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Abstract

Whenever measurements of a physical system are made, the quantization im-
plicit in all detection processes forces us to consider a discretisation of the
problem. Hence it is important to investigate and understand these discrete
systems. The work in this thesis is centred around constructing discrete ar-
rays that have use in discrete tomography for image reconstruction as well as
in broader communications applications.

We will use discrete projections to construct large families of so-called per-
fect arrays, which have ideal correlation properties. This is performed using
the finite Radon transform, which allows for lossless transformation between
image and projection space. The resultant arrays match perfectly only when
exactly aligned, and are poor matches to all other arrays in their families. As
we will demonstrate, these arrays are highly valuable in many applications
such as watermarking, encryption and communications technologies.

We then construct maximal ghosts, which are arrays consisting of 2N con-
nected points that have zero sum discrete projections across N directions. In
discrete tomography, these points define locations of indeterminate parts of the
reconstructed image. Therefore, when discrete tomography is used in digital
communications schemes, it is favourable for as many points to be obscured as
possible if the security of stored projection data is breached. Maximal ghosts
obscure a maximal amount of information. These maximal ghosts can then
be used to construct boundary ghosts, which consist only of a thin boundary
of ghost points. The errors in boundary ghosts are placed close to the border
of the reconstructed image, which is often where less important information
lies. Hence, boundary ghosts are ideal for tomographic applications where
insufficient information is provided to fully reconstruct an image.

The problem of constructing these ghosts is approached via a recursive
tiling. This places self similar discrete tiles at non-degenerate relative shifts
to each other, to maximise the length of the contact boundary between ad-
jacent tiles. This maximal joining can be viewed as an energy minimisation,
and therefore this tiling may provide insight into physical systems such as
the flocculation of lattice structures. The tiling is initially performed in two
dimensions, and is then generalised to higher dimensions.

Finally, a discrete reconstruction algorithm is presented which operates
in linear time. This algorithm efficiently reconstructs a function from its line
sums, provided that the projections are noise free and the function takes values
in a unique factorization domain, such as the real or integer numbers. When
this algorithm is applied using the projection set which defines a boundary
ghost, it prescribes an efficient solution to find all values inside and outside
the ghost domain.
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CHAPTER 1

Introduction

Over the past century, methods of collecting and communicating data have
changed drastically. The precision of information that can be collected in
addition to the speed and bandwidth with which it can be transmitted has
grown exponentially. This is due to developments in both the physical tech-
nology, as well as the theoretical methods used. A major contributor to these
technologies has been the field of tomographic reconstruction. Tomography
involves reconstructing an object from its projections at a range of viewing
angles. While the mathematical foundation for tomography was established in
1917, it would take until 1971 for the first patient brain scan to be performed.
The variations and applications of tomography have been widespread, from
medical diagnostics and materials analysis to communications technology and
encryption. Today, tomographic imaging is a staple in medical examination as
well as scientific research due to its accuracy and non-invasive methodology.
Particular implementations of tomography have very close links to algebra
and number theory, which lead to tomographic methods being employed in
communications and for encryption.

The work of this thesis focuses on tomography over a discrete domain.
The problem of determining matrices from their row and column sums has
long been considered in mathematics. This problem would grow to the study
of discrete tomography we know today. It would seem natural to derive results
for discrete tomography purely from tomography over a continuous domain,
but as we shall explore, it can be useful to approach tomography using the
foundation of discrete mathematics and discrete geometry. There are many
interesting results that come from approaching discrete tomography in this
manner that would not be possible using continuous tomography. We will
look at constructing arrays using discrete tomography techniques that have a
wide range of uses such as communications, watermarking, encryption, and of
course, imaging. An overview of this thesis is as follows:
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Chapter 1. Introduction

Chapter 2 will provide the preliminary theory on discrete tomography that
shall be used throughout the rest of this work. Here, we first take a look at the
origins of continuous tomography and its limitations. We then show how this
problem can be discretised, and present some of the advantages in doing so.
The notion of a discrete lattice is formalised, followed by discrete projections.
An overview of algebraic methods for reconstruction using discrete tomography
is then introduced. Finally, this information is tied together in presenting an
example of a discrete tomographic scheme known as the Mojette transform.
We shall outline some uses of discrete tomography that not only apply to image
reconstruction, but many aspects of communication technologies.

Chapter 3 uses a special formalism of discrete tomography to build struc-
tured arrays. Here, we use a scheme that implements periodic projections,
which wrap around the lattice to ensure optimal sampling with no redun-
dancy. Under this tomographic transform, we can move between the image
space and projection space losslessly. By starting in the projection space, we
can use property preserving aspects of discrete projection to build arrays that
look self-similar when aligned, but completely dissimilar if they are misaligned
at all. We can construct many of these arrays to form a family which all have
the property of being perfectly self-similar, but very dissimilar to all other fam-
ily members. This property makes them highly valuable for watermarking, or
scrambling keys for encryption. By viewing these arrays as quadratic residue
sequences, we are able to extend these arrays to any number of dimensions.

Chapter 4 explores the placement of errors in discrete tomographic recon-
structions. The form of these errors are arrays known as ghosts, which are null
projection sets that are invisible when viewed along a given set of projection
directions. To begin, we construct ghosts which define errors to maximally
obfuscate reconstructions. This is performed through a recursive lattice tiling.
Due to the structure of these patterns, we can remove interior ghost points to
leave only a boundary of errors that will only impact the outer edges of a recon-
struction. Using these projection directions, the goal is to have reconstructions
where the errors are placed in less important parts of an image, leaving the
object clear and accurately reconstructed. A new result is presented that links
the convex hull area of a ghost to the number of projection bins it occupies,
which can be viewed as a version of Pick’s theorem for discrete projection.
This relationship is used to give some properties and bounds on the size of
these ghost patterns.

The construction of maximal and boundary ghosts is then extended to three
dimensions, and higher in Chapter 5. We show that the properties derived in
two dimensions naturally extend to higher dimensions. The additional degrees
of freedom in higher dimensions give rise to a wider variety of possible ghost
shapes. Computations are given which show that the geometric placement of
maximal ghosts tiles inherently maximises the joining boundary of the shapes.
Hence, these ghost tiles may provide insight into the formation of some lattice
structures.
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Finally, the problem of reconstruction methods is considered in Chapter 6.
Here, we present an efficient algorithm which reconstructs an unknown function
from its line sums in linear time with respect to the grid size and number of
projection directions. This is possible whenever the line sums are consistent
and the function takes values in a unique factorization domain. This algorithm
can be extended to higher dimensions if the set of projection directions satisfy
certain conditions.
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CHAPTER 2

Background

Tomography is a ubiquitous method of imaging in both the medical and sci-
entific world today. Only a century ago, obtaining information about the
internal parts of an object was, by necessity, an invasive and often destructive
procedure. This began to change in 1917, when Johann Radon showed that a
function can be represented by the set of its integral projections [58, 59]. As
we will show, the transform that Radon provided was ill-posed, as it requires
an infinite set of projections for exact inversion. In 1937, Stefan Kaczmarz
showed the convergence of an algorithm for approximate solutions to systems
of linear equations, which meant that the Radon transform could be used to
approximate a solution from a finite number of projections [46]. This new in-
sight, combined with the experimental work of Allan McLeod Cormack led to
the invention of the first commercial computerized tomography (CT) scanner
by Sir Godfrey Hounsfield, and the first patient brain-scan performed in 1971
[20, 21]. This method has a wide range of applications, from medical scans
to geology and astrophysics [45, 50]. The first results in discrete tomography
were published in 1957 by Ryser, who gave sufficient and necessary conditions
for the reconstruction of binary matrices from their row and column sums, and
an algorithm for performing these reconstructions [61]. The field has evolved
greatly since then, and many different discrete tomographic situations have
been studied. In this chapter, we will outline the mathematical basis for to-
mography, and then restrict the domain to a discrete lattice.

2.1 The Radon Transform

The Radon transform underpins all of tomography. In this section we provide
an overview of the Radon transform in two dimensions, which could be consid-
ered as a slice in 3D. The goal of tomography is to reconstruct a 2D function
f : R2 7→ R from a set of 1D projections. The projections are integrals along

4



2.1. The Radon Transform

the set of lines defined by angle θ ∈ [0, π) and translation ρ ∈ R. These lines
have the equation

(x(s), y(s)) = (ρ cos(θ)− s sin(θ), ρ cos(θ) + s sin(θ)) (2.1)

for s ∈ R. The Radon transform of function f(ρ, θ) is given by

R[f(ρ, θ)] =

∫ ∞
−∞

f(ρ cos(θ)− s sin(θ), ρ cos(θ) + s sin(θ)) ds. (2.2)

Note that R[f(ρ, θ)] = R[f(−ρ, θ + π)], which gives the restriction on θ. The
function f is assumed to be finite and have compact support. A function with
compact support has zero value outside of a compact set, which is a reasonable
constraint to impose when imaging an object. In the case of medical imaging,
for example, we are not interested in the area outside of the patient.

x

y

ρ
θ

f(x,y)

R[f(ρ,θ)]

Figure 2.1: Radon transform geometry.

We step away briefly from the Radon transform to present the Fourier
transform and show that there is a strong link between them that is essential to
tomography. The Fourier transform decomposes a function into its component
sine and cosine frequencies. This gives the frequency spectrum of the function.
The 2D Fourier transform on function f is given by

F [f(u, v)] =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i2π(ux+vy) dx dy. (2.3)

The function f can be recovered from its Fourier transform provided it is
continuous and absolutely integrable.

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞
F [f(u, v)]ei2π(ux+vy) du dv (2.4)
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Chapter 2. Background

To show the link between the Radon and Fourier transforms, consider the
projection for angle θ = 0. In this case, the Radon projection reduces to

R[f(ρ, 0)] =

∫ ∞
−∞

f(ρ, y) dy. (2.5)

We now take the Fourier transform of both sides of (2.5).

F [R[f(ρ, 0)]] =

∫ ∞
−∞

[∫ ∞
−∞

f(ρ, y) dy

]
e−i2πux dx (2.6)

=

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i2πux dx dy

= F [f(u, 0)]

Since the Fourier transform is invariant under rotation, this holds for all θ.
This is known as the Fourier Slice Theorem, which states that the 1D Fourier
transform of a projection at angle θ is equal to the slice of F [f(u, v)] that
passes through the origin at angle θ. Therefore, each projection (given by the
rows of the sinogram in Fig. 2.2b) allows us to recover a slice in Fourier space
(Fig. 2.2a).

u

v

θ

a) b)

Figure 2.2: a) Each dashed line, or slice, in Fourier space is given by a projection
(row) of the sinogram (b).

This result highlights a clear problem in the direct application of the Radon
transform. That is, information is only available along radial lines of Fourier
space. Hence, to recover all points in Fourier space, we require an infinite
number of projections and the space is not uniformly sampled. While many
different methods exist to deal with this problem, this work uses discrete pro-
jections.
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2.2. Algebraic Reconstruction Techniques

2.2 Algebraic Reconstruction Techniques

In any practical imaging system, the problem of discretisation must be consid-
ered. Whether it be the finite number of bins that are used to take an image,
the finite levels of intensities being measured, or even a priori assumptions
about the densities of objects being imaged, there are always discrete levels
when measurements are made. Here, we take a look at algebraic reconstruction
techniques, first presented in [38].

We define a P × Q grid A = {(i, j) ∈ Z2 : 0 ≤ i < P, 0 ≤ j < Q} and a
function f with PQ unknown values which represents an image. Each image
point fj is referred to as a pixel (or voxel in 3D), that has an associated value
within the pixel. Under this scheme, each projection ri is a linear combination
of pixel values fj, where weights wij are applied to each pixel based on the
fractional area of the intersecting ray. For each detector we have

ri =
∑
j

wijfj (2.7)

for all ray sums over all projections. This defines a set of linear equations
which can be written in matrix form as

Wf = r (2.8)

where W is a projection matrix, f is the image in vectorised form and r is
a vector of detected projections. In general, the projections will have noise,
which we can model through a perturbation term ε as r̃i = ri + ε. Algebraic
reconstruction methods must therefore compute an approximate solution by
minimising the cost function:

χ = min
f
‖Wf − r̃‖ (2.9)

Often, the l2-norm is chosen to penalise the difference between computed and
measured projections. But this can change depending on the application.

There exist many variations to this technique, built upon these basic prin-
ciples. In the simultaneous iterative reconstructive technique (SIRT), projec-
tions are performed simultaneously and then averaged. This usually provides
more accurate reconstructions but with slower convergence. The simultaneous
algebraic reconstruction technique (SART) improves upon the method by si-
multaneously applying error correction terms to all rays in a projection, and
includes longitudinal weighting of the correction terms for back-projection [3].
A discrete version of SART, termed DART, has also been developed. This algo-
rithm uses a continuous method such as ART, SIRT or SART as a subroutine,
with an additional discretization step [7]. Many modern tomography software
packages include these algorithms in their framework, such as TomoPy and
the ASTRA toolbox [42, 72, 73].
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Chapter 2. Background

2.3 Discrete Projection

Instead of computing ray sums by weighting pixels with respect to their contact
with the ray, we can instead choose to only sum pixels that lie exactly on a
line. We define the notion of a lattice direction v = (p, q) where p, q ∈ Z
and gcd(p, q) = 1. Integers p and q must be co-prime to ensure there are
no degenerate projection directions. The lattice direction is used to define a
discrete line jp = iq + b across the lattice, where b ∈ Z. A discrete projection
is defined as the set of all line sums along a lattice direction (p, q). An example
of a (2, 1) discrete line sum is illustrated in Fig. 2.3. The full projection would
then be computed from all parallel (2, 1) line sums.

Figure 2.3: Discrete projection for direction (2, 1).

Discrete projections can also be computed with periodic boundary con-
ditions, as shown in Fig. 2.4. While this may not be a practically feasible
method yet, we shall see in Chapter 3 that periodic projections are quite use-
ful as they enable projections with zero redundancy when the arrays have a
prime number of rows and columns.

Figure 2.4: Periodic discrete projections for direction (2, 1) on a 5×5 array starting
from two different locations.

There are a number of discrete projective transforms that use either peri-
odic or non-periodic projections, although they all define a set of linear equa-
tions that can be inverted given adequate projection information.

8



2.4. The Mojette Transform

2.4 The Mojette Transform

The Mojette transform is an example of a discrete Radon transform that uses
discrete projections for reconstruction. This can allow for exact tomographic
inversion in the absence of noise. Projections under the Mojette transform are
discrete, and sum pixel values at sites separated by p steps in the x direction,
and q steps in the y direction. Each projection sum is stored in a projection
bin. The word “Mojette” comes from a type of bean used to teach children
counting and arithmetic, and is a play on the words “bean” and “bin”.

Under the Mojette transform, angles are chosen from the discrete set θ =
tan−1(q/p). Each projection is the sum of the pixel values that intersect the
line b = −qk + pl. The Dirac-Mojette operator [40] acts on image f by

[Mδf ](b, p, q) = projδ(b, p, q) =
+∞∑

k=−∞

+∞∑
l=−∞

f(k, l)δ(b+ kq − pl) (2.10)

where (b, p, q) ∈ Z, and δ(b) is the Kronecker delta which has value δ(b) = 1
if b = 0, otherwise δ(b) = 0. The Kronecker delta is used to sample pixels
that exactly fall on the projection ray. A Mojette transform is demonstrated
in Fig. 2.5.

3
2

2
2

5
1

2
6

2
1

(1,2)

1

1

8

6

4

5

1

(1,-1)

5

7

7

7

(1,0)

1

0

2

3

1

4

1

2

2

1

0

1

1

2

4

1

Figure 2.5: Mojette transform with the set of projections {(2, 1), (1, 0), (1,−1)}
on a 4× 4 array.
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Chapter 2. Background

The inverse of the Mojette projector M is the Mojette back-projector M∗.
In the Dirac-Mojette model, the Mojette back-projector M∗

δ is defined as

[M∗
δ proj(p,q)](k, l) =

+∞∑
i=−∞

+∞∑
j=−∞

∑
b∈B

∑
(p,q)∈S

δ(k−i)δ(l−j)proj(b, p, q)δ(b+qi−pj)

(2.11)
where S is the set of (p, q) directions. Again, the sifting property of the
Kronecker delta is implemented to place projections back at the correct pixel
location.

For a set of non-degenerate projections {(pi, qi)} on a P ×Q array, unique
reconstruction of any image I : A → R is possible if and only if the Katz
criterion is met [47]. ∑

|pi| ≥ P or
∑
|qi| ≥ Q (2.12)

In this case, the image is uniquely determined by the discrete projections and
can be reconstructed efficiently [51, 52]. Geometrically, the Katz criterion
states that if the vector (

∑ |pi|,∑ |qi|) can fit inside the P ×Q array, then it
is not possible to reconstruct all pixels from the projection set. For example,
if we consider a 4 × 3 lattice then the set of projections {(0, 1), (1, 1), (1, 0)}
does not satisfy the reconstructability requirement while {(1, 0), (1, 1), (2, 1)}
does (Fig. 2.6).

Figure 2.6: Projection vectors {(0, 1), (1, 1), (1, 0)} (red) and {(1, 0), (1, 1), (2, 1)}
(blue) for a 4× 3 lattice.

When the Katz condition is not met reconstruction is still possible, but
some values in the reconstructed array do not have a unique solution. The
locations of these indeterminate values will be discussed in depth in Chapter
4. Multiple iterations of inversion methods can be applied by setting arbitrary
values to indeterminate pixels. Numerical inversion using a procedure such as
the conjugate gradient method [62] will yield a similar result.

Under the Mojette transform, pixels are sampled multiple times when there
is more than one projection. This redundancy in the projection information

10



2.4. The Mojette Transform

was initially viewed as a problem. More recently however, it was discovered
that the redundancy could be taken advantage of in many communications and
security applications [17]. We shall outline a few of these applications briefly
to demonstrate that discrete tomography has a wide range of uses far outside
the context of imaging.

When information is communicated via the internet, it is done through
packets of bytes under some agreed upon protocol. Partitioning large amounts
of information into smaller packets allows for more efficient and robust commu-
nication. Each packet can be communicated through the most efficient route
at the time it is being sent. And if any packet is lost, having redundant in-
formation can ensure all information is correctly delivered to the destination.
Projections of the Mojette transform naturally creates packets of information,
and the redundancy in the projections can be used to repair damaged or lost
bits of information. Also, the fact that each projection is associated with a
direction adds an additional layer of security, as this link must be known for
the projection to be useful.

The instability of the inverse Mojette transform can be exploited for the
purpose of security and encryption [5]. Erroneous projection bins propa-
gate misinformation quickly through the inverse Mojette transform, which is
favourable for encryption. Encryption keys can be generated to corrupt speci-
fied bins, and without knowledge of the key, the reconstructed data is rendered
useless. Similarly, shared keys can be used to generate Mojette based water-
marks for images. In this scheme, phantoms are added to an image with
zero projections for a given set of directions. Each user has knowledge of the
directions used to generate the phantom, and its position.

Figure 2.7: An image being split into projections to be stored on separate, remote
servers. Data from a subset of servers can be used to recover the original information.
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Chapter 2. Background

The Mojette transform has been implemented into a secure data file system
known as RozoFS [54]. For this application, discrete projections are used to
split a set of data to be stored on multiple remote servers. This method is more
efficient than simply replicating data, which reduces the cost of data storage.
If the security of some (but not all) of the servers becomes compromised, we
want to ensure the least amount of information is recoverable. However, an
end user can recover their data perfectly by accessing a minimum subset of
required servers. Since the information can be recovered from a subset of the
total projections, server load can be reduced by allocating multiple users to
different servers. Careful choice in the optimum sets of projection angles used
is a topic of this thesis.
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CHAPTER 3

Perfect Arrays

Large sets of distinct arrays of variable size that possess both strong auto-
correlation and weak cross-correlation properties are highly valuable in many
imaging and communications applications. In this chapter, we use the discrete
finite Radon transform to construct p × p arrays with “perfect” correlation
properties, for any prime p. Array elements are restricted to the integers
{0,±1, +2}. Each array exhibits perfect periodic auto-correlation, having
peak correlation value p2, with all off-peak values being exactly zero. Each
array contains just 3(p − 1)/2 zero elements, the minimum number possible
using this alphabet. Large families with size M = p2− 1 of such arrays can be
constructed. Each of the M(M − 1)/2 intra-family periodic cross-correlations
is guaranteed to have one of the three lowest possible merit factors. This family
of sizeM can be extended to multiples of p2−1 if we permit more than the three
lowest cross-correlation levels. Using Legendre quadratic residue sequences, we
generalize the idea to nD and build families of perfect arrays that have prime
side lengths p, with lower cross-correlation. Affine transformations extend the
perfect nD Legendre array family size to at least (p− 1)n.

Large families of arrays with perfect correlation properties are highly desirable
for any application that calls for many different arrays that can be used as
unique identifiers or masks. In this chapter, we consider families of p×p arrays,
where p is prime. The periodic cross-correlation between two arrays f and g
(written f⊗g) is the set of correlations {Cf,g(r, s)|0 ≤ r ≤ p−1, 0 ≤ s ≤ p−1}
where

Cf,g(r, s) =

p−1∑
x=0

p−1∑
y=0

f(〈x+ r〉p, 〈y + s〉p) · g(x, y) (3.1)

13



Chapter 3. Perfect Arrays

and 〈j〉p denotes j modulo p. Then the aperiodic cross-correlation is the set
{Cf,g(r, s) |1 − p ≤ r ≤ p − 1, 1 − p ≤ s ≤ p − 1} where x + r, and y + s are
not computed modulo p and values outside of 0 ≤ x+ r ≤ p and 0 ≤ y+ s ≤ p
are assumed to be zero. When f = g, the cross-correlation is referred to as
the auto-correlation. When we speak of perfect arrays, we require ideal auto-
correlation, Cf,f (r, s) = 0 for all r, s 6= 0, and low cross-correlation values
between all family members. We use the merit factor (MF), defined as the
square of the peak value divided by the sum of all squared off-peak values, to
characterise the cross-correlations. For cross-correlations, we want MF � 1,
and for ideal auto-correlation the MF is infinite. Examples of two 59×59 arrays
are displayed in Fig. 3.1, which exhibit perfect auto-correlation and optimally
low cross-correlation. In Fig. 3.1a,b, the values {−1, 0, 1, 2} have been mapped
to greyscale where −1 appears as black and +2 as white. Throughout this
chapter, we consider the top-left of the array as the origin.

a) b)

1020304050

10 20 30 40 50

0

1000

2000

3000

1020304050

10 20 30 40 50

-50

0

50

100

c) d)

Figure 3.1: a,b) Two p = 59 perfect arrays where the values {−1,0,1,2} have been
shifted to greyscale. c) Ideal perfect periodic auto-correlation of (a) and (b) with
peak value of p2. d) Optimally low cross-correlation between (a) and (b). Cross-
correlation values are −p, 0, p, 2p.
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Large families of arrays with such low correlations are required for many
communications, cryptography, and imaging applications. In code-division
multiple-access communication systems, each user is prescribed such an array
to distinguish themselves from other users while allowing them to communicate
simultaneously on the same frequency band [34, 78]. Arrays with high auto-
and low cross-correlation properties are also useful as coded apertures for 2D
tracking, radar and sonar [35, 39]. They are also used as watermarks for
authentication as a means of copyright protection. They can be embedded
and hidden in digital media such as audio, images or video through various
methods, which can then be retrieved through correlation [22, 69]. There
is a vast literature on constructing binary sequences for such purposes (see
[57]), however the strict limit of values also restricts the number of possible
sequences. So in this work, we slightly relax this restraint in order to construct
much larger families of arrays.

Previous work [70] used the finite Radon transform (FRT) to construct
p×p pseudo-noise arrays in families of size M = p (where p is a 4N −1 prime)
that had optimal periodic auto-correlation and cross-correlation, that meet the
Welch correlation bounds [79, 80]. Welch’s lower bound for the maximum cross
correlation will be detailed later in this chapter. These families of (Legendre)
arrays have an alphabet of a single zero element with the remainder being
equal numbers of ±1 elements. Orthogonal families of arrays exist in any even
number of dimensions, where they can be balanced. “Grey” versions of these
array families were also constructed that have integer alphabets (with integer
values ranging between ±√p). Recovery of a grey array, A, embedded in grey
data, B, can be advantageous, as A⊗ (A+B) ≈ 2A⊗A if we choose to embed
A in those parts of B where A ≈ B.

Subsequent work [68] extended the size M of these array families to multi-
ples of p, typicallyM ≈ 3p. This was done by blending the original array family
with distinct arrays either derived from the original array auto-correlations,
or with new arrays, also built using the FRT, but with their families gener-
ated using different (but equivalent) Hadamard matrices. The only concession
made when extending the family size beyond p is that the strength of each
cross-correlation now lies in a range of statistically predictable values, at or
just above the lowest possible level. However, a large fraction of these ar-
ray pairings exhibit the lowest possible cross-correlation, with the remaining
cross-correlations being close to this lowest value.

Further extension of the size of a family of arrays well beyond p becomes
increasingly difficult as it is hard to constrain the range of cross-correlation
values. The rapidity of this rise is, in part, due to the depth of the array
alphabet. A binary array (or any array with mostly ±1 values) has a limited
number of combinations that can simultaneously sustain high auto- and low
cross-correlation. The grey versions of the p × p Legendre arrays constructed
in [70] can support a much larger and more diverse range of well-correlated
structures. The combinatorial diversity of grey perfect arrays makes them

15



Chapter 3. Perfect Arrays

significantly more secure and resistant to hacking.
The balance theorem ensures that the sum of the array values dictates the

sum over all correlation values [34]. This ensures that alphabets spanning a
wide range of greys also require more zero elements in those perfect arrays
(see Section 3.2.3). The number of zero elements in a perfect-correlation array
increases with the square of the values of each non-zero element. Arrays con-
taining a large number of zero elements have reduced operational efficiency, as
the zero terms make no change to the signal in which it is embedded.

In this chapter, we construct families of arrays with the restricted alphabet
{0,±1,+2}, as published in [16]. These arrays have a fixed histogram, where
the number of +2s were minimised to (p − 1)/2, thus requiring 3(p − 1)/2
zero terms in each array. The balance of these array values (always a clear
majority) are either ±1. The presence of a relatively few extra zeroes reduces
the efficiency of these arrays, by O(1/p), but this becomes less significant for
large p. Affine transformations are then used as array shuffling operations to
produce many complementary perfect arrays. We show here that the pooling
of arrays can directly produce a family of size p2 − 1 by selecting a fixed,
complementary set of rotation and skew angles, thus avoiding the need to check
any cross-correlations. This significantly reduces the time and complexity to
build families for large p, which is of the order O(p4).

We also present additional seed families, each of size p2−1. Including these
new families enlarges the final family size to multiples of p2 − 1, provided the
threshold for the lowest permitted cross-correlation is relaxed. These arrays
can be interpreted as shifted quadratic residue sequences. This formulation
allows the construction of perfect arrays to an arbitrary number of dimensions,
withstanding a minor concession to the alphabet used.

In Section 3.1, we outline operations that preserve correlation properties.
This allows us to start with a sequence that is known to have ideal auto-
correlation and to create new arrays that maintain this property. Section 3.2
presents an algorithm that can be used to create a family of M = p2−1 arrays
which all have ideal auto-correlation, and guaranteed low cross-correlation be-
tween family members. The histogram of these arrays is analysed to predict
the different cross-correlation levels that can occur. In Section 3.3, we look at
ways to extend the family size beyond p2−1 by relaxing the histogram values,
and consequently a slightly wider spread of cross-correlation levels. Section
3.4 offers some applications for such arrays to detail the scope of their use. We
implement them into basic watermarking and encryption schemes, as well as
explain their use for multiple access communications. Finally, we use quadratic
residue sequences as an alternative construction for perfect arrays in Section
3.5. This new perspective allows us to generalise perfect arrays to any dimen-
sion n, and then by using affine transformations we can extend the size of a
perfect nD perfect array family to at least (p− 1)n.
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3.1. Correlation Preserving Operations

3.1 Correlation Preserving Operations

3.1.1 Discrete Projection

A discrete projection sums the values located at all points on a lattice that
intersect a given straight line. We consider projections of a p×p image I(x, y)
as the sum of all grid points that intersect the line

x = 〈t+my〉p (3.2)

where m, t ∈ Z. The discrete central slice theorem [40, 55] states that the
(n− 1)D projection corresponds to a central section (slice) of the nD Fourier
transform orthogonal to that direction. Hence the (n−1) dimensional projected
views of a distribution preserve the nD Fourier transform of the distribution.
As a corollary of the central slice theorem, moments and correlations of a
distribution are also preserved under projection. This means, for example, that
the auto-correlation of a 1D projection of an image is equal to the 1D projection
of the 2D autocorrelation. The projections of any distribution inherit that
distribution’s correlation properties [68]. The reverse is also true, meaning
that the back projection of 1D sequences with perfect auto-correlation would
yield a 2D array with the same properties.

3.1.2 Finite Radon Transform

The finite Radon transform [49] is a discrete projective transform used to
provide a unique and exact reconstruction of any 2D p×p object from its p+1
1D cyclically wrapped projected views. These projections are stored as rows
of a p×(p+1) array in Radon space. Since p is prime, the periodic projections
are uncoupled, as each projection fully tiles a p× p array, exactly once, at all
positions, in a distinct pattern. This provides optimal sampling, as there is
no redundancy in the projection information. The FRT is exact, which allows
for lossless transformations between image and projection space. The FRT is
similar to the Mojette transform introduced in Section 2.4, but with periodic
projections that ensure there is no redundancy.

Projection R(t,m) of an image I(x, y) starts from translate t, 0 ≤ t ≤ p−1.
By convention, t = 0 is the first of p parallel rays in a projection, where each
ray begins from a position on the top row of a p× p array (Fig. 3.2). Each 1D
projection is comprised of p parallel rays, where each ray sums p pixel values
in I(x, y) that are located at p steps beginning from t, each step being m pixels
across and one pixel down, wrapping periodically around the ray as required,
where 0 ≤ m ≤ p (Fig. 3.3). Projections 0 and p are column and row sums of
I(x, y), respectively. The FRT of image I is therefore written as:

FRT(I(x, y)) = R(t,m) =

{∑p−1
y=0 I(〈t+my〉p, y) for 0 ≤ m ≤ p− 1∑p−1
x=0 I(x, t) for m = p

(3.3)
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t = 0 t = 1

Figure 3.2: FRT projections with m = 2 for t = 0 and t = 1.

m = 0 (rows) m = 1 m = 2

m = 3 m = 4 m = 5 (columns)

Figure 3.3: FRT projections for a 5× 5 array.

Each projection m maps to a unique discrete angle (i, j), where i, j ∈ Z
and gcd(i, j) = 1, such that the set of p + 1 angles is fixed for each array
size p [64]. Back-projecting each of the p + 1 1D projections across a zeroed
p × p array at the complemented angles and normalising the result recovers,
exactly, the 2D data that was projected. Each value is equally weighted in the
projection, and each pixel contributes exactly once to each projection. This
allows for both exact and efficient inversion. This means no back-projection
filter is required as opposed to many other tomographic methods.
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3.1. Correlation Preserving Operations

We use FRT−1(R(t,m)) to signify the inverse FRT of R(t,m).

FRT−1(R(t,m)) = I(x, y) =
1

p

[
R(y, p)− Isum +

p−1∑
m=0

R(〈x− ym〉p,m)

]
(3.4)

where Isum is the sum of all values in I. Isum can be found by the sum of any
row in R, as each FRT projection samples every array point exactly once. An
example of the FRT is illustrated for an arbitrary 3× 3 array in Fig 3.4.

A B C

D E F

G H I

←→

A+D+G B+E+H C+F+I

A+E+I B+F+G C+D+H

A+F+H B+D+I C+E+G

A+B+C D+E+F G+H+I

I(x, y) R(t,m)

Figure 3.4: An image I(x, y) of size p× p has an FRT R(t,m) of size (p+ 1)× p.

The FRT represents a 2D image exactly by its 1D projections, and thereby
obeys the discrete central slice theorem. As a result, each slice is the 1D
discrete Fourier transform of the periodic projection. Hence, a 2D array with
perfect auto-correlation properties can be constructed by projecting a set of
1D FRT projections, with each projection having perfect auto-correlation. The
reconstructed 2D object will inherit the correlation properties of the ensemble
of 1D arrays [68, 70].

This correlation property is displayed in Fig. 3.5. In Radon space, we
have shown two arrays built from p+ 1 shifted Kronecker deltas of amplitude
p, indicated by the black locations in Fig. 3.5c. Each row in Radon space
represents a projection of the image. These are back-projected through the
inverse FRT to produce arrays in image space with values {0,±1, +2}, which
have been mapped to greyscale values in this Fig. 3.5b. Due to each array
having discrete FRT projections with ideal auto-correlation, the 2D images will
also have ideal auto-correlation. The cross-correlation in 2D can be computed
equivalently in FRT space as the 1D cross-correlations of each row. Image
space and FRT space are also linked through Fourier space (Fig. 3.5a). The
2D Fourier transform of each image can also be computed through the inverse
FRT of the 1D Fourier transforms for each row in FRT space. The cross-
correlation can be computed via a pointwise multiplication in Fourier space.
In Fig. 3.5a,d, the greyscale values correspond to the phase of the FFT, as the
amplitude of each frequency is always constant for both 1D and 2D cases.
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a) 2D Fourier
     F(u,v)

b) Image
     I(x,y)

c) Radon
    R(t,m)

d) 1D Fourier
     F(u,m)

1D FFT
(rows)

FRT

2D FFT

FRT

Array BArray A Product

Figure 3.5: Cross-correlation of p = 5 perfect arrays. a) Cross-correlation in
image space is equal to the pointwise product in Fourier space. Each value shows
the Fourier phase. b) Cross-correlation of two perfect arrays, resulting in another
perfect array. c) Perfect arrays in FRT space, which are shifted Kronecker deltas of
amplitude p. The convolution of each row corresponds to the difference in shift. d)
Row-wise 1D FFT of each shifted delta function. Grey values represent phase.

3.1.3 Affine Transformation

A 2D affine transformation (reversibly) maps each pixel (x, y) of a prime p× p
2D image to a unique new location (x′, y′). The new coordinates are obtained
via matrix multiplication in homogeneous coordinates (modulo p):x′y′

1

 =

a b e
c d f
0 0 1

xy
1

 (3.5)

where the values, 0 ≤ a, b, c, d, e, f ≤ p − 1, are arbitrary integer transform
coefficients, provided that the upper matrix [a b; c d] has non-zero determinant
(modulo p). The coefficients e and f serve as a discrete translation vector.
Periodic translations are trivial operations for periodic arrays, and therefore
coefficients e and f are set to zero to avoid producing degenerate copies of
arrays. When [a b; c d] = [j −i; i j], the affine transform rotates the array by
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3.2. Families of Perfect Arrays

the discrete angle (i, j). When [a b; c d] = [j i; i j], the affine transform skews
the array by vector (i, j).

These operations are exact modulo mappings within the array, thereby
constituting a unique and reversible reshuffling of array elements. Due to
the homogeneity of the affine transformation, the auto-correlation values of
an array remain unchanged, their positions are simply permuted. The values
outside the central peak are shifted under the same affine transformation, with
the same peak at the origin. For perfect arrays, all auto-correlation values
for non-zero shifts are zero, hence the auto-correlation of a perfect array is
invariant under affine transformation.

For p × p arrays, we know in advance the exact set of angles (i, j) that
correspond to the complete set of p + 1 discrete projections of the FRT for a
p×p array [64]. If we avoid the simple axial rotations (1,0) (90◦) and (0,1) (0◦),
we can, without redundancy, rotate each original array A by affine coefficients
(i, j) to obtain p−1 distinct copies A′ of each A, whilst preserving the original
correlation properties. For a p × p array, an affine transformation with zero
translation coefficients can be implemented as presented in Algorithm 1.

Algorithm 1 Affine transformation of a p× p array A.

1: function Affine(A, a, b, c, d)
2: for x := 0 to p do
3: for y := 0 to p do
4: T (〈ax+ by〉p, 〈cx+ dy〉p)← A(x, y)

return T

3.2 Families of Perfect Arrays

In this section, we detail the construction of families of M = p2−1 perfect p×p
arrays using the alphabet {−1, 0,+1,+2}. Section 3.2.1 employs the FRT to
construct perfect arrays using distinct cyclic shifts of a delta function, where
the translate t in R(t,m) is given by t = 〈mn〉p for selected values of n. Section
3.2.2 shows how affine transformations can then be applied to extend the size
of the array family, while preserving the ideal auto-correlation properties of
each new array. We then explore the histogram of array values in Section 3.2.3
and compare the correlation values to a known lower bound in 3.2.4.

3.2.1 Perfect Array Construction

A 1D discrete Kronecker delta (unit impulse), has perfect 1D auto-correlation.
Since correlation properties are preserved under projection, we can assign p+1
impulses of length p to each row of an array in projection space. The p + 1
rows of an array in FRT space correspond exactly to a discrete projection of a
2D array in image space. The inverse FRT of this (p + 1)× p array produces
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Chapter 3. Perfect Arrays

a p× p array with perfect 2D auto-correlation as it will inherit the correlation
properties of the projections (as shown in Fig. 3.5).

However, if all of the 1D impulses are positioned at the same location,
the back-projected reconstruction trivially produces a 2D impulse. Here we
construct arrays by back-projecting delta functions with amplitude p, making
Isum = p. From equation (3.4), the value of a given array site is given by sub-
tracting one from the number of delta function peaks along its back-projected
path. Each delta function peak will contribute p to the back projection, from
which we subtract Isum = p and then normalise by dividing by p.

Array entries of +2 correspond to positions in the image where back-
projected rays from three different projection angles intersect, as (3p− p)/p =
2. To minimise the number of 2s in the array, the impulses on each row of the
FRT must be translated to minimise the number of triple intersection points
between all back-projected rays. This will, in turn, minimise the number of
2s and hence the amount of zeros in the final array. We must also ensure
that we are not only producing arrays with perfect auto-correlations, but low
cross-correlations also. By randomly shifting delta functions between rows, it
is simple to produce a huge family of arrays with perfect auto-correlations,
but it is likely that the cross-correlation between family members will be poor
when their FRT patterns are too similar.

Controlled shifting of delta functions to ensure low cross correlation of
perfect arrays can be achieved by considering the intersection of back projected
rays. To this end, shifts of the form 〈αmn〉p can be applied to each row m with
α, n ∈ Z. We restrict 1 ≤ α ≤ p − 1 and (1 − p)/2 ≤ n ≤ (p − 1)/2 to avoid
repetition modulo p. For n < 0, we compute shift t for row m such that the
congruence mt ≡ 1 (mod p) is satisfied. The arrays in Radon space can then
be written as

Sp,α,n(t,m) = pδt,〈αmn〉p (3.6)

where δi,j is the Kronecker delta. This results in an impulse of height p in
FRT column t = 〈αmn〉p for each row m. The inverse FRT of equation (3.6)
will then produce a perfect array in image space FRT−1(Sp,α,n). Algorithm 2
outlines the method for producing p−1 perfect arrays of size p×p, using shifts
of the form t = 〈αmn〉p.

We wish to minimise the number of zeros in the final array for any prime
p. This, in turn, will restrict the range of array values. Algorithm 2 constructs
arrays limited to the alphabet {−1, 0, 1, 2} for n = −1 and n = 2. In the FRT,
each ray (m, t) is back-projected [49] as the line that passes through the image
points (x, y), where

t = 〈x−my〉p (3.7)

for 1 ≤ m ≤ p− 1. We want to ensure that the delta impulse from projection
m1 intersects with the delta impulse from projection m2 at a distinct point
(x, y) for each pair m1, m2. We let n = 2, and substitute t = αm2 into (3.7),
which gives

x = αm2
1 +m1y = αm2

2 +m2y
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Algorithm 2 Build p− 1 seed arrays.

1: function BuildSeedSet(p, n)
2: for α := 1 to p− 1 do
3: for t := 0 to p− 1 do
4: for m := 0 to p do
5: if t = 〈αmn〉p then
6: Sα(t,m)← p
7: else
8: Sα(t,m)← 0

9: Aα ← FRT−1(Sα)
return A

which intersects at

(x, y) = (−αm1m2,−α(m1 +m2)) . (3.8)

Alternatively we can take n = −1 and substitute t = αm−1 into (3.7) to
produce

x =
α

m1

+m1y =
α

m2

+m2y

which intersects at

(x, y) =

(
α

m1

+
α

m2

,
α

m1m2

)
. (3.9)

This shows that we get unique intersections between any pair of rays m1

and m2 for all non-degenerate values of α (mod p).
Suppose there exists another ray, m3. We can substitute t = αm2

3 into (3.7)
along with (3.8), or t = αm−13 and (3.9) to give (3.10) and (3.11) respectively.

αm2
3 + αm1m2 + αm3(m1 +m2) = 0 (3.10)

α

m3

− α

m1

− α

m2

+
α

m1m2

= 0 (3.11)

Both (3.10) and (3.11) have solutions m3 = m1 and m3 = m2, which
contradicts the existence of a direction m3 distinct from m1 and m2. Therefore
the values for 1 ≤ x ≤ p− 1 and 1 ≤ y ≤ p− 1 are from the set {−1, 0, 1}.

For x = 0, n = 2 gives 〈m1m2〉p = 0 from (3.8). This equation cannot
be satisfied for 1 ≤ m ≤ p − 1. Using (3.9), n = −1 results in 〈〈1/m1〉p +
〈1/m1〉p〉p = 0, which has (p − 1)/2 solutions. Along with R(0, 0) = p, this
back-projection therefore has sum 3p, and results in a +2 in the final array.

For y = 0, n = 2 gives 〈m1 + m2〉p = 0 from (3.8). There are (p − 1)/2
solutions which results in (p − 1)/2 +2 values. For n = −1, using (3.9) we
have 〈1/(m1m2)〉p = 0, which has no solution. When x = 0 and y = 0, the
final image value for A(0, 0) is 1 as we assigned t = 0 for both m = 0 and
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m = p. Therefore the arrays constructed through Algorithm 2 are restricted
to the alphabet {−1, 0, 1, 2} for n = −1 and n = 2.

Assigning projection m to have cyclic shift t = m2 or t = m−1 imposes
a strong symmetry on the FRT matrix, as each projection m has a negative
counterpart m′ = p − m = −m (mod p), and then m2 = m′2, and 1/m =
−1/m′. The “near-orthogonality” of these shift assignments is evident in the
“pseudo-Hadamard” matrix constructed from the p× p matrix product of the
shifted delta functions of the FRT, S, with the shifted impulses of its transpose,
shown as SST , in Fig. 3.6 a) for t = m2 and b) for t = m−1. We use the term
near-orthogonal to reference the fact that there are few non-zero elements that
lie off the diagonal of SST .

t→

m
↓

p 0 0 0 0 0 0
0 p 0 0 0 0 0
0 0 0 0 p 0 0
0 0 p 0 0 0 0
0 0 p 0 0 0 0
0 0 0 0 p 0 0
0 p 0 0 0 0 0
p 0 0 0 0 0 0

p2 0 0 0 0 0 0 p2

0 p2 0 0 0 0 p2 0
0 0 p2 0 0 p2 0 0
0 0 0 p2 p2 0 0 0
0 0 0 p2 p2 0 0 0
0 0 p2 0 0 p2 0 0
0 p2 0 0 0 0 p2 0
p2 0 0 0 0 0 0 p2

a) S7,1,2 S7,1,2S
T
7,1,2

t→

m
↓

p 0 0 0 0 0 0
0 p 0 0 0 0 0
0 0 0 0 p 0 0
0 0 0 0 0 p 0
0 0 p 0 0 0 0
0 0 0 p 0 0 0
0 0 0 0 0 0 p
p 0 0 0 0 0 0

p2 0 0 0 0 0 0 p2

0 p2 0 0 0 0 0 0
0 0 p2 0 0 0 0 0
0 0 0 p2 0 0 0 0
0 0 0 0 p2 0 0 0
0 0 0 0 0 p2 0 0
0 0 0 0 0 0 p2 0
p2 0 0 0 0 0 0 p2

b) S7,1,−1 S7,1,−1S
T
7,1,−1

Figure 3.6: FRT projection matrices for a 2D array built from 1D phase shifted
delta functions, for p = 7. a) n = 2. b) n = −1. The pseudo-orthogonality of these
phase shifts is shown on the right via the matrix product of their 2D FRT arrays.

Notice that all non-zero elements lie on either the diagonal or anti-diagonal
of SST . This means that only rows m and p − m can have the same shifts.
The arrays constructed from S7,1,2 and S7,1,−1 are shown in Fig. 3.7, along
with their auto- and cross-correlation.
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1 2 2 0 2 0 0
1 -1 1 -1 -1 0 1
1 1 -1 1 -1 -1 0
1 -1 -1 0 1 1 -1
1 -1 -1 0 1 1 -1
1 1 -1 1 -1 -1 0
1 -1 1 -1 -1 0 1

1 1 1 1 1 1 1
0 1 0 -1 -1 0 1
0 0 -1 1 1 -1 0
2 -1 -1 1 1 -1 -1
0 -1 1 0 0 1 -1
2 1 -1 -1 -1 -1 1
2 -1 1 -1 -1 1 -1

a) b)

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 49 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 -1 0 2 0 -1
0 0 0 1 -1 -1 1

-1 0 1 1 0 -1 0
0 1 1 4 0 0 1
2 -1 0 0 0 0 -1
0 -1 -1 0 0 2 0

-1 1 0 1 -1 0 0
c) d)

Figure 3.7: 7× 7 arrays reconstructed from: a) FRT−1(S7,1,2), b) FRT−1(S7,1,−1).
c) Auto-correlation of (a) and (b). d) Cross-correlation between (a) and (b).

3.2.2 Algorithm for Building Array Families

Families of prime p × p arrays with family size M = p2 − 1 can be built by
extending seed sets through affine transformations. Seed sets consisting of
p−1 perfect arrays are constructed using equation (3.6). We use p−1 distinct
linear multiples α of the shifts t = 〈αm2〉p and t = 〈αm−1〉p to construct two
seed sets of arrays, A1 and A2.

A1 = {FRT−1(Sp,α,2)|1 ≤ α ≤ p− 1}
A2 = {FRT−1(Sp,α,−1)|1 ≤ α ≤ p− 1}

Each of these arrays display perfect auto-correlation, and optimally low
cross-correlation between arrays within their respective seed sets. It is seen em-
pirically that combining these seed sets results in additional cross-correlation
levels, depending on p, that are slightly higher than the crosses within each
set (but still has MF � 1).

Affine transformations are then applied to the seed set A1 for each of the
p− 1 FRT angles θi,j = {(1, q)|1 ≤ q ≤ p− 1} to form the set AT . For angles
where (q2 + 1) mod p 6= 0, the affine transform coefficients are set to [a b; c d]
= [j −i; i j], which corresponds to an affine rotation. When q2+1 mod p = 0,
the affine rotation matrix has a zero determinant (modulo p), so an affine skew
is applied by setting [a b; c d] = [j i; i j].
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Finally, the array sets A1, A2 and AT are pooled together to form a set A
that will consist of M = (p−1)+ (p−1)+ (p−1)(p−1) = p2−1 arrays. Each
of these arrays will have perfect auto-correlation, and low cross-correlation
between all other family members.

Algorithm 3 Build family of p× p perfect arrays.

1: function PerfectArrayFamily(p)
2: A1← BuildSeedSet(p,−1)
3: A2← BuildSeedSet(p, 2)
4: n← 1
5: for α := 1 to p− 1 do
6: for m := 1 to p− 1 do
7: if 〈m2 + 1〉p = 0 then
8: ATα ← Affine(A1α,m, 1, 1,m)
9: else

10: ATα ← Affine(A1α,m,−1, 1,m)
return A← {A1, A2, AT}

A set of p2 − 1 equivalent arrays (up to translation) could be constructed
by affine transforming A2 instead of A1, or skewing all FRT angles for which
(q2 − 1) mod p 6= 0 and rotating when (q2 − 1) mod p = 0. The choice here
is arbitrary, and has no effect on the correlation properties of the final family
of arrays. However, applying affine transformations to both seed sets, or using
affine rotations and skews for all angles with a non-zero determinant will result
in duplicate arrays being produced in the family. This will result in poor cross-
correlation between a small fraction family members, where the MF is infinite
for identical arrays. These arrays would need to be removed through laborious
cross-correlation checking, as done in [66].

A distinguishing property of these arrays are the locations of the +2 values,
as they occur least frequently. For seed set arrays, the 2s lie along the first row
and column for n = 2 and n = −1 respectively, as seen in Fig. 3.7a,b. Under
the affine transformations applied to extend the family of arrays, the lines of
2s are shifted. They are either rotated or skewed (modulo p) and will lie along
a discrete line that wraps around the array. However, visually the +2 elements
appear to be randomly positioned under most affine transformations.

The computational complexity of constructing the seed arrays, as shown in
algorithm 2, is dominated by taking the inverse FRT of 2(p − 1) arrays. For
each of these arrays, the inverse FRT is of order O(p2 log p) [18], and therefore
the overall complexity of building seed arrays is O(p3 log p). To extend the seed
arrays, an affine transformation, O(p2), is applied to each of the 2(p−1) arrays
for (p− 1) FRT angles. Hence the computational complexity of extending the
seed arrays to form a family of p2 − 1 arrays is O(p4). Algorithm 3, which
builds a large family of perfect arrays, consists of building seed sets and then
applying affine transformations to them for each FRT angle, therefore has
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computational complexity of order O(p4). This is a significant improvement
on the O(p6) complexity in [66], where cross-correlation checking between all
pairs of the pooled arrays was required.

3.2.3 Histogram of Perfect Array Values

The structure of the perfect arrays in FRT space fixes the histogram of values
in image space. We assign variables h−, h0, h+ and h2 to the number of
grey elements −1, 0, +1 and +2 respectively in any p × p array. Using these
histogram counts we can write the following set of equations. Given a p × p
array, we know there are p2 elements in each array.

h− + h0 + h+ + h2 = p2 (3.12)

Each row in FRT space has sum p, therefore the array sum is always p.

(−1)h− + (0)h0 + (1)h+ + (2)h2 = p (3.13)

The peak of the auto-correlation is p2 by the balance theorem [34].

(−1)2h− + (0)2h0 + (+1)2h+ + (+2)2h2 = p2 (3.14)

Equations (3.12), (3.13) and (3.14) can be solved for h−, h0 and h+ in terms
of h2 and p to give the histogram counts for −1, 0 and +1 values.

h− = 1/2(p2 − p− 2h2) (3.15)

h0 = 3h2 (3.16)

h+ = 1/2(p2 + p− 6h2) (3.17)

The FRT translates, t, arrange the (p − 1) projections to give one triple
intersection per m and p−m, yielding (p−1)/2 elements with value +2 in the
final array, thus fixing h2 = (p − 1)/2. Hence any p × p array (with p prime)
made using the FRT with these values of t, where t = 〈m2〉p or t = 〈m−1〉p, will
have a fixed histogram for its element values, −1, 0, +1, +2, as {(p − 1)2/2,
3(p−1)/2, (p−1)2/2+1, (p−1)/2}. Affine transformations leave this histogram
unchanged as it is a unique reshuffling of the same array values.

The fixed histogram of element values permits quantification of the merit
factors for the periodic cross-correlation of these arrays. The merit factor
(MF) is defined as the square of the peak correlation value divided by the
sum of all p2 − 1 squared off-peak values. Perfect arrays are, by definition,
spectrally flat. All cross-correlations between pairs of spectrally flat arrays
are also spectrally flat by the convolution theorem, and hence those cross-
correlations are also perfect arrays themselves. The Fourier amplitudes are
constant at each frequency, hence they only differ by their phase.

The cross-correlation of two 2D arrays can be equally computed as the
cross-correlation of each 1D projection (row) in FRT space, as demonstrated
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in Fig. 3.5. The cross-correlation of two delta functions produces another
delta function, with its position shifted by the difference of the two original
delta functions. Since perfect arrays are constructed from 1D delta functions,
the cross-correlation of two arrays in FRT space is simply the difference of
the corresponding delta function shifts in each row. Therefore, the cross-
correlation of two perfect arrays is also a perfect array. However, it is not
guaranteed to consist of the same alphabet.

The lowest possible maximum value of any (normalised) cross-correlation
is 2, as it is a perfect array and it was shown in the construction of these arrays
that there is a back-projection will intersect at least 3 delta function peaks.
The sum of all array terms squared is always p2, hence µ0, the lowest possible
MF value, is given by µ0 = 22/(p2 − 22) = 4/(p2 − 4). The next possible
cross levels, µv, correspond to the resultant perfect array having a maximum
value of v+2, or having a back-projection that intersects v+3 delta functions.
Hence, the MF value is given by

µv =
(v + 2)2

p2 − (v + 2)2
. (3.18)

In practice, it is observed that the bulk of the intra-family cross-correlation
values are mainly of type µ1 and at most µ4.

3.2.4 Cross-Correlation Lower Bound

In [80], Welch established a lower bound on the maximum cross-correlation
value amongst a family of M sequences of length L with ideal auto-correlation.
The result aides the design of perfect array families, as it states how small the
cross-correlation and auto-correlation can simultaneously be. The maximum
cross-correlation between intra-family arrays is defined as

Cmax = max
f 6=g
|Cf,g(r, s)| . (3.19)

Welch treated correlations as a form of inner product in a multi-dimensional
vector space. The Cauchy–Schwarz inequality is invoked to produce the first
Welch bound, which is relevant to our application.

Cmax ≥
√

M − 1

ML− 1
(3.20)

The families of M = p2−1 perfect arrays can be viewed as sequences of length
L = p2 to use Welch’s lower bound, and yield the following result.

Cmax ≥
√

p2 − 2

p4 − p2 − 1
(3.21)

This bound assumes the auto-correlation of each array has a unitary peak,
Cf,f (0, 0) = 1. Without normalisation, perfect arrays have p2 auto-correlation
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peak, and vp cross correlation peak. Thus, adjusting the cross-correlation MF
levels from Sect. 3.2.3 requires vp/p2 to apply the Welch bound, so we write the
cross-correlation values are written as v/p for v = 2, 3, 4. Figure 3.8 plots v/p
against the Welch bound to show the difference between the cross-correlation
of these arrays and the theoretical limit. These families of arrays are above
the theoretical lower bound, but steadily approach it for large p.
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Figure 3.8: Welch bound with M = p2 − 1 and L = p2 plotted against maximum
correlation values v/p for v = 2, 3, 4 for p = 5 to 97.

3.3 Alternative Seed Sets

Algorithm 3 uses shifts of the form t = m2 and t = m−1 to construct families
of perfect arrays. These shifts were chosen as they minimise the number of
triple intersections between back-projected rays, thus minimising the number
of zeros in the final array. Other values of n can be used as the exponent
for the scaled t = mn shifts of impulses. Sp,α,n can be constructed using any
n ∈ Z, although setting n arbitrarily will not maintain the small alphabet of
{0,±1,+2} after back-projection. Therefore, we restrict n to cases where all
back-projected rays intersect no more than 3 of the shifted delta functions.
This ensures the maximum value of the back-projected array is no more than
2. Values of n that satisfy this property change for any given p, as projections
wrap cyclically, modulo p. Satisfactory exponents n are found by checking
the histogram of any sample array (as affine transformations do not alter the
histogram). An array with shifts t = 〈mn〉p can be back-projected and checked
relatively quickly to determine if the resultant array consists of values from the
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limited alphabet. If n is found to be a valid exponent, then all shifts t = α〈mn〉p
are valid.

Despite having the same alphabet as the n = 2 and n = −1 cases for
shifts of t = mn, identically constructed arrays for other values of n are not
guaranteed to have the same histogram. As the shifts for n = 2 and n = −1
were chosen to have a minimal number of zeros, other values of n will produce
more +2 elements and hence more sparse arrays. Just as the histogram for
n = 2 is always the same as that of n = −1, that of n is the same as for 1−n.
If we look at (3.2) for exponents n and n′ = 1− n, then for

n = 0, x = 1 +my ⇒ n′ = 1, x = m+my
n = 1, x = m+my ⇒ n′ = 0, x = 1 +my
n = 2, x = m2 +my ⇒ n′ = −1, mx = 1 +m2y
n = 3, x = m3 +my ⇒ n′ = −2, m2x = 1 +m3y
n = 4, x = m4 +my ⇒ n′ = −3, m3x = 1 +m4y

We are interested in the number of intersections at (x, y) in a p× p array.
Then, up to a cyclic shift, both sides of these equations will always be the same
(mod p), if we let the number of solutions for (x, y) interchange with (y, x).
We know that n = 0 or 1 will never satisfy the back-projection constraint, and
n = 2 always produces suitable arrays. Since the translates are symmetric after
n = (p−1)/2, we only need to look for exponents in the range 3 ≤ n ≤ (p−1)/2.

Figure 3.9 shows an example for p = 11, which has allowed shifts for n = 2, 3
and 4 (and therefore n = −1,−2 and − 3). The cross-correlation between
FRT−1(S11,1,2) and FRT−1(S11,1,3) is displayed in Fig. 3.9d, which is of type µ1.
It should be noted that the properties for |n| > 2 are experimentally observed.
Similar results to the p = 11 example are also experimentally observed for all
tested primes, but this remains to be proved.

The histogram counts for the values {−1, 0,+1,+2} are {50, 15, 51, 5} and
{40, 45, 21, 15} for n = 2 and 3 respectively. For p = 11, n = 3 and 4 have the
same histograms, and therefore so too will n = −2 and −3. From Fig. 3.9,
it can be seen that there are fewer 0 and 2 elements for n = 2 as predicted.
However, the array constructed by S11,1,3 is far from sparse, as the majority of
values are still non-zero. We have not yet found any array constructed using
this method that is dominated by zero values.

These alternate seed sets can also be extended using affine transformations
to give an additional p2 − 1 arrays for each (n, 1 − n) pair. These alternate
families introduce higher cross-correlation levels to those shown in Sect. 3.3,
as their histograms differ. Using p = 11 as an example, the family generated
by S11,α,2 and S11,α,−1 has 3 cross levels: µ0 = 0.0342, µ1 = 0.0804 and µ2 =
0.1524. The family from S11,α,4 and S11,α,−3 has 4 cross levels: µ0, µ1, µ2

and µ3 = 52/(p2 − 52) = 0.2604. Using S11,α,3 and S11,α,−2 as seed sets, the
constructed family also has 4 cross levels: µ0, µ1, µ2 and µ4 = 62/(p2 − 62) =
0.4235. These families can be pooled to produce a larger family of 3(p2− 1) =
360 arrays with perfect auto-correlation and 5 cross-correlation levels. Table
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1 2 0 2 2 2 0 0 0 2 0
1 1 1 -1 -1 -1 1 -1 0 1 -1
1 -1 1 1 1 -1 -1 -1 1 -1 0
1 -1 -1 -1 1 -1 0 1 -1 1 1
1 1 -1 -1 -1 1 -1 0 1 -1 1
1 -1 0 1 -1 1 1 1 -1 -1 -1
1 -1 0 1 -1 1 1 1 -1 -1 -1
1 1 -1 -1 -1 1 -1 0 1 -1 1
1 -1 -1 -1 1 -1 0 1 -1 1 1
1 -1 1 1 1 -1 -1 -1 1 -1 0
1 1 1 -1 -1 -1 1 -1 0 1 -1

1 1 1 1 1 1 1 1 1 1 1
0 0 2 0 -1 -1 -1 -1 0 2 0
2 0 -1 1 -1 0 0 -1 1 -1 0
0 0 -1 2 0 -1 -1 0 2 -1 0
0 -1 0 0 -1 2 2 -1 0 0 -1
0 -1 0 -1 2 0 0 2 -1 0 -1
2 1 0 -1 0 -1 -1 0 -1 0 1
2 -1 -1 0 1 0 0 1 0 -1 -1
2 -1 1 0 0 -1 -1 0 0 1 -1
0 2 -1 -1 0 0 0 0 -1 -1 2
2 0 0 -1 -1 1 1 -1 -1 0 0

a) b)

1 2 0 2 2 2 0 0 0 2 0
1 0 0 1 0 -1 -1 2 -1 -1 0
1 0 -1 0 -1 -1 0 -1 0 1 2
1 -1 2 -1 1 0 0 -1 -1 0 0
1 -1 0 0 -1 1 -1 0 2 0 -1
1 1 -1 -1 0 0 2 0 0 -1 -1
1 1 -1 -1 0 0 2 0 0 -1 -1
1 -1 0 0 -1 1 -1 0 2 0 -1
1 -1 2 -1 1 0 0 -1 -1 0 0
1 0 -1 0 -1 -1 0 -1 0 1 2
1 0 0 1 0 -1 -1 2 -1 -1 0

1 -1 3 -1 -1 0 0 -1 1 0 -1
1 1 0 -1 -1 1 0 0 0 0 -1

-1 -1 1 -1 -1 2 0 1 0 0 0
0 1 1 1 0 1 -1 0 -1 -1 -1

-1 -1 -1 0 1 1 1 0 1 -1 0
2 0 0 3 1 2 1 1 1 0 0
0 0 0 -1 1 1 0 -1 -1 1 0

-1 3 -1 -1 0 0 -1 1 0 -1 1
0 0 -1 1 1 0 -1 -1 1 0 0

-1 -1 -1 -1 -1 3 1 0 -1 1 1
0 -1 -1 1 0 0 0 0 -1 1 1

c) d)

Figure 3.9: 11× 11 arrays. a) FRT−1(S11,1,2) b) FRT−1(S11,1,3) c) FRT−1(S11,1,4)
d) Cross-correlation between (b) and (c).

3.1 shows the fraction of each cross level in all cross-correlations between family
members. This is done for each of the three (n, 1 − n) pairs of seed sets, and
then the combined family of 3(p2 − 1) arrays for p = 11.

The mean cross-correlation for each of these families is 0.0846, 0.0998,
0.0879 and 0.1049, respectively. Therefore, their average performance is sim-
ilar, but a marginally wider spread of possible cross-correlation values arises
from seed families arising from (n, 1− n) pairs, where |n| > 2.

3.3.1 4N − 1 and 6N − 1 Primes

When a prime p can be written as 4N − 1, where N ∈ N, the family of arrays
produced by Sp,α,4 along with Sp,α,−3 has been seen experimentally to always
satisfy the back-projection constraint to produce arrays with the alphabet
{0,±1,+2}. Similarly, when p is a 6N − 1 prime, the pair Sp,α,3 and Sp,α,−2
also produce a family of arrays with the required restricted alphabet. This was
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Table 3.1: Cross-correlation levels and their fractional frequencies in seed sets for
p = 11.

Seed Sets µ0 µ1 µ2 µ3 µ4

0.0342 0.0804 0.1524 0.2604 0.4235

S11,α,{2,−1} 0.0924 0.7899 0.1176 0 0
S11,α,{3,−2} 0.1765 0.5042 0.3025 0 0.0168
S11,α,{4,−3} 0.2437 0.5714 0.1345 0.0504 0
Pooled Sets 0.0752 0.5980 0.2934 0.0279 0.0056

seen in the example for p = 11, as this is both a 4N − 1 and 6N − 1 prime.

Table 3.2: Array histograms for 4N − 1 and 6N − 1 primes.

n = 2 n = 3 n = (p+1)
4

n = (p+1)
4

n = (p+1)
3

n = (p−3)
2

n = (p−3)
2

for all p p = 6N − 1 p = 8N − 1 p = 8N − 5

h−
(p−1)2

2
(p2−1)

3
3(p2−1)

8
(3p−1)(p−1)

8

h0
3(p−1)

2
(p−1)(p−2)

2
3(p−1)(p−3)

8
3(p2−1)

8

h+
(p−1)2

2
+ 1 2p− 1 (p2+16p−9)

8
(p+1)(p+3)

8

h2
(p−1)

2
(p−1)(p−2)

6
(p−1)(p−3)

8
(p2−1)

8

In these cases, the arrays also have predictable histograms for particular
exponents mn. For n = 3 and n = (p+1)/3, which requires p = 6N−1 so that
p+ 1 is always divisible by 3, we find h2 = (p− 1)(p− 2)/6. For n = (p+ 1)/4
and n = (p − 3)/2 we have two cases of p = 4N − 1 primes, p = 8N − 1 and
p = 8N − 5 primes. Primes of the form p = 8N − 1 give h2 = (p− 1)(p− 3)/8
and p = 8N − 5 primes result in h2 = (p2− 1)/8. Equations (3.15), (3.16) and
(3.17) are used to obtain the histogram counts for h−, h0 and h+, as in Table
3.2.

In general, the n = 3 case has the largest number of zero elements in the
array because there are (p+1)/3 triple intersects, being less for (p+1)/4 or any
higher n. This is always higher than the n = 2 case, as there are intersections
of three rays occurring inside the array as well as along the top row. There
are less than 50% zeros in these arrays for any size p as the maximum fraction
of zero elements is (p− 2)(p− 1)/(2p2) < 1

2
.
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3.4 Perfect Array Applications

In this section, we outline some applications for our perfect arrays. We focus
on three broad areas of application: watermarking, encryption and communi-
cations. Since this work does not focus on methods for implementing sequences
with low correlation, we shall use rather naive methods as a proof of concept.

3.4.1 Watermarking

Watermarking involves embedding markers into media, usually for the purpose
of identification. The first examples of digital watermarks were presented in
[71, 75]. Highly correlated arrays with a small alphabet are perfect for this
application, as they minimally perturb the signal they are embedded into, and
are easy to identify. Ideally, watermarks should not be visually identifiable, as
to not disrupt consumption. In the case of images, humans are not capable of
visually detecting slight changes in the pixel values unless the image is very
flat. For most images, this is not an issue. In Fig. 3.10, we have taken a
256 × 256 image and added a 251 × 251 perfect array into it. It is nearly
impossible to visually detect the change.

a) b) c)

Figure 3.10: a) Original 256× 256 cameraman image. b) 251× 251 perfect array.
c) Cameraman test image with perfect array added.

The watermark can easily be identified using a simple cross-correlation
operation. In Fig. 3.11, we have taken the cross-correlation of the 251 ×
251 perfect array, and the embedded image. The graphs represent line-traces
through the cross-correlated images. A sharp peak is revealed with a value of
121412. The next highest value is 61995, making the centre of the watermark
easily identifiable. For reference, the aperiodic auto-correlation of the perfect
array is also shown. Here, the watermark was embedded directly into the
image additively. However, this could be embedded through other methods,
such as blocks in Fourier space. It is also not necessary to have the array be
the same size as the image. Although a larger array will yield a stronger peak.
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It is highly favourable to have a large family of watermarks that can each
be identified on their own, but bear little resemblance to each other. Each
array can then be used to mark its own image, and each array cannot find the
embedded watermarks in other images. If a different array in the family was
correlated with our embedded image, we would not see the peak in Fig. 3.11b.
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a) b)

Figure 3.11: a) Aperiodic auto-correlation of perfect array. b) Cross-correlation
of perfect array and cameraman image with embedded watermark.

3.4.2 Encryption

Perfect arrays can also be used for the purpose of encryption. These arrays
can act as keys used to scramble and then decipher data. Consider again the
cameraman image. If we take the cross correlation of the image with a perfect
array, we produce an incomprehensible image with useless information (Fig.
3.12b). Applying the inverse operation with the same key yields the original
image (i.e. a replica of Fig. 3.12a). However, if another key is applied, a
similarly incoherent image is produced, shown in Fig. 3.12c.

The dissimilarity of each array in a family means that every other key will
return similarly useless data. Similar to the implementation of watermarks,
the process can be carried out in other domains of the image, such as Fourier
space. In practice, these arrays may form a part of a larger encryption scheme.

3.4.3 Multiple Access Communication

Consider a wireless communications system with multiple users communicating
simultaneously. We need to ensure that all information arrives correctly at its
intended destination, and not get mixed up with other users’ signals. One
way of doing this is to assign communicating users their own frequency band.
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a) b) c)

Figure 3.12: a) Original 256× 256 cameraman image. b) 251× 251 perfect array.
c) Cameraman test image with perfect array added.

However, this option is rather limited by the number of possible frequency
bands.

Multiplexing is a broad term used to describe any system that allows com-
bined signals to be transferred over the same medium. Many multiplexing
technologies use a similar approach, which is to assign each user a unique
code, which is then used to modulate the original data. Once this data has
been modulated by the code, it can be combined with data from other users
for communication. The receiver can then use the code to extract the relevant
information from the combined signal.

If this data is packaged and sent simultaneously, the design of the codes can
be simple. However, in the case of mobile phones communicating for example,
users are not synchronising the time at which they make calls. Therefore,
we need a way to identify the which portion of the signal is relevant before
decoding. This is where sequences with low correlation are vital. If a sequence
with low-off peak correlation is used to modulate the data, a cross correlation
can be performed to find the start of the relevant part of the signal. A large
number of low-correlation sequences is required, each bearing little similarity,
so that the cross-correlation does not mistakenly identify the wrong signal,
such as those presented in [37]. The families of arrays presented in this work
are highly suited to this application due the large number of possibilities and
small alphabet.

3.5 Legendre Arrays

Up to this point, we have considered families of arrays which were constructed
by back-projecting delta functions through the FRT. For the original and high-
est performing case of n = 2, the back-projected values depend on whether or
not the ray passes through a point with a quadratic shift. Therefore, the arrays
that are made up of quadratic residue sequences are various cyclic shifts. In
this section, we use this formulation of perfect array families to generalise the
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construction to any number of dimensions.

3.5.1 Legendre Sequences

The Legendre symbol, written
(
a
p

)
, is a function with values −1, 0, 1, depend-

ing on whether a is a quadratic residue of prime number p.

(
a

p

)
=


0 if p|a
+1 if a is a quadratic residue mod p

−1 if a is a quadratic non-residue mod p

(3.22)

These values are periodic, and repeat with period p. This sequence of length
p is called the Legendre sequences. The Legendre sequence can alternatively
be written as

l(k) = k(p−1)/2 mod p (3.23)

where we take the quadratic residue of smallest magnitude. Below are two
examples of Legendre sequences for p = 7 and p = 11 respectively. These are
the sequences that make up each row of the n = 2 perfect array seed sets in
Figs. 3.7 and 3.9.

l7 = {0, 1, 1,−1, 1,−1,−1}
l11 = {0, 1,−1, 1, 1, 1,−1,−1,−1, 1,−1}

We now present some properties of Legendre sequences which will be used in
constructing perfect arrays. The Legendre sequence has an offset delta function
auto-correlation, with peak p− 1 for zero relative shift and −1 elsewhere. The
auto-correlation c(t) is given by

c(t) =

p−1∑
n=0

l(n)l(n+ t) (3.24)

= pδ(t)− 1

Legendre sequences are comprised of (p − 1)/2 instances of both +1 and −1,
and one zero value. Hence, Legendre sequences must sum to zero.

p−1∑
n=0

l(n) = 0 (3.25)

Using this, we can find the cross-correlation of a Legendre sequence with itself
shifted by a constant a.

c(t) =

p−1∑
n=0

l(n)(l(n+ t) + a) (3.26)
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=

p−1∑
n=0

l(n)l(n+ t) + a

p−1∑
n=0

l(n)

= pδ(t)− 1

Hence the result is the same as the auto-correlation. If we add this constant
to both sequences, we get

c(t) =

p−1∑
n=0

(l(n+ t) + a)(l(n+ t) + a) (3.27)

=

p−1∑
n=0

(l(n)l(n+ t) + al(n) + al(n+ t) + a2)

= pδ(t)− 1 + pa2

The resultant sequence is equal to the auto-correlation shifted by the constant
term pa2. We can now use these properties to investigate how the Legendre
sequence can be generalised to higher dimensions.

3.5.2 2D Legendre Arrays

We define the 2D Legendre array as

l(m,n) = (n−m2)(p−1)/2 mod p+ δ(m) (3.28)

This can also be written in terms of a Legendre sequence.

l(m,n) = l(n−m2) + δ(m) (3.29)

Therefore, in 2D, we have arrays where each row is shifted quadratically, and
+1 is added to the first row. This gives us the same perfect arrays as con-
structed by the FRT. Given that we can write these 2D arrays in terms of the
1D sequences, we use the properties given in Section 3.5.1 to show that the 2D
auto-correlation is

c(s, t) =

p−1∑
m=0

p−1∑
n=0

l(m,n)l(m+ s, n+ t) (3.30)

=

p−1∑
m=0

p−1∑
n=0

(l(n−m2) + δ(m))(l(n+ t− (m+ s)2) + δ(m+ s))

=

p−1∑
m=0

[
p−1∑
n=0

l(n−m2)l(n+ t− (m+ s)2) +

p−1∑
n=0

δ(m)δ(m+ s)

+

p−1∑
n=0

δ(m)l(n+ t− (m+ s)2) +

p−1∑
n=0

δ(m+ s)l(n−m2)

]
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=

p−1∑
m=0

[
pδ(m)δ(s) +

p−1∑
n=0

l(n−m2)l(n−m2 + t− 2ms− s2)
]

= pδ(s) +

p−1∑
m=0

(pδ(s2 + 2ms+ t)− 1)

We now check the following 3 cases: For s = t = 0,

c(0, 0) = p+

p−1∑
m=0

(p− 1) = p2. (3.31)

For s = 0, t 6= 0,

c(0, t) = p+

p−1∑
m=0

−1 = 0. (3.32)

For s 6= 0, t 6= 0,

c(s, t) =

p−1∑
m=0

(pδ(s2 + 2ms+ t)− 1). (3.33)

Solving for the discriminant, 4m2− 4t = 0, gives m2 = t (mod p). Hence there
is one solution and (3.33) becomes

c(s, t) = p− 1 +
∑
m2 6=t

−1 = (p− 1) + (p− 1)(−1) = 0. (3.34)

Therefore, l(m,n) has ideal auto-correlation.
An interesting property of the Legendre array is that a 1:1 affine rotation

always yields a symmetric matrix. The 1:1 affine rotation of a Legendre array
is given by

l(m,n) = (m+ n− (m− n)2)(p−1)/2 mod p+ δ(m− n) (3.35)

= (n+m− (n−m)2)(p−1)/2 mod p+ δ(n−m)

= l(n,m)

Hence, for all p, we can generate p − 1 symmetric Legendre arrays given by
each of the seed arrays

l(m,n) = (n− αm2)(p−1)/2 mod p+ δ(m) (3.36)

for 1 ≤ α ≤ p− 1.
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3.5. Legendre Arrays

3.5.3 Legendre Arrays in Higher Dimensions

We begin this section by showing that we can construct similar Legendre arrays
in three dimensions, and then generalise this process to higher dimensions. The
3D Legendre array is given by

l(m,n, k) = (n−m2 − k2)(p−1)/2 mod p+ p1/2δ(m)δ(k) (3.37)

= l(n−m2 − k2) + p1/2δ(m)δ(k) (3.38)

The auto-correlation for the 3D array is

c(s, t, u) =

p−1∑
k=0

p−1∑
m=0

p−1∑
n=0

[
(l(n−m2 − k2) + p1/2δ(m)δ(k)) (3.39)

(l(n+ t− (m+ s)2 − (k + u)2) + p1/2δ(m+ s)δ(k + u))
]

=

p−1∑
k=0

p−1∑
m=0

[
p−1∑
n=0

l(n−m2 − k2)l(n+ t− (m+ s)2 − (k + u)2)

p−1∑
n=0

pδ(m)δ(k)δ(s)δ(u)

]

=p2δ(s)δ(u) +

p−1∑
k=0

p−1∑
m=0

[
pδ(s2 + u2 − 2ms− 2ku+ t)− 1

]
We now check the following scenarios. For s = t = u = 0,

c(0, 0, 0) = p2 +

p−1∑
k=0

p−1∑
m=0

(p− 1) (3.40)

= p3.

For s = u = 0, t 6= 0,

c(0, t, 0) = p2 +

p−1∑
k=0

p−1∑
m=0

(pδ(t)− 1) (3.41)

= p2 +

p−1∑
k=0

p−1∑
m=0

(−1)

= 0.

For s 6= 0, t 6= 0, u = 0, and using equation (3.34),

c(s, t, 0) =

p−1∑
k=0

p−1∑
m=0

(pδ(s2 + 2ms+ t)− 1) = 0. (3.42)
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The case for s = 0, t 6= 0, u 6= 0 is similar. For s 6= 0, t 6= 0, u 6= 0,

c(s, t, u) =

p−1∑
k=0

p−1∑
m=0

[
pδ(s2 + u2 − 2ms− 2ku+ t)− 1

]
(3.43)

The discriminant of s2 + u2 − 2ms− 2ku+ t in s is

m2 − t+ 2ku− u2 = 0.

Then the discriminant of this equation in u is k2 +m2− t = 0 or t = m2 + k2.
Thus, we have

c(s, t, u) =

p−1∑
k=0

p− 1 +
∑

t6=m2+k2

(−1)

 (3.44)

=

p−1∑
k=0

[p− 1 + (p− 1)(−1)]

= 0.

Therefore, l(m,n, k) had ideal auto-correlation in 3D.
In 3D, we have quadratic shifts to the Legendre sequence in both the rows

and as we move through 3D planes. Also, instead of adding 1 to the first row,
we now add p1/2. As we demonstrated, this value is needed to balance the
auto-correlation. Note that we still only add this value to one row, which is in
the first slice in 3D. In subsequent 3D planes, the top row does not need this
value added. This is illustrated in Fig. 3.13.

√
5
√

5 + 1
√

5− 1
√

5− 1
√

5 + 1
1 0 1 −1 −1
1 −1 −1 1 0
1 −1 −1 1 0
1 0 1 −1 −1

k = 0
1 0 1 -1 -1

-1 1 0 1 -1
0 1 -1 -1 1
0 1 -1 -1 1

-1 1 0 1 -1

1 -1 -1 1 0
0 1 -1 -1 1

-1 -1 1 0 1
-1 -1 1 0 1
0 1 -1 -1 1

1 -1 -1 1 0
0 1 -1 -1 1

-1 -1 1 0 1
-1 -1 1 0 1
0 1 -1 -1 1

1 0 1 -1 -1
-1 1 0 1 -1
0 1 -1 -1 1
0 1 -1 -1 1

-1 1 0 1 -1
k = 1 k = 2 k = 3 k = 4

Figure 3.13: 3D Legendre array for p = 5.

A similar argument can be used to generalise this construction to any num-
ber of dimensions. Let c(s1, . . . , sn) be the auto-correlation of an n-dimensional
Legendre array. When s1 = · · · = sn = 0, then c(0, . . . , 0) = pn by definition.
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3.6. Summary

When s1, . . . , sn are all non-zero, we get a similar recursion of quadratic dis-
criminants to solve, as in equation 3.43. All other cases will already be solved
in a lower dimension, as with 3.42.

Accordingly, Legendre arrays can be generalised to n-dimensions through
cumulative quadratic shifts along each dimension.

l(k,m1, . . . ,mn−1) = (k − α1m
2
1 − · · · − αn−1m2

n−1)
(p−1)/2 mod p

+ p(n−2)/2δ(m1, . . . ,mn−1) (3.45)

Since α1, . . . , αn−1 can vary independently, this produces (p − 1)n−1 nD ar-
rays. In nD, we add p(n−2)/2 to the first row of the array to balance the
auto-correlation. These initial arrays can again be extended to large families
through the use of affine transformations and transpositions to periodically
shuffle the values, but maintain the perfect correlation properties. This is
achieved by performing 2D affine transformations along planes of the nD ar-
rays. For example, in 3 dimensions, we are able to apply transformations of
the following form. k′m′1

m′2

 =

r1 ±1 0
1 r1 0
0 0 1

r2 0 ±1
0 1 0
1 0 r2

1 0 0
0 r3 ±1
0 1 r3

 k
m1

m2

 (3.46)

This allows us to construct nD families of arrays with prime side length p at
least of order O(pn).

3.6 Summary

This chapter presented discrete projection-based methods to construct families
of perfect p × p arrays with a fixed alphabet of {0,±1,+2}. The FRT was
employed to back-project ensembles of shifted Kronecker deltas to reconstruct
a 2D array that inherits the ideal auto-correlation properties of the Kronecker
delta. Each discrete impulse has translate t for projection angle m of the form
t = mn or m1−n for chosen values of n. The exponent n is selected to restrict
the alphabet of array elements, but also to fix the frequency with which each
element occurs in each of the M p× p arrays.

Seed families of these p× p arrays of size p− 1 can be constructed for each
power n. Each family has perfect auto-correlation and exhibits the optimally
low cross-correlation level between all array pairs. Seed sets using translations
defined by n = 2 and n = −1 can be constructed for any prime p.

Affine transformations are then applied to these seed sets, using transform
coefficients determined by p− 1 discrete angles of the FRT. This extends seed
sets to a family of M = p2 − 1 arrays. The extended family cross-correlation
values span either two or three of the lowest possible levels. The merit factors
for these cross-correlations levels are given by v2/(p2− v2), for v = 2, 3 and 4.
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Chapter 3. Perfect Arrays

Multiple families of size p2 − 1 may be made for a given p, using other
values of n, with its 1 − n pair. To limit the number of zeros in the arrays,
we limit the allowed shifts to those which maintain the restricted alphabet of
{0,±1,+2}. Pooling of these extended families permits even larger families
of size M = k(p2 − 1), where k is the number of extended families that are
pooled. As M increases, the range of cross-correlation levels between family
member pairs also slowly increases. We monitor the distribution of these cross
levels and measure the mean merit factor for each family size M .

For the extended families of size M = k(p2−1), the span of cross-correlation
values can be reduced, for example, from 5 levels to 4 levels. We can do this by
once again resorting to checking the crosses between arrays and removing one
array of each pair that results in a level 5 cross. Then p2−1 < M < k(p2−1).

This filtering process can be accelerated by forming simple arithmetic dif-
ferences between each row of the FRT for every pair of arrays and then counting
the number of differences greater than a selected threshold. A co-occurrence
matrix of the difference values can be used to filter out one of each array pair
that were too closely matched. This method is quite robust and much faster
than computing the actual cross-correlation values in the spatial domain.

The families of arrays presented in this work sit above the Welch bound
for the maximum cross-correlation between sets of arrays with perfect auto-
correlation. These grey array families of size p × p with p prime, span a
very large range of M and we can control the changes in the corresponding
correlation levels as M increases.

At this juncture, each shift exponent must be tested to determine if it
satisfies the back projection constraint of no more than three intersecting rays.
It would be useful to have an immediate way of determining the set of shifts
that are valid for a given n at each prime p.

This work focused on families of perfect arrays with the limited elements
{−1, 0,+1,+2}. We can equally well use the same delta-function FRT con-
struction to produce perfect arrays with elements −1 to 3, −1 to 4 and −1
to gmax. It is sufficient to check the histogram of one example p × p array
produced by FRT deltas placed at tn to ensure that all of the family members
produced by αtn, and under all subsequent affine rotations and skews, will
have the same fixed range of elements, even though the histogram distribution
may change for different powers. We can thus plan to further extend the size
of our families by pooling perfect arrays that come from different histogram
distributions with values greater than 2.

The number of powers that build perfect arrays is also observed to depend
strongly on the prime p. Some primes are very prolific in the number of powers
that they support for a given alphabet. For example, p = 47, 59 and 83 (all
4N − 1 and 6N − 1 primes) each have 18 (9 positive and 9 negative) powers
where each power produces families of −1 to +2 perfect arrays. Prime 83 also
provides a total 40 powers to make −1 to +3 arrays and 20 powers to make
−1 to +4 arrays. Prime 101 (4N + 1 and 6N − 1) has just 6 powers for −1
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to +2 arrays, but has 34 powers that produce −1 to +4 arrays and 16 powers
that make families of −1 to +5 perfect arrays.

Including larger valued elements requires more zeros in each array (each 5
element in an array incurs 52 − 1 = 24 zeros). However, we have not observed
any arrays where the total number of zeros occupy more than 50% of the
array size. The cross-correlation MF within and between these array families,
as experimentally observed, become just slightly larger as the range of array
grey levels increases and is still � 1. Families of perfect arrays with elements
ranging from −1 to gmax is the subject of future work.

The construction of perfect arrays can be generalised to n-dimensions
through cumulative quadratic shifts of Legendre arrays along each dimension.
As there are scaling constants with each shift can vary independently, it is
possible to produce (p − 1)n−1 nD arrays. These initial arrays can again be
extended to large families through the use of affine transformations and trans-
positions. This is achieved by performing 2D affine transformations along
planes of the nD arrays. The exact number of possible transformations that
can be applied in n-dimensions is not currently known, though we have pro-
vided a lower bound. Finding a unique way to extend the number of arrays as
much as possible will be the focus of forthcoming research.
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CHAPTER 4

Maximal and Boundary Ghosts

Discrete tomography reconstructs an image of an object on a grid from its
discrete projections along relatively few directions. When the resulting system
of linear equations is under-determined, the reconstructed image is not unique.
Ghosts are arrays of signed pixels that have zero sum projections along these
directions, they define the image pixel locations that have non-unique solu-
tions. In general, the discrete projection directions are chosen to define a
ghost that has minimal impact on the reconstructed image. Here we construct
binary boundary ghosts, which only affect a thin string of pixels distant from
the object centre. This means that a large portion of the object around its
centre can be uniquely reconstructed. We construct these boundary ghosts
from maximal primitive ghosts, configurations of 2N connected binary (±1)
points over N directions. Maximal ghosts obfuscate image reconstruction and
find application in secure storage of digital data. Much of the work presented
in this chapter is published in [14].

Discrete tomography studies the reconstruction of points on a grid from their
discrete line sums, as introduced in Chapter 2. Computerized tomography
generally requires many projections to recover accurate reconstructions. How-
ever, by using the knowledge that the reconstruction consists of a discrete set,
we can determine the values of points that would not otherwise be recoverable.
Approximate but accurate discrete reconstructions can be made from a rela-
tively small amount of projection information. For this reason, and due to the
discrete nature of digital systems, discrete tomography algorithms have found
use in image processing, electron microscopy and data security [19, 40, 54, 74].
Discrete tomography can exactly reconstruct data points from the discrete line
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sums given sufficient projection information, if the data is inherently discrete
and there is no noise present. Hence one can treat projections as a mathemat-
ical basis for representing higher dimensional data. For this reason, discrete
tomography finds application beyond tomographic imaging applications.

In what follows we consider the case of 2D discrete projections. Define a
P × Q grid A = {(i, j) ∈ Z2 : 0 ≤ i < P, 0 ≤ j < Q}. A lattice direction
v = (p, q) where p, q ∈ Z and gcd(p, q) = 1, is used to define a discrete line
jp = iq + b across the lattice, where b ∈ Z. A discrete projection is defined as
the set of all line sums along a lattice direction (p, q). By a result of Katz [47],
for a finite set of lattice directions S = {(pn, qn) | n = 1, . . . , N}, any P × Q
image I : A → R can be reconstructed in the absence of noise if and only if

P ≤
N∑
n=1

|pn| or Q ≤
N∑
n=1

|qn|. (4.1)

In this case, the image is uniquely determined by the discrete projections and
can be reconstructed efficiently [27, 51, 52]. For a more detailed discussion,
refer back to Section 2.4.

We call a set of directions valid if
∑N

n=1 |pn| < P and
∑N

n=1 |qn| < Q. In
this case the system of linear equations defined by the discrete projections is
under-determined. Whilst parts of the image may be exactly reconstructed
from a valid projection set, a non-empty subset of the image points will have
indeterminate values. These indeterminate values are characterised by ghosts,
also known as switching circuits, phantoms, or bad configurations.

A ghost G : A → R is a function which has zero sum projections for
all parallel rays along every direction in S. By the ghost domain of G we
mean the set of points of A where G assumes a nonzero value. They can
be generated and characterized algebraically through products of polynomials
using the framework established in [44]. For example, the following matrix
represents a ghost G for the directions S = {(1, 0), (0, 1), (2, 1), (1, 2)}.

0 0 0 −1 +1
0 +1 −1 +1 −1
0 −1 +2 −1 0
−1 +1 −1 +1 0
+1 −1 0 0 0


By Katz’s result, the (rectangular) size of a ghost domain for a set of lattice

directions S = {(pn, qn) | n = 1, . . . , N} must be at least 1 +
∑N

n=1 |pn| by 1 +∑N
n=1 |qn|. A ghost that reaches these lower bounds is referred to as a primitive

ghost (Fig. 4.1a). The Katz criterion (4.1) can be interpreted geometrically
via primitive ghosts. If a primitive ghost can fit within a given grid, then
the image values on that grid cannot be reconstructed uniquely. Apart from
a multiplicative factor and a shift the primitive ghost is unique. Conversely,
every ghost is a linear combination of shifts of a primitive ghost (Fig. 4.1b).
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Chapter 4. Maximal and Boundary Ghosts

The image values of points of the grid A which are not in the domain of any
primitive ghost are uniquely determined by the discrete projections. In the
matrix of a ghost, the position of the uniquely determined image values have
a ghost value of zero. This follows from the theory presented in [44].

 0 −1 +1 0
+1 −1 +1 −1
0 −1 +1 0




0 −1 +1 0
1 −2 +2 −1
1 −2 +2 −1
0 −1 +1 0


a) b)

Figure 4.1: Ghosts for the directions S = {(1, 0), (1, 1), (1,−1)}. a) Primitive
ghost. b) Non-primitive ghost, constructed as a linear combination of shifts of the
primitive ghost in (a).

For many discrete tomography applications, the aim is to minimise the
number of ghost points [76]. For wrapped 2D periodic projections on arrays,
minimal ghosts along N co-planar directions can be constructed using N posi-
tive and N negative points for any prime-sized array [67]. However, throughout
this chapter, we consider the more common situation of unwrapped (aperi-
odic) projections. In this case, minimal ghosts with 2N points only occur for
N = 1, 2, 3, 4 and 6 [2, 31]. For other N , more than 2N ghost points are
required and ghosts have been constructed with close to 2N points [1, 9, 67].
A primary aim of this chapter is to construct a primitive ghost with a large
empty interior so that the central part of the image can be reconstructed.

For some applications, such as watermarking, encryption and secure dis-
tributed data storage, it can be favourable that the number of ghost points is
large [4, 5, 41]. For example, this can be useful if a group has shared informa-
tion, but no proper subset of the group should have access to the information.
In such a case directions are taken such that there is enough information for
exact reconstruction, but that every proper subset of directions is valid. The
goal is that if any single server is compromised or any participant is missing,
minimal information can be recovered [54].

By construction, a ghost for N directions can have at most 2N points.
We call a ghost maximal if it is primitive and has exactly 2N points. An
example of a maximal ghost for the projection set with zero projections for
the set S = {(1, 0), (1, 1), (−1, 1), (−3,−1), (−1,−3)} is shown in Fig. 4.2a.
If a ghost is maximal, then all ghost values of points in the ghost domain
are +1 or −1. The notion of a maximal ghost was presented in [65], but
a general method for constructing them was not known at the time. In this
chapter we present a recursive sequence of directions to create maximal ghosts.
Since reconstruction is not unique at ghost points, the amount of information
which can be reconstructed when a server or participant is missing is minimal.
We derive several properties of maximal ghosts. Geometrically, these ghosts
resemble fractals and form tilings that are closely related to rep-tiles [36].
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a) b)

Figure 4.2: Ghosts with zero projections for the set S = {(1, 0), (1, 1), (−1, 1),
(−3,−1), (−1,−3)}. Dark and light squares indicate −1 and +1 respectively. a)
Maximal ghost. b) Boundary ghost, constructed by adding direction (0, 1) to S.

We then exploit the structure of maximal ghosts to construct boundary
ghosts, the domain of which consists only of a cycle of 8-connected points
(see Fig. 4.2). This cycle is closely related to the boundary of the maximal
ghosts. Boundary ghosts have a large central region where image values can
be uniquely reconstructed. The sequence used to construct these shapes has
a possible bifurcation in the choice of lattice directions at each step, therefore
we can construct families of such ghosts with a variety of shapes and array
sizes. We construct boundary ghosts which fit into a square with side lengths
no greater than 3·2N/2 (equations (4.23) and (4.24)). In the remaining sections
of this work all ghosts are primitive, and the term ghost will specifically refer
to primitive ghosts.

4.1 Constructing Ghosts

A ghost is defined by having zero sum projections across all given directions
S = {(pn, qn) | n = 1, . . . , N}. In general, there are many ways in which one
can construct a ghost array, including using periodic projections [67] or U-
polygons [29]. However, in this work we consider only ghosts of minimal size,
or primitive ghosts, as these are the ghosts that arise as reconstruction errors.
There are two primary methods for constructing primitive ghosts, which both
yield the same end result.
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4.1.1 Ghosts via Convolution

An elementary ghost for a discrete angle (p, q), denoted gp,q, is a pair of signed
points separated by p columns and q rows. This is defined as

gp,q(i, j) =


+1 if (i, j) = (0, 0)

−1 if (i, j) = (p, q)

0 elsewhere.

(4.2)

A ghost G, over N directions can then be constructed through N − 1 discrete
convolutions of N elementary ghosts.

G = gp1,q1 ⊗ . . . ⊗ gpN ,qN (4.3)

Geometrically, this corresponds to starting with a pair of oppositely signed
points that define a ghost in the first chosen direction, which must sum to zero
along that direction by construction. Then a positive and negative version
of this ghost are separated by a distance defined by the second direction.
Ghost values that lie at the same location are summed together. Each ghost
sums to zero along the first direction as before, and the composite sums to
zero along the second direction as each point in the positive ghost cancels
with its negative translated point in the second ghost. The result for the
composite 2 direction ghost is then dilated in the third direction, and so on,
for N directions. Figure 4.3 shows this process to make the 4 direction ghost
with directions {(1, 0), (0, 1), (1, 1), (1,−1)}.

+1−1
−1 +1

+1−1

0 −1 +1

−1 0 +1

+1−1 0

0 +1−1 0

−1 0 0 +1

+1 0 0 −1

0 −1 +1 0

g1,0 g1,0 ⊗ g0,1 g1,0 ⊗ g0,1 ⊗ g1,1 g1,0 ⊗ g0,1 ⊗ g1,1 ⊗ g1,−1
Figure 4.3: Construction of a primitive ghost by convolution. Left to right: the
1D ghost with direction (1,0), translated by direction (0,1), then (1,1) followed by
(1,−1) to form the N = 4 primitive ghost with 8 non-zero elements. Boxes show the
location of the previous ghost before sign reversal and shift by (p, q).

The bounding polygon of the ghost, given by the convex hull of ghost
points, is then comprised of 2N vectors of S and −S. The convex hull can
be found through convolution of the lines for the vectors in S. Therefore the
convex hull of all primitive ghosts built through convolutions of elementary
ghosts are 180◦ symmetric. The convex hull of ghosts will be explored further
in this chapter.
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4.1.2 Ghost Polynomials

Ghosts can also be generated algebraically through products of polynomials
using the formalism in [44]. For a valid set of d directions, let

F
(d)
S (x, y) =

d∏
i=1

f(pi,qi)(x, y) (4.4)

where

f(pi,qi)(x, y) =


xpiyqi − 1 if pi 6= 0, qi > 0

xpi − y−qi if pi 6= 0, qi < 0

x− 1 if pi = 1, qi = 0

y − 1 if pi = 0, qi = 1

(4.5)

Using this polynomial, each ghost element is given by G(k, l) = gk,l where

gk,l is the coefficient of xkyl in F
(d)
S (x, y) [9]. Demonstrating the same example,

where S = {(0, 1), (1, 0), (1, 2), (2, 1)} for the algebraic approach gives

F
(4)
S (x, y) = (x− 1)(y − 1)(xy2 − 1)(x2y − 1)

= 1− x− y + xy − x2y + x3y − xy2 + 2x2y2 − x3y2
+ xy3 − x2y3 + x3y3 − x4y3 − x3y4 + x4y4.

Taking the coefficients of F
(4)
S (x, y), we produce the ghost in Fig. 4.4. For

reference, the polynomial is shown alongside with the relevant zero coefficients.


0 0 0 −1 +1
0 +1 −1 +1 −1
0 −1 +2 −1 0
−1 +1 −1 +1 0
+1 −1 0 0 0


+0x0y4 +0x1y4 +0x2y4−1x3y4 +1x4y4

+0x0y3 +1x1y3−1x2y3 +1x3y3−1x4y3

+0x0y2−1x1y2 +2x2y2−1x3y2 +0x4y2

−1x0y1 +1x1y1−1x2y1 +1x3y1 +0x4y1

+1x0y0−1x1y0 +0x2y0 +0x3y0 +0x4y0

Figure 4.4: Ghost for directions {(1, 0), (0, 1), (2, 1), (1, 2)}, and its polynomial
representation.

4.2 Maximal Primitive Ghosts

In this section, we present a tree of recursive sequences of lattice directions to
define a maximal ghost which is 4-connected and has a small boundary. We
define the next lattice direction vn+1 = (pn+1, qn+1) recursively as

vn+1 = vn + 2εn+1vn−1, εn+1 ∈ {−1, 1} (4.6)
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Chapter 4. Maximal and Boundary Ghosts

for n = 2, 3, . . . with v0 = (1, 0), v1 = (1, 1) and the set of ghost points by

Tn+1 = Tn ∪ (Tn + vn) (4.7)

for n = 0, 1, . . . with T0 = (0, 0). Here T + x is defined as {t+ x : t ∈ T}. We
give T0 ghost value 1 and the point t+ vn in (4.7) the opposite ghost value of
the corresponding point t ∈ T . Further we define for n = 1, 2, . . .

Un = Tn + {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. (4.8)

In the figures throughout this work we use the pixel set Un to visualise
the ghost domain Tn. There is an obvious correspondence between them. This
recursion defines directions such that the shifted set Un+vn is a shape that fits
together with Un like jigsaw pieces, remaining connected without gaps or any
overlap as shown in Fig. 4.5. When εn = −1 for all n, these directions produce
an outward spiral. For εn = +1 for all n, vn+1 will continue in approximately
the same direction as vn.

U
0

Figure 4.5: Construction of ghost U6 with εn = −1 for all n, which has lattice
directions {(1, 0), (1, 1), (−1, 1), (−3,−1), (−1,−3), (5,−1)}. Starting from the unit
square U0, each tile is obtained from the union of the previous tile and its translation
by the next lattice direction. The boundaries of U0, U1, U2, . . . , U6 are outlined.

Since there is no overlap in the geometric construction, the number of ghost
points doubles at each step. This results in 2N ghost points for N directions
where each point of Tn has value 1 or −1. In the following sections, we will
prove properties of maximal ghosts and their domains.

As we shall show in the next section, the ghosts are obtained by giving value
1 to points (x, y) ∈ Tn with x even and value −1 to those with x odd. This
pattern of signs can naturally be achieved through convolutions of oppositely
signed points separated by the directions defined by (4.6). The primitive ghost
with 2 directions, v0 = (1, 0), v1 = (1, 1) has value 1 for even x and −1 for
odd x. This pattern is maintained through all later convolutions independent
of the choice of εn. This follows by induction on n.
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4.2. Maximal Primitive Ghosts

4.2.1 Lattice Tilings

We show here that every set of ghost points Tn forms a lattice tiling. We
then prove that the set Tn consists of 2N distinct points. We start with some
observations. Write vn = (pn, qn) for n = 0, 1, . . . where vn satisfies (4.6). By
induction on n we check that, for n = 1, 2, . . . ,

pn and qn are odd, and if εn is constant, qn = pn−1. (4.9)

It follows, by the definition of ghost values, that the ghost value of (x, y) ∈ Tn
is 1 if x is even and −1 if x is odd. Thus it suffices to know the ghost domains
Tn of the maximal ghosts we construct.

Lemma 1. We have |pn−1qn − pnqn−1| = 2n−1 and gcd(pn, qn) = 1 for n =
1, 2, . . . .

Proof. We have p0q1 − p1q0 = 1 = 20 and gcd(p1, q1) = 1. For εn = −1,

pn−1qn − pnqn−1 = pn−1(qn−1 − 2qn−2)− (pn−1 − 2pn−2)qn−1

= 2(pn−2qn−1 − pn−1qn−2).

The case for εn = +1 is similar. The former statement follows by induction.
Since gcd(pn, qn) divides pn−1qn−pnqn−1, it must be a power of 2. However,

by (4.9) pn is odd. Therefore gcd(pn, qn) = 1 for all n.

For integers r, s, not both zero, we define Z(r, s) = {(mr,ms) : m ∈ Z}. A
lattice Λ in Z2 is a set Z(a, b) + Z(c, d) where a, b, c, d ∈ Z are such that (a, b)
and (c, d) are linearly independent over Z. A set A ⊂ Z2 is a tile for the lattice
Λ if every (x, y) ∈ Z2 can be written uniquely as (p, q) + r(a, b) + s(c, d) with
(p, q) ∈ A and r, s ∈ Z. For this, we adopt the shorthand notation Z2 = Λ+A.

Theorem 2. The set Tn forms a tile for the lattice Λn := Z(vn−1 + 2vn−2) +
Z(vn−1 − 2vn−2) for n = 2, 3, . . . .

Proof. By induction on n. We have T2 = {(0, 0), (1, 0), (1, 1), (2, 1)} and this
forms a tile for the lattice Λ2 = Z(−1, 1) + Z(−3,−1). This follows from

Z2 = Z(1, 1) + Z(1, 0)

= Z(1, 1) + Z(2, 0) + {(0, 0), (1, 0)}
= Z(3, 1) + Z(1, 1) + T1

= Z(−3,−1) + Z(2, 2) + {(0, 0), (1, 1)}+ T1

= Z(−3,−1) + Z(−1, 1) + T2.

Suppose the statement is true for n. Then Tn, the set of all the sums of
subsets of {(p0, q0), . . . , (pn−1, qn−1)}, forms a tile for Λn = Z(vn−1 + 2vn−2) +
Z(vn−1 − 2vn−2). Taking εn = −1,

Z2 = Λn + Tn
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= Z(vn−1 + 2vn−2) + Z(vn−1 − 2vn−2) + Tn

= Z(2vn−1 − vn) + 2Zvn + {(0, 0), vn}+ Tn

= Z(vn − 2vn−1) + Z(vn + 2vn−1) + Tn+1

= Λn+1 + Tn+1.

The proof for εn = +1 is similar. Thus Tn+1 = Tn + (Tn + vn) forms a tile
for the lattice Λn+1 := Z(vn + 2vn−1) + Z(vn − 2vn−1).

Theorem 3. For n = 0, 1, 2, . . ., the set Tn consists of 2n distinct points.

Proof. By induction. The theorem holds for n = 0, 1. By Theorem 2, the
lattice determinant of Λn is the absolute value of∣∣∣∣pn−1 + 2pn−2 qn−1 + 2qn−2

pn−1 − 2pn−2 qn−1 − 2qn−2

∣∣∣∣ = ±
∣∣∣∣ pn qn
2pn−1 2qn−1

∣∣∣∣ = ±
∣∣∣∣ pn qn
pn+1 qn+1

∣∣∣∣
which equals 2n by Lemma 1. So the number of points doubles at every step.
Therefore all 2n combinations of Tn are distinct.

The next theorem establishes our claim in the previous section that Tn with
the given ghost values presents a ghost, which means that all the line sums for
each direction in S are equal to zero.

Theorem 4. For the set of directions S = {vh = (ph, qh)} (h = 1, . . . , n) the
ghost domain is given by Tn.

Proof. By induction. The statement is true for n = 1. Suppose it is true for Tn.
Then the line sums in the directions vh for h = 1, . . . , n of Tn+1 = Tn∪(Tn+vn)
are 0. For the new direction (pn+1, qn+1) observe that for each point (x, y) ∈ Tn
a point (x+ pn, y + qn) ∈ Tn + vn is added. Since pn is odd, their point values
have opposite signs and therefore sum to 0. Thus the line sums in the direction
vn+1 are also 0.

Remark. In the transition from Un to Un+1, the size of the tile is augmented
by |pn| in the x-direction and by |qn| in the y-direction. By induction we
see that the size of the minimal rectangular block covering Un is therefore
1 +

∑n−1
j=1 |pj| by 1 +

∑n−1
j=1 |qj|. (The addition of 1 is due to the size of U0.)

In 1977 Katz proved that this is the minimal size for an object that is not
uniquely reconstructable from the discrete projections [47]. It follows that the
constructed ghosts are indeed primitive ghosts.

4.2.2 Maximal Ghost Tile Connectivity

Here we show that every neighbour of a point in Tn belongs to Tn+5. We
define as neighbours of (x, y) the four points (x + 1, y), (x, y + 1), (x − 1, y),
(x, y − 1), to identify points which are 4-connected with (x, y). It will follow
that our maximal ghosts are 4-connected with no internal holes. We begin by
examining the neighbouring tiles of Tn, as shown in Fig. 4.6.
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4.2. Maximal Primitive Ghosts

Theorem 5. For n = 2, 3, . . . the set Tn is surrounded (4-connected) by the
six sets

Tn ± 2vn−1, Tn ± vn−1 ± 2vn−2.

U
6

+(v
5
-2v

4
)

-(v
5
-2v

4
)

+2v
5

-2v
5

+(v
5
+2v

4
)

-(v
5
+2v

4
)

Figure 4.6: The set U6 and its neighbouring tiles if εn = −1 for all n. The centred
tile U6 is indeed surrounded by U6±2v5, U6± (v5−2v4) = U6±v6, U6± (v5 + 2v4) =
U6 ± v7.

Proof. By induction on n. We have T2 = {(0, 0), (1, 0), (1, 1), (2, 1)} and this
is surrounded by T2 +2v1 = {(2, 2), (3, 2), (3, 3), (4, 3)}, T2−2v1 = {(−2,−2),
(−1,−2), (−1,−1), (0,−1)}, T2 + v1 − 2v0 = {(−1, 1), (0, 1), (0, 2), (1, 2)},
T2 − v1 + 2v0 = {(1,−1), (2,−1), (2, 0), (3, 0)}, T2 + v1 + 2v0 = {(3, 1), (4, 1),
(4, 2), (5, 2)}, T2− v1− 2v0 = {(−3,−1), (−2,−1), (−2, 0), (−1, 0)}. This can
be verified geometrically, and thus the statement is true for n = 2.

Now suppose Tn is surrounded by Tn± 2vn−1, Tn± vn−1± 2vn−2. Then, by
the lattice structure and (4.6), Tn + vn is surrounded by Tn + vn ± 2vn−1 and
Tn + vn ± vn−1 ± (vn − vn−1), producing the six neighbours Tn + vn + 2vn−1,
Tn + vn − 2vn−1, Tn + 2vn, Tn + 2vn−1, Tn + 2vn − 2vn−1 and Tn. By definition
Tn+1 consists of the tiles Tn and Tn + vn. It is surrounded by

Tn ± 2vn−1 = Tn + vn − vn ± 2vn−1 ⊂ Tn+1 − (vn ± 2vn−1),

Tn + vn−1 ± 2vn−2 = Tn + vn−1 ± (vn − vn−1)
{
⊂ Tn+1 − (vn − 2vn−1)

= Tn + vn ⊂ Tn+1

,

Tn − vn−1 ± 2vn−2 = Tn − vn−1 ± (vn − vn−1)
{
⊂ Tn+1 + (vn − 2vn−1)

⊂ Tn+1 − 2vn
,

Tn + 2vn ⊂ Tn+1 + 2vn,
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Tn + vn ± 2vn−1 ⊂ Tn+1 + (vn ± 2vn−1),

Tn + 2vn−1 = Tn + vn − vn + 2vn−1 ⊂ Tn+1 − (vn − 2vn−1),

Tn + 2vn − 2vn−1 = Tn + vn + vn − 2vn−1 ⊂ Tn+1 + (vn − 2vn−1).

where the top row of each curly brace refers to the + case of the ± and the
bottom row is that of the − case. There are six distinct point sets on the
right-hand side that are neighbours of Tn+1, because the left-hand sides have
this property. Thus Tn+1 is surrounded by Tn+1± 2vn, Tn+1± vn± 2vn−1.

Corollary 6. For n = 2, 3, . . . the tile Un is 4-connected.

Corollary 7. For n = 2, 3, . . . the tile Tn and all its neighbours are contained
in Tn+5 when εn = εn+1 = ... = εn+4 = −1.

Proof. In this case vn = vn−1 − 2vn−2, vn+1 = vn − 2vn−1 = −vn−1 − 2vn−2.
Therefore Tn is surrounded by Tn ± 2vn−1, Tn ± vn, Tn ± vn+1. We have, using
(4.6) and the preceding proof,

Tn + vn ⊂ Tn+1,

Tn + vn+1 ⊂ Tn+1 + vn+1 ⊂ Tn+2,

Tn − 2vn−1 = Tn + vn+1 − vn ⊂ Tn+1 + (vn+1 − 2vn) ⊂ Tn+2 + vn+2 ⊂ Tn+3,

Tn − vn ⊂ Tn+1 − 2vn = Tn+1 + (vn+2 − vn+1) ⊂ Tn+2 + vn+3 ⊂ Tn+4,

Tn + 2vn−1 = Tn + vn − vn+1 ⊂ Tn+1 − vn+1 ⊂ Tn+2 − 2vn+1 ⊂ Tn+2+

+ vn+3 − vn+2 ⊂ Tn+3 + vn+3 − 2vn+2 ⊂ Tn+4 + vn+4 ⊂ Tn+5,

Tn − vn+1 ⊂ Tn+1 − vn+1 ⊂ Tn+2 − 2vn+1 ⊂ Tn+2 − vn+2 + vn+3

⊂ Tn+3 + vn+3 − 2vn+2 ⊂ Tn+4 + vn+4 ⊂ Tn+5.

Thus all of the neighbours of Tn are contained in Tn+5.

An example of this corollary is illustrated in Fig. 4.7, whereby all neigh-
bours of T4 are contained within T9. This also shows that the 5 in Corollary 7
is minimal.

4.2.3 The Boundary of Maximal Primitive Ghosts

In this section we investigate the boundary of Un. We callQ ∈ Z2 a 4-neighbour
of P ∈ Z2 if |P−Q| = 1. We define a 4-path as the union of n+1 distinct points
P0, P1, . . . , Pn ∈ Z2 with |Pi − Pi−1| = 1 for i = 1, . . . , n together with the line
segments between Pi−1 and Pi for i = 1, . . . , n. If P1, . . . , Pn are distinct, but
P0 = Pn, we call it a 4-contour. We say that a path has length (τh, τv) if the
number of horizontal line segments of length 1 of a path is τh and the number
of vertical line segments of length 1 of the path is τv. In Tn we shall define six
separation points An, Bn, Cn, Dn, En, Fn where three tiles meet (Fig. 4.8).

We study how these points move as we move from Tn to Tn+1. Two of these
six points are boundary points of Un where it meets Un+1 \ Un. If εn = −1,
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Figure 4.7: This figure shows an example of Corollary 7 for U9, in which U4 (in
the center) and all of its neighbours are contained. Black borders separate the ghost
tiles U4, U5, . . . , U9.

then these points are En and Fn (see Fig. 4.9), if εn = 1, then these points are
An and Bn. Define for n = 2, 3, . . . ,

An+1 = Fn + vn, Bn+1 = An + vn, Cn+1 = Bn,

Dn+1 = Cn, En+1 = Dn, Fn+1 = En + vn

when εn = −1. In the case that εn = +1, we define

An+1 = An + vn, Bn+1 = Fn + vn, Cn+1 = En,

Dn+1 = Dn, En+1 = Cn, Fn+1 = Bn + vn.

For both cases, the initial values are

A2 = (3, 2), B2 = (3, 1), C2 = (1, 0),

D2 = (0, 0), E2 = (0, 1), F2 = (2, 2).

Lemma 8. For n = 2, 3, . . . we have An − En = vn−1 + 2vn−2, Bn − Fn =
−(vn−1− 2vn−2), Cn−An = −2vn−1, Dn−Bn = −(vn−1 + 2vn−2), En−Cn =
vn−1 − 2vn−2, Fn −Dn = 2vn−1.

Proof. By induction. The formulas hold for n = 2 and we shall choose the
last formula for the inductive hypothesis when ε = −1. The increment of the
indices then implies that the formulas hold for all n, as follows

An+1 − En+1 = (Fn + vn)−Dn = vn + 2vn−1,

Bn+1 − Fn+1 = (An + vn)− (En + vn) = vn−1 + 2vn−2 = −(vn − 2vn−1),

Cn+1 − An+1 = Bn − (Fn + vn) = −vn − vn−1 + 2vn−2 = −2vn.

The other proofs are similar.
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A

B

C

D

E

F

Figure 4.8: The case εn = −1 for all n. Tile U4 surrounded by six neighbours,
connected by path lengths given in Theorem 9. In the points A,B,C,D,E, F three
tiles meet.

In the next theorem we measure the lengths along the boundary of Un be-
tween consecutive separation points. Here index h refers to horizontal distance
and index v to vertical distance. Define for n = 2, 3, . . . ,

αh,n+1 = βh,n + 2γh,n, βh,n+1 = αh,n, γh,n+1 = βh,n,

αv,n+1 = βv,n + 2γv,n, βv,n+1 = αv,n, γv,n+1 = βv,n,

when εn = −1. In case εn = +1, define

αh,n+1 = βh,n + 2αh,n, βh,n+1 = γh,n, γh,n+1 = βh,n,

αv,n+1 = βv,n + 2αv,n, βv,n+1 = γv,n, γv,n+1 = βv,n.

In both cases define

αn = αh,n + αv,n, βn = βh,n + βv,n, γn = γh,n + γv,n

with initial values
αh,2 = 2, βh,2 = 1, γh,2 = 0,

αv,2 = 1, βv,2 = 0, γv,2 = 1.

Theorem 9. The total length of the 4-contour surrounding Un is equal to
2(αn + βn + γn). For n = 2, 3, . . . we have
Un ∩ (Un + (vn−1 + 2vn−2)) is a 4-path of length γn between An and Bn,
Un ∩ (Un − (vn−1 − 2vn−2)) is a 4-path of length αn between Bn and Cn,
Un ∩ (Un − 2vn−1) is a 4-path of length βn between Cn and Dn

Un ∩ (Un − (vn−1 + 2vn−2)) is a 4-path of length γn between Dn and En,
Un ∩ (Un + (vn−1 − 2vn−2)) is a 4-path of length αn between En and Fn,
Un ∩ (Un + 2vn−1) is a 4-path of length βn between Fn and An.
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Figure 4.9: Tiles U1 to U7 for ε2 = ... = ε6 = −1. A6 = (5,−4), B6 = C7 =
(1,−5), C6 = D7 = (−5,−2), D6 = E7 = (−2, 2), E6 = (2, 3), F6 = (8, 0), A7 =
(15, 5), B7 = (12, 1), F7 = (9, 8). E6 and F6 are the boundary points of U7 where U6

and U7 \ U6 meet.

Proof. We prove Theorem 9 by induction. We have U2 = {(x, y) : 0 ≤ x ≤
2, 0 ≤ y ≤ 1} ∪ {(x, y) : 1 ≤ x ≤ 3, 1 ≤ y ≤ 2}, v0 = (1, 0), v1 = (1, 1) and the
statements hold for n = 2. Suppose the statements are valid for n. By Theorem
5 the neighbours of Un+1 are Un+1 ± (vn − 2vn−1), Un+1 ± (vn + 2vn−1) and
Un+1 ± 2vn. We compute the intersection of Un+1 and each of its neighbours.

We have

Un+1 ∩ (Un+1 + (vn + 2vn−1)) = (Un ∩ (Un + vn + 2vn−1))

∪(Un ∩ (Un + 2vn + 2vn−1)) ∪ ((Un + vn) ∩ (Un + vn + 2vn−1))

∪((Un + vn) ∩ (Un + 2vn + 2vn−1)).

Since vn + 2vn−1 = 3vn−1 ± 2vn−2, 2vn + 2vn−1 = 4vn−1 ± 4vn−2 /∈ {±(vn−1 −
2vn−2), ±(vn−1 +2vn−2), ±2vn−1}, the first two intersections on the right-hand
side are empty. By the induction hypothesis, and (Un+vn)∩(Un+vn+2vn−1) =
vn + (Un ∩ (Un + 2vn−1)), the third intersection is the 4-path between vn + Fn
and vn + An of length (βh,n, βv,n), that is the 4-path between An+1 and Bn+1

of length (γh,n+1, γv,n+1). The fourth intersection is empty, because it equals
the first intersection shifted by vn. We conclude that the second statement of
Theorem 9 is true for n+ 1.

Secondly

Un+1 ∩ (Un+1 − (vn − 2vn−1)) = (Un ∩ (Un − vn + 2vn−1))

∪(Un ∩ (Un + 2vn−1)) ∪ ((Un + vn) ∩ (Un − vn + 2vn−1))

∪((Un + vn) ∩ (Un + 2vn−1)).
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If εn+1 = −1, the first intersection on the right-hand is Un ∩ (Un + (vn−1 +
2vn−2)), which is the 4-path between An = Bn+1−vn and Bn = Cn+1 of length
(γh,n, γv,n) due to the induction hypothesis. Similarly with εn+1 = +1, this
intersection becomes Un ∩ (Un + (vn−1 − 2vn−1)), the 4-path between En =
Cn+1 and Fn = Bn+1 − vn of length (αh,n, αv,n). The second intersection is
the 4-path between Fn and An of length (βh,n, βv,n). If εn+1 = −1 this is
the path from An+1 − vn to Bn+1 − vn, if εn+1 = 1 this is the path from
Bn+1 − vn to An+1 − vn. The third intersection is empty by Theorem 5. The
fourth intersection is the same as the first, shifted by vn, hence if εn+1 =
−1 a 4-path between Bn+1 and Cn+1 + vn, if εn+1 = 1 a 4-path between
Cn+1 + vn = An+1 − vn and Bn+1. Therefore the intersection on the left-
hand side is a 4-path from Cn+1 via Bn+1 − vn and An+1 − vn to Bn+1 of
length (βh,n + 2γh,n, βv,n + 2γv,n) = (αh,n+1, αv,n+1) if εn+1 = −1 and of length
(βh,n + 2αh,n, βv,n + 2αv,n) = (αh,n+1, αv,n+1) if εn+1 = 1.

Thirdly

Un+1 ∩ (Un+1 − 2vn) = (Un ∩ (Un − 2vn)) ∪ (Un ∩ (Un − vn))

∪((Un + vn) ∩ (Un − 2vn)) ∪ ((Un + vn) ∩ (Un − vn)).

Prior arguments show that the first, third, and fourth intersections on the right-
hand side are empty. The second intersection becomes Un∩(Un−(vn−1−2vn−1))
when εn+1 = −1 is used, which is the 4-path between Bn = Cn+1 and Cn =
Dn+1 of length (αh,n, αv,n). When we take εn+1 = +1, the intersection is
Un ∩ (Un − (vn−1 + 2vn−1)), a 4-path between Dn = Dn+1 and En = Cn+1 of
length (γh,n, γv,n). We conclude that the left-hand side is the 4-path between
Cn+1 and Dn+1 of length (βh,n+1, βv,n+1).

By symmetry the proofs of the other three statements are similar. Summing
up the above results the length of the 4-contour surrounding Un+1 equals
(2(αh,n+1 + βh,n+1 + γh,n+1), 2(αv,n+1 + βv,n+1 + γv,n+1)).

We call P ∈ Z2 an 8-neighbour of Q ∈ Z2 if |P −Q| ∈ {1,
√

2}. We define
an 8-cycle as the set of m distinct points P1, P2, . . . , Pm = P0 ∈ Z2 such that Pi
is an 8-neighbour of Pi−1 for i = 1, . . . ,m. Observe that a contour includes the
connecting line segments, whereas a cycle consists only of a series of points.

4.3 Boundary Ghosts

We now investigate boundary ghosts which are closely related to the previously
constructed maximal ghosts. The domains of boundary ghosts consist of an
annulus with a hollow interior (see Fig. 4.10). Boundary ghosts are constructed
using the same recursive sequence of directions (4.6), but preceded by the
direction v−1 = (0, 1).

Let Gn be the maximal ghost studied in the preceding sections with domain
Tn. Define the boundary ghostG∗n by directions v−1, v0, . . . , vn−1 whereG∗−1 has

58



4.3. Boundary Ghosts

Figure 4.10: The boundary ghost domains U∗2 , U∗3 , U∗4 , U∗5 , U∗6 in case εn = −1
for n = 2 to 5.

domain {(0, 0)} and G∗−1(0, 0) = 1. Recall that if (x, y) ∈ Tn, then G(x, y) = 1
if x is even and G(x, y) = −1 if x is odd. If (x, y) ∈ Z2 \ Tn, then G(x, y) = 0.
We have G∗n = Gn(x, y)−Gn(x, y− 1). Let T ∗n be the ghost domain of G∗n. By
the definition of a ghost domain it follows that

T ∗n =
(
Tn ∪

(
Tn + (0, 1)

))
\
(
Tn ∩

(
Tn + (0, 1)

))
.

Theorem 10. For n > 1 the point (x, y) ∈ Z2 is an element of T ∗n if and only
if the line segment between (x, y) and (x+ 1, y) is part of the 4-contour around
Un.

Proof. If there is a boundary line segment between (x, y) and (x+ 1, y) of Un,
then one among (x, y) and (x, y − 1) belongs to Tn and the other does not.
Therefore (x, y) ∈ T ∗n . If (x, y) ∈ T ∗n , then G(x, y− 1) 6= G(x, y). Hence one of
them is 0 and the other is ±1. It follows that the line segment between (x, y)
and (x+ 1, y) is a boundary line segment of Un.

This theorem is illustrated in Fig. 4.11 for n = 8. The number of horizontal
line segments of length 1 in Fig. 4.11a equals the number of light grey pixels
in Fig. 4.11b.

a) b)

Figure 4.11: a) Maximal ghost domain U8. b) Boundary ghost domain U∗8 . The
number of horizontal line segments of length 1 on the left equals the number of grey
pixels on the right. Light squares indicate pixels of the boundary ghost domain, and
dark squares show the interior region Tn ∩

(
Tn + (0, 1

)
) with ghost values 0.
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Chapter 4. Maximal and Boundary Ghosts

By Theorem 9 we know that the total number of horizontal boundary unit
segments of Un equals 2(αh,n + βh,n + γh,n). Observe that it follows from
Theorem 9 that for n > 0 every point in Tn has a 4-neighbour. Half of the
points in T ∗n , the points (x, y) with (x, y + 1) /∈ T ∗n , do not belong to Tn and
half of them, the points (x, y) with (x, y− 1) /∈ T ∗n , do belong to Tn. Hence we
have constructed a boundary ghost T ∗n consisting of 2(αh,n+βh,n+γh,n) points
with 2n − (αh,n + βh,n + γh,n) points in its interior. We shall show that every
boundary ghost forms an 8-cycle. To do so we need the following results.

Lemma 11. Let n, x, y ∈ Z with n > 0. a) If the line segment from (x, y)
to (x, y + 1) is a boundary line segment of Un, then x + y is even. b) Every
vertical boundary line segment of Un has length 1.

Proof. a) By induction on n. It is true for n = 1. Suppose it is valid for
n. Since Un+1 = Un ∪ (Un + vn), a boundary line segment from (x, y) to
(x, y+1) of Un+1 either originates from Un itself, in which case x+y is even by
induction, or it originates from a boundary line segment from (x− pn, y − qn)
to (x− pn, y− qn + 1) in Un in which case x− pn + y− qn is even by induction.
Since pn and qn are odd for all n > 0 by (4.9), x+ y is even in both cases.
b) If the line segment from (x, y) to (x, y+2) would be a boundary line segment
of Un, then by a) both x+ y and x+ y+ 1 would be even, a contradiction.

Theorem 12. For all n > 0, the points of the boundary ghost domain T ∗n
constitute an 8-cycle.

Proof. According to Theorem 10 for every P ∗ ∈ Z2 we have P ∗ ∈ T ∗n if and only
if the line segment between P ∗ and P ∗+ (1, 0) is part of the 4-contour around
Un. Thus going around the 4-contour and collating the left lattice points of
the horizontal unit line segments we write T ∗n as a cycle (P ∗1 , P

∗
2 , . . . , P

∗
m = P ∗0 )

for some m.
It suffices to show that for i = 0, 1, . . . ,m− 1 the distance between P ∗i and

P ∗i+1 is 1 or
√

2. Let 0 ≤ i < m. Without loss of generality we may assume
that the contour leaves P ∗i to the right to reach P ∗i+1 as the next element of T ∗n .
Because of Lemma 11 there are only five routes to reach P ∗i+1 as is illustrated
in Fig. 4.12 where the elements of T ∗n are indicated by thick dots. In each case
the distance between P ∗i and P ∗i+1 is 1 or

√
2.

P
*

i

P
*

i+1

P
*

i

P
*

i+1

P
*

i
P

*

i+1

P
*

i+1

P
*

i

P
*

i+1

P
*

i

A B C D E

Figure 4.12: The five possible extensions of the contour around Un starting at the
line segment from P ∗i to P ∗i + (1, 0). The distance from P ∗i to P ∗i+1 is either 1 or

√
2.
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4.3. Boundary Ghosts

Figure 4.13 shows a range of possible boundary ghost domains at three
levels. At the top of the tree is U∗2 , and each step gives rise to two possible
boundary ghost domains. Along the left branches, the directions are generated
from the recursion with εn = −1, and along the right branches are the direc-
tions with εn = +1. Although there are degeneracies in the shapes produced,
this is uncommon for a larger number of directions.

Figure 4.13: Tree of boundary ghosts shown for three levels. Ghosts branching
to the left in the tree (εn = −1) will produce a more radially symmetric boundary,
while the right side branches (εn = +1) produce longer diagonal sets of points.

Maximal pixel ghost domains that have parts connected by a single point
will result in multiple empty interior regions. Rather than the recursive con-
struction, boundary ghosts can alternatively viewed as a transformation of a
maximal ghost by adding the direction (0,1). From this perspective, the direc-
tion (0,1) removes all points (x, y) ∈ Tn for which (x, y−1) ∈ Tn. If (x, y) ∈ Tn,
then (x, y) ∈ T ∗n if and only if (x, y − 1) /∈ Tn. If (x, y) /∈ Tn, then (x, y) ∈ T ∗n
if and only if (x, y− 1) ∈ Tn. If (x, y) ∈ T ∗n and (x, y− 1), (x, y+ 1) /∈ T ∗n , then
the interior of U∗n may split into two components.

An example of this phenomenon can be found in Fig. 4.14, and Fig. 4.13
with the ghosts along the right branches of the tree. Here, the maximal ghosts
have more than one part joined by a single point of connection, which results
in boundary ghosts having more than one interior region. This phenomenon
only occurs when recursions with εn = +1 are used.
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Chapter 4. Maximal and Boundary Ghosts

Figure 4.14: Maximal ghost with ε2 = +1, ε3 = −1 and ε4 = +1, and boundary
ghost.

4.4 A Projective Analogue to Pick’s Theorem

Before deriving some properties on the size of maximal primitive ghosts, we
take an aside to present a new result linking the area of convex symmetric
polygons to the number of projection bins and number of polygon sides. This
result was published in [15]. While we shall use this result in the context of
convex hulls of ghosts, it is a general geometric result.

Pick’s theorem expresses the area of a polygon on a grid in terms of the
number of boundary and interior integer lattice points. Here, we present an
analogous theorem for the area of a symmetric, convex polygon in terms of
the number of polygon edges and total projection bins. These polygons arise
naturally through discrete projection ghosts. In this section, we show that the
area A of a ghost’s convex hull is related to the number of non-trivial discrete
projection bins B over the ghost image for any set of N 2D discrete projections
by A = B/2 − N/2. The ratio B/A has a strong upper bound of exactly 2.
This relation is analogous to Pick’s theorem for polygons with lattice point
vertices.

The problem of counting the number of discrete projection bins is usually
concerned with a rectangular region, which has been studied in great detail
by Verbert [77] for n-dimensional projections. In this section we find the total
number of non-trivial discrete (parallel ray) projection bins B over the null-set
or ghost image for any set of 2D discrete projections comprised of N discrete
angles, (pi, qi) for i = 1, 2, . . . , N . We prove B = 2A+N , where A is the area
of the convex hull of the ghost.

Though we state the result for ghosts, it may be applied to any polygonal
region of interest defined by the discrete projection directions. This allows for
quick calculation of the number of bins required to store information contained
within an area of interest in tomographic reconstructions, also of relevance to
digital security applications where data is encoded in discrete projections.

Pick’s theorem evaluates the exact area of a simple polygon whose vertices
are fixed to any set of 2D integer lattice points. The polygon areaA is evaluated
by counting the number of interior i and boundary points b through A =
i + b/2 − 1 [56]. Generalisations of Pick’s theorem to higher dimensions do
not exist, as demonstrated through the Reeve tetrahedron [60]. The number
of projection bins over a discrete ghost in 3D produces similar difficulties.
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4.4. A Projective Analogue to Pick’s Theorem

4.4.1 Convex Hull of a Ghost

Let S be any set of N 2D discrete projection directions, S = {(pi, qi)}, 1 ≤
i ≤ N , ordered by their angles, θi = tan−1(qi/pi). To avoid degenerate angles,
we require gcd(pi, qi) = 1 and pi ≥ 0. The set of vectors along with its
negatives, S∪−S, form the sequential tangents of a closed, convex, symmetric
polygon. As the convex hull circumscribes all points of the projection ghost,
it provides an upper bound for the area of the reconstructed image where
pixel values cannot be uniquely determined. Direction (pi, qi) accumulates qi
discrete projection bins for each horizontal unit step and pi projection bins for
each vertical unit step on a square grid [40].

(pi,qi)

(-pi,-qi)

Δxi
Δyi

Figure 4.15: Geometry of a ghost’s convex hull. Red lines show the vertical and
horizontal distances, found by summing tangent vector components and subtracting
similar triangles, shown in green.

To find the horizontal and vertical distance between parallel sides of the
symmetric polygon, we first find the linear equations for each line correspond-
ing to the ith direction. Both lines have a gradient of qi/pi, and we can find
the y-intersection using a point from each line. To find the first point, we sum
the sorted vectors up to i to traverse the polygon clockwise until we reach the
desired direction. Hence, the line for the vector (pi, qi) is

y+ =
qi
pi

(
x−

i∑
j=1

pj

)
+

i∑
j=1

qj. (4.10)

To find the second point, we subtract the negative vectors back to i + 1 to
traverse polygon in the counter-clockwise direction from the origin, and the
line for (−pi,−qi) is given by

y− =
qi
pi

(
x−

N∑
j=i+1

pj

)
+

N∑
j=i+1

qj. (4.11)
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Chapter 4. Maximal and Boundary Ghosts

From here, it is simple to find the vertical and horizontal distances between
the two lines. This can also be found by traversing the proceeding N tangent
vectors and subtracting similar triangles (Fig. 4.15). The vertical distance
∆yi between tangent vector (pi, qi) and its negative (−pi,−qi) is therefore

∆yi =
i∑

j=1

qj −
N∑

j=i+1

qj −
qi
pi

(
i∑

j=1

pj −
N∑

j=i+1

pj

)
. (4.12)

When (pi, qi) = (0, 1), we use the horizontal distance ∆xi which is calculated
similarly.

∆xi = −
i∑

j=1

pj +
N∑

j=i+1

pj +
pi
qi

(
i∑

j=1

qj −
N∑

j=i+1

qj

)
(4.13)

4.4.2 Number of Discrete Projection Bins

The number of bins between the parallel tangents bi, for (pi, qi) scales in pro-
portion to ∆xi (and ∆yi), as illustrated in Fig. 4.16.

bi = ∆xiqi + 1

= ∆yipi + 1

= pi

[
i∑

j=1

qj −
N∑

j=i+1

qj −
qi
pi

(
i∑

j=1

pj −
N∑

j=i+1

pj

)]
+ 1

= pi

(
i∑

j=1

qj −
N∑

j=i+1

qj

)
− qi

(
i∑

j=1

pj −
N∑

j=i+1

pj

)
+ 1 (4.14)

The total number of discrete projection bins B is given by the sum of the
number of bins for all N angles.

B =
N∑
i=1

bi

=
N∑
i=1

[
pi

(
i∑

j=1

qj −
N∑

j=i+1

qj

)
− qi

(
i∑

j=1

pj −
N∑

j=i+1

pj

)
+ 1

]

=
N∑
i=1

[
pi

(
2

i∑
j=1

qj −
N∑
j=1

qj

)
− qi

(
2

i∑
j=1

pj −
N∑
j=1

pj

)]
+N

= 2

[
N∑
i=1

pi

i∑
j=1

qj −
N∑
i=1

qi

i∑
j=1

pj

]
+N

= 2

[(
p1q1 +

N∑
i=2

pi

i∑
j=1

qj

)
−
(
q1p1 +

N∑
i=2

qi

i∑
j=1

pj

)]
+N
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= 2
N∑
i=2

[(
pi

i−1∑
j=1

qj + piqi

)
−
(
qi

i−1∑
j=1

pj + qipi

)]
+N

= 2
N−1∑
i=1

[
pi+1

i∑
j=1

qj − qi+1

i∑
j=1

pj

]
+N (4.15)
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Figure 4.16: Projection (2, 1) of a ghost with S = {(0, 1), (2, 1), (1, 0), (1,−1)}.
There are 7 bins covered by ghost elements, with ∆xi = 6 and ∆yi = 3. By
definition, all bins have a zero sum.

4.4.3 Convex Hull Area

The area A inside the convex polygon tangents is the sum of internal triangles,
given by half of the sum of the determinants of sequential pairs of the coordi-
nates around the M polygon vertices (ui, vi) for i = 1, 2, . . . ,M . The area is
positive if these coordinates are traversed in anticlockwise order.

A =
1

2

(∣∣∣∣u1 u2
v1 v2

∣∣∣∣+

∣∣∣∣u2 u3
v2 v3

∣∣∣∣+ ...+

∣∣∣∣uM u1
vM v1

∣∣∣∣)
=

1

2
(u1v2 − u2v1 + u2v3 − u3v2 + · · ·+ uM−1vM − uMvM−1 + uMv1 − u1vM)

(4.16)

We can choose to set our first vertex at the origin, so (u1, v1) = (0, 0). We
also have M = 2N vertices.

A =
1

2
(u2v3 − u3v2 + ...+ u2N−1v2N − u2Nv2N−1)

=
1

2

2N−1∑
i=2

uivi+1 − viui+1 (4.17)
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The points (ui, vi) for a ghost’s polygon can be found by traversing the
tangent angles.

(ui, vi) =

(
i−1∑
j=1

qj,

i−1∑
j=1

pj

)
(4.18)

Substituting (4.18) into (4.17), we can find the area in terms of the discrete
directions that define the convex hull.

A =
1

2

N∑
i=2

(uivi+1 − viui+1) +
1

2

2N−1∑
i=N+1

(uivi+1 − viui+1)

=
1

2

N∑
i=2

[
i−1∑
j=1

qj

i∑
j=1

pj −
i−1∑
j=1

pj

i∑
j=1

qj

]

+
1

2

N−1∑
i=1

[
i∑

j=1

(−qj)
i+1∑
j=1

(−pj)−
i∑

j=1

(−pj)
i+1∑
j=1

(−qj)
]

=
N−1∑
i=1

[
i∑

j=1

qj

i+1∑
j=1

pj −
i∑

j=1

pj

i+1∑
j=1

qj

]

=
N−1∑
i=1

[
pi+1

i∑
j=1

qj − qi+1

i∑
j=1

pj

]
(4.19)

Through substitution of equation (4.19) into (4.15), we find

B = 2A+N. (4.20)

Therefore, the number of discrete projection bins for any set S = {(pi, qi)}
of N directions can be found directly from the polygon area of the discrete
ghost. For a large number of angles, the ratio B/A converges to 2.

As with Pick’s theorem, equation (4.20) does not generalise simply to higher
dimensions. This can be demonstrated with a counter example in 3D, by cal-
culating the volume and the number of bins required to store projections of
the object. Let S = {(pi, qi, ri)} be any set of 3D discrete directions. The
sets S1 = {(1, 0, 0), (0, 1, 0), (1, 1, 1)}, S2 = {(1, 0, 0), (1, 0, 1), (0, 1, 1)}, and
S3 = {(1, 1, 0), (0, 1, 1), (1, 0, 1)} have volumes V1 = 1, V2 = 1, V3 = 2, and
total number of bins B1 = 12, B2 = 15, B3 = 15 respectively. The convex hulls
are illustrated in Fig. 4.17. Hence, B and V are not one-to-one and therefore
cannot have a similar relation in 3D. It is clear that trivial generalisations
of equation (4.20) cannot similarly count bins in higher dimensions. How-
ever, simple relations between projection bins, hyper-volumes, and number of
directions, may exist for certain classes of projection sets.
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a) b) c)

Figure 4.17: Convex hulls of ghosts for the set of directions: a) S1 = {(1, 0, 0),
(0, 1, 0), (1, 1, 1)}. b) S2 = {(1, 0, 0), (1, 0, 1), (0, 1, 1)}. c) S3 = {(1, 1, 0), (0, 1, 1),
(1, 0, 1)}.

4.5 Explicit Size Bounds and Fill Factor

In most practical applications, ghosts are constructed on a rectangular array.
Therefore, we wish to find the smallest rectangle that bounds the ghost domain,
and calculate the fraction of this rectangle that contains ghost points. Here,
the recursion (4.6) is restricted to εn = −1 for all n. This restriction is made to
analyse ghost domains that are closest to being radially symmetric. We prove
that the size of the boundary ghost domain is logarithmically smaller than the
size of the interior area.

We define the fill factor of UN as the quotient of the area of UN and the area
of the smallest rectangle containing UN . We have q0 = 0, q1 = 1, qn+1 = qn −
2qn−1 for n = 1, 2, . . . . This is a binary recurrence sequence with characteristic
polynomial x2 − x+ 2. Its zeros are (1±

√
−7)/2. Substituting the values for

q0 and q1 we find

pn−1 = qn =
1√
−7

(
1

2
+

1

2

√
−7

)n
− 1√
−7

(
1

2
− 1

2

√
−7

)n
(4.21)

=
2√
7

Im

(
1

2
+

1

2

√
−7

)n
for n = 1, 2, . . . . A rough estimate, but on average no more than a factor 2
wrong, yields

|qn| ≤
2√
7

2n/2, |pn| ≤
2√
7

2(n+1)/2. (4.22)

It follows that

1 +
n−1∑
j=0

|qj| ≤
2√
7

2n/2√
2− 1

≤ 1.825 · 2n/2 (4.23)
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and

1 +
n−1∑
j=0

|pj| = 1 +
n∑
j=0

|qj| ≤
2√
7

2(n+1)/2

√
2− 1

≤ 2.581 · 2n/2. (4.24)

Therefore the fill factor of UN equals

2n(
1 +

∑n−1
j=0 |pj|

)(
1 +

∑n−1
j=0 |qj|

) ≥ 2n

1.825 · 2.581 · 2n ≥ 0.212. (4.25)

A fill factor cannot exceed 1. The diameter of Tn is at most√√√√(1 +
n−1∑
j=0

|pj|
)2

+

(
1 +

n−1∑
j=0

|qj|
)2

≤
√

1.8252 + 2.5812 · 2n/2 <
√

10 · 2n/2.

(4.26)
On the other hand, for a rectangular array with 2n pixels you need a diameter
which is at least

√
2 · 2n/2. Thus the estimates (4.25) and (4.26) are wrong by

factors at most 5 and
√

5, respectively. Computations show the fill factor to
be above 45% (Fig. 4.18).
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Figure 4.18: Computations show the fill factor to vary periodically between 0.46
and 0.65.

Remark. If the recursion (4.6) is used such that from some point on only
εn = −1 occurs, then the above estimates (4.25) and (4.26) hold with adjusted
constants. The choice of the initial epsilons can be used to adjust the ratio
of
∑n

j=0 |pj| and
∑n

j=0 |qj| to fit the length and height of the image to be
reconstructed. If the ratio is between 1 and 1.5, then it is appropriate to use
εj = −1 for all j up to an n for which the ratio fits. If, for example, the ratio
lies between 4 and 6, then a better choice is ε2 = ε4 = ε5 = 1 and the others
−1. For higher ratios, longer strings of εj = 1 are needed.

Using the results from Section 4.21, we can also derive bounds for the
convex hull and number of bins for maximal primitive ghosts. Substituting
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equation (4.21) into the formula for the area of a ghost convex hull yields

A =
n−1∑
i=0

i−1∑
j=0

|piqj − pjqi| (4.27)

=
1

7

n−1∑
i=0

i−1∑
j=0

2(5+i+j)/2
∣∣∣(sin ((1 + i) arctan (

√
7)) sin (j arctan (

√
7))

− sin (i arctan (
√

7)) sin ((1 + j) arctan (
√

7)))
∣∣∣

≤ 1

7

n−1∑
i=0

i−1∑
j=0

2(5+i+j)/2

=
8

7
(
√

2 + 1)(2n/2 − 1)(2(n+1)/2 − 1).

Therefore, from equation 4.20, the number of bins is no more than

B ≤ 16

7
(
√

2 + 1)(2n/2 − 1)(2(n+1)/2 − 1) + n. (4.28)

Theorem 13. Suppose εn = −1 for all n. Let ρ ≈ 1.5214 be the positive zero
of x3− x− 2 and σ and σ the nonreal zeros. Then the number of points of T ∗n
equals

cρn + 2|σ|n(Re(c1) cos(n arg(σ))− Im(c1) sin(n arg(σ)))

with ρ = 1.5214, σ = −0.7607 + 0.8579i, c = 2.4757, and c1 = −0.2378 +
0.0747i.

Proof. The number of points with a nonzero value equals

δn = 2(αh,n + βh,n + γh,n)

= 2(αh,n + αh,n−1 + αh,n−2)

= 2(βh,n−1 + 2γh,n−1 + βh,n−2 + 2γh,n−2 + βh,n−3 + 2γh,n−3)

= 2(αh,n−2 + βh,n−2 + γh,n−2 + 2αh,n−3 + 2βh,n−3 + 2γh,n−3)

= δn−2 + 2δn−3

for n ≥ 3. Since x3 − x − 2 = (x − ρ)(x − σ)(x − σ), there exist constants
c, c1 ∈ C such that

δn = cρn + c1σ
n + c1σ

n

= cρn + |σ|n(c1e
in arg(σ) + c1e

in arg(σ))

= cρn + 2|σ|n(Re(c1) cos(n arg(σ))− Im(c1) sin(n arg(σ))).

The constants c and c1 can be computed from the initial values δ1 = 4, δ2 =
6, δ3 = 8.

The following corollary is immediate.
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Corollary 14. T ∗n has cρn +O(|σ|n) elements.

Note that ρn ≈ 1.5214n is relatively small compared to the size 2n of Tn and
that |σ| ≈ 1.1466 is in turn much smaller than ρ. Since 1.5214 < 2, the number
of boundary ghost points in T ∗n is small compared to points in the interior area.
For example, the ghost domain T ∗8 in Fig. 4.11b has 70 boundary points and
221 interior points.

4.6 The Structure of Boundary Ghosts

In this section we analyse the internal structure of maximal, and consequently,
boundary ghosts. We assume throughout this section that εj = −1 for j =
0, 1, . . . . The structure shall be formulated using two different methods, both
giving a lower bound on the central interior area. Though Theorem 13 gives
an exact number of points for the interior, calculating the shape of these points
requires significant computation. Therefore the aim of this section is to provide
simple bounds which are quick to compute to decide which ghost is most useful
for a given application.

4.6.1 Tn+5 as 32 Tiles of Tn

We show here that Tn+5 is constructed from 32 translated tiles of Tn (Fig. 4.19),
and these tiles maintain the same connectivity. This preserved connectivity
can be used to develop a lower bound on the central area that can be uniquely
determined in the case of boundary ghosts.
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Figure 4.19: T6 as 32 translated tiles of T1. All Tn+5 have the same connectivity
for tiles Tn.
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4.6. The Structure of Boundary Ghosts

Let ∆ denote the closed triangle with corners (0, 0), vn, vn+1 and ∇ the
closed triangle with corners (0, 0), vn+1, vn+1 − vn.

Theorem 15. Let n ≥ 2. Un+5 contains the following 40 closed triangles:
∆ + vn+1− vn,∇+ vn+1− vn,∆ + vn+1− 2vn,∇+ vn,∆,∇,∆− vn,∇− vn,∆−
2vn,∇−2vn,∆−3vn,∇−3vn,∆−4vn,∇− vn+1 + vn,∆− vn+1,∇− vn+1,∆−
vn+1 − vn,∇− vn+1 − vn,∆− vn+1 − 2vn,∇− vn+1 − 2vn,∆− 2vn+1 + vn,∇−
2vn+1 + vn,∆− 2vn+1,∇− 2vn+1,∆− 2vn+1− vn,∇− 2vn+1− vn,∆− 2vn+1−
2vn,∇− 3vn+1 + 3vn,∆− 3vn+1 + 2vn,∇− 3vn+1 + 2vn,∆− 3vn+1 + vn,∇−
3vn+1 + vn,∆− 3vn+1,∇− 3vn+1,∆− 3vn+1− vn,∇− 3vn+1− vn,∆− 3vn+1−
2vn,∇− 4vn+1 + vn,∆− 4vn+1,∇− 4vn+1.

Proof. We can write Tn+5 in terms of Tn, vn+1, vn as

Tn+5 = (Tn − 4vn+1) ∪ (Tn − 4vn+1 + vn) ∪ (Tn − 3vn+1 − 2vn)∪
(Tn − 3vn+1 − vn) ∪ (Tn − 3vn+1) ∪ (Tn − 3vn+1 + vn)∪
(Tn − 3vn+1 + 2vn) ∪ (Tn − 3vn+1 + 3vn) ∪ (Tn − 2vn+1 − 2vn)∪
(Tn − 2vn+1 − vn) ∪ (Tn − 2vn+1) ∪ (Tn − 2vn+1 + vn)∪
(Tn − 2vn+1 + 2vn) ∪ (Tn − 2vn+1 + 3vn) ∪ (Tn − vn+1 − 2vn)∪
(Tn − vn+1 − vn) ∪ (Tn − vn+1) ∪ (Tn − vn+1 + vn)∪
(Tn − 4vn) ∪ (Tn − 3vn) ∪ (Tn − 2vn) ∪ (Tn − vn)∪
Tn ∪ (Tn + vn) ∪ (Tn + vn+1 − 4vn) ∪ (Tn + vn+1 − 3vn)∪
(Tn + vn+1 − 2vn) ∪ (Tn + vn+1 − vn) ∪ (Tn + vn+1)∪
(Tn + vn+1 + vn) ∪ (Tn + 2vn+1 − 2vn) ∪ (Tn + 2vn+1 − vn).

(4.29)

This gives Tn+5 in terms of 32 translated tiles of Tn (shown in Fig. 4.19). Let
A be a 32 × 32 adjacency matrix that indicates if the 32 tiles Tn of Tn+5 are
separated by ±2vn−1,±vn, ±vn+1. This can be constructed by inspection of
Tn+5, which is shown in Fig. 4.20b. The rows and columns indicate each tile
of Tn in the order of equation (4.29), dark pixels indicate a value of 1 denoting
connectivity.

The trace of A3 gives the number of paths of length 3 from each vertex to
itself. Each triangle has 3 vertices, and the path is counted twice, once in each
direction. Hence, the number of triangles in this graph is given by

1

6
tr(A3) = 40

and the statement of the theorem follows.

Theorem 16. All triangles with corner points ±2vn−1,±vn, ±vn+1 have area
2n−1.

Proof. The triangle with side lengths 2vn−1 and vn from (0, 0) has a third side
of length vn − 2vn−1 = vn+1. The triangle with side lengths vn and vn+1 has
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Chapter 4. Maximal and Boundary Ghosts

a third side of length vn+1 − vn = 2vn−1. The triangle with side lengths vn+1

and −2vn−1 has a third side of length vn+1 +2vn−1 = vn. The 3 triangles made
up of the negative angles will have the same areas. Therefore all 6 triangles
in the hexagon with corner points ±2vn−1,±vn,±vn+1 have the same area.
Computing one of these areas gives

1

2
|2vn−1 × vn| = pn−1qn − pnqn−1 = 2n−1.

Therefore triangles constructed by joining lines between neighbouring tiles
have area 2n−1.

Hence, the total area for the triangles in Theorem 15 is 40 · 2n−1, as shown
for T10 in Fig. 4.20a. Figure 4.20b gives the adjacency matrix of Tn tiles in
Tn+5 connected by the directions ±2vn−1,±vn, ±vn+1. The rows and columns
are listed in the same order as Tn+5 in (4.29). The white squares represent
zero and dark squares are one.

a) b)

Figure 4.20: a) T10 with the unique area formed by 40 triangles. b) 32× 32 adja-
cency matrix, A, for the 32 tiles Tn connected by ±2vn−1,±vn,±vn+1, represented
by each row/column.

4.6.2 Internal Area as a Linear Transformation

In this section we analyse the internal structure of maximal, and consequently,
boundary ghosts. A maximal ghost domain has a fractal-like structure and it
may be complicated to compute the inner part of a boundary ghost domain
in order to know the points where the image value is unique. However, the
nature of the linear transforms presented in Theorem 17c) enables us to use
simpler ghost domains to identify central regions in which all the integer points
have unique image values. First we describe the linear structure and then we
illustrate the method with an example.
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4.6. The Structure of Boundary Ghosts

Consider again the case that vn = vn−1 − 2vn−2 for n = 3, 4, . . . and v0 =
(1, 0), v1 = (1, 1), v2 = (−1, 1). Other cases require natural adjustments. We
observe that, by definition,

Tn = {ε0v0 + · · ·+ εn−1vn−1 : ε0, . . . , εn−1 ∈ {0, 1}}.

We use the fact that every point in Tn can be written as a linear combination
of v0, . . . , vn−1 to prove the following theorem.

Theorem 17. Let f : R2 → R2 be defined by f(x, y) = (x − 2y, y). Then for
all positive integers m,n and real numbers x, y we have:
a) fm(vn) = vn+m,
b) Tm+n = fm(Tn) + Tm,
c) fm(x, y) = xvm − 2yvm−1.

Proof. a) It suffices to prove the theorem for m = 1. We use induction on n.
Observe that f(v1) = f(1, 1) = (−1, 1) = v2. For n = 2, 3, . . . we have

f(vn) = f(vn−1 − 2vn−2)

= f(vn−1)− 2f(vn−2)

= vn − 2vn−1

= f(vn+1).

b) By a) we have, with all choices εj ∈ {0, 1} for j = 0, 1, · · · ,m+ n− 1,

Tm+n = {ε0v0 + · · ·+ εm−1vm−1 + εmf
m(v0) + · · ·+ εm+n−1f

m(vn−1)}
= Tm + fm({εmv0 + · · ·+ εm+n−1vn−1})
= Tm + fm(Tn).

c) By induction on m. We have

f(x, y) = (x− 2y, x) = x(1, 1)− 2y(1, 0) = xv1 − 2yv0

and

fm+1(x, y) = f(fm(x, y))

= f(xvm − 2yvm−1)

= xf(vm)− 2yf(vm−1)

= xvm+1 − 2yvm.

To demonstrate the use of this theorem consider the case n = 5. A simple
calculation yields (Fig. 4.21) T5 = {(0, 0), (1, 0), (1, 1), (2, 1), (−1, 1), (0, 1),
(0, 2), (1, 2), (−3,−1), (−2,−1), (−2, 0), (−1, 0), (−4, 0), (−3, 0), (−3, 1),
(−2, 1), (−1,−3), (0,−3), (0,−2), (1,−2), (−2,−2), (−1,−2), (−1,−1),
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Chapter 4. Maximal and Boundary Ghosts

(0,−1), (−4,−4), (−3,−4), (−3,−3), (−2,−3), (−5,−3), (−4,−3), (−4,−2),
(−3,−2)}. Observe that the full triangles with vertices v1 − 4v2, −4v1 + v2,
v1 + v2 and with vertices −2v1 − 3v2, 3v1 − 3v2, −2v1 + 2v2 together cover 28
points of T5 and no integer points outside T5. For any positive integer m we
have Tm+5 = fm(T5) + Tm. The 32 points fm(T5) are given by

{ε0vm + · · ·+ ε4vm+4 : ε0, . . . ε4 ∈ {0, 1}}.

We obtain Tm+n by replacing each such a point p by p+Tm. The full triangles
with vertices

vm+1 − 4vm+2,−4vm+1 + vm+2, vm+1 + vm+2

and with vertices

−2vm+1 − 3vm+2, 3vm+1 − 3vm+2,−2vm+1 + 2vm+2

cover together 28 of such points p. We can show that for m ≥ 5 all the integer
points in these full triangles are points in the interior of boundary ghost domain
T ∗m+n and have therefore unique image values.

Example 18. (See Fig. 4.21.) Take m = n = 5. We have T10 = f 5(T5) + T5.
The 32 points f5(T5) are the large points in Fig. 4.21 and lie in the lattice
Z(5,−1)+Z(7, 5). We obtain T10 by replacing every large point p by p+T5. All
the integer points in the full triangles with vertices v6− 4v7,−4v6 + v7, v6 + v7
and with vertices −2v6 − 3v7, 3v6 − 3v7,−2v6 + 2v7 belong to T10 and are in
the interior of T ∗10. Thus they have unique image values.

v
6
 = (7,5)

2v
4

v
5

Figure 4.21: U10 as 32 translated tiles of U5.
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4.6. The Structure of Boundary Ghosts

The consequence of this result for the boundary ghost can be seen in Fig.
4.22b. The union of the two triangles provides a lower bound for the central
uniquely determined area of boundary ghosts for n ≥ 10. In practice, one can
quickly verify if an object under discrete reconstruction is contained within
this area, and is thereby uniquely determinable.

a) b)

Figure 4.22: a) U5 tile. b) The uniquely determinable area within the boundary
ghost domain U∗10.

We can then use Pick’s theorem to determine the exact number of points
in this region that can be reconstructed uniquely.

Theorem 19. T ∗n contains a convex region of at least 25 · 2n−6 + 11 uniquely
determinable points for n ≥ 10.

Proof. The triangles with vertices v5 − 4v6,−4v5 + v6, v5 + v6 and vertices
−2v5 − 3v6, 3v5 − 3v6,−2v5 + 2v6 both have area

A =
1

2
|5vn−5 × 5vn−4| (4.30)

=
25

2
|pn−5qn−4 × pn−4qn−5|

= 25 · 2n−6

by Lemma 1. Either triangle has side lengths 5vn−4, 5vn−5 and 10vn−6. As
(pn, qn) are co-prime for all n, the triangle must have b = 20 integer points
that lie exactly on the boundary. By Pick’s theorem, the number of interior
points must be

i = A− b

2
+ 1 (4.31)
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Chapter 4. Maximal and Boundary Ghosts

= 25 · 2n−6 − 9.

Therefore, the total number of integer points contained within the convex
region is 25 · 2n−6 + 11.

By the same process, we give a similar result for the union of both triangles.

Corollary 20. The union of triangles with vertices v5−4v6,−4v5 + v6, v5 + v6
and vertices −2v5 − 3v6, 3v5 − 3v6,−2v5 + 2v6 contain 17 · 2n−5 + 14 unique
points in T ∗n for n ≥ 10.

Depending on the application, different aspects of the uniquely deter-
minable inner region may be relevant. In this section, we have provided a
variety of measures for this internal region which can be computed efficiently.

4.7 Summary

We have presented a method for constructing discrete maximal ghosts for N
directions that consist of 2N distinct, 4-connected points with ghost values ±1.
Ghosts constructed from discrete lattice directions defined by the recursion
vn+1 = vn + 2εn+1vn−1 (where εn+1 ∈ {−1, 1}) tile the lattice. If εn is the same
for all n greater than some n0, then the recursion can be viewed as generating
two Lucas sequences, with different initial values for the x and y directions
[11]. The set Tn formed by this recursion is surrounded by six neighbours:
Tn ± 2vn−1, Tn ± vn−1 ± 2vn−2. These neighbours are all contained in Tn+5.

Due to the internal structure of maximal ghosts, all non-boundary points
can be removed with an additional lattice direction to create boundary ghosts.
When we restrict to εj = −1 for j = 3, 4, . . . n − 1, the number of points of
the boundary ghost T ∗n is cρn +O(|σ|n) with σ < ρ < 2. This is exponentially
smaller than the size of its interior. The internal structure of ghosts can be
determined quickly through the linear mapping of triangles, which gives a
central uniquely determined area for boundary ghosts T ∗n with n ≥ 10.

Figure 4.23 shows reconstructions of an image with insufficient projection
data from the sets of projections that define the maximal ghost T14 (

∑ |pn| =
210 and

∑ |qn| = 119) and the resultant boundary ghost domain T ∗14. The
reconstructions are P × Q images that have the same horizontal and vertical
size as the ghosts, and therefore there is only (P −∑ |pn|)(Q −∑ |qn|) = 1
unknown variable in the linear system of discrete projections. The white pixels
mark the points which cannot be uniquely recovered. The maximal ghost in
Fig. 4.23b completely distorts the important information, while in Fig. 4.23c
the boundary ghost strongly reduces the number of these errors and restricts
their location to less crucial parts of the image. Figure 4.23d uses the same
projection set that defines the boundary ghost domain T ∗14, but for a 211×131
image such that (P −∑ |pn|)(Q−∑ |qn|) = 10. The shape of the errors is the
same, however the boundary of errors becomes thicker. This illustrates how
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4.7. Summary

the careful selection of projection directions suggested in this work can either
obfuscate the important information in a reconstruction or leave it mostly
untouched.

a) b)

c) d)

Figure 4.23: Reconstruction of the cameraman test image (a) where white pixels
mark non-unique image locations. b) 211 × 120 image with the maximal ghost T14
projection set. c) 211 × 121 image with the boundary ghost T ∗14 projection set. d)
211× 131 image with the boundary ghost T ∗14 projection set.

Boundary ghosts can be constructed by choosing recursive projection di-
rections vn+1 = vn ± 2vn−1. This choice of εn at each step allows for many
different possible boundary ghosts to be constructed, with a vast range of
shapes and sizes. The following chapter will look to extend these results to
higher dimensions.
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CHAPTER 5

Ghosts in Higher Dimensions

Tomography most often finds application in three dimensions, as we are usually
interested in the reconstruction of 3D objects. Therefore, it is useful to extend
the formulation of maximal and boundary ghosts into the third dimension.
As we have seen, due to the number theoretic aspect of discrete tomography,
the field also finds application far beyond imaging. It can be used in the
wider context of communications and encryption. In these areas, we are not
limited to the three spacial dimensions of the real world. Hence, it may be
of use to develop our ideas to higher dimensions. In this chapter, we build
upon the work of Chapter 4 to construct maximal and boundary ghosts in any
dimension. New degrees of freedom allow for a wider range of shapes and sizes
that can be produced, and also different ways of removing the interior points
which give rise to boundary ghosts.

Thus far, we have limited our focus to constructing ghosts in two dimensions.
Given the theory developed in this chapter, it is natural to ask: Do similar
ghost structures exist in higher dimensions? In this section, we use the 2D
shapes as building blocks to construct maximal primitive ghosts in any dimen-
sion that maintain the same properties as in 2D. But first, we examine why
this approach is necessary, as one may assume that a simple recursion similar
to (4.6) can be used for higher dimensions.

Consider recursion (4.6) with εn+1 = −1 for n = 2, 3, . . . , which generates
a maximal ghost such that the n-th ghost domain Tn fits into a square with
side length 3 · 2n/2 for every n. It would seem to be likely that there exists a
recurrence relation vn = c1vn−1 + c2vn−2 + c3vn−3 with suitable initial values
such that a maximal ghost is generated which fits into a cube of side length
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5.1. From 2D to 3D

c · 2n/3 for every n, where c1, c2, c3, c are integer constants. Here we show that
such a recurrence does not exist.

The recurrence relation vn = c1vn−1 + c2vn−2 + c3vn−3 has as the charac-
teristic polynomial z3 − c1z2 − c2z − c3 =

∏3
j=1(z − αj). Since c1, c2, c3 ∈ Z,

one of the roots, say α1, should be real. Let vn = (pn, qn, rn). We require that
vn, vn−1, vn−2 are linearly independent over Z for all n ≥ 2. Then pn, qn and rn
satisfy the recurrence relation xn = c1xn−1 + c2xn−2 + c3xn−3. It follows that
for j = 1, 2, 3, it is not possible that cj = 0 for all three sequences. In order
for Tn to fit into the specified box, we conclude that maxj=1,2,3 |αj| ≤ 21/3. On
the other hand, the number of elements of Tn is 2n and therefore requires that
|α1α2α3| = |c3| ≥ 2. Thus |αj| = 21/3 for j = 1, 2, 3, and α1 = ±21/3. It follows
that z3 − c1z2 − c2z − c3 = z3 ± 2 and the recurrence reads vn = ±2vn−3 for
n ≥ 3. We conclude that for n ≥ 3 all coefficients pn, qn, rn are even so that
we don’t obtain a sequence of relatively prime vectors.

Let us provide an example. A natural choice for a recursion with degree
3 is vn = vn−2 − 2vn−3 with initial vectors v0 = (1, 0, 0), v1 = (0, 1, 0) and
v2 = (0, 0, 1). An illustration of a ghost generated using this recursion is shown
in Fig. 5.1. This ghost is cylindrical in shape, and grows along a diagonal.
Unlike the 2D ghosts, this shape has a fill factor that tends towards zero for a
large number of directions. This shape is not so favourable, as it only covers
a small diagonal part of a rectangular box.

Figure 5.1: Maximal ghost in 3D with zero line sums over ten directions, given by
vn = vn−2 − 2vn−3 with initial vectors v0 = (1, 0, 0), v1 = (0, 1, 0) and v2 = (0, 0, 1).

Hence, it is not possible to extend boundary ghosts to three dimensions
simply using a recursion of degree 3. We may still generalise boundary ghosts
to higher dimensions, but a different approach is required.

5.1 From 2D to 3D

We now look to construct 3D maximal primitive ghosts by using the 2D shapes
as building blocks. These building blocks can be stacked along a third dimen-
sion to produce new ghost tiles. Just as with 2D ghosts, this can be done
in many different ways to produce a variety of shapes. In practice, one may
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Chapter 5. Ghosts in Higher Dimensions

construct a 2D ghost that fits the desired size in x and y, and then stack these
tiles in z to the required height.

However here, we look to achieve a ghost that fits into a cube with side
lengths c · 2n/3 for all n. Recall that the characteristic polynomials for the 2D
recurrence are given by

pn = qn+1 =
1√
−7

(
1

2
+

1

2

√
−7

)n
− 1√
−7

(
1

2
− 1

2

√
−7

)n
(5.1)

=
2√
7

Im

(
1

2
+

1

2

√
−7

)n
and the size of the ghost is the absolute sum of the directions.(

1 +
n∑
j=1

|pj|, 1 +
n∑
j=1

|qj|
)

(5.2)

The growth rates in the x and y direction are both of order O(2n/2), hence
the size in both directions approximately doubles every two directions. For
each direction that stacks 2D ghosts in the z-direction, the height of the ghost
doubles, therefore the step size ri must also double. To ensure all sides have the
same rate of growth in 3D, a step along the z-direction should be added every
three directions, thereby ensuring that the size in x, y and z all approximately
double every three steps. The pi and qi components should be minimal in
these steps to maximise the fill factor. By Theorem 4, we know that the set
Tn becomes a ghost when we give value 1 to points (x, y) ∈ Tn with even x
and value −1 to those with odd x, which is maintained due to the fact that pn
is always odd. Hence, in 3D we define lattice directions recursively by

v3n−1 = ((−1)n−1, 0, (−2)n−1), (5.3)

v3n = v3n−2 − 2v3n−3,

v3n+1 = v3n − 2v3n−2

for n = 1, 2, . . . , with initial vectors v0 = (1, 0, 0), v1 = (1, 1, 0). We similarly
define the set of ghost points by Tn+1 = Tn ∪ (Tn + vn) for n = 0, 1, . . . , with
T0 = {(0, 0, 0)}. We now consider voxels in 3D space, so we define

Un = Tn + {(x, y, z) ∈ R3 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} (5.4)

for n = 1, 2, . . . . The recursions v3n and v3n+1 simply give the 2D directions.
The justification for the choice of p3n−1 and q3n−1 is that they cannot be zero,
as then we would have degenerate angles. So we pick the smallest shift, 1, and
add it to p3n−1 so that all even ghost points in x have value 1 and odd x points
have value −1. The results from 2D all follow for each x-y slice in 3D, as we
shall demonstrate in the forthcoming sections.

Ghosts constructed from U8 in 2D, and correspondingly U11 in 3D, are
shown in Fig. 5.2. Dark squares show where the ghost has value −1, and light
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squares are +1 ghost values. These values have been indicated to demonstrate
how the structure has been extended from 2D to 3D. Notice that in both cases,
ghost values alternate sign along the x direction. For the remainder of this
chapter, ±1 values will not be indicated, as all ghosts have the same structure
and our focus will be on the shape of the tiles.

a) b)

Figure 5.2: a) Maximal ghost U8 in 2D. b) Maximal ghost U11 in 3D, constructed
as a stack of the 2D ghost in (a). Light squares denote +1 and dark squares are −1.

5.2 Connectedness of the Tiles

Let w1, w2, w3, w4 ∈ Z3. We call the points w1 and w2 6-connected if |w1−w2| =
1. We say that the disjoint tiles Tn + w3 and Tn + w4 are neighbours if there
are points w1 ∈ Tn + w3, w2 ∈ Tn + w4 such that w1 and w2 are 6-connected.
If so, then Un +w3 and Un +w4 have a face in common. We aim to generalise
Theorem 5 and Corollary 7. First we describe which tiles are 6-connected with
Tn and thereafter we show that all neighbouring tiles of Tn are in Tn+8.

Theorem 21. For n = 1, 2, . . . we have:

T3n is surrounded by T3n ± V where V = v3n−2 ± v3n−3, 2v3n−2, (0, n, 2n),

T3n+1 is surrounded by T3n+1 ± V where V = v3n ± v3n−2, 2v3n, (0, n, 2n),

T3n+2 is surrounded by T3n+2 ± V where V = v3n+1 ± v3n, 2v3n+1, (0, n, 2
n).

Proof. By Theorem 5, we can immediately see that in the x-y plane,

T3n is surrounded by T3n ± v3n−2 ± v3n−3,±2v3n−2,

T3n+1 is surrounded by T3n+1 ± v3n ± v3n−2,±2v3n,

T3n+2 is surrounded by T3n+2 ± v3n+1 ± v3n,±2v3n+1.
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The separation between the bottom and top 2D ghost plane is given by

n∑
h=1

|v3h| =
n∑
h=1

(
1, 0, 2h−1

)
= (n, 0, 2n − 1)

and therefore in all three cases, T3n+m is a neighbour of T3n+m ± (n, 0, 2n) for
m = 0, 1, 2, and the statement of the theorem follows.

As a result of Theorem 21, we are again free to arbitrarily choose neigh-
bouring directions to construct a ghost to fit a specified shape. The theorem
is illustrated in Fig. 5.3 for U8, represented as the dark tile. Only half of the
neighbours are visualised here to show how each neighbour connects to the
central tile. The other neighbours are symmetric.

Figure 5.3: U8 (dark tile) and its neighbours U8+V where V = {(7, 5, 0), (3,−7, 0),
(10,−2, 0), (2, 0, 4)}. Negative neighbours (−V ) are not illustrated.

Theorem 22. For every n, all neighbours of Tn are contained in Tn+8.

Proof. We consider T3n+m for m = 0, 1, 2. Let

Γ3n = {T3n + ε1v3n + ε2v3n+1 + ε3v3n+3 + ε4v3n+4 + ε5v3n+6},
Γ3n+1 = {T3n+1 + ε1v3n+1 + ε2v3n+3 + ε3v3n+4 + ε4v3n+6 + ε5v3n+7},
Γ3n+2 = {T3n+2 + ε1v3n+3 + ε2v3n+4 + ε3v3n+6 + ε4v3n+7 + ε5v3n+9}.

such that ε1, . . . , ε5 ∈ {0, 1} for each set. By Theorem 5, T3n and its neighbours
in the x-y plane T3n ± v3n−2 ± v3n−3, T3n ± 2v3n−2 are contained in Γ3n. T3n ±
(0, n, 2n) are contained within Γ3n + v3n+2 and Γ3n + v3n+5, therefore T3n all
the neighbours are contained in T3n+7.

Similarly, T3n+1 and its horizontal neighbours are contained in Γ3n+1, and
T3n+2 and its horizontal neighbours are contained in Γ3n+2. Then T3n+1 ±
(0, n, 2n) are contained within Γ3n+1 + v3n+2 and Γ3n+1 + v3n+5, and T3n+2 ±
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(0, n, 2n) are contained within Γ3n+2 + v3n+2 and Γ3n+2 + v3n+5. Therefore, all
the neighbours of T3n+1 are contained in T3n+8, and all the neighbours of T3n+2

are contained in T3n+10. Thus for all n, Tn and all its neighbours are contained
in Tn+8.

Theorem 22 is illustrated in Fig. 5.4, where U5 is contained within U13.
The structure of the tile Γ5 (Fig. 5.4a) is reminiscent of the 2D structure
shown in Fig. 4.19.

a) b)

Figure 5.4: a) Tile Γ5, with U5 highlighted. b) Ghost U13, which contains U5 and
all its neighbours.

5.3 3D Boundary Ghosts

We investigate so-called boundary ghosts generated by the previously con-
structed maximal ghosts. Boundary ghost domains T ∗n consist of boundary
points of Tn. They are constructed using the same recursive sequences of di-
rections, but with an extra direction (0, 1, 0), (0, 0, 1), or a linear combination
of these directions. We shall deal with the case that we add the direction
v−1 = (0, 1, 0).

Recall that the ghost value of (x, y, z) ∈ Tn is 1 if x is even and −1 if x is
odd. All other points in Z3 have value 0. Let T ∗n be the ghost by adjoining
(0, 1, 0) to v0, . . . , vn−1. Then the value at (x, y, z) becomes 0 if (x, y, z) and
(x, y− 1, z) both belong to Tn or both do not belong to Tn, and becomes ±1 if
exactly one of both belongs to Tn. Let U∗n be the set of voxels corresponding to
T ∗n in the same way as Un corresponds to Tn. We prove the following theorem.

Theorem 23. There is a one-to-one correspondence between the boundary
squares of area 1 of Un in the direction of the y-axis and the elements of T ∗n .

Proof. Observe that the ghost value of (x, y, z) in T ∗n is the value of (x, y, z)
minus the value of (x, y − 1, z) in Tn. If there is a boundary square between
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the voxels of (x, y, z) and (x, y − 1, z) in Un, then one among (x, y, z) and
(x, y − 1, z) belongs to Tn and the other does not. Therefore (x, y, z) ∈ T ∗n .

If (x, y, z) ∈ T ∗n , then the ghost values of (x, y − 1, z) and (x, y, z) in Tn
differ by 1. That is, one value is ±1 and the other value is 0. It follows that the
square between the voxels in Un corresponding to these points is a boundary
square of Un.

Half of the points of T ∗n belong to Tn and half of them do not. A point
of Tn can generate at most two points of T ∗n , that is, if its neighbours in the
y-direction both do not belong to Tn. Given the theory we have developed in
Section 4.5, we can count the number of boundary points of T ∗n .

Theorem 24. Let ρ ≈ 1.5214 be the positive zero of x3 − x− 2 and σ and σ
the nonreal zeros. Then the number of points of T ∗n in three dimensions equals

2bn/3c [cρη + 2|σ|η(Re(c1) cos(η arg(σ))− Im(c1) sin(η arg(σ)))]

with η = b2(n + 1)/3c, ρ = 1.5214, σ = −0.7607 + 0.8579i, c = 2.4757, and
c1 = −0.2378 + 0.0747i.

Proof. In three dimensions, the ghost domain Tn is made up of 2bn/3c tiles
of the ghost domain Tb2(n+1)/3c in two dimensions, as the stack doubles every
three directions. Recall from Theorem 13, δn = δn−2 + 2δn−3 with initial
values δ1 = 4, δ2 = 6, δ3 = 8. Therefore, the number of ghost points in
three dimensions is given by 2bn/3cδb2(n+1)/3c and the statement of the theorem
follows.

Corollary 25. In three dimensions T ∗n has 2bn/3c(cρb2(n+1)/3c+O(|σ|b2(n+1)/3c))
elements.

In choosing v−1 = (0, 0, 1) or v−1 = (0, 1, 1), the boundary ghost takes the
shape of a sphere with considerably more points, as shown in Fig. 5.5. In
this case of v−1 = (0, 0, 1), there is a solid 2D ghost on the top and bottom of
the shape, with some ghost points on the sides. Using v−1 = (0, 1, 1), results
in a similar shape, but with more ghost points on the sides. There are still
some holes in the side walls, which can be seen in Fig. 5.5c. However, all of
these shapes have no ghost points within their surfaces. The maximal ghost
T11 has 211 = 2048 ghost points, while the boundary ghosts with directions
v−1 = (0, 1, 0), v−1 = (0, 0, 1) and v−1 = (0, 1, 1) have 560, 752 and 1032 ghost
points respectively.

It is worth noting that these choices of v−1 will have a similar effect on
any 3D ghost with this structure. Therefore, one could construct stacks from
a variety of 2D ghost shapes, and create boundary ghosts in the same way.
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a) b) c)

Figure 5.5: Boundary ghost U∗11 with: a) v−1 = (0, 1, 0), b) v−1 = (0, 0, 1), c)
v−1 = (0, 1, 1).

5.4 Alternate Sequences

In this section, we show other example of sequences that produce 3-dimensional
ghosts. As demonstrated, ghosts in 3D are formed by stacking 2D ghosts in a
direction that is normal to their surface. Up to this point, all examples have
shown stacking along the z-axis. However, this can be performed along any
2D plane in 3D, provided the directions have co-prime components. Consider
the following recursion:

v3n+1 = v3n−1 + 2v3n−2, (5.5)

v3n+2 = v3n − 2v3n−1,

v3n+3 = v3n+2 − 2v3n.

In Table 5.1 we give two sets of 11 directions generated with the recursions
in (5.5). Two different sets of initial conditions are used for these directions. In
Table 5.1a we have v0 = (1, 0, 0), v1 = (0, 1, 0), v2 = (0, 0, 1), which generates
a set of directions reminiscent of the sequence used throughout this work, but
stacked along the z direction. Table 5.1b has a set of directions generated
from the initial directions v0 = (1, 0, 0), v1 = (1, 1, 0), v2 = (1, 0, 1). Looking
at the directions, it is not obvious that this set also produces a 3D ghost from a
2D ghost stack. However, here the stacking occurs along a diagonal direction,
which can be seen in Fig. 5.6.

Though the link between these two examples is visually apparent, compu-
tationally it has been observed that all 3D ghosts which have the same order
of growth along all dimensions can be viewed as stacks of 2D ghosts. This
allows us to generalise the construction method to any number of dimensions.

5.5 Ghosts in k-Dimensions

Using the construction outlined for threedimensions, we can generate ghosts
in higher dimensions. For a maximal primitive ghost in dimension k, we define
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Table 5.1: Sets of directions from the recursions (5.5) with initial values: a) v0 =
(1, 0, 0), v1 = (0, 1, 0), v2 = (0, 0, 1), b) v0 = (1, 0, 0), v1 = (1, 1, 0), v2 = (1, 0, 1).

a) b)
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
(2, 1, 0)
(0, −2, 1)
(0, −2, −1)
(4, 0, 1)
(0, 2, −3)
(0, 6, −1)
(8, 2, −1)
(0, 2, 5)

(1, 0, 0)
(1, 1, 0)
(1, 0, 1)
(3, 1, 0)

(−1, −2, 1)
(−3, −2, −1)

(5, 0, 1)
(−1, 2, −3)

(5, 6, −1)
(9, 2, −1)
(7, 2, 5)

a) b)

Figure 5.6: Two alternate constructions of U11 with the initial values: a) v0 =
(1, 0, 0), v1 = (0, 1, 0), v2 = (0, 0, 1), b) v0 = (1, 0, 0), v1 = (1, 1, 0), v2 = (1, 0, 1).

the lattice directions by

vkn−k+2 = ((−1)n−1, 0, (−2)n−1, 0, . . . , 0), (5.6)

vkn−k+3 = ((−1)n−1, 0, 0, (−2)n−1, . . . , 0),

...

vkn−1 = ((−1)n−1, 0, . . . , 0, (−2)n−1),

vkn = vk(n−1)+1 − 2vk(n−1),

vkn+1 = vkn − 2vk(n−1)+1.

for n = 1, 2, . . . with initial vectors v0 = (1, 0, 0, . . . ), v1 = (1, 1, 0, . . . ). The
ghost domain Tn then has a similar structure to that outlined in the 3D case.
We take two steps in the x-y plane, as in the 2D case, followed by a step of
size 2n−1 along all other dimensions to ensure each side of the k-dimensional
hyperrectangle has approximately even side lengths. Again, a shift of 1 in the
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x direction is also present in this step to both ensure that the direction has
co-prime components, and to maintain the structure of the ghost having value
1 for all points (x, y) ∈ Tn with even x and value −1 to those with odd x.

The same connectivity of the tiles also follows through higher dimensions.
A maximal ghost with k-dimensions will have 2(k + 1) neighbours. There are
six neighbours in the x-y plane by Theorem 5, and then two neighbours along
each additional dimensions, given by

Tn ± {(n, 0, 2n, . . . , 0), . . . , (n, 0, 0, . . . , 2n)}.

Hence, Tn with k dimensions has 2(k − 2) + 6 = 2(k + 1) neighbours.
A k-dimensional maximal ghost domain at a given size will also be enclosed

within a fixed number of steps. As with 3D, this happens once five steps have
been taken in the direction of vkn or vkn+1. The scenario where Tn is enclosed
within the fewest steps, the next direction is either vkn or vkn+1. This is then
followed by (k − 2) directions vkn−k+2, . . . , vkn−1, and then repeats the cycle
until five steps of the directions vkn or vkn+1 have taken place. Here, we require
two cycles of the directions in 5.6, plus one of either vkn or vkn+1 at the start
or end. Therefore, at best, all neighbours of Tn are contained in Tn+2k+1. This
was seen in the proof of Theorem 22, as two steps were enclosed by Tn+7. In
the worst case scenario, the next direction is vkn−k+2. To enclose Tn here, we
need two full cycles of the directions in 5.6, and third cycle omitting vkn+1.
Hence for every n, all neighbours of Tn are contained in Tn+3k−1.

Using this set of directions, we can again obtain a boundary ghost by
adding the direction (0, 1, 0, . . . ). Using this direction is the most efficient, as
seen in the 3D case, but there are more options to obtain shell-like boundary
ghosts. Let v−1 = (0, 1, x3, ..., xk) be a k-dimensional vector. Then any vector
in the set {(0, 1, x3, ..., xk) | x3, ..., xk ∈ {0, 1}} will produce a k-dimensional
boundary ghost. Therefore, there are 2k−2 possible boundary ghosts.

5.6 Ghost Tiles in Physical Systems

In this section we will explore the interlocking of ghost tiles computationally,
and how this may be used to model physical systems. Though we have been
examining these shapes in the context of ghosts, we have primarily studied
how similar tiles connect with each other. We have shown a recursion that
produced non-degenerate directions that gives a translation for a shape to
bind with itself. This may offer insight into processes where lattice structures
grow, for example flocculation. Similarly to the Fibonacci sequence modelling
the pattern of sunflower seeds, this recursion defines maximal contact areas of
self similar tiles which can be viewed as an energy minimisation.

There are still many unanswered questions when it comes to the forma-
tion pathways of aggregated crystal growth [63]. Here, we have aggregation-
based crystallization, starting from so-called nanoblocks. The true nature for
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the growth of common mineral such as gypsum is still not well understood.
The self-assembly in these minerals and also biological semi-organic crystals
seem very similar to the tilings studied throughout this work. The diver-
sity of growth directions may provide an important explanation for particular
instances of symmetry breaking in simple nano-particles. Furthermore, the
signed ghost elements may be useful for modelling the strong interactions for
short-range surface bonding in material systems. There is a link here between
the content of Chapter 3 and the Bernasconi model of pseudo-noise binary
arrays for nearest neighbour spin-spin interactions that can be closely approx-
imated by an auto-correlation coupling term in the Hamiltonian [48]. Ghosts
have also been used to construct perfect arrays, which uses zero sum projec-
tions in the finite Radon transform [12].

The area of connection between two tiles was analysed computationally.
We take the tile that results from our initial set of directions, and then find
a direction that defines the distance between the two identical tiles such that
the boundary contact is maximised. All non-degenerate directions are tested
to find the ideal translation that maximises contact. Since the ghost domains
are symmetric, it is only necessary to test directions (p, q) with p > 0.

We return briefly to the two dimensional case as a starting point. In 2D,
the directions that maximise contact area correspond exactly to the recursion
given in (4.6). Therefore, this recursion is maximal in a sense, when we limit
the geometry to two dimensions. The boundary length was computed for Un
up to n = 18. Moreover, this maximal direction was unique for almost all n,
aside from its negative counterpart due to the symmetry of the tiles. Only v3
produced two directions that both give the same contact area. The two direc-
tions (3, 1) and (3,−1) have the same contact area due to additional symmetry
of T3. After this, there is no ambiguity in the maximal step. From Theorem 9,
we know the exact length of this boundary. The connecting boundary length
of Un and Un + vn is given by αn. It can be computed through the recursion

αn+1 = αn−1 + 2αn−2

for n = 3, 4, . . . , with α1 = 1, α2 = 3 and α3 = 3.
The same computation is then extended to 3D, where we compute the

contact area of the joining faces of Un and Un + vn. In Table 5.2, we give the
directions which define the maximal contact area for a tile and its translation.

The sequence from (5.3) that we have been working with throughout this
chapter is also shown for reference. We begin with the shape defined by the
set of directions {(1, 0, 0), (1, 1, 0), (1, 0, 1)}, and look for the non-degenerate
direction that gives a translation with the most contact faces between the
identical shapes. The shape that results from the initial directions {(1, 0, 0),
(0, 1, 0), (0, 0, 1)} can be obtained through a linear transformation, and there-
fore similar results would hold. Due to the various symmetries that exist in
these tiles, this direction is not unique, so we choose the direction that matches
in sign with recursion (5.3).
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Table 5.2: The set of directions vn from recursion (5.3), and the non-degenerate
directions with maximal contact to the previous tile.

vn from recursion (5.3) Maximal contact direction
(1, 0, 0)
(1, 1, 0)
(1, 0, 1)

(−1, 1, 0)
(−3, −1, 0)

(1, 0, 2)
(−1, −3, 0)

(5, −1, 0)
(−1, 0, −4)

(7, 5, 0)
(−3, 7, 0)

(1, 0, 8)
(−17, −3, 0)
(−11, −17, 0)
(−1, 0, −16)
(23, −11, 0)
(45, 23, 0)
(1, 0, 32)

(−1, 45, 0)

(1, 0, 0)
(1, 1, 0)
(1, 0, 1)

(−1, 1, 0)
(−3, −1, 0)

(1, 0, 2)
(−1, −3, 0)

(5, −1, 0)
(−1, 0, −4)

(7, 5, 0)
(−3, 7, 0)

(−17, −3, 0)
(3, 0, 8)

(−11, −17, 0)
(23, −11, 0)
(45, 23, 0)

(−7, 0, −16)
(−1, 45, 0)

Here, we can see that the two sets of directions match very closely. In some
places directions are switched, but are only off by one step in the sequence.
One main difference is the x component of the step in the z direction. In the
context of tomography, we wanted x to be as small as possible to minimise the
bounding box of the ghost. However, here the x component is approximately
half of the z component, such that the faces of the shapes align more closely.
Here, it is favourable for this direction to be as close as possible to 45◦ in the
x-z plane.

From Table 5.2, it can be seen that before the directions (3, 0, 8) and
(−7, 0,−16), there are three steps in the x-y plane. However, we know that
this results in uneven growth for when the number of directions is large. This
may be a temporary occurrence, or there may be a bias towards the directions
in the x-y plane due to the surface around the edge of the tile.

In Fig. 5.7, the tile U11 is illustrated, and the faces that connect to U11 +
(−17,−3, 0) and U11 + (3, 0, 8) respectively are shaded. The intersection U11∩
U11 + (−17,−3, 0) has an area of 297 while U11 ∩ U11 + (3, 0, 8) has area 256.
Since the tile is textured around the edge (Fig. 5.7a) a single point in Tn may
have multiple neighbouring points in the translated tile, which increases the
area of contact. However, for shifts in the z direction, the two tiles meet along
a flat face, limiting the number of joining faces. Though we have not explicitly
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proven this idea of maximal contact area, this recursion may be useful for
modelling physical processes.

a) b)

Figure 5.7: U11 where the dark shaded squares indicate the joining faces connected
to: a) U11 + (−17,−3, 0), b) U11 + (3, 0, 8)

5.7 Summary

In this chapter, we have extended the construction of maximal and boundary
ghosts to higher dimensions using the 2D shapes as building blocks. Therefore,
all of the properties of the 2D shapes hold in k-dimensions. However, due to
the new degrees of freedom there are more possibilities. For a given maximal
ghost in kD, we can produce 2k−2 unique boundary ghosts. Using the set
of directions from (5.6), the similar connectivity properties hold from the 2D
case. A maximal ghost with k-dimensions will have 2(k + 1) neighbours, and
every neighbour of Tn is contained within Tn+3k−1.

Computationally, these tiles have shown to have maximally interlocking
boundaries under the co-prime direction constraint in two dimensions. Fur-
thermore, in three dimensions the recursion was shown to nearly be maximal.
Hence, this packing may give insight into various physical systems that have a
structure analogous to the discrete grid. Processes such as aggregation-based
crystallization are still not well understood, and this recursion may prove use-
ful in modelling the growth of these systems. This will be a focus of future
work.

Although we have shown some properties of the ghost domain with direc-
tions given by (5.6), in general there are many different shapes of ghosts that
we can construct, and the process is similar for a ghost in any dimension. We
start by using recursion (4.6) with different choices of εn ∈ {−1, 1}. In Fig.
5.8, there are some examples of different possible shapes with seven directions.

Once the desired shape has been acquired in 2D, these tiles can then be
stacked along any dimension to produce a ghost in k dimensions. These direc-
tions can be chosen to fit a given application, provided that the components

90



5.7. Summary

of these directions are co-prime. To maintain the property that ghost points
with even x have value 1 and odd x points have value −1, pn must be odd.
However, if pn is even, this will still produce a ghost where all layers have
alternating columns of +1 and −1, but these columns will not necessarily line
up across layers. In either case, a boundary ghost can be obtained by adding
the direction (0, 1). Though if pn is not odd for all n then not all directions in
the set {(0, 1, x3, ..., xk) | x3, ..., xk ∈ {0, 1}} will give boundary ghosts.

Figure 5.8: 2D ghost shapes for N = 7 with different choices of εn.
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CHAPTER 6

Linear Time Reconstruction by
Discrete Tomography

The reconstruction of an unknown function f from its line sums is the aim
of discrete tomography. In general, many solutions are permitted, due to the
presence of ghosts. Even in the case where there exists a unique solution, the
problem is generally NP-hard, which makes many reconstruction algorithms
inefficient. We show that this is not the case when f takes values in a unique
factorization domain, such as R or Z. In this chapter, we present a linear
time reconstruction algorithm (in the number of directions and in the size of
the grid), which outputs the original function values for all points outside of
the switching domains. Freely chosen values are assigned to the points of the
switching domains. This work is presented in [13], along with Silvia Pagani
and Rob Tijdeman, who authored parts of this chapter. This extends their
previous work from [52] to allow all pixels to be computed in linear time.
My role in this research was to investigate the computational aspects of this
algorithm, including implementation and complexity.

In this thesis, we have used aspects of discrete tomography to build ar-
rays that can be utilised for tomography as well as broader communications
applications. However, at this juncture we have not explicitly considered any
methods for discrete reconstruction. It is important that tomographic recon-
structions are not only accurate, but can be performed in a timely manner. In
this chapter, we present an efficient algorithm that reconstructs an unknown
function from its line sums in linear time. We assume the line sums are free
of noise, but the algorithm does not expect the discrete projections to provide
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sufficient information to admit a unique solution.
Discrete tomography finds its origin in the fifties, mainly for only two di-

rections [61]. By 1978, M. Katz [47] gave a necessary and sufficient condition
for the presence of a nontrivial function with vanishing line sums, known as
a switching function or ghost. The theory started to blossom in the nineties
when it became relevant in the study of crystals. In 1991 Fishburn, Lagarias,
Reeds and Shepp [30] gave necessary and sufficient conditions for uniqueness
of reconstruction of functions f : A → {1, 2, . . . , N} for some positive inte-
ger N . An important distinction is whether the line sums are exact or may
be inconsistent due to noise in the measurements. In the case where noise is
present, the reconstruction can only be an approximation [6, 7, 53]. In what
follows, we assume that the line sums are exact.

One of the main goals of discrete tomography is to ensure that the recon-
structed function is true to the function f from which the line sums originate.
However, in general the problem is ill-posed. Therefore one investigates which
additional constraints can be imposed in order to achieve uniqueness. For in-
stance, one may use some known information about the shape of the domain
of f such as convexity [31], the values f can attain (for the binary case see
[10, 43], for the integer case see [23]), or the size of the domain of f [10, 44].
In this work we assume that the line sums come from some function f and are
therefore consistent.

In 1999 Gardner, Gritzmann and Prangenberg [32] showed that the prob-
lem of reconstructing a function f : A → N from its line sums in d directions
is solvable in polynomial time if d = 2, but it is NP-complete if d ≥ 3. The
NP-completeness concerns both consistency and uniqueness, as well as recon-
struction. Moreover, a year later they showed that the three mentioned prob-
lems are NP-complete for two and more directions when more than five types
of atoms are involved in the crystal [33]. Therefore, it is intrinsically hard to
determine if there is a solution and if so, to find it.

In 2001 Hajdu and Tijdeman [44] gave an algebraic representation of the
complete set of solutions over the integers. Their result also holds for solu-
tions over the reals or any other unique factorization domain. They gave a
polynomial expression for the nontrivial switching function with domain of
minimal size, the so-called primitive switching polynomial, and showed that
every switching polynomial is a multiple of the primitive switching polynomial.
This implies that every switching function is a linear combination of domain
shifts of the corresponding primitive switching function. Their result suggests
that arbitrary function values can be given to a certain set of points and that
thereafter the function values of the other points of A are uniquely determined
by the line sums. This was made explicit by Dulio and Pagani [28] and serves
as a building block in this chapter.

In 2015 Dulio, Frosini and Pagani [24] showed that in the corners of A the
function values are uniquely determined and can be computed in linear time if
the number of directions d = 2. Later they proved conditional results for d = 3
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[25, 26]. Recently, Pagani and Tijdeman [52] generalized the result for any
number of directions. In particular the object function can be reconstructed
in linear time if there are no switching functions. Moreover, they showed that
in general the part of A outside the convex hull of the union of all switching
domains is uniquely determined and can be reconstructed in linear time. This
result is another building block of our work here.

In the two papers [24, 52], it was shown that the reconstruction of f : A→
R is NP-hard in view of the above mentioned results of Gardner, Gritzmann
and Prangenberg. However, this is incorrect, as we shall show. We prove that
given the line sums of a function f : A → R in the directions of D we can
compute a function g : A → R with the same line sums. Using the theory
of [44] this implies that the complete set of such functions g can be explicitly
presented. The crux of the result of Gardner, Gritzmann and Prangenberg is
therefore the requirement that the solution g should have non-negative values.

In Chapter 4, we examined switching components called boundary ghosts,
with a relatively large interior of points having values uniquely determined by
their line sums. Figure 6.1 shows a boundary ghost, where the grey pixels
signify the switching domain. All pixels that are not in the switching domain
can be uniquely determined. This chapter introduces a method which makes
it possible to compute these values in linear time (O(dmn)).
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Figure 6.1: The grey pixels form the switching domain of a boundary ghost.
The white pixels interior to the ghost domain have f -values which are uniquely
determined by the line sums in the directions of D = {(0, 1), (1, 0), (1, 1), (−1, 1),
(−3,−1), (−1,−3), (5,−1), (7, 5), (−3, 7)}.

In Section 6.1 we present notation and definitions, as well as information
on switching functions. Section 6.2 shows how values of f in a corner region of
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A can be obtained from the line sums. The case without switching components
is treated in Section 6.3, that with switching components in Section 6.4. A
general algorithm to compute g can be found in Section 6.5. The justification
of our linear time claim is given in Section 6.6. A summary of the work is
provided in Section 6.8.

6.1 Definitions and Known Results

We consider an m× n rectangular grid of points

A = {(p, q) ∈ Z2 : 0 ≤ p < m, 0 ≤ q < n}.

In the figures of this chapter, the x-axis is oriented from left to right and the
y-axis downwards. The origin is therefore the upper-left corner point of A. To
each point (p, q) ∈ Z2 we attach the pixel (x, y) ∈ R2 with p ≤ x < p+ 1, q ≤
y < q + 1. In the figures, coordinates of a pixel are the coordinates of the
attached point.

Primitive directions are pairs (a, b) of co-prime integers with a ≥ 0, and
b = 1 if a = 0. Since we only consider primitive directions, we simply call them
directions. The horizontal and the vertical direction are given by (1, 0) and
(0, 1), respectively. We consider a finite set of directions D = {(ah, bh) : h =
1, . . . , d}. We say that D is valid for A if M :=

∑d
h=1 ah < m and N :=∑d

h=1 |bh| < n, and nonvalid otherwise.
A lattice line L is a line containing at least two points in Z2. Let f : A→ R.

The line sum of f along the lattice line L(a, b, c) : ay = bx + c with direction
(a, b) is defined as

`(a, b, c, f) =
∑

aq=bp+c, (p,q)∈A

f(p, q).

A function F : A → R is called a switching function or ghost of (A,D) if
all the line sums of F in all the directions of D are zero. Observe that then f
and f + F have the same line sums in the directions of D. The support of a
switching function is called a switching domain.

We say that a computation can be completed in linear time if the number of
operations grows linearly with the size of the input. Here a basic operation is an
addition, subtraction, multiplication, division, decision which of two quantities
is larger or an assignment.

6.1.1 The Location of Switching Domains

M. Katz [47] proved that f : A → R is uniquely determined by the line
sums in the directions of D if and only if (A,D) is nonvalid. Fishburn et
al. [30] showed that (p, q) ∈ A has a unique f -value if and only if (p, q) is
not located in a switching domain (or weakly bad configuration). Hajdu and
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Tijdeman [44] associated to the function f : A→ R the polynomial f ∗(x, y) =∑m−1
i=0

∑n−1
j=0 f(i, j)xiyj. In this way every switching function corresponds with

a switching polynomial. They defined

g∗(a,b)(x, y) =


xayb − 1 if a > 0, b > 0,
xa − y−b if a > 0, b < 0,
x− 1 if a = 1, b = 0,
y − 1 if a = 0, b = 1,

and

G∗i,j(x, y) = xiyj
d∏

h=1

g∗(ah,bh)(x, y)

for 0 ≤ i < m−M, 0 ≤ j < n−N . For an example of a switching polynomial,
see Section 4.1.2. It was shown that G∗0,0 is a switching polynomial of minimal
degree. We call the corresponding function a primitive switching function.
Furthermore they proved the following result.

Theorem 26 (Hajdu, Tijdeman [44], Theorem 1). Suppose D is valid for
A. Put M =

∑d
h=1 ah, N =

∑d
h=1 |bh|. Then for every switching function

g : A→ R its switching polynomial g∗ can be uniquely written as

g∗ =
m−1−M∑
i=0

n−1−N∑
j=0

ci,jG
∗
i,j (6.1)

with ci,j ∈ R for all i, j. Conversely, every function g of which the switching
polynomial is of the form (6.1) is a switching function.

This result is also valid if R is replaced by Z or any other unique fac-
torization domain. A corollary of the theorem relevant for this work is that
the lexicographically lowest degree term of G∗i,j is given by xiyj+Nn where
Nn =

∑
bh<0−bh. Thus we have free choice for the values of ci,j for 0 ≤ i <

m −M,Nn ≤ j < Nn + n −N and by this choice the function g∗ is uniquely
determined.

An illustration of Theorem 26 is given in Fig. 6.2 for a 26×19 grid A and the
set of directions D = {(5,−2), (4,−3), (3,−4), (6, 1), (3, 2), (2, 5)}. The dark
grey pixels indicate the union of the switching domains. Here, the function f is
not uniquely determined by its line sums in the directions of D. The f -values
of the complement, the white and light grey pixels, are uniquely determined
by these line sums. Since M = 23, N = 17, there are six pixels where the
choice is free, for example the pixels (0, 9), (0, 10), (1, 9), (1, 10), (2, 9), (2, 10).
Any other 3 by 2 block of dark grey pixels can be chosen instead. If the choice
is made all the values of the unique solution satisfying the made choices are
determined by the line sums in the directions of D. The white pixels form
four corner regions. The blue line indicates the convex hull of the union of the
switching components.
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Figure 6.2: Points of a 26 × 19 grid A and the set of directions D = {(5,−2),
(4,−3), (3,−4), (6, 1), (3, 2), (2, 5)}. Dark grey pixels show the union of switching
domains. White and grey pixels are uniquely determinable points. The black pixels
represent the switching domain related to G∗0,0.

6.2 Uniqueness in the Corner Regions

Again let A = {(p, q) ∈ Z2 : 0 ≤ p < m, 0 ≤ q < n}. Let D be a set
of directions (a1,−b1), . . . , (ak,−bk) with k ≥ 2 where a1, . . . , ak, b1, . . . bk are
positive integers ordered such that

b1
a1

<
b2
a2

< . . . <
bk
ak
. (6.2)

Note that by primitivity all the ratios are distinct. We call the points(
k∑

h=1

ah, 0

)
,

(
k∑

h=2

ah, b1

)
,

(
k∑

h=3

ah,
2∑

h=1

bh

)
, . . . ,

(
0,

k∑
h=1

bh

)
the border points (P0, Q0), (P1, Q1), . . . , (Pk, Qk), respectively. We denote the
convex hull of the three points (0, 0), (PH−1, QH−1), (PH , QH) by VH for H =
1, 2, . . . , k (see Fig. 6.3). Let

VUL =
k⋃

H=1

VH

be the upper left corner region.
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Figure 6.3: The triangles V1, V2, V3 for the set D = {(3,−2), (4,−3), (1,−2)}. The
border points are (P0, Q0) = (8, 0), (P1, Q1) = (5, 2), (P2, Q2) = (1, 5), (P3, Q3) =
(0, 7). For every H the line through (PH−1, QH−1) and (PH , QH) is a side of triangle
VH , and intersects each other triangle Vh, since the slopes increase with increasing
h by the ordering in (6.2).

For a point (p, q) ∈ A we define its weight w(p, q) by

w(p, q) = min
h=1,2,...,k

bhp+ ahq

bhPh + ahQh

. (6.3)

The following lemma implies that if (p, q) ∈ VUL, then the minimum in the
definition of w(p, q) is reached for h such that (p, q) ∈ Vh.

Lemma 27 ([52], Lemma 2). For (p, q) ∈ A the weight w(p, q) is reached for
h such that

Qh−1

Ph−1
≤ q

p
≤ Qh

Ph
.

and only for such h. The weight 1 is reached at the border points and not at
other points of A.

The next result states that the corner region VUL except for the border
points has unique f -values which can be computed in linear time.

Theorem 28 ([52], Theorem 4, Corollary 6). Let A = {(p, q) ∈ Z2 : 0 ≤ p <
m, 0 ≤ q < n}. Let D be a set of directions (a1,−b1), . . . , (ak,−bk) where
a1, . . . , ak, b1, . . . bk are positive integers ordered as in (6.2). Let the line sums
of f : A → R in the directions of D are given. Then all the points (p, q) in
VUL except for the border points have uniquely determined f -values.

The points which have uniquely determined f -values can be computed by
treating points (p, q) in VUL according to increasing weights and, if (p, q) ∈ Vh,
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by subtracting the sum of the f -values of the other points of A on the line
through (p, q) in the direction of (ah, bh) from its line sum.

Corollary 29. Under the above conditions the f -values of the points (0, 0),

(0, 1), . . . ,
(

0,−1 +
∑k

h=1 bh

)
can all be computed in linear time.

A demonstration of these results can be seen in Fig. 6.4 for the directions
(3,−2), (4,−3), (1,−2). The upper number in each pixel is the weight of the
point. The border points are (8, 0), (5, 2), (1, 5), (0, 7). All the points with
weight less than 1 are in the corner region and have uniquely determined f -
values (Theorem 28). The (dark grey) border pixels are part of the switching
domain and their f -values are therefore not uniquely determined. They have
weight 1. All entirely white pixels have weight > 1.
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Figure 6.4: The weights (upper number inside each pixel) of the points for direc-
tions (3,−2), (4,−3), (1,−2). The lower numbers enumerate the increasing weights.

6.3 The Nonvalid Case

Suppose we are in the nonvalid case, so M ≥ m or N ≥ n. Without loss of
generality assume that N ≥ n. We then apply Theorem 28 to both the upper
corner region VUL and to the lower corner region VLL.

Let A be as above. Let

D = {(a1,−b1), . . . , (ak,−bk), (ak+1, bk+1), . . . , (ad, bd), (0, 1)∗, (1, 0)∗}
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where a1, . . . , ad, b1, . . . bd are positive integers ordered such that

b1
a1

<
b2
a2

< . . . <
bk
ak
,

bk+1

ak+1

>
bk+2

ak+2

> . . . >
bd
ad

and the asterisk indicates that (0, 1) and (1, 0) may or may not occur in D.
Thus we assume that n ≤∑d

h=1 bh or (n = 1 +
∑d

h=1 bh and (0, 1) ∈ D).
By Corollary 29 applied to VUL, the f -values of the points (0, 0), (0, 1), . . . ,(

0,−1 +
∑k

h=1 bk

)
can be computed. In a similar way we can apply the same

corollary to VLL and the directions (ak+1, bk+1), . . . , (ad, bd) to conclude that

the f -values of the points (0, n− 1), (0, n− 2), . . . ,
(

0, n−∑d
h=k+1 bh

)
can be

computed. It follows that the f -values of the points (0, 0), (0, 1), . . . , (0, n− 1)
can all be computed except when n = 1 +

∑d
h=1 bh and (0, 1) ∈ D. In the

latter case (p, q) =
(

0,
∑k

h=1 bh

)
is the only point in the column p = 0 with

unknown f -value. However, this value can be found by subtracting from the
line sum of the column p = 0 the f -values of the other points in that column.
In this way we have made our problem of computing the f -values one column
smaller. We can repeat the procedure in order to find the f -values of the next
column. Continuing the process we arrive at the following conclusion.

Theorem 30. Let A = {(p, q) ∈ Z2 : 0 ≤ p < m, 0 ≤ q < n}. Let D be a set
of directions such that A is nonvalid for D. Let the line sums of f : A→ R be
given. Then the f -values of all points of A can be computed in linear time.

In [52] algorithms are given for computing the f -values. These algorithms
are more efficient than the procedure described above. However, the algorithm
in Section 6.5 is as efficient as these algorithms.

6.4 The Valid Case

Let A = {(p, q) ∈ Z2 : 0 ≤ p < m, 0 ≤ q < n} and

D = {(a1,−b1), . . . , (ak,−bk), (ak+1, bk+1), . . . , (ad, bd), (0, 1)∗, (1, 0)∗}

where a1, . . . , ad, b1, . . . bd are positive integers ordered such that

b1
a1

<
b2
a2

< . . . <
bk
ak
,

bk+1

ak+1

>
bk+2

ak+2

> . . . >
bd
ad

and the asterisk indicates that (0, 1) and (1, 0) may or may not occur in
D. As observed in the previous section, by applying Corollary 29 to VUL

the g-values of the points (0, 0), (0, 1), . . . ,
(

0,−1 +
∑k

h=1 bh

)
can be com-

puted. In a similar way we can apply the corollary to VLL and the directions
(ak+1, bk+1), . . . , (ad, bd) to conclude that the g-values of the points (0, n −
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1), (0, n−2), . . . ,
(

0, n−∑d
h=k+1 bh

)
can be computed. In Section 6.1.1 it was

observed that the g-values of the points (0, Qk), (0, Qk + 1), . . . , (0, Qk + n −
N − 1) can be freely chosen where g : A → R is a function satisfying the
line sums. Combining these results we see that all the g-values of the points
(0, 0), (0, 1), . . . , (0, n − 1) can be computed or freely chosen, except for the
case that (0, 1) ∈ D and n = 1 +

∑d
h−1 bd. In the latter case only the g-value

of
(

0,
∑k

h=1 bh

)
is not determined, but this can be computed by subtract-

ing the g-values of the other points in the leftmost column from the sum of
that column. After this all g-values of the points in the leftmost column are
fixed. In Section 6.1.1 it was further observed that the g-values of the points
(p,Qk), (p,Qk + 1), . . . , (p,Qk + n − N − 1) for p = 1, 2, . . . ,m −M − 1 can
be freely chosen. Therefore we can repeat the above procedure successively
for columns p = 1, 2, . . . ,m − M − 1. Then M columns remain, for which
the line sums in the directions of D are known. It is obvious that the com-
puted g-values of the points which do not belong to a switching domain have
the original f -value. We are left with a nonvalid case and we can apply an
algorithm for that case to compute the remaining g-values.

We have shown that the following theorem holds.

Theorem 31. Let A = {(p, q) ∈ Z2 : 0 ≤ p < m, 0 ≤ q < n} and D a set of
primitive directions. Let f : A → R be an unknown function. Suppose all the
line sums in the directions of D are known. Then we can compute a function
g : A → R satisfying the line sums in linear time. The points which do not
belong to any switching domain get their original f -value.

Example 32. Consider the situation in Fig. 6.2. We have m = 26,M =
23, n = 19, N = 17, Qk = 9. We can freely choose the g-values of the points
(0, 9) and (0, 10) and compute the g-values of the other points (0, q). Next
we do so for the columns p = 1 and p = 2. We are left with a 23 by 19
rectangular grid. Since m = M = 23, this is a nonvalid case and we know that
the remaining g-values can be computed in linear time. The found g-values of
the white and light grey pixels are equal to the original f -values.

Remark 33. In this work we assume that the line sums are correct and that
there is no noise. It is easy to check whether this is true afterwards by checking
the line sums which have not been used for computing the g-values. In case
the line sums are inconsistent, and it is better to use a method which treats
the unused line sums in a similar way as the used line sums to obtain a good
approximation of the original function.

Remark 34. Theorem 26 states that if g : A→ R satisfies the same line sums
as f , then the associated polynomial g∗ is of the form

f ∗ +
m−1−M∑
i=0

n−1−N∑
j=0

ci,jG
∗
i,j
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and each such function satisfies the same line sums as f . It is possible to
compute the coefficients ci,j as follows. The point (0, Qk) occurs only in the
domain of G0,0 and therefore c0,0 can be found from the found value for (0, Qk).
The point (0, Qk + 1) occurs in G0,1 and maybe in G0,0. Since c0,0 is already
known, c0,1 can be computed. Considering the points with a free choice in
the lexicographic order, each time a point occurs in only one new primitive
switching domain and hence the corresponding coefficient can be computed.

6.5 An Efficient Algorithm

In this section we present an algorithm to find a function g : A → R which
satisfies the given line sums of an unknown function f : A→ R. This algorithm
is based on ideas and results in [52], to allow for the computation of values
within the convex hull of the switching domain using a twofold application of
the previous method. Its complexity is studied in the next section.

In this algorithm it is not necessary to compute all weights as in Fig. 6.4.
Observe that after the g-values in VUL and VLL have been computed, the g-
value of the next point on each row can be computed. The next point of the
row will be computed using the same direction, hence everything shifts one
place to the right. For this reason, the order in which the new points will be
handled will be the same as for the points immediately directly left of them.
This process is then continued.

In the example of Fig. 6.4 the g-values of the initial row q = 1 are computed
first using the direction (1,−2), next the direction (4,−3), and finally the
direction (3,−2). Moving more to the right, only the direction (3,−2) would be
used. Suppose there would have been seven more columns p = −1,−2, . . . ,−7
with g-values equal to 0 in A (cf. Algorithm 1B of [52]). Then for p ≥ 0 we
would have needed only the rightmost direction on each row and the direction
needed to compute the g-values of points in the original A would only depend
on their row. Therefore it suffices to follow the order in which the rightmost
non-border points of VUL and VLL are treated and for each point (p, q) to
use the line sum in the direction (ah, bh) with h such that the corresponding
rightmost point is in Vh. Observe that this h is such that Qh ≤ q < Qh+1.

Example 35. Let the directions be (3,−2), (4,−3), (1,−2) as in Fig. 6.4.
The border points are (8, 0), (5, 2), (1, 5), (0, 7). Let m > 8, n = 7. Then the
rightmost points with weight < 1 are

(7, 0), (6, 1), (4, 2), (3, 3), (2, 4), (0, 5), (0, 6).

If we order them according to increasing weights, then we get

(0, 5), (0, 6), (4, 2), (7, 0), (3, 3), (6, 1), (2, 4).

If we use the invisible seven columns on the left with g-values 0, then the
enumeration of VUL is given by the lower numbers in Fig. 6.5. Observe that it
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differs from the enumeration in Fig. 6.4. For computing the g-values in rows
0 and 1 direction (3,−2) is used, in rows 2 to 4 direction (4,−3) and in rows
5 and 6 direction (1,−2).
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Figure 6.5: The weights (upper red numbers) of the rightmost points in VUL of
each row and the ordering of points in VUL (lower numbers) of Example 35. On the
right, oq reports the order of the rightmost points in VUL after increasing weights,
s(q) tells which direction has been used in the corresponding row and rq indicates,
for each row, the p-coordinate of the rightmost point in VUL.

The above example illustrates the first seven steps of the algorithm. The
above procedure is done for both VUL and for VLL. In between g-values 0 are
substituted (or any other values) at the places where the switching domains
offer free choice. Now the g-values in the first column are known and we can
proceed with the next column and so on until we have treated m−M columns.
An M by n grid remains to be handled, but this is a nonvalid case. This can
be treated in a similar way, but starting from upper corner regions VUL and
VUR and then going downwards. In the algorithm we have g(p, q) = f(p, q) for
all the points (p, q) which are not in a switching domain of (A,D).

The order in which g-values are computed is shown in Fig. 6.6 for m =
21, n = 16, D = {(0, 1), (1, 0), (1, 1)(−1, 1), (−3,−1), (−1,−3), (5,−1),
(7, 5)}. The switching domain is shown in grey, and 0 g-values are substi-
tuted in the dark grey pixels. The rightmost points with weight < 1 are shown
in dark blue, and the ordering is listed beside these points. Beginning at the
leftmost shift t = 1 − max(P0, Pd). The g-values are computed according to
the enumeration order for all points in the grid. The points are then shifted
to the left until the process has been completed for t = m −M − 1, and the
g-values for all blue points in Fig. 6.6 have been computed. A similar process
in then repeated in the y-direction with the red points for the remaining grid.
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Figure 6.6: The order in which g-values are computed in the algorithm.

The algorithm has 12 steps and is illustrated in Example 37 following it.
For Steps 1-7 see Fig. 6.7, for Steps 8-12 see Fig. 6.8. In the algorithm,
λ(d, p, q) denotes the line sum containing the point (p, q) in the direction d,
and dre denotes the ceiling of r.

In Step 1 the directions are ordered in such a way that the corner regions
become concave. Throughout the algorithm we write bh instead of −bh (h =
1, . . . , k) so that bh is always non-negative. In Step 2 the border points of VUL
and VLL are found. In Step 3 a function δ is introduced indicating whether the
g-value of a point has been computed. Step 4 provides a shortcut for nonvalid
cases. If n ≤ N , then this shortcut can be used after rows and columns have
been interchanged. Step 5 serves to find the grid points left of the border line,
measured by the sequence r. The weights of these points are computed as
well, together with the sequence s, which indicates the direction of the line
used to compute the g-value. In Step 6 the points found in the previous step
are ordered after increasing weight by the sequence o. If weights are equal, the
order is irrelevant. In Step 7 the g-values of the first m−M columns (and of
some more points of A) are computed.

Steps 8-12 are essentially equal to Steps 1-7, but with the columns p =
0, 1, . . . ,m−M − 1 omitted, as they have already been treated, and the roles
of the rows and columns interchanged. In Step 8 the directions are reordered as
now VUL is mirrored and VUR takes over the role of VLL. A similar reordering
of border points takes place in Step 9. The weights and the corresponding
directions are found in Step 10. The order of the points found in the previous
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step are fixed in Step 11. Finally the remaining g-values are computed in Step
12 where the u is introduced to make the necessary shift because of the omitted
m−M columns.

Algorithm 4 Linear time reconstruction of line sums.

Input: A set A = {(p, q) : 0 ≤ p < m, 0 ≤ q < n} with positive integers m,n,
a finite set of (primitive) directions D and all the line sums in the directions
of D of a function f : A→ R.

Output: Function g : A→ R which satisfies the line sums.

Step 1: Initial values.

1: for all d = (a,−b) ∈ D (with a > 0, b > 0) order the directions such that

b1
a1

<
b2
a2

< · · · < bk
ak
.

2: for all d = (a, b) ∈ D (with a > 0, b > 0) order the directions such that

bk+1

ak+1

>
bk+2

ak+2

> · · · > bd
ad
.

3: M ←∑d
h=1 ah

4: N ←∑d
h=1 bh

5: if (1, 0) ∈ D then M ←M + 1

6: if (0, 1) ∈ D then
7: N ← N + 1
8: d0 ← (0, 1)

Step 2: Border points.

9: (P0, Q0)←
(∑k

h=1 ah, 0
)

10: for h← 1 to k do
11: (Ph, Qh)← (Ph−1 − ah, Qh−1 + bh)

12: (P ∗k , Q
∗
k)←

(
0, n− 1−∑d

j=k+1 bj

)
13: (Pk+1, Qk+1)← (P ∗k + ak+1, Q

∗
k + bk+1)

14: for h← k + 2 to d do
15: (Ph, Qh)← (Ph−1 + ah, Qh−1 + bh)

Step 3: Fixing switching functions.

16: for p← 0 to m− 1 do
17: for q ← 0 to n− 1 do
18: δ(p, q)← 0

19: for p← 0 to m−M − 1 do
20: for q ← Qk to Qk + n−N − 1 do
21: g(p, q)← 0
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22: δ(p, q)← 1

Step 4: Nonvalid case.

23: if m ≤M then goto Step 8

Step 5: Choosing starting points rh, weights w(rh, h) and directions ds(h).

24: for H ← 1 to k do
25: for h← QH−1 to QH − 1 do

26: rh ←
⌈

(QH − h)PH−1 + (h−QH−1)PH
QH −QH−1

− 1

⌉
27: w(rh, h)← bHrh + aHh

bHPH + aHQH

28: s(h)← H

29: for h← Q∗k + 1 to Qk+1 do

30: rh ←
⌈

(h−Q∗k)Pk+1

Qk+1 −Q∗k
− 1

⌉
31: w(rh, h)← bk+1rh + ak+1(n− 1− h)

bk+1Pk+1 + ak+1(n− 1−Qk+1)
32: s(h)← k + 1

33: for H ← k + 2 to d do
34: for h← QH−1 + 1 to QH do

35: rh ←
⌈

(QH − h)PH−1 + (h−QH−1)PH
QH −QH−1

− 1

⌉
36: w(rh, h)← bHrh + aH(n− 1− h)

bHPH + aH(n− 1−QH)
37: s(h)← H

38: if (0, 1) ∈ D then s(Q∗k)← 0

Step 6: Ordering the points.

39: Order the points (rh, h) for h ← 0, 1, . . . , Qk − 1, Q∗k + 1, Q∗k + 2, . . . , n −
1 after increasing values of w(rh, h) and call these points in this order
(p0, q0), (p1, q1) . . . , (pN−1, qN−1).

40: if (0, 1) ∈ D then (pN−1, qN−1)← (0, Q∗k)

Step 7: Assignment of f -values.

41: for t← 1−max(P0, Pd) to m−M − 1 do
42: for h← 0 to N − 1 do
43: if 0 ≤ ph + t < m and δ(ph + t, qh) = 0 then
44: g(ph + t, qh)← λ(ds(qh), ph + t, qh)
45: for all d ∈ D do
46: λ(d, ph + t, qh)← λ(d, ph + t, qh)− g(ph + t, qh)

47: δ(ph + t, qh)← 1

Step 8: Start nonvalid case, initial values, cf. Step 1.

48: ((a1, b1), . . . , (ak, bk))← ((ak, bk), . . . , (a1, b1))
49: ((ak+1, bk+1), . . . , (ad, bd))← ((ad, bd), . . . , (ak+1, bk+1))
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50: if (1, 0) ∈ D then d0 ← (1, 0)

Step 9: Border points, cf. Step 2.

51: if M > m then M ← m
52: ((P0, Q0), . . . , (Pk, Qk))← ((Pk, Qk), . . . , (P0, Q0))
53: ((P ∗k , Q

∗
k), (Pk+1, Qk+1), . . . , (Pd, Qd))← ((M − Pd − 1, n−Qd − 1), . . . ,

54: (M − Pk+1 − 1, n−Qk+1 − 1), (M − P ∗k − 1, n−Q∗k − 1))

Step 10: Choosing starting points rh, weights w(rh, h) and directions ds(h),
cf. Step 5.

55: for H ← 1 to k do
56: for h← PH−1 to PH − 1 do

57: rh ←
⌈

(PH − h)QH−1 + (h− PH−1)QH

PH − PH−1
− 1

⌉
58: w(h, rh)←

aHrh + bHh

aHQH + bHPH
59: s(h)← H

60: for h← P ∗k + 1 to Pk+1 do

61: rh ←
⌈

(h− P ∗k )Qk+1

Pk+1 − P ∗k
− 1

⌉
62: w(h, rh)←

M − 1− h
M − 1− P ∗k

63: s(h)← k + 1

64: for H ← k + 2 to d do
65: for h← PH−1 + 1 to PH do

66: rh ←
⌈

(PH − h)QH−1 + (h− PH−1)QH

PH − PH−1
− 1

⌉
67: w(h, rh)←

aHrh + bH(M − 1− h)

aHQH−1 + bH(M − 1− PH−1)
68: s(h)← H

69: if (1, 0) ∈ D then s(P ∗k )← 0

Step 11: Ordering the points, cf. Step 6.

70: Order the points (rh, h) for h ← 0, 1, . . . , Pk − 1, P ∗k + 1, P ∗k + 2, . . . ,M −
1 after increasing values of w(rh, h) and call these points in this order
(p0, q0), (p1, q1), . . . , (pM−1, qM−1).

71: if (1, 0) ∈ D then (pM−1, qM−1)← (P ∗k , 0)

Step 12: Assignment of f -values, cf. Step 7.

72: u← m−M
73: for t← 1−max(Q0, Qd) to n− 1 do
74: for h← 0 to M − 1 do
75: if 0 ≤ ph + u < m and 0 ≤ qh + t < n and δ(ph + u, qh + t) = 0

then
76: g(ph + u, qh + t)← λ(ds(ph), ph + u, qh + t)
77: for all d ∈ D do
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78: λ(d, ph + u, qh + t)← λ(d, ph + u, qh + t)− g(ph + u, qh + t)

79: δ(ph + u, qh + t)← 1
return g

Remark 36. We are assuming that line sums are exact. So, the fact that
the output is consistent with the data can be easily checked by observing
whether all line sums are equal to zero (Steps 7 and 12 update the line sums
by subtracting the value of each point).

Example 37. Let m = 21, n = 16, D = {(0, 1), (1, 0), (1, 1)(−1, 1), (−3,−1),
(−1,−3), (5,−1), (7, 5)} and the line sums in the directions of D of some
function f : A → R (the function itself is irrelevant for the example). The
effect of the steps is the following.

Step 1. k = 2, d = 6, d0 = (0, 1), (a1, b1) = (5, 1), (a2, b2) = (1, 1), (a3, b3) =
(1, 3), (a4, b4) = (1, 1), (a5, b5) = (7, 5), (a6, b6) = (3, 1). M = 19, N = 13.

Step 2. (P0, Q0) = (6, 0), (P1, Q1) = (1, 1), (P2, Q2) = (0, 2), (P ∗2 , Q
∗
2) =

(0, 5), (P3, Q3) = (1, 8), (P4, Q4) = (2, 9), (P5, Q5) = (9, 14), (P6, Q6) =
(12, 15).

Step 3 δ(p, q) = 1, g(p, q) = 0 for p = 0, 1 and q = 2, 3, 4. δ(p, q) = 0 for all
other points (p, q) of A.

Step 4 False.

Step 5. r0 = 5, r1 = 0, r6 = r7 = r8 = 0, r9 = 1, r10 = 3, r11 = 4, r12 = 6,
r13 = 7, r14 = 8, r15 = 11.
w(5, 0) = .833, w(0, 1) = .500, w(0, 6) = .900, w(0, 7) = .800, w(0, 8) = .700,
w(1, 9) = .875, w(3, 10) = .962, w(4, 11) = .923, w(6, 12) = .981, w(7, 13) =
.942, w(8, 14) = .904, w(11, 15) = .917.
s(0) = 1, s(1) = 2, s(6) = s(7) = s(8) = 3, s(9) = 4, s(10) = s(11) = s(12) =
s(13) = s(14) = 5, s(15) = 6, s(5) = 0 (See Fig. 6.7).

Step 6. (p0, q0) = (0, 1), (p1, q1) = (0, 8), (p2, q2) = (0, 7), (p3, q3) = (5, 0),
(p4, q4) = (1, 9), (p5, q5) = (0, 6), (p6, q6) = (8, 14), (p7, q7) = (11, 15), (p8, q8) =
(4, 11), (p9, q9) = (7, 13), (p10, q10) = (3, 10), (p11, q11) = (6, 12), (p12, q12) =
(0, 5).

Step 7. See Fig. 6.7 for the order in which the f -values are computed,
indicated by the black numbers. After this step the f -values of the first m −
M = 2 columns are known and M = 19 columns are left.

Step 8. d0 = (1, 0), (a1, b1) = (1, 1), (a2, b2) = (5, 1), (a3, b3) = (3, 1),
(a4, b4) = (7, 5), (a5, b5) = (1, 1), (a6, b6) = (1, 3).

Step 9. (P0, Q0) = (0, 2), (P1, Q1) = (1, 1), (P2, Q2) = (6, 0), (P ∗2 , Q
∗
2) =

(6, 0), (P3, Q3) = (9, 1), (P4, Q4) = (16, 6), (P5, Q5) = (17, 7), (P6, Q6) =
(18, 10).

Step 10. r0 = 1, r1 = r2 = · · · = r5 = 0, r7 = r8 = r9 = 0, r10 = 1, r11 = 2,
r12 = r13 = 3, r14 = 4, r15 = r16 = 5, r17 = 6, r18 = 9.
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w(0, 1) = .500, w(1, 0) = .167, w(2, 0) = .333, w(3, 0) = .500, w(4, 0) = .667,
w(5, 0) = .833, w(7, 0) = .917, w(8, 0) = .833, w(9, 0) = .750, w(10, 1) = .904,
w(11, 2) = .942, w(12, 3) = .981, w(13, 3) = .885, w(14, 4) = .923, w(15, 6) =
.962, w(16, 5) = .865, w(17, 6) = .875, w(18, 9) = .900.
s(0) = 1, s(1) = s(2) = · · · = s(5) = 2, s(7) = s(8) = s(9) = 3, s(10) =
s(11) = · · · = s(16) = 4, s(17) = 5, s(18) = 6, s(6) = 0.

Step 11 (p0, q0) = (1, 0), (p1, q1) = (2, 0), (p2, q2) = (0, 1), (p3, q3) = (3, 0),
(p4, q4) = (4, 0), (p5, q5) = (9, 0), (p6, q6) = (5, 0), (p7, q7) = (8, 0), (p8, q8) =
(16, 5), (p9, q9) = (17, 6), (p10, q10) = (13, 3), (p11, q11) = (18, 9), (p12, q12) =
(10, 1), (p13, q13) = (7, 0), (p14, q14) = (14, 4), (p15, q15) = (11, 2), (p16, q16) =
(15, 5), (p17, q17) = (12, 3), (p18, q18) = (6, 0).

Step 12. See Fig. 6.8 for the order in which the g-values are computed,
indicated by the black numbers. This has to be continued in the obvious way.
When this step has been completed all the g-values are known.
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Figure 6.7: Steps 1-7 of Example 37. Grey pixels show the union of switching
domains, and white pixels are uniquely determined.

Figure 6.7 Steps 1-7 of Example 37. The light grey pixels indicate the
union of the switching domains. The white pixels indicate the pixels of which
the f -values are unique, and therefore equal to the computed g-value. There
are six primitive switching functions and their lexicographic smallest elements
have a 0. In Step 3 their g-values are fixed as 0, but this may be replaced
by any other values. Note that if these g-values are chosen to not be zero,
then their contribution to the appropriate line sum must be subtracted. Step
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1 guarantees the concavity of the upper left corner region VUL and the lower
left corner region VLL, left of the blue border line. The border points for VUL
and VLL are indicated by blue dots. They are found in Step 2. Step 4 provides
a shortcut in case of a nonvalid case; if m ≤ M , then the coordinates can be
switched. For each row the grid point just left of the border line is computed
in Step 5. The weights of these points are indicated in red. The red points are
ordered after size as indicated in the column oq (see Step 6). The function s
indicates the directions which are used for the grid points in that row. Finally,
in Step 7, the g-values are computed for the first m −M columns and some
more pixels. The order in which they are calculated is given in black.

p′ = p− 2

q
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Figure 6.8: Steps 8-12 of Example 37, where the K’s indicate the pixels of which
the g-values have already been calculated in Step 7.

Figure 6.8 illustrates Steps 8-12 of Example 37. We have omitted the first
m −M = 2 columns so that the column numbers indicate p − 2. The K’s
indicate the pixels of which the g-values have already been calculated in Step
7. In this stage the roles of rows and columns are interchanged. Step 8 serves
to adjust the order of the directions. In Step 9 the border points in VUL are
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reordered, those in VUR are those of VLL mirrored. Again the blue border line
connects them. This time the red points are the integer points immediately
above the blue border points. Their Q-values, their weights (indicated in red)
and the sequence s are computed in Step 10. They are ordered in Step 11 and
the order is indicated in row oh. Finally in Step 12 the remaining g-values are
computed where by using u the original p-values are used instead of p−2. The
order of the way the g-values are found is indicated by black numbers. This
has to be completed downwards to find all g-values.

6.6 Complexity

In this section we claim that the complexity of the algorithm presented in Sec-
tion 6.5 has linear time complexity in dmn for the majority of relevant cases.
In some special cases, this is not strictly true. However, we present a modifi-
cation to the algorithm in these cases whereby we can still achieve linear time
reconstruction. We state the complexity of each step of the algorithm, where
we count every addition, subtraction, multiplication, division and determin-
ing of the larger of two explicit quantities an elementary operation. We take
the complexity of sorting a list of n elements to be O(n log n). The order of
complexity of the algorithm for each step is as follows:

- Step 1: O(d log d);

- Step 2: O(d);

- Step 3: O(mn);

- Step 4: O(1);

- Steps 5 and 10: O(n) and O(m), respectively;

- Steps 6 and 11: O(n log n) and O(m logm), respectively;

- Steps 7+12: O(dmn).

Without loss of generality we may assume m ≤ n. It follows that the
complexity of the algorithm is O(dmn) unless both d = O(n) and m = O(n).
In this exceptional case only the complexity of Step 6 has to be adjusted. This
can be achieved by remembering in Step 5 for every H the location of the
point (rh, h) with s(h) = H and minimal weight for direction (aH , bH). This
has complexity O(dn).

Now Step 6 proceeds as follows. For each direction (aH , bH) let (rh, h) be
the point with s(h) = H and minimal weight. For H ≤ k we start with the
vectors

(rh, h, bH(PH − 1) + aHQH , bHPH + aHQH , RH , SH , TH , UH),

111



Chapter 6. Linear Time Reconstruction by Discrete Tomography

where (RH , SH) = (QH−1, QH − 1) and (TH , UH) is the unique pair satisfying
0 ≤ TH < aH and bHTH +aHUH = 1. For k < H ≤ d we start with the vectors

(rh, h, bH(PH−1)+aH(n−1−QH), bHPH+aH(n−1−QH), RH , SH , TH , UH),

where (RH , SH) = (QH−1 + 1, QH) and (TH , UH) is the unique pair satisfying
0 ≤ TH < aH and bHTH − aHUH = 1. Observe that in each case the quotient
of the third and fourth entry is the weight.

We order such vectors on the top line according to increasing weight. At
each step we increase by one the third entry of the first (leftmost) vector. If
the third entry now is still smaller than the fourth entry, we replace the first
two entries (rh, h) by (rh+TH , h+UH) or (rh+TH−bH , h+UH−aH) such that
the second entry is in (RH , SH). If the third entry becomes equal to the fourth
one, we neglect the vector in the sequel. In any case we order the remaining
vectors on the line again after increasing weight. This procedure runs until
there is no vector left. At every step the two leftmost entries of the leftmost
vector give the next value (ph, qh).

The computation of the vectors (TH , UH) has complexity O(d log n), the
computation of each row O(d log d) and there are n rows. Therefore the total
complexity is O(nd log d). This is O(dmn), unless m = O(log d). However, we
have ah ≥ 1 with at most one exception. So ifm = O(d), we can delete d−m−1
directions and still have a nonvalid case. After deletion we have, denoting by
d the new number of directions, m = d− 1 and complexity O(dmn).

Example 38. [Continuation of Example 37]. The described procedure yields
as the first row the vectors

(0, 1, 1, 2, 1, 1, 0, 1), (0, 8, 7, 10, 6, 8, 0,−1), (5, 0, 5, 6, 0, 0, 1, 0),
(1, 9, 7, 8, 9, 9, 1, 0), (8, 14, 47, 52, 10, 14, 3, 2), (11, 15, 11, 12, 15, 15, 1, 0).

Since the last four entries do not change, we do not mention them in the
table. Then the table becomes as follows (each row represents one step in the
procedure).

(0,1,1,2) (0,8,7,10) (5,0,5,6) (1,9,7,8) (8,14,47,52) (11,15,11,12)
(0,8,7,10) (5,0,5,6) (1,9,7,8) (8,14,47,52) (11,15,11,12)
(0,7,8,10) (5,0,5,6) (1,9,7,8) (8,14,47,52) (11,15,11,12)
(5,0,5,6) (1,9,7,8) (0,6,9,10) (8,14,47,52) (11,15,11,12)
(1,9,7,8) (0,6,9,10) (8,14,47,52) (11,15,11,12)
(0,6,9,10) (8,14,47,52) (11,15,11,12)

(8,14,47,52) (11,15,11,12)
(11,15,11,12) (4,11,48,52)
(4,11,48,52)
(7,13,49,52)
(3,10,50,52)
(6,12,51,52)

The sequence (p0, q0) = (0, 1), (p1, q1) = (0, 8), (p2, q2) = (0, 7), . . . , (p11, q11) =
(6, 12) can be read from the leftmost two entries. At the end (p12, q12) = (0, 5)
has to be added.
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6.7 Reconstruction of 3D Boundary Ghosts

In this section, we extend the reconstruction algorithm to three dimensions for
the case of boundary ghosts. By exploiting the special structure of boundary
ghosts domains, the three dimensional situation can be reduced to the two
dimensional one. This is due to the fact that 3D ghosts are comprised of a
stack of 2D ghosts. Therefore we can compute the function values of the pixels
inside the boundary ghost domain in linear time. We will illustrate this with
an example.
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Figure 6.9: Convex hull of a boundary ghost projected onto the x-y plane (blue).
Convex hull of the boundary ghost in the plane z = 5 (red).

Example 39. Consider the boundary ghost generated by the directions:
D = {(0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1), (−1, 1, 0), (−3,−1, 0), (−3, 1,−2),
(−1,−3, 0), (5,−1, 0), (5,−5, 4), (7, 5, 0)}.

We apply the method to the block [−8, 20]×[−10, 9]×[−2, 5] which contains
a primitive boundary ghost for D. We give function values 0 to all integer
points outside this block. The first observation is that if we have computed all
function values for points with z = 5 we are left with a similar or even simpler
problem and can apply the method to compute all function values for integer
points with z = 4 and so on. Figure 6.9 shows the convex hull of the boundary
ghost seen “from above”. The blue contour is the projection of the convex hull
parallel to the z-axis. The red contour indicates the intersection of the convex
hull with the plane z = 5.

The first step is to consider the projection of the convex hull of the ghost
in the negative y-direction. See Fig. 6.10. The blue lines indicates the convex
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Figure 6.10: Projection of the convex hull onto the x-z plane along the negative
y-direction. Weights are given for points outside of the convex hull.

hull of the boundary ghost. It consists of three segments in the directions (1, 1)
of (1, 0, 1), (5, 4) of (5,−5, 4) and (3, 1) of (3,−1, 2). The points where these
line segments meet, (−7,−1) and (−2,−3), are connected by red straight line
segments with the corner point (−8,−5). The weight is given for each integer
point P left of the blue lines, which is the quotient of the distance of the corner
point (−8, 5) to P and the distance of that corner point to the intersection of
the line through the corner point and P and the blue line. For example, (−5, 4)
is in the middle of (−8, 5) and (−2, 3) and so its weight is 1/2. The theory in
[52] is applicable here, independent of the value of y: If you order the points P
with increasing weight, then each point in turn is the only point with unknown
function value with respect to the direction of the corresponding line segment.
For instance, the point (−6, 0) with weight 33/34 is in the red triangle with
direction (5, 4), and the other point on the line with this direction is (−1, 4).
But its function value is already known since 17/18 < 33/34 and therefore we
can compute the function value of (−6, 0). The point (−1, 4) is in the triangle
with direction (3, 2) and on the line through (−1, 4) in this direction we have
the points (−4, 2) and (−7, 0). Their weights are smaller than the weight of
(−1, 4), and so on. The truth of the claim can be checked numerically in this
special case, but can also been seen geometrically by using that the blue lines
are convex. In this step all function values of the points (p, ∗, r) with (p, r)
left of the blue lines can be computed. In particular the function values of the
points (p, q, 5) with −8 ≤ p ≤ 0 and ∗ any value are known after this step.

The second step is the corresponding operation with respect to the y-z-
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6.7. Reconstruction of 3D Boundary Ghosts

plane, see Fig. 6.11. Since we are interested in the function values of points
with z = 5, we consider the corner region of (9, 5). The blue line consists of
line segments with directions (0, 1) from (1, 0, 1), (−1, 2) from (3,−1, 2) and
(−5, 4) from (5,−5, 4). The weights of the integer points right of the blue lines
are written in red. Note that many of them are the only points on the line
with direction (−5, 4) so that their function values are equal to the line sum
such that the “weight argument” has to be applied to only few points. We
conclude that in this step all function values can be computed of the points
(∗, q, 5) with 4 ≤ q ≤ 9 and ∗ any value.
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Figure 6.11: Convex hull in the y-z-plane, with weights.

The third and last step is two-dimensional, see Fig. 6.12. The black points
indicate the points with already known function values. What is left is the
rectangle {(p, q, 5) : 1 ≤ p ≤ 20,−10 ≤ q ≤ 2}. The directions left have all z-
value 0, which are (0, 1, 0), (1, 0, 0), (1, 1, 0), (−3,−1, 0), (−1,−3, 0), (5,−1, 0),
(7, 5, 0). Neglecting the z-values, algorithm 4 can be applied to compute the
remaining function values for points (p, q, 5) ∈ A.

This method can be applied to any set of directions that generates a stack
of 2D ghosts. In this case, we can always reduce the three dimensional problem
to a series of problems in two dimensions. This allows us to reconstruct the
function in linear time. The same process can be applied in an arbitrary
number of dimensions if the k-dimensional ghost consists of stacks of two
dimensional ghosts.
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Figure 6.12: Intersection of the convex hull with the plane z = 5. The black points
have known function values.

6.8 Summary

In this chapter we have addressed the tomographic reconstruction problem for
functions with values in a unique factorization domain, such as integers and
reals. A key argument is that one may ask for the point values even when
many solutions are admissible, since the values of points outside the switching
domains are common to all functions satisfying the problem.

Starting from the characterization of the switching functions in [44] and
the results in [52], we have shown that all points with uniquely determined
value, namely, not belonging to switching domains, can be recovered once we
give an arbitrary value to (m −M)(n − N) points, where (m −M)(n − N)
is the number of linearly independent switching functions. We have provided
an algorithm, running in time linear in dmn, which computes the point values
systematically. By the result in [44] our algorithm provides the complete set
of solutions with values in the unique factorization domain.

The proposed approach works when line sums are supposed to be exact and
therefore not all projections are necessary to recover a solution. It underlines
the structural difference between unique factorization domains and other kinds
of sets, such as {0, 1} (leading to binary images), since in the latter case the
reconstruction problem has proven to be NP-hard [32, 33].

Two questions arise from this chapter. Firstly, does there exist a general
algorithm for higher dimensions? Secondly, given a system of inconsistent line
sums, is there a fast way to find a best approximation of consistent line sums
so that the algorithm here can be applied to construct the most likely set of
solutions (over Z or R)?
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CHAPTER 7

Conclusion

This thesis demonstrates how to use techniques from discrete tomography to
produce highly structured arrays that are well suited to a wide range of appli-
cations. We have explored the placement of non-random points on a grid, and
the effect these structured arrays can have on correlations and tomography.
As discrete tomography may be exact in the absence of noise, the arrays we
produce are readily transferable to digital technologies. The Mojette trans-
form is already employed in areas such as network coding, distributed storage,
compression and cyber security. Hence, the arrays constructed in this work
can be used in communications applications, encryption and watermarking.

The finite Radon transform was employed to construct so-called perfect
arrays. These arrays are built on prime p × p lattices and have ideal correla-
tion properties. The alphabet of these arrays was deliberately confined to the
values {−1, 0, +1, +2}, and the number of times each of these values occur
in a p× p array are {(p− 1)2/2, 3(p− 1)/2, (p− 1)2/2 + 1, (p− 1)/2} respec-
tively. Thus, the arrays are dominated by ±1 values, with relatively few zeros
present (for greater efficiency and less redundancy). Affine transformations
can be applied to periodically shuffle the array values without changing their
correlative power, and hence produce families of p2 − 1 arrays which all have
ideal auto-correlation, and low cross-correlation.

It was later discovered that the projection process used to construct these
arrays produced quadratic residue sequences, through the pattern of the chosen
shifts for each projection. This realisation was then used to construct perfect
arrays in any number of dimensions. Again, affine transformations can be
applied to produce a large family of arrays in higher dimensions. Through an
extension of the process applied to the 2D arrays, we can extend nD families
of arrays with prime side length p to at least order O(pn). However, it may be
possible to extend the number of family members further.
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Chapter 7. Conclusion

Random matrix theory has yielded many fruitful results in physics, due
to the favourable correlation properties of signals that resemble white noise
[8]. We have shown that the designed arrays in this work outperform random
arrays with respect to correlation. Therefore, perfect arrays may be useful
in some fields where random matrix theory is currently applied. Future work
will look to find applications for perfect arrays which may supersede random
arrays. The primary impediment for using perfect arrays up to this juncture
was that it was difficult to produce a large number of unique arrays. However,
as we have shown here, it is possible to create families of p2 − 1 arrays.

This thesis also introduced a method of constructing new types of tomo-
graphic ghost arrays. The recursion vn+1 = vn + 2εn+1vn−1 with v0 = (1, 0),
v1 = (1, 1), and εn+1 ∈ {−1, 1}, was employed to build a sequence of discrete
projection directions that define arrays which sum to zero across all specified
directions. This sequence of directions produces maximal ghosts that consist
purely of 2N connected points that have a value of either −1 or +1 for N
directions. The presence of the εn+1 element produces a possible bifurcation
of directions at each step, so there are many possible distinct sequences of
directions. As the number of points doubles with each additional direction,
these ghosts must not have any overlapping points. With the constraint that
the adjacent ghost copies cannot have any gaps between them, the question
of assembling these points was tackled as a tiling problem. As was proven,
the recursion defines a sequence of non-degenerate directions that interlocks
self-similar tiles in a shape that resembles a fractal.

Computationally, it was discovered that the interlocking that occurs nat-
urally through this sequence is in fact maximal. This gives credence to the
hypothesis that this recursion may arise in nature in the formation of lattices.
A famous example of this sort of phenomenon is the spiral configuration of
seeds or petals being modelled by the Fibonacci numbers. Future research will
look at the physical application of this sequence in the context of crystals and
other lattice structures.

Maximal ghosts have a very specific internal structure. Each column alter-
nates between values of −1 and +1. Ghost points have value +1 for even x
and value −1 to those with odd x. This structure can be exploited to create
boundary ghosts. When we add the direction v−1 = (0, 1) to a maximal ghost,
all internal points cancel out, leaving only a thin contour, or boundary, of
ghost points. For the purposes of tomography, all ghost points flag the sites
of possible image reconstruction errors. Having these errors placed near the
boundary of a reconstructed image is favourable when the object of interest
lies in the centre of the domain.

The 2D ghost tiles can be stacked along a z-direction to create 3D maximal
ghosts. These 3D ghosts therefore carry all of the properties of 2D ghosts along
each integer x-y plane. The same process can be used to stack 2D ghosts along
any number of dimensions, generating k-dimensional ghosts. The additional
degrees of freedom in these higher dimensions allows for a wider range of

118



boundary ghosts to be derived from each maximal ghost. It is possible to
construct 2k−2 boundary ghosts for dimension k.

Finally, the process of reconstruction is addressed. Previously, it had been
shown that the problem of reconstruction in discrete tomography is NP-hard.
However, in this work we proved that the tomographic reconstruction problem
can be simplified for functions with values in a unique factorization domain,
such as the integers and reals. A reconstruction algorithm is presented that
operates in linear time with respect to the grid size and number of directions.
The algorithm requires the projections to be free of noise, but does not assume
the absence of switching domains or ghosts. Thus, a solution can be obtained
in linear time even if it is not unique. Since the 3D ghosts constructed in
this work consist of 2D ghosts, it is possible to use this algorithm in higher
dimensions for the special case of maximal and boundary ghost directions.

Subsequent research will look to generalise this algorithm to the three di-
mensional case and beyond. This algorithm can detect the presence of noise,
but cannot produce a useful solution in most cases when the line sums are not
exact. Hence, it would be useful to investigate a similar algorithm that can
deal with noise to obtain a likely solution.

Structured placement of points on a grid has proven to be useful in a vast
range of discrete and digital contexts. The properties of discrete projection
greatly aid in choosing the placement of these points. Operating in this discrete
environment has produced many fruitful results that would not have been
possible by simply approximating a continuous domain. And while the results
in this thesis are inherently discrete, they may be extrapolated to prove useful
in many physical settings, in addition to the digital applications outlined.
There is much to be explored in this regard, and this will be the focus of
future research.
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Math.-Phys. Kl., 69 (1917), 262–277.

[59] Radon, J. On the determination of functions from their integral values
along certain manifolds. IEEE Transactions on Medical Imaging 5, 4
(1986), 170–176.

124



Bibliography

[60] Reeve, J. E. On the volume of lattice polyhedra. Proceedings of the
London Mathematical Society 3, 1 (1957), 378–395.

[61] Ryser, H. J. Combinatorial properties of matrices of zeros and ones. In
Classic Papers in Combinatorics. Springer, 2009, pp. 269–275.

[62] Servières, M., Idier, J., Normand, N., and Guedon, J.-P. Con-
jugate gradient Mojette reconstruction. In Medical Imaging 2005: Image
Processing (2005), vol. 5747, International Society for Optics and Pho-
tonics, pp. 2067–2074.

[63] Stawski, T. M., Van Driessche, A. E., Ossorio, M., Rodriguez-
Blanco, J. D., Besselink, R., and Benning, L. G. Formation
of calcium sulfate through the aggregation of sub-3 nanometre primary
species. Nature Communications 7, 1 (2016), 1–9.

[64] Svalbe, I. Sampling properties of the discrete Radon transform. Discrete
Applied Mathematics 139, 1 (2004), 265–281.

[65] Svalbe, I., and Ceko, M. Maximal N-ghosts and minimal information
recovery from N projected views of an array. In International Conference
on Discrete Geometry for Computer Imagery (2017), Springer, pp. 135–
146.

[66] Svalbe, I., Ceko, M., and Tirkel, A. Large families of “grey” arrays
with perfect auto-correlation and optimal cross-correlation. In Interna-
tional Conference on Discrete Geometry for Computer Imagery (2017),
Springer, pp. 46–56.

[67] Svalbe, I., Nazareth, N., Normand, N., and Chandra, S. On
constructing minimal ghosts. In Digital Image Computing: Techniques
and Applications (DICTA), 2010 International Conference on (2010),
IEEE, pp. 276–281.

[68] Svalbe, I., and Tirkel, A. Extended families of 2D arrays with near
optimal auto and low cross-correlation. EURASIP Journal on Advances
in Signal Processing 2017, 1 (2017), 18.

[69] Swanson, M. D., Kobayashi, M., and Tewfik, A. H. Multimedia
data-embedding and watermarking technologies. Proceedings of the IEEE
86, 6 (1998), 1064–1087.

[70] Tirkel, A., Cavy, B., and Svalbe, I. Families of multi-dimensional
arrays with optimal correlations between all members. Electronics Letters
51, 15 (2015), 1167–1168.

[71] Tirkel, A. Z., Rankin, G., Van Schyndel, R., Ho, W., Mee, N.,
and Osborne, C. F. Electronic watermark. Digital Image Computing,
Technology and Applications (DICTA’93) (1993), 666–673.

125



Bibliography

[72] Van Aarle, W., Palenstijn, W. J., Cant, J., Janssens, E., Ble-
ichrodt, F., Dabravolski, A., De Beenhouwer, J., Batenburg,
K. J., and Sijbers, J. Fast and flexible X-ray tomography using the
ASTRA toolbox. Optics Express 24, 22 (2016), 25129–25147.

[73] Van Aarle, W., Palenstijn, W. J., De Beenhouwer, J., Al-
tantzis, T., Bals, S., Batenburg, K. J., and Sijbers, J. The AS-
TRA toolbox: A platform for advanced algorithm development in electron
tomography. Ultramicroscopy 157 (2015), 35–47.

[74] Van Aert, S., Batenburg, K. J., Rossell, M. D., Erni, R., and
Van Tendeloo, G. Three-dimensional atomic imaging of crystalline
nanoparticles. Nature 470 (2011), 374.

[75] Van Schyndel, R. G., Tirkel, A. Z., and Osborne, C. F. A
digital watermark. In Proceedings of 1st international conference on image
processing (1994), vol. 2, IEEE, pp. 86–90.

[76] Varga, L., Balázs, P., and Nagy, A. Projection selection depen-
dency in binary tomography. Acta Cybernetica 20 (2011), 167–187.

[77] Verbert, P. Sur la redondance des transformations Mojette en dimen-
sion n et en ligne. PhD thesis, Nantes, 2004.

[78] Viterbi, A. J. CDMA: Principles of spread spectrum communication,
vol. 122. Addison-Wesley Reading, MA, 1995.

[79] Waldron, S. A sharpening of the Welch bounds and the existence of
real and complex spherical t–designs. IEEE Transactions on Information
Theory 63, 11 (2017), 6849–6857.

[80] Welch, L. Lower bounds on the maximum cross correlation of signals.
IEEE Transactions on Information Theory 20, 3 (1974), 397–399.

126


