 63% of the simulations, and only 

correctly identified that there was autocorrelation in 7% of the simulations. For shorter length 

series the percentage of simulations in which autocorrelation was correctly identified decreased 

(for a series length of 24 even at extreme magnitudes of autocorrelation (i.e. 0.8) positive 

autocorrelation was reported in only 26% of the simulations). For very short length series (fewer 

than 12 data points) the DW test gave an “inconclusive” result in over 75% of the simulations for 

all values of autocorrelation and always failed to identify that autocorrelation was present. 

 
Figure 12: Durbin-Watson tests for autocorrelation. For each combination of length of data series and true magnitude of 
autocorrelation the Durbin Watson test results from 10,000 simulated data sets are summarised. The horizontal axis is 
the length of the data series, the vertical axis is the proportion of results indicating: ρ > 0 (blue), ρ < 0, (orange) ρ = 0 
(black) and an inconclusive test (grey). Each graph shows results for a different magnitude of autocorrelation. The 
simulation combination presented is for a level change of 2 and slope change of 0.1; however, other combinations give 
similar results. 
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3.6 Convergence of estimation methods 
The number of the 10,000 simulations in which the estimation methods converged is presented in 

Supplementary 1.8. Most methods had no numerical convergence issues. The PW model failed to 

converge a small number of times (less than 7% of simulations) when there were only three data 

points pre- and post-interruption. The REML model regularly failed to converge (approximately 

70% convergence) for short data series (fewer than 12 data points) at all values of 

autocorrelation, however convergence improved substantially as the number of points in the 

series increased. In addition, convergence issues for REML occurred more frequently for higher 

values of autocorrelation, unless the series length was large. 

3.7 Analysis of motivating example 
We re-analysed the ITS study (introduced in Section 2) using each of the statistical methods 

evaluated in the simulation study to estimate the effect of terminal room cleaning with dilute 

bleach on C difficile rates. Estimates of level and slope change (along with their confidence 

intervals and p-values) and autocorrelation are presented in Table 3. The point estimates for level 

and slope change are similar across methods, but notably, the width of the confidence intervals 

vary considerably. The confidence intervals are narrower for OLS, NW and PW, but wider for 

REML (with and without the Satterthwaite adjustment) and ARIMA. For level change, this led to 

corresponding p-values that ranged from 0.002 to 0.095; and for the slope change, p-values 

ranging from 0.069 to 0.531. Estimates of autocorrelation also varied, with REML yielding an 

estimate of 0.23, while ARIMA and PW yielded much lower estimates of 0.07. The DW statistic 

was 1.86, indicating no autocorrelation. Such differences in confidence interval width and p-

values may impact on the interpretation of the results.  
Table 3: Level- and slope-change point estimates with 95% confidence intervals (CIs), p-values and estimate of 
magnitude of lag-1 autocorrelation (𝝆𝝆�𝒆𝒆𝒆𝒆𝒆𝒆) from C difficile infection data using a range of statistical methods. 
Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, 
Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
 

Level change 
 

Slope change 
 

𝝆𝝆�𝒆𝒆𝒆𝒆𝒆𝒆  
Estimate (CI) p-value Estimate (CI) p-value  

ARIMA -0.42 (-0.89,0.05) 0.079 -0.03 (-0.11,0.06) 0.531 0.07 

OLS -0.44 (-0.76,-0.13) 0.008 -0.03 (-0.07,0.02) 0.201 N/A 

NW -0.44 (-0.71,-0.17) 0.002 -0.03 (-0.06,0.00) 0.069 N/A 

PW -0.42 (-0.75,-0.09) 0.014 -0.03 (-0.08,0.02) 0.251 0.07 

REML -0.37 (-0.72,-0.01) 0.044 -0.02 (-0.08,0.03) 0.390 0.23 

REML-Satt -0.37 (-0.82,0.09) 0.095 -0.02 (-0.10,0.05) 0.437 N/A 
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4 Discussion 
4.1 Summary and discussion of key findings 

Interrupted time series studies are commonly used to evaluate the effects of interventions or 

exposures. The results of our simulation study provide insight into how a set of statistical methods 

perform under a range of scenarios which included different level and slope changes, varying 

lengths of series and magnitudes of autocorrelation. We chose to examine statistical methods 

that are commonly used in practice for interrupted time series studies (Ramsay, Matowe et al. 

2003, Jandoc, Burden et al. 2015, Hudson, Fielding et al. 2019, Ewusie, Soobiah et al. 2020, 

Turner, Karahalios et al. 2020), and those performing well in the general, non-interrupted, time 

series literature (Cheang and Reinsel 2000, Alpargu and Dutilleul 2003).  

 

Not surprisingly, we found that the statistical methods all yielded unbiased estimates of both level 

and slope change for all values of model shape, length of series and autocorrelation. Confidence 

interval coverage, however, was generally below the nominal 95% level, except in particular 

circumstances for specific methods. The REML method with and without the Satterthwaite 

adjustment had improved confidence interval coverage compared with the other statistical 

methods, particularly for slope change. An exception to this was for very small series (fewer than 

12 points), where the OLS method had better coverage than the other methods, even in the 

presence of large underlying autocorrelation. Coverage improved for most methods with 

increasing series length (with the exception of OLS and NW in some circumstances). REML with 

the Satterthwaite adjustment to the d.f. was the only method that yielded at least the nominal level 

of confidence interval coverage, however it was overly conservative in some scenarios, with a 

resultant reduction in power compared with other methods. 

 

Autocorrelation was systematically underestimated by all statistical methods, with estimates of 

autocorrelation being particularly biased (and often negative) for small time series (fewer than 24 

points). This underestimation of autocorrelation had a detrimental impact on the estimates of SE, 

which were too small, and in turn, this led to confidence interval coverage that was less than the 

nominal 95% level. This can be seen in Figure 13 (level change) and Supplementary 1.9 (slope 

change), where a relationship between the magnitude of bias in the estimates of autocorrelation 

and confidence interval coverage is clearly evident. Ideally the confidence interval coverage 

should be at the nominal 95% level with no bias in autocorrelation (the intersection of the dashed 

lines in Figure 13). For short time series, the severe underestimation of autocorrelation led to 

poorer confidence interval coverage than had autocorrelation been ignored, as is the case with 

OLS. 
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Figure 13: Bias in autocorrelation estimate versus coverage for level change. The horizontal axis shows the bias in the 
autocorrelation estimate. The vertical axis shows the percentage coverage. The horizontal dashed line indicates 95% 
coverage, the vertical dashed line indicates no bias in the estimate of autocorrelation. Each colour represents a 
different value of underlying autocorrelation, ranging from zero (purple) to 0.8 (red), with each value displayed in a 
circle at the smallest series length (six points). The arrows point from shortest to longest series length, with the small 
circles at the end of each line showing coverage at a series length of 100 data points. Each data point shows the mean 
value from 10,000 simulations for a given combination of autocorrelation coefficient and number of points in the series. 
The simulation combination presented is for a level change of 2 and slope change of 0.1; however, other combinations 
give similar results. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; 
NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

We included REML due to its potential to reduce bias in the variance parameters compared with 

maximum likelihood. Although the ARIMA model fitted in our simulations used maximum 

likelihood estimation, the model-based SEs were generally more similar to the empirical SEs for 

the ARIMA method compared with the REML method (where the model-based SEs were 

generally smaller than the empirical SEs). ARIMA confidence interval coverage was similar to 

REML for level change, though REML showed improved confidence interval coverage for slope 

change. Further, the REML method yielded less biased estimates of autocorrelation than the 

other methods, even for small series lengths. 

 

The only method to yield overly conservative confidence intervals was the REML with SW 

adjustment to the t-distribution d.f.. When deciding whether to use the Satterthwaite adjustment, 

consideration therefore needs to be made between the trade-off in the risk of type I and type II 

errors. A further issue we identified with the Satterthwaite adjustment was that the adjusted d.f. 

were very small in some series, leading to nonsensible confidence intervals. To limit this issue we 

set a minimum value of 2 for the d.f., but other choices could be adopted. 
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The DW test is the most commonly used test to identify autocorrelation and is often used when 

series are short (Hudson, Fielding et al. 2019, Turner, Karahalios et al. 2020). Some authors use 

the test as part of a two-stage analysis strategy where they first test for autocorrelation, and 

depending on the result of the test, either use a method that attempts to adjust for autocorrelation 

or not. This type of two-stage approach is used in other contexts, such as testing for carryover in 

crossover trials. The findings of our simulation study underscore why such two stage approaches 

fail and are discouraged; namely, due to their failure to detect the presence of a statistic when it 

exists (i.e., their high type II error rate). In our case, we found that for short series (fewer than 12 

data points), the DW test failed to identify autocorrelation when it was present, and for moderate 

length series (i.e. 48 points), with an underlying autocorrelation of 0.2, autocorrelation was only 

detected in 7% of the simulations. 

4.2 Comparisons with other studies 
We are not aware of other simulation studies that have examined the performance of statistical 

methods for interrupted time series studies. However, other simulation studies have investigated 

the performance of methods for general time series, and our findings align with these. Alpargu 

and Dutilleul (Alpargu and Dutilleul 2003) concluded from their simulation study examining the 

performance of REML, PW and OLS for lag(1) time series data over a range of series lengths 

(from 10 to 200), that REML is to be preferred over OLS and PW in estimating slope parameters. 

Cheang and Reinsel (Cheang and Reinsel 2000) examined the performance of ML and REML for 

estimating linear trends in lag(1) time series data of length 60 and 120 (both with and without 

seasonal components) and concluded that the REML estimator yielded better confidence interval 

coverage for the slope parameter, and less biased estimates of autocorrelation. Smith and 

McAleer (Smith and McAleer 1994) examined the performance of the NW estimator for time 

series of length 100 with lags of 1, 3 and 10, and found that it underestimated the SEs of the 

slope parameter.  

4.3 Strengths and Limitations 
The strengths of our study include that we have used many combinations of parameter estimates 

and statistical methods. Our parameter values were informed by characteristics of real world ITS 

studies (Turner, Karahalios et al. 2020). We planned and reported our study using the structured 

approach of Morris et al (Morris, White et al. 2019) for simulation studies, and we generated a 

large number of data sets per combination to minimise MCSE.  

 

As with all simulation studies, there are limitations to the applicability of findings. All data series 

were based on a random number generator and results may change given a different set of 

series, however, this is unlikely to be problematic given our MCSE was < 0.5% for all potential 

values of coverage and type I error rate. Our findings are only applicable to the scenarios in which 

they were generated, and so may not apply to ITS studies with different characteristics, such as 
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unequal numbers of time points in the pre- and post-interruption segments, non-constant variance 

or different lags of autocorrelation.  

4.4 Implications for practice 
We found that all methods yielded unbiased estimates of the level and slope change, however, 

the methods differed in their performance in terms of confidence interval coverage and estimation 

of the autocorrelation parameter. Confidence interval coverage was primarily determined by the 

length of the time series and the underlying magnitude of autocorrelation. In practice, however, 

most analysts will only have knowledge of the length of the time series to guide in the choice of 

method. In rare cases, knowledge of the likely size of the underlying autocorrelation may be 

available from a previous long time series study in a similar context, which could help inform their 

choice. In our review of ITS studies investigating public health interruptions or exposures, the 

magnitude of autocorrelation was almost never explicitly specified (1%, 3/230 time series) 

(Turner, Karahalios et al. 2020). Analysis of data extracted from the ITS studies included in this 

review using the REML method yielded a median autocorrelation 0.2 (IQR: 0 to 0.6, n=180); 

however,  as shown from the simulation study, the estimates of autocorrelation (on which these 

summary statistics are based) are likely to be underestimated. 

 

From the statistical methods and scenarios we examined, we found that for small time series 

(approximately 12 points or under), in the absence of a method that performs well adjusting for 

autocorrelation in such short series, OLS is the recommended method. For longer time series, 

REML is recommended. If the analyst has knowledge that the underlying autocorrelation is likely 

to be large, then using REML with the Satterthwaite adjustment may be advantageous. However, 

when the Satterthwaite adjustment yields d.f. lower than 2, we recommend replacing these with 2 

to mitigate nonsensible confidence intervals. When REML doesn’t converge, ARIMA provides a 

reasonable alternative as, with the exception of REML, it yields higher confidence interval 

coverage than the other methods. Given most methods will yield confidence intervals that are too 

small, with type I error rates greater than 5%, borderline findings of statistical significance for the 

regression parameters should be cautiously interpreted; these may be due to chance rather than 

as a result of the interruption. 

 

Estimates of autocorrelation from long series can be useful to inform sample size calculations and 

analytical decisions in future studies. We recommend reporting the REML estimates of the 

autocorrelation coefficient when possible. We only recommend using the DW test for detecting 

underlying autocorrelation in long time series (longer than 100 data points) and recommend 

against its use as part of a two-stage or stepwise approach to determine whether to use a 

statistical method that adjusts for autocorrelation.  
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In terms of study design, we recommend using at very minimum 24 points data points. With this 

number of points, confidence interval coverage close to the nominal 95% level can be achieved 

using REML with the Satterthwaite adjustment (when underlying autocorrelation is between 0 and 

0.6). With fewer data points, poor confidence interval coverage is likely, irrespective of method. 

4.5 Implications for future research 
Although we investigated the statistical methods most commonly observed in reviews of ITS 

studies (Ramsay, Matowe et al. 2003, Jandoc, Burden et al. 2015, Hudson, Fielding et al. 2019, 

Ewusie, Soobiah et al. 2020, Turner, Karahalios et al. 2020), there is scope for further research 

examining other statistical methods, such as robust methods (Cruz, Bender et al. 2017) or 

Bayesian approaches where the uncertainty in the estimate of autocorrelation could be 

incorporated. We investigated one small-sample adjustment (Satterthwaite) though others, such 

as Kenward-Roger (Kenward and Roger 1997), which adds a correction to the SE of regression 

parameter estimates, could also be examined. Further investigation of how the methods perform 

for scenarios other than those we investigated would be valuable. For example, when there are 

unequal numbers of points pre- and post-interruption, lags greater than 1, and where the 

autocorrelation and error variance differ between the pre and post interruption periods. 

4.6 Conclusion 
We undertook a simulation study to examine the performance of a set of statistical methods to 

analyse ITS data under a range of scenarios that included different level and slope changes, 

varying lengths of series and magnitudes of autocorrelation. We found that all methods yielded 

unbiased estimates of the level and slope change, however, the magnitude of autocorrelation was 

underestimated by all methods. This generally led to SEs that were too small and confidence 

interval coverage that was less than the nominal level. The DW test for the presence of 

autocorrelation performed poorly except for long series and large underlying autocorrelation. Care 

is needed when interpreting results from all methods, given the confidence intervals will generally 

be too narrow. Further research is required to determine and develop methods that perform well 

in the presence of autocorrelation, especially for short series. 
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6 Supplementary files 
There are two files that supplement this study. 

6.1 Supplementary File 1 
This file contains supplementary graphs as described in the text. 

File: STurner_ITS_Simulation_Supplementary_File_1.docx 

6.2 Supplementary File 2 
This file contains the data and computer code used to analyse the motivating example, the 

computer code used to create and analyse the simulated data sets, and the computer code used 

to plot the graphs in the manuscript (including Supplementary File 1), available via figshare: 

https://doi.org/10.26180/13284329 (Turner 2020). 

Appendix 1 Statistical method details 
Appendix 1.1 Ordinary Least Squares 
Model (1) can be written in a matrix form as: 

Y = Xβ + ε (3) 

where Y and ε are n × 1 vectors whose tth element is yt and εt respectively, X is the n × 4 design 

matrix with 𝑡𝑡′𝑡𝑡ℎ  𝑟𝑟𝑟𝑟𝑤𝑤  �1, 𝑡𝑡,𝐷𝐷𝑡𝑡 ,𝐷𝐷𝑡𝑡𝐼𝐼(𝑡𝑡 − 𝑇𝑇1)�, and 𝜖𝜖𝑡𝑡 ∼ 𝑁𝑁(0,𝜎𝜎2). The OLS estimator of 𝛽𝛽 is �̂�𝛽𝑂𝑂𝑂𝑂𝑂𝑂 =

(𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌, and 𝑉𝑉𝑉𝑉𝑟𝑟(�̂�𝛽𝑂𝑂𝑂𝑂𝑂𝑂) = 𝜎𝜎2(𝑋𝑋′𝑋𝑋)−1. 

Appendix 1.2 Newey West 
The NW estimator (lag-1) of 𝛽𝛽 is just the OLS estimator, �̂�𝛽𝑁𝑁𝑁𝑁 = �̂�𝛽𝑂𝑂𝑂𝑂𝑂𝑂, but with a sandwich 

variance estimator of the form   

𝑉𝑉𝑉𝑉𝑟𝑟� ��̂�𝛽𝑁𝑁𝑁𝑁� = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝛺𝛺�𝑋𝑋(𝑋𝑋′𝑋𝑋)−1 (5) 

where: 

𝑋𝑋′𝛺𝛺�𝑋𝑋 = 𝑋𝑋′𝛺𝛺�0𝑋𝑋 +
𝑛𝑛

𝑛𝑛 − 𝑘𝑘
1
2
��̂�𝑒𝑡𝑡�̂�𝑒𝑡𝑡−1(𝑥𝑥𝑡𝑡′𝑥𝑥𝑡𝑡−1 + 𝑥𝑥𝑡𝑡−1′ 𝑥𝑥𝑡𝑡)
𝑛𝑛

𝑡𝑡=2

 
(6) 

𝑋𝑋′𝛺𝛺�0𝑋𝑋 =
𝑛𝑛

𝑛𝑛 − 𝑘𝑘
��̂�𝑒𝑖𝑖2

𝑖𝑖

𝑥𝑥𝑖𝑖′𝑥𝑥𝑖𝑖 
(7) 

�̂�𝑒𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖�̂�𝛽𝑂𝑂𝑂𝑂𝑂𝑂 (8) 

 where X is the same 𝑛𝑛 × 4 design matrix as specified for OLS above. The central term in the 

variance expression allows for empirical determination of autocorrelation and heteroskedasticity 

(StataCorp 2017).   

  

https://doi.org/10.26180/13284329
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Appendix 1.3 Generalised Least Squares 
In the Cochrane-Orcutt and Prais-Winsten methods, from the equations (1) and (2), the 

dependent and independent variables are transformed to create a new model in which the error 

terms are uncorrelated: 

𝑌𝑌𝑡𝑡∗ = 𝑌𝑌𝑡𝑡 − 𝜌𝜌𝑌𝑌𝑡𝑡−1 (9a) 

𝑋𝑋𝑡𝑡∗ = 𝑋𝑋𝑡𝑡 − 𝜌𝜌𝑋𝑋𝑡𝑡−1 (9b) 

Then fit 𝑌𝑌𝑡𝑡∗ = 𝑋𝑋𝑡𝑡∗𝛽𝛽 + 𝑤𝑤𝑡𝑡  , where 

𝑤𝑤𝑡𝑡 = 𝜀𝜀𝑡𝑡 − 𝜌𝜌𝜀𝜀𝑡𝑡−1 ∼ 𝑁𝑁(0,𝜎𝜎2) (10) 

using OLS, and iterate until convergence. 

Generally, the correlation is unknown, and must first be estimated. An estimate of autocorrelation 

at each iteration can be obtained using the OLS residuals 𝑒𝑒𝑡𝑡  from fitting Equation (2) as above: 

𝜌𝜌� =
∑ 𝑒𝑒𝑡𝑡−1𝑒𝑒𝑡𝑡𝑛𝑛
𝑡𝑡=2
∑ 𝑒𝑒𝑡𝑡−12𝑛𝑛
𝑡𝑡=2

 
(11) 

  

The CO method discards the first observation, while the PW method retains the first observation, 

but applies the following transformation (Prais 1954): 

𝑦𝑦1∗ = �1 − 𝜌𝜌2𝑦𝑦1 𝑉𝑉𝑛𝑛𝑑𝑑 𝑋𝑋1∗ = �1 − 𝜌𝜌2𝑋𝑋1, where 𝑋𝑋1 is the first row of X. (12) 

Appendix 1.4 Autoregressive integrated moving average 
The ARIMA model includes parameters that model observations and error terms from previous 

time points. In an ARIMA model with first order autocorrelation only, i.e. ARIMA(1,0,0), equations 

(1) and (2) are fit simultaneously by maximum likelihood. 

Appendix 1.5 Durbin-Watson test for autocorrelation 
The Durbin-Watson test statistic is given by: 

𝐷𝐷 =
∑ (𝑒𝑒𝑡𝑡 − 𝑒𝑒𝑡𝑡−1)2𝑛𝑛
𝑡𝑡=2

∑ 𝑒𝑒𝑡𝑡2𝑛𝑛
𝑡𝑡=1

 
(13) 

For test statistic values under two, D is compared to lower (𝑑𝑑𝑂𝑂) and upper (𝑑𝑑𝑈𝑈) bounds, leading to 

either a conclusive or inconclusive result. For test statistic values over two, 4-D is compared to 

the lower and upper bounds and a conclusive 𝐻𝐻𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡𝑖𝑖𝑣𝑣𝑎𝑎  indicates the presence of negative 

autocorrelation: 

 𝐼𝐼𝐼𝐼 𝐷𝐷 > 𝑑𝑑𝑈𝑈 , 𝑐𝑐𝑟𝑟𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑒𝑒 𝐻𝐻𝑜𝑜  

𝐼𝐼𝐼𝐼 𝐷𝐷 < 𝑑𝑑𝑂𝑂 , 𝑐𝑐𝑟𝑟𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑒𝑒 𝐻𝐻𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑡𝑡𝑖𝑖𝑣𝑣𝑎𝑎  

𝐼𝐼𝐼𝐼 𝑑𝑑𝑂𝑂 ≤ 𝐷𝐷 ≤ 𝑑𝑑𝑈𝑈 , 𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒  

Lower (𝑑𝑑𝑂𝑂) and upper (𝑑𝑑𝑈𝑈) bounds can be found in tables online or in textbooks, e.g. Kutner et al 

(2008). 
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Appendix 2 Definitions of performance measures 
Table 4: Definitions of performance measures. Where 𝜃𝜃 represents the parameter under investigation, 𝜃𝜃� being the 
estimate of that parameter, �̅�𝜃 being the mean value of the estimate, 𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠 being the number of simulations (in this 
study, 10,000), 𝑝𝑝𝑖𝑖 being the p-value of estimate 𝑖𝑖 and 𝛼𝛼 being the significance level (Morris, White et al. 2019). 

Performance 
measure 

Definition Estimate 

Bias 𝐸𝐸�𝜃𝜃�� − 𝜃𝜃 1
𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠

� 𝜃𝜃�𝑖𝑖 − 𝜃𝜃
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

 

Empirical standard 

error 
�𝑉𝑉𝑉𝑉𝑟𝑟�𝜃𝜃�� 

� 1
𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠 − 1

��𝜃𝜃�𝑖𝑖 − �̅�𝜃�2
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

 

Mean square error 𝐸𝐸 ��𝜃𝜃�𝑖𝑖 − 𝜃𝜃�2� 1
𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠

��𝜃𝜃�𝑖𝑖 − 𝜃𝜃�2
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

 

Coverage 𝑃𝑃𝑟𝑟�𝜃𝜃�𝑎𝑎𝑜𝑜𝑙𝑙 ≤ 𝜃𝜃 ≤ 𝜃𝜃�𝑢𝑢𝑢𝑢𝑢𝑢� 1
𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠

� 1�𝜃𝜃�𝑎𝑎𝑜𝑜𝑙𝑙,𝑖𝑖 ≤ 𝜃𝜃 ≤ 𝜃𝜃�𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖�
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

 

Power 𝑃𝑃𝑟𝑟(𝑝𝑝𝑖𝑖 ≤ 𝛼𝛼) 1
𝑛𝑛𝑠𝑠𝑖𝑖𝑠𝑠

� 1(𝑝𝑝𝑖𝑖 ≤ 𝛼𝛼)
𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1
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  Comparison of six statistical methods for 

interrupted time series studies: empirical evaluation of 190 

published series 
This chapter presents the findings of an empirical evaluation that compared the effect estimates 

when different statistical methods were applied to 190 real-world datasets. The simulation study 

(Chapter 5) provided insight into how statistical methods perform against a known truth (58). The 

empirical evaluation provides evidence of whether the choice of statistical method matters in 

practice and the degree in which it may do so. 

 

The ITS identified in the review (Chapter 3) formed the repository of ITS data series included in 

the empirical evaluation. Time series data were obtained from the studies via different methods; 

using data that had been published along with the study, via email contact with authors, and via 

digital data extraction from the graphs included in the studies. A segmented linear regression 

model was fitted to each series, treating the outcome as continuous, including a single 

interruption, and allowing for lag-1 autocorrelation. These time series were analysed using the set 

of statistical methods evaluated in the simulation study (Chapter 5). Pairwise comparisons 

between the methods were made in terms of estimates of level- and slope-change and their 

standard errors, CIs and p-values. Estimates of the magnitude of autocorrelation yielded by the 

various methods were also compared. Implications of the findings were considered for practice 

and future research. A repository of 184 published and digitally extracted real-world time series 

was collated and made publicly available on the online repository figshare: 

https://doi.org/10.6084/m9.figshare.13297136 (59). 

 

Chapter 6 is presented as a manuscript, which has been submitted to BMC Medical Research 

Methodology. 

 

Additional files referred to in the manuscript are appended to this thesis as follows: 

Location in thesis Referred to in manuscript Content of appendix 
Appendix H Additional File 1 Computer code to analyse data sets for the 

empirical evaluation 
Appendix I Additional File 2 Citation details of the 200 studies and the 

source of dataset collected from each (via 
publication, email or digital extraction) 
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Abstract 
Background  
The Interrupted Time Series (ITS) is a quasi-experimental design commonly used in public health 

to evaluate the impact of interventions or exposures. Multiple statistical methods are available to 

analyse data from ITS studies, but no empirical investigation has examined how the different 

methods compare when applied to real-world datasets.  

Methods 
A random sample of 200 ITS studies identified in a previous methods review were included. Time 

series data from each of these studies was sought. Each dataset was re-analysed using six 

statistical methods. Point and confidence interval estimates for level and slope changes, standard 

errors, p-values and estimates of autocorrelation were compared between methods.  

Results 
From the 200 ITS studies, including 230 time series, 190 datasets were obtained. We found that 

the choice of statistical method can importantly affect the level and slope change point estimates, 

their standard errors, width of confidence intervals and p-values. Statistical significance 

(categorised at the 5% level) often differed across the pairwise comparisons of methods, ranging 

from 4% to 25% disagreement. Estimates of autocorrelation differed depending on the method 

used and the length of the series.  
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Conclusions 
The choice of statistical method in ITS studies can lead to substantially different conclusions 

about the impact of the interruption. Pre-specification of the statistical method is encouraged, and 

naive conclusions based on statistical significance should be avoided. 

Keywords 
Autocorrelation, Interrupted Time Series, Public Health, Segmented Regression, Statistical 

Methods, Empirical study 

1 Background 
Randomised trials are the gold standard design for investigating the impact of public health 

interventions, however, they cannot always be used. For example, interventions that impact an 

entire country, or those that have occurred historically, may preclude the ability to randomize or 

include control groups (1). An alternative non-randomised design that may be considered in such 

circumstances is an interrupted time series (ITS) (2-4). In an ITS design, data are collected at 

multiple time points both before and after an interruption (i.e. an intervention or exposure). 

Modelling of the data in the pre-interruption period allows estimation of the underlying secular 

trend, which when modelled correctly and extrapolated into the post-interruption time period, 

yields a counterfactual for what would have occurred in the absence of the interruption. 

Differences between the counterfactual and observed data at various points post interruption can 

be estimated (e.g. immediate and long-term effects), having accounted for the underlying secular 

trend.  

A characteristic of data collected over time is that the data points tend to be correlated (5). This 

correlation – referred to as autocorrelation or serial correlation – can be positive (whereby data 

points close together in time are more similar than data points further apart) or, infrequently, 

negative (whereby data points close together are more dissimilar than data points further apart). 

Autocorrelation may be observed between consecutive data points or over longer periods of time 

(e.g. seasonal effects). This characteristic of the data needs to be considered when designing 

and analysing ITS studies. If positive autocorrelation is present, larger sample sizes are required 

to provide power at the desired level (6) and if autocorrelation is not accounted for in the 

statistical analysis, standard errors may be underestimated (7).  

Segmented linear regression models are often fitted to ITS data using a range of estimation 

methods (8-11). Commonly ordinary least squares (OLS) is used to estimate the model 

parameters (10); however, the method does not account for autocorrelation. Other statistical 

methods are available that attempt to account for autocorrelation in different ways (e.g. correction 

of standard errors, directly modelling the errors). 
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Turner et al undertook a statistical simulation study  examining the performance of statistical 

methods for analysing ITS data, where the methods were those commonly used in practice or 

had shown potential to perform well (12). This simulation study provided insight into how these 

statistical methods performed under different scenarios, including different level and slope 

changes, varying magnitudes of underlying autocorrelation and series lengths. In combination 

with these findings, evidence from an empirical evaluation can provide a more comprehensive 

understanding of how the methods operate. In particular, empirical evaluations – in which 

methods are applied to real-world data sets and the results are compared – allow assessment of 

whether the choice of method matters in practice, and the degree to which they may do so. 

To our knowledge, there has been no study that has empirically compared different methods for 

analysing ITS data when applied to a large sample of real-world data sets. We therefore 

undertook such an evaluation, where we aimed to compare level and slope change estimates, 

their standard errors, confidence intervals and p-values, and estimates of autocorrelation, 

obtained from the set of statistical methods used in the Turner et al simulation study (12). 

2 Methods 
2.1 Repository of ITS studies 
A sample of 200 ITS studies identified in a previous methods review were eligible for inclusion in 

the current study (10). In brief, we randomly selected ITS studies indexed on PubMed between 

the years 2013 to 2017. The criteria for inclusion were: 1) studies in which there were at least two 

segments separated by a clearly defined interruption with at least three points in each segment; 

2) observations were collected on a group of individuals at each time point; and 3) the study 

investigated the impact of an interruption that had public health implications. 

For each of the 200 studies, the first reported ITS of each outcome type (binary, continuous, 

count or proportion) was included, resulting in 230 ITS. Data were collected on the study 

characteristics and design of the ITS studies, types of outcomes, models used, statistical 

methods employed, effect measures reported, and the properties of included graphs. Further 

details of the study methods are available in the study protocol and results papers (10, 13). 

2.2 Methods to obtain time series data 
Time series data from the included studies were obtained using three methods. First, we collated 

datasets that were reported in the published paper or its supplement (e.g. time series data 

reported in tables, or as text files). Second, we contacted all authors for whom we were able to 

obtain contact details to request datasets. We requested only aggregate level data (i.e. not 

individual participant data) and in the circumstance where a study included multiple series, we 

only sought data from the first time series reported in the paper to reduce respondent burden.  
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We sent an initial email request on the 13th December 2018 and a follow-up email on the 24th 

January 2019. Third, we digitally extracted datasets from published graphs using the software 

WebPlotDigitizer (14). This graphical data extraction tool has been found to accurately estimate 

the position of points on a graph (15). 

If multiple datasets from the above methods were available for a particular time series, we 

selected the dataset generated using the following hierarchy: (i) published data, (ii) contact with 

authors, and (iii) digitally extracted. We checked the data provided by authors against the 

information reported in the publication. Where there was a discrepancy, we re-contacted the 

authors to query the provided data.  

2.3 Interrupted time series model 
We fitted segmented linear regression models to each dataset using the parameterisation of 

Huitema and McKean (7) (Equation1, Figure 1):  

 𝑌𝑌𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝛽𝛽2𝐷𝐷𝑡𝑡 + 𝛽𝛽3[𝑡𝑡 − 𝑇𝑇𝐼𝐼]𝐷𝐷𝑡𝑡 + 𝜀𝜀𝑡𝑡 (1) 

where 𝑌𝑌𝑡𝑡 represents the outcome that is measured at time point t of N time points (1 to 𝑛𝑛1 

measurements during the pre-interruption stage, and 𝑛𝑛1 + 1 to 𝑛𝑛2 measurements in the post-

interruption stage), with the interruption occurring at time 𝑇𝑇𝐼𝐼. 𝐷𝐷𝑡𝑡 is an indicator variable that 

represents the post-interruption interval: coded as 0 in the pre-interruption period, and as 1 in the 

post-interruption period. The model parameters (𝛽𝛽s) represent the baseline intercept (𝛽𝛽0); pre-

interruption slope (𝛽𝛽1); change in level at the interruption (𝛽𝛽2), and the change in slope (𝛽𝛽3). The 

model can be extended to accommodate more than one interruption with the inclusion of terms 

representing additional segments. 

Τhe error term 𝜀𝜀𝑡𝑡 allows for deviation from the fitted model. In a first order (lag-1) autocorrelation 

model, the error at time point t (𝜀𝜀𝑡𝑡) is influenced by only the previous data point as 𝜀𝜀𝑡𝑡 = 𝜌𝜌𝜀𝜀𝑡𝑡−1 +

𝑤𝑤𝑡𝑡, where 𝜌𝜌 is the magnitude of autocorrelation (ranging from -1 to 1) and 𝑤𝑤𝑡𝑡 represents normally 

distributed “white noise” 𝑤𝑤𝑡𝑡~𝑁𝑁(0,𝜎𝜎2). Longer lags can be modelled or accommodated, but here 

we restrict our focus to lag-1. 
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Figure 1: Graphical depiction of a segmented linear regression model fitted to ITS data. Secular trends (indicated by 
solid blue lines) for the pre and post interruption periods (indicated by the vertical dashed line) are estimated from the 
data (indicated by blue crosses). A counterfactual trend line (extrapolation of the pre-interruption trend line shown as a 
dashed blue line) is compared with the post interruption trend to estimate the immediate and longer term impact of the 
interruption. Model parameters are indicated as the intercept (𝛽𝛽0); pre-interruption slope (𝛽𝛽1); change in level at the 
interruption (𝛽𝛽2), and the change in slope (𝛽𝛽3). 

2.4 Interrupted time series analysis methods 
Six statistical methods were used to analyse the ITS datasets assuming first order autocorrelation 

(lag-1) (Table 1). The methods were chosen because they have commonly been used in practice 

(8-11) or because of they have been shown (through numerical simulation) to have improved 

performance (12). The methods were: 

• ordinary least squares regression (OLS), which provides no adjustment for autocorrelation, 

and in the presence of positive autocorrelation will yield standard errors that are too small 

(16); 

• OLS with Newey-West standard errors (NW), which yield OLS estimates of the model 

regression parameters, but with standard errors that are adjusted for autocorrelation (17); 

• Prais-Winsten (PW), a generalised least squares method, which provides an extension of 

OLS where the assumption of independence across observations is relaxed (18, 19); 

• restricted maximum likelihood (REML) (with and without the small sample Satterthwaite 

approximation (Satt)), which addresses bias in maximum likelihood estimators of variance 

components by separating the log-likelihood into two terms (one of which is only dependent 

on variance parameters) and using the appropriate number of degrees of freedom (d.f.) (20, 

21); and, 

• autoregressive integrated moving average (ARIMA), which explicitly models the influence of 

previous time points by including regression coefficients from lagged values of the dependent 

variable and errors (22).  
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Table 1: Statistical methods, adjustments for autocorrelation and abbreviations used. 

Statistical method Autocorrelation adjustment Abbreviation  
Ordinary least squares None OLS 
 Newey-West standard error adjustment 

with lag-1 autocorrelation 
NW 

Generalised least squares Prais-Winsten PW 
Restricted maximum 
likelihood 

Lag-1 autocorrelation model REML 

 Lag-1 autocorrelation model with small 
sample Satterthwaite approximation 

REML-Satt 

Autoregressive integrated 
moving average 

Lag-1 autocorrelation model (i.e. 
ARIMA(1,0,0)) 

ARIMA 

2.5 Analysis of the ITS datasets 
We implemented the segmented linear regression model (Equation 1, Section 2.3) by setting up 

datasets for each ITS study with the following variables: 

• outcome variable; 

• time variable t, beginning at 1 and incrementing by 1 up to time point N; 

• an interruption time indicator 𝐷𝐷𝑡𝑡; coded 0 pre-interruption and 1 post-interruption; and, 

• a slope change variable [𝑡𝑡 − 𝑇𝑇𝐼𝐼]𝐷𝐷𝑡𝑡, equal to zero at the time of the interruption (𝑇𝑇𝐼𝐼) and 

incrementing by 1 up to time point N. 

We used information provided in the corresponding manuscript to determine the interruption time. 

In studies with multiple interruptions, we only included the first interruption (and adjacent periods). 

In studies with a transition period, we extended the model to include an additional segment for the 

transition period; however, when calculating the level and slope changes, we ignored this 

segment (further details available in Appendix 1).  

We analysed each dataset using the six estimation methods described in Section 2.4. For REML 

with the Satterthwaite approximation, when the computed degrees of freedom were less than two, 

we substituted these with the value two to avoid overly conservative confidence limits and 

hypothesis tests. We only included analyses for which the estimate of autocorrelation was strictly 

between -1 and +1. The datasets were analysed in Stata 15 (23) (see Additional File 1 for 

analysis code).  
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2.6 Comparison of results from the different ITS analysis methods 
The results of interest were point estimates of the immediate level change (β2) and slope change 

(β3), their associated standard errors, confidence intervals and p-values, and the estimated lag-1 

autocorrelation. Across the ITS studies, different outcomes were measured, necessitating the 

need to standardise the estimates of slope and level change for comparison across the datasets. 

This was achieved for each dataset by dividing parameter estimates by the root mean square 

error (RMSE) estimated from a segmented linear regression model using OLS. We also 

standardised the direction of effect. This was achieved for each pairwise comparison of methods 

by multiplying both estimates by -1 if the first method’s estimate was less than zero. We also 

repeated these analyses standardising to the direction of the second method’s estimate. 

2.6.1 Estimates of level and slope changes, and their standard errors 

We compared the level and slope change point estimates with their standard errors using visual 

displays and tabulation. Specifically, we used Bland Altman scatter plots (24) to assess pairwise 

agreement in the results (standardised estimates of level change, slope change, and their 

standard errors) between the different statistical methods. For each pairwise comparison, the 

difference in the two estimates was plotted against the average of the two estimates (e.g. 

‘difference in estimates of level change from OLS and PW’ versus ‘average of estimates of level 

change from OLS and PW’). In the case of the standard errors, we first log-transformed these to 

remove the relationship between the variability of the differences and the magnitude of the 

standard errors (24). The mean difference and limits of agreement (average difference 

±1.96×standard deviation of the differences) were calculated and overlaid on the plots. These 

pairwise comparisons were displayed in a matrix of plots to show comparisons of each method 

with all others. Plots in the top triangle of the matrix illustrate agreement between the effect 

estimates (either level change or slope change), and plots in the bottom triangle illustrate the 

agreement between the standard errors. 

We also investigated whether series length impacted the difference in level and slope change 

estimates between each pair of methods. A matrix of scatterplots of the differences versus the 

(log) length of series (overlaid with a local regression (LOESS) smoothed curve) for each pairwise 

method comparison was used to visually examine this relationship. 

2.6.2 Confidence Intervals 

We visually compared the width of the confidence intervals from the different statistical methods. 

For each dataset and pairwise comparison, a ratio of the confidence interval widths from the two 

methods was calculated and then scaled so that the comparison method confidence interval 

spanned -0.5 to 0.5. 
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2.6.3 p-values 

We compared the p-values of the effect estimates between the methods by categorising the p-

values based on commonly used levels of statistical significance. First, we categorised the p-

values at the 5% level of statistical significance (i.e. < 5%, ≥ 5%), and second, we categorised p-

values using a finer gradation (i.e. p-value < 1%, 1% ≤ p-value < 5%, 5% ≤p-value < 10%, p-value 

≥ 10%). For each pairwise comparison between methods, we calculated the percentage of 

datasets where there was agreement in the categories of statistical significance (i.e. the 

percentage of datasets where the p-value for the effect estimate was < 0.05 for both methods or 

the p-value was ≥ 0.05 for both methods). Further, we calculated kappa statistics to assess 

agreement beyond chance. We use the following adjectives when describing the results: 0.41-0.6 

moderate agreement, 0.61-0.8 substantial agreement, 0.81-1.0 almost perfect agreement (25).  

2.7 Autocorrelation coefficient estimates 
We calculated and tabulated medians and interquartile ranges for estimates of lag-1 

autocorrelation for the three methods that yield these estimates (ARIMA, PW, REML). The 

summary statistics are reported for all series as well as being restricted to series with ≥ 24 points 

and series with ≥ 100 points, in order to assess whether series length impacted the magnitude of 

the estimates. A scatterplot of autocorrelation versus (log) length of series (overlaid with a LOESS 

curve) was used to visually examine this relationship. A further scatter plot was generated that 

depicted the REML estimates of autocorrelation along with their confidence intervals. 

3 Results 
3.1 Time series dataset acquisition 
Of the 230 ITS identified in the review (10) we obtained 10/230 (4%) datasets directly from the 

publication (e.g. time series data reported in tables), 50/230 (22%) through email contact with the 

authors, and 184/230 (80%) through digital data extraction. For some series (n = 47), multiple 

datasets from the different sources were available (Figure 2). Using our hierarchy for selecting the 

source of the dataset when multiple series were available resulted in 190 unique datasets, with 

8/190 (4%) sourced directly from the publication, 45/190 (24%) through email contact with 

authors, and 137/190 (72%) from digital data extraction.  

We were unable to obtain 40 of the 230 ITS included in the review because the data were not 

reported in the paper, could not be obtained from authors, or could not be digitally extracted. For 

two datasets, a segmented linear regression model was not appropriate to fit, and these were 

excluded. Five of the datasets obtained from the authors could not be used: three due to errors in 

the data; two as segmented linear regression models were not appropriate to fit. Forty-six of the 

datasets could not be digitally extracted, 27 studies included graphs with insufficient resolution to 

digitally extract data; 8 studies had no graph; 8 studies had summary data only (e.g. a summary 
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graph showing a small number of annual figures was provided when monthly data was used in 

the analysis); and 3 studies had graphs but did not plot data points.  

 
Figure 2: Flowchart of selected datasets. Green boxes denote the number of included studies and time series, blue 
boxes denote the numbers corresponding to dataset collection, and orange boxes denote the numbers corresponding 
to dataset exclusion. 
a Hierarchy for data selection was (i) published data, (ii) contact with authors, and (iii) digital extraction 
b An appropriate segmented linear regression model could not be used for some datasets 

3.2 Characteristics of the included ITS 
The characteristics of the ITS studies with available datasets for re-analysis are compared to all 

200 ITS studies in Table 2. No major differences were found. The types of study interventions 

were similar, as were the types of time intervals. The number of time points per series were lower 

in the studies with available datasets than in all ITS studies (median 41, Q1-Q3 25 to 71) versus 

48 (30 to 100)). The length of the segments used to calculate the estimates for the first 

interruption were slightly shorter in the series with available data than in all series (16, IQR 

(10,28) versus 18 IQR (10, 34)). 
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Table 2: Characteristics of interrupted time series studies and series 

Study level characteristics All ITS studies 
(n = 200) 

ITS studies with available 
data (n = 166)a 

 n % n % 
Type of interruption     
     Exposurea 12 6 10 6 
     Intervention 188 94 180 95 
 Intervention type     
  policy change 104 52 81 49 
  practice change 40 20 36 22 
  communication 29 15 24 14 
  organisation of care 13 7 12 7 
  clinical intervention 2 1 2 1 
Time interval type     
  daily 3 2 2 1 
  weekly 9 5 6 4 
  two weekly 1 1 1 1 
  monthly 120 60 96 58 
  quarterly 31 16 28 17 
  six monthly 3 2 3 2 
  annually 20 10 17 10 
  other 12 6 12 7 
  can't determine 1 1 1 1 
Series level characteristics ITS 

(n=230) 
ITS with available data 
(n=190) 

   median IQR median IQR 
Number of time points per series 48 (30, 100) 41 (25, 71) 
Number of time points in the segments 
used to calculate estimates for the first 
interruption 

18 (10, 34) 16 (10, 28) 

Abbreviation: ITS, interrupted time series; IQR, inter-quartile range. 
a Our definition of an exposure is limited to exposures or events that are not under investigator control (e.g. 
earthquakes, financial crises, tsunamis, environmental chemicals). We use the term ‘investigator’ loosely to include 
researchers, clinicians and policy makers. 

3.3 Comparison of results from the different ITS analysis methods 

3.3.1 Estimates of level and slope changes, and their standard errors 

The median values of the absolute value of the standardised effect estimates for level change 

ranged from 1.22 to 1.49 across the statistical methods (Table 3). For slope change, the median 

value of the absolute value of the standardised effect estimates was 0.13 for all statistical 

methods (Table 3). Pairwise comparisons were limited to a minimum of 171 datasets because at 

least one statistical method failed to converge, failed to yield standard errors or estimated the 

magnitude of autocorrelation to be outside the range -1 to +1 in 19 of the datasets (Table 4).  
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Table 3: Effect estimate summaries. The NW estimates are the same as OLS and the REML-Satt estimates are the 
same as REML, so these are not presented. 

  Absolute value of effect estimate 
 N Level change 

Median (IQR) 
Slope change 
Median (IQR) 

ARIMA 189 1.40 (0.63,2.90) 0.13 (0.05,0.26) 
OLS 190 1.49 (0.60,3.03) 0.13 (0.06,0.27) 
PW 189 1.33 (0.57,2.81) 0.13 (0.05,0.26) 
REML 181 1.22 (0.47,2.56) 0.13 (0.05,0.25) 

Abbreviations: IQR, interquartile range; ARIMA, autoregressive integrated moving average; OLS, ordinary least 
squares; PW, Prais-Winsten; REML, restricted maximum likelihood. 

Table 4: Number of available comparisons for the statistical methods investigated (n=190).  

Number of 
comparisons ARIMA OLS NW PW REML REML-Satt 

ARIMA 189 189 188 185 175 175 
OLS  190 189 186 175 175 
NW   189 186 174 174 
PW    186 171 171 
REML     175 175 
REML-Satt      175 

Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, OLS with Newey-
West standard error adjustments; PW, Prais-Winsten; REML, restricted maximum likelihood; REML-Satt, restricted 
maximum likelihood with Satterthwaite small sample adjustment. 

Pairwise comparisons of level change, slope change, and their standard errors for each of the five 

methods were made (Figures 3 and 4). REML with the Satterthwaite approximation was excluded 

from these comparisons because it only adjusts the width of the confidence intervals, and not the 

standard errors. There were small systematic differences in estimates of level change in the 

pairwise comparisons between the methods, REML had slightly smaller and OLS slightly larger 

effect estimates than the other methods (Figure 3, top triangle, and Table 5). The largest limits of 

agreement between all methods (REML vs OLS) were ±1.11. Expectedly, there was no difference 

in the standardised level change estimates between OLS and NW (since they use the same 

estimator for 𝛽𝛽2) and a very small difference between PW and ARIMA (since their point estimation 

methods are almost equivalent). There were no systematic differences in slope change estimates 

between the methods (Figure 4, top triangle and Table 6). Limits of agreement for slope change 

were generally similar across the pairwise comparisons of methods (but again with the exceptions 

of the comparison between OLS and NW, and PW and ARIMA). 
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There were systematic differences in the estimates of standard error of level change across some 

pairwise comparisons of methods (Figure 3, bottom triangle, and Table 5). Notably, the ARIMA 

standard errors were systematically larger compared with all other methods; however, this 

difference was smaller when compared with REML (geometric mean ratio standard errors for 

level change of 1.15). Aside from the pairwise comparison between PW and REML, the limits of 

agreement between the methods showed that the methods could yield large differences in the 

standard errors, particularly so for ARIMA compared with the other methods. For example, the 

limits of agreement for ARIMA compared with NW showed that the differences in standard errors 

could be large, ranging from 61% smaller to 460% larger. Similar patterns were observed for 

slope change (Figure 4 bottom triangle, and Table 6).  

Table 5: Mean of differences in level change estimates between methods (row method - column method) (top triangle) 
and geometric mean ratio of standard errors for level change between methods (column method/row method) (shaded 
bottom triangle) with 95% limits of agreement. The OLS and NW level change estimates are the same, so the 
difference is not presented. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least 
squares; NW, OLS with Newey-West standard error adjustments; PW, Prais-Winsten; REML, restricted maximum 
likelihood. Note that REML with the Satterthwaite approximation is not presented because it only makes an adjustment 
to the confidence intervals, and not the standard errors. 

Level Change Mean of differences in level change estimates between methods (95% limits of agreement) 
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ARIMA -0.08 (-0.94,0.78) -0.08 (-0.94,0.78) 0.00 (-0.07,0.07) 0.07 (-0.69,0.84) 

1.34 (0.43,4.18) OLS - 0.07 (-0.81,0.95) 0.09 (-1.02,1.21) 

1.47 (0.39,5.60) 1.09 (0.56,2.11) NW 0.07 (-0.81,0.95) 0.09 (-1.02,1.21) 

1.35 (0.52,3.53) 0.99 (0.58,1.69) 0.91 (0.48,1.71) PW 0.07 (-0.69,0.82) 

1.15 (0.47,2.80) 0.89 (0.50,1.59) 0.79 (0.41,1.55) 0.89 (0.74,1.08) REML 
 

Table 6: Mean of differences in slope change estimates between methods (row method - column method) (top triangle) 
and geometric mean ratio of standard errors for level change between methods (column method/row method) (bottom 
triangle) with 95% limits of agreement. The OLS and NW slope change estimates are the same, so the difference is not 
presented. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, OLS 
with Newey-West standard error adjustments; PW, Prais-Winsten; REML, restricted maximum likelihood. Note that 
REML with the Satterthwaite approximation is not presented because it only makes an adjustment to the confidence 
intervals, and not the standard errors. 

Slope Change Mean of differences in slope change estimates between methods (95% limits of agreement) 
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ARIMA 0.00 (-0.11,0.12) 0.00 (-0.11,0.12) 0.00 (-0.02,0.02) 0.01 (-0.12,0.13) 

1.40 (0.44,4.46) OLS - 0.00 (-0.09,0.09) 0.00 (-0.12,0.12) 

1.68 (0.36,7.90) 1.19 (0.53,2.65) NW 0.00 (-0.09,0.09) 0.00 (-0.12,0.12) 

1.38 (0.56,3.38) 0.96 (0.50,1.86) 0.81 (0.35,1.91) PW 0.00 (-0.09,0.10) 

1.12 (0.45,2.80) 0.82 (0.37,1.84) 0.68 (0.25,1.86) 0.84 (0.59,1.19) REML 
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Figures 3 and 4: Bland Altman plots of standardised level change (Figure 3) and slope change (Figure 4).  Plots in the 
top triangle (blue points) show the difference in point estimates (row method – column method) on the vertical axis and 
average of the parameter estimates on the horizontal axis. Plots in the bottom triangle (orange points) show differences 
in standard errors on the vertical axis (= log(ratio of standard errors)) (column method – row method) and the average 
of the log of the standard errors on the horizontal axis. Red horizontal lines depict the average, red dashed lines depict 
the 95% limits of agreement (calculated as the average ±1.96*standard deviation of the differences). Grey lines indicate 
zero. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, OLS with 
Newey-West standard error adjustments; PW, Prais-Winsten; REML, restricted maximum likelihood. Note that REML 
with the Satterthwaite approximation is not presented because it only makes an adjustment to the confidence intervals, 
and not the standard errors. 
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Our visual examination of the impact of series length on the differences in level change estimates 

between pairs of methods showed that series length was not associated with the differences, with 

the exception of comparisons with the REML method. For these comparisons, the variability of 

the differences decreased for longer series (Appendix 2). The variability in differences in slope 

change estimates for all pairwise comparisons between methods (except between ARIMA and 

PW), tended to decrease with increasing series length. 

When we repeated the analysis standardising the direction of effect to the second method’s 

estimate, we found the results did not importantly change (Appendix 3).  

3.3.2 Confidence Intervals 

Pairwise comparisons of the confidence interval width for the estimated level change between the 

methods reflected the patterns observed when comparing the standard errors (Figure 5). ARIMA 

generally yielded wider confidence intervals with 64%, 70% and 71% of the ARIMA confidence 

intervals being wider than OLS, NW and PW respectively. ARIMA confidence intervals widths 

were similar to REML. REML with the Satterthwaite confidence interval adjustment yielded the 

widest confidence intervals of all methods; only 37% of ARIMA confidence intervals were wider 

than REML with Satt. This pattern was also seen when comparing the confidence interval widths 

for the estimated slope change between the methods (Figure 6). 
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Figures 5 and 6: Pairwise confidence interval comparisons for level change (Figure 5) and slope change (Figure 6). 
Each plot displays up to 190 confidence intervals (CIs) (depicted as vertical lines), with each scaled so that the 
confidence interval from the reference method spans -0.5 to 0.5 (shaded area). The reference method is the column 
method (e.g. the plot in the second row, first column shows OLS CIs (blue) compared to ARIMA (purple)). Vertical lines 
falling entirely within the shaded area have smaller confidence intervals than the comparison (left of the vertical dashed 
line), while lines extending beyond the shaded area have larger confidence intervals than the comparison (right of the 
vertical dashed line). White dots indicate the point estimate. Black vertical lines indicate scenarios in which the point 
estimate from one method does not lie within the confidence interval of the other. Abbreviations: ARIMA, 
autoregressive integrated moving average, purple; OLS, ordinary least squares, blue; NW OLS with Newey-West 
standard error adjustments, light blue; PW, Prais-Winsten, light green; REML, restricted maximum likelihood, orange; 
REML-Satt, restricted maximum likelihood with Satterthwaite small sample adjustment, red. 
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3.3.3 p-values 

The percentage agreement in statistical significance (dichotomised at the 5% significance level) 

for level change in the pairwise comparisons between methods ranged from 79.3% (NW versus 

REML-Satt) to 97.1% (PW versus REML) (Table 7). Corresponding kappa statistics ranged from 

0.59 (moderate agreement) for NW versus REML-Satt to 0.94 (almost perfect agreement) for PW 

versus REML. Discordance in statistical significance in comparisons with REML-Satt and ARIMA 

arose because these methods yielded larger p-values (Figure 7). For example, in the comparison 

of NW with REML-Satt, 20% of NW analyses yielded a p-value ≤ 0.05 when the REML-Satt p-

value was > 0.05, while only 1% of NW analysis yielded a p-value > 0.05 when the REML-Satt p-

value was ≤ 0.05. 

In general, the agreement was less for slope change compared with level change (Table 8). The 

percentage agreement in statistical significance (at the 5% significance level) for slope change in 

the pairwise comparisons between methods ranged from 75.3% (NW versus REML-Satt) to 

93.6% (PW versus REML). Corresponding kappa statistics ranged from 0.50 (moderate 

agreement) for NW versus REML-Satt to 0.87 (almost perfect agreement) for PW versus REML. 

The direction of disagreement was similar to that of level change with ARIMA and REML-Satt 

methods yielding larger p-values more often than the other methods (Figure 8). 

Table 7: Pairwise agreement in statistical significance of estimates of level change between statistical methods. P-
values associated with estimates of level change were categorised at the 5% level of statistical significance (i.e. <5%, 
≥5%). Cells in the upper triangle contain the percentage of series for which the p-value for level change was < 0.05 for 
both methods or the p-value was ≥0.05 for both methods. Denominators are reported in Table 4. Cells in the lower 
triangle (shaded) contain kappa statistics. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, 
ordinary least squares; NW OLS with Newey-West standard error adjustments; PW, Prais-Winsten; REML, restricted 
maximum likelihood; REML-Satt, restricted maximum likelihood with Satterthwaite small sample adjustment. 

Level 

Change 
ARIMA 83.1% 80.3% 88.1% 88.0% 87.4% 

Percentage of agreem
ent 

K
ap

pa
 s

ta
tis

tic
 

0.66 OLS 93.1% 91.4% 90.9% 84.6% 

0.61 0.86 NW 90.3% 86.8% 79.3% 

0.76 0.83 0.81 PW 97.1% 87.1% 

0.76 0.82 0.74 0.94 REML 90.3% 

0.74 0.69 0.59 0.74 0.80 
REML-

Satt 
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Table 8: Pairwise agreement in statistical significance of estimates of slope change between statistical methods. P-
values associated with estimates of level change were categorised at the 5% level of statistical significance (i.e. ≤5%, 
>5%). Cells in the upper triangle contain the percentage of series for which the p-value for level change was ≤ 0.05 for 
both methods or the p-value was > 0.05 for both methods. Denominators are reported in Table 4. Cells in the lower 
triangle (shaded) contain kappa statistics. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, 
ordinary least squares; NW OLS with Newey-West standard error adjustments; PW, Prais-Winsten; REML, restricted 
maximum likelihood; REML-Satt, restricted maximum likelihood with Satterthwaite small sample adjustment. 
 

Slope 

Change 
ARIMA 81.5% 76.1% 82.7% 88.0% 86.3% 

Percentage of agreem
ent 

K
ap

pa
 s

ta
tis

tic
 

0.61 OLS 89.4% 90.3% 89.1% 80.6% 

0.52 0.79 NW 90.3% 85.1% 75.3% 

0.64 0.80 0.81 PW 93.6% 83.6% 

0.74 0.77 0.70 0.87 REML 90.3% 

0.68 0.58 0.50 0.65 0.78 
REML-

Satt 

 

Our examination of agreement using a finer gradation of statistical significance categories 

showed that when there was discordance between methods, this generally occurred in an 

adjacent category (e.g. one method with a p-value ≤ 0.01 and the comparison method with 0.01 ≤ 

p-value < 0.05). However, there were some examples where there was discordance in non-

adjacent categories. For level change these comparisons were ARIMA versus NW, NW versus 

REML-Satt, and OLS versus REML and REML-Satt (Figure 7), while for slope change these 

comparisons were the same, but also with the addition of PW versus REML-Satt ( 

Figure 8). The p-values yielded from ARIMA and REML-Satt were generally larger than the other 

methods, and by contrast, the p-values for NW, and to a lesser extent OLS, tended to be smaller 

(Appendix 4). 
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Figures 7 and 8: Pairwise agreement in statistical significance of estimates of p-value comparisons for level change 
(Figure 7) and slope change (Figure 8). For plots in the bottom triangle, p-values were categorised at the 5% level of 
significance (i.e. ≤5%, >5%), while for plots in the top triangle, p-values were categorised using a finer gradation of p-
value ≤ 0.01, 0.01<p-value≤0.05, 0.05<p-value≤0.1, p-value>0.1. Each cell within a plot contains the percentage of 
datasets falling within the row and column defined significance levels. Concordant results are shown in blue. Discordant 
results are shown as either white (0-5% discordance), orange (5-10% discordance), red (10-20% discordance) or 
purple (over 20% discordance). For example, comparing ARIMA to OLS (row 2, column 1, bottom triangle) shows that 
for 12% of the datasets the ARIMA method yields a p-value > 0.05 while the OLS method yields a p-value ≤ 0.05. 
Numbers may not add to 100 due to rounding. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, 
ordinary least squares; NW OLS with Newey-West standard error adjustments; PW, Prais-Winsten; REML, restricted 
maximum likelihood; Satt, Satterthwaite adjustment. 
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3.4 Autocorrelation coefficient estimates 
Three of the statistical methods (ARIMA, PW, REML) yielded estimates of autocorrelation (Table 

9, Figure 9). The REML method estimated consistently larger magnitudes of autocorrelation than 

the other methods (median and inter-quartile range (IQR) of 0.2 (-0.01, 0.54) compared with 0.04 

(-0.15, 0.30) for ARIMA and 0.05 (-0.14, 0.33) for PW). When restricting the examination of 

autocorrelation to datasets where all three methods could be compared (n = 171 datasets), the 

summary statistics were essentially unchanged. 

The difference between REML and the other methods was more pronounced for shorter series 

(Table 9, Figure 9). All methods tended to yield negative values for short data series (fewer than 

approximately 12 data points). In longer data series (≥100 data points) all methods yielded similar 

estimates. 

Table 9: Autocorrelation coefficient estimates (REML estimates of -1 and 1 are excluded, PW estimates < -1 are 
excluded) 

 Autocorrelation coefficient (ρ) estimate 
 All available datasets Series with ≥ 24 points Series with ≥ 100 points 
Statistical 
method 

N median (IQR) N median (IQR) N median (IQR) 

ARIMA 189 0.04 (-0.15,0.30) 154 0.07 (-0.10,0.36) 31 0.19 (0.04,0.54) 
PW 186 0.05 (-0.14,0.33) 155 0.07 (-0.10,0.38) 31 0.19 (0.04,0.54) 
REML 175 0.20 (-0.01,0.54) 147 0.20 (-0.01,0.53) 31 0.23 (0.08,0.57) 
 Restricted to datasets where all methods can be compared 
ARIMA 171 0.05 (-0.14,0.30) 147 0.06 (-0.11,0.35) 31 0.19 (0.04,0.54) 
PW 171 0.05 (-0.14,0.31) 147 0.07 (-0.11,0.35) 31 0.19 (0.04,0.54) 
REML 171 0.20 (-0.01,0.54) 147 0.20 (-0.01,0.53) 31 0.23 (0.08,0.57) 

 
Figure 9: Autocorrelation coefficient estimates. Scatterplot showing the autocorrelation estimate on the vertical axis and 
length of data series on the (log scale) horizontal axis. LOESS lines are overlaid to show trends in autocorrelation 
coefficient with data series length. Dashed lines on the left show the distribution of the estimates with overlaid symbols 
showing the median value. Abbreviations: ARIMA, autoregressive integrated moving average; PW, Prais-Winsten; 
REML, restricted maximum likelihood. 
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Confidence intervals for the REML estimates of autocorrelation show that for most studies with 

fewer than 48 data points the confidence limits extend below and above zero (Figure 10). For 

longer series, as expected, the confidence intervals are narrow, with many excluding no and 

negative autocorrelation estimates. 

 
Figure 10: Autocorrelation coefficient estimates using the restricted maximum likelihood (REML) method. Data from 172 
datasets. Red horizontal lines show the median and IQR of 0.2 (-0.02, 0.52). Blue circular markers indicated 95% 
confidence intervals that lie entirely above zero, red triangular markers indicate 95% confidence interval that lie entirely 
below zero.  
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4 Discussion 
4.1 Summary and discussion of key findings 
We re-analysed 190 ITS using six statistical methods and compared estimates of immediate level 

change, slope change, their associated standard errors, confidence intervals and p-values, and 

the estimated lag-1 autocorrelation. We found important inconsistency in these estimates across 

the methods, such that the interpretation of the findings in some series may differ depending on 

the chosen method. 

On average, there were small systematic differences in estimates of level change across the 

statistical methods, with OLS yielding slightly larger estimates, and REML slightly smaller 

estimates compared with the other methods. For slope change, all methods yielded, on average, 

similar estimates. For some pairwise comparisons, the limits of agreement indicated large 

differences could arise. This was particularly notable in the comparisons between REML and the 

other methods. There were systematic differences in the standard errors between most methods, 

and the limits of agreement also indicated large differences could arise. ARIMA yielded 

systematically larger standard errors compared with all other methods, although the difference 

with REML was not as large. Of note, the PW yielded, on average, similar standard errors as 

OLS. This was perhaps surprising given PW provides adjustment for autocorrelation (which OLS 

does not), and in a numerical simulation study investigating the performance of these methods, 

PW was shown to perform better than OLS for data series approximately longer than 24 points 

(12). The results in our empirical investigation therefore likely reflect the influence of shorter data 

series.  

The differences in point estimates and standard errors led to differences in the confidence interval 

widths, p-values, and statistical significance. Reflecting the pattern observed with standard errors, 

the ARIMA confidence intervals were wider compared with the other methods. However, REML 

with the Satterthwaite adjustment, which adjusts the t-distribution degrees of freedom used in the 

calculation of the confidence interval to account for uncertainty in estimation of the standard error, 

yielded the widest confidence intervals.  

Our results show that naively basing conclusions on statistical significance could lead to a 

qualitatively different interpretation. There was important discordance in statistical significance (at 

the 5% level) across many of the pairwise method comparisons. As expected, the discordance 

was greatest between the methods that yielded larger standard errors or adjusted for uncertainty 

in estimation of the standard error (i.e. ARIMA, and REML with SW, respectively) and the other 

methods. 

  



Page 102 Chapter 6. Empirical evaluation of statistical methods in 190 ITS studies 

For long series (≥100 data points), all methods yielded similar estimates of autocorrelation. The 

methods yielded different estimates with short to medium length series (i.e. < 100 data points), 

with the ARIMA and OLS autocorrelation estimates being substantially smaller than REML. Given 

the true underlying autocorrelation would not be expected to vary by series length, the stability of 

the REML estimates over the different series lengths is suggestive of it being the preferable 

estimator, which has been shown in numerical simulation studies to be the case (12, 26). 

The magnitude of autocorrelation estimates from these ITS public health datasets, with a median 

of 0.23 (IQR 0.08 to 0.57, restricted to series with ≥ 100 data points, n = 31 REML method), 

indicate that autocorrelation should not be ignored in the design or analysis of ITS studies. 

Despite this, in nearly 50% (113/230) of the series included in the review, autocorrelation was not 

considered, or the method to adjust for autocorrelation could not be determined (10). 

Furthermore, only 1.5% (3/200) studies provided evidence of a sample size calculation, and only 

two of these considered autocorrelation. Similar findings have also been observed in other 

systematic reviews. Jandoc et al. (8) found that only 146/220 (66.4%) ITS studies reported testing 

for autocorrelation, Hudson et al. (11) found that 63/115 (55%) considered autocorrelation, 

Ewusie et al. (9) found that only 812/1365 (59.5%) checked for autocorrelation and Hategeka et 

al. (27) similarly found that 66/120 (55%) checked or adjusted for autocorrelation. 

4.2 Strengths and limitations 
There are several strengths to our study. First, the repository of ITS studies was randomly 

sampled from PubMed, thus the findings are likely to be generalisable to ITS studies indexed in 

this database. Second, we used a variety of methods to obtain the time series data to optimise 

the number of datasets retrieved, which resulted in a large percentage of datasets being retrieved 

(190/230; 83%). Finally, we investigated a range of statistical methods, including those commonly 

used in practice (8-11), and compared their results using metrics of interest to researchers (point 

estimates, standard errors, confidence intervals, p-values, statistical significance) to provide a 

comprehensive picture of how the methods compared. 

One limitation of this study is that our findings may not be generalisable to ITS studies outside of 

public health. For example, this would be the case if influencing characteristics (e.g. series length) 

of ITS studies in public health differ to other disciplines.  Another limitation of our study is that we 

fitted a segmented linear regression model, assuming lag-1 autocorrelation, to all datasets. This 

model may have differed to that used in the original publication, and furthermore, may not have 

been the best fitting model. However, our re-analysis was not intended to specifically address the 

research question(s) of the original publications, but as a means of comparing different statistical 

methods. 
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4.3 Implications for practice 
Our research has shown that in this set of ITS studies, the choice of statistical method can 

importantly affect the findings. This could lead to ‘bias in the selection of the reported result’ (28), 

where the reported result is chosen based on its magnitude, direction of effect, or statistical 

significance. Publication of protocols with detailed statistical analysis plans provide a mechanism 

for study authors to engender trust in the reported results (e.g. when there is consistency 

between the planned and used analysis methods). Protocols also allow readers to assess 

whether there were any changes to the analysis, and if so, what the legitimacy of those changes 

were. While protocols and statistical analysis plans are now common for randomised trials (29), in 

our review of ITS studies, none of the 200 studies reported having a published protocol. Protocols 

can be published in a peer-reviewed journal, published on a pre-print server (e.g. medRxiv), or 

registered in an online registry (e.g. open science framework). 

Given the results can vary importantly, the selected statistical method needs to be carefully 

chosen considering the characteristics of the ITS. For example, Turner et al (12) found through a 

numerical simulation study that the length of the series is an important factor for deciding on the 

statistical method. Sensitivity analyses that use an alternative method might also be considered. 

Finally, we recommend that time series data, including dates of the interruptions and any 

transition periods be made available alongside the publication. At a minimum, any plots of ITS 

data should follow graphing recommendations to facilitate data extraction using digitising software 

(30). 

4.4 Implications for future research 
Future research examining factors that may modify the magnitude of autocorrelation (e.g. type of 

outcome) would be useful. Knowledge of these factors would facilitate informed predictions about 

the likely magnitude of autocorrelation for an individual ITS study with particular characteristics, 

which could be used to more accurately determine the required sample size. Similar research has 

been undertaken investigating factors that modify intra-cluster correlations (ICCs) in cluster 

randomised trials, which has led to generalizable ‘rules-of-thumb’ on the selection of ICCs for 

sample size calculations in cluster trials (31). 
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5 Conclusion 
ITS studies are commonly used in public health research to assess the impact of an intervention 

or exposure. A range of statistical methods are available to analyse ITS, and our study has shown 

that the choice of method can importantly affect the level and slope change estimates, their 

standard errors, width of confidence intervals and p-values. These differences may lead to 

qualitatively different conclusions being drawn about the impact of the interruption. Pre-

specification of the statistical method is encouraged, and naive conclusions based on statistical 

significance should be avoided. 
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9 Abbreviations 
ARIMA Autoregressive Integrated Moving Average 
d.f. Degrees of freedom 

ICC Intra-correlation coefficient 
IQR Inter-quartile range 
ITS Interrupted Time Series 
LOESS Local Regression 

OLS Ordinary Least Squares 
NW Newey-West 
PW Prais-Winsten 
REML Restricted Maximum Likelihood 
REML-Satt Restricted Maximum Likelihood with the small 

sample Satterthwaite approximation 

RMSE Root Mean Square Error 

SE Standard Error 
 

Appendices 
Appendix 1: Interrupted time series with a transition period 

  
Figure 11: Interrupted time series with a transition period. The level change is calculated as the vertical distance 
between the counterfactual trend line and the post-transition trend line at the beginning of the post-transition series. 
The slope change is calculated as the change in slope between the counterfactual trend line and post-transition trend 
line. 
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Appendix 2: Difference in level and slope change by length of time series 
We investigated the impact of series length on the difference in level and slope change estimates 

between each pair of methods. A matrix of scatterplots of the differences in level change (or slope 

change) versus the (log) length of series (overlaid with a local regression (LOESS) smoothed 

curve) for each pairwise method comparison is presented in Figure 12. 

 

Figure 12: Scatter plot of standardised level change versus series length. The vertical axis shows the effect estimate of 
the row method – the effect estimate of the column method. The horizontal axis shows the length of the time series 
(using a log scale). Blue dots represent situations in which the direction of effect was the same (both positive or both 
negative), while orange crosses represent situations in which the direction of effect was not the same. Red horizontal 
lines depict the average, red dashed lines depict the 95% limits of agreement (calculated as the average 
±1.96*standard deviation of the differences). Grey lines indicate zero. Abbreviations: ARIMA, autoregressive integrated 
moving average; OLS, ordinary least squares; PW, Prais-Winsten; REML, restricted maximum likelihood. Note that NW 
is not presented as it yields identical effect estimates to OLS, similarly REML with the Satterthwaite approximation is 
not presented because it yields identical effect estimates to REML. 
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Appendix 3: Standardising the direction of effect 
We standardised the direction of effect for each pairwise comparison of methods by multiplying 

both estimates by -1 if the first method’s estimate was less than zero. Given the choice of first 

method was arbitrary, we repeated these analyses by standardising to the direction of the second 

method’s estimate. Table 10 presents equivalent information to that presented in the top triangles 

of Tables 5 and 6, except with the standardisation reversed. The direction of standardisation did 

not affect mean differences in slope change estimates between methods, and had a small, but 

unimportant, impact for level change.  

Table 10: Mean of differences in level change estimates between methods (column method - row method) (top triangle) 
and geometric mean ratio of standard errors for level change between methods (row method/column method) (shaded 
bottom triangle) with 95% limits of agreement. The OLS and NW level change estimates are the same, so the 
difference is not presented.  

Level Change Mean of differences in level change estimates between methods (95% limits of agreement) 
Mean of 

differences in 
slope change 

estimates 
between 
methods 

(95% limits of 
agreement) 

ARIMA 0.05 (-0.81,0.92) 0.05 (-0.81,0.92) 0.00 (-0.07,0.07) -0.11 (-0.86,0.64) 

-0.01 (-0.12,0.11) OLS - -0.09 (-0.97,0.78) -0.17 (-1.25,0.91) 

-0.01 (-0.12,0.11) - NW -0.09 (-0.97,0.78) -0.17 (-1.25,0.91) 

0.00 (-0.02,0.02) 0.00 (-0.09,0.09) 0.00 (-0.09,0.09) PW -0.11 (-0.84,0.63) 

-0.01 (-0.13,0.12) 0.00 (-0.12,0.12) 0.00 (-0.12,0.12) 0.00 (-0.10,0.09) REML 

Appendix 4: Detailed p-value comparisons 

 
Figure 13: Pairwise comparisons of p-values between all statistical methods. The top triangle refers to level change p-
values, the bottom triangle refers to slope change p-values. Dashed red lines indicate p-values of 0.05, dashed grey 
lines indicate p-values of 0.01. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least 
squares; NW OLS with Newey-West standard error adjustments; PW, Prais-Winsten; REML, restricted maximum 
likelihood; Satt, Satterthwaite adjustment. 
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  Summary and conclusions 
Interrupted time series designs are important for examining the impact of public health 

interruptions. They are particularly useful in public health research when randomised trials are not 

always feasible (1-8). When appropriately designed and analysed, the results from ITS studies 

can contribute valuable information to inform health and policy decisions. As repositories of data 

continue to accumulate (e.g. registry data, administrative data), there will be greater opportunities 

for this design to be used. Given this, it is vital to understand how researchers are conducting, 

analysing and reporting ITS studies; and, to examine how the statistical methods used to analyse 

ITS perform, and which characteristics of ITS may compromise their performance. This 

knowledge can underpin development of tools and guidance for researchers and identify where 

further statistical methods’ development is required. The aim of the research presented in this 

thesis was to assess the design, reporting quality and statistical methods used in ITS studies 

investigating interruptions with public health implications, and to provide tools and guidance to 

improve each of these elements. 

 

The research presented in this thesis consists of a series of interlinked studies. First, a review of 

ITS studies was undertaken (Chapter 3). The review assessed design characteristics, statistical 

models, estimation methods, and quality of reporting in 200 ITS studies investigating interruptions 

with public health implications. The results of this review highlighted deficiencies in the reporting 

of ITS studies and informed the subsequent studies. Drawing from the visualisation literature, a 

set of recommendations for graphing the results of ITS were proposed (Chapter 4). ITS graphs 

from studies included in the review were assessed against these recommendations, and the 

recommendations were then applied to two graphs from the published literature. Computer code 

was developed and provided to enable researchers to implement the graphing recommendations. 

The statistical methods identified in the review were compared in a comprehensive simulation 

study using parameter values representative of real-world data. The findings of the simulation 

study led to recommendations about the choice of statistical methods (Chapter 5). A comparison 

of the level and slope change estimates (and associated statistics) when the statistical methods 

were applied to 190 real-world datasets was undertaken. Estimates of autocorrelation were 

calculated and summarised. An open access repository of the ITS datasets was collated for use 

in future statistical research (Chapter 6). 

 

A visual depiction of the linkage between the thesis chapters and their outputs is displayed in 

Figure 4. The following sections summarise the key findings from each of the chapters, discuss 

overall findings, outline implications for ITS researchers, and conclude with proposals for further 

research. 
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Figure 4: A visual depiction of the thesis studies, how they interlink, and their outputs. Blue arrows show how the review 

informed subsequent studies, green boxes show the recommendations, orange boxes show the developed resources. 

7.1 Summary of thesis chapters 

7.1.1 Chapters 2 and 3 – Design characteristics and statistical methods used in 

interrupted time series studies evaluating public health interventions: protocol 

and review 
Chapter 2 presented the protocol for a review of published ITS studies (2013-2017) and Chapter 

3 presented the results of the review.  The review aimed to examine the design characteristics, 

statistical methods, and completeness of reporting of a random sample of 200 ITS studies 

(including 230 series) examining interruptions with public health impacts. 

 

Key findings from the review included the following: 

• Nearly all the studies evaluated the impact of an intervention (94%, 188/200), and more 

than half investigated policy change interventions (52%, 103/200). 

• Time series lengths were frequently short, with a median of 48 points (IQR 30,100), and 

two thirds of the time series were composed of two segments (66%, 152/230). 

• Fewer than a quarter of analyses included a control series (24%, 48/230). 

• A graph depicting the time series data was almost always included (93%, 214/230). 

• The most common statistical analysis methods were linear regression (31%, 72/230) and 

ARIMA (19%, 43/230); however, in almost one fifth of the series, the statistical method 

could not be determined (17%, 40/230). 

types of graphs and 
their characteristics

parameter estimates 
(e.g. series lengths), 

commonly used 
statistical methods

datasets and commonly
used statistical methods

datasets and methods
used to estimate 
autocorrelation

Chapter 5 
(Objective 3)

Simulation Study

Chapter 6 
(Objective 4)

Empirical Study

Chapter 4 
(Objective 2)
Graphing ITS

Reporting and 
graphing

recommendations

Methods
recommendations

How do statistical methods
perform under a range of scenarios?

How do the statistical methods
compare when applied to 

real world datasets?

What are typical estimates of
autocorrelation in real world datasets?

How can reporting be improved?

How can ITS graphs be improved?

Chapter 6
(Objective 5)

Data Repository

Repository of ITS 
datasets

Recommendations Resources

Code to implement 
ITS graphing 

recommendations

Chapters 2+3
(Objective 1)

Review



Page 112   Chapter 7. Summary and conclusions 

 

• When a non-ARIMA method was used (n=187), in almost two thirds of analyses it could 

not be determined if a method for handling autocorrelation was considered or employed 

(60%, 113/187). When linear regression was used (n=72), autocorrelation was not 

adjusted for in over a third of the series (35%, 25/72), and in almost one fifth of these 

analyses it could not be determined whether there was adjustment for autocorrelation 

(19%, 14/72). 

• Estimates of the magnitude of autocorrelation were almost never reported (1%, 3/230). 

• The two most common effect measures reported were the level change at the time of the 

interruption (70%, 160/230) and slope change following the interruption (54%, 125/230). 

• Using the counterfactual trend to estimate differences at times other than the immediate 

time of the interruption was reported in only a quarter of analyses (25%, 58/230). 

• For over one third of the reported effect estimates, a measure of precision was not 

reported (CI or SE) (37%, 311/852). 

7.1.2 Chapter 4 - Creating effective interrupted time series graphs: review and 

recommendations 
Nearly all the publications included in the review (Chapter 3) included a graphical display of ITS 

data. Inspection of these graphs highlighted that a wide variety of graphical displays were used, 

and that, surprisingly, many did not actually clearly depict the time series data or the results. This 

motivated a formal examination of the graphs used in publications of ITS studies. The aim of the 

research presented in Chapter 4 was to formulate recommendations for graphing ITS data 

(informed from seminal data visualisation resources) and to assess whether the graphs from ITS 

studies included in the review (Chapter 3) met these recommendations. To aid application, the 

recommendations were demonstrated using two examples, and computer code was provided to 

produce ITS graphs meeting the recommendations. 

 

Key results of this research included: 

• Recommendations for the graphing of ITS data were proposed. The recommendations 

pertained to the following graph characteristics: data points, timing of interruption, pre- and 

post-interruption trend lines, counterfactual, additional lines and general graph 

components. 

• The recommendation to plot the data points was met by fewer than two thirds of graphs in 

the review (60%, 130/217). 

• The recommendation to indicate the timing of the interruption with a vertical line or 

shading was met in approximately three quarters of the graphs (73%, 158/217). 

• The recommendation to plot the fitted pre- and post-interruption trend lines was only met 

in 48% (103/217) of graphs. 

• The recommendation to plot the counterfactual was rarely met (17%, 37/217). 
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7.1.3 Chapter 5 - Evaluation of statistical methods used in the analysis of 

interrupted time series studies: a simulation study 
Chapter 5 presented a simulation study investigating the performance of a set of statistical 

methods used in analysing ITS data. The parameter values used in constructing the simulated 

datasets, and the statistical methods evaluated, were informed by the findings of the review 

(Chapter 3). Eight hundred different scenarios were simulated using a simple model with a 

continuous outcome and a single interruption at the mid-point of the series. The datasets were 

constructed with varying level and slope changes, lengths of series, magnitudes of lag-1 

autocorrelation and with constant variance. The statistical methods examined included OLS, NW, 

PW, ARIMA, REML and REML with the small sample Satterthwaite approximation. 

 

Key findings from this research included the following: 

• All statistical methods yielded unbiased estimates of level change and slope change. 

• The OLS and NW methods underestimated standard errors in the presence of 

autocorrelation. 

• All methods systematically underestimated the magnitude of autocorrelation; however, the 

REML method was more accurate than the other methods at estimating the magnitude of 

autocorrelation. 

• For all parameter combinations, CI coverage was always lower than the nominal 95% 

level except:  

o the OLS method in the absence of autocorrelation, and  

o the Satterthwaite method (which was often overly-conservative). 

• The method with the highest 95% CI coverage was OLS for short time series 

(approximately 12 points or under) and REML (with or without the small sample 

Satterthwaite approximation) for longer time series. 

• The DW test for autocorrelation was often inconclusive or incorrect except for longer data 

series (approximately 80 points or over) when there was either no underlying 

autocorrelation or larger values of underlying autocorrelation (greater than approximately 

0.5). 
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7.1.4 Chapter 6 - Comparison of six statistical methods for interrupted time series 

studies: empirical evaluation of 190 published series 
Chapter 6 presented the findings of an empirical evaluation comparing the results when different 

statistical methods were applied to 190 real-world datasets. A segmented linear regression model 

was fitted to each series, treating the outcome as continuous, including a single interruption, and 

allowing for lag-1 autocorrelation. This study examined the same statistical methods as those 

included in the simulation study (Chapter 5) and provided complementary evidence about how the 

statistical methods operate. The ITS identified in the review (Chapter 3) formed the repository of 

ITS data series included in the empirical evaluation. 

 

Key findings from this research included the following: 

• 190 unique datasets were obtained from the 230 datasets identified in the review. Digital 

data extraction provided 72% (137/190) of these datasets, 24% (45/190) were obtained 

via email contact with authors and 4% (8/190) were extracted directly from the 

publications. 

• There were very small systematic differences between pairwise comparisons of the six 

methods in terms of level change and no systematic differences between pairwise 

comparisons in terms of slope change. The 95% limits of agreement indicated that for 

some datasets, large differences in effect estimate could arise based on the statistical 

method used.  

• There were systematic differences in the pairwise comparisons of standard errors; ARIMA 

had notably larger SEs than the other methods. The 95% limits of agreement showed that 

there could be large differences in SE estimates between methods. 

• The ARIMA method generally yielded more conservative CIs than the other methods. The 

OLS and NW methods generally yielded less conservative CIs than the other methods. 

• The percentage agreement in statistical significance (dichotomised at the 5% significance 

level) for the level change estimates between methods ranged from 79.3% (NW versus 

REML-Satt) to 97.1% (PW versus REML). For slope change the percentage agreement 

ranged from 75.3% (NW versus REML-Satt) to 93.6% (PW versus REML). 

• Differences in the effects, and their associated statistics, estimated by the different 

statistical methods could lead to differences in the conclusions drawn about the impact of 

an interruption. 

• Autocorrelation was often found in the included studies with a median of 0.23 (IQR 0.08 to 

0.57, restricted to series with ≥ 100 data points, n=31, REML method). Length of series 

was found to impact the size of the estimated autocorrelation for PW and ARIMA, but not 

for REML.   
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7.2 Overall discussion 
The aim of this thesis was to advance the existing body of knowledge on the design, analysis and 

reporting of ITS studies used in public health research. The research considered continuous 

outcomes, segmented linear regression, and lag-1 autocorrelation, since these models are 

commonly fitted in practice, but there has been a paucity of research examining their performance 

(53). Future research that proposes to address more complex models and outcome types is 

outlined in section 7.4.  

 

The key findings of this thesis were that, for ITS studies that have evaluated the impact of 

interventions or exposures on public health outcomes, details of the statistical methods and 

considerations of autocorrelation were rarely reported; graphs often did not meet core 

recommendations; and, the statistical methods commonly used generally did not operate as 

desired, and in practice, can yield importantly different effect estimates and associated statistics. 

In this section, issues related to these findings are discussed. 

 

Autocorrelation is a key consideration in the design and analysis of ITS studies. The reporting of 

the statistical methods used in the studies included in the review was often incomplete, making it 

difficult to determine whether autocorrelation was acknowledged or accounted for (Chapter 3). 

Poor reporting of the handling of autocorrelation in ITS studies has also been found in reviews 

investigating other types of interruptions (9, 17-19, 24). Furthermore, the importance of reporting 

correlation coefficients has been recognised for other designs (e.g. cluster randomised trials (60)) 

but this has not gained recognition for ITS designs. The findings from this thesis therefore indicate 

that more work is needed to communicate the importance of autocorrelation in ITS designs. 

 

Many methods are available to estimate autocorrelation and to detect the presence of 

autocorrelation (26, 61-63). The DW test was often used to identify autocorrelation in the 

reviewed studies (Chapter 3); however, this test often fails to identify autocorrelation in time 

series of lengths that are commonly used in practice (Chapter 5). The REML method was found 

to accurately estimate the magnitude of autocorrelation for series longer than approximately 12 

points (Chapter 5). Applying the REML method to the public health ITS datasets in the review 

showed that autocorrelation was frequently present and should not be ignored in the analysis 

(Chapter 6). Until now, there has been no guidance in the literature as to the typical values of 

autocorrelation; the work presented in Chapter 6 assists in filling this gap. 

 

Another key consideration in the design and analysis of ITS studies is the length of the time 

series (Chapter 5). Advice on the appropriate length of time series for an ITS study has been 

proposed in several tutorial papers (2, 3, 10, 25, 47); however, the suggested minimum number of 

data points varies. The review of ITS studies in this thesis found that a large proportion of studies 
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used short time series (median 48, IQR 30 to 100) (Chapter 3). Time series shorter than 

approximately 24 points are unlikely to allow adequate modelling of the counterfactual post-

interruption trend (leading to wide distributions of possible observed effect estimates), or accurate 

estimation of the magnitude of autocorrelation. Furthermore, CI coverage is likely to be less than 

the 95% nominal level (Chapter 5).  

 

The performance of the statistical methods is heavily influenced by the key factors mentioned 

above, magnitude of autocorrelation and series length. Until now, no studies have compared the 

performance of different statistical methods in the analysis of ITS. The findings of the simulation 

study (Chapter 5) provided some guidance for selection of appropriate statistical method when 

dealing with continuous data with a single interruption at the mid-point of the series, but also 

highlighted the need for development of statistical methods for short ITS (fewer than 12 data 

points). OLS had better CI coverage than other methods for very small series lengths, while for 

longer series the REML method had the best CI coverage (Chapter 5). When different statistical 

methods were applied to real world datasets, important differences were sometimes observed in 

the effect estimates and associated statistics. These differences mean that the choice of 

statistical method may qualitatively alter the interpretation of the effect of the interruption (Chapter 

6). 

 

The choice of effect measures and the completeness of reporting of the resulting effect estimates 

are core for understanding the impact of an interruption. The most commonly reported effect 

measures are the level change at the time of the interruption and slope change post-interruption 

(17, 53). However, a strength of the ITS design is that long term estimates of the impact can also 

be estimated, though the review demonstrated that this was rarely done (Chapter 3). When effect 

estimates were reported, they often did not include an estimate of precision (SE or CI), which is 

necessary for accurate interpretation of the impact of an interruption, and to enable inclusion of 

effects in a meta-analysis (28). However, the research in this thesis demonstrates that even when 

CIs are provided, care should be taken in their interpretation as, in the presence of 

autocorrelation, CI coverage was systematically lower than the 95% nominal value (Chapter 5), 

making reported 95% CIs incorrectly too precise. Similarly, borderline findings of statistical 

significance for effect estimates should be cautiously interpreted.   
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An accurate graph depicting the source time series data and results is an important aspect of the 

reporting for ITS studies. Effect measures, such as the level change at the time of the interruption 

and slope change post-interruption, are easily depicted on an appropriate graph and allow a 

reader to visualise the impact of the interruption (Chapter 4). The impact of the interruption can 

also be seen throughout the post-interruption period by visual inspection of the difference 

between the post-interruption and counterfactual trend lines. In addition to aiding interpretation of 

the study, a well-designed graph that includes data points allows for accurate data extraction. 

This is important for replication of the study results and for systematic reviewers who may wish to 

re-analyse the data (24, 28). A re-analysis may be desirable as the effect measure of interest may 

not have been reported, a measure of precision may not have been reported, or there may have 

been an incorrect analysis (Chapters 5 and 6). Complete reporting is necessary for other 

researchers to understand what was done, to allow assessment of the potential for bias in the 

study design, and facilitates replication of the study (24, 64-67). The publication and use of 

reporting guidelines, such as those proposed by Jandoc et al. (9) and under development by 

Lopez-Bernal (68) may also improve the reporting of ITS studies (69-71).  

 

7.3 Recommendations for ITS researchers 
In this section, recommendations for the design and analysis of ITS studies are suggested. The 

design and analysis recommendations stem from the findings of the simulation study (Chapter 5) 

and empirical evaluation (Chapter 6). As such, these recommendations are directly applicable to 

the model and scenarios investigated (i.e. continuous outcomes, single interruption, constant 

variance and lag-1 autocorrelation). Caution is required in generalising to different scenarios (e.g. 

different outcome types, different model structures). 

7.3.1 Design recommendations 

• A minimum of 24 data points is recommended. Using fewer points than this results in poor 

CI coverage irrespective of the statistical method employed. 

• Assume the presence of autocorrelation in sample size calculations. 

• Publishing a study protocol detailing the proposed analysis strategy is recommended, 

either in a peer-reviewed journal, pre-print server or online registry. 

7.3.2 Analysis recommendations 

• The DW test to detect the presence of autocorrelation is not recommended. 

• For small series lengths (fewer than 12 points) OLS is the recommended statistical 

method, for longer time series, REML is recommended. If REML does not converge, 

ARIMA is recommended. 
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7.3.3 Reporting recommendations 

• Report a measure of precision (SE or CI) with effect estimates and avoid dichotomous 

conclusions based on statistical significance. 

• Reporting the magnitude of autocorrelation is recommended (estimated using REML). 

• Consider reporting the longer-term effects of the interruption as well as the immediate 

impacts. 

• The inclusion of a graph is recommended, plotting the data points, the interruption time, 

and lines for the fitted pre- and post-interruption trend, as well as the counterfactual post-

interruption trend. 

 

7.4 Future research 
The individual chapters include recommendations for future research. In the following these are 

summarised and expanded upon. 

 

• The statistical methods examined in this thesis were applied to continuous outcomes. 

Examination of how statistical methods perform for other outcomes types would be 

valuable. 

• The most frequently used statistical methods identified in the review (Chapter 3) were 

evaluated in this thesis, with the addition of the REML method. However, there is scope to 

examine other statistical methods (72, 73) or Bayesian approaches, where the uncertainty 

in the estimate of autocorrelation could be incorporated directly into the estimation 

procedure.  

• The simulation and empirical evaluation research in this thesis only considered lag-1 

autocorrelation. Further research investigating the effects of autocorrelation is required, 

including examination of lags greater than 1 (e.g. seasonal effects).  

• Further work examining factors that may modify the magnitude of autocorrelation (e.g. 

type of intervention or outcome) would be helpful for developing general rules about the 

likely magnitude of autocorrelation, which would aid in sample size calculation. This could 

include examining the impact of adjusting for seasonality on estimates of lag-1 

autocorrelation. 

• Future research that compares bias and efficiency when simple (e.g. models where there 

is only adjustment for lag-1 autocorrelation) versus more complex models (e.g. models 

including adjustment for time-varying predictors) would be valuable. This research may be 

particularly valuable because for many ITS studies, it may be the case that time-varying 

predictors are not available, and the only option is to model the autocorrelation. 
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• In the simulation study (Chapter 5), datasets with an equal number of points in the pre- 

and post-interruption segments, and constant error variance throughout the series, were 

generated. Statistical power is likely to be affected by the ratio of pre- to post-interruption 

series length (50), and further work is required to determine the extent of the impact of 

unequal pre- and post-interruption series lengths and non-constant error variance.  

• The research presented in this thesis focused on single-series ITS designs. Research 

investigating more complex designs, such as multi-location or controlled ITS would be 

valuable. For example, this could include identifying the range of statistical methods 

available, and then evaluating their performance using numerical simulation, as has been 

done in this thesis. 

• An important decision in an ITS design is the choice of time period over which the data are 

aggregated. Aggregating over longer time periods may reduce variation in the data, but at 

the cost of reducing the number of data points. Future work should investigate the 

preferred balance between variance reduction and series length. 

• Finally, there are many effect measures that can be used to quantify the impact of an 

interruption. The research in this thesis has focused on the most commonly used 

measures (level change and slope change); however, the examination of other measures 

would be valuable. 
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Appendix A. Additional file accompanying Chapter 2 – Review 

data extraction items 
“Design characteristics and statistical methods used in interrupted time series studies evaluating 

public health interventions: protocol for a review” 

Simon L. Turner, Amalia Karahalios, Andrew B. Forbes, Monica Taljaard, Jeremy M. Grimshaw, 

Allen Cheng, Lisa Bero, Joanne E. McKenzie 

The following table contains the data extraction items used for the review. 

Additional File 1: Data Extraction items. 

Item Study Level 
 

<standard items such as author, title, journal etc.> 

1 Why was an ITS study design/analysis chosen? 

2 Type of intervention 

3 Date/time of intervention(s) 

4 Longer description of intervention 

5 Number of study observations 

6 Study observation notes 

7 Main software used 

8 Additional software used 

9 Software details 

10 Were there sample size calculations? 

11 Sample size calculation details 

 
 

Outcome Level 
12 Outcome selection hierarchy 

13 Further details of outcome selection 

14 Any details about subpopulation 

15 At the individual level, what was the outcome? 

16 What type of outcome is this? 

17 Any further individual level details? 

18 Text description of group level outcome 

19 What type of outcome is this? 

20 Any further group level details? 

21 Was this outcome standardised? 

22 Any standardisation details? 

23 Type of time interval 

24 Any details on time interval? 
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25 Was there any evidence of model pre-specification 

26 Any details of the pre-specification 

27 Was the intervention time pre-specified? 

28 Any further intervention time details 

29 Was a delay from intervention to its impact mentioned? 

30 Was there a search for the time of impact? 

31 What was/were the time(s) of impact? 

32 Details of how delayed impact was dealt with 

33 What general shape is the model? 

34 Further notes on the shape of the model 

35 Statistical model used 

36 Further details of the statistical model 

37 Is there any evidence of checking for model fit? 

38 Details of checking for model fit 

39 Details on parameterisation 

40 Were there any additional analyses? 

41 Details of further analyses 

42 What presentation was used for results 

43 Was a graph included 

44 Is data from other groups available? 

45 If other data was supplied please attach here 

46 Please take a screenshot and attach the image of the graph 

here 

47 Was autocorrelation mentioned 

48 How was autocorrelation detected 

49 How was autocorrelation handled 

50 What was the estimate of autocorrelation parameter rho 

51 Any further details on autocorrelation 

52 Was seasonality mentioned 

53 How was seasonality detected 

54 How was seasonality modelled 

55 Any further details on seasonality 

56 Was non-stationarity mentioned 

57 Which test was used to detect non-stationarity 

58 Any further details on non-stationarity 

59 Were outliers mentioned 

60 What method was used to handle outliers 
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61 Any further details on outliers 

62 Was there a control group 

63 How was the control group incorporated? 

64 Was there any forecasting 

 
 

Effect measures 
65 Effect measure 

66 Further details on effect measure 

67 Metric 

68 Numeric value of effect measure 

69 Lower confidence interval 

70 Upper confidence interval 

71 Standard deviation 

72 p-value 

73 Notes on the effect measure 

74 Was there any mention of a ceiling/floor effect 

75 Details of the ceiling/floor effect 

 
 

Segments 
76 Segment number 

77 Segment description 

78 What type of time interval is used in this segment 

79 Is the timing of the segment clearly defined 

80 How many intervals are in the segment 

81 How many observations are in the segment 

82 Please summarise any further segment details… 
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Appendix B. Additional file 1 accompanying Chapter 3 – 

Deviations, additions and amendments to the protocol 
“Design characteristics and statistical methods used in interrupted time series studies evaluating 

public health interventions: A review” 

Simon L Turner, Amalia Karahalios, Andrew B Forbes, Monica Taljaard, Jeremy M Grimshaw, 

Allen C Cheng, Lisa Bero, Joanne E McKenzie 

The following tables contain deviations, additions and amendments to the review protocol (52).  
Table B: Additions to the data extraction form 

Data extraction 
item 

Data extraction item 
label 

Response options 

What type of 

control/comparison 

was used  

Type of control  Response options are from Lopez Bernal et al 

2018(74): 

• Behaviour (a group of individuals who 
never performed the behaviour being 
investigated) 

• Characteristic (a group not targeted by an 
intervention [e.g. for an intervention 
targeted at only males, controls may be 
selected from females]) 

• Historical (a historical cohort that has not 
been targeted by the intervention [e.g. 
historical years, where those years are not 
included in the intervention time series]) 

• Location (a location similar to the study 
location that is not targeted by the 
intervention [e.g. different hospital, different 
geographical area]) 

• Outcome (the same group but a different 
outcome that is predicted to be unaffected 
by the intervention, but would be affected 
by confounding events) 

How was the 

control/comparison 

used? 

Reporting of control • Narrative (where differences in the series 
were described, or effect measures were 
stated separately for each group, or both, 
but no formal statistical comparison was 
undertaken) 

• Statistical (where the control series is 
formally incorporated in the statistical 
model) 

• Unclear 
How was any 

delay between 

interruption and 

impact dealt with?  

Impact delay method • Delay (where the delay was acknowledged 
and included in pre- or post-interruption 
segment) 

• Excluded (where a separate segment was 
used for the delay time period, but this was 
excluded from the analysis) 
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• Segment (where a separate segment was 
used for the delay time period, and this was 
included in analysis) 

• Sensitivity (where the delay was modelled 
as part of a sensitivity analysis, but ignored 
in main analysis) 

• Unclear 
Was the standard 

error reported for 

item? 

Standard error reported • Yes 
• No 
• Unclear 

Was a confidence 

interval reported 

for item? 

Confidence interval 

reported 
• Yes 
• No 
• Unclear 

How was any 

Durbin Watson 

calculation 

reported? 

Durbin Watson reporting • No detail (where a statement is made that 
the Durbin Watson test was carried out, but 
with no further detail provided) 

• None detected (where a statement is made 
that the Durbin Watson test showed no 
evidence of autocorrelation) 

• Fully reported (where the actual Durbin 
Watson statistic is reported) 

Was the segment 

used in the 

analysis? For each 

segment, an 

assessment was 

made as to 

whether it was 

included in the 

analysis. 

Segment used • Yes 
• No 
• Unclear 

Method for 

handling 

autocorrelation in 

non-ARIMA 

models 

Autocorrelation_handled • Adjusts for autocorrelation 
• No adjustment (not required based on test 

or sensitivity analysis) 
• Can’t determine/not considered 

(74)Lopez Bernal J, Cummins S, Gasparrini A. The use of controls in interrupted time series 
studies of public health interventions. International journal of epidemiology 
2018;47(6):2082-93. doi: 10.1093/ije/dyy135 
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Table C:Clarification and elaboration of the data extraction processes 

Clarifications/elaborations 
of process 

Detail of the clarification or elaboration from the protocol 

Abstract screening  Abstract screening was performed on an initial sample of 200 

from each year. If 40 included studies were not identified from 

this initial sample in a given year, further abstracts were 

screened until another potential 20 inclusions were obtained. 

These were then discussed in a group. This process continued 

until there were at least 40 included studies per year. Studies 

were included in order of their randomly generated number. 

Outcome selection  The following elaboration was developed to aid in the selection 

of outcomes: 

 

If graph(s) exists, choose the first outcome listed as primary 

outcome (described as “primary outcome” in the abstract or 

methods section). 

If not… 

Graph(s) exists, choose the first outcome mentioned in the 

abstract (in words or numerically, independent of the analysis 

method) 

If not… 

Graph(s) exists, choose the first outcome mentioned in the paper 

(i.e. methods, results, discussion). 

 

If no graphs exist, check paper for mentioned outcomes of that 

type… 

Graph(s) don’t exist, choose the first outcome listed as primary 

outcome (described as “primary outcome” in the abstract or 

methods section). 

If not… 

Graph(s) don’t exist, choose the first outcome mentioned in the 

abstract (in words or numerically, independent of the analysis 

method) 

If not… 

Graph(s) don’t exist, choose the first one mentioned in the paper 

(i.e. methods, results, discussion). 
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Primary outcome 

designation  

If there is only one outcome it should be considered the primary 

outcome for the outcome selection process. 

Subgroup analysis selection  If the first mentioned analysis is from a subgroup, extract 

information related to this subgroup. Note that there are other 

subgroup analyses available, and of what type. 

Unadjusted/Adjusted 

selection  

If both unadjusted and adjusted analyses are reported, 

information should be collected on both, and a note made as to 

whether the analyses are unadjusted or adjusted. 

Other/Unclear potential 

reclassification  

When the response options Other or Unclear are selected for 

any items, these should be discussed by the group for the 

purpose of deciding whether they may be classified using any of 

the other response options. 

 
Table D:Clarification, changes and elaboration to data extraction items 

Clarification / 
change / 
elaboration of 
item 

Data 
extraction 
item label 

Detail of the clarification or elaboration to the data 
extraction item 

Outcome type 

classification: 

Defined Daily 

Dose 

Type of 

outcome 

The outcome defined daily dose (DDD) should be classified 

as a continuous data type. 

“Defined Daily Dose (DDD): The assumed average 

maintenance dose per day for a drug used for its main 

indication in adults.” (Reference: WHO 

http://www.who.int/medicines/regulation/medicines-

safety/toolkit_ddd/en/ ) 

Outcome type 

classification: 

rates 

Type of 

outcome 

Although all data points in a time series may be viewed as 

rates, since each point represents a summary over a period 

of time (e.g. months), only classify the aggregate outcomes 

type as ‘rate’ if the measure is expressed per time period 

(e.g. DDDs per bed-day or incidence of X per 100000 

person-years). 

Clarification 

regarding the 

recording of 

delayed effects 

Was a delay 

from 

interruption 

to its impact 

mentioned? 

Delayed effects refer to the time delay between the 

interruption and the impact of that interruption on the 

outcome. If the date given for the interruption was at an 

earlier time point than the modelled impact of the 

interruption we recorded that there was a delay.   

http://www.who.int/medicines/regulation/medicines-safety/toolkit_ddd/en/
http://www.who.int/medicines/regulation/medicines-safety/toolkit_ddd/en/
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Choosing the 

statistical model 

used in the 

analysis 

Statistical 

model used 

The statistical method should not be assumed unless details 

are explicitly stated. For example, presentation of the 

statistical model (e.g. Yt = β0 + β1t + β2Dt + β3[t− TΙ]Dt+ εt) 

without further elaboration of the method should be rated as 

‘can’t determine’. Similarly, if only the statistical software is 

listed (e.g. itsa in Stata, or PROC AUTOREG in SAS), the 

statistical method should be rated ‘can’t determine’, since 

multiple options are available to fit different methods within 

each package. The response option ‘other’ should be used 

when a method is clearly reported, but is not one of the 

predefined response options. In papers where the response 

option ‘can’t determine’ or ‘other’ is selected for the 

statistical analysis, these should discussed with multiple 

authors. In instances where multiple methods are reported, 

but it is not clear which method was used for the selected 

series, the latter method should be selected. Examples of 

classification decisions follow: 

 
Example Selected 

response 

option 

Rationale/action 

The reported effect 

estimates are odds 

ratios, but there is no 

mention in the methods 

(or elsewhere) that 

logistic regression (or 

other method) was 

used.  

“Can’t 

determine” 

The authors 

incompletely reported 

the analysis method. 

It was not possible to 

determine if an 

ordinary least squares 

(OLS) or generalised 

least squares (GLS) 

method was used. 

“Can’t 

determine” 

The authors 

incompletely reported 

the analysis method. 
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The model 

parameterisation is 

provided, but without 

further information 

provided about the 

statistical analysis 

method. 

“Can’t 

determine” 

The model 

parametrisation does 

not define the 

statistical estimation 

method. 

Only the statistical 

package is reported, 

with no further detail of 

the statistical method 

(e.g. “To account for 

autocorrelation PROC 

AUTOREG was used”). 

“Can’t 

determine” 

For a particular 

statistical package, 

there are often 

multiple options 

available that 

implement different 

statistical methods. 

The statistical method 

is reported as 

“segmented linear 

regression”, but does 

not mention 

autocorrelation. 

“OLS” or 

“Can’t 

determine” 

Discussed by the 

author group to decide 

whether there is 

enough information to 

rate this as “OLS” or 

“can’t determine”. 

The authors report 

using Newey-West 

standard errors, but 

without specifically 

stating they used 

ordinary least squares. 

“OLS” Newey-West standard 

errors are applied to 

ordinary least squares 

regression. 

When multiple methods 

were reported, and it 

was not clear which 

method was used for 

the selected series, we 

selected the latter 

method (e.g. “Ordinary 

least squares 

regression was 

used”… 

“Autocorrelation was 

found so we adjusted 

using Prais-Winsten.”). 

“GLS” The decision to extract 

the latter method was 

arbitrary. 
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The reported statistical 

method is Prais 

Winsten or Cochrane 

Orcutt. 

“GLS” These statistical 

methods are types of 

generalised least 

squares. 

The statistical method 

is completely 

described, but does not 

fall within one of the 

predefined response 

options. 

“Other” Discussed by the 

author group to 

confirm the selected 

response option. 

 

Change to 

statistical model 

response options 

Statistical 

model used 

Two of the response options (OLS, GLS) for this item were 

modified as a result of the peer-review process. Specifically, 

the response options OLS and GLS were re-categorised into 

the following categories: 

• Linear regression without adjustment for autocorrelation 
[previously OLS; OLS with Newey-West standard errors] 

• Linear regression with adjustment for autocorrelation 
[previously GLS; GLS - Prais-Winsten; GLS - Cochrane-
Orcutt] 

• Linear regression where it cannot be determined if there 
was adjustment for autocorrelation [previously OLS] 

Clarification 

regarding non-

stationarity 

Was non-

stationarity 

mentioned 

If the Box Jenkins method was referenced, we rated the 

‘non-stationarity’ item as ‘yes’. 

Elaboration 

regarding 

recording the 

number of time 

points per 

segment 

Segment 

number of 

intervals 

Note the number of points in each time segment (e.g. pre-

intervention, transition, post-intervention) when reported or 

can be determined (e.g. from graphs), as well as which of 

these segments were used in the analysis. 
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Appendix C. Additional file 2 accompanying Chapter 3 – Review 

search terms 
“Design characteristics and statistical methods used in interrupted time series studies evaluating 

public health interventions: A review” 

Simon L Turner, Amalia Karahalios, Andrew B Forbes, Monica Taljaard, Jeremy M Grimshaw, 

Allen C Cheng, Lisa Bero, Joanne E McKenzie 

The following table contains the search terms used in the review (52). 

 

Review Search Terms 

Search (#) Search terms 
1 Interrupted time series analysis (MeSH term) 

2 “Interrupted time series” (title/abstract) 

3 “Change point” (title/abstract) 

4 “Segmented regression” (title/abstract) 

5 “Segmented linear regression” (title/abstract) 

6 “Repeated measures study” (title/abstract) 

7 “Piecewise regression” (title/abstract) 

8 “Time-series intervention” (title/abstract) 

9 “Phase design” (title/abstract) 

10 “Multiple baseline” (title/abstract) 

11 “ARIMA” (title/abstract) 

12 “Integrated moving average” (title/abstract) 

13 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 
Abbreviations: MeSH, medical subject headings; ARIMA, autoregressive integrated moving average 
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Appendix D. Additional file 3 accompanying Chapter 3 – Citation 

details of the 200 studies from which data were extracted 
“Design characteristics and statistical methods used in interrupted time series studies evaluating 

public health interventions: A review” 

Simon L Turner, Amalia Karahalios, Andrew B Forbes, Monica Taljaard, Jeremy M Grimshaw, 

Allen C Cheng, Lisa Bero, Joanne E McKenzie 

 

Citation details of the 200 studies from which data were extracted. 

 

1. Abegaz T, Berhane Y, Worku A, et al. Effectiveness of an improved road safety policy in 
Ethiopia: an interrupted time series study. BMC Public Health 2014;14(1) doi: 
10.1186/1471-2458-14-539 

2. Adams AS, Soumerai SB, Zhang F, et al. Effects of Eliminating Drug Caps on Racial 
Differences in Antidepressant Use Among Dual Enrollees With Diabetes and Depression. 
Clinical Therapeutics 2015;37(3):597-609. doi: 10.1016/j.clinthera.2014.12.011 

3. Aiken AM, Wanyoro AK, Mwangi J, et al. Changing Use of Surgical Antibiotic Prophylaxis 
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Appendix E. Additional file accompanying Chapter 4 – Computer 

code to demonstrate and create effective ITS graphs 
“Creating effective interrupted time series graphs: review and recommendations” 

Turner SL, Karahalios A, Forbes AB, Taljaard M, Grimshaw JM, Korevaar E, Cheng AC, Bero L, 

McKenzie JE. 

The following Stata 15 computer code reproduces the graphs from the manuscript. 
***************************************************************************************************
********************************** 
// The following do file provides the code to generate the graphs in the paper:  
// Turner, et al. "Creating effective interrupted time series graphs: review and recommendations". 
Research Synthesis Methods. 2020. 
 
// The do file is separated into the following sections:  
// Part 1: code is provided to generate data used throughout the paper (lines 32 - 109); 
// Part 2: code is provided to format the data in preparation for graphing (lines 111 - 224); 
// Part 3: code is provided to create the graphs presented in the paper (lines 225 onwards). 
// Please note that if you have your own dataset, you can start at lines 116 of this do file. 
 
// Date created: 15 April 2020  
 
// Note that this code will run using Stata version 15 or later.  
// For those using Stata version 14 or earlier, some features, e.g. transparency, will not work.  
version 15 
 
// The circular package (by NJ Cox, University of Durham, UK) needs to be installed  
// Note, if you have previously installed the circular package, please comment the next line of 
code 
// ssc install circular 
 
// Begin by clearing any existing graphs from Stata's memory 
graph drop _all 
 
// Clear any data from Stata's memory 
clear 
 
// Save the name of the directory where the graph will be saved in a local macro 
// Note that the local macro will be used throughout the do file 
local graph_directory "<set directory>” 
 
// Set the seed  
set seed 000013  
 
***************************************************************************************************
********************************** 
// Part 1 - Create an interrupted time series dataset 
// parameters are: 
// beta_0 = intercept 
// beta_1 = slope in first segment 
// beta_2 = level change at first interruption 
// beta_3 = slope change after first interruption 
// sigma = normally distributed standard deviation 
// rho = autocorrelation coefficient 
// seasonality = maximum amplitude of sinusoidal seasonal effects 
// interruption_time = time of interruption 
// num_points = how many data points (time point) 
// segment = the variable we will use to define each interruption time period 
//          0 for pre-interruption, 1 for post-interruption 
//          this could easily be extended to further interruption periods 
 
// Assign values to local macros representing the parameters that were described above: 
// Note, that the values below are those used in the paper 
local beta_0 = 100  
local beta_1 = 0  
local beta_2 = -80  
local beta_3 = 0.7  
local sigma = 4  
local rho = 0 
local seasonality = 20  
local interruption_time = 51  
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local num_points 100  
set obs `num_points'  
 
// Generate a new variable called time that contains the number of time points in the dataset 
gen time = _n  
 
// Create an indicator variable to represent the segments of the time series 
// Note that 0 = pre-interruption period/segment and 1 = post-interruption period/segment 
gen segment = 0 
replace segment = 1 if time >= `interruption_time' 
 
///////////////////////////////////////////////////////////////////////////////////////////////////
/ 
// Generate data according to a first order autoregressive model 
// First, generate a random error based on a normal distribution 
gen error_normal = rnormal(0,`sigma'^2) 
gen error = 0 
    
// Incorporate the autocorrelated component to the normal error to obtain an 'autocorrelated error' 
component 
// Note that the variance remains constant over time 
replace error = sqrt(1/(1-(`rho'^2)))*error_normal in 1 
 
// Add autocorrelated error to normally distributed error 
replace error = `rho'*error[_n-1] + error_normal in 2/`num_points'  
 
// Generate a new variable that represents seasonality  
// Note that seasonality is incorporated as a sinusoidal curve 
gen seasonality = `seasonality'*sin((c(pi)/6)*time) 
 
// Generate the outcome variable as the sum of all the parameters specified above 
gen outcome = `beta_0' + `beta_1'*time + `beta_2'*segment + `beta_3'*(time - 
(`intervention_time'+1))*segment + error + seasonality 
 
// Next, we generate a second set of variables similarly to above but this outcome can be thought 
to represent a control series 
gen error_normal_2 = rnormal(0,`sigma'^2) 
gen error_2 = 0 
    
// Incorporate the autocorrelated component to the normal error to obtain an 'autocorrelated error' 
component 
// Note that the variance remains constant over time 
replace error_2 = sqrt(1/(1-(`rho'^2)))*error_normal_2 in 1 
 
// Add autocorrelated error to normally distributed error 
replace error_2 = `rho'*error_2[_n-1] + error_normal_2 in 2/`num_points'  
 
// Note that for this outcome/control series we include the same seasonality component as above 
 
// Generate the second outcome by starting at a different value for the intercept (beta_0) and do 
not add a level change or slope change 
gen outcome_2 = 170 + `beta_1'*time + error_2 + seasonality 
 
// Keep the variables that we will use for the remaining do file 
keep time segment outcome outcome_2 
    
// save "`graph_directory'\ITS_data.dta", replace 
 
 
***************************************************************************************************
********************************** 
// Part 2:  Format the data in preparation for graphing 
// use "`graph_directory'\ITS_data.dta", clear 
 
// Note that if you are starting here and have your own dataset, then you will need the following 
variables: 
// 1. time - contains the number of time points in the dataset 
// 2. segment - contains the segments in the dataset; 0 = pre-interruption and 1 = post-
interruption 
// 3. outcome - contains the outcome dataset 
// 4. outcome_2 - contains the outcome data for a second series  
 
 
// To format the data, we need to:   
//   i. Find the interruption time and the corresponding segments 
//  ii. Generate additional ITS variables 
// iii. Set up the model 
//  iv. Fit the analysis model 
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// i. Find the interruption time and the corresponding segments 
summ segment 
local min_seg_num = r(min) 
local num_segments = r(max) 
 
// If the segments are numbered 1, 2, 3, ..., change the segments to 0, 1, 2, ... 
if `min_seg_num' != 0 { 
   replace segment = segment - `min_seg_num' 
} 
 
summ segment 
local num_segments = r(max) 
local min_seg_num = r(min) 
 
// Find the timing of each segment 
forvalues segment = 0/`num_segments' { 
   qui: summ time if segment == `segment' 
   local time_`segment'_start = r(min) 
   local time_`segment'_end = r(max) 
   local segment_`segment'_length = r(N) 
   display "segment `segment' goes from `time_`segment'_start' to `time_`segment'_end' and is 
`segment_`segment'_length' points long" 
}    
 
// ii. Generate additional ITS variables, which are needed to fit the segmented regression model as 
in Huitema and McKean (2007) 
// Huitema and McKean (2007). "Identifying Autocorrelation Generated by Various Error Processes in 
Interrupted Time-Series Regression Designs." Educational and Psychological Measurement 67(3): 447-
459. 
 
forvalues segment = 0/`num_segments' { 
   gen interruption_`segment' = 0 
   replace interruption_`segment' = 1 if segment >= `segment' 
   gen level_change_`segment' = interruption_`segment' 
   gen slope_change_`segment' = (time-`time_`segment'_start')*level_change_`segment' 
} 
//    
// The data need to be declared as time series data 
tsset time       
 
// iii. Set up the model so that each segment has a level and slope change 
// Note that here we include the first segment but when we fit the statistical analysis we let it 
know we've already included an intercept 
 
local variables = "" 
 
forvalues segment = 0/`num_segments' { 
      local variables = "`variables'" + " level_change_`segment' slope_change_`segment'" 
} 
 
display "variables: `variables'" 
    
// iv. Fit the analysis model 
// Please note the following:  
// a. We have used the mixed command with the restricted maximum likelihood method for the variance 
to account for autocorrelation.  
// b. Other methods (e.g. Prais) could also be used. 
// c. We specify the nocons option because we have already specified an intercept (i.e. 
level_change_0) 
// d. The mixed model that we fit includes an autocorrelation with lag-1 (as specified by res(ar 1, 
t(time))) 
// e. The number of iterations are set to 1000 
 
mixed outcome `variables' , nocons res(ar 1, t(time)) var reml iter(1000) 
 
// Save the t-statistic for estimating the confidence limits in a scalar 
matrix table = r(table) 
scalar tcrit = table[8,1] 
    
// Generate variables corresponding to the estimated values and their standard errors from the 
mixed model 
predict estimates 
predict SE_prediction , stdp 
 
// Generate variables with the confidence limits of the estimates 
gen cl_lower = estimates - tcrit*SE_prediction 
gen cl_upper = estimates + tcrit*SE_prediction 
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// Save to local macros the estimates (95% confidence intervals) for the level and slope change 
with appropriate formatting for display 
local level_change : di %3.1f `=table[1,3]'  
local slope_change : di %3.2f `=table[1,4]' 
local level_change_ll : di %3.1f `=table[5,3]'  
local slope_change_ll : di %3.2f `=table[5,4]'  
local level_change_ul : di %3.1f `=table[6,3]'  
local slope_change_ul : di %3.2f `=table[6,4]'  
 
// Generate a counterfactual from the first period 
gen first_period = . 
replace first_period = outcome if segment == 0 
mixed first_period `variables' , nocons res(ar 1, t(time)) var reml iter(1000) 
 
// Save the t-statistic for estimating the confidence limits in a scalar 
matrix table = r(table) 
scalar tcrit = table[8,1] 
 
// Generate variables corresponding to the of the estimated values and their standard errors from 
the mixed model for the counterfactual 
predict counterfactual    
predict counterfactual_SE, stdp 
 
// Generate variables with the confidence limits of the estimates for the counterfactual  
gen counter_cl_lower = counterfactual - tcrit*counterfactual_SE 
gen counter_cl_upper = counterfactual + tcrit*counterfactual_SE 
 
// Fit a mixed model to the second series 
mixed outcome_2 `variables' , nocons res(ar 1, t(time)) var reml iter(1000) 
    
// Generate a variable of the estimated values for the second series from the mixed model 
predict estimates_2 
 
// Generate a counterfactual based on the estimates of the parameters  
gen counterfactual_2 = _b[level_change_0] + _b[slope_change_0]*slope_change_0 
 
 
***************************************************************************************************
********************************** 
//Part 3: code is provided to create the graphs presented in the paper 
 
//////////////////////////////////////////////////////////////////////////////// 
// Graph in Figure 1a 
// Simple graph depicting the data points, trend lines, counterfactual and interruption  
 
// find some points of interest 
egen graph_min = rowmin(outcome counterfactual) 
egen graph_max = rowmax(outcome counterfactual) 
summ graph_max 
local graph_max = r(max) 
 
// Save the values for the colour and other graph parameters to local macros: 
 
// Save the options for the colour for the data points and trend lines to local macro 
local outcome_colour = "0 114 178" // colour blind friendly blue 
 
local point_size = "small" 
local point_symbol = "plus" 
local point_transparency = "%70" // this can be adjusted depending on number of points 
 
local trend_pattern = "solid" 
local trend_width = "medthick" 
 
// Save the options for the counterfactual lines to local macros 
local counterfactual_pattern = "dash" 
local counterfactual_width = "medium" 
 
// Options for interruption lines 
local interruption_colour = "red" 
local interruption_pattern = "dash" 
local interruption_width = "medium" 
 
// Save the options for the titles and labels to local macro 
local x_title "months since start of project" 
local y_title "outcome details" 
local interruption_label "interruption" 
local interruption_label_height = `graph_max' + 5 
 
// Generate the text for the graphing of the trend lines 
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local num_line = 0 
local trend_lines = "" 
 
forvalues segment = 0/`num_segments' { 
   local trend_lines = `"`trend_lines'"' + `" || lfit estimates time if segment == `segment', 
lcol("`outcome_colour'") lpattern(`trend_pattern') lwidth(`trend_width')"' 
   local num_lines = `num_lines' + 1 
} 
 
// Generate the graph using Stata's twoway command           
local name = "simple_graph_1a" 
 
graph twoway scatter outcome time, msize(`point_size') msym(`point_symbol') 
mcol("`outcome_colour'`point_transparency'") /// outcomes 
          || lfit counterfactual time if segment == 1, lcol("`outcome_colour'") 
lpattern(`counterfactual_pattern') lwidth(`counterfactual_width') /// counterfactual 
          `trend_lines' /// trend lines 
          ylab(,angle(h)) /// the angle ensures numbers are printed horizontally 
          title("1a", position(10) ring(1)) /// 
          ytitle(`y_title') /// 
          xtitle(`x_title') /// 
          xline(`time_1_start', lcol(`interruption_colour') lpattern(`interruption_pattern') 
lwidth(`interruption_width')) /// interruption line 
          text(`interruption_label_height' `time_0_end' "`interruption_label'", placement(w)) /// 
interruption text label 
          legend(order(1 "outcome" 3 "trends" 2 "counterfactual") row(1) region(style(none)) ) /// 
legend without border 
          graphregion(col(white)) /// set background to white 
          name(`name') 
           
graph export "`graph_directory'\`name'.svg", replace 
graph export "`graph_directory'\`name'.png", replace 
 
// Drop variables that are no longer needed  
drop graph_max 
drop graph_min 
 
//////////////////////////////////////////////////////////////////////////////// 
// Code to generate graph in Figure 1b 
// Similar to graph in Figure 1a except a shaded area is used to depict the interruption  
 
// Find mininmum and maximum points of the graph 
egen graph_max = rowmax(outcome counterfactual) 
egen graph_min = rowmin(outcome counterfactual) 
summ graph_max 
local graph_max = r(max) 
replace graph_max = `graph_max' 
summ graph_min 
local graph_min = r(min) 
 
 
// Save the values for the colour and other graph parameters to local macros: 
local outcome_colour = "0 114 178" // colour blind friendly blue 
 
local point_size = "small" 
local point_symbol = "plus" 
local point_transparency = "%70" // this can be adjusted depending on number of points 
 
local trend_pattern = "solid" 
local trend_width = "medthick" 
 
// Save the options for the counterfactual lines to local macros 
local counterfactual_pattern = "dash" 
local counterfactual_width = "medium" 
 
// Save the options for the shading colour to represent the interruption to local macro 
local interruption_colour = "gray%15" 
 
// Save the options for the titles and labels to local macro 
local x_title "months since start of project" 
local y_title "outcome details" 
local interruption_label "interruption" 
local interruption_label_height = `graph_max' 
local interruption_label_x_position = `time_1_start' 
 
// Generate the text for the graphing of the trend lines 
local num_line = 0 
local trend_lines = "" 
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forvalues segment = 0/`num_segments' { 
   local trend_lines = `"`trend_lines'"' + `" || lfit estimates time if segment == `segment', 
lcol("`outcome_colour'") lpattern(`trend_pattern') lwidth(`trend_width')"' 
   local num_lines = `num_lines' + 1 
} 
 
// Generate the graph using Stata's twoway command                  
local name = "simple_graph_shaded_1b" 
 
graph twoway area graph_max time if inrange(time, `time_1_start', `time_1_end'), 
color(`interruption_colour') lwidth(none) base(`graph_min') /// shaded area 
          || scatter outcome time, msize(`point_size') msym(`point_symbol') 
mcol("`outcome_colour'`point_transparency'") /// outcomes 
          || lfit counterfactual time if segment == 1, lcol("`outcome_colour'") 
lpattern(`counterfactual_pattern') lwidth(`counterfactual_width') /// counterfactual 
          `trend_lines' /// trend lines 
          ylab(,angle(h)) /// the angle ensures numbers are printed horizontally 
          title("1b", position(10) ring(1)) /// 
          ytitle(`y_title') /// 
          xtitle(`x_title') /// 
          text(`graph_max' `interruption_label_x_position' "`interruption_label'", placement(e)) 
/// interruption text label 
          legend(off) /// no legend - detail will need to be added to the caption 
          graphregion(col(white)) /// set background to white 
          name(`name') 
           
graph export "`graph_directory'\`name'.svg", replace 
graph export "`graph_directory'\`name'.png", replace 
           
drop graph_max 
drop graph_min 
 
graph combine simple_graph_1a simple_graph_shaded_1b, col(1) ysize(8) iscale(0.7273) 
graphregion(margin(zero) col(white)) name(combined_graph_1) 
graph export "`graph_directory'\combined_graph_1.svg", replace 
graph export "`graph_directory'\combined_graph_1.png", replace 
 
//////////////////////////////////////////////////////////////////////////////// 
// Code to generate graph in Figure 2a 
// To obtain the graph in Figure 2a, we add a second series to the graph in Figures 1a and b 
 
// Find minimum and maximum points of the graph 
egen graph_max = rowmax(outcome counterfactual outcome_2 counterfactual_2) 
egen graph_min = rowmin(outcome counterfactual outcome_2 counterfactual_2) 
summ graph_max 
local graph_max = r(max) 
 
// Save the values for the colour and other graph parameters to local macros: 
local outcome_colour = "0 114 178" // colour blind friendly blue 
local outcome_2_colour = "230 159 0" // colour blind friendly orange 
 
local point_size = "small" 
local point_symbol = "plus" 
local point_transparency = "%70" // this can be adjusted depending on number of points 
local point_2_symbol = "X" 
 
local trend_pattern = "solid" 
local trend_width = "medthick" 
 
// Save the options for the counterfactual lines to local macro 
local counterfactual_pattern = "dash" 
local counterfactual_width = "medium" 
 
// Save the options for the interruption lines to local macro 
local interruption_colour = "red" 
local interruption_pattern = "dash" 
local interruption_width = "medium" 
 
// Save the options for the titles and labels to local macro 
local x_title "months since start of project" 
local y_title "outcome details" 
local interruption_label "interruption" 
local interruption_label_height = `graph_max' 
 
// Generate the text for the graphing of the trend lines 
local num_line = 0 
local trend_lines = "" 
 
forvalues segment = 0/`num_segments' { 
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   local trend_lines = `"`trend_lines'"' + `" || lfit estimates time if segment == `segment', 
lcol("`outcome_colour'") lpattern(`trend_pattern') lwidth(`trend_width')"' 
      // here we add the second set of trend lines 
   local trend_lines_2 = `"`trend_lines_2'"' + `" || lfit estimates_2 time if segment == `segment', 
lcol("`outcome_2_colour'") lpattern(`trend_pattern') lwidth(`trend_width')"' 
   local num_lines = `num_lines' + 1 
    
} 
 
// Generate the graph using Stata's twoway command                  
local name = "double_graph_2a" 
 
graph twoway scatter outcome time, msize(`point_size') msym(`point_symbol') 
mcol("`outcome_colour'`point_transparency'") /// outcomes 
          || scatter outcome_2 time, msize(`point_size') msym(`point_2_symbol') 
mcol("`outcome_2_colour'`point_transparency'") /// outcomes 
          || lfit counterfactual time if segment == 1, lcol("`outcome_colour'") 
lpattern(`counterfactual_pattern') lwidth(`counterfactual_width') /// counterfactual 
          || lfit counterfactual_2 time if segment == 1, lcol("`outcome_2_colour'") 
lpattern(`counterfactual_pattern') lwidth(`counterfactual_width') /// counterfactual 
          `trend_lines' /// trend lines 
          `trend_lines_2' /// second series trend lines 
          ylab(,angle(h)) /// the angle ensures numbers are printed horizontally 
          title("2a", position(10) ring(1)) /// 
          ytitle(`y_title') /// 
          xtitle(`x_title') /// 
          xline(`time_1_start', lcol(`interruption_colour') lpattern(`interruption_pattern') 
lwidth(`interruption_width')) /// interruption line 
          text(`interruption_label_height' `time_0_end' "`interruption_label'", placement(w)) /// 
interruption text label 
          legend(order(1 "intervention" 2 "control") row(1) region(style(none)) ) /// legend 
without border 
          graphregion(col(white)) /// set background to white 
          name(`name') 
           
graph export "`graph_directory'\`name'.svg", replace 
graph export "`graph_directory'\`name'.png", replace 
 
drop graph_max 
drop graph_min 
 
//////////////////////////////////////////////////////////////////////////////// 
// Code to generate graph in Figure 2b 
// To this graph, we add labels on the graph rather than the placing the information in the legend 
 
// Find minimum and maximum points of the graph 
egen graph_max = rowmax(outcome counterfactual outcome_2 counterfactual_2) 
egen graph_min = rowmin(outcome counterfactual outcome_2 counterfactual_2) 
summ graph_max 
local graph_max = r(max) 
 
 
// Save the values for the colour and other graph parameters to local macros: 
local outcome_colour = "0 114 178" // colour blind friendly blue 
local outcome_2_colour = "230 159 0" // colour blind friendly orange 
 
local point_size = "small" 
local point_symbol = "plus" 
local point_transparency = "%70" // this can be adjusted depending on number of points 
local point_2_symbol = "X" 
 
local trend_pattern = "solid" 
local trend_width = "medthick" 
 
// Save the options for the counterfactual lines to local macro 
local counterfactual_pattern = "dash" 
local counterfactual_width = "medium" 
 
// Save the options for the interruption lines to local macro 
local interruption_colour = "red" 
local interruption_pattern = "dash" 
local interruption_width = "medium" 
 
// Save the options for the titles and labels to local macro 
local x_title "months since start of project" 
local y_title "outcome details" 
local interruption_label "interruption" 
local interruption_label_height = `graph_max' 



Page 156   Appendix E. Additional file accompanying Chapter 3 

 

    
// Note that the y-coordinates specified below will need to be adjusted to ensure that data points 
are not obstructed 
local outcome_label "intervention" 
local outcome_label_y_coord = 70 
local outcome_2_label "control" 
local outcome_2_label_y_coord = 200 
 
// Generate the text for the graphing of the trend lines 
local num_line = 0 
local trend_lines = "" 
 
forvalues segment = 0/`num_segments' { 
   local trend_lines = `"`trend_lines'"' + `" || lfit estimates time if segment == `segment', 
lcol("`outcome_colour'") lpattern(`trend_pattern') lwidth(`trend_width')"' 
      // here we add the second set of trend lines 
   local trend_lines_2 = `"`trend_lines_2'"' + `" || lfit estimates_2 time if segment == `segment', 
lcol("`outcome_2_colour'") lpattern(`trend_pattern') lwidth(`trend_width')"' 
   local num_lines = `num_lines' + 1 
} 
 
// Generate the graph using Stata's twoway command                  
local name = "double_graph_labelled_2b" 
 
graph twoway scatter outcome time, msize(`point_size') msym(`point_symbol') 
mcol("`outcome_colour'`point_transparency'") /// outcomes 
          || scatter outcome_2 time, msize(`point_size') msym(`point_2_symbol') 
mcol("`outcome_2_colour'`point_transparency'") /// outcomes 
          || lfit counterfactual time if segment == 1, lcol("`outcome_colour'") 
lpattern(`counterfactual_pattern') lwidth(`counterfactual_width') /// counterfactual 
          || lfit counterfactual_2 time if segment == 1, lcol("`outcome_2_colour'") 
lpattern(`counterfactual_pattern') lwidth(`counterfactual_width') /// counterfactual 
          `trend_lines' /// trend lines 
          `trend_lines_2' /// second series trend lines 
          ylab(,angle(h)) /// the angle ensures numbers are printed horizontally 
          title("2b", position(10) ring(1)) /// 
          ytitle(`y_title') /// 
          xtitle(`x_title') /// 
          xline(`time_1_start', lcol(`interruption_colour') lpattern(`interruption_pattern') 
lwidth(`interruption_width')) /// interruption line 
          text(`interruption_label_height' `time_0_end' "`interruption_label'", placement(w)) /// 
interruption text label 
          text(`outcome_2_label_y_coord' 0 "`outcome_2_label'", placement(e) 
col(`outcome_2_colour')) /// 
          text(`outcome_label_y_coord' 0 "`outcome_label'", placement(e) col(`outcome_colour')) /// 
          legend(off) /// legend off this time 
          graphregion(col(white)) /// set background to white 
          name(`name') 
           
graph export "`graph_directory'\`name'.svg", replace 
graph export "`graph_directory'\`name'.png", replace 
 
drop graph_max 
drop graph_min 
 
graph combine double_graph_2a double_graph_labelled_2b, col(1) ysize(8) iscale(0.7273) 
graphregion(margin(zero) col(white)) name(combined_graph_2) 
graph export "`graph_directory'\combined_graph_2.svg", replace 
graph export "`graph_directory'\combined_graph_2.png", replace 
 
//////////////////////////////////////////////////////////////////////////////// 
// Code to generate graph in Figure 3a 
// To this graph we add a line representing seasonality.   
// Note that there are several ways to fit/graph seasonality, we have used the method specified by 
Bhaskaran et al. (2013) "Time series regression studies in environmental epidemiology" 
International Journal of Epidemiology 42: 1187-1195. 
 
// Find the minimum and maximum points of the graph 
egen graph_max = rowmax(outcome counterfactual) 
egen graph_min = rowmin(outcome counterfactual) 
summ graph_max 
local graph_max = r(max) 
 
// Define harmonics as specified in:  
// Bhaskaran et al. (2013) "Time series regression studies in environmental epidemiology" 
International Journal of Epidemiology 42: 1187-1195. 
 
// (a) Generate sine and cosine functions of time with annual period, plus 2 harmonics 
local num_harmonics = 2 
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gen degrees=(time/12)*360 
fourier degrees, n(`num_harmonics') 
 
// (b) Fit a mixed model 
mixed outcome `variables' cos* sin* , nocons res(ar 1, t(time)) var reml iter(1000) 
predict full_model 
 
// Set up a list of the seasonal model outputs 
local seasonal = "" 
forvalues harmonic = 1/`num_harmonics' { 
   if `harmonic' == 1 { 
      local seasonal = `" `seasonal' "' + `" _b[cos_`harmonic']*cos_`harmonic' + 
_b[sin_`harmonic']*sin_`harmonic' "' 
   } 
   else { 
      local seasonal = `" `seasonal' "' + `" + _b[cos_`harmonic']*cos_`harmonic' + 
_b[sin_`harmonic']*sin_`harmonic' "' 
   } 
} 
 
// Use the model estimates to generate the seasonal component of the model 
gen seasonal = `seasonal' 
 
// Calculate the deseasonalised data 
gen deseasonal = outcome - seasonal 
 
// Fit the mixed model to obtain the model estimates based on de-seasonalised data 
mixed deseasonal `variables' , nocons res(ar 1, t(time)) var reml iter(1000) 
predict estimates_deseasonal 
 
// Generate counterfactual 
gen counterfactual_deseasonal = _b[level_change_0] + _b[slope_change_0]*slope_change_0 
 
// Save the values for the colour and other graph parameters to local macros: 
local outcome_colour = "0 114 178" // colour blind friendly blue 
 
local point_size = "small" 
local point_symbol = "plus" 
local point_transparency = "%70" // this can be adjusted depending on number of points 
 
local trend_pattern = "solid" 
local trend_width = "medthick" 
 
// Save the options for the counterfactual lines to local macro 
local counterfactual_pattern = "dash" 
local counterfactual_width = "medium" 
 
// Save the options for the interruption lines to local macro 
local interruption_colour = "red" 
local interruption_pattern = "dash" 
local interruption_width = "medium" 
 
// Save the options for the titles and labels to local macro 
local x_title "months since start of project" 
local y_title "outcome details" 
local interruption_label "interruption" 
local interruption_label_height = `graph_max' + 5 
 
forvalues segment = 0/`num_segments' { 
   local fitted_lines_deseason = `"`fitted_lines_deseason'"' + `" || lfit estimates_deseasonal time 
if segment == `segment', lcol("`outcome_colour'") lpattern(`trend_pattern') lwidth(`trend_width')"' 
   local num_lines = `num_lines' + 1 
} 
 
// Generate the graph using Stata's twoway command                  
local name = "seasonal_graph_3a" 
graph twoway scatter outcome time, msize(`point_size') msym(`point_symbol') 
mcol("`outcome_colour'`point_transparency'") /// outcomes 
          || line full_model time if segment == 0, lc(gray%50) /// sine wave plots 
          || line full_model time if segment == 1, lc(gray%50) /// sine wave plots 
          || lfit counterfactual_deseasonal time if segment == 1, lcol("`outcome_colour'") 
lpattern(`counterfactual_pattern') lwidth(`counterfactual_width') /// counterfactual 
          `fitted_lines_deseason' /// deseasonal fitted lines 
          ylab(,angle(h)) /// 
          title("3a", position(10) ring(1)) /// 
          ytitle(`y_title') /// 
          xtitle(`x_title') /// 
          xline(`time_1_start', lcol(`interruption_colour') lpattern(`interruption_pattern') 
lwidth(`interruption_width')) /// interruption line 
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          text(`interruption_label_height' `time_0_end' "`interruption_label'", placement(w)) /// 
interruption text label 
          legend(order(1 "outcome" 2 "estimated seasonality" 4 "counterfactual" 5 "seasonality 
adjusted trends")  region(style(none)) ) /// 
          graphregion(col(white)) /// 
          name(`name') 
 
graph export "`graph_directory'\`name'.svg", replace 
graph export "`graph_directory'\`name'.png", replace 
           
drop graph_max 
drop graph_min 
 
//////////////////////////////////////////////////////////////////////////////// 
// Code to generate graph in Figure 3b 
// In this graph, we show the precision around the estimates using shading 
 
// Find the minumum and maximum points on the graph 
egen graph_max = rowmax(cl_upper counter_cl_upper ) 
egen graph_min = rowmin(cl_lower counter_cl_lower) 
summ graph_max 
local graph_max = r(max) 
 
// Save the values for the colour and other graph parameters to local macros: 
local outcome_colour = "0 114 178" // colour blind friendly blue 
 
local point_size = "small" 
local point_symbol = "plus" 
local point_transparency = "%70" // this can be adjusted depending on number of points 
 
local trend_pattern = "solid" 
local trend_width = "medthick" 
 
// Save the options for the counterfactual lines to local macro 
local counterfactual_pattern = "dash" 
local counterfactual_width = "medium" 
 
// Save the options for the interruption lines to local macro 
local interruption_colour = "red" 
local interruption_pattern = "dash" 
local interruption_width = "medium" 
 
// Save the options for the titles and labels to local macro 
local x_title "months since start of project" 
local y_title "outcome details" 
local interruption_label "interruption" 
local interruption_label_height = `graph_max' 
 
// Generate the text for the graphing of the trend lines 
local num_line = 0 
local trend_lines = "" 
 
forvalues segment = 0/`num_segments' { 
   local trend_lines = `"`trend_lines'"' + `" || lfit estimates time if segment == `segment', 
lcol("`outcome_colour'") lpattern(`trend_pattern') lwidth(`trend_width')"' 
   local num_lines = `num_lines' + 1 
} 
 
// Generate the graph using Stata's twoway command                  
local name = "graph_with_cls_3b" 
 
graph twoway rarea counter_cl_lower counter_cl_upper time , fcolor(gray%10) lcolor(white%100) 
lwidth(none) /// 
          || rarea cl_lower cl_upper time if segment == 1, fcolor(gray%10) lcolor(white%100) 
lwidth(none) /// 
          || scatter outcome time, msize(`point_size') msym(`point_symbol') 
mcol("`outcome_colour'`point_transparency'") /// outcomes 
          || lfit counterfactual time if segment == 1, lcol("`outcome_colour'") 
lpattern(`counterfactual_pattern') lwidth(`counterfactual_width') /// counterfactual 
          `trend_lines' /// trend lines 
          || line counter_cl_lower time , lc(gray%50) lpattern(dot) /// CL plots 
          || line counter_cl_upper time , lc(gray%50) lpattern(dot) /// CL plots 
          || line cl_lower time if segment == 1, lc(gray%50) lpattern(dot) /// CL plots 
          || line cl_upper time if segment == 1, lc(gray%50) lpattern(dot) /// CL plots 
          || scatteri `=`interruption_label_height'-5' 1 `=`interruption_label_height'-5' 6 
`=`interruption_label_height'+5' 6 `=`interruption_label_height'+5' 1, recast(area) 
fcolor("gray%10") lcol(gray%15) /// 
          text(`interruption_label_height' 7 "95% confidence intervals", placement(e) size(vsmall)) 
/// 
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          ylab(25(25)175,angle(h)) /// the angle ensures numbers are printed horizontally 
          title("3b", position(10) ring(1)) /// 
          ytitle(`y_title') /// 
          xtitle(`x_title') /// 
          xline(`time_1_start', lcol(`interruption_colour') lpattern(`interruption_pattern') 
lwidth(`interruption_width')) /// interruption line 
          text(`interruption_label_height' `time_0_end' "`interruption_label'", placement(w)) /// 
interruption text label 
          legend(off) /// no legend - detail will need to be added to the caption 
          graphregion(col(white)) /// set background to white 
          name(`name') 
           
graph export "`graph_directory'\`name'.svg", replace 
graph export "`graph_directory'\`name'.png", replace 
 
drop graph_max 
drop graph_min 
 
graph combine seasonal_graph_3a graph_with_cls_3b, col(1) ysize(8) iscale(0.7273) 
graphregion(margin(zero) col(white)) name(combined_graph_3) 
graph export "`graph_directory'\combined_graph_3.svg", replace 
graph export "`graph_directory'\combined_graph_3.png", replace 
 
//////////////////////////////////////////////////////////////////////////////// 
// Code to generate graph in Figure 4a 
// In this graph, we add the results of the analysis to the graph and add y-axis labels at points 
of interest. 
// Note that to ensure that no data points are obscured on the graph, the position of the 
additional text may  
// need some fine tuning for each graph  
 
// Find minimum and maximum points on the graph 
egen graph_max = rowmax(outcome counterfactual) 
egen graph_min = rowmin(outcome counterfactual) 
summ graph_max 
local graph_max = r(max) 
summ outcome 
local outcome_max = r(max) 
summ graph_min 
local graph_min = r(min) 
 
// Save the y-coordinates of the counterfactual and the estimate at the interruption to local 
macros 
local change_counter = counterfactual[51] 
local estimate_counter = estimates[51] 
 
// Save the values for the colour and other graph parameters to local macros: 
local outcome_colour = "0 114 178" // colour blind friendly blue 
 
local point_size = "small" 
local point_symbol = "plus" 
local point_transparency = "%70" // this can be adjusted depending on number of points 
 
local trend_pattern = "solid" 
local trend_width = "medthick" 
 
// Save the options for the counterfactual lines to local macro 
local counterfactual_pattern = "dash" 
local counterfactual_width = "medium" 
 
// Save the options for the interruption lines to local macro 
local interruption_colour = "red" 
local interruption_pattern = "dash" 
local interruption_width = "medium" 
 
// Save the options for the titles and labels to local macro 
local x_title "months since start of project" 
local y_title "outcome details" 
local interruption_label "interruption" 
local interruption_label_height = `graph_max' + 5 
 
// Generate the text for the graphing of the trend lines 
local num_line = 0 
local trend_lines = "" 
 
forvalues segment = 0/`num_segments' { 
   local trend_lines = `"`trend_lines'"' + `" || lfit estimates time if segment == `segment', 
lcol("`outcome_colour'") lpattern(`trend_pattern') lwidth(`trend_width')"' 
   local num_lines = `num_lines' + 1 
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} 
 
// Generate the graph using Stata's twoway command                  
local name = "simple_graph_added_text_4a" 
 
graph twoway scatter outcome time, msize(`point_size') msym(`point_symbol') 
mcol("`outcome_colour'`point_transparency'") /// outcomes 
          || lfit counterfactual time if segment == 1, lcol("`outcome_colour'") 
lpattern(`counterfactual_pattern') lwidth(`counterfactual_width') /// counterfactual 
          `trend_lines' /// trend lines 
          ylab(`graph_min' `outcome_max' `change_counter' `estimate_counter',angle(h) 
format(%3.0fc)) /// 
          title("4a", position(10) ring(1)) /// 
          ytitle(`y_title') /// 
          xtitle(`x_title') /// 
          xline(`time_1_start', lcol(`interruption_colour') lpattern(`interruption_pattern') 
lwidth(`interruption_width')) /// interruption line 
          text(`interruption_label_height' `time_0_end' "`interruption_label'", placement(w)) /// 
interruption text label 
          text(55 -1 "level change: `level_change', 95% CI (`level_change_ll', `level_change_ul')", 
placement(e) size(small)) /// level change details 
          text(45 -1 "slope change: `slope_change', 95% CI (`slope_change_ll', `slope_change_ul')", 
placement(e) size(small)) /// slope change details 
          legend(off) /// legend without border 
          graphregion(col(white)) /// set background to white 
          name(`name') 
           
graph export "`graph_directory'\`name'.svg", replace 
graph export "`graph_directory'\`name'.png", replace 
 
drop graph_max 
drop graph_min 
 
//////////////////////////////////////////////////////////////////////////////// 
// Code to generate graph in Figure 4b 
// In this graph, there are features that go against recommendations.  
// That is, the box around the legend unnecessarily clutters the image;  
// the y-axis labels are vertical making them more difficult to read. 
 
// Save the values for the colour and other graph parameters to local macros: 
local outcome_colour = "0 114 178" // colour blind friendly blue 
 
local point_size = "small" 
local point_symbol = "plus" 
local point_transparency = "%70" // this can be adjusted depending on number of points 
 
local trend_pattern = "solid" 
local trend_width = "medthick" 
 
// Save the options for the counterfactual lines to local macro 
local counterfactual_pattern = "dash" 
local counterfactual_width = "medium" 
 
// Save the options for the interruption lines to local macro 
local interruption_colour = "red" 
local interruption_pattern = "dash" 
local interruption_width = "medium" 
 
// Save the options for the titles and labels to local macro 
local x_title "months since start of project" 
local y_title "outcome details" 
local interruption_label "interruption" 
local interruption_label_height = `graph_max' + 5 
 
// Generate the text for the graphing of the trend lines 
local num_line = 0 
local trend_lines = "" 
 
forvalues segment = 0/`num_segments' { 
   local trend_lines = `"`trend_lines'"' + `" || lfit estimates time if segment == `segment', 
lcol("`outcome_colour'") lpattern(`trend_pattern') lwidth(`trend_width')"' 
   local num_lines = `num_lines' + 1    
} 
 
// Generate the graph using Stata's twoway command                  
local name = "graph_too_simple_4b" 
 
graph twoway scatter outcome time, msize(`point_size') msym(`point_symbol') 
mcol("`outcome_colour'`point_transparency'") /// outcomes 
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          || lfit counterfactual time if segment == 1, lcol("`outcome_colour'") 
lpattern(`counterfactual_pattern') lwidth(`counterfactual_width') /// counterfactual 
          `trend_lines' /// trend lines 
          title("4b", position(10) ring(1)) /// 
          ytitle(`y_title') /// 
          xtitle(`x_title') /// 
          xline(`time_1_start', lcol(`interruption_colour') lpattern(`interruption_pattern') 
lwidth(`interruption_width')) /// interruption line 
          text(`interruption_label_height' `time_0_end' "`interruption_label'", placement(w)) /// 
interruption text label 
          legend(order(1 "outcome" 3 "pre-interruption trend" 4 "post-interruption trend" 2 
"counterfactual")) /// legend  
          graphregion(col(white)) /// set background to white 
          name(`name') 
 
graph export "`graph_directory'\`name'.svg", replace 
graph export "`graph_directory'\`name'.png", replace 
 
graph combine simple_graph_added_text_4a graph_too_simple_4b, col(1) ysize(8) iscale(0.7273) 
graphregion(margin(zero) col(white)) name(combined_graph_4) 
 
graph export "`graph_directory'\combined_graph_4.svg", replace 
graph export "`graph_directory'\combined_graph_4.png", replace 
 
exit 
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Appendix F. Supplementary file 1 accompanying Chapter 5 – 

Supplementary graphs 
“Evaluation of statistical methods used in the analysis of interrupted time series studies: a 

simulation study” 

Turner SL, Forbes AB, Karahalios A, Taljaard M, McKenzie JE. 

 

The following are the supplementary graphs referenced in the main manuscript. 

Supplementary 1.1 Interrupted time series graphs 
The following, Figure S1, shows an example of a simulated data set using the 

parameterisation shown in equation 1, section 3.1. 

 
Figure S5: An example of two simulated data sets. This figure was created using the model (Yt = β0 + β1t + β2Dt + 

β3[t− TΙ]Dt + εt where  εt = ρ εt-1+ N(0,σ2)), with parameters β0 = 0 (y-intercept), β1 = 0 (pre-interruption slope), β2 = 2 

(level change at time of interruption), β3 = 0.1 (slope change after interruption), and σ=1, Dt is an indicator variable that 

is 0 for pre-interruption times and 1 for post-interruption times. In Figure 1A the autocorrelation (ρ) is 0.8, in Figure 1B it 

is 0. 
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Supplementary 1.2 Slope change estimates 
The following, Figure S2, shows the distribution of slope change estimates for parameters 2 for 

level change and 0.1 for slope change. 

 

Figure S6: Distributions of slope change estimates calculated from four statistical methods, from top to bottom: 

autoregressive integrated moving average (ARIMA) (purple), ordinary least squares regression (OLS) (blue), Prais-

Winsten (PW) (green) and restricted maximum likelihood (REML) (orange). The vertical axis shows the length of the 

time series. The five vertical columns display the results for different values of autocorrelation. The vertical black line 

represents the true parameter value (β3). Each subset of four curves shows the distribution from a different analysis 

method for a given combination of time series length and autocorrelation. The simulation combination presented is for a 

level change of 2 and slope change of 0.1; however, other combinations give similar results. The Satterthwaite 

adjustment to the REML method and the Newey-West adjustment to the OLS method do not impact the estimate of 

level or slope change, hence these parameter estimates are not shown. 
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Supplementary 1.3 Differences between slope and level change 
parameters 

The following nested loop plots (Rücker and Schwarzer 2014) show the similarities in estimates 

and performance measures across the eight different level and slope change parameters. Each 

statistical method is denoted using different coloured and shaped points across each combination 

of time series length, level change and slope change.  

S 1.3.1 Level change bias 

 
Figure S7: Bias in level change estimate for magnitude of autocorrelation 0. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-

Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S8: Bias in level change estimate for magnitude of autocorrelation 0.2. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-

Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S9: Bias in level change estimate for magnitude of autocorrelation 0.4. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-

Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S10: Bias in level change estimate for magnitude of autocorrelation 0.6. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-

Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S11: Bias in level change estimate for magnitude of autocorrelation 0.8. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-

Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

S 1.3.2 Slope change bias 

 
Figure S12: Bias in slope change estimate for magnitude of autocorrelation 0. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-

Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S13: Bias in slope change estimate for magnitude of autocorrelation 0.2. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-

Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S14: Bias in slope change estimate for magnitude of autocorrelation 0.4. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-

Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S15: Bias in slope change estimate for magnitude of autocorrelation 0.6. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-

Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S16: Bias in slope change estimate for magnitude of autocorrelation 0.8. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-

Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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S 1.3.3 Level change empirical standard error 

 
Figure S17: Empirical standard error of level change estimate for magnitude of autocorrelation 0. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S18: Empirical standard error of level change estimate for magnitude of autocorrelation 0.2. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S19: Empirical standard error of level change estimate for magnitude of autocorrelation 0.4. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S20: Empirical standard error of level change estimate for magnitude of autocorrelation 0.6. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S21: Empirical standard error of level change estimate for magnitude of autocorrelation 0.8. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

S 1.3.4 Slope change empirical standard error 

 
Figure S22: Empirical standard error of slope change estimate for magnitude of autocorrelation 0. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S23: Empirical standard error of slope change estimate for magnitude of autocorrelation 0.2. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S24: Empirical standard error of slope change estimate for magnitude of autocorrelation 0.4. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S25: Empirical standard error of slope change estimate for magnitude of autocorrelation 0.6. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S26: Empirical standard error of slope change estimate for magnitude of autocorrelation 0.8. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 



Page 174   Appendix F. Supplementary file 1 accompanying Chapter 5 

 

S 1.3.5 Level change model-based standard error 

 
Figure S27: Model-based standard error of level change estimate for magnitude of autocorrelation 0. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S28: Model-based standard error of level change estimate for magnitude of autocorrelation 0.2. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S29: Model-based standard error of level change estimate for magnitude of autocorrelation 0.4. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S30: Model-based standard error of level change estimate for magnitude of autocorrelation 0.6. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S31: Model-based standard error of level change estimate for magnitude of autocorrelation 0.8. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

S 1.3.6 Slope change model-based standard error 

 
Figure S32: Model-based standard error of slope change estimate for magnitude of autocorrelation 0. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S33: Model-based standard error of slope change estimate for magnitude of autocorrelation 0.2. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S34: Model-based standard error of slope change estimate for magnitude of autocorrelation 0.4. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S35: Model-based standard error of slope change estimate for magnitude of autocorrelation 0.6. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S36: Model-based standard error of slope change estimate for magnitude of autocorrelation 0.8. Each data point 

shows the mean value from 10,000 simulations for a given combination of slope change, level change and length of 

time series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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S 1.3.7 Level change coverage 

 
Figure S37: Coverage of level change estimate for magnitude of autocorrelation 0. Each data point shows the 

mean value from 10,000 simulations for a given combination of slope change, level change and length of time 

series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S38: Coverage of level change estimate for magnitude of autocorrelation 0.2. Each data point shows the 

mean value from 10,000 simulations for a given combination of slope change, level change and length of time 

series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S39: Coverage of level change estimate for magnitude of autocorrelation 0.4. Each data point shows the 

mean value from 10,000 simulations for a given combination of slope change, level change and length of time 

series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S40: Coverage of level change estimate for magnitude of autocorrelation 0.6. Each data point shows the 

mean value from 10,000 simulations for a given combination of slope change, level change and length of time 

series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S41: Coverage of level change estimate for magnitude of autocorrelation 0.8. Each data point shows the 

mean value from 10,000 simulations for a given combination of slope change, level change and length of time 

series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

S 1.3.8 Slope change coverage 

 
Figure S42: Coverage of slope change estimate for magnitude of autocorrelation 0. Each data point shows the 

mean value from 10,000 simulations for a given combination of slope change, level change and length of time 

series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S43: Coverage of slope change estimate for magnitude of autocorrelation 0.2. Each data point shows the 

mean value from 10,000 simulations for a given combination of slope change, level change and length of time 

series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

 
Figure S44: Coverage of slope change estimate for magnitude of autocorrelation 0.4. Each data point shows the 

mean value from 10,000 simulations for a given combination of slope change, level change and length of time 

series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Figure S45: Coverage of slope change estimate for magnitude of autocorrelation 0.6. Each data point shows the 

mean value from 10,000 simulations for a given combination of slope change, level change and length of time 

series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite.  

 
Figure S46: Coverage of slope change estimate for magnitude of autocorrelation 0.8. Each data point shows the 

mean value from 10,000 simulations for a given combination of slope change, level change and length of time 

series. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; NW, 

Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 

. 
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S 1.3.9 Estimate of autocorrelation 

 
Figure S47: Autocorrelation estimate for true magnitude of autocorrelation 0. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; PW, Prais-Winsten; REML, restricted maximum likelihood. 

 
Figure S48: Autocorrelation estimate for true magnitude of autocorrelation 0.2. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; PW, Prais-Winsten; REML, restricted maximum likelihood. 
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Figure S49: Autocorrelation estimate for true magnitude of autocorrelation 0.4. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; PW, Prais-Winsten; REML, restricted maximum likelihood. 

 
Figure S50: Autocorrelation estimate for true magnitude of autocorrelation 0.6. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; PW, Prais-Winsten; REML, restricted maximum likelihood. 

 
Figure S51: Autocorrelation estimate for true magnitude of autocorrelation 0.8. Each data point shows the mean value 

from 10,000 simulations for a given combination of slope change, level change and length of time series. Abbreviations: 

ARIMA, autoregressive integrated moving average; PW, Prais-Winsten; REML, restricted maximum likelihood. 
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Supplementary 1.4 Standard error of level change parameter for OLS 
Additional simulations were undertaken to examine the behaviour of the OLS standard error 

estimator for the level change for additional autocorrelations (0.7 and 0.9). This showed a similar 

pattern of initially increasing SEs with an increasing number of points, which we had observed in 

the main simulation study for an underlying autocorrelation of 0.8. 

 
Figure S52: Empirical standard error (SE) of level change parameter for ordinary least squares regression. The 

horizontal axis shows the length of the time series, the vertical axis shows the empirical SE. Each coloured line shows 

the results for a different magnitude of autocorrelation ranging from 0 (bottom right, black) to 0.8 (top right, red). The 

simulation combination presented represents a level change of 2 and slope change of 0.1; however, other combinations 

give similar results. 
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Supplementary 1.5 Comparison between empirical and model-based 
standard errors: slope change 

The ratio of model to empirical-based standard errors are shown in Figure S51. The 

accompanying text is in section 5.2.2. 

 

Figure S53: Scatter plots of the ratio of model-based standard error (SE) to the empirical SE for the slope change 

parameter with different levels of autocorrelation and series length. The horizontal axis represents the number of points 

in the time series, the vertical axis shows the ratio of model-based to empirical SE. The five vertical columns display the 

results for different values of autocorrelation. The simulation combination presented is for a level change of 2 and slope 

change of 0.1; however, other combinations give similar results. The first two series lengths are not shown for the 

ARIMA method due to extreme values. The Satterthwaite adjustment to the REML does not impact the estimate of SE, 

hence details of this method are not shown. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, 

ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood. 
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Supplementary 1.6 Power 
The following graphs show the estimated power for additional level and slope change parameters. 

The results presented below should be viewed as approximate power only and will generally be 

lower than the value observed if coverage was at least 95%. 

S 1.6.1 Level change 

 
Figure S54: Power for level change, true value 0. Each point is the mean number of times the 95% confidence interval 

of the estimate did not include zero from 10,000 simulations. Abbreviations: ARIMA, autoregressive integrated moving 

average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; 

Satt, Satterthwaite; NW, Newey-West. 

 
Figure S55: Power for level change, true value .5. Each point is the mean number of times the 95% confidence interval 

of the estimate did not include zero from 10,000 simulations. Abbreviations: ARIMA, autoregressive integrated moving 

average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; 

Satt, Satterthwaite; NW, Newey-West. 
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Figure S56: Power for level change, true value 1. Each point is the mean number of times the 95% confidence interval 

of the estimate did not include zero from 10,000 simulations. Abbreviations: ARIMA, autoregressive integrated moving 

average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; 

Satt, Satterthwaite; NW, Newey-West. 

S 1.6.2 Slope change 

 
Figure S57: Power for slope change, true value 0.1. Each point is the mean number of times the 95% confidence 

interval of the estimate did not include zero from 10,000 simulations. Abbreviations: ARIMA, autoregressive integrated 

moving average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum 

likelihood; Satt, Satterthwaite; NW, Newey-West. 
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Figure S58: Power for slope change, true value 0. Each point is the mean number of times the 95% confidence interval 

of the estimate did not include zero from 10,000 simulations. Abbreviations: ARIMA, autoregressive integrated moving 

average; OLS, ordinary least squares; NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; 

Satt, Satterthwaite; NW, Newey-West. 
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Supplementary 1.7 Standard error of autocorrelation coefficient 
estimates.  

The following graph shows the empirical SE of the estimates of the magnitude of autocorrelation. 

 
Figure S59: Empirical standard error (SE) for autocorrelation coefficient estimates. The horizontal axis shows the length 

of the time series. The vertical axis shows the empirical SE of the autocorrelation coefficient estimates. The five plots 

display the results for different values of autocorrelation ranging from 0 to 0.8. Each coloured point shows the mean 

value of the SE of the autocorrelation coefficient estimates from 10,000 simulations for a given combination of 

autocorrelation coefficient and number of points in the data series The simulation combinations presented represent a 

model structure with a level change of 2 and slope change of 0.1; however, other combinations give similar results. 

Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; PW, Prais-Winsten; 

REML, restricted maximum likelihood. 
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Supplementary 1.8 Convergence of estimation methods 
Figure S54 shows the number of times the estimation methods converged. Accompanying text is 

in Section 5.6 

 

Figure S60: Model convergence. The horizontal axis shows the length of the time series. The vertical axis shows the 

number of times each method converged out of 10,000 simulation replications. The five plots display the results for 

different values of autocorrelation ranging from 0 to 0.8. The simulation combination presented is for a level change of 2 

and slope change of 0.1; however, other combinations give similar results. Abbreviations: ARIMA, autoregressive 

integrated moving average; OLS, ordinary least squares; PW, Prais-Winsten; REML, restricted maximum likelihood. 
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Supplementary 1.9 Coverage by autocorrelation bias: slope change 
Figure S60 shows the coverage for slope change versus the bias in autocorrelation estimate. 

Accompanying text is in section 7.1. 

 

Figure S61: Bias in autocorrelation estimate versus coverage for slope change. The horizontal axis shows the bias in 

the autocorrelation estimate. The vertical axis shows the percentage coverage. The horizontal dashed line indicates 

95% coverage, the vertical dashed line indicates no bias in the estimate of autocorrelation. Each colour represents a 

different value of underlying autocorrelation, ranging from zero (purple) to 0.8 (red), with each value displayed in a 

circle at the  smallest series length (six points). The arrows point from shortest to longest series length, with the small 

circles at the end of each line showing coverage at a series length of 100 data points. Each data point shows the mean 

value from 10,000 simulations for a given combination of autocorrelation coefficient and number of points in the series. 

The simulation combination presented is for a level change of 2 and slope change of 0.1; however, other combinations 

give similar results. Abbreviations: ARIMA, autoregressive integrated moving average; OLS, ordinary least squares; 

NW, Newey-West; PW, Prais-Winsten; REML, restricted maximum likelihood; Satt, Satterthwaite. 
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Appendix G. Supplementary file 2 accompanying Chapter 5 – 

Computer code to create and analyse simulated data sets 
“Evaluation of statistical methods used in the analysis of interrupted time series studies: a 

simulation study” 

Turner SL, Forbes AB, Karahalios A, Taljaard M, McKenzie JE.  

 

The following sections contain the Stata 15 computer code used to create the simulated data and 

analyse it. Stata 15 do file versions can be found on the online repository figshare along with the 

data required to replicate the study and create the graphs in the publication and supplementary 

files: https://doi.org/10.26180/13284329 (57). 

G.1 Data file 1: 01_S_Turner_ITS_Simulation_Master_File.do 
//////////////////////////////////////////////////////////////////////////////// 
// The following do file provides the code to generate the simulations used in the paper:  
// Turner, et al. "Evaluation of statistical methods used in the analysis of interrupted time 
series studies: a simulation study". 
// 
// Master simulation do file 
// Author: Simon Turner 
// simon.turner@monash.edu 
// 
//////////////////////////////////////////////////////////////////////////////// 
// This code was tested using Stata IC version 15.1 
// set Stata version 
version 15.1 
// 
// This Master do file calls multiple other do files in order to create simulated data sets, 
analyse them and summarise the results  
// They should all be placed in the same directory. 
// 
//       The following do files are called: 
// 
//       to create the simulated data sets: 
//       simulate_ITS_data.do 
// 
//       to analyse the datasets: 
//       analyse_ITS_data.do 
// 
//       ARIMA code in Stata 15 has difficulties for large numbers of consecutive analyses  
//      so the ARIMA analysis is performed in batches requiring the following do file: 
//       get_simulations_yet_to_do.do 
// 
//       to append the results from the different methods together: 
//       do append_results_methods.do 
// 
//       to append the results from the different autocorrelations together: 
//       do append_results_rhos.do 
// 
//      finally, simsum (details below) is used to summarise the results and uses 
//      simsum_final.do 
// 
//      Other files that are used for the remainder of the study include: 
//      Durbin_Watson_tests.do for the durbin watson component of the study 
//       And for the graphs: 
// 
//       Figure 3 gives parameter distributions for level change: 
//      Figure_3_parameter_distributions.do 
//       Figure 4 gives line graphs of empirical standard error for level change: 
//      Figures_45789.do 
//       Figure 5 gives line graphs of empirical standard error for level change: 
//      Figures_45789.do 
//       Figure 6 gives scatter plots of ratio of model/empirical SE vs series length for level 
change 
//      Figure_6.do 

https://doi.org/10.26180/13284329
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//       Figure 7 gives scatter plots of coverage for level change 
//      Figures_45789.do 
//       Figure 8 gives scatter plots of coverage for slope change 
//      Figures_45789.do 
//      Figure 9 gives line graphs of power for level change 
//      Figures_45789.do 
//      Figure 10 gives distributions of autocorrelation estimates 
//      Figure_10.do 
//       Figure 11 shows line graphs of autocorrelation estimates 
//      Figure_11.do 
//      Figure 12 shows Durbin-Watson tests by series length 
//      Figure_12.do 
//      Figure 13 shows bias in autocorrelation estimate versus coverage for level change 
//      Figure_13.do 
//      Supplementary 1.3 has all of the nested loop plots, these need some more 
//      work to make them generalisable, currently they run separately 
//      Supp_1_3_1_nested_loop_level_bias.do 
//      Supp_1_3_2_nested_loop_slope_bias.do 
//      Supp_1_3_3_nested_loop_level_empse.do 
//      Supp_1_3_4_nested_loop_slope_empse.do 
//      Supp_1_3_5_nested_loop_level_modelse.do 
//      Supp_1_3_6_nested_loop_slope_modelse.do 
//      Supp_1_3_7_nested_loop_level_coverage.do 
//      Supp_1_3_8_nested_loop_slope_coverage.do 
//      Supp_1_3_9_nested_loop_rho_estimate.do 
//       Supplementary_1_5 gives scatter plots of ratio of model/empirical SE vs series length for 
slope change 
//      Supp_1_5.do 
//      Supp 1.6 gives line graphs of power for slope change 
//      Figures_45789.do 
//      Supp 1.7 gives line graphs of rho empirical standard error 
//      Supp_1_7.do 
//      Supplementary 1.8 shows convergence  
//      Figures_45789.do 
//      Supp 1.9 shows bias in autocorrelation estimate versus coverage for slope change 
//      Supp_1_9.do 
 
//////////////////////////////////////////////////////////////////////////////// 
// 
// Three further user written programs are required for this project, parallel and simsum for 
simulations and analysis: 
// grc1leg2 for the graphs 
// 
// the parallel user written code is required to run this version 
// allowing a multi-core computer with the basic version of Stata to run 
// much, much faster:  
// parallel Stata module for parallel computing 
// vers 1.19.0 26jul2017 
// auth George G. Vega [cre,aut], Brian Quistorff [aut] 
 
*ssc install parallel // remove the * to install parallel 
// 
// for the parallel software to work, set the number of clusters to the number of processor cores 
on your computer 
// it will then run an instance of Stata for each core 
// the number (on my computer 6) can be changed to the number of cores on your computer (just 
choose 1 if you're not sure) 
parallel setclusters 5 
// 
// the simsum user written code is required to summarise the results 
// and provide MCSE:  
// version 0.17.1     Ian White   23nov2015 
*ssc install simsum // remove the * to install simsum 
// 
// the grc1leg2 user written code is just to add a legend to the bottom of a graph combine. 
// for the high quality images in the pape, normal combine was used and a legend was added using a 
graphics package 
//  
*net install grc1leg2.pkg 
//////////////////////////////////////////////////////////////////////////////// 
// A base directory needs to be supplied 
// (the code creates any subdirectories for data files, graphs etc.) 
// The other do files (listed above) should be placed in this directory also. 
global base_directory `" "<set directory>" "' 
// 
// For reproducibility the random seed can be specified here: 
set seed 150375 
// 
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//////////////////////////// 
// if the program has crashed, or if you are only running one method at a time 
// you will need to continue the random numbers from after the last one used 
// to get seed back, you just need to know which simulation number to recover 
// and then reset using 
// local mystate = s1[num] + s2[num] + s3[num] 
// set rngstate `mystate'    
// put the last run simulations seedfile here filling in your last run details for b2, b3 and rho: 
// e.g. if b2=0.5, b3=0.1 and rho=0.8: use 
"`base_directory'\data_files\b2_p5_b3_p1\rho_8\simulations\seedfile.dta" 
/* 
use "`base_directory'\data_files\b2_p5_b3_p1\rho_8\simulations\seedfile.dta" 
local mystate = s1[_N] + s2[_N] + s3[_N] 
display "`mystate'" 
set rngstate `mystate' 
*/ 
 
//////////////////////////////////////////////////////////////////////////////// 
// Set up main parameters 
 
   // how many simulations to run (this study used 10000) 
global num_simulations = 100 
   // simulation offset (drop this many observations to ensure independence from one series to the 
next) 
global simulation_offset = 300 // this study used 300 
   // how many time points in the series 
global num_points = 100 // this study used 100 
   // the intervention time point 
global intervention_time = int((${num_points}+1)/2) // halfway point is int((${num_points}+1)/2)  
   // range of points to plot graphs, calculate results etc. 
global min_num_points = 3 // this is the number of points per segment, any smaller than 3 is not an 
interrupted time series by the EPOC definition 
global max_num_points = $num_points 
   // rather than create every single option, this can be restricted to looking at different 
   // numbers of points pre-interruption 
   // currently this is set to look at all of the points from 3 to 10, then every second point 
   // up to 30, then every 10 after that. This keeps the resolution high for small numbers 
   // but skips a lot of the longer time series where the results are stable anyway 
global list_of_numbers "${min_num_points}(1)9 10(2)29 30(10)${intervention_time} " 
 
// Model used is observation = beta0  
//                        + beta_1*time  
//                        + beta_2*Intervention  
//                        + beta_3*(time - intervention_time)*intervention 
//                        + error 
// 
// error is modelled in two parts 
//       basic error of form N(0,sigma^2) 
//       + autocorrelated error of form `rho'*error[_n-1] ie. a term based on the previous time 
point error 
// Huitema and McKean (2007). "Identifying Autocorrelation Generated by Various Error Processes in 
Interrupted Time-Series Regression Designs." Educational and Psychological Measurement 67(3): 447-
459. 
       
// beta_0 = intercept pre-intervention  
global beta_0 = 0  
// beta_1 = slope during pre-intervention period  
global beta_1 = 0  
// level changes, use p5 for 0.5 
global b2_list "0 p5 1 2" 
*global b2_list "2" 
// slope changes, use p1 for 0.1  
global b3_list "0 p1"  
*global b3_list "p1"  
// rho values, skip the decimal e.g. 0.2 -> 2 
global rho_list "0 2 4 6 8"  
// sigma = standard deviation of the error term of form N(0,sigma^2) 
global sigma = 1.0  
   // enter a text list of the models that you'd like to analyse 
   // current options that are enabled: 
   // model_type "regress" for OLS regression 
   // model_type "newey" for Newey West with lag-1 autocorrelation 
   // model_type "prais_raw" for basic Prais-Winsten 
   // model_type "prais" for Prais-Winsten with optimal search 
   // model_type "corc" for Cochrane-Orcutt 
   // model_type "mixed" for REML, lag-1 
   // model_type "mixed_satt" for REML with Satterthwaite approximation 
   // model_type "arima" for ARIMA 
   // new types can be added to the "analyse_ITS_data.do" file 
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global model_types "regress newey prais_raw mixed mixed_satt arima" 
 
// for graphing, can use the same list as above (graphs for every set of parameters) 
// use "${b2_list}" and ${b3_list} 
// or choose to graph just one set e.g. "2" and "p1".  
global b2_graph_list = "${b2_list}" 
global b3_graph_list = "${b3_list}" 
 
// this ends the section requiring any inputs 
******************************************************************************** 
******************************************************************************** 
//////////////////////////////////////////////////////////////////////////////// 
// The structure of the outputs are as follows: 
//  
// A data_files directory will be created in the base folder 
// within this directory will be a subdirectory for each level and slope change combination 
// e.g. "b2_0_b3_0" for the zero cases for level and slope change 
// a file "all_results_b2_x_b3_x.dta" holds the data for all of the analyses within that 
combination 
//  
// Within each of these level and slope change combinations are subdirectories 
// for the autocorrelation parameters "rho_0", "rho_2" and so on 
// Within each of these subdirectories "simulations" for the simulations 
// these include the "all_simulations.dta" file which includes all the simulations 
// for that combination of level, slope, rho as well as "seedfile.dta" containing the random seeds 
// Also within the autocorrelation parameter subdirectory is the "results" subdirectory 
// Within "results" are separate folders for the results of each method type, e.g. arima, 
regress... 
// Within the "results" folder are combined datasets for each method and also  
// "all_results.dta" holding all of the results for that combination of level, slope and rho 
// 
// In the data_files directory will be a subdirectory called "simsum" 
// within this directory is the "all_simsum_long.dta" file which is the summary 
// results of all of the analyses. 
// There are also separate simsum files for each parameter combination and beta coefficient 
// 
// The Durbin-Watson analysis will use the first parameter combination and requires 
// the simulation files as it re-runs regress and obtains the DW test parameters 
// as such, the first parameter combination folder in the data_files directory 
// will have a Durbin_Watson folder created with all the files for that analysis 
// the final data required for the graph, "collapsed_dwatson.dta" will be stored 
// in the data_file root directory. 
// 
// At the end of all the coding, the important files for analysing and graphing 
// are placed in the root data_files directory. These are: 
// "all_results.dta" which holds all of the analysed results and is a very big filemap 
// "all_simsum_long.dta" which holds the simsum summary analysis results 
// "collapsed_dwatson.dta" which hold the durbin watson summary results 
// 
// filemap of important files... 
// .data_files 
//      "all_results.dta" 
//      "all_simsum_long.dta" 
//      "collapsed_dwatson.dta" 
//      -> b2_x_b3_x 
//         "all_results_b2_x_b3_x.dta" 
//         -> Durbin-Watson 
//            "dwatson_bounds_n.dta" 
//            "dwatson_checks.dta" 
//            "rho_tests_n_points.dta" 
//         -> rho_x 
//            -> results 
//               "results_method_x.dta" 
//               "all_results_dta" 
//               -> method_x 
//                  "results_method_x_n.dta" 
//            -> simulations 
//               "all_simulations.dta" 
//               "seedfile.dta" 
//               "simulation_n_points.dta" 
//      -> simsum 
//         "simsum_b2_x_b3_x_beta_y.dta" 
//         "simsum_b2_x_b3_x_beta_y_long.dta" 
// 
// .graphs 
//      "all of the graphs required for the paper" 
******************************************************************************** 
******************************************************************************** 
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//////////////////////////////////////////////////////////////////////////////// 
// The remainder of the do file carries out the simulations, analyses and summaries 
 
//////////////////////////////////////////////////////////////////////////////// 
// reset and clear memory 
set more off 
graph drop _all 
matrix drop _all 
log close _all 
clear 
 
//////////////////////////////////////////////////////////////////////////////// 
// As simulations can be lengthy, timers are used to gauge where any long times 
// are occurring, expect to see longer times for more complex analyses (e.g. ARIMA, REML) 
// set up some timers for comparison of methods etc. 
timer clear 
timer clear 1 
timer on 1 
 
//////////////////////////////////////////////////////////////////////////////// 
// Set up all the directories 
// make the base directory if it doesn't already exist 
cap mkdir $base_directory 
cd $base_directory 
   // create a directory to hold data files 
global data_directory ".\data_files\\" 
cap mkdir $data_directory 
global graph_directory ".\graphs\\" 
cap mkdir $graph_directory 
 
//////////////////////////// 
// now loop over each level change and slope change combination 
 
// create number list from rho list above 
local rho_nums "" 
foreach rho of global rho_list { 
   local rho_nums = "`rho_nums'" + " 0.`rho'" 
} 
 
foreach b2 of global b2_list { // loop b2s 
   foreach b3 of global b3_list { // loop b3s 
       
      // beta_2 = immediate change at time of intervention  
      global beta_2 = `=subinstr("`b2'","p",".",.)' 
      global beta_3 = `=subinstr("`b3'","p",".",.)' 
 
      display "beta_2 = $beta_2 and beta_3 = $beta_3" 
 
      //////////////////////////////////////////////////////////////////////////////// 
      // loop over values of autocorrelation 
 
      foreach rho_num of numlist `rho_nums' { 
 
         // rho = autocorrelation, lag 1, parameter between -1 and 1 
         global rho = `rho_num' 
            // to make a matching directory string need to remove the decimal place for the folder 
name 
            global rho_name = string(${rho}) 
 
            local decimal_place = strpos("${rho}",".") 
            local no_decimal = substr("${rho}",`=`decimal_place'+1',.) 
 
            global rho_name = `no_decimal' 
 
            // make a new folder for this set of simulations 
         global new_subfolder_name "b2_`b2'_b3_`b3'" 
         cap mkdir ${data_directory}\${new_subfolder_name}    
 
         global new_folder_name "${data_directory}\${new_subfolder_name}\rho_${rho_name}\" 
         cap mkdir ${new_folder_name} 
 
            // where the graph files are 
         global graphs_directory "${new_folder_name}\graphs\\" 
         cap mkdir ${graphs_directory} 
 
            // where the simulation files are 
         global simulation_directory   "${new_folder_name}\simulations\\"    
         cap mkdir ${simulation_directory} 
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            // where the results files are 
         global results_directory "${new_folder_name}\results\\" 
         cap mkdir ${results_directory} 
 
            // where the analysis files are 
         global analysis_directory "${new_folder_name}\analysis\\" 
         cap mkdir ${analysis_directory} 
          
         //////////////////////////////////////////////////////////////////////////////// 
         // Generate the simulations 
             
         timer clear 2 
         timer on 2 
         display "simulations in rho ${rho} $S_TIME  $S_DATE" 
               // run the simulations: 
               // this do file creates the simulation data sets 
               // it also creates a list of the random seeds used so that 
               // any simulation can be re-created 
               // and if the program crashes, the simulations can be re-run 
               // from the point of crash using the appropriate random numbers 
            do simulate_ITS_data.do  
          
         timer off 2 
         timer list 2 
          
         //////////////////////////////////////////////////////////////////////////////// 
         // Run models 
         // the analyse_ITS_data.do file analyses the simulated datasets 
         // and outputs the results  
         // The following section is a series of "if" statements that runs through 
         // each selected model in the "model_types" string input earlier 
         // It then calls the do file, passing it the appropriate analysis type. 
         // Timers are included as it can be valuable to see which methods are particularly slow 
         // There is some extra code around the ARIMA method as we found that there were 
         // difficulties running too many consecutive analyses and so have broken the 
         // analysis up into batches for ARIMA. It's slower, but crashes less frequently. 
         // The default value for model is standard regression if nothing was input 
         // 
          
         local store_model_types = "${model_types}" 
          
         foreach model_type of global model_types { 
          
            if "`model_type'" == "regress" { 
               global model_types "regress" 
               display "${model_types} in rho ${rho} $S_TIME  $S_DATE" 
               timer clear 3    
               timer on 3 
                  use ${simulation_directory}all_simulations.dta, clear 
               parallel do analyse_ITS_data.do, by(simulation) 
                   
               timer off 3 
               timer list 3 
            } 
            else if "`model_type'" == "newey" { 
               global model_types "newey" 
               // rho obtained by regressing residual = B*residual[_n-1] 
               display "${model_types} in rho ${rho} $S_TIME  $S_DATE" 
               timer clear 4    
               timer on 4 
                  use ${simulation_directory}all_simulations.dta, clear 
               parallel do analyse_ITS_data.do, by(simulation) 
               timer off 4 
               timer list 4 
            }             
            else if "`model_type'" == "prais_raw" { 
               global model_types "prais_raw" 
               display "${model_types} in rho ${rho} $S_TIME  $S_DATE" 
               timer clear 5    
               timer on 5 
                  use ${simulation_directory}all_simulations.dta, clear 
               parallel do analyse_ITS_data.do, by(simulation) 
               timer off 5 
               timer list 5 
            } 
            else if "`model_type'" == "prais" { 
            global model_types "prais" 
               // currently using ssesearch for minimising sum of squared errors searching for rho 
               display "${model_types} in rho ${rho} $S_TIME  $S_DATE" 
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               timer clear 5    
               timer on 5 
                  use ${simulation_directory}all_simulations.dta, clear 
               parallel do analyse_ITS_data.do, by(simulation) 
               timer off 5 
               timer list 5 
            } 
            else if "`model_type'" == "corc" { 
               global model_types "corc" 
               display "${model_types} in rho ${rho} $S_TIME  $S_DATE" 
               timer clear 6    
               timer on 6 
                  use ${simulation_directory}all_simulations.dta, clear 
               parallel do analyse_ITS_data.do, by(simulation) 
               timer off 6 
               timer list 6 
            }    
            else if "`model_type'" == "mixed" { 
               global model_types "mixed" 
               display "${model_types} in rho ${rho} $S_TIME  $S_DATE" 
               timer clear 7    
               timer on 7 
                  use ${simulation_directory}all_simulations.dta, clear 
               parallel do analyse_ITS_data.do, by(simulation) 
               timer off 7 
               timer list 7 
            } 
            else if "`model_type'" == "mixed_satt" { 
               global model_types "mixed_satt" 
               display "${model_types} in rho ${rho} $S_TIME  $S_DATE" 
               timer clear 8    
               timer on 8 
                  use ${simulation_directory}all_simulations.dta, clear 
               parallel do analyse_ITS_data.do, by(simulation) 
               timer off 8 
               timer list 8 
            } 
            else if "`model_type'" == "arima" { 
               // ARIMA model seems to crash or hang after a while, so instead 
               // of analysing all of the data at once, we do it in chunks 
               // but because we're running "parallel" 
               // we can't always tell exactly which simulations we've already  
               // analysed, so we have to find that out first, then analyse the 
               // next batch after that 
                
               global model_types "arima" 
               display "${model_types} in rho ${rho} $S_TIME  $S_DATE" 
               timer clear 9    
               timer on 9 
                
               local arima_directory "${results_directory}\arima\" 
               cap mkdir `arima_directory' 
 
               // here we set how many batches to do things in 
               local previous_num = 0 
               // if we have small numbers of simulations, do in batches of 10, otherwise in 
batches of 1000 
               // this may need fine tuning for different computers 
               if ${num_simulations} < 1000 { 
                  local block_value = 10 
               } 
               else { 
                  local block_value = 1000 
               } 
               forvalues current_num = `block_value'(`block_value')${num_simulations} { 
                   
                  // this do file works out which simulations we still need to do 
                  do get_simulations_yet_to_do.do 
                  // we then keep the simulations we have yet to do within the batch 
                  keep if simulation > `previous_num' & simulation <= `current_num' 
                   
                  quietly summ simulation 
                  local num_remaining = r(N) 
                   
                  if `num_remaining' != 0 { 
                   
                     display "`previous_num' to `current_num'"       
                     sort simulation 
                     // and finally analyse using ARIMA 
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                     parallel do analyse_ITS_data.do, by(simulation) 
                      
                  } // end 0 check 
                   
                  local previous_num = `current_num' 
                   
               } // end batch loop 
                
               timer off 9 
               timer list 9 
            } 
            // set the full list of model types back to what it should be 
            global model_types = "`store_model_types'" 
                      
         } // end model type loop 
          
         //////////////////////////////////////////////////////////////////////////// 
         // combine all the results 
         display "Results appending in rho ${rho} $S_TIME  $S_DATE" 
         // append model results into master files 
         display "Beginning model results appending" 
          
            // within each value of autocorrelation, append all the methods 
            do append_results_methods.do 
 
      } // end rho loop 
      // finally append all of the autocorrelations also 
      global b2 = "`b2'" 
      global b3 = "`b3'" 
      do append_results_rhos.do 
       
      ////////////////////////////////////////////////////////////////////////       
      // make the satterthwaite small sample adjustment for unusually small degrees of freedom 
      // doing it here in the code means that you could see the results otherwise by just 
commenting this out 
      use "${data_directory}\${new_subfolder_name}\all_results_b2_${b2}_b3_${b3}.dta", clear 
      // we have chosen a minimum cut off of 2 
      gen use_dof = 2 
      // do this for each parameter 
      forvalues beta_num = 0/3 { 
         // back up the originals just in case we want to look at them later 
         gen original_`beta_num'_cil = beta_`beta_num'_cil 
         gen original_`beta_num'_ciu = beta_`beta_num'_ciu 
         // create a new version that uses a dof of 2 if the dof < 2 
         gen new_`beta_num'_cil = . 
         replace new_`beta_num'_cil = beta_`beta_num'_cil 
         replace new_`beta_num'_cil = beta_`beta_num' - invttail(use_dof,0.025)*beta_`beta_num'_se 
if beta_`beta_num'_dof < 2 & model_type == "mixed_satt" 
         gen new_`beta_num'_ciu = . 
         replace new_`beta_num'_ciu = beta_`beta_num'_ciu 
         replace new_`beta_num'_ciu = beta_`beta_num' + invttail(use_dof,0.025)*beta_`beta_num'_se 
if beta_`beta_num'_dof < 2 & model_type == "mixed_satt" 
         // replace the original with the new 
         replace beta_`beta_num'_cil = new_`beta_num'_cil 
         replace beta_`beta_num'_ciu = new_`beta_num'_ciu 
         // back up the original dofs too 
         gen original_`beta_num'_dof = beta_`beta_num'_dof 
         replace beta_`beta_num'_dof = 2 if beta_`beta_num'_dof < 2 & model_type == "mixed_satt" 
      } // end satterthwaite fix loop 
      save "${data_directory}\${new_subfolder_name}\all_results_b2_${b2}_b3_${b3}.dta", replace 
   } // end b3 loop 
} // end b2 loop    
 
// now create one master data file 
local first = 1 
foreach b2 of global b2_list { // loop b2s 
   foreach b3 of global b3_list { // loop b3s 
      if `first' == 1 { 
         use "${data_directory}\b2_`b2'_b3_`b3'\all_results_b2_`b2'_b3_`b3'.dta", clear 
         local first = 0 
      } 
      else { 
         append using "${data_directory}\b2_`b2'_b3_`b3'\all_results_b2_`b2'_b3_`b3'.dta", force 
      } 
   } // end b3 loop 
} // end b2 loop 
 
save "${data_directory}\\all_results.dta", replace 
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// finally run the simsum summary statistics 
// as mentioned above, the simsum package will need to be installed for this 
do simsum_final.do 
    
timer off 1 
// list timers 
timer list 
 
//////////////////////////////////////////////////////////////////////////////// 
// Durbin-Watson section 
do Durbin_Watson_tests.do 
 
 
//////////////////////////////////////////////////////////////////////////////// 
// graphs 
 
// Figure 3 gives parameter distributions for level change 
do Figure_3_parameter_distributions.do 
 
// Figure 4 gives line graphs of empirical standard error for level change 
global figure "Figure_4" 
do Figures_45789.do 
 
// Figure 5 gives line graphs of empirical standard error for level change 
global figure "Figure_5" 
do Figures_45789.do 
 
// Figure 6 gives scatter plots of ratio of model/empirical SE vs series length for level change 
do Figure_6.do 
 
// Figure 7 gives scatter plots of coverage for level change 
global figure "Figure_7" 
do Figures_45789.do 
 
// Figure 8 gives scatter plots of coverage for slope change 
global figure "Figure_8" 
do Figures_45789.do 
 
// Figure 9 gives line graphs of power for level change 
global figure "Figure_9" 
do Figures_45789.do 
 
// Figure 10 gives distributions of autocorrelation estimates 
do Figure_10.do 
 
// Figure 11 shows line graphs of autocorrelation estimates 
do Figure_11.do 
 
// Figure 12 shows Durbin-Watson tests by series length 
do Figure_12.do 
 
// Figure 13 shows bias in autocorrelation estimate versus coverage for level change 
do Figure_13.do 
 
do Supp_1_3_1_nested_loop_level_bias.do 
do Supp_1_3_2_nested_loop_slope_bias.do 
do Supp_1_3_3_nested_loop_level_empse.do 
do Supp_1_3_4_nested_loop_slope_empse.do 
do Supp_1_3_5_nested_loop_level_modelse.do 
do Supp_1_3_6_nested_loop_slope_modelse.do 
do Supp_1_3_7_nested_loop_level_coverage.do 
do Supp_1_3_8_nested_loop_slope_coverage.do 
do Supp_1_3_9_nested_loop_rho_estimate.do 
 
// Supplementary_1_5 gives scatter plots of ratio of model/empirical SE vs series length for slope 
change 
do Supp_1_5.do 
 
// Supp 1.6 gives line graphs of power for slope change 
global figure "Supp_1_6" 
do Figures_45789.do 
 
// Supp 1.7 gives line graphs of rho empirical standard error 
do Supp_1_7.do 
 
// Supplementary 1.8 shows convergence  
global figure "Supp_1_8_1" 
do Figures_45789.do 
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// Supp 1.9 shows bias in autocorrelation estimate versus coverage for slope change 
do Supp_1_9.do 

G.2 Data file 2: simulation_ITS_data.do 
//////////////////////////////////////////////////////////////////////////////// 
// Simulation final file 
// Simon Turner 
// 
// This program creates simulated ITS datasets 
//  
//////////////////////////////////////////////////////////////////////////////// 
// 
// This is called from the Master file which supplies the parameters 
// 
//////////////////////////////////////////////////////////////////////////////// 
// set Stata version 
version 15.1 
          
/////////////////////////////// 
// set up the random seed file, keeps a track of the state of the random numbers so that each 
simulation is reproducible             
tempname postseed 
postfile `postseed' simulation simulation_pre_num str2000 s1 str2000 s2 str1100 s3 using 
${simulation_directory}\\seedfile.dta, replace             
// to get seed back, you just need to know which simulation number to recover 
// and then reset using 
// local mystate = s1[num] + s2[num] + s3[num] 
// set rngstate `mystate'    
// you can find this code near the start of the Master do file 
 
///////////////////////////////    
// loop over each number in the global numlist list_of_numbers 
// note that the full dataset is created anyway, as it doesn't take that much longer 
// but the simulation_pre_num will be saved so that during analysis different 
// numbers of pre_points can then be analysed 
foreach simulation_pre_num of numlist $list_of_numbers { 
    
   //////////////////////////////////////////////////////////////////////////////// 
   // begin looping over multiple simulations 
   // number of simulations from Master file 
   forvalues simulation_num = 1/$num_simulations { 
       
      // first post the random seed at this point 
      post `postseed' (`simulation_num') /// 
                  (`simulation_pre_num') /// 
                  (substr(c(rngstate),1,2000)) /// 
                  (substr(c(rngstate),2001,2000)) /// 
                  (substr(c(rngstate),4001,.)) 
       
      display "Running simulation `simulation_num' out of ${num_simulations}" 
       
      quietly { 
       
      
///////////////////////////////////////////////////////////////////////////////////////////////// 
      // generate simulation offset series (a way of ensuring independence from one series to the 
next) 
      clear 
      set obs ${simulation_offset} 
       
      // first order autoregressive model 
         gen error_normal = rnormal(0,${sigma}^2) // start with just a normal error 
         gen error = 0 
         // add autocorrelated part and maintain constant variance by adding this factor to the 
first observation 
         replace error = sqrt(1/(1-(${rho}^2)))*error_normal in 1  
         replace error = ${rho}*error[_n-1] +  error_normal in 2/${simulation_offset} 
 
      //////////////////////////////////////////////////////////////////////////////// 
      // begin proper model 
      clear 
       
      // create the empty dataset 
      set obs ${num_points} 
       
      // keep simulation number to keep track later 



Page 204   Appendix G. Supplementary file 2 accompanying Chapter 5 

 

      gen simulation = `simulation_num' 
       
      // time is just consecutive numbers 
      gen time = _n 
       
      // keep to keep track of 
      gen simulation_pre_num = `simulation_pre_num' 
       
      // set indicator variable for intervention defined previously e.g. 100 points, 50 is the 
intervention time by this definition so 1-50 and 51-100 for the two segments 
      gen intervention = 0 
      replace intervention = 1 if time > ${intervention_time}  
       
      //////////////////////////////////////////////////////////////////////////////// 
      // first order autoregressive model 
         gen error_normal = rnormal(0,${sigma}^2) 
 
         gen error = 0 
         // add autocorrelated part and maintain constant variance by using this factor to the 
first observation: sqrt(1/(1-rho^2)) 
         replace error = sqrt(1/(1-(${rho}^2)))*error_normal in 1 
         // now propogate the error through the data 
         replace error = ${rho}*error[_n-1] +  error_normal in 2/${num_points} 
         // and finally create the observation 
         gen observation = ${beta_0} + ${beta_1}*time + ${beta_2}*intervention + ${beta_3}*(time - 
(${intervention_time}+1))*intervention + error 
          
      //////////////////////////////////////////////////////////////////////////////// 
      // extra variables for analysis 
      // Huitema and McKean (2007). "Identifying Autocorrelation Generated by Various Error 
Processes in Interrupted Time-Series Regression Designs." Educational and Psychological Measurement 
67(3): 447-459. 
 
         // generate variables to indicate time of intervention 
         gen level_change = intervention 
         gen slope_change = (time-(${intervention_time}+1))*level_change 
         gen slope_pre = time 
       
      // save the simulated observations as a tempfile for later appending 
      tempfile simulation_`simulation_num' 
      save "`simulation_`simulation_num''" 
       
      } // end quietly 
   } // end loop over num simulations 
    
   // now append tempfiles 
   use "`simulation_1'" 
   forvalues simulation_num = 2/$num_simulations { 
      append using "`simulation_`simulation_num''" 
   } 
   save ${simulation_directory}\\simulation_`simulation_pre_num'_points.dta, replace 
    
} // end loop over pre-num points 
 
// now append all simulation pre_nums too 
local iteration = 1 
foreach simulation_pre_num of numlist $list_of_numbers { 
   if `iteration' == 1 { 
      use ${simulation_directory}\\simulation_`simulation_pre_num'_points.dta, clear 
      local iteration = `iteration' + 1 
   } 
   else { 
      append using ${simulation_directory}\\simulation_`simulation_pre_num'_points.dta 
   } 
} 
sort simulation simulation_pre_num time 
save ${simulation_directory}\\all_simulations.dta, replace 
 
postclose `postseed' 
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G.3 Data file 3: analyse_ITS_data.do 
//////////////////////////////////////////////////////////////////////////////// 
// Analysis final file 
// Simon Turner 
// 
// This program analyses simulated ITS datasets 
//  
//////////////////////////////////////////////////////////////////////////////// 
// 
// This is called from the Master file which supplies the parameters 
// 
//////////////////////////////////////////////////////////////////////////////// 
 
//////////////////////////////////////////////////////////////////////////////// 
// the basic estimator to find the autcorrelation coefficient for the Newey West: 
cap program drop find_rho 
program find_rho 
 
syntax varlist [if] 
marksample touse 
quietly regress `varlist' l.`varlist' if `touse' , nocons 
local rho=_b[L.`varlist'] 
scalar rho = `rho' 
 
end 
 
cap program drop find_rho_wrap 
program find_rho_wrap 
 
syntax varlist [if] 
       
      marksample touse 
 
      tempvar resid 
      regress `varlist' if `touse' 
      predict double `resid', resid  
      find_rho `resid' if `touse' 
 
end 
 
/////////////////////////////////////////////////////////////////////////////// 
// set lags to 1 if not regress (may wish to look at more on this later) 
// actually, now that we're using parallel processing  it's easier to do one 
// model at a time, so this loop actually does nothing at present! 
foreach model_type of global model_types { 
 
   // set lags to 1 if not regress (may wish to look at more on this later) 
   if "`model_type'" == "regress" { 
      local lags = 0 
   } 
   else if "`model_type'" != "regress" { 
      local lags = 1 
   } 
 
   local results_directory "${results_directory}\`model_type'\" 
   cap mkdir `results_directory' 
 
   // perhaps we'll look at multiple intervention times in the future and will need this... 
   local min_intervention = ${intervention_time} 
   local max_intervention = ${intervention_time} 
 
   //////////////////////////////////////////////////////////////////////////////// 
   // analysis 
 
 
   tempfile all_sim_tempfile 
 
   save `all_sim_tempfile' 
 
   local first_sim = simulation[1] 
 
   ///////////////////////////////////////// 
   // 
         // save values we want 
      local matrix_colnames "simulation intervention_time pre_num_points post_num_points" 
      local matrix_colnames = "`matrix_colnames'" + " beta_0 beta_0_se beta_0_cil beta_0_ciu 
beta_0_p beta_0_dof" 
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      local matrix_colnames = "`matrix_colnames'" + " beta_1 beta_1_se beta_1_cil beta_1_ciu 
beta_1_p beta_1_dof" 
      local matrix_colnames = "`matrix_colnames'" + " beta_2 beta_2_se beta_2_cil beta_2_ciu 
beta_2_p beta_2_dof"          
      local matrix_colnames = "`matrix_colnames'" + " beta_3 beta_3_se beta_3_cil beta_3_ciu 
beta_3_p beta_3_dof"          
      local matrix_colnames = "`matrix_colnames'" + " sigma str20 model_type lags beta_0_true 
beta_1_true beta_2_true beta_3_true rho_true" 
      local matrix_colnames = "`matrix_colnames'" + " converged num_iterations error_code run_time" 
      local matrix_colnames = "`matrix_colnames'" + " rho_est rho_est_cil rho_est_ciu" 
      local matrix_colnames = "`matrix_colnames'" + " mse rmse" 
 
      // create postfile 
      tempname results 
      postfile `results' `matrix_colnames' using 
`results_directory'results_`model_type'_`first_sim'.dta, replace 
       
   ///////////////////////////////////////// 
   // To speed up this process as much as possible it's better to index the  
   // simulation file and then just open a chunk of it at a time rather than 
   // using preserve/restore or other such methods. 
   // Significant speed improvements by doing it this way! 
 
   local all = _N 
 
   bysort simulation simulation_pre_num: gen long combinations_count = _N 
   local index 
   local pointer 1 
   while `pointer' <= _N { 
      local index `index' `pointer' 
      local pointer = `pointer' + combinations_count[`pointer'] 
   } 
 
   tokenize `"`index'"' 
 
   while "`1'" != "" { 
      // this bit uses the created indexes and pointers to open just one bit at a time 
      cap use in `1'/`=`2'-1' using `all_sim_tempfile', clear 
      if _rc != 0 { 
         use in `1'/`all' using `all_sim_tempfile', clear 
      } 
      local simulation_num = simulation[1] 
      local pre_num_points = simulation_pre_num[1] 
       
      display "Analysing simulation `simulation_num' num points `pre_num_points'" 
       
      // currently we only look at one intervention time, but maybe later we'll do something else 
      forvalues intervention_time = `min_intervention'/`max_intervention' { 
         // currently we're looking at just one set of points, but we may want to look at different 
series lengths 
         forvalues post_num_points = `pre_num_points'/`pre_num_points' { // set equal to 
`pre_num_points' for equal pre- post- points  
 
          
            ///////////////////// 
            // analysis 
            tsset time    
             
               // set up some defaults 
                  local converged = . 
                  local rho_est = . 
                  local rho_est_cil = . 
                  local rho_est_ciu = . 
                  local num_iterations = . 
                  local mse = . 
                  local rmse = . 
                  matrix dfs = J(1,6,.) 
                
               timer clear 42 
               timer on 42 
                
               //////////////////////////////////////////////////////////////// 
               // set up here any model name you wish and add the necessary details 
                
               if "`model_type'" == "regress" { 
                  regress observation slope_pre level_change slope_change if (time > 
$intervention_time - `pre_num_points') & (time <= $intervention_time + `post_num_points') 
                  matrix local_results = r(table) 
                  local rho_est = 0 
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                  local num_iterations = 1 
                  local error_code = _rc 
                  local converged = 1 
                  local rmse = e(rmse) 
                  matrix dfs = J(1,6,`pre_num_points'*2 - 4) 
               } // end regress check 
               else if "`model_type'" == "regress_level" { 
                  regress observation level_change if (time > $intervention_time - 
`pre_num_points') & (time <= $intervention_time + `post_num_points') 
                  matrix local_results = r(table) 
                  local rho_est = 0 
                  local num_iterations = 1 
                  local error_code = _rc 
                  local converged = 1 
                  local rmse = e(rmse) 
                  matrix dfs = J(1,6,`pre_num_points'*2 - 2) 
               } // end regress level check 
               else if "`model_type'" == "newey" { 
                  newey observation slope_pre level_change slope_change if (time > 
$intervention_time - `pre_num_points') & (time <= $intervention_time + `post_num_points'), 
lag(`lags') 
                  matrix local_results = r(table) 
                  local varlist = "observation slope_pre level_change slope_change" 
                  quietly find_rho_wrap `varlist' if (time > $intervention_time - `pre_num_points') 
& (time <= $intervention_time + `post_num_points') 
                  local rho_est = rho 
                  local num_iterations = 1 
                  local error_code = _rc 
                  local converged = 1 
                  local rmse = e(rmse) 
                  matrix dfs = J(1,6,`pre_num_points'*2 - 4) 
               } // end newey check 
               else if "`model_type'" == "prais" { 
                  cap prais observation slope_pre level_change slope_change if (time > 
$intervention_time - `pre_num_points') & (time <= $intervention_time + `post_num_points'), 
ssesearch 
                  if _rc != 0 { 
                     matrix local_results = J(6,5,.) 
                     local rho_est = . 
                     local converged = . 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
                  else { 
                     matrix local_results = r(table) 
                     local rho_est = e(rho) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                     local converged = 1 
                     local rmse = e(rmse) 
                     matrix dfs = J(1,6,`pre_num_points'*2 - 4) 
                  } 
               } // end prais check 
               else if "`model_type'" == "prais_raw" { 
                  cap prais observation slope_pre level_change slope_change if (time > 
$intervention_time - `pre_num_points') & (time <= $intervention_time + `post_num_points') 
                  if _rc != 0 { 
                     matrix local_results = J(6,5,.) 
                     local rho_est = . 
                     local converged = . 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
                  else { 
                     matrix local_results = r(table) 
                     local rho_est = e(rho) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                     local converged = 1 
                     local rmse = e(rmse) 
                     matrix dfs = J(1,6,`pre_num_points'*2 - 4) 
                  } 
               } // end prais_raw check 
               else if "`model_type'" == "corc" { 
                  cap prais observation slope_pre level_change slope_change if (time > 
$intervention_time - `pre_num_points') & (time <= $intervention_time + `post_num_points'), corc 
ssesearch 
                  if _rc != 0 { 
                     matrix local_results = J(6,5,.) 
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                     local rho_est = . 
                     local converged = . 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
                  else { 
                     matrix local_results = r(table) 
                     local rho_est = e(rho) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                     local converged = 1 
                     local rmse = e(rmse) 
                     matrix dfs = J(1,6,`pre_num_points'*2 - 4) 
                  } 
               } // end corc check 
               else if "`model_type'" == "mixed" { 
                  cap mixed observation slope_pre level_change slope_change if (time > 
$intervention_time - `pre_num_points') & (time <= $intervention_time + `post_num_points'),  res(ar 
1, t(time)) var reml iter(1000) 
                  if _rc != 0 { 
                     matrix local_results = J(6,5,.) 
                     local rho_est = . 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
                  else { 
                     matrix local_results = r(table) 
                     local num_cols = colsof(local_results) 
                     local rho_est = tanh(local_results[1,`num_cols']) 
                     local rho_est_cil = tanh(local_results[5,`num_cols']) 
                     local rho_est_ciu = tanh(local_results[6,`num_cols']) 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
 
                     predict double err, res 
                     gen double sqerr = err^2 
                     su sqerr, meanonly 
                     local mse = r(sum) 
                     local rmse = sqrt(`mse'/(e(N) - e(df_m) - 1)) 
                      
                     matrix dfs = J(1,6,`pre_num_points'*2 - 4) 
                  } 
               } // end mixed check 
               else if "`model_type'" == "mixed_kr" { 
                  cap mixed observation slope_pre level_change slope_change if (time > 
$intervention_time - `pre_num_points') & (time <= $intervention_time + `post_num_points'),  res(ar 
1, t(time)) var reml iter(1000) dfmethod(kr) 
                  if _rc != 0 { 
                     matrix local_results = J(6,5,.) 
                     local rho_est = . 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
                  else { 
                     matrix local_results = r(table) 
                     local num_cols = colsof(local_results) 
                     local rho_est = tanh(local_results[1,`num_cols']) 
                     local rho_est_cil = tanh(local_results[5,`num_cols']) 
                     local rho_est_ciu = tanh(local_results[6,`num_cols']) 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                      
                     mat dfs = e(df) 
                      
                     predict double err, res 
                     gen double sqerr = err^2 
                     su sqerr, meanonly 
                     local mse = r(sum) 
                     local rmse = sqrt(`mse'/(e(N) - e(df_m) - 1)) 
                  } 
               } // end mixed_kr check 
               else if "`model_type'" == "mixed_satt" { 
                  cap mixed observation slope_pre level_change slope_change if (time > 
$intervention_time - `pre_num_points') & (time <= $intervention_time + `post_num_points'),  res(ar 
1, t(time)) var reml iter(1000) dfmethod(satt) 
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                  if _rc != 0 { 
                     matrix local_results = J(6,5,.) 
                     local rho_est = . 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
                  else { 
                     matrix local_results = r(table) 
                     local num_cols = colsof(local_results) 
                     local rho_est = tanh(local_results[1,`num_cols']) 
                     local rho_est_cil = tanh(local_results[5,`num_cols']) 
                     local rho_est_ciu = tanh(local_results[6,`num_cols']) 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
 
                     mat dfs = e(df) 
 
                     predict double err, res 
                     gen double sqerr = err^2 
                     su sqerr, meanonly 
                     local mse = r(sum) 
                     local rmse = sqrt(`mse'/(e(N) - e(df_m) - 1)) 
                  } 
               } // end mixed_satt check 
               else if "`model_type'" == "arima" { 
                  cap arima observation slope_pre level_change slope_change if (time > 
$intervention_time - `pre_num_points') & (time <= $intervention_time + `post_num_points'),  ar(1) 
iter(1000) 
                  if _rc != 0 { 
                  // error catch - sometimes this model mucks up when moving too quickly, so slow 
it down a little 
                     local iteration = 1 
                     while `iteration' < 10 & _rc != 0 { 
                        cap matrix local_results = J(6,5,.) 
                        local rho_est = . 
                        local converged = e(converged) 
                        local num_iterations = e(ic) 
                        local error_code = _rc 
                        sleep 10 
                        local iteration = `iteration' + 1 
                     } 
                  } 
                  else { 
                     matrix local_results = r(table) 
                     local num_cols = colsof(local_results) 
                     local rho_col = `num_cols' - 1 
                     local rho_est = (local_results[1,`rho_col']) 
                     local rho_est_cil = (local_results[5,`rho_col']) 
                     local rho_est_ciu = (local_results[6,`rho_col']) 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
 
                     predict double err, res 
                     gen double sqerr = err^2 
                     su sqerr, meanonly 
                     local mse = r(sum) 
                     local rmse = sqrt(`mse'/(e(N) - e(df_m) - 1)) 
                      
                     matrix dfs = J(1,6,e(df_m)) 
                  } 
               } // end arima check 
 
               else { 
                  display "Model type `model_type' is not recognised" 
                  stop 
               } 
                
               timer off 42 
               quietly timer list 42 
               local current_time = r(t42) 
       
               display "Posting simulation `simulation_num' num points `pre_num_points'" 
       
               post `results' (`simulation_num') (`intervention_time') (`pre_num_points') 
(`post_num_points') /// 
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                                             (local_results[1,4]) (local_results[2,4]) 
(local_results[5,4]) (local_results[6,4]) (local_results[4,4]) (dfs[1,4]) /// 
                                             (local_results[1,1]) (local_results[2,1]) 
(local_results[5,1]) (local_results[6,1]) (local_results[4,1]) (dfs[1,1]) /// 
                                             (local_results[1,2]) (local_results[2,2]) 
(local_results[5,2]) (local_results[6,2]) (local_results[4,2]) (dfs[1,2]) /// 
                                             (local_results[1,3]) (local_results[2,3]) 
(local_results[5,3]) (local_results[6,3]) (local_results[4,3]) (dfs[1,3]) /// 
                                             (${sigma}) ("`model_type'") (`lags') /// 
                                             (${beta_0}) (${beta_1}) (${beta_2}) (${beta_3}) 
(${rho}) /// 
                                             (`converged') (`num_iterations') (`error_code') 
(`current_time') /// 
                                             (`rho_est') (`rho_est_cil') (`rho_est_ciu') /// 
                                             (`mse') (`rmse') 
     
         } // end post_num_points loop 
      } // end intervention_time loop 
 
       
       
      macro shift // move on to next one 
   }    
       
   postclose `results' 
 
} // end model type loop     
 
  

G.4 Data file 4: get_simulations_yet_to_do.do 
//////////////////////////////////////////////////////////////////////////////// 
// Subprogram to help with ARIMA difficulties 
// Simon Turner 
// 
// This program works out what simulations have already been analysed and  
// generates a simulation file containing what's left to do 
//  
//////////////////////////////////////////////////////////////////////////////// 
// 
// This is called from the Master file which supplies the parameters 
// 
//////////////////////////////////////////////////////////////////////////////// 
  
// append files done so far 
local dir "${results_directory}${model_types}\\" 
local files: dir "`dir'" files "*.dta" 
 
display `"`files'"' 
 
// append all together 
if `"`files'"' == "" { 
 use "${simulation_directory}all_simulations.dta", clear 
} 
else { 
local counter = 1 
 
foreach file of local files { 
 
 if `counter' == 1 { 
  use "`dir'`file'", clear 
 } 
 else { 
  append using "`dir'`file'", force 
 } 
 local counter = `counter'+1 
} 
 
// strip back to just simulation number 
bysort simulation: gen dup = _n 
keep if dup == 1 
keep simulation 
// merge with full simulation dataset 
 merge 1:m simulation using "${simulation_directory}all_simulations.dta" 
// keep unmerged 
keep if _merge != 3 
} 
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G.5 Data file 5: append_results_methods.do 
//////////////////////////////////////////////////////////////////////////////// 
// Appending results final file 
// Simon Turner 
// 
// This program appends all the results from the analysed ITS datasets 
//  
//////////////////////////////////////////////////////////////////////////////// 
// 
// This is called from the Master file which supplies the parameters 
// 
//////////////////////////////////////////////////////////////////////////////// 
 
 
// first we append within each model type... 
 foreach model_type of global model_types { 
  
  local model_directory "${results_directory}\`model_type'\" 
  
  local files: dir "`model_directory'" files "*.dta" 
 
  display `"`files'"' 
 
  // append all together 
 
  local counter = 1 
 
   foreach file of local files { 
 
    if `counter' == 1 { 
     use "`model_directory'\`file'", clear 
    } 
    else { 
     append using "`model_directory'\`file'", force 
    } 
    local counter = `counter'+1 
   }  
    
  sort simulation pre_num_points  
    
  save ${results_directory}results_`model_type'.dta, replace 
  
 } 
 
// then we can append all the different model types together 
 display "Now appending the different model types together" 
  
 local counter = 1 
  
 foreach model_type of global model_types { 
  
    
  display "appending `model_type'" 
  if `counter' == 1 { 
   use ${results_directory}results_`model_type'.dta, clear 
   local counter = `counter' + 1 
  } 
  else { 
    
   append using ${results_directory}results_`model_type'.dta 
  } 
 } 
  
 sort model_type simulation pre_num_points 
  
 save ${results_directory}all_results.dta, replace 
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G.6 Data file 6: append_results_rhos.do 
//////////////////////////////////////////////////////////////////////////////// 
// Appending results final file - combines all rho values 
// Simon Turner 
// 
// This program appends all the results from the analysed ITS datasets including 
// different values of autocorrelation 
//  
//////////////////////////////////////////////////////////////////////////////// 
// 
// This is called from the Master file which supplies the parameters 
// 
//////////////////////////////////////////////////////////////////////////////// 
 
local counter = 1 
display "rhos ${rho_list}" 
local rhos = "${rho_list}" 
display "rhos `rhos'" 
foreach rho of global rho_list { 
 display "rho `rho'" 
 if `counter' == 1 { 
  use "${data_directory}\${new_subfolder_name}\rho_`rho'\results\all_results.dta", 
clear 
 } 
 else { 
  append using 
"${data_directory}\${new_subfolder_name}\rho_`rho'\results\all_results.dta", force 
 } 
  
 local counter = `counter'+1 
  
  
} 
display "b2 $b2 b3 $b3" 
save "${data_directory}\${new_subfolder_name}\all_results_b2_${b2}_b3_${b3}.dta", replace 

G.7 Data file 7: simsum_final.do 
//////////////////////////////////////////////////////////////////////////////// 
// Simsum file, this runs the simsum command to get summaries and MCSEs of results 
// Simon Turner 
// 
// It also combines these results from all the options into a single file 
// 
//////////////////////////////////////////////////////////////////////////////// 
// 
// first we need to actually run the simsum program 
// 
// we're going to set up a new directory for this part 
global simsum_directory "${data_directory}\simsum\" 
cap mkdir ${simsum_directory} 
 
//////////////////////////////////////////////////////////////////////////////// 
// Now we loop over the b2s and b3s and betas 
foreach b2 of global b2_list { 
   foreach b3 of global b3_list { 
       
 
      forvalues beta_num = 0/3 { 
 
         display "b2: `b2' b3: `b2' beta: `beta_num'" 
         display "Date and time: $S_TIME $S_DATE" 
          
         // get the correct results 
         use "${data_directory}\b2_`b2'_b3_`b3'\all_results_b2_`b2'_b3_`b3'.dta", clear 
          
         // run the simsum program, using each beta number, giving simsum: 
         // the standard errors, true values, which variable has the methods etc. 
         // OLS regression is chosen as the baseline reference method 
         simsum beta_`beta_num', se(beta_`beta_num'_se) true(`=beta_`beta_num'_true[1]') 
methodvar(model_type) /// 
               id(simulation) by(pre_num_points rho_true) df(beta_`beta_num'_dof) /// 
               dropbig mcse ref("regress") clear 
         // pop variables in for b2 and b3 so that we can tell them apart later! 
         gen b2 = "`b2'" 
         gen b3 = "`b3'" 
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         save "${simsum_directory}\simsum_b2_`b2'_b3_`b3'_beta_`beta_num'.dta", replace 
          
         display "b2: `b2' b3: `b2' beta: `beta_num' complete" 
      } 
   } 
} 
 
//////////////////////////////////////////////////////////////////////////////// 
// it's a bit easier to see all the different methods in long format 
// so this converts the wide to long... 
 
forvalues beta_num = 0/3 { 
   foreach b2 of global b2_list { 
      foreach b3 of global b3_list { 
 
         // grab the appropriate simsum file 
         use "${simsum_directory}\simsum_b2_`b2'_b3_`b3'_beta_`beta_num'.dta", clear 
 
         //  
         gen big_rho = rho_true*10 
         gen int_rho = int(big_rho) 
         // the variable names are a bit long at the moment, so shorten them 
         foreach model of global model_types { 
            rename beta_`beta_num'`model' summary`model' 
            rename beta_`beta_num'`model'_mcse mcse`model' 
         } 
         // reshape to long... 
         reshape long summary@ mcse@, i(pre_num_points rho_true perfmeasnum) j(model) string 
         // drop bits we don't need 
         keep pre_num_points rho_true model summary mcse perfmeascode int_rho 
         // now reshape the summary and mcse wide 
         reshape wide summary mcse , i(pre_num_points int_rho model) j(perfmeascode) string 
       
         rename model model_type 
         // add these bits to tell this file apart from others 
         gen b2 = "`b2'" 
         gen b3 = "`b3'" 
         gen beta_num = "`beta_num'" 
          
         save "${simsum_directory}\simsum_b2_`b2'_b3_`b3'_beta_`beta_num'_long.dta", replace 
 
      } 
   } 
} 
 
//////////////////////////////////////////////////////////////////////////////// 
// Finally combine into one big file 
local first_file = 1 
forvalues beta_num = 0/3 { 
   foreach b2 of global b2_list { 
      foreach b3 of global b3_list { 
    
         if `first_file' == 1 { 
            use "${simsum_directory}\simsum_b2_`b2'_b3_`b3'_beta_`beta_num'_long.dta", clear 
            local first_file = 0 
         } 
         else { 
            append using "${simsum_directory}\simsum_b2_`b2'_b3_`b3'_beta_`beta_num'_long.dta" 
         } 
 
      } 
   } 
} 
 
save "${data_directory}\all_simsum_long.dta", replace 
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Appendix H. Additional file 1 accompanying Chapter 6 – 

Computer code to analyse data sets for the empirical evaluation 
 “Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 

190 published series” 

Turner SL, Karahalios A, Forbes AB, Taljaard M, Grimshaw JM, McKenzie JE. 

 

The following sections contain the Stata 15 computer code used to analyse the data from the 

empirical evaluation study. The published and digitally extracted data can be found on the online 

repository figshare: https://doi.org/10.6084/m9.figshare.13297136 (59). 

H.1 Data file 1: 001_master_empirical_evaluation.do 
//////////////////////////////////////////////////////////////////////////////// 
// Master Empirical Evaluation final file 
// Simon Turner 
// For the study: 
// "Comparison of six statistical methods for interrupted time series studies: empirical evaluation 
of 190 published series" 
// Turner SL, Karahalios A, Forbes AB, Taljaard M, Grimshaw JM, McKenzie JE.  
// 
// This do file calls multiple other do files to: 
// 
// analyse each dataset using multiple statistical methods (empirical_all_methods_published.do) 
// save level changes, slope changes, SEs, p-values and autocorrelation estimates  
// combine all the results from the different methods (combine_methods_published.do) 
// and choose the estimate wanted for analysis (get_wanted_empirical_estimates_published.do) 
// the final file used for the manuscript (including graphs) is empirical_estimates.dta 
// 
// required data are found in the two excel files: 
// STurner_Empirical_study_information.xls 
// which contains information about the studies 
// also 
// STurner_Empirical_time_series.xls 
// which contains the actual time series data 
// 
// further details about the variables can be found in: 
// STurner_Empirical_Data_Dictionary.xls 
 
//////////////////////////////////////////////////////////////////////////////// 
// firstly set the working directory... 
global dir  "<set directory>" 
cd "$dir" 
 
version 15 
 
//////////////////////////////////////////////////////////////////////////////// 
// analyse the datasets 
// now use different methods and capture the outputs  
do ${dir}empirical_all_methods_published 
 
// combine the results from the different methods 
do ${dir}combine_methods_published 
 
// for the empirical study we only want to use a subset of the total datasets 
// this next section obtains the wanted datasets 
do ${dir}get_wanted_empirical_estimates_published 
 
//////////////////////////////////////////////////////////////////////////////// 
// The final file we can use for graphing, tables etc. is called:  
// empirical_estimates_published.dta 
//////////////////////////////////////////////////////////////////////////////// 
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H.2 Data file 2: empirical_all_methods_published.do 
//////////////////////////////////////////////////////////////////////////////// 
// This is the analysis file for the empirical study: 
// "Comparison of six statistical methods for interrupted time series studies: empirical evaluation 
of 190 published series" 
// loads the datasets, 
// analyses each using a variety of statistical methods 
// finally it saves the analysed data in "estimates_published_`model_type'" 
// where `model_type' is one of the statistical methods used 
 
// load the data that is ready for analysis 
import excel "STurner_Empirical_time_series.xls", sheet("Sheet1") firstrow clear 
 
// ensure that there is a proper study id 
levelsof series_id, local(series_ids) 
 
// there are several alternatives for scaling 
// no scaling (just leave this blank) 
// scaling by the rmse for the first segment only, use "rmse_on" 
// or scaling by the rmse of the whole series, use "rmse_full" 
// some of the datasets are very short (three points in pre-series) so first segment scaling does 
not work 
// scaling by the full rmse was used for the analysis 
local rmse_full = "rmse_full" 
 
//////////////////////////////////////////////////////////////////////////////// 
// this short program estimates autocorrelation from the residuals after a 
// simple linear regression 
// this was not used in the analysis, but served as an interesting reference 
 
cap program drop find_rho 
program find_rho 
 
syntax varlist [if] 
marksample touse 
quietly regress `varlist' l.`varlist' if `touse' , nocons 
local rho=_b[L.`varlist'] 
scalar rho = `rho' 
 
end 
 
cap program drop find_rho_wrap 
program find_rho_wrap 
 
syntax varlist [if] 
       
      marksample touse 
 
      tempvar resid 
      regress `varlist' if `touse' 
      predict double `resid', resid  
      find_rho `resid' if `touse' 
 
end 
 
//////////////////////////////////////////////////////////////////////////////// 
// we investigated a range of statistical methods 
// this string links to the sections below to identify which methods 
// are going to be used here 
// regress - OLS 
// newey - OLS with newey-west standard errors 
// prais - prais-winsten with an iterative search 
// prais_raw - simple prais-winsten 
// corc - cochrane-orcutt 
// mixed - REML 
// mixed_satt - REML with the Satterthwaite small series adjustment 
// arima - ARIMA with lag-1 
 
// for the final study we restricted these to the following... 
local model_types "regress newey prais_raw mixed mixed_satt arima" 
 
// loop over each statistical method 
foreach model_type of local model_types { 
    
   // set the end file name  
   local save_name "estimates_published_`model_type'.dta" 
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   // set up the temporary file used to store the data 
   // we are saving data per segment 
   // the level change and slope change with CIs, SEs and p-values 
   // autocorrelation estimates, degrees of freedom etc. 
   tempname post_values_`model_type' 
   postfile `post_values_`model_type''  series_id /// 
                     str20 model_type  /// 
                     segment analysis_autocorr analysis_effects segment_num_points total_num_points 
rmse /// 
                     level level_ll level_ul level_se level_p /// 
                     slope slope_ll slope_ul slope_se slope_p /// 
                     rho_est rho_cil rho_ciu /// 
                     num_iterations error_code converged ///  
                     lincom_level_dof lincom_slope_dof /// 
                     using "`save_name'" , replace    
    
   // now for each of the data sets... 
   foreach series_id of local series_ids { 
 
      // going to just use one at a time 
      preserve 
      keep if series_id == `series_id' 
       
      local series_id = series_id[1] 
 
      display "working through `series_id'" 
 
      //////////////////////////////////////////////////////////////////////////// 
      // set for program 
 
      *keep outcome time segment segment_in_analysis 
      sort time 
      drop if time == . 
 
      //////////////////////////////////////////////////////////////////////////////// 
      // find times programatically 
      // this goes through and works out the timing of each segment 
      summ segment 
      local num_segments = r(max) 
      local min_seg_num = r(min) 
 
      if `min_seg_num' != 0 { 
         replace segment = segment - `min_seg_num' 
      } 
 
      summ segment 
      local num_segments = r(max) 
      local min_seg_num = r(min) 
 
      forvalues segment = 0/`num_segments' { 
         summ time if segment == `segment' 
         local time_`segment'_start = r(min) 
         local time_`segment'_end = r(max) 
         display "segment `segment' goes from `time_`segment'_start' to `time_`segment'_end'" 
      }    
 
      //////////////////////////////////////////////////////////////////////////////// 
      // extra variables for analysis 
      // generate variables to indicate time of intervention 
 
         forvalues segment = 0/`num_segments' { 
            gen intervention_`segment' = 0 
            replace intervention_`segment' = 1 if segment >= `segment' 
            gen level_change_`segment' = intervention_`segment' 
            gen slope_change_`segment' = (time-`time_`segment'_start')*level_change_`segment' 
         } 
 
      //////////////////////////////////////////////////////////////////////////////// 
      // model 
      //////////////////////////////////////////////////////////////////////////////// 
 
 
      // create the variables to use (the various level and slope changes) 
      // starting with level_0 and slope_0, then incrementing for each segment 
      // e.g. regular segmented regression will have 
      // level_0 (intercept) slope_0 (pre-interruption slope) level_1 (level change at 
interruption) slope_1 (slope change post interruption) 
      local variables = "" 
      forvalues segment = 0/`num_segments' { 
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            local variables = "`variables'" + " level_change_`segment' slope_change_`segment'" 
      } 
 
      display "variables: `variables'" 
      display "study: `year' number: `number_in_year' multiple: `multiple'  data_type: `data_type'" 
       
      // first find rmse from all segments (for scaling) 
      regress outcome `variables', nocons 
      local rmse = e(rmse) 
      local total_num_points = e(N) 
             
      /////////////////////////////////////////// 
      // now apply the correct statistical method according to model_type... 
 
         tsset time 
                
               local rho_est = . 
               local rho_est_cil = . 
               local rho_est_ciu = . 
                
               local model_error = 0 
                
                
               if "`model_type'" == "regress" { // basic OLS regression 
                  regress outcome `variables', nocons 
                  matrix local_results = r(table) 
                  local rho_est = 0 
                  local num_iterations = 1 
                  local error_code = _rc 
                  local converged = 1 
               } // end regress check 
               else if "`model_type'" == "newey" { // OLS regression with newey-west standard 
errors 
                  newey outcome `variables', nocons lag(1) force // need force option to ignore 
missing values otherwise get time not equally spaced errors 
                  matrix local_results = r(table) 
                  local varlist = "outcome `variables'" 
                  quietly find_rho_wrap `varlist' 
                  local rho_est = rho 
                  local num_iterations = 1 
                  local error_code = _rc 
                  local converged = 1 
                  newey outcome `variables', nocons lag(1) force // need force option to ignore 
missing values otherwise get time not equally spaced errors    
               } // end newey check 
               else if "`model_type'" == "prais" { // Prais-Winsten with iterative search 
                  cap prais outcome `variables', nocons  ssesearch 
                  if _rc != 0 { 
                     local model_error = _rc 
                     matrix local_results = J(6,5,.) 
                     local rho_est = . 
                     local converged = . 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
                  else { 
                     matrix local_results = r(table) 
                     local rho_est = e(rho) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                     local converged = 1 
                  } 
               } // end prais check 
               else if "`model_type'" == "prais_raw" { // standard Prais-Winsten 
                  cap prais outcome `variables', nocons  
                  if _rc != 0 { 
                     local model_error = _rc 
                     matrix local_results = J(6,5,.) 
                     local rho_est = . 
                     local converged = . 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
                  else { 
                     matrix local_results = r(table) 
                     local rho_est = e(rho) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                     local converged = 1 
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                  } 
               } // end prais_raw check 
               else if "`model_type'" == "corc" { // Cochrane-Orcutt 
                  cap prais outcome `variables', nocons  corc ssesearch 
                  if _rc != 0 { 
                     local model_error = _rc 
                     matrix local_results = J(6,5,.) 
                     local rho_est = . 
                     local converged = . 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
                  else { 
                     matrix local_results = r(table) 
                     local rho_est = e(rho) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                     local converged = 1 
                  } 
               } // end corc check 
               else if "`model_type'" == "mixed" { // REML with maximum iterations set to 1000 to 
stop really long non-convergence 
                  cap mixed outcome `variables', nocons   res(ar 1, t(time)) var reml iter(1000) 
                  if _rc != 0 { 
                     local model_error = _rc 
                     matrix local_results = J(6,5,.) 
                     local rho_est = . 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
                  else { 
                     matrix local_results = r(table) 
                     local num_cols = colsof(local_results) 
                     local rho_est = tanh(local_results[1,`num_cols']) 
                     local rho_est_cil = tanh(local_results[5,`num_cols']) 
                     local rho_est_ciu = tanh(local_results[6,`num_cols']) 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
               } // end mixed check 
               else if "`model_type'" == "mixed_kr" { // REML with KR adjustment 
                  cap mixed outcome `variables', nocons  res(ar 1, t(time)) var reml iter(1000) 
dfmethod(kr) 
                  if _rc != 0 { 
                     local model_error = _rc 
                     matrix local_results = J(6,5,.) 
                     local rho_est = . 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
                  else { 
                     matrix local_results = r(table) 
                     local num_cols = colsof(local_results) 
                     local rho_est = tanh(local_results[1,`num_cols']) 
                     local rho_est_cil = tanh(local_results[5,`num_cols']) 
                     local rho_est_ciu = tanh(local_results[6,`num_cols']) 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc                   
                     mat dfs = e(df) 
                  } 
               } // end mixed_kr check 
               else if "`model_type'" == "mixed_satt" { // REML with Satt adjustment 
                  cap mixed outcome `variables', nocons   res(ar 1, t(time)) var reml iter(1000) 
dfmethod(satt) 
                  if _rc != 0 { 
                     local model_error = _rc 
                     matrix local_results = J(6,5,.) 
                     local rho_est = . 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                  } 
                  else { 
                     display "`model_type' model ran" 
                     matrix local_results = r(table) 
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                     local num_cols = colsof(local_results) 
                     local rho_est = tanh(local_results[1,`num_cols']) 
                     local rho_est_cil = tanh(local_results[5,`num_cols']) 
                     local rho_est_ciu = tanh(local_results[6,`num_cols']) 
                     local converged = e(converged) 
                     local num_iterations = e(ic) 
                     local error_code = _rc 
                     mat dfs = e(df) 
                  } 
               } // end mixed_satt check 
               else if "`model_type'" == "arima" { 
                     cap arima outcome `variables', nocons  collinear ar(1) iter(1000) 
                     if _rc != 0 { 
                     // new section for error catch includes a "slow down" as for some reason 
                     // Stata sometimes crashes if it went too quickly here (Stata 15.0) 
                     local model_error = _rc 
                        local iteration = 1 
                        while `iteration' < 10 & _rc != 0 { 
                           cap matrix local_results = J(6,5,.) 
                           local rho_est = . 
                           local converged = e(converged) 
                           local num_iterations = e(ic) 
                           local error_code = _rc 
                           sleep 10 
                           local iteration = `iteration' + 1 
                        } 
                     } 
                     else { 
                        matrix local_results = r(table) 
                        local num_cols = colsof(local_results) 
                        local rho_col = `num_cols' - 1 
                        local rho_est = (local_results[1,`rho_col']) 
                        local rho_est_cil = (local_results[5,`rho_col']) 
                        local rho_est_ciu = (local_results[6,`rho_col']) 
                        local converged = e(converged) 
                        local num_iterations = e(ic) 
                        local error_code = _rc 
                     } 
               } // end arima check 
               else { 
                  display "Model type `model_type' is not recognised" 
                  stop 
               } 
       
      display "study: `year' number: `number_in_year' multiple: `multiple'  data_type: `data_type' 
model `model_type' ran with error code `model_error'" 
 
      // if there was an error just set the output to missing values 
      if `model_error' != 0 { 
         forvalues segment = 0/`num_segments' { 
            local level_change_counter_`segment' = . 
            local level_change_counter_`segment'_ll = . 
            local level_change_counter_`segment'_ul = . 
            local level_change_counter_`segment'_se = . 
            local level_change_counter_`segment'_p = . 
            local slope_change_counter_`segment' = . 
            local slope_change_counter_`segment'_ll = . 
            local slope_change_counter_`segment'_ul = . 
            local slope_change_counter_`segment'_se = . 
            local slope_change_counter_`segment'_p = . 
         } 
      } 
      else { 
         // use lincom to find the CIs that go with the various level and slope changes 
                
         // predict the estimates to find the counterfactual, level change etc. 
         // base estimates of level change compared to first segment 
         predict estimates 
         gen counterfactual = _b[level_change_0] + _b[slope_change_0]*slope_change_0    
 
         // if satterthwaite is used need to add ",small" to the options after lincom 
         if "`model_type'" == "mixed_satt" { 
            local small " , small" 
         } 
         else { 
            local small "" 
         } 
          
            //////////////////////////////////////////////////////////////////////////////// 
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            // level changes from counterfactual    
            // for each segment... 
            forvalues segment = 0/`num_segments' { 
                
               // for the first segment just initialise everything 
               if `segment' == 0 { 
                  local level_change_counter_`segment' = . 
                  local level_change_counter_`segment'_ll = . 
                  local level_change_counter_`segment'_ul = . 
                  local level_change_counter_`segment'_se = . 
                  local level_change_counter_`segment'_p = . 
               } 
               else { 
                  // for each subsequent segment 
                  // set up a local macro that holds the names of all the lincom variables we want 
                  // this is going to be 
                  // level_change_1 for the first level change 
                  // and then adding on the subsequent level and slope change values for any 
subsequent segments 
                  forvalues segment_sub = 1/`segment' { 
                     if `segment_sub' == 1 { 
                        local L`segment' = `" level_change_`segment_sub' "' 
                     } 
                     else { 
                        local segment_multiplier = slope_change_`=`segment_sub'-
1'[`time_`segment'_start'] 
                        local L`segment' = `" `L`segment'' "' + `" + slope_change_`=`segment_sub'-
1'*`segment_multiplier' + level_change_`segment_sub' "' 
                     } 
                     *display "L`segment' `L`segment''" 
                   
                  } 
                  // now lincom those variables (adding the small option if using REML-Satt) 
                  lincom `L`segment'' `small' 
                  // lincom gives slightly different responses in different situations... 
                  if "`model_type'" == "arima" | "`model_type'" == "mixed" { 
                     local lincom_level_dof = e(N) - e(df_m) 
                  } 
                  else { 
                     local lincom_level_dof = r(df) 
                  } 
                   
                  *return list 
                   
                  display "level lincom dof = `lincom_level_dof'" 
                   
                  // we are using a cut-off of 2 for the degrees of freedom for the REML-Satt 
method 
                  if `lincom_level_dof' < 2 & "`model_type'" == "mixed_satt" { 
                     lincom `L`segment'', df(2) 
                  } 
 
                  // now save those values                                     
                  local level_change_counter_`segment' = r(estimate) 
                  local level_change_counter_`segment'_ll = r(lb) 
                  local level_change_counter_`segment'_ul = r(ub) 
                  local level_change_counter_`segment'_se = r(se) 
                  local level_change_counter_`segment'_p = r(p) 
               } // end if loop 
 
            } // end segment loop 
             
         //////////////////////////////////////////////////////////////////////////////// 
         // slope changes from counterfactual 
         // this runs as the level change above, but for slope change values instead 
         forvalues segment = 0/`num_segments' { 
            if `segment' == 0 { 
               local slope_change_counter_`segment' = . 
               local slope_change_counter_`segment'_ll = . 
               local slope_change_counter_`segment'_ul = .    
               local slope_change_counter_`segment'_se = . 
               local slope_change_counter_`segment'_p = . 
            } 
            else { 
               forvalues segment_sub = 1/`segment' { 
                  if `segment_sub' == 1 { 
                     local SC_`segment' = "slope_change_`segment_sub'" 
                  } 
                  else { 
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                     local SC_`segment' = "`SC_`segment''" + " + slope_change_`segment_sub'" 
                  } 
               } 
                
               lincom `SC_`segment'' `small' 
               if "`model_type'" == "arima" | "`model_type'" == "mixed" { 
                  local lincom_slope_dof = e(N) - e(df_m) 
               } 
               else { 
                  local lincom_slope_dof = r(df) 
               } 
                
               *return list 
                
               display "slope lincom dof = `lincom_slope_dof'" 
                
               if `lincom_slope_dof' < 2 & "`model_type'" == "mixed_satt" { 
                  lincom `SC_`segment'', df(2) 
               } 
                
               local slope_change_counter_`segment' = r(estimate) 
               local slope_change_counter_`segment'_ll = r(lb) 
               local slope_change_counter_`segment'_ul = r(ub) 
               local slope_change_counter_`segment'_se = r(se) 
               local slope_change_counter_`segment'_p = r(p) 
            } // end if loop 
         } // end segment loop 
          
      } // end model error check. 
       
      //////////////////////////////////////////////////////////////////////////////// 
      // postvalues 
      // finally put the values into the post file 
       
      forvalues segment = 0/`num_segments' { 
         local analysis_autocorr = analysis_autocorr[`time_`segment'_start'] 
         // in the excel file the segments begin with 1, in this file we set to zero 
         // therefore we need to similarly reduce the analysis effects by 1 so they all match up 
         local analysis_effects = analysis_effects[`time_`segment'_start'] - 1 
         summ time if segment == `segment' 
         local segment_num_points = r(N) 
          
         // scaled adjustment by rmse 
         local level_change_counter_`segment' = `level_change_counter_`segment''/`rmse' 
         local level_change_counter_`segment'_ll = `level_change_counter_`segment'_ll'/`rmse' 
         local level_change_counter_`segment'_ul = `level_change_counter_`segment'_ul'/`rmse' 
         local level_change_counter_`segment'_se = `level_change_counter_`segment'_se'/`rmse' 
         local slope_change_counter_`segment' = `slope_change_counter_`segment''/`rmse' 
         local slope_change_counter_`segment'_ll = `slope_change_counter_`segment'_ll'/`rmse' 
         local slope_change_counter_`segment'_ul = `slope_change_counter_`segment'_ul'/`rmse' 
         local slope_change_counter_`segment'_se = `slope_change_counter_`segment'_se'/`rmse'          
          
         post `post_values_`model_type'' (`series_id') /// 
                  ("`model_type'") /// 
                  (`segment') (`analysis_autocorr') (`analysis_effects') (`segment_num_points') 
(`total_num_points') (`rmse') /// 
                  (`level_change_counter_`segment'') (`level_change_counter_`segment'_ll') 
(`level_change_counter_`segment'_ul') (`level_change_counter_`segment'_se') 
(`level_change_counter_`segment'_p') /// /// 
                  (`slope_change_counter_`segment'') (`slope_change_counter_`segment'_ll') 
(`slope_change_counter_`segment'_ul') (`slope_change_counter_`segment'_se') 
(`slope_change_counter_`segment'_p') /// 
                  (`rho_est') (`rho_est_cil') (`rho_est_ciu') /// 
                  (`num_iterations') (`error_code') (`converged') (`lincom_level_dof') 
(`lincom_slope_dof') 
      } // end segment loop 
 
      restore 
   } // end study id loop 
 
   postclose `post_values_`model_type'' 
} // end of model type loop 
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H.3 Data file 3: combine_methods_published.do 
 
//////////////////////////////////////////////////////////////////////////////// 
// This is the analysis file for the empirical study: 
// "Comparison of six statistical methods for interrupted time series studies: empirical evaluation 
of 190 published series" 
// this do file combines the results for all the different statistical methods 
// the combined file is called estimates_published_all.dta 
 
local model_types "regress newey prais_raw mixed mixed_satt arima" 
 
local first = 0 
 
foreach model of local model_types { 
 
   if `first' == 0 { 
      use "estimates_published_`model'.dta", clear 
      local first = 1 
   } 
   else { 
      append using "estimates_published_`model'.dta" 
   } 
    
} 
 
save estimates_published_all.dta, replace 
 

H.4 Data file 4: get_wanted_empirical_estimates_published.do 
//////////////////////////////////////////////////////////////////////////////// 
// This is the final do file for the empirical study: 
// "Comparison of six statistical methods for interrupted time series studies: empirical evaluation 
of 190 published series" 
// It selects the effect estimate wanted for final comparisons  
// excluding segments that are not required (e.g. transition periods) 
// It requires the data from STurner_Empirical_study_information which contains the desired segment 
number 
// The final file "empirical_estimates_published.dta" is the output 
 
// keep only the segments we need 
keep if segment == analysis_effects 
 
// tidy the file 
sort series_id model_type segment 
order series_id model_type segment segment_num_points total_num_points 
 
// save the final data file 
save empirical_estimates_published.dta, replace 
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Appendix I. Additional file 2 accompanying Chapter 6 – Citation 

details of the studies from which datasets were obtained 
“Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 

190 published series” 

Turner SL, Karahalios A, Forbes AB, Taljaard M, Grimshaw JM, McKenzie JE.  

 

The following are citation details of the studies that contributed data via publication, email or 

digital data extraction for the empirical evaluation study. 

 

We wish to thank all of the authors who generously contributed datasets for this study. 

Study Data via 
publication 

Data via 
email 

Data 
extracted 

Abegaz T, Berhane Y, Worku A, et al. Effectiveness of an 

improved road safety policy in Ethiopia: an interrupted time 

series study. BMC Public Health 2014;14(1) doi: 10.1186/1471-

2458-14-539 

No No No 

Adams AS, Soumerai SB, Zhang F, et al. Effects of Eliminating 

Drug Caps on Racial Differences in Antidepressant Use Among 

Dual Enrollees With Diabetes and Depression. Clinical 

Therapeutics 2015;37(3):597-609. doi: 

10.1016/j.clinthera.2014.12.011 

No No Yes 

Aiken AM, Wanyoro AK, Mwangi J, et al. Changing Use of 

Surgical Antibiotic Prophylaxis in Thika Hospital, Kenya: A 

Quality Improvement Intervention with an Interrupted Time 

Series Design. PLoS ONE 2013;8(11):e78942. doi: 

10.1371/journal.pone.0078942 

No No Yes 

Akhtar S, Ziyab AH. Impact of the Penalty Points System on 

Severe Road Traffic Injuries in Kuwait. Traffic Injury Prevention 

2013;14(7):743-48. doi: 10.1080/15389588.2012.749466 

No No Yes 

Alexandridis AA, McCort A, Ringwalt CL, et al. A statewide 

evaluation of seven strategies to reduce opioid overdose in 

North Carolina. Injury Prevention 2017;24(1):48-54. doi: 

10.1136/injuryprev-2017-042396 

No No Yes 

Alpert HR, Carpenter D, Connolly GN. Tobacco industry 

response to a ban on lights descriptors on cigarette packaging 
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doi: 10.1136/tobaccocontrol-2017-053683 

Yes N/A Yes 
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programme on multi-resistant Klebsiella pneumoniaein a Danish 

university hospital. BMJ Quality & Safety 2013;22(11):907-15. 

doi: 10.1136/bmjqs-2012-001791 

No No Yes 

Andrade AL, Minamisava R, Policena G, et al. Evaluating the 

impact of PCV-10 on invasive pneumococcal disease in Brazil: A 

time-series analysis. Human Vaccines & Immunotherapeutics 

2016;12(2):285-92. doi: 10.1080/21645515.2015.1117713 

No Yes No 

Armah G, Pringle K, Enweronu-Laryea CC, et al. Impact and 

Effectiveness of Monovalent Rotavirus Vaccine Against Severe 

Rotavirus Diarrhea in Ghana. Clinical Infectious Diseases 

2016;62(suppl 2):S200-S07. doi: 10.1093/cid/ciw014 

No No Yes 

Barber C, Gagnon D, Fonda J, et al. Assessing the impact of 

prescribing directives on opioid prescribing practices among 

Veterans Health Administration providers. 

Pharmacoepidemiology and Drug Safety 2016;26(1):40-46. doi: 

10.1002/pds.4066 

No No Yes 

Barocas DA, Mallin K, Graves AJ, et al. Effect of the USPSTF 

Grade D Recommendation against Screening for Prostate 

Cancer on Incident Prostate Cancer Diagnoses in the United 

States. Journal of Urology 2015;194(6):1587-93. doi: 

10.1016/j.juro.2015.06.075 

No No Yes 

Baskerville NB, Brown KS, Nguyen NC, et al. Impact of 

Canadian tobacco packaging policy on use of a toll-free quit-

smoking line: an interrupted time-series analysis. CMAJ Open 

2016;4(1):E59-E65. doi: 10.9778/cmajo.20150104 

No No Yes 

Been JV, Mackay DF, Millett C, et al. Impact of smoke-free 

legislation on perinatal and infant mortality: a national quasi-

experimental study. Scientific Reports 2015;5(1) doi: 

10.1038/srep13020 

No No No 

Been JV, Szatkowski L, van Staa T-P, et al. Smoke-free 

legislation and the incidence of paediatric respiratory infections 

and wheezing/asthma: interrupted time series analyses in the 

four UK nations. Scientific Reports 2015;5(1) doi: 

10.1038/srep15246 

No No No 

Bell S, Davey P, Nathwani D, et al. Risk of AKI with Gentamicin 

as Surgical Prophylaxis. Journal of the American Society of 

Nephrology 2014;25(11):2625-32. doi: 10.1681/asn.2014010035 
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of Clinical Oncology 2017;35(24):2772-80. doi: 

10.1200/jco.2016.69.8076 

No No Yes 

Berkowitz SA, Percac-Lima S, Ashburner JM, et al. Building 

Equity Improvement into Quality Improvement: Reducing 

Socioeconomic Disparities in Colorectal Cancer Screening as 

Part of Population Health Management. Journal of General 

Internal Medicine 2015;30(7):942-49. doi: 10.1007/s11606-015-

3227-4 

No No Yes 

Bernat DH, Maldonado-Molina M, Hyland A, et al. Effects of 

Smoke-Free Laws on Alcohol-Related Car Crashes in California 

and New York: Time Series Analyses From 1982 to 2008. 

American Journal of Public Health 2013;103(2):214-20. doi: 

10.2105/ajph.2012.300906 

No No No 

Blais E, Carnis L. Improving the safety effect of speed camera 

programs through innovations: Evidence from the French 

experience. Journal of Safety Research 2015;55:135-45. doi: 

10.1016/j.jsr.2015.08.007 
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Bobo WV, Epstein RA, Hayes RM, et al. The effect of regulatory 

advisories on maternal antidepressant prescribing, 1995–2007: 

an interrupted time series study of 228,876 pregnancies. 

Archives of Women's Mental Health 2013;17(1):17-26. doi: 

10.1007/s00737-013-0383-6 
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Boden DG, Agarwal A, Hussain T, et al. Lowering levels of bed 

occupancy is associated with decreased inhospital mortality and 

improved performance on the 4-hour target in a UK District 

General Hospital. Emergency Medicine Journal 2015;33(2):85-

90. doi: 10.1136/emermed-2014-204479 
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Boel J, Andreasen V, Jarløv JO, et al. Impact of antibiotic 

restriction on resistance levels ofEscherichia coli: a controlled 

interrupted time series study of a hospital-wide antibiotic 

stewardship programme. Journal of Antimicrobial Chemotherapy 
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Journal of Safety Research 2014;51:15-22. doi: 
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emergency medicine department. Emergency Medicine Journal 
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No No Yes 

Bowden JA, Dono J, John DL, et al. What happens when the 

price of a tobacco retailer licence increases? Tobacco Control 
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No No Yes 
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