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Abstract—To support N-1 pre-fault transient stability as-
sessment, this paper introduces a new data collection method
in a data-driven algorithm incorporating the knowledge of
power system dynamics. The domain knowledge on how the
disturbance effect will propagate from the fault location to
the rest of the network is leveraged to recognise the dominant
conditions that determine the stability of a system. Accord-
ingly, we introduce a new concept called Fault-Affected Area,
which provides crucial information regarding the unstable
region of operation. This information is embedded in an aug-
mented dataset to train an ensemble model using an instance
transfer learning framework. The test results on the IEEE 39-
bus system verify that this model can accurately predict the
stability of previously unseen operational scenarios while
reducing the risk of false prediction of unstable instances
compared to standard approaches.

Index Terms—Transient stability assessment, machine
learning, transfer learning, power system dynamics.

I. INTRODUCTION

The power system is facing a range of unprecedented
challenges in a new technological and economic land-
scape. This includes the uptake of rooftop PV and ex-
panded adoption of renewable resources and storage
systems, which are displacing large synchronous gen-
erators. The resulting changes in grid behaviour require
new grid capabilities and modelling approaches, includ-
ing better assessment of the ability of the system to
withstand faults. In order to perform transient stability
assessment (TSA) of operational instances, more exten-
sive time-domain simulations are needed with more di-
verse loading conditions. The computationally intensive
nature of these has led to the introduction of new data-
driven machine learning (ML) approaches [1] to acceler-
ate TSAs. In these, data is collected from time-domain
simulations, sampled from a fraction of the space of
expected system states, and used off-line to train a data
model. Such models, with promising results from both
deep learning (DL) [2], [3] and conventional ML models
[4], [5], can then be used to rapidly predict the stability
of other system states. In addition, Transfer Learning,
a collection of methods for improving the performance
of data models on data with different distributions or
feature spaces, has recently gained attention in power

system contexts. Transfer Learning for on-line TSA is
proposed in [6], where after training a model on one
fault location, the learning is transferred to assess faults
at different locations. This has the advantage of requiring
fewer trained models while improving accuracy.

This paper introduces a novel framework for data-
driven TSA based on the understanding of a power sys-
tem’s dynamics. The benefit is to produce a method with
versatile, robust, and interpretable outcomes for single
contingency pre-fault TSA, in particular improving reli-
ability, i.e., performance in terms of unsafe misclassifi-
cations. We achieve this by combining two datasets in a
transfer learning framework: in addition to the standard
dataset that captures the behaviour of the entire system,
we use an auxiliary dataset that integrates the knowl-
edge of rotor angle stability, by focusing on a small part
of the network that is known to have a crucial impact
on the stability for a given contingency. Moreover, we
add a key element to previous approaches, emphasising
the internal trade-offs in the model to minimise the cases
where the model incorrectly predicts a scenario as stable.

The proposed method makes two significant improve-
ments. Firstly, the new data collection strategy boosts the
reliability of TSA predictions while maintaining a high
accuracy level, regardless of the applied data model. Sec-
ondly, to avoid the low generalisation [7], convergence
[8], and interpretability of DL methods, we exploit a
transfer learning-based ensemble adaptive boost model,
introduced in [9]. This also leads to high versatility (i.e.
no parameter tuning is required for different contingen-
cies) and robustness to outliers.

We show in an empirical evaluation that this new
framework outperforms standard ML and DL ap-
proaches.

II. METHODOLOGY

We develop a novel method that increases the relia-
bility of data-driven TSAs by incorporating the power
systems engineer’s intuition and knowledge of power
systems dynamics and stability. The methodology is
described below in three sections.
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A. Fault-Affected Area and the novel data collection method

The knowledge of power system dynamics we lever-
age has three core pillars. Firstly, according to the
equation of motion, for a given unit commitment and
network configuration, variations in load result in vari-
ations in initial generator rotor angles. Secondly, after a
fault, the disturbance effect will spread from the fault lo-
cation to the rest of the network according to the network
impedance and generator inertia [10]. Thirdly, power
systems typically consist of distinct areas that are only
loosely coupled. Hence, for a given unit commitment,
network configuration, and fault location, the interaction
of synchronous generators in close proximity to the dis-
turbance dominates the transient stability status.1 One
can empirically confirm through simulations that for a
generator far from a fault location, transient instability
only occurs if there is at least one unstable generator
within the area where the fault occurred. This highlights
the significance of variables (features in an ML sense)
in close proximity to a fault location. We refer to this
concept as the Fault-Affected Area (FAA). It determines
the variables that dominate transient stability, e.g. the
output power of local synchronous generators, voltage
magnitude and angle at local buses, and power flows
in local transmission lines. Therefore, for any given
operational scenario, the combination of these variables
follows a specific pattern based on the dynamics of the
FAA. While we could train a model using only FAA
scenarios, the next step combines these with scenarios
sampling features from the entire network. This im-
proves the reliability of the TSA predictions by gaining a
rich feature space from which the model can better learn
the dynamic behaviour of the system.

B. Instance transfer learning

Transfer learning is a technique for improving the pre-
diction power of a model on one dataset by transform-
ing information from a related dataset. Following this
approach, we combine operational scenarios where only
loads within a Fault-Affected Area vary with operational
scenarios where all the loads in the network vary. The
set of scenarios based on the FAA is called the auxiliary
dataset, and it incorporates the knowledge of power
system dynamics. The set of scenarios where all loads
vary is similar to the whole-system classical machine
learning approach called the same-distribution dataset.
The combination of auxiliary and same-distribution sets
is called the augmented dataset, which is used as the
training set for our models. The trained model will be
tested on a dataset that has the same underlying distri-
bution as the same-distribution set, hence the naming.
However, the probability distribution of the auxiliary
set is typically different from the one of the test set

1The beyond first-swing superposition of a slow inter-area and a
local plant swing mode in larger time frames [11] is not considered.

and of the same-distribution set, which would prevent
the successful use of classical ML approaches, where
the probability distributions of the training and test
sets have to be similar [12]. Therefore, instance transfer
learning is applied, a technique that was developed for
situations where the distributions of data in the training
and test sets are different [13]. We use a transfer learning
ensemble adaptive boost algorithm (TrAdaBoost) intro-
duced in [9], where the instances are weighted so that
the most useful ones have positive impact in learning
the stable region of operation while the weights of the
incorrectly classified samples with different distribution
are adjusted to reduce their influence.

C. Internal trade-off

The aim of this element of our framework is to reduce
unsafe misclassifications to improve the reliability or
safety of our method. Machine learning approaches often
minimise overall misclassifications, i.e., both false posi-
tives (FP) and false negatives (FN). We are particularly
concerned about FP, or unsafe misclassifications, which
wrongly classify a scenario as stable when in reality
it is unstable, since these endanger the security of the
power system. A secondary objective is to achieve low
safe misclassifications (FN), where the model predicts
a scenario as unstable but the ground truth label is
stable, so that the model does not become unnecessarily
conservative. Hence we use a cost-sensitive loss function
to tune the trade-off between FP and FN.

III. DATA PREPARATION AND TRAINING PROCEDURE

Our framework follows three major steps. The first is
the new data collection approach, the augmented dataset,
encompassing the auxiliary and the same-distribution
datasets. The second is the transfer learning scheme
based on the TrAdaBoost model. And finally, we opti-
mise FP and FN while maintaining overall accuracy.

In order to demonstrate the performance of our new
approach we use the IEEE 39-bus test system, in line with
previous studies using the same experimental frame-
work [3]–[5] to demonstrate the performance of the
proposed TSA approach for a number of contingency
scenarios. The network configuration along with its net-
work areas are shown in Fig. 1. We approximate the
impact of renewables with negative loads (i.e. large
load variation ranges), while the impact of converter
dynamics will be left for future work. To show that the
performance of the model is independent of the fault
location, we study two contingencies inside an area,
line 21-22 and line 17-18, and another two on boundary
lines, line 14-15 and line 3-4. Here we detail the steps to
evaluate the stability for a contingency on line 21-22.

A. Used dataset

Our aim is to map the stability of the augmented
dataset, composed of the auxiliary and the same-
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Fig. 1. IEEE 39-bus system and its areas.

distribution sets, to the stability of the unlabelled in-
stances in the test set. The augmented dataset includes
a same-distribution set of 10,000 samples and an auxiliary
set of 5,000 samples, with the same proportion of classes
in the two datasets.2 To enable comparison with stan-
dard ML approaches, we also generate a set of labelled
samples for training those data models. The training set
includes 15,000 samples, where all loads in the system
are randomly varied between 60% and 140% of their
initial values. This large span is designed to resemble
the impact of spatial and temporal uncertainties of future
grids with high penetration of renewables. The trained
models will be tested on a common test set of 15,000
samples with the same underlying distribution as in the
training and the same-distribution sets.

1) Design of operational scenarios in the augmented set:
The same-distribution set is made by randomly varying
all the loads in the system between 60% and 140% of
initial values, which has the same underlying distribu-
tion as the test set. On the other hand, the auxiliary
set is made by randomly varying a subset of loads, as
per the FAA concept, determined using two sensitivity
analyses. The first analysis clarifies which loads in the
system dominantly affect the output of local generators
within the FAA. Fig. 2 depicts the correlation between
load values and generator output. The highest positive
correlations are shown in yellow, while the highest neg-
ative correlations are shown in dark blue. This figure
reveals the great impact of the load at bus 20 and
the partial importance of the loads at buses 4 and 8
in determining the output of generators. The second
analysis defines which loads dominantly influence the
power flow of local transmission lines. Fig. 3 shows
the correlation between load values and power flows in
transmission lines, which confirms the great impact of
the load at bus 20, and reveals the significance of the
loads at buses 15, 16, 21, 23 and 24. In accordance with
the conclusion of the two analyses, the loads at buses 4,
8, 15, 16, 20, 21, 23 and 24 are selected to produce the
load scenarios of the auxiliary set.

2The Sobol sampling approach is utilised throughout this study.

Fig. 2. Sensitivity analysis: output power of generators vs. loads.

Fig. 3. Sensitivity analysis: power flow of transmission lines vs. loads.

Moreover, since the auxiliary set and the same-
distribution set include different sets of loads in their
load scenarios, the distribution and range of features in
the two sets are different. For instance, Fig. 4 shows the
voltage magnitude at bus 19, where the distributions and
the range of feature values in the two sets are different.
To reduce the dissimilarity in the range of feature values
the selected subset of loads are varied within a 40% to
160% of the initial values.

Fig. 5 shows the overall design of operational scenar-
ios. The auxiliary set determines the stability of gener-
ators inside the FAA (red circles) as a function of the

Fig. 4. The range of auxiliary and same-distribution sets don’t coincide
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Fig. 5. The schematic of the used dataset for fault on line 21-22.

eight varying loads (red arrows). The same-distribution
set, where all the loads (blue arrows) vary, determines
the stability of all the generators (blue circles).

2) AC optimal power flow: For every load scenario
produced, the most cost-effective generation schedule
is computed using an ACOPF algorithm defined by an
objective function and bounded by a set of engineering
laws and physical constraints [14].

3) Transient stability analysis: To determine whether
each operational scenario (computed by ACOPF) re-
mains stable after any of the contingency scenarios, a
time-domain simulation is performed for 5s, where a
three-phase fault is applied at 1s and then cleared by
tripping the faulty line. The resulting answer of either
stable or unstable is used as the classification label.

B. Training the models
We examine our proposed framework using the TrAd-

aBoost algorithm, as well as a Convolutional Neural
Network (CNN) consisting of three consecutive series of
convolutional and max-pooling layers followed by two
fully connected layers as discussed in [15]. The standard-
ised augmented set is randomly divided into training
(80%) and validation (20%) sets while maintaining the
same proportion of classes, using a stratified sampling
approach, prior to training the models.

1) Cost-sensitive loss function: In order to measure the
performance of the models we define the cost of misclas-
sification as the cost of classifying a point into class X
while its true class is Y. Unsafe misclassification (FP)
must be minimised for the security of power system
operation. Nevertheless, we are interested in keeping the
safe misclassification cases (FN) as low as possible. To
tune the trade-off between FP and FN, we apply the
weights α and β to the misclassification costs. To replicate
the cost array of the TrAdaBoost model objective, a
cost-sensitive loss function (1) was implemented as a
customised output layer of the CNN.

Loss = −
N

∑
i=1

2

∑
j=1

(tij log yij − α × FN − β × FP) (1)

Here, N is the number of samples, j ranges over the two
classes (stable and unstable), tij are the targets, yij are the

predicted values, and α and β are the varying weights
applied to the misclassification costs.

2) Bi-objective optimisation: Based on the parameters
α and β, a model that results in the desirable TSA
predictions can be selected. We aim to find an acceptable
compromise between accuracy and unsafe misclassifica-
tions (FP), which is a bi-objective problem. We followed
a grid search approach by creating a 10 × 10 matrix of α
and β coefficients for both models. From the resulting
100 options for each model, we selected the ones that
minimise the FP while staying within 0.2 percentage
points of the maximum accuracy. We refer to this as
the compromise strategy. Other trade-offs could also be
achieved depending on the application, e.g. maximum
accuracy or minimum FP.

IV. RESULTS AND DISCUSSION

This section presents empirical results that demon-
strate the comparative advantage of using the proposed
data collection approach, i.e. the augmented set, over the
existing one that uses a standard training set. We also
compare the performance of TrAdaBoost with a CNN
model using training and augmented sets. To find the
best combination of dataset and data model we will
comprehensively analyse the results for each contin-
gency for our proposed compromise trade-off strategy. It
suggests that the best combination of model and dataset
not only has a very high accuracy, but also provides
the lowest unsafe misclassifications (FP), compared to
the safe misclassifications (FN). Since the distribution of
labels in the test set is a function of fault location, each
contingency has a different label distribution. Therefore,
to evaluate and compare the performance of the two data
models using training and augmented datasets, we use
the Recall, Precision, Specificity, and Accuracy measures
reflected in Table I. From Table I it firstly is evident
that using the augmented set results in the lowest FPs
for both models. Secondly, TrAdaBoost trained on the
augmented set invariably performs best overall in terms
of the compromise strategy, supported by providing the
highest precision and specificity measures for all contin-
gency scenarios. Occasionally, there is a slight trade-off
between reaching the lowest FP and the highest accuracy
amongst the combinations of model and dataset. For
instance, the contingency on line 21-22 shows 95.59%
accuracy for CNN trained on training set compared to
95.44% for TrAdaBoost trained on augmented set. How-
ever, since the improvement in FP (0.51%) is much larger
than the slight reduction of the accuracy (0.13%) the
trade-off is reasonably justifiable. This is also confirmed
with higher precision and specificity measures.

Regarding the training effort of the two models, the
CNN was trained on two parallel GPUs (TESLA-V100-
PCIE-16GB) while TrAdaBoost was trained on 16 parallel
CPU cores (Intel-Xeon-E5-2680-v3). Although CNN was
trained 20% faster on average, it required additional
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TABLE I
COMPARATIVE COMBINATION OF MODELS AND DATASETS.

Contingency on line 21-22
Model DataSet FP Rec. Pre. Spe. Acc.

TrAdaBoost Augmented 1.55% 92.74% 96.13% 97.35% 95.44%
CNN Augmented 1.75% 92.48% 95.63% 97.02% 95.14%

TrAdaBoost Training 2.30% 94.13% 94.25% 96.16% 95.35%
CNN Training 2.11% 94.28% 94.73% 96.47% 95.59%

Contingency on line 14-15
TrAdaBoost Augmented 0.72% 93.37% 98.33% 98.68% 96.28%

CNN Augmented 0.74% 93.21% 98.28% 98.65% 96.18%
TrAdaBoost Training 0.92% 93.18% 97.86% 98.32% 96.00%

CNN Training 0.91% 93.24% 97.88% 98.34% 96.04%
Contingency on line 17-18

TrAdaBoost Augmented 1.82% 89.89% 93.93% 97.35% 95.01%
CNN Augmented 1.96% 88.85% 93.47% 97.14% 94.52%

TrAdaBoost Training 2.24% 89.15% 92.53% 96.75% 94.38%
CNN Training 2.06% 88.53% 93.13% 96.99% 94.32%

Contingency on line 3-4
TrAdaBoost Augmented 1.55% 88.12% 93.80% 97.89% 95.30%

CNN Augmented 1.65% 87.29% 93.40% 97.75% 94.95%
TrAdaBoost Training 2.03% 86.61% 91.88% 97.24% 94.42%

CNN Training 1.94% 86.99% 92.24% 97.36% 94.61%

engineering effort for adjusting to new datasets (i.e. dif-
ferent contingencies) as we faced different convergence
and gradient explosion issues. On the other hand, the
TrAdaBoost took more time to train but did not require
any further attention for new datasets. This indicates the
higher versatility of this model compared to CNN.

Moreover, according to our experiments, CNN exhibits
a larger number of outliers with high errors compared
to TrAdaBoost. For instance, Fig. 6 shows the FP of the
models and datasets for the contingency on line 21-22,
proving the greater robustness of TrAdaBoost.

Fig. 6. The False Positives of the two models and datasets.

V. CONCLUSIONS

In this paper, we explored how to improve the pre-
fault prediction of transient stability of power systems
using a transfer learning scheme, introducing a novel
data collection approach. We incorporate an auxiliary
dataset into the training process that captures crucial
information about the stability of operational scenarios,
focusing on the Fault Affected Area of the network.

To the best of the authors’ knowledge, this is the first
attempt at incorporating the knowledge of power system
dynamics to develop a transfer learning mechanism for
transient stability assessment. Using the IEEE 39-bus
test case we empirically showed that the proposed data
collection method achieves improved reliability com-
pared to the standard approach, resulting in the lowest
number of unsafe misclassifications on the augmented
set for both models. Furthermore, the high accuracy
guarantee of the TrAdaBoost model yields a high degree
of confidence in the security of the analysed operational
scenarios. Moreover, compared to deep learning models,
the proposed approach provides more versatility, due
to the absence of convergence and gradient explosion
issues, and robustness, with fewer high-error outliers.
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