
 

 

 

Advancing the measurement of cognitive ability: Developing a Cattell-Horn-

Carroll computer adaptive screening test 

 

 

Jake Kraska 

BPsychBus (Monash), BA (Murdoch), BTech (Swinburne), PGDipPsych (Monash), MPsych 

(Monash) 

 

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of 

Philosophy 

 

 

 

October 2020 

Faculty of Education 

Monash University 

 

 





 

 

Copyright Notice and Declaration 

©The author (2020). Except as provided in the Copyright Act 1968, this thesis 

may not be reproduced in any form without the written permission of the author.  

 

I certify that I have made all reasonable efforts to secure copyright permissions 

for third-party content included in this thesis and have not knowingly added copyright 

content to my work without the owner’s permission. 

 

This thesis is submitted to Monash University in partial fulfillment of the 

Doctorate of Philosophy (PhD). The work presented in this thesis is original except as 

acknowledged in the text. This thesis contains no material which has been accepted for 

the award of any other degree or diploma at any university or equivalent institution and, 

to the best of my knowledge and belief, this thesis contains no material previously 

published or written by another person, except where due reference is made in the text 

of the thesis. 

 

Jake Kraska 

October 2020 

 





 

 

 

 

 

 

 

 

 

“Failure is an option here. If things are not failing, you are not 

innovative enough.” - Elon Musk 

 

 

 

 

 

“Science has not yet mastered prophecy. We predict too much for 

the next year and yet far too little for the next 10.” – Neil Armstrong 

 

 





 

Acknowledgements vii 

Acknowledgements 

Throughout the writing of this thesis, I have received a great deal of support and 

assistance. 

Firstly, several organisations require acknowledgement. This research was 

supported by the Nectar Research Cloud; a collaborative Australian research platform 

supported by the National Collaborative Research Infrastructure Strategy. The Krongold 

Clinic, Monash University, through the Krongold Outreach Program, supported the 

administration, scoring and interpretation of cognitive ability tests for school aged 

children by provisional psychologists under the supervision of the myself as a registered 

Educational and Developmental Psychologist. I also acknowledge the support of the 

Australian Scholarships Group via the ASG Scholarship for Excellence, and the support 

of the Australian Government via an Australian Government Research Training Program 

Scholarship. 

The data collection in this PhD relied heavily on the Concerto Platform 

(https://github.com/campsych/concerto-platform) developed by The University of 

Cambridge Psychometrics Centre. The data analysis relied heavily on the mirt package 

for R (https://github.com/philchalmers/mirt) and mirtCAT package for R 

(https://github.com/philchalmers/mirtCAT) developed by Dr Phil Chalmers. That these 

tools are open source, freely available and receive ongoing development is a substantial 

boon to the fields of Item Response Theory (IRT), Computer Adaptive Testing and 

psychometrics. Without these tools this PhD would not have been possible within the 

timeframe of a typical candidature. Everyone that researches in this field should support 

these kinds of developers and initiatives. 

https://github.com/campsych/concerto-platform
https://github.com/philchalmers/mirt
https://github.com/philchalmers/mirtCAT


 

Acknowledgements viii 

I would like to thank Dr Shane Costello (Primary Supervisor) for his supervision 

of this project. Shane has always been a voice of reason and logic; where others have 

doubted that something can be done, he has supported me. He has always given me his 

time freely, both within this project and without. He has also allowed me great freedom 

and independence in developing ideas and executing them, never forcing me to utilise 

a method or making a conclusion that I was not satisfied with. Shane demonstrates a 

fundamental understanding of the intangible nature of psychological constructs and 

thus, the need for some flexibility in the execution of statistical methods; this PhD 

benefited substantially from these understandings. Outside of research Shane is a true 

scientist-practitioner, modelling the importance of understanding the practical 

implementation and limitations of academic research. Shane has helped develop my 

professional identity and research interests, and I am glad to call him a colleague and 

friend. This thesis truly would not be possible without the expert guidance of Shane and 

I cannot thank him enough. I look forward to our future collaborations. 

Thank you also to Dr John Roodenburg (Secondary Supervisor), Associate 

Professor Wendy McKenzie (Secondary Supervisor) for their flexibility and feedback 

during key milestones of this project. The insightful feedback of all three supervisors has 

pushed this thesis and the thinking behind it to a higher level. 

The services of Sara Nyhuis, a professional editor, were used for this thesis. Sara’s 

specialisation is not within the field of psychology and editing was focused on matters 

of language, illustration, completeness, and consistency. It is because of her that readers 

of this thesis do not have to put up with the word ‘whilst’ or the overutilization of 

quotation marks. Thank you, Sara. 



 

Acknowledgements ix 

Thank you to Elizabeth Kennedy, Adalyn Heng and John Maguire, who 

contributed significantly to the beginnings of this project through the completion of 

their Masters projects focusing on the development of items that measure Cattell-Horn-

Carroll (CHC) abilities from a theoretical perspective; I enjoyed supervising your projects 

alongside Shane and I hope that learning about R and IRT fuels your future research or 

psychological practice.  

Thank you to Laura Dye, Dr Kate Jacobs and Karie Stewart for their expertise in 

teaching, psychological assessment and special education that supported the evaluation 

of items within this PhD prior to the Item Calibration Study.  

Thank you to my PhD peers: Grace Mackie, Simone Gindidis, Andrea Sadusky. 

Your dedication to your PhDs has awed me and I know that each of your respective fields 

will not have heard the last from you. Grace, you provided integral consultation on 

literature reviews and assisted me in deciding how to approach a review of the cognitive 

ability CAT literature given its sparseness. Your positive attitude, helpful nature, and 

encouragement were momentously appreciated at a time of great need. Thanks for 

listening to my PhD lamentations. A project of the magnitude conducted in this thesis 

would be impossible without the support of others and these contributions truly prove 

that collaboration enhances the scientific process. 

To my family, you have been integral to my academic pursuits. My brother 

implanted a healthy level of academic competitiveness and passion for scientific rigour, 

my mother instilled in me a sense of curiosity and inquisitiveness about the world, and 

my father taught me to be pragmatic and logical. Together these characteristics have 

prepared me for a competitive academic world. Although I know my career has often 

limited my time with family, I hope that you know I am doing what I love. 



 

Acknowledgements x 

To my wife, you have supported me through 14-years of academic study, from 

one degree to another. I think it is time I start putting these fancy pieces of paper to use. 

Your patience and support have been unwavering. It was once a wise young woman that 

told a (too) serious teenager, “do not take life too seriously, you will never get out of it 

alive.” You truly are my best friend, and all my achievements would not have been 

possible without you. 

A special thank you must also be expressed to Jack O’Neill, Finn, and John Wick. 

 

 



 

Abstract xi 

Abstract 

The current thesis explored the application of a Computer Adaptive Test (CAT) in 

the measurement of intelligence, the efficiency and validity of a CAT when measuring 

intelligence across a range of ages and considered correlations of this newly developed 

CAT with the Wechsler Intelligence Scale for Children – Fifth Edition (WISC-V).  

Any measurement tool in psychology must be developed based on a good 

theoretical framework and sound measurement principles. The background of this 

thesis (Chapter 2) demonstrated that the Cattell-Horn-Carroll (CHC) theory is the most 

contemporary and suitable theory of intelligence to form the theoretical basis of a 

cognitive ability CAT. It is also important that researchers implement appropriate 

statistical models when developing and implementing a CAT, and thus the background 

of this thesis introduced many basic concepts related to different item response theory 

(IRT) models and characteristics of CATs that some readers may be unfamiliar with. 

Some authors have argued that the measurement of cognitive ability has lacked new 

innovations despite significant improvements in available technologies in the last two 

decades. CATs pose an opportunity to improve measurement of cognitive ability 

through the integration of CHC theory, IRT measurement principles and variation of CAT 

characteristics.  

A review of the literature in this thesis demonstrated that despite CHC, IRT and 

CAT all being well known concepts within the literature, there has been only limited 

integration of the three together. Nearly all studies reviewed failed to describe the CAT 

used with enough detail for their studies to be replicated by researchers or implemented 

by practicing psychologists. Additionally, none of the CATs investigated demonstrated 

utility with an Australian sample or truly examined more than one CHC factor at a time. 
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The four studies in this thesis investigated the use of four sets of items developed 

from the perspective of CHC theory, designed to measure Lexical Knowledge, Induction, 

Visualisation and Working Memory. Both the data and statistical analyses for all four 

studies included in this thesis are accessible at github.com/jakekraska/phd. 

The item sets were trialled and evaluated in an Item Tryout Study (ITOS; Chapter 

3) and an Item Calibration Study (ICS; Chapter 4). The initial ITOS demonstrated that the 

Lexical Knowledge items tended to be too easy, Induction items were not always 

predictable in their ordering, there were possible unidimensionality issues with the 

Visualisation items, and that there were design issues with the Working Memory item 

stimuli. The ICS took advantage of further item development and addressed problems 

with item sets as identified by the ITOS and the analysis resulted in retaining 47 Lexical 

Knowledge items, 23 Induction items, 30 Visualisation items, 25 Working Memory items. 

Item parameters were exported for subsequent CAT simulation. 

Each item set was included in a CAT simulation (Chapter 5) that made use of 

5,000 simulated participant. Simulations were conducted with each item set using item 

parameters from the ICS and item parameters recalculated using only the school aged 

sample. Simulations were conducted for varying levels of reliability required utilising a 

minimum standard error of measurement (SEM) stop rule. A final simulation was 

conducted for each item set to evaluate where the item sets measured best. Overall, 52 

simulations were conducted. It was found that that item administration could be 

reduced by approximately 50% when aiming for a reliability of .70, and the item sets 

best measured at very low ability levels through to average abilities. If such a test were 

implemented in practice, testing time would be approximately 18 minutes depending 

on the ability of the examinee. Classification of those with deficits in cognitive abilities 
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could be achieved, however differentiation between those with average ability and 

above average ability may not be possible with the current item sets.  

Analysis of the convergent validity of the items was investigated (Chapter 6). 

Weak to moderate correlations were found between each CHC-CAT subtest and the 

respective WISC-V subtest, and a moderate correlation was found between a statistically 

derived g factor and the WISC-V Full Scale IQ. Based on the results there is mounting 

evidence of the psychometric validity of the Lexical Knowledge and Induction item sets 

from this PhD. Further analysis is recommended to compare the Working Memory item 

sets into other cognitively complex Working Memory tasks, as well as further 

development of Visualisation items that provide a better fit to the Rasch model.  

A discussion (Chapter 7) of the implications and limitations of this research is also 

presented. Future research opportunities are identified surrounding multidimensional 

IRT, use of other IRT models, improvements, and standardisation in item stimuli via 

funded multimedia design, further item development, and implementation of items that 

measure other CHC abilities. Overall, it is concluded that this research demonstrates the 

viability of CAT implementation into the measurement of CHC abilities and hopes to 

serve as a platform for future innovations. 
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Chapter 1: Introduction and Thesis Outline 

With the evolution of modern technology has come the ability to automate 

processes and efficiently perform complex algorithmic calculations. This thesis focuses 

on the development of a Computer Adaptive Test (CAT) that measures cognitive ability 

as conceptualised by the Cattell-Horn-Carroll (CHC) theory. CATs have the advantage of 

offering unsupervised administration, increased efficiency, improved precision of 

measurement, automated scoring, and a chance to further support construct validity. 

Therefore, CATs pose an opportunity within the field of psychology to reduce the burden 

of repetitive, structured and time-consuming psychological assessment processes.   

While adaptive testing has existed for over a century, it has not been until recent 

technological developments that adoption of these techniques has started to become 

widespread; this is largely a result of computers enabling automated scoring and 

algorithm calculation. CATs have been shown to be as reliable as traditional tests in the 

measurement of various psychological constructs and perhaps more utilitarian in a 

testing scenario (Weiss, 2011). The advantages of CATs over traditional paper-and-pencil 

tests, when mixed with the power of web technologies, poses an interesting way 

forward for the improvement of cognitive ability measurement utilising contemporary 

perspectives of intelligence, such as CHC theory. Given the increasing demands on, and 

for, Educational Psychologists in the Australian community (Department of 

Employment, 2019; Lyonette et al., 2019) there are opportunities to evaluate new 

methods of measuring cognitive ability to increase efficiencies in the industry. The 

current thesis aims to contribute to the literature surrounding measurement of 

cognitive ability utilising CATs. 
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1.1 Progressing Psychological Assessment 

CATs have been discussed in the research literature since at least the 1970s. 

Much early work relied on identifying algorithms that could efficiently calculate an 

individual’s ability while determining the next appropriate item (e.g. Lord, 1980). Given 

the technology of the time, user interfaces and item presentation were basic, and 

calculation of the various mathematical principles of CATs was resource intensive.  

With increases in personal computing in the 1990s, utilisation of the Internet and 

more customised CATs were being considered. Barak (1999) proposed several 

advantages of the Internet as a medium for psychological testing, including heightened 

accessibility, ease of scoring, decreased administration errors, ease of ability in updating 

test materials, removal of financial, geographic or time limits on administration, and the 

possible utilisation of dynamic graphical interfaces. Despite these advantages, many 

tests that were ultimately utilised on the Internet were simply electronic copies of 

paper-and-pencil tests. 

Notwithstanding the proposed advantages of assessment via CATs or the 

Internet, the measurement of cognitive ability has barely evolved over the last 100 

years. The most utilised cognitive ability tests in Australia, such as the Wechsler and 

Woodcock-Johnson batteries (James et al., 2015), either remain in paper-and-pencil 

form, or where administered via iPads, are simply replications of their fixed form. While 

CATs that measure cognitive ability exist, they tend to be proprietary or unpublished in 

the scholarly literature. Measurement of many other psychological traits has benefited 

from technological innovations, but intelligence testing remains quite traditional. 

Overcoming the lack of advancement in the measurement of cognitive ability will be 

addressed in this thesis by demonstrating the utility of CATs.  
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1.2 The Current Project 

The current thesis details the background, methods, and results of a pilot 

Computer Adaptive Test (CAT). The underpinning psychological theory for this project 

was CHC theory, a contemporary taxonomy of human intellectual abilities, which to date 

(at least in the peer reviewed literature) has not been operationalised using a CAT. Item 

Response Theory (IRT) is the framework used for measurement. The goal of this project 

was to design a CHC-CAT screening tool that was transparent in its design, had a pre-

determined methodology, and post-hoc analysis and decision making were avoided. By 

adhering to these principles throughout development, it was believed this could help 

address the issue of cognitive ability CATs being restricted to private organisations or 

being left as some side note in a larger methodological study about IRT or CAT. In the 

development of any new tool or process it is important to establish validity through a 

rigorous psychometric evaluation and comparison to existing tools assists with 

establishing such validity. As an exploratory research project, it was hoped that this PhD 

could explore the application of CATs in the measurement of intelligence as 

characterised by CHC theory, the efficiency and validity of CATs in measuring intelligence 

across a wide range of ages and compare such a tool to mainstream cognitive ability 

tests. Such a tool can continue to be iteratively developed, improved, and ultimately 

implemented in a variety of contexts. More specific goals based on the background 

literature are presented at the end of Chapter 2.  

1.3 Perspective of the Author 

1.3.1 Practical Focus 

As both an early career researcher and a registered Educational and 

Developmental Psychologist, the focus of this thesis is on psychologists and teachers. It 
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was believed that coming from this perspective would help with understanding the 

practical challenges of implementing screening tools in educational contexts and 

addressing sometimes uncertain referral questions from schoolteachers. Much of the 

CAT literature focuses on the medical field, academic achievement, has been limited to 

research purposes, or has been implemented in a proprietary format. There is a lack of 

practitioner or teacher friendly cognitive ability measurement tools that rely on CAT 

technology. The focus on developing a screening tool as a measure of cognitive abilities 

provided an opportunity to demonstrate the utility of CATs for teachers and 

psychological practitioners in Australia. 

1.3.2 Open Source 

Recent trends in many fields of academia and science have promoted the 

concept of ‘Open Science’. The focus of Open Science is to provide open access to 

research, data, and transparency of methods, whether providing access to statistical 

analyses or pre-registering planned methodologies (McKiernan et al., 2016). 

Problematically, most CATs that measure cognitive ability are proprietary in nature 

which limits the ability to ensure that they are reliable or valid tools. Open science 

approaches pose opportunities in this field of research to ensure that CATs utilised by 

schools are transparent and demonstrate enough reliability and validity to make 

decisions. 

 The publication of the R code and data sets utilised as part of this project further 

add to the ability to replicate the analyses included in this thesis 

(github.com/jakekraska/phd). R is an open-source statistical programming language and 

also allows the statistical analyses to be repeated in the exact same way as the original 
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author (Mair, 2018). It is hoped that this will allow any researcher the opportunity to 

evaluate the outcomes of this research. 

1.3.3 Transparency 

Concerningly, methods to improve the results and outcomes of studies in a post 

hoc manner are rife in the psychological sciences (Head et al., 2015). It is my perspective 

that we have a responsibility to the profession as well as the public to ensure we carry 

out research, particularly publicly funded research (which this PhD would be 

considered), in a robust and transparent manner. It will also be evident upon reading 

this thesis that there is an increase in the sophistication of the analyses as the thesis 

progresses. This reflects my further learnings, implementation of these learnings, and 

an explicit attempt to avoid manipulating data or statistical analyses after the fact. While 

the studies in this thesis were not pre-registered, it is believed the evidence presented 

demonstrates alignment with the underlying principles of the Open Science philosophy 

and are sufficiently transparent to establish that post hoc analysis was avoided. 

1.4 Thesis Outline and Structure 

Improvements in information technology, wider availability of CAT platforms, 

and the never-ending desire for more efficient and valid psychological tests creates an 

ample opportunity to develop a cognitive ability CAT based on the CHC theory of 

cognitive abilities. It is the fundamental principles underpinning these advancements 

that is the focus of this thesis, along with the outcomes of studies designed to develop 

and pilot such a test.  

Chapter 2 covers the background and literature that form the basis of the four 

studies conducted as part of this thesis. This includes a review of the historical and 

contemporary perspectives of cognitive ability and the alignment of contemporary test 
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batteries with CHC theory. The chapter then proceeds to compare Classical Test Theory 

(CTT) and IRT, different perspectives that assist researchers and test developers in 

analysing their items and scales. IRT underpin CATs, but they also make use of a variety 

statistical techniques in order to start and stop a test, as well as engage in item selection. 

The background and critique of CHC, IRT and CAT independently demonstrate the 

opportunity to integrate these concepts together. A subsequent review of existing 

cognitive ability CATs is conducted to demonstrate a gap in the literature for a CHC based 

CAT. 

Chapter 3 introduces the Item Tryout Study (ITOS). This first study utilises items 

developed in four prior research projects to evaluate the qualitative and quantitative 

validity of the items. A large sample of adult participants were utilised to trial the first 

set of items, and pilot the possibility of achieving a set of items for four CHC narrow 

abilities. This chapter implements conservative approaches to psychometrics in order to 

demonstrate that the items meet the assumptions of Rasch modelling (a somewhat 

conservative model in itself) allowing for identification of areas for further item 

development and improvement.  

Chapter 4 builds upon the findings in the Item Calibration Study (ICS). Several 

problems with items are addressed through the development of more items, and the 

calibration of existing items. This study also included school aged children to show the 

applicability of the test items to a school setting. The statistical analysis in this chapter 

focuses on Rasch modelling and preparing items for use in a CAT. 

Chapter 5 simulates a CAT utilising computer generated participants. This is 

based on the findings of the ITOS and the ICS; the simulation utilises the item parameters 

from the ICS as well recalculating item parameters using only school aged participants. 



 

Chapter 1: Introduction and Thesis Outline 7 

The study discusses the efficiency and limitations of using the developed items in a CAT 

format. 

Chapter 6 explores the validity of the screening tool under development. School-

aged children participants were recruited and administered both the screening tool 

under consideration and the Wechsler Intelligence Scale for Children – Fifth Edition 

(WISC-V). Correlational analyses are carried out. While there were limitations identified 

in terms of data collection, efforts were also made to establish a statistically derived 

measure of g based on measures of Lexical Knowledge, Induction and Visualisation to 

correlate with the WISC-V Full Scale IQ. 

Chapter 7 concludes the thesis with a general discussion of conclusions, 

implications, and recommendations for future research. Focus is placed on the strengths 

and limitations of the developed CHC-CAT, and how this may be interpreted within the 

concepts of ethical use of technology and automation of the psychology workforce. 
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Chapter 2: Background and Literature 

The measurement of cognitive ability or intelligence has a long history. Cognitive 

ability is perhaps “the most researched topic in the history of psychology” (Wasserman, 

2012, p. 3). A substantial literature base supports the relationship between cognitive 

ability and a range of life outcomes, including school performance (Evans et al., 2002; 

Floyd et al., 2003; Floyd et al., 2008; Walker et al., 1994) and career development (Lang 

& Kell, 2019; Sternberg, 2003). Such relationships have resulted in efforts to implement 

assessments and interventions during the school years to facilitate positive academic 

and career outcomes for students. 

Interactions between cognitive ability, academic achievement and other 

psychological constructs have also been of interest to scholars. Many researchers have 

investigated whether relations with other psychological constructs such as personality, 

learning styles or motivation explain the importance of cognitive ability in task 

performance (Busato et al., 2000; Farsides & Woodfield, 2003; Kraska, 2013; Laidra et 

al., 2006). However, outcomes of many studies are inconsistent (Wettstein, 2017) likely 

due to the wide number of contributing factors, and the statistical methodologies used 

within each study. At the least, a recent meta-analysis found that “the effects of ability 

and motivation on performance are additive rather than multiplicative” (Chad et al., 

2017, p. 270). Thus, cognitive ability measurement has predominately remained a key 

focus of psychological assessment when addressing academic, behavioural, or day-to-

day functioning deficits. Assessment of cognitive ability by psychologists and teachers 

remains an important aspect of the work that they do, and this chapter focuses on 

underlying theory and measurement principles that support that testing. 
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2.1 Chapter Outline 

In improving the measurement of cognitive ability, it is important to understand 

the evolving conceptualisation of intelligence as a construct over a century of research. 

Any psychological tool should fundamentally be ‘useful’, and this can only be achieved 

through sound theoretical foundations. The evolving understanding and measurement 

of cognitive ability is discussed in this chapter throughout Sections 2.2 to 2.5.  

Beyond theory, a measurement tool must be based on sound measurement 

science; researchers, practitioners and the public must be able to ensure that the tool is 

measuring what it says it is measuring, and that it is doing so in a reliable manner. Not 

only have our understandings of cognitive ability evolved over time, but so have the 

sophistication of our statistical and measurement methods. This includes perspectives 

on Item Response Theory (IRT) and Classical Test Theory (CTT). Conceptualisations of 

measurement theory and the IRT framework for which CATs are ultimately based on is 

discussed throughout Sections 2.6 to 2.9. 

It is the application of IRT via CAT that poses opportunities for improving 

measurement of cognitive ability. Section 2.10 to 2.15 introduces basic concepts of CATs 

and discusses the advantages of and purpose of different characteristics that can be 

customised when developing or implementing a CAT. The broad advantages and 

disadvantages of CATs as well as the availability of CAT platforms is also discussed. 

Considering the potential opportunities that the integration of CHC, IRT and CAT 

offers to the measurement of cognitive ability, it is important to understand the 

strengths and limitations of research in this field. Section 2.16 includes a review of the 

literature focused on cognitive ability CATs. This section summarises the gaps in the 
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wider empirical works and subsequently Section 2.17 outlines the goals of the four 

studies conducted as part of this thesis.  

Overall, this chapter focuses on drawing together the background and literature 

of cognitive ability (defining what we want to measure), IRT (how do we measure it), 

and computer adaptive testing (application of combined frameworks) to demonstrate 

the opportunity for advancement of the measurement of cognitive ability. This chapter 

aims to identify opportunities for future implementation of technology and improved 

statistical methodologies in test administration and development within the field of 

cognitive ability. 

2.2 A Brief History of Cognitive Ability Tests 

The measurement of cognitive ability has undergone several changes over the 

last century but remains relatively uninfluenced by technology, adaptive testing 

methodologies or contemporary statistical methods. A full history of intelligence testing 

is beyond the scope of this thesis, but a brief review demonstrates that while there has 

been advancement of intelligence theory, there has only been slow advancement of 

cognitive ability measurement tools.  

Wasserman (2012) considers many of the efforts to measure intelligence in the 

19th century to be pseudoscientific antecedents to the contemporary approaches to 

intelligence testing. Galton’s Anthropometry eventually led to efforts to create 

scientifically based intelligence measurement and Cattell’s reaction time experiments. 

Nearing the end of the 19th century, and challenging of much of Galton and Cattell’s 

work, Alfred Binet, described by Wasserman as an “innovative outsider”, was 

conducting experiments with his own children and publishing prolifically before seeing 

an opportunity in the early 20th century to develop a norm referenced intelligence test 
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as a solution to France’s desire to apply the mandatory public education laws to 

“abnormal” children. That is, the now well-known Binet-Simon Intelligence Scale. This 

led to refinements in the form of the Stanford-Binet (SB), the “most frequently used 

psychological test in the United States for decades” (p. 20). The SB is now in its fifth 

edition (Roid & Pomplun, 2012).  

Initially thought to be hereditary, it was largely Piagets’ theories that began 

considering the impact of a child’s environment on intellectual ability. This was 

subsequently supported by observations of the poor performance of children from 

lower socio-economic status families (Raiford & Coalson, 2014). The recognition of the 

interplay between environment and intellectual ability led to significant policy changes 

in the spheres of disability and education, the production of a vast range of assessment 

tools, and the importance of reliable and valid tools of intellectual ability assessment in 

these policies (Raiford & Coalson, 2014). These early pioneers of intelligence tests paved 

the way for the Army Mental Tests and David Wechsler’s now well-known intelligence 

scales. The evolution of these tests has largely been dependent on the changing 

understanding and operationalisation of ‘cognitive ability’ as conceptualised by key 

researchers throughout the 20th century. This was only the beginning of a long journey 

of iterative theory development in the field. 

2.3 Contemporary Theories of Intelligence 

Modern theories of intellectual ability are conceptually linked to the progress 

made throughout the 20th Century. David Wechsler (1944) defined intelligence as: 

The aggregate or global capacity of the individual to act 

purposefully, to think rationally, and to deal effectively with his 

environment. It is global because it characterizes the individual’s 
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behaviour as a whole; it is an aggregate because it is composed of 

elements or abilities which, though not entirely independent, are 

qualitatively differentiable. 

Within this definition is the clear consideration of a global intelligence that is composed 

of individual but inter-related abilities. Since this seminal definition, intelligence has 

been operationalised in many varying ways (McGrew, 2009b; Wasserman, 2012).  

Acknowledging that any theory is ultimately going to be deficient in exactly 

describing human intelligence, it is generally accepted that “human intelligence is a 

melange of many abilities that are interrelated in many ways” (Horn & Blankson, 2012, 

p. 73). Thus, contemporary theoretical perspectives on intelligence generally reflect this: 

Multiple Intelligences Theory (Chen & Gardner, 2018), the Triarchic Theory of Successful 

Intelligence (Sternberg, 2018), and the Planning, Attention, Simultaneous, and 

Successive cognitive-based processing theory (Naglieri & Otero, 2018). Most 

contemporary theories of ability are either multidimensional or process driven. 

The most contemporary and well-validated understanding of human cognitive 

abilities is the Cattell-Horn-Carroll (CHC) model (Kamphaus et al., 2018). CHC theory has 

been described as "a systematic synthesis of hundreds of studies spanning more than a 

century of empirical investigations of cognitive abilities" (Schneider & McGrew, 2012, p. 

100). This theory is a culmination of the Carroll (1993) Three-Stratum theory with Cattell 

(1971, 1982) and Horn's (1986, 1988) Gc-Gf theory. Although originally developed via 

factor analytic studies it has been validated through developmental, neurological, and 

biological research (Horn & Blankson, 2012). 

CHC theory is a three-tier hierarchical model of abilities, with broad abilities 

subsuming narrow abilities, and broad abilities being subsumed by general intelligence 
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(g) (Flanagan et al., 2013). This theoretical model has error associated with each broad 

ability, narrow ability and measuring subtest. Such a model is particularly conducive to 

further research and refinement (McGrew, 2009a). In practice, broad abilities are 

theoretical constructs, and each narrow ability is measured by a specific subtest. Recent 

examples include modifications to the model (v2.4) to conceptualise long-term retrieval 

(Glr) into two separate abilities known as learning efficiency (Gl) and retrieval fluency 

(Gr) (McGrew, 2016) and increasing the numbers of broad abilities (Schneider & 

McGrew, 2018). Broad abilities continue to be explored and argued in support of, such 

as ‘emotional intelligence’ (Evans et al., 2019). The latest broad ability model (v2.5) is 

represented in Figure 2-1, with examples of narrow abilities for eight of the core broad 

abilities exampled in Figure 2-2.  

2.4 Current Challenges to CHC Theory 

CHC theory is not without its critics. Predominately criticism relates to the 

interpretation of g versus “group ability factors”, such as the broad cognitive abilities 

included in CHC theory (Beaujean & Benson, 2019). Other concerns include the 

perception of the proliferation of abilities within the CHC taxonomy as evidence of its 

own shortcomings (Wasserman, 2019) as well as failures to replicate the CHC structure 

in a range of tests (Canivez & Youngstrom, 2019). Wasserman (2019) raises “twenty 

challenges to CHC” ranging from concerns surrounding CHC theories basic adherence to 

scientific principles of parsimony, falsifiability, and replicability, to criticisms of CHC 

theories conceptualisation of g, Gf-Gc, memory, speed and quantitative reasoning.  
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Figure 2-1. CHC Model (v2.5) with 18 Broad Abilities 

 

 

Figure 2-2. CHC Model (v2.5) with Narrow Abilities for 8 Core Broad Abilities 

 

 

Note. Gc = Comprehension Knowledge, Gf = Fluid Reasoning, Gv = Visual-Spatial Processing, Gwm = Working Memory, Gs = Processing Speed, Gl = Learning Efficiency, Gr = 
Retrieval Fluency, Ga = Auditory Processing, Gt = Reaction and Decision Speed, Gps = Psychomotor Speed, Gp = Psychomotor Abilities, Go = Olfactory Abilities, Gkn = Domain-
specific knowledge, Gei = Emotional intelligence, Gq = Quantitative Knowledge, Grw = Reading and Writing, Gk = Kinesthetic abilities, Gh = Tactile (haptic) abilities. While 
Version 2.5 of the CHC model includes 18 abilities, focus is largely placed on the 8 core abilities where links have been demonstrated with academic achievement. 
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These criticisms often imply that the entire CHC theory is invalid and should be 

discarded, which completely discounts decades of iterative improvement in our 

understanding of the structure of cognitive abilities. Even Wasserman (2019) 

acknowledges that both Spearman (1927, 1938) and Thurstone (1948), who both started 

at polar ends of the debate, ultimately acknowledged the existence of both a general 

factor and “group factors”. Some broad abilities within CHC are arguably more 

“defensible” and this seems implicitly understood by key CHC authors as they have 

established criteria for updating the theory, as well as labelling certain abilities as 

“tenuous” (Schneider & McGrew, 2018). Outside of these yet to be fully supported 

abilities, over a century of research suggests that key abilities measured by tools such as 

the Wechsler Intelligence Scale for Children – Fifth Edition (WISC-V), such as Verbal 

Comprehension (VC), Fluid Reasoning (FR), Working Memory (WM), Processing Speed 

(PS) and Visual Spatial (VS) do in fact account for variance outside of g (Keith & Reynolds, 

2012). 

Findings of studies on the factor structure of existing tests often depend on the 

statistical methodology utilised. For example, initial confirmatory factor analyses by the 

test publisher of the WISC-V utilised a higher order model (with a general factor 

indirectly influencing subtests) which resulted in a five-factor model (VC, VS, FR, WM 

and PS) (Wechsler, 2016). Criticism of this included the use of weighted least squares 

estimation, preferencing an overly complex model, identification of an FR factor that 

had a standardized path coefficient of 1.00 with the g factor (making FR redundant), and 

a failure to test “rival” bifactor models (Canivez et al., 2016). Canivez, Watkins and 

Dombrowski’s resulting exploratory factor analysis found support for a four-factor 

model, with VS and FR combined into a Perceptual Reasoning (PR) factor (Canivez et al., 
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2016). Subsequent confirmatory factor analysis using nine different theoretical models, 

including higher order and bifactor models, found that a bifactor model with four group 

factors (VC, PR, WM and PS) was the best fitting, whereby g accounted for most subtest 

variance (Canivez et al., 2017) and was generally supported across most age groups (6-

8, 9-11, 12-14, 15-16) (Dombrowski, Canivez, et al., 2018) and cultures (Canivez et al., 

2018; Fenollar-Cortés & Watkins, 2018; Lecerf & Canivez, 2018). Concerned about the 

impact of initial starting values for the factor communalities or method of bi-factor 

rotation on results, Dombrowski, Beaujean, et al. (2019) conducted a “sensitivity study” 

which found the ideal structure was that of five factors (one general, four group; VC, VS, 

WM, PS). They also found that a single subtest (i.e., Cancellation) can have a substantial 

impact on the factors extracted. Taking a balanced view there appears to be at least 

consistent evidence of a WM, VC, and PS factor, and ongoing debate about whether VS 

and FR are separate, as in a five-factor model, g often accounts for variance of FR. 

These analyses can only go as far as the subtests that are included in the WISC-

V: “Intelligence is what the intelligence test measures” (Maas et al., 2014). Therefore, 

additional subtests with unique task demands may introduce unique variance. The 

technical manual for the Woodcock Johnson IV Tests of Cognitive Ability (WJ IV COG) 

(McGrew et al., 2014) suggests that with additional types of tasks, seven group factors 

can be derived beyond the variance accounted for by g. This has been challenged in both 

the WJ III (Dombrowski & Watkins, 2013) and WJ IV (Dombrowski, McGill, et al., 2018), 

finding a similar four factor alignment as found in their studies of the WISC-V (Gwm, 

Perceptual Reasoning, Gs, Gc). However, it may be also that the overlap between Gv and 

Gf is due to the use of non-verbal stimuli, suggesting some degree of method error, 
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conflating the relationship and factor structure. The status of a visual processing factor 

and fluid reasoning factor is a continuing debate. 

Some argue that this points to a “replication crisis” (Dombrowski, McGill, et al., 

2019). To address this Dombrowski and colleagues utilised Monte Carlo simulations to 

conduct 1,000 replications of various CFA models of the WISC-V, WJ IV COG, Kaufman 

Assessment Battery for Children – Second Edition (KABC-II), and Differential Abilities 

Scales – Second Edition (DAS-II). In all simulations the publisher theory was not the best 

fitting, with previously discussed bifactor models remaining supported for the WISC-V 

and WJ IV COG, and higher order models being supported for the KABC-II and DAS-II. For 

the latter, the models were “essentially consistent with, yet offered superior 

modification statistics relative to, the test publishers’ theoretically proposed” (p. 8) 

models. Regardless, the authors acknowledge that nearly all models tested, including 

both the publisher models and more parsimonious independent models were able to be 

replicated almost 1,000 times. Whether a bifactor or higher order model is a better fit 

depends on the test instrument being analysed. And this is only complicated by concerns 

about the suitability of bifactor models when trying “to represent the general and group 

factor structure of an entire domain of psychological functioning” (Bonifay et al., 2017, 

p. 185). It seems unlikely that these outcomes are going to settle the disagreement 

within the field, as various statistical methodologies continue to permeate. Larger 

samples and increased representation of various levels of the latent traits under 

measurement may assist, which seems only likely through the implementation of 

technological solutions to cognitive ability testing. 

Beyond the structure of cognitive ability, the application of these theoretical 

models is contentious. There is also ongoing debate in the literature about the predictive 
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validity of CHC when relying on broad abilities (McGill, 2017), particularly when 

attempting to diagnose Specific Learning Disorders (Kranzler et al., 2016; Miciak et al., 

2016). In response, Flanagan and Schneider (2016), point out that these authors have 

confused various terms, such as Cross-Battery Assessment (XBA), Pattern of Strengths 

and Weaknesses (PSW), and the Dual-Discrepancy/Consistency Model (DD/C Model), 

which are all separate concepts. 

Such criticisms also conflate problems regarding the structure and theory of 

intelligence with the diagnosis of a heterogeneous disorder. One does not need to cross-

batteries to obtain a CHC profile (Flanagan & Schneider, 2016), and in fact XBA guidelines 

state that this should only be done on occasions where a norm derived score is not 

available or valid (Flanagan et al., 2013). CHC as a theory has applicability beyond 

Specific Learning Disorders, in terms of both developing deeper understandings of 

existing measurement tools as well as further investigation of ability deficits in other 

neurodevelopmental disorders1 (e.g. Abu-Hamour & Al Hmouz, 2018; Bench et al., 2019; 

Jacobs & Costello, 2013; Lemann et al., 2019; Warne, 2015). It was hoped that CHC 

theory “provides a common framework and nomenclature for intelligence researchers 

to communicate their findings without getting bogged down in endless debates about 

whose version of this or that construct is better” (Schneider & McGrew, 2018, p. 73). 

Despite this, many criticisms continue to advocate for significant modification or 

cessation of use of the CHC model, based on literature that tends to focus on Specific 

Learning Disorders. 

 
1 Reference is made here to “neurodevelopmental” disorders within the context of the DSM-5, 

as it is acknowledged that profile analysis of intellectual test batteries to derive understanding of 
psychopathology (e.g. mood disorders, personality disorders etc.) has been thoroughly debunked. 
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Notwithstanding wide adoption of the CHC taxonomy in academia and research, 

for CHC advocates there remains a theory-practice gap whereby many cognitive ability 

assessment tools used in practice are perceived to be based on outdated understandings 

of intelligence (Jacobs et al., 2013). Insufficiency in test tools to measure a broad range 

of abilities has been argued to hamper psychologists’ abilities to identify specific 

weaknesses for school aged people (Jacobs, 2015). As argued by Flanagan and Schneider 

(2016), cognitive deficits increase the risk of academic deficits (i.e. probabilistic 

causation), rather than cause academic deficits (i.e. deterministic causation). There 

continues to be a need for a comprehensive theory that allows practitioners to measure 

a wide range of cognitive abilities while having a common understanding of what they 

are measuring. 

 Overall, the literature reveals a polarisation of perspective on the g versus 

“group ability factors” debate. As with any necessary scientific progress, regardless of 

theoretical orientation, only further development or improvement of tools and 

measures that align with CHC theory will enable researchers to either replicate or 

improve the CHC taxonomy of abilities. Taking into consideration an amalgamation of 

giants in the field (such as Wechsler, Spearman, Thurstone, Carroll, Cattell, Horn, 

McGrew, Flanagan, Schneider) over the last century, who provide substantial evidence 

for the presence and interpretation of both a general factor and broad abilities, it is 

difficult to conclude that a complete “annulment” (Canivez & Youngstrom, 2019, p. 243) 

of the CHC theory of cognitive abilities is the appropriate course of action. It is important 

for the development of new tools (such as in this thesis) and the refinement of existing 

tools that there is a common understanding of constructs amongst researchers, even if 
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there is some disagreement about the finer points of a theory. Let’s not throw the baby 

out with the bath water. 

Kamphaus et al. (2012), in their considerations of what might constitute a “fifth 

wave of intelligence test interpretation” believed that test interpretation would 

ultimately be impacted by improvements in test technology. It has been almost a decade 

since their prediction, yet other than moving existing models of paper-and pencil-testing 

onto PCs, the Internet and tablets, there has been little change in the linear pattern of 

test administration. 

2.5 Current Implementations of Cognitive Ability Measurement 

As of 2015, in Australia, the Wechsler scales (WAIS-IV, WPPSI-III, WISC-IV) and 

the Woodcock-Johnson batteries (WJ III COG) were the most utilised cognitive 

assessment batteries used by psychologists that participated in a study on CHC adoption 

(James et al., 2015). Since then there has been the release of new versions of the WISC 

(Wechsler, 2016), WPPSI (Wechsler, 2014), and WJ COG (Howe & Dailey, 2015). At 

current, the Wechsler scales are available to be administered in both paper based and 

iPad versions (known as Q-interactive), while the Woodcock Johnson (WJ) batteries are 

only available in paper format. While not intended to be CHC tools, both the WISC-V 

(Flanagan & Alfonso, 2017) and WPPSI-IV (Raiford & Coalson, 2014) align well with, and 

can be interpreted via, the CHC taxonomy of abilities. 

Though there has been some advancement in online administration of cognitive 

ability assessments, they are largely just replications of paper-and-pencil tests on 

electronic screens. For example, many tests published by Pearson are now available via 

their “Q-interactive” system (Pearson, 2013). These tools still predominantly utilise the 

same norms, basal rules, ceiling rules, test stimuli and score structures as their paper-
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and-pencil counterparts and are generally only partly adaptive; specific item sets are 

often required to be administered, with raw scores still being calculated based on basal 

and ceiling rules. As far as can be found on others publisher’s websites, or in the extant 

literature, administration of other popular cognitive ability assessments such as the SB 

and WJ have not, despite their wide use, become available in computer administered 

format nor adapted to technological advancements beyond online scoring and 

reporting. 

Psychological assessment and research have not yet fully taken advantage of the 

significant improvements in technology, and continues to be dominated by pen-and-

paper tests (Gibbons, 2017). Despite advancements in almost all other industries, the 

psychological test industry remains stagnant (Barrett, 2018). Cognitive ability tests are 

highly time consuming and despite being extremely structured (i.e. administered in the 

exact same way every time), they can only be administered by a psychologist, and most 

often only in a one-to-one setting. While some other international jurisdictions make 

use of test examiners, this is generally not the case in Australia outside of the military. 

Beyond this, there is a utility for a cognitive ability CAT that has high reliability and 

validity. For example, many teachers are increasingly expected to engage in ‘on the fly’ 

differentiation, and a brief cognitive ability CAT can assist with differentiated instruction 

(Scalise, 2009). There are clearly advantages to a robust CHC measure that can be 

administered either individually or in a group setting, and that is adaptive in nature to 

reduce the time commitment of psychologists. It is the analysis and collection of data 

and the practice of psychological counselling and interventions that has predominantly 

benefited from technological innovations. However, the measurement of latent 

psychological traits can also be improved via technological solutions.  
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2.6 Psychological Constructs 

When aiming to improve the way in which we measure a latent psychological 

construct, it is important that researchers ensure that they are measuring what they 

intend to measure. One of the long-standing issues in psychological research is the 

measurement of psychological constructs. This challenge is demonstrated by the above 

discussion of CHC theory. Having a strong definition of the construct under investigation 

assists with the development and rationale of items. 

Lilienfeld et al. (2015) state that psychological phenomena are open concepts 

and are “characterised by fuzzy boundaries, an indefinitely extendable indicator list, and 

an unclear inner essence” (p. 1). In their analysis of inaccurate, misleading, misused, 

ambiguous and logically confused words and phrases in psychology and psychiatry, the 

authors challenge many of the common terms that psychology researchers often 

mistake as represented by or related to “good measurement”. For example, they argue 

that “operational definitions are unrealistic in virtually all domains of psychology, 

because constructs are not equivalent to their measurement operations” (p. 6), 

recommending the use of the term “operationalisation” instead. They also contend that 

the way in which many researchers discuss reliability and validity implies that a test is 

either valid, reliable or not, but “at best, these measures are ‘empirically supported’” (p. 

6). No measurement tool in psychology is without some level of error or inaccuracy, 

including CATs. 

Psychological assessment can be conducted through various means, including 

tests, interviews, portfolios, case history, behavioural observation, and role play (Cohen 

& Swerdlik, 2005). With the uptake of computers and the Internet, the ability to 

integrate technology into assessments has long been known. Zenisky and Sireci (2002) 
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showed that technology allowed innovations to be made in terms of how participants 

responded to questions, the types of items presented, and the inclusion of media (i.e. 

graphics, video, and audio) in assessment tools. The ability to measure psychological 

constructs via technology has long been investigated by pre-employment settings, 

military organisations and educational institutions (Drasgow & Olson-Buchanan, 1999). 

Despite this, there has been very little adoption by those that regularly conduct 

psychological assessment in practice. 

Notwithstanding early suggestions of innovation, integration of technology into 

psychological assessment tools has largely been confined to academia, whereby 

researchers have utilised online surveys and other electronic tools. In practice, online 

formats have been limited to the same structure and stimuli as their paper-based origins 

(Bartram, 2000). This lack of innovation appears to be somewhat related to a continuing 

predominance of CTT compared to IRT; these underlying measurement theories have 

implications for how a test is designed, developed, calibrated, administered, and scored. 

More significantly, these theories, when integrated with technology, have 

consequences for the “operationalisation” – and therefore validity – of psychological 

constructs (Wools et al., 2019).  

2.7 Classical Test Theory 

To advance the measurement of cognitive ability, an understanding of the 

predominant measurement theories is required. Much of statistical analyses in the 20th 

century focused on ‘classical test theory’ (CTT), also known as ‘true-score theory’ 

(Embretson, 1995). At its essence is the concept that observed scores on a scale or 

psychological tool are composed of a person’s ‘true score’ on the trait or variable of 

interest in combination with error (Iramaneerat et al., 2008): 
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Equation 2-1. True Score 
𝑋 = 𝑇 + 𝐸 

where 𝑋 is the participants observed score, 𝑇 is the particpants true score, and 𝐸 is the 

error in measurement which comes from a large variety of sources. 

At the core of CTT is an assumption that all people have a quantifiable amount 

of each psychological construct. That is, a score on a psychological test or tool is a 

function of this quantity plus measurement error (DeVellis, 2006). Because 

psychological phenomenon is subjective, we rely on psychological tools as a proxy for 

measuring a person’s level of a construct or trait. Unlike being able to measure the 

number of white blood cells in a sample of blood, it is not possible to observe a person’s 

level of depression directly and objectively. Thus, CTT allows us to measure a person’s 

internal state by using self-report or performance measures. If a person responds 

positively to a question, this suggests that they possess the characteristic of interest in 

higher quantities than someone who responds negatively (Cappelleri et al., 2014); there 

is a linear relationship between an observed score and the true score (Rusch et al., 

2017). The person has a ‘true’ level of depression (𝑇), but the tool and other extraneous 

variables introduce error (𝐸), producing an observed score (𝑋). Because items are 

imprecise measures of the true score, there is error inherent in its measurement. 

The error that is measured in CTT is assumed to be random. The error is “as likely 

to increase as to lower the observed score for any item” and “errors for items are 

assumed to be independent of one another” (DeVellis, 2006, p. 51). Because of this 

assumption, when combined across all items, the random error cancels each other out. 

Because the amount of measurement error is only known for the full item set, this 

means that any person who completes the test has the same standard error of 
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measurement (SEM) (Embretson, 1996). This conceptualisation of error has implications 

for how we statistically derive the reliability of a psychological test’s items. 

If item error can vary, but the overall test error has a mean of zero (DeVellis, 

2006), it is assumed that the SEM is equal for all levels of measurement but can vary for 

different populations (Embretson, 1996). Test and scale developers can improve the 

reliability of their tools by increasing the number of items. A good item in CTT is one that 

correlates well with the person’s true score (DeVellis, 2006). Therefore, not only do 

more items produce better reliability coefficients, but more items at the mean trait level 

(as they correlate well with the hypothetical true score) are desirable, rather than items 

at the extreme ends of the distribution. This means that the more similar the items are 

with respect to the mean trait level, the ‘better’ the test is according to CTT. 

All the items in a set must be measuring the same underlying trait. This is known 

as ‘unidimensionality’ (DeVellis, 2006). If an observed score is meant to represent a 

construct, such as depression, then the items should only reflect that content. While 

scales or tests can be multidimensional in totality, the items themselves should 

represent independent constructs that align with a theoretical or statistical model. Such 

models can usually be demonstrated via Structural Equation Modelling (SEM) – or 

Confirmatory Factory Analysis (a type of SEM) – and Exploratory Factor Analysis.  

While these methods allow scale scores to be calculated that reflect 

multidimensional constructs, there is difficulty in utilising these raw scores in a 

meaningful way. In CTT this is often achieved via norm referencing scores (Embretson, 

1996). Therefore, when a person obtains a raw score of 23 out of 50 on a depression 

scale, rather than saying that this person has a depression score of 23, we can interpret 

this in the context of the normative sample that was gathered during test development. 
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It may be that only 1% of the normative sample obtained a score of 23 or above, and 

thus a raw score of 23 implies a high level of depression. This interpretation is based on 

the sample gathered during normalisation of the scale rather than the raw total score. 

To compare an individual’s performance on one test to other people’s 

performance on the same test in a reliable way we need to ensure that the normative 

sample is representative of the population (Embretson, 1996). Using the example above, 

if the normative sample only consisted of people that never endorsed items measuring 

‘depression’ (i.e., low depression), then it is likely that even very low scores out of 50 

would be indicative of high levels of depression even if the test taker had actually only 

responded affirmatively to a couple of items. In contrast, if the normative sample only 

consisted of people that always endorsed items measuring depression (i.e. high 

depression) then it is likely that very high scores out of 50 could result in low standard 

scores or percentile ranks, erroneously suggesting a lack of symptoms. Thus, each scale 

developed using CTT must rely on a representative sample of the population. Scores can 

only be utilised to compare an individual to the population under which the sample was 

derived. This also means that two tests of the same trait may result in different scores, 

making comparisons difficult. 

In CTT, comparing test forms requires a significant amount of work. Most 

importantly, there must be equality of means, variances and covariances across test 

forms (Embretson, 1996). Newer methods of equating test forms have been 

demonstrated by regressing scores from one another, however this means that equating 

of test forms is reliant on tests with high reliabilities and similar score distributions 

(Embretson, 1996). Again, interpretation and scoring are reliant on the sample utilised. 
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CTT has several shortcomings (Iramaneerat et al., 2008). Firstly, because scales 

are developed using a specific sample of the population, interpretation of scores are 

relative to that sample. That is, the difficulty of the items cannot be generalised to other 

samples that may have different distributions. The second problem with CTT is that 

missing data can be quite problematic; because the true score is represented by an 

observed score that is summative of items, then a missing item causes problem for 

calculation of an observed score. Thirdly, that the SEM is assumed to be the same across 

all scores in a population is a strong assumption given the reliance in CTT on having more 

items at the mean level of difficulty/trait than at the extremes; having more items in the 

middle of the distribution should mean that there is less error measurement at the peak 

than at the extremes where there is more variability in performance, less people in the 

normative sample, and fewer items to measure these extreme trait levels. The fourth 

problem is that all items are assumed to be of equal importance. In a measure of 

depression, dichotomous yes or no items such as “I think about killing myself” and “I am 

sad” increase the raw score of the scale by one. In this hypothetical two item scale, a 

total raw score of one is quite clearly different based on which item the person 

endorsed, but from a CTT perspective the person is assumed to have the same ‘level’ of 

depression because they both received a raw score of one. A fifth shortcoming is that 

because there is an assumed deterministic linear relationship between observed scores 

and a true score, there are few ways to validate a final score. That is, consistent with the 

problem of equating all items as equal, if a person with high depression does not 

endorse an item that represents low levels of depression, even though they may have 

endorsed many items indicative of high depression, it can be difficult to identify this 

anomaly. In an overall sense, CTT tends to produce scales and tests that have many items 
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that may be redundant, and the scores from these tools can be difficult to compare to 

other tests or scales, or to other samples. Many of these problems can be addressed by 

IRT which is fundamental to progressing the measurement of cognitive ability. 

2.8 Item Response Theory 

Item Response Theory (IRT), a set of models that focuses on the relationship 

between latent traits and observed outcomes, has a long history. While both CTT and 

IRT aim to measure a construct based on some sort of indicator (i.e., item performance), 

CTT assumes a linear relationship between item performance and a true score, and IRT 

tends to rely on probabilistic perspectives of whether a person will endorse an item or 

not (Rusch et al., 2017). IRT allows the calculation of probability of an endorsement or 

correct item (i.e., probability X = 1 given theta; Figure 2-3 black line), or vice versa, the 

probability of not endorsing or not obtaining a correct item (probability X = 0 given theta; 

Figure 2-3 red line). To do this, just as with CTT, IRT has basic assumptions. 

When using IRT there are specific measurement properties of items and of 

respondents that are estimated for scales. Firstly, within IRT the latent trait is 

represented by the Greek symbol theta (𝜃) (Yang & Kao, 2014). As in CTT, in IRT the 

latent trait is assumed to be unidimensional, although there are multidimensional IRT 

models (Bonifay, 2020). A second assumption of unidimensional IRT is local 

independence, which means that once the latent trait is statistically accounted for, there 

are no remaining relationships between the items (i.e., residual dependencies) (Yang & 

Kao, 2014). Thirdly, IRT assumes that the items demonstrate monotonicity, which means 

that as a person’s level of the latent trait increases, the probability of endorsing or 

correctly answering an item increases (Bonifay, 2020). Monotonicity is represented in 

IRT via ‘item characteristic curve’ (ICC; Figure 2-4) for a dichotomous item and 
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‘categorical response curves’ (CRC; Figure 2-5) for polytomous items (Nguyen et al., 

2014). This is generally represented by an ‘S’ shape curve that shows the increasing 

probability of a respondent answering a question as their trait level increases.  

Another concept introduced with IRT is that of information. This is a concept that 

somewhat replaces ‘reliability’ in a CTT sense. In IRT, more information implies more 

reliability. However, because IRT demonstrates that reliability varies depending on the 

level of the latent trait, this means that information varies too (Bonifay, 2020). This 

results in an item information function (Equation 2-2) that is bell shaped by summing 

the information from each item into a test information function. This allows direct 

comparison of tests and how much information they provide, as well as to calibrate 

items and tests to ensure that tests are measuring effectively at different levels of θ.  

Equation 2-2. Item Information Function for the Four Parameter Model  

 

𝐼(𝜃) =  
𝑎𝑖

2(𝑃(𝜃) − 𝑔𝑖)
2(𝑢𝑖 − 𝑃(𝜃))2

(𝑢𝑖 − 𝑔𝑖)2𝑃(𝜃)(1 − 𝑃(𝜃))
 

While IRT has existed for almost a century it did not come into prominence until 

the 1970s (de Ayala, 2009). Initially known as ‘latent trait theory’, there was a divergence 

in work between Rasch (1960) and Birnbaum (1968). The former focused on invariance 

and making sense of a theoretical framework, and the latter focused on mathematical 

models that explain the most variance in the data (Iramaneerat et al., 2008). That is, 

does the data fit the model versus does the model fit the data? Over time, IRT models 

have expanded from a focus on dichotomous item formats into ordinal rating scales and 

multidimensional models (Embretson, 1996). Now, there are a wide variety of models 

with applications for different contexts and that utilise a variety of different parameters. 
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Figure 2-3. IRT Probability of Obtaining a Correct Item 

 

Note. The red curve represents the probability that a person will obtain an incorrect score while the black 
curve represents the probability that a person will obtain a correct score. 

 

Figure 2-4. Item Characteristic Curve 

 

Note. At -2 theta there is a 20% probability of correct answer, at -1 theta there is an approximate 55% 
chance of a correct answer, at 0 theta there is an approximate 95% chance of a correct answer and then 
at theta of 1 and above there is an almost 100% chance of a correct answer. 
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Figure 2-5. Category Response Curve for Polytomous Items 

 

Note. This Category Response Curve represents an item with five response categories. As a person 
increases in their level of theta (their internal amount of the theoretical construct), the probability that 
they will endorse a higher category on the item. 

The Rasch model, essentially a One Parameter Logistic (1PL) model (Baker & Kim, 

2017), is perhaps the most well-known IRT model. This model focuses on the ‘difficulty’ 

parameter. Using the Rasch model it is easy to compare items regardless of the 

population under analysis, as well as allowing people to be compared regardless of the 

items utilised. The Rasch model is sample independent, which the other IRT models are 

not. There is some disagreement about whether the Rasch model and the 1PL model are 

different in their approach or not (Andrich, 2004). The perspective of the former would 

be that if the model does not fit, then alterations to the data are needed, whereas the 

latter would suggest adding additional parameters (Bond & Fox, 2015). Rasch supporters 

would argue that if items do not fit the Rasch model, they “should be dismissed out of 

hand for failing to meet the minimal standards required for measurement” (p. 308). In 

Rasch, the discrimination parameter is fixed. Ultimately, while there are theoretical and 

conceptual differences between the two approaches, for most practical purposes the 

models are the same (Institute of Objective Measurement, n.d.). 
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The probability of a correct answer under the Rasch Model can be calculated 

using Equation 2-3 where 𝑒 is the base of the natural logarithm that is a constant 2.718, 

𝑏 is the item difficulty parameter, and 𝜃 is an ability level. In this model all other 

parameters are fixed. While the theoretical range of the difficulty parameter is −∞ ≤

𝑏 ≤ +∞, it is usually set to −3 ≤ 𝑏 ≤ 3 (Figure 2-6). 

Equation 2-3. Rasch Model 

𝑃(𝜃) =
1

1 + 𝑒−1(𝜃−𝑏)
 

Figure 2-6. ICC calculations under the Rasch Model 

 

The 2PL model introduces the discrimination parameter which can also be 

described as the slope of the ICC (Baker & Kim, 2017). This can be thought of as how 

rapidly the probability of a correct answer increases with ability. The probability of a 

correct answer under the 2PL model can be calculated using Equation 2-4 where 𝑒 is the 

base of the natural logarithm that is a constant 2.718, 𝑏 is the item difficulty parameter, 

𝑎 is the item discrimination parameter, and 𝜃 is an ability level. The range of the 
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difficulty parameter for the 2PL model is the same as in the Rasch model and 1PL model. 

The range of the discrimination parameter is theoretically −∞ ≤ 𝑐 ≤ +∞, it is usually 

set to −2.8 ≤ 𝑐 ≤ 2.8 (Baker & Kim, 2017). As the discrimination value increases, the 

slope of the curve increases (Figure 2-7). Item 1 has a discrimination parameter of 0, 

meaning there is a 50% chance that any person, regardless of their ability level, may or 

may not endorse this item. Such an item would not be good for discriminating people of 

different abilities. In contrast, Item 5 has an item discrimination parameter of 2.8, 

causing a steep slope in the ICC and thus a strong ability to discriminate between those 

that are above and below a θ level of 2. While high discrimination has its positives, this 

item has an extremely low likelihood of endorsement by almost anyone below a θ of 1 

and thus depending on the purpose of the test, may not be a desirable item either. 

Equation 2-4. 2PL Model 

𝑃(𝜃) =
1

1 + 𝑒−𝑎(𝜃−𝑏)
 

Figure 2-7. ICC calculations under the 2PL Model 
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It is possible to have an item with negative discrimination. This may be an 

indicator of a poorly designed item, because as a person’s trait level increases, they have 

a lower probability of endorsing the item or getting a correct answer. In Figure 2-8, Item 

a discrimination of 1; in contrast, Item 2 and Item 3 both have negative discrimination 

values and thus as the person’s θ level increases, the person’s probability of endorsing 

these items decreases. This is contrary to the goal of any scale attempting to measure a 

particular trait or ability. Generally, this can be addressed by reverse scoring an item. 

Figure 2-8. ICC calculations comparing negative and positive discrimination in 2PL 

 

The 3PL model introduces the ‘guessing’ parameter, representing the 

contribution of guessing to the probability of a correct response (Baker & Kim, 2017). 

The probability of a correct answer under the 3PL model can be calculated using 

Equation 2-5, where 𝑒 is the base of the natural logarithm that is a constant 2.718, 𝑏 is 

the item difficulty parameter, 𝑎 is the item discrimination parameter, 𝑐 is the guessing 

parameter, and 𝜃 is an ability level. The 𝑐 parameter has a theoretical range of 0 ≤ 𝑐 ≤
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1.0, but anything above 0.35 is not considered acceptable (Baker & Kim, 2017). Another 

way to conceive of the guessing parameter is as a lower asymptote (Primi et al., 2018). 

As the guessing parameter increases, the lowest point of the ICC rises up the y axis, 

suggesting a higher likelihood a person will obtain a correct answer (Figure 2-9). 

Equation 2-5. 3PL Model 

𝑃(𝜃) = 𝑐 + (1 − 𝑐)
1

1 + 𝑒−𝑎(𝜃−𝑏)
 

Figure 2-9. ICC calculations under the 3PL Model 

 

The 4PL model extends the 3PL model by introducing an item specific upper 

asymptote (Baker & Kim, 2017). This is considered an upper limit on the probability of a 

correct response. The probability of a correct answer under the 4PL model can be 

calculated using Equation 2-6 Where 𝑒 is the base of the natural logarithm that is a 

constant 2.718, 𝑏 is the item difficulty parameter, 𝑎 is the item discrimination 

parameter, 𝑐 is the guessing parameter, 𝑑 is the upper asymptote parameter, and 𝜃 is 
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an ability level. In contrast to the guessing parameter, the upper asymptote parameter 

lowers the top of the ICC (Figure 2-10). 

Equation 2-6. 4PL Model 

𝑃(𝜃) = 𝑐 + (𝑑 − 𝑐)
1

1 + 𝑒−𝑎(𝜃−𝑏)
 

Figure 2-10. ICC calculations under the 4PL Mode 

 

2.8.1 Other IRT Models 

The models discussed thus far are the main ones present in the literature for use 

with dichotomous items. IRT models for polytomous items do exist. These include, but 

are not limited to, the Rating Scale Model (Andrich, 1978), Graded Response Model 

(Samejima, 1997), Rasch Partial Credit Model (Masters, 1982), Generalised Partial Credit 

Model (Muraki, 1992). IRT models for polytomous items are particularly useful for scales 

designed to measure mental health constructs (e.g., depression, anxiety, stress) or 

personality constructs (e.g. ways of thinking, extraversion), but are less useful for tests 
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of academic achievement or cognitive ability where there is generally one correct 

answer and a range of incorrect answers. It is also possible to convert polytomous 

response options into dichotomous response options. This is useful if there are small 

samples and a parsimonious model such as the Rasch model is preferred (Nguyen et al., 

2014).  

2.9 Comparing CTT and IRT 

Ultimately both CTT and IRT are attempting to model latent traits. The advantage 

of CTT is that it tends to be mathematically simpler and well understood. Most practicing 

psychologists are likely to have been taught the basic assumptions of CTT and thus can 

easily understand tools that have been developed in such a manner. Despite this, IRT 

offers advantages in being able to scale people and items on the same metric, and 

generally allows for stronger claims to be made about the items and people’s 

performance on those items. 

One common criticism of IRT is the requirements for large sample sizes. Such 

samples are often difficult to obtain in “low-incidence or difficult to sample populations” 

(Finch & French, 2019, p. 78) and thus methods to address such limitations are required. 

Finch and French compared the Maximum Likelihood (ML) Estimation, Markov Chain 

Monte Carlo and Pairwise methods of estimating item difficulty, discrimination, and 

pseudo-chance parameters and found that the latter two were often more robust in 

situations of small sample sizes, even as low as 100 participants. While this is relatively 

recent research, there is an increasing body of research in the psychological sciences 

about the practical utility of IRT methods in differing circumstances. Such findings allow 

researchers to apply IRT techniques to cases where participants are difficult to recruit. 
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Rather than suggesting IRT is more utilitarian than CTT, it seems more logical to 

select statistical methodology based on the goals of the research and intended audience 

rather than biased personal preferences. Petrillo et al. (2015) demonstrated a working 

example of using CTT and IRT measurement theory and found that each approach was 

relatively consistent in the analysis of a patient reported outcome measure. Each 

methodology produced additional information about items, including poorly fitting 

items, poor targeting and disordering of response categories. Ultimately the authors 

recommended that CTT analyses in isolation are only applicable in situations of an 

“instrument being developed for descriptive purposes and on a restricted budget” (p. 

33). Whereas IRT and Rasch modelling is more appropriate in ‘high-stakes’ situations but 

should be still supplemented with CTT approaches. While the current project may be on 

a restricted budget, cognitive ability tests are within the boundaries of high stakes and 

thus this thesis will make use of differing balances of CTT and IRT throughout. 

IRT is particularly useful when developing tests that need to measure a wide 

band of a latent trait for decision making. Cognitive ability is one such construct; 

researched for over 100 years, cognitive ability has proven to be a multidimensional 

construct with extreme differences in ability between young children through to adults. 

CTT has consistently been utilised to refine theory about cognitive ability, demonstrating 

the reliability and validity of different cognitive ability batteries. The integration of IRT 

with tests of cognitive ability poses interesting opportunities to further improve scoring 

accuracy and thus make better decisions about individuals. The use of IRT in measures 

of cognitive ability is not novel (particularly in development) but is hardly mainstream 

(particularly in scoring).  
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2.10 Advancing Measurement Using Computer Adaptive Testing 

Over the past few decades, no industry has gone unaffected by technology, and 

this includes psychology and the mental health industry. Technology has been 

implemented to great effect in automating processes, creating efficiencies, improving 

the fidelity of treatment, and easing accessibility. This includes making improvements in 

data collection (Hamilton & Bowers, 2006), the analysis of data (Press, 2013), changing 

the nature of psychological intervention and conjunctive therapies through online 

therapy or use of Apps (Hawn, 2009; Hides, 2014; Kavanagh, 2014; Kyrios & Thomas, 

2014), disseminating mental health information and challenging stigma (Christensen, 

2014), and automating business processes (Cliniko, 2020; HealthKit, 2018). While 

technology has been implemented into cognitive ability testing, mainstream tools in 

Australia have been largely stagnate. It is evident that there is still much to discover 

about the utilisation of technology in psychological practice and research. It is this 

context that provides an important basis for which to justify further advancements in 

measurement methodologies, particularly in the measurement of cognitive abilities.  

In the literature, a variety of recent technologies are proposed as solutions to 

the issue of psychological measurement innovation. The most prominent amongst them 

are ecological momentary assessment (EMA), computer adaptive testing (CAT), 

gamification, and machine learning. At times there is a significant overlap between these 

assessment methodologies. 

Gamification and machine learning are particularly contemporary concepts in 

assessment, with little literature evidence prior to the turn of the century. There is some 

initial research surrounding the use of gamification (Nikolaou et al., 2019; Tong & 

Chignell, 2014), stealth assessment (the use of games and other activities to measure 
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constructs without the examinees’ knowledge) (Reichenberg, 2018) and machine 

learning to measure cognitive ability (Dawadi et al., 2013; De Marco et al., 2017). 

However, they tend to focus on how performance on one measure relates to other 

measures (i.e. predictive validity), rather than demonstrate construct validity in other 

ways. In addition, these studies tend to suffer from heterogenous and small samples 

(Lumsden et al., 2016). If the research does use a more traditional psychological 

construct in its study or large samples, it often considers intelligence at a reductionist 

level. For example, Kosinski et al. (2013) utilised the Ravens Matrices as a measure of g, 

which has little applicability outside of identifying general cognitive difficulties. 

Ultimately gamification and machine learning measures of cognitive ability are currently 

less useful for utilisation by teachers or psychologists who are required to identify skill 

deficits or strengths in children and adults and adapt curriculums or provide 

recommendations accordingly. 

EMA relates to the use of measuring a construct in real time (Stone & Shhiffman, 

1994). While a useful concept for teachers and psychologists, such tools are inadequate 

without psychometric validation (Gibbons, 2017). Additionally, EMA is of most use for 

constructs that are expected to respond to intervention (e.g., pain, depression), but are 

less useful for relatively stable traits such as personality and cognitive ability. It is these 

latter traits that tend to be of interest in schools and educational settings. 

These attempts at technology integration into psychological measurement are 

interesting and innovative but tend to be atheoretical, led by the technology rather than 

strong psychological theory. The use of IRT and CAT allows the integration of 

psychological theory (such as CHC theory), permits consideration of important concepts 
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such as reliability and validity, and while not implemented widely in Australia, has an 

array of literature that supports its usage.  

Computer testing via the Internet has been considered an option since at least 

the 1990s. The desire for early CAT researchers was heightened accessibility, ease of 

scoring, decreases in errors, ease of updating test materials, reduced geographical 

impact, higher cost efficiency, and the implementation of dynamic graphical interfaces 

(Barak, 1999). Compared to machine learning, gamification and EMA as solutions to the 

stagnation of psychological assessment innovations, CAT allows conceptualisation of a 

construct that can be measured using performance-based items such as those required 

in a cognitive ability test. Despite early considerations and predictions about the 

Internet and CATs, outside of private organisations (Gibby et al. as cited in Kantrowitz et 

al., 2011), government/military agencies (e.g. Segall & Moreno, 1999) and 

project/research specific considerations, CATs have been underutilised in psychological 

practice. With significant improvements in Internet and computer technologies in the 

past decade, there is now further opportunity to create customised CATs that measure 

cognitive ability. 

2.11 Characteristics of CATs 

Adaptive tests are not necessarily new. Alfred Binet’s original intelligence test 

was considered ‘adaptive’ (Weiss, 2011). According to Weiss, five characteristics 

differentiate adaptive tests from conventional tests. Firstly, an item bank with known 

psychometrics is required. While both conventional and adaptive tests require an item 

bank, conventional tests tend to rely on items that focus on a specific level of trait; in 

contrast, an adaptive test can measure a wide range of a latent trait because not all 

items are required in order to be administered. Second, prior information can be used 
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to inform an examinee’s starting point. Conventional tests tend to rely on the examinee 

completing every item from first through to last. Third, adaptive tests require the scoring 

of items as they are administered, and the ultimate test score can differ based on the 

subset of items given to each examinee. Contrastingly, conventional tests rely on total 

test scores derived from the same item set for every examinee. Fourth, each adaptive 

test has a rule that determines the next item to be administered based on the 

examinee’s previous item responses, whereas a conventional test administers items in 

a linear fashion. Lastly, an adaptive test ends when a certain ‘termination criteria’ is 

reached. This means that the last item administered can differ for every single examinee, 

and this increases in variability based on decisions the test developer has made 

regarding the first four adaptive test characteristics. 

At first look some of these characteristics may suggest that modern cognitive 

ability and academic achievement tests such as the Wechsler and WJ scales are adaptive 

in nature. While these tests may utilise ‘basals’ and ‘ceilings’ in order to skip items based 

on an individual’s age, grade, pattern of incorrect responses, or some other known 

characteristic, the calculation of a total score still relies on the same summative raw 

total of items regardless of the items that the examinee was exposed to. That is, for 

example, even if the examinee was only exposed to 23 of 42 items in an item set due to 

having met a basal and a ceiling, there is an assumption that the examinee obtained a 

correct answer for every item prior to the basal and incorrect answer to every item after 

the ceiling. From a statistical perspective this implies every item within the scale is on a 

Guttman scale rather than a Mokken scale. The former implies that there is a 

deterministic relationship (very strong assumption) between performance on every 

item, while the latter implies a probabilistic relationship (more realistic assumption). 
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Additionally, the SEM is assumed to be the same for all individuals of a particular 

normative group regardless of the number of items they have completed; whether you 

have completed 23 items or 37 items of a 42-item set, you are assumed to have the 

same SEM because your score is calculated out of 42. In contrast, a truly adaptive test 

can calculate the SEM based on the actual items you have completed (Gershon & Cook, 

2011) and not an assumption of performance on other items. Ultimately, while modern 

cognitive ability and academic achievement tests may appear partially adaptive, their 

basic disadvantage is the continued reliance on concepts of CTT. 

While there are significant advantages to even a basic adaptive test, there are 

limitations to a paper-based adaptive test. They require individual administration by a 

psychologist, require all items at a certain level to be administered before adaptation 

occurs and are as such only partially adaptive, and bear no method for controlling score 

precision (Weiss, 2011). The introduction of computers, however, addresses these 

issues, turning adaptive tests into CATs.  

CATs possess several characteristics that enhance the efficiency of psychological 

measurement while attempting to avoid compromising test validity or reliability. CATs 

use adaptive algorithms to select items to ensure precise measurement (Scalise & Allen, 

2015). CATs allow us to “simultaneously model the level of underlying construct that a 

person has, and the level of the underlying trait that the item or questionnaire assesses” 

(Gibbons, 2017, p. 2). That is, a CAT places the items and the person on the same 

difficulty/trait scale, represented by theta (θ), in the same way that IRT does; however, 

this occurs after each item administered. The integration of computers with adaptive 

tests provide several customisation options that allow CAT developers an opportunity 
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to create innovative test tools for the measurement of a variety of psychological 

constructs, including cognitive ability. 

These tools are intimately linked with IRT. According to Gibbons (2017), a CAT’s 

accuracy can be mathematically expressed in terms of standard error, item information 

or reliability. Weiss (2011) explains that “information in IRT replaces the concept of 

reliability in classical test theory” (p. 2). Because tests that are based on CTT depend on 

a high number of items with similar difficulties, this reduces the variance of each item 

but increases the variance of the total score. This results in an increased variance to 

number of items ratio, and subsequent increases in reliability. Additionally, removal of 

items that have low correlations with the total score also increases this ratio, and thus 

the reliability of the test. This produces a single reliability value that represents a set of 

items. Due to this procedure of item selection tests based on CTT tend to measure well 

at the mean of the latent trait but measure poorly for individuals that deviate from that 

point. CATs utilising IRT pose a significant opportunity to practitioners wishing to 

measure a construct via fewer items and a high level of reliability across the spectrum 

of that construct. 

The characteristics of a CAT are somewhat like that of a paper-and-pencil 

adaptive test, with some improvements. The main characteristics of a CAT are that it has 

an item bank, there is methodology for selecting the first item presented to the 

participant, there is a statistical methodology of calculating θ for the examinee after 

each item administration, a methodology of selecting the next item to be administered, 

and some sort of stop rule (Figure 2-13). The latter four characteristics are generally 

algorithms that collaborate to allow delivery of the CAT (Thompson & Weiss, 2011). 
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Some CATs have additional constraints placed on them, but these are generally optional. 

Each characteristic is discussed individually below. 

2.11.1 Item Bank 

Items within a CAT based IRT can include a variety of item difficulties for which 

each item can have a different amount of information (as discussed above and displayed 

in Figure 2-11 and Figure 2-12). In the first example, the curves represent a low difficulty 

item (blue) and a high difficulty item (red) that both have high information. The second 

example shows a more realistic example of how a CAT might be visually represented 

whereby Item 1 (red) produces the most amount of information and Item 7 (aqua) 

produces the least. The information of an item may differ depending on which IRT model 

is used in calculating item psychometrics. The advantage of a CAT over paper-and-pencil 

is that the items are in an electronic format which can be efficiently accessed by 

computer algorithms. 

 

Figure 2-11. Item Information Curve 

 

Figure 2-12. ICCs for Theoretical Assessment  
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Figure 2-13. Characteristics of a Computer Adaptive Test 

Start Initial θ Estimate

Item Bank

Select Item Administer item Estimate θ 

Start Rule

End Condition?

End Rule

No

EndYes

 

Note. Computer Adaptive Tests possess these common characteristics. Many steps involve the use of various algorithms that are constantly being refined within the research 
literature to make CATs more effective and reliable. 
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2.11.2 First Item Selection 

For CATs, the first item administered can be based on the item psychometrics, 

an algorithm, or selected either randomly or using prior information. Choosing the first 

item via item psychometrics may include selection based on specific difficulty 

parameters, or some other psychometric characteristic. For example, perhaps all 

participants are administered the item that is closest to mean of θ. Algorithms that can 

be used for first item selection correspond to those algorithms that are utilised for 

selecting subsequent items (as discussed below in 2.11.4) (Chalmers, 2016). Randomly 

selecting the first item means each examinee has a higher probability of being exposed 

to different initial items, which is useful for test security; according to Weiss (2011) 

“CATs can recover quickly from incorrect starting points” (p. 12). Lastly, using prior 

information is likely to improve the efficiency of a CAT greatly; this can be done by using 

an estimation of an examinee’s trait level on the construct of interest, age, gender, or 

some other known characteristic for which there is a useful starting point in the CAT 

item bank. 

2.11.3 Estimating θ 

IRT allows the estimation of an examinees θ after the administration of any set 

of items. For example, an examinee would have different θ calculations for any pattern 

of answers for four different items (i.e., 1-1-0-0 versus 1-0-1-0 versus 1-0-0-1) (Weiss, 

2011). Implementation of IRT models into CATs therefore allows the calculation of θ 

after administration of each individual item. After each correct answer, the θ estimate 

increases, and after each incorrect answer the θ estimate decreases; the additional 

advantage being that as more items are administered, the SEM of θ decreases. The SEM 

is calculated based on the items administered, and not the full item set. 
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The most utilised algorithm for CATs is ML estimation. Introduced in early IRT 

research (e.g. Lord, 1986), ML is a method of estimating a probability distributions 

parameter. For CATs, this estimation method allows the use of “all information in an 

examinee’s responses in conjunction with the information available for each test item” 

(Weiss, 2011, p. 12). The other popular estimation method is Expected a Posteriori (EAP) 

Estimation, which is closely related to the ML estimation method (Chen et al., 1997). 

Being able to include all the respondent’s previous responses into a θ calculation after 

the administration of each item allows for increased precision of the estimate and 

ensures the item selection algorithm can correctly select the next appropriate item. 

2.11.4 Item Selection Methodology 

Item selection methodologies of CATs are predicated on the idea that if an 

examinee provides a correct answer then the next question should be more difficult, 

and if the examinee provides an incorrect answer, then the next question should be 

easier (Chang, 2015). However, the actual method of achieving this process is varied. 

Early methods used pre-structured item pools, which were limited in their adaptability 

and did not use all of the examinee’s response pattern to select the next item (Kingsbury 

& Zara, 1989). With the increase in performance of computers, more procedurally 

complex methodologies began to emerge. This began with Fred Lord (1980) who applied 

the ‘Robbins and Monro process’ (1951). This allowed a test developer to calculate item 

information separately from test information and update the latter at each stage of the 

test. It also identified the next appropriate item based on the performance of the 

examinee on every single item administered previously. Another mainstream 

implementation in CAT item selection was that of Bayesian item selection, which relied 

on a normal prior distribution and, after each item administration, a recalculation of a 
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posterior distribution of trait estimates – or, “the item that reduces the posterior 

variance to the smallest value is chosen [next]” (Kingsbury & Zara, 1989, p. 363). Since 

this early research, interrelated but arguably conceptually similar methodologies have 

dominated in item selection procedures for CATs.  

Significant improvements in computer technologies bring forth discussions of 

different algorithms for item selection, largely focusing on improving CAT efficiency and 

accuracy. Item selection methods for unidimensional CATs include, but are not limited 

to, Maximum Information (MI), Minimum Expected Posterior Variance, Maximum 

Likelihood Weighted Information, Maximum Posterior Weighted Information and 

Maximum Expected Information (Chalmers, 2016). There is also a variety of item 

selection algorithms specifically developed for multidimensional CATs (Chalmers, 2016). 

These include D-optimality, Kullback-Leibler Information Index, Mutual Information, 

Continuous Entropy Method, Modified Method of Posterior Expected KL Information, 

and the Modified Method of Continued Entropy (Tu et al., 2018). Suffice to say many of 

these methods have a wide literature base explaining their mathematical principles 

when they are useful and the strengths and weaknesses of each. Generally, these 

methods are somewhat related and ultimately aim to reduce the number of items that 

require administration by choosing the item that provides the maximum amount of 

information possible. 

Outside of specific algorithms it is also possible to simply administer a random 

item that is within a predefined distance from the previous item. For example, Lunz et 

al. (1994) used a method whereby subsets of items were selected at random within a 

certain target difficulty, then during item presentation the CAT selected two items in the 

background, one for an incorrect answer and one for a correct answer. At the time, such 
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a method was necessary to ensure there was no lag time between item presentation 

and item choice. Since then, computers have advanced exponentially in their ability to 

calculate complex algorithms in a fraction of a second once an examinee has entered an 

answer. Item selection continues until the CAT meets a stop or termination rule. 

2.11.5 Stop Rule 

The stop rule for a CAT is utilised to finalise the CAT after a predetermined 

condition. The most basic stop rule is to have a maximum number of items administered; 

each examinee is administered the same number of items, but a potentially different 

set. A more commonly adopted stop rule is to set a minimum SEM; this relies on the CAT 

stopping when the test has reached a pre-determined level of reliability (i.e. their 

response pattern is stable enough that the estimate of their ability is reliable enough). 

This is particularly useful for when a test is designed to measure an individual’s level of 

some trait (Weiss, 2011). A third stop rule is by determining a cutoff θ score; the CAT 

will continue until the examinee’s θ (with included confidence band) is entirely above or 

below the predetermined cutoff. This enables test administrators to classify examinees 

into different groups with less focus on precision of scores. The next stop rule is only 

applicable for CATs that are readministered to measure the change in level of trait 

between the two test administrations. To achieve this the CAT can continue item 

administration until the error bands of θ at the two different times no longer overlap 

(indicating a significant change in the investigated trait), or until a sufficient number of 

items have been administered where it is clear the error bands will continue to overlap 

(indicating no significant change) (Nydick & Weiss, 2010). 

The most appropriate stop rule for a particular CAT often depends on the test 

characteristics. Babcock and Weiss (2013) evaluated several stop rules and found that 



 

Chapter 2: Background and Literature 52 

stopping a CAT based on a minimum SEM was useful when there were many items. They 

also suggested the possibility of combining different stop rules, and that 10-15 items 

should be administered as a minimum for dichotomously scored items. A minimum SEM 

rule combined with a minimum item information level would be appropriate for peaked 

tests. They also found the change in θ stop rule was generally as efficient as other stop 

rules for repeated administrations. Ultimately, stop rules should be implemented based 

on the purpose of the tool and the psychometrics of the items. 

2.11.6 Constraints 

Constraints are optional when designing a CAT. An unconstrained CAT relies on 

the characteristics, or psychometric details, described above (Weiss, 2011), whereas a 

constrained CAT includes deliberate design decisions that may run counter to the 

algorithms and core CAT components. The purpose of such constraints is often to ensure 

item security, manipulate the length of the test, or ensure the test is measuring all 

desired aspects. 

Georgiadou et al. (2007) identifies over 20 exposure control methods, grouped 

into five types of strategies: randomization, conditional selection, stratified, combined, 

and multiple stage adaptive test designs. These methods are useful for ensuring test 

item security while still attempting to maintain the efficiency advantages of CATs. 

Content balancing is another potential constraint. This involves ensuring a 

certain percentage of items from different content areas within an item set are 

administered (Kingsbury & Zara, 1989). For example, within a psychological distress tool, 

it may be that the examiner wants to ensure a certain number of items related to 

physiological, cognitive, and affective depression are administered. Although the items 
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alone may not be required to obtain an accurate θ score for overall distress, they may 

be useful from a treatment or diagnostic perspective. 

As a practical example of the implementation of constraints, mirtCAT (Chalmers, 

2016), a free open-source CAT platform, provides test designers with the option to select 

a range of constraints. The platform includes the ability to include non-scored items (for 

use in testing experimental items), exclude certain items (e.g. for retesting of certain 

examinees and to avoid previously administered items), select independent items (e.g. 

to avoid certain pairs or groups of items appearing in the same testing session), and a 

choice between ordered and unordered (e.g. for administration of an ordered or 

randomised group of items after administration of a specified individual item). A 

combination of these constraints can be applied at once. 

2.12 Applications of CATs 

While there has been a limited utilisation of CATs (relative to tests developed 

using CTT), where CATs have been implemented, they have been found to be effective 

in their goal of measuring certain constructs with more efficiency. 

Recently, there has been an increase in use of CATs in patient reported outcome 

and health related quality of life measures in the medical and rehabilitation fields 

(Gibbons et al., 2016). This has included the use of CATs for joint awareness based on 

the Forgotten Joint Score test (Giesinger et al., 2013), emotional functioning using items 

from the EORTC Quality of Life Questionnaire (Petersen et al., 2016), self-report 

shoulder functioning (Hart, Cook, et al., 2006; Wang et al., 2010), lack of appetite 

(Thamsborg et al., 2015), lumbar spine impairments (Hart, Mioduski, et al., 2006), 

impact of asthma on quality of life (Stucky et al., 2014), health related quality of life 

across different stages of HIV disease (Revicki & Cella, 1997), and general physical 
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functioning (Haley et al., 2006). Gershon and Cook (2011) state that “patients can 

typically complete a [patient-reported outcomes] type CAT in an average of five 

questions with reliability similar to a typical 15-25 survey measure” (p. 1450).  

Gershon and Cook argue that the principles underpinning CATs are like that of 

machine learning, whereby the use of a minimal set of variables could also be used to 

predict patient-reported outcomes. However, medical research into machine learning 

techniques has the benefit of incorporating a range of measurements that psychological 

measurement may not have access to. For example, Tighe et al. (2011) utilised variables 

such as prior medication use and a basic pain rating scale. In contrast, when attempting 

to predict psychological constructs, due to their latent nature there may not be prior 

observed behaviours or prior observations of the construct.  

Research into the military’s use of CATs has been longstanding. As early as the 

1980s the United States Department of Defence began investigating the use of CATs for 

aptitude testing (Kathleen et al., 1984; Weiss, 1985) and non-cognitive tests (Stark et al., 

2014; Stark et al., 2012). Again, many of these studies suggest the use of CAT is not only 

feasible but investigates a variety of non-standard item types (such as pairwise 

preference items). Despite this, these studies also suggest that ongoing evidence needs 

to be established regarding validity, and further investigation related to “test design, 

(content, dimensionality, item composition), proctoring, warnings, and cognitive load” 

(Stark et al., 2012, p. 482). Despite some publications by military agencies across the 

world, unsurprisingly there is limited insight into the workings of their CATs. This further 

demonstrates the need for a transparently designed CAT in the Australian context. 

Multidimensional CATs (MCATs) have also become popular. Makransky and Glas 

(2013) demonstrated the applicability of MCATs with the NEO PI-R whereby a reduction 
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of 120 items was possible while still retaining the tool’s accuracy. Bass et al. (2015) 

utilised MCATs with Patient Reported Outcomes Measurement Information System 

datasets and found increased reductions compared to unidimensional tools. 

 Mental health is also an area of investigation for CATs. Fliege et al. (2005) 

developed a CAT out of 144 items across 11 questionnaires designed to measure 

depressive symptoms; they found that latent trait could be measured with 

approximately six items. Devine et al. (2016) utilised CATs in conjunction with the GAD-

7, PHQ-9 and PSQ to assess depression, anxiety and stress, finding that similar levels of 

precision were found with approximately 5-7 items. Some research also considers the 

adaptation of existing mental health questionnaires, such as the Center for 

Epidemiologic Studies Depression Scale (Loe et al., 2017; Smits et al., 2017) and Beck 

Depression Inventory (Gardner et al., 2004), into CATs. In these cases, CATs have 

demonstrated increased efficiencies while maintaining precision of measurement. 

CATs are widely used in achievement and educational testing. In Australia this 

discussion is largely dominated by the adaptation of NAPLAN into a computer adaptive 

test (Martin & Lazendic, 2018; Thompson, 2017). CATs that measure cognitive ability 

have been developed, but they tend to focus on assessment of geriatric patients (e.g. 

Konsztowicz et al., 2011; Lebedeva et al., 2015; Wouters, Zwinderman, et al., 2009) and 

automatic item generation in specific domains of cognitive functioning (Arendasy et al., 

2011; Hines, 2018). There is significant opportunity for CAT utilisation in the educational 

and intellectual assessment domains. 

2.13 CAT Platforms 

While researchers and organisations wanting to use CATs can design and 

implement them using the basic mathematical principles of IRT in combination with 
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programming knowledge, this can be a time consuming and complex task due to the 

technological requirements and software development expertise needed. To address 

this, there is a range of commercial or open source platforms available. 

Given the wide range of design decisions available to test developers, Oppl et al. 

(2017) developed a list of generic requirements which a CAT platform should support. 

These are: 

1. Flexibility in testing strategy and item pool design: The platform should 

be able to be adaptable to a range of IRT models, item psychometrics, 

item set sizes, order of items and other test design factors 

2. Flexibility in item selection algorithm: The platform can draw from a 

variety of item selection methodologies (as discussed above), but there 

is also an ability to use different methods for the first item to be selected 

versus any following items. 

3. Flexibility in specifying the stop rule: Variety in the use of different stop 

rules must be allowed, as well as allowing for a combination of stop rules. 

4. Possibility of technical integration with learning platforms on different 

layers: This involves the platform being able to integrate with other 

technologies including functionality in managing data, external platform 

integrations, and user interface adaptability. 

5. Ability to display and evaluate items stemming from arbitrary domains: 

The authors describe this as ensuring the “presentation and evaluation 

of items that require domain specific display and data representation”; 

the platform allows for a variety of response styles that are consistent 
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with the content being tested, including how the examinees interact with 

the items. 

Oppl et al. (2017) evaluated six platforms: Concerto, IRT-CAT, CAT-MID, SIETTE, 

MISTRAL, a platform developed by Duda and Walter (2012), and a platform developed 

by Huang et al. (2009). They found that none met all the identified requirements. 

Concerto was the best performer (so was utilised in this thesis), meeting the first three 

requirements, with the fifth requirement reliant on how creatively HTML and other web 

coding is used to provide response options for examinees. While they proposed 

potential solutions to this gap, there has not yet been wide adoption of any single CAT 

platform. 

There are several commercial options available to test developers, many of 

whom will also provide psychometric consultation and CTT to IRT conversion. ASC (2020) 

provides test developers a platform to host and manage CAT administration of their pre-

existing item sets. Pearson VUE (2020a), Prometric (2020), and McCann Associates 

(2019) provide content design, access to CAT hosting and usage by examinees. 

The problem for many of the platforms discussed thus far is that they are difficult 

to access due to significant technical knowledge requirements, are limited in their 

functionality, or have substantial cost barriers. Another issue is that platforms are not 

updated. OSCATS (Open Source Computer Adaptive Testing System) hasn’t been 

updated since 2011 (Culbertson, 2011). IRT-CAT has not been updated since 2014 (huhs 

& yoonani, 2014). Since these platforms have stopped being developed, we have seen 

the increasing implementation of HTML5 (W3C, 2014), wider development and adoption 

of APIs (Boyd, 2017), and the replacement of Adobe Flash Player with HTML5 standards 

(Adobe Corporate Communications, 2017), to name just a few web technologies. While 
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six years may only be a short while in academia, this is a product ending timeline in 

technology. 

There are two CAT platforms that integrate well with web technologies, have a 

continuing development regime and are open source. These are Concerto (Scalise & 

Allen, 2015) and mirtCAT (Chalmers, 2016). Both have ongoing development and 

demonstrate increasing adherence to the requirements listed above. Both platforms still 

require some technical knowledge for implementation, however there are extensive 

knowledge bases and how-to guides from the platform developers and the public. Both 

platforms are based on the R programming language, a free software environment for 

statistical computing (R Core Team, 2020). While the Concerto platform relies on PHP 

and mirtCAT relies on Shiny (an R package), both allow the utilisation of HTML5, CSS, and 

JavaScript to customise the user interface. These platforms are quite flexible to different 

test developer needs and present opportunities for open source, public domain CATs. 

Use of these tools in the development of a cognitive ability CAT would allow for easy 

implementation by practitioners (with the support of IT professionals) and researchers 

because the underpinning technologies are not locked behind a paywall. 

2.14 CAT Advantages 

2.14.1 Unsupervised Administration 

Since CATs administer an almost unique set of items determined by the 

individual’s own ability, one key advantage is that the security of the test is enhanced. 

That is, because individuals are not exposed to all the items, and even those that they 

are exposed to are in a non-predetermined order, it is more difficult to remember item 

answers. Subsequently, this allows for increased use of tests reliant on CAT technology 

in unsupervised settings. This is particularly prevalent in the space of organisational and 
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pre-employment testing and enables hundreds of thousands of participants to be tested 

on their ability, personality and knowledge (Kantrowitz et al., 2011). This is often 

referred to as unproctored testing. While unproctored testing brings about other 

challenges with a plethora of associated literature (Aguado et al., 2018; Cavanaugh, 

2018; Nesnidol & Highhouse, 2018), implementation of large item sets and CATs ensures 

examinees are unlikely to receive the exact same item sets, or even the same items in 

the same order. 

2.14.2 Efficiency 

A CAT provides the ability to administer fewer and more relevant items. There 

has been a substantial increase in evidence that CATs can greatly reduce test length and 

improve reliability. For example, Fliege et al. (2005) was able utilise items from 11 

mental health questionnaires to develop a CAT to measure depressive symptoms. They 

argue that “there is almost no appreciable difference between the total 640 item test 

score and the [computer adaptive test]-score, which is based on an average of 

approximately six items” (p. 2289). Gibbons et al. (2016) used simulated CATs relying on 

IRT to reduce the 100 item World Health Organisation Quality of Life questionnaire by 

between 45% and 75% depending on the pattern of responding. In these cases, there is 

clearly an advantage to CATs. On the other hand, Delgado-Gomez et al. (2016) found 

that in reducing the Personality and Life Event scale to predict suicidality using CATs or 

decision trees, decision trees outperformed the CAT in reducing the number of items 

required. Unfortunately, there is insufficient research into both decision trees and CATs 

to take a confident stance on their reliability in clinical settings.  
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2.14.3 Precision 

As has been discussed in several sections of this thesis, CATs provide 

opportunities to measure individuals precisely at various levels of a trait or difficulty 

spectrum without having to administer copious numbers of items. Well-designed CATs 

have large item sets that assist with targeting the test at the examinee’s individual trait 

level. In contrast, fixed tests tend to provide the best precision at the mean ability level 

and are less precise at the extreme ends of the trait (Weiss, 2011). Given the uncertainty 

of a person’s cognitive ability prior to testing, an intelligence test using CAT technology 

allows for a quick adjustment of the difficulty of items and a well targeted measurement 

of their ability. 

2.14.4 Construct Validity 

CATs do not rely on what some argue are outdated perspectives regarding the 

nature of psychological constructs and their measurement (Barrett, 2018). Due to their 

reliance on IRT, many researchers are supportive of CATs simply because of their 

opposition to what they perceive as deficits in CTT or a lack of progress in psychological 

measurement. CATs specifically allow examiners to avoid reliance on the assumption 

that all items are of equal measurement value. Through this avoidance, construct 

validity can be further established; completing a harder item implies you have a higher 

trait level, and thus further demonstrates that the items possess construct validity. 

Because items are administered via computers, there is an increased variety of item 

types available (Zenisky & Sireci, 2002) 

In contrast to the contention that CTT-developed tests are outdated, some 

suggest that CTT-based paper and pencil tests, and IRT-based CATs, are useful for 

different purposes; Cappelleri et al. (2014) suggest descriptive assessments using CTT 
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are suitable when attempting to gather information about the content validity of an 

instrument, whereas IRT-based tests are suitable when the sample size is larger, and the 

construct being measured is well understood. Intelligence is a well understood 

construct. 

2.14.5 Automated Scoring 

While not unique to CATs specifically, the fact that they are administered on 

computers and related devices means items are immediately scored. Utilising 

algorithms built into the CAT, a θ score for each examinee is available immediately after 

testing. This may include classification of performance (e.g., pass/fail or some other 

grouping) or comparison of previous scores. Such functionality enables unique 

opportunities to provide quick feedback to examinees with related interpretations and 

recommendations. 

2.15 CAT Limitations 

While the literature on CATs is generally positive and suggests they can address 

many concerns relating to CTT, there are several limitations. 

2.15.1 Limited Research 

There are still substantial gaps in the literature when it comes to CATs. Validity 

of psychological constructs remains a contentious area and proposing to administer 

items in a non-linear fashion and in differing quantities poses further challenges to this 

debate. Further, there are many choices to be made when both developing and 

administering a CAT. Kantrowitz et al. (2011) suggest further research is required 

relating to the validity of CAT in selection settings, the effectiveness of different item 

exposure strategies, cross-cultural applicability of the tests, candidate perceptions of 

fairness, and various implementation challenges. While significant research continues 
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to occur in the interim, there are still many gaps in the literature regarding the use of 

CATs with various psychological constructs, populations and in differing settings. 

2.15.2 Perceptions of CATs 

There are several concerns that CATs may fail to address test anxiety (Colwell, 

2013) and may cause a decrease in test-taker motivation and self-confidence (Frey et 

al., 2009). In contrast to concerns about motivation, Martin and Lazendic (2018) used a 

large Australian sample (n = 12,736) of Year 3, 5, 7 and 9 school students and found 

there were test-relevant motivation and engagement improvements in CATs relative to 

fixed order tests, particularly in Year 9 students. These positive effects were also 

achieved while maintaining measurement precision. As a relatively recent and large 

study, this counters earlier concern about the use of CATs and their perceived fairness, 

but further research is still required. 

Other concerns relate to the difficulty of items; CATs tend to focus on presenting 

items the examinee has a 50% chance of getting correct, which some argue is too 

difficult (Kimura, 2017). This can be addressed by incorporating constraints or custom 

functions designed to keep difficulty levels lower. An example of this is provided by Phil 

Chalmers, developer of mirtCAT (2017), whereby constraints can be placed on the CAT 

so that only items that the examinee may have an 80% chance of obtaining a correct 

answer are presented. Such methods may improve examinee confidence and thus 

perception of CATs in general. 

2.15.3 Complexity 

The development of a CAT is complex and requires the establishment of a range 

of characteristics. While both CATs and CTT depend on items that can cost substantial 

sums (Downing, 2006a), because CATs are automated, the items must be valid and 



 

Chapter 2: Background and Literature 63 

reliable while also scoreable in real time. Depending on the IRT model, sample sizes 

required for CAT development may be substantial; a three-parameter IRT model may 

require a sample of between 500 to 1,000 participants (Yoes, 1995). Additionally, some 

technical know-how is required to design a CAT that is accessible by examinees. Even 

with the use of pre-packaged CAT systems, unless developers want to pay for a 

commercial product (e.g. ASC, 2020), some knowledge of programming languages, 

relational databases, user interface design and other software related concepts is 

required (discussed in 2.13).  

2.15.4 Calibration of the Item Pool 

Outside the cost of developing items, the item pool requires calibration. This 

generally requires statistical analysis of both IRT and classical statistics. Depending on 

whether the items are for a new item bank or linked to an existing scale, there are 

various methods available to ensure the items are calibrated on a common scale 

(Thompson & Weiss, 2011). While statistical analysis is required in any test 

development, educators and subject matter experts are often concerned about the loss 

of domain coverage or confused by the statistical concepts underpinning IRT (Kimura, 

2017). 

The purpose of the test also impacts the item pool calibration. If the test requires 

measurement of a wide range of traits, then a range of item difficulties is required to 

ensure enough level of precision can be achieved; demonstrating construct validity in 

such cases requires careful statistical analysis. On the other hand, if the test is designed 

to classify examinees then the test needs to measure very well at a specific point of θ 

and other items can be sacrificed (Thompson & Weiss, 2011). 
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2.15.5 Item Repetition 

Because an item needs to be scored immediately after administration to select 

the next, the option of reviewing items presents challenges for CATs. Depending on 

which CAT platform is used, examinees may not be able to repeat questions. Some have 

even argued that if item reversal is permitted, examinees might identify whether they 

have obtained a previously incorrect or correct answer based on the difficulty of the 

item they are presented with afterwards, potentially encouraging them to go back and 

change their response (Rudner, 1998). This also presents an issue when re-administering 

a test. Despite these potential concerns, models have been developed to detect 

compromised items (Liu et al., 2019) 

2.15.6 Implementation of Time limits 

By their very nature, fully adaptive CATs administer a different number of items 

for each examinee, meaning it is impossible to always predict the amount of time 

required for the examinee to sit the CAT. If a maximum time limit on the CAT is set too 

low, examinees with trait levels or abilities that are not consistent with the item set 

within the CAT are likely to be administered more items than the average examinee. In 

these situations, examinees may be inaccurately classified or scored, rendering the time 

limit unsuitable. 

2.16 Cognitive Ability CATs 

While acknowledging that some niche CATs exist, the previous discussions show 

that despite the proposed advantages of CATs the measurement of cognitive ability has 

barely evolved beyond turning traditional pen-and-paper tests into electronic formats. 

Furthermore, the progress of science in relation to intellectual abilities has been 

hampered by proprietary measures, which also makes research that relies on 
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commercial tests an expensive process (Condon, 2015). As far as can be found in the 

extant literature, non-proprietary CATs have not been used to measure cognitive ability 

as per the CHC taxonomy. The following sections detail a review of the literature in this 

space. 

2.16.1 Search Strategy 

Electronic searches were undertaken in June 2020 in MEDLINE (via Ovid), ERIC 

(via Proquest), Scopus, and PsycInfo (via Ovid) to identify relevant articles. Terms related 

to cognitive ability, computer testing, and adaptive testing were combined using the 

‘AND’ operator; within each set of terms the ‘OR’ operator was used. Search results were 

restricted by document type: Original articles, trade journals, scholarly journals, 

conference proceedings, books, editorials, magazines, working papers, theses, reports, 

and systematic reviews were included; newspapers, wire feeds, blogs, podcasts, 

conference reviews, short surveys, letters, notes, historical newspapers, and other 

sources were excluded. Only articles written in English were included.  

Code Snippet 2-1. Search Term Methodology 

 
2.16.2 Exclusion and Inclusion Criteria 

Many references were removed due to being unrelated to CATs; for example, 

many references related to the ‘California Achievement Test’, ‘Cognitive Adaptation 

Training’, ‘Crying cat syndrome’, ‘Cognitive Abilities Test’, ‘Category Test’, ‘Cat swarm 

optimisation’, ‘Clinical Assessment of Attention Test’, ‘Digit Cancellation Test’ (D-CAT), 

("intelligence" OR "cognitive ability" OR "iq" OR "CHC" OR "cattell horn 
carroll" OR "cattell-horn-carroll" OR "lexical knowledge" OR "verbal 
comprehension" OR "comprehension knowledge" OR "crystalli*ed 
intelligence" OR "fluid reasoning" OR "inductive reasoning" OR "working 
memory" OR "visual spatial" OR "visuali*ation" OR "visual processing" OR 
"processing speed" OR "perceptual speed") AND ("computer* adaptive" OR 
"unproctored" OR "cat") 
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‘Communication Assessment Tool’, or ‘CAT scans.’ Many sources discussed various 

computer based or unproctored measures of cognitive ability, or somewhat related 

psychological constructs such as executive functioning or academic achievement, but 

these were not adaptive in nature and thus were excluded.  

Articles evaluating CAT development in areas other than cognitive testing (e.g., 

academic achievement, patient-report outcomes, or personality testing) were not 

included. Many search results surrounding CATs related to measurement of academic 

achievement which includes word reading, word decoding, reading comprehension, 

spelling, sentence writing, written expression, numerical operations, applied 

mathematics, science knowledge, specific knowledge domains (e.g., geology, history), 

or academic fluency. For example, Cokely et al. (2012) developed a CAT for numeracy 

and risk literacy, and Martin and Lazendic (2018) found educational testing that makes 

use of CATs can lead to better measurement precision and increase test-relevant 

motivation, but neither evaluated psychometric g, theoretically driven measures of CHC 

abilities, nor their own defined intelligence constructs. In fact, some literature argued 

for the development and implementation of CATs given the many gaps that currently 

exist in their application (e.g. Kantrowitz et al., 2011).  

Some articles focused on adaptive tutoring systems. Where possible, articles 

were included if they focused on a well-defined construct within intelligence research 

or CHC theory but excluded if they made ambiguous statements about the nature of the 

psychological construct under investigation. For example, Pelánek and Jarušek (2015) 

utilised concepts of IRT to develop an adaptive tutoring system for ‘problem solving’ 

(graphs, programming, logic puzzles) that would not be considered a measure of 

intelligence from the perspective of CHC. 



 

Chapter 2: Background and Literature 67 

Articles that focused on development of cognitive ability measurement tools 

were only included if they focused on development or use of a CAT to measure cognitive 

ability. Using IRT methods for reduction of lengths of tools or measuring improvement 

in response to training were not included. Methodological studies on certain aspects of 

CAT (e.g., item selection, ability estimation, stop rules) were excluded. Additionally, any 

book chapters or articles that simply described the function and utility of CATs were also 

excluded. 

Studies that focused on cognitive training were only included if the focus was on 

measurement of an ability rather than improvement. For example, Roberts et al. (2016), 

Flak et al. (2019) and Brehmer et al. (2009) all evaluated the outcomes of Cogmed, a 

working memory intervention that adaptively increases difficulty of training; to do this, 

it would be logical to assume the program is tracking the users progress on the latent 

trait, working memory, through their performance on individual items. However, these 

studies do not provide any information regarding the adaptive functionality and this 

could not be found via Google searches, literature searches, or evaluation of the Cogmed 

product page (Neural Assembly, 2019). Therefore, these studies (and others like it) were 

not included. 

Some references were retained for full text evaluation due to it being initially 

unclear from the abstract whether they were computer adaptive measures of cognitive 

ability. Reference lists in each retained full text were also evaluated for possible 

additional papers (Greenhalgh & Peacock, 2005). Where possible, studies which utilised 

a CAT but did not provide details about its structure were discarded in favour of the 

source that detailed the development of said CAT; in some cases, these articles were 

already obtained during the initial database search, and in other cases reference lists 
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had to be consulted. This was intended to ensure accurate reporting of each identified 

CAT and reduce duplicate discussions of the same tool. An example of this is the CAT-

ASVAB which was utilised in several studies, but few details were provided regarding its 

development or underlying structure in these studies, usually being used as a measure 

of g; in this case, a single source focused on its underlying features was retained. 

Several full text articles could not be located via Google Scholar or university 

library database searches. These were predominantly international sources, with a 

majority being from mainland China related to ‘cognitive diagnosis’ models. Other 

sources appeared to be from Spain, Romania, Germany, and Italy. Evaluation of the 

abstracts suggested that while they may have focused on cognitive ability, there was 

unlikely to be a comprehensive intellectual ability CAT underpinned by CHC theory 

identified in these sources – many of them appeared to be methodological in nature, 

focusing on information systems and artificial intelligence theories related to CAT. 

2.16.3 Results 

A comprehensive search of the literature for CATs that measure cognitive ability 

resulted in retaining 20 sources for evaluation (Figure 2-14 and Table 2-1). This 

comprised book chapters (n = 1), conference proceedings (n = 1), dissertation (n = 1) and 

original journal articles (n = 17). Sources ranged in date from 1997 through 2020, with a 

range of scopes such as psychometrics, intelligence, psychological assessment, business 

intersection with psychology, health psychology, learning, and individual differences. 

While all sources were in English, a variety of jurisdictions were involved including the 

US, Germany, the Netherlands, South Africa, the UK, Turkey, Hong Kong, Taiwan, and 

the Chinese Mainland. Evaluation of these 20 sources suggests that there are several 

gaps for future research into the use of CATs in measurement of cognitive abilities. 
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Figure 2-14. Literature Review Outcomes 
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Table 2-1. Literature Search 

Author 
Instrument 

Name 
Study 

Objectives 
Setting and 

Sample 
Latent Trait IRT 

CAT 
Software 

N 
Items 

Simulated/ 
Real World 

Starting 
Item 

Stop rule 
Item 

Selection 
Theta 

Estimation 

Arendasy and 
Sommer 
(2012) 

INSBAT 

Evaluate factor 
structure of 

INSBAT items 
in combination 
with automatic 
item generated 

items 

Unknown setting 

 

12 years to 77 
years old 

 

n = 481 

Quantitative 
Knowledge, Fluid 

Reasoning, 
Comprehension 

Knowledge 

1PL ? 166 Real ? ? ? ? 

Arendasy and 
Sommer 
(2017) 

Figural 
Inductive 
Reasoning 

Mental 
Rotation 

Verbal Fluency  

Arithmetic 
Flexibility 

Vary item 
administration 

format and 
retest form to 
reduce effect 
size of retest 

effect 

Unknown setting 

 

16 to 64 years old 

 

n = 960 

Inductive 
Reasoning 

Visualisation 

Verbal Fluency 
Arithmetic 

1PL 
TestWeb 

2.0 

FID: 
120 
ELT: 
120 
VF: 
100 
AF: 
100 

Real 
Mean 
item 

difficulty 

Max items 

FID: 14 items 

ELT: 14 items 

VF: 17 items 

AF: 13 items 

MI ? 

Balas-Timar 
and Balas 
(2009) 

MAB-II 
Integrate Fuzzy 
Logic into CAT 

estimation 

Engineers 

 

n = 200 

Gc, Gv, Gs, Gwm 
(Jacobs & 

Costello, 2013) 

1PL? 

3PL? 
? ? Real ? 

Minimum 
SE? 

MI? MAP? 

de Beer 
(2005) 

Learning 
Potential 

Computerised 
Adaptive Test 

Develop 
culture free 

test measuring 
non-verbal 
reasoning 

Multicultural 
Grade 9 and 11 
students from 
South Africa 

 

n = 2,454  

Non-verbal 
reasoning 

3PL MicroCAT 188 Simulation 
Mean 
item 

difficulty 

Minimum SE 

 

Maximum 
number of 

items 

? ? 
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Author 
Instrument 

Name 
Study 

Objectives 
Setting and 

Sample 
Latent Trait IRT 

CAT 
Software 

N 
Items 

Simulated/ 
Real World 

Starting 
Item 

Stop rule 
Item 

Selection 
Theta 

Estimation 

Hausler 
(2006) 

Adaptive 
Matrices Test  

Evaluate 
adaptive 

success control 
algorithm 

Unknown setting 

 

German 
Individuals aged 

18-81 years  

 

n = 392 

Induction 1PL ?  Real ? 
Minimum SE 

SE < .60 

MI based 
on 

variations 
of base 
success 

probability 

? 

Hausler and 
Sommer 
(2008) 

Lexical 
Knowledge 

Test 

Compare and 
simulate item 

selection 
methods  

Simulated 
examinees 

 

n = 2000 

Crystallised 
Intelligence 

1PL ? 126 Simulation 
Mean 
item 

difficulty 

Max items 

20 items 

MI based 
on 

variations 
of base 
success 

probability 

ML 

Hines (2018) N/A 

Develop an 
experimental 

non-verbal 
measure of 

cognitive 
ability through 
automatic item 

generation 

Amazon 
Mechanical Turk 

 

n = 333 

Fluid Reasoning 1PL ? ? Real ? ? MI ? 

Kantrowitz 
and Dainis 
(2014) 

? 

Examine 
inconsistent 

test scores for 
possible 
cheating 

US candidates for 
11 jobs 

 

n = 4,026 

Deductive 
reasoning 

? ? 

Propri
etary 

 

>300 

Real ? 
Unspecified 
Minimum SE 

? ? 

Konsztowicz 
et al. (2011) 

Geriatric Rapid 
Adaptive 
Cognitive 
Estimate 

Adaptive 
administration 
of the MMSE 

and MoCA 

Patients referred 
for geriatric 

cognitive 
assessment 

 

n = 137 

Cognitive 
impairment 

1PL ? ? Real 
Clock 
Test 

? ? ? 
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Author 
Instrument 

Name 
Study 

Objectives 
Setting and 

Sample 
Latent Trait IRT 

CAT 
Software 

N 
Items 

Simulated/ 
Real World 

Starting 
Item 

Stop rule 
Item 

Selection 
Theta 

Estimation 

Legree et al. 
(1998) 

Telephone Test 

Correlate the 
Telephone Test 

with the 
Armed Forces 
Qualification 

Test 

US military 
enlistees 

 

n = 144 

Crystallised 
Verbal Aptitude 

? ? ? Real ? ? ? ? 

Liao and Ho 
(2011) 

Computerized 
Figural Testing 

Integrate CAT 
with virtual 

item banks and 
automatic item 
generation to 
improve test 

security 

Six graders from 
Taiwan 

 

n = 310 

IQ 1PL ? ? Real ? ? ? ? 

Makransky 
and Glas 
(2013) 

Adjustable 
Competence 
Evaluation 

Investigate the 
use of MCAT in 

personnel 
selection 

Test-takers as part 
of personnel 

selection, 
recruitment, and 

individual 
development 

 

n = 1350 

Numeric, spatial, 
and verbal ability 

2PL 
FORTRAN 

6.0 
201 Simulation Random 

Unspecified 
max items 

Bayesian EAP 

Reise et al. 
(2011) 

SCoRS 

CGI-CogS 

Run a CAT 
simulation of 
existing rating 

scales of 
cognitive 

impairment 

Patients with 
schizophrenia and 

schizoaffective 
disorder 

 

n = 176 

Working 
memory, 

attention, verbal 
learning, spatial 

learning, 
reasoning, 

processing speed 

GRM Firestar 41 Simulation 𝜃 = 0 

SE < .25 

SE < .30 

SE < .40 

SE < .50 

MI EAP 
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Author 
Instrument 

Name 
Study 

Objectives 
Setting and 

Sample 
Latent Trait IRT 

CAT 
Software 

N 
Items 

Simulated/ 
Real World 

Starting 
Item 

Stop rule 
Item 

Selection 
Theta 

Estimation 

Sands et al. 
(1997) 

CAT-ASVAB 

Descriptive 
chapter on the 

technical 
aspects of the 

ASVAB 

Military personnel 

Arithmetic 
Reasoning 

Word Knowledge 

Paragraph 
Comprehension 

Mathematics 
Knowledge 

General Science 

Mechanical 
Comprehension 

Electronics 
Information 

Auto and Shop  

Coding Speed 

Numerical 
Operations 

3PL NA ~200 Real  

Select a 
random 

item from 
the five 

best 
items 

Unspecified 
minimum SE 

 

Unspecified 
max items 

 

Unspecified 
Time limit 

MI and 
random 

item 
selection 

Owen 
Bayesian 

Segall (2001) MIRT-AVSAB 

Utilise MIRT to 
measure 

hierarchical 
factor model of 

intelligence 

US military 
applicants 

 

n = 12,000 

General, Verbal 
and Math Ability 

MIRT IFACT 420 Simulation ? 
Max items 

60 items  

Self-
authored 
algorithm 

MAP 

Sommer et 
al. (2018) 

Adaptive 
Tachistoscopic 

Traffic 
Perception 

Test 

Compare 
administration 

methods to 
determine 
causes of 

practice effects 

Driving tests 

 

n = 891 

Perceptual 
Speed 

1PL ? 14 Real 
Mean 
item 

difficulty 
? MI ? 
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Author 
Instrument 

Name 
Study 

Objectives 
Setting and 

Sample 
Latent Trait IRT 

CAT 
Software 

N 
Items 

Simulated/ 
Real World 

Starting 
Item 

Stop rule 
Item 

Selection 
Theta 

Estimation 

Thomas et al. 
(2020) 

N-Back Task 

Proof of 
concept study 

of use of latent 
variable 

modelling with 
small samples 

Undergraduate 
research 

participants and 
clinical outpatients 

 

n = 92 

Working 
Memory 

GLVM CogIRT 300 Simulation ? 

Reliability of 
estimated d’ 
intercept > .7 

 

Max items  
9 items 

MI MH-RM 

Witruk 
(2019) 

? 

Compare 
working 
memory 

performance 
of German and 

Chinese 
dyslexic 
children 

German and 
Cantonese 

speaking dyslexic 
children 

 

n = 192 

Working 
Memory 

? ? ? Real ? ? ? ? 

Wouters, de 
koning, et al. 
(2009) 

CAMCOG 

MMSE 

Investigate use 
of CAT to 
maintain 

precision while 
shortening 

testing 

Patients with 
cerebrovascular 

disease or vascular 
dementia 

 

n = 797 

Orientation, 
memory, 
language, 

attention, praxis, 
calculation, 
perception 

1PL ? 67 Simulated 

Item 138, 
139, 146, 
171, 147, 

178 

Minimum  
SE < .15 

 

Unspecified 
Max items 

MI ? 

Žitný et al. 
(2012) 

Test of 
Intellectual 
Potential 

 

Vienna 
Matrices Test  

Investigate 
construct 

validity of CAT 
compared to 

paper-and 
pencil 

Slovak secondary 
school students 

 

n = 803 

General intellect 
via Fluid 

Intelligence 
3PL CATO ? Simulation 

Random 
selection 

Minimum  
SE < .50 

MI EAP 

Note. SE = Standard Error, MI = Maximum Information, EAP = Expected a Posteriori, MLE = Maximum Likelihood Expected, MAP = Maximum a Posteriori 
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There was some variation in whether the source made use of a simulated CAT (n 

= 8) or whether the source reported results of implementation of CATs with ‘real’ 

participants (n = 12). Those that used real samples often did not demonstrate where 

they sourced their sample from (Arendasy & Sommer, 2012, 2017; Hausler, 2006). When 

they did they used engineers (Balas-Timar & Balas, 2009), participants from employment 

pre-selection (Kantrowitz & Dainis, 2014; Makransky & Glas, 2013), Amazon Mechanical 

Turk participants (Hines, 2018), military enlistees (Legree et al., 1998; Sands et al., 1997; 

Segall, 2001), those referred for geriatric cognitive assessment (Konsztowicz et al., 2011; 

Wouters, de koning, et al., 2009), those undertaking a driving ability test (Sommer et al., 

2018), or people undergoing psychiatric review (Reise et al., 2011; Thomas et al., 2020). 

While it is positive see CAT measurement of cognitive ability across a range of settings, 

there appears to be substantial lack of robust investigation into the use of CAT in real 

settings across a range of jurisdictions for a variety of referral questions. Increased usage 

of CATs and subsequent evaluation is required to demonstrate their applicability. 

Across both the simulated and real CAT studies, only four studies made use of 

school aged children. de Beer (2005) simulated a CAT after splitting items into two 

groups and administering them to 2,454 Grade 9 and 11 students. While the terminology 

described in this study differs from contemporary CHC theory, it focuses on the learning 

potential of participants by measuring non-verbal figural reasoning ability as a form of 

cross-cultural assessment in South Africa. In a similar vein, (Liao & Ho, 2011) utilised 

automatic item generation combined with CAT to improve figural test item exposure 

rates; to do this the authors utilised their CAT with 310 Grade 6 students across 10 

classes in Taiwan. Their test demonstrated a Pearson correlation .683 with the Advanced 

Progressive Matrices test (a measure of Inductive Reasoning). Witruk (2019) 
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administered a self-designed adaptive measure of auditory and visual working memory 

to 86 dyslexic and non-dyslexic children. Finally, Žitný et al. (2012) compared the 

performance of 803 secondary school students from Slovakia on paper-and-pencil and 

computer-based versions of the Test of Intellect Potential and the Vienna Matrices Test 

(both measures of Fluid Intelligence). The authors then simulated a CAT version of the 

test and showed that it maintained validity while reducing the number of items 

administered.  

All four studies above demonstrate the viability of CAT for school-based 

screening, but gaps in the literature remain. Firstly, many of the characteristics of the 

CAT utilised in each study are unclear; the software utilised is only identified in two 

studies (both of which were simulation), the IRT model was not identified for one study, 

and only the Žitný et al. (2012) study makes it clear which item selection procedures and 

θ estimation method was implemented. Finally, the starting and stop rules were only 

made clear in Žitný et al. (2012) and de Beer (2005). 

These issues make it difficult to compare the effectiveness of CATs with school 

aged participants, as well as make it challenging to engage in replication efforts. 

Secondly, none of these studies made use of an English as a first language sample, 

limiting the generalisability of findings. Thirdly, the psychological construct of interest 

generally focused on Fluid Reasoning or Working Memory, although was rarely 

operationalised in a way consistent with CHC theory; instead, they appear to rely on test 

driven definitions rather than theoretical perspectives of intellectual ability. 

Across all studies, the software enlisted to host the CATs was generally not 

mentioned. In some cases where simulations were carried out the software was 

identified but insufficient additional information was provided by authors for potential 



 

Chapter 2: Background and Literature 77 

examiners to make use of the CAT, or for researchers to replicate the research. In fact, 

excluding simulation studies, none of the sources identified a CAT platform. For a school, 

or even another researcher or psychologist, it would be practically impossible to 

implement these CATs in the real world. These studies demonstrate viability of CATs 

within different settings and populations for measurement of different constructs but 

offer little practical opportunity for application. 

Very few studies focused on developing items from the perspective of CHC 

theory, the most contemporary theory of intellectual abilities. Several studies engaged 

with existing tests of cognitive ability (e.g. Balas-Timar & Balas, 2009) that can be 

classified under the CHC taxonomy (Jacobs & Costello, 2013), while others generated 

items using automatic item generation (e.g. Arendasy & Sommer, 2017). Similarly, both 

Arendasy and Sommer (2012) and Arendasy and Sommer (2017) identify that some of 

their items measure inductive reasoning but tend to focus on item characteristics as 

indicators of what they are measuring, rather than theoretical definitions. Interestingly 

Arendasy and Sommer (2012) visualise how their findings fit with a CHC model that 

represents g, Gf, Gc, and Gq but make no link back to the wider literature about CHC 

abilities, their conceptualisation, or structure. Hausler and Sommer (2008) utilised the 

Lexical Knowledge Test as a measure of the latent trait Crystallized Intelligence, again 

demonstrating a lack of modern conceptualisation of cognitive ability. Out of the 20 

retained sources, only Arendasy and Sommer (2012) and Hines (2018) refer to CHC 

theory, with the latter relying heavily on theory to create a CAT reliant on automatic 

item generation to measure inductive reasoning. Overall, these sources appear to use a 

mixture of items that likely possess construct irrelevant variances, are predicated on 
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poorly defined traits, or measure knowledge and achievement rather than cognitive 

abilities. 

Further evidence of inconsistently defining intelligence is demonstrated by 

studies utilising ratings of cognitive abilities rather than making use of performance 

measures. Reise et al. (2011) conducted a CAT simulation of the combined 41-items from 

the CGI-CogS (21-items) and SCoRS (20-items), two interviewer report scales of cognitive 

impairment. Using Firestar (Choi, 2009) the authors simulated CATs with varying 

minimum standard error stop rules. They found the number of items could be reduced 

substantially, however in most cases the CGI-CogS items provided more information 

than the SCoRS items, and across all 41 items it would usually be the same 10-items 

administered. There is a significant literature base that continues to question the 

applicability of questionnaires to measure certain constructs, suggesting the 

relationship between performance-based measures and questionnaire ratings is poor 

(Coutinho et al., 2017). It may be the CGI-CogS and the SCoRS are useful in the 

measurement of cognitive impairment or quality of life, but it is unlikely they are good 

measures, broadly speaking, of intelligence as conceptualised by CHC theory. 

Several studies throughout the review discussed the use of the Armed Services 

Vocational Aptitude Battery (AVSAB), or simulated different CATs using data from the 

AVSAB and thus only one source was retained. While the AVSAB has been found to 

possess a general factor (Ree et al., 1994), the test does include components that are 

often considered irrelevant to the measurement of general intelligence since they are 

taught skills. For example, the CAT-AVSAB includes ‘knowledge tests’ and ‘ability tests’ 

(Sands et al., 1997); subtests include coding speed, assembling objects, arithmetic 

reasoning, word knowledge, general science, paragraph comprehension, numerical 
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operations, automobile and shop information, mathematical knowledge, mechanical 

comprehension, and electronics information (Hartmann, 2006). Outside of the original 

CAT conceptualisation of the AVSAB, a multidimensional hierarchical CAT version of the 

AVSAB also only made use of four subtests measuring verbal and math abilities (Segall, 

2001). Many of the subtests across the AVSAB and its various versions are argued to be 

within the Reading-Writing (Grw), Quantitative Knowledge (Gq), and Domain Specific 

Knowledge (Gkn) domains. In contrast some researchers have argued that the AVSAB 

measures no more than Comprehension Knowledge (Gc) (Roberts et al., 2000) and if 

true, it matters not whether it is a CAT or not. Such achievement or knowledge-based 

tasks are rarely included as sole measures in cognitive ability tests; one only need look 

at the ongoing debates about construct irrelevant variance in the Wechsler scales’ 

arithmetic task (Flanagan & Alfonso, 2017) to become concerned about the AVSAB 

subtests. The AVSAB may have predictive validity for military service but is not applicable 

otherwise in the measurement of intelligence. 

The IRT model used to fit items and generate parameters for use in the CAT 

differed across sources. The Rasch Model (or 1PL) was clearly identified in most studies 

(n = 9) with the 3PL model the second most common (n = 3). GRM (n = 1), an unidentified 

MIRT model (n = 1), and GVLM (n = 1) were also used. In all other cases either no specific 

model was identified (n = 3) or the study referred to multiple models but did not indicate 

which model they ultimately chose (n = 1). It is not surprising that the 1PL model was 

the most utilised as it is the most known among researchers, and due to its specific focus 

on the difficulty parameter it is easy to compare items. It is also not surprising that the 

3PL is a runner up. This model is more lenient and allows researchers to include a 

guessing parameter; this is useful due to the high likelihood in cognitive ability and 



 

Chapter 2: Background and Literature 80 

academic achievement tests to become increasingly difficult and results in participants 

guessing. A review of models used in the journal Psychometrika and psychometric 

textbooks showed a similar pattern, with a Rasch/1PL frequency of 32.36% and a 3PL 

frequency of 22.55% (Kim et al., 2020). Despite the model choice in articles retained for 

this review, no sources identified why a certain model was applicable to their items or 

suitable for their CAT. Further research is required to demonstrate the suitability of 

different IRT models for cognitive ability CATs specifically, but it is likely this should be 

driven by theoretical factors rather than researchers’ familiarity with specific models or 

using whichever model ‘fits best’. 

In relation to starting item selection, sources were again varied. Most sources 

did not identify the method of first item selection (n = 10) but when they did the most 

utilised was the mean item difficulty (n = 4) or item closest to a θ of 0 (n = 1). This 

essentially means the CATs chose an item of moderate difficulty that was likely to have 

a 50% probability of success for the most amount of people the test was designed for. 

Other start item selection methods included random (n = 2), random from a specific set 

of ideal items (n = 1) or the start item was already specified (n = 2). Wouters and 

colleagues (2009) identified a set of items to administer initially because subsequent 

items rely on recall of other items. Konsztowicz et al. (2011) used a specific item to 

inform the selection of subsequent items. It is not unexpected that mean item difficulty 

and random item selection were utilised in a range of studies as CATs are known to be 

able to quickly recover from inappropriate starting items. 

Similarly, the stop rules for the CATs in each source varied. The stop rule was not 

identified for many sources retained (n = 7), but a maximum number of items to be 

administered (n = 5) or a minimum standard error (n = 5) were the most frequent. There 
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was also a mixture of stop rules (n = 3). de Beer (2005) and Wouters and colleagues 

(2009) utilised both a minimum SE or maximum number of items, while Sands et al. 

(1997) utilised a mixture of time limit, minimum SE, and a maximum number of items. 

Unfortunately, the only retained study that considered the difference in efficiency 

across different levels of a certain stop rule was Reise et al. (2011) who employed a 

range of different minimum standard error levels. Stop rules should be driven by the 

goal of the CAT, such as whether it aims to classify participants, accurately measure a 

participant’s position on a latent trait, or to track progress over time (Weiss, 2011). 

Despite this, there is opportunity supported by this literature review to evaluate the 

impacts of different stop rules on real computer adaptive tests, rather than in 

simulations. 

It was somewhat difficult to identify the item selection method for many of the 

studies retained. In some cases, this appeared to be because customised algorithms 

were used. However, MI (n = 8) and customised versions of MI (n = 3) algorithms 

appeared to be the most common. In other cases, the retained studies either did not 

refer to an identifiable item selection method (n = 7), a vague reference to Bayesian item 

selection (n = 1) or reported a ‘self-authored’ algorithm (n = 1). Again, despite a wide 

range of methodological studies (not included in this review) on item selection methods, 

there appears to be little variation (or consideration) of item selection methods in the 

utilisation of real CATs. 

The method used for θ estimation was the least identified characteristic in the 

reviewed studies (n = 12). Where they were identified, the Maximum a Posteriori (MAP; 

n = 2) and EAP (n = 3) were the most frequently used. Other mentioned estimation 

methods included ML estimation (n = 1), Owen Bayesian estimation (n = 1) and 
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Metropolis-Hastings Robbins-Monro (n = 1). Some studies suggest that there is little 

difference in outcomes between MAP, MLE and EAP and the choice between the three 

differs based on unique characteristics of the test and items (Chen et al., 1998; Chen et 

al., 1997). 

Some articles failed to include enough details to fully understand the 

appropriateness or performance of the CAT, and the way in which it was designed. For 

example Balas-Timar and Balas (2009) employed a CAT version of the Multidimensional 

Aptitude Battery – II (MAB-II) with a focus on ‘Fuzzy Logic’ to improve ability estimation; 

the authors provided a descriptive discussion of the decisions a CAT designer should 

make relating to item pools, starting points, item selection, score estimation and CAT 

termination, however they did not indicate what choices they made for any of these for 

their CAT version of the MAB-II. Searches of reference lists, Google and databases failed 

to produce any results about an accessible MAB-II CAT, making it unlikely that schools 

or other organisations could implement such a platform in their practices. For the MAB-

II, a relatively common tool, making these characteristics known could enhance the 

future of CAT research, the use of a MAB-II CAT, or enable replication of this research. If 

studies continue to omit details of their CATs, an organisation will have to develop their 

own CAT to implement or rely on a proprietary solution that is unlikely to have 

independent peer-reviewed evaluation. Existing mainstream paper-based cognitive 

ability tests used by psychologists in Australia benefit from a wide range of research and 

evaluation, and without the same level of investigation CATs will fail to become 

mainstream tools for psychologists and educators despite their many advantages. 

Despite frequent claims in the literature that IRT and CAT are widely used in 

cognitive ability testing, the current review suggests otherwise. When focusing on 
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measures of cognitive ability, some CAT tools do exist in the literature, but they 

generally focus on the use of intellectual ability as part of a larger study rather than 

being the focus. Further, the gaps in the literature suggests the use of CATs for cognitive 

ability measurement is particularly limited in Australia. This is unsurprising given that 

“only 4% of IRT abstracts mentioned terms related to computerized adaptive testing” 

(Thomas, 2019, p. 1447). It appears CATs have largely been adopted by organisations in 

a proprietary manner for personnel selection in military and business environments. 

Ultimately there appears to be no comprehensive CAT exists that can be utilised in 

schools or by psychologists in their day-to-day practice that relies on CHC theory. 

2.17 Conceptualising a CAT Screening Tool 

In Australia, cognitive ability is measured by organisations, psychologists, and 

teachers to assist with understanding job performance, academic concerns, response to 

trauma, and people’s development. Australia has begun to see shifts in academic 

measurement via CATs (ACARA, 2016). However, excluding organisational or research 

specific tools, there does not appear to be a tool that measures cognitive ability from 

the perspective of CHC theory while also using CAT technology. Such a gap poses 

interesting areas for research that could have significant implications for psychologists 

and teachers in Australia. 

The following studies detail the development and evaluation of a CAT using items 

developed in recent research. Without the ability to rely on decades of copyrighted item 

development, or significant organisational or publisher capital, the development of CAT 

aims to be a screening tool for identification of children or adults with deficits in overall 

intellect or specific cognitive abilities. Such a tool is more useful for assistance in 

referring students and adults with potential traumatic brain injuries, domain specific 
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deficits, or generalised learning difficulties for further comprehensive evaluation. As an 

entirely new set of items is being developed, it is believed that further research following 

this thesis would be required before the CAT could be relied upon for high stakes 

decision making or be used in measuring specific ability strengths and weaknesses. 

Four stages of research were carried out. For the first stage an Item Tryout Study 

(ITOS) was conducted. This investigated the operationalisation of CHC abilities known to 

be important to measurement of overall cognitive ability as well as related to academic 

outcomes, with associated item development for initial administration to participants. 

As a completely new tool there was no reliance on previous psychometrics of older items 

and as such very conservative psychometric analyses were carried out. In order to access 

many participants, large samples of adults were recruited via social media; this had 

disadvantages in terms of participant drop out and possible motivation, guessing, and 

distraction issues, however it allowed a large number of participants to be quickly 

exposed to significant numbers of items. As IRT is largely probability based, it was 

believed that this would be suitable for an ITOS. The second stage, Item Calibration 

Study (ICS), involved taking the outcomes of the initial ITOS to develop new items, adjust 

previous items, and attempt administration of items to both adults (via social media) 

and school aged participants (via supervised visits to their school) in a planned manner 

to achieve more robust psychometric outcomes, with a focus on IRT analysis. The third 

stage, CAT Simulation, involved using the Rasch item parameters from the ICS and 

simulating the CAT with 5,000 simulated participants with a wide range of abilities; a 

focus was placed on performance of the CAT when allowing for different levels of SEM. 

The fourth stage, Validity, took the school aged participants from the ICS, who had also 

been administered the WISC-V, and analysed the convergent validity between tools. 
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With these stages taken together it was believed that this thesis would form an 

innovative pilot study into the feasibility of a CHC-CAT screening tool using CHC abilities 

known to be important to learning. 

The goal of this project was to design a CHC-CAT screening tool that was 

transparent in its design, that the methodology of design was pre-determined, and post-

hoc analysis and decision making was avoided where possible. As an exploratory 

research project, the following research aims were formulated: 

1. Evaluate and calibrate a set of items using CTT and IRT methods to 

identify four sets of items that measure cognitive ability in line with the 

CHC theory of abilities. 

2. Simulate a CAT using known Rasch item parameters to explore the 

efficiency of such a tool. 

3. Compare and contrast the outcomes of the WISC-V with scores from item 

sets derived from the current project. 

By addressing these research aims it was hoped that we could establish a solid 

foundation for future research into an open-source CAT that measures cognitive ability 

based on CHC theory; such a tool can continue to be iteratively developed, improved 

and ultimately implemented in a variety of contexts.  
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Chapter 3: Item Tryout Study 

3.1 Introduction 

The first stage of the research to develop a ‘CHC-CAT’ screening tool was to build 

a set of items and evaluate these in an Item Tryout Study (ITOS). While such a procedure 

is common in the development of psychological inventories and educational tests, there 

appears to be little in the way of a formalised procedure other than general guidelines, 

or what previous studies have conducted. Additionally, commercial publishers tend to 

not make their item design phase publicly available for scrutiny, making it difficult to 

design items in a manner that follows procedures of mainstream cognitive ability tools. 

The overall goal of the ITOS was to build item pools for new tests from which an 

item calibration study could be conducted; this involved trialling items and identifying 

potential problems and strengths with item design and psychometrics based on 

participant performance. Because we did not have an original set of items like other 

tools such as the Woodcock-Johnson (WJ) or Wechsler Intelligence Scale for Children 

(WISC) batteries (due to their multiple editions), we were unable to develop a set of 

“carefully selected linking items” (McGrew et al., 2014, p. 48). Therefore, the ITOS in this 

thesis evaluated the psychometric characteristics of a set of items recently developed 

as a pre-cursor to this project; items were designed to measure Lexical Knowledge 

(Gc:VL), Induction (Gf:I), Visualisation (Gv:Vz) and Working Memory (Gwm:Wc) as these 

are core abilities known to be important to learning (Flanagan et al., 2012). Because the 

goal of this thesis was to focus on technical application of CAT rather than attempting 

inform CHC theory, there is a focus on the theoretical underpinnings of the items 

developed early in this chapter, but not necessarily a continued focus on how the 
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psychometrics support CHC theory. This is partially accounted for when looking at 

convergent validity with the WISC in a later chapter; if the current tool correlates with 

the WISC, a tool that aligns with CHC theory, then it can be assumed that the current 

items align similarly well with CHC theory. It is anticipated that after the ITOS, items will 

be calibrated and additional items developed, and a more comprehensive study of the 

items will be conducted. 

3.2 Chapter Aims 

This chapter consists of a secondary analysis of existing data gathered during 

four Master of Psychology projects. These projects were supervised by me and Dr Shane 

Costello. As part of these projects each Master of Psychology candidate (John Maguire, 

Elizabeth Kennedy, Adalyn Heng, and Sarah Fleming) wrote a literature review about 

their construct of interest, and a subsequent research report about the outcomes of the 

data analysis. After the four Master of Psychology candidates finalised their theses, 

additional data collection was conducted by me, and thus analyses detailed below will 

differ from their original outcomes. 

Each project individually focused on one of four CHC narrow abilities; Lexical 

Knowledge, Induction, Visualisation, and Working Memory. These abilities were chosen 

as they are an integral aspect of many mainstream cognitive ability tests (i.e. WISC-V, 

WAIS-IV, WJ IV COG) and significant bodies of research suggest they are either 

significantly correlated with academic achievement, or are considered intermediary 

abilities within the most recently published CHC taxonomy (Schneider & McGrew, 2018). 

Items were therefore developed in line with these tools and prior theory. 

Items for Lexical Knowledge were conceptualised and sourced by John Maguire; 

audio files for these items were sourced by the current PhD thesis author via a third-



 

Chapter 3: Item Tryout Study 89 

party contractor. Items for Visualisation were conceptualised and developed by Adalyn 

Heng and a third-party contractor completed the graphic design for these items. Items 

for Induction were conceptualised and developed by Sarah Fleming. Items for Working 

Memory were conceptualised and developed by Elizabeth Kennedy, with the graphic 

design completed by me. A significant focus of the Master of Psychology theses was the 

theory underpinning item development and thus only brief details of the item 

development are within this PhD thesis; the current thesis focuses on the application of 

CHC theory, Item Response Theory (IRT) and CAT, rather than a discourse on the nature 

of each CHC narrow ability.  

As well as contributing significantly to the original item development, I also 

present new ideas, new ideas, analysis, and methodology in the current chapter. I wrote 

the R code that completed the analysis (github.com/jakekraska/phd), the supplemental 

HTML, CSS and JavaScript code required for the testing platform to work with our items 

(Concerto, discussed below), authored the ethics application and assisted with item 

development for all four constructs. For the current chapter the data analysis was 

standardised across all four constructs to ensure consistency of approach; this was an 

effort to align the analysis of existing data in this chapter with the philosophy of Open 

Science discussed earlier in this thesis (Section 1.3). That is, a standard methodology for 

analysis of all item sets was developed and statistical cutoffs were consistently applied 

to avoid “hypothesising after the results are known” (Kerr, 1998, p. 197).  

3.3 Method 

3.3.1 Participants 

The entire sample collected consisted of 2,776 participants. These participants 

were recruited through paid Facebook advertisements, distribution of a link 



 

Chapter 3: Item Tryout Study 90 

(chctest.com.au) on social media websites, a Facebook page (facebook.com/chctest) 

and via snowball recruitment. Participation was voluntary and no inducement was 

provided. Ethics approval was gained from the Monash University Human Research 

Ethics Committee (Project 13912). 

Data was cleaned, organised, and recoded using the dplyr (Wickham et al., 2019), 

tidyr (Wickham & Henry, 2019), stringr (Wickham, 2019), tibble (Müller & Wickham, 

2019) and knitr (Xie, 2015) packages, via R v.3.6.0 (R Core Team, 2019) within the R 

Studio Integrated Development Environment v.1.1.456 (R Studio Team, 2015).  

Data with missing demographics was removed from the data set. Only 47 (1.69%) 

participants identified as a gender other than male or female and were removed to 

ensure that differential item functioning analysis could be conducted with confidence. 

As this stage of the research consisted only of adults, removal of those under the age of 

18 and over the age of 90, reduced the participant count by 38. After this data cleaning, 

2,691 participants remained. There were 1,428 females (53.1%) and 1,263 males 

(46.9%).  

Items that the participant did not complete within the item time limit were 

scored as 0. Items that the participant did not complete were also marked as incorrect 

which is in line with non-adaptive paper-based tests when individuals reach the ceiling. 

Given that the difficulty of each item is uncertain, the desired linear order of the items 

is unknown and as such it is acknowledged this was a strong assumption to make. 

Each of the 2,691 participants were able to select which item sets they would 

like to complete, resulting in varying numbers for each item set. Because the data was 

collected largely through social media and administered online without supervision (i.e. 

unproctored), three steps were taken with each item set to improve the robustness of 
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the data. Firstly, participants aged below the minimum (Q1 – 1.5 * IQR) and above the 

maximum (Q3 + 1.5 * IQR) were removed. The mean age was 47.44 (SD = 16.47); 

participants were split across 7 age groups (Figure 3-1). Using a boxplot (Figure 3-2) no 

outliers were identified. Secondly, participants that were below the 5th percentile or 

above the 95th percentile in terms of time taken for the item set were removed. Thirdly, 

participants that obtained all items correct or all items incorrect were removed to assist 

with Mokken scaling. While these steps are quite conservative, and produced a data set 

with less variability, it enabled full-case analysis. A summary of the steps, and a summary 

of demographics, is in Table 3-1. 

3.3.2 Materials 

3.3.2.1 Test Platform.  The platform used to host the ITOS was Concerto 

v.5.0.beta.7.2 (Lis, 2018). Concerto is an open-source online adaptive testing platform 

first described in the literature by Scalise and Allen (2015). This was used because it has 

CAT capabilities. By using this platform, it was hoped that there will be a reduction of 

aesthetic changes and functionality across future research. Additionally, this platform 

allowed for significant customisation of item format and web page presentation utilising 

HTML, CSS, and JavaScript. 

The Concerto Platform allows a test designer to use nodes to create a test flow 

of differing components (Figure 3-3). For the current study, the test flow was linear in 

nature; participants were required to review the explanatory statement, enter basic 

demographic information, select the subtest(s) they wished to participate in, then items 

were presented in a sequential order. Participants were given feedback about their 

performance on each of the constructs at the end of each subtest. Using a mouse to 

select response options reduced the impact of writing or verbalisation difficulties. 
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Figure 3-1. Participant Age by Group 

 

Figure 3-2. Age Outliers 

 

 

 

Table 3-1. Data Cleaning Stages and Demographics 

 Gc:VL Gf:I Gv:Vz Gwm:Wc 

Initial n 1241 673 889 529 

Data Cleaning     

 Gender/MD1 21 12 11 8 

 Age Outliers 0 0 0 0 

 Time Outliers 122 66 88 52 

 Score Outliers 20 1 4 9 

Final n 1078 594 786 460 

Gender2     

 Male 497 (46.1%) 250 (42.1%) 353 (44.9%) 181 (39.3%) 

 Female 581 (53.9%) 344 (57.9%) 433 (55.1%) 279 (60.7%) 

Mean Age2 (SD) 47.27 (15.84) 46.69 (15.30) 45.78 (16.01) 46.21 (15.41) 

Note. 1MD = Missing Data; 2After removal of outliers 
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Figure 3-3. Example of Concerto Nodes 

 

Note. This demonstrates the separate nodes of Concerto. Each node represents a step that a participant flows through, sometimes associated with test materials, and at 
other times associated with backend calculations or storage of data in the Concerto database. 
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3.3.2.2 Item Development and Validity. Overall, the goal of test validation is to 

ensure the items are valid and measure what they are intended to measure. Downing 

and Haladyna (1997) argue there has been too much emphasis on the statistical 

evidence at a test level, and that an “ideal process for item validation” begins with a 

“careful and systematic approach to the task of creating test items” (p. 63). Downing 

and Haladyna highlight the need to focus on both qualitative and quantitative evidence. 

Much of the qualitative evidence that items within this study are valid are within the 

early research that established items prior to this PhD. The quantitative evidence will be 

established in the results and discussion of this chapter and following chapters. 

The goal of the initial item development was to design items that could 

categorise participants into those that possess below average ability and those that 

possess average ability. Little focus was placed on the design of items that were 

significantly difficult. As discussed in the prior chapter, IRT assists in the development of 

invariant items that have quantifiable difference in their level of difficulty. It is possible 

to design items across the spectrum of difficulty. While ethical challenges (discussed 

further below) resulted in initial items being administered only to adults, initial items 

were designed with the developmental trajectory of children in mind. 

3.3.2.3 Lexical Knowledge. The initial set of Lexical Knowledge (Gc:VL) items were 

conceptualised in Maguire (2018). To develop these items mainstream tests of Lexical 

Knowledge were analysed, including the Wechsler scales and WJ batteries. Items were 

developed to reflect increasingly complex vocabulary words. Each item had a stimulus 

word and corresponding audio presentation of a female voice saying that word. Each 

item consisted of four response options for the participant to choose from. Qualitative 
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evaluation of these items by three co-researchers and two research supervisors 

indicated these items aligned well with the CHC theory of intelligence; the items each 

tested participants’ “knowledge of the meaning of words and their underlying concepts 

acquired through reading and listening” (p. 13). All items had a 30 second time limit to 

reduce opportunities to cheat as well as to reduce the overall test time. CSS and HTML 

coding was utilised to restrict the maximum width of images to 300 pixels while maintain 

the aspect ratio of the image (Figure 3-4).  

Figure 3-4. Example of Gc:VL item from Maguire (2018) 

 

Maguire (2018) analysed modern test batteries (e.g., WISC-V, WJ IV, PPVT) to 

develop items that reflected difficulty and content of other subtests that measure 

Lexical Knowledge. Due to the desire to develop an automated test, it was important to 

develop items that had minimal language demands. Stimuli for visual representation of 

words was sourced from ‘creative commons’ or ‘available for commercial reuse’ images 



 

Chapter 3: Item Tryout Study 96 

on the Internet, and the same female voice was recorded for each word. The 

combination of the auditory and visual stimuli avoids the impact of reading/language 

difficulties and differentiates the task from subtests such as the WISC-V Vocabulary, 

WISC-V Similarities and WJ IV Oral Vocabulary which require a face-to-face examiner. 

3.3.2.4 Induction. The initial set of Induction (Gf:I) items were conceptualised in 

Fleming (2018). Like other types of matrices tests the items were built on the underlying 

principle of Induction in cognitive ability tests (i.e., the participant detecting the rule for 

a problem and then applying that rule to determine the missing component). The 

implementation of this resulted in 33 items that had varying matrix sizes (5 x 1, 2 x 2, 4 

x 1, 3 x 3 and 4 x 2). Each matrix had four to six response options (e.g., Figure 3-5). Items 

1-15 had a 30 second time limit and items 16-33 had a 60 second time limit. 

Figure 3-5. Example of Gf:I item from Fleming (2018) 

 

3.3.2.5 Visualisation. The initial set of Visualisation (Gv:Vz) items were 

conceptualised in Heng (2018). In conceptualising items, a wide variety of previously 

developed measures were consulted, including the Revised Minnesota Paper Form 

Board Test, Mental Rotation Test, Paper Folding test, Wechsler scales, WJ batteries, and 

the Differential Aptitude Test: Space Relations. The resulting items consisted of a 
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completed shape and puzzle pieces for which the participant needed to determine if the 

completed shape could be constructed from the pieces; they then selected a ‘same’ 

button and if they thought that it could not then they selected a ‘different’ button. To 

increase difficulty four variables were manipulated: (1) number of pieces, (2) rotation of 

puzzle pieces, (3) complexity of shapes and (4) internal cues (Figure 3-6). Heng 

developed 52 items of varying difficulty with a time limit of 30 seconds per item. 

Figure 3-6. Difficulty variation of Gv:Vz items in Heng (2018) 
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3.3.2.6 Working Memory. The initial set of Working Memory (Gwm:Wc) items 

were conceptualised in (Kennedy, 2018). Kennedy stated that the items were “heavily 

influenced by Engle and Kane’s (2004) dual-component model of working memory, 

which emphasises that working memory involves the ability to conduct a cue dependent 

search for recently activated information” (p. 16). While Kennedy’s item difficulty was 

based on the Verbal Attention subtest in the Woodcock-Johnson IV Tests of Cognitive 

Abilities which uses a former model of CHC (i.e. Schneider & McGrew, 2012) that placed 

less emphasis on attentional control (as discussed in Section 2.5), this item format aligns 

well with the newer conceptualisations of the narrow abilities within Working Memory 

(i.e. Schneider & McGrew, 2018). That is, these items require both Attentional Control 

(Gwm:AC) and Visual-Spatial Short Term Storage (Gwm:Wv) in order to measure 

Working Memory (Gwm:Wc).  

Figure 3-7. Example of Gwm:Wc item from Kennedy (2018) 
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Thirty-eight items were developed utilising a sequence of random numbers and 

colours in a GIF (Graphic Interchange Format; a type of lossless image with multiple 

frames). Each GIF was made up of frames that included each number or colour. An 

example is in Figure 3-7. Each individual frame was presented for 1 second, with the 

question frame showing until the time limit of the item was reached (40 seconds). Due 

to limitations in the version of Concerto, answer responses were available as text and 

visible during the presentation of the GIF. 

3.3.3 Procedure 

Participants were able to access the Concerto platform via a link on any 

electronic device of their choosing, at a time of their convenience. The Concerto 

platform was hosted via an Amazon Web Service Elastic Compute Cloud t2.micro server; 

the server utilised Ubuntu and Concerto was installed via the recommended instructions 

provided by the Concerto developers. All recruitment was complete online as per the 

Participants section.  

3.3.4 Data Analysis 

The data analysis for this study can be found on GitHub 

(github.com/jakekraska/phd). Approximately 1,300 lines of R code were written. 

3.3.4.1 Software. The analysis in this study was conducted using R v.3.6.0 (R Core 

Team, 2019) within the R Studio Integrated Development Environment v.1.1.456 (R 

Studio Team, 2015). Packages used for the analyses are specified below.  

3.3.4.2 Reliability. The reliability of each CHC item set was measured using the 

Cronbach alpha statistic (Cronbach, 1951) for each set of items. Cronbach’s alpha is a 

measure of internal consistency, which is argued to represent how well all the items are 

https://github.com/jakekraska/chctest
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measuring the same underlying construct. As discussed in earlier sections of this thesis 

this statistic is largely used in Classical Test Theory (CTT); while it is unlikely subsequent 

chapters in this thesis will make a strong attempt to improve the Cronbach’s alpha (as 

items at the extreme ends of difficulty are likely to reduce Cronbach’s alpha but are 

required for effective CATs), it is a useful diagnostic tool for this stage of the research. 

There is a significant literature base on the interpretation of Cronbach’s alpha, and this 

study classified .7 and above as good (Pallant, 2011; Tavakol & Dennick, 2011). Given 

the goal is to develop each item set to measure a wide range of ability, a very high 

Cronbach’s alpha would suggest the items are too closely correlated and thus too 

similar. In contrast, a very low Cronbach’s alpha may suggest problems with 

unidimensionality. 

Reliability analysis was completed using the psych package, v.1.8.12 (Ravelle, 

2018) for R. 

3.3.4.3 Confirmatory Factor Analysis. Confirmatory factor analysis (CFA) was 

completed to ensure that each item set was unidimensional in preparation for IRT 

modelling. Five fit indices were utilised: the chi-square statistic (Bollen, 1989), the 

Comparative Fit Index (CFI; Bentler, 1990), the Tucker Lewis Index (TLI;Tucker & Lewis, 

1973), the Root Mean Square Error of Approximation (RMSEA; Browne & Cudeck, 1992) 

and the Standardised Root Mean Square Residual (SRMSR; Hu & Bentler, 1999). This is 

a balanced selection of fit indices (Beaujean, 2014) that rely on comparison with the null 

model (incremental indexes), fit indexes that take into consideration model complexity 

(parsimony indexes) and models that measure the absolute fit of the model (absolute 

indexes). As all fit indices have a range of strengths and weaknesses, no singular index 

was relied upon in isolation. 
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The chi-square statistic has been found to be biased for large samples, so several 

cutoff criteria is relied upon for other fit indices. The CFI and the TLI measured whether 

the designated model fit the data better than a restricted model, with greater than .9 

considered an acceptable fit (Hu & Bentler, 1999). Some authors argue the RMSEA is 

more appropriate than the CFI for confirmatory analyses (Rigdon, 1996). The RMSEA 

statistic determines how closely the model replicates covariances, with values below .01 

considered excellent, .05 considered good and .08 considered mediocre (MacCallum et 

al., 1996). The SRMR represents the average discrepancy between an implied 

correlation matrix and the observed correlation matrix; a value less than .08 is 

considered good (Hooper et al., 2008). 

The extant literature recommends a sample of anywhere between 250 to 500 

participants (Lewis, 2017) to provide adequate power to a CFA. Each item set in the 

current study meets this requirement, with working memory displaying the lowest 

participant count at 529. 

CFA was carried out using the lavaan v0.6-3 package (Rosseel, 2012) for R, relying 

on the diagonally weighted least squares (DWLS) estimator. 

3.3.4.4 Mokken Analysis. Mokken analysis was carried out to determine if the 

items fit a Mokken scale, which assumes unidimensionality and an increasing level of 

the underlying trait (known as monotonicity). Mokken scale analysis was originally 

designed for dichotomous items (Mokken, 1971) and was extended into polytomous 

items by Molenaar (1991). Unlike a Guttman scale (Stouffer et al., 1950), which assumes 

that if a respondent answer correctly/positively towards one item, that they will have 

answered a lower difficulty/level item positively, a Mokken scale assumes that a 

respondent is more likely to answer in this pattern. The analysis produces a Loevinger’s 
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H value (Loevinger, 1948). Items that receive a Loevinger H value of below 0.3 lack 

scalability, between 0.3 and 0.4 indicates weak scalability, between 0.4 and 0.5 to have 

moderate scalability, and values over 0.5 suggest good scalability (Ligtvoet et al., 2010; 

Sijtsma & Meijer, 1992). When item shave good scalability this means that items can be 

predictability ordered. 

Mokken analysis was carried out using the mokken v.2.8.11 package (Van der 

Ark, 2007, 2012) for R.  

Straat et al. (2014) suggests that for scales with high quality items, Mokken scale 

analysis can be carried out if N > 250. Automatic item selection procedures (AISP) also 

perform well with small samples. It is proposed that as each item set is grounded in solid 

CHC theory, it is unlikely the Mokken scale analyses in this study misclassified items. 

3.3.4.5 Rasch analysis. The data was analysed using the Rasch model (Rasch, 

1960). The Rasch model provides difficulty parameters for n response categories (bn; see 

Figure 3-8). That is, each level of theta (θ) is associated with a different probability of a 

person getting that question correct. Other parameters (i.e., guessing, discrimination) 

are held stable within the Rasch model. The diagnostics used within the Rasch modelling 

considered test-level and item-level measures, with fit statistics somewhat like that 

utilised in structural equation modelling. The model fit of individual items was evaluated 

with the M2 statistic (Maydeu-Olivares & Joe, 2006), the CFI (Bentler, 1990), the TLI 

(Tucker & Lewis, 1973), the RMSEA index (Browne & Cudeck, 1992) and the SRMR index 

(Hu & Bentler, 1999). Items that displayed a p value below .01 were removed from the 

item sets as this indicated they did not sufficiently fit the Rasch model. 

Marginal reliability was also evaluated for each item set. This is a reliability 

estimate of the item set based on the standard error of measurement (SEM) of 
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respondents given variable test lengths (Sireci et al., 1991). As all participants in this 

stage of the research completed a linear test comprising of all items, it is expected the 

marginal reliability would be like Cronbach’s alpha. 

Figure 3-8. Sample ICC with items of increasing trait level or difficulty 

 

3.3.4.6 Local independence. Yen’s Q3 method of correlated residuals (Yen, 1993) 

was used to test the local independence of items. While item residual correlations above 

.20 are usually considered indicative of local dependence between items, some authors 

suggest that no singular critical is appropriate for all situations (Christensen et al., 2017). 

Utilising the outcomes of these simulation studies, a more conservative cutoff of .1 was 

set. The information curves of items with local dependency were analysed, and items 

with lower information removed. Local independence was analysed using the stats 

version 3.5.1 package for R (R Core Team, 2018). 
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3.3.4.7 Differential item functioning. Invariance in the item parameters across 

different sample characteristics was assessed using differential item functioning (DIF). 

DIF occurs when the probability of endorsing an item or getting an item correct is 

different for people with different demographic characteristics (Holland & Wainer, 

1993; Thissen et al., 1993). Such demographic characteristics can include gender, age, 

occupation, income, and education. DIF analysis was carried out in the current sample 

using gender, occupation, and education.  

As there were too few endorsements of each response category across all 

demographics, the DIF analysis utilised collapsed demographic categories. Employment 

was broken down into ‘Not Employed’ and ‘Employed’ while education was broken 

down into ‘Non-Tertiary Education’, ‘Tertiary Education’ and ‘Postgraduate Education’. 

Gender remained as ‘Female’ and ‘Male’. 

The DIF analysis was conducted using the lordif v.0.3-3 package for R (Choi et al., 

2016). 

3.3.4.8 Item analysis and removal sequence. For each construct, items were 

analysed and removed iteratively. First, reliability analysis was conducted. CFA and 

Mokken analyses were conducted together and items that appeared to violate the 

assumption of unidimensionality or monotonicity were removed. After this, Rasch 

modelling and local independence analyses were conducted together. Items that were 

found to be locally dependent or that did not fit the Rasch model were removed. This 

process was run a maximum of four times to avoid unnecessary levels of analysis for an 

ITOS. It is believed this was a conservative approach and provided an appropriate 

balance of CTT and IRT considerations. This provided evidence that the items fit the 
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proposed model and measured varying levels of difficulty for each trait. Once a stable 

item set was identified, marginal reliability analysis and DIF were conducted. 

3.4 Lexical Knowledge Results 

3.4.1 Raw Score Outcomes 

A high proportion of items were answered correctly by over 90% of the 

participants, with only five items answered correctly by less than 70% of participants 

(Figure 3-9). The mean time taken to complete the test was 460 seconds (SD = 120 

seconds), and generally those that took over 300 seconds scored between 50 and 55 

items correctly (Figure 3-10). The mean total score was 48.27 (SD = 9.19). Together these 

findings suggest the items were generally easy for participants, with only a couple of 

items considered moderate to high difficulty. As all items were presented in the same 

format, difficulty was purely a function of the item stimuli and the response options. 

There was no significant difference between females and males on total score, 

t(991) = 0.75, p = .45, 95% CI [-0.69, 1.54], or time taken, t(1015) = 1.28, p = .20, 95% CI 

[-5.00, 23.91]. This is illustrated in Figure 3-11 and Figure 3-12. These results also suggest 

there were similar dropout rates among males and females. 

3.4.2 Reliability 

Cronbach’s alpha for the Lexical Knowledge items was .97. This suggests the 

items have good internal consistency. 

3.4.3 Item Analysis 

Fit indices for the CFA, Loevinger’s H values, and Rasch modelling fit indices are 

in Table 3-2. Item level statistics are in Appendix A and Appendix B. The item analysis 

began with the full 55-item set and items were iteratively removed based on outcomes 

of a CFA sequence, Mokken Analysis, Rasch modelling and local dependency analyses. 
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Figure 3-9. Gc:VL ITOS Percentage of Items Correct 

 

Figure 3-10. Gc:VL ITOS Total Score by Time Taken 
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Figure 3-11. Gc:VL ITOS Gender by Total Score 

 

Figure 3-12. Gc:VL ITOS Gender by Time Taken 
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3.4.3.1 55-items. The fit indices for the initial 55-item model did not meet the 

threshold considered to be acceptable for any of the indices. At an item level the CFA 

suggested that all items load significantly on the same factor except items 1 and 3. There 

was large variation in the size of the standardized betas but only 8 items displayed 

standardized betas below .30. Items 1 and 3 were removed prior to Mokken analysis. 

3.4.3.2 53-items. After the removal of items 1 and 3, there appeared to be little 

improvement in the CFA fit. The overall Loevinger’s H value for the 53-item model 

suggested the item set had good ordering. Only items 2, 4, 5, 6 and 51 displayed 

Loevinger’s H values below .50, with only item 2 being below .30. Items 2 and 52 were 

determined to be unscalable (i.e. received a 0 in the AISP) but no items were determined 

to be on different Mokken scales. A decision was made to remove items 2 and 52. 

3.4.3.3 51-items. The CFA and Mokken analysis outcomes of the 51-item model 

were quite like that of the 53-item model. Subsequent Rasch modelling found that while 

RMSEA indicated a mediocre fit with the Rasch model, and the TLI and CFI indicated an 

acceptable fit, the SRMR index was well above the desired cutoff. Item level statistics 

revealed that 30 items did not fit the Rasch model. A high amount of local dependence 

was detected within the items. Due to the low difficulty of items identified earlier, 40 

items were removed in a sequential order starting from the lowest item number. Five 

items were then removed for displaying misfit with the Rasch model. 

3.4.3.4 6-items. For the 6-item model the CFA produced acceptable fit indices 

and all items displayed standardized beta values above .4. Mokken analysis continued 

to suggest there was good ordering of items; all items demonstrated appropriate 

Loevinger’s H values and continued to remain on the same Mokken scale via AISP. One 
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item continued to display low fit with the Rasch model; due to the low number of items 

remaining and the pre-determined limit of four iterations of analysis, this was not 

removed. No local dependency was evident in the final six items remaining. Marginal 

reliability was .41 (and Cronbach’s alpha analysis resulted in an alpha of .76) suggesting 

that there may not be enough numbers of items remaining to reliably measure Lexical 

Knowledge in participants. Item characteristic curves (ICCs) are in Figure 3-13 and the 

Test Information Curve (TIC) is in Figure 3-14. Difficulty parameters are in Table 3-3. 

3.4.4 Differential Item Functioning 

DIF for gender was flagged for items 39 (“Subterranean”) and 48 (“Artichoke”). 

This was determined to be negligible; only a small probability of difference was evident. 

Table 3-2. Gc:VL CFA Fit, Mokken Analyses and Rasch Analyses 

 55 items 53 items 51 items 6 items 

CFA Fit Index     

  χ2 18477.01*** 18252.99*** 17764.77*** 22.68** 

  CFI .699 .701 .705 .991 

  TLI .688 .689 .693 .985 

  RMSEA .105 .109 .112 .038 

  SRMR .089 .091 .092 .019 

Mokken Analysis     

  Loevinger’s H - .728 .740 .544 

  Standard Error - .026 .026 .026 

Rasch Analysis     

  M2 - - 6353.81*** 116.85*** 

  RMSEA - - .061 .083 

  SRMR - - .333 .119 

  TLI - - .985 .953 

  CFI - - .985 .956 

Marginal Rxx - - .692 .413 

Note. *p < .05; **p <0.01; ***p < .001 
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Figure 3-13. Gc:VL ITOS Rasch ICCs 

 

Figure 3-14. Gc:VL ITOS Rasch TIC 

 

Note. Six items were retained for the Gc:VL test with a peak at approximately -2 theta. 

Table 3-3. Gc:VL ITOS Rasch Item Parameters 

Item Difficulty (b) 

39 (Subterranean) -2.27 

46 (Lintel) -0.92 

48 (Artichoke) -3.22 

49 (Ovine) 0.33 

50 (Apiarist) -2.13 

55 (Thylacine) -2.17 

Note. These are traditional/classical IRT parameters 

3.5 Induction Results 

3.5.1 Raw Score Outcomes 

The first 11 items were all answered correctly by over 90% of participants, while 

subsequent items showed a significant decline; 17 items were answered correctly less 

than 60% of the time. The mean score for the sample was 20.49 (SD = 4.09). This is best 

demonstrated by Figure 3-15. Generally, as people took more time to complete the 

items, their overall performance improved (Figure 3-16).  

There was no significant difference between females and males on total score, 

t(507) = -0.69, p = .49, 95% CI [-0.91, 0.44] (Figure 3-17), or on time taken t(520) = 0.53, 
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p = .59, 95% CI [-21.033, 36.60] (Figure 3-18). These results also suggest there were 

similar dropout rates among males and females. 

Because of the significant drop in performance after item 11 two additional 

analyses were conducted to determine if there were differences in performance on 

certain types of Induction items. Items were classified by their matrix type (5 categories) 

and the amount of response options (3 categories). This is displayed in Table 3-4. Items 

were then additionally classified based on whether they were provided 30 seconds or 

60 seconds (Table 3-5). Three approaches to determining possible differences in items 

were attempted; an ANOVA followed by two separate logistic regressions. 

Table 3-4. Gf:I ITOS Item Classification 

 4 Options 5 Options 6 Options 

5 x 1 Matrix 6 items 3 items 0 items 

2 x 2 Matrix 9 items 0 items 0 items 

4x1 Matrix 4 items 0 items 0 items 

3x3 Matrix 0 items 5 items 3 items 

4x2 Matrix 0 items 3 items 0 items 

 

Table 3-5. Gf:I ITOS Item Frequency Table 

Item Type 30 seconds 60 seconds 

5x1 Matrix 4 Response Options 4 items 2 items 

2x2 Matrix 4 Response Options 7 items 2 items 

4x1 Matrix 4 Response Options 3 items 1 item 

3x3 Matrix 5 Response Options 1 item 4 items 

3x3 Matrix 6 Response Options 0 items 3 items 

4x2 Matrix 5 Response Options 0 items 3 items 

5x1 Matrix 5 Response Options 0 items 3 items 
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Figure 3-15. Gf:I ITOS Percentage of Items Correct 

 

Figure 3-16. Gf:I ITOS Total Score by Time Taken 
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Figure 3-17. Gf:I ITOS Gender by Total Score 

 

Figure 3-18. Gf:I ITOS Gender by Time Taken 
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An unbalanced Two-Way ANOVA using Type II (Yates method of fitting constants) 

was used (Langsrud, 2003) based on the percentage of participants that obtained a 

correct item as the dependent variable, and the combined item type and number of 

seconds allowed (as per Table 3-5) as independent variables. The analysis is considered 

unbalanced as there is an uneven number of items in each cell. This analysis was run 

utilising the ANOVA function in the car v.3.0-2 package for R (Fox & Weisberg, 2011). 

The interaction effect between item type and time allowed was not significant, F(3,22) 

= 1.90, p = .15, nor was there a significant main effect for item type, F(6,22) = .97, p = 

.46, or time allowed, F(1,22) = 3.46, p = .08. 

A factorial logistic regression (Table 3-6) was carried out with items categorised 

by matrix and response options separately (i.e., correct ~ matrixtype + responseoptions 

+ timeallowed). The model includes dummy variables for each matrix type contrasted 

against the 5x1 Matrix item type, for each number of response options against the 

smallest amount (4 options), and for time allowed to respond to a question (30 seconds).  

Table 3-6. Gf:I ITOS Item Format Logistic Regression 

Variable B SE Wald Z Statistic Odds Ratio 

Intercept 1.76*** .05 37.62 5.87 

2x2 Matrix -0.31*** .05 -5.74 0.73 

4x1 Matrix -0.43*** .06 -6.81 0.65 

3x3 Matrix 0.06 .06 0.95 1.06 

4x2 Matrix -0.20** .07 -2.83 0.82 

Five Response Options -1.27*** .07 -18.54 0.28 

Six Response Options -0.88*** .09 -9.38 0.41 

60 Seconds Allowed -0.98*** .04 -22.86 0.37 

Note. The coefficients for matrix type are contrasts with the 5x1 matrix type. The response option 
coefficients are contrasted with the smallest number of response options (4 options). The time allowed 
coefficient is contrasted with the lowest amount of time allowed to respond to a question (30 seconds). 
*p < .05; **p < .01; ***p < .001 
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The logistic regression suggests that compared to a 5x1 matrix, a person is 27% 

less likely to get a 2x2 matrix correct, 35% less likely to get a 4x1 matrix correct, and 18% 

less likely to get a 4x2 matrix correct. In contrast, a person was 6% more likely to get a 

3x3 matrix correct. There were more 3x3 matrices in the 60 second time allowances 

which may explain this. However, compared to a 30 second item, people were 63% less 

likely to get a 60 second item correct, likely due to 60 second items being at the more 

difficult end of the spectrum. These items included five or six response options which 

acted as additional distractors. In line with this finding, a person was 72% less likely to 

answer a five-response option item correctly, and 59% less likely to answer a six-

response option item correctly when compared to an item with four response options. 

Items with five response options seemed to be more difficult than items with six 

response options, and there were insufficient numbers of items across each category to 

accurately measure the impact of time allowances. It is expected this may result in 

problems from an IRT perspective given that items are supposed to predictably increase 

in difficulty. 

3.5.2 Reliability 

Cronbach’s alpha for the Induction items was .71. This suggests that the items 

have good internal consistency. 

3.5.3 Item Analysis 

Fit indices for the CFA, Loevinger’s H values, and Rasch modelling are in Table 

3-7. Item level statistics are in Appendix C and Appendix D. Item analysis began with the 

full 33-item set and items were iteratively removed based on the outcomes of a 

sequence of CFA, Mokken Analysis, Rasch modelling and local dependency analysis. 



 

Chapter 3: Item Tryout Study 116 

3.5.3.1 33-items. While the 33-item model could be described as a good fit based 

on the RMSEA and SRMR values, the CFI and TLI contradicts this. All items displayed 

standardized beta coefficients above .1, and showed significant factor loadings, p < .05 

except for items 2 and 9 which were subsequently removed prior to Mokken Analysis.  

3.5.3.2 31-items. A 31-item-set did not scale well. A high number of items 

demonstrated Loevinger’s H values below 0.3. Seventeen items were determined to be 

unscalable (i.e. received a 0 in the AISP), while five items were determined to be on 

different Mokken scales (i.e. received a 2 or 3 in the AISP). This suggested that the item 

set may be multidimensional. Removal of these items resulted in a 9-item scale. 

3.5.3.3 9-items. CFA of this item set did not improve the model fit; while CFI and 

TLI improved slightly, RMSEA and SRMR deteriorated. Despite this, all standardized 

betas were above .1. Although the 9-item-set did not display ideal CFA fit indices, the 

Mokken analysis resulted in a Leovinger’s H at an acceptable level. All items had 

individual Leovinger’s H values above .30 and the AISP placed all items on the same 

Mokken scale (Appendix A). Local dependence analysis using Yen’s Q3 suggested there 

was a high amount of local dependency (0.35) between items 7 and 10. Item 7 had poor 

fit in the initial Rasch, and thus was removed from the item set. 

3.5.3.4 8-items. A CFA using the remaining items demonstrated excellent fit 

compared to the 33- and 9-item sets. All items loaded on the same factor and the 

Mokken results were good, with Loevinger’s H values above 0.3. The overall 8-item scale 

also demonstrated a Loevinger’s H value above 0.3.  

These items displayed good fit with the Rasch model, as did the overall item set. 

The ICCs (Figure 3-19) and TIC (Figure 3-20) demonstrate the remaining items measure 
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from a very low difficulty of approximately -5 θ through to approximately 1.5 θ. The item 

parameters are in Table 3-8. No local dependency was evident in the final 8-items. 

Marginal reliability was .51 and additional Cronbach’s alpha analysis resulted in an alpha 

of .57, suggesting an insufficient number of items remaining to reliably measure 

Induction. ICCs are shown in Figure 3-19, and a TIC in Figure 3-20. 

3.5.4 Differential Item Functioning 

An insufficient number of females obtained an incorrect answer on item 10 to 

enable full DIF analysis. However, after removal of item 10 DIF was flagged for item 27. 

This DIF was determined to be negligible based on the small change of probability. 

Table 3-7. Gf:I ITOS CFA Fit, Mokken Analyses and Rasch Analyses 

 33 items 31 items 9 items 8 items 

CFA Fit Index     

 χ2 954.88*** 785.57*** 137.29*** 30.21 

 CFI .67 .23 .76 .97 

 TLI .65 .70 .68 .96 

 RMSEA .04 .04 .08 .03 

 SRMR .05 .05 .06 .03 

Mokken Analysis     

 Loevinger’s H - 0.15 0.37 0.37 

 Standard Error - .01 .03 .03 

Rasch Analysis     

 M2 - - 74.97*** 44.80* 

 RMSEA - - .03 .03 

 SRMR - - .07 .05 

 TLI - - 0.93 0.96 

 CFI - - 0.93 0.96 

Marginal Reliability - - .51 .51 

Note. *p < .05; **p < .01; ***p < .001 



 

Chapter 3: Item Tryout Study 118 

Figure 3-19. Gf:I ITOS Rasch ICCs 

 

Figure 3-20. Gf:I ITOS Rasch TIC 

 

Note. Eight items were retained from the Gf:I analysis with a peak at approximately 0 theta. 

Table 3-8. Gf:I ITOS Rasch Item Parameters 

Item Difficulty (b) 

5 -4.73 

10 -5.05 

19 -1.08 

26 1.34 

27 -1.05 

28 -1.54 

31 1.25 

32 -0.23 

Note. These are traditional/classical IRT parameters 

 

3.6 Visualisation Results 

3.6.1 Raw Score Outcomes 

The mean score for the Visualisation items was 36.33 (SD = 10.21). Figure 3-21 

shows these items had a good range of performance; most items were scored correctly 

by at least 30% of the sample. Generally, participants who spent longer on the test 
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displayed a higher score improvement (Figure 3-22). The average time taken was 602.41 

seconds (SD = 198.97 seconds). 

There was no significant difference between females and males on total score, 

t(681) = 0.40, p = .68, 95% CI [-1.16, 1.77], or time taken, t(721) = 2.11, p = .03, 95% CI 

[2.10, 58.53]. This is illustrated in Figure 3-23 and Figure 3-24. These results also suggest 

similar dropout rates among males and females. 

Differences in item performance based on item type (i.e., number of pieces or 

whether the shape had a border) were analysed further. Results in Table 3-9 indicate 

that as the number of puzzle pieces increased the likelihood of success decreased by 

63%, while the presence of a border increased the chances of success by 158%. 

Table 3-9. Gv:Vz ITOS Item Format Logistic Regression 

Variable B SE 
Wald Z 
Statistic 

Odds Ratio 

Intercept 2.87*** .06 47.37 17.80 

Pieces -0.97*** .02 -41.81 0.37 

Border 0.95*** .02 41.35 2.58 

 
3.6.2 Reliability 

Cronbach’s alpha for the Visualisation items was .93. This suggests the items 

have good internal consistency. 

3.6.3 Item Analysis 

Fit indices for the CFA, Loevinger’s H values, and Rasch modelling are displayed 

in Table 3-10. Item level statistics are in Appendix E and Appendix F. The item analysis 

began with the full 52-item set and items were iteratively removed based on the 

outcomes of a sequence of CFA, Mokken Analysis, Rasch modelling and local 

dependency analysis. 
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Figure 3-21. Gv:Vz ITOS Percentage of Items Correct 

 

Figure 3-22. Gv:Vz ITOS Total Score by Time Taken 
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Figure 3-23. Gv:Vz ITOS Gender by Total Score 

 

Figure 3-24. Gv:Vz ITOS Gender by Time Taken 
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3.6.3.1 52-items. Although the CFA showed poor fit, most items appeared to load 

on the same construct. The first 10 items, along with four items scattered through the 

item set, displayed standardized betas below .30. The overall Loevinger’s H was .341, 

however 16 items displayed a Loevinger’s H below .30. The AISP removed 15 items. 

3.6.3.2 37-items. After removal of 15 items there was improved fit, implying 

unidimensionality. However, Rasch modelling suggested several items had poor fit. 

Additionally, items 11 and 13, items 19 and 20, items 32 and 34, and items 46 and 50, 

showed local dependence. At least one of each of these item pairs were determined not 

to fit the Rasch model, resulting in the removal of items that had poorer fit. 

3.6.3.3 17-items. All items in this model showed standardized betas above .30 in 

a CFA. Improvements were noted in the Mokken analysis and all items appeared to be 

ordered. Although there was some improvement in the fit with the Rasch model it was 

only minor, with a reduction in marginal reliability due to the reduction in items. Items 

19, 22 and 48 continued to display a poor fit with the Rasch model and were removed.  

3.6.3.4 14-items. The remaining 14-item set displayed acceptable CFA fit indices 

and Mokken outcomes. Rasch analysis showed improved overall fit, although items 26 

and 28 still showed poor fit. The items were retained to avoid further reduction in the 

item set, and to abide by the pre-established method of four iterations of item removal. 

No local dependency was evident in the final 14-items remaining. Marginal reliability 

was .69, and additional Cronbach’s alpha analysis resulted in an alpha of .86. ICCs are in 

Figure 3-25 and the TIC is in Figure 3-26. The difficulty parameters are in Table 3-11. 

3.6.4 Differential Item Functioning 

DIF was flagged for items 40, 41 and 46, but was determined to be negligible. 
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Table 3-10. Gv:Vz ITOS CFA Fit, Mokken Analyses and Rasch Analyses 

 52 items 37 items 17 items 14 items 

CFA Fit Index     

 χ2 4519.62*** 2515.35*** 456.94*** 307.68*** 

 CFI .75 .83 .92 .93 

 TLI .74 .82 .91 .92 

 RMSEA .06 .06 .06 .06 

 SRMR .06 .05 .04 .04 

Mokken Analysis     

 Loevinger’s H .35 .44 .47 .44 

 Standard Error .02 .02 .02 .02 

Rasch Analysis     

 M2 - 2900.98*** 539.596*** 360.97*** 

 RMSEA - .06 .06 .06 

 SRMR - .12 .11 .10 

 TLI - 0.96 0.97 0.97 

 CFI - 0.96 0.97 0.97 

Marginal Reliability - .84 .72 .69 

Note. *p < .05; **p < .01; ***p < .001 

Figure 3-25. Gv:Vz ITOS Rasch ICCs 

 

Figure 3-26. Gv:Vz ITOS Rasch TIC 

 

Note. Fourteen items were retained from the Gv:Vz analysis which peaked at approximately -1 theta. 
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Table 3-11. Gv:Vz ITOS Rasch Item Parameters 

Item Difficulty (b) 

26 -2.03 

28 -2.20 

30 -1.88 

31 0.69 

33 -1.83 

35 0.56 

36 -0.21 

37 -1.35 

38 -0.33 

40 -0.08 

41 -0.10 

45 -1.02 

46 -1.32 

49 -0.16 

Note. These are traditional/classical IRT parameters 

 

3.7 Working Memory Results 

3.7.1 Total Score Outcomes 

The Working Memory items were with increasing number of stimuli to place 

more cognitive load on the participants as they progressed. The proportion of 

participants who answered items correctly generally followed this trend (Figure 3-27). 

Notable discrepancies occurred for items 8, 24, 34 and 35. Item 8 had a slightly different 

format (“What was the last number, then the first number?”) compared to the other 

items surrounding it (e.g., “What were the two numbers?”). Otherwise, no qualitative 

differences could be identified for these discrepant items. Other than item 8, the first 

16 items all had a success rate above 90%. While participants tended to perform better 

the more time taken, this pattern did not hold as strongly as for the other CHC narrow 
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abilities beyond 10 minutes. The mean total score was 25.6 (SD = 5.52) and the mean 

time taken was 713.44 seconds (SD = 186.31 seconds).  

There was no significant difference between females and males on total score, 

t(377) = -0.05, p = .96, 95% CI [-1.07, 1.02], or time taken, t(390) = 0.76, p = .44, 95% CI 

[-21.43, 48.23]. This is illustrated in Figure 3-29 and Figure 3-30. These results also 

suggest similar dropout rates among males and females. 

3.7.2 Reliability 

Cronbach’s alpha for the Working Memory items was .84. This suggests the items 

have good internal consistency. 

3.7.3 Item Analysis 

Fit indices for the CFA, Loevinger’s H values, and Rasch modelling fit indices are 

in Table 3-12. Item level statistics are in Appendix G and Appendix H. The item analysis 

began with the full 38-item set and items were iteratively removed based on the 

outcomes of a sequence of CFA, Mokken, Rasch and local dependency analyses. 

3.7.3.1 38-items.  The full item set showed poor fit via the CFA. The CFI and TFI 

were well below the required cutoff; the RSMEA was mediocre, but the SRMR also did 

not meet the required cutoff. Item 8 was shown to not fit the model, consistent with the 

unexpected low performance on this item based on raw data. This item was removed. 

3.7.3.2 37-items.   Removal of item 8 produced minimal improvement in overall 

item fit. Mokken analysis suggested that the overall scale is ordered, however several 

items displayed Loevinger’s H values below the suggested .30 threshold. The AISP found 

that 7 items were unscalable and 7 items loaded onto different Mokken scales. These 

items were removed. 
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Figure 3-27. Gwm:Wc ITOS Percentage of Items Correct 

 

Figure 3-28. Gwm:Wc ITOS Total Score by Time Taken 
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Figure 3-29. Gwm:Wc ITOS Gender by Total Score 

 

Figure 3-30. Gwm:Wc ITOS Gender by Time Taken 
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3.7.3.3 23-items.  The CFA fit indices improved substantially, although not 

sufficiently. All items showed standardised betas above .1 and met the requirements via 

Mokken analysis. The item set sufficiently met the assumption of unidimensionality. 

Rasch showed that item 10 did not fill well, and Yen’s Q3 showed local dependency 

between several items. Items 7, 10, 12 and 13 were removed. 

3.7.3.4 19-items.  A CFA using 19 items improved overall fit. Mokken and AISP 

analysis showed all items were unidimensional. Item 22 had a Loevinger’s H value of 

.293 but met the .30 threshold when accounting for standard error. Rasch modelling 

showed good fit. As per the pre-determined methodology, item removal stopped here. 

No local dependency was evident in the final 19-items remaining.  Marginal reliability 

was .706, and Cronbach’s alpha analysis resulted in an alpha of .80. ICCs are in Figure 

3-31 and a TIC in Figure 3-32. Difficulty parameters are shown in Table 3-13. 

3.7.4 Differential Item Functioning 

An insufficient number of all genders answered items 2 and 11 incorrectly to 

enable full DIF analysis. After removal of these items no items were flagged for DIF. 

Figure 3-31. Gwm:Wc ITOS Rasch ICCs 

 

Figure 3-32. Gwm:Wc ITOS Rasch TIC 

 

Note. Nineteen items were retained from the Gwm:Wc analysis with a peak at approximately -2 theta. 
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Table 3-12 Gwm:Wc ITOS CFA Fit, Mokken Analyses and Rasch Analyses 

 38 items 37 items 23 items 19 items 

CFA Fit Index     

  χ2 2183.88*** 2123.31*** 870.27*** 437.00*** 

  CFI .59 .60 .74 .81 

  TLI .57 .57 .72 .78 

  RMSEA .07 .07 .08 .06 

  SRMR .08 .08 .07 .06 

Mokken Analysis     

  Loevinger’s H - .31 .39 .36 

  Standard Error - .03 .03 .03 

Rasch Analysis     

  M2 - - 665.77*** 380.40*** 

  RMSEA - - .06 .05 

  SRMR - - .14 .10 

  TLI - - 0.93 0.94 

  CFI - - 0.93 .094 

Marginal Rxx - - .71 .71 

Note. *p < .05; **p < .01; ***p < .001 

 

Table 3-13. Gwm:Wc ITOS Rasch Item Parameters 

Item Difficulty (b) Item Difficulty (b) 

2 -4.834 22 -0.840 

11 -4.256 23 -0.448 

14 -3.621 24 -1.506 

15 -3.844 25 0.247 

16 -2.824 29 0.705 

17 -1.966 31 1.305 

18 -1.459 35 0.681 

19 -1.262 36 2.287 

20 -1.443 37 1.760 

21 -0.971   

Note. These are traditional/classical IRT parameters 
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3.8 Discussion 

The development of a cognitive ability test with good reliability and validity 

requires items to demonstrate robust psychometrics. Knowing item psychometrics also 

allows the test developer to decide whether further items will be developed, and to 

understand the impact of item design decisions on the probability of success. The 

current ITOS was designed to pilot the items designed in four recent research projects. 

Rather than incorporating items from existing test tools, the current item sets are 

designed to fit within the taxonomy of CHC abilities. A relatively conservative approach 

was taken to demonstrate robust psychometrics for the item sets retained. 

Overall, the current analysis retained different items than those retained in prior 

analyses, suggesting that items require further calibration and analysis to demonstrate 

their invariance across samples. Additionally, analysis resulted in the removal of a high 

number of items, further suggesting problems within the item sets. Maguire (2018) 

retained eight Lexical Knowledge items while the ITOS retained only six; in both cases 

this is a significant loss of items from the initial 55. Originally developing 33 items, 

Fleming (2018) retained seven Induction items while the ITOS retained eight. There were 

slight improvements in the number of items retained for Visualisation, with Heng (2018) 

retaining 15 items and the ITOS retaining 14 items. For Working Memory Kennedy 

(2018) retained 13 items while the ITOS retained 19 items. 

While there was some overlap in the retention of Lexical Knowledge items, there 

were also some differences. Issues were noted with local dependency, possibly due to 

low variability in performance, and Rasch modelling. Analysis of items that fit poorly 

with the Rasch model suggest a potential difference in what some items are measuring 
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(e.g., differences between General (Verbal) Information and Lexical Knowledge). Further 

item development was clearly required and occurs in the next chapter. 

Different statistical issues were noted for the Induction items. While the removal 

of items largely resulted from violations of unidimensionality and monotonicity, the 

item difficulty appeared to vary substantially after item 11, and the time taken by 

participants was inconsistent. Items that were clearly more difficult from a qualitative 

and theoretical perspective were answered correctly by participants who answered 

easier items incorrectly. A more robust source of data is required than unproctored 

Internet participants, as increases in difficulty do not appear to be related to the rules 

utilised. The next chapter takes into consideration the rules within each item. 

Relative to the other CHC narrow abilities Visualisation displayed more overlap 

in the items retained between the previous projects and the current ITOS relative to the 

other CHC narrow abilities. Only one item retained by Heng was omitted in the current 

study. Difficulties in Mokken scaling and Rasch modelling may be due to earlier items 

possibly testing Speed Rotation rather than Visualisation. Additionally, the difficulty 

increase throughout items was not consistent with previous research on internal cues 

and number of pieces. Inspection of items that were retained and removed suggests 

that piece similarity rather than internal cues and number of pieces impacted difficulty. 

Finally, Working Memory items appeared to follow an expected difficulty 

increase based on the number of stimulus chunks. Item 8 was clearly violating the 

assumption of unidimensionality, and items prior to this appeared to be too easy. 

Problematically, due to the way items were originally designed and the way in which 

they were implemented in Concerto, response options were available to participants 

during the administration of the item. Based on these findings, more difficult items were 
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required, as well as changes to the item design so that answer options are not visible. 

This is addressed in the following chapter. 

The items in this analysis were largely developed to measure the ability levels of 

children. Unfortunately, due to ethical limitations (which are later addressed in chapter 

4), data collection was focused on adults. As abilities should theoretically develop in a 

sequential manner it was initially believed that the items would still demonstrate fit with 

the Rasch model. However, problematically many items were far too easy. Therefore, 

while the above paragraphs demonstrate that there are some psychometric and design 

problems to be addressed in the items, there was also problems with the targeting of 

the items for the sample ultimately collected for this analysis. 

Overall, the ITOS resulted in items with good psychometrics for four core 

cognitive abilities known to be important for learning. Unfortunately, insufficient items 

were retained to be useful in a CAT. After completion of the ITOS, several improvements 

were identified to enhance the item sets. Firstly, more items needed to be developed 

for all four item sets to increase the content range (i.e., difficulty). Secondly, further item 

development focused on the characteristics of Induction and Visualisation items was 

required to address the apparent discrepancy between suggestions in the literature 

regarding how to vary difficulty in such items, and what the ITOS analysis found. Thirdly, 

an evaluation of the items by education and assessment professionals was deemed 

necessary to classify items that may have construct irrelevant variance. Finally, 

collection of data from those with innately lower abilities (such as children) would be 

beneficial in assessing the difficulty range of the item sets; unfortunately, many items 

were removed likely due to low variability in the data set. The next chapter aims to 

address these issues. 
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Chapter 4: Item Calibration Study 

4.1 Introduction 

To implement a computer adaptive test (CAT), a set of items with known 

parameters is required. While the Item Tryout Study (ITOS) established a set of difficulty 

parameters and strong item psychometrics, an overly conservative statistical approach 

was employed. The ITOS demonstrated that items retained under such statistical 

analysis are variable, and only few items meet the assumptions when using strict cutoffs 

that may infringe on theory-based item design decisions. Across the four item sets there 

were some issues of poor fit with the Rasch model, local dependency, Mokken scaling 

and items being too easy. The current chapter details an Item Calibration Study (ICS) 

which aimed to increase the number of items available for a CAT, with items designed 

with Cattell-Horn-Carroll (CHC) theory in mind. The outcome of the current study aimed 

to achieve sets of item parameters that measure a wide range of the theoretical 

spectrum of each CHC ability under investigation. 

4.2 Chapter Aim 

To establish useful item difficulty parameters, improvements needed to be 

implemented following the ITOS. Several problems were identified with the initial items 

developed for each CHC scale as part of the ITOS. These problems included psychometric 

approaches to item selection resulting in small sets of items being retained, identifying 

items of extremely low difficulty, and only a narrow range of difficulty being measured 

by the remaining item set. This was believed to be largely symptomatic of a high mean 

age within the sample and a low ceiling within the difficulty of the item sets. These issues 
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resulted in low variance within the data set (i.e., a high number of individuals achieved 

very high scores). New items were developed for the ICS to address this. 

The ICS also aimed to extend the methodology utilised in the ITOS. This included 

the use of multivariate imputation by chained equations (MICE) to estimate missing 

data, rather than biasing the data by assuming all unattempted items were incorrect. As 

part of this ICS, additional items were developed based on the CHC theory discussed in 

earlier chapters as an attempt to measure the constructs of interest more broadly. The 

goal of the analysis in the current chapter was to establish a set of items that measure 

a wide range of difficulty for each CHC ability, to be utilised in a CAT simulation. The 

current chapter places a focus on Rasch analysis relative to other statistical methods 

used in the previous chapter. 

4.3 Method 

4.3.1 Participants 

Data for this study was collected from three sources. The first source was the 

data from the 2,776 participants of the ITOS. The second source was additional 

recruitment of participants via Facebook (ICS Adult; ICS-A). As with the ITOS, these 

participants were recruited through paid Facebook advertisements, distribution of a link 

(chctest.com.au) on social media websites, a Facebook page (facebook.com/chctest) 

and snowball recruitment. The paid Facebook advertisement was completed in two 

stages, with the first focused on 18- to 90-year-olds for one week and subsequently 18- 

to 25-year-olds for two weeks. While 2,185 users completed the demographic 

information, only 1,929 participants proceeded any further. The third data source was 

face-to-face administration to school aged children which consisted of 144 participants 

(ICS School Aged; ICS-U).  
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Data was cleaned, merged, and recoded utilising the dplyr v.0.8.5 (Wickham et 

al., 2020), tidyr v.1.0.2 (Wickham & Henry, 2020) and stringr v.1.4.0 (Wickham, 2019) 

packages, via R v.3.6.3 (R Core Team, 2019) within the R Studio Integrated Development 

Environment v.1.2.5033 (R Studio Team, 2019). 

Participants that received a score of zero across all four items sets were removed 

(Table 4-1). It was technically possible for a participant to enter one item set and decide 

not to proceed, which would have resulted in a score of zero for that item set and 

resulting in a score of zero across all four item sets. Such participants are not useful for 

any stage of analysis in this chapter and will subsequently be referred to as ‘non-

responders’. 

Removal of participants above impacted demographic data but not the number 

of participants that completed each CHC test; if a participant received a score of zero 

then they are assumed to have not completed the test.  

Table 4-3, displays the number of females and males within each study, before 

and after removal of participants that were identified as non-responders. Prior to 

removal of non-responders, there were 2,473 (51.00%) participants that identified as 

females, 2,260 (46.65%) participants that identified as males, and 80 (1.65%) 

participants that identified as another gender. After removal of non-responders, there 

were 1,762 (51.34%) participants that identified as females, 1,587 (46.24%) participants 

that identified as males, and 49 (1.43%) participants that identified as another gender. 

The proportion of each gender across the sample before and after cleaning suggests that 

a similar rate of each gender dropped out of the study, which is consistent with dropout 

rate in the ITOS. While there was no missing gender data, a total of 34 participants 

explicitly selected Prefer Not to Say and these were retained after cleaning the sample.  
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Whether a person was untruthful or preferred not to reveal their age does not 

impact the underlying probability of whether they would obtain a correct answer. Any 

invalid ages were recoded as ‘NA’ (e.g., above 90, those in the ICS Adult sample stating 

ages below 18). The distribution of ages by group was relatively similar before (Figure 

4-1) and after cleaning (Figure 4-2). After cleaning, there were 3,401 participants with 

valid ages (M = 39.79 years, SD = 19.41 years) with a range of age of 6 to 90 years old 

(Figure 4-3 and Figure 4-4). 

Table 4-4 displays the nationality of participants within each study, before and 

after removal of non-responders. Any missing data for this variable was recoded as 

Prefer Not to Say (PNTS). 

Unlike the initial analysis for the ITOS, participants at the highest and lowest ends 

of time taken and total score were not removed. In the initial analysis there was an 

attempt to balance Classical Test Theory (CTT) and Item Response Theory (IRT); CTT 

approaches focus on test level performance rather than item level performance, which 

means that individuals who performed quite low or quite high have an undue influence 

on the outcomes of psychometric analyses. In the current analysis, with a greater focus 

on IRT, any attempt at an item is valuable data, as it assists in understanding the 

probability that a person may or may not obtain a correct answer. However, retaining 

such data needed to be balanced with avoidance of biasing any strategy utilised to 

address missing data. Missing data was addressed using MICE, rather than full 

information maximum likelihood (FIML), or scoring unattempted items incorrect as in 

the ITOS. This is discussed in further detail below. The number of participants in each 

stage of analysis is shown in Figure 4-5. 
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Table 4-1. ICS Participants by Data Collection Phase 

Sample ITOS ICS Adult ICS School Aged Total 

Initial Sample 2776 1929 144 4849 

Remaining Sample 1376 1913 143 3432 

Note. Remaining sample after non-responders removed 

Table 4-2. ICS Subtest Participant Counts by Data Collection Phase 

Phase of Data Collection Gc:VL1 Gv:Vz2 Gf:I3 Gwm:Wc 4 

ITOS (n = 1376) 1203 876 670 521 

ICS Adult (n = 1913) 1130 648 877 315 

ICS School Aged (n = 143) 95 103 97 88 

Total Sample (n = 3432) 2428 1644 1627 924 

Note. 1Lexical Knowledge; 2Visualisation; 3Induction; 4Working Memory 

Table 4-3. ICS Participants by Gender 

Sample Female Male Other Prefer Not to Say 

Initial Sample     

 ITOS 1439 1290 47 0 

 ICS Adult 965 897 33 34 

 ICS School Aged 69 75 0 0 

 Total 2473 2262 80 34 

Cleaned Sample     

 ITOS 735 624 17 0 

 ICS Adult 958 889 32 34 

 ICS School Aged 69 74 0 0 

 Total 1762 1587 49 34 

Table 4-4. ICS Nationality of by Data Collection Phase 

Nationality ITOS ICS Adult ICS School Aged Total 

Initial Sample     

 Australia 2195 1723 144 4062 

 Non-Australian 498 189 0 687 

 PNTS 83 17 0 100 

Cleaned Sample     

 Australia 1126 1708 143 2977 

 Non-Australian 221 188 0 409 

 PNTS 29 17 0 46 
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Figure 4-1. ICS Participants by Age Grouping before Data Cleaning 

 

 

Figure 4-2. ICS Participants by Age Grouping after Data Cleaning 

 

Note. Due to ethical factors and the design of the studies there were more participants in older age groups 
in the ITOS, followed by more young adults in the ICS-A, and lastly only children in the in the ICS-U. 
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Figure 4-3. ICS Age of Participants by Phase 

 

Figure 4-4. ICS Age of All Participants 

 

Note. Due to ethical factors and the design of the studies there were more participants in older age groups 
in the ITOS, followed by more young adults in the ICS-A, and lastly only children in the in the ICS-U. 

Figure 4-5. ICS Participants by Stage of Analysis 
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4.3.2 Materials 

4.3.2.1 Test Platform. The platforms used to host the ICS School Aged and the ICS 

Adult phases of data collection were Concerto v.5.0.0 and Concerto v.5.0.9 respectively. 

A changelog between versions is available at Lis (2020). The justifications for the use of 

the Concerto platform are reflected in the materials section of Chapter 3.  

4.3.2.2 Lexical Knowledge Lexical Knowledge (Gc:VL) is a major narrow ability 

subsumed by the Comprehension Knowledge broad ability, and is the knowledge of 

words, their definitions and their related concepts (Schneider & McGrew, 2018). Several 

issues were noted in both Maguire (2018) and the ITOS analysis with the Lexical 

Knowledge item set developed for the CHC-CAT. Maguire retained items 38 (Fortnight), 

39 (Spanner), 45 (Raptor), 46 (Lintel), 48 (Artichoke), 49 (Ovine), 50 (Apiarist) and 53 

(Caucus), while the ITOS analysis omitted items 45 and 53 in favour of 55 (Thylacine). 

There was an extreme amount of local dependency found throughout the data set, likely 

due to a low amount of variance. Additionally, given that the English language often 

contains common etymologies, it is possible for people to derive the meaning of new 

words based on their knowledge of other words. Local dependency was somewhat 

unsurprising given that the average English-speaking adult knows more than 42,000 

words (Brysbaert et al., 2016). In order to reach a higher level of reliability, it was noted 

that the finalised Lexical Knowledge part of the CHC-CAT would require items with a 

varied level of difficulty.  

Some items were shown to violate the assumptions of IRT. Four items were 

suspected to violate the assumption of unidimensionality; 1 (Running), 2 (Circle), 3 

(Knee), and 52 (Corpulent). It was suspected that the first three items are such basic 
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knowledge that they are measures of Gc:K0 rather than Gc:VL. It is unknown why item 

52 was identified as measuring more constructs than the theorised Lexical Knowledge. 

All four items were removed for subsequent iterations of the CHC-CAT. Additionally, four 

items were found to have poor fit with the Rasch model (after other item calibrations), 

34 (Quadrilateral), 51 (Phlegmatic), 54 (Pernicious) and 55 (Thylacine). Given the large 

number of items removed prior to Rasch modelling, these items were retained for the 

ICS to evaluate them when a larger set of items was used.  

In order to incorporate the data obtained in the original ITOS in conjunction with 

additional data obtained in the current study, existing item stimuli could not be 

significantly altered as this would potentially impact the response style or pattern of 

performance by participants. It is argued that resizing of images was not enough cause 

for removal of an item as it retained the original response options; participants that did 

have problems (outside their innate trait level) due to image size could not be isolated 

within the original data set. Table 4-5 details the steps taken to improve Lexical 

Knowledge items.  

In developing new items, the concept of vocabulary difficulty was considered. 

While on the surface there appeared to be a breadth of literature on vocabulary 

difficulty, it seemed to be a somewhat undefined concept in many studies (e.g. Stahl & 

Jacobson, 1986). As a result, researchers seem to subjectively choose words based on 

what they perceive to be difficult or easy or rely on the number of syllables. Twinword, 

a company that builds Natural Language Analysis tools and software, argues that there 

“are no scientific [or] mathematic ways to measure vocabulary difficulty” (Twinword, 

2016, para. 4). Thus, deciding on which words to include in a test of Lexical Knowledge 

can be somewhat subjective. 
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Table 4-5. Updates to Gc:VL for ICS 

Problem Plan Actions 

Breaches of 
unidimensionality 

Remove items Remove items 1, 2, 3, 52 

Poor fit with the Rasch 
model (unexpected 
response pattern) 

Compare and contrast IRT 
models in next study 

Monitor items 34, 51, 54, 
55 during next analysis 

Poor presentation on 
non-desktop devices 

Resize all images to width of 
300px and maintain aspect 

ratio 

Remove items with poor 
image quality after resizing 

Batch resize all images 
using Photoshop CC 

Remove items 20, 35 and 
47 based on qualitative 

evaluation of items 

Participants with slow 
internet connection 
having trouble loading 
large item files 

Set file size (150KB) limit 

Remove items that exceed 
this requirement 

Due to batch resize, all 
original images now met 

this new requirement 

Low item difficulty for 
adults (possible cause of 
Local Dependency) 

Created 62 new items 

Split item set into three sets 

62 items created, with 10 
items overlapping in the 

middle ‘difficulty’ 

  
The Twinwords (2016) Language Scoring API rates vocabulary difficulty based on 

its frequency of use as well as how commonly it is used in tests and exams. This is 

somewhat reflective of the process of teaching English, as we generally use the most 

common words as beginning words for children to learn (Hinzman & Reed, 2018). 

Unfortunately, words that appear to be culturally specific (e.g. Koala) or more complex 

or rare (e.g. Ovine) do not produce a difficulty score via the Twinword Vocabulary 

Difficulty tool. This is likely due to their algorithms being trained on databases that are 

not large enough to include these words or are US centric. It is not surprising given that 

common words are less complex than rare words; they differ in phonemic and 

graphemic composition, and rare words contain phonemes that are less intelligible 

(Landauer & Streeter, 1973). The mean and median difficulty of the original item set, as 

evaluated by Twinword’s 10 levels of difficulty, was 4.93 and 4, respectively. This 

suggests the words were at the easier end of the spectrum. 
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Beyond increasing the innate difficulty of the word, the difficulty of an item can 

be increased or decreased by adjusting distractor items. To make an item easier, 

incorrect answers can be visuals that are clearly wrong. To make items harder, images 

can be used that represent somewhat related subject matter. However, care needs to 

be taken as this can create ambiguity, which has implications for Mokken scaling and 

Rasch analysis because people may start guessing on a multiple-choice test. Overall, 

given the ease that adults had with ITOS items, the difficulty of words was increased by 

choosing those that scored above 5 on via Twinword evaluation, and were far less 

frequent in the Corpus COCA (Davies, 2008) and Corpus iWeb (Davies, 2018) databases 

of word frequencies. Additional difficulty was added for later items by incorporating 

increasingly difficult distractors. For example, the word “incensed” (which means “to be 

very angry”) had pictures of incense (a substance that is burned for a fragrant smell), 

someone very angry (correct answer), a calm person (an antonym) and a flower (also a 

fragrant object). These strategies were implemented to identify participants that truly 

understand the definition of a word. 

Fifty-two new items were developed. While not all words had a Twinword10 

difficulty value or a Corpus COCA and Corpus iWeb frequency count, a comparison 

between the original items and new items is in Table 4-6. For new items, the 

Twinword10 difficulty increased and the Corpus COCA and Corpus iWeb frequency 

decreased, suggesting new words were more difficult than old words. 

Table 4-6. Average Difficulty and Frequency for Item Development 

Source Old Items (n = 55) New Items (n = 52) All Items (n = 107) 

Twinword10 4.93 6.74 5.78 

Corpus COCA 15,930 3,148 9,722 

Corpus iWeb 364,247 92,797 228,522 
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Consistent with original items, all new items had a monotone female voice 

recording associated to reduce the reading requirements of the task. This made the task 

like the Wechsler Receptive Vocabulary task, which has been classified by Cross-Battery 

Assessment methodology as a measure of Lexical Knowledge (Flanagan et al., 2013).  

Two items were removed from the new set based on the evaluation of a panel 

of experts (described in the procedure): items 61 and 68. Concerns were raised 

regarding the ease of the initial three items (for which problems had already been noted 

from a psychometric perspective in the ITOS). However, concerns were also raised 

regarding the ability to pictographically represent items 68 (Decriminalise) and 61 

(Original) in a non-ambiguous way. These were therefore not included in the ICS data 

collection for either adults or school aged individuals. Figure 4-6 demonstrates an 

example the Lexical Knowledge subtest. 

Figure 4-6. Example of Gc:VL ICS Item 

 

 

4.3.2.3 Induction. Induction (Gf:I) is a major narrow ability subsumed by the Fluid 

Reasoning broad ability that is considered to be the ability to infer rules, or observe a 

problem and detect the underlying principles of the problem (Schneider & McGrew, 
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2018). For the 33 Induction items developed for the CHC-CAT, Fleming (2018) conducted 

analysis that resulted in retaining seven (items 5, 8, 19, 23, 26, 27 and 32) and the ITOS 

data analysis retained eight items (items 5, 10, 19, 26, 27, 28, 31 and 32). Both analyses 

revealed that several items were items were either extremely easy or moderately to 

significantly difficult. The first 11 items were all answered correctly by over 90% of 

participants, before a significant drop off with 17 items answered correctly less than 

60% of the time. This suggests that the item design may not align well with theory or 

increase in difficulty in a predictable manner. 

Problematically, the unbalanced execution of matrix size, time allowances and 

number of response options complicated the analysis of the Induction items from a CTT 

perspective. The Induction item set for the ITOS had the lowest reliability result of the 

four CHC abilities of interest (although this may reflect a wider difficulty range). To 

further evaluate the impact of these variables on the difficulty of items, a high number 

of additional items needed to be developed. Forty-seven new items were developed for 

the ICS. Table 4-7 show the number of items per variable under consideration 

demonstrating a more balanced implementation of these variables compared to Table 

3-4 and Table 3-5. 

Table 4-7. Gf:I Item Classification for ICS 

 4 Options 5 Options 6 Options 

Matrix Size 30s 60s 30s 60s 30s 60s 

5 x 1 Matrix 4 2 2 3 3 2 

2 x 2 Matrix 7 2 3 2 3 2 

4x1 Matrix 3 2 3 2 3 2 

3x3 Matrix 3 2 1 4 2 3 

4x2 Matrix 3 2 2 3 3 2 
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All Induction items (original and newly developed) were reviewed by the same 

panel of experts as per the review of Lexical Knowledge items. Items 22, 24, 25, 30, 31 

and 33 (all from the original item set) were rated as concerning items due to perceived 

poorly executed rules. While these were included in the ICS data collection, their impact 

on the subsequent analyses was monitored. An example of Induction subtest is 

displayed in Figure 4-7. 

Figure 4-7. Example of Gf:I ICS Item 

 

4.3.2.4 Visualisation. Visualisation (Gv:Vz) is a major narrow ability within the 

Visual-Spatial processing broad ability and is considered to represent the ability to 

perceive, manipulate, and mentally simulate the transformation of complex visual 

patterns and shapes (Schneider & McGrew, 2018). Fifty-two items were developed for 

the ITOS. After tests for psychometric robustness and Rasch model analysis, Heng (2018) 

retained 17 items while the ITOS analysis retained 16 items. There was a high amount 

of overlap between the items retained in both analyses. In the ITOS analysis, the items 

retained were a good fit to the Rasch model, met the assumptions of monotonicity and 

unidimensionality. However, consistent with the other CHC abilities in the ITOS, the 
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items were low in difficulty and information, requiring administration of the whole set 

to obtain a marginal reliability of .71. 

Thirty-five items were removed due to various violations of IRT assumptions. 

Sixteen items were removed due to violation of unidimensionality and monotonicity, 

likely due to the ease of their completion and possibility of testing Speeded Rotation 

rather than Visualisation. As all items had the same time limit, it is likely earlier items 

were easily answered within the time limit whereas later items may have discriminated 

better between adults with good and bad visualisation, consistent with the (Carroll, 

1993) discussion of Speeded Rotation versus Visualisation. Burton and Fogarty (2003) 

conducted CFA studies of Visual Processing subtests and found a correlation of .77 

between Visualisation and Speeded Rotation tasks (the highest factor correlation in their 

study) showing the difficulty in separating these narrow aspects of Visual Processing. 

Eighteen items were removed due to poor fit with the Rasch model, and two items were 

removed due to local dependency, however qualitative analysis of these items did not 

identify the cause of these violations. As the next stage of the research in this thesis 

focused on recruitment of both children and adults, as well as engage in non-random 

offline testing, there was more likely to be more variability in the performance of 

participants on the easier items. Therefore, for the ICS, all items removed in the ITOS 

analysis were retained for further analysis. 

While all items were retained, item difficulty did not seem to follow a pattern 

consistent with previous research (i.e., increases in difficulty related to internal cues or 

number of pieces requiring rotation). The addition of items was anticipated to increase 

the available range of θ being tested, as well as provide additional items in which 

reliability can be increased. It is possible the number and similarity of puzzle pieces 
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resulted in changes in difficulty and was therefore the focus of additional item 

development. An additional set of items that required the rotation of four pieces, as well 

as a set of items (with two, three and four pieces) that included highly similar pieces, 

were added (Table 4-8). All items had a time limit of 30 seconds. 

Following the addition of items, minor changes to the training items were 

required. Firstly, training item 3 showed the examinee they would be required to 

mentally rotate puzzle pieces, however the instruction in the original training GIF 

(Graphic Interchange Format; a lossless format for image files that supports both 

animated and static images) was simply “rotate” (Figure 4-8); further clarification that 

this rotation was required mentally was achieved by changing the text to “rotate in your 

mind” (Figure 4-9).  

Training item 4 aimed to show that examinees could rotate but not flip pieces. 

In the original version, one puzzle piece had the text “cannot flip” (Figure 4-10) before 

an attempt to place the pieces together (Figure 4-11). To clarify this process, the new 

sequence of images included a step between; the sequence showed the examinee they 

could still rotate the piece in their mind (Figure 4-12), and putting them together at the 

end showed they are different (Figure 4-13). 

All visualisation items (original and newly developed) were reviewed by the same 

panel of experts called upon throughout this stage of the study. No items were identified 

as concerns for administration in a screening tool as a measure of an individual’s ability 

to mentally rotate shapes. The Visualisation subtest as displayed in the CHC-CAT is 

displayed in Figure 4-14. 
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Table 4-8. Number of New Gv:Vz Items for ICS 

# Pieces Internal Cues Included Internal Clues Excluded 

 New Items ICS New Items ICS 

2 1 13 1 14 

3 1 16 1 13 

4 7 7 7 7 

5 2 2 0 0 

Total 11 38 9 34 

 

Figure 4-8. Training item 3 frame 5  

 

Figure 4-9. New training item 3 frame 5  

 

Figure 4-10. Training item 4 frame 5 

 

Figure 4-11. Training item 4 frame 6 

 

Figure 4-12. Training Item 4 new frame 

 

Figure 4-13. Training Item 4 Conclusion 
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Figure 4-14. Example of Gv:Vz Item 

 

 

Figure 4-15. Example of original Gwm:Wc stimuli sequence  

 

 

Figure 4-16. Example of altered Gwm:Wc stimuli sequence 

 

Note. The figures above demonstrate the change between the original ITOS Gwm:Wc stimuli and the ICS 
stimuli. The goal was to remove the response options from being available during item administration. 
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4.3.2.5 Working Memory Working Memory (Gwm:Wc) is defined as the ability to 

manipulate information in primary memory and is a combination of attentional control 

with either visual or auditory short-term storage (Schneider & McGrew, 2018). Kennedy 

(2018) developed 38 items that measured Working Memory. Kennedy retained 13 items 

while the ITOS analysis retained 19 items, with significant overlap across the two 

analyses. The 19-item scale measured from extremely easy (-4.8 θ) to moderately 

difficult (1.8 θ). Items were removed due to being identified on a different Mokken scale 

or unscalable (i.e., did not progress in difficulty in an orderly way). Some items were 

removed due to local dependency, largely in the first half of the test, likely due low 

variability in the performance of the participants. Also, the ability to recall any amount 

of information is dependent on being able to retain a smaller amount of information – 

given that working memory is a complex theoretical construct, there is likely to be some 

innate interdependence between probability of success on harder items and on easier 

items. Over 90% of participants obtained the correct answer on the first 16 items (except 

for item 9). Consideration of item design factors appeared important following the ITOS. 

Items were designed so the participant would not know in advance what 

information that they would be required to recall. Importantly, this item design 

balanced deliberate processing demands and storage demands. The items developed 

for the ITOS tap into the Visual Spatial Short-Term Storage (Gwm:Wv) and Attentional 

Control (Gwm:AC) narrow abilities, and thus are a measure of Working Memory 

(Gwm:Wc). Schneider and McGrew (2018) argue “for understanding academic 

problems, working memory capacity tests that require simultaneous storage and 

processing are most important”. While a test that also tapped into Auditory Short-Term 
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Storage (Gwm:Wa) would be preferred, each participants’ audio setup could not be 

anticipated. 

One problem with the original implementation of Working Memory items was 

the response options (i.e., “(a) grey THEN 2; (b) grey THEN 4” etc) were viewable during 

item administration. That is, the participant could see six response options below the 

GIF that played the stimuli sequence. To improve this for the next phase of testing only 

options ‘a’ to ‘f’ would be displayed below the item, and the response options would be 

included in the last frame of the sequence (Figure 4-15 and Figure 4-16). 

In addition to changes regarding the presentation of response options, changes 

were made to the method of presenting each frame of the stimuli. In the ITOS, items 

were presented using GIFs that started with a play button. The length of each GIF was 

longer than that of the item so the GIF would not loop prior to moving to the next item. 

As all Working Memory ITOS data was discarded for the ICS analyses, the opportunity 

was taken to develop a more reliable methodology for a range of devices. JavaScript was 

used to present each frame as an individual image, with the final frame remaining 

regardless of how long the item was available. This meant frames could be implemented 

in the more versatile .jpg or .png format. If any future changes were required as to 

stimuli presentation, they could be easily implemented without manipulating GIFs.  

Standardised changes were also made to each of the items to accommodate 

these formatting changes. To do this the question was moved to 0.5 inches from the top 

of the frame, and each question was aligned by horizontal centres with the canvas 

(whereas they were previously aligned by both horizontal and vertical centres). All 

colours within the slides were standardised as per Table 4-9. Any future item 
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development within the CHC-CAT for Working Memory items should adhere to these 

standards. 

 

Code Snippet 4-1. JavaScript Code for Working Memory Item Presentation 

 

Note. The code above uses JavaScript to retrieve the image frames for the Gwm:Wc items then present it 
in a sequential and well-timed manner. This code is added to the Concerto platform so that it is utilised 
during each iteration of the CHC-CAT. 

 

Table 4-9. Colour Standardisation for ICS 

Colour Hex Code  Colour Hex Code  Colour Hex Code 

Grey #B7B7B7  Pink #ff00ff  Brown #7d4900 

Purple #440e62  Green #00ff00  Yellow #fff200 

Red #ff0000  Blue #2e3192  Orange #f7941d 

 

 

   var currentSlideIndex = 0; 
   clearTimeout(showNextSlideTimeout); 
   var showNextSlideTimeout; 
   var showNextSlide = function() { 
    var slideDivs = $('.gwmImages > div'); 
    currentSlideIndex++; 
    slideDivs.eq(currentSlideIndex - 1).hide(); 
    slideDivs.eq(currentSlideIndex).show(); 
    if(currentSlideIndex < slideDivs.length - 1) { 
     showNextSlideTimeout = setTimeout(showNextSlide, 1500); 
    } 
    var slideDivs = $('.gvtImages > div'); 
    currentSlideIndex++; 
    slideDivs.eq(currentSlideIndex - 1).hide(); 
    slideDivs.eq(currentSlideIndex).show(); 
    if(currentSlideIndex < slideDivs.length - 1) { 
     showNextSlideTimeout = setTimeout(showNextSlide, 3000); 
    } 
   }; 
    
   var documentReadyHandler = function() { 
    var slideDivs = $('.gwmImages > div'); 
    slideDivs.hide(); 
    slideDivs.eq(0).show(); 
    slideDivs.eq(0).on("click", showNextSlide); 
   }; 
   $(documentReadyHandler); 



 

Chapter 4: Item Calibration Study 154 

Analysis of the deleted versus retained items revealed no commonalities. This 

made deciding which items to retain difficult. Given the identified problems with item 

presentation as well as the high performance of participants, recruiting a wider age 

range of participants was warranted before permanently removing more items.  

Ultimately it was decided to retain items 11 onwards, with the addition of 6 new 

items. The first 10 items were deemed too easy. Due to 19.95% of participants still 

obtaining a correct score for item 37, 6 new items were added. Item 37 contains 11 

‘chunks’ and was the most difficult. While this may turn out differently in the next study 

phase due to changes in item presentation, adding items to the extreme range of 

difficulty would be helpful for the purposes of trialling them. Given that items 37 and 38 

included 11 chunks of information, the new items would progress from that point (i.e. 

two items with 12 chunks, two items with 13 chunks, and two items with 14 chunks). 

The same time limit of 40 seconds remained for the whole item. This ensured 

the testing was not overly onerous on participants’ time. The final item (item 44) showed 

the last frame within 18 seconds, allowing 22 seconds to decide. This timing was 

informed by previous research suggesting that information degrades from memory 

within 30 seconds (Atkinson & Shiffrin, 1971; Peterson & Peterson, 1959; Revlin, 2012). 

All Working Memory items (original and new) were reviewed by the chosen 

panel of experts. No items were identified as concerns for administration. 

Unfortunately, due to the planned changes to include the response options at 

the end of the stimuli sequence, the existing ITOS data were only included in the 

exploration phase and not the multivariate imputation (MI), CFA, or IRT analyses. 

Examples of the Working Memory subtest are displayed in Figure 4-17, Figure 

4-18 and Figure 4-19. 
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Figure 4-17. Example of Gwm:Wc ICS Start 

 

Figure 4-18. Example of Gwm:Wc ICS Stimulus 

 

Figure 4-19. Example of Gwm:Wc Final Frame 
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4.3.2.6 Item Groups. To reduce the time requirements for participants items 

were ordered based on item sets. While the ITOS showed items did not increase in 

difficulty in a strictly linear fashion based on item number (as it is challenging to predict 

the psychometric difficulty of an item during development), it was generally shown that 

higher numbered items were more difficult than lower numbered items. As new items 

were developed for the second phase of data collection, it was important to have 

‘anchor’ or ‘linking’ items (see: Meade & Wright, 2012) to place the new items and old 

items from each item set on the same latent trait scale in the IRT analysis. For the 

Confirmatory Factor Analysis (CFA) (and underlying missing data analysis yet to be 

conducted) the anchor items were known as the ‘X set’ which has shown importance 

regarding the efficiency of a multiform design missing data analysis (Rhemtulla & 

Hancock, 2016). It was also recognised in the ITOS analysis that the original items were 

too easy for adults and thus more difficult items were required, but that the original 

items were more appropriate for children and adolescents. Table 4-10 displays the 

breakdown of each subtest into item sets, and the next section describes the order of 

these item sets based on test time limit considerations and age of participants. 

Table 4-10. Item Sets and Linking Items for ICS Data Collection 

Subtest ITOS ICS Item Set A ICS Anchor Items ICS Item Set B 

Gc:VL 1-55 4-19; 21-34 36-46; 48-51; 53-55 56-69;62-67; 69-107 

Gf:I1 1-33 

30 seconds: 1-10 

 

60 seconds: 16-28 

30 seconds: 11-15 

 

60 seconds: 29-33 

30 seconds: 37; 40-42;45-
49;52-54;57-59;62-64;67-

69;72-78 

60 seconds: 34;38-39;43-
44;50-51;55-56;60-61;65-

66;70-71;79-80 

Gv:Vz 1-52 1-21 22-52 53-72 

Gwm:Wc 1-38 11-21 22-32 33-44 

Note. Missing items are a result of post-ITOS or pre-ICS item deletion as described above. 1Induction items 
were administered in 6 sets, starting with 3 30 second sets followed by 3 60 second sets. 
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4.3.2.7 Test Time Limits.  Due to the increased number of items for each CHC 

factor, test time limits were implemented due to ethical considerations and reducing 

the number of items administered to participants to avoid disengagement. Integration 

of these time limits aimed to reduce the impact of missing data based on age groups, 

however, was not always successful (discussed later). Attempts were also made to set 

these time limits based on research regarding attention spans. Memory and attention 

span generally develop and degrade as a function of age (De Luca et al., 2003; Gomes et 

al., 2000; Klenberg et al., 2001), although the speed and continuity of this development 

is uncertain (Gómez-Pérez & Ostrosky-Solís, 2006).There is ongoing debate about the 

potential impact of a wide range of factors on the development of such executive 

functions (Lillard & Peterson, 2011). Some preliminary research suggested that by four 

years old children are capable of sustained attention for at least three minutes (Ruff & 

Lawson, 1990). Other early authors argued that two-year-old children can sustain 

attention for about five minutes, while older children and adolescents can sustain 

attention for up to 20 minutes (Cornish & Dukette, 2009). However, recent contentions 

suggest that perpetuations of a “10- to 15-minute limit” do not account for individual 

differences, are based on outdated research and are dependent on the type of task 

under consideration (Wilson & Korn, 2007). Other research suggests attention tends to 

fluctuate throughout tasks and “active learning moments” can increase the attentional 

system (Hlas et al., 2017). Time limit decisions are consequently difficult to justify. 

Therefore, rather than implementing a single time limit for all adult participants, 

three options were offered to participants for each CHC factor subtest that they 

attempted: “10-minute time limit”, “15-minute time limit”, “I would like to try all items 

available” (i.e., no time limit). It is believed that this would account for individual 
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differences in attention spans as well as allow online participants to select the amount 

of time they were available to participate in the study. For the school aged sample, due 

to ethical considerations about total testing time (discussed below), all participants were 

asked to complete three CHC factor subtests with a time limit of 15 minutes each under 

the direct supervision of provisional registered or general registered psychologists, 

resulting in a maximum test time of 45 minutes – much less than a face-to-face 

comprehensive cognitive ability which may take 60 to 90 minutes. 

For participants under the age of 18, items were administered in the order of 

anchor, Item Set A, then Item Set B, with as many items completed as possible within 15 

minutes. Total test time limits were put in place due to ethical considerations of working 

with young people within the school environment; there was a need to reduce the 

amount of time children were outside of class. There were also concerns given the 

uncertainty about the difficulty of items, how challenging some children may find the 

items as adaptive functionality had not been put in place yet there were concerns that 

without time limits children with low abilities may have been required to undergo 

testing for significant periods of time to finish item sets. 

Version 5.0.0 of the Concerto Platform was utilised for this data collection. This 

version did not yet have the functional ability to output total time taken from each 

individual ‘node’, therefore evaluation nodes were added prior to, and after, each 

individual subcomponent of a test (Figure 4-20). Each evaluation node included custom 

R code to ensure total test time limits worked correctly (Code Snippet 4-2).  
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Figure 4-20. Example of Node Setup to Limit Overall Test Time 

 

Note. Each “eval” node includes the R code used to execute the code below, passing the time allowances 
between each eval node. 

Code Snippet 4-2. R Code for Test Time Calculation 

Note. The code above uses R to calculate the remaining time allowed for each set of Gf:I items to ensure 
that total test time limits are not exceeded. 

For people over the age of 18, items were administered in the order of anchor 

items, Item Set B then Item Set A. Due to the online self-selection recruitment 

methodology, and not needing the same ethical considerations as for those under the 

age of 18, people were offered the opportunity to place their own time limits or to have 

no time limit at all. As this data collection was conducted after the collection of school 

aged data, an updated version of Concerto (v.5.0.9) was used. This version had 

integrated ‘test time’ functionality where previous versions only included ‘item time’ 

timeAllowed <- 900 
if (!exists("startTime")) { 
 startTime <- Sys.time() 
 timeElapsed <- 0 
} else { 
 if (!exists("timeElapsed")) { 
  timeElapsed <- as.numeric(startTime - Sys.time()) 
 } else { 
  timeElapsed <- as.numeric(startTime - Sys.time()) + timeElapsed 
 } 
 startTime <- Sys.time() 
} 
if (abs(timeElapsed) > timeAllowed) { 
 timeAllowed <- toString(30) 
} else { 
 timeAllowed <- toString(timeAllowed + timeElapsed) 
} 
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function meaning that solutions such as Figure 4-20 were not necessary. Test design 

decisions such as time limits and item set predictably resulted in missing data. 

4.3.3 Procedure 

Prior to recruitment and administration of the test to participants, items were 

reviewed by a panel. The panel included a special education teacher familiar with CHC, 

a primary school teacher familiar with screening tools in the classroom and an 

Educational Psychologist familiar with CHC evaluation. The panel were instructed to 

identify items that they believed were ambiguous in question or answer, deviated from 

CHC theory, or did not do implement rules in a logical or consistent fashion. Items that 

were identified for removal are described above in the Materials section. 

For the current study two samples of data were collected: school aged 

participants and adult participants.  The first sample consisted of individuals under the 

age of 18. These individuals were recruited via snowball sampling and completed both 

the Wechsler Intelligence Scale for Children – Fifth Edition (Wechsler, 2016) and three of 

the four CHC-CAT ability tests in a linear fashion. This testing was conducted by 

provisional and general registered psychologists on school grounds with children whose 

parents contacted the chief investigator upon hearing about the research (i.e., via 

snowball sampling). Breaks were given between each CHC-CAT subtest but were not 

given to adults, as adults could self-impose breaks between subtests as required. 

Adults were recruited online (as per the Participants section) via both social 

media advertisements and snowball recruitment. Adults participated at a time of their 

convenience. For both the school aged and adult samples the participants accessed the 

Concerto platform via a link. For school aged participants this was completed 

predominantly on iPads, and for adults on a range of devices (Table 4-11).  
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The Concerto platform was hosted via a National eResearch Collaboration Tools 

and Resources (Nectar) cloud allocation (Australian Research Data Commons, 2020). The 

server utilised Ubuntu v18.04 on a ‘m3.small’ allocation and Concerto was installed via 

the recommended instructions provided by the Concerto developers. 

Table 4-11. Devices Used to Access Concerto Platform 

Device ITOS ICS Adult ICS School Aged 

Personal Computer 0 366 0 

Laptop 0 434 10 

Samsung Galaxy 0 203 0 

Google Pixel 0 34 0 

Microsoft Surface 0 9 0 

Apple iPad 0 149 131 

Apple iPhone 0 547 0 

Other Phone 0 130 0 

Other Tablet 0 10 0 

Prefer Not to Say 0 9 0 

Unknown 1376 0 0 

 
4.3.4 Data Analysis 

The data analysis for this study can be found at github.com/jakekraska/phd. For 

the ICS approximately 3,100 lines of R code were written. 

4.3.4.1 Software.  The analysis for this study was conducted using R Version 3.6.3 

(R Core Team, 2020) within the R Studio Integrated Development Environment Version 

1.2.5033 (R Studio Team, 2019). Packages used are discussed below. 

4.3.4.2 Missing Data.  While IRT is relatively robust to missing data, not all other 

statistical procedures are as flexible. Missing data was analysed using the mice v. 3.8.0 

(Burren & Groothuis-Oudshoorn, 2011), psych v.1.9.12 (Revelle, 2019), tibble v.2.1.3 

https://github.com/jakekraska/chctest
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(Muller & Wickham, 2019), VIM v.5.1.1 (Kowarik & Templ, 2016), BaylorEdPsych v.0.5 

(Beaujean, 2012) and reshape2 v.1.43 (Wickham, 2007) packages for R. 

Understanding and dealing with missing data can be a complex task with many 

methods available. In the ITOS analysis an assumption was made that missing data was 

a result of inability to complete items and thus coded as a 0; given the addition of new 

items in the data set that different participants did not have a chance to attempt, this 

approach was no longer appropriate. Little and Rubin (2020) define missing data as 

“unobserved values that would be meaningful for analysis if observed” (p. 4). Some 

causes of missing data are univariate missing data, item nonresponse, attrition in 

longitudinal studies, two sets of variables never jointly observed, latent variables that 

are never observed, and missing data in clinical trials (Little & Rubin, 2020). Traditional 

methods of addressing missing data such as complete-case, available-case analysis, 

mean substitution, regression imputation, and last observation carried forward have 

been found to produce bias (Cole, 2008). Additionally, imputation methods such as 

mean imputation, regression imputation, stochastic regression imputation, hot deck 

imputation, substitution, cold deck imputation and composite methods are limited 

because they tend to underestimate the sampling variance of estimates (Little & Rubin, 

2020). To this end, maximum likelihood (ML) and MI are generally the strategies 

recommended (Baraldi & Enders, 2010). 

There are three mechanisms of missing data, discussed in Enders (2010): Missing 

Completely at Random (MCAR), Missing at Random (MAR) and Missing Not at Random 

(MNAR). Data classified as MCAR is data that is missing as a function of randomness and 

is not a result of any measured variable (Enders, 2010). In the current study this would 

suggest the probability of a participant missing an is unrelated to the demographic 
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variables and all four CHC factors measured. Missing data by design is considered MCAR 

(Little & Rubin, 2020). It is possible to have a combination of missing data mechanisms.  

There are multiple causes of missing data in the current study. Because the data 

was collected in phases and had time limits, there is missing data by design. Participants 

in the ITOS data collection were exposed to different items than those in the ICS. 

Planned missing data designs “are an efficient way to manage cost, improve data quality, 

and reduce participant fatigue and practice effects” (Rhemtulla & Little, 2012, p. 425).  

However, outside of these deliberate research design decisions there is also data 

missing for other reasons. Firstly, there is missing data that is likely a function of the 

variables under investigation themselves (i.e. age, Lexical Knowledge, Induction, 

Visualisation and Working Memory). Intelligence is intrinsically associated with age; 

differences in age would likely lead to experiences of varying difficulty with the items, 

and thus decisions whether to proceed with or cease testing. Similarly, differences in 

the participants abilities themselves may have also resulted in similar behaviours. Some 

missing data may also be a result of variables that are not under investigation (e.g. socio-

economic status, school exposure, etc.) and could not be measured due to ethical 

considerations or attempting to reduce the task demands of participants. Establishing 

the existence of such relationships can be difficult because the variable is not included 

in the measurement model, and as a result data are MCAR (missingness is unrelated to 

all variables under investigation), MAR (missingness is related to a measured variable 

other than the variable missing) and MNAR (missingness is related to the variable itself).  

When looking at missing data in the entire data set rather than by each individual 

phase of data collection (Table 4-12), there are inflated proportions of missing data that 

were addressed at a phase and item set level. As the current study considers each CHC 
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narrow ability as a unidimensional variable, exploration of the missing data patterns in 

the current chapter was completed on a narrow ability by narrow ability basis. The 

current subsection will include a consideration of methods to address missing data for 

the purposes of the IRT, Mokken, CFA and reliability analyses. 

Missing data in the current study is predominantly from the ICS Adult sample, 

which is unexpected in relation to response rates from the ITOS, but not unexpected 

given the increase in number of items. The missing data is a result of participants either 

reaching their self-set time limit or dropping out of the study early. This was reflected in 

higher proportions of incomplete data sets for each CHC factors Item Set B relative to 

the number incomplete data sets for each CHC factors Item Set A and anchor items. 

Table 4-13, Figure 4-21, and Figure 4-22 summarise these findings. In a similar vein to 

the ‘Three-Form Design’ (Enders, 2010), anchor items within Lexical Knowledge were 

used as the core set of items across all three phases of sampling. 

In the past missing data required deep analysis and pattern identification, ML 

(such as FIML) and MI “are well suited for virtually any missing data pattern” (Enders, 

2010, p. 5). MI has been used for data sets that have thousands of participants with 

hundreds of variables (Schenker et al., 2006) and those that included missingness rates 

of approximately 66% (He et al., 2010). MI methods make use of a algorithms and are 

more flexible than FIML. Using MI generates m imputed data sets (typically 3 to 5; Figure 

4-23), whereas FIML does not actually fill in the data sets (Graham, 2009); m data sets 

result in m estimates for each parameter that can be pooled together (Rubin, 1987). 

Additionally, MI methods allow the use of auxiliary variables in the model which may 

not require imputation themselves. These specific characteristics of MI suggest it is an 

appropriate method of addressing missing data in the current set.  



 

Chapter 4: Item Calibration Study 165 

Table 4-12. Percentage of Missing Data by CHC Ability 

CHC Ability n Items Mean SD Median Min Max 

Lexical Knowledge 105 48.15 16.84 55.02 17.22 71.21 

Induction 78 60.55 20.29 63.29 17.27 89.78 

Visualisation 76 39.83 24.98 28.64 13.83 80.15 

Working Memory 44 36.91 24.84 33.71 6.17 90.48 

Note. This is the percentage of missing data by participant, for example there was a participant with 
90.48% of items unanswered in the Working Memory data set. 

Table 4-13. Percentage of Complete Participant Data 

Subtest Item Set A Anchor Items Item Set B 

Gc:VL 37.94 48.69 11.07 

Gf:I 30s: 26.54; 60s: 20.48 30s: 37.97; 60s: 22.35 30s: 7.31; 60s: 4.02 

Gv:Vz 28.38 32.26 9.09 

Gwm:Wc 20.51 17.10 2.48 

Note. This is the percentage of participants that have completed every item within a set of items. 

Figure 4-21. Number of Participants with Missing Data (By Phase) 

 

Note. The ICS-A showed the most variation in amount of missing data. This may be related to the 
recruitment of more young adults or due to changes in the item sets. 
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Figure 4-22. Percentage of Missing Items (Total Sample) 

 

 

Figure 4-23. MICE Analysis Phases 
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Multivariate imputation by chained equations (MICE) is a flexible method of MI, 

including for both continuous and binary data (Azur et al., 2011). This method allows use 

of different algorithms dependent on each variable being included in the imputation 

model. Earlier discussion regarding the types of missingness in the data suggested it was 

likely that missing data was MCAR, MAR and MNAR. Given the patterns of missingness 

relate to the order of item sets, it is reasonable to assume that missing data is a result 

of planned missingness. Even if the data was not at least 100% MAR, MI has been shown 

to be robust for non-random missingness (Rässler & Riphahn, 2006).  

MICE was completed with all participants without a full set of anchor item data 

removed. Data was prepared for MICE via several methods to ensure specific items or 

participants were not having an undue impact on the imputation. Participants who did 

not have a full set of anchor items (whether correct or incorrect) were removed. Items 

removed after the ITOS were deleted from the data set. Participants with high amounts 

of missing data were removed to improve the accurate imputation for other missing 

data. Research has shown that MICE is effective with even high rates of missingness, so 

the maximum amount of missingness allowed was set to 33%. Univariate outliers were 

removed by time and score. Multivariate outliers were removed by analysing the 

influence of each variable on total score and removing those cases that had a Cook’s 

distance greater than four times the mean. Finally, individuals without a known age 

were removed as it is believed that age is an important variable in the prediction of 

performance on individual items. 

The mice package in R allows a variety of imputation methods to create an 

independent model for each incomplete variable. The Random Forest algorithm was 

used for the imputations as it is known to produce more efficient imputations and 
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narrower confidence intervals (Shah et al., 2014). The Random Forest algorithm is based 

on the concept of decision trees; at the most basic level, error is reduced as more 

“forests” are generated (Breiman, 2001). All items (both score and time taken) in the ICS 

item sets, as well as age, were included as predictors. The visit sequence (i.e. the order 

in which the items were imputed) was set to ‘monotone’ (ordered low to high 

proportion of missing data). A minimum correlation of .20 was required for these to be 

used in prediction. When conducting MICE (regardless of the algorithm used) one can 

consider the influx-outflux of each variable in the model, how important each variable 

is in the imputation prediction, and how reliant each variable is on the imputation 

prediction. Items with low outflux and high influx have low predictive power and are 

highly reliant on the imputation model; these items were removed. The number of 

imputations was set at five; this meant five complete imputed data sets were generated. 

The packages used in this study to conduct CFA and IRT analyses include functions to 

analyse imputed data sets. Where there are errors with MICE, individual data sets were 

analysed in isolation to determine the cause of errors. 

4.3.4.3 Reliability.  As per 3.3.4.2, the reliability analysis classified .7 or above as 

good and was completed using the psych package v.1.9.12 (Ravelle, 2019) for R. 

4.3.4.4 Rasch analysis.  As per 3.3.4.5 the Rasch analysis focuses on difficulty 

parameters, holding other parameters (i.e., guessing, discrimination) as stable. Fit 

statistics for this chapter were the same as those for Chapter 3. Individual items were 

evaluated with the M2 statistic (Maydeu-Olivares & Joe, 2006), Comparative Fit Index 

(CFI; Bentler, 1990), the Tucker Lewis Index (TLI;Tucker & Lewis, 1973), the Root Mean 

Square Error of Approximation (RMSEA; Browne & Cudeck, 1992) and the Standardised 
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Root Mean Square Residual (SRMSR; Hu & Bentler, 1999). Given the reduction in sample 

size available for analysis due to the data imputation models used, sample size 

considerations are more important in this ICS than the ITOS; item calibrations should be 

stable within half a logit at a sample size of 150, and 250 participants is suggested for 

high stakes testing (Linacre, 1994). Marginal reliability was also evaluated for each item 

set: this is an estimate of the reliability of the item set based on the standard error of 

measurement (SEM) of respondents given variable test lengths (Sireci et al., 1991). 

Unlike in the ITOS analysis, items were not removed based on stringent application of 

cutoffs. To retain items, qualitative evaluation and item statistics were used to make 

decisions about removal. These analyses were carried out using the mirt v.1.3.1 

(Chalmers, 2012) and WrightMap v.1.2.2 (Torres Irribarri & Freund, 2014) packages. 

4.3.4.5 Mokken Analysis.  As per 3.3.4.4 the Mokken analysis relied on 

evaluations of Loevinger’s H value (Loevinger, 1948) carried out using the mokken 

v.2.8.11 package (Van der Ark, 2007, 2012) for R. Items that receive a Loevinger H value 

of below .30 are considered to be inaccurate, between .30 and .40 considered to have 

low accuracy, between .40 and .50 have moderate accuracy, and values over .50 suggest 

good ordering (Ligtvoet et al., 2010; Sijtsma & Meijer, 1992). 

4.3.4.6 Local Independence.  As per 3.3.4.6 Yen’s Q3 method of correlated 

residuals (Yen, 1993) was used to test the local independence of items via base stats 

v.3.6.3 (R Core Team, 2020). A cutoff of .20 was set for local dependency and flagged 

items were evaluated further for consideration of removal. 

4.3.4.7 Differential Item Functioning. Some changes were made to the 

differential item functioning (DIF) analysis for this study compared the ITOS (as per 
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section 3.3.4.8). For the ICS, DIF was analysed for age group, gender, nationality, and 

device used. The mirt v.1.3.1 (Chalmers, 2012) and difR v.5.0 (Magis et al., 2010) 

packages were utilised. ICCs were analysed for items flagged as displaying DIF, and those 

that had no obvious, theoretical, or conceptual reason for the DIF were retained. 

4.3.4.8 Confirmatory Factor Analysis.  CFA was completed only as a general 

indicator of unidimensionality. Given the wide range of item difficulty and ages in the 

study, and the deliberate cognitive complexity implemented into some item sets, it is 

expected the fit statistics were unlikely to always meet the required cutoffs. The goal of 

this study was to calibrate item sets so they have value in measuring a wide range of 

ability and make theoretical sense in the context of the CHC taxonomy of abilities for 

use in a CAT (Chapter 5). It is likely a hierarchical or bifactor model would be more 

appropriate for this data. The CFAs carried out relied on the same fit statistics as per 

3.3.4.3 with a recommended 250 to 500 participants per analysis to meet adequate 

power (Lewis, 2017). Acceptable fit is determined by evaluating these fit indices in 

cohesion, aiming for greater than .9 for CFI and TLI, an RMSEA below .01 (excellent), .05 

(good), or .08 (mediocre), or an SRMR below .08 (good) (Hooper et al., 2008). The 

Diagonal Weighted Least Squares (DWLS) estimator was used due to the dichotomous 

nature of item data. The CFAs were carried out using the lavaan v0.6-3 (Rosseel, 2012) 

and semTools v.0.5-2 (Jorgensen et al., 2019) packages for R. 

4.3.4.9 Item Analysis and Removal Sequence.  Unlike in the ITOS (section 3.3.4.8) 

items did not have to repeatedly pass the same checks in an iterative process. While the 

same analyses were carried out if an item was removed at a certain stage the whole 

analysis process would not be completed again. Furthermore, less stringent application 
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of cutoff rules was used. This was implemented to take a step back from the 

conservative approach laid out in the ITOS, allow for consideration of theory-based 

decisions, and place a focus on IRT. This also assisted in preparing for the simulation 

(Chapter 5) and validation studies (Chapter 6) by retaining as many items as possible. 

4.4 Lexical Knowledge Results 

4.4.1 Raw Score Outcomes 

The descriptive statistics for time taken and total raw score for the ITOS and ICS 

samples are included in Table 4-14 and Table 4-15.  

The maximum possible score for the ITOS was 55, while the maximum score for 

the ICS Adult and School Aged samples was 98. There was more varied performance for 

the ICS Adult and ICS School Aged participants than the ITOS participants (Figure 4-24). 

There was a significant difference in the total raw score of participants within 

each phase: F(2,2425) = 29.7, p < .001 (Figure 4-25). The total amount of time 

participants were engaged with the Lexical Knowledge test was significantly different: 

F(2,2425) = 158.4, p < .001 (Figure 4-26). Time taken was generally similar for the ITOS 

and ICS Adult samples but was somewhat higher on average for the ICS School Aged 

sample, likely due to being supervised. 

With the addition of items based on less common words, there was a decrease 

in performance in latter items (Figure 4-27). As per the ITOS analysis, and quite logically, 

score improved as a function of more time being taken with the test (Figure 4-28). 

There was no significant difference between gender identification groups on 

total score, F(3,2424) = 2.25, p = .08 (Figure 4-29), or time taken, F(3,2424) = 0.422, p = 

.73 (Figure 4-30). 
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Table 4-14. Descriptive Statistics for Total Score for the Gc:VL Items 

 n Items n Participants Mean SD Min Max 

Item Tryout Study1 55 1203 46.95 11.72 1 55 

ICS Adult 98 1130 41.65 23.28 1 94 

ICS School Aged 98 95 50.05 10.50 7 74 

All Phases 105 2428 44.61 18.23 1 94 
1Descriptive statistics varied from ITOS analysis due to changes in missing data methodology 

 

Table 4-15. Descriptive Statistics for Time Taken with the Gc:VL Items 

 n Mean SD Min Max 

Item Tryout Study1 1203 465.67 159.69 11.02 1569.11 

ICS Adult 1130 531.53 261.24 15.03 2065.52 

ICS School Aged 95 855.77 118.78 229.16 972.11 

All Phases 2428 511.59 225.37 11.02 2065.52 
1Descriptive statistics varied from ITOS analysis due to changes in missing data methodology 

 

Figure 4-24. Gc:VL Frequency of Participant Raw Score 
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Figure 4-25. Gc:VL Score by Phase 

 

Figure 4-26. Gc:VL Time Taken by Phase 

 

 

 

Figure 4-27. Gc:VL Percentage of Items Correct 
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Figure 4-28. Gc:VL Total Score by Time Taken 

 

 

Figure 4-29. Gc:VL Gender by Score 

 

Figure 4-30. Gc:VL Gender by Time Taken 
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4.4.2 Missing Data 

Table 4-16 and  Figure 4-31 show the summary statistics of the percentage of 

missing data within the Lexical Knowledge data set, broken down by each phase of 

collection. For the ITOS data collection missing data increased linearly. For the ICS Adult 

data collection, missing data within each variable ranged between 20% and 80% with 

more significant missing data within Item Set A (items 1-55), administered last for adults. 

For the ICS School Aged data collection, as with adults, missing data appears to increase 

in the third set of items (Item Set B; items 67-107).  

When considering missing data percentages per participant (Table 4-17), the 

higher mean and median percentage of missing data by participant for the ICS Adult 

sample suggests a high number of these participants dropped out of the study, either 

due to self-imposed time limits or by choice.  

Figure 4-32 shows the pattern of missingness across item sets. If an item was 

missing from an item set, the entire item set was classed as incomplete. Blue cells show 

the frequency of complete item. 

Table 4-16. Percentage of Gc:VL Missing Data by Item 

Phase n Items Mean SD Median Min Max 

ITOS 55 7.40 2.95 8.15 0.25 11.22 

ICS Adult 98 43.49 20.39 40.18 13.27 78.58 

ICS School Aged 98 10.46 11.61 1.05 0 29.47 

 

Table 4-17. Percentage of Gc:VL Missing Data by Participant 

Phase n Participants Mean SD Median Min Max 

ITOS 1203 7.4 22.42 0 0 98.18 

ICS Adult 1130 43.49 27.63 47.96 0 98.98 

ICS School Aged 95 10.46 13.64 5.1 0 81.63 

Note. Missing data for this table is calculated based on the items available to each participant. 
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Figure 4-31. Percentage of Gc:VL Missing Data by Phase 

 

Figure 4-32. Missing Data Pattern for Gc:VL Item Sets 

 

Note. Red cells indicate missing data while blue cells indicate present data. The bars above and beside the 
cells represent the proportion of participants with that pattern of data. 
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4.4.3 Data Imputation 

While missing data analysis was broken into separate data collection phases and 

thus missingness calculated on specific item sets administered, the data imputation 

considered the dataset in entirety. Data was prepared for MICE in stages (Table 4-18). 

Because item removal resulted in 48 remaining items in the ITOS, participants in the 

ITOS analysis could have only completed 48 of the 98 items included in the ICS; they 

automatically had 51.02% of missing data. 

This has implications for the interpretation of missing data compared to the 

previous total missing data analysis (4.4.2). For example, previously a participant was 

not counted as having missing data if they were in the ITOS sample and had completed 

every Lexical Knowledge item between items 1 and 55; they had completed every item 

available to them. In this part of the analysis, for the purposes of imputing data, they 

were missing data for items 56 through 107 (Figure 4-33). As an additional example, if 

they only completed items 22 or 24, they would not identify as non-responders, 

however in this case they would have 100% missing data because the items they did 

complete were no longer in the data set (Figure 4-34). The pattern of missingness based 

on item sets after these alterations is represented in Figure 4-35, and suggests after 

removing of missing data in the steps outlined in Figure 4-34, the most common pattern 

of data remaining is all three sets of items being complete. 

After the data cleaning, items 10 (Hammer) and 12 (Chef) were flagged as 

constants in the imputation model, and item 51 (Phlegmatic) was flagged as problematic 

for Random Forest prediction. Items 15 (Laundry), 16 (Wombat), 17 (Hinge), 18 (Winter), 

19 (Disappointed), 21 (Flute), 22 (Cauliflower), 23 (Winning), 24 (Barbeque), 25 (Busy), 

26 (Shoulder), 27 (Windmill), 28 (Sour), 29 (Dinosaur), 30 (Compass), 31 (Pasties), 32 
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(Solid), 33 (Oasis) and 34 (Quadrilateral) were found to have poor outflux values and 

were removed (Figure 4-36 and Figure 4-37). These items have low outflux and thus 

have low predictive power for the imputation models. They also skew to the right of the 

graph suggesting higher influx, meaning they are more dependent on the imputation 

model. Removing these items ensures the imputation models are less biased. 

The multivariate data imputation was successfully carried out with 177 individual 

formulas executed to impute data for the 177 variables remaining. No problems were 

identified with the imputation, shown in Figure 4-38 and Figure 4-39. 

Figure 4-40 and Figure 4-41 show comparisons between the data before and 

after imputation. 

Table 4-18. ICS Gc:VL Missing Data Cleaning 

Phase n Items Mean SD Median Min Max 

Initial Data 105 48.15 16.84 55.02 17.22 71.21 

Full Anchor Items 105 40.59 28.21 38.60 0 78.10 

Removed ITOS Items1 98 40.72 29.21 61.58 0 78.10 

Low Response Items2 94 39.19 28.83 21.69 0 74.87 

High Missingness 94 10.43 12.64 4.04 0 36.85 

Missing Age 94 10.42 12.65 4.26 0 32.98 

Time Outliers 94 10.50 12.44 4.55 0 36.87 

Score Outliers 94 10.48 12.53 4.43 0 37.24 

Multivariate Outliers 94 10.17 11.98 4.57 0 32.98 
1Items 1, 2, 3, 20, 35, 47, 61 and 68; 2Items 104, 105, 106, 107 
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Figure 4-33. Gc:VL Missing Data for Data Imputation Preparation 

 

 

Figure 4-34. Percentage of Missing Gc:VL Items by Participant 
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Figure 4-35. Missing Data Pattern Gc:VL with Full Anchor Items 

 

Note. Red cells indicate missing data while blue cells indicate present data. The bars above and beside the 
cells represent the proportion of participants with that pattern of data. 

Figure 4-36. Outflux-Influx Prior to Item 
Removal 

 

Figure 4-37. Outflux-Influx After Item 
Removal 

 

Note. Items with low outflux have poor predictive power for the imputation model and items with high 
influx have high reliance on the imputation model. Ideally you have high outflux and low influx. 
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Figure 4-38. Gc:VL Score by Imputation 

 

Figure 4-39. Gc:VL Total Time by Imputation 

 

 

Figure 4-40. Gc:VL ICS Percentage of Items Correct 
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Figure 4-41. Gc:VL Total Score by Age 

 

4.4.4 Reliability 

Cronbach’s alpha for the Lexical Knowledge 72-item set was .90. This suggests 

the items have good internal consistency. This reliability is lower than in the ITOS, likely 

a result of the items measuring a wider range of difficulties. Reliability also stayed 

relatively high, likely due to a high number of items. 

4.4.5 Rasch Analysis 

Rasch analysis was conducted on all five imputed data sets. For the 72-item set 

there was close to acceptable fit across all fit indices. Item fit details are in Appendix I. 

Table 4-19. Rasch Scale Fit Statistics for Gc:VL 72-Item Set 

Data M2 DF RMSEA SRMR TLI CFI Marginal Rxx 

Imp 1 5431.72*** 2555 .06 .11 0.88 0.88 .90 

Imp 2 5356.62*** 2555 .05 .11 0.88 0.88 .90 

Imp 3 5419.41*** 2555 .05 .11 0.88 0.88 .90 

Imp 4 5600.77*** 2555 .06 .11 0.87 0.87 .90 

Imp 5 5527.72*** 2555 .06 .11 0.87 0.87 .90 

Note. *p < .05; **p < .01; ***p < .001 
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Person fit statistics were calculated (Figure 4-42) with 42 participants found to 

have Zh values above +2 and below -2. Further analysis identified these were 38 

participants aged between 6 and 18, and four participants aged above 50. These 

participants were likely flagged as ‘poorly fitting’ as they performed inconsistently on an 

item-by-item basis compared to other participants. This study included people of very 

low, average, and very high ability and thus there is expected to be significant variation 

in performance which may be flagged by overly sensitive statistical tests. Univariate and 

multivariate outliers were already addressed in the data imputation stage. 

Figure 4-42. Gc:VL 72 Item Set Wright Map 

 

For the 72-item set, 43 items were flagged as having poor item fit. These items 

were analysed from both a qualitative and psychometric perspective. 

Across all five imputations, items 4 (Gate), 5 (Sad), 6 (Pineapple), 7 (Koala), 8 

(Basketball), 9 (City), 11 (Washing), and 58 (Splinter) returned ‘NA’ or ‘NaN’ fit statistics. 

Item analysis showed very minimal variation in performance on these items across the 

age groups, with almost all participants obtaining a correct answer (i.e. data sparseness). 
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Such items are deemed very easy but do have some clinical use for screening children 

with very low trait levels of Lexical Knowledge. In a CAT, not all items need to be 

administered to an individual, and item exposure rules can ensure people are not 

exposed to overly repetitive items. Item 7 (Koala) is culturally loaded, and both items 9 

(City) and 11 (Washing) had poor-quality pictures and so were removed. Almost no 

participants obtained an incorrect answer for items 4 (Gate), 5 (Sad), and 8 (Basketball). 

Items 6 (Pineapple) and 58 (Splinter) showed the most variation in performance for 

people aged 6-17 and were retained as they are believed to be clinically useful. 

After removal of the above six items, a Rasch analysis was conducted again and 

20 items remained problematic. Appendix J shows the item performance by age groups. 

For items 38 (Fortnight), 40 (Spanner), 56 (Incensed), 62 (Toast), 99 (Stipulate) and 100 

(Maître D), only younger participants appeared to have difficulty, suggesting they are 

good items for discriminating ability in children and adolescents and were retained. 

Items 96 (Virescent) and 102 (Dystopian) had variable performance and the stimuli are 

not ambiguous if you know the definition of the word, and thus were retained. Items 54 

and 55 were previously flagged for monitoring during new development following the 

ITOS and were removed. Items 42 (Transparent), 75 (Lateral), 79 (Verbose), 82 

(Emblazon), 83 (Luddite), 84 (Scintillate), 88 (Astute), 90 (Bogart), and 98 (Perennial) 

would be useful items clinically, however the response options were ambiguous even 

with knowledge of the definition. This combined with low quality images resulted in 

their removal. Item 65 (Digraph) appeared to have very unpredictable performance, 

likely to be a result of requiring very specialised knowledge (i.e. linguistics). It was 

deemed an inappropriate measure of Lexical Knowledge and was removed. These 

calibrations resulted in a 54-item set. 
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Table 4-20. Rasch Scale Fit Statistics Gc:VL 54-Item Set 

Data M2 DF RMSEA SRMR TLI CFI Marginal Rxx 

  Imp 1 2642.44*** 1430 .05 .11 0.94 0.94 .86 

  Imp 2 2563.56*** 1430 .05 .11 0.95 0.95 .86 

  Imp 3 2636.93*** 1430 .05 .11 0.94 0.94 .86 

  Imp 4 2703.46*** 1430 .05 .11 0.94 0.94 .86 

  Imp 5 2626.54*** 1430 .05 .11 0.94 0.94 .86 

Note. *p < .05; **p < .01; ***p < .001 

4.4.6 Mokken Analysis 

Mokken analysis was completed with the 54-item set. Thirty items were found 

to have Loevinger’s H values below .30, with many from Item Set B (i.e. more unlikely to 

have been completed by school aged participants and predicted via MICE). Some items 

that did not scale well were also flagged above in the Rasch Analysis. Item 14 (Bridge), 

48 (Artichoke), 63 (Witness), 71 (Proficient), 76 (Assuage), and 80 (Lycanthropy) were 

flagged by the Mokken analysis and evaluation of their response options revealed some 

ambiguity that was not determined by the expert panel. These items were removed. 

Table 4-21. Mokken Analysis for Gc:VL 54 Item Set 

Data Set Loevinger’s H Standard Error 

54-items   

 Imputation 1 .30 .01 

 Imputation 2 .30 .01 

 Imputation 3 .30 .01 

 Imputation 4 .30 .01 

 Imputation 5 .30 .01 

48 items   

 Imputation 1 .33 .01 

 Imputation 2 .33 .01 

 Imputation 3 .33 .01 

 Imputation 4 .33 .01 

 Imputation 5 .33 .01 
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4.4.7 Local Independence 

Local dependency was found for the following items: 6, 7, 9, 11, 36, 37, 38, 41, 

43, 44, 53, 55, 57, 62, 64, and 81. Each item’s content did not reveal any potential 

learning a participant could gain to assist in correctly answering a later item. Some items 

were flagged by earlier analyses due to sparseness of data and retained due to clinical 

utility. Item 37 (Duet) had significantly higher local dependence (.47) and was removed.  

4.4.8 Differential Item Functioning 

 No DIF was found for nationality or device usage. Items 39, 50, 69, and 101 were 

found to have DIF for gender. No theoretical reason was identified for the discrepancy 

in performance and thus items were retained. 

Figure 4-43. Gc:VL DIF by Gender 

  

  

Note. The focal group for gender was Male (“m”) and the reference group was Female (“f”) 
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4.4.9 Confirmatory Factor Analysis 

CFA was completed with the Lexical Knowledge 47-item set. The CFA converged 

for imputations 1, 2, 3, and 4 and an acceptable fit was found. A higher SRMR in the 

context of low RSMEA suggests there are some residuals that correlate highly, whereas 

the RSMEA is lower due to the higher degrees of freedom (DF). Only items 58 (Splinter), 

96 (Virescent) and 100 (Maître D) were found to have loadings below .30. 

Table 4-22. CFA for Gc:VL 47-Item Set 

Imputation χ2 DF RMSEA SRMR TLI CFI 

Imp 1 1485.21*** 1034 .03 .11 0.98 0.98 

Imp 2 1450.54*** 1034 .03 .11 0.98 0.98 

Imp 3 1427.32*** 1034 .03 .11 0.98 0.98 

Imp 4 1466.15*** 1034 .03 .11 0.98 0.98 

Note. *p < .05; **p < .01; ***p < .001 

4.4.10 Rasch Item Parameters, ICC and Test Information 

Rasch fit statistics (Table 4-23) for the 47-items reflected that of the CFA. The 

final parameters calculated after item calibration used rules from Rubin (1987) to pool 

parameter and standard error estimates across the five imputed data sets. These are in 

Appendix K. The items range from -6.41 θ (item 8; Basketball) to 2.67 θ (item 88; Astute) 

as shown in Figure 4-44. The highest point of information, and thus the point of highest 

reliability, is at approximately -2 θ as shown in Figure 4-45 and Figure 4-46, respectively. 

Table 4-23. Rasch Scale Fit Statistics for Gc:VL 47-Item Set 

Data M2 DF RMSEA SRMR TLI CFI Marginal Rxx 

Imp 1 2016.92*** 1080 .05 .11 0.95 0.95 .84 

Imp 2 1939.36*** 1080 .05 .11 0.95 0.95 .84 

Imp 3 1965.96*** 1080 .05 .11 0.95 0.95 .84 

Imp 4 1998.05*** 1080 .05 .11 0.95 0.95 .84 

 Imp 5 1972.87*** 1080 .05 .11 0.95 0.95 .84 

Note. *p < .05; **p < .01; ***p < .001 
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Figure 4-44. Gc:VL ICS Rasch ICCs 

 

 

Figure 4-45. Gc:VL ICS Rasch TIC 
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Figure 4-46. Gc:VL ICS Rasch Test Reliability Curve 

 

 

4.5 Induction Results 

4.5.1 Raw Data 

The descriptive statistics for time taken and total raw score for the ITOS and ICS 

samples are included in Table 4-24 and Table 4-25. 

The frequencies of the total raw scores for participants are in Figure 4-47. The 

maximum possible score for the ITOS sample was 33, whereas the maximum total score 

for the ICS Adult and ICS School Aged samples was 78. Despite more items being 

available for the ICS Adult participants, more participants scored lower, though this does 

not account for time spent on the test. 

There was a significant difference in the raw score of participants within each 

phase: F(2,1641) = 115.6, p < .001 (Figure 4-48). The total time taken for the Induction 

test was significantly different: F(2,1641) = 76.77, p < .001 (Figure 4-49).  
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Performance across the Induction items remained varied, including within the 

new items (Figure 4-50). Many participants dropped out of the Induction test early in 

the ICS Adult sample (Figure 4-51), which also shows a somewhat linear relationship 

between time taken and higher scores. 

There was a significant difference between gender identification groups on total 

score, F(3,1640) = 5.01, p < .01 (Figure 4-52). Post hoc comparisons using the Tukey HSD 

test indicated the mean score for the Prefer Not To Say gender identification group was 

statistically lower than the Male gender identification group, p = .02. There was no 

significant difference between other gender identification groups for total score.  

There was also a difference between gender identification groups on total time 

taken, F(3,1640) = 3.58, p = .01 (Figure 4-53). Post hoc comparisons using the Tukey HSD 

test indicated that mean score for the Other gender identification group was statistically 

lower than the Male gender identification group, p = .02. There was no significant 

difference between other gender identification groups for time taken. 

Table 4-24. Descriptive Statistics for Raw Score with the Gf:I Items 

 n Items n Participants Mean SD Min Max 

ITOS1 33 670 19.95 4.77 1 31 

ICS Adult 78 877 14.16 10.83 1 46 

ICS School Aged 78 97 23.85 7.95 1 42 

All Phases 78 1644 17.09 9.28 1 46 
1Descriptive statistics varied from the ITOS analysis due changes in missing data methodology 

Table 4-25. Descriptive Statistics for Time Taken with the Gf:I Items 

 n Mean SD Min Max 

ITOS1 670 699.02 228.01 6.24 1346.69 

ICS Adult 877 518.22 435.33 14.88 2559.11 

ICS School Aged 97 876.91 299.38 13.60 1305.18 

All Phases 1644 613.07 373.32 6.24 2559.11 
1Descriptive statistics varied from the ITOS analysis due changes in missing data methodology 
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Figure 4-47. Gf:I Frequency of Participant Raw Score 

 

Figure 4-48. Gf:I Total Score by Phase 

 

Figure 4-49. Gf:I Time Taken by Phase 
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Figure 4-50. Gf:I Percentage of Items Correct 

 

 

Figure 4-51. Gf:I Total Score by Time Taken 
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Figure 4-52. Gf:I Gender by Total Score 

 

Figure 4-53. Gf:I Gender by Time Taken 

 

 

4.5.2 Missing Data 

For the ICS data collection, Induction items were split into 30 second and 60 

second groups, as well as broken down into their item sets as per 4.3.2.6. The 30 second 

items were administered prior to the 60 second items. While no items were removed 

from the ITOS, there are some items of concern that were noted for monitoring.  

Table 4-26 and Figure 4-54 show summary statistics of the percentage of missing 

data within the Induction data set, broken down by each phase of data collection. Due 

to the disordered administration of items (by number) based on different time limits 

between item sets, there is variation in performance across items in the ICS Adult phase.  

When considering the missing data percentages per participant in Table 4-27, 

the higher mean and median percentage of missing data per participant for the ICS Adult 
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sample suggests a high number of participants in this sample dropped out of the study, 

likely due to either self-imposed time limits or by choice. Figure 4-55 shows the pattern 

of missingness across the item sets. For each participant, an item set was classed as 

incomplete if an item was missing from that set.  

Table 4-26. Percentage of Gf:I Missing Data by Item 

Phase n Items Mean SD Median Min Max 

ITOS 33 6.76 5.43 4.93 0.75 17.01 

ICS Adult 78 66.24 21.95 74.29 30.78 93.16 

ICS School Aged 78 9.11 7.95 7.22 1.03 28.87 

 

Table 4-27. Percentage of Gf:I Missing Data by Participant 

Phase n Participants Mean SD Median Min Max 

ITOS 670 6.76 17.3 0 0 96.97 

ICS Adult 877 66.24 24.62 71.79 0 98.72 

ICS School Aged 97 9.11 18.71 0 0 98.72 

Note. Missing data for this table is calculated based on the items available to each participant. 

 

Figure 4-54. Percentage of Gf:I Missing Data by Phase 
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Figure 4-55. Missing Data Pattern for Gf:I Sets 

 

Note. Red cells indicate missing data while blue cells indicate present data. The bars above and beside the 
cells represent the proportion of participants with that pattern of data. 

4.5.3 Data Imputation 

As per the Lexical Knowledge analysis the data imputation will consider the 

dataset in entirety. Data was prepared for MICE in stages as detailed in the methodology 

section and demonstrated in Table 4-28. 

This has implications for the interpretation of missing data compared to the 

previous section. For example, in the missing data analysis section (4.5.2), a participant 

was not counted as having missing data if they were in the ITOS sample and had 

completed every Induction item between items 1 and 33.In this part of the analysis 

however, they were considered to be missing data for items 34 through 78 (Figure 4-56). 

Some items were removed prior to data imputation cleaning due to concerns about the 

reliability of the items being raised by the expert panel. The most significant drops in 

participants were caused by removal of those that either did not have full anchor items 

or had high rates of missingness (Figure 4-57). The pattern of missingness based on item 
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sets after these alterations is presented in Figure 4-58, and suggests the most common 

pattern of data remaining is all six items sets being complete. 

After data cleaning, items were analysed to determine if they would be flagged 

as problematic for MICE. No items were flagged as problematic for the Random Forest 

algorithm. Items 1-10 were flagged as having an outflux below .30 (Figure 4-59 and 

Figure 4-60) and were removed. 

MICE was successfully carried out with 81 individual formulas executed for 81 

variables. No problems were identified with the imputation. Figure 4-61, Figure 4-62, 

Figure 4-63 and Figure 4-64 show comparisons between the data before and after 

imputation. 

Table 4-28. ICS Gf:I Missing Data Cleaning 

Phase n Items Mean SD Median Min Max 

Initial Missing Data 78 60.55 20.29 63.29 17.27 89.78 

Full Anchor Items 78 46.84 35.27 73.19 0 84.32 

Removed Items1 72 50.44 34.31 73.32 0 84.32 

Low Response Rate2 47 35.13 33.53 12.33 0 74.53 

High Missingness 47 10.65 13.61 2.29 0 37.14 

Missing Age 47 10.61 13.60 2.33 0 37.21 

Time Outliers 47 10.67 13.27 2.60 0 35.71 

Score Outliers 47 10.65 13.35 2.67 0 36.00 

Multivariate Outliers 47 10.661 13.73 2.82 0 37.32 
1Items 22, 24, 25, 30, 31, 33, 2Items 34, 38, 39, 43, 44, 50, 51, 55, 56, ,60, 61, 65, 66, 69, 70-80  
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Figure 4-56. Gf:I Missing Data for Data Imputation Preparation 

 

 

Figure 4-57. Percentage of Missing Gf:I Items by Participant 
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Figure 4-58. Missing Data Pattern for Gf:I with Full Anchor Items 

 

Note. Red cells indicate missing data while blue cells indicate present data. The bars above and beside the 
cells represent the proportion of participants with that pattern of data.  

 

Figure 4-59. Outflux-Influx Before Removal 

 

Figure 4-60. Outflux-Influx After Removal 

 

Note. Items with low outflux have poor predictive power for the imputation model and items with high 
influx have high reliance on the imputation model. Ideally you have high outflux and low influx. 
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Figure 4-61. Gf:I Score by Imputation 

 

Figure 4-62. Gf:I Total Time by Imputation 

 

 

 

Figure 4-63. Gf:I ICS Percentage of Items Correct 
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Figure 4-64. Gf:I Total Score by Age 

 

4.5.4 Reliability 

Cronbach’s alpha for the Induction items in the ICS was calculated across each of 

the imputed data sets and found to have a mean of .78 (good). This was lower than the 

Cronbach’s alpha in the ITOS, reflecting an increased diversity in difficulty. 

4.5.5 Rasch Analysis 

Rasch analysis was conducted on all five imputed data sets. For the 37-item set 

there was close to acceptable fit across all fit indices. Item fit details are in Table 4-29. 

None of the items flagged for monitoring from the ITOS (items 22, 24, 25, 30, 31 and 33) 

were in the imputed data sets due to being removed in preparation for the MICE. 

Table 4-29. Rasch Scale Fit Statistics for Gf:I 37-Item Set 

Data M2 DF RMSEA SRMR TLI CFI Marginal Rxx 

Imp 1 876.64*** 665 .05 .11 0.82 0.82 .86 

Imp 2 858.56*** 665 .05 .11 0.83 0.83 .86 

Imp 3 857.95*** 665 .05 .10 0.82 0.82 .86 

Imp 4 863.78*** 665 .05 .11 0.82 0.82 .86 

Imp 5 836.12*** 665 .04 .10 0.85 0.85 .86 

Note. *p < .05; **p < .01; ***p < .001 
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Person fit statistics were calculated (Figure 4-65), and six participants found to 

have Zh values outside ±2. Consistent with the Lexical Knowledge items, four of these 

participants were School Aged. The range of performance was more centralised for 

Induction (-1.5 to 1.5) compared to Lexical Knowledge (-3.0 to 3.0). This was likely due 

to the removal of participants after identifying missing data during MICE preparation. 

Figure 4-65. Gf:I 37-Item Set Wright Map 

 

For the 37-item set, items flagged as having poor fit was dependent on the 

imputation data set. Items 17 and 52 were flagged in all five Rasch models, while item 

20 was flagged in imputations 1, 2 and 5, item 37 in imputations 3 and 4, and item 49 in 

imputation 4. These items were further analysed. 

For item 17 (Figure 4-66), the pattern progresses based on adding two shapes 

and changing the colour and shape. The answer is nine triangles, however the response 

options provided two options with nine triangles, one in an ordered fashion (incorrect) 

and a disordered fashion (correct). This was deemed ambiguous and removed. 

For item 52 (Figure 4-67) the final pattern in the bottom right cell is 

unpredictable as the pattern of change from the top left to either the bottom left or top 
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right is the same; there is not enough information available for the participant to reliably 

answer. The other response options are clearly incorrect so participants may obtain the 

answer by a process of deduction. As this was a test of induction, the item was removed. 

For item 20 (Figure 4-68) the answer relies on horizontal flipping. As the matrix 

is only 2x2 rather than 3x2 where the pattern is displayed more consistently, it may have 

caused some uncertainty. Unlike item 52, where it is not possible to detect the rule 

without referring to the response options, the rule for item 20 can be determined 

without consulting potential answers. This appeared to be most challenging for 6- to 17-

year-olds in comparison to 18- to 29-year-olds, suggesting it was a good item to retain. 

For item 37 (Figure 4-70) there were only four response options (a teal hexagon, 

a yellow star, a green square and a green hexagon) with a fairly obvious rule. Only 1 out 

of 57 adults obtained an incorrect answer here, likely due to other factors outside of 

Induction ability or very low ability. Some children obtained the incorrect answer, likely 

due to the size of the matrix and the distractor green square. This item was flagged in 

only two of the imputations, so was retained. 

For item 49 (Figure 4-69) the shape rotates 90 degrees to the right, however due 

to the order of shapes in the bottom row, and there being three response options with 

rotated purple triangles on a yellow background, there is some opportunity for 

participants who are not paying close attention to make a mistake. Looking at item 

performance across age groups, there appeared to be inconsistency and thus this item 

was removed.  

After removing these three items, Rasch was conducted again and these 

calibrations resulted in a 34-item set (Table 4-30). 
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Figure 4-66. Gf:I Item 17 

 

Figure 4-67. Gf:I Item 52 

 

Figure 4-68. Gf:I Item 20 

 

Figure 4-69. Gf:I Item 49 

 

Figure 4-70. Gf:I Item 37 

 

 

Table 4-30. Rasch Scale Fit Statistics Gf:I 34-Item Set 

Data M2 DF RMSEA SRMR TLI CFI Marginal Rxx 

  Imp 1 711.60*** 560 .04 .10 0.86 0.86 .85 

  Imp 2 692.23*** 560 .04 .10 0.88 0.88 .85 

  Imp 3 691.37*** 560 .04 .10 0.87 0.87 .85 

  Imp 4 693.29*** 560 .04 .10 0.88 0.88 .85 

  Imp 5 672.80*** 560 .04 .10 0.89 0.90 .85 

Note. *p < .05; **p < .01; ***p < .001 



 

Chapter 4: Item Calibration Study 204 

4.5.6 Mokken Analysis 

Mokken analysis was completed with the 34-item set. Thirty items were found 

to have Loevinger’s H values below .30; likely due to substantial variation in item 

complexity. There was no discernible pattern across items characteristics: matrix size, 

number of response options, straight lines or curves, rotations, number of rules, number 

of colours, and use of sequential progression. Items 13, 15, 18, 20, 29, 40, 41, 42, 48, 54, 

58, and 63 displayed low Loevinger’s H values. Item 20, already discussed above, was 

not removed however all others were. This produced noticeable improvements in fit. 

Table 4-31. Mokken Analysis for Gf:I 34 Item Set 

Data Set Loevinger’s H Standard Error 

34 items   

 Imputation 1 .15 .02 

 Imputation 2 .15 .02 

 Imputation 3 .15 .02 

 Imputation 4 .15 .02 

 Imputation 5 .15 .02 

23 items   

 Imputation 1 .22 .02 

 Imputation 2 .22 .02 

 Imputation 3 .21 .02 

 Imputation 4 .22 .02 

 Imputation 5 .22 .02 

 

4.5.7 Local Independence 

Local dependency was flagged for items 11, 29, 32, 37,42, 45 and 53 with only 

minor inflation of residuals above the .20 cutoff. There are no obvious learnings in these 

items that could be gained from one item that would assist in answering a latter 

question correctly. However, there are some similarities in terms of task style. For 
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example, items 29 and 42 (Yen’s Q of .23) both require mental shape rotation, while 

items 32 and 45 (Yen’s Q of .22) both require moving colours within a shape. There does 

not appear to be enough evidence that these items are not theoretically unidimensional, 

and while there may be some cognitive complexity introduced to the tasks that produce 

residual correlations, this does not interfere with the underlying measurement of 

Induction ability and thus these items were retained. 

4.5.8 Differential Item Functioning 

Items 68 and 16 were identified as having DIF by device, gender, and nationality, 

while items 21, 28, and 59 demonstrated inconsistent DIF by nationality and device. 

Evaluation of the performance of different groups showed that DIF results should be 

interpreted with caution in the current data set due to the low number of participants 

who identified as non-Australian or as another gender. For example, participants from 

Australia had an approximate 50% probability (68 of 134) of obtaining a correct answer 

for item 28, whereas non-Australians had an approximate 10% probability (1 of 8). This 

was demonstrated by significant changes in probability based on groups in the figures 

below. Further data is required for the Induction items to further establish true DIF. 

Figure 4-71. Gf:I DIF by Device 

  

Note. Focal device was iPhone 
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Figure 4-72. Gf:I DIF by Gender 

  

 

 

Note. Focal group was Male (“m”) and reference group was Female (“f”) 

Figure 4-73. Gf:I DIF by Nationality 

  

 

 

Note: Focal group was Australian and reference group was non-Australian 
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4.5.9 Confirmatory Factor Analysis 

CFA was completed with the Induction 23-item set. The CFA converged only for 

imputations 1, 2, 4 and 5, with the fit indices suggesting the model had overfit due to 

the low sample size relative to the number of items. Only items 16, 20, 26 and 59 had 

factor loadings below .30; items 16, 20 and 59 had been flagged earlier in these results. 

Table 4-32. CFA for Induction 23-Item Set 

Imputation χ2 DF RMSEA SRMR TLI CFI 

Imp 1 205.10 230 .00 .12 1.022 1.000 

Imp 2 199.89 230 .00 .12 1.026 1.000 

Imp 4 192.79 230 .00 .12 1.033 1.000 

Imp 5 184.40 230 .00 .12 1.042 1.000 

Note. *p < .05; **p < .01; ***p < .001 

4.5.10 Rasch Item Parameters, ICC and Test Information 

Rasch fit statistics for the 23-items reflected that of the CFA for Induction, and 

the Rasch modelling for Lexical Knowledge (i.e. low RMSEA, TLI, and CFI, but elevated 

SRMR). The final parameters were calculated after item calibration using the rules from 

Rubin (1987) to pool parameter and standard error estimates across the five imputed 

data sets (Appendix M). The items range from -3.06 θ (Item 47) to 1.42 θ (item 59) as 

shown in Figure 4-74. The highest point of information, and thus the point of highest 

reliability, is at approximately 1 θ as shown in Figure 4-75 and Figure 4-76 respectively. 

Table 4-33. Rasch Scale Fit Statistics for Gf:I 23-Item Set 

Data M2 DF RMSEA SRMR TLI CFI Marginal Rxx 

  Imp 1 326.78 252 .05 .10 0.92 0.92 .80 

  Imp 2 321.26 252 .04 .10 0.92 0.92 .80 

  Imp 3 316.41 252 .04 .10 0.92 0.92 .80 

  Imp 4 326.63 252 .05 .10 0.92 0.92 .80 

  Imp 5 310.74 252 .04 .10 0.93 0.93 .80 

Note. *p < .05; **p < .01; ***p < .001 
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Figure 4-74. Gf:I ICS Rasch ICCs 

 

 

Figure 4-75. Gf:I ICS Rasch TIC 
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Figure 4-76. Gf:I ICS Rasch Test Reliability Curve 

 

4.6 Visualisation Results 

4.6.1 Raw Data 

The descriptive statistics for time taken and total raw score for the ITOS and ICS 

samples are included in Table 4-34 and Table 4-35. 

The frequencies of the total raw score for participants are in Figure 4-77. The 

maximum possible score for the ITOS sample was 52, while the maximum total score for 

both ICS Adult and ICS School Aged samples was 72. A majority of the ITOS participants 

performed within the higher ranges, however the Visualisation test performance for the 

ICS Adult participants was far more varied. 

There was a significant difference in the total raw score of participants within 

each phase: F(2,1624) = 13.88, p < .001 (Figure 4-78). The total time taken for the 

Visualisation test showed significant difference: F(2,1624) = 13.46, p < .011 (Figure 4-79) 

Performance across the Visualisation items remained varied, including within the 

new items (Figure 4-80). 
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There was no significant difference between the gender identification groups 

(Female, Male, Other, Prefer Not To Say) on total score, F(3,1623) = 1.99, p = .11 (Figure 

4-82), or on time taken, F(3,1623) = 2.44, p = .06 (Figure 4-83). 

Table 4-34. Descriptive Statistics for Raw Score with the Gv:Vz Items 

 n Items n Participants Mean SD Min Max 

ITOS1 52 876 34.85 12.16 1 52 

ICS Adult 72 648 32.27 18.73 1 67 

ICS School Aged 72 103 39.97 8.05 1 57 

All Phases 72 1627 34.15 15.07 1 67 
1Descriptive statistics varied from the ITOS analysis due changes in missing data methodology 

 

Table 4-35. Descriptive Statistics for Time Taken with the Gv:Vz Items 

 n Mean SD Min Max 

ITOS1 876 592.76 243.75 6.57 1424.16 

ICS Adult 648 625.34 322.70 6.72 1676.52 

ICS School Aged 103 737.89 216.43 4.36 1131.65 

All Phases 1627 614.93 278.59 4.36 1676.52 
1Descriptive statistics varied from the ITOS analysis due changes in missing data methodology 

Figure 4-77. Gv:Vz Frequency of Participant Raw Score 
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Figure 4-78. Gv:Vz Total Score by Phase 

 

Figure 4-79. Gv:Vz Time Taken by Phase 

 

 

Figure 4-80. Visualisation Percentage of Items Correct 
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Figure 4-81. Gv:Vz Total Score by Time Taken 

 

 

Figure 4-82. Gv:Vz Gender by Total Score 

 

Figure 4-83. Gv:Vz Gender by Time Taken 
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4.6.2 Missing Data 

For the ICS data collection items were administered in the order of anchor Items 

(21-52), Item Set B (23-72) and Item Set A (1-21) for adults, and anchor Items (21-52), 

Item Set A (1-21) and Item Set B (23-72) for school aged participants. 

Table 4-36 and Figure 4-84 show summary statistics of the percentage of missing 

data within the Visualisation data set broken down by each phase of data collection. 

Consistent with the order of administration, missing data increases (i.e. highest missing 

data percentage was noted in Set A for ICS Adult and Set B for ICS School Aged).  

When considering missing data percentages (Table 4-37), the higher mean and 

median percentage of missing data by participant for the ICS Adult sample suggests a 

high number of participants in this sample dropped out of the study. 

Figure 4-85 shows the pattern of missingness across item sets. For each 

participant if an item was missing from a set, that item set was classed as incomplete. 

Thus, the blue cells show the frequency of those item sets that were deemed complete. 

Table 4-36. Percentage of Gv:Vz Missing Data by Item 

Phase n Items Mean SD Median Min Max 

ITOS 52 13.24 5.44 15.30 0.23 18.84 

ICS Adult 72 43.25 19.38 40.82 16.05 70.37 

ICS School Aged 72 6.42 4.3 3.88 0.97 17.48 

 

Table 4-37. Percentage of Gv:Vz Missing Data by Participant 

Phase n Participants Mean SD Median Min Max 

ITOS 876 13.24 28.44 0 0 98.08 

ICS Adult 648 43.25 34.56 45.83 0 1001 

ICS School Aged 103 6.42 15.83 0 0 98.61 

Note. Missing data for this table is calculated based on the items available to each participant. 139 
participants achieved correct scores on the training items but then did not proceed to the test items. 
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Figure 4-84. Percentage of Gv:Vz Missing Data by Phase 

 

 

Figure 4-85. Missing Data Pattern for Gv:Vz Sets 

 

Note. Red cells indicate missing data while blue cells indicate present data. The bars above and beside the 
cells represent the proportion of participants with that pattern of data. 
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4.6.3 Data Imputation 

Like previous narrow abilities analysed, the data imputation will consider the 

dataset in entirety. Data was prepared for MICE in stages as detailed in the methodology 

and demonstrated in Table 4-38. This had some implications for the interpretation of 

missing data compared to the previous section (4.6.2). For example, in the missing data 

analysis section, a participant was not counted as having missing data if they were in the 

ITOS sample and completed every Visualisation item between items 1 and 52. In this 

part of the analysis however, they were considered as missing data for items 53 through 

72 (Figure 4-86). Unlike for the Lexical Knowledge item set, no items were removed for 

the Visualisation items after the ITOS analysis, and thus the most significant drop in 

participants was caused by removing participants who did not have a full set of anchor 

Items (Figure 4-87). The pattern of missingness based on item sets after these 

alterations is represented in Figure 4-88. 

After the data cleaning above, no items were flagged as problematic for the 

imputation model. Items 53 to 72 were identified as having an outflux below .30 

suggesting imputation for these items may be difficult. As shown in Figure 4-89 a 

number of these items had a low outflux value meaning their observed data did not 

connect well to the missing data on other variables. Variables in the top left have more 

predictive power, whereas variables that come closer to the bottom right are overly 

reliant on the imputation model. Items noted above were removed prior to MICE. 

MICE was successfully carried out with 111 individual formulas executed to 

impute data for the remaining 111 variables. No problems were identified with the 

imputation. Figure 4-91, Figure 4-92, Figure 4-93 and Figure 4-94 show comparisons 

between the data before and after imputation. 
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Table 4-38. ICS Gv:Vz Missing Data Cleaning 

Phase n Items Mean SD Median Min Max 

Initial Missing Data 76 39.83 24.98 28.64 13.83 80.15 

Full Anchor Items 76 26.68 30.04 18.37 0 82.81 

Removed ITOS Items1 76 26.68 30.04 18.37 0 82.81 

Low Response Items2 72 23.58 27.70 17.83 0 26.43 

High Missingness 72 19.34 29.08 2.53 0 67.38 

Missing Age 72 19.37 29.11 2.54 0 67.46 

Time Outliers 72 20.06 30.07 2.71 0 69.68 

Score Outliers 72 20.17 30.33 2.54 0 70.05 

Multivariate Outliers 72 20.58 32.14 0.79 0 72.35 

 

Figure 4-86. Gv:Vz Missing Data for Data Imputation Preparation 
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Figure 4-87. Percentage of Missing Gv:Vz Items by Participant 

 

Note. No items were removed from the Visualisation items after ITOS, but step is retained for consistency 

 

Figure 4-88. Missing Data Pattern for Gv:Vz with Full Anchor Items 

 

Note. Red cells indicate missing data while blue cells indicate present data. The bars above and beside the 
cells represent the proportion of participants with that pattern of data. 
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Figure 4-89. Outflux-Influx pattern before 
removal 

 

Figure 4-90. Outflux-Influx pattern after 
removal 

 

Note. Items with low outflux have poor predictive power for the imputation model and items with high 
influx have high reliance on the imputation model. Ideally you have high outflux and low influx. 

Figure 4-91. Gv:Vz Score by Imputation 

 

Figure 4-92. Gv:Vz Total Time by Imputation 
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Figure 4-93. Gv:Vz ICS Percentage of Items Correct 

 

 

Figure 4-94. Gv:Vz Total Score by Age 

 

4.6.4 Reliability 

Cronbach’s alpha for the Visualisation items in the ICS was calculated across each 

imputed data set and was found to have a mean Cronbach’s alpha of .76. This was lower 

than in the ITOS, likely reflecting an increased diversity in item difficulty. Regardless, this 

level of reliability can be classified as good. 
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4.6.5 Rasch Analysis 

Rasch analysis was conducted on all five imputed data sets. For the 52-item set 

there was poor fit with the Rasch model. Item fit details are in Appendix N. 

Person fit statistics were calculated, and 43 participants were found to have Zh 

values above +2 and below -2. Analysis of these participants identified these were 32 

participants aged 6-18, nine participants above age 50, and two participants aged 

between 20 and 30. As with the Lexical Knowledge section, this may be a result of the 

wide age range tested in this study, as demonstrated in Figure 4-95. 

Table 4-39. Rasch Scale Fit Statistics for Gv:Vz 52-Item Set 

Data M2 DF RMSEA SRMR TLI CFI Marginal Rxx 

Imp 1 5082.36 1325 .06 .09 0.60 0.61 .86 

Imp 2 5084.35 1325 .06 .09 0.61 0.61 .86 

Imp 3 5097.05 1325 .06 .09 0.61 0.61 .86 

Imp 4 5094.20 1325 .06 .09 0.61 0.61 .86 

Imp 5 5074.63 1325 .06 .09 0.61 0.61 .86 

Note. *p < .05; **p < .01; ***p < .001 

Figure 4-95. Gv:Vz 52-item Wright Map 
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For the 52-item set, 20 items were flagged for poor item fit. There was no clear 

pattern as to why these items didn’t fit well, as they differed in number of shapes, 

internal cues, similarity of shapes, and whether they were old or new items. 

Items 23, 44, and 52 showed the highest misfit and evaluation showed they were 

all low performing items and without a border. Evaluation of the item stimuli does show 

if determining whether the shape parts are rotated together to make the complete 

shape is somewhat ambiguous and for many participants it was likely no more than a 

guess given a dichotomous option of ‘same’ or ‘different’. These items were removed. 

Items 3, 5 and 12, while quite easy, were generally only scored incorrectly by 

school aged participants. A few adults also obtained incorrect answers, suggesting the 

items’ low difficulty at face value led to low attention and subsequently inconsistent 

scores. This can only be addressed with further proctored. These items were retained. 

Items 10 and 13 demonstrated an inconsistent number of incorrect responses by 

adults despite their qualitatively evaluated ease. These items fit poorly with the Rasch 

model and were removed from this analysis but should be included in future studies. 

Item 17 appears ambiguous due to the length of lines not being particularly 

obvious, so it is reasonable to infer many participants were effectively guessing; this 

item was removed. Such lines are more obvious in item 19, reinforced by the fact that 

generally only children obtained an incorrect answer here. This item was retained as it 

does appear to be measuring implementation of the rules and mental. 

A high number of adults answered item 25 incorrectly, possibly due to difficulty 

of rotating the shape to fit in the un-bordered missing section. This item was retained. 

Item 27 displayed similar results, with a high number of adults answering incorrectly by 

not applying the rules of the task appropriately (i.e. no flipping) and was also retained. 
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Table 4-40. Gv:Vz Items  

# Complete Shape Shape Parts 

1 

   

23 

   

25 

   

27 

    

44 

 
   

52 
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Items 35 (3 response options, internal cues), 36 (3 response options, internal 

cues), 42 (3 response options, no internal cues), 43 (3 response options, no internal 

cues), 47 (3 response options, no internal cues), 48 (3 response options, no internal 

cues), 50 (3 response options, no internal cues) and 51 (3 response options, no internal 

cues) were also s misfitting and are more difficult items. Some of these were retained 

to ensure enough items at the difficult end of the spectrum. After evaluating each item 

and the item fits, items 35, 43, 48, and 50 appeared most ambiguous (causing guessing), 

had poor fit statistics and were removed. These calibrations resulted in a 42-item set. 

Table 4-41. Rasch Scale Fit Statistics for Gv:Vz 42-Item Set 

Data M2 DF RMSEA SRMR TLI CFI Marginal Rxx 

Imp 1 2527.16 860 .05 .08 0.77 0.77 .81 

Imp 2 2527.77 860 .05 .08 0.77 0.77 .81 

Imp 3 2537.16 860 .05 .08 0.77 0.77 .81 

Imp 4 2539.26 860 .05 .08 0.77 0.77 .81 

Imp 5 2529.25 860 .05 .08 0.77 0.77 .81 

Note. *p < .05; **p < .01; ***p < .001 

4.6.6 Mokken Analysis 

Mokken analysis was completed with the 42-item set. Unsurprisingly given the 

noted difficulty increase in some items in the Rasch analysis, all 42 items were identified 

as having a Loevinger’s H value below .30. This suggests poor ordering in the items in 

terms of probability of obtaining correct answers; this may be caused by people with 

low Visualisation guessing answers on the test, or by other constructs not intended to 

be measured by the items. Twelve items were identified as having particularly poor 

Loevinger’s H values and no qualitative reason was established as to why; for example, 

item 1 had a Loevinger’s H of .018 despite quite clearly joining and matching the shape 
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to the left. Items in this set that were not evaluated earlier were removed, resulting in 

a 31-item scale with poor Mokken scale fit. 

Table 4-42. Mokken Analysis for Gv:Vz 42-Item Set 

Data Set Loevinger’s H Standard Error 

42-items   

 Imputation 1 .14 .01 

 Imputation 2 .14 .01 

 Imputation 3 .14 .01 

 Imputation 4 .14 .01 

 Imputation 5 .14 .01 

31 items   

 Imputation 1 .18 .01 

 Imputation 2 .19 .01 

 Imputation 3 .19 .01 

 Imputation 4 .18 .01 

 Imputation 5 .19 .01 

 

4.6.7 Local Independence 

In order to be able to rotate three shapes in one’s mind, one must also be able 

to rotate two shapes. As such, it was unsurprising that items 4, 5, 6, 8, 19, 27, 36, 47, 

and 50 were all flagged for local dependency. There was no clear relationship between 

these items outside the reliance on shape similarity, shape rotation, and internal cues 

to vary the difficulty. No strong locally dependent items were identified and thus all 

items were retained. 

4.6.8 Differential Item Functioning 

DIF was identified by gender for items 18, 41 and 47. No qualitative reason was 

identified and thus the items were retained. Item 9 possessed DIF for non-Australians, 
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but this was likely a result of only 6 (out of 108) non-Australian participants answering 

incorrectly. Thus, this item was not removed. No DIF was identified for device. 

Figure 4-96. Gv:Vz DIF by Gender 

  

 

 

Note. Focal group was Male (“m”) and reference group was Female (“f”) 

Figure 4-97. Gv:Vz DIF by Nationality 

 

 

Note. Focal group was Australian and reference group was Non-Australian. 
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4.6.8.1 Confirmatory Factor Analysis 

CFA was completed with the Visualisation 31-item set. The CFA converged only 

for imputations 1, 3 and 5 and a generally acceptable fit was found. As with the other 

item sets a higher SRMR was identified suggesting correlations of residuals. Only item 

25 had a negative loading under .30 and was removed. 

Table 4-43. CFA for Gv:Vz 31-Item Set 

Imputation χ2 DF RMSEA SRMR TLI CFI 

Imp 1 855.08*** 434 .04 .11 .931 .936 

Imp 3 857.58*** 434 .04 .11 .932 .936 

Imp 5 850.83*** 434 .04 .10 .933 .937 

Note. *p < .05; **p < .01; ***p < .001 

4.6.9 Rasch Item Parameters, ICC, and Test Information 

Rasch fit statistics (Table 4-44) for the 30 items demonstrated improved Rasch 

fit. RMSEA and SRMR were acceptable and TLI and CFI close to acceptable. The final 

parameters were calculated after item calibration using the rules from Rubin (1987) to 

pool parameter and standard error estimates across the five imputed data sets 

(Appendix O). The items range from -3.89 θ (item 3) to .09 θ (item 31) as shown in Figure 

4-98. The highest point of information, and thus the point of highest reliability is at 

approximately -2 θ as shown in Figure 4-99 and Figure 4-100, respectively. 

Table 4-44. Rasch Scale Fit Statistics for Gv:Vz 30-Item Set 

Data M2 DF RMSEA SRMR TLI CFI Marginal Rxx 

Imp 1 1183.71*** 434 .05 .07 0.88 0.88 .76 

Imp 2 1188.24*** 434 .05 .07 0.88 0.88 .76 

Imp 3 1194.63*** 434 .05 .07 0.87 0.88 .76 

Imp 4 1196.73*** 434 .05 .07 0.87 0.87 .76 

Imp 5 1185.43*** 434 .05 .07 0.88 0.88 .76 

Note. *p < .05; **p < .01; ***p < .001 
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Figure 4-98. Gv:Vz ICS Rasch ICCs 

 

 

Figure 4-99. Gv:Vz ICS Rasch TIC 
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Figure 4-100. Gv:Vz ICS Rasch Test Reliability Curve 

 

4.7 Working Memory Results 

4.7.1 Raw Data 

The descriptive statistics for time taken and total raw score for the ITOS and ICS 

samples are included in Table 4-45 and Table 4-46. 

The frequencies of the total raw scores for participants are in Figure 4-101. The 

maximum possible score for the ITOS sample was 38, while the maximum total score for 

the ICS Adult and ICS School Aged samples was 34.  

There was a significant difference in the raw score of participants within each 

phase: F(2,921) = 508.9, p < .001 (Figure 4-102). The total time taken for the Working 

Memory test was significantly different: F(2,921) = 153.8, p < .001 (Figure 4-103). 

Performance across Working Memory showed a relatively linear drop as more 

pieces of information were required (Figure 4-104). Many participants dropped out of 

the Working Memory test quite early in the ICS Adult sample (Figure 4-105), which also 

shows a somewhat linear relationship between time taken and higher scores. 
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There was no significant difference between gender identification groups on 

total score, F(3,920) = 1.41, p = .24, or time taken, F(3,920) = 1.44, p = .23. This is 

illustrated in Figure 4-106 and Figure 4-107. 

Table 4-45. Descriptive Statistics for Raw Score with the Gwm:Wc Items 

 n Items n Participants Mean SD Min Max 

ITOS1 38 521 24.60 7.37 1 38 

ICS Adult 34 315 11.19 5.59 1 27 

ICS School Aged 34 88 9.33 4.05 2 21 

All Phases 44 924 18.58 9.49 1 38 
1Descriptive statistics varied from the ITOS analysis due changes in missing data methodology 

Table 4-46. Descriptive Statistics for Time Taken with the Gwm:Wc Items 

 n Mean SD Min Max 

ITOS1 521 703.13 241.50 12.33 1480.00 

ICS Adult 315 408.43 276.26 15.18 1146.01 

ICS School Aged 88 755.9 188.94 182.13 910.96 

All Phases 924 607.64 288.02 12.33 1480.00 
1Descriptive statistics varied from the ITOS analysis due changes in missing data methodology 

Figure 4-101. Gwm:Wc Frequency of Participant Raw Score 
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Figure 4-102. Gwm:Wc Score by Phase 

 

Figure 4-103. Gwm:Wc Time by Phase 

 

 

 

Figure 4-104. Gwm:Wc Percentage of Items Correct 
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Figure 4-105. Gwm:Wc Total Score by Time Taken 

 

 

Figure 4-106. Gwm:Wc Gender by Score 

 

Figure 4-107. Gwm:Wc Gender by Time  
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4.7.2 Missing Data 

Given the nature of working memory (i.e. you must be able to remember two 

chunks in order to remember three, which is in turn required to remember 4 parts), new 

items developed for the ICS (39-44) were added to the end of the ITOS items (1-38). 

Even though an anchor set was defined, it was not administered first for either the 

school aged or adult samples (i.e. items were administered sequentially for all samples). 

Table 4-47 and Figure 4-108 show summary statistics for the percentage of 

missing data within the data set broken down by each phase of data collection. 

When considering missing data percentages per participant (Table 4-48), the 

higher mean and median percentage of missing data by participant for the ICS Adult 

sample suggests a high number of participants in this sample dropped out of the study. 

Figure 4-109 shows the pattern of missingness across the item sets. For each 

participant if an item was missing from an item set that item set was classed as 

incomplete. As such, blue cells in the figure below show the frequency of completed 

item sets. 

Table 4-47. Percentage of Gwm:Wc Missing Data by Item 

Phase n Items Mean SD Median Min Max 

ITOS 38 11.31 6.63 9.98 1.34 22.46 

ICS Adult 34 50.32 29.09 55.24 6.67 87.30 

ICS School Aged 34 7.49 11.84 1.14 0 45.45 

Table 4-48. Percentage of Working Memory Missing Data by Participant 

Phase n Participants Mean SD Median Min Max 

ITOS 521 11.31 24.13 0 0 97.37 

ICS Adult 315 50.32 28.48 55.88 0 97.06 

ICS School Aged 88 7.49 11.86 0 0 61.76 

Note. Missing data for this table is calculated based on the items available to each participant. 



 

Chapter 4: Item Calibration Study 233 

Figure 4-108. Percentage of Gwm:Wc Missing Data by Phase 

 

 

Figure 4-109. Missing Data Pattern for Gwm:Wc Sets 

 

Note. Red cells indicate missing data while blue cells indicate present data. The bars above and beside the 
cells represent the proportion of participants with that pattern of data. 
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4.7.3 Data Imputation 

Unlike the missing data analysis above, the data imputation will consider the 

dataset in entirety. Data was prepared for MICE in stages as detailed in the methodology 

and demonstrated in Table 4-49. 

This has implications for the interpretation of missing data compared to the 

previous section. In the missing data analysis section, a participant was not counted as 

having missing data if they were in the ITOS sample and had completed every working 

memory item between 1 and 38; however, they would be considered to be missing data 

for items 39 through 44 (Figure 4-110). As an additional example, if they only completed 

items between 1 and 10, they were not identified as non-responders, however in this 

case they would have 100% missing data because the items they did complete were no 

longer in the data set (Figure 4-111). The pattern of missingness based on item sets after 

these alterations is represented in Figure 4-112. 

After the data cleaning above, items were analysed to determine if they would 

be flagged as problematic for MICE. No items were flagged as problematic for the 

Random Forest algorithm. Items 37-44 were flagged with an outflux below .30 (Figure 

4-113). These items were not removed as this is the entire Set B developed for this study. 

It is anticipated that further data collection will address this in future as Set B represents 

the largest set of missing data for the Working Memory items. The minimum correlation 

of .20 between items for MICE is also likely to partially address this problem. 

MICE was successfully carried out with 75 individual formulas being executed for 

75 variables. No problems were identified with the imputation. Figure 4-114, Figure 

4-115, Figure 4-116, and Figure 4-117 show comparisons between the data before and 

after imputation. 
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Table 4-49. ICS Gwm:Wc Missing Data Cleaning 

Phase n Items Mean SD Median Min Max 

Initial Missing Data1 44 54.38 32.99 51.74 5.71 100 

Full Anchor Items 44 31.91 40.91 2.58 0 100 

Removed Items2 34 11.89 18.69 1.03 0 55.67 

Low Response Rate3 34 11.89 18.69 1.03 0 55.67 

High Missingness 34 10.90 17.99 0.53 0 54.55 

Missing Age 34 10.84 17.92 0.54 0 54.35 

Time Outliers 34 11.85 19.92 0 0 60.37 

Score Outliers 34 12.18 20.39 0 0 61.78 

Multivariate 
Outliers 

34 12.31 20.57 0 0 62.67 

1All ITOS participants removed due to change in item presentation; 2Items 1-10; 3No items had low 
response 

 

Figure 4-110. Gwm:Wc Missing Data for Data Imputation Preparation 
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Figure 4-111. Percentage of Missing Gwm:Wc Items by Participant 

 

Note. All ITOS participants removed due to change in item presentation; No items had low response rates 

 

Figure 4-112. Missing Data Pattern for Gwm:Wc with Full Anchor Items 

 

Note. Red cells indicate missing data while blue cells indicate present data. The bars above and beside the 
cells represent the proportion of participants with that pattern of data. 
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Figure 4-113. Outflux-Influx Before Removal 

 

Note. No outflux-influx figure after removal as no items were removed at this stage of cleaning. Items 
with low outflux have poor predictive power for the imputation model and items with high influx have 
high reliance on the imputation model. Ideally you have high outflux and low influx. 

Figure 4-114. Gwm:Wc Score by Imputation 

 

Figure 4-115. Gwm:Wc Time by Imputation 
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Figure 4-116. Gwm:Wc ICS Percentage of Items Correct 

 

 

Figure 4-117. Gwm:Wc Total Score by Age 

 

4.7.4 Reliability 

Cronbach’s alpha for the ICS Working Memory items was calculated across each 

of the imputed data sets and was found to have a mean of .76. This was lower than the 

Cronbach’s alpha in the ITOS, likely reflecting an increased diversity in the difficulty of 

items. Regardless, this level of reliability can be classified as good. 
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4.7.5 Rasch Analysis 

Rasch analysis was conducted on all five imputed data sets. For the 34-item set 

there was poor fit across all indices. Item fit details are in Appendix P.  

Person fit statistics were calculated (Figure 4-118), and 17 participants were 

found to have Zh values above +2 and below -2. Twelve of these participants were in the 

school aged sample. Again, a wide range of difficulty of items is believed to explain the 

participants that have high Zh values, likely a result of guessing. 

Table 4-50. Rasch Scale Fit Statistics for Gwm:Wc 34-Item Set 

Data M2 DF RMSEA SRMR TLI CFI Marginal Rxx 

Imp 1 1213.17*** 560 0.09 0.14 0.62 0.62 .84 

Imp 2 1123.42*** 560 0.08 0.14 0.67 0.67 .84 

Imp 3 1051.75*** 560 0.08 0.14 0.70 0.70 .84 

Imp 4 1106.34*** 560 0.08 0.14 0.68 0.68 .84 

Imp 5 1209.49*** 560 0.09 0.14 0.63 0.63 .84 

Note. *p < .05; **p < .01; ***p < .001 

Figure 4-118. Gwm:Wc 34-Item Set Wright Map 

 

Items 32 (9 chunks), 35 (10 chunks), 36 (10 chunks), 39 (12 chunks), 40 (12 

chunks), 42 (13 chunks), 43 (14 chunks) and 44 (14 chunks) demonstrated poor fit with 
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the Rasch model. Analysis of these items showed they were difficult for participants. 

There did not appear to be any qualitative similarities between the items, with no 

pattern to the colours or numbers used. The flagged items were also mixed in the 

information required to be remembered. Unfortunately, as a multiple-choice response 

option set of items, there is a 16% chance of guessing the item correctly. Given the 

sequence of difficulty, the items were retained and flagged for monitoring.  

4.7.6 Mokken Analysis 

Thirty items were found to have Loevinger’s H values below .30. Items fitting 

poorly with the Rasch model were also not fitting well with a Mokken scale. Items 38 to 

44 demonstrated negative Loevinger’s H values which suggested more errors on these 

items than expected with the scale ordered in sequential difficulty. It is likely the 

participants who scored these items incorrectly and correctly were guessing and so 

items 37 to 44 were removed. This improved Loevinger’s H values. 

Table 4-51. Mokken Analysis for Gwm:Wc 34 Item Set 

Data Set Loevinger’s H Standard Error 

34-items   

 Imputation 1 .16 .02 

 Imputation 2 .17 .02 

 Imputation 3 .16 .02 

 Imputation 4 .17 .02 

 Imputation 5 .16 .02 

26 items   

 Imputation 1 .27 .02 

 Imputation 2 .27 .02 

 Imputation 3 .27 .02 

 Imputation 4 .27 .02 

 Imputation 5 .27 .02 
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4.7.7 Local Independence 

Local dependency was found for items 11, 12, 15, 37 and 39; substantially less 

local dependency compared to the ITOS. No commonalities were identified between 

these items and there was item would assist with other items. No items were removed. 

4.7.8 Differential Item Functioning 

No items were flagged for DIF by gender. Item 28 was flagged for DIF by 

nationality, likely because of the low numbers of non-Australian participants (3 out of 9 

obtained a correct answer). Items 34 and 36 were flagged for DIF by device. This DIF is 

likely due to some devices being used by few participants. No items were removed. 

Figure 4-119. Gwm:Wc DIF by Nationality 

 

Note. Focal group was Australian and the Reference group was non-Australian 

Figure 4-120. Gwm:Wc DIF by Device 

  

Note. The focal group was iPhone and the reference group was non-iPhone 
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4.7.9 Confirmatory Factor Analysis 

CFA was completed with the Working Memory 26-item set. The only CFA that 

converged was for imputation three and with the resultant fit indices suggesting that 

the model had overfit due to the low sample size relative to the number of items. As 

with the other item sets, a higher SRMR was identified suggesting correlations of 

residuals. Most items had very high standardized loadings, however items 28, 32, 35 and 

36 had loadings below .30. Item 32 was identified with a negative loading and was also 

flagged in the previous Rasch and Mokken analyses; this item was removed. 

Table 4-52. CFA for Working Memory 26-Item Set 

Imputation χ2 DF RMSEA SRMR TLI CFI 

Imp 3 252.87 299 .00 .12 1.02 1.00 

Imp 5 260.57 299 .00 .12 1.02 1.00 

Note. *p < .05; **p < .01; ***p < .001 

4.7.10 Rasch Item Parameters, ICC and Test Information 

Rasch fit statistics (Table 4-53) for the 25-item set demonstrated improved Rasch 

fit. RMSEA, TLI and CFI were acceptable. The higher SRMR suggests that there continues 

to be correlation of the residuals despite removal of some misfitting items. The final 

parameters were calculated after item calibration using the rules from Rubin (1987) to 

pool parameter and standard error estimates across the five imputed data sets 

(Appendix Q). The items range from -2.43 θ (item 12) through to 2.20 θ (item 36) as 

shown in Figure 4-121. Items progress in an almost linear pattern of difficulty based on 

the number of chunks required within each item, with item 24 as the most significant 

exception. The highest point of information, and thus the point of highest reliability is at 

approximately 0 θ as shown in Figure 4-122 and Figure 4-123, respectively. 
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Table 4-53. Rasch Scale Fit Statistics for Gwm:Wc 25-Item Set 

Data M2 DF RMSEA SRMR TLI CFI Marginal Rxx 

  Imp 1 410.42*** 299 0.00 0.05 0.11 0.93 .80 

  Imp 2 421.40*** 299 0.00 0.05 0.11 0.92 .80 

  Imp 3 430.01*** 299 0.00 0.05 0.11 0.92 .80 

  Imp 4 427.54*** 299 0.00 0.05 0.11 0.92 .80 

  Imp 5 426.56*** 299 0.00 0.05 0.11 0.92 .80 

Note. *p < .05; **p < .01; ***p < .001 

Figure 4-121. Gwm:Wc ICS Rasch ICCs 

 

Figure 4-122. Gwm:Wc ICS Rasch TIC 
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Figure 4-123. Gwm:Wc ICS Rasch Test Reliability Curve 

 

4.8 Discussion 

To develop a CAT, known item parameters which place items along the latent 

trait need to be established. Calibration of items involves demonstrating how well items 

fit with the proposed theoretical model and determining the difficulty of each item. 

While the ITOS attempted to demonstrate the viability of the items as measures of the 

theoretical construct, the current ICS study set out to continue calibration of the Lexical 

Knowledge, Induction, Visualisation and Working Memory item sets for use in a CAT. 

The goal of these item calibrations was to discover a set of items for each CHC construct 

under investigation to utilise in later studies, as well as to continue the iterative 

adjustment and development of items for a CHC-CAT screening tool. An approach was 

taken which integrated qualitative analysis, CHC theory, and psychometric analysis of 

items, rather than conservative reliance on psychometric analysis alone (such as in the 

ITOS).  
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Exploration of the data showed there were differences based on phases. This 

seemed to be largely due to a more significant drop out rate in the ICS-A group, as well 

as having different items available for the ITOS participants. The ICS-U group showed 

the highest mean score and time taken, likely due to being supervised. In contrast, the 

ICS-A showed the lowest total scores and time taken. The only exception to this 

appeared to be Working Memory within the ICS phase, for which adults outperformed 

the school aged participants. In general, these differences are caused by research design 

decisions rather than true differences in the abilities of the samples. Interpretation of 

such differences should therefore be avoided. 

The items developed for the ICS proved more difficult for both adults and the 

school aged samples. Despite this, increased time spent by adults was generally linearly 

related to improved total score. In contrast, more time for school aged participants did 

not necessarily generate better scores, likely because of there being more variability in 

their actual abilities. This is particularly the case for Working Memory where there was 

an overall steady decline in performance as the number of stimuli increased. 

Across all four item sets, several items had to be removed prior to data 

imputation due to significant amounts of missing data. This means they were not 

included in any subsequent analyses and have not yet been robustly analysed to 

determine if they meet the assumptions of IRT or may be useful in a CAT. Future 

iterations of the screening tool may consider reattempting administration of these items 

to gather more data. This would enable further analysis to determine whether they fit 

the proposed models or not. 

The data imputation method utilised in this study was significantly more complex 

than for the ITOS. Consistent with previous research, MICE proved useful in estimating 
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missing data. Because so many Lexical Knowledge items were removed prior to data 

imputation, participants’ recalculated total scores for this item set dropped somewhat. 

Otherwise, considering the patterns of data in the cleaned and the imputed data, there 

were only rare deviations in the expected pattern; this tended to be in the older age 

groups where there was less data to reliably predict outcomes. 

While still present, less local dependency was identified in the ICS compared to 

the ITOS. This was likely a result of more difficult items as well as more varied 

performance. However, local dependency is generally caused by correlation of residuals, 

meaning there is some element of commonality between the items outside the intended 

construct of interest. For a test of Lexical Knowledge (Gc:VL), it is possible that items 

may also be measuring other Comprehension-Knowledge (Gc) narrow abilities such as 

Language Development and General Verbal Information. For Induction this local 

dependency may be a result of the problems presented or the two different time limits 

provided, tapping into other abilities. This problem was noted after the ITOS and further 

item development should continue to be sensitive to this problem. 

While a few items were flagged for DIF, there appeared to be minimal differences 

in the probability of performance based on group membership (i.e. nationality and 

device used). Additionally, the overall score and time taken by participants was relatively 

consistent across genders, nationalities and devices, with participants who identified as 

a non-binary gender often displaying the most varied performances. Research has 

demonstrated there is relatively little difference between those that complete items on 

computers versus tablets (Kong et al., 2018). The variation in performance on specific 

items, as well as overall, for these groups is likely to centralise as more data is gathered. 
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The results indicate that the retained 47-item Lexical Knowledge, 23-item 

Induction, 30-item Visualisation, 25-item Working Memory sets each meet the 

monotonicity and unidimensionality assumptions of IRT, and that the items fit the Rasch 

model. Issues with local dependency were apparent in some item sets which were 

unexplainable by item content, and thus likely explained by another latent variable. It 

may be possible to address these issues by moving from four unidimensional analyses 

to a multidimensional analysis which includes other narrow abilities, broad abilities, and 

a general factor. Despite this, the number of items retained and the overall fit indices 

for all four item sets showed significant improvement from the ITOS.  

For each psychological construct the items measure an extensive range of ability 

for individuals aged 6 years old to 90, particularly those with very low, low-average and 

average abilities. Visual inspections of the SEM curves for each item set suggests a 

reliability of .7 (suitable for group administration) would be achievable from a θ of -6 to 

2 for Lexical Knowledge, -1 to 3 for Induction, -4 to 1 for Visualisation, and -3 to 3 for 

Working Memory. The items in these sets may not be useful for determining those with 

exceptionally high skill, particularly for Visualisation which appears to measure quite 

accurately for lower difficulty items but not as well for more difficult items.  

The fit of the items to the Rasch model and the unidimensional CFA models was 

generally good, with problems only noted for the SRMR. This suggests there are more 

significant discrepancies between the observed correlation matrix and expected 

correlation matrix. This fit statistic is particularly independent of sample size (Chen, 

2007). This further supports conclusions that there is residual variance unaccounted for 

by the four independent, unidmensional CHC narrow ability models implemented in this 
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study. With further data collection it may be possible to overcome this challenge by 

adopting a hierarchical model consistent with the broader CHC literature. 

Overall, it is believed the item difficulty parameters generated from the ICS can 

be utilised in a simulated CAT. While further research would be required to demonstrate 

the utility of the items in high stakes decision making, these items could be suitably 

implemented in research studies or group testing scenarios when the latent traits under 

investigation include Lexical Knowledge, Induction, Visualisation and Working Memory. 

4.8.1 Limitations and Future Research 

Missing data was a problem for the current study. Despite a high number of 

participants recruited for the ICS Adult data set, and the supervised administration for 

the ICS School Aged data set, there was a far greater amount of missing data for each 

CHC ability’s Item Set B relative to what was expected based on data collected in the 

ITOS. The Internet sampling methodology worked well for the ITOS study, and it is 

unknown (outside of increases in item numbers) why there were more significant 

dropout rates in the ICS Adult sample. Attempts were made to address this via the use 

of MICE rather than ML methods, however clear impacts of the missing data are evident. 

In contrast to this negative outcome of sampling methodology, the addition of 

more reliable data sources (i.e. ICS School Aged; ICS-U) and additional adult data with a 

focus on 18-25-year-olds (i.e. ICS Adult; ICS-A), appears to have provided further 

evidence of the reliability and validity of some of the original items. This is reflected in a 

wider range of items being retained for each CHC ability relative to the conclusions of 

the ITOS. This suggests that with iterative development of the CHC-CAT through 

continued item development and participant recruitment, existing items can 

continuously be evaluated while new items can continuously be introduced. In fact, this 



 

Chapter 4: Item Calibration Study 249 

is the key advantage of relying on IRT as the core mechanic of the test rather than CTT 

perspectives. 

For the CFAs in this chapter, there tended to be a pattern of slightly lower CFI 

and TLI indices compared to the ITOS and increases in SRMR and RMSEA indices. 

Previous research shows that increases in variables (as in the current study) lead to slight 

decreases in CFI and TLI, while smaller sample sizes (caused by the data cleaning 

methodology used in the current study) increase SRMR and RMSEA indices. Therefore 

while the fit indices are not perfect in the current study, given the focus on IRT, the CHC 

theoretical basis that the items were developed under, and the cumulative evidence of 

unidimensionality across each CHC ability throughout the ITOS and ICS suggests that the 

items are measuring the constructs they are intended to measure. Even for more 

complex items that may require multiple psychological processes, the assumption of 

unidimensionality is not necessarily precluded “as long as they are affected by the same 

underlying process” (Iramaneerat et al., 2008, p. 55), hence the lack of adherence to 

stringent CFA standards in this ICS versus the ITOS. 

DIF was also a problem in the current study largely because of the uneven 

samples collected, which was much more evident in the Induction and Working Memory 

item sets due to the smaller sample sizes after data imputation. For gender, those that 

identified as Other or Prefer Not to Say tended to result in DIF being flagged for more 

difficult items, likely as a result of the unproctored adult test leading to low effort. For 

nationality, some items only had less than 10 non-Australian attempts, and thus DIF 

would flag this as significant changes in probability based on group membership. 

Similarly, while the raw data showed a high rate of diversity in devices used to access 

the tasks, after data cleaning very little variation remained and most people had used 
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iPads, iPhones, or laptops; use of other devices was often erroneously flagged as DIF 

when a small proportion of people using a Samsung Galaxy or Google Pixel had varied 

performance. 

4.8.2 Conclusion 

The ICS demonstrates an iteratively improving set of item psychometrics with 

less need for new items compared to the ITOS but does suggest the need for more 

participant data to be collected. More participants will reduce the biases introduced in 

this study through removal of valuable data prior to data imputation, improve the MICE 

imputation of missing data by having more variables to use in prediction formulas, 

provide further evidence of the probability of a response, and increase the numbers of 

participants retained in different groups so as to conduct more robust DIF. At this point 

in time the item psychometrics may not yet be robust enough for implementation in a 

school setting for high stakes testing, but there is initial evidence of item sets that can 

be built upon for further research. The analyses have produced logical item parameters 

that align well with CHC theory.  

Thus far, the development and analysis has focused on a variety of statistical 

tools, but all findings are based on whole sets of items being administered. That is, items 

are still required to be administered in a conventional manner. It has not yet been tested 

whether these item sets can be used more efficiently. The following chapter aims to 

explore this by simulating a CAT using the findings from the current chapter. 
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Chapter 5: Computer Adaptive Test Simulation 

5.1 Introduction 

A comprehensive Item Response Theory (IRT) validation alone is not evidence of 

the application of advanced technology this thesis aimed to achieve. However, such 

statistical methods form the backbone of ensuring items can be used in a reliable and 

valid manner in computer adaptive tests (CATs). The previous chapter resulted in sets of 

47 Lexical Knowledge (Gc:VL), 23 Induction (Gf:I), 30 Visualisation (Gv:Vz), 25 Working 

Memory (Gwm:Wc) items that each met the monotonicity and unidimensionality 

assumptions of IRT, and that the items fit the Rasch model. For each item Rasch item 

parameters were exported. The current chapter focuses on taking the item sets from 

the Item Calibration Study (ICS) and utilising them in a simulated CAT to pilot the viability 

of implementing technological advancements in the measurement of intelligence. 

CATs offer opportunities to measure psychological constructs in a more efficient 

way while maintaining reliability. An advantage is that a test which is adaptive in nature 

can measure a wider range of theoretical constructs without requiring administration of 

every single item. When developing a CAT, it is possible to use existing data sets to 

simulate items that would and would not be presented to potential examinees. This is 

known as a “Monte Carlo Simulation”; a broad class of methods that utilise random 

sampling or generation of random response patterns to evaluate the outcomes of 

various algorithms (Kroese et al., 2014). At their core, CATs rely on algorithms. 

Conducting a simulation study allows us to determine the outcomes of a CAT based on 

different response patterns. Having identified a set of items for each Cattell-Horn-Carroll 

(CHC) narrow ability under investigation in this thesis, this CAT simulation uses simulated 
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participants that possess a wide range of theta (i.e. spectrum of difficulty; θ) to evaluate 

the accuracy of the CAT. The simulations used the 47 Lexical Knowledge items, 23 

Induction items, 30 Visualisation items, and 25 Working Memory items retained from 

the ICS, each in a unidimensional CAT. 

5.2 Chapter Aim 

Having considered the characteristics of CATs in Chapter 2, several expectations 

can be established based on the outcomes of the ICS. Firstly, given the marginal 

reliabilities achieved for each CHC ability in the ICS (all below .90) it is likely the average 

number of items administered in a CAT using these items will only reduce when a higher 

standard error of measurement (SEM) is accepted. That is, even when an individual has 

an ability proportionate to the level of θ that the test is best targeted at, every item 

available will need to be administered in order to achieve a SEM approaching .32 

(associated with a reliability of .90). It is likely that even administration of the full item 

set won’t approach this level of SEM. In some cases, it may be acceptable to utilise a 

higher SEM cutoff, such as in research or group level administration (such as in a 

screening tool) rather than in individual clinical decision making. Further development 

of items and more collection of robust data will be required to obtain reliable 

measurement for high stakes decision making (discussed further in Chapter 7). 

The second expectation is that the average items administered for each CHC 

ability will be reduced if the parameters are recalculated for the item set retained for 

school aged people only. The item difficulty parameters for the Lexical Knowledge item 

set ranged from extremely easy to mildly difficult when established using participants 

aged six to 90 years old; similar patterns, although to a less extreme extent, were noted 

for the other CHC abilities under investigation. By recalculating parameters using only 
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school aged participants who answered all items retained in the ICS, the mean θ will 

alter and shift the parameters to the right although maintain the same order (as children 

have a higher probability of having lower abilities than adults). Thus, if a CAT is simulated 

using 5,000 simulated participants with a mean θ of 0 and a standard deviation of 1, 

there is likely to be a match between the recalculated item difficulty parameters and the 

simulated participants’ ‘true’ θ. This would ultimately demonstrate that the items 

developed are more suitable for classifying the abilities of school aged participants 

rather than adult participants. 

The third expectation is that when using these recalculated item difficulty 

parameters, the average bias detected would be reduced closer to zero θ. This can be 

predicted due to the clear peaked nature of the test discovered in the ICS as well as 

having a normally distributed simulated sample. While this is less than ideal to reliably 

measure individuals across the spectrum of ability, further items are needed to be 

developed that fit the assumptions of the chosen IRT model and fit the model itself (i.e. 

are retained after analysis).  

In contrast to the third expectation, a fourth expectation would be that when 

broken down into groups by θ (i.e. -3 θ to -2.4 θ, -2.4 θ to -1.6 θ etc), the correlation 

discovered between true θ and estimated θ will be unrelated to the distribution of 

participants, but to the location of the items on the ability spectrum. For example, as 

there are more Lexical Knowledge items that are extremely easy, there is likely there to 

be higher correlations between the true θ and estimated θ from a CAT for simulated 

participants at around -3 θ. Such patterns will assist the identification of gaps in the 

difficulty spectrum measured by the test. Having a gap at the lower end of the difficulty 
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spectrum is more problematic than the middle because this is a screening tool that 

should identify individuals with challenges. 

5.3 Method 

5.3.1 Participants 

The participants utilised in this study are from the total sample recruited 

throughout the ITOS and ICS. Participants were arranged into two groups for analysis. 

The first group (ICS Parameters) consisted of participants who were retained after data 

cleaning and preparation for data imputation; these are the adult and school aged 

participants used in the ICS to generate the Rasch item parameters. The second group 

(School Aged Parameters) consisted of participants aged 18-years-old and younger that 

remained after data cleaning in the ICS. The resulting participant groups and their 

descriptive statistics are shown in the results section for each respective CHC ability. 

5.3.2 Data Analysis 

To determine the effectiveness of a CAT using the items retained in the ICS, a 

simulation of 5,000 participants with true θ scores with a mean of 0 and a standard 

deviation of 1 was carried out using mirtCAT v.1.9.3 (Chalmers, 2016) package. The 

parallel v.3.6.3 (R Core Team, 2020) package was used to take advantage of parallel 

computing; it essentially creates a set of copies of R running in parallel to allow 

computation of complex analyses in a quicker fashion. 

The mirtCAT package allows specification of CAT characteristics to be simulated 

in line with those discussed in Chapter 2. An item bank with known psychometric data 

was established using (1) the items retained and associated Rasch parameters from the 

ICS outcomes, (2) a recalculation of item parameters for participants of all ages who 

attempted all items retained from the ICS, and (3) a recalculation of item parameters for 
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participants aged 18 years old and younger who attempted all items retained from the 

ICS. The first item selected for administration in each item set was determined using 

Maximum Information (MI) (Chalmers, 2016). The method for estimating θ after 

administration of each item was expected a posteriori (EAP) estimation; in CATs this 

produces less bias, particularly for shorter tests (Huebner et al., 2016). The item 

selection method after θ estimation was set as MI. For each CHC ability simulations were 

carried out with the stop rule set at iteratively higher levels of acceptable SEM (and thus 

an iteratively lower level of reliability), ranging from .00 SEM (a reliability of 1.00) 

through to .71 SEM (a reliability of .50). A SEM of .00 (reliability of 1.00) is theoretically 

not possible, however setting this as the stop rule essentially ensures that the test 

finishes when the number of items administered equals the number of scale items 

available. The formula to calculate reliability from SEM, and vice versa, is in Equation 

5-1. No optional constraints were utilised. Thus, for each CHC ability a total of 12 

simulations were conducted. 

Equation 5-1. SEM and Reliability 

𝑆𝐸𝑀 = 𝑆𝑥√1 − 𝑟𝑥𝑥 

𝑟 = 1 −
𝑆𝐸𝑀2

𝑠𝑥
 

where 𝑠𝑥 equals the SD of test scores (i.e. 1) and 𝑟𝑥𝑥 equals the test reliability. 

For each simulation two outcome statistics were calculated. The first calculation 

was the average number of items to be administered simulated participants. The second 

was the Pearson correlation between the simulated participants’ true θ and their 

estimated θ. A lower number of average items administered is ideal but is expected to 

differ based on the participants’ true θ. Correspondingly, a higher Pearson correlation 
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between true θ and estimated θ is ideal; no specific cutoff is set as the importance of 

the correlation changes based on the location of the participant on the latent trait. 

Because of these nuances in interpretation, after these initial simulations, a 

simulation with a stop rule of .45 SEM (i.e. reliability of .80) was carried out using the 

parameters estimated on the second participant group (School Aged) for each CHC 

ability. For this simulation, outcome measures were calculated by splitting participants 

into 12 groups based on their true θ, in groups of 0.6 θ, ranging from less than -3 θ 

through to above 3 θ. Two additional outcome statistics were calculated for the θ group 

simulation: the mean bias (Equation 5-2) and root mean square deviation (RMSD) 

(Equation 5-3). The former demonstrates on average how much the estimated θ score 

was biased (or different) from the true θ. The RMSD is a measure of the quadratic mean 

of difference between the true θ and estimated θ, also known as residuals. A lower 

RMSD is desirable, as higher RMSD indicates variance that is unexplained. 

Equation 5-2. Mean Bias  
𝑏𝑖𝑎𝑠 =  𝑚𝑒𝑎𝑛(𝜃𝑡𝑟𝑢𝑒 − 𝜃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑) 

Equation 5-3. Root Mean Square Deviation   

𝑟𝑚𝑠𝑑 =  √𝑚𝑒𝑎𝑛((𝜃𝑡𝑟𝑢𝑒 − 𝜃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2) 
 

5.4 Lexical Knowledge Results 

Table 5-1 shows the descriptive statistics for the participants in each group. Table 

5-2 shows the performance of the CAT simulations for the Lexical Knowledge items. All 

47-items were required to be administered when the stop rule was set at a SEM of .32 

for the parameters derived from the ICS and for the school aged recalculated item 

parameters. Significant reductions in the number of items are noted when the SEM stop 
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rule is set at .45. At this level, using the item parameters established in the ICS, an 

average of 25.58 items would be administered with a correlation of .90 between the 

participants’ true θ and estimated θ. Table 5-3 demonstrates that while the amount of 

bias was lowest for those simulated participants between -0.6 θ and 0.6 θ, the best 

correlation was for simulated participants with a θ below -3.  

Table 5-1. Gc:VL Participant Statistics 

 ICS Parameters School Aged Parameters 

n 372 52 

M Age (SD) 32.52 (21.20) 12.15 (3.82) 

Gender   

   n Male 176 24 

   n Female 190 28 

   n Other 2 0 

   n PNTS 4 0 

Nationality   

   Australian 347 51 

   Other 21 1 

   PNTS 4 0 

Note. PNTS = Prefer not to say 

Table 5-2. Gc:VL CAT Simulations 

Stop Rule ICS Parameters School Aged Parameters 

Reliability SEM Average Items Correlation θ Average Items Correlation θ 

1.00 .00 47.00 .92 47.00 .94 

.90 .32 47.00 .92 47.00 .94 

.80 .45 25.58 .90 17.77 .89 

.70 .55 13.02 .85 10.22 .83 

.60 .63 7.58 .79 6.53 .77 

.50 .71 5.09 .71 4.14 .70 

Note. Items = Average Items = Average number of items administered; Correlation θ = the Pearson 
correlation between the true and estimated θ scores. Reliability of 1.00 set as stop rule to ensure all items 
administered and demonstrate correlation between full CAT and full linear administration. 
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Table 5-3. Gc:VL CAT Performance by Theta Groupings 

Theta (θ) Group n Average Items Correlation θ  Average Bias RMSD 

Below -3.0 9 33.67 .82 -0.72 0.81 

-3 to -2.4 47 23.28 .29 -0.64 0.73 

-2.4 to -1.8 140 20.27 .32 -0.44 0.57 

-1.8 to -1.2 373 18.58 .28 -0.31 0.50 

-1.2 to -0.6 773 17.60 .30 -0.19 0.44 

-0.6 to 0.0 1086 17.15 .35 -0.06 0.38 

0.0 to 0.6 1168 17.13 .34 0.07 0.38 

0.6 to 1.2 816 17.39 .29 0.20 0.44 

1.2 to 1.8 419 18.15 .24 0.33 0.54 

1.8 to 2.4 126 19.97 .25 0.46 0.60 

2.4 to 3.0 37 26.03 .41 0.70 0.83 

Above 3.0 6 31.00 .31 0.95 1.01 

Note. Stop rule was set as SEM of .45 

5.5 Induction Results 

Table 5-4 shows the descriptive statistics for the participants in each group. Table 

5-5 shows performance of the CAT simulation for the Induction items. All 23-items were 

required to be administered when the stop rule was set at a SEM of .32 for the 

parameters derived from the ICS and for the school aged recalculated item parameters. 

Minor reductions in the number of items are noted when the SEM stop rule is set at .45; 

an average of 20.75 items would be administered with a correlation of .90 between the 

participants’ true θ and estimated θ. Table 5-6 demonstrates that while the amount of 

bias was lowest for those simulated participants between -0.6 θ and 0.6 θ, the best 

correlation was for simulated participants with a θ below -3. 

 

 



 

Chapter 5: Computer Adaptive Test Simulation 259 

Table 5-4. Gf:I Participant Statistics 

 ICS Parameters School Aged Parameters 

n 142 83 

M Age (SD) 24.45 (21.01) 9.73 (2.49) 

Gender   

   n Male 59 40 

   n Female 81 43 

   n Other 1 0 

   n PNTS 1 0 

Nationality   

   Australian 134 83 

   Other 8 0 

   PNTS 0 0 

Note. PNTS = Prefer not to say 

 

Table 5-5. Gf:I CAT Simulations 

Stop Rule ICS Parameters School Aged Parameters 

Reliability SEM Average Items Correlation θ Average Items Correlation θ 

1.00 .00 23.00 .89 23.00 .89 

.90 .32 23.00 .89 23.00 .88 

.80 .45 20.75 .90 18.05 .87 

.70 .55 11.85 .84 8.63 .79 

.60 .63 7.48 .79 4.14 .67 

.50 .71 5.10 .72 2.00 .54 

Note. Items = Average Items = Average number of items administered; Correlation θ = the Pearson 
correlation between the true and estimated θ scores. Reliability of 1.00 set as stop rule to ensure all items 
administered and demonstrate correlation between full CAT and full linear administration. 
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Table 5-6. Gf:I CAT Performance by Theta Groupings 

Theta (θ) Group n Average Items Correlation θ  Average Bias RMSD 

Below -3.0 14 23.00 .66 -1.92 1.94 

 -3 to -2.4 28 23.00 .26 -1.29 1.31 

 -2.4 to -1.8 128 22.94 .12 -0.88 0.93 

 -1.8 to -1.2 380 22.57 .19 -0.54 0.63 

 -1.2 to -0.6 751 21.19 .29 -0.27 0.46 

 -0.6 to 0.0 1128 18.64 .32 -0.09 0.38 

0.0 to 0.6 1156 16.31 .33 0.11 0.37 

0.6 to 1.2 808 15.34 .33 0.26 0.44 

1.2 to 1.8 407 15.22 .25 0.48 0.60 

1.8 to 2.4 154 15.64 .19 0.73 0.83 

2.4 to 3.0 31 16.71 .19 0.97 1.03 

Above 3.0 15 18.53 .08 1.32 1.38 

Note. Stop rule was set as SEM of .45 

5.6 Visualisation 

Table 5-7 shows the descriptive statistics for the participants in each group. Table 

5-8 shows the performance of the CAT simulation for the Visualisation items. All 30-

items were required to be administered when the stop rule was set at a SEM of .32 for 

the parameters derived from the ICS and for the school aged recalculated item 

parameters. Minor reductions in the number of items are noted when the SEM stop rule 

was set at .45; an average of 26.57 items would be administered with a correlation of 

.87 between the participants true θ and estimated θ. Table 5-9 demonstrates that while 

the amount of bias was lowest for those simulated participants between -0.6 θ and 0.6 

θ, the best correlation was for simulated participants with a θ below -3. 
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Table 5-7. Gv:Vz Participant Statistics 

 ICS Parameters School Aged Parameters 

n 763 112 

M Age (SD) 41.04 (19.01) 10.98 (3.69) 

Gender   

   n Male 337 57 

   n Female 420 54 

   n Other 4 1 

   n PNTS 2 0 

Nationality   

   Australian 652 108 

   Other 108 3 

   PNTS 3 1 

Note. PNTS = Prefer not to say 

 

Table 5-8. Gv:Vz CAT Simulations 

Stop Rule ICS Parameters School Aged Parameters 

Reliability SEM Average Items Correlation θ Average Items Correlation θ 

1.00 .00 30.00 .87 30.00 .91 

.90 .32 30.00 .87 30.00 .92 

.80 .45 26.57 .87 14.17 .87 

.70 .55 16.38 .83 6.30 .75 

.60 .63 9.16 .78 3.00 .61 

.50 .71 5.56 .73 1.00 .41 

Note. Average Items = Average number of items administered; Correlation θ = the Pearson correlation 
between the true and estimated θ scores. Reliability of 1.00 set as stop rule to ensure all items 
administered and demonstrate correlation between full CAT and full linear administration. 
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Table 5-9. Gv:Vz CAT Performance by Theta Groupings 

Theta (θ) Group n Average Items Correlation θ  Average Bias RMSD 

Below -3.0 5 15.60 .71 -1.60 1.62 

 -3 to -2.4 29 15.21 .12 -1.07 1.13 

 -2.4 to -1.8 137 14.42 .26 -0.84 0.90 

 -1.8 to -1.2 409 14.14 .27 -0.53 0.64 

 -1.2 to -0.6 829 13.86 .31 -0.33 0.48 

 -0.6 to 0.0 1121 13.64 .27 -0.10 0.37 

0.0 to 0.6 1127 13.73 .29 0.11 0.37 

0.6 to 1.2 752 14.19 .23 0.34 0.48 

1.2 to 1.8 417 15.80 .30 0.54 0.65 

1.8 to 2.4 130 17.17 .27 0.89 0.94 

2.4 to 3.0 42 20.45 .10 1.25 1.29 

Above 3.0 2 30.00 NA 1.40 1.41 

Note. Stop rule was set as SEM of .45 

5.7 Working Memory 

Table 5-10 shows the descriptive statistics for the participants in each group.  

Table 5-11 shows the CAT simulation performance for the Visualisation items. All 25-

items were required to be administered when the stop rule was set at an SEM of .32 for 

the parameters derived from the ICS and for the school aged recalculated item 

parameters. Minor reductions in the number of items are noted when the SEM stop rule 

is set at .45; an average of 22.79 items would be administered with a correlation of .89 

between the participants’ true θ and estimated θ. Table 5-12 demonstrates that while 

the amount of bias was lowest for those simulated participants between -0.6 θ and 0.6 

θ, the best correlation was for simulated participants with a θ below -3. 
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Table 5-10. Gwm:Wc Participant Statistics 

 ICS Parameters School Aged Parameters 

n 150 89 

M Age (SD) 24.27 (19.53) 10.49 (3.56) 

Gender   

   n Male 64 47 

   n Female 85 42 

   n Other 1 0 

   n PNTS 0 0 

Nationality   

   Australian 141 88 

   Other 9 1 

   PNTS 0 0 

Note. PNTS = Prefer not to say 

 

 

Table 5-11. Gwm:Wc CAT Simulations 

Stop Rule ICS Parameters School Aged Parameters 

Reliability SEM Average Items Correlation θ Average Items Correlation θ 

1.00 .00 25.00 .90 25.00 .89 

.90 .32 25.00 .89 25.00 .89 

.80 .45 22.79 .89 22.18 .88 

.70 .55 11.36 .85 12.10 .84 

.60 .63 7.28 .78 7.13 .78 

.50 .71 5.12 .72 5.00 .72 

Note. Items = Average number of items administered; Cor. θ = the Pearson correlation between the true 
and estimated θ scores. Reliability of 1.00 set as stop rule to ensure all items administered and 
demonstrate correlation between full CAT and full linear administration. 
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Table 5-12. Gwm:Wc CAT Performance by Theta Groupings 

Theta (θ) Group n Average Items Correlation θ  Average Bias RMSD 

Below -3.0 3 25.00 -.941 -1.59 1.66 

 -3 to -2.4 33 25.00 .57 -0.87 0.90 

 -2.4 to -1.8 127 25.00 .21 -0.62 0.71 

 -1.8 to -1.2 425 25.00 .27 -0.32 0.51 

 -1.2 to -0.6 778 24.63 .25 -0.14 0.45 

 -0.6 to 0.0 1155 23.28 .37 -0.03 0.42 

0.0 to 0.6 1118 21.14 .33 0.06 0.41 

0.6 to 1.2 789 19.36 .26 0.17 0.42 

1.2 to 1.8 408 18.69 .32 0.29 0.48 

1.8 to 2.4 128 19.55 .22 0.44 0.59 

2.4 to 3.0 30 21.83 .31 0.56 0.72 

Above 3.0 6 23.00 .86 1.02 1.07 

Note. 1This unexpected negative correlation is believed to be a “Heywood case” (Heywood, 1931). Stop 
rule was set as SEM of .45 

5.8 Discussion 

The aim of the current chapter was to demonstrate the applicability of CAT 

technology to novel sets of items designed to measure cognitive ability as 

conceptualised by CHC theory. Background literature suggests that little has been 

achieved in this domain in recent years, and the current chapter shows the potential to 

take what we have done as psychologists for 100 years and do it more efficiently without 

losing measurement accuracy.  

Building a CAT requires known psychometric details of numerous items which 

measure a wide range of the latent trait spectrum. Simulation studies allow researchers 

to demonstrate how items would perform in a CAT if administered to real examinees. 

The current chapter details several CAT simulations using items developed as part of this 

project to demonstrate their accuracy based on different stop rules, and to identify 
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participants who are most likely to be accurately be classified as requiring additional 

testing after testing. Overall, 52 simulations were executed.  

As expected, a stop rule of .00 to .32 SEM required administration of all items 

and was unlikely to successfully complete (i.e., reach the desired SEM). This occurred 

regardless of whether the item parameters from the ICS were used, or whether the item 

parameters were recalculated using participants from the cleaned, pre-imputation data 

set who had completed all items retained in the ICS. This suggests the item sets in their 

current form are unlikely to be suitable for high stakes decision making but may be 

useful in group research where setting a reliability of .70 would halve administration 

time. Further items are required to be retained from IRT analyses to more accurately 

measure participants with a wide range of abilities. 

Given that initial implementation of these items is anticipated to be a screening 

tool, a higher SEM (therefore lower reliability) may be acceptable. Considering these 

item sets are essentially subtests and even the most recognised high stakes cognitive 

ability test in the world, the Wechsler Intelligence Scale for Children – Fifth Edition (WISC-

V), has subtest SEM statistics (based on a mean of 10 with a standard deviation of 3) of 

up to 1.34, which corresponds with an approximate SEM of .45 (based on a mean of 0 

with a standard deviation of 1), aiming for a low SEM of .32 seems unnecessary for a 

screening tool. In fact, setting the stop rule for the CAT simulations at a SEM of .45 

(reliability of .80) achieved at least minor reductions in the number of items 

administered across all CHC abilities; 12% for Working Memory, 54% for Visualisation, 

22% for Induction and 64% for Lexical Knowledge. Setting a stop rule for the CAT 

simulations at a SEM of .55 (reliability of .70) achieved more significant reductions in the 

number of items administered across all CHC abilities; 52% for Working Memory, 80% 
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for Visualisation, 66% for Induction and 79% for Lexical Knowledge. For children this 

would correspond to approximately 37 items in total to measure all four narrow 

cognitive abilities, with an administration time of approximately 18 minutes. In contrast, 

the WISC-V Qi system approximates a total test time of 39 minutes for the measurement 

of the same abilities using the Similarities, Matrix Reasoning, Block Design and Digit Span 

subtests, and this also requires one-to-one administration by a psychologist. 

As expected, there were more substantial reductions when the item parameters 

were recalculated using only school aged participants. This suggests the items are more 

likely to discriminate between school aged participants of high and low ability. With a 

more substantial sample size of school aged participants and additional items across the 

difficulty spectrum, it would be possible to utilise cutoff stop rules rather than SEM as a 

stop rule. This would essentially allow an assessor to a priori determine what level of 

ability they believe an examinee requires and the CAT would administer items until a 

certain level of classification accuracy is achieved. This is particularly useful for the 

purposes of screening young people in the school environment.  

Due to the lower number of items available and the items largely being at the 

lower ends of difficulty, each item set would currently only be useful for classification 

between those that are of very low ability and those that have normal or above average 

ability. Given that the main aim of this pilot tool is to screen for potential cognitive 

challenges, this is suitable, but it must be acknowledged that this would not necessarily 

assist with identifying children with cognitive strengths because the item sets may not 

quite reliably differentiate between average performance and above average 

performance. This is demonstrated by the higher correlations found for those simulated 

participants with a true θ below -3 for most of the CHC abilities. This is consistent with 
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the third and fourth expectation discussed at the beginning of this chapter; because 

simulated participants were generated with a mean of 0 and standard deviation of 1, 

there were far more participants at the mean ability level. This means there was more 

likely to be lower average difference between true ability levels detected by 

administering whole item sets versus simulated ability levels detected by administering 

adaptive item sets. In contrast, correlations were higher at the easiest and most difficult 

ends of the spectrum. 

Taking the above discussion into consideration there are clear limitations and 

areas for further development or research. The first limitation is the number of items 

available after the ICS. Given that Rasch was the IRT model chosen, the information 

provided by each item is the same. This means more items are required across the range 

of abilities for simulated participants at differing θ levels to successfully meet the stop 

rule. If there are gaps, it is entirely feasible that some participants may be administered 

all available items in an item set but still not fulfil the stop rule criteria. If development 

of this CAT tool continues to employ the Rasch model, further item development is 

required. In contrast, other IRT models could be a possible alternative to determine if 

existing items which were removed from item sets may be retainable. 

The second limitation is the number of school aged people in the sample; the 

difference in ability across ages differs for young people compared to adults. For 

example, a 6-year-old’s Lexical Knowledge is nearly always substantially different than 

an 18-year-old’s Lexical Knowledge, even more so than the difference in ’normal’ Lexical 

Knowledge between an 18-year-old and a 90-year-old. This causes problems when 

considering the option of a cutoff score stop rule for CATs. Because this study relies on 

a snowball sample, there is an innate randomness in the data which causes problems in 
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determining if the items appropriately measure ability at different ages, and thus for our 

purposes, determining what an appropriate cutoff would be. For example, it may be that 

this sample includes very high ability 6-year-olds and very low ability 9-year-olds. One 

must know the average θ for these age groups to better understand how well targeted 

the items are. Our sample includes only one 6-year-old and one 12-year-old participant, 

but ten 10-year-olds and 13 18-year-olds. Further data collection is required. 

As explored in this chapter, simulation studies are an important tool in the 

development of CATs. The simulations in this chapter demonstrate that depending on 

the context of testing, accepting lower levels of reliability can lead to reductions in as 

many as 50% of items administered. The ability to efficiently measure multiple cognitive 

constructs in only a short time demonstrates the applicability of IRT and CAT concepts 

to cognitive ability measurement in Australia. These findings suggest the items analysed 

in this project may pave a way forward for efficient screening of cognitive abilities in 

group settings such as classrooms. However, for schools, teachers and psychologists to 

have faith that these efficient tests are measuring the same abilities known to be 

important for learning, there must be a demonstration of similar performance on this 

test as on other mainstream tests.  

Having established that each CHC ability under consideration can be measured 

with decreasing numbers of items as you allow for increasing levels of error, it is 

important to determine how well the item sets correspond to other similar tests of 

ability. Given the wide popularity of the WISC-V in an Australian context (James et al., 

2015), the following chapter details a convergent validity study using the θ scores as an 

outcome from the ICS and the same participants’ results on the WISC-V. 
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Chapter 6: Convergent Validity 

6.1 Introduction 

The last chapter established that the item sets used within this thesis can be 

administered in a CAT format to reduce the quantity of items exposed to examinees, 

and thus reduce the time taken to conduct testing. However, it is important to establish 

that such a tool is measuring what we think it is measuring. While the items developed 

for this CHC-CAT are based in a sound theoretical grounding, there is a vast literature 

base discussing the methods of establishing different types of validity, with diverse 

opinions on the strengths and weaknesses of each method or type. Chapter 2 introduced 

several concepts within psychological measurement that ultimately relate to the 

concepts of validity and reliability, however these are not exhaustive. The current 

chapter aims to briefly discuss current conceptualisations of validity, with a more 

specific focus on convergent validity, before conducting an analysis of the convergent 

validity of the developed item sets with the Wechsler Intelligence Scale for Children – 

Fifth Edition (WISC-V). 

6.2 Validity 

Validity in measurement of psychological constructs is a field of ongoing debate. 

Early work (now considered seminal in nature) conceptualised validity as “concurrent 

validity”, “predictive validity”, “content validity”, and “construct validity” (Cronbach & 

Meehl, 1955), with the first two combined into “criterion validity”. Construct validity at 

the time was perceived as whether the “empirical relations between test scores match 

theoretical relations in a nomological network” (Borsboom et al., 2004, p. 1061). 

Messick (1989) focused on the actual interpretations and actions taken based on test 
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scores, including their social consequences, and the role of values in interpretation, as 

forms of validity. Messick went as far as to describe validity as singular with six aspects, 

deviating from Cronbach and Meeh’s prior type conceptualisation (Messick, 1995). 

More recently, Borsboom et al. (2004) argue simply that a test is valid for measuring a 

psychological construct if (1) it exists, and (2) variations in the construction causally 

produce variation in the measurement outcomes. Such debates centre on issues related 

to causality, correlation, epistemology or ontology, and are largely beyond the scope of 

this thesis. 

Regardless of perspectives on validity, intelligence as a psychological construct 

has substantial evidence. And the validity of a particular tool is something that requires 

cumulative evidence between theory, instrument and other outcomes (Krabbe, 2017). 

It is important that work done in previous chapters has assisted in establishing the 

validity of the item sets as measures of their proposed psychological constructs. This 

includes evidence in support of the proposed structure of the item sets, as well as the 

link between item development and underlying CHC theory. 

The confirmatory factor analyses (CFAs) completed in this thesis, for example, 

are clearly based on a conceptualisation of cognitive ability as a reflective model. That 

is, the psychological construct Lexical Knowledge manifests the participant’s 

performance on individual items. That Lexical Knowledge improves with age suggests 

there is temporal precedence and a causal relationship between the psychological 

construct and the measurement tool (Edwards & Bagozzi, 2000). This also aligns with 

more recent discussions of psychological constructs, such that intelligence is a natural 

kind of psychological construct (Fried, 2017). The validity of the item sets are intimately 

linked with the underlying CHC theory which has a substantial literature base (as 
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discussed in Chapter 2); although there are contemporary challenges to the model, it is 

currently perceived as our best working model (Flanagan & McDonough, 2018).  

Outside of establishing a clear relationship between the items developed and an 

underlying theory, another source of validity for the item sets can be established 

through convergent validity. Convergent validity is an important aspect of overarching 

construct validity and relies on a tool’s relationship with other tools that supposedly 

measure the same construct (Krabbe, 2017). 

6.3 Validity of Cognitive Ability Tests 

Popular and comprehensive cognitive batteries demonstrate convergent validity 

with several tools. For example, the Woodcock Johnson Fourth Edition (WJ IV) (McGrew 

et al., 2014) considered correlations with the Wechsler Intelligence Scale for children – 

Fourth Edition (WISC-IV) (Wechsler, 2003), Wechsler Adult Intelligence Scale – Fourth 

Edition (WAIS-IV) (Wechsler, 2008), the Wechsler Preschool and Primary Scale of 

Intelligence – Third Edition (WPPSI-III) (Wechsler, 2002), Kaufman Assessment Battery 

for Children – Second Edition (KABC-II) (Kaufman & Kaufman, 2004), the Stanford-Binet 

Intelligence Scales, Fifth Edition (SB5) (Roid, 2005), and the Differential Abilities Scales – 

Second Edition (DAS-II) (Elliott, 2006). Select correlations are in Table 6-1.  

To demonstrate the convergent validity of the WISC-V, correlation analyses were 

conducted for the WISC-V with the WISC-IV and the WPPSI-IV (Wechsler, 2016). For the 

WISC-IV there were subtest correlations between .33 (Symbol Search) to .85 

(Vocabulary), composite correlations of .64 (PSI) to .84 (VCI), and a Full Scale IQ 

correlation of .86. For the WPPSI-IV there were subtest correlations between .41 

(Picture Concepts) and .77 (Symbol Search – Bug Search), composite correlations of .59 

(PSI) to .81 (VCI), and a Full Scale IQ correlation of .91.  
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Table 6-1. WJ IV Correlations with Other Test Composites 

WJ IV Score Other Test Correlation 

General Ability Index WISC-IV Full Scale IQ .86 

Comprehension-Knowledge WISC-IV Verbal Comprehension Index .75 

Fluid Reasoning WISC-IV Perceptual Reasoning Index .70 

Short-Term Working Memory WISC-IV Working Memory Index .72 

Processing Speed WISC-IV Processing Speed Index .55 

Visual Processing WISC-IV Perceptual Reasoning Index .55 

General Ability Index WAIS-IV Full Scale IQ .84 

Picture Vocabulary WPPSI-III Verbal IQ .46 

General Ability Index KABC-II Mental Processing Index .72 

General Ability Index KABC-II Fluid-Crystallized Index .77 

Comprehension-Knowledge KABC-II Knowledge Gc Index .82 

General Ability Index SB5 Full Scale IQ .80 

Comprehension-Knowledge SB5 Knowledge (Gc) .68 

 

6.4 Chapter Aim 

From the discussion above it is evident that correlations can vary widely, 

particularly when tasks have different demands. This variation occurs despite multiple 

editions of the tests being developed over decades, including thousands of participants 

being included in normative samples. To demonstrate that the item sets developed as 

part of the current research and are measuring what they are proposed to measure, 

correlational analyses were planned between item sets and the WISC-V, like the above 

analyses. The items developed for this research have different task requirements than 

the WISC-V. For example, the Lexical Knowledge task requires identification of a picture 

from an audio presentation of a word, whereas in the WISC-V the Similarities subtest 

requires more reasoning ability by identifying the conceptual relationship between 

words, and the Vocabulary task requires the examinee to define the word. Therefore, 
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while all three tasks are theoretically measuring Lexical Knowledge it would be unlikely 

for the CHC-CAT Lexical Knowledge task to have extremely high correlations with the 

WISC-V tasks. If the CHC-CAT Lexical Knowledge task is indeed an operationalisation of 

the same theoretical construct, more modest convergence would be expected. 

Therefore, it was expected that moderate correlations (between .40 and .80) would 

occur consistent with the correlations demonstrated between mainstream tests that 

also have varied task demands. 

6.5 Method 

6.5.1 Participants 

Participants for this study were school-aged students aged 6 to 16 years old. 

Participants were recruited via snowball recruitment; advertisements were posted 

online, and school principals were notified of the project. Families interested in 

participation contacted the researcher to be included in the research; people with 

suspected or confirmed intellectual disability, and those who had completed a WISC-V 

in the previous 24 months, were excluded due to ethical considerations.  

While 192 participants provided consent to participate, due to a variety of 

factors only 138 participants recruited completed both necessary aspects of the project 

to be included in the data set. Drop out reasons included change of school, loss of 

contact with family, nonattendance to appointments, turning 17 prior to administration 

of tests, and withdrawal due to recent participation in cognitive ability testing. 

The mean age of participants was 9.56 years old (SD = 2.38 years old), with 69 

females and 69 males participating. All participants were from Australia. The distribution 

of participants by age is in Figure 6-1. The CHC-CAT was administered via iPad for 126 

participants, on a laptop for two participants and data was missing for two participants. 
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As not all participants completed all individual item sets, demographics are provided in 

detail in the results section for each unidimensional construct under consideration. 

Figure 6-1. Convergent Validity Age Distribution 

 

The outcomes of the WISC-V are relatively consistent with expectations at a 

group level, as demonstrated in Table 6-2 and Table 6-3. That is, subtests centre around 

a mean scaled score of 10 with a standard deviation of 3, and indexes centre around a 

mean of 100 with a standard deviation of 15. 

Table 6-2. WISC-V Subtest Performance (n = 138) 

Subtest Mean Scaled Scale Standard Deviation 

Similarities 9.94 3.23 

Vocabulary 10.13 2.98 

Block Design 9.05 2.69 

Visual Puzzles 9.50 5.36 

Matrix Reasoning 9.38 2.60 

Figure Weights 9.88 3.05 

Digit Span 9.54 2.91 

Picture Span 9.88 3.15 

Coding 11.64 5.05 

Symbol Search 9.73 4.52 
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Table 6-3. WISC-V Index Performance (n = 138) 

Index Mean Index Score Standard Deviation 

Verbal Comprehension 100.09 14.71 

Visual Spatial 94.87 13.38 

Fluid Reasoning 97.88 14.28 

Working Memory 97.40 13.26 

Processing Speed 102.42 16.84 

Full Scale IQ 98.86 14.59 

 
6.5.2 Materials 

This study consisted of two tools: the WISC-V and the CHC-CAT under 

investigation as part of this thesis. 

The WISC-V is the most utilised cognitive ability test for children by Educational 

Psychologists in Australia (James et al., 2015). It is an individually administered test of 

cognitive ability for children aged 6 years 0 months through to 16 years 11 months 

(Wechsler, 2016). Including the Q-Interactive version of the test (which is administered 

via iPad as in this study), the test comprises of 21 subtests. Administering the 10 core 

subtests provides a measure of five specific cognitive areas as primary index scores: 

Verbal Comprehension Index, Visual Spatial Index, Fluid Reasoning Index, Working 

Memory Index and Processing Speed Index. Administration of the first seven subtests 

allows the calculation of a general ability score known as the Full Scale IQ. While other 

arrangements of subtests can be administered, the current study focused on the core 

WISC-V subtests as they provide a measurement of abilities commensurate with the 

proposed item sets in the CHC-CAT, as well as allowed researchers to provide feedback 

to participants about their results.  

The CHC-CAT is the name given to the current item sets under investigation. In 

summary (see previous chapters for further details) the test contains four sets of items 
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measuring Lexical Knowledge (Gc:VL), Induction (Gf:I), Visualisation (Gv:Vz) and Working 

Memory (Gwm:Wc). For the current study items for each set were split into anchor 

Items, Item Set A and Item Set B, consistent with the Item Calibration Study (ICS). Items 

were administered in the linear order of (1) anchor Items, (2) Item Set A, and (3) Item 

Set B. It was expected that the anchor items would be of moderate difficulty for the 

participants in this study as they provided the most robust statistics and ability to 

discriminate ability levels in adults in the previous Item Tryout Study (ITOS). Item Set A 

items that from a face validity perspective were much less difficult, and Item Set B 

largely new items developed for the ICS and were believed to be more difficult. The 

factor structure of the items is explored in Chapter 3 and Chapter 4. 

6.5.3 Procedure 

All participants required parental consent to participate. This was emailed to the 

researcher and testing took place at the participant’s school with the school’s consent. 

Each participant was administered the 10 core subtests of the WISC-V and three item 

sets from the CHC-CAT under investigation.  

Ethical concerns about the number of items being administered to young people 

in addition to the WISC-V meant all four item sets could not be administered (this is 

noted as an area for further research). Ethical concerns included reducing the amount 

of time participants were away from class, limiting the amount testing young people 

were exposed to and, due to uncertainty regarding item difficulty, inability to accurately 

predict the level of frustration participants may experience and the time required from 

them.  

Both the WISC-V administration and the supervision of the CHC-CAT was carried 

out by provisional psychologists in their 5th year of psychology training at Monash 
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University (i.e. enrolled in the Master of Psychology programs). The 138 participants 

were randomly assigned to a pair of provisional psychologists (total of 26) and testing 

was completed at a time of their and their school’s convenience. The administration 

order of the CHC-CAT and the WISC-V and the item set selection from the CHC-CAT for 

participants were both randomised by the provisional psychologists. Subtests from the 

WISC-V were administered in line with the instructions in the Administration and Scoring 

Manual (Joshua et al., 2016). As it was expected that the CHC-CAT would be largely 

automated, provisional psychologists provided little to no guidance to participants on 

the CHC-CAT other than input of their participant ID (to match up with their WISC-V 

scores) and to access the item sets. Participants were informed about the varying 

difficulty of items: “some items may be hard while other items may be difficult” (like the 

WISC-V) and to try as hard as they could.  

All participants who completed a WISC-V were provided a summary report of 

their results, written by the provisional psychologist under my supervision. 

6.5.4 Data Analysis 

For the unidimensional CHC abilities convergent validity was analysed by 

conducting Pearson product-moment correlation analysis to produce an r value for each 

bivariate correlation (Tabachnick & Fidell, 2007). There are varied guidelines for 

interpreting the strength of a correlation. Cohen (1988) proposes a small relationship as 

.10 to .29, medium relationship as .30 to .49, and a large relationship as .50 to 1.0. Hinkle 

et al. (2003) suggests a negligible relationship as .00 to .30, low relationship as .30 to 

.50, moderate relationship as .50 to .70, a high relationship as .70 to .90, and a very high 

relationship as .90 to 1.0. Gignac and Szodorai (2016) analysed correlations from 708 

meta-analyses and found that the 25th, 50th, and 70th percentiles corresponded with 
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correlations of approximately .10, .20, and .30 and that less than 3% of the correlations 

were above .5; this suggests that previous guidelines are too stringent. Therefore, the 

authors described .10, .20 and .30 as small, typical and relatively large, respectively. The 

current research will consider these varied perspectives of correlation strength. 

The originally planned multidimensional Item Response Theory (IRT) analysis was 

unable to be carried out. As discussed above, due to ethical considerations all four item 

sets were very rarely administered. Figure 6-2 displays the pattern of missing data for 

school-aged participants based on their available θ scores as calculated in ICS using the 

items retained across the four individual unidimensional item set analyses.  

Figure 6-2. Missing Data Pattern for IRT Results. 

 

Note. Red cells indicate missing data while blue cells indicate present data. The bars above and beside the 
cells represent the proportion of participants with that pattern of data. 
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This missing data pattern is a result of the randomised item set selection by 

provisional psychologists as detailed in the procedure section in line with ethical 

considerations. Now that a smaller number of items has been identified for each item 

set it would be possible to administer these prior to any additional items from any CHC 

ability; due to ethical concerns about the number of items to be administered, these 

smaller item sets can be administered as core items prior to any other items which 

require further investigation, or are added to the test. 

This figure suggests that it was more common for provisional psychologists to 

randomly select and combine the Lexical Knowledge, Induction and Visualisation item 

sets together (n = 25). Such a small sample does not allow for appropriate mIRT and CFA 

analysis. However, it is possible to calculate an approximate g factor value by converting 

each of these participants’ individual CHC ability θ scores into a Z score (based on the 

mean and standard deviation of their own age group), summing these Z scores (i.e. sum 

of z scores) and re-evaluating the normative performance of each participant. This 

reflects the WISC-V process of summing subtest scaled scores into a ‘sum of scaled 

score’ and converting this into an Index score. This contrasts with methods chosen by 

other tools, such as the Woodcock-Johnson battery or the XBASS software, which utilises 

a regression weighted g factor (further discussed in Chapter 7). Pearson correlations 

were then calculated between the standardised g summed theta score and the WISC-V 

Indexes. 

Both the unidimensional and g factor analysis were conducted using R v. 3.6.3 (R 

Core Team, 2020) in R Studio Integrated Development Environment v.1.2.5033 (R Studio 

Team, 2019). No specialised R packages were utilised for calculations, although data 

manipulation and visualisation packages were used to enhance ease of analysis (Kowarik 
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& Templ, 2016; Muller & Wickham, 2019; Revelle, 2019; Wickham, 2019; Wickham et 

al., 2020; Wickham & Henry, 2020). For the Convergent Validity analysis, approximately 

500 lines of R code were written (github.com/jakekraska/phd). 

6.6 Lexical Knowledge Results 

A total of 93 participants (47 females, 46 males) with a mean age of 9.75 years 

old (SD = 2.31 years), attempted items from the Lexical Knowledge item set of the CHC-

CAT. iPad was the device used for 84 participants, with seven participants using a laptop 

and the device variable missing for two participants. The age distribution of participants 

is shown in Figure 6-3. 

Figure 6-3. Convergent Validity Age Distribution (Gc:VL) 

 

The raw score correlations between the CHC-CAT Lexical Knowledge item set and 

the various WISC-V subtests were generally moderate to high (Table 6-4).  

Figure 6-4 shows the relationship between the CHC-CAT Lexical Knowledge raw 

score and the WISC-V Similarities and WISC-V Vocabulary subtest raw scores.  

After standardising the participants’ θ scores based on their age, the relationship 

between the Lexical Knowledge IRT Theta Z score and the WISC-V Similarities and WISC-

https://github.com/jakekraska/chctest
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V Vocabulary scaled scores (Figure 6-5) was low and moderate, respectively, as 

described by Hinkle and colleagues (2003), and relatively large as described by Gignac 

and Szodoarai (2016). A relationship of .5 remained when using the Verbal 

Comprehension Index rather than the individual WISC-V subtests (Figure 6-6). 

Table 6-4. Gc:VL Raw Score Correlations 

Variable Correlation with CHC-CAT Gc:VL Raw Score 

Age .64 

WISC-V Similarities Raw Score .57 

WISC-V Vocabulary Raw Score .64 

WISC-V Block Design Raw Score .59 

WISC-V Visual Puzzles Raw Score .45 

WISC-V Matrix Reasoning Raw Score .56 

WISC-V Figure Weights Raw Score .51 

WISC-V Digit Span Raw Score .62 

WISC-V Picture Span Raw Score .64 

WISC-V Coding Raw Score .68 

WISC-V Symbol Search Raw Score .46 

 

Figure 6-4. Gc:VL Raw Score and WISC-V Raw Score Correlations 
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Figure 6-5. Gc:VL Theta Z Score and WISC-V Scaled Score Correlations 

  

 

Figure 6-6. Gc:VL Theta Z Score and WISC-V VCI Correlation 
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6.7 Induction Results 

A total of 93 participants (51 females, 42 males) with a mean age of 9.46 years 

old (SD = 2.23 years), attempted items from the Induction item set of the CHC-CAT. iPad 

was the device used for 86 participants, with five participants using a laptop and the 

device variable missing for 2 participants. The age distribution of participants is shown 

in Figure 6-7. 

Figure 6-7. Convergent Validity Age Distribution (Gf:I) 

 

The raw score correlations between the CHC-CAT Induction item set and the 

various WISC-V subtests were largely moderate (Table 6-5).  

Figure 6-8 shows the relationship between the CHC-Cat Induction raw score and 

the WISC-V Matrix Reasoning and Figure Weights subtest raw scores. 

After standardising the participants’ θ scores based on their age, the relationship 

between the Induction IRT Theta Z score and WISC-V Matrix Reasoning and Figure 

Weights scaled scores (Figure 6-9) were both weak as described by Hinkle and colleagues 

(2003) but considered relatively large by Gignac and Szodoarai’s (2016) standard. A 
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relationship of .51 was found when using the Fluid Reasoning Index rather than the 

individual WISC-V subtests (Figure 6-10). 

Table 6-5. Gf:I Raw Score Correlations 

Variable Correlation with CHC-CAT Gf:I Raw Score 

Age .44 

WISC-V Similarities Raw Score .52 

WISC-V Vocabulary Raw Score .58 

WISC-V Block Design Raw Score .58 

WISC-V Visual Puzzles Raw Score .56 

WISC-V Matrix Reasoning Raw Score .57 

WISC-V Figure Weights Raw Score .53 

WISC-V Digit Span Raw Score .56 

WISC-V Picture Span Raw Score .51 

WISC-V Coding Raw Score .54 

WISC-V Symbol Search Raw Score .45 

 

Figure 6-8. Gf:I Raw Score and WISC-V Raw Score Correlations 
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Figure 6-9. Gf:I Theta Z Score and WISC-V Scaled Score Correlations 

  

 

Figure 6-10. Gf:I Theta Z Score and WISC-V FRI Correlation 
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6.8 Visualisation Results 

A total of 99 participants (48 females, 51 males) with a mean age of 9.61 years 

old (SD = 2.24 years), attempted items from the Visualisation item set of the CHC-CAT. 

The most common administration platform for Visualisation was an iPad, used by 89 

participants. Nine participants used a laptop, and one participant did not record which 

device was used. The age distribution of participants is shown in Figure 6-11. 

Figure 6-11. Convergent Validity Age Distribution (Gv:Vz) 

 

The raw score correlations between the CHC-Cat Visualisation item set and the 

various WISC-V subtests were largely weak to moderate (Table 6-6).  

Figure 6-12 shows the relationship between the CHC-CAT Visualisation raw 

score, and the WISC-V Block Design and WISC-V Visual Puzzles subtest raw scores. 

After standardising the participants θ scores based on their age, the relationship 

between the Visualisation IRT Theta Z score and the WISC-V Block Design and Visual 

Puzzles scaled scores (Figure 6-13) was weak as described by Hinkle and colleagues 

(2003) but relatively large when considered by Gignac and Szodoarai (2016). A 
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relationship of .31 remained when using the Visual Spatial Index rather than the 

individual WISC-V subtests (Figure 6-14). 

 

Table 6-6. Gv:Vz  Raw Score Correlations 

Variable Correlation with CHC-CAT Gv:Vz Raw Score 

Age .33 

WISC-V Similarities Raw Score .43 

WISC-V Vocabulary Raw Score .51 

WISC-V Block Design Raw Score .46 

WISC-V Visual Puzzles Raw Score .44 

WISC-V Matrix Reasoning Raw Score .53 

WISC-V Figure Weights Raw Score .30 

WISC-V Digit Span Raw Score .41 

WISC-V Picture Span Raw Score .42 

WISC-V Coding Raw Score .33 

WISC-V Symbol Search Raw Score .22 

 

Figure 6-12. Gv:Vz Raw Score and WISC-V Raw Score Correlations 
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Figure 6-13. Gv:Vz Theta Z Score and WISC-V Scaled Score Correlations 

  

Figure 6-14. Gv:Vz Theta Z Score and WISC-V VSI Correlation 
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6.9 Working Memory Results 

A total of 85 participants (41 females, 44 males) with a mean age of 9.64 years 

old (SD = 2.65 years), attempted items from the Working Memory item set of the CHC-

CAT. iPad was the device used for 79 participants, with 6 participants using a laptop. The 

age distribution of participants is shown in Figure 6-15. 

Figure 6-15. Convergent Validity Age Distribution (Gwm:Wc) 

 

The raw score correlations between the CHC-CAT Working Memory item set and 

the various WISC-V subtests were largely moderate (Table 6-7).  

Figure 6-16 shows the relationship between the CHC-CAT Working Memory raw 

score and the WISC-V Digit Span and Picture Span subtest raw scores. 

After standardising the participants’ θ scores based on their age, the relationship 

between the Working Memory IRT Theta Z score and the WISC-V Digit Span and Picture 

Span scaled scores (Figure 6-17) was weak as described by Hinkle and colleagues (2003) 

but relatively large when considered by Gignac and Szodoarai (2016). A weak 

relationship remained when using the Working Memory Index rather than the individual 

WISC-V subtests (Figure 6-18). 
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Table 6-7. Gwm:Wc Raw Score Correlations 

Variable Correlation with Gwm:Wc Raw Score 

Age .53 

WISC-V Similarities Raw Score .55 

WISC-V Vocabulary Raw Score .61 

WISC-V Block Design Raw Score .62 

WISC-V Visual Puzzles Raw Score .56 

WISC-V Matrix Reasoning Raw Score .67 

WISC-V Figure Weights Raw Score .61 

WISC-V Digit Span Raw Score .66 

WISC-V Picture Span Raw Score .59 

WISC-V Coding Raw Score .66 

WISC-V Symbol Search Raw Score .39 

 

Figure 6-16. Gwm:Wc Raw Score and WISC-V Raw Score Correlations 
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Figure 6-17. Gwm:Wc Theta Z Score and WISC-V Scaled Score Correlations 

  

 

Figure 6-18. Gwm:Wc Theta Z Score and WISC-V WMI Correlation 
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6.10 Multidimensional Ability Results 

While 138 participants underwent WISC-V assessment, due to the breakdown of 

participants that attempted each item set (as described in the Data Analysis section), 

only 25 participants (17 female, 8 male) with a mean age of 1.32 years old (SD = 1.63 

years) were selected for the current analysis. These participants each completed the 

Lexical Knowledge, Induction and Visualisation items. An iPad was the most common 

device (n = 22) with two participants using a laptop and the device variable missing for 

one participant. The age distribution of participants is in Figure 6-19. 

Figure 6-19. Convergent Validity Age Distribution (g) 

 

Correlations between the g Z score varied based on the particular WISC-V Index 

(Table 6-8); the strongest correlation was between the g Z score and the Full Scale IQ, 

which showed a moderate relationship as described by Hinkle and Colleagues (2003) but 

relatively large as described by Gignac and Szodoarai (2016) (Figure 6-20). 
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Table 6-8. Correlation Matrix for CHC-CAT g Z Score and WISC-V Indexes 

 g Z Score  VCI FRI VSI WMI PSI FSIQ 

g Z Score 1.00       

VCI .50 1.00      

FRI .38 .67 1.00     

VSI .57 .41 .49 1.00    

WMI .45 .40 .40 .35 1.00   

PSI .49 .24 .17 .16 .52 1.00  

FSIQ .67 .84 .83 .60 .67 .42 1.00 

 

Figure 6-20. CHC-CAT g Z Score and WISC-V Full Scale IQ Correlation 
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6.11 Discussion 

The purpose of this chapter was to establish that the CHC-CAT measures 

cognitive ability consistently with contemporary conceptualisations of intelligence. As 

the WISC-V has been found to align with CHC theory, it was anticipated that high 

correlations between the CHC-CAT and WISC-V could provide initial evidence of the 

validity of the CHC-CAT in terms of CHC theory.  

Demonstrating convergent validity provides evidence that two different tests are 

measuring the same theoretical construct. In psychology convergent validity is 

important when developing new scales or measures which focus on constructs with 

existing tools that are robust in nature. The current study considered the convergent 

validity of the CHC-CAT item sets with the WISC-V at both a raw score and normalised 

level. Based on the previous convergent validity studies conducted by the test 

developers of the WISC-V and the WJ IV, it was expected that while there would be 

variation in correlations (due to differing task demands), there would also be moderate 

relationships. The findings are summarised in Table 6-9. 

When looking at raw scores, Lexical Knowledge, Induction and Working Memory 

item sets all had moderate relationships with their corresponding WISC-V subtest raw 

scores. In contrast the Visualisation raw score correlation was weak but approaching 

moderate. After standardising all θ scores for each CHC ability, the correlation between 

θ Z scores and the corresponding WISC-V subtest scaled scores (Table 6-9) was weak to 

moderate as characterised by Hinkle and colleagues (2003). When using WISC-V Index 

scores, the Lexical Knowledge and Induction item sets had a moderate relationship with 

the Verbal Comprehension Index and Fluid Reasoning Index respectively, and the 
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Visualisation and Working Memory item sets had had a weak relationship with the Visual 

Spatial Index and Working Memory Index respectively. 

Table 6-9. Summary of CHC-CAT Theta Z Score and WISC-V Subtest Correlations 

CHC-CAT Theta Z Score WISC-V Composite/Subtest Correlation 

Lexical Knowledge Verbal Comprehension Index .50 

  Similarities .38 

  Vocabulary .49 

Induction Fluid Reasoning Index .51 

  Matrix Reasoning .39 

  Figure Weights .46 

Visualisation Visual Spatial Index .31 

  Block Design .31 

  Visual Puzzles .24 

Working Memory Working Memory Index .43 

  Digit Span .35 

  Picture Span .31 

g Full Scale IQ .67 

 
Stronger correlations between the Lexical Knowledge and Induction item sets 

were likely related to higher marginal reliabilities and better CFA and Rasch fit (Chapter 

4). A better Rasch fit was likely to produce more accurate θ scores; increases in the latent 

traits Lexical Knowledge and Induction would correspondingly produce higher θ scores 

in the CHC-CAT item sets, as well as higher scaled scores. That is, test performances 

would covary more accurately. In contrast, for the Visualisation item set marginal 

reliabilities were lower, and the item set did not produce as strong CFA and Rasch fit; 

there is likely a higher level of error in the resultant θ scores. Lower accuracy in θ scores 

may result in more scatter of scores, in turn reducing correlations.  

This observation does not align with the outcomes of the Working Memory 

analysis (Section 6.9). While the CFA and Rasch fit for the Working Memory item set 
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were relatively positive, the correlations in this study were weak. Those who performed 

high relative to their peers on the WISC-V Working Memory subtest did not necessarily 

perform well on the CHC-CAT Working Memory item set, and vice versa. Task demands 

for the WISC-V Working Memory subtests are very different than those within the CHC-

CAT Working Memory item set. At the time of development, items included an 

attentional capacity component making the CHC-CAT Working Memory task more 

cognitive complex. For the WISC-V Digit Span subtest examinees know the type of 

answer they are required to provide after stimulus presentation regardless of what will 

be presented (e.g. ‘digits backwards’). For the CHC-CAT Working Memory items, this is 

unknown and appears at the end of the item (e.g. “What is the number between blue 

and red?”). While there are some similarities between this type of task and the Picture 

Span task whereby there are unknown distractor stimuli, once again the examinee 

knows the type of answer they are required to provide for the Picture Span subtest (e.g. 

‘pictures in the order you were shown’). It may be that further research is required to 

establish convergent validity between the item sets under consideration and other tasks 

with cognitive complexity built into them (e.g. WJ IV).  

The most promising outcome of the current study is the g factor correlation with 

the WISC-V Full Scale IQ. A moderate correlation was found, potentially demonstrating 

a different operationalisation of the same underlying theoretical construct (i.e. 

measurement of g via automated online testing versus face-to-face administration). It is 

anticipated that usage of multidimensional IRT models in future studies would further 

demonstrate convergent validity of the CHC-CAT with the WISC-V at a global intellectual 

level. 
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The main limitation of the current study is the sample characteristics for each 

individual cognitive ability. The majority of participants were aged 6 to 11, and in some 

cases there were specific ages missing from certain constructs (e.g. 9-year-olds missing 

from the Visualisation analysis). In addition to variations in participant age, as the 

sample was recruited in a snowball fashion there was no way to predict the abilities of 

each participant; given we know that Classical Test Theory (CTT) based tests are less 

reliable at the extreme ends of difficulties (Weiss, 2011) it is uncertain whether lower 

correlations in the current study are a result of lack of reliability of high and low ability 

participants on the WISC-V, or lack of accurate measurement of the CHC-CAT item sets. 

Areas for future research discussed in Chapter 5 are largely relevant to addressing these 

issues; further data collection of 11- to 16-year-olds would be particularly helpful. 

Ultimately, the convergent validity at a unidimensional construct level appears 

varied for the CHC-CAT item sets. Comparing the current results (Table 6-9) to those 

correlations between the WJ IV and other tools (Table 6-1) suggests that outside of the 

visualisation task, there are some subtests that are approaching correlations seen 

between other tests. In particular, the g factor score is promising, which is useful for 

screening purposes. The findings, in combination with the ITOS, ICS and CAT Simulation 

analyses, suggest there is mounting evidence of the psychometric validity of the Lexical 

Knowledge and Induction item sets. Further analysis of the Working Memory item sets 

in comparison to other cognitively complex Working Memory tasks and further 

development of Visualisation items that provide a better fit to the Rasch model are both 

recommended. The next chapter considers possible conclusions, implications and 

recommendations of all the analyses conducted in amalgamation. 
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Chapter 7: Conclusions, Implications and Recommendations 

Cognitive ability is perhaps the most researched psychological construct in 

history. Despite significant refinement of cognitive ability theory throughout the 

twentieth century culminating in the Cattell-Horn-Carroll (CHC) taxonomy of abilities, 

the method in which cognitive ability tests are administered has gone largely 

unchanged. Concerns about this slow progress and lack of innovation have been raised 

in the literature, yet most advancement has come in the form of theory improvements 

such as the advent of CHC theory, or simple transition from paper-and-pencil forms to 

digital forms. While technology has impacted and influenced many aspects of the 

psychology industry such as data collection, data analysis, conjunctive therapies, 

psychological intervention, and practice management, there is less evidence of 

continuing technological improvement in psychological assessment (Barrett, 2018). To 

address these concerns the current project evaluated the implementation of items 

developed from a CHC perspective for the purpose of Item Response Theory (IRT) 

analysis and Computer Adaptive Test (CAT) implementation. 

Development of CAT should rely on a solid theoretical foundation for what is 

trying to be measured. Cognitive ability as a psychological construct has long history 

(Wasserman, 2018), and has been shown to impact a range of life outcomes (Evans et 

al., 2002; Floyd et al., 2003; Floyd et al., 2007; Lang & Kell, 2019). Theories of cognitive 

ability evolved throughout the twentieth century, culminating in CHC theory (Schneider 

& McGrew, 2018). While there are some contemporary criticisms of CHC in the literature 

they tend to overgeneralise, fail to acknowledge the unique variance that can be 

contributed by novel tasks, restrict focus to the applicability of the theory to Specific 

Learning Disorders, mistake probabilistic causation for deterministic causation in 
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ability/achievement relations, and ignore the mounting evidence of ability constructs 

being related to neurological functions (Wasserman, 2019). Many of these challenges 

will probably be only addressed through data analysis of samples that are more diverse 

and with increased sample size, which likely will only occur with increased efficiency of 

testing through technological solutions. Kamphaus et al. (2012) suggested that 

technology may be a key influencer of intelligence test interpretation and development. 

Even when implemented via technology, scoring and interpretation of 

psychological tests tends to rely on Classical Test Theory (CTT) which has several 

shortcomings. CTT relies on normative samples that may not be able to be generalised, 

causes difficulties when respondents do not complete all items, assumes a constant 

standard error of measurement (SEM) across all scores in a population, assumes all 

items to be of equal weight in the measurement of a psychological construct, and 

assumes a deterministic linear relationship between observed scores and a true score. 

IRT, a set of models that focus on probabilistic relationships between latent traits and 

observed outcomes, addresses many of these problems.  

Psychological assessment tends to be dominated by pen-and-paper tests and 

mainstream cognitive ability tools in Australia tend to either be of consistent design with 

those developed over 100 years ago, or simple replications of tools on electronic screens 

which possess many of the same problems as other CTT based tests (Gibbons, 2017; 

James et al., 2015). While technological and statistical solutions such as gamification, 

machine learning and ecological momentary assessment have been proposed as options 

for advancing measurement of cognitive ability, they tend to be atheoretical or lacking 

in ability to ensure construct validity. While they would address the problem of 
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stagnation in psychological measurement, they discard the importance of psychological 

theory in developing measures of intelligence. 

CATs possess several characteristics that enhance the efficiency of psychological 

measurement while attempting to avoid compromising test validity or reliability. CATs 

use adaptive algorithms to select items to ensure precise measurement (Scalise & Allen, 

2015), and match examinees’ ability levels to items within tests (Gibbons, 2017) by 

placing them on the same scale, theta (θ), in the same way IRT does. While some tools 

can be interpreted using IRT (e.g. the W scale in the WJ IV) this still requires 

administration via conventional methods (i.e. linear format). CATs therefore require 

fewer items to be administered while maintaining high levels of reliability (Weiss, 2011). 

CATs have been widely utilised in achievement testing, mental health assessment and 

patient-reported outcomes (Fliege et al., 2005; Gibbons et al., 2016; Martin & Lazendic, 

2018) but have not been as widely implemented in measurement of cognitive ability 

outside proprietary purposes. 

Utilising CAT in the measurement of cognitive ability poses several benefits, with 

novel item types and presentation methodologies available to test developers (Zenisky 

& Sireci, 2002). CATs also allow for increases in unproctored testing while 

simultaneously maintaining test security by not displaying all items to examinees (Fetzer 

& Kantrowitz, 2011). Cognitive ability tests tend to be time consuming for both 

examiners and examinees, and CATs have found to reduce test time in a range of other 

domains (Delgado-Gomez et al., 2016; Gibbons et al., 2016). Because CATs are based on 

IRT, there is also increased opportunity for precision at the extreme ends of the difficulty 

spectrum (Weiss, 2011) increasing the validity of the test (Cappelleri et al., 2014). 
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Despite these potential opportunities cognitive ability CATs are not widely available to 

practitioners. 

An evaluation of the literature in Chapter 2 demonstrated that CAT research has 

thus far failed to address issues of practical implementation. A significant body of 

methodological research has been carried out regarding different aspects of CATs, but 

only a very limited number of publicly available sources demonstrate the utility of CATs 

for cognitive ability testing. Generally, it appears that cognitive ability CATs have been 

largely adopted by private organisations, militaries and organisations that develop 

proprietary testing tools. Many of the CATs that do exist in the wider body of literature 

appear limited in their implementation of contemporary theories of ability (such as 

CHC), measure a narrow range of abilities or have not sufficiently had their validity and 

reliability demonstrated. Many of the studies evaluated relied on simulations or lacked 

details about the implementation of the CAT to be useable by other practitioners or 

researchers.  

Based on the above discussion this thesis set out to design a CHC-CAT screening 

tool. The goals of this thesis were to explore the application of CATs in the measurement 

of CHC abilities, explore the efficiency and validity of CATs in measuring intelligence, and 

comparing these results to mainstream cognitive abilities. After a review of the 

literature (as described above), we set specific goals to evaluate and calibrate a set of 

items using CTT and IRT methods to identify four sets of items measuring Lexical 

Knowledge, Induction, Visualisation and Working Memory, simulate CATs using Rasch 

item parameters, and consider convergent validity with the Wechsler Intelligence Scale 

for Children – Fifth Edition (WISC-V). The results of the studies designed to address these 
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aims are discussed below, with subsequent consideration of implications, limitations 

and future research directions. 

7.1 Item Analysis and Calibration 

The Item Tryout Study (ITOS) in this thesis demonstrated the viability of four new 

item sets for use in a CHC-CAT. Items for this study were derived from earlier studies 

that developed items based on CHC theory and consideration of how other mainstream 

tools have attempted to measure these constructs. It was believed that there was a 

strong theoretical foundation for these items. Confirmatory factor analysis (CFA), 

Mokken analysis and Rasch modelling was conducted on these item sets designed to 

measure Lexical Knowledge (Gc:VL), Induction (Gf:I), Visualisation (Gv:Vz), and Working 

Memory (Gwm:Wc). Stringent psychometric cutoffs were set in the analyses which 

resulted in the removal of a high number of items for all four narrow cognitive abilities. 

Lexical Knowledge items tended to be too easy for adults, Induction items were not 

always predictable in their ordering, possible unidimensionality issues were noted with 

Visualisation items, and there were design issues with the Working Memory item 

stimuli. As items were developed with the goal of differentiating between below 

average and average children, ultimately the sample used in the ITOS proved poorly 

targeted. Despite these concerns, the analysis demonstrated that even with 

conservative analysis, novel items developed using CHC theory could both meet the 

underlying assumptions of IRT and sufficiently fit the Rasch model. While the remaining 

items were unlikely to be suitable for implementation in a CAT, further opportunities for 

item development, data collection and changes to the analysis methodology were 

identified. 
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The subsequent Item Calibration Study (ICS) took advantage of these 

opportunities. Key developments within this study included development of further 

items based on CHC theory and related literature. This included consideration of 

vocabulary difficulty theories for Lexical Knowledge items, rules for Induction items, 

shape similarity, internal cues and number of shapes for Visualisation, and attentional 

control and number of information chunks for Working Memory items. Further 

consideration of standardised item stimuli and presentation was made in order to 

ensure the valid presentation of items in an online environment. Across the ITOS and 

the ICS a total of 107 items were developed for Lexical Knowledge, 80 items for 

Induction, 72 items for Visualization and 44 items for Working Memory. After utilisation 

of Multivariate Imputation by Chained Equations (MICE) for missing data, an advanced 

missing data imputation method, and a more prominent focus on Rasch analysis 

(relative to the ITOS), the ICS retained 47 Lexical Knowledge items, 23 Induction items, 

30 Visualisation items, 25 Working Memory items. This was substantially more items 

than were retained in the ITOS. Improved sample targeting was evident based on age 

(i.e. futher evidence that older participants were able to perform better than younger 

participants). Retained items met the assumptions of IRT, fit the Rasch model, measured 

a wide range of the latent trait and met the recommendation of a minimum of 10-15 

dichotomously scored items (Babcock & Weiss, 2013). 

Across both the ICS and the ITOS there was not always a clear progression in 

ability from young to old. This was particularly evident for item sets that had, in 

retrospect, potential item design problems, or could have benefited from the use of a 

different IRT model (e.g., Visualisation). Items removed may not be replicated if samples 

include a larger and more diverse sample than that used in the ITOS and ICS. Many item 
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removeal decisions were based on findings relating to item variance and difficulty, 

however without a larger group of children it is difficult to prove that these difficulties 

will stay invariant with all age groups. Further data collection is required. 

The original research goal of developing sets of items to measure abilities 

important to learning was achieved by these two studies. Item development for testing 

is a complex and costly exercise. Some estimates have placed high stakes test item 

development at a cost of $1,000 per item and all other items at $300 (Downing, 2006b). 

At a total of 303 items developed across the ITOS and ICS, this could potentially be 

valued at $90,900 to $303,000. While there are some established psychometric 

difficulties with some of these items, even if we only calculate this based on the retained 

items from the ICS that were utilised in the CAT simulation and convergent validity 

study, these items are worth $37,500 to $125,000. Considering the item development 

investment for these items totalled $4200, notwithstanding further item generation and 

data collection, this has thus far been quite a cost-effective series of studies.  

Across the ITOS and the ICS there is evidence of incremental improvements in 

psychometrics. While slightly different patterns of statistical analysis were utilised in 

both studies, with the increased number of participants, the utilisation of new items, 

and the collection of data from supervised participants, the number of items retained 

increased. The use of MICE in order to address unexpected missing data from the second 

data collection phase as well as general data cleaning, reduced the available sample for 

analysis significantly. Additionally, increased cognitive complexity in the newly 

developed items possibly led to an increase in residual variance (as demonstrated by 

increased SRMR). Despite this, these items demonstrated good fit with the Rasch model 

which enabled robust item parameters to be established for use in a CAT.  
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7.2 CAT Simulation 

Despite the ability to vary the characteristics of a CAT, the quality of a CAT is 

entirely dependent on the items contained within it. If items have poor psychometrics 

or are lacking in theory-based reasoning, then there is a possibility that the CAT might 

be efficient but lacking in validity and reliability. On the other hand, if item sets are small 

or the test developer places strong constraints on the CAT, then there is likely to be little 

adaptability in the test (Reckase et al., 2019). The simulations contained in Chapter 5 

made use of very few characteristics available to CATs, relying on commonly utilised 

item selection, θ estimation, and first item selection algorithms. The use of varying 

minimum SEM stop rules allowed us to demonstrate the average number of items when 

aiming for different levels of reliability. Ultimately, the simulations demonstrated that 

accepting lower levels of reliability could lead to reductions in as many as 50% of items 

administered. Additionally, tests were particularly suited to measuring those with lower 

abilities, which may be useful for classifying those with very low abilities relative to those 

with average or higher abilities. 

7.3 Convergent Validity of the CHC-CAT and the WISC-V 

The convergent validity study in Chapter 6 proved positive. All subtest raw scores 

had moderate relationships with their corresponding WISC-V subtests. After 

standardising θ scores the correlations between CHC-CAT subtests and WISC-V subtests 

were weak to moderate. Contrastingly, correlations between CHC-CAT subtests and 

WISC-V Indexes were moderately strong for Lexical Knowledge and Induction but were 

again weak for Visualisation and Working Memory. These findings are believed to be 

related to better fit and higher item counts for the former subtests, as well as item 

format and increased cognitive complexity in the latter subtests. These outcomes also 
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met the expectation of a .4 to .8 correlation based on an evaluation of other tools 

convergent validity. While concern was noted regarding gaps in the ages of participants 

included in the study, the results of this chapter in conjunction with the other chapters 

not only provided mounting evidence of the psychometric validity and reliability of each 

item set, but also demonstrated further opportunities for development and research. 

The originally planned multidimensional IRT analysis was unable to be carried 

out for two reasons: Firstly, having planned the item administration order of the ICS on 

the outcomes of the ITOS, the level of missing data in the second study (ICS) was 

unexpected. When the ITOS was completed there was only minimal missing data and 

this expectation carried over to the ICS; the splitting of the item sets into Item Set A, 

Item Set B and an anchor item set was also designed to ensure that key items were 

completed prior to possible drop off. Missing data was also an issue for school aged 

participants, as ethical considerations meant all four item sets were very rarely 

administered consecutively. Unfortunately, the amount of missing data in the ICS was 

higher than expected and meant that if the study were to utilise only participants with 

full item level data for the retained ICS items, then there would be less than 10 

participants to run both multidimensional CFA and IRT analyses. Even if the analyses 

were far less conservative and attempted to simply use any participant who had 

attempted all four item sets, there would only have been approximately 500 participants 

for analysis. Additionally, several items had over 90% of missing data meaning there 

would have been a need to change the items retained relative to the ICS.  

To address this there was an attempt to create an estimate of g using a sum of 

subtest Z scores and standardising (not averaging) this sum for each age group. The 

problem here is that the correlations between each of the CHC-CAT subtests may have 
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poor or strong correlations which can result in significant variations of such ‘composite’ 

scores. As correlations between the subtests approaches 1.00, it is more likely that the 

standardised sum of subtest Z scores would align with the average of the subtest Z 

scores. Alternatively, as the correlations between subtests become lower, it is more 

likely that the standardised sum of subtest Z scores would deviate from the average of 

the subtest Z scores.  

Another way to complete this in future studies would be to develop a regression 

weighted g score (like that utilised in XBASS and the Woodcock-Johnson). While this may 

be more psychometrically defensible in future studies (particularly if a study analyses 

the convergent validity between the CHC-CAT and the Woodcock-Johnson), the method 

utilised in this project was chosen because the WISC-V also uses a sum scored method. 

Nevertheless, correlations between the CHC-CAT g Z Score and the WISC-V Full Scale IQ 

was moderate. It is anticipated that further data collection will enable significant 

improvements in the estimation of a g factor for the CHC-CAT. 

7.4 Implications 

The studies carried out in this thesis have direct implications for the use of 

technology in the measurement of cognitive ability. While it is not yet recommended 

that the items be utilised for the purposes of high stakes testing, there is emerging 

evidence for the use of the CHC-CAT for group level testing. This would be particularly 

useful for group-based screening in order to assist in appropriate referral to Educational 

Psychologists for more comprehensive testing.  

Technology use in psychological practice and research has not proliferated 

without some authors raising concerns about the ethical and competent use of such 

technologies. Concerns have typically related to email communications, use of 
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smartphones and tablets, storage of client information on the cloud, and psychologists’ 

personal and professional use of social media (Gamble & Morris, 2014) which is 

somewhat unrelated to the current project. Particularly with the early uptake of the 

Internet as a tool for research, academics became concerned about many factors 

relating to the methodology of studies (e.g. Im & Chee, 2004). Given the hosting of the 

CHC-CAT via Concerto, a web-based platform, and the recruitment of some participants 

via social media platforms, it is important to consider the ethical challenges posed by 

such methodologies.  

There may be concerns in relation to the online features that a tool such as the 

CHC-CAT offers. For example, while the CHC-CAT is ultimately planned to be 

implemented in group-based screening under the supervision of teachers or 

psychologists, it could be administered in an unproctored format such as was done in 

certain parts of the current project for the purposes of data collection. In fact, many 

colleagues raised concerns with me throughout my candidature about the potential 

removal of psychologists from the measurement of cognitive ability. While this is 

certainly not the intention of this project, this concern is not unwarranted; Computer 

and Internet technologies are so diffuse that automation of job tasks is expected to 

impact all jobs in Australia in some way over the next 30 years (AlphaBeta, 2017). 

However, automation is also expected to boost Australia’s national income by $2.2 

trillion dollars and reduce the average Australian workload by two hours of manual 

labour a week.  

Increasingly, with the use of virtual therapists, telecounselling, psychology apps, 

and automated assessment it is easy to see the potential impacts on the field of 

psychology. Natural language processing computer programs have been presented as 
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“automatic, robot-like counselling” as early as the 1980s (Barak, 1999). Innes (2017) 

goes as far as to suggest that the threat to the employment of humans as psychologists 

does not necessarily rely on consciousness, self-awareness and feelings. The CAT 

simulations in this thesis demonstrate that with improved psychometric outcomes 

(which would likely be achieved with further data collection and funding) an automated 

test of cognitive abilities is feasible. Although completely automating this process is not 

desirable due to the loss of important behavioural observations and the high stakes 

nature of one-to-one cognitive ability testing. 

Despite these concerns, many argue that technological improvements will 

increase productivity rather than replace workers (e.g. Hamid et al., 2017; Jha & Topol, 

2016; Zammuto, 2018). Innes (2017) acknowledges that there is currently only a 0.43 

per cent chance of psychologists being replaced by robots. Additionally, research in 

other fields suggests that artificial intelligence and machine learning will enhance 

worker productivity rather than cause substantial job losses. It is possible a CAT 

screening tool (such as developed in this thesis) is more likely to be used for enhancing 

referrals rather than making high stakes decisions. There is also utility for such a tool in 

situations where psychologists may not be available for face-to-face assessment via 

paper-and-pencil or iPad assessment tools. This may be due to a lack of psychologists in 

rural localities, or even more recently in response to the COVID-19 pandemic where 

there were increasing demands for teleassessment tools (Pearson, 2020b). Ultimately it 

is hoped a CAT that measures cognitive ability will be used within the confines for which 

it was designed, as well as with due regard for its psychometric strengths and 

weaknesses. 
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Another concern that may be raised in response to the design decisions in this 

thesis is the possible impacts of computer system differences between participants. The 

differential item functioning (DIF) in this study generally suggested that platform 

differences did not impact probability of correct response. Where there was DIF flagged, 

it was generally a result of there only being a very small number of participants who 

used a particular device type, and thus further research is required to further establish 

these findings.  

Further, other authors have challenged such concerns. Gosling et al. (2004) 

addressed six preconceptions about Internet methods, showing that compared to 

traditional samples, Internet samples are just as diverse, do not differ in signs of 

maladjustment, perform similarly across presentation formats (i.e. different websites), 

and generally produce outcomes consistent with traditional methodology studies. They 

concluded “Internet methods are of at least as good quality as those provided by 

traditional paper-and-pencil methods” (p. 102). More recently, Daniel and colleagues 

(Daniel, 2012a, 2012b, 2012c, 2013a, 2013b; Daniel et al., 2014) demonstrated 

equivalency of the iPad version of a range of Pearson published tools and their digital 

counterparts. While this is specifically for one platform (i.e. iPad), the fact that there 

were so few issues across these studies demonstrates the viability of translating tests to 

different platforms when taking due consideration for image quality, connection speed, 

resolution and webpage formatting.  

In terms of the reliance of Internet-based recruitment for studies such as, early 

research demonstrated this was not an issue. Hamilton and Bowers (2006) compared 

the US population census from 2000 with Internet data from 2003 and showed that 

while education and income are “generally higher among Internet users” (p. 822), ethnic 
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and gender diversity is comparable, and all age generations are represented in the 

Internet data. Recent data suggests that in the US Internet use is almost ubiquitous (Pew 

Research Center, 2017). A similar trend can be found in Australia with 89% of adults 

using the Internet (Australian Bureau of Statistics, 2012, 2017a, 2017b; Australian 

Communications and Media Authority, 2017; Ofcom, n.d.). In Australia (population of 

24.99 million) there are at least 14.7 million Internet subscribers, as well as 27.0 million 

mobile users with Internet connectivity (Australian Bureau of Statistics, 2018). This is 

reflected in the significant growth of online advertising expenditure, against shrinking 

TV and print media (Australian Communications and Media Authority, 2017). As has 

been demonstrated in this thesis, internet recruitment allows for the collection of large 

samples, however the resultant lower quality of data and possible missing data should 

be expected. This study addressed these issues via MICE. Ultimately, with appropriate 

design and statistical tools, Internet recruitment is a powerful avenue for data collection 

and has only supported the outcomes of these studies in such a short time period. 

The methodology utilised in this thesis also demonstrates the ability to balance 

both CTT and IRT statistical methodologies in test development. In line with previous 

research, the psychometrics in these studies generally improved or deteriorated in 

response to increases or decreases in item and participant counts, as well as in response 

to improving the alignment of items with psychological theory. There are many moving 

parts when attempting to develop items, test them with samples, analyse them with 

competing statistical methodologies and then implement them in a useful fashion. 

Changes in item development can impact all the subsequent steps, but also how one 

plans to implement the items must be considered for earlier steps. This thesis 

demonstrates how iterative and cyclical item development, analysis and 
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implementation can improve item psychometrics and result in robust item sets. 

Positively, IRT and CAT are suited to introduction and removal of items over time, 

whereas CTT requires complete revalidation of item sets when each single change is 

made. 

7.5 Limitations 

Unfortunately, the data sets in these studies possessed missing data in a pattern 

that meant a substantial number of participants and items had to be removed from 

analyses. While MICE is an advanced method of addressing missing data, it is not a silver 

bullet. This is a flaw both in the design of the data collection largely due to ethical 

considerations, and the lack of ability to gather a larger sample of supervised school 

aged participants. However, this data is not permanently lost; by gathering further data 

that is more complete it may be possible to retain these items and participants in future 

analyses. In fact, data collection of school aged participants is ongoing, and reanalysis of 

data is planned. Additionally, time limits and item sets can be more targeted towards 

samples in future research now that there is a better understanding of the item 

psychometrics from the ITOS and ICS. Having participants complete certain items that 

possess more missing data may improve the influx-outflux analyses and improve the 

Random Forest prediction of missing data. 

When setting out for this research, there was a desire to make use of 

multidimensional IRT. As a contemporary statistical methodology that allows the 

implementation of hierarchical or bifactor models in an IRT framework, this would be 

particularly useful for items developed from a CHC perspective (a hierarchical model of 

intelligence). Unfortunately, as the project progressed ethical considerations limited the 

collection of data from young people, and expected quantities of data collection in the 
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ICS based on the ITOS proved incorrect, likely due to a push in advertising for young 

adults to reduce the mean age of adults. This resulted in an inability to analyse a 

hierarchical model for the CHC-CAT using the four narrow abilities under investigation 

from both a CFA and multidimensional IRT perspective. While the attempts to build a g 

estimate in Chapter 6 demonstrated some viability of the CHC-CAT as a measure of 

general intellectual ability, further data collection is warranted to enable proper analysis 

and ultimately a method of scoring a g factor.  

DIF was flagged for a few items across the item sets within the ICS. Many of these 

were identified as being caused by small numbers of group membership. For example, 

in the Working Memory item set there were only nine non-Australian participants and 

only three of those nine obtained an incorrect answer. This is less of an issue for a test 

designed for use in Australia. Similar patterns of group membership were found for 

those that identified as non-binary gender or used a less common device when 

completing the test. The alternative possibility is that these differences are not due to 

sparse data, but due to true differences in probability based on group membership. In 

order to explore these findings, further data collection, particularly from diverse groups, 

will be required. 

The current thesis relied heavily on the Rasch (or 1PL) model. The benefits of this 

is that items analysed are easily comparable and the item parameters are easily 

interpretable (i.e. only need to understand difficulty parameter). Rasch literature tends 

to suggest that if there is misfit, then items and data should be altered and manipulated, 

which was the approach taken in this thesis. There are of course drawbacks to this, 

whereby there is a significant loss of data. 
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The Rasch model is a quite conservative model. If items and scales can 

demonstrate that they fit the Rasch model, then it is likely that the 2PL and 3PL will also 

demonstrate good fit. Attempts at using the 2PL and 3PL were not attempted in this 

thesis as comparisons of the effectiveness of different models was not the focus of the 

studies in this thesis. Instead, the focus was placed on the difficulty and targeting of 

items. It was desireable to have stability with a more conservative model for items that 

are designed for high stakes testing before implementing less conservative models. 

Once stability has been achieved a 2PL or 3PL model could be utilised to reduce testing 

time and increase accuracy of an implemented CAT. 

The IRT literature does explore the possibility of altering the chosen IRT model 

to see if perhaps another model fits. This is a particularly warranted consideration for 

the Visualisation subtest; having a dichotomous response option (i.e. ‘same’ or 

‘different’) means there is in fact a 50% chance of guessing correctly. It was this item set 

that demonstrated some problems with Rasch fit and it may be that the 3PL model, 

which includes a guessing parameter, may have provided better fit to the data. This can 

be explored in a study that compares the fit of models using the same sets of items. 

Positively, if there was a call for changes to the models used for different item sets, this 

could easily be implemented by the software utilised in the current thesis; both mIRT in 

R and the Concerto Platform allow for different IRT models in each item set utilised. 

7.6 Future Directions 

There are some practical considerations for clinicans based on the outcomes of 

these studies. While the measure requires further research, if practitioners wanted to 

use the scales in its current form, the focus should be placed on those scales that 

demonstrated more robust statistics (i.e. Lexical Knowledge and Induction). It would be 
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anticipated that at this stage, clinicians would require the support of either IT 

professionals in order to implement the CAT platforms, or the support of academic staff. 

Group testing is strongly recommended over individual testing, and only with the goal 

for screening or confirming concerns. The strength of CATs are that apriori information 

could be implemented; given that the CAT simulations discovered significant reductions 

in time administration, it would be anticipated that even further reductions in time could 

be achieved by teachers apriori estimating students ability as below average, average or 

above average. 

There are several directions for future research using the CHC-CAT specifically. 

Currently, further data collection is ongoing with a focus on the retained items from the 

ICS to address the multidimensionality concern. Secondly, further standardisation of the 

Lexical Knowledge items could be achieved by slowly integrating items that have been 

funded and designed in a consistent manner rather than relying on open source and 

‘Creative Commons’ licensed images. Thirdly, there is room for further item 

development to ensure the wide range of latent traits in each narrow ability is being 

measured; as demonstrated by the iterative improvements in psychometrics between 

the ITOS and ICS, a robust measurement of wide difficulty ranges with high reliability 

appears achievable with sufficient funding and research. Fourthly, there are 

opportunities for implementation of subtests that measure other important cognitive 

abilities; this may be other narrow abilities so the test can purport to measure broad 

abilities, or it may be a focus on completely new abilities such as Learning Efficiency (Gl), 

Processing Speed (Gs), Retrieval Fluency (Gr), or Auditory Processing (Ga). Fifth, CFA and 

IRT fit may be improved in future studies by stratifying the samples by age into groups 

based on clear developmental trends; this may account for inherent variability in how 
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cognitive abilities develop as well as potential generational differences in lexical 

knowledge. Finally, there is opportunity to implement mixed IRT models into the CHC-

CAT so that the IRT model used is most appropriate for the CHC ability being measured. 

This can enhance the reliability and precision of the tool. Ultimately, these future 

research opportunities may result in a more robust CHC-CAT that could be classified as 

comprehensive in its measurement, and with such improvements in reliability and 

validity may demonstrate the appropriate psychometrics suitable for high stakes testing. 

More broadly, research into CATs as tools to measure cognitive ability is limited 

and thus there are varied opportunities for future research. Unfortunately, due to the 

use of basals and ceilings in contemporary test tools, it is difficult (but not impossible) 

to simulate CATs using data from these mainstream assessment batteries. As IRT is 

relatively robust to missing data, depending on the nature of the data retrieved it may 

be possible to further analyse these tests from an IRT perspective and implement the 

parameters in a CAT format. Although possible, it seems more likely that progress in CAT 

research will be via the development of new tools, rather than manipulation of existing 

tools. 

There are also opportunities to further explore the impact of a variety of CAT 

characteristics on cognitive ability CATs; different stop rules, item selection methods or 

theta estimation techniques may enhance measurement of cognitive ability. 

Importantly, given some of the previously discussed concerns surrounding CATs 

(Newton, 2019) there are avenues for research in Australia surrounding the attitudes of 

psychologists and teachers toward CATs, how to best inform educational jurisdictions 

about the strengths and weaknesses of CATs and how to best implement them within 

school systems in appropriate circumstances. Ultimately, CATs that measure cognitive 
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ability have a significant way to go in Australia before we can expect widespread 

implementation of technology into cognitive ability measurement; further research can 

aim to address this lack of innovation. 

7.7 Conclusions 

While significant advancements have been made in intelligence theory and 

statistical theory over the last 100 years, we are still conducting cognitive ability tests in 

much the same way. This has been characterised by some as a stagnation in the testing 

industry. Technology has impacted nearly all aspects of psychological practice and 

research, yet in Australia the use of technology in cognitive ability testing has largely 

been a translation of paper-based tests to iPads administered in the same linear fashion 

as previously designed. This thesis has explored the applicability of CATs to measure 

cognitive ability from the perspective of CHC theory. The project set out to measure 

multiple unidimensional narrow cognitive abilities using a combination of theory and 

technology that is rarely implemented in practice, and when done so is usually 

proprietary in nature. The studies in this thesis are transparent in design and align well 

with principles of Open Science, ensuring opportunities for other researchers to 

replicate this research or build upon it to develop practical tools. Ultimately this PhD 

thesis demonstrates the viability of CATs in the measurement of cognitive abilities. 

Outcomes of the studies in this thesis were positive. Iterative development and 

implementation of items showed improved psychometrics and with further funding and 

research it will be possible to develop a robust test of cognitive abilities that is 

automated and adaptive. The CHC-CAT can be effectively used as a group based adaptive 

screening tool that measures four unidimensional constructs of Lexical Knowledge, 

Induction, Visualisation and Working Memory. The subtests demonstrated weak to 
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moderate correlations with similar tests within the WISC-V, and a derived g factor 

demonstrated moderate correlation with the WISC-V Full Scale IQ, suggesting that the 

increase in cognitive complexity of items did not compromise the validity of items. 

Accepting lower levels of reliability for group-based testing or research purposes can 

effectively halve the number of items administered on average, and results in a potential 

average administration time of 18 minutes, less than half of the time needed to 

administer the comparable subtests within the WISC. Although there are many contexts 

that could benefit from a cognitive ability CAT, given that no such cognitive ability tool 

appears to exist for schools to screen their students, this is believed to be an ideal 

environment for implementation due to the ability to classify between those students 

with cognitive deficits and those with average abilities. The advantages of theoretically 

driven, precise and efficient measurement ultimately outweigh the sometimes-complex 

nature of CATs.  

The purpose of this thesis was to stimulate research on CATs that measure 

cognitive abilities. It has been demonstrated that even with a novel set of items, a 

psychometrically defensible CAT can be implemented in the measurement of CHC 

abilities. We are now one step closer to a practical solution to such a domain, rather 

than the focus on theoretical and methodological foundations that previous literature 

has taken. There are many avenues for further development and research from the 

findings in these studies. This thesis identified and contributes to gaps in the literature 

on CATs in relation to measurement of cognitive ability in a novel way. It provides a 

platform for future, rigorous and diverse studies. The CHC-CAT in this research, or 

likeminded tests, have the potential to revolutionise the measurement of cognitive 

ability in our society. 
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Appendices 

Appendix A Lexical Knowledge ITOS CFA Parameters and Mokken Analysis  

 55 Items 53 Items 51 Items 6 items 

Item B Stan. B B Stan. B LH AISP B Stan. B LH AISP B Stan. B LH AISP 

1 0.014 0.048 - - - - - - - - - - - - 
2 0.016*** 0.125 0.016*** 0.125 .214 0 - - - - - - - - 
3 0.011* 0.065 - - - - - - - - - - - - 
4 0.032*** 0.258 0.032*** 0.258 .439 1 0.032*** 0.258 0.442 1 - - - - 
5 0.035*** 0.267 0.035*** 0.267 .425 1 0.035*** 0.266 0.431 1 - - - - 
6 0.040*** 0.283 0.040*** 0.283 .433 1 0.040*** 0.283 0.438 1 - - - - 
7 0.052*** 0.356 0.052*** 0.356 .520 1 0.052*** 0.356 0.527 1 - - - - 
8 0.058*** 0.420 0.058*** 0.420 .638 1 0.058*** 0.420 0.648 1 - - - - 
9 0.062*** 0.498 0.062*** 0.497 .817 1 0.062*** 0.498 0.832 1 - - - - 

10 0.071*** 0.525 0.071*** 0.525 .801 1 0.071*** 0.525 0.814 1 - - - - 
11 0.085*** 0.515 0.085*** 0.515 .672 1 0.085*** 0.515 0.678 1 - - - - 
12 0.100*** 0.572 0.100*** 0.572 .702 1 0.100*** 0.572 0.709 1 - - - - 
13 0.110*** 0.595 0.110*** 0.595 .695 1 0.110*** 0.596 0.701 1 - - - - 
14 0.120*** 0.649 0.120*** 0.649 .755 1 0.120*** 0.649 0.760 1 - - - - 
15 0.131*** 0.668 0.131*** 0.668 .732 1 0.131*** 0.668 0.739 1 - - - - 
16 0.131*** 0.600 0.131*** 0.600 .625 1 0.131*** 0.600 0.628 1 - - - - 
17 0.135*** 0.677 0.135*** 0.677 .722 1 0.136*** 0.678 0.728 1 - - - - 
18 0.140*** 0.700 0.140*** 0.700 .746 1 0.140*** 0.700 0.749 1 - - - - 
19 0.156*** 0.755 0.156*** 0.755 .780 1 0.156*** 0.756 0.785 1 - - - - 
20 0.168*** 0.823 0.168*** 0.823 .849 1 0.168*** 0.823 0.854 1 - - - - 
21 0.174*** 0.792 0.174*** 0.792 .779 1 0.174*** 0.792 0.783 1 - - - - 
22 0.184*** 0.821 0.184*** 0.821 .792 1 0.184*** 0.821 0.797 1 - - - - 
23 0.200*** 0.786 0.200*** 0.786 .720 1 0.200*** 0.786 0.724 1 - - - - 
24 0.204*** 0.864 0.204*** 0.864 .809 1 0.204*** 0.864 0.811 1 - - - - 
25 0.207*** 0.875 0.207*** 0.875 .818 1 0.207*** 0.875 0.821 1 - - - - 
26 0.210*** 0.888 0.210*** 0.888 .831 1 0.210*** 0.888 0.834 1 - - - - 
27 0.215*** 0.876 0.215*** 0.876 .808 1 0.215*** 0.877 0.811 1 - - - - 
28 0.219*** 0.899 0.219*** 0.899 .833 1 0.219*** 0.899 0.835 1 - - - - 
29 0.221*** 0.859 0.221*** 0.859 .783 1 0.221*** 0.859 0.787 1 - - - - 
30 0.227*** 0.928 0.227*** 0.928 .863 1 0.227*** 0.928 0.866 1 - - - - 
31 0.223*** 0.733 0.223*** 0.733 .693 1 0.223*** 0.733 0.697 1 - - - - 
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 55 Items 53 Items 51 Items 6 items 

Item B Stan. B B Stan. B LH AISP B Stan. B LH AISP B Stan. B LH AISP 

32 0.233*** 0.891 0.233*** 0.891 .820 1 0.233*** 0.891 0.825 1 - - - - 
33 0.236*** 0.854 0.236*** 0.854 .790 1 0.236*** 0.854 0.794 1 - - - - 
34 0.212*** 0.530 0.212*** 0.530 .612 1 0.211*** 0.530 0.621 1 - - - - 
35 0.240*** 0.858 0.240*** 0.858 .797 1 0.240*** 0.858 0.800 1 - - - - 
36 0.242*** 0.897 0.242*** 0.897 .832 1 0.242*** 0.896 0.835 1 - - - - 
37 0.242*** 0.912 0.242*** 0.912 .847 1 0.242*** 0.912 0.849 1 - - - - 
38 0.242*** 0.820 0.242*** 0.821 .776 1 0.242*** 0.820 0.780 1 - - - - 
39 0.221*** 0.568 0.221*** 0.568 .664 1 0.221*** 0.567 0.667 1 0.254*** 0.652 0.520 1 
40 0.242*** 0.836 0.242*** 0.836 .787 1 0.242*** 0.836 0.791 1 - - - - 
41 0.241*** 0.808 0.241*** 0.808 .771 1 0.241*** 0.808 0.776 1 - - - - 
42 0.205*** 0.479 0.205*** 0.479 .594 1 0.205*** 0.479 0.612 1 - - - - 
43 0.245*** 0.894 0.245*** 0.894 .840 1 0.245*** 0.894 0.841 1 - - - - 
44 0.242*** 0.780 0.242*** 0.780 .755 1 0.242*** 0.780 0.758 1 - - - - 
45 0.241*** 0.782 0.241*** 0.783 .765 1 0.241*** 0.782 0.766 1 - - - - 
46 0.178*** 0.374 0.178*** 0.374 .606 1 0.178*** 0.373 0.625 1 0.233*** 0.488 0.491 1 
47 0.245*** 0.870 0.245*** 0.870 .823 1 0.245*** 0.870 0.825 1 - - - - 
48 0.240*** 0.767 0.240*** 0.767 .756 1 0.240*** 0.767 0.760 1 0.232*** 0.739 0.711 1 
49 0.130*** 0.261 0.130*** 0.261 .626 1 0.129*** 0.260 0.645 1 0.186*** 0.373 0.525 1 
50 0.219*** 0.548 0.219*** 0.548 .668 1 0.219*** 0.546 0.666 1 0.283*** 0.708 0.548 1 
51 0.041*** 0.112 0.041*** 0.112 .374 1 0.041*** 0.112 0.410 1 - - - - 
52 0.161*** 0.325 0.161*** 0.325 .642 0 -  - - - - - - 
53 0.235*** 0.669 0.235*** 0.669 .731 1 0.235*** 0.669 0.731 1 - - - - 
54 0.046*** 0.122 0.046*** 0.122 .507 1 0.045*** 0.121 0.504 1 - - - - 
55 0.222*** 0.558 0.222*** 0.558 .671 1 0.221*** 0.557 0.675 1 0.274*** 0.689 0.525 1 

Note. *p < 0.05; **p < 0.01; ***p < 0.001, LH = Loevinger’s H, AISP = Automatic Item Selection Procedure, Stan. B = Standarized Beta 
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Appendix B Lexical Knowledge ITOS Rasch Item Fit Statistics 

 51 items 6 items 

Item SX-2 RMSEA p SX-2 RMSEA p 

4 52.242 0.077 0.000 - - - 
5 56.012 0.075 0.000 - - - 
6 68.429 0.084 0.000 - - - 
7 49.366 0.069 0.000 - - - 
8 27.510 0.048 0.001 - - - 
9 15.225 0.033 0.033 - - - 

10 21.433 0.039 0.006 - - - 
11 35.521 0.045 0.000 - - - 
12 30.019 0.040 0.002 - - - 
13 36.478 0.044 0.000 - - - 
14 32.387 0.040 0.001 - - - 
15 34.127 0.041 0.001 - - - 
16 61.422 0.056 0.000 - - - 
17 33.838 0.041 0.001 - - - 
18 33.588 0.041 0.001 - - - 
19 32.996 0.035 0.003 - - - 
20 31.727 0.037 0.003 - - - 
21 27.139 0.030 0.018 - - - 
22 32.904 0.038 0.002 - - - 
23 42.758 0.038 0.001 - - - 
24 26.616 0.025 0.046 - - - 
25 29.137 0.028 0.023 - - - 
26 25.521 0.024 0.061 - - - 
27 27.359 0.026 0.038 - - - 
28 28.598 0.027 0.027 - - - 
29 27.807 0.024 0.047 - - - 
30 33.290 0.032 0.007 - - - 
31 32.147 0.031 0.010 - - - 
32 27.528 0.026 0.036 - - - 
33 26.090 0.024 0.053 - - - 
34 28.774 0.039 0.002 - - - 
35 32.772 0.031 0.008 - - - 
36 35.751 0.034 0.003 - - - 
37 41.255 0.038 0.001 - - - 
38 27.837 0.023 0.065 - - - 
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 51 items 6 items 

Item SX-2 RMSEA p SX-2 RMSEA p 

39 18.900 0.023 0.091 5.284 0.027 0.152 
40 27.124 0.025 0.040 - - - 
41 29.672 0.026 0.029 - - - 
42 58.178 0.063 0.000 - - - 
43 38.402 0.036 0.001 - - - 
44 27.558 0.026 0.036 - - - 
45 28.512 0.027 0.027 - - - 
46 21.814 0.033 0.016 6.016 0.043 0.049 
47 39.735 0.037 0.001 - - - 
48 19.764 0.015 0.231 11.766 0.052 0.008 
49 11.923 0.021 0.155 4.675 0.035 0.097 
50 15.752 0.020 0.151 8.699 0.042 0.034 
51 97.703 0.131 0.000 - - - 
53 30.994 0.036 0.003 - - - 
54 37.165 0.077 0.000 - - - 
55 17.021 0.023 0.107 4.068 0.018 0.254 
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Appendix C Induction ITOS CFA Parameters and Mokken Analysis  

 33 Items 31 Items 9 items 8 items 

Item B Stan. B B Stan. B LH AISP B Stan. B LH AISP B Stan. B LH AISP 

1 0.028*** 0.169 0.027*** 0.163 0.211 0 - - - - - - - - 
2 0.015 0.082 - - - - - - - - - - - - 
3 0.024*** 0.124 0.020* 0.106 0.123 0 - - - - - - - - 
4 0.052*** 0.194 0.050*** 0.188 0.157 0 - - - - - - - - 
5 0.028*** 0.199 0.027*** 0.192 0.283 1 0.022*** 0.155 0.320 1 0.02** 0.143 .327 1 
6 0.034*** 0.157 0.033*** 0.155 0.168 0 - - - - - - - - 
7 0.020*** 0.180 0.018*** 0.167 0.299 1 0.012* 0.111 0.312 1 - - - - 
8 0.027*** 0.191 0.026*** 0.186 0.283 3 - - - - - - - - 
9 0.018*** 0.088 - - - - - - - - - - - - 

10 0.026 0.213 0.025*** 0.205 0.332 1 0.19*** 0.156 0.352 1 0.02** 0.135 .339 1 
11 0.048*** 0.196 0.046*** 0.189 0.171 0 - - - - - - - - 
12 0.095*** 0.197 0.099*** 0.204 0.087 0 - - - - - - - - 
13 0.116*** 0.233 0.119*** 0.237 0.107 0 - - - - - - - - 
14 0.134*** 0.297 0.136*** 0.300 0.146 3 - - - - - - - - 
15 0.97*** 0.209 0.103*** 0.220 0.094 0 - - - - - - - - 
16 0.109*** 0.255 0.109*** 0.254 0.144 3 - - - - - - - - 
17 0.060** 0.120 0.053* 0.106 0.062 0 - - - - - - - - 
18 0.109*** 0.221 0.110*** 0.223 0.111 0 - - - - - - - - 
19 0.233*** 0.506 0.230*** 0.500 0.259 1 0.234*** 0.508 0.355 1 0.23*** 0.506 .355 1 
20 0.107*** 0.213 0.115*** 0.231 0.087 0 - - - - - - - - 
21 0.194*** 0.425 0.192*** 0.420 0.210 2 - - - - - - - - 
22 0.118*** 0.272 0.120*** 0.277 0.142 0 - - - - - - - - 
23 0.197*** 0.408 0.201*** 0.415 0.197 0 - - - - - - - - 
24 0.047* 0.105 0.048* 0.106 0.051 0 - - - - - - - - 
25 0.149*** 0.319 0.153*** 0.327 0.141 2 - - - - - - - - 
26 0.139*** 0.316 0.143*** 0.323 0.160 1 0.145*** 0.330 0.338 1 0.15*** 0.329 .337 1 
27 0.280*** 0.605 0.281*** 0.608 0.306 1 0.282*** 0.609 0.385 1 0.28*** 0.613 .388 1 
28 0.223*** 0.524 0.226*** 0.532 0.287 1 0.236*** 0.553 0.417 1 0.24*** 0.559 .423 1 
29 0.118*** 0.250 0.117*** 0.248 0.106 0 - - - - - - - - 
30 0.180*** 0.360 0.184*** 0.369 0.149 0 - - - - - - - - 
31 0.138*** 0.308 0.143*** 0.319 0.140 1 0.143*** 0.320 0.321 1 0.14*** 0.318 .317 1 
32 0.247*** 0.496 0.247*** 0.497 0.224 1 0.256*** 0.513 0.384 1 0.26*** 0.516 .385 1 
33 0.043* 0.108 0.043* 0.108 0.055 0 - - - - - - - - 

Note. *p < 0.05; **p < 0.01; ***p < 0.001, LH = Loevinger’s H, AISP = Automatic Item Selection Procedure, Stan. B = Standarized Beta  
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Appendix D Induction ITOS Rasch Item Fit Statistics 

 9-items 8-items 

Item SX-2 RMSEA p P SX-2 RMSEA p 

5 4.80 0.03 0.19 6.12 0.04 0.11 
7 - - - - - - 

10 1.13 0.01 0.29 2.00 0.04 0.16 
19 5.91 0.03 0.21 5.03 0.02 0.28 
26 8.11 0.05 0.04 8.35 0.06 0.04 
27 9.355 0.05 0.05 10.80 0.05 0.03 
28 1.64 0.00 0.80 1.38 0.00 0.85 
31 5.28 0.04 0.15 5.21 0.03 0.16 
32 1.48 0.00 0.83 0.69 0.00 0.88 
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Appendix E  Visualisation ITOS CFA Paramters and Mokken Analysis 

 52 items 37 items 17 items 14 items 

Item B Stan. B LH AISP B Stan. B LH AISP B Stan. B LH AISP B Stan. B LH AISP 

1 0.009 0.068 0.193 3 - - - - - - - - - - - - 
2 0.047*** 0.193 0.241 2 - - - - - - - - - - - - 
3 0.018*** 0.175 0.537 1 0.016*** 0.164 0.561 1 - - - - - - - - 
4 0.074*** 0.190 0.161 2 - - - - - - - - - - - - 
5 0.026*** 0.125 0.182 0 - - - - - - - - - - - - 
6 0.058*** 0.231 0.285 2 - - - - - - - - - - - - 
7 0.039*** 0.127 0.129 0 - - - - - - - - - - - - 
8 0.088*** 0.264 0.237 2 - - - - - - - - - - - - 
9 0.066*** 0.197 0.176 4 - - - - - - - - - - - - 

10 0.093*** 0.295 0.269 0 - - - - - - - - - - - - 
11 0.117*** 0.395 0.374 1 0.112*** 0.379 0.404 1 - - - - - - - - 
12 0.121*** 0.360 0.323 1 0.116*** 0.346 0.346 1 - - - - - - - - 
13 0.133*** 0.384 0.305 1 0.130*** 0.375 0.335 1 - - - - - - - - 
14 0.149*** 0.367 0.28 3 - - - - - - - - - - - - 
15 0.125*** 0.251 0.206 3 - - - - - - - - - - - - 
16 0.177*** 0.437 0.303 1 0.176*** 0.434 0.338 1 - - - - - - - - 
17 0.118*** 0.236 0.193 4 - - - - - - - - - - - - 
18 0.225*** 0.531 0.377 1 0.222*** 0.524 0.409 1 - - - - - - - - 
19 0.219*** 0.686 0.581 1 0.216*** 0.679 0.675 1 0.209*** 0.656 0.707 1 - - - - 
20 0.233*** 0.613 0.442 1 0.231*** 0.608 0.494 1 - - - - - - - - 
21 0.221*** 0.481 0.34 1 0.219*** 0.477 0.373 1 - - - - - - - - 
22 0.265*** 0.710 0.502 1 0.263*** 0.707 0.564 1 0.267*** 0.718 0.615 1 - - - - 
23 0.172*** 0.344 0.235 0 - - - - - - - - - - - - 
24 0.201*** 0.401 0.3 1 0.199*** 0.399 0.336 1 - - - - - - - - 
25 0.124*** 0.258 0.224 0 - - - - - - - - - - - - 
26 0.272*** 0.685 0.464 1 0.271*** 0.683 0.517 1 0.278*** 0.700 0.558 1 0.271*** 0.683 0.547 1 
27 0.222*** 0.444 0.339 1 0.220*** 0.440 0.383 1 - - - - - - - - 
28 0.281*** 0.731 0.51 1 0.281*** 0.731 0.577 1 0.282*** 0.732 0.618 1 0.279*** 0.726 0.623 1 
29 0.264*** 0.583 0.375 1 0.264*** 0.582 0.411 1 - - - - - - - - 
30 0.283*** 0.695 0.457 1 0.283*** 0.696 0.514 1 0.287*** 0.704 0.556 1 0.282*** 0.693 0.544 1 
31 0.187*** 0.380 0.338 1 0.186*** 0.378 0.394 1 0.180*** 0.366 0.377 1 0.184*** 0.375 0.387 1 
32 0.302*** 0.818 0.571 1 0.303*** 0.821 0.652 1 - - - - - - - - 
33 0.299*** 0.728 0.482 1 0.300*** 0.731 0.543 1 0.303*** 0.738 0.588 1 0.296*** 0.721 0.567 1 
34 0.308*** 0.834 0.583 1 0.310*** 0.841 0.676 1 - - - - - - - - 
35 0.219*** 0.438 0.314 1 0.218*** 0.437 0.351 1 0.215*** 0.431 0.354 1 0.221*** 0.443 0.352 1 
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 52 items 37 items 17 items 14 items 

Item B Stan. B LH AISP B Stan. B LH AISP B Stan. B LH AISP B Stan. B LH AISP 

36 0.261*** 0.526 0.376 1 0.262*** 0.528 0.430 1 0.252*** 0.509 0.423 1 0.263*** 0.530 0.422 1 
37 0.285*** 0.643 0.414 1 0.288*** 0.648 0.464 1 0.289*** 0.651 0.509 1 0.292*** 0.659 0.494 1 
38 0.237*** 0.480 0.328 1 0.240*** 0.487 0.380 1 0.234*** 0.474 0.382 1 0.238*** 0.482 0.376 1 
39 0.302*** 0.713 0.473 1 0.306*** 0.720 0.540 1 - - - - - - - - 
40 0.231*** 0.463 0.327 1 0.231*** 0.463 0.367 1 0.237*** 0.475 0.39 1 0.241*** 0.483 0.376 1 
41 0.250*** 0.501 0.355 1 0.251*** 0.503 0.405 1 0.253*** 0.509 0.42 1 0.262*** 0.527 0.409 1 
42 0.211*** 0.425 0.287 1 0.213*** 0.428 0.326 1 - - - - - - - - 
43 0.120*** 0.262 0.261 1 0.122*** 0.266 0.314 1 - - - - - - - - 
44 0.097*** 0.216 0.197 1 0.099*** 0.220 0.237 1 - - - - - - - - 
45 0.282*** 0.607 0.407 1 0.283*** 0.610 0.455 1 0.281*** 0.606 0.486 1 0.288*** 0.620 0.476 1 
46 0.298*** 0.669 0.45 1 0.300*** 0.672 0.503 1 0.288*** 0.646 0.516 1 0.291*** 0.653 0.511 1 
47 0.295*** 0.614 0.431 1 0.295*** 0.615 0.480 1 - - - - - - - - 
48 0.173*** 0.353 0.302 1 0.173*** 0.352 0.345 1 0.180*** 0.366 0.362 1 - - - - 
49 0.252*** 0.507 0.354 1 0.253*** 0.509 0.402 1 0.249*** 0.501 0.402 1 0.252*** 0.508 0.384 1 
50 0.302*** 0.642 0.446 1 0.303*** 0.645 0.500 1 - - - - - - - - 
51 0.289*** 0.610 0.425 1 0.290*** 0.613 0.477 1 - - - - - - - - 
52 0.135*** 0.282 0.232 2 - - - - - - - - - - - - 

Note. *p < 0.05; **p < 0.01; ***p < 0.001, LH = Loevinger’s H, AISP = Automatic Item Selection Procedure, Stan. B = Standarized Beta 
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Appendix F  Visualisation ITOS Rasch Item Fit Statistics 

 37 items 17 items 14 items 

Item SX-2 RMSEA p SX-2 RMSEA p SX-2 RMSEA p 

3 10.867 0.112 0.001 - - - - - - 
11 95.445 0.065 0.000 - - - - - - 
12 155.772 0.082 0.000 - - - - - - 
13 133.000 0.074 0.000 - - - - - - 
16 118.387 0.064 0.000 - - - - - - 
18 99.160 0.063 0.000 - - - - - - 
19 42.574 0.030 0.016 66.419 0.080 0.000 - - - 
20 52.449 0.035 0.002 - - - - - - 
21 90.141 0.061 0.000 - - - - - - 
22 33.068 0.019 0.160 28.669 0.042 0.004 - - - 
24 39.740 0.035 0.005 - - - - - - 
26 29.384 0.008 0.393 24.397 0.036 0.018 26.680 0.050 0.002 
27 43.511 0.039 0.002 - - - - - - 
28 28.030 0.007 0.409 19.376 0.028 0.080 21.955 0.043 0.009 
29 53.124 0.039 0.001 - - - - - - 
30 31.668 0.015 0.245 18.326 0.026 0.106 12.138 0.021 0.206 
31 31.516 0.031 0.025 11.336 0.018 0.253 13.392 0.034 0.063 
32 53.376 0.037 0.001 - - - - - - 
33 38.565 0.026 0.041 25.197 0.037 0.014 12.979 0.024 0.164 
34 63.757 0.043 0.000 - - - - - - 
35 31.951 0.028 0.044 15.470 0.026 0.116 12.107 0.026 0.147 
36 34.115 0.030 0.025 12.191 0.017 0.272 14.405 0.032 0.072 
37 30.616 0.019 0.165 11.360 0.006 0.414 11.639 0.019 0.234 
38 18.574 0.000 0.612 16.094 0.028 0.097 12.595 0.027 0.127 
39 45.079 0.033 0.006 - - - - - - 
40 24.524 0.017 0.220 11.031 0.011 0.355 11.490 0.024 0.175 
41 24.540 0.017 0.220 21.853 0.039 0.016 12.420 0.027 0.133 
42 54.779 0.047 0.000 - - - - - - 
43 47.108 0.047 0.000 - - - - - - 
44 138.189 0.095 0.000 - - - - - - 
45 30.264 0.020 0.142 15.878 0.024 0.146 8.203 0.000 0.514 
46 35.985 0.025 0.055 15.437 0.023 0.163 11.924 0.020 0.218 
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47 42.462 0.036 0.004 - - - - - - 
48 31.183 0.031 0.027 24.202 0.046 0.004 - - - 
49 25.418 0.019 0.186 10.854 0.010 0.369 7.962 0.000 0.437 
50 54.717 0.044 0.000 - - - - - - 
51 42.529 0.036 0.004 - - - - - - 
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Appendix G Working Memory ITOS CFA Parameters and Mokken Analysis  

 38 Items 37 items 23 items 19 items 

Item B Stan. B B Stan. B LH AISP B Stan. B LH AISP B Stan. B LH AISP 

1 0.047*** 0.218 0.047*** 0.218 0.195 0 - - - - - - - - 
2 0.052*** 0.354 0.051*** 0.353 0.380 1 0.044*** 0.299 0.350 1 0.031*** 0.211 0.333 1 
3 0.046*** 0.224 0.046*** 0.223 0.166 0 - - - - - - - - 
4 0.043*** 0.313 0.043*** 0.312 0.321 0 - - - - - - - - 
5 0.044*** 0.355 0.043*** 0.355 0.356 2 - - - - - - - - 
6 0.047*** 0.247 0.046*** 0.246 0.175 2 - - - - - - - - 
7 0.039*** 0.318 0.039*** 0.317 0.302 1 0.035*** 0.286 .307 1 - - - - 
8 0.050* 0.107 - - - - - - - - - - - - 
9 0.112*** 0.374 0.112*** 0.375 0.240 2 - - - - - - - - 

10 0.075*** 0.572 0.075*** 0.573 0.615 1 0.072*** 0.551 0.670 1 - - - - 
11 0.111*** 0.605 0.111*** 0.607 0.512 1 0.116*** 0.631 0.598 1 0.094*** 0.513 0.609 1 
12 0.145*** 0.728 0.145*** 0.730 0.559 1 0.148*** 0.745 0.648 1 - - - - 
13 0.151*** 0.723 0.151*** 0.723 0.551 1 0.156*** 0.748 0.645 1 - - - - 
14 0.147*** 0.638 0.148*** 0.639 0.533 1 0.154*** 0.669 0.624 1 0.148*** 0.642 0.644 1 
15 0.160*** 0.751 0.160*** 0.751 0.606 1 0.166*** 0.778 0.702 1 0.146*** 0.686 0.721 1 
16 0.171*** 0.570 0.171*** 0.570 0.451 1 0.174*** 0.580 0.518 1 0.175*** 0.584 0.507 1 
17 0.177*** 0.464 0.177*** 0.464 0.362 1 0.177*** 0.465 0.382 1 0.196*** 0.513 0.369 1 
18 0.204*** 0.479 0.204*** 0.478 0.342 1 0.202*** 0.475 0.367 1 0.221*** 0.517 0.346 1 
19 0.176*** 0.398 0.176*** 0.397 0.314 1 0.173*** 0.391 0.337 1 0.209*** 0.472 0.327 1 
20 0.166*** 0.388 0.166*** 0.388 0.297 1 0.164*** 0.384 0.318 1 0.188*** 0.438 0.304 1 
21 0.183*** 0.395 0.182*** 0.393 0.308 1 0.178*** 0.383 0.343 1 0.207*** 0.447 0.328 1 
22 0.167*** 0.354 0.167*** 0.353 0.293 1 0.159*** 0.337 0.304 1 0.192*** 0.407 0.293 0 
23 0.176*** 0.358 0.175*** 0.357 0.311 1 0.163*** 0.333 0.347 1 0.208*** 0.423 0.337 1 
24 0.182*** 0.431 0.182*** 0.430 0.410 1 0.176*** 0.417 0.425 1 0.224*** 0.531 0.421 1 
25 0.145*** 0.292 0.145*** 0.291 0.282 1 0.134*** 0.268 0.359 1 0.181*** 0.362 0.352 1 
26 0.138*** 0.275 0.137*** 0.274 0.290 3 - - - - - - - - 
27 0.128*** 0.260 0.127*** 0.259 0.262 0 - - - - - - - - 
28 0.113*** 0.237 0.113*** 0.236 0.253 0 - - - - - - - - 
29 0.139*** 0.287 0.138*** 0.286 0.307 1 0.122*** 0.252 0.357 1 0.170*** 0.351 0.350 1 
30 0.117*** 0.239 0.118*** 0.240 0.271 0 - - - - - - - - 
31 0.106*** 0.238 0.105*** 0.237 0.278 1 0.090*** 0.202 0.313 1 0.117*** 0.262 0.303 1 
32 0.054** 0.132 0.054*** 0.131 0.203 0 - - - - - - - - 
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33 0.124*** 0.256 0.123*** 0.256 0.288 3 - - - - - - - - 
34 0.125*** 0.251 0.125*** 0.251 0.272 0 - - - - - - - - 
35 0.133*** 0.273 0.132*** 0.271 0.284 1 0.116*** 0.240 0.329 1 0.148*** 0.304 0.318 1 
36 0.060*** 0.172 0.060*** 0.171 0.345 1 0.047** 0.136 0.358 1 0.069*** 0.199 0.353 1 
37 0.078*** 0.195 0.078*** 0.195 0.279 1 0.068*** 0.169 0.324 1 0.088*** 0.219 0.313 1 
38 0.082*** 0.185 0.081*** 0.185 0.192 0 - - - - - - - - 

Note. *p < 0.05; **p < 0.01; ***p < 0.001, LH = Loevinger’s H, AISP = Automatic Item Selection Procedure, Stan. B = Standarized Beta 
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Appendix H Working Memory ITOS Rasch Item Fit Statistics 

 23 items 19 items 

Item SX-2 RMSEA p SX-2 RMSEA p 

2 9.554 0.055 0.049 9.360 0.068 0.025 
7 5.403 0.098 0.020 - - - 

10 9.269 0.089 0.010 - - - 
11 9.157 0.043 0.103 9.794 0.037 0.134 
12 6.525 0.000 0.480 - - - 
13 8.022 0.002 0.431 - - - 
14 10.990 0.015 0.358 9.003 0.001 0.437 
15 11.944 0.033 0.154 10.513 0.026 0.231 
16 9.906 0.000 0.449 16.481 0.038 0.087 
17 19.089 0.044 0.039 15.811 0.036 0.105 
18 10.954 0.014 0.361 10.975 0.022 0.277 
19 21.264 0.050 0.019 20.483 0.053 0.015 
20 17.110 0.039 0.072 17.288 0.045 0.044 
21 14.912 0.033 0.135 10.177 0.017 0.336 
22 14.381 0.036 0.109 13.611 0.033 0.137 
23 9.327 0.000 0.501 14.113 0.030 0.168 
24 17.412 0.040 0.066 14.460 0.036 0.107 
25 13.952 0.035 0.124 10.374 0.025 0.240 
29 12.212 0.034 0.142 13.034 0.037 0.111 
31 5.648 0.000 0.775 6.558 0.000 0.585 
35 9.008 0.017 0.342 7.484 0.000 0.485 
36 3.640 0.000 0.820 3.602 0.000 0.824 
37 4.763 0.000 0.783 6.088 0.000 0.637 
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Appendix I Lexical Knowledge ICS Rasch, CFA and Mokken Analysis 

 72 Item Rasch 66 Item Rasch 54 Item Rasch 54 Item Mokken 48 Item Mokken 47 Item CFA 47 Item Rasch 

Item SX-2 RMSEA SX-2 RMSEA SX-2 RMSEA LH LH Stan. B SX-2 RMSEA 

4 NA NA - - - - - - - - - 
5 NA NA - - - - - - - - - 
6 NA NA NA NA NA NA 0.514 0.546 0.700*** NA NA 
7 NA NA - - - - - - - - - 
8 NA NA - - - - - - - - - 
9 NA NA - - - - - - - - - 

11 NA NA - - - - - - - - - 
13 4.717 0.000 4.732 0.000 2.333 0.000 0.304 0.323 0.541*** 2.777 0.000 
14 4.190 0.011 4.206 0.012 13.032* 0.066 0.111 - - - - 
36 26.720 0.039 24.481 0.031 21.034 0.017 0.346 0.372 0.700*** 17.170 0.014 
37 36.623** 0.056 35.036** 0.053 21.850 0.028 0.407 0.427 - - - 
38 41.617** 0.044 41.408* 0.044 36.921* 0.040 0.441 0.459 0.871*** 26.042 0.029 
39 38.320 0.025 37.469 0.024 43.187* 0.036 0.298 0.307 0.604*** 35.041 0.031 
40 30.212* 0.049 31.579** 0.055 23.736* 0.047 0.411 0.436 0.767*** 27.944** 0.052 
41 13.435 0.000 16.360 0.000 19.847 0.011 0.343 0.360 0.713*** 17.740 0.011 
42 46.710* 0.041 45.920* 0.040 - - - - - - - 
43 13.680 0.019 14.139 0.022 7.143 0.000 0.350 0.364 0.673*** 8.691 0.000 
44 37.046 0.034 36.243 0.033 35.603 0.029 0.394 0.418 0.807*** 34.638 0.037 
45 9.883 0.000 7.869 0.000 10.035 0.000 0.257 0.271 0.534*** 16.950 0.019 
46 36.756 0.025 39.785 0.030 20.329 0.000 0.257 0.275 0.501*** 31.138 0.036 
48 24.853 0.035 23.535 0.036 20.302 0.027 0.145 - - - - 
49 28.270 0.015 29.633 0.019 38.395** 0.052 0.276 0.295 0.408*** 32.918 0.053 
50 42.731 0.030 37.134 0.025 35.274 0.029 0.360 0.383 0.729*** 27.493 0.016 
53 47.889* 0.038 48.021* 0.038 41.373 0.034 0.411 0.431 0.828*** 32.485 0.026 
54 143.419*** 0.122 139.166*** 0.120 - - - - - - - 
55 41.630 0.028 42.348 0.031 - - - - - - - 
56 64.118*** 0.052 66.531*** 0.054 63.430*** 0.058 0.246 0.263 0.539*** 73.523*** 0.075 
57 17.604* 0.057 17.023* 0.055 12.584 0.039 0.308 0.317 0.550*** 11.370 0.034 
58 NA NA NA NA NA NA 0.128 0.140 0.260*** NA NA 
59 28.737 0.000 29.481 0.000 26.574 0.013 0.330 0.352 0.677*** 31.425 0.031 
60 27.851 0.009 31.159 0.017 38.239 0.033 0.328 0.337 0.678*** 22.327 0.000 
62 42.528*** 0.064 44.360*** 0.063 29.562 0.039 0.442 0.464 0.845*** 24.789 0.038 
63 36.040 0.037 40.829* 0.043 35.775 0.036 0.205 - - - - 
64 30.911 0.033 30.943 0.031 25.729 0.018 0.447 0.469 0.852*** 29.525 0.036 
65 71.111*** 0.068 71.644*** 0.069 - - - - - - - 
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 72 Item Rasch 66 Item Rasch 54 Item Rasch 54 Item Mokken 48 Item Mokken 47 Item CFA 47 Item Rasch 

Item SX-2 RMSEA SX-2 RMSEA SX-2 RMSEA LH LH Stan. B SX-2 RMSEA 

66 37.689 0.035 37.465 0.034 27.878 0.033 0.368 0.394 0.579*** 32.627 0.047 
67 28.545 0.000 25.309 0.000 31.499 0.024 0.327 0.348 0.660*** 25.054 0.002 
69 59.566** 0.048 58.389** 0.047 50.103** 0.048 0.445 0.465 0.891*** 42.570** 0.044 
70 34.665 0.028 31.719 0.022 34.765 0.028 0.236 0.247 0.523*** 34.877 0.030 
71 40.700 0.027 44.125 0.032 58.419*** 0.054 0.179 - - - - 
72 30.047 0.000 28.587 0.000 42.302 0.043 0.246 0.265 0.512*** 26.967 0.022 
73 13.675 0.000 13.838 0.000 23.173 0.000 0.294 0.303 0.599*** 22.900 0.016 
74 23.876 0.000 22.660 0.000 27.419 0.006 0.265 0.277 0.582*** 29.302 0.022 
75 52.551** 0.045 54.605** 0.047 - - - - - - - 
76 53.273** 0.049 55.647*** 0.052 68.611*** 0.076 0.156 - - - - 
77 42.320** 0.048 41.309* 0.046 27.529 0.041 0.257 0.276 0.340*** 42.351*** 0.067 
78 43.232 0.031 42.353 0.030 33.916 0.026 0.362 0.377 0.758*** 24.113 0.000 
79 107.709*** 0.084 107.538*** 0.083 - - - - - - - 
80 45.577* 0.037 46.674* 0.039 64.721*** 0.070 0.183 - - - - 
81 37.626 0.022 37.095 0.021 32.000 0.020 0.355 0.375 0.723*** 26.025 0.011 
82 88.829*** 0.088 90.583*** 0.089 - - - - - - - 
83 100.963*** 0.084 102.833*** 0.083 - - - - - - - 
84 111.317*** 0.105 112.834*** 0.105 - - - - - - - 
85 48.854** 0.047 49.677** 0.046 40.182* 0.036 0.297 0.312 0.649*** 30.141 0.021 
86 27.572 0.029 26.501 0.023 25.546 0.021 0.396 0.415 0.769*** 23.208 0.021 
87 30.508 0.019 28.438 0.006 24.678 0.000 0.302 0.315 0.657*** 22.954 0.000 
88 52.895*** 0.079 54.275*** 0.080 - - - - - - - 
89 43.645 0.031 43.240 0.031 31.101 0.020 0.301 0.308 0.636*** 31.654 0.027 
90 101.022*** 0.088 99.333*** 0.087 - - - - - - - 
91 28.644 0.013 30.171 0.018 23.591 0.000 0.361 0.378 0.742*** 26.851 0.014 
92 45.659** 0.043 46.749** 0.042 29.705 0.016 0.363 0.382 0.756*** 29.416 0.019 
93 25.470 0.037 29.314** 0.044 30.051* 0.045 0.422 0.450 0.812*** 25.407** 0.043 
94 32.324 0.005 33.731 0.012 23.746 0.000 0.269 0.284 0.590*** 36.324 0.035 
95 41.914* 0.037 41.093 0.034 36.336 0.031 0.241 0.253 0.544*** 42.730 0.042 
96 100.165*** 0.088 101.090*** 0.088 128.808*** 0.121 0.056 0.056 0.086 156.833*** 0.144 
97 55.230** 0.044 56.383** 0.045 42.015 0.037 0.362 0.379 0.738*** 45.004** 0.046 
98 87.846*** 0.078 90.466*** 0.078 - - - - - - - 
99 57.402*** 0.055 57.993*** 0.054 37.032 0.032 0.451 0.465 0.889*** 45.635** 0.045 

100 68.640*** 0.057 66.777*** 0.056 72.227*** 0.065 0.141 0.146 0.312*** 86.906*** 0.079 
101 46.327** 0.038 45.326** 0.037 49.571*** 0.058 0.277 0.286 0.491*** 35.744* 0.044 
102 42.228 0.031 47.019* 0.039 49.274** 0.051 0.176 0.180 0.359*** 56.362*** 0.063 
103 42.700* 0.038 41.767* 0.036 39.882* 0.047 0.262 0.281 0.476*** 43.865** 0.054 

Note. Results retrieved from Imputation 1 analysis. See Github repository for full results. *p < 0.05; **p < 0.01; ***p < 0.001, LH = Loevinger’s H, Stan. B = Standarized Beta  
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Appendix J Lexical Knowledge Item Performance for Poor Fitting Items 

Item Score 6-17 18-29 30-39 40-49 50-59 60-69 70-79 80-90 

38 
0 39 0 0 1 0 1 1 1 
1 43 142 34 10 36 43 19 2 

40 
0 24 1 0 0 0 0 0 0 
1 58 141 34 11 36 44 20 3 

42 
0 54 49 14 4 21 21 11 3 
1 28 93 20 7 15 23 9 0 

56 
0 48 65 5 1 1 1 1 0 
1 34 77 29 10 35 43 19 3 

62 
0 29 2 0 0 0 1 1 0 
1 53 140 34 11 36 43 19 3 

65 
0 56 88 22 6 28 29 14 3 
1 26 54 12 5 8 15 6 0 

75 
0 47 61 15 4 13 17 7 1 
1 35 81 19 7 23 27 13 2 

79 
0 41 76 15 3 16 16 8 1 
1 41 66 19 8 20 28 12 2 

82 
0 57 110 19 8 25 38 16 2 
1 25 32 15 3 11 6 4 1 

83 
0 44 100 14 6 15 13 4 1 
1 38 42 20 5 21 31 16 2 

84 
0 62 121 28 9 31 38 11 1 
1 20 21 6 2 5 6 9 2 

88 
0 72 134 34 9 34 37 16 3 
1 10 8 0 2 2 7 4 0 

90 
0 53 92 20 6 19 28 10 2 
1 29 50 14 5 17 16 10 1 

96 
0 49 81 22 8 27 25 10 3 
1 33 61 12 3 9 19 10 0 

98 
0 45 68 20 7 23 25 13 2 
1 37 74 14 4 13 19 7 1 

99 
0 55 13 0 0 0 0 0 0 
1 27 129 34 11 36 44 20 3 

100 
0 41 39 6 1 7 12 6 1 
1 41 103 28 10 29 32 14 2 

102 
0 50 30 7 8 17 22 14 1 
1 32 112 27 3 19 22 6 2 
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Appendix K Lexical Knowledge Pooled Item Parameters 

Item a d g u 

6 1 5.615 0 1 
13 1 4.331 0 1 
36 1 2.951 0 1 
38 1 2.601 0 1 
39 1 1.161 0 1 
40 1 3.298 0 1 
41 1 2.913 0 1 
43 1 3.565 0 1 
44 1 2.253 0 1 
45 1 3.073 0 1 
46 1 0.314 0 1 
49 1 -0.828 0 1 
50 1 0.672 0 1 
53 1 1.214 0 1 
56 1 0.909 0 1 
57 1 4.058 0 1 
58 1 5.615 0 1 
59 1 0.520 0 1 
60 1 1.933 0 1 
62 1 2.951 0 1 
64 1 2.633 0 1 
66 1 -0.566 0 1 
67 1 0.639 0 1 
69 1 1.582 0 1 
70 1 2.061 0 1 
72 1 0.473 0 1 
73 1 2.455 0 1 
74 1 1.484 0 1 
77 1 -1.325 0 1 
78 1 1.523 0 1 
81 1 0.781 0 1 
85 1 1.980 0 1 
86 1 2.602 0 1 
87 1 1.933 0 1 
89 1 1.542 0 1 
91 1 2.037 0 1 



 

Appendices 368 

Item a d g u 

92 1 1.856 0 1 
93 1 3.073 0 1 
94 1 1.385 0 1 
95 1 1.874 0 1 
96 1 -0.638 0 1 
97 1 0.992 0 1 
99 1 1.915 0 1 

100 1 1.042 0 1 
101 1 0.245 0 1 
102 1 0.484 0 1 
103 1 -0.063 0 1 

Note. These parameters are generated by MIRT (i.e. are the equivalent slope-intercept translation of traditional/classical IRT parameters) 
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Appendix L Induction ICS IRT, CFA and Mokken Analysis 

 37 Item Rasch 34 Item Rasch 
34 Item 
Mokken 

23 Item 
Mokken 

23 Item CFA 23 Item Rasch 

Item SX-2 RMSEA p SX-2 RMSEA p LH LH Std. B p SX-2 RMSEA p 

11 19.472 0.053 0.148 15.356 0.036 0.286 0.323 0.349 0.696 NA 7.686 0.000 0.741 
12 16.128 0.008 0.444 14.277 0.012 0.429 0.154 0.176 0.472 0.000 17.315 0.064 0.099 
13 24.565 0.062 0.078 20.915 0.059 0.104 0.070 NA NA NA NA NA NA 
14 12.820 0.000 0.541 12.308 0.000 0.503 0.152 0.195 0.445 0.001 10.258 0.000 0.507 
15 11.055 0.000 0.524 9.829 0.000 0.708 0.103 NA NA NA NA NA NA 
16 14.511 0.000 0.561 23.638 0.070 0.051 0.103 0.125 0.293 0.008 27.769 0.097 0.006 
17 38.984 0.101 0.001 NA NA NA NA NA NA NA NA NA NA 
18 19.194 0.038 0.259 13.238 0.000 0.508 0.086 NA NA NA NA NA NA 
19 14.206 0.000 0.583 12.889 0.000 0.535 0.245 0.271 0.660 0.000 13.738 0.032 0.318 
20 30.857 0.081 0.014 30.618 0.086 0.010 0.034 0.061 0.160 0.177 38.605 0.125 0.000 
21 27.322 0.071 0.038 21.561 0.062 0.088 0.197 0.235 0.566 0.000 13.010 0.024 0.368 
23 21.461 0.055 0.123 13.897 0.000 0.457 0.139 0.149 0.361 0.006 20.056 0.076 0.045 
26 23.508 0.069 0.052 13.782 0.021 0.389 0.116 0.149 0.271 0.040 15.782 0.056 0.149 
27 17.058 0.022 0.382 14.703 0.000 0.473 0.177 0.231 0.559 0.000 10.953 0.000 0.447 
28 25.198 0.064 0.066 29.287 0.088 0.010 0.264 0.304 0.737 0.000 14.684 0.040 0.259 
29 30.001 0.084 0.012 15.279 0.025 0.359 0.086 NA NA NA NA NA NA 
32 12.620 0.000 0.632 15.017 0.023 0.377 0.182 0.223 0.571 0.000 12.386 0.030 0.335 
37 26.571 0.080 0.022 21.953 0.077 0.038 0.423 0.463 0.855 0.000 16.114 0.066 0.096 
40 10.439 0.000 0.577 14.019 0.035 0.300 0.089 NA NA NA NA NA NA 
41 17.321 0.033 0.300 15.715 0.029 0.331 0.088 NA NA NA NA NA NA 
42 13.197 0.000 0.587 16.422 0.026 0.355 0.109 NA NA NA NA NA NA 
45 21.951 0.051 0.145 14.442 0.015 0.417 0.215 0.245 0.568 0.000 5.213 0.000 0.950 
46 12.763 0.000 0.545 11.173 0.000 0.596 0.299 0.330 0.662 0.000 12.075 0.026 0.358 
47 7.194 0.100 0.066 4.720 0.036 0.317 0.482 0.473 0.656 0.000 3.516 0.000 0.475 
48 10.277 0.105 0.036 10.862 0.110 0.028 0.041 NA NA NA NA NA NA 
49 19.063 0.044 0.211 NA NA NA NA NA NA NA NA NA NA 
52 30.057 0.103 0.003 NA NA NA NA NA NA NA NA NA NA 
53 19.986 0.042 0.221 14.488 0.000 0.489 0.267 0.285 0.730 0.000 14.609 0.039 0.264 
54 8.713 0.000 0.727 12.850 0.022 0.380 0.081 NA NA NA NA NA NA 
57 21.199 0.060 0.097 14.222 0.026 0.358 0.104 0.129 0.289 0.026 15.539 0.054 0.159 
58 11.417 0.000 0.494 14.723 0.040 0.257 0.098 NA NA NA NA NA NA 
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 37 Item Rasch 34 Item Rasch 
34 Item 
Mokken 

23 Item 
Mokken 

23 Item CFA 23 Item Rasch 

Item SX-2 RMSEA p SX-2 RMSEA p LH LH Std. B p SX-2 RMSEA p 

59 14.858 0.021 0.388 13.251 0.012 0.429 0.099 0.118 0.272 0.018 13.316 0.039 0.273 
62 8.978 0.000 0.879 12.384 0.000 0.576 0.164 0.198 0.489 0.000 15.012 0.042 0.241 
63 13.570 0.000 0.558 17.036 0.039 0.254 0.060 NA NA NA NA NA NA 
64 15.743 0.000 0.471 18.459 0.040 0.239 0.200 0.234 0.604 0.000 16.049 0.049 0.189 
67 23.868 0.071 0.048 14.132 0.025 0.365 0.123 0.143 0.331 0.005 6.205 0.000 0.859 
68 16.535 0.015 0.416 19.127 0.051 0.160 0.153 0.175 0.428 0.000 15.480 0.045 0.216 

Note. Results retrieved from Imputation 1 analysis. See Github repository for full results. *p < 0.05; **p < 0.01; ***p < 0.001, LH = Loevinger’s H, Stan. B = Standarized Beta 
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Appendix M Induction Pooled Item Parameters 

Item a d g u 

11 1 0.992 0 1 
12 1 -0.587 0 1 
14 1 -1.415 0 1 
37 1 1.359 0 1 
45 1 0.152 0 1 
46 1 1.039 0 1 
47 1 3.052 0 1 
53 1 0.268 0 1 
57 1 -1.318 0 1 
59 1 -1.415 0 1 
62 1 -0.949 0 1 
64 1 -0.370 0 1 
67 1 -1.291 0 1 
68 1 -0.233 0 1 
32 1 -0.731 0 1 
16 1 -0.037 0 1 
19 1 -0.064 0 1 
20 1 -0.517 0 1 
21 1 -0.030 0 1 
23 1 -1.019 0 1 
26 1 -1.327 0 1 
27 1 -0.447 0 1 
28 1 0.064 0 1 

Note. These parameters are generated by MIRT (i.e. are the equivalent slope-intercept translation of traditional/classical IRT parameters) 
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Appendix N Visualisation ICS IRT, CFA and Mokken Analysis 

 52 Item Rasch 42 Item Rasch 
42 Item 
Mokken 

31 Item 
Mokken 

31 Item CFA 30 Item Rasch 

Item SX2 RMSEA p SX2 RMSEA p LH LH Std. B p SX2 RMSEA p 

1 10.978 0.027 0.140 6.135 0.005 0.408 0.081 NA NA NA NA NA NA 
2 30.662 0.028 0.044 16.751 0.000 0.540 0.127 0.138 0.486 0.000 17.129 0.010 0.377 
3 37.946 0.047 0.001 36.814 0.049 0.000 0.222 0.244 0.675 0.000 20.599 0.025 0.112 
4 29.358 0.025 0.081 23.847 0.018 0.202 0.088 NA NA NA NA NA NA 
5 50.505 0.045 0.000 39.187 0.039 0.003 0.193 0.225 0.645 0.000 25.693 0.028 0.058 
6 15.632 0.000 0.550 12.364 0.000 0.651 0.134 0.122 0.339 0.000 14.421 0.006 0.419 
7 26.694 0.021 0.144 25.291 0.023 0.117 0.075 NA NA NA NA NA NA 
8 27.555 0.022 0.120 22.557 0.018 0.208 0.100 NA NA NA NA NA NA 
9 29.873 0.025 0.072 33.017 0.031 0.024 0.106 0.126 0.382 0.000 45.094 0.049 0.000 

10 55.318 0.046 0.000 NA NA NA NA NA NA NA NA NA NA 
11 7.419 0.000 0.986 28.303 0.027 0.058 0.070 NA NA NA NA NA NA 
12 63.691 0.054 0.000 50.062 0.046 0.000 0.212 0.259 0.736 0.000 41.176 0.045 0.001 
13 34.155 0.034 0.012 NA NA NA NA NA NA NA NA NA NA 
14 30.704 0.025 0.079 28.549 0.026 0.073 0.177 0.215 0.634 0.000 32.642 0.035 0.013 
15 27.480 0.020 0.156 28.430 0.030 0.040 0.146 0.166 0.360 0.000 31.491 0.040 0.005 
16 26.172 0.020 0.160 42.406 0.040 0.002 0.034 NA NA NA NA NA NA 
17 64.375 0.052 0.000 NA NA NA NA NA NA NA NA NA NA 
18 26.326 0.018 0.194 26.729 0.023 0.111 0.155 0.179 0.473 0.000 12.360 0.000 0.778 
19 69.624 0.057 0.000 62.626 0.057 0.000 0.228 0.286 0.815 0.000 46.104 0.050 0.000 
20 18.973 0.000 0.524 13.658 0.000 0.751 0.135 0.172 0.504 0.000 12.633 0.000 0.699 
21 23.064 0.011 0.341 12.663 0.000 0.855 0.147 0.180 0.495 0.000 12.985 0.000 0.674 
22 26.843 0.023 0.108 21.488 0.016 0.256 0.168 0.195 0.516 NA 23.599 0.025 0.099 
23 124.252 0.078 0.000 NA NA NA NA NA NA NA NA NA NA 
24 24.385 0.012 0.327 44.630 0.042 0.001 0.134 0.153 0.366 0.000 56.154 0.060 0.000 
25 85.087 0.063 0.000 158.761 0.105 0.000 -0.001 -0.006 -0.046 0.374 NA NA NA 
26 21.982 0.011 0.342 18.205 0.004 0.442 0.111 0.131 0.361 0.000 9.793 0.000 0.877 
27 68.946 0.053 0.000 46.584 0.044 0.000 0.270 0.312 0.748 0.000 37.381 0.044 0.001 
28 18.341 0.000 0.500 17.119 0.000 0.515 0.147 0.179 0.490 0.000 11.740 0.000 0.762 
29 17.587 0.000 0.675 17.300 0.000 0.570 0.126 0.150 0.409 0.000 20.074 0.018 0.217 
30 20.103 0.003 0.452 26.396 0.023 0.120 0.068 NA NA NA NA NA NA 
31 28.902 0.022 0.116 27.356 0.028 0.053 0.208 0.230 0.497 0.000 19.498 0.023 0.147 
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 52 Item Rasch 42 Item Rasch 
42 Item 
Mokken 

31 Item 
Mokken 

31 Item CFA 30 Item Rasch 

Item SX2 RMSEA p SX2 RMSEA p LH LH Std. B p SX2 RMSEA p 

32 17.748 0.012 0.339 27.290 0.038 0.011 0.071 NA NA NA NA NA NA 
33 18.471 0.000 0.556 19.533 0.006 0.423 0.109 0.136 0.380 0.000 10.102 0.000 0.861 
34 12.962 0.000 0.739 16.728 0.012 0.335 0.133 0.162 0.401 0.000 16.808 0.016 0.267 
35 48.002 0.039 0.001 NA NA NA NA NA NA NA NA NA NA 
36 59.984 0.048 0.000 33.556 0.032 0.021 0.232 0.270 0.689 0.000 25.739 0.031 0.041 
37 36.611 0.033 0.013 36.962 0.035 0.008 0.058 NA NA NA NA NA NA 
38 30.664 0.025 0.079 27.135 0.026 0.076 0.097 NA NA NA NA NA NA 
39 23.369 0.015 0.271 17.835 0.000 0.533 0.137 0.164 0.467 0.000 33.623 0.038 0.006 
40 32.279 0.025 0.073 41.548 0.039 0.002 0.116 0.127 0.301 0.000 44.571 0.051 0.000 
41 32.845 0.025 0.064 23.968 0.019 0.197 0.159 0.176 0.403 0.000 27.518 0.033 0.025 
42 73.279 0.057 0.000 81.590 0.068 0.000 0.027 NA NA NA NA NA NA 
43 74.703 0.058 0.000 NA NA NA NA NA NA NA NA NA NA 
44 157.991 0.093 0.000 NA NA NA NA NA NA NA NA NA NA 
45 23.651 0.013 0.310 19.239 0.004 0.442 0.110 0.127 0.361 0.000 27.516 0.028 0.051 
46 24.291 0.014 0.279 21.877 0.014 0.290 0.153 0.186 0.540 0.000 15.357 0.000 0.499 
47 62.774 0.051 0.000 41.759 0.040 0.002 0.231 0.267 0.686 0.000 30.016 0.034 0.018 
48 39.652 0.034 0.008 NA NA NA NA NA NA NA NA NA NA 
49 26.076 0.016 0.248 12.262 0.000 0.874 0.157 0.182 0.440 0.000 26.812 0.032 0.030 
50 76.432 0.059 0.000 NA NA NA NA NA NA NA NA NA NA 
51 45.615 0.039 0.001 34.161 0.032 0.018 0.193 0.225 0.602 0.000 25.468 0.028 0.062 
52 104.951 0.072 0.000 NA NA NA NA NA NA NA NA NA NA 

Note. Results retrieved from Imputation 1 analysis. See Github repository for full results. *p < 0.05; **p < 0.01; ***p < 0.001, LH = Loevinger’s H, Stan. B = Standarized Beta 
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Appendix O Visualisation Pooled Item Parameters 

Item a d g u 

2 1 2.946 0 1 
3 1 3.888 0 1 
5 1 2.869 0 1 
6 1 3.523 0 1 
9 1 2.118 0 1 

12 1 2.233 0 1 
14 1 1.779 0 1 
15 1 -0.020 0 1 
18 1 1.869 0 1 
19 1 2.822 0 1 
20 1 2.528 0 1 
21 1 1.452 0 1 
22 1 3.031 0 1 
24 1 0.357 0 1 
26 1 2.614 0 1 
27 1 0.331 0 1 
28 1 2.966 0 1 
29 1 1.511 0 1 
31 1 -0.093 0 1 
33 1 2.458 0 1 
34 1 3.721 0 1 
36 1 0.691 0 1 
39 1 2.415 0 1 
40 1 0.535 0 1 
41 1 0.629 0 1 
45 1 1.735 0 1 
46 1 2.020 0 1 
47 1 1.307 0 1 
49 1 0.725 0 1 
51 1 1.433 0 1 

Note. These parameters are generated by MIRT (i.e. are the equivalent slope-intercept translation of traditional/classical IRT parameters) 
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Appendix P Working Memory ICS IRT, CFA and Mokken Analysis 

 34 Item Rasch 34 Item Mokken 26 Item Mokken 26 Item CFA 25 Item Rasch 

Item SX2 RMSEA p LH LH Std. B p SX2 RMSEA p 

11 14.960 0.049 0.184 0.337 0.389 0.679 NA 15.832 0.071 0.070 
12 16.083 0.064 0.097 0.420 0.487 0.851 0.000 7.901 0.029 0.341 
13 12.277 0.039 0.267 0.136 0.196 0.373 0.014 10.044 0.054 0.186 
14 13.671 0.019 0.397 0.255 0.329 0.715 0.000 19.306 0.064 0.081 
15 17.209 0.062 0.102 0.418 0.503 0.861 0.000 13.185 0.056 0.154 
16 9.110 0.000 0.693 0.249 0.307 0.562 0.000 8.881 0.000 0.633 
17 14.913 0.040 0.246 0.223 0.295 0.506 0.000 9.090 0.000 0.695 
18 17.948 0.051 0.160 0.294 0.360 0.717 0.000 8.738 0.000 0.792 
19 14.997 0.032 0.308 0.305 0.380 0.818 0.000 16.244 0.041 0.236 
20 17.688 0.049 0.170 0.295 0.354 0.735 0.000 12.652 0.000 0.475 
21 16.572 0.043 0.220 0.274 0.324 0.724 0.000 17.413 0.040 0.235 
22 14.176 0.009 0.437 0.225 0.281 0.613 0.000 14.274 0.011 0.430 
23 11.527 0.000 0.644 0.236 0.288 0.590 0.000 7.708 0.000 0.862 
24 8.813 0.000 0.843 0.271 0.335 0.619 0.000 12.397 0.015 0.414 
25 9.502 0.000 0.734 0.206 0.271 0.575 0.000 14.683 0.039 0.259 
26 12.456 0.000 0.491 0.191 0.244 0.528 0.000 10.877 0.000 0.540 
27 12.358 0.000 0.499 0.243 0.313 0.688 0.000 13.827 0.032 0.312 
28 19.885 0.060 0.098 0.083 0.094 0.183 0.121 50.194 0.146 0.000 
29 12.675 0.000 0.473 0.203 0.258 0.519 0.000 11.550 0.000 0.482 
30 8.994 0.000 0.773 0.126 0.179 0.380 0.000 17.462 0.055 0.133 
31 5.813 0.000 0.758 0.195 0.242 0.435 0.000 7.538 0.000 0.581 
32 38.251 0.129 0.000 -0.042 -0.062 -0.123 0.320 NA NA NA 
33 10.958 0.000 0.447 0.185 0.262 0.510 0.000 7.109 0.000 0.790 
34 23.017 0.078 0.028 0.186 0.243 0.416 0.000 21.232 0.079 0.031 
35 23.474 0.087 0.015 0.024 0.053 0.095 0.466 37.157 0.126 0.000 
36 25.686 0.134 0.001 0.056 0.103 0.126 0.446 24.789 0.131 0.001 
37 8.683 0.024 0.370 0.016 NA NA NA NA NA NA 
38 27.349 0.117 0.001 -0.037 NA NA NA NA NA NA 
39 110.877 0.316 0.000 -0.232 NA NA NA NA NA NA 
40 43.743 0.173 0.000 -0.111 NA NA NA NA NA NA 
41 13.784 0.060 0.130 0.013 NA NA NA NA NA NA 
42 31.476 0.153 0.000 -0.097 NA NA NA NA NA NA 
43 39.903 0.164 0.000 -0.077 NA NA NA NA NA NA 
44 31.360 0.153 0.000 -0.047 NA NA NA NA NA NA 

Note. Results retrieved from Imputation 1 analysis. See Github repository for full results. *p < 0.05; **p < 0.01; ***p < 0.001, LH = Loevinger’s H, Stan. B = Standarized Beta  
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Appendix Q Working Memory Pooled Item Parameters 

Item a d g u 

11 1 1.989013 0 1 
12 1 2.434985 0 1 
13 1 2.434985 0 1 
14 1 0.684649 0 1 
15 1 2.167124 0 1 
16 1 1.673237 0 1 
17 1 1.530314 0 1 
18 1 0.577008 0 1 
19 1 0.541552 0 1 
20 1 0.471194 0 1 
21 1 0.229484 0 1 
22 1 0.127372 0 1 
23 1 -0.14339 0 1 
24 1 0.98374 0 1 
25 1 -0.62541 0 1 
26 1 -0.6966 0 1 
27 1 -0.59012 0 1 
28 1 -0.73252 0 1 
29 1 -0.91612 0 1 
30 1 -0.76869 0 1 
31 1 -1.92624 0 1 
33 1 -1.52973 0 1 
34 1 -1.10817 0 1 
35 1 -1.72026 0 1 
36 1 -2.42309 0 1 

Note. These parameters are generated by MIRT (i.e. are the equivalent slope-intercept translation of traditional/classical IRT parameters) 

 
 


