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Abstract

This thesis contributes to the literature regarding two main challenges in identifying

and estimating causal treatment effects, namely, the treatment endogeneity and the

treatment spillover. It particularly focuses on the instrumental variable approach which

is a common solution to issues caused by these two challenges. This thesis includes five

chapters. Chapter 1 provides an overview of the thesis. Chapters 2, 3 and 4 present

three independent and self-contained research papers. Chapter 5 concludes the thesis.

Weak instrumental variable is a serious problem hindering the identification and esti-

mation of causal effects when the treatment is endogenous. There is a series of well-

developed literature on weak instrument tests for linear regression models. However,

there is little theoretical development regarding a test for weak instruments in discrete

choice models. Chapter 2 aims to fill this gap. This chapter proposes a consistent

test for weak instruments in the discrete choice models and demonstrates that if the

null hypothesis of weak instruments is rejected, the standard Wald inference can be im-

plemented in the usual manner. As a by-product of the proposed testing approach, we

construct a generalised “concentration parameter” that allows us to extend the standard

“rule-of-thumb” for linear models to discrete choice models. This generalised concen-

tration parameter provides insights regarding instrument strength in a host of discrete

choice models. A Monte Carlo analysis is used to compare our testing approach against

several commonly applied weak instrument tests. The simulation results simultaneously

demonstrate the good performance of our testing approach and the fundamental failure

of the conventional linear weak instrument tests in this context. We compare our testing

approach to those commonly applied tests in two empirical examples: married women’s

labour force participation, and the US food aid and civil conflicts.

Instrument strength is often studied in parametric models where the degree of instru-

ment weakness can be captured by a drifting data generating process and where the

causal effect is point identified. However, once the parametric assumptions are relaxed

and less restrictive models are taken into account, the point identification may be lost

unless a relatively strong restriction, such as “identification at infinity”, is imposed on
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the instrumental variable. Chapter 3 focuses on the nonparametric models where the

treatment effect can only be partially identified, and examines the role played by the

instrumental variables in the identification. This chapter rigorously examines the contri-

bution of the instruments and their interplays with other factors, such as the endogene-

ity degree and the covariates, to the identification gains for the treatment effect. The

identification gains are decomposed into a sequence of measurable components, and a

standardised quantitative measure is constructed for the instrument identification power

(IIP ). The decomposition and the IIP evaluation are illustrated using finite-sample

simulation studies and an empirical example of childbearing and women’s labour supply.

The simulation results demonstrate that the IIP offers a potential criterion for detect-

ing irrelevant instruments and sheds new light on instrument selection in high-dimension

settings in conjunction with partial identification frameworks.

In the literature on treatment effects, it is widely assumed that the treatment of one

unit does not affect others’ socioeconomic behaviour (see Chapters 2 and 3). However,

treatment spillovers under network interactions have been observed in many empirical

studies. It is important to account for treatment spillovers, because ignoring them may

lead to misinterpretations of the mechanism through which the treatment operates. So-

cial networks are indispensable for studying treatment spillovers, because they act as

the medium for the spillovers. However, there is increasing evidence that the network

data is often mismeasured for various reasons, such as misreporting, survey fatigue, or

drawbacks of sampling schemes. Chapter 4 explores the identification and estimation

of treatment spillovers with mismeasured networks. Unlike Chapters 2 and 3, Chapter

4 focuses on the spillover effects of a randomised treatment intervention. It proposes a

nonparametric point-identification method for the effects of interest, and it exploits an

instrumental variable approach to address the issues caused by the network measurement

errors. A semiparametric estimation approach is provided and the estimator is shown

to be consistent and asymptotically normal. The analysis of this chapter is also applied

to study the spillover effects of an information program for a weather insurance on the

insurance adoption decisions of rice farmers in rural China.
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Chapter 1

Introduction

This thesis studies some methodological issues relating to the instrumental variable (IV)

approach to causal effect models. It consists of three self-contained studies. All three

studies relate to important econometric problems frequently encountered in empirical

research in the identification and estimation of causal treatment effects. The first two

studies focus on issues that have arisen from treatment endogeneity and the strength of

instrument, and the third study examines the treatment spillover effect in the context

of network interactions when the network is measured with errors.

The endogeneity of regressors is a common problem for economists hoping to establish

causal effects, and the IV approach is widely used to solve this issue. However, it is well-

known that the very feature that renders the instrument useful for estimating causal

effects, namely the instrument’s exogeneity with respect to the model error terms, can

occur at the same time with IVs having little explanatory power to the endogenous re-

gressors. Consequently, the so-called “weak instrument” has been of concern in many

empirical studies. The resulting behaviour of the IV estimator in the presence of weak

IVs has been extensively studied in the linear regression models (e.g., Staiger and Stock,

1997; Stock and Yogo, 2005). However, there is little theoretical evidence regarding the

properties of the IV estimation in discrete choice models. Using Monte Carlo simula-

tions, Dufour and Wilde (2018) demonstrate the poor behaviour of the Wald test and

the likelihood-ratio test for the causal inference of a probit model with weak instruments.

Magnusson (2007) considers the Wald test and the distance metric test for the probit

1



2 CHAPTER 1. INTRODUCTION

model and finds that, with weak instruments, both tests over-reject the null hypothesis

even when the concentration parameter is larger than ten. Thus, the undesirable perfor-

mance of the conventional inference procedure in the presence of weak IVs implies the

necessity of a widespread two-stage decision rule: a pretest for weak IVs, and then, if

the null of weak IVs is rejected, the standard inference procedures when estimating the

causal effects in discrete choice models. However, there is no available weak IV test for

discrete choice models.

Chapter 2 presents a test for weak IVs in discrete choice models. The test is related

to Antoine and Renault (2009, 2012, 2020). These authors study identification failure

within a nonlinear and non-separable generalised method of moments (GMM) setting.

Similarly, the proposed weak IV test in this chapter conceptualises the identification

failure using a drifting data generating process (DGP) that captures the rank deficiency

of the limit Jacobian for the moment conditions. Our testing approach differs from that

of Antoine and Renault (2020), however, because it allows for the detection of the actual

instrument weakness; that is, whether the strength of the IVs in the first-stage regression

is too weak to ensure the estimation consistency. This analysis sheds new light on the

inappropriate application of the popular rule-of-thumb developed for linear models to the

discrete choice models. Specifically, the test can be understood as a generalisation of the

standard first-stage F-test, as such, enables the measurement of the genuine strength

of the instruments. This chapter also demonstrates that the standard rule-of-thumb

for linear models does not adequately capture the strength of instruments due to the

nonlinearity of the discrete choice models.

Chapter 3 explores the IV identification power under less restrictive modelling assump-

tions. The literature on partially identified models offers a useful framework for the IV

identification power analysis. The notion of partial identification relates to the idea that

in certain situations such as limited observability, more than one DGP or model can

produce the observed data. These models are referred to as “observationally equivalent”

and the identified set of the causal parameter is then defined as the collection of all its

possible values from different observationally equivalent models.

When studying the average treatment effect (ATE) with binary treatment and binary
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outcome, there is a missing data problem because only one of each individual’s potential

outcomes is observed (depending on the treatment status). There is a notion of “identi-

fication by functional form” (Li, Poskitt, and Zhao, 2019), where such non-linear models

can be point identified without any IVs, relying on restrictive parametric assumptions,

such as a bivariate probit and large support of covariates. However, modelling assump-

tions such as the bivariate probit are overly restrictive and hard to verify in practice;

thus, the resulting point identification has been described as “fragile” (Marra and Radice,

2011). When less restrictive assumptions are allowed, the IVs have been shown to play a

crucial role for meaningful identification in partially identified models (see e.g., Chesher,

2005, 2010; Shaikh and Vytlacil, 2011; Li et al., 2019).

Chapter 3 rigorously examines the role of IVs and their interplays with other factors in

the identification gains for the ATE in binary outcome models with an endogenous binary

treatment. The concepts of IV strength and IV identification power in this context are

distinguished. We find that the conventional IV strength, as measured by the explana-

tory power of IVs to the treatment variable, is crucial in the identification gains when

conducting partial identification analysis. Importantly, we find that the identification

gains are also significantly affected by the sign and degree of endogeneity. Therefore, the

IV strength itself no longer provides a sufficient measure of the IV identification power

in the nonlinear models considered in this chapter. As a result, the various pseudo

R2 goodness-of-fit measures (Veall and Zimmermann, 1992, 1996), which are designed

for binary dependent variable models, are not appropriate for measuring the IV iden-

tification power. It is because that they fail to capture the critical fact that the IV’s

identification information varies with the endogeneity degree. Based on these findings,

we propose a novel decomposition of the identification gains in the ATE bounding anal-

ysis, by disentangling the different sources of the overall identification gains. Given the

decomposition, a standardised measure is constructed for the IV identification power,

which is a useful index for indicating the IV relevance and selecting irrelevant IVs.

While Chapters 2 and 3 highlight that IVs are crucial when studying the treatment

effect with endogenous regressors, Chapter 4 utilises the IV approach from a different

perspective. In the literature on treatment effects, the stable unit treatment value as-
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sumption (SUTVA) (Rubin, 1990) is widely adopted for the causal inference. It states

that the treatment of one unit does not affect others’ outcomes. However, the spillover

effects of the treatment via network interactions have been documented in many appli-

cations. Because of the increasing availability of network data, the economic research

of treatment spillovers has increased dramatically in the past decades (Angelucci and

Di Maro, 2016). Existing methods studying spillover effects typically assume that the

network data is correctly observed (e.g., Leung, 2020b; Vazquez-Bare, 2019; Viviano,

2019). However, such a requirement of the network accuracy is difficult to satisfy in

many empirical studies (Advani and Malde, 2018; Kossinets, 2006).

Chapter 4 provides a method for overcoming the potential failure of identifying and

estimating the spillover effects in the presence of network measurement errors. It fo-

cuses on the spillover effects of a randomised intervention via a superpopulation model

studied by Leung (2020b). However, unlike Leung (2020b), this chapter assumes that

the observed network data is mismeasured. We first analytically characterise the bias in

treatment and spillover effects caused by inaccurate network information. It has been

found that when ignoring the network mismeasurement, not only the spillover effects, but

also the treatment effects that are triggered by the correctly-observed and randomised

treatment interventions, can be incorrectly identified.

Most importantly, this chapter proposes a novel strategy to nonparametrically point-

identify the treatment and spillover effects, when two network proxies are available. This

will be the case, for instance, in longitudinal data where network is elicited on multiple

occasions over time; when networks under various interaction contexts are collected; or

when both self-reported and administrative networks are available. In these situations,

the second network proxy is used as an IV for the true latent network. There are several

attractive features of the method proposed in this chapter. First, the nonparametric

model allows flexible forms of heterogeneity in the treatment and spillover effects. It is

important, especially for program evaluation and social planning, to inform how treat-

ment response varies across populations (Manski, 2001). In addition, unlike studies of

spillover effects relying on the two-stage experiments, the adjacency matrix used in this

chapter need not be block-diagonal (i.e., we do not require the “partial interference”
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in Sobel, 2006). Further, the proposed method can deal with network mismeasurement

arising from missing and/or misreported network links and does not require modelling

of the network formation or its misclassification probabilities.

Chapter 5 summarises the main findings, in light of which we discuss some potential

extensions for future research.



Chapter 2

Weak Identification in Discrete

Choice Models

2.1. Introduction

A prevalent econometric issue is the assessment of the causal impact of some economic

variable on a qualitative feature of the economy. For example, there is a growing body

of research that studies the causal impact of economic conditions on civil conflict in de-

veloping countries. In this context, economic conditions may be summarised by a given

state variable like “economic growth” (see e.g. Miguel et al., 2004) or one may set the

focus on a given policy tool, such as US Food Aid (see Nunn and Qian, 2014). In such

settings, the most common modelling strategy is to characterise the distribution of a

qualitative variable, say y1, via some piecewise constant function of a latent quantitative

variable, say y∗1. This allows the researcher to view y∗1 as evolving according to a regres-

sion equation. If y2 stands for the economic variable whose causal impact is at stake, we

will consider a regression equation:

y∗1i = αy2i + x′iβ + ui, i = 1, . . . , n, (2.1)

where xi denotes a vector of kx exogenous variables and, for sake of expositional sim-

plicity, we observe i = 1, 2, ..., n independent and identically distributed (i.i.d.) cross-

6
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sectional realisations of the random variables. In the introduction, we use the termi-

nology “exogenous” to refer to the explanatory variables xi and to the instrumental

variables zi. In Section 2.2.1 we define, following Newey et al. (1999), a precise con-

cept of control variables that is more relevant than (and not equivalent to) the common

concept of exogeneity.

The causal analysis of interest is conducted through statistical inference on the true

unknown value of the parameter α, which must be carefully defined in order to account

for the (possible) presence of simultaneity. The critical feature to recall about such a

setting is that the structural model (2.1) can not be seen as a model for the conditional

expectation of y∗1i given y2i and xi, because more often than not the economic variable

y2i is not exogenous and thus such a conditional expectation does not have a causal

interpretation.

To illustrate this point, considered the concrete example given by Nunn and Qian (2014)

on the impact of US food aid in civil conflicts: let y2i denote the amount of US food aid

to country i, and assume we are interested in analysing if y2i causes new civil conflicts

and/or helps offset existing conflicts. In this setting, one must be concerned about the

existence of reverse causality (“Do countries receive US aid precisely because they are

doing well?”) or common cause (“May US strategic objectives be a common cause for

conflict and food aid receipts?”) between these two measurements. For this reason,

identification of the structural parameters in (2.1) will require a set of instrumental

variables zi that are assumed to be exogenous.

However, even with instrumental variables in hand, estimation of the key quantity of

interest, α, is hindered by the fact that the scale of the latent variable y∗1i is often

unobservable, and at best we can hope to observe the sign of y∗1i. As such, consider that

we only observe a binary y1i defined as

y1i = 1[y∗1i > 0].

At the cost of more involved notations, the methodology developed in this chapter can

easily be extended to a wide variety of multinomial models, such as ordered probit
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models. To some extent, the binary case considered here is the most extreme case

of information loss with respect to the observation of the latent variable. Critically,

while the case of binary y1i is commonly treated in many economic applications with

endogeneity, the potential impact on the relevance of the underlying instruments, i.e.,

their “strength”, and their ability to identify the quantity of interest, have not been

sufficiently well-studied in this setting.

The goal of this chapter is to understand, characterise, and quantify the concept of

instrument strength as it pertains to discrete choice models. We make three primary

contributions. First, we give a novel characterisation of instrument strength in discrete

choice models which demonstrates that instrument strength can be significantly impacted

by factors other than the linear correlation between the instruments and the endogenous

variables. Our second contribution is to use this characterisation of instrument strength

to propose a consistent test for the null hypothesis that “instruments are so weak that

point estimators are inconsistent”, while under the alternative consistent estimation is

warranted. Our final contribution is to demonstrate that, once we have rejected the

null of inconsistent estimation, Wald-based inference can be carried out in the standard

manner.

We now discuss these contributions in more detail, and place them into the broader

literature on weak instruments.

Testing for Instrument Strength: Existing Literature

Since the analysis of Staiger and Stock (1997), practitioners have used the well-regarded

“rule-of-thumb” to measure instrument strength in the case of continuous y1i. The mag-

nitude of the F -statistic from the reduced form regression equation is arguably the most

common measure for determining instrument strength in the linear regression model.

Subsequent to the development of the rule-of-thumb, several influential refinements of

this measure, and indeed the very concept of weak instruments in the linear model,

have been put forward. Stock and Yogo (2005) provide a quantitative definition of weak

instruments in the linear model, and use this definition to propose a formal test for in-

strument weakness. While the approach of Stock and Yogo (2005) relies on conditionally
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homoscedastic and serially uncorrelated regression errors, an extension of the Stock and

Yogo (2005) testing strategy to heteroscedastic and serially correlated errors is devised

in Montiel Olea and Pflueger (2013).

However, when one moves to general nonlinear economic models, the impact of instru-

ment weakness on the resulting estimates is more difficult to ascertain. As presented

in Antoine and Renault (2009, 2012), and following the work of Hahn and Kuersteiner

(2002) and Caner (2009), there can exist a range of identification strengths in nonlin-

ear models, between the extreme cases of weak identification (when estimators are not

consistent) and strong identification (when estimators are consistent and root-n asymp-

totically normal). Indeed, these authors have shown that the generalised method of

moments (GMM) estimators can be consistent at a rate slower than the canonical rate

of n1/2, but only in the case of a convergence rate strictly larger than n1/4 is standard

inference based on the normal distribution approximation warranted. The key issue is

that, when convergence is too slow and the model is nonlinear, second-order terms in

Taylor expansions, which govern the behaviour of the estimator, may not be negligible in

front of first-order terms, so that standard asymptotic inference may no longer be valid.

Such slow rates of convergence have also been documented in the case of many weak

instruments (see Newey and Windmeijer, 2009 and references therein) while a general

study of nearly strong instruments is available in Andrews and Cheng (2012).

Using this characterisation of varying identification strength, Antoine and Renault (2020)

have devised a testing strategy that is capable of detecting (certain levels of) instrument

strength in nonlinear models estimated by GMM. The proposed test, dubbed the dis-

torted J-test (DJ test), is based on computing the GMM J-test statistic at a slightly

perturbed value of the continuously updated GMM (CUGMM) estimator. The logic

behind the test is that, if the instruments are truly weak, a small perturbation of the

J-statistic will not significantly alter its value, while if the instruments are not weak this

perturbation will result in a significant increase in the value of the J-statistic. Similar

to other inference strategies robust to weak identification, the approach explicitly relies

on the nature of the CUGMM objective function, which, as originally pointed out by

Stock and Wright (2000), automatically controls the behaviour of the GMM objective
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function under weak identification.

Interestingly, Antoine and Renault (2020) have demonstrated that their DJ test is akin

to the standard rule-of-thumb when the model is linear and homoscedastic. In contrast,

they stress (see also Windmeijer, 2019 for related work in the context of clustering) that

this DJ test differs from standard “robustified” versions of the rule-of-thumb in case of a

heteroscedastic linear model. We note, in particular, that when using linear probability

models, one is faced (besides the well-known criticisms of this approach) with a severely

heteroscedastic linear model.

Herein, we adapt the general testing strategy of Antoine and Renault (2020) to the

case of discrete choice models and construct a consistent test for the null hypothesis

that the instruments are too weak to allow consistent point estimation. Following the

nomenclature of Antoine and Renault (2020), we refer to this test as a distorted J-test

(DJ test). Similar to Antoine and Renault (2020), we demonstrate that our DJ test

can be interpreted as a natural “generalised rule-of-thumb” in the context of discrete

choice models, in the sense that this test appropriately modifies the standard approach

to account for both heteroscedasticity and non-linearity.

We compare the performance of this test with the aforementioned existing approaches

both through Monte Carlo experiments and an empirical analysis. Monte Carlo results

show that our DJ test, albeit conservative, has respectable power. However, the crucial

feature of this approach is its ability to discern that the underlying estimator may not

be reliable, while the standard rule-of-thumb, because it overlooks information lost due

to the nonlinearity of the model, will severely over-reject the null of weak identification.

When applied to real data, our DJ test is able to unambiguously determine when the null

of weak identification should be rejected (as in the textbook example of the causal effect of

education of married women on their labour force participation, with strong instruments

like parents education), while it rightly questions the use of standard inference approaches

when identification appears weak. In particular, by contrast with the naive rule-of-

thumb, the DJ test casts some doubt on the consistency of the estimator of the parameter

α in (2.1) applied to US food aid and offset of civil conflicts, which is key for the reliability
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of the important conclusion of Nunn and Qian (2014) that “the primary effect of food

aid is to prolong the duration of smaller-scale conflicts”.

In addition to the development of our DJ test, this chapter also reinforces the asymptotic

theory developed in Antoine and Renault (2009, 2012) regarding inference with nearly-

strong instruments. By characterising the strength of instruments in terms of a drifting

data generating process, a la Staiger and Stock (1997) and Stock and Wright (2000), we

demonstrate that once the null hypothesis of estimator inconsistency has been rejected,

Wald-based inference can be performed as usual. This result is in stark contrast to

the existing results for general nonlinear models under weak identification, where it has

been shown that standard inference is only warranted once the rate of convergence is

strictly larger than n1/4. In this setting, our ability to perform standard inference stems

from the fact that discrete choice models are built from latent linear models, albeit non-

linear, which we demonstrate are close enough to linear models to validate standard

inference once the underlying estimator is consistent. While the convergence rate of the

resulting estimator may be very slow, the studentisation performed in computing Wald

test statistics make their behaviour consistent with the standard critical values. In short,

if our DJ test rejects the null of estimator inconsistency, which will be accomplished

asymptotically with probability one under the alternative, the practitioner can safely

apply standard inference procedures.

In this respect, our recommendation remains true to the widespread practice of a two-

stage decision rule: a pretest for weak IV followed by standard inference when the null

of weak identification is rejected. Of course, an alternative would be to use more com-

putationally demanding inference strategies that are robust to weak identification. The

robust approach proposed by Kleibergen (2005) has been extended by Magnusson (2010)

to the context of limited dependent variable models. More generally, while the existence

of weak IV is a common phenomena, there is little theoretical evidence regarding the

properties of GMM estimators in endogenous discrete choice models. Using Monte Carlo

simulations, Dufour and Wilde (2018) demonstrate the poor behaviour of Wald and Like-

lihood Ratio tests in the presence of weak instrument. Finlay and Magnusson (2009)

considers the Wald test for the probit model and find that, with weak instruments, the
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test significantly over-rejects the null hypothesis (the truth).

We note that the development of a consistent test for weak instrument in discrete choice

models is particularly important since the similarity between the linear model and com-

mon discrete choice models, such as the probit model, have led researcher to apply tests

that are appropriate for linear models to this nonlinear context. In particular, it is rel-

atively common to apply the rule-of-thumb developed by Staiger and Stock (1997) in

the linear context to detect the present of weak instruments in discrete choice models:

see, e.g., Miguel et al. (2004), Arendt (2005), McKenzie and Rapoport (2011), Cawley

and Meyerhoefer (2012), Block et al. (2013) and Goto and Iizuka (2016). However, the

above studies do not question the validity of this rule-or-thumb in discrete choice models.

Some other researchers may prefer to abandon the discrete choice framework in favor of

the linear probability models; see, e.g., Lochner and Moretti (2004), Powell et al. (2005),

Kinda (2010), Ruseski et al. (2014). Besides the fact that they are heavily heteroscedas-

tic, linear probability models are by definition misspecified. Since our DJ test is based

on a distortion of the standard J-test statistic for misspecification, it should not be used

in the context of misspecified moment models.

The remainder of the chapter is organised as follows.

Section 2.2 introduces our model setup and assumptions. The key maintained assumption

is the existence of a control function, in which the conditional probability distribution of

the structural error term, given all the variables in the reduced form regression, coincides

with the conditional distribution of the structural error term conditional on the reduced

form error term. The control function approach for probit with endogeneity has been

pioneered by Rivers and Vuong (1988) and led them to put forward a two-stage condi-

tional maximum likelihood (2SCML) approach. In this section, we note that a GMM

framework allows us to obtain asymptotically equivalent estimators for the structural

parameters without necessarily resorting to a two-stage approach. Moreover, we show

that our GMM approach is also versatile enough to encompass the Quasi-LIML approach

of Wooldridge (2014).

In Section 2.3, we present our DJ test and prove its asymptotic properties: size control
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(for the null of weak identification) and consistency (under the alternative). We further

demonstrate that as long as the estimators are consistent, i.e., under the alternative to

the null hypothesis of weak identification, standard Wald-style inference can be applied.

This stands in contrast to the general case of identification strength for nonlinear models

considered in Antoine and Renault (2009, 2012) and Andrews and Cheng (2014), where

it is shown that in nonlinear models standard inference approaches are warranted only

when the rate of convergence is faster than the n1/4 rate. Lastly, we demonstrate that,

in the context of a discrete choice model, the DJ test can be interpreted as a generalised

rule-of-thumb that accounts for the nonlinear nature of the probit model.

Monte Carlo experiments in Section 2.4 compare the finite-sample properties of our

proposed DJ test as well as the performance of other weak IV tests. Section 2.5 applies

our weak IV test to two empirical examples: Wooldridge (2010) married women’s labour

force participation, and Nunn and Qian (2014) US food aid and civil conflicts. Section

2.6 concludes.

2.2. General Framework

Blundell and Powell (2004) propose a control function (hereafter, CF) approach to con-

duct inference on the structural parameters of endogenous binary choice models. In this

and the next section, we examine the impact of weak instruments on such a CF approach

to inference. However, we first demonstrate the general point that a CF approach allows

us to see both the 2SCML of Rivers and Vuong (1988) and the Quasi-LIML approach of

Wooldridge (2014) as particular cases of a class of GMM estimators, which we discuss

in Section 2.2.2. While these GMM estimators can always be characterised by a one-

step minimisation problem, using similar arguments to those in Section 6 of Newey and

McFadden (1994), we can also interpret the estimator of the structural parameters as a

two-step estimator, whereby a preliminary plug-in estimator (obtained from a reduced

form regression equation) is used within the moments. After establishing the general

framework, in Section 2.2.3 we then sketch the weak IV issue in the context of probit

models.
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2.2.1. Model and Control Function Approach

Newey et al. (1999) suggest that the key for a CF approach is to start from a triangular

simultaneous equations model. In the context of endogenous binary choice models, this

entails specifying structural and reduced form regression equations, and the mechanism

generating the binary responses.

The structural equation characterises the response of an unobservable endogenous vari-

able y∗1i, conditional on a scalar-valued endogenous variable y2i and a kx-dimensional vec-

tor of explanatory variables xi, as the sum of an unknown structural function g (y2i, xi)

and a structural error term ui:

y∗1i = g (y2i, xi) + ui, E [ui] = 0. (2.2)

While Imbens and Newey (2009) propose an even more general structural model where

the error term ui may not be additively separable at the cost of more restrictive in-

dependence assumptions, such an extension is beyond the scope of this chapter. For

sake of expositional simplicity, we will maintain the following linear specification for the

structural function

g (y2i, xi) = αy2i + x′iβ,

but we note that the analysis remains applicable to any situation where g (y2i, xi) is a

parametric function of (y2i, xi); the case of nonparametric g(·) is beyond the scope of

this current chapter, and is left for future research. Our primary focus of interest is the

case where only the sign of the quantitative structural variable y∗1i is observable, which

yields the structural equation defining the observed binary outcome y1i:

y1i = 1[y∗1i > 0].

The binary choice model allows us to address the issue of weak identification in the

case of maximum information loss going from the quantitative latent variable y∗1i to the

observed variable y1i. However, we note that the general methodology developed in this

chapter would be similarly relevant for any observation scheme that would define y1i as

a known function of y∗1i and xi (see e.g., Tobit model, Gompit model, disequilibrium
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model, etc.). A reduced form, or first stage, regression equation relates the endogenous

explanatory variable y2i to a kz-dimensional vector of valid instrumental variables, zi,

and the explanatory variables xi:

y2i = π (xi, zi) + vi, E[vi | xi, zi] = 0. (2.3)

Remark 2.2.1 While we have chosen to view the reduced form regression equation

(2.3) as the specification of a conditional expectation, we could alternatively follow the

quasi-LIML estimation approach of Wooldridge (2014). In his approach, the reduced

form regression equation is only required to be a linear projection of y2i onto xi and zi.

We will always assume that xi includes a constant, so that the reduced form error term

vi has a zero mean. That is, instead of (2.3), we could have assumed

y2i = x′iπ + z′iξ + vi, E[vi] = 0, with Cov

 xi

zi

 , vi
 = 0. (2.4)

Remark 2.2.2 As noted by Blundell and Powell (2004), the reduced form error term

vi often appears to be conditionally heteroscedastic. Taking this possibility into account

will allow us to devise more efficient estimators when the reduced form error term is

deduced from a conditional expectation rather then from only a linear projection. We

will actually combine the advantages of both approaches (2.3) and (2.4) by assuming

that:

y2i = x′iπ + z′iξ + vi, E[vi |xi, zi] = 0 (2.5)

However, it must be acknowledged that the linearity assumption for the conditional

expectation is restrictive, and prevents us from considering cases where the endogenous

explanatory variable y2i is itself qualitative. We also note that, while Blundell and Powell

(2004) propose a nonparametric estimator of the possibly nonlinear regression function

π (xi, zi), a given nonlinear parametric form of this regression function would not result

either in a significant change in our proposed methodology.

As stressed by Newey et al. (1999), the CF approach does not assume that xi and zi are
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valid instruments, in that the approach does not require

E[ui |xi, zi] = 0, (2.6)

but instead only that

E[ui |vi, xi, zi] = E[ui |vi] . (2.7)

Moreover, it is worth realising that neither equation (2.6) or equation (2.7) implies the

other. While we will eventually maintain a stronger version of equation (2.7), i.e., ui

conditionally independent of xi, zi given vi, there is no reason to believe that vi is itself

independent of (xi, zi), which jointly with the former conditional independence would

be tantamount to joint independence of (ui, vi) and (xi, zi), and would in turn imply

(2.6). In particular, such independence would rule out the possibility of conditional

heteroscedasticity for the error term vi in the reduced form regression equation (2.5).

As clearly defined by Wooldridge (2015), “a control function is a variable that, when

added to a regression, renders a policy variable appropriately exogenous.” Typically, the

restriction in (2.7) allows us to rewrite equation (2.2) as

y∗1i = g (y2i, xi) + E[ui |vi] + εi, (2.8)

where

εi = y∗1i − E [y∗1i | vi, xi, zi] = ui − E[ui |vi] ,

which ensures, by definition, that the policy variable is appropriately exogenous; i.e.,

E [εi|y2i, xi, vi] = 0.

In their seminal work, Rivers and Vuong (1988) note that the only assumption needed

to obtain valid inference in the probit model is that the conditional distribution of ui

given vi is normal with a mean that is linear in vi and with a fixed variance. While

this condition is satisfied if (ui, vi) is jointly normal, joint normality is not required in

general. Similarly, for general discrete choice models a CF approach can be constructed

by assuming that E [ui | vi] is linear in vi and that εi = ui − E [ui | vi] is independent
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of vi, along with an assumption that εi has a known continuous cumulative distribution

function denoted by Φ. We assume that this probability distribution is symmetric, i.e.,

Φ(ε) = 1− Φ(−ε), which, together with (2.7), allows us to write

Pr [y1i = 1 | vi, xi, zi] = Pr {εi > −g (y2i, xi)− E [ui | vi] | vi, xi, zi}

= Φ {g (y2i, xi) + E[ui |vi]} .

We now collect the maintained assumptions on the general model in (2.2)-(2.3).

Assumption 2.2.1 The following conditions are satisfied.

(a) (Observation scheme) The observed data {si}ni=1 = {(y1i, y2i, x
′
i, z
′
i)
′}ni=1 is an i.i.d.

sample and for some κ > 0,E
[
‖si‖2+κ] <∞.

(b) (Reduced form regression): y2i = π (xi, zi) + vi, and E[vi | xi, zi] = 0.

(c) (Structural equation): (i) E[ui |vi, xi, zi] = E[ui |vi]; (ii) Φ is a known cumulative

distribution function, twice continuously differentiable and strictly increasing, such

that Φ(ε) = 1− Φ(−ε); (iii) for some unknown parameter ρ̃ ∈ R,

Pr[y1i = 1 | vi, xi, zi] = Φ[g (y2i, xi) + ρ̃vi].

(d) (Linearity): The unknown functions g(·, ·) and π(·, ·) are linear:

(i) For unknown parameters α ∈ R and β ∈ Rkx, g (y2i, xi) = αy2i + x′iβ;

(ii) For unknown parameters π ∈ Rkx and ξ ∈ Rkz , π (xi, zi) = x′iπ + z′iξ.

(e) (Parameters) The unknown parameters θ = (θ′1, θ
′
2)′, where θ1 := (ρ̃, α, β′)′ and

θ2 := (π′, ξ′)′, are of dimension p = 2 + 2kx + kz. We have θ1 ∈ Θ1 ⊂ Rkx+2,

θ2 ∈ Θ2 ⊂ Rkx+kz , Θ := Θ1 ×Θ2 and Θ is compact. For θ0 denoting the unknown

true value of θ, we have θ0 ∈ Int(Θ).

As already mentioned, the linearity in Assumption 2.2.1 (d) is innocuous and what follows
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can be extended to settings where g (y2i, xi) has any parametric single-index structure

and to cases where π (xi, zi) has any parametric form. In the more general nonparametric

setting, Newey et al. (1999) demonstrate that identification by CF of the structural model

is tantamount to assuming that there is no functional relationship between the random

variables y2i, xi and vi (see Newey et al. 1999 for a precise definition of this concept).

With a linear structural function g (y2i, xi), identification of the structural parameter α

is equivalent to assuming that y2i is not a linear combination of xi and vi, meaning that

the reduced form regression depends on zi, i.e., ξ 6= 0.

To give a more concise treatment, throughout the remainder we restrict our analysis to

the case where Φ is the CDF of the standard normal distribution and refer to the model:

Pr[y1i = 1 |vi, xi, zi] = Φ [αy2i + x′iβ + ρ̃vi]

as a probit model. Since only the sign of the latent variable y∗1i is observed, the probit

model generally requires the normalisation condition Var(ui) = 1. However, it is without

loss of generality to instead consider the normalisation condition

Var[ui |vi] = Var (εi) = 1.

If ρ denotes the linear correlation coefficient between ui and vi, the above normalisation

ensures that

Var (ui) = ρ̃2Var (vi) + 1 = ρ2Var (ui) + 1,

where σv =
√

Var (vi),

Var (ui) =
1

1− ρ2
, ρ̃ =

ρ

σv
√

1− ρ2
,

and where we have that ρ̃ is monotonic in ρ. Of course, conditional on α 6= 0, the

simultaneity/endogeneity problem is in evidence if and only if ρ 6= 0 or equivalently

ρ̃ 6= 0. It is worth to emphasise that the endogeneity is governed by ρ, when the

regressor y2 has a nonzero impact on the outcome variable.
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2.2.2. Estimating Equations

Throughout the remainder, we partition the parameter vector as θ = (θ′1, θ
′
2)′, where

θ1 = (ρ̃, α, β′)
′
, θ2 = (π′, ξ′)

′
.

The vector θ1 (resp., θ2) represents the vector of structural (resp., reduced-from) param-

eters. Following Assumption 2.2.1, the true value of the reduced form parameters θ2 is

defined by the conditional moment restrictions

E[r2i (θ2) |xi, zi] = 0, where r2i (θ2) = y2i − x′iπ − z′iξ. (2.9)

For fixed θ2, the true value of the structural parameters θ1 is defined by the conditional

moment restrictions

E[r1i (θ1, θ2) |y2i, xi, zi] = 0, where r1i (θ1, θ2) = y1i − Φ [αy2i + x′iβ + ρ̃vi (θ2)] , (2.10)

and where

vi (θ2) = r2i (θ2) = y2i − x′iπ − z′iξ.

As usual, we will handle conditional moment restrictions by choosing vectors of instru-

mental functions, denoted respectively as b̃ (xi, zi) for (2.9) and ã (y2i, xi, zi) for (2.10),

and where it is assumed that the moments E[‖ã(y2i, xi, zi)‖2+κ] and E[‖b̃(xi, zi)‖2+κ] are

finite for some κ > 0. For a given choice of instrumental functions ã (·, ·, ·) and b̃ (·, ·),

we maintain the following identification assumption.

Assumption 2.2.2 (Identification): The true unknown value θ0 = (θ0′
1 , θ

0′
2 )′ ∈ Int(Θ)

is the unique solution θ ∈ Θ to the following moment restrictions:

Reduced form: E[b̃(xi, zi)r2i(θ2)] = 0 ⇐⇒ θ2 = θ0
2,

Structural: E[ã(y2i, xi, zi)r1i(θ1, θ
0
2)] = 0 ⇐⇒ θ1 = θ0

1.
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We can summarise the unconditional moment conditions in Assumption 2.2.2 as follows:

for H ≥ p, and H-dimensional vectors ai and bi of the same dimension, define

gi(θ) = air1i (θ1, θ2) + bir2i (θ2) , where ai =

ã (y2i, xi, zi)

0

 , bi =

 0

b̃ (xi, zi)


then Assumption 2.2.2 implies that the moment function gi(θ) satisfies

E [gi(θ)] = 0⇐⇒ θ = θ0.

A GMM estimator of θ0 can then be constructed using the moment function

gi(θ) = (g1i(θ)
′, g2i(θ)

′)′, where g1i(θ) = ã (y2i, xi, zi) r1i (θ) , g2i(θ) = b̃ (xi, zi) r2i (θ2) .

(2.11)

In particular, for Wn a sequence of positive-definite H × H weighting matrix, we can

estimate θ0 using the GMM estimator

θ̂n = arg min
θ∈Θ

ḡn(θ)′Wnḡn(θ), where ḡn(θ) =
1

n

n∑
i=1

gi(θ) ≡
(
ḡ1n(θ)′ ḡ2n(θ)′

)′
.

Remark 2.2.3 In general, imposing that some components of the vectors ai and bi are

zero prevents us from choosing optimal instruments, and ultimately results in θ̂n being

an inefficient estimator of θ0. The characterisation of optimal instrumental functions

for the joint set (2.9) and (2.10) of conditional moment restrictions is non-standard

because they correspond to different conditioning variables. The optimal instrumental

functions in this case have been characterised by Kawaguchi et al. (2017) (see also Ai and

Chen (2003) for a general study). Their result implies that in case of overidentification

and simultaneity (ρ̃ 6= 0 and α 6= 0), the first set r1i(θ) of moment conditions is also

informative about θ2, so that a more efficient estimator of θ2 (and in turn θ1) is obtained

by an appropriate choice of ai in which all of its components are non-zero.

While the specific choice of instrumental functions ai and bi may be sub-optimal, this

choice allows us to demonstrate the equivalence between a GMM-based approach and

the 2SCML approach of Rivers and Vuong (1988). In particular, for g1i(θ) and g2i(θ)
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defined as in equation (2.11), we have that

Cov
[
g1i(θ

0), g2i(θ
0)
]

= E
[
ã (y2i, xi, zi) b̃

′ (xi, zi) r1i

(
θ0
)
r2i

(
θ0

2

)]
= E

{
ã (y2i, xi, zi) b̃

′ (xi, zi) r2i

(
θ0

2

)
E[r1i

(
θ0
)
|y2i, xi, zi]

}
= 0.

Thus, an efficient GMM estimator based on the moment functions in (2.11) can be

defined as

θ̂n = arg min
θ∈Θ

ḡn(θ)′

 W1n 0

0 W2n

 ḡn(θ)

= arg min
θ∈Θ
{ḡ1n(θ)′W1nḡ1n(θ) + ḡ2n(θ)′W2nḡ2n(θ)} ,

for an appropriate choice of the weighting matrices W1n and W2n. Consequently, the

components of the first-order conditions for the structural parameters θ1 are given by

∂ḡ1n(θ̂n)′

∂θ1

W1nḡ1n(θ̂n) = 0. (2.12)

Equation (2.12) allows us to see the estimator θ̂1n as a two-step estimator based on the

moment conditions

E[r1i

(
θ1, θ

0
2

)
|y2i, xi, zi] = 0, (2.13)

where the nuisance parameter θ0
2 is replaced by a consistent first-step estimator θ̂2n.

From (2.12), we can see that the estimator θ̂1n is the solution in θ1 = (ρ̃, α, β′)′ to the

(2 + kx) orthogonality conditions

n∑
i=1

γi,n

{
y1i − Φ

[
αy2i + x′iβ + ρ̃vi

(
θ̂2n

)]}
= 0, for γi,n =

∂ḡ1n(θ̂n)′

∂θ1

W1nã (y2i, xi, zi) .

(2.14)

The optimal instruments associated with estimation of θ0
1 in equation (2.13) (i.e., where

θ0
2 is known) are given by any consistent estimator of:

γ∗i =
[
Var

(
r1i

(
θ0

1, θ
0
2

))
|y2i, xi, zi)

]−1 E

[
∂r1i (θ

0
1, θ

0
2)

∂θ1

∣∣∣∣∣ y2i, xi, zi

]
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≡ φi (θ
0)

Φi (θ0) [1− Φi (θ0)]


vi (θ

0
2)

y2i

xi


where

Φi

(
θ0
)

= Φ
[
α0y2i + x′iβ

0 + ρ̃0vi
(
θ0

2

)]
φi
(
θ0
)

= φ
[
α0y2i + x′iβ

0 + ρ̃0vi
(
θ0

2

)]
and φ (x) = dΦ (x) /dx is the probability density function associated to Φ. Therefore, if

one were to choose a consistent estimator of γ∗i as instruments, the estimator θ̂1n can be

seen as the solution in θ1 = (ρ̃, α, β′)′ to the equations:

n∑
i=1

φi

(
θ1, θ̂2n

)
Φi

(
θ1, θ̂2n

) [
1− Φi

(
θ1, θ̂2n

)]

vi

(
θ̂2n

)
y2i

xi

{y1i − Φ
[
αy2i + x′iβ + ρ̃vi

(
θ̂2n

)]}
= 0.

(2.15)

Equation (2.15) shows that, for any choice of a consistent first-step estimator θ̂2n, the

estimator θ̂1n is a 2SCML estimator a la Rivers and Vuong (1988).

2.2.3. The Weak IV Issue in the Probit Model

The representation in equation (2.15) demonstrates that the general class of GMM esti-

mators for θ1 defined in equation (2.14) contains both 2SCML and Quasi-LIML estima-

tors as particular cases. Therefore, we can ascertain the impact of instrument weakness,

on these and related methods, by studying instrument weakness in this general class of

GMM estimators.

However, before moving to a general study, we give some intuition on the potential

impacts of instrument weakness in the probit model. These implications are most easily

elucidated in the infeasible case where we replace the optimal instruments in equation

(2.15) with their infeasible counterpart γ∗i , and where we replace the estimator θ̂2n by

the true value θ0
2.
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Under these simplification, and under the one-to-one transformation of θ1 defined by

η1 = ρ̃, η2 = α + ρ̃, η3 = β − ρ̃π0,

the infeasible estimator η̃n of η0 (and thus θ0
1) can be defined as the solution to

n∑
i=1

γ∗i
{
y1i − Φ

[
η1

(
−z′iξ0

)
+ η2y2i + x′iη3

]}
=

n∑
i=1

wiDi

{
y1i − Φ

[
η1

(
−z′iξ0

)
+ η2y2i + x′iη3

]}
= 0,

where γ∗i = wiDi, wi = 1/Φi(θ
0)[1− Φi(θ

0)] and Di = φi(θ
0)(−z′iξ0, y2i, x

′
i)
′. The sim-

plification made in the term Di, i.e., replacing vi(θ
0
2) by −z′iξ0, follows from the row

operation on γ∗i which does not affect the solution of the linear equations in (2.15)

asymptotically. A Taylor expansion allows us to heuristically write

y1i − Φ
[
η1

(
−z′iξ0

)
+ η2y2i + x′iη3

]
≈ y1i − Φi

(
θ0
)
− φi

(
θ0
) [(
−z′iξ0

) (
η1 − η0

1

)
+ y2i

(
η2 − η0

2

)
+ x′i

(
η3 − η0

3

)]
.

Using this expansion within the infeasible estimating equations, η̃n can be seen to solve

n∑
i=1

wiDi (ỹ1i −D′iη) = 0, where ỹ1i = y1i − Φ(θ0) +D′iη
0.

Consequently, η̃n is obtained from a weighted least squares regression of ỹ1i on the

explanatory variables Di = φi(θ
0)(−z′iξ0, y2i, x

′
i)
′. While the above estimating equations

are not identical to those in equation (2.15), it is clear from comparing the two that they

are of a similar form, and therefore whatever implications are drawn about the later will

be sustained by the former.

This regression-based viewpoint yields two important, and interrelated, implications

for inference in endogenous binary choice models. First, the linear regression that is

considered is not the one suggested by a linear probability model, which would be based

on explanatory variables z′iξ
0, y2i, xi, and not the weighted versions in Di. Second, since

the explanatory variables in the regression are weighted by φi(θ
0), it is inappropriate to
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focus solely on the contribution of z′iξ
0 in the reduced form regression as a measure of

instrument strength.

Remark 2.2.4 Before moving on, we note that the above type of estimation approach

has been dubbed “two-stage residual inclusion” (2SRI) estimation by Terza et al. (2008).

In particular, using the first stage consistent estimators θ̂2n = (π̂′n, ξ̂
′
n)′, the estimated

first stage residual

v̂i = y2i − x′iπ̂n − z′iξ̂n

is included in the computation of the generalised residual

r1i (θ1, θ2) = y1i − Φ [αy2i + x′iβ + ρ̃vi(θ2)] .

We know from Hausman (1978) that, in a fully linear model and as far as estimation of

structural parameters α and β is concerned, 2SRI is equivalent to 2SLS. The inclusion

of the residual v̂i in the regression equation ensures that naive OLS would coincide with

2SLS. In addition, Terza et al. (2008) dub “Two-stage predictor substitution” (2SPS)

the direct generalisation of 2SLS to our nonlinear context, meaning that in the structural

equation, the endogenous variable is simply replaced by its first stage adjusted value,

leading to the generalised residual:

ûi = y1i − Φ [αŷ2i + x′iβ]

ŷ2i = x′iπ̂n + z′iξ̂n

Not surprisingly, Terza et al. (2008) show that in a nonlinear model, 2SPS is not equiv-

alent anymore to 2SRI and only the latter provides a consistent estimator of structural

parameters. The intuition is quite clear. Due to the non-linearity of the function Φ (.),

plugging in ŷ2i to instrument y2i does not fix satisfactorily the endogeneity bias problem.

As alluded to above, it can be misleading to set the focus on the contribution of z′iξ
0 in

the reduced form regression to gauge the instrument strength, as is done when using the

standard rule-of-thumb. Doing so is akin to overlook the impact of nonlinearity in the

same way that it is wrong to confuse the correct 2SRI and the flawed 2SPS. Indeed, as
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the above arguments clarify, the relevant variable for capturing instrument strength is

not zi, as in the standard linear case, but φi(θ
0)zi. Thus, the assessment of identification

strength should rather be based on the variability of φi(θ
0)z′iξ

0.

We can easily illustrate the impact of moving from z′iξ
0 to φ(θ0)z′iξ

0 in terms of instru-

ment strength in the probit model, so that φ(·) is the probability density function of the

Gaussian distribution. The conclusions given below will remain valid for any other prob-

ability distribution with thin tails, such that the variability of the φi(θ
0)zi is drastically

different from the one of zi. First we recall that that for a real valued variable ν and

any given number c, the absolute value of the function h(ν) = νφ(c+ ν) is decreasing in

|ν| when the latter value is larger than the absolute value of the roots of the polynomial

[1− cν − ν2]. Moreover, the rate of this decrease is sharp (converging swiftly to zero)

due to the thin tails of the Gaussian distribution.

Using this argument, one may realise that the multiplication of z′iξ
0 by

φi(θ
0) = φ

[
α0y2i + x′iβ

0 + ρ̃0
(
y2i − x′iπ0 − z′iξ0

)]
erases the variability of z′iξ

0, by pruning all its large values. For Z ∼ N (0, σ2
z), it is useful

to illustrate the above point by comparing the variance of Zφ(1 +Z) as a percentage of

the variance of Z. For various values of σ2
z , we collect these ratios in Table 2.2.1 below.

Table 2.2.1: Comparison of Variance of Z to Variance of W = Zφ(1 + Z)

σ2
z 1 2 5 10 50 100

Rel. % 100% 79.03% 30.18% 28.13% 7.42% 3.83%

Note: For σ2
w = Var(W ), we first calculate lz = σ2

w/σ
2
z , i.e., the variance of W as a percentage of the

variance of Z, for various values of σ2
z . The value of Rel % in the table is the value of lz expressed as a

percentage of σ2
w/1, i.e., we report the results relative to the case where σ2

z = 1.

The results in Table 2.2.1 constitute compelling evidence on the likely flaws of the stan-

dard rule-of-thumb in the probit context. It is also worth stressing that, while Table 2.2.1

only displays results with the normalised function φ(1 +Z), the pruning impact of large

values of z′iξ
0 within the function φ(·) may actually be magnified in finite sample by a
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large value of the parameter ρ̃0. We may then expect that the pruning effect documented

in Table 2.2.1 will be even more detrimental for small values of σv and/or a large degree

of endogeneity ρ, with both cases corresponding to a large value of ρ̃. These possible

perverse effects for the naive rule-of-thumb will be confirmed by the Monte Carlo exper-

iments in Section 2.4. These experiments will show that the standard rule-of-thumb will

be more prone to over-reject the null of weak instruments in the case of strong simul-

taneity (ρ close to one) and/or a large signal to noise ratio σz/σv in the reduced form

regression.

2.3. A Test for Instruments Weakness

2.3.1. Intuition

Several authors, such as Kleibergen (2005), Caner (2009), Chaudhuri and Renault (2020),

Stock and Wright (2000), and Antoine and Renault (2020), have discussed the advantages

of a continuously updated GMM (CUGMM) approach to efficient GMM estimation in

case of possible weak identification. Following the latter two authors, in our context the

advantage of the CUGMM approach is that, irrespective of identification weakness, the

asymptotic behaviour of the CUGMM criterion is always controlled. This feature of the

CUGMM criterion will ultimately allow us to obtain a test for instrument weakness that

is size controlled and consistent.

To see that this key feature remains true in our setting, recall the specific moment

conditions underlying this analysis given by equation (2.11); namely, for θ1 = (ρ̃, α, β′)′

and θ2 = (π′, ξ′)′, and g1i(θ) = ã(y2i, xi, zi)r1i(θ1, θ2), g2i(θ) = b̃(xi, zi)r2i(θ2),

gi(θ) = r1i(θ)a (y2i, xi, zi) + r2i(θ2)b (xi, zi) =
(
g1i(θ)

′, g2i(θ)
′
)′
.

Defining the weighting matrix

Sn(θ) =

S11,n(θ) 0

0 S22,n(θ)

 , Sjj,n(θ) =
1

n

n∑
i=1

[gj,i(θ)− ḡj,n(θ)] [gj,i(θ)− ḡj,n(θ)]′ ,

for j = 1, 2, we consider a version of the CUGMM estimator (hereafter, CUE) that takes
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into account the block diagonal structure of the population variance matrix. Then our

CUE of θ0 based on ḡn(θ) = (ḡ1n(θ)′, ḡ2n(θ)′)′ is defined as

θ̂n = arg min
θ∈Θ

Jn(θ, θ), for Jn(θ, θ̃) = nḡn(θ)′S−1
n (θ̃)ḡn(θ),

where the notation Jn(θ, θ̃) differentiates the occurrences of θ in the moments, ḡn(θ),

from those in the weighting matrix, S−1
n (θ̃).

The critical feature of the criterion Jn(θ, θ̃) is that, by definition,

Jn(θ0, θ0) ≥ Jn(θ̂n, θ̂n), (2.16)

while, since Cov [g1i(θ
0), g2i(θ

0)] = 0, it follows that Jn (θ0, θ0) converges in distribution

to a chi-square random variable with H degrees of freedom, denoted throughout as

χ2(H).

The general validity of this upper bound, regardless of the instrument strength, and,

hence consistency of θ̂n, is the reason why we resort to CUGMM. This upper bound will

allow us to control the size of our test for weak identification.1

The key intuition for our test of weak identification is the following observation. Un-

der weak identification, there are certain directions of the parameter space where the

CUGMM objective function Jn(·, θ̂n) is flat in the neighbourhood of θ̂n. In these direc-

tions, if we distort θ̂n by some “small” value, say ∆n ∈ Rp, and evaluate Jn(·, θ̂n) at

θ̂δn = θ̂n + ∆n, then the value of Jn(θ̂δn, θ̂n) should not differ “significantly” from that

of Jn(θ̂n, θ̂n). Herein, the concept of “significance” means that Jn(θ̂δn, θ̂n) exceeds some

pre-specified quantile of the χ2(H) distribution.

Critically, however, since the objective function scales the squared norm of the sample

1The upper bound (2.16) is generally invalid if a first-step estimator of θ0 is used to estimate the opti-
mal instrumental functions. The only way to incorporate optimal instrumental functions for a(y2i, xi, zi)
and b(xi, zi) would be to use them with a free value of θ like in the weighting matrix of CUGMM. The
discussion of this alternative approach is left for future research. Also, we note that in the just iden-
tified case, the minimum Jn(θ̂n, θ̂n) of Jn(θ) is asymptotically, with probability one, equal to zero and
S−1
n (θ) is immaterial. In particular, when using the first-order conditions of some M-estimator, including

two-stage conditional maximum likelihood or quasi-LIML, the weighting matrix is irrelevant.
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mean ḡn(θ), by the factor n, when identification is not weak the distortion introduces

a wedge between ḡn(θ̂δn) and ḡn(θ̂n). Therefore, if identification is not weak, so long as

the distortion goes to zero sufficiently slowly with n, the criterion Jn(θ̂δn, θ̂n) diverges

asymptotically and thus exceeds (with probability going to one) the chosen quantile of

the χ2(H) distribution. Throughout the remainder, we refer to this testing procedure

as a distorted J-test. It is worth noting that this test is dubbed the “distorted J-test”

because it uses the J statistic proposed by Hansen (1982) in the overidentified case to

test for the validity of a set of moments. The terminology is a bit misleading since our

test may work even in the just identified case (H = p). There are actually two possible

points of view: either one chooses to perform the distorted J-test test in a just identified

setting (H = p), or in the overidentified setting (H > p).

2.3.2. The null hypothesis of weak identification

As already discussed in Section 2.2.3, weak instruments impact estimation of the struc-

tural parameters through the structural moment function

g1i (θ) = ã (y2i, xi, zi) r1i (θ1, θ2) , where r1i (θ1, θ2) = y1i−Φ [(ρ̃+ α)y2i + x′i(β − ρ̃π)− ρ̃z′iξ] .

The impact of weak instruments can be most easily disentangled under the parameteri-

sation

η = (η1, η2, η
′
3)
′
= (ρ̃, ρ̃+ α, β′ − ρ̃π′)′ , (2.17)

which allows us to restate the moment function as

g1i(η, θ2) = ã(y2i, xi, zi)r̃1i(η, θ2), where r̃1i (η, θ2) = y1i − Φ [−η1z
′
iξ + η2y2i + x′iη3] .

Following Staiger and Stock (1997) and Stock and Wright (2000), we use a drifting

data generating process (DGP) to capture instrument weakness, so that population

expectations are viewed as being n-dependent. However, to paraphrase Lewbel (2019),

we do not actually believe that the DGP is changing as n changes, but use the drifting

DGP concept in order to obtain more reliable asymptotic approximations in the context

of weak identification. To this end, we consider that the population expectation of
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ḡ1n(η, θ2) is defined as

m1n (η, θ2) =
1

n
En

[
n∑
i=1

ã (y2i, xi, zi) r̃1i (η, θ2)

]
.

Under this drifting DGP, we are obliged to see θ0
2, and hence η0, as n-dependent, so that

the maintained identification assumption should technically be recast as

m1n (η, θ2) = 0 ⇐⇒ (η, θ2) = (η0
n, θ

0
2n).

However, to keep the notational burned to a minimum, we only make the true-values

dependence on n explicit when absolutely necessary.

Following the approach of Stock and Wright (2000) (see their Section 2.3), the following

decomposition of m1n (η, θ2) will ultimately allow us to isolate the impact of instrument

weakness

m1n

(
η, θ0

2

)
= m1n

(
η0, θ0

2

)
+
[
m1n

(
η, θ0

2

)
−m1n

(
η0

1, η2, η3, θ
0
2

)]
+

[
m1n

(
η0

1, η2, η3, θ
0
2

)
−m1n

(
η0, θ0

2

)]
.

In particular, since m1n (η0, θ0
2) = 0, we have

m1n

(
η, θ0

2

)
=
[
m1n

(
η, θ0

2

)
−m1n

(
η0

1, η2, η3, θ
0
2

)]
+m1n

(
η0

1, η2, η3, θ
0
2

)
. (2.18)

As explained in the Section 2.2.3, instrument weakness is encapsulated by the explana-

tory variable φi (θ
0) z′iξ

0. The impact of this explanatory variable on instrument strength

can be directly obtained by linearising m1n (η, θ0
2) around η0

1 to obtain

m1n

(
η, θ0

2

)
−m1n

(
η0

1, η2, η3, θ
0
2

)
=

(
η1 − η0

1

) ∂m1n

∂η1

(
η∗1n, η2, η3, θ

0
2

)
(2.19)

=
(
η1 − η0

1

) 1

n
En

[
n∑
i=1

ã (y2i, xi, zi)φi
(
η∗1n, η2, η3, θ

0
2

)
z′iξ

0

]
,

where η∗1n denotes a component-by-component intermediate value, which can vary ac-

cording to the components of the function ã(.).
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Equation (2.19) allows us to write the decomposition in equation (2.18) in the following

semi-separable form, which clearly partitions the directions of weakness in the parameter

space: for some real, positive, and deterministic sequence ςn → ∞ as n → ∞, with

ςn = O(
√
n), possibly o(

√
n),

m1n

(
η, θ0

2

)
= q11,n (η)/ςn + q12,n (η2, η3) , (2.20)

where

q11,n (η) = ςn
[
m1n

(
η, θ0

2

)
−m1n

(
η0

1, η2, η3, θ
0
2

)]
,

q12,n (η2, η3) = m1n

(
η0

1, η2, η3, θ
0
2

)
=

1

n

n∑
i=1

En
[
ã (y2i, xi, zi) r̃1i

(
η0

1, η2, η3, θ
0
2

)]
.

Given this decomposition of m1n (η, θ0
2), the identification strength of η1 is entirely de-

termined by equation (2.19) and therefore q11,n(η)/ςn. In particular, the rate ςn can be

thought of as encapsulating the speed with which the curvature of the moments ap-

proaches zero in the η1 direction, and thus ςn determines the degree of identification

weakness. If ςn diverges like
√
n, the speed at which this curvature vanishes is matched

by the rate at which information accumulates in the sample, i.e.,
√
n, and there is no

hope that η0
1 can be identified from sample information; i.e., η0

1 is weakly identified.

In contrast, the identification of η2, η3 is determined by q12,n(η2, η3) and is not afflicted

by identification weakness. That is, in this rotated parameter space of η, identification

weakness only occurs in the η1 direction and does not permeate the remaining directions

in the parameter space. The representation in equation (2.20) is conformable, but not

equivalent, to the decomposition employed by Stock and Wright (2000) to study the be-

haviour of GMM under weak identification (see Remark 2.3.2 for details). We maintain

the following conditions on m1n(η, θ0
2), which has the same form as Assumption C in

Stock and Wright (2000).

Assumption 2.3.1 For ςn = O(
√
n), possibly o(

√
n), m1n (η, θ0

2) = q11,n (η) /ςn+q12,n (η2, η3):

(a) q11,n (η) → q11 (η) as n → ∞ uniformly in η, where q11 (η0) = 0, and q11(·) is

uniformly continuous (and hence bounded) in η.



2.3. A TEST FOR INSTRUMENTS WEAKNESS 31

(b) q12,n (η2, η3)→ q12 (η2, η3) as n→∞ uniformly in η2, η3. For all n ≥ 1, q12,n (η2, η3)

satisfies q12,n (η2, η3) = 0⇐⇒ (η2, η3) = (η0
2, η

0
3), and is continuously differentiable,

with ∂q12,n (η2, η3)/∂(η2, η
′
3)′ full column rank at (η0

2, η
0′
3 )′.

Remark 2.3.1 Assumption 2.3.1 (a) is justified by the decomposition in equation (2.19)

and Assumptions 2.2.1 and 2.2.2. Secondly, we note that Assumption 2.3.1 is natural in

our context. Assumption 2.3.1 (b) enforces that, for

q12,n (η2, η3) =
1

n

n∑
i=1

En
{
ã (y2i, xi, zi)

[
y1i − Φ

(
−η0

1z
′
iξ

0 + η2y2i + x′iη3

)]}
,

we have that

−∂q12,n (η2, η3)

∂(η2, η′3)′
=

1

n
En

{
n∑
i=1

ã (y2i, xi, zi)φi
(
η0

1, η2, η3, θ
0
2

)
(y2i

... x′i)

}

has full column rank at (η0
2, η

0′
3 )′. This is tightly related to the requirement that the

components of (y2i
... x′i) be linearly independent, since they coincide with the explanatory

variables of the latent structural equation.

For the set,

Υ(θ0
2) :=

{
η ∈ Rkx+2 : η = (ρ̃, α + ρ̃, β′ − ρ̃π0′)′, for some θ1 = (ρ̃, α, β)′ ∈ Θ1

}
,

we state the null hypothesis of weak identification as follows.

Null Hypothesis of Weak Identification:

H0

(
ςn =

√
n
)

: sup
η∈Υ(θ02)

1

n

∥∥∥∥∥En
[

n∑
i=1

ã (y2i, xi, zi)φi
(
η, θ0

2

)
z′iξ

0

]∥∥∥∥∥ = O

(
1√
n

)
. (2.21)

The set Υ(θ0
2) denotes the set of structural parameters under the parametrisation in

(2.17), so that the supremum over η in (2.21) is akin to a supremum over the structural

parameters θ1, given the true value θ0
2 of the reduced form parameters. Both sets of

structural parameters, the initial one Θ1 and the reparameterised one Υ (θ0
2) are compact
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subsets of Rkx+2. Based on the decomposition of (2.20), the identification strength of

η1 is determined by the rate ςn, and ςn = O(
√
n) implies that even asymptotically, the

population objective function is nearly flat in η1. Such asymptotic behaviour of the

objective function will lead to inconsistent estimation of η0
1 in the rotated parameter

space and for the structural parameter θ1 in the original parameter space Θ1.

Remark 2.3.2 It is worth noting that this definition of weak identification is a gener-

alisation of Stock and Wright (2000) since it is considered at the true value θ0
2 of the

parameters of the reduced form regression equation. This must be seen as the relevant

extension of the concept of weak instruments for the context of control variables. As

explained in Section 2.2.3, the relevant explanatory variables for the structural equa-

tion are φi (η, θ
0
2) (z′iξ

0, y2i, x
′
i)
′. In particular, it is the impact z′iξ

0, at the true value ξ0,

that matters for identification and the pruning effect of φi (η, θ
0
2), also at the true value

θ0
2 = (π0′, ξ0′)

′
. This extension is made possible by the reinforced identification condi-

tion in Assumption 2.2.2 (identification of θ0
2 by the second set of moment conditions in

isolation) and the choice of block-diagonal weighting matrix.

2.3.3. A Distorted J-test (DJ test) for the Null of Weak Iden-

tification

The decomposition in equation (2.20), along with Assumption 2.3.1, clarifies and confines

the weak identification issue to the η1 direction. Therefore, to construct a distorted

testing approach for weak identification along the lines proposed in Section 2.3.1, it is

precisely this direction, and only this direction, that should be distorted. To this end,

and given a CUE η̂n, consider distorting the first component of η̂n as

η̂δn = η̂n +
[
δn 0 . . . 0

]′
.

Under the change of basis in equation (2.17), this is equivalent to distorting the CUE θ̂n

as

θ̂δn =

 θ̂1n

θ̂2n

+

 ∆1n

0

 , where ∆1n =


δn

−δn
δnπ0

 ,
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which leads to a distortion of the entire structural parameter vector θ1.

As explained in Section 2.3.1, under weak identification, if we distort the CUE θ̂n by

some small value in the directions of weak identification, i.e., η1, the value of the GMM

criterion at θ̂δn should not differ significantly from the criterion evaluated at θ̂n. More

precisely, recalling the definitions of ḡn(θ) and Sn(θ) given in Section 2.3.1,

Jn(θ, θ̃) = nḡn(θ)′S−1
n (θ̃)ḡn(θ), Jn(θ̂n, θ̂n) = min

θ∈Θ
Jn(θ, θ),

we introduce the distorted J-test statistic:

Jδn = nḡn(θ̂δn)′S−1
n (θ̂n)ḡn(θ̂δn).

To deduce the behaviour of Jδn under the null of weak identification, we must maintain

a regularity condition on the Jacobian of the moments. However, given that our null of

weak identification is local about η1, at the fixed value of θ0
2, we are only required to

maintain the following assumption.

Assumption 2.3.2 Uniformly over Υ (θ0
2),
√
n {∂ḡn(η, θ0

2)/∂η1 − En [∂ḡn(η, θ0
2)/∂η1]} ⇒

Ψ(η, θ0
2), for Ψ(η, θ0

2) a mean-zero Gaussian process, and where ⇒ denotes weak conver-

gence in the sup-norm.

We note that Assumption 2.3.2 is guaranteed under Assumption 2.2.1 and a functional

central limit theorem. See the proof of Lemma 2.7.2 in the Appendix for details. We

state this result as an assumption to ease the comparison with standard results.

Proposition 2.3.1 (Lack of Consistency) If Assumptions 2.2.1-2.3.2 are satisfied,

and if En[‖ã(y2i, xi, zi)z
′
i‖2] <∞, then under the null of weak identification, for any

δn = o(1),

plim
n→∞

√
n
[
ḡn(θ̂δn)− ḡn(θ̂n)

]
= 0.

In addition, if supθ∈Θ ‖S−1
n (θ)‖ = Op(1), then

plim
n→∞

[
Jδn − Jn(θ̂n, θ̂n)

]
= 0.
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Proposition 2.3.1 demonstrates that under the null of weak identification, the curva-

ture of the objective function is insensitive to a small departure from the CUE, indicat-

ing the lack of consistency of θ̂n. By adapting the general testing approach of Antoine

and Renault (2020), Proposition 2.3.1 paves the way for a testing strategy for weak

instruments in discrete choice models. Recall that the number of model parameters is

p = 2 + 2kx + kz, and H denotes the number of moments.

Theorem 2.3.2 (Distorted J-test: Under the Null) Under Assumptions 2.2.1-2.3.2

and the null of weak identification, for any deterministic sequence δn = o(1), define the

distorted J-test by the rejection region:

W δ
n =

{
Jδn > χ2

1−α (H + 1− p)
}
,

where χ2
1−α (H + 1− p) is the (1− α) quantile of the Chi-square distribution with (H +

1 − p) degrees of freedom. Under the null hypothesis of weak identification, W δ
n has

asymptotic size of at most α.

As discussed in Section 2.3.1, the CUGMM framework allows us to control the size of

our test by ensuring that we can obtain a convenient upper bound for Jδn under the null

of weak identification. Since there is only a single direction of weakness in the rotated

parameter space, this bound can be based on the χ2(H + 1− p) distribution; please see

the proof of Theorem 2.3.2 for details. While the test statistic Jδn coincides with the one

given in Section 2.3.1, we have improved the asymptotic power of the test W δ
n by using

a critical value calculated from χ2 (H + 1− p) instead of χ2 (H). This power gain is

obviously important since we may be afraid that our test would be overly conservative.

2.3.4. Estimation and Testing Under the Alternative

In this section, we prove that W δ
n , the distorted J-test based on Jδn, is consistent under

the alternative. Before presenting this result, we first discuss the asymptotic behaviour

of the CUE under the alternative.
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Estimation Under the Alternative

We first deduce the properties of the CUE under the parameterisation defined by (2.17),

and then translate these results to the original parameters. To this end, and for η as

defined in equation (2.17), define ζ = (η′, θ′2)′ with true value ζ0. The vector ζ represents

the following change of basis in the parameter space:

θ = Rζ, where R =

R1 O

O Ikx+kz

 , R1 =


1 0 0

−1 1 0

π0 0 Ikx

 .

In this rotated space, the CUE of ζ0 is given by

ζ̂n = argmin
ζ∈R−1Θ

ḡn(Rζ)′S−1
n (Rζ)ḡn(Rζ).

To deduce the properties of ζ̂n under the alternative, we first recall that the null of weak

identification, defined by (2.21), implies that

sup
η∈Υ(θ02)

∥∥∥∥∥ 1

n
En

{
n∑
i=1

∂gi(η, θ
0
2)

∂η1

}∥∥∥∥∥ = sup
η∈Υ(θ02)

∥∥∥∥∥ 1

n
En

{
n∑
i=1

ã (y2i, xi, zi)φi
(
η, θ0

2

)
z′iξ

0

}∥∥∥∥∥
=O(1/

√
n).

The alternative hypothesis to this null implies the existence of a deterministic sequence

ςn = o(
√
n) such that

lim sup
n→∞

sup
η∈Υ(θ02)

∥∥∥∥∥ 1

n
En

{
n∑
i=1

ã (y2i, xi, zi)φi
(
η, θ0

2

)
z′iξ

0

}
ςn

∥∥∥∥∥ > 0.

To deduce the behaviour of the CUE ζ̂n under the alternative, we slightly reinforce this

condition as follows.

Assumption 2.3.3 Under the alternative hypothesis, there exists a deterministic se-

quence ςn = o(
√
n) and a continuous, and deterministic vector function V 0(η) such that,



36 CHAPTER 2. WEAK IDENTIFICATION IN DISCRETE CHOICE MODELS

infη∈Υ(θ02) ‖V 0(η)‖ > 0, and

lim
n→∞

sup
η∈Υ(θ02)

∥∥∥∥∥ 1

n
En

{
n∑
i=1

ã (y2i, xi, zi)φi
(
η, θ0

2

)
z′iξ

0

}
ςn − V 0(η)

∥∥∥∥∥ = 0.

Remark 2.3.3 Even though Assumption 2.3.3 arguably limits the scope of the alterna-

tive hypothesis, it is more general than if we were to follow the approach of Staiger and

Stock (1997) and characterise identification strength only through the reduced form re-

gression equation. In the latter case, one would consider that the reduced form regression

evolves according to the drifting DGP

En[y2i |xi, zi] = x′iπ
0 + z′iξ

0
n.

Under the null of weak identification, we have that ξ0
n = O(1/

√
n). In contrast, Assump-

tion 2.3.3 would require that, for some γ0 ∈ Rkz with ‖γ0‖ > 0 and some ςn = o(
√
n),

lim
n→∞

ςnξ
0
n = γ0, and V 0(η) = En

[
ã(y2i, xi, zi)φi(η, θ

0
2)z′i
]
γ0 6= 0.

However, as explained in Section 2.2.3, this approach to characterise identification strength

is not sufficient in our opinion, since it only accounts for the instrument strength in the

reduced form regression, ξ0
n, and does not account for the interactions between the in-

strumental function ã(y2i, xi, zi) and φi (η, θ
0
2n) z′iξ

0
n, which may result in the pruning of

large realisations of the instruments via the behaviour of φi (η, θ
0
2n).

By defining the alternative hypothesis using Assumption 2.3.3, we clearly partition the

two possible cases for estimation of ζ0: (i) if identification is weak, ζ̂n is not consistent

(as implied by Proposition 2.3.1), nor are other commonly applied estimators such as

2SCML or Quasi-LIML estimators; (ii) when identification is not weak, ζ̂n is consistent.

Proposition 2.3.3 (Consistency)

If Assumptions 2.2.1-5 are satisfied, and if supζ∈R−1Θ ‖S−1
n (ζ)‖ = Op(1), then ‖ζ̂n−ζ0‖ =

op(1).

The asymptotic distribution of ζ̂n depends on the behaviour of the Jacobian for the
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moments. Under Assumptions 2.3.1 and 2.3.3, the scaled Jacobian of the moment func-

tions, as defined below in Lemma 2.3.4, is full rank under the following mild assumption,

which, if we take b̃(xi, zi) = (x′i : z′i)
′ is nothing but the standard rank condition on the

reduced form regression.

Assumption 2.3.4 For all n ≥ 1, En[b̃(xi, zi)(x
′
i : z′i)] has column rank (kx + kz) =

dim(θ2).

Lemma 2.3.4 Under Assumptions 2.2.1-2.3.4, for a given sequence ςn = o(
√
n),

the matrix

M = plim
n→∞

{
∂ḡn(ζ0)

∂ζ ′

}
Λn, where Λn =

 ςn Op−1

Op−1 Ip−1

 ,
exists and is full column rank.

Given the full-rank nature of the scaled Jacobian, we would expect the CUE to be

asymptotically normal. In particular, under the alternative (as defined by Assumptions

2.3.1 and 2.3.3), we can then deduce the following result.

Theorem 2.3.5 (Asymptotic Normality) If Assumptions 2.2.1-2.3.4 are satis-

fied then

√
nΛ−1

n (ζ̂n − ζ0)
d→ N

(
0, [M ′S−1M ]−1

)
, where S := plim

n→∞
Sn(ζ0).

As expected, all entries of ζ, save for η1, are
√
n-consistent and asymptotically normal

GMM estimators. In contrast, the direction η1 converges at the {
√
n/ςn}-rate, which is

possibly slower than
√
n. Of course, our goal is not to conduct inference on ζ0, but on

θ0. By the change of basis in (2.17), θ = Rζ, and Theorem 2.3.5 implies that the feasible

CUGMM estimator θ̂n satisfies

√
nΛ−1

n R−1(θ̂n − θ0)
d→ N

(
0, [M ′S−1M ]−1

)
. (2.22)

Importantly, since the matrix R is not diagonal, the slower rate of {
√
n/ςn} pollutes

the entire vector of structural parameters θ1 = (ρ̃, α, β′)′, which follows from the change
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of basis in (2.17). Therefore, all structural parameter estimates in the probit model

converge at the slower {
√
n/ςn}-rate.

Equation (2.22) itself does not directly provide a feasible inference strategy since the

matrix R depends on the unknown parameter π0. Of course the matrix R may be

consistently estimated. However, as explained by Antoine and Renault (2012) (see the

discussion of their Theorem 4.5), a sufficient condition to ensure that the estimation of R

does not pollute the asymptotic distribution in (2.22) is that the matrix R is estimable at

a rate faster than n1/4. In the case of the probit model, the matrix R only depends on the

unknown true reduced form parameter π0, which is strongly identified and consistently

estimable at the
√
n-rate. Therefore, if R̂n denotes the matrix R when π0 is replaced by

π̂n, we can conclude that, following Theorem 4.5 in Antoine and Renault (2012),

√
nΛ−1

n R̂−1
n (θ̂n − θ0)

d→ N
(
0, [M ′S−1M ]−1

)
. (2.23)

Remark 2.3.4 The result in equation (2.23) implies that
√
nΛ−1

n R̂−1
n (θ̂n − θ0) behaves

like a mean-zero Gaussian random variable, whose variance can be consistently estimated

by

[ΛnR̂
′
n{∂ḡn(θ̂n)/∂θ′}′S−1

n (θ̂n){∂ḡn(θ̂n)/∂θ′}R̂nΛn]−1.

However, Theorem 2.3.5 does not say that the common estimator of the variance-matrix

of
√
n(θ̂n − θ0), obtained using the standard formula

[{∂ḡn(θ̂n)/∂θ′}′S−1
n (θ̂n){∂ḡn(θ̂n)/∂θ′}]−1,

is well-behaved, which follows by noting that the matrix ∂ḡn(θ0)
∂θ

S−1
n (θ0)∂ḡn(θ0)

∂θ′
is asymp-

totically singular unless ςn = O(1). Fortunately, Theorem 5.1 in Antoine and Renault

(2012) allows us to conclude that standard formulas for Wald inference based on the

GMM estimator θ̂n are asymptotically valid. The main intuition is that the Studentisa-

tion implied by Wald inference cancels out the required rescaling terms. This is all the

more important given that the rescaling factor ςn is unknown in practice.

We stress that this result is in contrast to the general non-linear case where the asymp-

totic normality requires faster than n1/4 convergence rate, and it is only due to the
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specificities of the probit model that we are able to conduct valid Wald inference as soon

as identification is not genuinely weak. That is, any near weakness, even as severe as ςn

being arbitrarily close to
√
n, will still allow us to compute a consistent GMM estimator

and apply standard formulas for Wald inference based on this estimator.

The Power of the Distorted J-Test

The key to ensuring that the size of W δ
n is asymptotically controlled is the equivalence

between Jn, the usual J-statistic, and Jδn, the distorted J-statistic, that obtains under the

null of weak identification. However, as demonstrated by Proposition 2.3.3 and Theorem

2.3.5, under the alternative hypothesis the CUE is consistent and asymptotically normal.

Therefore, there is no reason to suspect that Jn and Jδn will be asymptotically equivalent

under the alternative, at least under reasonable choices for the tuning parameter δn.

The following result demonstrates that under the alternative, the distorted J-test, W δ
n ,

is a consistent test for the null of weak instruments across a wide range of choices for

the perturbation sequence δn.

Theorem 2.3.6 (Distorted J-test: Under the Alternative) If Assumptions 2.2.1-

2.3.4 are satisfied, then W δ
n is consistent under the alternative so long as {

√
n/ςn}δn →

∞ as n→∞.

Remark 2.3.5 Theorem 2.3.6 implies that our choice of δn has important consequences

for the power of the distorted J-test. All else equal, the test is more powerful the slower

δn goes to zero. However, it is also helpful to understand how fast δn can converge to

zero before the result of Theorem 2.3.6 is invalidated. To this end, consider the rate

requirement on δn that results from parametrising ςn as ςn = nλ for some 0 < λ < 1/2.

Using this parametrisation, we see that the distorted J-test is consistent so long as

δnn
1/2−λ →∞, and clarifies that if δn goes to zero too fast, i.e., if δn � nλ−1/2, the test

can not be consistent.

Remark 2.3.6 It is worth keeping in mind that Assumption 2.2.2 maintains that both

the structural and reduced form moments are correctly specified. Thus, when the ob-

served data lead to a rejection of W δ
n , we immediately conclude that it is not due to
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misspecification of the moment conditions but due to their identification power. How-

ever, if the model is misspecified, but we reject the null of weak identification, then we

can actually consistently test for model misspecification. Indeed, under the alternative,

the standard overidentification test

{Jn(θ̂n, θ̂n) > χ2
1−α(H − p)},

remains a consistent test for model misspecification. As such, if we reject the null of weak

identification, we can compare the value of Jn(θ̂n, θ̂n) against χ2
1−α(H − p) to deduce a

consistent test for model misspecification.

2.3.5. Testing Procedure

We now explain one approach to implement our distorted J-test in practice. The key

step in the testing procedure is to choose the perturbation (tuning parameter) δn. To

this end, we take δn = δ/rn, and fix rn = log{log(n)}. It is then possible to choose δ

using a data-driven approach.

To present our approach to choosing δ, first recall that the perturbation δn = δ/ log{log(n)}

can be thought of as only being applied to the single direction of weakness in the rotated

parameter space; namely, the parameter η1, which by equation (2.17) is nothing but ρ̃.

Therefore, it is with respect to the magnitude of ˆ̃ρn that the perturbation δn should be

chosen.

To ensure the value of δn is sufficiently close to the magnitude of ˆ̃ρn, we design a grid

of m candidate points for δ by dissecting the standard confidence interval of ˆ̃ρn into m

equal regions, with δ then taken to be the midpoint of the m-th region. This results in m

different values for δ, denoted by δi, i = 1, . . . ,m, and produces a grid of perturbations.

Whilst it is possible to use any given δn,i to conduct the test, we suggest carrying out the

test across the entire grid of δn,i values and then appropriately modify the critical value

via a Bonferroni correction. In particular, let Jδn,i denote the test statistic Jδn calculated

under the perturbation δn,i. This approach would lead us to reject the null of weak
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identification if

max
i∈{1,...,m}

Jδn,i > χ2
1−α/m(H + 1− p).

Using the above decision rule, our approach can be implemented using the following four

steps.

(1) Compute θ̂n = argminθ∈Θ Jn(θ, θ);

(2) For a given choice of m, choose the sequence of tuning parameter δn = δ/rn, as

described above;

(3) For each i = 1, . . . ,m, compute the test statistic Jδn,i, as defined in Section 2.3.3;

(4) Rejection rule: reject if maxi∈{1,...,m} J
δ
n,i > χ2

1−α/m(H + 1− p).

Under the null hypothesis, the testing procedure is size controlled for any choice of

δn,i = o(1), while under the alternative the choice of δn,i only has implications for the

power of the test. Moreover, since the values of δi are chosen from some compact set,

dividing by log{log(n)} ensures that δn,i = o(1) under both the null and alternative.

2.3.6. Generalising the Rule-of-Thumb to Probit Models

We begin our discussion on the so-called “rule-of-thumb”, initially inspired by the work

of Staiger and Stock (1997), in the infeasible situation where the latent endogenous

variable y∗1i is observable, meaning that we would consider a bivariate linear model. For

sake of expositional simplicity, let us consider a simplification of this model whereby the

vector xi only contains a constant, so that the model becomes

y∗1i = αy2i + β + ui (2.24)

y2i = π + z′iξ + vi.

The rule-of-thumb starts from the reduced form regression and its OLS estimator for ξ,

ξ̂n = (Z̃ ′Z̃)−1Z̃ ′Ỹ2,
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where for 1n a (n× 1)-vector of ones

Y2 = (y21, . . . , y2n)′, Ỹ2 = Y2 − ȳ2n1n,

Z = (z′1, . . . , z
′
n)′, Z̃ = Z − Z̄n,

and where ȳ2n = 1
n

∑n
i=1 y2i and Z̄n denotes the (n× kz) matrix whose jth-column has

all its entries equal to

z̄j,n =
1

n

n∑
i=1

zij.

Let Fn denote the F-test statistic for testing the null hypothesis that the vector ξ of

coefficients for the variables zi in the reduced form regression are zero. Under the as-

sumption of conditional homoscedasticity for the error term vi, the F-test statistic can

be written as

Fn =
n− kz
nkz

1

σ̂2
v,n

[
ξ̂′n

(
Z̃ ′Z̃

)
ξ̂n

]
,

with σ̂2
v,n a consistent estimator of variance of vi, σ

2
v . The rule-of-thumb amounts to

conclude that instruments are strong (i.e., consistent estimation is feasible) if Fn exceeds

a pre-specified threshold value, which differs from the standard critical value used to

test the null hypothesis H0 : ξ = 0, and which has been extensively documented by

Stock and Yogo (2005). The rationale for this rule can be understood from the drifting

DGP considered in Remark 2.3.3. Under the alternative hypothesis to the null of weak

identification, for n large,

ξ0
n ∼

γ0

ςn
=⇒ kzFn ∼

n

ς2
n

1

σ2
v

γ0′Var (zi) γ
0. (2.25)

Therefore, under the null of weak identification (ςn =
√
n), Fn in equation (2.25) has a

finite limit, whilst under the alternative (ςn = o (
√
n)) the statistic Fn diverges to infinity

with a slope defined by the squared norm of γ0 and a weighting matrix that is propor-

tional to Var(zi)/Var(vi). This sounds like a natural criterion to measure instrument

strength in the infeasible model (2.24), since the reduced form regression will lead to the

control variable vi = y2i − π − z′iξ and endogeneity in the structural equation will be
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controlled thanks to the two-stage residual inclusion (2SRI):

y∗1i = αy2i + β + ρ̃ [y2i − π − z′iξ] + εi. (2.26)

Since identification of η1 = ρ̃ in equation (2.26) depends on the variation of

z′iξ
0
n ∼

z′iγ
0

ςn
,

it may sound natural to assess the magnitude of γ0 after normalisation by the variance

of zi. As noted by Stock and Andrews (2005), “IVs can be weak and the F -statistic

small, either because γ is close to zero or because the variability of zi is low relative

to the variability of vi.” However, the F-test statistic follows a Fisher distribution (and

asymptotically a distribution χ2 (kz) /kz) under the null H0 : ξ = 0 only when the reduced

form error term vi is conditionally homoscedastic. When one is concerned with the

presence of conditional heteroscedasticity in this equation (i.e., non-constant Var[vi | zi]),

one may consider the heteroscedasticity corrected Fisher test statistic

F ∗n =
n− kz
kz

[
ξ̂′nΣ̂−1

n ξ̂n

]
,

where Σ̂n is a consistent estimator of the asymptotic variance of
√
n(ξ̂n − ξ0

n). While

Stock and Yogo (2005) propose to extend the use of the rule-of-thumb by using instead

F ∗n in case of conditional heteroscedasticity, several authors, including Andrews (2018)

and Montiel Olea and Pflueger (2013), have documented the disappointing performance

of the heteroscedasticity corrected rule-of-thumb. One may help to clarify this issue by

noting that, denoting z̃i to be the i-th column vector of the matrix Z̃ ′, for n large and

for σ2
v(zi) = Var[vi | zi],

ξ0
n ∼

γ0

ςn
=⇒ kzF

∗
n ∼

n

ς2
n

γ0′Var (zi)
[
E
(
z̃iz̃
′
iσ

2
v(zi)

)]−1
Var (zi) γ

0. (2.27)

Equation (2.27) is a straightforward extension of a result provided by Antoine and Re-

nault (2020), and makes explicit how robustifying the test statistic for heteroscedasticity

modifies the rule-of-thumb. This modification is arguably puzzling since what really mat-

ters for identification power, namely the residual inclusion of vi in the structural equation
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(2.26), is not fully captured by σ2
v(zi). More precisely, the conditional heteroscedasticity

that intuitively matters in the structural equation is instead

σ2
u(zi) = Var[ui |zi] = ρ̃2Var[vi |zi] + Var[εi |zi] .

This intuition is confirmed by Antoine and Renault (2020) who show that, when nesting

the IV estimation procedure in a GMM framework, the distorted J-test leads to a decision

rule based on the following weighted norm of γ0:

n

ς2
n

γ0′Var (zi)
[
E
(
z̃iz̃
′
iσ

2
u(zi)

)]−1
Var (zi) γ

0.

In the context of the probit model, where only the sign y1i of y∗1i is observed, the 2SRI

equation becomes

y1i = Φ [αy2i + β + ρ̃ (y2i − π − z′iξ)] + εi,

for some error term εi, and the conditional heteroscedasticity in the structural equation

takes the form

Var[εi |y2i, zi] = Φi

(
θ0
) [

1− Φi

(
θ0
)]
, where Φi (θ) = Φ [αy2i + β + ρ̃ (y2i − π − z′iξ)] .

One may then expect that any generalised rule-of-thumb for probit models must account

not only for this conditional heteroscedasticity but also the impact of the non-linearity

in the structural equation. In the simple context of Remark 2.3.3, we may then expect

that the key element to obtain a decision rule about weak instruments in the probit

model is the magnitude of the vector

V 0 (η) = En
[
ã (y2i, zi)φi

(
η, θ0

2

)
z′i
]
γ0, where ‖γ0‖ > 0.

More generally, since the alternative to weak identification, defined by Assumption 2.3.3,

is tantamount to the non-nullity of the vector V 0 (η), the generalised rule-of-thumb

should be based on a norm of V 0 (η). We argue that we do have a well-suited generaliza-

tion for the standard rule-of-thumb when applying a decision rule that rejects the null of

weak identification if the norm ‖U‖, of a certain vector U , exceeds a specified threshold

with the following definition for U .
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(i) U =
√
nVar (zi)

1/2 /σvξ
0 for a linear model with conditional homoscedasticity (i.e.

the standard rule-of-thumb);

(ii) U =
√
n [E (z̃iz̃

′
iσ

2
u(zi))]

−1/2
Var (zi) ξ

0 for a linear model with conditional het-

eroscedasticity (i.e. the generalisation of the standard rule-of-thumb proposed by

Antoine and Renault, 2020);

(iii) U =
√
nS
−1/2
11,n (θ0)En [ã (y2i, zi)φi (η, θ

0
2) z′i] ξ

0δn for the probit model (2.24) (in the

context of Remark 2.3.3) and more generally U =
√
nS
−1/2
11,n (θ0)V 0 (η) δn/ςn, where

the perturbation term δn is introduced by the design of the distorted J-test.

It is worth realising that this generalised rule-of-thumb is, for n large, precisely what is

performed by our test for the null of weak identification based on the distorted J-test

statistic. To see this, we extend the argument of Antoine and Renault (2020) by noting

that under the alternative, our distorted J-test statistic sets the focus on the norm of

U = S−1/2
n

(
θ0
)√

nḡn(θ̂δn),

where

ḡn(θ̂δn) = ḡn(θ̂n) +

 ḡ1n(θ̂δn)− ḡ1n(θ̂n)

0

 .
Noting that,

√
n
[
ḡ1n(θ̂δn)− ḡ1n(θ̂n)

]
=
√
n
∂ḡ1n

∂η1

(η∗1n, η̂2n, η̂3n, θ̂2n)δn,

where η∗1n denotes a component-by-component intermediate value between the first co-

efficient of θ̂n and θ̂δn, under the alternative hypothesis to the null of weak identification

∂ḡ1n

∂η1

(
η∗1n, η̂2n, η̂3n, θ̂2n

)
= En

[
∂ḡ1n

∂η1

(
η0, θ0

2

)]
+Op

(
1√
n

)
=

1

n
En

{
n∑
i=1

ã (y2i, zi)φi
(
η0, θ0

2

)
z′iξ

0

}
+Op

(
1√
n

)
,
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and where2

1

n
En

{
n∑
i=1

ã (y2i, zi)φi
(
η, θ0

2

)
z′iξ

0

}
∼ V 0 (η)

ςn

is the dominant term since ςn = o (
√
n) . To summarise, under the alternative hypothesis

to the null of weak identification, and for a δn such that {
√
n/ςn}δn →∞,

‖U‖ =
∥∥∥S−1/2

n

(
θ0
)√

nḡn

(
θ̂δn

)∥∥∥ ∼ ∥∥∥S−1/2
11,n

(
θ0
)
V 0
(
η0
)∥∥∥ √n

ςn
δn,

which diverges as n → ∞ and yields a natural generalisation of the rule-of-thumb to

probit models.

2.4. Monte Carlo: Conventional Weak IV Tests v.s.

Distorted J-test

In this section, we verify the properties of the distorted J-test (hereafter, DJ test) and

compare this test against three commonly used weak IV tests, which, even though they

are not designed for discrete choice models, have been widely applied in the literature

on discrete choice modelling: (i) the Staiger and Stock (1997) standard rule-of-thumb

(SS); (ii) Stock and Yogo (2005) (SY); (iii) the robust weak IV test of Montiel Olea and

Pflueger (2013) (Robust).

We generate observed data according to

y1i = 1[β + αy2i + ui > 0], y2i = π + ξzi + vi, i = 1, 2, ..., n (2.28)

where zi ∼ N(0, σ2
z) is i.i.d. univariate, (ui, vi)

′ is i.i.d. homoscedastic and normally

distributed, and (ui, vi)
′ is independent of zi. We set β = 0.5, α = 1 and π = 0.3. In

addition, we take ρ = corr(ui, vi) ∈ {0.5, 0.95}, and σu = 1/
√

1− ρ2 (to ensure the

normalisation of Var[ui|y2i, zi] = 1). To characterise the potential instrument weakness,

we adjust the value of ξ to restrict the correlation between the endogenous regressor y2i

and the instrument zi to be corr(y2i, zi) = γ/nλ, with γ = 1.5 and we consider a grid of

2The Op(1/
√
n) term in the expansion of ∂ḡ1n(η∗1n, η̂2n, η̂3n, θ̂2n)/∂η1 can be deduced via a Taylor

series expansion, re-arranging terms, and noting that the derivative of the Jacobian, in the η1 direction,
is also degenerate at the ςn-rate.
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values for λ ∈ {0.5, 0.4, 0.3, 0.2, 0.1}.

Since the performance of the DJ test and the standard weak IV tests may depend on

σz and σv, we simulate data using the following grids: σz ∈ {0.2, 0.5, 1, 5, 10} and

σv ∈ {0.2, 0.5, 1, 5, 10}. For each Monte Carlo trial, we take the sample size to be one

of n = 500, 5000, 10000 and consider N = 1000 Monte Carlo replications.

Across each Monte Carlo design, θ = (ρ̃, α, β, π, ξ)′ is estimated by CUGMM with a

single degree of over-identification. We choose the instrument functions ai = a(y2i, zi) =

(1, y2i, zi, z
2
i , 0, 0)′ and bi = b(zi) = (0, 0, 0, 0, 1, zi)

′. The DJ test is implemented fol-

lowing the procedure presented in Section 2.3.5. For computational simplicity, in the

Monte Carlo simulations, we adopt the perturbation δn = ˆ̃ρ/ log(log(n)), where ˆ̃ρ is the

CUGMM estimate of ρ̃ in each Monte Carlo replication. This procedures is a simplified

version of the data-driven approach developed in Section 2.3.5. Using a 5% significant

level, we reject the null hypothesis of weak instruments in accordance to Theorem 2.3.6;

i.e., we reject the null if Jδn > χ2
0.95(H + 1 − p), where in this case H = 6, p = 5 and

χ2
0.95(H + 1 − p) = 5.99. Theoretically, the hypotheses of the DJ test corresponds to

H0 : λ = 0.5, the alternative to λ < 0.5.3 However, we note that in finite samples, it is

hardly the case that λ alone determines the behaviour of the CUEs.

Given this, to compare the behaviour of the DJ test with the conventional linear tests,

we introduce two sets of criteria to assess the potential impact of instrument weakness in

finite samples: the behaviour of the CUE and the size distortions of the associated Wald

statistic. Specifically, we compute the bias, standard deviation (s.d.) and relative root

mean square error (rrmse) as below (take α as an example) to measure the estimation

performance under different designs:

bias = ¯̂α− α0, s.d. =

√√√√ 1

N

N∑
l=1

(α̂l − ¯̂α)2, rrmse =

√√√√ 1

N

N∑
l=1

(
α̂l − α0

α0

)2

(2.29)

3We note that the null hypothesis of each test are slightly different: DJ- H0 : λ = 0.5; SS- Fn < 10
as an informal null hypothesis; SY- the triple {ξ, σ2

v , σ
2
z} is such that 2SLS relative bias or Wald test

size distortion is larger than a given tolerance using the Cragg-Donald statistic; the Robust test regards
that the Nagar bias exceeds a fraction of the benchmark as null. Although the definitions of the
weak instrument are different for each test, their null hypothesis are consistent in the sense to capture
situations under which the instrument is weak.
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where ¯̂α = 1/N
∑N

l=1 α̂l, α̂l stands for the l-th Monte Carlo CUGMM estimate and α0 is

the true value. As proven in Sections 2.3.3 and 2.3.4, under the null the CUE is consistent,

while under the alternative, the estimator will be consistent and asymptotically normal,

albeit with non-standard rates. Unlike Stock and Yogo (2005), who choose the relative

bias of 2SLS to OLS as one criterion to detect weak instruments, here we consider

the bias, the s.d. and the rrmse defined in (2.29) instead, for the following reasons.

For the IV probit model (2.28), the CUE (and other commonly adopted estimation

methods) does not have a closed-from expression. Therefore, the usual notion of ‘bias

towards OLS’ under potential IV weakness in linear models is not valid in this nonlinear

context, with the potential impact of the IV weakness now being complicated by the

nonlinear features of the model. In this case, there is no guarantee that the positive

and negative biases will not offset each other, and lead to a spuriously small overall

bias. Therefore, to capture the instrument strength and the resulting performance of

the CUGMM estimation procedure, we rely on the bias, standard deviation and rrmse

of the estimator.

In addition, to better understand weakness in this discrete choice model, we conduct a

Wald test of H0 : α = α0 and compute its size distortion, relative to the 5% significant

level, across all the Monte Carlo designs. We carry out this Wald test for two different

estimation methods: the CUE considered in this chapter and the 2SCML estimator

proposed by Rivers and Vuong (1988). The size distortion of the Wald test is widely

used to capture instrument weakness, see e.g. Staiger and Stock (1997) and Stock and

Yogo (2005). This measure not only reflects the performance of the hypothesis test, but

also the coverage rate of confidence intervals associated with the two estimation methods.

Under the null hypothesis of λ = 0.5, the performance of the CUE and the rejection

probabilities for the different testing procedures are collected in Table 2.4.1 (ρ = 0.5)

and Table 2.4.2 (ρ = 0.95). For brevity, we only report the estimation results for the

structural parameter of interest, α, and Wald test size distortions under five designs:

(σz, σv) ∈ {(1, 0.2), (1, 10), (1, 1), (0.2, 1), (10, 1)}. Additional results for all designs can

be obtained from the authors. Figures 2.4.1 and 2.4.2 display the empirical distribution

of the 1000 CUEs of α̂.
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Table 2.4.1: Estimation and Rejection Rates under λ = 0.5 (Significant Level 5%, ρ =
0.50)

σz = 1 σz = 1 σz = 1 σz = 0.2 σz = 10
σv = 0.2 σv = 10 σv = 1 σv = 1 σv = 1

n=500

bias 0.690 -0.045 -0.050 -0.058 -0.048
s.d. 4.982 0.627 1.307 1.455 1.501
rrmse 5.027 0.628 1.308 1.456 1.501
Wald size distortion (2SCML) -0.003 -0.004 -0.003 -0.004 0.000
Wald size distortion (CUGMM) -0.026 -0.036 -0.037 -0.031 -0.031
SS 0.061 0.056 0.061 0.060 0.063
SY (5%) 0.007 0.005 0.009 0.008 0.004
SY (10%) 0.091 0.085 0.090 0.076 0.080
Robust (5%) 0.000 0.000 0.000 0.000 0.000
Robust (10%) 0.000 0.000 0.000 0.001 0.000
DJ 0.018 0.022 0.016 0.010 0.017

n=5000

bias 0.550 -0.128 0.002 -0.076 0.124
s.d. 4.526 0.301 1.078 1.091 1.260
rrmse 4.557 0.327 1.078 1.093 1.266
Wald size distortion (2SCML) -0.005 -0.023 -0.009 -0.016 0.017
Wald size distortion (CUGMM) -0.030 -0.047 -0.033 -0.040 -0.023
SS 0.099 0.069 0.057 0.070 0.085
SY (5%) 0.015 0.008 0.009 0.010 0.003
SY (10%) 0.132 0.088 0.095 0.091 0.119
Robust (5%) 0.000 0.000 0.000 0.000 0.000
Robust (10%) 0.001 0.002 0.001 0.001 0.000
DJ 0.013 0.025 0.012 0.013 0.022

n=10000

bias 0.581 -0.103 0.046 -0.002 0.130
s.d. 4.354 0.266 1.050 0.993 1.191
rrmse 4.391 0.285 1.051 0.992 1.197
Wald size distortion (2SCML) 0.007 -0.016 0.001 -0.004 0.022
Wald size distortion (CUGMM) -0.026 -0.047 -0.030 -0.032 -0.026
SS 0.130 0.072 0.091 0.088 0.103
SY (5%) 0.023 0.012 0.016 0.006 0.008
SY (10%) 0.174 0.098 0.129 0.116 0.151
Robust (5%) 0.000 0.000 0.000 0.000 0.000
Robust (10%) 0.001 0.000 0.001 0.000 0.001
DJ 0.013 0.019 0.019 0.010 0.018

Note: (a) SS rejects the null if Fn > 10. SY (5%) and SY (10%) reject the null if the Cragg-Donald
statistic is larger than the critical value of a maximal 5% and 10% size distortion of a 5% Wald test,
respectively.
(b) For the Robust (5%) and Robust (10%) tests, reject rates are computed based on critical values in
Table 1 of Montiel Olea and Pflueger (2013), corresponding to the effective degree of freedom one and
tolerance thresholds 5% and 10%, respectively, where the tolerance is the fraction that the Nagar bias
relative to the benchmark.
(c) The reject rates of DJ test are computed based on perturbation ˆ̃ρ/ log{log(n)} and critical value
χ2

0.95(2) = 5.99.
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Table 2.4.2: Estimation and Rejection Rates under λ = 0.5 (Significant Level 5%, ρ =
0.95)

σz = 1 σz = 1 σz = 1 σz = 0.2 σz = 10
σv = 0.2 σv = 10 σv = 1 σv = 1 σv = 1

n=500

bias 2.422 -0.023 -0.117 -0.045 0.008
s.d. 10.316 0.758 2.866 3.145 2.883
rrmse 10.591 0.758 2.867 3.144 2.881
Wald size distortion (2SCML) 0.168 0.003 0.110 0.128 0.126
Wald size distortion (CUGMM) 0.110 -0.022 0.073 0.074 0.090
SS 0.072 0.049 0.053 0.062 0.061
SY (5%) 0.006 0.004 0.004 0.010 0.007
SY (10%) 0.105 0.066 0.076 0.088 0.088
Robust (5%) 0.000 0.000 0.000 0.000 0.000
Robust (10%) 0.000 0.000 0.000 0.000 0.000
DJ 0.040 0.044 0.039 0.042 0.047

n=5000

bias 3.480 -0.072 0.304 0.170 0.405
s.d. 8.506 0.444 2.232 2.119 2.259
rrmse 9.187 0.449 2.251 2.124 2.294
Wald size distortion (2SCML) 0.236 0.014 0.151 0.121 0.156
Wald size distortion (CUGMM) 0.158 -0.012 0.091 0.076 0.102
SS 0.113 0.050 0.076 0.063 0.087
SY (5%) 0.013 0.005 0.012 0.009 0.007
SY (10%) 0.158 0.068 0.099 0.085 0.120
Robust (5%) 0.000 0.000 0.000 0.000 0.000
Robust (10%) 0.001 0.000 0.000 0.000 0.000
DJ 0.034 0.017 0.026 0.034 0.031

n=10000

bias 3.329 -0.073 0.533 0.472 0.677
s.d. 8.826 0.459 2.167 1.915 1.988
rrmse 9.429 0.465 2.230 1.971 2.099
Wald size distortion (2SCML) 0.271 0.019 0.164 0.140 0.177
Wald size distortion (CUGMM) 0.171 -0.008 0.112 0.094 0.122
SS 0.138 0.047 0.079 0.077 0.090
SY (5%) 0.016 0.004 0.006 0.008 0.008
SY (10%) 0.185 0.074 0.106 0.102 0.116
Robust (5%) 0.000 0.000 0.000 0.000 0.000
Robust (10%) 0.000 0.000 0.000 0.000 0.001
DJ 0.027 0.013 0.031 0.021 0.031

Note: (a) SS rejects the null if Fn > 10. SY (5%) and SY (10%) reject the null if the Cragg-Donald
statistic is larger than the critical value of a maximal 5% and 10% size distortion of a 5% Wald test,
respectively.
(b) For the Robust (5%) and Robust (10%) tests, reject rates are computed based on critical values in
Table 1 of Montiel Olea and Pflueger (2013), corresponding to the effective degree of freedom one and
tolerance thresholds 5% and 10%, respectively, where the tolerance is the fraction that the Nagar bias
relative to the benchmark.
(c) The reject rates of DJ test are computed based on perturbation ˆ̃ρ/ log{log(n)} and critical value
χ2

0.95(2) = 5.99.
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Simulation results in Tables 2.4.1 and 2.4.2 confirm our asymptotic results. When λ =

0.5, CUGMM estimation of α0 is inconsistent and behaves poorly in general. More

specifically, the biases are unstable, and the s.d. and rrmse do not decrease (in any

noticeable way) as the sample size increases, especially when the endogeneity degree is

high (ρ = 0.95). However, under the alternative, λ < 0.5, the s.d. and rrmse drop

dramatically as n increases. In addition, the asymptotic normality of the CUE under

λ < 0.5 is verified by viewing the standardised sampling distributions of the estimators

across the Monte Carlo replications, which is given in Figures 2.4.1 and 2.4.2. The

sampling distributions exhibit easily detectable bi-modality when λ is 0.5, or close to

0.5, especially when σv is small and ρ is large, indicating that a standard inference

approach, relying on the normal approximation, is likely to perform poorly in those

cases.

The results in Tables 2.4.1 and 2.4.2 also show that the behaviour of the Wald test varies

across the different designs even when λ = 0.5. For a moderate level of endogeneity

(ρ = 0.5), we see relative small size distortions, less than 5%, in most cases for the

Wald tests based on both 2SCML and CUEs. However, for a high degree of endogeneity

(ρ = 0.95), the Wald tests are significantly over-sized, with the size distortions for the

Wald test based on 2SCML being much larger than those based on CUGMM. One

exception, however, is the case of (σz, σv) = (1, 10) and ρ = 0.95, where the Wald size

distortions based on both estimation methods is less than 5%. For (σz, σv) = (1, 10)

and ρ = 0.95 case, the size distortion based on the CUGMM is 0.008 when n = 10000,

indicating that the 95% confidence interval coverage rate is quite accurate even though

λ = 0.5 (corr(y2i, zi) = 0.015). As such, this design constitutes additional evidence

that the value of λ is not the only key in determining inference performance in weakly

identified discrete choice models.

The false rejection rates of SS, SY, Robust and DJ under λ = 0.5 are displayed in Tables

2.4.1 and 2.4.2. Firstly, as expected, the DJ test is asymptotically conservative, i.e., the

size is less than the significance level of 5%. The size of the DJ test varies between 1.0%

and 1.9% under ρ = 0.5, and between 1.3% and 3.1% when ρ = 0.95. However, we note

that the DJ test is much less conservative than the Robust approach of Montiel Olea and
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Pflueger (2013), which is extremely conservative, and gives virtually zero rejections across

all designs where identification is weak. Therefore, while the DJ test is conservative, we

can conclude that it is much less conservative than the Robust approach, and can be

relatively close to the nominal level (5%) when the degree of endogeneity is large.

In addition, we see that blindly applying conventional weak instrument tests can lead

to poor outcomes. For example, for the design with (σz, σv) = (1, 0.2) and a high level

of endogeneity (ρ = 0.95 in Table 2.4.2), the rejection rates of SS and SY (10%) are

all larger than 10% across different sample sizes, and are 13.8% and 18.5% respectively

when n = 10000. The rejection rate of SY (10%) is computed based on the critical value

of a maximal 10% size distortion of a 5% Wald test, provided by Stock and Yogo (2005).

However, the rrmse in this case does not decrease as n increases, and the rrmese for the

estimated α is between 910% and 1060% of the true value. Moreover, both the Wald

size distortions exceed their nominal size by at least 10%. In particular, the 2SCML size

distortion is between 17% and 27%, while the CUGMM size distortion is between 11% to

17%. Therefore, the identification is weak, while the SS and SY approaches can suggest

the opposite, and hence fail to control size. In addition, false rejection rates for other

designs, not reported here for brevity, demonstrate a similar pattern of over-rejection

for SS and SY tests. Hence, in line with the analysis in Section 2.3.6, when assessing

identification strength in discrete choice models, the conventional weak IV tests of SS and

SY may fail to provide reliable conclusions regarding identification strength, especially

if the degree of endogeneity is high.

Figure 2.4.3 (ρ = 0.5) and Figure 2.4.4 (ρ = 0.95) display the power of the four tests.

Due to the conservativeness of DJ test, size adjusted power of DJ and of the conventional

tests are also computed and compared in Figures 2.4.5 and 2.4.6. Size adjusted power

is computed as follows: obtain the 95% quantile of the test statistic from the 1000

Monte Carlo replications when λ = 0.5 and use it as the critical value for cases when

λ < 0.5. The resulting power curves show that the DJ test is consistent as the sample

size diverges, and as identification strength increases. Moreover, in cases with high

endogeneity (Figure 2.4.4), the unadjusted power of the DJ is higher than that of the

Robust test across most designs. Furthermore, Figures 2.4.5 and 2.4.6 demonstrate that
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the DJ-test displays non-negligible power even when identification is close to being weak,

i.e, when λ = 0.4 or λ = 0.3, which gives convincing numerical evidence of the results in

Theorem 2.3.6.

2.5. Empirical Application

In this section, we apply our distorted J-test in two well-known empirical examples to

test for the presence of weak instruments. We then contrast the results of our tests with

those obtained from conventional weak IV tests for linear models, namely the SS, the

SY, and the Robust tests.

2.5.1. Labour Force Participation of Married Women

We first study married women’s labour force participation (hereafter LFP) when educa-

tion, measured as the women’s years of schooling, is treated as an endogenous regressor.

We use data from the University of Michigan Panel Study of Income Dynamics (PSID)

for the year 1975, which have been used in several studies. The data is public and avail-

able at Wooldridge (2010) Supplemental Content. Mroz (1987) provides an extensive

analysis of the women’s hours of labour supply, and considers a range of specifications

including potential endogeneity of several regressors, the use of different instrumental

variables and controls for self-selection into labour force participation. As a text book

example, Wooldridge (2010) used the same dataset to study women’s LFP decisions, and

the potential endogeneity of education is tested after estimating an IV probit model using

Rivers and Vuong (1988) two-step conditional maximum likelihood estimator (2SCML).

In what follows we use similar specification as in Wooldridge (2010).

The PSID consists of data on 753 married, Caucasian women who are between 30 and

60 years of age at the time the sample was conducted. The dependent variable LFP is

a binary response that equals unity if the respondent worked at some time during the

year, and zero otherwise. Exogenous regressors include spousal income, the individual’s

work experience and its square, age, the number of children less than six years old, and

the number of children older than six years old. The individual’s education, measured as

years of schooling, is considered to be endogenous. Following the strategy in Wooldridge
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(2010), the individual’s family education, which are recorded as the years of schooling

for both the individual’s father and mother, are used as instruments for education.

Table 2.5.1: Data Summary of Married Women LFP (Obs. 753)

Mean Std. Dev. Min Max
LFP 0.57 0.50 0 1
Education 12.29 2.28 5 17
Father educ. 8.81 3.57 0 17
Mother educ. 9.25 3.37 0 17
Experience 10.63 8.07 0 45
Exper. square 178.04 249.63 0 2025
Nonwife income ($1000) 20.13 11.64 -0.029 96
Age 42.54 8.07 30 60
# Kids < 6 years old 0.24 0.52 0 3
# Kids > 6 years old 1.35 1.32 0 8

Note: Education, father/mother education and experience are measured
in years.

Estimated coefficients and the average partial effects on the probability of LFP for all

regressors are presented in Table 2.5.2 using two estimation methods: 2SCML as used in

Wooldridge (2010) and CUGMM. More specifically, for the 2SCML, the first step is to

regress the endogenous regressor on the instruments and all other exogenous regressors to

obtain the reduced form residual. The second step is to run a probit maximum likelihood

estimation of the binary response on the endogenous and the exogenous regressors, and

the reduced form residual. The CUGMM estimation with over-identification degree one

is conducted using ai = (1, y2i, x
′
i, z
′
i,0
′
k+2)′ and bi = (0′k+3, 1, x

′
i, z
′
i)
′, where y2i, xi and zi

denote the standardised variables corresponding to the women’s education, exogenous

regressors and two instruments, and k is the number of exogenous regressors and the

intercept. The first step estimation of the 2SCML and the reduced form of the CUGMM

are listed in the first and fourth columns of Table 2.5.2 respectively. Both the two

IVs are highly significant based on both estimation methods. The CUGMM estimation

results are reported in columns four through six. Broadly speaking, the CUGMM and

2SCML results are similar, with both methods providing evidence that education has a

significant positive effect: one extra year of education increasing the probability of LFP

by 5.87 percentage points for both the 2SCML and the CUGMM. Hansen’s J-statistic

is 0.122 which is less than χ2
0.95(1) = 3.84, therefore we fail to reject the null that all the
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moments are valid.

Table 2.5.2: Regression Results of Labour Force Participation (LFP)

2SCML Probit CUGMM

1st step 2nd step margin reduced form structural eq. margin
(1) (2) (3) (4) (5) (6)

Dependent Var. Education LFP Education LFP

Education 0.1503*** 0.0568*** 0.1500*** 0.0569***
(0.0539) (0.0210) (0.0538) (0.0206)

Experience 0.0930*** 0.1213*** 0.0310*** 0.0929*** 0.1208*** 0.0309***
(0.0251) (0.0194) (0.0033) (0.0249) (0.0195) (0.0033)

Exper. square -0.0016* -0.0018*** -0.0016* -0.0018***
(0.0009) (0.0006) (0.0009) (0.0006)

Nonwife income ($1000) 0.0452*** -0.0132** -0.0050** 0.0453*** -0.0139** -0.0053**
(0.0071) (0.0061) (0.0022) (0.0070) (0.0061) (0.0023)

Age -0.0217** -0.0518*** -0.0196*** -0.0218** -0.0514*** -0.0195***
(0.0109) (0.0087) (0.0034) (0.0109) (0.0088) (0.0034)

# Kids <6 years old 0.2268 -0.8733*** -0.3303*** 0.2268 -0.8727*** -0.3307***
(0.1570) (0.1176) (0.0456) (0.1561) (0.1210) (0.0469)

# Kids >6 years old -0.0934* 0.0395 0.0149 -0.0933* 0.0396 0.0150
(0.0554) (0.0459) (0.0168) (0.0551) (0.0475) (0.0180)

Father educ. 0.1552*** 0.1551***
(0.0237) (0.0236)

Mother educ. 0.1721*** 0.1724***
(0.0252) (0.0250)

Correlation ρ -0.0453 -0.0453
(0.1105) (0.1102)

J-statistic – – – – 0.122
Obs. 753 753 753 753 753 753

Note: (a) Standard errors (s.e.) in parentheses. Significance *** p<0.01, ** p<0.05, * p<0.1. The s.e. in
columns (1)-(3) are heteroscedastic-robust. The s.e. in columns (4)-(6) are computed based on Theorem
2.3.5. According to Antoine and Renault (2020), when DJ rejects the null, standard inference procedures
still work for all practical purpose.
(b) For CUGMM estimation, overidentification degree is one. Hansen’s J-statistic 0.122 is less than χ2

0.95(1) =
3.84. Overidentification test fails to reject the null hypothesis that moments are all valid.
(c) Correlation ρ is the correlation of errors (ui, vi) in structural equation and reduced form.
(d) Margins in columns (3) and (6) are computed using the sample average of explanatory variables and IVs.

The weak IV test results are collected in Table 2.5.3 for all four tests, SS, SY, Robust

and DJ. The Kleibergen-Paap F -statistic (Kleibergen and Paap, 2006) is 81.89, based

on which the SS rule-of-thumb and the SY test both reject the null that IVs are weak.4

4The Kleibergen-Paap F -statistic is utilised when allowing for heteroscedastic standard error. The re-
duced form regression F -statistic and the Cragg-Donald statistic are 95.70, when assuming homoscedas-
tic standard error. SY rejects its null according to the critical values of the maximal desired size
distortion 5% and 10% of a 5% Wald test.
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For the Robust test, the effective F -statistic is 91.44, the critical values for the tolerance

thresholds {5%, 10%} are 11.59 and 8.58, respectively.5 Comparing the effective F -

statistic 91.44 to the critical values, the Robust test also rejects the null of weak IV.

Table 2.5.3: Tests of Weak Instruments (Significance level 5%)

SS SY (5%) SY (10%) Robust (5%) Robust(10%) DJ (min & max)
Statistic 81.89 81.89 81.89 91.44 91.44 0.14 & 17.44
Critical value 10 19.93 11.59 8.58 6.17 11.98
Reject H0 Reject Reject Reject Reject Reject Reject

Note: (a) SS and SY test statistics 81.89 are Kleibergen-Paap F -statistic, which is heteroscedastic-robust.
When assuming homoscedastic standard error, the reduced form F -statistic and the Cragg-Donald F -
statistic is 95.70. SS critical value 10 is the rule-of-thumb. SY (5%) and SY (10%) critical values 19.93
and 11.59 are for i,i.d. errors, the maximal desired size distortions 5% and 10% of a 5% Wald test,
respectively.
(b) Robust test statistics and critical values are computed using Stata command ”weakivtest” (Pflueger
and Wang, 2015) based on heteroscedastic-robust s.e. Robust (5%) and Robust (10%) critical values 8.58
and 6.17 are for 2SLS with 5% and 10% tolerance of the Nagar bias over benchmark, respectively. The
estimated effective degrees of freedom with the tolerance {5%,10%} are 1.82 and 1.84.
(c) The perturbation of DJ test is chosen using the approach in Section 2.3.3. The critical value is
χ2

1−0.05/20(H − p+ 1) = 11.98.

Finally, for the DJ test, the perturbation δn is computed as in Section 2.3.5, using

m = 20 candidate grid points. This choice of m leads us to use the critical value

χ2
1−0.05/20(H + 1 − p) = 11.98, where we note that we have used H = 19 moments and

estimated p = 18 parameters. Of the candidate grid points, three lead to a value of the DJ

statistic larger than 11.98, leading us to soundly reject the null of weak identification. The

rejection conclusion of the DJ test is quite straightforward: when perturbing the CUE

θ̂n by δn, the value of the J-statistic increases dramatically from 0.122 to a maximum of

17.44, implying that the CUGMM criterion is sensitive to even small departures. Overall,

results reported in Table 2.5.3 suggest that the DJ test and the three conventional tests

for the linear model agree in this example.

5The estimated effective degrees of freedom of the Robust test for the tolerance thresholds {5%, 10%}
are both about 1.8. See Montiel Olea and Pflueger (2013) for the definitions of the effective F -statistic,
the tolerance threshold and the effective degrees of freedom. The Robust test statistic and the crit-
ical values are obtained using the Stata command ”weakivtest” (Pflueger and Wang, 2015) under
heteroscedastic-robust estimation.
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2.5.2. US Food Aid and Civil Conflicts

In the second example we examine the impact of US food aid on the incidence of civil

conflicts in recipient countries. The research in Nunn and Qian (2014) was motivated

by concerns that humanitarian food aid may be ineffective and may even promote civil

conflicts. The main challenge of this study is the potential endogeneity of US food aid

due to reverse causality and joint determination. Their identification strategy relies on

using the product of the lagged US wheat production and the average probability of

receiving any US food aid for each country as the instrumental variable for wheat aid.

Nunn and Qian (2014) estimate many variations of the basic binary model and consider

different kinds of wars, different controls and alternative specifications.

Herein, we focus on the simple cross-sectional specification considered in Nunn and Qian

(2014). More specifically, we estimate the impact of US wheat aid on the probability of

civil war onset after a period of peace (column (3), Table 7, Nunn and Qian (2014)),

using precisely the same model specification as in Nunn and Qian (2014).6 We examine

the IV strength by applying our DJ test to the model, as well as the three conventional

weak IV tests for linear models.

The dataset in this analysis involves observations on 78 non-OECD countries from 1971 to

2006, and the observations used for the onset analysis are those country-year observations

that have no intra-state civil conflict in the previous period. The event indicator for civil

war onset is set to be one if it is the first period of a intra-state conflict episode, and

zero otherwise. Nunn and Qian (2014) estimate a logistic discrete time hazard model for

the probability of onset of war, controlling for the previous duration of peace up to the

third degree of polynomial. The US wheat aid in year t is instrumented by the product

of US wheat production in year t − 1 and the probability of receiving any US food aid

between 1971 and 2006 for each country. To be consistent with the setup of the chapter,

we estimate a probit link model rather than a logit. Summary statistics for the data

used in the onset analysis can be found in part (a) of Table 2.5.4.

6Data sets used to construct the incidence of conflict, US food aid, US wheat production and other
variables include the UCDP/PRIO Armed Conflict Dataset Version 4-2010, the Food and Agriculture
Organization’s FAOSTAT database and the data from the United States Department of Agriculture.
See Nunn and Qian (2014) for more detailed information.
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Table 2.5.4: Data Summary of US Food Aid and Civil Conflict

(a) Civil Conflict Onset (obs. 1454)

Mean Std. Dev. Min Max
Onset of intra-state conflict 0.063 0.244 0 1
US wheat aid (1000 metric tons) 21.08 59.42 0 791.60
Lagged US wheat production (1000 metric tons) 59187 8754 36787 75813
Average US food aid probability 1971-2006 0.387 0.328 0 1
Peace duration (years) 11.59 9.48 1 46
Instrument 22936 19924 0 75813

(b) Civil Conflict Offset (obs. 709)

Mean Std. Dev. Min Max
Offset of intra-state conflict 0.185 0.388 0 1
US wheat aid (1000 metric tons) 56.07 123.58 0 854.7
Lagged US wheat production (1000 metric tons) 60374 8626 36787 75813
Average US food aid probability 1971-2006 0.503 0.313 0 1
Conflict duration (years) 8.70 8.45 1 42
Instrument 30413 19676 0 75813

Note: An observation is a country and year. Instrument is lag of US wheat production times average
probability of receiving any US food aid during 1971 to 2006.

Part (a) of Table 2.5.5 presents results for the estimated coefficients and average partial

effects from both 2SCML probit and CUGMM with the degree of overidentification equal

to unity. The 2SCML in this example allows intragroup correlation for standard errors,

clustered by countries. For comparison purposes, column (1) of Table 2.5.5 gives the

estimated average partial effect of US wheat aid reported by Nunn and Qian (2014)

using a 2SCML logit approach, which is a key result for their analysis. For CUGMM, we

use ai = (x′i, zi, z
2
i , z

3
i , zix1i,0

′
k+1)′ and bi = (0′k+3, 1, zi, x

′
i)
′ to construct moments. The

variables xi and zi denote the standardised variables of exogenous regressors and the

instrument, x1i is the non-standardised onset duration, and k is the number of exogenous

regressors and the intercept. Columns (2) and (5) of Table 2.5.5 demonstrate that the

IV is significantly related to the endogenous regressor of wheat aid at the 1% significant

level by both estimation methods. However, it is worth noting that the estimates of

interest, the effects of the US wheat aid on onset, based on the three different estimation

approaches, are quite unstable and even differ in signs. The statistical insignificance

of the US food aid on onset of civil conflict is pointed out by Nunn and Qian (2014).

However, without reliable evidence of the instrument strength, we should be cautious
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of drawing any inference conclusions according to the standard inference procedures.

Estimates for other coefficients are quite stable and similar across the three sets of

results. Finally, Hansen’s J-statistic is 0.553, less than the critical value χ2
0.95(1) = 3.84,

thus we cannot reject the null that moments are all valid. This evidence leads to the

suspicion that the potential weakness of the IV could be one of the possible reasons for

the unstable estimates of the US wheat aid coefficient.
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Table 2.5.5: Regression Results of US Food Aid and Civil Conflict

(a) Civil Conflict Onset

Nunn & Qian 2SCML Probit CU-GMM
(2014)

margin 1st step 2nd step margin reduced form structural eq. margin
(1) (2) (3) (4) (5) (6) (7)

Dependent Var. Onset Wheat aid Onset Onset Wheat aid Onset Onset

Wheat aid 0.000036 0.0011 0.000067 -0.0013 -0.000071
(0.00015) (0.0025) (0.00016) (0.0028) (0.00027)

Peace dur. -0.00164*** -1.66 -0.18*** -0.0018*** -1.66 -0.1815*** -0.0017*
(0.00066) (1.18) (0.041) (0.00072) (1.21) (0.045) (0.0010)

Peace dur.∧2 0.053 0.0087*** 0.053 0.0085***
(0.066) (0.0026) (0.072) (0.0031)

Peace dur.∧3 -0.00042 -0.00012*** -0.00042 -0.00011
(0.0011) (0.00005) (0.0012) (0.00014)

Instrument 0.0012*** 0.0012***
(0.0002) (0.0002)

Correlation ρ -0.0837 0.3109**
(0.1318) (0.1408)

J-statistic – – – – – 0.553 –
Obs. 1454 1454 1454 1454 1454 1454 1454

(b) Civil Conflict Offset

Nunn & Qian 2SCML Probit CU-GMM
(2014)

margin 1st step 2nd step margin reduced form structural eq. margin
(1) (2) (3) (4) (5) (6) (7)

Dependent Var. Offset Wheat aid Offset Offset Wheat aid Offset Offset

Wheat aid -0.000256* -0.0019* -0.000284* -0.0013 -0.000302
(0.00016) (0.0011) (0.00017) (0.0021) (0.00029)

Conflict dur. -0.00801*** 4.97 -0.2794*** -0.00904*** 4.97 -0.2998*** -0.0133***
(0.0021) (4.65) (0.0525) (0.00221) (4.34) (0.0690) (0.0053)

Conflict dur.∧2 -0.406 0.0164*** -0.406 0.0184**
(0.288) (0.0046) (0.371) (0.0084)

Conflict dur.∧3 0.007 -0.0003*** 0.007 -0.0003
(0.005) (0.0001) (0.009) (0.0003)

Instrument 0.003*** 0.003***
(0.0007) (0.0006)

Correlation ρ 0.1277 0.1768
(0.1238) (0.1585)

J-statistic – – – – – 1.500 –
Obs. 709 709 709 709 709 709 709

Note: (a) Standard errors (s.e.) in parentheses. Significance *** p<0.01, ** p<0.05, * p<0.1. For both panels
(a) (b), the s.e. in column (1) is from Nunn and Qian (2014). The s.e. in columns (2)-(4) are clustered s.e.
by countries, based on the 2SCML probit estimation. The s.e. in columns (5)-(7) are calculated by bootstrap
with 1000 replications. Since DJ test fails to reject its null, implying standard inference procedures may no
longer hold, we should be cautious of drawing any inference conclusions based on those s.e reported in the
above tables.
(b) For CU-GMM estimation, overidentification degree is one. Hansen’s J-statistics are less than χ2

0.95(1) = 3.84.
Overidentification test fails to reject the null hypothesis that moments are all valid in both onset and offset
cases.
(c) Correlation ρ is the correlation of errors (ui, vi) in structural equation and reduced form.
(d) Margins in columns (4) and (7) are computed based on sample average of explanatory variables and IVs.
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This suspicion is verified by the DJ test. The perturbation for the onset analysis is

chosen as described in Section 2.3.5, again using m = 20 candidate grid points. Panel

(a) of Table 2.5.7 demonstrates that the DJ test cannot reject the null of weak instru-

ment. In contrast to the earlier example in Section 2.5.1, in this example perturbing the

estimators by δn does not lead to a significant change in the corresponding J-statistic,

which indicates a lack of curvature and thus identification weakness. Across the entire

grid of candidate δn values, the maximum of the DJ statistics is 7.5, which is less than

the corresponding 5% critical value given by χ2
1−0.05/20(H + 1 − p) = 11.98, and which

is based on using H = 12 moments to estimate p = 11 parameters. However, when we

apply the conventional SS, SY and Robust tests to the onset of the civil conflict case, the

SS and SY tests return a rejection of the weak IV hypothesis and the Robust test also

rejects the null if the tolerance threshold is greater than 10%. As shown in Table 2.5.5,

the reduced form regression Kleibergen-Paap F -statistic for SS and SY is 26.07, much

larger than 10 and the critical values 16.38 and 8.96 of SY.7 The Robust test effective

F -statistic 26.39 is also larger than its 10% tolerance critical value 23.11.8 In summary,

for this example, the conventional weak IV tests and the DJ test suggest opposite results.

This serves as a reminder that applying conventional weak IV tests for linear models to

binary outcome models can lead to incorrect decisions in certain circumstances.

7To be consistent with Nunn and Qian (2014), standard errors (s.e.) are computed using clustered
s.e. by countries. Kleibergen-Paap F -statistic (Kleibergen and Paap, 2006) is utilised when allowing
for intragroup correlation s.e. The critical values 16.38 and 8.96 of SY test are based on the desired
maximal size distortion 5% and 10% of a 5% Wald test, respectively.

8The effective F -statistic and critical values are computed using the Stata command ”weakivtest”
(Pflueger and Wang, 2015). The critical value 23.11 is for the case of effective degrees of freedom one
and the tolerance threshold 10%. Robust test fails to reject the weak instrument based on the critical
value of 5% tolerance.
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Table 2.5.7: Tests of Weak Instrument (Significance level 5%)

(a) Civil Conflict Onset

SS SY (5%) SY (10%) Robust (5%) Robust (10%) DJ (min & max)
Statistic 26.07 26.07 26.07 26.39 26.39 0.57 & 7.50
Critical value 10 16.38 8.96 37.42 23.11 11.98
Reject H0 Reject Reject Reject Not Reject Reject Not Reject

(b) Civil Conflict Offset

SS SY (5%) SY (10%) Robust (5%) Robust (10%) DJ (min & max)
Statistic 17.29 17.29 17.29 17.49 17.49 1.50 & 9.46
Critical value 10 16.38 8.96 37.42 23.11 11.98
Reject H0 Reject Reject Reject Not Reject Not Reject Not Reject

For both onset and offset data, SS and SY test statistics are Kleibergen-Paap F -statistic (Kleibergen and Paap,
2006) based on clustered s.e. by countries, to be consistent with Nunn and Qian (2014). SS critical value 10 is
the rule-of-thumb. SY (5%) and SY (10%) critical values 16.38 and 8.96 are for i.i.d. errors, one endogenous
regressor and one IV, desired maximal size distortion 5% and 10% of a 5% Wald test.
Robust test statistics and critical values are computed using Stata command ”weakivtest” (Pflueger and Wang,
2015) based on clustered s.e. by countries. For both onset and offset data, Robust (5%) and Robust (10%)
critical values 37.42 and 23.11 are for 2SLS with 5% and 10% tolerance of the Nagar bias over benchmark,
respectively. The estimated effective degrees of freedom with the tolerance {5%, 10%} are both 1.
For the offset data, the Robust test rejects weak IV when tolerance is larger than 20%.
The perturbation of DJ test is chosen based on the process in Section 2.3.3. The critical value is χ2

1−0.05/20(H−
p+ 1) = 11.98.

Subsequently, we have repeated this analysis within the other 5 models considered in

Nunn and Qian (2014) (columns (4)-(8) of Table 7, Nunn and Qian 2014), which include

different specifications and exogenous regressors. In most of the cases, our DJ test shows

that we cannot rule out the possibility of weak instruments, whilst the SS and SY tests

all result in a rejection of weak instrument hypothesis. Results are not reported due to

space limitation. SS and SY tests are based on Kleibergen-Paap F -statistic (Kleibergen

and Paap, 2006). DJ test is implemented using the same ai and bi with those used to

get the CUGMM in Table 2.5.5. The perturbation for each model is again chosen as in

Section 2.3.5 with m = 20. The DJ test rejects the null of weak instrument in column

(7), but fails to reject in the remaining columns. The Robust test also rejects the null

in some cases. Based on the critical value 23.11 (τ = 10%), the Robust test rejects

weak IV of the analysis in columns (4) and (8), but fails to reject in columns (5), (6)

and (7). Results are obtained by using the Stata command ”weakivtest” (Pflueger and

Wang, 2015) and clustered s.e.. In part (b) of Table 2.5.7 and Table 2.5.5, we report the

estimation results for the probability of offset of civil war after a period of war (column
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(6) of Table 7, Nunn and Qian 2014), as well as the test results for weak instrument.

One important result to note is that Nunn and Qian (2014) estimate a significant and

negative effect for offset of war, indicating that aid prolongs civil wars with 1,000 MT

extra of US wheat aid reducing the probability of civil war offset by 0.04 percentage point.

However, in this context, if one applies the DJ test using the same methodology as above,

the DJ statistic varies between 1.50 and 9.46, which is again less than the corresponding

critical value of 11.98, and indicates that identification may be weak in this example. If

identification is indeed weak, as the DJ test suggests, conducting standard inference on

the estimated treatment effect is no longer valid, therefore, the conclusion that US food

aid prolongs civil conflict must be interpreted with caution.

2.6. Conclusion

Estimating the causal effects of policy relevant treatment variables is the key goal of many

empirical analyses in economics and other diverse fields. Instrumental variables play a

crucial role in the identification and estimation of treatment effects when the treatment is

endogenous, but weak instruments have been identified as a potentially serious problem,

with consequences including inconsistent estimation and invalid inference. Consequences

and detection of weak identification due to instrument weakness have been extensively

studied for linear models, but similar issues have not been thoroughly studied for non-

linear models, such as discrete dependent variable models. In search for a suitable weak

identification test, empirical researchers have often resorted to the inappropriate use of

linear model weak IV tests for discrete outcome models, or the use of a linear probability

model with a 2SLS estimator treating the discrete variables as continuous. The suitability

of these linear tests in this nonlinear setting is not usually questioned in many empirical

studies (see Dufour and Wilde, 2018 and Li et al., 2019 for additional analysis on the

performance of the Stock and Yogo, 2005 testing approach in binary models).

This chapter proposes a much needed weak identification test in endogenous discrete

choice models. The proposed test has desirable asymptotic properties including size

control under the null of weak identification, and consistency under the alternative.
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Moreover, we demonstrate that once the null of weak identification is rejected, standard

Wald-based inference can be applied as usual. Our Monte Carlo results demonstrate

that, whilst the conventional Stock and Yogo (2005) and Staiger and Stock (1997) tests

are often over-sized and fail to detect weakness, our test always controls size and has

reasonable power. We apply this testing approach to two empirical examples in the litera-

ture, and demonstrate that there are importance instances where our approach produces

contradictory conclusions to the commonly applied linear testing approaches. Analysing

the causal impact of US food aid on civil conflict, our approach fails to reject the null

of weak identification, however, several commonly applied linear testing approaches all

conclude that identification is not weak.

Another key contribution of the chapter is the construction of comprehensive concept

of weak identification in discrete choice models, based not only on the convergence rate

of drifting moments, but also on the respective weight of the key parameters, including

variances of error terms and the level of simultaneity. This allows us to provide a uni-

fied GMM estimation framework for examining both linear and non-linear models, and

for comparing the asymptotic properties of GMM estimators against other conventional

two-step estimators for endogenous discrete models. While building on the general test-

ing strategy of Antoine and Renault (2020), the test proposed in this chapter is based

on a null hypothesis of genuine identification weakness, and not the nearly-strong iden-

tification null hypothesis analysed in, e.g., Andrews and Cheng (2012) and Antoine and

Renault (2020).

The conclusions that this chapter gives to empirical researchers wishing to evaluate

identification weakness in discrete models are clear. The canonical tests developed for

linear models are not suitable for non-linear models, are likely to be overly optimistic,

and can fail to detect genuinely weak identification. Our recommendation is a two-step

approach. Conduct our testing approach in a first step, then, if the null is rejected,

one can be very confident that identification is not weak, and conventional inference

can proceed as usual. If the null of weak identification cannot be rejected, identification

robust inference methods (as proposed in Stock and Wright, 2000 or Magnusson, 2010)

would be more suitable to assert the significance of any estimated causal effects.
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Furthermore, our asymptotic theory is conformable with the point of view on weak

identification defended by Stock and Andrews (2005): “weak instruments should not be

thought of as merely a small-sample problem, and the difficulties associated with weak

instruments can arise even if the sample size is very large.” We do see weak identification

as a population problem (i.e. independent of the sample size): either the GMM estimator

is not consistent (under the null of weak identification) or it is consistent (under the

alternative). In this respect, the trick of using a drifting DGP, as contemplated in the

weak identification literature, can be seen as a way to disentangle point identification

(a maintained hypothesis in the framework of weak identification) and existence of a

consistent estimator. This point of view may look at odds with the one put forward by

Lewbel (2019) where it is stated that: “a parameter that is weakly identified (meaning

that standard asymptotics provide a poor finite sample approximation to the actual

distribution of the estimator) when n = 100 may be strongly identified when n = 1000.”

However, for all practical purpose, the methodological recommendation may not be so

different: in our case, it is only for a large enough sample size that our consistent test may

allow us to reject the null of weak identification. In these circumstances, the researcher

can trust the consistency of the estimator and confidently use Wald inference.

2.7. Appendix

The appendix contains proofs for the main results in the chapter.

2.7.1. Lemmas

We first give several lemmas that are used to prove the main results.

Lemma 2.7.1 Under Assumption 2.2.1, for νn(θ) := 1√
n

∑n
i=1 (gi(θ)− E[gi(θ)]),

νn(θ)⇒ ν(θ),

for ν(θ) a mean-zero Gaussian process with (uniformly) bounded covariance kernel S(θ, θ̃).
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Proof of Lemma 2.7.1. First, recall that for gi(θ) = [ai, bi]ri(θ), with ri(θ) :=

[r1i(θ), r2i(θ2)]′ so that

‖gi(θ)‖ = ‖[ai, bi]ri(θ)‖ ≤ ‖[ai, bi]‖‖ri(θ)‖.

Under Assumption 2.2.1 (a), [ai, bi] is i.i.d. and E[‖[ai, bi]‖2] < ∞. The result then

follows if we can demonstrate that ri(θ) is Donsker.

Consider the re-parameterisation ϑ = (ϑ′1, ϑ
′
2)′, where ϑ1 := (α + ρ̃, β′ − ρ̃π′, ρ̃ξ′)′, and

ϑ2 := (π′, ξ′)′. By compactness of Θ, the new parameter space V := {ϑ = (ϑ′1, ϑ
′
2)′ : θ ∈

Θ} is also compact. Denote w1i = (y2i, x
′
i,−z′i)′ and w2i = (x′i, z

′
i)
′. Rewrite Φ[y2i(α +

ρ̃)+x′i(β
′−ρ̃π′)−z′iξρ̃] = Φ(w′1iϑ1). By abuse of notation, define r1i(ϑ1) = y1i−Φ(w′1iϑ1),

r2i(ϑ2) := y2i − w′2iϑ2, and define the class of functions

F :=
{
ri(ϑ) = (r′1i(ϑ1), r′2i(ϑ2))′ : ϑ ∈ V

}
,

from the compactness of V , (F , ‖ · ‖) is totally bounded with ‖ · ‖ the Euclidean norm.

First, focus on r1i(ϑ1). For every w1i and for ϑ1, ϑ̄1 ∈ V1, with V1 a subspace of V

associated with ϑ1, without loss of generality, suppose w′1iϑ ≥ w′1iϑ̄. Then,

‖r1i(ϑ1)− r1i(ϑ̄1)‖ = |Φ(w′1iϑ1)− Φ(w′1iϑ̄1)|

=

∣∣∣∣∣
∫ w′1iϑ1

w′1iϑ̄1

φ(t)dt

∣∣∣∣∣ = φ(c)|w′1i(ϑ1 − ϑ̄1)| ≤ C‖w1i‖‖ϑ1 − ϑ̄1‖,

for c ∈ (w′1iϑ̄1, w
′
1iϑ1) and some constant C > 0. For P the law of (w′1i, w

′
2i), by Assump-

tion 2.2.1 (a), we know that

EP [‖w1i‖2] <∞.

Now, consider r2i(ϑ2) and note that, for ϑ2, ϑ̄2 ∈ V2, with V2 a subspace of V associated

with ϑ2,

‖r2i(ϑ2)− r2i(ϑ̄2)‖ ≤ ‖w2i‖‖ϑ2 − ϑ̄2‖.
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It then follows from Assumption 2.2.1 (a) that

EP [‖w2i‖2] <∞.

Defining L = max{‖w1i‖, ‖w2i‖}, ϑ = (ϑ′1, ϑ
′
2)′ and ϑ̄ = (ϑ̄′1, ϑ̄

′
2)′, we have that E[L] <∞

and

‖ri(ϑ)− ri(ϑ̄)‖ ≤ L‖ϑ− ϑ̄‖.

This Lipschitz property, together with the compactness of V implies that, by Theorem

2.7.11 of van der Vaart and Wellner (1996), F is P -Donsker. For gi(θ) = [ai, bi]ri(θ), we

then have that

νn(θ) :=
√
n (ḡn(θ)− E[gi(θ)])⇒ ν(θ),

for θ ∈ Θ where ν(θ) denotes a Gaussian process with zero mean and variance kernel

S(θ, θ̃) := E
{

(gi(θ)− E[gi(θ)])(gi(θ̃)− E[gi(θ̃)])
′
}
.

By the continuity of S(θ, θ) in θ, Assumption 2.2.1 (a), and the compactness of Θ, we

have

0 < sup
θ,θ̃∈Θ

‖S(θ, θ̃)‖ <∞.

The following results demonstrates that Assumption 2.3.2 in the main text is satisfied

under Assumption 2.2.1.

Lemma 2.7.2 Under Assumption 2.2.1, if ãi := ã(y2i, zi, xi) satisfies En [‖ãiz′iξ0(y2i, z
′
i, x
′
i)
′‖2] <

∞, for Ψn(η, θ0
2) := 1√

n

∑n
i=1 {ãiφi(η, θ0

2)z′iξ
0 − En[ãiφi(η, θ

0
2)z′iξ

0]},

Ψn(η, θ0
2)⇒ Ψ(η, θ0

2),

for Ψ(η, θ0
2) a mean-zero Gaussian process over Υ(θ0

2).

Proof of Lemma 2.7.2. Similar to the proof of Lemma 2.7.1, it suffices to show that
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the class of functions

F :=
{
r3i(η) = ãiφ(η, θ0

2)z′iξ
0 : η ∈ Υ(θ0

2)
}
,

is Donsker, where η := (ρ̃, ρ̃+ α, β′ − ρ̃π0′)′. Hence, we only sketch the details.

Let wi := (−z′iξ0, y2i, x
′
i)
′. For every wi and for η, η̄ ∈ Υ(θ0

2), without loss of generality,

suppose w′iη ≥ w′iη̄. Let φ′(x) denote the derivative of the density function φ(x). Then,

for c ∈ (w′iη̄, w
′
iη),

‖ãiφ(η, θ0
2)z′iξ

0 − ãiφ(η̄, θ0
2)z′iξ

0‖ = φ′(c)‖ãiz′iξ0w′i(η − η̄)‖ ≤ C‖ãiz′iξ0wi‖‖η − η̄‖,

for some constant C > 0, and where the equality follows by the intermediate value theo-

rem, and the inequality from Cauchy-Schwartz. For P the joint law of wi, by Assumption

2.2.1 (a), the compactness of Θ2 (Assumption 2.2.1 (d)), and the moment hypothesis for

ãi.,

EP [‖ãiz′iξ0w′i‖2] <∞.

The remainder of the proof follows that of Lemma 2.7.1 and is omitted for brevity.

For An = RΛn, the following result demonstrates that, regardless of the interpretation for

instrument weakness, for any consistent estimator the sample estimator ∂ḡn(θn)/∂θ′An

is a consistent estimator of M in Assumption 2.3.3.

Lemma 2.7.3 If {θn} is such that ‖θn − θ0‖ = op(1), then under Assumptions 2.2.1-

2.3.4:

M = plim
n→∞

∂ḡn(θn)

∂θ′
An, where An = RΛn.

Proof of Lemma 2.7.3. Let ḡn(θ) = (ḡ1n(θ), ḡ2n(θ), ..., ḡH,n(θ))′. The mean value

expansion of
∂ḡl,n(θn)

∂θ′
at θ0 yields

∂ḡl,n(θn)

∂θ′
=
∂ḡl,n(θ0)

∂θ′
+ (θn − θ0)′

∂2ḡl,n(θ̃n)

∂θ′∂θ
, l = 1, 2, ..., H

where θ̃n is component-by-component between θ0 and θn. By the structure of the moment
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ḡn(θ), the smoothness conditions on Φ(·) and its derivatives, ai and bi are all measurable,

it is not hard to prove that ‖θn − θ0‖ = op(1) implies the Hessian multiplied by An,

∂2ḡl,n(θ̃n)

∂θ′∂θ
An = Op(1) for l = 1, 2, ..., H. Therefore, ‖θn − θ0‖ = op(1) and Lemma 2.3.4

implies the result is satisfied.

Lemma 2.7.4 Under Assumptions 2.2.1-2.3.4, and for Λn as in Lemma 2.3.4,
√
nΛ−1

n (ζ̂n−

ζ0) = Op(1).

Proof of Lemma 2.7.4. The result is a consequence of Proposition 2.3.3 and Lemma

2.7.3, and the following inequality:

Jn(ζ0, ζ0) ≥ Jn(ζ̂n, ζ̂n) = Jn(ζ̂n, ζ
0){1 + op(1)},

which follows from the definition of ζ̂n and the consistency of ζ̂n in Proposition 2.3.3.

For some component-by-component intermediate value ζ∗n,

√
nḡn(ζ̂n) =

√
nḡn(ζ0)−

√
n
∂ḡn(ζ∗n)

∂ζ ′
(ζ0 − ζ̂n),

and we can apply the inequality ‖a− b‖ ≥ −‖a‖+ ‖b‖ to obtain

J1/2
n (ζ̂ , ζ0) ≥ −‖

√
nḡn(ζ0)‖Ωn + ‖

√
n∂ḡn(ζ∗n)/∂ζ ′(ζ0 − ζ̂n)‖Ωn ,

where Ωn = S−1
n (ζ0), ‖x‖Ωn := (x′Ωnx)1/2 and where we have used the fact that (with

probability converging to unity) λmin(Ωn) > 0. By the consistency of ζ̂n proved in

Proposition 2.3.3 and Lemma 2.7.3, and for M as defined in Lemma 2.3.4, we have

‖
√
n∂ḡn(ζ∗n)/∂ζ ′(ζ0 − ζ̂n)‖Ωn = ‖∂ḡn(ζ∗n)/∂ζ ′Λn

√
nΛ−1

n (ζ0 − ζ̂n)‖Ωn

= ‖M
√
nΛ−1

n (ζ̂n − ζ0) + op

(√
nΛ−1

n (ζ̂n − ζ0)
)
‖Ωn

≥ C‖
√
nΛ−1

n (ζ̂n − ζ0){1 + op(1)}‖

for some constant C > 0, where the last inequality follows from the fact that M

is full column rank and the fact that λmin(Ωn) > 0 (with probability converging to

unity). Applying the above inequality into the first inequality, and using the fact that
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Jn(ζ0, ζ0) = Op(1), we obtain

Op(1) ≥ C‖
√
nΛ−1

n (ζ̂n − ζ0){1 + op(1)}‖.

2.7.2. Proofs

Proof of Proposition 2.3.1. First, note that

√
n
[
ḡn

(
θ̂δn

)
− ḡn

(
θ̂n

)]
=
√
n
∂ḡn
∂η1

(
η∗1n, η̂2n, η̂3n, θ̂2n

)
δn,

where η∗1n denotes a component-by-component intermediate value between the first co-

efficients of θ̂n and θ̂δn. Recall δn → 0 as n→∞. Thus, we only have to prove that

√
n
∂ḡn
∂η1

(
η∗1n, η̂2n, η̂3n, θ̂2n

)
= Op (1) .

For this purpose, we write the Taylor expansion

√
n
∂ḡn
∂η1

(
η∗1n, η̂2n, η̂3n, θ̂2n

)
=
√
n
∂ḡn
∂η1

(
η∗1n, η̂2n, η̂3n, θ

0
2

)
+

∂2ḡn
∂η1∂θ′2

(η∗1n, η̂2n, η̂3n, θ
∗
2n)
√
n
(
θ̂2n − θ0

2

)
, (2.30)

for some intermediate value θ∗2n. By construction, the separation of estimators of θ1 (or

η1) and θ2 (see Remark 2.2.3 in Section 2.2.2) implies that
√
n(θ̂2n − θ0

2) = Op(1). It is

also worth noting that application of Lemma A1 of Stock and Wright (2000) would allow

us to prove this result in an even more general context.

To see that the second part of the RHS of (2.30) is Op(1), note the following: (i),

∂2ḡn/∂η1∂θ
′
2 is continuous in η and θ2; (ii), Υ(θ0

2) × Θ2 is compact; (iii), verify that

‖∂2ḡn/∂η1∂θ
′
2‖ ≤ 2‖ã(y2i, zi, xi)z

′
i‖, where En[‖ã(y2i, zi, xi)z

′
i‖] <∞ by hypothesis. From

the i.i.d. nature of the data, the uniform law of large number (ULLN) then implies that

the second derivative in question converges uniformly, and together with the fact that
√
n(θ̂2n − θ0

2) = Op(1) implies that the second term on the RHS of (2.30) is Op(1).
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Finally, it is straightforward to deduce that

sup
η∈Υ(θ02)

∥∥∥∥√n∂ḡn∂η1

(
η, θ0

2

)∥∥∥∥ ≤ sup
η∈Υ(θ02)

∥∥∥∥En{√n∂ḡn∂η1

(
η, θ0

2

)}∥∥∥∥
+ sup

η∈Υ(θ02)

∥∥∥∥√n∂ḡn∂η1

(
η, θ0

2

)
− En

{√
n
∂ḡn
∂η1

(
η, θ0

2

)}∥∥∥∥ .
The first term is O(1) under the null, while the second term is Op(1) under Assumption

2.3.2 (or Assumption 2.2.1 and Lemma 2.7.2).

Proof of Theorem 2.3.2. The result follows direction from Proposition 2.3.1. To

see this, note that, by definition,

Jn

(
θ̂n, θ̂n

)
≤ Jn

[(
η0

1, η̃2n, η̃3n, θ̃2n

)
, θ0
]
, (2.31)

where (η̃2n, η̃3n, θ̃2n) denotes the infeasible CUGMM estimator of (η2, η3, θ2) that would

result if we knew η0
1; i.e.,

(
η̃2n, η̃3n, θ̃2n

)
= argmin

(η2,η3,θ2)

Jn
[(
η0

1, η2, η3, θ2

)
,
(
η0

1, η2, η3, θ2

)]
.

However, under Assumptions 2.2.1-2.3.1, the standard theory of the J-test for over-

identification test for estimation of (η2, η3, θ2) yields

Jn

[(
η0

1, η̃2n, η̃3n, θ̃2n

)
, θ0
]

d→ χ2 (H + 1− p) ,

where
d→ denotes convergence in distribution. Hence, the result in Proposition 2.3.1

implies that Jδn is asymptotically bounded above by a χ2(H + 1 − p) random variable,

which yields the necessary size control for the test W δ
n .

Proof of Proposition 2.3.3. We work in the rotated parameter space, collected as

ζ := (η′, θ′2)′, but note that the result can be moved to the original parameters through

the parameterisation θ = Rζ, and the fact that R can be consistently estimated.

Firstly, we demonstrate that there exist a deterministic diagonal matrix Λ̃n, a vector

function γ(ζ), continuous in ζ, and a vector function q2(η2, η3), continuous in (η2, η3),
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such that under our drifting DGP,

En [ḡn(ζ)] =
Λ̃n√
n
γ(ζ) + q2(η2, η3),

and

γ(ζ) = 0 and q2(η2, η3) = 0 ⇐⇒ ζ = 0,

where Λ̃n has minimal and maximal eigenvalues, denoted by λmin[Λ̃n] and λmax[Λ̃n],

respectively, that satisfy:

lim
n→∞

λmin[Λ̃n] =∞ and lim
n→∞

λmax[Λ̃n]/
√
n <∞.

After this, we can apply a similar strategy to Theorem 2.1 of Antoine and Renault (2012)

to establish estimation consistency for the parameters ζ0 := (η0′ , θ0′
2 )′.

To simplify the calculations, we establish this result in the case where xi = 1, for all i,

and scalar zi, which yields the moment functions: gi(θ) = (g1i(η, θ2)′, g2i(θ)
′)′, where

g1i(η, θ2) = ai (y1i − Φ [−η1ziξ + η2y2i + η3]) , g2i(θ) =

 y2i − π − ξzi
zi (y2i − π − ξzi)

 .

From the identification condition in Assumption 2.2.2, θ0
2 = (π0, ξ0)′ can be directly

identified from En[g2i(θ)] = 0, which would yield least square estimators

θ̂2 :=

π̂n
ξ̂n

 =

 ȳ2n − ξ̂nz̄n∑n
i=1(zi − z̄n)(y2i − ȳ2n)/

∑n
i=1(zi − z̄n)2

 ,

for z̄n =
∑n

i=1 zi/n and ȳ2n =
∑n

i=1 y2i/n, which are clearly
√
n-consistent and asymp-

totically normal under Assumptions 2.2.1 and 2.2.2.

Now, define the stochastic process νn(η, θ2) = (ν1n(η, θ2)′, ν2n(θ2))′ to be conformable to

gi(η, θ2) = (g1i(η, θ2)′, g2i(θ2)′)′, where by abuse of notation, we write g2i(θ) as g2i(θ2).

From the
√
n-consistency of (π̂n, ξ̂n)′ and stochastic equicontinuity of ν1n(η, θ2), we can

restrict our analysis on the uniform behaviour of ν1n(η, θ2) to the set Υn := {(η, θ2) : η ∈

Υ(θ2), θ2 ∈ Θ2,n}, for Υ(θ2) as defined above equation (2.21), and where for some δ > 0
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and δ = o(1),

Θ2,n :=
{
θ2n : ‖θ2n − θ0

2‖ ≤ δ/
√
n
}
.

In the remainder, we take θ2n to be an arbitrary sequence in Θ2,n .

For θ2n as above, recall that, using the decomposition in equation (2.18), for some η̄1

such that η0
1 ≤ η̄1 ≤ η1,

m1n(η, θ2n) = m1n(η, θ2
0) +m1n(η, θ2n)−m1n(η, θ2

0)

= q11,n(η)/ςn + q12,n(η2, η3) + op(n
−1/2)

= (η1 − η0
1)En

[
1

n

n∑
i=1

ãiφi(η̄1, η2, η3; θ0
2)ziξ

0

]
+ q12,n(η2, η3) + op(n

−1/2).

(2.32)

Moreover, by Assumption 2.3.3, uniformly over η̄ = (η̄1, η
′
2, η
′
3)′ ∈ Υ(θ0

2),∥∥∥∥∥En
[

1

n

n∑
i=1

ãiφi(η̄, θ
0
2)ziξ

0

]
ςn − V 0(η̄)

∥∥∥∥∥ = o(1)

so that

m1n(η, θ2n) = ς−1
n (η1 − η0

1)V 0(η̄) + q12,n(η2, η3) + op(n
−1/2). (2.33)

Now, decompose
√
nḡ1n(η, θ2n) as

√
nḡ1n(η, θ2n) =

√
n {ḡ1n(η, θ2n)−m1n(η, θ2n)}+

√
nm1n(η, θ2n),

and apply equation (2.33) to obtain

√
nḡ1n(η, θ2n) = ν1n(η, θ0

2) +
√
nm1n(η, θ0

2) + op(1)

= ν1n(η, θ0
2) +

√
n

ςn
V 0(η̄)(η1 − η0

1){1 + op(1)}+
√
nq12,n(η2, η3).

Recall that by Lemma 2.7.1, νn(η, θ0
2) ⇒ ν(η, θ0

2), and hence is Op(1) uniformly for

η ∈ Υ(θ0
2).
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Define λ̄n :=
√
n/ςn, which satisfies λ̄n → ∞, as n → ∞, where λ̄n = o(

√
n) by the

definition of ςn in Assumption 2.3.3. Now, define the matrix

Λ̃n :=

λ̄nIdim(g1) O

O n1/2Idim(g2)


and the vectors

γ(ζ) =

V 0(η)(η1 − η0
1)

En [ḡ2n(θ2)]

 , q2(η2, η3) =

q12,n(η2, η3)

0

 .

Then, up to op(1) terms,

√
nḡn(η, θ2) =

√
n {ḡn(η, θ2)− En[ḡn(η, θ2)]}+

√
nEn[ḡn(η, θ2)]

= νn(η, θ2) + Λ̃nγ(ζ) +
√
nq2(η2, η3).

The remainder of the result follows a similar strategy to Theorem 2.1 in Antoine and

Renault (2012). Let W be a positive-definite H ×H matrix, and define ‖x‖2
W := x′Wx.

For νn(ζ), Λ̃n and γ(ζ) as above, we can rewrite the CUGMM objective function in the

rotated parameter space as

Jn[ζ, ζ]/n =

∥∥∥∥∥νn(ζ)√
n

+
Λ̃n√
n
γ(ζ) + q2(η2, η3)

∥∥∥∥∥
2

Ωn(ζ)

, for Ωn(ζ) := S−1
n (ζ).

By definition of ζ̂n, Jn[ζ0, ζ0] ≥ Jn[ζ̂n, ζ̂n] which implies

∥∥νn(ζ0)/
√
n
∥∥2

Ωn(ζ0)
≥
∥∥∥νn(ζ̂n)/

√
n+ Λ̃nγ(ζ̂n)/

√
n+ q2(η̂2n, η̂3n)

∥∥∥2

Ωn(ζ̂n)
. (2.34)

Define Ω0
n := Ωn(ζ0), Ω̂n := Ωn(ζ̂n), xn := νn(ζ̂n), yn := Λ̃nγ(ζ̂n) +

√
nq2(η̂2n, η̂3n) and

dn := νn(ζ̂n)′Ω̂nνn(ζ̂n) − νn(ζ0)′Ω0
nνn(ζ0). Denote λmin[A] and λmax[A] as the smallest

and the largest eigenvalue of a matrix A, respectively. Then, from (2.34), we obtain

0 ≥ Jn[ζ̂n, ζ̂n]− Jn[ζ0, ζ0] = dn + ‖yn‖2
Ω̂n

+ 2(Ω̂nxn)′yn

≥ dn + ‖yn‖2λmin

[
Ω̂n

]
− 2‖yn‖‖Ω̂nxn‖. (2.35)
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Defining zn := ‖yn‖, and for λmin

[
Ω̂n

]
> 0, we can re-arrange equation (2.35) as

z2
n − 2zn

‖Ω̂nxn‖

λmin

[
Ω̂n

] +
dn

λmin

[
Ω̂n

] ≤ 0

Solving the above equation for zn yields:

Bn −
[
B2
n − Cn

]1/2 ≤ zn ≤ Bn +
[
B2
n − Cn

]1/2
, Bn :=

‖Ω̂nxn‖

λmin

[
Ω̂n

] , Cn :=
dn

λmin

[
Ω̂n

] ,
(2.36)

where by definition of Cn and Bn we know that B2
n − Cn ≥ 0. From (2.36), the result

follows if

Bn = Op(1), and Cn = Op(1).

Consider first, Bn and note that

Bn ≤ ‖xn‖
λmax

[
Ω̂n

]
λmin

[
Ω̂n

] ≤ sup
ζ∈R−1Θ

‖νn(ζ)‖
supζ∈R−1Θ λmax [Ωn(ζ)]

infζ∈R−1Θ λmin [Ωn(ζ)]
.

By the result of Lemma 2.7.1, supζ∈R−1Θ ‖νn(ζ)‖ = Op(1). It then follows that Bn =

Op(1) so long as, for all n large enough, with probability approaching one,

0 < inf
ζ∈R−1Θ

λmin [Ωn(ζ)] ≤ sup
ζ∈R−1Θ

λmax [Ωn(ζ)] <∞,

which is guaranteed to be satisfied for n large enough under the assumptions of the

result. For Cn, recalling that dn = ‖νn(ζ̂n)‖2
Ω̂n
− ‖νn(ζ0)‖2

Ω0
n
, we obtain

|Cn| ≤ 2 sup
ζ∈R−1Θ

‖νn(ζ)‖2 supζ∈R−1Θ λmax [Ωn(ζ)]

infζ∈R−1Θ λmin [Ωn(ζ)]
.

Repeating the same argument for Cn as for Bn yields Cn = Op(1). Applying Bn =

Op(1), Cn = Op(1) to equation (2.36), we have

zn = ‖yn‖ = ‖Λ̃nγ(ζ̂n) +
√
nq2(η̂2n, η̂3n)‖ = Op(1)
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It then follows that,

‖γ(ζ̂n) + q2(η̂2n, η̂3n)‖ = Op

(
1/λ̄n

)
.

Consistency of ζ̂n now follows by modifying the standard argument (see, e.g., Newey and

McFadden (1994), page 2132). By continuity of γ(ζ) + q2(η2, η3), for any ε > 0, there

exists some δε such that

Pr
[
‖ζ̂n − ζ0‖ > ε

]
≤ Pr

[∥∥∥{γ(ζ̂n) + q2(η̂2n, η̂3n)
}
− γ(ζ0)− q2(η0

2, η
0
3)
∥∥∥ > δε

]
.

However, by Assumption 2.3.3, V 0(η) is non-zero uniformly for η ∈ Υ(θ0
2), so that under

the identification condition in Assumption 2.2.2 and the identification of q12,n(η2, η3) in

Assumption 2.3.1, we can conclude:

‖γ(ζ)+q2(η2, η3)‖ ≤ sup
η∈Υ(θ02)

‖V 0(η)‖‖η1−η0
1‖+‖En[ḡ2n(θ2)]‖+‖q12,n(η2, η3)‖ = 0 ⇐⇒ ζ = ζ0.

Therefore,

Pr
[
‖ζ̂n − ζ0‖ > ε

]
≤ Pr

[
δε <

∥∥∥γ(ζ̂n) + q2(η̂2n, η̂3n)
∥∥∥] = o(1),

where the last equality follows from the fact that ‖γ(ζ̂n)+q2(η̂2n, η̂3n)‖ = Op

(
1/λ̄n

)
, and

λ̄n →∞ as n→∞.

Proof of Lemma 2.3.4. In the rotated parameter space, the moment function is given

by

gi(ζ) = air1i(ζ) + bir2i(θ2) =

ãi(y2i, xi, zi)r1i(ζ)

b̃i(xi, zi)r2i(θ2)

 =

 g1i(ζ)

g2i(θ2)

 .

The (H × p)-dimensional Jacobian matrix ∂gi(ζ)/∂ζ ′ is given by

∂gi(ζ)/∂ζ ′ =

∂g1i(ζ)/∂η′ ∂g1i(ζ)/∂θ′2

O ∂g2i(θ2)/∂θ′2

 .
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For Λn as in the statement of the result,

∂ḡn(ζ0)

∂ζ ′
Λn =

{
∂ḡn(ζ0)

∂ζ ′
− En

[
∂ḡn(ζ0)

∂ζ ′

]}
Λn +

{
En
[
∂ḡn(ζ0)

∂ζ ′

]}
Λn

= Op(ςn/
√
n) + op(1) +

{
En
[
∂ḡn(ζ0)

∂ζ ′

]}
Λn

= op(1) +

{
En
[
∂ḡn(ζ0)

∂ζ ′

]}
Λn. (2.37)

The second equality follows from Assumption 2.3.3, and the uniform convergence of the

remaining derivatives, which follows from Assumptions 2.2.1, 2.2.2 and a ULLN for iid

data. The third equation follows from the fact that ςn/
√
n = o(1). For Λ1n denoting the

diagonal matrix

Λ1n :=

ςn O

O Ikx+1


we decompose the (p× p)-dimensional matrix Λn as

Λn =

Λ1n O

O Ikx+kz

 .

From this definition, the last term in equation (2.37) can be stated as

En
[
∂ḡn(ζ0)

∂ζ ′

]
Λn = En

[
∂ḡn(ζ0)

∂η′
...
∂ḡn(ζ0)

∂θ′2

]
Λn = En

[
∂ḡn(ζ0)

∂η′
Λ1n

...
∂ḡn(ζ0)

∂θ′2

]
. (2.38)

Recalling the functions q11,n(η) and q12(η2, η3) underlying Assumption 2.3.1, the first

component in equation (2.38) can be seen to be given by

En
[
∂ḡn(ζ0)

∂η′

]ςn O

O Ikx+1

 =

∂q11,n(η0)

∂η1
ςn O

O
∂q12(η02 ,η

0
3)

∂(η2,η′3)′

 =

V 0(η0) O

O
∂q12(η02 ,η

0
3)

∂(η2,η′3)′


= M1(η0).

By Assumption 2.3.1 (b) the south-east block of M1(η0) has column rank 1 + kx, while

by Assumption 2.3.3 the north-east block of M1(η0) is of column rank 1. Therefore, since



84 CHAPTER 2. WEAK IDENTIFICATION IN DISCRETE CHOICE MODELS

M1(η0) is block diagonal, conclude that

lim
n→∞

column rank
[
M1(η0)

]
= 2 + kx.

For the second term in (2.38), recalling the Jacobian of ∂gi(ζ)/∂ζ ′, we have that

En
[
∂ḡn(ζ0)

∂θ′2

]
= En

∂ḡ1n(η0, θ0
2)/∂θ′2

∂ḡ2n(θ0
2)/∂θ′2

 =

En [(O : ã(y2i, xi, zi)φi(η
0, θ0

2)η0
1z
′
i)]

En
[
b̃(xi, zi) (x′i : z′i)

] 
By Assumption 2.3.3, the matrix En

[
b̃(xi, zi) (x′i : z′i)

]
has column rank (kx + kz).

Combing the two Jacobian terms, the H × p dimensional Jacobian matrix in equation

(2.38) can be seen as

En
[
∂ḡn(ζ0)

∂ζ ′

]
Λn =

M1(η0) En [(O : ã(y2i, xi, zi)φi(η
0, θ0

2)η0
1z
′
i)]

O En
[
b̃(xi, zi) (x′i : z′i)

]  .

The matrix

M = plim
n→∞

{
∂ḡn(ζ0)

∂ζ ′
Λn

}
,

then exists and satisfies

column rank[M ] = lim
n→∞

column rank
[
M1(η0)

]
+ lim

n→∞
column rank

{
En
[
b̃(xi, zi) (x′i : z′i)

]}
= (2 + kx) + (kx + kz) = p.

Proof of Theorem 2.3.5. From the first order condition of the CUGMM objective

function, ζ̂n satisfies

n
∂ḡn(ζ̂n)′

∂ζ
Sn(ζ̂n)−1ḡn(ζ̂n)−W · n∂ḡn(ζ̂n)′

∂ζ
Sn(ζ̂n)−1ḡn(ζ̂n) = 0 (2.39)
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for W defined as

W ·
√
n
∂ḡn(ζ̂n)′

∂ζ
= Cov

(
∂ḡn(ζ̂n)′

∂ζ
, ḡn(ζ̂n)

)(
IH ⊗

[
Sn(ζ̂n)−1

√
nḡn(ζ̂n)

])
, (2.40)

and where Cov(·)

Cov

(
∂ḡn(ζ̂n)′

∂ζ
, ḡn(ζ̂n)

)
:=

[
Cov

(
∂ḡ1n(ζ̂n)

∂ζ
, ḡn(ζ̂n)

)
, · · ·,Cov

(
∂ḡH,n(ζ̂n)

∂ζ
, ḡn(ζ̂n)

)]
.

(2.41)

Substituting (3.22) into (2.39), and multiplying both sides of the equation (2.39) by

n−1/2, we obtain

√
n
∂ḡn(ζ̂n)′

∂ζ
Sn(ζ̂n)−1ḡn(ζ̂n)− Cov

(
∂ḡn(ζ̂n)′

∂ζ
, ḡn(ζ̂n)

)
×
(
IH ⊗

[
Sn(ζ̂n)−1

√
nḡn(ζ̂n)

])
Sn(ζ̂n)−1ḡn(ζ̂n) = 0. (2.42)

Apply the mean value theorem to ḡn(ζ̂n),

ḡn(ζ̂n) = ḡn(ζ0) +
∂ḡn(ζ∗n)

∂ζ ′
(ζ̂n − ζ0)

= ḡn(ζ0) + n−1/2∂ḡn(ζ∗n)

∂ζ ′
Λnn

1/2Λ−1
n (ζ̂n − ζ0).

By Proposition 2.3.3, ζ̂n is consistent and by Lemma 2.7.4,
√
nΛ−1

n (ζ̂n − ζ0) = Op(1).

Then Lemma 2.7.3 and Assumption 2.3.3 yield

n−1/2∂ḡn(ζ∗n)

∂ζ ′
Λnn

1/2Λ−1
n (ζ̂n − ζ0) = n−1/2MOp(1) + op(n

−1/2) = Op(n
−1/2),

so that we can conclude

ḡn(ζ̂n) = ḡn(ζ0) +Op(n
−1/2). (2.43)

From (2.43), the convergence rate of ḡn(ζ̂n) is determined by ḡn(ζ0), and by Lemma
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2.7.1, and the fact En[gi(ζ
0)] = 0 (under Assumption 2.2.2),

√
nḡn(ζ0)⇒ ν(ζ0),

where ν(ζ0) is a Gaussian process with mean-zero and variance matrix S(ζ0). Therefore,

ḡn(ζ0) = Op(n
−1/2) and together with (2.43), we have that ḡn(ζ̂n) = Op(n

−1/2). Given

Lemmas 2.7.1 and 2.7.2, and the fact that supζ∈R−1Θ ‖S−1
n (ζ)‖ < ∞, the above result

then yields:

Cov

(
∂ḡn(ζ̂n)′

∂ζ
, ḡn(ζ̂n)

)
= Op(1), and IH ⊗

[
Sn(ζ̂n)−1

√
nḡn(ζ̂n)

]
= Op(1). (2.44)

From ḡn(ζ0) = Op(n
−1/2) and the results in (2.44), the second term on the left hand side

of (2.42) is Op(n
−1/2). Then, (2.42) becomes

√
n
∂ḡn(ζ̂n)′

∂ζ
Sn(ζ̂n)−1ḡn(ζ̂n) = Op(n

−1/2). (2.45)

Plugging (2.43) into (2.45) and multiplying both sides by Λ′n, we obtain

Op(n
−1/2)Λ′n =

√
nΛ′n

∂ḡn(ζ̂n)′

∂ζ
Sn(ζ̂n)−1ḡn(ζ0)

+
√
nΛ′n

∂ḡn(ζ̂n)′

∂ζ
Sn(ζ̂n)−1∂ḡn(ζ∗n)

∂ζ ′
ΛnΛ−1

n (ζ̂n − ζ0). (2.46)

In addition, from to the uniform convergence of Sn(ζ) to S(ζ) over ζ ∈ R−1Θ, which

follows from compactness of R−1Θ, continuity of gi(ζ), Assumption 2.2.1, and the con-

sistency of ζ̂n,

‖Sn(ζ̂n)− S(ζ0)‖ = ‖Sn(ζ̂n)− S(ζ̂n) + S(ζ̂n)− S(ζ0)‖

≤ ‖Sn(ζ̂n)− S(ζ̂n)‖+ ‖S(ζ̂n)− S(ζ0)‖

≤ sup
ζ∈R−1Θ

‖Sn(ζ)− S(ζ)‖+ ‖S(ζ̂n)− S(ζ0)‖

= op(1). (2.47)
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Moreover, by the consistency of ζ̂n, Lemma 2.7.3 and equation (2.47) imply that

∂ḡn(ζ̂n)

∂ζ ′
Λn

p→M, Λ′n
∂ḡn(ζ̂n)′

∂ζ
Sn(ζ̂n)−1∂ḡn(ζ∗n)

∂ζ ′
Λn

p→M ′S−1M.

Because the H × p matrix M is full column rank under Assumption 2.3.3, then the

non-singularity of S and the rank condition of M imply that Λ′n
∂ḡn(ζ̂n)′

∂ζ
Sn(ζ̂n)−1 ∂ḡn(ζ∗n)

∂ζ′
Λn

is invertible for large enough n. Hence, from (2.46) and Λ′nOp(n
−1/2) = Op(‖Λn/

√
n‖) =

op(1), we obtain

√
nΛ−1

n (ζ̂n − ζ0)

=−

[
Λ′n
∂ḡn(ζ̂n)′

∂ζ
Sn(ζ̂n)−1∂ḡn(ζ∗n)

∂ζ ′
Λn

]−1

Λ′n
∂ḡn(ζ̂n)′

∂ζ
Sn(ζ̂n)−1

√
nḡn(ζ0) + op(1). (2.48)

Therefore, based on (2.47), (2.48) and the asymptotic normality of
√
nḡn(ζ0) from

Lemma 2.7.1, the desired results follow.

Proof of Theorem 2.3.6. First, we recall the parameter rotation ζ = (η′, θ′2)′, where

ζ := R−1θ. For ζ̂n = R−1θ̂n, the perturbed parameter values are defined by

ζ̂δn :=


η̂1n

η̂2n

...

θ̂2n

+


δn

0
...

0

 = R−1θ̂n +


δn

0
...

0

 ,

θ̂δn := Rζ̂δn. (2.49)

A mean value expansion of ḡn(θ̂δn) yields, for An := RΛn,

√
nḡn(θ̂δn) =

√
nḡn(θ0) +

1√
n

n∑
i=1

∂gi(θ
∗
n)

∂θ′
(θ̂δn − θ0)

=
√
nḡn(θ0) +

∂ḡn(θ∗n)

∂θ′
An
√
nA−1

n (θ̂n − θ0) +
√
n
∂ḡn(θ∗n)

∂θ′
R

 δn

0p−1

 (2.50)

where θ∗n is component-by-component between θ̂n and θ0. We now analyse each of the

terms in (2.50).



88 CHAPTER 2. WEAK IDENTIFICATION IN DISCRETE CHOICE MODELS

For the first term in (2.50), by Lemma 2.7.1,
√
nḡn(θ0) = Op(1). For the second term,

first note that, under the alternative hypothesis, ‖θ̂n−θ0‖ = op(1) (by Proposition 2.3.3),

which further implies ‖ζ∗n − ζ0‖ = op(1) for ζ∗n = R−1θ∗n. Then, it follows that

∂ḡn(θ∗n)

∂θ′
An
√
nA−1

n (θ̂n − θ0) =
∂ḡn(ζ∗n)

∂ζ
Λn

√
nΛ−1

n

(
ζ̂n − ζ0

)
= M ·Op(1)

= Op(1),

where the second equality follows from Lemma 2.7.3, and the third from the fact that

‖M‖ <∞. Therefore, the second term in (2.50) is Op(1).

Focusing on the last term in (2.50), we have

√
n
∂ḡn(θ?n)

∂θ′
R

 δn

0p−1

 =
∂ḡn(ζ?n)

∂ζ ′
Λn

√
nΛ−1

n

 δn

0p−1


= M

δn {√n/ςn}
0p−1

+ op(1),

=

V 0(η0)δn {
√
n/ςn}

0p−1

+ op(1), (2.51)

where the second line follows from Lemma 2.7.3 and the last from the fact that M is

full rank (Lemma 2.3.4). Applying these order results for the three terms in (2.50), we

obtain

√
nḡn(θ̂δn) = Op(1) +

V 0(η0)δn {
√
n/ςn}

0p−1

+ op(1).

Since ‖V 0(η0)‖ > 0 by Assumption 2.3.3, conclude that
√
nḡn(θ̂δn) diverges if {

√
n/ςn}δn →

∞.

Using the above result, we can now show that Jδn diverges under the alternative. From

the proof of Lemma 2.7.1,

n1/2{ḡn(θ)− En[ḡn(θ)]} ⇒ ν(θ), (2.52)
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where ν(θ) is a Gaussian stochastic process on Θ with mean-zero and bounded covariance

kernel S(θ, θ). Since θ̂δn
p→ θ0 under Assumption 2.3.3, the uniform convergence (2.52)

indicates that the sample covariance matrix satisfies Sn(θ̂δn)
p→ S(θ0). Thus, for n large

enough, Sn(θ̂δn) is positive-definite with bounded maximal eigenvalue. Therefore,

Jδn ≥ λmin

[
S−1
n (θ̂δn)

] ∥∥∥√nḡn(θ̂δn)
∥∥∥2

, (2.53)

where λmin

[
S−1
n (θ̂δn)

]
> 0 for large enough n. Thus, {

√
n/ςn}δn →∞ implies plim

n→∞
Jδn →

∞.



Chapter 3

Decomposing Identification Gains

and Evaluating Instrument

Identification Power for Partially

Identified ATE

3.1. Introduction

This chapter investigates the identification power of instrumental variables for the av-

erage treatment effect (ATE) in partially identified binary outcome models. Binary

outcome models with binary endogenous treatment are widely used in empirical studies.

The role played by the instrumental variable in identifying the ATE in such models has

long been a controversial topic and has been discussed in many papers (see e.g., Freed-

man and Sekhon, 2010; Han and Vytlacil, 2017; Heckman, 1978; Li, Poskitt, and Zhao,

2019; Maddala, 1986; Mourifié and Méango, 2014; Wilde, 2000). In particular, there is

a notion of “identification by functional form”(Li et al., 2019), where such non-linear

models can be point identified even without any IVs based on restrictive parametric as-

sumptions such as a bivariate probit. However, such identification has been described as

“fragile” (Marra and Radice, 2011), as models such as the bivariate probit are restrictive

90



3.1. INTRODUCTION 91

and hard to verify in practice. Once less restrictive assumptions are allowed, the IVs

have been shown to play a crucial role for meaningful identification in partially identified

models (see e.g., Chesher, 2005, 2010; Li et al., 2019; Shaikh and Vytlacil, 2011).

The literature on partially identified models offers a useful framework for the analysis

of IV identification power. The identified set for the ATE, defined as the collection all

possible values of the ATE from different observationally equivalent structures that can

give rise to the observed data, offers an obvious measure for identification power. For

example, Kitagawa (2009) and Swanson et al. (2018) use the size of the identified set

to measure the identification power of model assumptions. Naturally, the width of the

ATE identified set can also provide a measure to examine the IV contribution to the

identification gains. In this chapter, we use the reduction in the width of the identified

set as a measure for identification gains. Since the pioneering work of Manski (1990),

most of the ATE partial identification studies with an endogenous treatment have relied

on the IVs to bound the ATE (see Chesher, 2010; Chiburis, 2010; Flores and Chen,

2018; Heckman and Vytlacil, 1999, 2001; Shaikh and Vytlacil, 2011; Vytlacil and Yildiz,

2007; Vuong and Xu, 2017). Both Chesher (2010) and Li et al. (2018) show that the

existence and the strength of the IVs can significantly affect the identification of the ATE

for discrete outcome models. However, the mechanism through which the IV strength

translates to identification gains in such non-linear models has not been well understood

by researchers.

In endogenous treatment effect models, the IVs exert their influence through their im-

pact on the treatment propensity score. Heckman, Urzua, and Vytlacil (2006) provide a

comprehensive study of the properties of IVs in models with continuous outcomes, and

point out the central role of the propensity scores in such models. Other works that es-

tablish the important role of the propensity score include Rosenbaum and Rubin (1983),

Heckman and Robb (1985, 1986), Heckman (1990), and Ahn and Powell (1993). In con-

tinuous outcome models, it is well known that the “identification at infinity”, namely

the existence of values of the IVs that can produce propensity scores of zero and one,

leads to the point identification of the ATE (Heckman and Vytlacil, 1999, 2001; Imbens

and Angrist, 1994). However, this condition is rarely guaranteed in practice, especially
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when available IVs have limited variation. Thus, it is important to understand how the

achievable variation of the conditional propensity scores determines the ability of the

IVs to shrink the size of the ATE identified set.

The crucial role played by the IVs has also been noted for discrete outcome models. In

particular, it is commonly accepted that Manski’s ATE bounds (Manski, 1990), which

employ no IVs and have the support of the “hypothetical propensity score” as an empty

set, can be uninformative. Chesher (2010) has pointed out that the support and the

strength of the IVs play an important role in determining the ATE bounds. Li et al.

(2018) use a version of pseudo R2 to measure IV strength and show that the ATE bound

width decreases as the pseudo R2 increases. As with linear models, it is natural to expect

that the propensity score variation is also a key component that governs the ability of the

IVs to identify the ATE. However, to the authors’ knowledge, no rigorous examinations

have yet been conducted to investigate the factors contributing to the identification gains

of the ATE for discrete outcome models when “identification at infinity” fails. It is part

of the purpose of this chapter to investigate this lacuna.

This chapter presents a rigorous examination of the role of IVs and their interplay with

other factors in the identification gains for the ATE in binary outcome models with an

endogenous binary treatment. Using the bivariate joint threshold crossing model pro-

posed by Shaikh and Vytlacil (2011) (henceforth referred to as the SV model or SV

bounds) as an example, we study the identification gains achieved by the SV bounds

against those from an ATE bounds benchmark, the bounds of Manski (1990) (hereafter

Manski bounds). The rationale for using Manski’s bounds as a benchmark follows from

the observation that if the IVs are irrelevant, then the SV bounds collapse to Manski

bounds. Using this framework, we disentangle the various impacts of IVs on identifi-

cation gains, which yields a novel decomposition of the ATE SV bounds identification

gains. This decomposition provides useful insights into the different sources and nature

of identification gains.

Our chapter makes several contributions. Firstly, we distinguish the concepts of IV

strength and IV identification power for binary dependent variables models. It can be

shown that, as in the case of linear models, the IV strength, measured by the range of the
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conditional propensity score (CPS) that are attributable to the IVs, plays a crucial role

in the identification gains when bounding the ATE. More importantly, we demonstrate

that unlike linear models, the IV identification power is also determined by the interplay

of the IVs with the sign and the degree of treatment endogeneity. This is because in such

non-linear models, the ATE bounds are governed by the joint probabilities of the outcome

and the treatment, which are non-linear functions of the endogeneity degree. Thus, the

same information contained in the IVs may be correspondingly scaled up or down via the

leverage induced by the endogeneity. Therefore, the conventional notion of IV strength

no longer provides the full picture of IV identification power, and is not the sole arbiter

of instrument usefulness. Our second contribution is to propose a novel decomposition

of the identification gains into three components. These components are governed by the

IV validity, the IV strength, and the impact of the exogenous covariates via matching.

The proposed decomposition of the ATE bounds is implemented by comparing the SV

bounds (Shaikh and Vytlacil, 2011) to the benchmark of the Manski bounds (Manski,

1990), and by disentangling the different sources of the overall identification gains. This

allows us to analyse the ATE partial identification mechanism and to thereby characterise

the structure of the overall identification gains.

Based on the decomposition, the third contribution of this chapter is to propose a des-

ignated measure for the instrument identification power (hereafter IIP ). The IIP mea-

sures the IV contribution to identification gains by quantifying the reduction in the size

of the ATE identified set that can be attributed to the instruments alone. Works that

aim to provide measures of the explained variation in limited dependent variable mod-

els, such as Veall and Zimmermann (1992, 1996), are already available and Windmeijer

(1995) provides a comprehensive review of various pseudo R2 goodness-of-fit measures.

In general, pseudo R2 statistics are developed for single equation limited dependent vari-

able models, rather than for triangular systems with a binary endogenous treatment.

Although such pseudo R2 statistics will yield a measure of the IV strength (as used in Li

et al., 2018), they are not appropriate measures for IV identification power, as they fail

to capture the critical fact that the IV identification information pertaining to the ATE

varies with the endogeneity degree. Consequently, any suggestion that pseudo R2 statis-

tics will be an indicator of the IV identification power would be misplaced. In contrast,
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the IIP proposed in this chapter is specifically designed to evaluate the identification

gains that can be solely attributed to the IVs.

Finally, our study also provides potential insights into the literature on instrument rele-

vancy, weak instruments and instrument selection. The importance of this IIP measure

is that it enables a ranking of alternative IVs by their identification power, thereby offer-

ing a potential criterion for detection of irrelevant IVs and for selection of sets of IVs for

constructing the ATE bounds. In this way, our measure is akin to existing approaches

in the generalised methods of moment (GMM) literature that seek to determine instru-

ment “relevancy”. The ability of our approach to determine and rank sets of IVs by their

identification gains leads us to document, we believe for the first time, a critically im-

portant feature of binary triangular equations systems: while in the population, adding

irrelevant IVs can not increase the IV identification power, in finite-samples, using such

IVs to partially identify the ATE could lead to a loss in IV identification power, which

may result in wider ATE bounds especially when the variation of covariates is limited.

We liken this phenomena to the well-known problem of irrelevant moment conditions

in GMM (see Breusch et al., 1999; Hall and Peixe, 2003; Hall, 2005; Hall et al., 2007,

among others) and leave a more rigorous study of this topic for future research.

3.2. Model Setup and the ATE SV Bounds

Following the potential outcome framework, let Y be a binary outcome such that

Y = DY1 + (1−D)Y0,

where D ∈ {0, 1} is a treatment indicator with D = 1 denoting being treated and

D = 0 denoting being untreated. The pair Y0, Y1 ∈ {0, 1} are two potential outcomes

in the untreated and treated states. We observe (Y,D,X,Z), where X denotes a vector

of exogenous covariates and Z represents a vector of instruments that can be either

continuous or discrete. Suppose we are interested in the conditional ATE, defined as

ATE(x) = E[Y1|X = x]− E[Y0|X = x].
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Because only one of the potential outcomes is observed, we are faced with a missing

data problem. If the potential outcomes are independent of the treatment D then it

can be shown that the ATE(x) is point identified. However, in many empirical studies

D is endogenous and hence correlated with the potential outcomes. Nevertheless, with

the help of IVs we may partially identify the ATE(x) and construct an identified set

for the ATE under mild conditions that are satisfied by a wide range of data generating

processes.

For notational simplicity, henceforth we will use Pr(A|w) to represent Pr(A|W = w)

for any event A, random variable W and its possible value w unless otherwise stated.

For any generic random variables A and B, the support of A is denoted as ΩA and

the support of A conditional on B = b is given by ΩA|b. Let FA,B denote the joint

cumulative distribution function (CDF) of (A,B), FA the marginal CDF of A, and FA|B

the conditional CDF of A given B. Corresponding density functions will be denoted

using a lower case f with associated subscript in an obvious way.

We now introduce the model and the identified set of the ATE studied in Shaikh and

Vytlacil (2011), based on which we explore the factors determining the ATE bounds and

how they impact the ATE bound width. Consider a joint threshold crossing model

Y = 1[ν1(D,X) > ε1],

D = 1[ν2(X,Z) > ε2],
(3.1)

where ν1(·, ·) and ν2(·, ·) are unknown functions, and (ε1, ε2)′ is an unobservable error

term with joint CDF Fε1,ε2 . Threshold crossing models are often used in treatment

evaluation studies (see Heckman and Vytlacil, 1999, 2001, for example), and have been

shown to be informative in the sense that the sign of the ATE can be recovered from

the observable data, and the ATE can even be point identified in certain circumstances;

see Shaikh and Vytlacil (2005, 2011), Vytlacil and Yildiz (2007) and Vuong and Xu

(2017) among others. Bhattacharya et al. (2012) demonstrate that the SV bounds still

hold under a rank similarity condition, a weaker property that allows heterogeneity in

the sign of the ATE(x). Furthermore, as mentioned in Vytlacil and Yildiz (2007), it

is possible to achieve the ATE point identification via the SV bounds if X contains a
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continuous element or the exclusion restriction holds in both equations. Moreover, tests

for the applicability of threshold crossing also have been developed (Bhattacharya et al.,

2012; Heckman and Vytlacil, 2005; Kitagawa, 2015; Machado et al., 2013) for example.

The following assumption summarises the conditions imposed by Shaikh and Vytlacil

(2011).

Assumption 3.2.1 The model in (3.1) is assumed to satisfy the following conditions:

(a) The distribution of error term (ε1, ε2)′ has a strictly positive density with respect

to the Lebesgue measure on R2.

(b) (X,Z) is independent of (ε1, ε2).

(c) The distribution of ν2(X,Z)|X is non-degenerate.

(d) The support of the distribution of (X,Z), ΩX,Z, is compact.

(e) ν1 : ΩD,X → R, ν2 : ΩX,Z → R are continuous in both arguments.

Assumption 3.2.1 ensures that the instruments in Z satisfy the exclusion restriction, is

independent of the error term (ε1, ε2)′ and relevant to the treatment D. In addition,

Assumption 3.2.1 (a) and (b) are such that Z enters the outcome Y only through the

propensity score, which is called index sufficiency. Conditions (d) and (e) are required

to establish the sharpness of the identified set, and are imposed for analytical simplicity.

Denote random variable P = Pr[Y = 1|X,Z] with support ΩP . Under Assumption 3.2.1

(a)-(c), Shaikh and Vytlacil (2011) show that the sign of the ATE(x) is identified: for

any p and p′ in ΩP such that p > p′,

sgn[ATE(x)] = sgn[ν1(1, x)− ν1(0, x)] = sgn [Pr[Y = 1|x, p]− Pr[Y = 1|x, p′]] , (3.2)

where sgn[·] is the conventional signum function. Given (3.2), it is apparent that the

sign of the ATE(x) is recovered from the observables if Z is valid in the sense that Z is

independent to (ε1, ε2) and it has nonzero prediction power for the treatment, meaning

that there exist two different values of p, p′ ∈ ΩP |x such that p =Pr[D = 1|x, z] and
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p′ =Pr[D = 1|x, z′].

More importantly, Assumption 3.2.1 is sufficient to construct bounds for the ATE, re-

ferred to as SV bounds. Let P and P ′ are two independent random variables with

the same distribution, and let x, x′ be any two values in ΩX . Now, define H(x, x′) =

E[h(x, x′, P, P ′)|P > P ′] where

h(x, x′, p, p′) =Pr[Y = 1, D = 1|x′, p]− Pr[Y = 1, D = 1|x′, p′]

− Pr[Y = 1, D = 0|x, p′] + Pr[Y = 1, D = 0|x, p].

Let X0+(x) = {x′ : H(x, x′) ≥ 0}, X0−(x) = {x′ : H(x, x′) ≤ 0}, X1+(x) = {x′ :

H(x′, x) ≥ 0}, and X1−(x) = {x′ : H(x′, x) ≤ 0}. Then the SV lower bound is

LSV (x) = sup
p∈ΩP |x

{
Pr[Y = 1, D = 1|x, p] + sup

x′∈X1+(x)

Pr[Y = 1, D = 0|x′, p]

}

− inf
p∈ΩP |x

{
Pr[Y = 1, D = 0|x, p] + p inf

x′∈X0+(x)
Pr[Y = 1|x′, p,D = 1]

}
,

(3.3)

and the SV upper bound is

USV (x) = inf
p∈ΩP |x

{
Pr[Y = 1, D = 1|x, p] + (1− p) inf

x′∈X1−(x)
Pr[Y = 1|x′, p,D = 0]

}
− sup

p∈ΩP |x

{
Pr[Y = 1, D = 0|x, p] + sup

x′∈X0−(x)

Pr[Y = 1, D = 1|x′, p]

}
.

(3.4)

The SV bounds in (3.3) and (3.4) consist of two layers of intersection evaluations. The

first layer is to intersect all possible values of the conditional propensity score, or equiva-

lently, of the IVs. The second layer is to utilise the identifying information contained in

covariates. In particular, for given x, the second layer of intersections are taken over val-

ues of the covariates other than x, say x′, which lies in a certain subset of ΩX , and there

exists a z′ ∈ ΩZ|x such that p=Pr[D = 1|x, z] =Pr[D = 1|x′, z′]. Thus, both the IVs and

the covariates contribute to the identification gains of SV bounds. It is understood that

in (3.3) and (3.4) the supremum and infimum operators are only taken over regions where

all conditional probabilities are well defined. The probabilities Pr[Y = y,D = d|x′, p]

and Pr[Y = y|x′, p,D = d] are well defined for y ∈ {0, 1} and d ∈ {0, 1}, if there exists
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a value z′ ∈ ΩZ|x such that Pr[D = 1|x′, z′] = p. The supremum over an empty set is

defined as 0, and the infimum over an empty set is defined as 1. Given (3.3) and (3.4),

the width of SV bounds can be defined as

ωSV (x) = USV (x)− LSV (x) .

In the next section, we study the factors that impact the SV bounds and ωSV (x).

3.3. The Determinants of ATE Bounds

As discussed in the introduction, for binary dependent variables the propensity of being

treated is a key factor that carries the identification information in the IVs. Therefore,

we start from the conditional propensity score (CPS) of the treatment, defined as Pr[D =

1|X = x, Z], which is a random variable (function) of IV Z, and study the features of

the CPS that are crucial in determining the SV bound width.

3.3.1. The Conditional Propensity Score

In the following proposition, for the sake of completeness, we first restate the sharpness

result in Shaikh and Vytlacil (2011) under a stronger support condition ΩX,P = ΩX×ΩP ,

and then introduce our new results about the connections between P = Pr[D = 1|X,Z]

and the SV bound width. Denote the two extreme values of the support of variable P

by p := inf{p ∈ ΩP} and p := sup{p ∈ ΩP} respectively.

Proposition 3.3.1 Let Assumption 3.2.1 hold. If ΩX,P = ΩX×ΩP , then the SV bounds

in (3.3) and (3.4) are sharp. In addition, for any given ∀x ∈ ΩX ,

(a) LSV (x) is weakly increasing as p decreases or as p increases;

(b) USV (x) is weakly decreasing as p decreases or as p increases;

and hence

(c) ωSV (x) is weakly decreasing as p decreases or as p increases.
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Notice that under the restriction ΩX,P = ΩX × ΩP , the support of P is the same to the

support of the CPS Pr[D = 1|X = x, Z] for ∀x ∈ ΩX . Proposition 3.3.1 shows that the

locations of the lower and upper SV bounds are determined by the extreme values of

the CPS, i.e. p and p. Moreover, the width of the SV bounds ωSV (x) weakly decreases

as the support of the CPS “expands”. It means that when the IVs are good predictors

of the treatment status, the identified set of the ATE(x) (SV bounds) is likely to be

informative.

The feature revealed by Proposition 3.3.1 is significant. It indicates that in partially

identified models with binary dependent variables, the property of IVs that determines

their contribution to identification gains is different from that which has hitherto been

held to be important. Key ingredients of conventional measures of IV strength are

the correlation between the IVs and the endogenous regressors (as evaluated via the

first-stage F -statistic for continuous endogenous regressors, or the pseudo-R2 for binary

response variables), as well as the variation of the IVs to that of the random noise.

However, Proposition 3.3.1 indicates that two IV sets that have the same CPS end points

will make identical contributions to identification gains when partially identifying the

ATE, irrespective of their correlation with the endogenous regressors or their variability.

The restriction ΩX,P = ΩX × ΩP in Proposition 3.3.1 is utilised in Shaikh and Vytlacil

(2011) to simplify the expression of the SV bound and to prove the sharp result. It

is also one of the sufficient conditions that ensures global identification in a parametric

triangular system model with binary endogenous treatment, see Han and Vytlacil (2017)

Theorem 5.1. Without ΩX,P = ΩX × ΩP , the SV bound need not be sharp. Chiburis

(2010) shows that under joint threshold crossing the sharp ATE bounds can only be

implicitly determined by a copula, so that neither a closed form expression nor a com-

putationally feasible linear programming algorithm that solves this problem exists. We

therefore maintain the support restriction. The condition ΩX,P = ΩX × ΩP is saying

that for any x, x′ ∈ ΩX , we have ΩP |x = ΩP |x′ ; i.e. there exist possible realisations z, z′

of Z such that Pr[D = 1|x, z] = Pr[D = 1|x′, z′], which might fail to hold in practice es-

pecially when the variation in Z is limited. One sufficient condition for ΩX,P = ΩX×ΩP

to hold is that X is mean independence of D given Z. The necessity of the condition



100 CHAPTER 3. INSTRUMENT IDENTIFICATION POWER

ΩX,P = ΩX × ΩP here is that without this support restriction, the SV bound may not

exhibit a monotonic relationship with the extreme values of the CPS.

Fortunately, although Proposition 3.3.1 is derived using the support constraint, from the

simulations in Section 3.7 we can see that the SV bound width decreases, on average,

whenever the extreme values of the CPS changes to their endpoints (zero and one).

In fact, as we will now show, without the imposition of the support condition ΩX,P =

ΩX × ΩP , a “widest bound” under Assumption 3.2.1 that restricts the size of ωSV (x)

can be derived for any given x ∈ ΩX . Define the two extremes of the CPS as p(x) :=

infz∈ΩZ|x{p ∈ ΩP |x,z} and p(x) := supz∈ΩZ|x
{p ∈ ΩP |x,z}.

Proposition 3.3.2 Let Assumption 3.2.1 hold. There exists a function ω : ΩX 7→ [0, 1]

such that 0 ≤ ωSV (x) ≤ ω(x) for any given x ∈ ΩX . In addition,

if ATE(x) > 0 , then ω(x) = Pr
[
Y = 1, D = 1|x, p(x)

]
+ Pr [Y = 0, D = 0|x, p(x)] ;

if ATE(x) < 0 , then ω(x) = Pr [Y = 1, D = 0|x, p(x)] + Pr
[
Y = 0, D = 1|x, p(x)

]
.

Moreover, ω(x) is weakly decreasing as p(x) decreases or as p(x) increases.

The explicit expressions of the widest bounds, with width ω(x), can be found in (3.14)

and (3.16); see the proof of Proposition 3.3.2. From Proposition 3.3.2 we can see that

ω(x) is monotone in the extreme values of CPS, i.e. (p(x), p(x)), and we are able to

conclude that the extreme values of the CPS govern the size of the SV bound width even

without the support restriction. Moreover, under the extreme case of perfect prediction,

Proposition 3.3.2 implies that the ATE(x) is point identified by the SV bounds. Suppose

p∗, p∗∗ ∈ ΩP |x are such that Pr[D = 0|x, p∗] = 1 and Pr[D = 1|x, p∗∗] = 1. By the

definition of p(x), p(x), we have that p∗ = p(x) and p∗∗ = p(x). Proposition 3.3.2 then

yields that ω(x) = 0 whatever the sign of the ATE(x), indicating that the ATE(x) is

point identified. From the above discussion it is apparent that perfect prediction in the

binary dependent variables model is equivalent to “identification at infinity”. Similar

discussion can also be found when partially identifying the ATE in models with discrete

outcomes in Chesher (2010).
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3.3.2. The Degree of Endogeneity

The importance of IVs in determining the ATE bounds via the CPS has been recognised

in several studies, but it seems that another crucial determinant, the degree of endogene-

ity, has so far received little attention. The ATE bounds are constructed using the joint

probabilities of the outcome and the treatment, and the IVs affect those joint probabili-

ties not only directly through the CPS but also indirectly through the co-movements of

the outcome and the treatment due to the endogeneity. Thus, it is reasonable to expect

that the information contained in the IVs may be correspondingly scaled via the leverage

induced by the degree of endogeneity.

To facilitate obtaining interpretable relationships between the degree of endogeneity and

the SV bound width, we introduce a family of bivariate single parameter copulae that

specifies the joint distribution of the stochastic error terms in (3.1), while we do not

require the copula nor the marginal distributions to be known. Denote a copula as

C(·, ·; ρ) : (0, 1)2 7→ (0, 1), where ρ ∈ Ωρ is a scalar dependence parameter that fully

describes the joint dependence between ε1 and ε2, and their dependence increases as

ρ increases. In the special case of a normal bivariate probit model ρ represents the

correlation between the error terms and Ωρ = (−1, 1), but the parameter space of ρ

is not necessary (−1, 1). It differs along with the copula. It is worth noting that in

our setting, for any given copula, the dependence parameter ρ can be understood as

indicating the level of endogeneity. We also impose additional dependence structure, the

concordance ordering, on the copula C(·, ·; ρ). Let Fε1,ε2 and F̃ε1,ε2 be two distinct CDFs.

Following Joe (1997), we define F̃ε1,ε2 as being more concordant than Fε1,ε2 , denoted by

Fε1,ε2 ≺c F̃ε1,ε2 , as

Fε1,ε2(e1, e2) ≤ F̃ε1,ε2(e1, e2), ∀ (e1, e2) ∈ R2.

For ρ1 6= ρ2 and u1, u2 ∈ (0, 1)2, we say that the copula C(·, ·; ρ) satisfies the concordant

ordering with respect to ρ, denoted as C(u1, u2; ρ1) ≺c C(u1, u2; ρ2), if

C(u1, u2; ρ1) ≤ C(u1, u2; ρ2), for any ρ1 < ρ2. (3.5)
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The concordant ordering with respect to ρ is a stochastic dominance restriction. The

concordant ordering is embodied in many well-known copulae, including the normal

copula; see Joe (1997) Section 5.1 for the copulae families where (3.5) holds. Similar

stochastic dominance conditions are employed in, for example, Han and Vytlacil (2017)

and Han and Lee (2019), to derive identification and estimation results for the parametric

bivariate probit model and its generalisations.

Assumption 3.3.1 The joint distribution of (ε1, ε2)′ is given by a member of the single

parameter copula family Fε1,ε2(e1, e2) = C(Fε1(e1), Fε2(e2); ρ), for (e1, e2) ∈ R2, where

C(·, ·; ρ) satisfies the concordant ordering with respect to ρ.

Assumption 3.3.1 defines a class of data generating processes that is sufficient for us to

establish the relationship between endogeneity as captured by the dependence parameter

ρ, and the widest SV bound width ω(x). The derivation of the following proposition does

not require the copula C(·, ·; ρ) nor the marginal distributions Fε1 and Fε2 to be specified.

Proposition 3.3.3 Under Assumptions 3.2.1 and 3.3.1, the widest SV bound width ω(x)

is weakly increasing in ρ when ATE(x) > 0, and ω(x) is weakly decreasing in ρ when

ATE(x) < 0.

Proposition 3.3.3 implies that the (widest) SV bound width could be significantly im-

pacted by the degree of endogeneity, even if the extreme values of the CPS are fixed.

In addition, Proposition 3.3.3 also reveals that the effect of endogeneity is asymmetric.

To be more specific, with a positive treatment effect negative endogeneity helps narrow

down the ATE bound width, while the opposite holds true for a negative treatment

effect. Therefore, when measuring IVs’ identification gains in an ATE partial identi-

fication framework, both the sign and the strength of endogeneity play an important

role. A set of “seemingly weak” IVs, judged from the first-stage estimation alone, may

actually achieve significant identification gains if in a problem with certain sign and level

of endogeneity, thus considered as having enough identification power. Conversely, a set

of “seemingly strong” IVs can be surprisingly powerless due to an undesirable sign or

degree of endogeneity, resulting in wide ATE bounds. Thus, the conventional tests for

detecting IV strength, such as F -statistic and pseudo R2, or the associated weak IV tests
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designed for linear models, can be misleading in measuring IV identification power. The

result here shows that IV strength is a different concept from the IV identification power

in this binary model.

3.3.3. Covariate Support and Variability

As we have seen from the construction of the SV bounds in Section 3.2, both IVs and co-

variates contribute to identifying the ATE under model (3.1). It is perhaps not surprising

to find that there are situations where covariates fail to further tighten the SV bounds, a

feature previously noted in Chiburis (2010). This happens when, conditional on D, the

covariates in X have no additional effects on the outcome Y , leading to ωSV (x) = ω(x).

The following proposition formalises these statements.

Proposition 3.3.4 Let Assumption 3.2.1 hold. If the random variable ν1(D,X)|D is

degenerate, then ωSV (x) = ω(x).

Proposition 3.3.4 implies that any further reduction in the SV bound width from ω(x)

to ωSV (x) can be attributed to the additional identification information in the co-

variate X. In particular, if focusing on the second layer of the intersections over

X0+(x),X0−(x),X1+(x) and X1−(x) in bounds (3.3) and (3.4), we can see that such

identification gain is extracted from the matching pair (x, z), (x′, z′) ∈ ΩX,Z such that

Pr[D = 1|x, z] =Pr[D = 1|x′, z′]. Thus, broader support and greater variability in X

increases the probability of finding a matching pair.

To sum up, from the discussion in Section 3.3, we know that the identification power for

the ATE SV bounds is determined by the extreme values of the CPS, the sign and the

degree of endogeneity, and the variability (or support) of the covariates in the outcome

equation.

3.4. Decomposing Identification Gains

Based on the discussions above, in this section we introduce a novel decomposition of

the identification gains of the SV bounds. It disentangles the identification gains into



104 CHAPTER 3. INSTRUMENT IDENTIFICATION POWER

components that are attributable to the gains obtained from the IVs and the exogenous

covariates. To construct the decomposition let us first introduce the benchmark ATE

bounds of Manski (1990) (Manski bounds), which are obtained without reference to IVs

and are given by

LM(x) = −Pr[Y = 1, D = 0|x]− Pr[Y = 0, D = 1|x],

UM(x) = Pr[Y = 1, D = 1|x] + Pr[Y = 0, D = 0|x],
(3.6)

where (with obvious notations) LM(X) and UM(x) are the lower bound and upper bound

respectively. From (3.6), it is apparent that the width of the Manski bounds, defined

as ωM(x) = UM(x) − LM(x), is one for any given x ∈ ΩX , with the lower bound and

upper bound falling on either side of zero. Thus,
[
LM(x), UM(x)] is uninformative as to

the sign or location of the treatment effect, and it is often referred to in the literature as

“the worst case scenario” (see Bhattacharya et al., 2012; Chiburis, 2010; Tamer, 2010,

for example).

Our proposed decomposition of identification gains is inspired by the implications of the

theoretical results in Section 3.3. For any given x ∈ ΩX , the decomposition consists of

four components, denoted by C1(x) to C4(x) respectively. Each component corresponds

to the identification gains made by the SV bounds over the benchmark Manski bounds.

(i) C1(x): Contribution of IV Validity. The first component of the identification

gains is the reduction in the SV bound width relative to the benchmark Manski

bound width, due to the identification of the ATE(x) sign. This contribution is

accredited to IV validity, since by (3.2) we can identify the sign of the ATE(x) if

the IVs are independent of the error term (ε1, ε2) and ν2(X,Z)|X is nondegenerate

(or equivalently, if the IVs are valid) regardless of the IV strength.1 For ∀x ∈ ΩX ,

C1(x) = 1[ATE(x) ≤ 0]UM(x)− 1[ATE(x) ≥ 0]LM(x),

which is equivalent to the width of the negative (positive) part of Manski bounds

1If ATE(x)=0 is identified by (3.2), i.e. Pr[Y = 1|x, p] = Pr[Y = 1|x, p′] for any p > p′, then it is
obvious that the first contribution of SV bounds already leads to the point identification of the ATE(x),
and the IV identification power IIP (x), which will be introduced in Section 3.5, achieves its maximum
value one.
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if ATE(x) is identified to be positive (negative).

(ii) C2(x): Contribution of IV Strength. Conditional on the first component, IV

validity, the second component captures to the further reduction achieved by the

SV bound width via intersecting over all possible values of Z. This is reflected

in the dependence of the SV bounds in (3.3) and (3.4) on the two extreme values

of the CPS, and the closer the extreme values to [0, 1] are, the greater is C2(x).

Therefore, identification gains attributed to IV strength can be measured as

C2(x) = ωM(x)− ω(x)− C1(x).

(iii) C3(x): Contribution of Covariates. The third component is the incremental

reduction in the SV bound width brought about by intersecting over all possible

values of the exogenous covariates X that fall into the areas described by the

sets X0+(x),X0−(x),X1+(x) and X1−(x) via matching for the same propensity

score values. As implied by Proposition 3.3.4, this component is attributed to the

variation of exogenous covariates:

C3(x) = ω(x)− ωSV (x).

(iv) C4(x): Remaining SV Bound Width. The last component is due to the unob-

servable error terms, and relates to the remaining SV bound width that cannot be

further reduced by the observable data under the SV modelling assumptions. This

component can be thought of as the signal-to-noise ratio of the error terms. By

construction, we have C4(x) = ωSV (x).

It is easy to see that C1(x) + C2(x) + C3(x) + C4(x) = ωM(x) = 1. If ν2(X,Z)|X

is degenerate and the IVs have no explanatory power for the treatment, then C1(x) =

C2(x) = C3(x) = 0 and the SV bounds reduce to Manski bounds. It is worth to note that

although we do not decompose the identification gains based on the sign and the degree

of endogeneity, the magnitude of all the four components varies with them. According to

Proposition 3.3.3, the sign and the endogeneity degree affects ω(x), which enters all four
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components either directly or indirectly due that the summation of the four components

is a fixed value one. In addition, C1(x) to C4(x) can always be identified and estimated

from the data. In practice, once the model has been estimated (parametrically or non-

parametrically), the estimates can be used to construct the decomposition. Detailed

numerical illustrations and simulations of the decomposition are presented in Sections

3.6 and 3.7.

3.5. IV Identification Power (IIP )

By construction, the identification gains decomposition satisfies C1(x)+C2(x)+C3(x)+

C4(x) = ωM(x) = 1, ∀x ∈ ΩX , with each Cj(x) representing the proportion of total

identification gains that can be attributed to the corresponding component. Based on

the decomposition, we can then construct a quantitative measurement of IV identification

power in the partial identification setting. Suppose Assumption 3.2.1 holds, bar condition

(c). For ∀x ∈ ΩX , define the IV identification power IIP (x) as

IIP (x) :=

ω
M(x)− ω(x), if ν2(X,Z)|X = x is nondegenerate

0, if ν2(X,Z)|X = x is degenerate

(3.7)

where ω(x) is the widest width of the SV bounds defined in Proposition 3.3.3. Setting

IIP (x) = 0 when ν2(X,Z)|X = x is degenerate is equivalent to setting ω(x) = ωM(x) =

1, meaning that the widest width of the SV bounds equates to the width of the bench-

mark Manski bounds because the IVs are irrelevant.2 From the decomposition, we have

IIP (x) = C1(x) + C2(x) when the IVs are valid and relevant. Thus IIP (x) represents

the proportion of the identification gains that is due to the IVs alone and it can be

viewed as an index of the IV identification power. The overall IV identification power

can be obtained by taking the expectation of IIP (x) over ΩX , i.e. EX [IIP (X)].

The following proposition formalises some important properties of IIP (x) as an indicator

of the IV identification power.

2The definition allows IIP (x) to be discontinuous at ΩP |x = px for some constant px ∈ [0, 1], i.e.
when ΩP |x is a singleton.
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Proposition 3.5.1 The index IIP (x) lies in the unit interval [0, 1], and under Assump-

tion 3.2.1 IIP (x) has the following properties:

(a) IIP (x) always lies in [0, 1] and can identify whether at least one of the IVs used

to achieve the SV bounds is relevant;

(b) IIP (x) = 0 if none of the IVs in Z are relevant, then the SV bounds reduce to the

benchmark Manski bounds;

(c) IIP (x) = 1 if the IVs in Z have perfect predictive power for the treatment D

(identification at infinity holds), in the sense that there exists a p∗ and p∗∗ in ΩP |x

such that Pr[D = 0|x, p∗] = 1 and Pr[D = 1|x, p∗∗] = 1. Moreover, the ATE(x) is

point identified when IIP (x) = 1.

Proposition 3.5.1 indicates that IIP (x) is a meaningful measure of IV usefulness for

improving the ATE partial identification. Therefore, values of IIP (x) can be compared,

across different sets of IVs, or across different values of x given the same set of IVs, since

they are standardised relative to the same baseline benchmark. IIP (x) or EX [IIP (X)]

can also be compared across various studies if necessary. For example, IIP (x) = 0.4

can be interpreted as that the Manski bound width can be reduced by 0.4 by using

instruments alone. In this sense, the measure of IIP (x) is a meaningful measure in-

dependent of the specific SV bounds. Theoretically, the value of IIP (x) should lie in

[0, 1] and the width of Manski bounds is always one. Then IIP (x) can be interpreted

as the percentage points of the identification gains brought by the IVs. In finite sam-

ple settings where the estimated Manski bound width may on longer be exact one, the

sample explanation can be obtained by computing the ratio IIP (x)/ωM(x) using their

associated estimates. In addition, the values of IIP (x) at its end points are intuitively

interpretable; IIP (x) = 0 identifies situations where the IVs are completely irrelevant,

and, when the IVs are able to perfectly predict the treatment status (when identification

at infinity holds,) IIP (x) = 1 and point identification of the ATE(x) is achieved.

Numerical analysis is used in Section 3.6 to illustrate the behaviour of IIP (x) in a class

of representative models. At this point we note that IIP (x) ignores the component
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of identification gains attributable to the exogenous covariates, namely C3(x). In view

of the additivity of the identification gains decomposition, this neglect seems entirely

reasonable since we know, from Section 3.3, that for a given degree of endogeneity and

extremes of the CPS, the value of ω(x) does not vary with the identification information

contained by the covariates. This indicates that IIP (x) is a measure of identification

gains due to IVs alone, without the contribution of the additional identification power

provided by the exogenous covariates. It measures the smallest identification gains rela-

tive to the benchmark Manski bound that can be achieved by a given set of IVs. More

importantly, focusing on IIP (x) introduces considerable computational simplification

when comparing sets of IVs, as it avoids the second layer of the intersection bounds

required to compute the SV bounds.

3.6. Numerical Illustration

In this section we illustrate numerically the theoretical results on the decomposition of

SV bounds studied in Section 3.2, and how each component affects the SV bounds. We

consider as our data generating process (DGP) a version of the model in (3.1) with a

linear additive latent structure, which is similar to that studied in Li et al. (2019):

Y = 1[αD + βX + ε1 > 0],

D = 1[γZ + πX + ε2 > 0],
(3.8)

where the exogenous regressor X and the IV Z are assumed mutually independent,

without loss of generality, X ∼ N(0, 1) and Z ∈ {−1, 1} with Pr(Z = 1) = 1/2. In

addition, (X,Z)′ ⊥ (ε1, ε2) where the error term (ε1, ε2) is zero mean bivariate normal

with unit variances and correlation ρ. For this specification, given the distribution of Z,

there is a monotonic one-to-one mapping from the coefficient of the IV, γ, to the range of

the conditional propensity score. We capture changes in the extreme values of the CPS

using the parameter grid γ = −4 : 0.2 : 4. Different levels of endogeneity were explored

using the grid ρ = −0.99 : 0.05 : 0.99. We set α = 1 and π = 0 across all parameter

settings. Under this DGP, the SV bound width is affected by α, β and the variation of the

exogenous covariates. Since α and the distribution of X are held fixed, we select β from
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the set {0.05, 0.25, 0.45}, so that changes in β capture the variation of the exogenous

covariates given the distribution of X. Using the DGP as characterised by (3.8) we

compute the SV bounds [LSV (x), USV (x)] and the Manski bounds [LM(x), UM(x)] and

implement the identification gains decomposition according to the true DGP. In what

follows we present the outcomes obtained when x = E[X].

3.6.1. Determination of ATE Bounds

In Figure 3.6.1, the subplots in the first row display the upper and lower bounds of the

ATE(x), and the subplots in the second row present the corresponding bound width.

For the Manski bounds we can see that the width is always one, and the upper and

lower bounds stand on either side of zero, as previously noted. The SV bounds reduce

to the Manski bounds when the IVs are irrelevant with γ = 0 (the separate lines in

the graphs at γ = 0). When γ moves away from γ = 0, the SV bound width has a

significant drop. Then, as the magnitude of γ increases, i.e. as the ending points of the

CPS expand, the SV bound width decreases. In addition, since α > 0 and the ATE(x)

is positive, the SV bound width increases as ρ increases. Moreover, comparison of the

plots for different values of β reveals that β plays a critical role in determining the SV

bounds in the sense that larger β produces significantly narrower bound width. When

β = 0.05 the SV bound width is non-negligible when the absolute value of γ is small,

while when β = 0.45, point identification of the ATE(x) is achieved for most of the (γ, ρ)

pairs. These indicate that for a given IV strength, as measured by γ or the associated

range of CPS, the lower the value of ρ in the (−1,+1) range or the bigger the impact

of x, the narrower the SV bounds that can be achieved. In other words, for given IV

strength, a larger identification gain can be achieved if the error correlation ρ is large in

magnitude and also has an opposite sign from the sign of the ATE(x).

3.6.2. Identification Gains Decomposition

The decomposition of identification gains obtained when γ ∈ {1, 2}, ρ ∈ {−0.8,−0.5, 0.5, 0.8}

and β ∈ {0.05, 0.25, 0.45} is displayed for x = E[X] in Figure 3.6.2. We can see that

when the ATE(x) is positive, the contribution of IV validity, as measured by C1(x), is

determined by the Manski lower bound, and decreases as ρ increases (conversely the nu-
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merical results not reported here show that when the ATE(x) is negative C1(x) increases

as ρ increases), while C1(x) is invariant to β. By way of contrast, the contribution of the

component C2(x) also does not change by β, but it increases significantly as the magni-

tude of γ increases due to the impact of the IVs on the range of the CPS. The component

of identification gains due to the exogenous covariates, C3(x), also contributes signifi-

cantly to the identification gains. When β is relatively large (e.g. β = 0.45), the SV

bound width is close to zero and point identification is virtually achieved.

3.6.3. IV Identification Power

Figure 3.6.3 depicts the index IIP (x) as a function of (γ, ρ) on the lattice {−4 : 0.2 :

4} × {−0.99 : 0.05 : 0.99}. The plot confirms that, when the ATE(x) is positive, the IV

identification power IIP (x) increases as the IV strength (|γ|) increases, but for the same

IV strength, the IIP (x) is higher the lower the value of ρ. We also found, based on the

results not reported here, that, when the ATE(x) is negative, a rising level of positive

endogeneity drives up IIP (x) and reduces the width of SV bounds.

By way of summary, the theoretical results presented in Sections 3.3, 3.4 and 3.5 are

clearly reflected in the features observed in the numerical outcomes reported here. Firstly,

IIP (x) is bigger when IVs are stronger (|γ| higher). In addition, for a given IV strength

in the first-stage treatment equation, higher IIP (x) can be achieved if the endogeneity

ρ has an opposite sign from the ATE(x) and is of high magnitude (|ρ|). And if the

endogeneity is of the same sign as the ATE(x), then the lower the degree of endogeneity

the better the identification power. Of course adding the additional identification gain

C3(x) to IIP (x) leads to the SV bound width ωSV (x), and the C3(x) depends on the

properties of the covariates.

3.7. Finite Sample Evaluation of IV Strength and

Relevance

Next, we study the empirical performance of our decomposition analysis for alternative

sets of IVs. We present finite sample results to show how IIP (x) can be used to rank
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Figure 3.6.2: Decomposition of Identification Gains (x = E[X])

(a) β = 0.05

(b) β = 0.25

(c) β = 0.45

Note: The green line depicts the amount of IV validity contribution C1(x). To aid legibility
C1(x), . . . , C4(x) have been rendered as C1, . . . , C4 in each of the subplots in this figure. x-axis dis-
plays the values of γ. For space limitation, we only represent the figure for nonnegative values of
γ.
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Figure 3.6.3: Instrument Identification Power (x = E[X])
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Note: Three dimensional plot of IIP (x) as function of (γ, ρ). The value of β does not affect the IIP (x)
in this case because π = 0 and no matches of Pr[D = 1|x, z] =Pr[D = 1|x′, z′] exist for x = E[X] and
z, z′ ∈ {−1, 1}. When γ = 0, the IIP (x) = 0 because IV is irrelevant.

the identification power of different sets of IVs and to potentially detect irrelevant IVs,

when determining which set of IVs should be used to construct the ATE bounds. The

advantage of this strategy over conventional IV strength evaluations (such as those akin

to the first-stage IV F -statistic or the CPS) is that IIP (x) captures the IV identification

power in terms of their ability to shrink the width of the ATE bounds, incorporating the

IV strength and their interaction with the direction and magnitude of endogeneity in the

nonlinear model. The identification power IIP (x) can provide testable implication of IV

relevance, but a formal test is out of the scope of this chapter. Consider i.i.d. samples

generated from a similar DGP to (3.8) with two IVs:

Y = 1[αD + βX + ε1 > 0],

D = 1[πX + γ1Z1 + γ2Z2 + ε2 > 0]
(3.9)

where two IVs in Z = (Z1, Z2)′ are Z1 ∼ Bernoulli(1/2) and Z2 ∈ {−3,−2,−1, 0, 1, 2, 3}

with probabilities (0.1, 0.1, 0.2, 0.2, 0.2, 0.1, 0.1). Set α = 1, β = 1, π = −1, (γ1, γ2) =

(0.5, 0.2), and assume the error term (ε1, ε2) is jointly normal with mean zero, variance

one and correlation ρ ∈ {0.5, 0.8}. In addition, Z1, Z2 and X are mutually independent,

and also independent to (ε1, ε2). Consider two cases of covariate variability: case 1,

continuous X ∼ N(0, 1); case 2, binary X ∼ Bernoulli(1/2). We conduct the analysis

in this section at x = 0. The value of the ATE(x) = E[Y1 − Y0|X = 0] under the DGP

(3.9) is 0.341.
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In order to evaluate the finite sample performance of IIP (x) as an index for measuring

IV identification power, we consider five alternative sets of IV options. In addition to the

two valid IVs of Z1 and Z2 in the DGP, we introduce two ”pseudo” IVs: Z̃2 = 1[Z2 > 0],

which is a misspecified binary IV that only partially reflects Z2, and an irrelevant IV

Z3 ∈ {0, 1} such that Pr[Z3 = 1] = 2/3, and Z3 ⊥ (ε1, ε2, Z1, Z2, X). To illustrate the

behaviour of the IIP (x) estimation, we use sample data for (Y,D,X) generated from

the DGP in (3.9) to estimate models with five alternative IV sets: (1) only one valid

IV Z1 (omitting Z2); (2) only one valid IV Z2 (omitting Z1); (3) one valid Z1 and one

misspecified Z̃2; (4) two valid IVs Z1 and Z2; and (5) two valid Z1 and Z2 plus one

irrelevant Z3.

Table 3.7.1: Population CPS Range and IIP (x) (x = 0, cases 1 and 2)

Sets IVs CPS definition CPS Range IIP (x) (ρ = 0.5) IIP (x) (ρ = 0.8)
(1) only Z1 Pr[D = 1|x, Z1] [0.500, 0.682] 0.305 0.232
(2) only Z2 Pr[D = 1|x, Z2] [0.367, 0.795] 0.493 0.443

(3) Z1, Z̃2 Pr[D = 1|x, Z1, Z̃2] [0.410, 0.799] 0.456 0.403
(4) Z1, Z2 Pr[D = 1|x, Z1, Z2] [0.274, 0.864] 0.625 0.594
(5) Z1, Z2, Z3 Pr[D = 1|x, Z1, Z2, Z3] [0.274, 0.864] 0.625 0.594

Note: The population CPS and IIP (x) are the same for case 1 and case 2.

Table 3.7.1 presents the theoretical CPS range and IIP (x) for the cases 1 and 2, at

x = 0. Note that the covariate variability does not impact the population CPS nor

IIP (x), so that the values of CPS range and IIP (x) for case 1 are the same to those

for case 2. Looking at the CPS range as a measure of IV strength, we can see that the

CPS range is the widest when both valid and relevant IVs Z1 and Z2 are used as in (4).

Adding an irrelevant IV Z3 does not change the theoretical CPS range, so theoretically

(5) has the same IV strength as (4). The CPS range decreases when only one of the

two valid IVs are used as in (1) and (2), with Z2 being stronger with wider CPS range

than Z1. As expected, when a valid IV is incorrectly specified as a proxy dummy Z̃2 in

(3), the CPS range is narrower than that of the best set in (4), but wider than that in

(1) with Z1 alone. Interestingly, comparing IV set (3) with (2), set (2) with only one

valid IV actually results in wider CPS range than that for the two IVs in set (3) with Z2

misspecified, though the CPS interval for (3) is not completely nested within the interval

for (2).
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Whilst the CPS range indicates the IV strength, it is the IIP (x) that captures the

identification power of each IV set, measuring the reduction of SV bound width relative

to the benchmark Manski bound width due to the contribution of IVs. As seen from the

two IIP (x) columns in Table 3.7.1, the same IV strength can achieve bigger identification

gains for ρ = 0.5 than that with ρ = 0.8. This is consistent with the results in Section

3.6: as ρ and ATE(x) are both positive in this case, the lower absolute value of ρ, the

higher the IIP (x) is. For example for IV set (4), the Manski bound width can be reduced

by 0.594 (or 59.4%) by the two IVs when ρ = 0.8, and it increases to 0.625 (or 62.5%)

if ρ = 0.5. The equally most powerful IV sets are (4) and (5), and the least powerful set

is (1).

We next present the finite sample estimation of the Manski and SV bounds, and conduct

the decomposition analysis based on the estimates of the bounds. Sample size is set to

be n = 500, 5000, 10000 and replicate M = 1000 times. Tables 3.7.2 to 3.7.5 present

the sample average (over M replications) of the estimated bounds, estimated C1(x) to

C4(x) and IIP (x) of the five IV sets at x = 0. We use the “half-median-unbiased

estimator” (HMUE) of the intersecting bounds proposed by Chernozhukov, Lee, and

Rosen (2013) (hereafter CLR) to estimate the benchmark Manski bounds and the SV

bounds. In particular, we employ maximum likelihood estimation (MLE) to estimate

the bounding functions and to select the critical values for bias correction according to

the simulation-based methodology of CLR.3

The results of Tables 3.7.2 to 3.7.5 relate to the two different covariate distributions

(case 1, X ∼ N(0, 1); case 2, X ∼ Bernoulli(1/2)) and two ρ values (ρ = 0.5, 0.8). Let

us look firstly the first row in each table, which lists the ATE bounds and decomposition

components under the true DGP. We can see that in case 1 (Tables 3.7.2 and 3.7.3),

3The CLR half-median-unbiased estimator produces a upper bound estimator that exceeds its true
value and a lower bound estimator that falls below its true value, each with probability at least a
half asymptotically. We report the HMUE of the Manski bounds, for comparison purpose. Other
estimation methods for Manski bounds are also available; see for example Imbens and Manski (2004).
Theoretically, the construction of the SV bounds requires the matching of pairs (x, z) and (x′, z′) such
that Pr[D = 1|x, z] =Pr[D = 1|x′, z′]. In practice, it is hard to find such pairs with equal CPS especially
when the variation of covariates is limited. In the simulations, the SV bounds are computed by matching
(x, z) and (x′, z′) such that |Pr[D = 1|x, z]− Pr[D = 1|x′, z′]| < c and c = 1%. Although the estimated
SV bounds depend on c, the estimated IIP (x) does not. Therefore the choice of c has no impacts on
the performance of the IIP (x).
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where the covariate possesses sufficient variation, the true SV bounds point identify the

ATE(x) for both ρ = 0.5 and ρ = 0.8. In case 2 (Tables 3.7.4 and 3.7.5), the true SV

bounds fail to point identify the ATE(x) due to the limited variation in X.

Next, we focus on the left part of each table, which displays the HMUEs of the ATE

bounds, and the Hausdorff distance between the true bounds and the estimated bounds,

evaluated at x = 0. Simulation results of bounds at different values of x display simi-

lar patterns to those at x = 0, therefore are not reported due to the space limitation. The

Hausdorff distance between setsA andB is defined as max {supa∈A d(a,B), supb∈B d(b, A)}

where d(b, A) := infa∈A ‖b − a‖ and ∞ if either A or B is empty. Hausdorff distance

is a natural generalisation of Euclidean distance and has been employed to study con-

vergence properties when a set rather than a point is the parameter of interest; see e.g.

Chernozhukov et al. (2007), Hansen et al. (1995) and Manski and Tamer (2002). For

all four tables, we can see that the estimated Manski bounds are the same across all

five IV sets, always include zero, and have a width a little over one. The estimated

SV bounds identify the sign of ATE(x) for all five IV sets. Moreover, the IV sets with

greater identification power lead to narrower estimated SV bounds and also improve the

estimation accuracy in most of the scenarios. More precisely, the Hausdorff distance of

the estimated SV bounds to the true bounds decreases as the IV identification power

increases. Moving to the right part of each of table, first, we note that for each given

IV set, all the estimated C1(x) to C4(x) and IIP (x) converges to their true values as

sample size n increases, indicating that the estimated identification gain is more accu-

rate for larger sample size.4 We also note that the estimated C1(x) which is determined

by the Manski bounds, is the same for different IV sets. This result is quite intuitive

because the identification gains brought by the IV validity should not vary with the IV

strength. Comparison of Tables 3.7.2 and 3.7.3 or Tables 3.7.4 and 3.7.5 also reveals

that the impacts of endogeneity degree on IV identification power can be captured by

the estimated IIP (x). Importantly, the true ranking of IIP (x) as in Table 3.7.1 can be

correctly revealed by finite sample estimates of IIP (x).

4Because C1(x) to C4(x) are functions of LM (x), UM (x), ω(x) and ωSV (x), the estimates of C1(x)
to C4(x) are computed using the HMUE of the bounds or their widths. We compute ω(x) as the width

of the estimated bounds (by HMUE of CLR) [LSV (x), U
SV

(x)] in (3.14) if ATE(x) > 0 is identified, or
(3.16) if otherwise.
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It is interesting to analyse the effect of adding an additional but completely irrelevant

IV on the finite sample performance of ATE partial identification, by comparing the

results obtained using IV sets (4) and (5). Adding Z3 to (Z1, Z2) actually produces a

small decrease of the estimated IIP (x), on average, for almost all different DGP designs

considered in this section. The Cramer-Von Mises test and the Kolmogorov–Smirnov

test confirm that the average values of the estimates of IIP (x) under scenario (4) are

significantly different from those obtained under scenario (5), when sample size is n = 500

and n = 5000 for both endogeneity degrees and for both case 1 and case 2. While when

sample size is sufficiently large n = 10000, the estimates of IIP (x) under scenario (4) and

(5) are no longer significantly different, except for case 2 with ρ = 0.8. This suggests that

in practice, the loss of information (efficiency) that arises from using irrelevant IV can

have a statistically significant practical effect on the IV identification power, which can

be captured by our proposed index IIP (x). Such an information loss could lead to wider

ATE bounds, especially when the covariate possesses limited variation. Particularly, from

Table 3.7.4 and Table 3.7.5 we can see that when the covariate X is a binary variable

(case 2), on average, the estimated SV bounds using (Z1, Z2) are significantly narrower

than those estimated by the IV set including the irrelevant IV (Z1, Z2, Z3), especially for

small sample size. Analysing the results across the replications, we find that about 78%

(for both endogeneity degrees) of the replications give narrower estimated SV bounds

with IV set (Z1, Z2) than those with (Z1, Z2, Z3), for sample size n = 500; and this rate

becomes to 53% (ρ = 0.5) and 64% (ρ = 0.8) for sufficiently large sample size n = 10000.

On the other hand, the IV irrelevancy cannot always be detected by simply comparing

the estimated SV bound width under different IV sets. That is, adding an irrelevant IV

in (5) could further shrink the SV bound width when the covariate X is continuous, al-

though the improvement happens at the third decimal and the degree of the improvement

decreases as sample size increases.The shrinkage of the estimated SV bounds using the

irrelevant Z3 is due to the finite sample estimation error. In particular, because the esti-

mates of the coefficient of the irrelevant Z3 will be nonzero with probability one, it results

in more matched pairs of (x, z) and (x′, z′) such that |Pr[D = 1|x, z]−Pr[D = 1|x′, z′]| < c

(see footnote 3) especially when covariate is continuous. For case 1 in Table 3.7.2 and

Table 3.7.3, we find that when sample size is n = 500, (i) there are 22% (ρ = 0.5) and
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17% (ρ = 0.8) of the 1000 replications where at least one (either lower or upper) esti-

mated SV bound using (Z1, Z2) is closer to its true value, compared to that obtained by

using the irrelevant IV; and (ii) 12% of the replications yield wider estimated SV bounds

when using the irrelevant IV, for both endogeneity degrees. These outcomes reinforce

a-fortiori the warning that simply adding extra IVs without assessing their identifica-

tion power is unlikely to be a good practical modelling strategy, but the finite sample

estimates of our proposed IIP (x) is more reliable in detecting the loss of efficiency of

IV irrelevancy.
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3.8. Empirical Application: Women LFP and Child-

bearing

In this section, we apply our novel decomposition and IV evaluation method to study the

effects of childbearing on women’s labour supply. The dataset analysed here is from the

1980 Census Public Use Micro Samples (PUMS), available at Angrist and Evans (2009).

We follow the data construction in Angrist and Evans (1998), where the sample consists

of married women aged 21-35 with two or more children. The dateset contains 254,652

observations; see Table 2 in Angrist and Evans (1998) for more details and descriptive

statistics. The binary outcome Y indicates if a individual was paid for work in the year

prior to the census (Y = 1), or otherwise (Y = 0). The treatment effect of interest is the

impact of having more than two children on the labour force participation Y . Thus, the

binary treatment is D ∈ {0, 1}, with D = 1 denoting having more than two children.

Following Angrist and Evans (1998, Table 11) we use as continuous regressors woman’s

age, woman’s age at first birth, and ages of the first two children (quarters), and binary

regressors for first child being a boy, second child being a boy, black, hispanic, and

other race, as well as the intersections of the above mentioned continuous and indicator

variables. For computational simplicity, we reduce dimension of covariates by utilising

the conditional propensity score XP := P̂r[D = 1|X] as a covariate, where P̂r[D = 1|X]

is estimated via a probit model and X includes all of the regressors mentioned above.

Three sets of IVs are considered in this section: (1) the binary indicator that the first

two children are the same sex (“Samesex”), (2) the binary indicator that the second

birth was a twin (“Twins”), and (3) both indicators (“Both={Samesex,Twins}”). To

provide a basis for comparison of SV bounds with other ATE bounding analyses, we

also compute the ATE bounds in Heckman and Vytlacil (2001) (hereafter HV bounds)

and Chesher (2010) (hereafter Chesher bounds). To be consistent with our previous

numerical analyses in Section 3.7, we use the method of CLR to compute all the four

bounds of interest, via MLE for estimating bounding functions and the simulation-based

method for correcting the bias of the intersecting bounds.

Table 3.8.1 reports the weighted average of the HMUE and of the CLR two-sided confi-
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dence intervals (at 90%, 95% and 99% significant level) of the four bounds of ATE(XP ),

with weights given by the estimated kernel density of XP . Panels (a), (b) and (c) display

the results using IV Samesex, Twins and Both, respectively. The estimated average of

the Manski bounds in all three panels are essentially identical, since the Manski bounds

do not depend on IVs. In all panels, the HV bounds make an improvement over the

benchmark Manski bounds, with the HV bound width using Twins being narrower than

that using Samesex, and the HV bound width using Both being the narrowest. The

Chesher bounds using Samesex fail to identify the sign of the ATE(XP ), as it is a union

of both negative and positive intervals. When the IV Twins or Both is used instead, the

weighted average of 95% confidence interval of the Chesher bounds is [−0.349,−0.019]

(using Twins) or [−0.335,−0.026] (using Both), revealing negative effects of having a

third child on women’s labour force participation. For the SV bounds, the results using

the IV Twins or Both dramatically outperform those using Samesex. The 95% confi-

dence interval using Samesex, Twins and Both are [−0.548,−0.022], [−0.272,−0.031]

and [−0.269,−0.042], respectively. The SV bounds estimates confirm the negative effect

of a third child on women’s labour force participation. The two-stage least square (2SLS)

estimates of Angrist and Evans (1998, Table 11) give an ATE estimate of -0.123 with

95% confidence interval of [−0.178,−0.068] using IV Samesex, and an estimate of -0.087

with 95% confidence interval of [−0.120,−0.054] using IV Twins. As would be expected,

the 95% two-sided confidence intervals of all four bounds cover the 2SLS estimates and

their associated 95% confidence intervals for both IVs. To summarise the results above,

we can see that for ATE bounds in which the IV plays a key role in extracting identify-

ing information, i.e. HV, Chesher and SV bounds, the IV Both gives us the narrowest

bounds (on average).

The ranking of the IV identification power of the three available IVs revealed by the

discussion above is confirmed and explained by the identification gains decomposition

and the IIP reported in Table 3.8.2. The results based on the 95% confidence interval

show that given the same contribution of IV validity for the three IVs, which is 44.6%

on average, the identification power of Twins (68.2%) is significantly larger than that

of Samesex (47.1%). Closer inspection of the data reveals that the contribution of

Twins to the identification gains exceeds that of Samesex, because whenever Twins= 1
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the treatment D = 1, i.e. Twins is a perfect predictor of being treated, whereas this

is not the case for Samesex. It is this feature, of course, that explains the superior

performance when the HV, Chesher and SV bounds are evaluated using Twins rather

than Samesex. Moreover, when both IVs Samesex and Twins are used, the identification

power of Both (70.3%) also exceeds that of either one of the single IV Samesex or Twins.

It indicates that although the identification power of Samesex is dominated by Twins,

Samesex can still make extra contributions when identifying the ATE. It is intuitive

because the mechanisms of the two IVs driving the probability of having a third child

are different. One remark on the above analysis is that, for other ATE bounds that

exploits the identification information of IVs, for example the HV and Chesher bounds,

IVs with higher IIP clearly leads to narrower bounds for the ATE. It indicates that

although the IIP is constructed to measure the IV’s contribution to the SV bounds,

it is also a meaningful measure for the IV identification power and can be utilised to

indicate the IV relevance in other ATE bounds.

Table 3.8.1: Average of the Estimated Bounds

(a) IV: Samesex

Manski HV Chesher SV
HMUE [-0.560,0.439] [-0.537,0.401] [-0.537,-0.011] ∪ [0.011,0.401] [-0.538,-0.030]
90% CI [-0.566,0.445] [-0.546,0.411] [-0.546,-0.005] ∪ [0.005,0.411] [-0.546,-0.023]
95% CI [-0.567,0.446] [-0.548,0.412] [-0.548,-0.004] ∪ [0.004,0.412] [-0.548,-0.022]
99% CI [-0.569,0.448] [-0.551,0.416] [-0.551,-0.001] ∪ [0.001,0.416] [-0.551,-0.020]

(b) IV: Twins

Manski HV Chesher SV
HMUE [-0.560,0.439] [-0.304,0.113] [-0.305,-0.061] [-0.185,-0.101]
90% CI [-0.566,0.445] [-0.341,0.151] [-0.342,-0.026] [-0.259,-0.042]
95% CI [-0.567,0.446] [-0.349,0.158] [-0.349,-0.019] [-0.272,-0.031]
99% CI [-0.569,0.448] [-0.364,0.172] [-0.365,-0.004] [-0.299,-0.012]

(c) IV: Both={Samesex,Twins}

Manski HV Chesher SV
HMUE [-0.560,0.439] [-0.295,0.097] [-0.295,-0.065] [-0.200,-0.105]
90% CI [-0.566,0.445] [-0.329,0.131] [-0.329,-0.032] [-0.259,-0.051]
95% CI [-0.567,0.446] [-0.336,0.137] [-0.335,-0.026] [-0.269,-0.042]
99% CI [-0.569,0.448] [-0.349,0.151] [-0.349,-0.011] [-0.289,-0.027]

Note: The first row of panels (a)-(c) reports the weighted average of the HMUE of the four ATE bounds, and
the second to fourth rows report the weighted average of the CLR two-sided confidence interval at different
significant levels.
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Table 3.8.2: Decomposition of Identification Gains and Instrument Identification Power

(a) IV: Samesex

C1 C2 C3 C4 IIP
Based on HMUE 0.439 0.034 0.019 0.508 0.473
Based on 90% CI 0.445 0.026 0.018 0.523 0.472
Based on 95% CI 0.446 0.024 0.018 0.526 0.471
Based on 99% CI 0.448 0.021 0.019 0.532 0.471

(b) IV: Twins

C1 C2 C3 C4 IIP
Based on HMUE 0.439 0.317 0.163 0.081 0.756
Based on 90% CI 0.445 0.250 0.100 0.216 0.695
Based on 95% CI 0.446 0.236 0.090 0.242 0.682
Based on 99% CI 0.448 0.209 0.075 0.286 0.657

(c) IV: Both={Samesex,Twins}

C1 C2 C3 C4 IIP
Based on HMUE 0.439 0.330 0.134 0.096 0.769
Based on 90% CI 0.445 0.270 0.090 0.206 0.715
Based on 95% CI 0.446 0.257 0.085 0.226 0.703
Based on 99% CI 0.448 0.232 0.078 0.260 0.681

Note: C1-C4 and IIP are the weighted average of their associated conditional estimates given XP , with the
kernel density of XP as weights. For both panels (a) to (c), C1 to C4 are computed as described in the footnote
4, and the estimates in each row correspond to different significance levels of the CLR estimation.

To explore the heterogeneity of the treatment effects, Figure 3.8.1 graphs the four bounds

of interest against XP . From Figure 3.8.1, we can see that when the more powerful of

the three IVs are employed, namely Twins or Both, the HV bounds narrow down the

possible range of the ATE(XP ) relative to the benchmark Manski bounds, especially

for individuals with a small probability of having a third child. In addition, they can

even identify the negative effect for individuals with a propensity score XP close to zero.

Similar properties are exhibited by the Chesher bounds. The SV bounds indicate that

for women who are less likely to have more than two children, it is more probable that

there will be a negative effect on their labour force participation once they have a third

child, roughly in the region of -10% to -15%. For individuals who are more likely to have

more than two children, the effect of having a third child is still negative but with larger

possible range, roughly from -10% to -40% when their propensity score is about 0.6, and

roughly from 0% to -30% when their propensity score is close to one.
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To check the heterogeneity of the IV identification power, Figure 3.8.2 displays the

decompositions plotted against XP . It is obvious that the IV identification power of

Twins and Both are significantly larger than that of Samesex, across all possible values

of XP . Furthermore, the contribution of the covariate appears to be amplified when

Twins is involved in deriving the bounds, leading to a further reduction in the width of

the unexplained part relative to the benchmark.
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3.9. Conclusion

In this chapter we explore the factors that determine the identification gains for the ATE

in models with binary endogenous variables. We use the reduction in the size of the ATE

identified set as a measure for identification power, and conduct our analysis with the

identification gains achieved by the SV bounds (Shaikh and Vytlacil, 2011) against the

benchmark Manski bounds (Manski, 1990). We decompose the identification gains into

the impacts of the IV validity, the IV strength and the variability of the exogenous

covariates. More importantly, we construct an index of “IIP” as a measure for the IV

identification power.

We have developed theoretical results to show the complex mechanism through which

IVs affect the identification of the ATE. We find that the IV identification power in a non-

parametric and partially identified model is fundamentally different from the traditional

understanding of the IV strength as in a parametric linear model, which is measured, for

instance, by the pseudo R2 or F -statistic from the reduced form treatment equation. We

have shown that in partially identified non-linear models it is not only the traditional IV

strength that determines the identification gains obtained when bounding the ATE, but

also the interplay of the IVs with the degree of endogeneity and the variability of exoge-

nous covariates. The conventional notion of IV strength or weakness no longer provides

a full picture of the IV identification power, and is not the sole arbiter of IV usefulness.

More specifically, we demonstrate that for the same IV strength given by the first-stage

treatment equation, having the endogeneity with an opposite sign from that of the ATE

can produce greater IV identification power, relative to the case when the endogeneity

has the same sign as the ATE. That the endogeneity plays a similar role when testing

IV weakness in binary outcome models with continuous endogenous regressors has been

noted previously in Frazier, Renault, Zhang, and Zhao (June 28, 2019).

Our proposed index IIP provides a more appropriate measure of IV identification power,

namely, the contribution made by the IVs in shrinking the ATE identified set. Impor-

tantly, we illustrate how the range of the conditional propensity score and the IIP relate

to the ATE bounds for different levels of endogeneity, finite sample sizes and covariate

variabilities. The results show that the IIP works well in finite sample settings as a
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tool for measuring the IV identification power and for providing guidance on detecting

irrelevant IVs. We find that missing IVs, or misspecification of relevant IVs can result

in wider ATE identified sets and identification power loss. We also find that the loss of

efficiency in finite sampl from adding an irrelevant IV can be more reliably detected by

the estimated IIP (x), even irrelevant IV could sometimes result in narrower SV bound

width. The empirical application also demonstrates the practical usefulness of our novel

decomposition of the identification gains and of the IIP index.

The study of IIP in this chapter sheds new light on IV relevancy in partial identification

frameworks, and offers a potential criterion for IV selection in high dimension settings.

It also raises new questions as to what constitutes an adequate definition of weak IVs in

conjunction with ATE bounding analyses. Explorations of these issues are left for future

research.

3.10. Appendix

Throughout the proof, let P = Pr[D = 1|X,Z] with support ΩP and let p(x, z) =

Pr[D = 1|x, z].

3.10.1. Lemmas

Lemma 3.10.1 Under Assumption 3.2.1 (a) and (b), for any p, p′ ∈ ΩP |x such that

p > p′, we have

Pr[D = 0|x, p] + Pr[Y = y,D = 1|x, p]− {Pr[D = 0|x, p′] + Pr[Y = y,D = 1|x, p′]} ≤ 0,

Pr[D = 1|x, p] + Pr[Y = y,D = 0|x, p]− {Pr[D = 1|x, p′] + Pr[Y = y,D = 0|x, p′]} ≥ 0,

for y ∈ {0, 1}. In addition,

Pr[Y = y,D = 1|x, p]− Pr[Y = y,D = 1|x, p′] ≥ 0,

Pr[Y = y,D = 0|x, p]− Pr[Y = y,D = 0|x, p′] ≤ 0,
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for y ∈ {0, 1}. Lastly, if ν1(1, x) > ν1(0, x) given x ∈ ΩX , then Pr[Y = 1|x, p]− Pr[Y =

1|x, p′] ≥ 0. If ν1(1, x) ≤ ν1(0, x) given x ∈ ΩX , then Pr[Y = 1|x, p]−Pr[Y = 1|x, p′] ≤ 0.

Strict inequalities hold if Assumption 3.2.1 (c) is imposed on the DGP.

Proof of Lemma 3.10.1. Under Assumption 3.2.1 (a) and (b), for p, p′ ∈ ΩP |x with

p > p′, we have

Pr[D = 0|x, p] + Pr[Y = 1, D = 1|x, p]− {Pr[D = 0|x, p′] + Pr[Y = 1, D = 1|x, p′]}

=Pr[ε1 < ν1(1, x), p′ ≤ Fε2(ε2) < p]− Pr[p′ ≤ Fε2(ε2) < p]

=− Pr[ε1 ≥ ν1(1, x), p′ ≤ Fε2(ε2) < p]

≤0.

Similar manipulations show that

Pr[D = 0|x, p] + Pr[Y = 0, D = 1|x, p]− {Pr[D = 0|x, p′] + Pr[Y = 0, D = 1|x, p′]} ≤ 0,

Pr[D = 1|x, p] + Pr[Y = 1, D = 0|x, p]− {Pr[D = 1|x, p′] + Pr[Y = 1, D = 0|x, p′]} ≥ 0, and

Pr[D = 1|x, p] + Pr[Y = 0, D = 0|x, p]− {Pr[D = 1|x, p′] + Pr[Y = 0, D = 0|x, p′]} ≥ 0.

In addition, using relatively straightforward if somewhat tedious algebra, we can obtain

the following inequalities

Pr[Y = 0, D = 1|x, p]− Pr[Y = 0, D = 1|x, p′] = Pr[ε1 ≥ ν1(1, x), p′ ≤ Fε2(ε2) < p] ≥ 0,

Pr[Y = 1, D = 1|x, p]− Pr[Y = 1, D = 1|x, p′] = Pr[ε1 < ν1(1, x), p′ ≤ Fε2(ε2) < p] ≥ 0,

Pr[Y = 0, D = 0|x, p]− Pr[Y = 0, D = 0|x, p′] = −Pr[ε1 ≥ ν1(0, x), p′ ≤ Fε2(ε2) < p] ≤ 0, and

Pr[Y = 1, D = 0|x, p]− Pr[Y = 1, D = 0|x, p′] = −Pr[ε1 < ν1(0, x), p′ ≤ Fε2(ε2) < p] ≤ 0.

Now suppose that ν1(1, x) > ν1(0, x) given x ∈ ΩX . Then it follows that

Pr[Y = 1|x, p]− Pr[Y = 1|x, p′]

=Pr[Y = 1, D = 1|x, p] + Pr[Y = 1, D = 0|x, p]

− Pr[Y = 1, D = 1|x, p′]− Pr[Y = 1, D = 0|x, p′]

=Pr[ε1 < ν1(1, x), p′ ≤ Fε2(ε2) < p]− Pr[ε1 < ν1(0, x), p′ ≤ Fε2(ε2) < p]
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=Pr[ν1(0, x) ≤ ε1 < ν1(1, x), p′ ≤ Fε2(ε2) < p]

≥0.

Finally, using a parallel argument in the case where ν1(1, x) ≤ ν1(0, x) given x ∈ ΩX , we

can conclude that the inequalities stated in the lemma hold.

Lemma 3.10.2 Under Assumptions 3.2.1 and 3.3.1, the following results hold. Joint

probabilities Pr[Y = y,D = d|x, p] for y, d ∈ {0, 1} are functions of the dependence

parameter ρ. In addition,

(a) Pr[Y = 1, D = 1|x, p] and Pr[Y = 0, D = 0|x, p] are weakly increasing in ρ;

(b) Pr[Y = 1, D = 0|x, p] and Pr[Y = 0, D = 1|x, p] are weakly decreasing in ρ.

Proof of Lemma 3.10.2. For any given p ∈ ΩP ,

Pr[Y = 1, D = 1|x, p] = Pr[ε1 < ν1(1, x), Fε2(ε2) < p|x, p]

= Pr[ε1 < ν1(1, x), Fε2(ε2) < p]

= C(Fε1(ν1(1, x)), p; ρ). (3.10)

Because the copula C(·, ·; ρ) satisfies the concordant ordering with respect to ρ, we know

that Pr[Y = 1, D = 1|x, p] is weakly increasing in ρ. Since

Pr[Y = 0, D = 1|x, p] = Pr[D = 1|x, p]− Pr[Y = 1, D = 1|x, p] = p− C(Fε1(ν1(1, x)), p; ρ),

Pr[Y = 0, D = 1|x, p] is decreasing in ρ. In addition,

Pr[Y = 0, D = 0|x, p] =Pr[ε1 ≥ ν1(0, x), Fε2(ε2) ≥ p|x, p]

=Pr[ε1 ≥ ν1(0, x), Fε2(ε2) ≥ p]

=Pr[ε1 ≥ ν1(0, x)]− Pr[ε1 ≥ ν1(0, x), Fε2(ε2) < p]

=Pr[ε1 ≥ ν1(0, x)]− Pr[Fε2(ε2) < p] + Pr[ε1 < ν1(0, x), Fε2(ε2) < p]

=1− Fε1(ν1(0, x))− p+ C(Fε1(ν1(0, x)), p; ρ). (3.11)



134 CHAPTER 3. INSTRUMENT IDENTIFICATION POWER

From (3.11) we can see that Pr[Y = 0, D = 0|x, p] is weakly increasing in ρ, which

immediately implies that Pr[Y = 1, D = 0|x, p] is weakly decreasing in ρ.

3.10.2. Proofs

Proof of Proposition 3.3.1. To begin, let us first introduce the following notation:

L0(x, p) = Pr[Y = 1, D = 0|x, p] + sup
x′∈X0−(x)

Pr[Y = 1, D = 1|x′, p],

L1(x, p) = Pr[Y = 1, D = 1|x, p] + sup
x′∈X1+(x)

Pr[Y = 1, D = 0|x′, p],

U0(x, p) = Pr[Y = 1, D = 0|x, p] + p inf
x′∈X0+(x)

Pr[Y = 1|x′, p,D = 1],

U1(x, p) = Pr[Y = 1, D = 1|x, p] + (1− p) inf
x′∈X1−(x)

Pr[Y = 1|x′, p,D = 0].

Then the SV bounds become

LSV (x) = L1(x, p)− U0(x, p) and USV (x) = U1(x, p)− L0(x, p), (3.12)

and under Assumption 3.2.1 the SV bounds are sharp if ΩX,P = ΩX × ΩP (Shaikh and

Vytlacil, 2011, Theorem 2.1).

Next we show that L0(x, p) is weakly decreasing in p (ceteris paribus). Under Assumption

3.2.1 and ΩX,P = ΩX ×ΩP , for ∀x ∈ ΩX there exists xl0 ∈ X0−(x), such that ν1(1, xl0) =

supx∈X0−(x) ν1(1, x) and

L0(x, p) = Pr[Y = 1, D = 0|x, p] + Pr[Y = 1, D = 1|xl0, p],

(For detailed particulars see the proof of Shaikh and Vytlacil, 2011, Theorem 2.1 (ii)5).

For p, p′ ∈ ΩP and p′ < p, we have now have

L0(x, p)− L0(x, p′) =Pr[Y = 1, D = 0|x, p] + Pr[Y = 1, D = 1|xl0, p]

− Pr[Y = 1, D = 0|x, p′]− Pr[Y = 1, D = 1|xl0, p′]

=Pr[ε1 ≤ ν1(1, xl0), p′ < ε2 ≤ p)− Pr[ε1 ≤ ν1(0, x), p′ < ε2 ≤ p)

5The proof is contained in the supplementary material of Shaikh and Vytlacil (2011).
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=Pr[ν1(0, x) < ε1 ≤ ν1(1, xl0), p′ < ε2 ≤ p)

≤0, (3.13)

where the last inequality follows because xl0 ∈ X0−(x), and the Lemma 2 in Shaikh and

Vytlacil (2011) shows that xl0 ∈ X0−(x) implies ν1(1, xl0) ≥ ν1(0, x). Thus, from (3.13),

L0(x, p) is weakly decreasing in p.

Similar arguments show that L1(x, p) is weakly increasing in p, U0(x, p) is weakly increas-

ing in p, and U1(x, p) is weakly decreasing in p. Hence LSV (x) is weakly increasing in p

and USV (x) is weakly decreasing in p. On the other hand, LSV (x) is weakly decreasing

in p and USV (x) is weakly increasing in p. This completes the proof of the proposition.

Proof of Proposition 3.3.2. Suppose that ATE(x) > 0 for x ∈ ΩX . Under Assumption

3.2.1, from the definitions of X0+(x), X0−(x), X1+(x) and X1−(x), we know that X0+(x)

and X1+(x) are nonempty for ∀x ∈ ΩX , since x itself belongs to these two sets. While,

X0−(x) and X1−(x) may be empty for some x ∈ ΩX . Recall that the supremum and

infimum are defined as zero and one over an empty set, respectively. Thus, for the four

functions defined in the proof of Proposition 3.3.1 we have

L0(x, p) ≥ Pr[Y = 1, D = 0|x, p],

L1(x, p) ≥ Pr[Y = 1|x, p],

U0(x, p) ≤ Pr[Y = 1|x, p], and

U1(x, p) ≤ Pr[Y = 1, D = 1|x, p] + Pr[D = 0|x, p].

The ATE SV bounds are therefore bounded by [LSV (x), USV (x)] ⊂ [LSV (x), U
SV

(x)],

where

LSV (x) = sup
p∈ΩP |x

Pr[Y = 1|x, p]− inf
p∈ΩP |x

Pr[Y = 1|x, p], and

U
SV

(x) = inf
p∈ΩP |x

{Pr[Y = 1, D = 1|x, p] + Pr[D = 0|x, p]} − sup
p∈ΩP |x

Pr[Y = 1, D = 0|x, p],

(3.14)
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and the widest possible width ω(x) := U
SV

(x)− LSV (x) is

ω(x) := inf
p∈ΩP |x

{Pr[Y = 1, D = 1|x, p] + Pr[D = 0|x, p]} − sup
p∈ΩP |x

Pr[Y = 1, D = 0|x, p]

− sup
p∈ΩP |x

Pr[Y = 1|x, p] + inf
p∈ΩP |x

Pr[Y = 1|x, p] .

From Lemma 3.10.1 it follows that

ω(x) =Pr[Y = 1, D = 1|x, p(x)] + Pr[D = 0|x, p(x)]− Pr[Y = 1, D = 0|x, p(x)]

− Pr[Y = 1|x, p(x)] + Pr[Y = 1|x, p(x)]

=Pr[Y = 1, D = 1|x, p(x)] + Pr[Y = 0, D = 0|x, p(x)]. (3.15)

Now consider the case where ATE(x) < 0. In contrast to the positive ATE(x) case,

X0−(x) and X1−(x) are nonempty for ∀x ∈ ΩX since x itself belongs to these two

sets, while X0+(x) and X1+(x) may be empty for some x ∈ ΩX . Thus, the following

inequalities hold

L0(x, p) ≥ Pr[Y = 1|x, p],

L1(x, p) ≥ Pr[Y = 1, D = 1|x, p],

U0(x, p) ≤ Pr[Y = 1, D = 0|x, p] + Pr[D = 1|x, p], and

U1(x, p) ≤ Pr[Y = 1|x, p],

based on which we can bound the SV bounds as [LSV (x), USV (x)] ⊂ [LSV (x), U
SV

(x)],

where

U
SV

(x) = inf
p∈ΩP |x

Pr[Y = 1|x, p]− sup
p∈ΩP |x

Pr[Y = 1|x, p], and

LSV (x) = sup
p∈ΩP |x

Pr[Y = 1, D = 1|x, p]− inf
p∈ΩP |x

{Pr[Y = 1, D = 0|x, p] + Pr[D = 1|x, p]} .

(3.16)

The widest possible width of the SV bounds is now therefore

ω(x) = inf
p∈ΩP |x

Pr[Y = 1|x, p]− sup
p∈ΩP |x

Pr[Y = 1|x, p]− sup
p∈ΩP |x

Pr[Y = 1, D = 1|x, p]
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+ inf
p∈ΩP |x

{Pr[Y = 1, D = 0|x, p] + Pr[D = 1|x, p]} ,

and from Lemma 3.10.1 we have that

ω(x) =Pr[Y = 1|x, p(x)]− Pr[Y = 1|x, p(x)]− Pr[Y = 1, D = 1|x, p(x)]

+ Pr[Y = 1, D = 0|x, p(x)] + Pr[D = 1|x, p(x)]

=Pr[Y = 1, D = 0|x, p(x)] + Pr[Y = 0, D = 1|x, p(x)]. (3.17)

The nature of the relationship between ω(x) and p(x) and p(x) follows directly from the

expressions in (3.15) and (3.17) upon application of Lemma 3.10.1.

Proof of Proposition 3.3.3. The proof follows directly from the expression for ω(x)

in Proposition 3.3.2 and Lemma 3.10.2.

Proof of Proposition 3.3.4. Without loss of generality, assume that the distribution of

ε2 has been “normalised” to be uniform over [0, 1]. Degeneracy of ν1(D,X)|D indicates

that there exists a function m1 : {0, 1} 7→ R such that ν1(d, x) = m1(d) for all (d, x) ∈

{0, 1}×ΩX . Take ATE(x) to be positive. When H(x, x′) is well defined and ν1(D,X) =

m1(D), X0+(x) = X1+(x) = ΩX , and X0−(x) = X1−(x) = ∅. Since ε2 is continuously

distributed we can conclude that ∀(x, z), (z′, x′) ∈ ΩX,Z such that Pr[D = 1|z′, x′] =

Pr[D = 1|x, z] we must have ν2(x, z) = ν2(z′, x′).

For LSV (x), consider supx′∈X1+(x) Pr[Y = 1, D = 0|x′, p]. If X1+(x) is empty, or if there

does not exist a z′ such that Pr[D = 1|x′, z′] = p, then supx′∈X1+(x) Pr[Y = 1, D = 0|x′, p]

is set to zero. Since X1+(x) equals ΩX because ν1(D,X) = m1(D), we have Pr[D =

1|x′, z′] = p for at least (z′, x′) = (x, z), and thus supx′∈X1+(x) Pr[Y = 1, D = 0|x′, p] is

well-defined. It follows that

sup
x′∈X1+(x)

Pr[Y = 1, D = 0|x′, p] = sup
x′∈X1+(x)

Pr[ν1(0, x′) > ε1, ν2(x′, z′) ≤ ε2|x′, p]

= sup
x′∈X1+(x)

Pr[m1(0) > ε1, ν2(x, z) ≤ ε2|x′, p]

= sup
x′∈X1+(x)

Pr[m1(0) > ε1, ν2(x, z) ≤ ε2|x, p]
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=Pr[Y = 1, D = 0|x, p], (3.18)

where the second equality arises because the CDF of ε2 is the strictly positive and

ν1(0, x′) = m1(0) is degenerate. The third equality is due to the assumed independence

of (X,Z). Similarly,

p inf
x′∈X0+(x)

Pr[Y = 1|x′, p,D = 1] = inf
x′∈X0+(x)

Pr[Y = 1, D = 1|x′, p]

= inf
x′∈X0+(x)

Pr[ν1(1, x′) > ε1, ν2(x′, z′) > ε2|x′, p]

= inf
x′∈X0+(x)

Pr[m1(1) > ε1, ν2(x, z) > ε2|x, p]

=Pr[Y = 1, D = 1|x, p]. (3.19)

By virtue of equations (3.18) and (3.19), and Lemma 3.10.1, LSV (x) can be rewritten as

LSV (x) = sup
p∈ΩP |x

{Pr[Y = 1, D = 1|x, p] + Pr[Y = 1, D = 0|x, p]}

− inf
p∈ΩP |x

{Pr[Y = 1, D = 0|x, p] + Pr[Y = 1, D = 1|x, p]}

= sup
p∈ΩP |x

Pr[Y = 1|x, p]− inf
p∈ΩP |x

Pr[Y = 1|x, p]

= Pr[Y = 1|x, p(x)]− Pr[Y = 1|x, p(x)]. (3.20)

For USV (x), because X0−(x) and X1−(x) are empty, from Lemma 3.10.1 we get

USV (x) = inf
p∈ΩP |x

{Pr[Y = 1, D = 1|x, p] + (1− p)} − sup
p∈ΩP |x

Pr[Y = 1, D = 0|x, p]

= Pr[Y = 1, D = 1|x, p(x)] + (1− p(x))− Pr[Y = 1, D = 0|x, p(x)]. (3.21)

THe expressions in (3.20) and (3.21) now yield the result that

ωSV =Pr[Y = 1, D = 1|x, p(x)] + (1− p(x))− Pr[Y = 1, D = 0|x, p(x)]

− Pr[Y = 1|x, p(x)] + Pr[Y = 1|x, p(x)]

=Pr[Y = 0, D = 0|x, p(x)] + Pr[Y = 1, D = 1|x, p(x)],
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which is equal to ω(x). The proof for the negative ATE(x) case is completely analogous,

the details are omitted.

Proof of Proposition 3.5.1. (a) We first show that IIP (x) is well-defined in the

sense that we are able to identify whether Z is relevant or not. If, for a given x ∈ ΩX ,

there exists a z and z′ in ΩZ|x such that z 6= z′ and Pr[D = 1|x, z] 6= Pr[D = 1|x, z′],

then the IV Z is relevant. If Z is relevant then IIP (x) = 1 − ω(x) where ω(x) is the

widest possible width defined in Proposition 3.3.2. Otherwise, Z is irrelevant, and by

Proposition 3.3.4, if Z is irrelevant the SV bounds reduce to the benchmark Manski

bounds and we have IIP (x) = 0.

Next, we prove that IIP (x) ∈ [0, 1]. Since ω(x) is a summation of some conditional

probabilities ∀x ∈ ΩX , it follows that ω(x) ≥ 0 and IIP (x) ≤ 1. Whenever Z is relevant

the sign of ATE(x) is identified, and from Lemma 3.10.1 it follows that if ATE(x) > 0

then

ω(x) = Pr[Y = 1, D = 1|x, p(x)] + Pr[Y = 0, D = 0|x, p(x)]

≤ Pr[Y = 1, D = 1|x] + Pr[Y = 0, D = 0|x], (3.22)

which is less than one, and if ATE(x) < 0 then

ω(x) = Pr[Y = 1, D = 0|x, p(x)] + Pr[Y = 0, D = 1|x, p(x)]

≤ Pr[Y = 1, D = 0|x] + Pr[Y = 0, D = 1|x], (3.23)

which is also less than one. Thus, IIP (x) = 1−ω(x) ≥ 0, ∀x ∈ ΩX , and IIP (x) ∈ [0, 1].

(b) If Z is irrelevant, by definition we have IIP (x) = 0 and the SV bounds reduce to

the benchmark Manski bounds by Proposition 3.3.4. To establish necessity we will show

that the presumption that the events Z is relevant and IIP (x) = 0 occur simultaneously

leads to a contradiction. If Z is relevant, then the index IIP (x) = 1− ω(x). The goal,

therefore, is to show that relevant Z leads to strictly less one ω(x), by verifying the

inequalities (3.22) and (3.23) are strict. Take (3.22) as an example and the result for
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(3.23) can be verified analogously. Since

Pr[Y = 1, D = 1|x]− Pr[Y = 1, D = 1|x, p(x)]

=

∫
p∈ΩP |x

[
Pr[Y = 1, D = 1|x, p]− Pr[Y = 1, D = 1|x, p(x)]

]
dPr[P = p|X = x]

=

∫
p∈ΩP |x

Pr
[
ε1 < µ1(1, x), p(x) ≤ ε2 < p

]
dPr[P = p|X = x], (3.24)

the relevance of Z guarantees that there exists a p ∈ ΩP |x such that p 6= p(x) and

Pr[P = p|X = x] > 0. Then, the continuity of the joint distribution of the (ε1, ε2)

with support R2 implies that (3.24) is strictly positive. Similar arguments can be ap-

plied to show that Pr[Y = 0, D = 0|x] − Pr[Y = 0, D = 0|x, p(x)] > 0. Therefore,

ω(x) < Pr[Y = 1, D = 1|x] + Pr[Y = 0, D = 0|x] ≤ 1, leading to IIP (x) > 0.

(c) If Z is a perfect predictor of the treatmentD in the sense that there exist a z∗ and a z∗∗

in ΩZ|x such that Pr(D = 0|x, z∗) = 1 and Pr(D = 1|x, z∗∗) = 1, this obviously implies

Z is relevant and IIP (x) = 1−ω(x). Furthermore, p(x) = p(x, z∗) and p(x) = p(x, z∗∗).

Hence, it can be easily shown from the expressions for ω(x) that perfect prediction

by Z leads to the equality ω(x) = 0 for both ATE(x) > 0 and ATE(x) < 0. Thus

IIP (x) = 1− ω(x) = 1.

Moreover, since ω(x) is the widest possible width for the SV bounds, we have 0 ≤

ωSV (x) ≤ ω(x), and when ω(x) = 0 it follows that ωSV (x) = 0. The ATE(x) is point

identified if IIP (x) = 1.



Chapter 4

Spillovers of Program Benefits with

Mismeasured Networks

4.1. Introduction

In the literature on treatment effects, the SUTVA (Rubin, 1990) is widely adopted

for causal inference. It states that the treatment of one unit does not affect others’

outcomes. However, the spillover effects of the treatment via network interactions have

been documented in many applications, for example, cash transfer programs (Barrera-

Osorio et al., 2011), health programs (Dupas, 2014), public policy programs (Kremer and

Miguel, 2007), education programs (Opper, 2019), and information diffusion (Banerjee

et al., 2013). In these studies, spillovers are conceived as a mechanism through which a

treatment could propagate and affect many others’ socioeconomic behaviour. Therefore,

correctly measuring the spillovers of a program intervention is incredibly relevant for

understanding whether and how the treatment influences individuals’ outcome through

their social interactions, and providing meaningful policy advice for effective treatment

allocation (Angelucci and Di Maro, 2016; Viviano, 2019).

Existing methods of studying spillover effects typically assume that accurate informa-

tion about the network connections of all the sampled units is available (e.g. Leung,

2020b; Ma et al., 2020; Vazquez-Bare, 2019; Viviano, 2019). However, this assumption

141
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is difficult to verify in practice and questionable in many settings (Sävje, 2019). In-

creasing evidence has shown that social connections are substantially misreported. For

example, Comola and Fafchamps (2017) document a massive discrepancy (about 73%)

between the responses of inter-household transfers reported from givers and receivers in

the village of Nyakatoke, Tanzania. The ratio 73% is computed as the number of re-

ported transfers coming from only giver or only receiver (1250) over the number of total

reported transfers (1721), see Comola and Fafchamps (2017) page 560-561. These trans-

fers are oft-used to construct risk-sharing networks; therefore, the nonnegligible portion

of network links are nonreciprocal due to the discrepancies. Ignoring or mis-connecting

either side of the responses may lead to misclassified networks. Similar non-reciprocal

problem has also been found in other survey data, e.g. 40% of risk-sharing network links

from rural Philippines (Fafchamps and Lund, 2003) and more than 10% of the friend-

ship among adolescents in Add-Health dataset (Calvó-Armengol et al., 2009; Patacchini

et al., 2017) are non-reciprocal. When constructing generational family network links in

the PROGRESA data via the respondents’ surnames, Angelucci, De Giorgi, Rangel, and

Rasul (2010) find various forms of measurement errors. They include poor recalling of

and typos in the surnames, false connections of two genuinely unrelated families sharing

the same surnames, and misspecification of network boundary by restricting the network

within the same village. In the study of technology diffusion among pineapple farmers in

Ghana, Conley and Udry (2010) also notice the potential misclassification of information

neighbours, due to the lack of precise definitions of the information neighbours and the

existence of multi-contextual social connections.

This chapter investigates the identification and estimation of the treatment and spillover

effects of a program intervention with mismeasured network data. There are several

attractive features of the proposed method. First, it allows flexible forms of heterogeneity

in the treatment and spillover effects, which is important to inform how the treatment

response varies across population (Manski, 2001). Second, the analysis can be applied

to settings with a large network that is not block-diagonal and that contains missing or

misreported links. Moreover, modelling the network formation or its misclassification

probability is not required to implement the proposed method.
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We focus on a randomised program intervention and a superpopulation model studied

by Leung (2020b). If a network is correctly measured, the direct treatment effect can

be identified from the variation of the ego unit’s own treatment status, and the spillover

effect can be identified via the variation of a statistic summarising the exposure to the

treated peers. However, the network measurement errors introduced in this chapter

sophisticate the identification by contaminating the true channels of the network inter-

ference. Ignoring those errors will lead to biased estimation. The measurement errors

considered in this chapter are nonclassical; that is, they depend on the network inter-

actions. In addition, the measurement errors are assumed to be independent of the

potential outcomes and the treatment, conditional on the statistic of the network and

exogenous covariates. This independence assumption is referred to as “nondifferential”,

and is often invoked in the literature studying measurement error models (e.g. Bound,

Brown, and Mathiowetz, 2001).

In this chapter, we propose a novel strategy to nonparametrically point-identify the

treatment and spillover effects with a mismeasured network proxy, when an instrumental

variable for the latent network (or equivalently, an additional network proxy) is available.

The identification consists of two steps. Firstly, we adopt the matrix diagonalisation

method proposed by Hu (2008) to identify several distributions of the true number of

network neighbours (hereafter degree), under the help of the instrument network proxy.

Secondly, the distribution involving the true number of treated network neighbours, which

measures the exposure to the treated peers, is identified. The identification in the second

step relies on the observation that, network proxies in some studies might satisfy one

assumption: there is only one type of measurement error. It means that the network

proxy either includes no false links while allowing missing ones (“no false positive”),

or includes no missing links but allowing false ones (“no false negative”). This one

type of measurement error assumption dramatically simplifies the interdependence of

the observed network-based variables with their latent counterparts, which is the main

difficulty of identification. Testable implication of such an assumption is also available.

Inference in network settings is nonstandard due to the data correlation induced by

the network interaction. In particular, outcomes of two units are correlated if they are
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connected or share common network neighbours (Leung, 2020b). In this chapter, the

mismeasured network adds to the complication by introducing an extra source of corre-

lation, through the spillover of the measurement errors. Such spillover occurs, because

a false network connection of two units will alter both their observable exposures to the

treated neighbours. In addition to the above network-induced correlation, this chapter

also considers data dependency due to general forms of heteroscedasticity, autocorrela-

tion and clustering, so that units that are not friends and do not share common friends

may also correlate with each other. Such correlation may be caused by, for instance, fam-

ily background, school culture, or community diversity. All sources of data correlation

described above generate distinct technical issues for the causal inference.

We propose a semiparametric estimation approach, which overcomes the difficulty caused

by the spillover of measurement errors, and the resulting estimator is shown to be con-

sistent and asymptotically normal. To derive limit theorems, we extend the univariate

central limit theorem (CLT) of Chandrasekhar and Jackson (2016) to multivariate set-

tings. The estimation approach in this chapter possesses several advantages: (i) it fits

situations where there may be no clear spatial or ordered structure; (ii) it does not

require a large number of independent subnetworks and allows general forms of data de-

pendence; and (iii) it allows a sufficiently large number of units have nonzero correlation

with an increasing number of other units.

In the simulation exercises, we verify the advantages of the proposed methodology over

the naive estimation that ignores the network measurement errors. The bias reduction

provided by the semiparametric approach is substantial and its causal inference is more

reliable than that of the naive estimation. Moreover, it is confirmed that the semi-

parametric method still outperforms the naive estimation, even if its key identification

assumption, for example, the one type of measurement error, is mildly violated.

4.2. Literature Review

This chapter is among a few papers that have studied the spillover effect of a program

intervention with mismeasured networks. Hardy, Heath, Lee, and McCormick (2019)
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consider a parametric model for the potential outcomes and for the network misclas-

sifications, and use a likelihood-based approach to estimate the spillover effect. In a

nonparametric setting, when only a network proxy is available, He and Song (2018)

provide a lower bound for the spillover effect under the restriction that the spillover is

nonnegative. This chapter is substantially different from the papers above, because it

does not rely on modelling the network misclassifications, and more importantly, it pro-

vides a formal solution for the nonparametric point-identification of the spillover effect,

when two network proxies are available.1

One study of the structural model of social interactions with mismeasured networks

is related to this chapter. Gao and Li (2019) explore the endogenous and exogenous

peer effects via the linear-in-means model with two mismeasured network proxies. Their

identification result depends on three key assumptions. First, there exist two different

latent network structures for the same group of individuals. Second, the error con-

taminated network-based variables are assumed to be independent conditional on their

latent counterparts, which implicitly requires the networks to be non-stochastic. At last,

a copula is used to capture the dependence between the mismeasured network effects.

Like the study in this chapter, Gao and Li (2019) exploit the matrix diagonalisation

method, however our analysis focuses on the reduced-form treatment response function

that is modeled nonparametrically, enabling flexible forms of heterogeneous treatment

and spillover effects. See Hardy et al. (2019), Leung (2019a) and Manski (2013) which

also emphasise the difference between the structural model of social interactions and

the reduced-form model focusing on the treatment response function. In addition, the

identification strategy in this chapter does not require different network structures for

the same set of individuals, the non-stochastic network, or a copula structure for the

network-based variables. Instead, identification in this chapter is achieved by restrict-

ing the network measurement errors. Other related papers are, for example, Advani

and Malde (2018), Chandrasekhar and Lewis (2011), Goldsmith-Pinkham and Imbens

(2013), and Lewbel, Qu, and Tang (2019).

1Sävje, Aronow, and Hudgens (2017) find that when there is limited or moderate degree of network
interactions, ignoring the network interference would not impact the asymptotic properties of the average
treatment effect estimators. Chin (2018) studies the average treatment effects under unmodeled network
interference. However, neither of them explore the spillover effect.
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Consequences and solutions of misclassified networks on estimating network statistics

or network formation are discussed by, for example Breza, Chandrasekhar, McCormick,

and Pan (2020), Candelaria and Ura (2020), Comola and Fafchamps (2017), Kossinets

(2006), Liu (2013) and Thirkettle (2019). However, it is not clear how to apply these

methods to identify treatment and spillover effects in a causal setting.

The literature exploring limit theorems using network-dependent data is developing

rapidly. Some papers assume that the social network can be partitioned into a large

number of disjoint and independent subnetworks (e.g. Lewbel et al., 2019; Vazquez-

Bare, 2019). However, this independence assumption may not be plausible in practice,

because it ignores the links across subnetworks. Chandrasekhar and Lewis (2011) adopt

mixing conditions to restrict the dependence of network connections, while, in many

contexts, there is no underlying metric space to define the standard “mixing” forms of

dependence. Leung (2020b) introduces the notion of “dependence graph” to capture

the network-correlated effects, and derives limit theorems under the conditional local

dependence; that is, the outcomes of two units are independent if they are not network

neighbours nor share common network neighbours. However, in the setting considered in

this chapter, the measurement errors disrupt the true network dependence structure, so

that some seemingly uncorrelated units may actually correlate with each other due to the

latent network connections, and vice versa. Therefore, an alternative data dependence

structure is needed. We adopt the “dependence neighbourhoods” structure proposed

by Chandrasekhar and Jackson (2016) to control the data correlation, which does not

require the correct network links to be observed and employs less restrictions on the

dependence structure. The dependency neighbourhood used in this chapter is similar

to the dependency graph of Leung (2020b) in the sense that they both aim to control

the data dependence. Nonetheless, they are different, since the dependency neighbour-

hoods can capture more general forms of correlation induced by network measurement

errors and unobservables. Other papers study limit theorems of network dependent data

include Chin (2018), Kojevnikov, Marmer, and Song (2019), Kuersteiner (2019), Lee

and Ogburn (2020), Leung and Moon (2019), Leung (2019b, 2020a), Liu and Hudgens

(2014), Song (2018), van der Laan (2014) and references therein.
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4.3. Model Setup

Let D = {Di}i∈P and Z = {Zi}i∈P denote vectors consisting of units’ (or individuals,

nodes, agents) treatment status and observable characteristics for a super-population P ,

respectively. Denote A∗ as the true, latent and binary adjacency matrix, corresponding

to an unweighted and undirected random network over the super-population P . Each

row of A∗, denoted by A∗i , represents unit i’s network connection with unit j.2 Let

A∗ij = 1 if i and j are linked (or equivalently, network neighbours3), otherwise A∗ij = 0 .

As a convention, self links are ruled out, i.e. A∗ii = 0 for ∀i ∈ P . Given the adjacency

matrix A∗, we define the set of unit i’s first-degree network neighbours by N ∗i = {j ∈

P : A∗ij = 1}. Denote F∗i =
∑

j∈P A
∗
ij as the cardinality of N ∗i , and F∗i is usually referred

to as the “network degree” of unit i. For each i ∈ P , the outcome Yi is defined as

Yi = r̃(i,D,A∗,Z, εi), (4.1)

where r̃ is a unknown real-valued function and εi is an unobservable error term. The

Yi in (4.1) acknowledges that one unit’s outcome depends on not only his or her own

treatment status, but also the treatments assigned to other units, i.e., the spillover

effect. We impose the assumption below to restrict the dependence of the outcome Yi

on (i,D,A∗,Z, εi).

Assumption 4.3.1 (Network Interference) For ∀i, k ∈ P, ∀(D,A∗,Z) and ∀(D̃, Ã∗, Z̃),

r̃(i,D,A∗,Z, e) = r̃(k, D̃, Ã∗, Z̃, e),

for all e ∈ Ωεi ∪ Ωεk , if the following conditions hold simultaneously: (i) Di = D̃k; (ii)∑
j∈P A

∗
ij =

∑
j∈P Ã

∗
kj; (iii)

∑
j∈P A

∗
ijDj =

∑
j∈P Ã

∗
kjD̃j; (iv) Zi = Z̃k.

Assumption 4.3.1 is the equivalent to model (2) in Leung (2020b). It states that the

outcome is fully determined by (i) unit’s own treatment status; (ii) the network degree;

2The vectors of treatment status and observable characteristics, and the adjacency matrix are infinite-
dimensional. We follow Leung (2020b) and obviate further details to ease the illustration.

3It is worthy to notice that there are two different definitions of neighbours utilised in this chapter.
The first one, which is referred to as “network neighbours”, is defined by the network links D. The second
one, which is referred to as “dependent neighbours”, is defined via the dependency neighbourhoods and
is used to characterise correlations of random variables of interest (see Section 4.5.1 for more details).
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(iii) the number of the first-order treated network neighbours S∗i :=
∑

j∈P A
∗
ijDj; and

(iv) unit’s own covariates.

Assumption 4.3.1 substantially reduces the dimensionality of the outcome and reveals

two crucial features of the network interactions. First, the interference occurs locally,

only among the first-order network neighbours. Thus, (Di, S
∗
i ) can be viewed as the

“effective treatment” (Manski, 2013). Second, the outcome is invariant to any permuta-

tions of the treatments received by the first-order network neighbours, meaning that the

interactions are anonymous. The anonymous interaction is also referred to as “stratified

interference”, see Baird et al. (2018), Basse and Feller (2018) and Hudgens and Halloran

(2008) among others. Aronow and Samii (2017), Leung (2019a) and Sävje (2019) con-

sider the possible mis-specification of models similarly defined by Assumption 4.3.1, and

tests for Assumption 4.3.1 are feasible in Athey et al. (2018). Under Assumption 4.3.1,

equation (4.1) can be simplified to

Yi = r(Di, S
∗
i , Zi,F∗i , εi), for ∀i ∈ P (4.2)

where r represents a real-valued unknown function. Such an outcome structure permits

adequate controls for the observable and unobservable heterogeneity of the treatment

response. Given (4.2), it is easy to see that unit i’s outcome Yi is directly affected by

his or her own treatment status Di (treatment effect), and is also affected by S∗i because

of the exposure to the treated peers (spillover effect). The network N ∗i affects the

outcome via two pathways: the network degree F∗i and the treated network neighbours

incorporated in S∗i . The network degree is a critical attribute because it quantifies the

influence of each unit in the social network and controlling F∗i in (4.2) enables us to target

subpopulation based on different levels of influence. Besides, it acts as a control variable

for the degree heterogeneity to allow the correlation between the network formation and

the potential outcomes. The notion of “degree heterogeneity” is proposed by Graham

(2017). Similar control variable method is used in e.g. Johnsson and Moon (2015).

The following notations will be used throughout the chapter. For any generic random

variables X and Y , denote fX and fX|Y as the probability distribution function of X and

the conditional probability distribution function of X given Y , respectively. ΩX denotes
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the support of the random variable X. By notation abuse, |B| denotes the cardinality

of any set B, or the absolute value for any scalar B. For any vector a ∈ Rp, let ‖a‖1 =∑p
i=1 |ai| be its L1 norm, ‖a‖ = (a′a)1/2 be its Euclidean norm and ‖a‖∞ = max1≤i≤p |ai|.

Given a matrix A = (aij), we set ‖A‖ = [tr(A′A)]1/2 and ‖A‖∞ = max1≤i,j≤p |aij|. More

generally, for an array (or a vector) of functions, say a = {ai} with ai : ΩX 7→ R, denote

‖a‖∞ = supx∈ΩX
supi |ai(x)|, where i could stand for a multiple index. For an arbitrary

parameter β, denote dβ = dim(β). ⊥ means statistical independence.

4.3.1. Treatment and Spillover Effects

To motivate the potential identification issues, let us begin by defining key concepts and

introducing basic assumptions.

Definition 4.3.1 (CASF) For ∀(d, s, z, n) ∈ {0, 1} ×ΩS∗,Z,F∗, the conditional average

structural function (CASF) is defined as

m∗(d, s, z, n) = E
[
r(d, s, Zi,F∗i , εi)

∣∣Zi = z,F∗i = n
]
.

In this chapter, we focus on treatment and spillover effects, measured the average change

in potential outcomes in response to the counterfactual manipulation of the treatment

assigned to the ego unit and network peers, respectively. Similar definitions measuring

the direct effect and the spillover effect of treatment are also introduced in Hudgens

and Halloran (2008) and Sobel (2006) to name a few. See Tchetgen and VanderWeele

(2012) for a discussion about relationships between various notions of causal effects in the

presence of network interference. The analysis in this chapter can be straightforwardly

extended to studies dealing with other notions of treatment effect estimands.

Definition 4.3.2 (Treatment and Spillover Effects) For ∀(s, z, n) ∈ ΩS∗,Z,F∗, de-

fine

treatment effect: τd(s, z, n) = m∗(1, s, z, n)−m∗(0, s, z, n),

spillover effect: τs(s, z, n) = m∗(0, s, z, n)−m∗(0, 0, z, n).
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The assumption below introduces the ignorability conditions that account for network

interference, based on which the causal effects of interest can be recovered if the actual

network data is available.

Assumption 4.3.2

(a) (Randomised Treatment) {Di}i∈P are i.i.d. and {Di}i∈P ⊥ {εj, Zj,N ∗j }j∈P .

(b) (Unconfounded Network) For ∀i ∈ P, εi ⊥
(
N ∗i , {Dj}j∈N ∗i

) ∣∣Zi,F∗i .

Assumption 4.3.2 (a) states that the treatment is randomly assigned and independent

of the potential outcomes, and does not affect the network. Randomised intervention

has been used in a wide range of experimental contexts, including Miguel and Kremer

(2004), Aral and Walker (2012), Oster and Thornton (2012), Cai et al. (2015b) to name

a few, and see Athey and Imbens (2017) for a review. Therefore, Assumption 4.3.2 (a)

is a straightforward starting point for the analysis. Assumption 4.3.2 (b) requires the

unconfounded network, which is weaker than the fully exogenous network, by allowing

the correlation between the degree F∗i and the unobservable characteristics, for example,

through the spillovers of unobservables. See Leung (2020b) for a similar assumption and

supportive examples. The network unconfoundedness to the treatment and the potential

outcomes is likely to hold in randomised experiments where the network data is collected

before the intervention.

Assumption 4.3.3 (Distribution)

(a) {Zi}i∈P are i.i.d. and F∗i given Zi is identically distributed across i ∈ P.

(b) For ∀i ∈ P, εi given (Zi,F∗i ) is identically distributed.

Assumption 4.3.3 (a) implies that the covariate Zi is of randomly drawn samples, which

is standard in the literature on network effect models, e.g., Johnsson and Moon (2015)

and Auerbach (2019). In the analysis of this chapter, it is feasible to relax the i.i.d. of

Zi and allow it to possess dependent structure under the framework described in Section

4.5.1. We maintain such an i.i.d. assumption only for illustration simplicity. It also



4.3. MODEL SETUP 151

requires the conditional distribution of the network degree to be invariant across units.

An example of the dyadic network formation in Appendix 4.9.1 can be used to verify

the existence of such an identical distribution. Also see a strategic network formation

model in Leung (2020b) that satisfies (a). Moreover, the identical distribution of the

error term εi given (Zi,F∗i ) in condition (b) permits that the expressions of the CASF,

the treatment effect τd and the spillover effect τs are all identical for any unit i ∈ P .

If the actual network N ∗i is correctly observed, under the assumptions introduced so far,

the CASF can be identified by4

m∗(d, s, z, n) = E
[
Yi
∣∣Di = d, S∗i = s, Zi = z,F∗i = n

]
,

which ensures that the treatment and spillover effects are also identifiable. However, it

appears that, in many applications, we fail to obtain fully accurate network information.

Ignoring the missing or misclassified network links may lead to biased estimation and

misleading causal implications.

4.3.2. Bias of CASF with Mismeasured Network

This subsection presents the potential bias of the CASF identified from the mismeasured

network data. Suppose that researchers randomly draw N units from the population P ,

and collect their outcomes of interest, treatment status, covariates, network information

and treatment assignments of their network neighbours. Thus, researchers can observe:

(Yi, Di, Zi,Ni, {Dj}j∈Ni), for i = 1, 2, ..., N,

where Ni denotes the observed identities of unit i’s network neighbours with cardinality

Fi, and the convention of no self connections is maintained, i.e. i 6∈ Ni. Note that

4For ∀(d, s, z, n) ∈ {0, 1} × ΩS∗,Z,F∗ , it can be shown that

E
[
Yi
∣∣Di = d, S∗i = s, Zi = z,F∗i = n

]
=E

[
r(Di, S

∗
i , Zi,F∗i , εi)

∣∣Di = d, S∗i = s, Zi = z,F∗i = n
]

=E
[
r(d, s, z, n, εi)

∣∣Zi = z,F∗i = n
]

=m∗(d, s, z, n),

where the second equality is due to the unconfoundedness of (Di, S
∗
i ) in Lemma 4.9.12 and the last

equality is by Definition 4.3.1.



152 CHAPTER 4. SPILLOVERS WITH MISMEASURED NETWORKS

there are no restrictions on the sampling scheme of the network data. Namely, Ni
can be obtained from a single and fully observed network, or from a (possibly partially

observed) sampled network. In addition,Ni can be either self-reported, acquired from the

administrative data, or constructed by researchers based on specific rules. Throughout

the chapter, Ni is referred to as the “network proxy”. Given Ni, the number of observed

treated network neighbours is denoted by Si =
∑

j∈Ni Dj.

The assumption below extends Assumption 4.3.2 to accommodate the observable network

proxy by restricting the misclassification of the network links.

Assumption 4.3.4 (Nondifferential Misclassification)

(a) {Di}i∈P ⊥ {εj, Zj,N ∗j ,Nj}j∈P ;

(b) For ∀i ∈ P, εi ⊥
(
N ∗i , {Dj}j∈N ∗i ,Ni, {Dj}j∈Ni

) ∣∣Zi,F∗i .

(c) For ∀i ∈ P, Fi given (Zi,F∗i ) is identically distributed.

Assumption 4.3.4 (a) and (b) indicate that, given the actual network information and

individual’s characteristics, the observed proxy Ni does not contain relevant information

to predict the outcome. This is often referred to as “nondifferential misclassification” in

the measurement error models literature, e.g. Battistin and Sianesi (2011), Hu (2008)

and Lewbel (2007). In addition, Assumption 4.3.4 (c) holds in many contexts, for exam-

ple, when units fail to respond with probability proportional to their actual degrees (“the

load effect”), or inversely proportional to their actual degrees (“the periphery effect”)

(Kossinets, 2006). A set of sufficient conditions for Assumption 4.3.4 (c) is provided in

Appendix 4.9.1.

Now, denote the conditional mean of the outcome given the observables as

mi(d, s, z, n) = E[Yi|Di = d, Si = s, Zi = z,Fi = n],

where the subscript i of mi represents the possibly non-identical conditional mean of the

outcome given the observables, which is caused by the unknown dependence between
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the error contaminated network-variables (Si,Fi) and their latent counterparts (S∗i ,F∗i ).

The relationship between mi and m∗ can be obtained by the proposition below.

Proposition 4.3.3 Under Assumptions 4.3.1-4.3.4, for ∀i ∈ P and ∀(d, s, z, n) ∈ {0, 1}×

ΩS,Z,F ,

mi(d, s, z, n) =
∑

(s∗,n∗)∈ΩS∗,F∗

m∗(d, s∗, z, n∗)fS∗i ,F∗i |Di=d,Si=s,Fi=n,Zi=z(s
∗, n∗).

Proposition 4.3.3 characterises the bias in the CASF estimand if ignoring the measure-

ment errors of the network links. The expression of mi makes it clear that the bias of

mi is governed by the latent distribution of the actual network-based variable (S∗i ,F∗i )

given its observed counterpart (Si,Fi). This bias will be larger, if the misclassification

probability of (Si,Fi) is higher. Importantly, due to the nonparametric setting of m∗,

simply differencing mi(1, s, z, n) and mi(0, s, z, n) in general cannot give the treatment

effect τd(s, z, n), even though the treatment is randomised and correctly-observed. How-

ever, it will be true if the response to the variation of the ego unit’s treatment status

is homogeneity in both the observables and unobservables, relying on strong structural

restriction. Similar weighted average expressions of the identifiable parameter are pre-

sented by Gao and Li (2019) for the endogenous peer effects and by Hardy et al. (2019)

for the treatment spillover effects.

4.4. Identification

Let us first introduce a key lemma in decomposing the latent distribution fS∗i ,F∗i |Di,Si,Fi,Zi

into identifiable components.

Lemma 4.4.1 Under Assumption 4.3.2 (a) and 4.3.4 (a),

(a) N ∗i ⊥ S∗i
∣∣Zi,F∗i and Fi ⊥ S∗i

∣∣Zi,F∗i ;

(b) Ni ⊥ Si
∣∣Zi,Fi and F∗i ⊥ Si

∣∣Zi,Fi;
(c) for ∀(s, n) ∈ ΩS,F , fS∗i |F∗i =n,Zi(s) = fSi|Fi=n,Zi(s) = Cs

nfD(1)sfD(0)n−s, for fD(d) :=



154 CHAPTER 4. SPILLOVERS WITH MISMEASURED NETWORKS

Pr(Di = d) with d ∈ {0, 1}.

Lemma 4.4.1 (a) delivers two implications. First, the distribution of the number of

treated network neighbours, S∗i , is fully determined by the true network degree and

exogenous covariates, instead of the identity of network neighbours or the observable

network degree. It further restricts the anonymous interactions. Lemma 4.4.1 (b) states

the similar properties of Si. The identifiability of fS∗i |F∗i ,Zi in (c) is intuitive, because the

treatments are randomly assigned and the summation of any given n i.i.d. treatment

status follows a binomial distribution.

Given Proposition 4.3.3 and Lemma 4.4.1, to identify the CASF m∗, we can first decom-

pose the latent distribution function fS∗i ,F∗i |Di,Si,Fi,Zi as follows.

Proposition 4.4.2 Under Assumptions 4.3.2 and 4.3.4

fS∗i ,F∗i |Di,Si,Fi,Zi =
fSi|S∗i ,F∗i ,Fi,Zi × fS∗i |F∗i ,Zi × fFi|F∗i ,Zi × fF∗i |Zi

fSi|Fi,Zi × fFi|Zi
. (4.3)

It is clear that fFi|Zi and fSi|Fi,Zi can be identified directly from the observables under

the assumptions exploited in the previous sections, and fS∗i |F∗i ,Zi is identifiable based on

Lemma 4.4.1.

In what follows, we will deal with the identification of the remaining distributions in

the decomposition in two steps. First, suppose that two network proxies are available

for each sampled individual i ∈ {1, 2, ..., N}, denoted by Ni and Ñi. They may come

from repeated observations of a sampled network over time, different dimensions of

connections (e.g., kinship and borrowing-lending), multi-contextual interactions (e.g.,

various social events or afflictions), or self-reported and administrative network data.

Intuitively, the additional network proxy Ñi can be understood as an instrument for the

true latent network (Hu, 2008; Hu and Schennach, 2008), that is conceptually similar

to the ones utilised in conventional instrumental variable methods. Following the same

construction, for Ñi, denote its cardinality as F̃i and the number of treated network

neighbours as S̃i =
∑

j∈Ñi Dj. Given the two observed network proxies Ni and Ñi, apply

the method of matrix diagonalisation of Hu (2008) to achieve the identification of fFi|F∗i ,Zi
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and fF∗i |Zi . Due to the complex and unconstrained interdependence between the observed

(Si,Fi), (S̃i, F̃i) and their latent counterpart (S∗i ,F∗i ) through the underlying network

N ∗i , it is not feasible to identify the latent distribution fSi|S∗i ,F∗i ,Fi,Zi by simply repeating

the matrix diagonalisation approach. Therefore, in the second step, we introduce a

crucial assumption on the network measurement errors, which dramatically simplifies

the interdependence and ensures the identification of fSi|S∗i ,F∗i ,Fi,Zi .

4.4.1. Identification via Matrix Diagonalisation

Assumptions 4.4.1 to 4.4.4 below are crucial when establishing the identification results

via the matrix diagonalisation technique similar to that used by Hu (2008). Modifications

to the assumptions and method are made, to fit the network setting considered in this

chapter.

Assumption 4.4.1 (Exclusion Restriction) Fi ⊥ F̃i
∣∣Zi,F∗i .

Assumption 4.4.1 can be interpreted as a standard exclusion restriction that F̃i does not

provide extra information about Fi than the actual degree F∗i already provides. It can

also be understood as that the instrumental variable Ñi is conditionally independent of

the measurement errors in Ni. It rules out the situations where both network proxies

are mismeasured due to random omission of the same group of units when constructing

the networks. A set of sufficient conditions for Assumption 4.4.1 is given in Appendix

4.9.1. The exclusion restriction is the key to implementing the matrix diagonalisation

method.

Assumption 4.4.2 (Sparsity) ΩF̃ = ΩF = ΩF∗ with finite cardinality KF .

Assumption 4.4.2 requires that the network is sparse, i.e. each individual has finite

friends, and that the number of friends does not increase with the sample size. Sparse

networks are commonly observed in empirical applications (Chandrasekhar, 2016), and

are a standard assumption in the literature on network effects, e.g. De Paula, Richards-

Shubik, and Tamer (2018), Qu and Lee (2015) and Viviano (2019). By the i.i.d. of the

treatment assignment, it is clear that ΩS̃ = ΩS = ΩS∗ .
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To illustrate the basic idea of the matrix diagonalisation technique, let us introduce the

following notations. Without loss of generality, set ΩF∗ = ΩF = ΩF̃ = {0, 1, ..., KF − 1}.

Denote the KF ×KF matrix FF|F∗,Z as

FF|F∗,Z =


fFi|F∗i =0,Zi(0) · · · fFi|F∗i =KF−1,Zi(0)

...
. . .

...

fFi|F∗i =0,Zi(KF − 1) · · · fFi|F∗i =KF−1,Zi(KF − 1)

 . (4.4)

Similarly, define FF̃|F∗,Z via replacing fFi|F∗i ,Zi in (4.4) by fF̃i|F∗i ,Zi . In addition, define

two observable KF ×KF matrices

FF̃ ,F|Z = {fF̃i,Fi|Zi(i, j)}, and EF̃ ,F ,Y |Z =

{∫
y∈ΩY

yfF̃i,Fi,Yi|Zi(i, j, y)dy

}
,

with i, j = 0, 1, ..., KF − 1, and define a KF ×KF diagonal matrix

TY |F∗,Z =diag (E[Yi|F∗i = 0, Zi],E[Yi|F∗i = 1, Zi], · · · ,E[Yi|F∗i = KF − 1, Zi]) .

The main idea of the matrix diagonalisation method is to identify the latent distributions

of interest via diagonalising the matrix of directly observable distributions EF̃ ,F ,Y |Z ×

F−1

F̃ ,F|Z as

TY |F∗,Z = F−1

F̃|F∗,Z ×
(
EF̃ ,F ,Y |Z × F

−1

F̃ ,F|Z

)
× FF̃|F∗,Z .

Then, recover the latent distributions in FF|F∗,Z and FF̃|F∗,Z via the eigen-decomposition

approach: columns of FF̃|F∗,Z are the eigenvectors of the matrix EF̃ ,F ,Y |Z × F
−1

F̃ ,F|Z , and

diagonal elements of TY |F∗,Z are the corresponding eigenvalues. Note that the discussion

above is based on the preassumption about the invertibility of FF|F∗,Z and FF̃|F∗,Z , which

is formalised by Assumption 4.4.3 below.

Assumption 4.4.3 (Rank Condition) The ranks of FF|F∗,Z and FF̃|F∗,Z are both KF .

The next assumption is the key to identifying latent probabilities via eigen-decomposition.

Assumption 4.4.4 (Eigen-decomposition)
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(a) For ∀n, n′ ∈ ΩF∗ such that n 6= n′, we have E[Yi|F∗i = n, Zi] 6= E[Yi|F∗i = n′, Zi].

(b) For ∀n∗ ∈ ΩF∗ and any n 6= n∗, we have

fFi|F∗i =n∗,Zi(n
∗) > fFi|F∗i =n∗,Zi(n), fF̃i|F∗i =n∗,Zi

(n∗) > fF̃i|F∗i =n∗,Zi
(n).

Assumption 4.4.4 (a) is a sufficient condition to avoid duplicate eigenvalues so that the

eigen-decomposition is unique. It is automatically satisfied if E[Yi|F∗i , Zi] is monotone

in F∗i and it also holds for more general scenarios. Noticing that the condition (a) is

a special case of a more general condition E[$(Yi)|F∗i = n, Zi] 6= E[$(Yi)|F∗i = n′, Zi],

where the transformation function $(·) can be user-specified, such as $(y) = (y−E[Yi])
2

(variance) or $(y) = 1[y ≤ y0] (quantile) for some given y0. Assumption 4.4.4 (b)

permits that the order of the eigenvectors is identifiable. It indicates that the observable

network degrees are informative proxies for the latent degree, which implicitly assumes

that the probability of correctly reporting is higher than that of misreporting. Similar

restrictions are widely invoked in the literature on measurement error models. See, for

example, Battistin and Sianesi (2011), Battistin, De Nadai, and Sianesi (2014), Chen,

Hong, and Nekipelov (2011), Hu and Schennach (2008), Lewbel (2007) and Mahajan

(2006).

Theorem 4.4.3 Suppose Assumption 4.3.4 is satisfied by Ñi and Ni. Under Assump-

tions 4.3.1-4.3.3 and 4.4.1,

(a) fFi|Zi, fF̃i,Fi|Zi and fF̃i,Fi,Yi|Zi are identical across i ∈ P.

(b) If further assume Assumptions 4.4.2-4.4.4 hold, then fF∗i |Zi, fFi|F∗i ,Zi and fF̃i|F∗i ,Zi

are nonparametrically identified.

4.4.2. Identification via One Type of Measurement Error

Next, let us proceed with the identification of fSi|S∗i ,Fi,F∗i ,Zi . The matrix diagonalisation

method is infeasible in this step, because of the violation of the exclusion restriction

analogue to Assumption 4.4.1. In other words, the conditional independence Si ⊥ S̃i
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given (S∗i ,Zi) with Zi = (Zi,F∗i ) does not hold. To be more specific, consider the

expression of Si in terms of S∗i below

Si = S∗i −
∑

j∈N ∗i /Ni

Dj +
∑

j∈Ni/N ∗i

Dj, (4.5)

where for any sets A and B, let A/B := A
⋂
Bc with Bc being the complement of B. The

set N ∗i /Ni contains all the missing network links of i (false negative), and the set Ni/N ∗i
includes all the false network links (false positive). Similarly, S̃i = S∗i −

∑
j∈N ∗i /Ñi

Dj +∑
j∈Ñi/N ∗i

Dj. Given (S∗i ,Zi), the remaining parts in Si − S∗i and S̃i − S∗i contain two

sources of randomness: (i) the network measurement errors and (ii) the treatment status

of the missing and falsely connected network neighbours. Although the measurement

errors of the two network proxies are conditional independent as implicitly implied by

the exclusion restriction, without further restrictions, however, we cannot rule out the

dependence arising from those mismeasured network neighbours’ treatment status, which

may appear in both Si and S̃i. Therefore, Si and S̃i are correlated conditionally on

(S∗i ,Zi), contradicting the exclusion restriction.

Based on the discussion above, the main issue in identifying fSi|S∗i ,Fi,F∗i ,Zi arises from the

dependence between (Si,Fi) and (S∗i ,F∗i ). Their dependence is not easy to characterise,

because (Si,Fi) and (S∗i ,F∗i ) relate to each other via the underlying network N ∗i which

is unobservable, and the arbitrary measurement error further complicates their relation-

ship. The latter occurs because, without imposing any constraint on the measurement

errors, given (S∗i = s∗,F∗i = n∗,Fi = n), there will be various realisations of Ni and N ∗i ,

each of which may lead to a substantially different Si. For example, when n = n∗, all

network links may be classified correctly, therefore Ni = N ∗i . If so, Si would be entirely

determined by its latent counterpart S∗i . However, it is also possible that not a single

element in Ni and N ∗i will be the same, although they have the same cardinality. If that

is the case, then Si would be solely governed by the treatment status of the misreported

false network neighbours
∑

j∈Ni Dj, and would no longer depend on (S∗i ,F∗i ). Therefore,

without further restricting the measurement error, there will be too little information

and too much uncertainty to pin down fSi|S∗i ,Fi,F∗i ,Zi .
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For any given n ∈ ΩF and n∗ ∈ ΩF∗ , the (n + 1) × (n∗ + 1) unknown conditional

probabilities of Si which characterise the dependence structure between (Si,Fi) and

(S∗i ,F∗i ), can be formalised by the following (n+ 1)× (n∗ + 1) matrix:

FS|S∗,F ,F∗,Z =


fSi|S∗i =0,Fi=n,F∗i =n∗,Zi(0) · · · fSi|S∗i =n∗,Fi=n,F∗i =n∗,Zi(0)

...
. . .

...

fSi|S∗i =0,Fi=n,F∗i =n∗,Zi(n) · · · fSi|S∗i =n∗,Fi=n,F∗i =n∗,Zi(n)

 . (4.6)

Denote a (n+ 1)× 1 vector FS|F ,Z and a (n∗ + 1)× 1 vector FS∗|F∗,Z by

FS|F ,Z =[fSi|Fi=n,Zi(0), · · · , fSi|Fi=n,Zi(n)]′,

FS∗|F∗,Z =[fS∗i |F∗i =n∗,Zi(0), · · · , fS∗i |F∗i =n∗,Zi(n
∗)]′,

where both the vectors are identifiable. This yields a system of (n+ 1) linear equations

with (n+1)×(n∗+1) unknowns from Lemma 4.4.1 (b) and the law of total probability:5

FS|F ,Z = FS|S∗,F ,F∗,Z × FS∗|F∗,Z , (4.7)

which, however, is underdetermined because there are fewer equations than unknowns.

Therefore, it is necessary to impose restrictions to reduce the number of unknown pa-

rameters to get a unique solution for the system (4.7). Fortunately, this goal is achieved,

if the possibility of either false negative or false positive can be ruled out.

Without loss of generality, suppose that no false negative holds (i.e. N ∗i ⊂ Ni), which

essentially requires the observed network to be larger than the true network. Firstly,

N ∗i ⊂ Ni enforces a sparsity constraint on the unknowns: given S∗i = s∗, the probability

of Si = s with s < s∗ should be zero, as the only source of misclassification in Si is from

those false connections. Therefore, the elements above the main diagonal of the matrix

5Equation (4.7) is because

fSi|Fi=n,Zi
(s) =fSi|Fi=n,F∗

i =n∗,Zi
(s)

=
∑

s∗∈ΩS∗

fSi|S∗
i =s∗,Fi=n,F∗

i =n∗,Zi
(s)× fS∗

i |Fi=n,F∗
i =n∗,Zi

(s∗)

=
∑

s∗∈ΩS∗

fSi|S∗
i =s∗,Fi=n,F∗

i =n∗,Zi
(s)× fS∗

i |F∗
i =n∗,Zi

(s∗).
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FS|S∗,F ,F∗,Z are all zero. Secondly, N ∗i ⊂ Ni also dramatically simplifies the dependence

structure between (Si,Fi) and (S∗i ,F∗i ) via limiting the possible realisations of Ni and

N ∗i , so that the elements in each k-diagonal (k = 0,−1, ...,−n) of the matrix FS|S∗,F ,F∗,Z

will be the same. It is because, under the no false negative assumption, the treated true

network neighbours are all observed as treated network neighbours, and the untreated

true network neighbours are all observed as untreated. Hence, the Si−S∗i extra observed

treated neighbours can only come from the Fi − F∗i falsely connected neighbours. Due

that the treatment assignment is randomised, intuitively,

fSi|S∗i =s∗,Fi=n,F∗i =n∗,Zi(s) = fSi−S∗i |Fi−F∗i =n−n∗,Zi(s− s∗),

indicating that the distribution of interest reduces to the probability of randomly choos-

ing s − s∗ units out of n − n∗ units, which does not vary with the realisations of S∗i as

long as the difference Si − S∗i is the same. Denote ∆Si = Si − S∗i and ∆Fi = Fi − F∗i .

Now, under the no false negative assumption, for any n∗ ≤ n, the matrix FS|S∗,F ,F∗,Z

can be simplified to

FS|S∗,F ,F∗,Z =



f∆Si|∆Fi=∆n,Zi(0) 0 · · · 0

f∆Si|∆Fi=∆n,Zi(1) f∆Si|∆Fi=∆n,Zi(0) · · · 0
... f∆Si|∆Fi=∆n,Zi(1)

. . . 0
...

...
. . . f∆Si|∆Fi=∆n,Zi(0)

f∆Si|∆Fi=∆n,Zi(∆n)
...

... f∆Si|∆Fi=∆n,Zi(1)
... f∆Si|∆Fi=∆n,Zi(∆n)

...
...

...
...

. . .
...

f∆Si|∆Fi=∆n,Zi(n) f∆Si|∆Fi=∆n,Zi(n− 1) · · · f∆Si|∆Fi=∆n,Zi(∆n)



,

(4.8)

with (n + 1) unknowns, the same as the number of equations, which ensures a unique

solution for (4.7) and the identification of fSi|S∗i ,Fi,F∗i ,Zi . Under no false negative, we do

not consider the case n < n∗, because N ∗i ⊂ Ni implies that the event (F∗i ,Fi) = (n∗, n)

with n < n∗ is a zero probability even, and a conditional probability conditional on a zero

probability even is undefined. Similarly, under no false positive, we do not consider the

case n > n∗. It is worth to note the equivalence between fSi|S∗i ,Fi,F∗i ,Zi and fS∗i |Si,Fi,F∗i ,Zi
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via re-scaling:

fSi|S∗i =s∗,Fi=n,F∗i =n∗,Zi(s) = fS∗i |Si=s,Fi=n,F∗i =n∗,Zi(s
∗)fSi|Fi=n,Zi(s)/fS∗i |F∗i =n∗,Zi(s

∗),

where the equality is based on Lemma 4.4.1. Therefore, similar arguments can be applied

when no false positive assumption holds. The discussion above only requires one of the

two network proxies satisfying the desired property, and does not impose any restriction

on the measurement errors of the other proxy, except for those assumed previously.

Without loss of generality, hereafter we use Ni to denote the one that satisfies the

requirement.

Assumption 4.4.5 (One Type of Measurement Error) For each unit i ∈ P, the

proxy Ni satisfies either no false positive, i.e. Ni ⊂ N ∗i , or no false negative, i.e.

N ∗i ∈ Ni.

Borrowing the terminology from Calvi et al. (2018), Assumption 4.4.5 is referred to

as “one type of measurement error”. As can be seen from the next lemma, exploiting

Assumption 4.4.5 benefits us the significant simplicity of the interdependence between

the observable (Si,Fi) and the latent (S∗i ,F∗i ), which dramatically reduces the number

of unknown probabilities.

Lemma 4.4.4 Suppose Assumptions 4.3.2, 4.3.4 and 4.4.5 hold. Let ∆s = |s− s∗| and

∆n = |n − n∗|. For ∀(s∗, n∗) ∈ ΩS∗,F∗ and ∀(s, n) ∈ ΩS,F , we have that fS∗i |Si,F∗i ,Fi,Zi is

identical across i ∈ P.6

(a) If no false negative N ∗i ⊂ Ni holds, then for n∗ ≤ n,

fSi|S∗i =s∗,F∗i =n∗,Fi=n,Zi(s) =

C
∆s
∆nfD(1)∆sfD(0)∆n−∆s, if s∗ ≤ s and ∆s ≤ ∆n

0, otherwise.

6The conditions (s∗, n∗) ∈ ΩS∗,F∗ and (s, n) ∈ ΩS,F implicitly imply that 0 ≤ s ≤ n and 0 ≤ s∗ ≤ n∗.
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(b) If no false positive Ni ⊂ N ∗i holds, then for n ≤ n∗

fS∗i |Si=s,F∗i =n∗,Fi=n,Zi(s
∗) =

C
∆s
∆nfD(1)∆sfD(0)∆n−∆s, if s ≤ s∗ and ∆s ≤ ∆n

0, otherwise.

It is perhaps not surprising that Si conditional on (S∗i ,F∗i ,Fi, Zi) follows a binomial

distribution, given the equivalence of fSi|S∗i =s∗,Fi=n,F∗i =n∗,Zi(s
∗) to the probability of ran-

domly assigning treatment to ∆s out of ∆n units. The result in Lemma 4.4.4 enables a

faster and easier way to compute fS∗i |Si,F∗i ,Fi,Zi without solving the linear system. Nev-

ertheless, the linear system greatly facilitates the identification analysis and determines

the identification status of fS∗i |Si,F∗i ,Fi,Zi , and the solution of the system produces the

same result as that obtained by simply exploiting the binomial distribution.

Theorem 4.4.5 Under Assumptions 4.3.2-4.3.4 and 4.4.5, fS∗i ,F∗i |Di,Si,Fi,Zi is identical

across i ∈ P and is nonparametrically identified.

“No false positive” assumption is satisfied in many situations, for instance, when the

mismeasurement is caused by sampling-induced errors, such as missing links (“induced

subgraph” in Kossinets, 2006); restricting the network within a village (Angelucci et al.,

2010); or limiting the maximum number of nominated friends (Cai et al., 2015b). It

is also satisfied when non-sampling-induced errors arise, for example, when a survey re-

spondent becomes uninterested in naming the full list of the friends due to survey fatigue;

when there exists a lack of measurability of abstract but meaningful connections (e.g.

esteem or authority); when constructing networks by intersecting repeated network ob-

servations, assuming that the overlap includes those effectual interactions; when keeping

only the reciprocated network links while non-reciprocated or undirected network links

exist (Comola and Fafchamps, 2017); when collecting data in certain contexts where

participants are unwilling to cooperate, like criminals’ connections or adolescents’ sexual

network (Kossinets, 2006); or when constructing a network measure based on a partic-

ular dimension of social connections, while ignoring other relevant interactions (Conley

and Udry, 2010).
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“No false negative” is also a reasonable assumption. It may be the case when observing

a large network that includes ineffectual interactions, such as social media friends, email

connections, and virtual communities; when simply assuming all units within a certain

geographical boundary are linked; when the observed network is formed as a union of

multi-dimensional networks (e.g. kinship, borrower-lender relationships, and advice-

giving in Banerjee et al., 2013); when assuming a link exists if either side of the two

nodes reports an interaction; or when constructing a network based on participation in

multiple social events or affiliations (“multicontextual approach” in Kossinets, 2006).

If the network proxy Ni satisfies the one type of measurement error assumption, the

matrix FF|F∗,Z in (4.4) should be upper triangular if there is no false positive, and

lower triangular if there is no false negative. Based on Theorem 4.4.3, since FF|F∗,Z is

identifiable, it is possible to test the one type of measurement error assumption via testing

the null hypothesis that all elements in either the upper or the lower triangular of matrix

FF|F∗,Z are zero. One possible testing approach is the subsampling or bootstrap method

proposed by Romano and Shaikh (2012) with proper adjustments to accommodate the

network data. Other possible testing approaches may be established following Leung

(2020a) if the
√
N convergence rate of estimator for FF|F∗,Z is satisfied. It might be the

case if the outcome Yi and covariate Zi are discrete, then a smooth kernel estimation is

not needed and the
√
N convergence rate can be achieved based on the proof of Theorem

4.5.2 in Section 4.5. A formal test if left for future research.

Given the results in Theorem 4.4.3 and Theorem 4.4.5, the identification of the CASF,

the treatment and spillover effects can be achieved.

Theorem 4.4.6 (Identification) Suppose Assumption 4.3.4 is satisfied by Ñi and Ni.

Let Assumptions 4.3.1-4.3.3, and 4.4.1-4.4.5 hold.

(a) For ∀(d, s, z, n) ∈ {0, 1}×ΩS,Z,F such that fFi|Zi=z(n) > 0, mi(d, s, z, n) = E[Yi|Di =

d, Si = s,Fi = n, Zi = z] is identical for all i ∈ P.

(b) The CASF m∗, the treatment effect τd and the spillover effect τs are nonparamet-

rically identified wherever they are well-defined.
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4.4.3. Discussion and Extension

Anonymous Interactions

As implied by Lemma 4.4.1, the anonymous interactions S∗i ⊥ N ∗i |Zi,F∗i is critical for

the identification of m∗. The key factor to ensure the anonymous interactions is that,

for any given unit i, the treatment assignments to units other than i (i.e. {Dj}j∈P,j 6=i)

conditional on (Zi,F∗i ) are i.i.d. across j. It might be violated if some covariates not

only enter the network formation process, but also influence the treatment assignment.

It is because, if one would like to believe that the homophily exists in the network

formation, i.e. individuals are more likely to establish a link if they are similar, then

unit i’s characteristics and the peers’ identity will reveal relevant information about the

characteristics of the peers and non-peers. In this case, conditioning on the covariate Zi,

the i.i.d. of {Dj}j∈P,j 6=i would fail to hold.

Unconfounded Treatment

Given the discussion in Section 4.4.3, it is apparent that there exist two settings where

a fully randomised treatment assumption can be relaxed to allow stratified randomisa-

tion based on individuals’ characteristics. The first setting accounts for homophily and

requires that there exists a subset of individual’s characteristics Z1,i ⊂ Zi such that Z1,i

does not affect the network formation. Then, the treatments can be randomly assigned

based on Z1,i. For example, in the microfinance program, interventions can be allocated

randomly given the participants’ social status, e.g. occupation; it is unlikely that the

network measured by “go to pray together” will be affected by the occupation, because

people with whom a individual goes to pray would rely on their religion, gender and caste,

rather than the social status. The second setting suits situations where it is reasonable

to believe that the network is formed following the random graph model of Erdös and

Rényi (1959); that is, each link is formed independently with the same probability. In

this case, the treatments can be randomly assigned based on Zi. It would be interesting

to study the consequences of further relaxing this condition and adopting more general

unconfounded treatment assignments.
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Directed or Weighed Links

The analysis so far does not require the network N ∗i to be undirected, and the general-

isation to the directed network is straightforward. If the unweighted restriction is also

relaxed, then the spillover effects can be captured by S∗i =
∑

j∈N ∗i
π(Z1,j)Dj where Z1,j

is a subset of Zi and π(·) is a known weighting function. For the same reason discussed

in Section 4.4.3, it is required that Z1,j does not impact the network formation in the

presence of homophily among units. For example, in the microfinance program, a unit

with a higher degree of financial literacy might be assigned a higher weight. However,

financial literacy is unlikely to directly affect the network connections of women from

South India, because the network data is collected before the microfinance program is

implemented.

4.5. Asymptotic Properties

Section 4.5 is organised as follows. Section 4.5.1 introduces the concept of dependency

neighbourhood, which helps to define the distance of correlated samples and to establish

the asymptotic properties of the estimation approach. Section 4.5.2 presents the non-

parametric kernel estimation and Section 4.5.3 discusses the semiparametric estimation

procedure.

4.5.1. Dependency Neighbourhoods

Let Wi be an observable random variable or vector. For sample size N , the dependency

neighbourhood of unit i, denoted by ∆(i, N), satisfies ∆(i, N) ⊂ {1, 2, ..., N}, i ∈ ∆(i, N)

and conditions in Assumption 4.5.1. Any unit j such that j ∈ ∆(i, N) is referred to

as unit i’s dependent neighbour (hereafter DN), while the dependent neighbour is not

necessarily a network neighbour. Following Chandrasekhar and Jackson (2016), we define

the dependency neighbourhood by restricting the relative correlation of {Wi}Ni=1 inside

and outside {∆(i, N)}Ni=1. For any integrable function b, denote the sum of covariance

of all pairs of units in each others’ dependency neighbourhoods as

Σb
N =

N∑
i=1

∑
j∈∆(i,N)

Cov (b(Wi), b(Wj)) , (4.9)
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which captures the variation of b(Wi) for all the N units and the dependence across all

pairs (b(Wi), b(Wj)), where j is the dependent neighbour of i. The assumption below

characterises the two principal properties of the dependency neighbourhood.

Assumption 4.5.1 (Dependency Neighbourhood) For any integrable function b :

ΩW 7→ Rdb,

(a) Σb
N →∞ as N →∞;

(b)
∑N

i=1

∑
j 6∈∆(i,N) Cov(b(Wi), b(Wj)) = o(Σb

N).

Condition (a) ensures that the dependence of units in each others’ dependent neighbour-

hoods contains sufficient information that is necessary for deriving asymptotic properties

using these dependent variables. Intuitively, condition (b) requires that ∆(i, N) is a col-

lection of units with a relatively high correlation with unit i, compared to those in its

complement. The set ∆(i, N) may not be unique, because it is defined asymptotically. In

addition, the size of ∆(i, N) may change (generally expand) as the sample size increases.

As mentioned in Chandrasekhar and Jackson (2016), there is substantial freedom in con-

structing these sets in different studies. For example, the dependency neighbourhoods

can be defined based on individuals’ participation in common actions, affiliations, and

social events, regardless of their network interactions; individuals’ identities that lead to

strong social norms and clear barriers across groups, such as caste, tribe or race (Cur-

rarini et al., 2009, 2010); or social or geographical locations, such as occupation, class,

school, village or community. Essentially, the dependency neighbourhoods {∆(i, N)}Ni=1

can be understood as defined by individuals’ exogenous attributes and the analysis in

this chapter is conducted conditional on these attributes: that is, the dependent neigh-

bourhoods are treated as non-stochastic.

4.5.2. First Step Kernel Estimation

The nonparametric kernel estimation of density function has been extensively studied; see

Newey and McFadden (1994), Newey (1994) and Li and Racine (2007) among others.

To ease illustration, denote the observable variable by Wi = (W c′
i ,W

d′
i )′ where W c

i
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represents the vector containing continuous variables and W d
i is the vector containing

discrete variables. Recall that the supports of W c
i and W d

i are ΩW c and ΩW d , respectively.

Note that Wi may be used to denote different observable variables at different places.

For a bandwidth h > 0 and ∀w = (wc
′
, wd

′
)′ ∈ ΩW c,W d , denote

K(W c
i , w

c) =
1

hQ

Q∏
q=1

κ

(
W c
i,q − wcq
h

)
,

where κ(·) is the univariate kernel function and Q is the dimension of vector W c
i . Denote

the nonparametric kernel estimator of fWi
as

f̂Wi
(w) =

1

N

N∑
i=1

K(W c
i , w

c)1
[
W d
i = wd

]
. (4.10)

For expositional simplicity, we restrict the bandwidth for all continuous variables to be

the same. In practice, our method also allows for different bandwidths, while a data-

driven method for bandwidth selection is not the focus of this chapter. Given (4.10), the

estimators for the nuisance parameter γ0 is:

γ̂N =
[
f̂F̃i,Fi,Yi,Zi , f̂F̃i,Fi,Zi , f̂Si,Fi,Zi , f̂Fi,Zi , f̂Zi

]′
.

Assumption below is employed for deriving the uniform convergence of the nonparametric

kernel estimator.

Assumption 4.5.2 Let W c
i = (Yi, Z

c′
i )′ and W d

i = (Di, Z
d′
i , Si,Fi, S̃i, F̃i)′.

(a) ΩW c ⊂ RQ is a compact and convex set and the cardinality of ΩW d is finite.

(b) Each element in γ0 is bounded and continuously differentiable in wc to order two

with bounded derivatives on an open set containing ΩW c.

(c) κ(·) is nonnegative kernel function and is differentiable with uniformly bounded

first derivative. In addition, for some constant K1, K2 > 0

∫
κ(v)dv = 1, κ(v) = κ(−v),

∫
v2κ(v)dv = K1,

∫
κ(v)2dv = K2.
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(d) h→ 0, NhQ →∞, ln(N)/(NhQ)→ 0, as N →∞.

(e) Let r̄N = sup1≤i≤N |∆(i, N)|. The cardinalities of dependency neighbourhoods sat-

isfy

r̄N
[
ln(N)/(NhQ)

]1/2
= O(1),

1

N

N∑
i=1

|∆(i, N)|2 = O(1).

Conditions (a) and (b) state the regularity conditions of the support and data distri-

bution. Conditions (c) and (d) describe features of the kernel function and the band-

width, which are standard for nonparametric kernel estimation. In addition, to ac-

commodate the dependence across units, we need to impose restrictions on the size of

dependency neighbourhood. Condition (e) allows the situation where a sufficiently large

number of units possess an increasing number of DNs, say O([ln(N)N/hQ]1/2) units with

O([NhQ/ ln(N)]1/4) DNs, and the rest with a bounded number of DNs. Although we

require a sparse network, the number of DNs may increase with the sample size.

To address issues arising from the dependence between observations and to derive the

uniform convergence rate of the first-step kernel estimation, we adopt the method of

Masry (1996), which is based on the approximation theorems developed by Bradley

et al. (1983) to approximate dependent random variables by independent ones. Let us

first introduce a partition of samples, based on which a notion of “distance” can be

developed. Intuitively, the dependence strength among the units’ observable variables

can be used to describe their relative distance: units are far away from each other when

they are less correlated. Therefore, the dependency neighbourhood would be a useful tool

to construct the distance measure. For any given sample size N , partition the index set

{1, 2, ..., N} into qN mutually exclusive subsets S1, ...,SqN with
⋃

1≤l≤qN Sl = {1, 2, ..., N}.

The subscript N of qN means that qN may go to infinity as N → ∞. Without loss

of generality, suppose that i0 is an arbitrary unit from the N observed samples and

I0 := {i0}. For k = 1, 2, ..., qN , define

Ik =
⋃

i∈Ik−1

∆(i, N)︸ ︷︷ ︸
DNs of Ik−1

⋃{
i ∈ {1, 2, ..., N} : i 6∈

⋃
j∈Ik−1

∆(j,N) and
⋃

j∈Ik−1

∆(j,N)
⋂

∆(i, N) 6= ∅
}

︸ ︷︷ ︸
DNs of DNs of Ik−1

,

(4.11)
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where ∅ denotes an empty set. Apparently, Ik includes all the DNs of the units in Ik−1,

including Ik−1 itself and all the units who are not DNs of the units in Ik−1 but share

common DNs with them (hereafter DNs of DNs). In other words, Ik consists of units

that are closely correlated to those in Ik−1. Because Ik−1 ⊆
⋃
i∈Ik−1

∆(i, N) by definition

of the dependency neighbourhood, I1 ⊆ · · · Ik−1 ⊆ Ik · · · ⊆ IqN is an increasing sequence.

Given I1, ..., IqN , let S1 = I1 and Sk = Ik/Ik−1 for k = 2, ..., qN .

Importantly, Ik/Ik−1 = ∅ may occur in two scenarios. First, when each of the N units

are included in at least one of the sets I1, ..., Ik−1, so that there are no DNs of Ik−1 or

DNs of DNs of Ik−1, that are not included in Ik−1. In this scenario, we have obtained the

desirable partition with qN = k − 1. Second, it may also occur when the units in Ik−1

form an isolated cluster that is disjointed from other units. That is, when none of the

units in Ik−1 have DNs outside Ik−1 or share common DNs with units outside Ik−1. If so,

we can pick an arbitrary unit ik ∈ {1, 2, ..., N} such that ik 6∈ Ik−1. Then, define Ik as

(4.11) via replacing Ik−1 with {ik}, and repeat the above process until all the observed

units are exhausted. For any given sample size N , the partition exists and every unit is

included in exactly one set of S1, ...,SqN . The largest possible value of qN can be N , for

example, when all observations are i.i.d. and each ∆(i, N) is set to be a singleton {i}.7

The above partition helps to order the units so that their dependence strength becomes

weaker (or equivalently, their distance becomes larger), when they belong to far apart sets

in S1, ...,SqN . Given such an ordering, we can then introduce the dependence coefficient

that is an analogue of the strong mixing coefficient of a stochastic process:

αk = sup
A∈Γk−2

1 ,B∈Γkk

|Pr(A,B)− Pr(A)Pr(B)| ,

where Γk−2
1 = σ

(
{Wi, i ∈

⋃
1≤l≤k−2 Sl}

)
and Γkk = σ ({Wi, i ∈ Sk}) for k = 1, 2, ..., qN

are the σ-fields on sets of random variables of units in
⋃

1≤l≤k−2 Sl and Sk, respectively.

7The partition is constructed in a similar vein with the “dependency graph” in Leung (2020b),
which is introduced to capture data correlation and is built upon the true network connections. The
key idea of the dependency graph is that potential outcomes of two units are independent if they
are neither network neighbours nor share common network neighbours. In this chapter, we use the
dependency neighbourhoods to define distance, because the true network is not available and the network
measurement errors induce extra data correlation.
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Assumption 4.5.3 (Local Dependence) Let LN = [N/(ln(N)hQ+2)]Q/2. The depen-

dence coefficient αk satisfies

ΨN := LN

(
N

ln(N)

)1/2 qN∑
k=1

αk,

∞∑
N=1

ΨN <∞.

Assumption 4.5.3 requires that the dependence coefficient αk converges to zero, meaning

that the observable variables of the units in
⋃

1≤l≤k−2 Sl and in Sk tend toward being

independent as the sample size increases. It is the case, for example, when the units are

only locally dependent upon their DNs and those with whom they share common DNs,

while their dependence with others who are not their DNs nor DNs of DNs is negligible

and goes to zero. It is also the case when there are many independent clusters and

only finite dependent ones. This assumption controls the asymptotic dependence among

observables and is akin to the mixing coefficient decaying condition but in a setting

with network-induced data dependence. It ensures that the uniform convergence of the

first-step kernel estimation holds, even when a relatively large scale of local dependency

among units exists. A similar assumption is exploited in Masry (1996) to restrict the

time series data, and in Sävje (2019) to control the dependence of network measurement

errors.

Lemma 4.5.1 provides two sufficient conditions under which Assumption 4.5.3 holds

Lemma 4.5.1 Assumption 4.5.3 is satisfied, if either of the following conditions hold.

(a) {Wi, ∀ i ∈ Sk} ⊥ {Wj, ∀ i ∈ Sk′} for any k 6= k′ and k, k′ = 1, 2, ..., qN ;

(b) {Wi, ∀ i ∈ Sk} ⊥ {Wj, ∀ i ∈ Sk+2} and k = 1, 2, ..., qN − 2.

The proof of Lemma 4.5.1 is trivial therefore omitted. Condition (a) indicates that

Assumption 4.5.3 holds if the population consists of many disjoint and independent

clusters, and each Sk represents one of those clusters. In this case, we rule out the

possibility of the network interference or more general forms of data dependence across

clusters. Condition (b) requires that the units are independent, if they are not DNs

and do not share common DNs. Condition (b) is weaker than (a), because it allows the
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possibility of data dependence across clusters, although the dependence is limited to the

“nearby” clusters connected by the DNs or the DNs of DNs. It also allows a single large

network where no clear boundaries can be drawn to divide the population into clusters.

Given the local dependence assumption, the uniform convergence result of the kernel

estimation can be established.

Theorem 4.5.2 Let Assumptions 4.5.2 and 4.5.3 hold, then

∥∥γ̂N − γ0
∥∥
∞ = Op

([
ln(N)/(NhQ)

]1/2
+ h2

)
.

The uniform convergence rate of the kernel estimation in Theorem 4.5.2 is consistent

with that of the conventional kernel estimation under i.i.d. or strong mixing settings

(e.g., Newey, 1994; Li and Racine, 2007; Masry, 1996).

Let φ̂N := φ(γ̂N) represent the estimator of the latent distribution function fS∗,F∗i |Di,Si,Zi,Fi .

According to Proposition 4.4.2, we can obtain a plug-in estimator φ̂N via replacing the

distributions on the right hand side of (4.3) by their kernel estimators based on γ̂N in

(4.10). Denote φ0 = φ(γ0) as the true latent distribution function. Given the uniform

convergence of γ̂N in Theorem 4.5.2, we only need to consider the convergence of φ̂N in

a small neighbourhood of γ0.

Corollary 1 Let Assumption 4.3.1-4.3.4 and 4.4.1-4.4.5 hold. Under assumptions in

Theorem 4.5.2, suppose that there exists a constant ε > 0 such that fFi|Zi > ε. Then, for

η → 0 as N →∞,

sup
‖γ̂N−γ0‖∞≤η

∥∥∥φ̂N − φ0
∥∥∥
∞

= Op(
∥∥γ̂N − γ0

∥∥
∞).

4.5.3. Semiparametric Estimation

In this subsection, we study the estimation of CASF m∗ by simplifying m∗ = m∗(·; θ) as

a known function up to the unknown parameter θ ∈ Θ ⊂ Rdθ . Consequently, mi(·) =

m(·) = m(·; θ, φ) is also known up to (θ, φ). Based on Theorem 4.4.5, we know that
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mi(·) is identical across all i. Thus, we can suppress the subscript i, i.e. mi(·) = m(·).

In addition, m(·) = m(·; θ, φ) is because of m(·) being a function of the CASF m∗(·; θ)

and nuisance parameter φ. Note that the identification of m∗ in Section 4.4 does not

rely on such an simplification. More importantly, imposing such a parametric structure

on m∗ still allows flexible heterogeneity of the treatment and spillover effects, which can

be captured by interactions of Di and Si, with covariate Zi and network degree Fi, as

well as their polynomials.

Consistency

For notational simplicity, let X∗i := (Di, S
∗
i , Zi,F∗i )′ and Xi := (Di, Si, Zi,Fi)′ with sup-

port ΩX∗ and ΩX , respectively. In addition, denote T ∗i = (S∗i ,F∗i )′. Let x∗j := (d, s∗j , z, n
∗
j)

with t∗j = (s∗j , n
∗
j) ∈ ΩS∗,F∗ , and j ∈ {1, 2, ..., KT} represents the lexicographical or-

dering of the possible values of T ∗i as described in Appendix (4.9.79). Similarly, let

xj := (d, sj, z, nj) with tj := (sj, nj) ∈ ΩS,F . By definition of m(·; θ, φ), the following

moment condition holds:

E
[
Yi −m(Xi; θ, φ)

∣∣Xi

]
= 0.

From Proposition 4.3.3, m(·; θ, φ) and the CASF m∗(·; θ) are linked through the formula

m(x; θ, φ) =
KT∑
j=1

m∗(x∗j ; θ)fT ∗i |Xi=x(t
∗
j). Recall that Xi is identically distributed for all

i under the assumptions in Section 4.3. Denote the objective function and its sample

analogue as

L(θ, φ) =E
{
τi [Yi −m (Xi; θ, φ)]2

}
, and LN(θ, φ) =

1

N

N∑
i=1

τi [Yi −m (Xi; θ, φ)]2 ,

where τi := τ(Xi) is the non-negative weight. Following Newey (1994), we use the weight

function τ to focus the optimisation problem on regions where the kernel estimation is

relatively reliable. Hu (2008) also adopts the weight function and sets it as a fixed

trimming τ(x) = 1[x ∈ X] with X ⊂ ΩX a fixed set. Other types of weight functions

such as data-driven weight functions or methods for selection of weight functions are out

of the scope of this chapter. Then, θ is estimated by minimising LN(θ, φ̂N) given the
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estimator φ̂N from Theorem 4.5.2:

θ̂N = arg min
θ∈Θ
LN(θ, φ̂N). (4.12)

Let Wi = (Yi, X
′
i)
′ be the vector containing all the observed variables and w = (y, x′)′ ∈

ΩW .

Assumption 4.5.4

(a) Θ ⊂ Rdθ is compact, θ0 ∈ int(Θ) and θ0 is identifiable from the weighted conditional

moment function L(θ, φ0) = 0.

(b) τ(·) is nonnegative and supx∈ΩX
|τ(x)| < C for some constant C > 0.

(c) m∗(x; θ) is continuous in θ for all x ∈ ΩX , and is an integrable function of Xi for

all θ ∈ Θ.

(d) Denote the random variable x∗i,j = (Di, s
∗
j , Zi, n

∗
j) with t∗j = (s∗j , n

∗
j) ∈ ΩT ∗ and

j = 1, 2, ..., KT . There exists a function h1(x) such that |m∗(x; θ)|2 ≤ h1(x) for all

θ ∈ Θ, and E[h1(x∗i,j)] <∞ for all j = 1, 2, ..., KT .

(e) Let e(w, θ) := τ(x)[y −m(x; θ, φ0)]2 and ei(θ) := e(Wi, θ). For any given constant

η > 0, denote Ui(θ, η) = supθ′∈Θ, ‖θ′−θ‖<η |ei(θ′) − ei(θ)|. There exists a function

h2(w) such that |e(w, θ)| ≤ h2(w) for all θ ∈ Θ and E[h2(Wi)] < ∞. In addition,

supθ∈Θ E[|ei(θ)|2+δ] < C for some constants δ > 0 and C > 0.

Theorem 4.5.3 (Consistency) Let assumptions in Theorem 4.4.6 hold. Under As-

sumptions 4.5.1- 4.5.4, we have ‖θ̂N − θ0‖ = op(1).

Asymptotic Normality

To show asymptotic normality of the estimator θ̂N , we need to account for the presence

of the nuisance parameter φ and the data dependence arising from the mismeasured

network, which requires a significant generalisation of the classical CLT. In particular,

the often used CLT developed for mixing processes does not work for our purpose, as it
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relies on some ordering structure to measure the “distance” between units. Therefore, we

adopt and extend the univariate CLT for the network data proposed by Chandrasekhar

and Jackson (2016) to a multivariate setting, which will be applied in this section to

derive the asymptotic normality for θ̂N . See Lemma 4.9.7 in the Appendix.

Let g(Wi; θ, φ) = τi[Yi − m(Xi; θ, φ)]∂m(Xi;θ,φ)
∂θ

. From the first order condition of the

optimisation problem (4.12), θ̂N solves 1
N

∑N
i=1 g(Wi; θ̂N , φ̂N) = 0. Then, by the mean

value theorem we can obtain

0 =
1

N

N∑
i=1

g(Wi; θ̂N , φ̂N) =
1

N

N∑
i=1

g(Wi; θ
0, φ̂N) +

1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′
(θ̂N − θ0),

(4.13)

where θ̃N is between θ̂N and θ0. If 1
N

∑N
i=1

∂g(Wi;θ̃N ,φ̂N )
∂θ′

is invertible, rearranging (4.13)

leads to

√
N(θ̂N − θ0) =

[
1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′

]−1

1√
N

N∑
i=1

g(Wi; θ
0, φ̂N).

Let us introduce some useful notations. Recall that φ(·) = φ(·; γ). We set t :=

(t1, ..., tKT )′ and φ(t; γ) = [fT ∗i |Xi(t1), ..., fT ∗i |Xi(tKT )]′. Let 1dγ be a dγ × 1 vector of

ones. Denote ν(w; θ, γ) = E
[
τ(Xi)

∂
∂θ
R(Wi; θ, φ)∂φ(t;γ)

∂γ′

∣∣∣
γ=γ(w)

1dγ

∣∣∣w] and δ(Wi; θ, γ) :=

ν(Wi; θ, γ)− E[ν(Wi; θ, γ)], where

R(Wi; θ, φ) =


[Yi −m(Xi; θ, φ)]m∗(x∗i,1; θ)

...

[Yi −m(Xi; θ, φ)]m∗(x∗i,KT ; θ)


′

.

Assumption 4.5.5

(a) m∗(x; θ) is continuously differentiable in θ up to order three with bounded third
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order derivative uniformly in x, i.e. for any r, q = 1, 2, ..., dθ,

sup
x∈ΩX

∣∣∣∣ ∂∂θ
(
∂2m∗(x; θ)

∂θr∂θq

)∣∣∣∣ < C, for all θ ∈ Θ.

(b) There exist functions H1(x) and H2(x) such that
∥∥∥d2m∗(x;θ)

dθdθ′

∥∥∥2

≤ H1(x),
∥∥∥dm∗(x;θ)

dθ

∥∥∥2

≤

H2(x) for all θ ∈ Θ and E[H1(xi,j)] <∞, E[H2(xi,j)] <∞ for all j = 1, 2, ..., KT .

(c) E
[
∂g(Wi;θ

0,φ0)
∂θ′

]
exists and is nonsingular. In addition, E

[∥∥∥∂g(Wi;θ
0,φ0)

∂θ′

∥∥∥2
]
<∞.

Assumption 4.5.5 (a) and (b) introduce regularity conditions on the smoothness of the

CASF m∗(·, θ). Condition (c) ensures that the limit of the Hessian matrix exists and is in-

vertible. To simplify notation, denote ν(Wi) := ν(Wi; θ
0, γ0) and δ(Wi) := δ(Wi; θ

0, γ0).

Assumption 4.5.6

(a) N1/2[ln(N)/(NhQ)]→ 0 and Nh4 → 0 as N →∞.

(b) ν(w; θ, γ) = ν(wc, wd; θ, γ) is continuously differentiable in wc almost everywhere

and satisfies
∑

wd∈Ω
Wd

∫
‖ν(w)‖dwc <∞. In addition, ‖Var[ν(Wi)]‖ <∞.

Assumption 4.5.6 implies that the convergence rate of γ̂N is faster than N1/4. It is a

typical restriction on the bandwidth to guarantee the asymptotic normality for semi-

parametric two-step estimators that depend on kernel density, for example Newey and

McFadden (1994).

We first show that the dθ×dθ Hessian matrix 1
N

∑N
i=1

∂g(Wi;θ̃N ,φ̂N )
∂θ′

converges in probability

uniformly.

Lemma 4.5.4 Let the assumptions in Theorem 4.5.3 hold.

(a) Under Assumption 4.5.5, for a small enough η → 0 as N →∞, we have

sup
‖γ̂N−γ0‖∞<η

∥∥∥∥∥ 1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′
− E

[
∂g(Wi; θ

0, φ0)

∂θ′

]∥∥∥∥∥ = op(1).
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(b) Under Assumption 4.5.6, we can get

1√
N

N∑
i=1

g(Wi; θ
0, φ̂N) =

1√
N

N∑
i=1

[
g(Wi; θ

0, φ0) + δ(Wi)
]

+ op(1).

Denote the dependence neighbourhoods covariance matrix

Σg̃
N =

N∑
i=1

∑
j∈∆(i,N)

E
{ [
g(Wi; θ

0, φ0) + δ(Wi)
] [
g(Wj; θ

0, φ0) + δ(Wj)
]′ }

.

Denote the dθ × 1 vector g̃i = g(Wi; θ
0, φ0) + δ(Wi) with g̃i = (g̃i,1, ..., g̃i,dθ)

′. Then,

Σg̃
N =

∑N
i=1

∑
j∈∆(i,N) E[g̃ig̃

′
j]. In addition, by notation abuse, let Sci =

∑
j 6∈∆(i,N) g̃j. For

any vector a, let a ≥ 0 mean that each of its entries are nonnegative. For any matrix

A = {aij}, vec(A) denotes the vectorisation of A and |A| = {|aij|} .

Assumption 4.5.7

(a) For all i ∈ P, ∆(i, N) is symmetric such that j ∈ ∆(i, N) if and only if i ∈ ∆(j,N).

(b) There exists a finite, strictly positive-definite and symmetric matrix Ω ∈ Rdθ ×Rdθ

such that ‖ 1
N

Σg̃
N − Ω‖ → 0 as N →∞.

(c) The following conditions hold for {g̃i}Ni=1.

(c1)

∥∥∥∥∥ N∑
i=1

∑
j,k∈∆(i,N)

E
[∣∣vec(g̃ig̃′j)g̃′k∣∣]

∥∥∥∥∥
∞

= o
(∥∥∥[Σg̃

N ]3/2
∥∥∥
∞

)
;

(c2)

∥∥∥∥∥ N∑
i,k=1

∑
j∈∆(i,N)

∑
l∈∆(k,N)

E
[ (
g̃ig̃
′
j − E[g̃ig̃

′
j]
)′

(g̃kg̃
′
l − E[g̃kg̃

′
l])
]∥∥∥∥∥
∞

= o
(∥∥∥[Σg̃

N ]2
∥∥∥
∞

)
;

(c3)

∥∥∥∥∥ N∑
i=1

∑
j 6∈∆(i,N)

Cov (g̃i, g̃j)

∥∥∥∥∥
∞

= o
(∥∥∥Σg̃

N

∥∥∥
∞

)
;

(c4) E
[
g̃iS

c
i

∣∣Sci] ≥ 0 for all i ∈ P.

Assumption 4.5.7 (a) guarantees that the covariance matrix Σg̃
N is symmetric. Condition

(b) ensures that the samples possess sufficiently large variation so that the CLT holds.
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Meanwhile, it requires the limit of Σg̃
N/N being a constant matrix Ω, instead of varying

with the sample size, which imposes restriction on the allowable divergence rate of Σg̃
N

to some degree. Similar assumptions are used to study the asymptotic properties of

covariance matrix estimator by White and Domowitz (1984).

Moreover, Assumption 4.5.7 (c) is crucial for the multivariate CLT under the dependency

neighbourhood structure. Similar assumption is used in Chandrasekhar and Jackson

(2016) to establish the asymptotic normality for univariate random variable with support

[0, 1]. We extend the assumption to accommodate general multivariate random vectors

without imposing any restrictions on their support. In particular, conditions (c1) and

(c2) restrict the rate of dependency between the dependency neighbourhoods, while (c3)

limits the rate of dependency outside the dependence neighbourhoods. Besides, condition

(c4) states that on average, units outside each others’ dependency neighbourhoods do

not tend to interact negatively.8

Theorem 4.5.5 (Asymptotic Normality) Suppose assumptions in Theorem 4.5.3,

Assumptions 4.5.5-4.5.7 hold. Then

√
N(θ̂N − θ0)

d→ N(0, H−1ΩH−1),

where H = E [∂g(Wi; θ
0, φ0)/∂θ′] and N represents the normal distribution.

Given that the function form of δ(w) is known, following Newey and McFadden (1994),

we construct the estimator of δ(Wi) by substituting (θ̂N , γ̂N) for (θ0, φ0), i.e. δ̂(Wi) :=

δ(Wi; θ̂N , γ̂N). Notably, the consistency and asymptotic normality of θ̂N only require

the existence of dependency neighbourhoods. If how the dependency neighbourhoods

{∆(i, N)}Ni=1 are defined in a given study is known, it suffices a consistent variance

estimator. The corollary below provides a consistent estimator of the variance-covariance

matrix H−1ΩH−1, which is essential when constructing asymptotic confidence intervals

and conducting hypothesis tests.

8Chandrasekhar and Jackson (2016) also use condition that is similar to Assumption 4.5.7 (c4) to
ease their proof. We note that the condition (c4) is not necessary for the asymptotic normality in this
chapter and can be replaced by more primitive assumptions.
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Corollary 2 (Variance Estimator) Under assumptions in Theorem 4.5.5, we can get

∥∥∥Ĥ−1
N Ω̂NĤ

−1
N −H

−1ΩH−1
∥∥∥ p→ 0 as N →∞,

where

ĤN =
1

N

N∑
i=1

∂g(Wi; θ̂N , φ̂N)

∂θ′
,

Ω̂N =
1

N

N∑
i=1

∑
j∈∆(i,N)

[
g(Wi; θ̂N , φ̂N) + δ̂(Wi)

] [
g(Wj; θ̂N , φ̂N) + δ̂(Wj)

]′
.

Note that the consistency of the variance estimator Ĥ−1
N Ω̂NĤ

−1
N is robust to a mild

degree of misspecification of the dependency neighbourhoods. For example, if there

are only finite units whose dependency neighbourhoods are misspecified, the variance

estimator is still consistent due to the consistency of (θ̂N , φ̂N , γ̂N) and Assumption 4.5.7

(c3). Moreover, if the knowledge of the dependency neighbourhoods is not available, one

may resort to the resampling method proposed by Leung (2020a) to conduct inference

for the parameter of interest. Rigourous study is left for future research.

4.6. Simulation

In this section, we illustrate the finite-sample behavior of the proposed estimation pro-

cedure via Monte Carlo. The data generating process (DGP) and network formation

design for this Monte Carlo is similar to Leung (2020b). However, in contrast to Le-

ung (2020b), the observed network proxies are contaminated by measurement errors.

Consider the following DGP for the outcome Yi:

Yi =θ0 + θ1Di + θ2DiF∗i Zi + θ3S
∗
i + θ4S

∗2
i + θ5S

∗
i Zi + θ6S

∗
iF∗i + εi, (4.14)

where Di
i.i.d.∼ Bernoulli(0.3) and Zi

i.i.d.∼ Bernoulli(0.5) are generated independently. In

addition, the error term εi = εidioi +εpeeri where εidioi denotes the idiosyncratic disturbance,

and εpeeri =
∑

j∈P A
∗
ijvj captures the unobservable peer effects where vj

i.i.d.∼ N(0, 0.5) is

a random error. Set θ = (θ0, θ1, θ2, θ3, θ4, θ5, θ6)′ = (0, 1, 1/3, 1,−1,−1/2, 1)′. We aim
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to estimate the treatment effects τd(0, 0, 3) and τd(0, 1, 3) (with true value 1 and 2,

respectively) and the spillover effects τs(1, 0, 3) and τs(1, 1, 3) (with true values 3 and

2.5, respectively), as in Definition 4.3.2.

We allocate units on a [0, 1] × [0, 1] space according to their exogenous geographic lo-

cations ρi = (ρi1, ρi2)
i.i.d.∼ Uniform[0, 1]× Uniform[0, 1]. The actual network links are

generated as follows:

A∗ij =1[β1 + β2(Zi + Zj) + β3d(ρi, ρj) + ζij > 0]× 1[i 6= j],

where ζij = ζji is a random shock that is i.i.d. N(0, 1) (across dyads) and is independent

of (Zi, ρi) for all i and j. In addition, d(ρi, ρj) indicates the distance between two units

d(ρi, ρj) =

0, if r−1‖ρi − ρj‖1 ≤ 1

∞, otherwise

,

where the scaling constant r = (rdeg/N)1/2 guarantees the network sparsity and the

parameter rdeg controls the average degree: E[F∗i ] is an increasing function of rdeg. Con-

sider two levels of sparsity rdeg = 5 and 8. Set β = (β1, β2, β3)′ = (−0.25, 0.5,−1).

Statistics of the latent network A∗ = {A∗ij}Ni,j=1 are summarised in Table 4.6.1. Sup-

pose two self-reported and mismeasured network proxies are available for all units: for

i, j = 1, 2, ..., N ,

Aij = ωi
[
UijA

∗
ij + Vij(1− A∗ij)

]
+ (1− ωi)A∗ij,

Ãij = ω̃i
[
ŨijA

∗
ij + Ṽij(1− A∗ij)

]
+ (1− ω̃i)A∗ij,

where ωi, Uij, Vij, ω̃i, Ũij and Ṽij are mutually independent and randomly generated

binary indicators, taking value one with probabilities pω, pU , pV , pω̃, pŨ , pṼ , respectively.

In particular, taking Aij as an example, ωi indicates whether unit i ever misreports his or

her links, and pω captures the overall level of misreporting. If unit i misreports, there are

two types of classification errors: Uij = 0 indicates that units i and j will be misclassified

as unlinked if they are actually linked with A∗ij = 1 (false negative); Vij = 1 indicates

that units i and j will be misclassified as linked if they are in fact unlinked with A∗ij = 0



180 CHAPTER 4. SPILLOVERS WITH MISMEASURED NETWORKS

(false positive). Therefore, 1− pU and pV are the probability of false negative and false

positive, respectively.

Following the design of Leung (2020b), assume the full network is collected for both

proxies, meaning that P = {1, 2, ..., N}. Given the DGP design, the dependency neigh-

bourhood of each unit i can be set as a collection of units that are located close to unit

i with distance less than r, i.e., ∆(i, N) = {j ∈ {1, 2, ..., N}, ‖ρi − ρj‖1 ≤ r}.

We generate data using sample size N ∈ {1000, 2000, 5000} with replications M = 1000.

In the first-step kernel estimation, we set the bandwidth to be h = N−3/8.

Table 4.6.1: Statistics of Latent Links

rdeg = 5 rdeg = 8
F∗i S∗i total F∗i S∗i total

N avg. max avg. max avg. max avg. max
1k 5.65 15.52 1.69 7.31 5649 8.92 21.45 2.68 9.53 8919
2k 5.73 16.36 1.72 7.90 11458 9.08 22.54 2.72 10.26 18167
5k 5.80 17.39 1.74 8.55 29018 9.23 23.78 2.77 11.07 46165

Note: statistics reported in this table are the average over 1000 replications.

4.6.1. Semiparametric Estimation with Two Network Proxies

The overall misclassification rates are set as pω = pω̃ = 0.6. For the first proxy, let

1− pU ∈ {0.2, 0.4} and pV = δV /N with δV ∈ {0.1, 0.5} to ensure the network sparsity.

For the second proxy, set 1−pŨ ∈ {0.2, 0.4} and pṼ = 0. Then, the first proxy possesses

both the false negative and false positive classification errors, and the second one contains

no false positive errors. Table 4.6.2 reports the statistics of the two mismeasured network

proxies for different misclassification rates. We can see that when pU or pŨ is 0.2, the

misclassification rates are relatively low, varying from 12% to 17%. While when pU or

pŨ is set to be 0.4, the misclassification rates become quite high, varying between 24%

to 29%. In what follows, we compare three estimation procedures:

(1) SPE: the semiparametric estimation studied in Section 4.5.3 using two proxies;

as well as two naive estimation procedures (ordinary least square (OLS)) that ignore

potential misclassification errors:
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(2) Naive 1: OLS of Yi on (1, Di, DiFiZi, Si, S2
i , SiZi, SiFi);

(3) Naive 2: OLS of Yi on (1, Di, DiF̃iZi, S̃i, S̃2
i , S̃iZi, S̃iF̃i).

Tables 4.6.3 to 4.6.6 display the estimation results for the treatment and the spillover

effects obtained using the above three approaches. The bias, the standard deviation (sd),

the mean squared error (mse), and the coverage rate (cr) of the 95% confidence interval

for the true value of the causal parameter are reported.

For the treatment effect τd(0, 0, 3) (Table 4.6.3), the three estimation methods are roughly

comparable in terms of the mse and cr. This finding is not surprising given that the

treatment status of each ego unit is correctly observed and the network measurement

errors do not impact the naive estimation of τd(0, 0, 3) for the units with Zi = 0.

Analysing the results for the treatment effect τd(0, 1, 3) (Table 4.6.4), and the spillover

effects τs(1, 0, 3) (Table 4.6.5) and τs(1, 1, 3) (Table 4.6.6), several interesting patters

emerge. First and most importantly, the bias of the SPE is significantly lower than the

bias of the two naive estimations in most cases. This is especially true if the network

degree is relatively small (rdeg = 5), the misclassification rate is relatively low (1− pU =

1− pŨ = 0.2), or the sample size is sufficiently large (N = 5000).

In addition, as expected, the bias of the SPE decreases as the sample size increases for

most cases. While, the two naive estimations are biased in all settings, and the bias is

quite severe when the misclassification rate is relatively high (1 − pU = 1 − pŨ = 0.4)

or the network degree is relatively large (rdeg = 8). Increasing the sample size fails to

mitigate the bias of the two naive estimations. For instance, consider the estimation

of the spillover τs(1, 0, 3) under rdeg = 8 in panel (b) of Table 4.6.5. Under the low

misclassification rate 1 − pU = 1 − pŨ = 0.2, δV = 0.1 and N = 1000, the bias of SPE

(0.076) is 11.6% of the bias of Naive 1 (0.653), and is 9.7% of the bias of Naive 2 (0.780).

When sample size increases to N = 5000, the bias of SPE (-0.034) decreases to 5.2% of

the bias of Naive 1 (0.650) and 4.5% of the bias of Naive 2 (0.753). While, in the case

of a high misclassification rate 1− pU = 1− pŨ = 0.4 and δV = 0.1, the naive estimators

have even larger bias: the biases of Naive 1 and 2 are roughly double the biases in the
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Table 4.6.2: Statistics of Misclassified Links (pω = 0.6, pV = δV /N)

(a) rdeg = 5

δV 1− pU pV N Fi Si Misclassified links
(%) (%) avg. max avg. max 1 to 0 0 to 1 total ratio (%)

0 20
0 1k 4.97 14.84 1.49 6.95 677.5 0 677.5 12.01
0 2k 5.04 15.63 1.51 7.51 1371 0 1371 12.00
0 5k 5.11 16.66 1.53 8.12 3482 0 3482 12.01

0.1 20
0.010 1k 5.03 14.87 1.51 6.97 677.5 59.64 737.2 13.05
0.005 2k 5.10 15.67 1.53 7.56 1371 119.1 1490 13.01
0.002 5k 5.17 16.66 1.55 8.17 3482 299.5 3782 13.03

0.5 20
0.050 1k 5.27 15.02 1.58 7.08 677.5 298.2 975.7 17.28
0.025 2k 5.34 15.81 1.60 7.65 1371 596.3 1968 17.18
0.010 5k 5.41 16.81 1.62 8.28 3482 1501 4983 17.17

0 40
0 1k 4.29 14.70 1.29 6.81 1356 0 1356 24.03
0 2k 4.35 15.53 1.31 7.37 2746 0 2746 24.00
0 5k 4.41 16.56 1.32 7.99 6961 0 6961 24.02

0.1 40
0.010 1k 4.35 14.72 1.31 6.79 1356 59.64 1416 25.07
0.005 2k 4.42 15.55 1.32 7.38 2746 119.1 2865 25.01
0.002 5k 4.47 16.52 1.34 7.99 6961 299.5 7260 25.02

0.5 40
0.050 1k 4.59 14.74 1.38 6.84 1356 298.2 1654 29.29
0.025 2k 4.65 15.56 1.40 7.42 2746 596.3 3343 29.18
0.010 5k 4.71 16.54 1.41 8.03 6961 1501 8462 29.16

(b) rdeg = 8

δV 1− pU pV N Fi Si Misclassified links
(%) (%) avg. max avg. max 1 to 0 0 to 1 total ratio (%)

0 20
0 1k 7.85 20.50 2.36 9.08 1069 0 1069 12.02
0 2k 7.99 21.55 2.40 9.75 2177 0 2177 12.01
0 5k 8.12 22.83 2.44 10.58 5540 0 5540 12.01

0.1 20
0.010 1k 7.91 20.52 2.37 9.07 1069 59.45 1128 12.65
0.005 2k 8.05 21.55 2.42 9.81 2177 118.9 2296 12.64
0.002 5k 8.18 22.82 2.45 10.55 5540 299.3 5839 12.65

0.5 20
0.050 1k 8.15 20.60 2.45 9.15 1069 297.3 1366 15.32
0.025 2k 8.29 21.64 2.49 9.88 2177 595.3 2772 15.26
0.010 5k 8.43 22.90 2.53 10.62 5540 1500 7039 15.25

0 40
0 1k 6.78 20.40 2.03 8.92 2139 0 2139 24.03
0 2k 6.90 21.48 2.07 9.62 4356 0 4356 24.01
0 5k 7.02 22.75 2.10 10.45 11078 0 11078 24.02

0.1 40
0.010 1k 6.84 20.43 2.05 8.87 2139 59.45 2199 24.65
0.005 2k 6.96 21.48 2.09 9.66 4356 118.9 4475 24.63
0.002 5k 7.08 22.77 2.12 10.41 11078 299.3 11377 24.64

0.5 40
0.050 1k 7.08 20.43 2.12 8.90 2139 297.3 2437 27.32
0.025 2k 7.20 21.48 2.16 9.67 4356 595.3 4951 27.25
0.010 5k 7.32 22.77 2.19 10.43 11078 1500 12577 27.24

Note: The results in this table can be applied to both (Fi, Si) and (F̃i, S̃i).
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case of a low misclassification rate. Although the bias of SPE also increases in cases with

high misclassification rate compared to that in cases with low misclassification rate, it

diminishes as the sample size increases. Hence, the simulations verify that ignoring the

network classification errors results in non-negligible bias that does not abate as the

sample size increases.

In addition, we can see that the sd and the mse of SPE decrease as the sample size

increases. The mse of SPE outperforms those of Naive 1 and Naive 2 in most cases when

the sample size is relatively large. Moreover, the coverage rate of the SPE is closer to the

nominal level than either naive method and approaches the nominal level as the sample

size increases. In contrast, the coverage rates of the naive approaches drop rapidly as

the sample size increases or as the misclassification worsens. For example, when the

misclassification rate is low 1− pU = 1− pŨ = 0.2 and δV = 0.1, for the spillover effect

τs(1, 1, 3) under rdeg = 8 (panel (b) in Table 4.6.6), the cr is 11.9% for Naive 1 and 6.2%

for Naive 2, while it is 93.1% for SPE. When N = 5000, the cr is 0% for both Naive 1

and 2, but is 93.8% for SPE.

However, it is important to note that, relatively speaking, the accuracy of the SPE de-

creases as rdeg increases, or as the misclassification rate increases. To sum up, the SPE

works significantly better than the naive estimators that neglect network misclassifica-

tions, especially if the sample size is relatively large.
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Table 4.6.3: Estimation of Treatment Effect τd(0, 0, 3) (pω = pω̃ = 0.6, pV = δV /N)

(a) rdeg = 5

δV (1− pU , pV ) (1− pŨ , pṼ ) N SPE Naive 1 Naive 2
(%) (%) bias sd mse cr bias sd mse cr bias sd mse cr

0.1
(20, 0.010)

(20,0)
1k -0.060 0.349 0.125 0.931 -0.073 0.292 0.091 0.943 -0.063 0.294 0.090 0.935

(20, 0.005) 2k -0.027 0.245 0.061 0.941 -0.077 0.206 0.048 0.933 -0.071 0.208 0.048 0.931
(20, 0.002) 5k -0.016 0.133 0.018 0.937 -0.060 0.132 0.021 0.924 -0.063 0.130 0.021 0.916

0.5
(20, 0.050)

(20,0)
1k -0.053 0.354 0.128 0.941 -0.076 0.319 0.108 0.942 -0.061 0.284 0.084 0.946

(20, 0.025) 2k -0.032 0.243 0.060 0.941 -0.097 0.219 0.057 0.925 -0.061 0.205 0.046 0.939
(20, 0.010) 5k -0.028 0.133 0.019 0.942 -0.083 0.139 0.026 0.909 -0.062 0.133 0.022 0.922

0.1
(40, 0.010)

(40,0)
1k 0.075 0.538 0.296 0.950 -0.035 0.405 0.165 0.952 -0.016 0.390 0.153 0.948

(40, 0.005) 2k 0.051 0.384 0.150 0.942 -0.018 0.276 0.076 0.948 -0.019 0.273 0.075 0.955
(40, 0.002) 5k 0.038 0.236 0.057 0.938 -0.013 0.173 0.030 0.948 0.004 0.182 0.033 0.945

0.5
(40, 0.050)

(40,0)
1k 0.059 0.547 0.303 0.940 -0.040 0.398 0.160 0.958 -0.012 0.399 0.160 0.950

(40, 0.025) 2k 0.040 0.368 0.137 0.941 -0.047 0.280 0.081 0.954 -0.015 0.283 0.080 0.953
(40, 0.010) 5k 0.022 0.219 0.048 0.940 -0.052 0.189 0.038 0.944 0.012 0.175 0.031 0.952

(b) rdeg = 8

δV (1− pU , pV ) (1− pŨ , pṼ ) N SPE Naive 1 Naive 2
(%) (%) bias sd mse cr bias sd mse cr bias sd mse cr

0.1
(20, 0.010)

(20,0)
1k 0.060 0.574 0.334 0.953 -0.161 0.527 0.304 0.941 -0.142 0.507 0.277 0.949

(20, 0.005) 2k -0.048 0.284 0.083 0.940 -0.140 0.359 0.148 0.929 -0.130 0.392 0.170 0.928
(20, 0.002) 5k -0.020 0.180 0.033 0.954 -0.141 0.237 0.076 0.910 -0.139 0.233 0.074 0.908

0.5
(20, 0.050)

(20,0)
1k -0.016 0.535 0.287 0.930 -0.170 0.518 0.298 0.938 -0.170 0.522 0.302 0.938

(20, 0.025) 2k 0.019 0.399 0.160 0.954 -0.141 0.394 0.175 0.935 -0.155 0.361 0.154 0.934
(20, 0.010) 5k -0.019 0.169 0.029 0.963 -0.162 0.241 0.084 0.899 -0.144 0.243 0.080 0.902

0.1
(40, 0.010)

(40,0)
1k 0.383 0.792 0.774 0.934 -0.119 0.776 0.617 0.946 -0.120 0.756 0.585 0.942

(40, 0.005) 2k 0.356 0.569 0.451 0.933 -0.118 0.574 0.343 0.946 -0.103 0.560 0.325 0.945
(40, 0.002) 5k 0.280 0.343 0.196 0.897 -0.101 0.354 0.135 0.935 -0.086 0.354 0.133 0.938

0.5
(40, 0.010)

(40,0)
1k 0.367 0.794 0.765 0.919 -0.184 0.757 0.607 0.948 -0.121 0.749 0.575 0.949

(40, 0.025) 2k 0.323 0.556 0.413 0.934 -0.148 0.552 0.326 0.937 -0.115 0.550 0.316 0.950
(40, 0.010) 5k 0.211 0.342 0.162 0.910 -0.154 0.348 0.145 0.928 -0.103 0.362 0.141 0.945

Note: SPE lists the semiparametric estimation results proposed in Section 4.5.3. Estimates of Naive 1
are computed using OLS with {Yi, Di, Si, Zi,Fi}Ni=1; and estimates of Naive 2 are computed using OLS
with {Yi, Di, S̃i, Zi, F̃i}Ni=1. True value of the treatment effect τd(0, 0, 3) = 1.
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Table 4.6.4: Estimation of Treatment Effect τd(0, 1, 3) (pω = pω̃ = 0.6, pV = δV /N)

(a) rdeg = 5

δV (1− pU , pV ) (1− pŨ , pṼ ) N SPE Naive 1 Naive 2
(%) (%) bias sd mse cr bias sd mse cr bias sd mse cr

0.1
(20, 0.010)

(20,0)
1k -0.068 0.313 0.102 0.948 0.131 0.279 0.095 0.921 0.120 0.268 0.086 0.936

(20, 0.005) 2k -0.059 0.215 0.050 0.939 0.121 0.195 0.053 0.897 0.140 0.190 0.056 0.883
(20, 0.002) 5k -0.052 0.126 0.019 0.930 0.132 0.122 0.032 0.815 0.133 0.126 0.034 0.818

0.5
(20, 0.050)

(20,0)
1k -0.066 0.323 0.108 0.944 0.078 0.283 0.086 0.941 0.133 0.270 0.090 0.920

(20, 0.025) 2k -0.059 0.209 0.047 0.946 0.075 0.201 0.046 0.943 0.136 0.195 0.057 0.892
(20, 0.010) 5k -0.057 0.114 0.016 0.931 0.081 0.124 0.022 0.907 0.135 0.115 0.031 0.778

0.1
(40, 0.010)

(40,0)
1k 0.040 0.528 0.281 0.953 0.287 0.405 0.247 0.885 0.318 0.408 0.268 0.882

(40, 0.005) 2k 0.007 0.350 0.123 0.949 0.299 0.293 0.175 0.834 0.303 0.291 0.176 0.825
(40, 0.002) 5k 0.001 0.209 0.044 0.957 0.305 0.181 0.126 0.600 0.316 0.183 0.133 0.581

0.5
(40, 0.050)

(40,0)
1k 0.054 0.522 0.276 0.946 0.255 0.393 0.219 0.898 0.303 0.411 0.261 0.892

(40, 0.025) 2k 0.027 0.325 0.106 0.953 0.252 0.286 0.145 0.863 0.325 0.275 0.181 0.788
(40, 0.010) 5k 0.003 0.196 0.039 0.952 0.248 0.181 0.094 0.730 0.322 0.185 0.138 0.590

(b) rdeg = 8

δV (1− pU , pV ) (1− pŨ , pṼ ) N SPE Naive 1 Naive 2
(%) (%) bias sd mse cr bias sd mse cr bias sd mse cr

0.1
(20, 0.010)

(20,0)
1k -0.024 0.516 0.267 0.953 0.071 0.445 0.203 0.941 0.083 0.446 0.205 0.944

(20, 0.005) 2k -0.061 0.323 0.108 0.951 0.084 0.319 0.109 0.937 0.078 0.335 0.118 0.941
(20, 0.002) 5k -0.089 0.190 0.044 0.939 0.077 0.200 0.046 0.936 0.087 0.202 0.048 0.938

0.5
(20, 0.050)

(20,0)
1k 0.062 0.629 0.400 0.966 0.062 0.448 0.204 0.955 0.075 0.454 0.212 0.943

(20, 0.025) 2k -0.054 0.373 0.142 0.960 0.058 0.330 0.112 0.945 0.082 0.305 0.100 0.943
(20, 0.010) 5k -0.096 0.177 0.041 0.937 0.044 0.208 0.045 0.942 0.078 0.210 0.050 0.927

0.1
(40, 0.010)

(40,0)
1k 0.329 0.813 0.768 0.932 0.267 0.703 0.565 0.938 0.279 0.709 0.581 0.933

(40, 0.005) 2k 0.299 0.571 0.416 0.932 0.300 0.511 0.351 0.908 0.306 0.502 0.346 0.901
(40, 0.002) 5k 0.173 0.336 0.143 0.916 0.272 0.318 0.175 0.877 0.285 0.322 0.185 0.851

0.5
(40, 0.010)

(40,0)
1k 0.300 0.814 0.752 0.934 0.244 0.655 0.488 0.939 0.298 0.700 0.579 0.933

(40, 0.025) 2k 0.256 0.538 0.355 0.925 0.240 0.474 0.282 0.912 0.298 0.500 0.339 0.903
(40, 0.010) 5k 0.119 0.327 0.121 0.937 0.218 0.316 0.147 0.888 0.284 0.330 0.190 0.863

Note: SPE lists the semiparametric estimation results proposed in Section 4.5.3. Estimates of Naive 1
are computed using OLS with {Yi, Di, Si, Zi,Fi}Ni=1; and estimates of Naive 2 are computed using OLS
with {Yi, Di, S̃i, Zi, F̃i}Ni=1. True value of the treatment effect τd(0, 1, 3) = 2.
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Table 4.6.5: Estimation of Spillover Effect τs(1, 0, 3) (pω = pω̃ = 0.6, pV = δV /N)

(a) rdeg = 5

δV (1− pU , pV ) (1− pŨ , pṼ ) N SPE Naive 1 Naive 2
(%) (%) bias sd mse cr bias sd mse cr bias sd mse cr

0.1
(20, 0.010)

(20,0)
1k 0.035 0.488 0.240 0.957 0.270 0.214 0.119 0.749 0.366 0.215 0.180 0.582

(20, 0.005) 2k 0.040 0.373 0.141 0.961 0.254 0.160 0.090 0.628 0.351 0.155 0.147 0.365
(20, 0.002) 5k 0.073 0.209 0.049 0.945 0.252 0.102 0.074 0.306 0.342 0.100 0.127 0.074

0.5
(20, 0.050)

(20,0)
1k 0.050 0.543 0.297 0.947 -0.096 0.220 0.058 0.924 0.355 0.211 0.170 0.596

(20, 0.025) 2k 0.054 0.354 0.128 0.952 -0.091 0.159 0.033 0.919 0.352 0.151 0.147 0.360
(20, 0.010) 5k 0.082 0.209 0.051 0.930 -0.104 0.105 0.022 0.841 0.346 0.102 0.130 0.089

0.1
(40, 0.010)

(40,0)
1k 0.051 0.750 0.565 0.945 0.436 0.283 0.270 0.650 0.533 0.301 0.375 0.562

(40, 0.005) 2k 0.079 0.607 0.375 0.949 0.432 0.209 0.230 0.441 0.532 0.216 0.330 0.299
(40, 0.002) 5k 0.165 0.351 0.150 0.923 0.415 0.138 0.192 0.144 0.507 0.138 0.276 0.046

0.5
(40, 0.050)

(40,0)
1k 0.037 0.753 0.568 0.952 0.082 0.289 0.090 0.948 0.519 0.309 0.364 0.611

(40, 0.025) 2k 0.086 0.557 0.317 0.942 0.079 0.212 0.051 0.936 0.517 0.204 0.309 0.285
(40, 0.010) 5k 0.175 0.369 0.167 0.927 0.057 0.138 0.022 0.932 0.505 0.138 0.274 0.044

(b) rdeg = 8

δV (1− pU , pV ) (1− pŨ , pṼ ) N SPE Naive 1 Naive 2
(%) (%) bias sd mse cr bias sd mse cr bias sd mse cr

0.1
(20, 0.010)

(20,0)
1k 0.076 0.861 0.748 0.935 0.653 0.367 0.561 0.544 0.780 0.354 0.733 0.392

(20, 0.005) 2k 0.051 0.675 0.459 0.947 0.651 0.283 0.504 0.358 0.769 0.269 0.664 0.176
(20, 0.002) 5k -0.034 0.403 0.163 0.945 0.650 0.171 0.451 0.040 0.753 0.167 0.595 0.010

0.5
(20, 0.050)

(20,0)
1k 0.119 0.891 0.809 0.943 0.265 0.368 0.205 0.885 0.774 0.372 0.737 0.459

(20, 0.025) 2k 0.029 0.746 0.557 0.941 0.263 0.263 0.138 0.833 0.764 0.267 0.655 0.181
(20, 0.010) 5k -0.013 0.375 0.141 0.951 0.245 0.176 0.091 0.730 0.745 0.174 0.586 0.014

0.1
(40, 0.010)

(40,0)
1k 1.270 1.023 2.659 0.789 1.260 0.535 1.872 0.335 1.348 0.517 2.085 0.254

(40, 0.005) 2k 1.040 0.831 1.772 0.796 1.244 0.367 1.683 0.104 1.314 0.379 1.869 0.063
(40, 0.002) 5k 0.743 0.602 0.915 0.787 1.179 0.253 1.454 0.008 1.269 0.255 1.676 0.001

0.5
(40, 0.010)

(40,0)
1k 1.171 1.045 2.462 0.823 0.873 0.506 1.019 0.581 1.356 0.516 2.106 0.231

(40, 0.025) 2k 0.993 0.854 1.715 0.843 0.814 0.368 0.798 0.401 1.298 0.369 1.822 0.053
(40, 0.010) 5k 0.653 0.620 0.811 0.845 0.803 0.241 0.702 0.090 1.270 0.253 1.678 0.002

Note: SPE lists the semiparametric estimation results proposed in Section 4.5.3. Estimates of Naive 1
are computed using OLS with {Yi, Di, Si, Zi,Fi}Ni=1; and estimates of Naive 2 are computed using OLS
with {Yi, Di, S̃i, Zi, F̃i}Ni=1. True value of the treatment effect τs(1, 0, 3) = 3.
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Table 4.6.6: Estimation of Spillover Effect τs(1, 1, 3) (pω = pω̃ = 0.6, pV = δV /N)

(a) rdeg = 5

δV (1− pU , pV ) (1− pŨ , pṼ ) N SPE Naive 1 Naive 2
(%) (%) bias sd mse cr bias sd mse cr bias sd mse cr

0.1
(20, 0.010)

(20,0)
1k 0.060 0.846 0.719 0.942 0.617 0.243 0.440 0.272 0.709 0.246 0.564 0.172

(20, 0.005) 2k 0.028 0.522 0.273 0.957 0.603 0.173 0.393 0.064 0.693 0.181 0.513 0.029
(20, 0.002) 5k 0.021 0.284 0.081 0.954 0.605 0.112 0.379 0.001 0.695 0.112 0.496 0.000

0.5
(20, 0.050)

(20,0)
1k 0.127 0.928 0.878 0.941 0.289 0.246 0.144 0.768 0.690 0.246 0.537 0.203

(20, 0.025) 2k 0.090 0.555 0.316 0.952 0.299 0.186 0.124 0.633 0.704 0.173 0.525 0.025
(20, 0.010) 5k 0.047 0.306 0.096 0.954 0.294 0.117 0.100 0.275 0.703 0.114 0.507 0.000

0.1
(40, 0.010)

(40,0)
1k 0.619 0.979 1.342 0.897 1.273 0.343 1.739 0.037 1.386 0.359 2.050 0.030

(40, 0.005) 2k 0.377 0.864 0.889 0.915 1.288 0.242 1.718 0.000 1.406 0.249 2.038 0.000
(40, 0.002) 5k 0.232 0.591 0.403 0.937 1.277 0.167 1.658 0.000 1.385 0.164 1.944 0.000

0.5
(40, 0.050)

(40,0)
1k 0.564 1.016 1.351 0.905 0.865 0.344 0.866 0.297 1.370 0.369 2.013 0.041

(40, 0.025) 2k 0.272 0.869 0.829 0.926 0.875 0.247 0.828 0.053 1.387 0.249 1.986 0.000
(40, 0.010) 5k 0.207 0.588 0.388 0.949 0.868 0.156 0.777 0.000 1.389 0.167 1.957 0.000

(b) rdeg = 8

δV (1− pU , pV ) (1− pŨ , pṼ ) N SPE Naive 1 Naive 2
(%) (%) bias sd mse cr bias sd mse cr bias sd mse cr

0.1
(20, 0.010)

(20,0)
1k 0.382 1.416 2.150 0.931 1.320 0.419 1.919 0.119 1.456 0.403 2.281 0.062

(20, 0.005) 2k 0.139 1.055 1.133 0.950 1.345 0.321 1.912 0.013 1.480 0.304 2.282 0.007
(20, 0.002) 5k -0.053 0.621 0.389 0.938 1.369 0.191 1.912 0.000 1.489 0.196 2.256 0.000

0.5
(20, 0.050)

(20,0)
1k 0.498 1.411 2.239 0.940 0.921 0.412 1.019 0.396 1.474 0.424 2.353 0.066

(20, 0.025) 2k 0.029 1.003 1.007 0.944 0.928 0.293 0.947 0.111 1.470 0.304 2.255 0.004
(20, 0.010) 5k -0.019 0.627 0.393 0.950 0.931 0.201 0.908 0.002 1.476 0.201 2.220 0.000

0.1
(40, 0.010)

(40,0)
1k 2.673 1.634 9.812 0.647 3.000 0.618 9.379 0.001 3.120 0.631 10.136 0.001

(40, 0.005) 2k 2.185 1.432 6.826 0.704 2.974 0.443 9.041 0.000 3.113 0.449 9.892 0.000
(40, 0.002) 5k 1.437 1.152 3.391 0.779 2.997 0.301 9.072 0.000 3.125 0.294 9.851 0.000

0.5
(40, 0.010)

(40,0)
1k 2.540 1.698 9.335 0.724 2.482 0.607 6.526 0.012 3.125 0.613 10.140 0.001

(40, 0.025) 2k 2.135 1.460 6.692 0.727 2.459 0.423 6.225 0.000 3.109 0.441 9.860 0.000
(40, 0.010) 5k 1.262 1.175 2.974 0.837 2.489 0.279 6.274 0.000 3.120 0.295 9.821 0.000

Note: SPE lists the semiparametric estimation results proposed in Section 4.5.3. Estimates of Naive 1
are computed using OLS with {Yi, Di, Si, Zi,Fi}Ni=1; and estimates of Naive 2 are computed using OLS
with {Yi, Di, S̃i, Zi, F̃i}Ni=1. True value of the treatment effect τs(1, 1, 3) = 2.5.
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4.6.2. Robustness of the Semiparametric Estimation

Two key identification assumptions, i.e. the exclusion restriction and the one type of

measurement error, may be violated in some applications. In this section, we assess the

following empirical questions using additional Monte Carlo experiments: Is SPE robust

to the violation of these two assumptions? Does SPE still perform better than the

naive estimation if any violation is present? To answer the above questions, we consider

a Monte Carlo exercise that analyses the behaviour of the SPE when the observable

networks are generated according to one of the following empirical relevant departures

from the above identification conditions:

(i) violation of the “exclusion restriction”: generate random errors (U∗ij, V
∗
ij , Ũ

∗
ij, Ṽ

∗
ij)
′

from a joint normal distribution for all i, j = 1, 2, ..., N ,
U∗ij

V ∗ij

Ũ∗ij

Ṽ ∗ij

 = N




0

0

0

0

 ,


1 0 % 0

0 1 0 %

% 0 1 0

0 % 0 1



 ,
Uij = 1[Φ(U∗ij) < 1− pU ], Vij = 1[Φ(V ∗ij) < pV ]

Ũij = 1[Φ(Ũ∗ij) < 1− pŨ ], Ṽij = 1[Φ(Ṽ ∗ij) < pṼ ].

where % ∈ {0.05, 0.1} controls the correlation between the misclassification errors;

(ii) violation of the “one type of measurement error”: generate Ṽij via pṼ = δṼ /N

with δṼ ∈ {0.05, 0.1};

while all remaining elements of the Monte Carlo are precisely as in Section 4.6.1. Results

for the three approaches are reported in Table 4.6.7 and 4.6.8. Table 4.6.8 displays the

results for cases with relatively large sample size (N = 5000), which is sufficient to

illustrate the asymptotic performance of the SPE relative to the naive approaches.

To check the robustness of the SPE method, compare the results in Tables 4.6.3 to 4.6.6

with their counterparts in Tables 4.6.7 and 4.6.8. We can see that the violation of either

assumptions deteriorates the performance of SPE, but only at a limited degree.

Take the spillover τs(1, 0, 3) as an example. When rdeg = 5, N = 5000 and misclassifi-

cation rate is relatively low (1 − pU = 1 − pŨ = 0.2, δV = 0.1), the bias and the mse
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of SPE under the point identification condition are 0.073 and 0.049, respectively, with

the coverage rate 94.5%. When the exclusion restriction fails to hold (% = 0.1), the bias,

mse and coverage rate are 0.101, 0.097 and 92.0%, respectively. When the one type of

measure error is violated (δṼ = 0.05), the bias, mse and coverage rate are 0.104, 0.103

and 93.3%, respectively.

The question whether SPE still outperforms the naive estimation can be answered by

comparing the results in Tables 4.6.7 and 4.6.8. For the treatment effect τd(0, 0, 3),

the bias and the mse of SPE are smaller than those of the two naive methods when

the misclassification rate is relatively low (1 − pU = 1 − pŨ = 0.2); while the SPE

produces a slightly larger bias compared to that of the two naive methods when the

misclassification rate is relatively high (1− pU = 1− pŨ = 0.4). For the treatment effect

τd(0, 1, 3), the spillover effects τs(1, 0, 3) and τs(1, 1, 3), the bias and the mse of the SPE

are better than those of the two naive estimators across almost all designs. Notably, the

coverage rate of the SPE is much closer to the nominal level than either of the naive

estimators. For example, consider the case where rdeg = 8 with low misclassification rate

(1− pU = 1− pŨ = 0.2). If the exclusion restriction is violated, the coverage rate of the

spillover effects τs(1, 0, 3) and τs(1, 1, 3) obtained by the SPE method lies in the range

of 93.0% to 94.3%, while for the native estimators, the coverage rate is less than 6%

for τs(1, 0, 3) and can even be 0% for τs(1, 1, 3). If the one type of measurement error

assumption fails, the SPE’s coverage rate of τs(1, 0, 3) and τs(1, 1, 3) varies from 94.9%

to 95.5%, while it varies from 0% to less than 4% for the naive estimations.

The results in this section show that (i) the SPE approach is robust to mild violations

of the one type of measurement error assumption; and (ii) the SPE is superior to the

naive methods except in rare cases, in the sense that the bias reduction provided by the

SPE is substantial and its causal inference is much more reliable.
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Table 4.6.7: Robustness Check for Exclusion Restriction (pω = pω̃ = 0.6, pV =

δV /N, pṼ = 0, δV = 0.1, N = 5k)

(a) rdeg = 5

% (1− pU , pV ) (1− pŨ , pṼ ) SPE Naive 1 Naive 2
(%) (%) bias sd mse cr bias sd mse cr bias sd mse cr

0.05 (20,0.002) (20,0)

τd(0, 0, 3) -0.020 0.118 0.014 0.915 -0.067 0.128 0.021 0.910 -0.054 0.135 0.021 0.929
τd(0, 1, 3) -0.053 0.118 0.017 0.931 0.123 0.118 0.029 0.834 0.140 0.124 0.035 0.800
τs(1, 0, 3) 0.145 0.184 0.055 0.865 0.249 0.097 0.072 0.273 0.347 0.099 0.130 0.063
τs(1, 1, 3) 0.095 0.301 0.100 0.935 0.604 0.111 0.377 0.000 0.701 0.114 0.504 0.000

0.1 (20,0.002) (20,0)

τd(0, 0, 3) -0.021 0.110 0.013 0.934 -0.065 0.129 0.021 0.917 -0.062 0.131 0.021 0.923
τd(0, 1, 3) -0.059 0.112 0.016 0.910 0.131 0.120 0.032 0.802 0.132 0.120 0.032 0.815
τs(1, 0, 3) 0.157 0.200 0.065 0.869 0.247 0.098 0.070 0.296 0.346 0.099 0.129 0.060
τs(1, 1, 3) 0.101 0.295 0.097 0.920 0.596 0.109 0.368 0.000 0.696 0.115 0.497 0.000

0.05 (40,0.002) (40,0)

τd(0, 0, 3) 0.049 0.219 0.051 0.917 -0.019 0.175 0.031 0.950 -0.001 0.180 0.032 0.949
τd(0, 1, 3) 0.005 0.210 0.044 0.945 0.306 0.186 0.128 0.620 0.318 0.184 0.135 0.606
τs(1, 0, 3) 0.245 0.329 0.168 0.877 0.424 0.130 0.196 0.101 0.513 0.136 0.281 0.032
τs(1, 1, 3) 0.347 0.545 0.417 0.910 1.290 0.155 1.687 0.000 1.397 0.164 1.979 0.000

0.1 (40,0.002) (40,0)

τd(0, 0, 3) 0.070 0.225 0.055 0.930 0.005 0.182 0.033 0.956 0.014 0.174 0.030 0.951
τd(0, 1, 3) 0.010 0.208 0.043 0.954 0.307 0.187 0.129 0.613 0.313 0.182 0.131 0.586
τs(1, 0, 3) 0.236 0.330 0.165 0.882 0.413 0.139 0.190 0.153 0.499 0.134 0.267 0.053
τs(1, 1, 3) 0.344 0.509 0.377 0.886 1.282 0.161 1.670 0.000 1.388 0.157 1.951 0.000

(b) rdeg = 8

% (1− pU , pV ) (1− pŨ , pṼ ) SPE Naive 1 Naive 2
(%) (%) bias sd mse cr bias sd mse cr bias sd mse cr

0.05 (20, 0.002) (20, 0)

τd(0, 0, 3) -0.049 0.192 0.039 0.959 -0.143 0.243 0.080 0.908 -0.141 0.241 0.078 0.923
τd(0, 1, 3) -0.093 0.193 0.046 0.943 0.078 0.211 0.050 0.930 0.089 0.208 0.051 0.922
τs(1, 0, 3) -0.026 0.394 0.156 0.939 0.647 0.183 0.452 0.059 0.751 0.173 0.594 0.007
τs(1, 1, 3) -0.050 0.612 0.377 0.930 1.364 0.206 1.904 0.000 1.482 0.203 2.236 0.000

0.1 (20, 0.002) (20, 0)

τd(0, 0, 3) -0.048 0.177 0.034 0.960 -0.144 0.241 0.079 0.914 -0.143 0.243 0.079 0.911
τd(0, 1, 3) -0.102 0.191 0.047 0.929 0.080 0.213 0.052 0.929 0.082 0.207 0.050 0.926
τs(1, 0, 3) -0.030 0.356 0.128 0.943 0.634 0.180 0.434 0.069 0.754 0.179 0.601 0.015
τs(1, 1, 3) -0.046 0.591 0.351 0.937 1.352 0.201 1.868 0.000 1.488 0.203 2.256 0.000

0.05 (40, 0.002) (40, 0)

τd(0, 0, 3) 0.284 0.341 0.197 0.888 -0.098 0.349 0.132 0.943 -0.073 0.354 0.131 0.952
τd(0, 1, 3) 0.184 0.343 0.151 0.933 0.274 0.323 0.180 0.863 0.300 0.322 0.193 0.851
τs(1, 0, 3) 0.786 0.597 0.975 0.774 1.180 0.250 1.454 0.002 1.269 0.255 1.675 0.003
τs(1, 1, 3) 1.581 1.114 3.741 0.749 2.997 0.298 9.071 0.000 3.121 0.299 9.829 0.000

0.1 (40, 0.002) (40, 0)

τd(0, 0, 3) 0.310 0.312 0.193 0.855 -0.086 0.346 0.127 0.944 -0.065 0.349 0.126 0.942
τd(0, 1, 3) 0.195 0.325 0.144 0.917 0.285 0.333 0.192 0.861 0.306 0.325 0.199 0.851
τs(1, 0, 3) 0.781 0.618 0.992 0.796 1.178 0.249 1.449 0.004 1.270 0.249 1.674 0.000
τs(1, 1, 3) 1.498 1.131 3.522 0.776 2.995 0.290 9.057 0.000 3.119 0.293 9.813 0.000
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Table 4.6.8: Robustness Check for One Type of Measurement Error (pω = pω̃ = 0.6, pV =

δV /N, pṼ = δṼ /N , N = 5k)

(a) rdeg = 5

δV δṼ (1− pU , pV ) (1− pŨ , pṼ ) SPE Naive 1 Naive 2
(%) (%) bias sd mse cr bias sd mse cr bias sd mse cr

0.1 0.05 (20,0.002) (20,0.001)

τd(0, 0, 3) -0.027 0.124 0.016 0.930 -0.069 0.136 0.023 0.908 -0.063 0.132 0.021 0.928
τd(0, 1, 3) -0.055 0.115 0.016 0.923 0.125 0.122 0.031 0.818 0.133 0.119 0.032 0.803
τs(1, 0, 3) 0.125 0.204 0.057 0.880 0.248 0.102 0.072 0.312 0.298 0.107 0.100 0.200
τs(1, 1, 3) 0.104 0.303 0.103 0.933 0.600 0.116 0.373 0.001 0.646 0.119 0.432 0.002

0.1 0.1 (20,0.002) (20,0.002)

τd(0, 0, 3) -0.027 0.129 0.017 0.934 -0.062 0.134 0.022 0.925 -0.059 0.132 0.021 0.920
τd(0, 1, 3) -0.053 0.116 0.016 0.927 0.124 0.123 0.031 0.825 0.131 0.122 0.032 0.809
τs(1, 0, 3) 0.098 0.221 0.058 0.904 0.247 0.099 0.071 0.289 0.251 0.101 0.073 0.303
τs(1, 1, 3) 0.104 0.306 0.104 0.942 0.600 0.108 0.372 0.000 0.602 0.111 0.374 0.001

0.1 0.05 (40,0.002) (40,0.001)

τd(0, 0, 3) 0.049 0.231 0.056 0.941 -0.018 0.180 0.033 0.958 -0.003 0.178 0.032 0.945
τd(0, 1, 3) -0.007 0.208 0.043 0.959 0.295 0.177 0.119 0.634 0.306 0.186 0.128 0.617
τs(1, 0, 3) 0.183 0.342 0.150 0.910 0.415 0.136 0.191 0.157 0.466 0.135 0.235 0.066
τs(1, 1, 3) 0.320 0.540 0.394 0.909 1.278 0.156 1.656 0.000 1.342 0.159 1.826 0.000

0.1 0.1 (40,0.002) (40,0.002)

τd(0, 0, 3) 0.026 0.232 0.054 0.939 -0.013 0.184 0.034 0.947 -0.019 0.175 0.031 0.945
τd(0, 1, 3) -0.012 0.211 0.045 0.954 0.293 0.186 0.120 0.634 0.290 0.184 0.118 0.663
τs(1, 0, 3) 0.159 0.348 0.146 0.927 0.424 0.134 0.198 0.121 0.412 0.135 0.188 0.132
τs(1, 1, 3) 0.282 0.524 0.354 0.926 1.293 0.159 1.698 0.000 1.281 0.156 1.666 0.000

(b) rdeg = 8

δV δṼ (1− pU , pV ) (1− pŨ , pṼ ) SPE Naive 1 Naive 2
(%) (%) bias sd mse cr bias sd mse cr bias sd mse cr

0.1 0.05 (20, 0.002) (20, 0.001)

τd(0, 0, 3) -0.052 0.202 0.044 0.956 -0.141 0.239 0.077 0.911 -0.129 0.244 0.076 0.922
τd(0, 1, 3) -0.097 0.201 0.050 0.943 0.074 0.205 0.047 0.934 0.090 0.216 0.055 0.926
τs(1, 0, 3) -0.040 0.419 0.177 0.955 0.641 0.178 0.443 0.058 0.697 0.178 0.517 0.035
τs(1, 1, 3) -0.027 0.669 0.448 0.949 1.355 0.206 1.878 0.000 1.417 0.202 2.048 0.000

0.1 0.1 (20, 0.002) (20, 0.002)

τd(0, 0, 3) -0.061 0.180 0.036 0.959 -0.147 0.225 0.072 0.910 -0.153 0.237 0.080 0.899
τd(0, 1, 3) -0.105 0.186 0.046 0.934 0.066 0.194 0.042 0.936 0.069 0.206 0.047 0.934
τs(1, 0, 3) -0.049 0.379 0.146 0.955 0.642 0.172 0.442 0.041 0.644 0.168 0.443 0.039
τs(1, 1, 3) -0.026 0.644 0.415 0.949 1.358 0.196 1.883 0.000 1.363 0.194 1.896 0.000

0.1 0.05 (40, 0.002) (40, 0.001)

τd(0, 0, 3) 0.264 0.338 0.184 0.903 -0.077 0.347 0.126 0.941 -0.068 0.335 0.117 0.943
τd(0, 1, 3) 0.169 0.318 0.130 0.917 0.305 0.320 0.195 0.843 0.311 0.316 0.196 0.825
τs(1, 0, 3) 0.728 0.646 0.947 0.817 1.178 0.243 1.447 0.001 1.227 0.251 1.568 0.002
τs(1, 1, 3) 1.359 1.150 3.168 0.802 2.988 0.291 9.011 0.000 3.047 0.292 9.368 0.000

0.1 0.1 (40, 0.002) (40, 0.002)

τd(0, 0, 3) 0.254 0.349 0.187 0.909 -0.094 0.351 0.132 0.943 -0.108 0.360 0.141 0.932
τd(0, 1, 3) 0.165 0.330 0.136 0.916 0.286 0.322 0.185 0.852 0.284 0.325 0.187 0.868
τs(1, 0, 3) 0.737 0.636 0.948 0.831 1.176 0.246 1.443 0.004 1.184 0.250 1.465 0.002
τs(1, 1, 3) 1.446 1.134 3.377 0.787 2.987 0.292 9.009 0.000 2.992 0.295 9.038 0.000
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4.7. Empirical Application: Diffusion of Insurance

Information among Rice Farmers

This section applies the proposed SPE method to data on social network of rice farmers

from 185 villages in rural China. The data was collected by Cai, De Janvry, and Sadoulet

(2015b) to investigate the take-up decisions of a weather insurance, which typically has

low rates of adoption even when the government provides heavy subsidies. The primary

interest of Cai et al. (2015b) is to study whether and how the diffusion of weather

insurance knowledge through social networks affects the insurance take-up rate.9 Thus,

two rounds of sessions are offered with a three-days gap to allow information sharing

by the first round participants. In each round, there are two types of sessions held

simultaneously: the 20-minute simple session where only the contract is discussed, and

the 45-minute intensive session where the details of how the insurance operates and

the expected benefits are explained. About 5000 rice-producing households from 185

villages are randomly assigned to one of the two information sessions aiming at generating

household-level variation in insurance knowledge. The authors are particularly interested

in the spillover effects: whether the second round participants’ take-up decisions are

affected by their friends who are invited to the first round intensive session. Hence, the

baseline model for the treatment and spillover effects is:

Takeupig =θ0 + θ1Intensiveig + θ2Networkig + θ3Covig + θ4NetSizeig + ηg + εig,

(4.15)

where Takeupig is a binary indicator of whether household i in village g decides to buy

the insurance, Intensiveig is a dummy variable taking value one if the household is

invited to an intensive session, Networkig is the fraction of household i’s friends who

have been invited to the first round intensive session, NetSizeig is a set of dummies

indicating network degree, Covig includes household characteristics and ηg represents

village fixed effect. If household i nominates zero friends, then Networkig is set to be

zero. Household characteristics in Covig include gender, age and education of household

head, rice production area, risk aversion and perceived probability of future disasters.

9Data is available at Cai, De Janvry, and Sadoulet (2015a) https://doi.org/10.3886/E113593V1.
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Dummies in NetSizeig are indicators of the number of nominated friends, where the

dummy of zero nominated friends is dropped to avoid collinearity. Instead of the baseline

model (4.15), we also consider an alternative model specification where the interaction

term Intensiveig∗Networkig is included. In the same spirit of Cai et al. (2015b), because

Intensiveig is whether household is invited to an intensive session, the treatment and

spillover effects are studied from an intention-to-treat perspective. Nevertheless, almost

90% of households who are invited to one of the sessions actually attend. Therefore, the

dropout is not a main concern.

Data from the social network survey is used to construct the household-level network

measures. The social network survey requires the sampled household heads to nominate

five friends with whom they discuss rice production or financial issues, while not all

the respondents list up to five friends. No geographical restriction is imposed, which

means the nominated friends can either live in the same village with the respondent

or outside the village. This network measure is nonreciprocal and is referred to as the

“general measure” in Cai et al. (2015b). The general measure may contain two types of

measurement error: those with less than five friends are likely to report false friends (false

positive) and those with more than five friends may censor the number of network links

(false negative). Another household-level network measure used in Cai et al. (2015b),

referred to as the “strong measure”, is defined as the bilaterally linked friends (reciprocal)

using the same information from the social network survey. The social network survey is

conducted before the experiment, therefore the network formation should not be affected

by the treatment assignments or the take-up decisions.

The analysis in this section utilises both these two measures, and assumes that the

strong measure includes only false negative links. It is worth noting that although the

two network measures are probably correlated even conditional on the true network in-

formation, according to the simulation results in Section 4.6.2, the SPE can be viewed

as a bias-reduction method in the presence of network measurement error. Estimation

is implemented as described in Section 4.5.10 In this application, the dependence neigh-

10To mitigate estimation error arising from small sample size, the first step estimation uses samples
from both the first and the second rounds and their network data based on the social network survey,
with sample size 4588.
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bourhoods can be set as villages, meaning that the DNs of a respondent i are those from

the same village with i.

Two further remarks are worth noticing. First, as verified by Cai et al. (2015b), the

second round participants should not be affected by the take-up decisions made by the

first round participants if this information is not revealed to them (see Table 6 column

7 and Table 7 column 6 of Cai et al., 2015b). According to the survey, only 9% of the

households who are not informed of any first round take-up information know at least

one of their friends’ decision. Thus, the endogenous peer effects (i.e. the spillovers of

friends’ take-up decisions) should not be a major concern in this application. Secondly,

the first round simple session also exhibits no significant spillover effects on the second

round participants (see Table 2 column 3 of Cai et al., 2015b).

Table 4.7.1: Effect of Social Networks on Insurance Take-up

Naive SPE Naive SPE
General Strong General Strong

(1) (2) (3) (4) (5) (6)
Intensive 0.0298 0.0228 0.0265 0.0809∗∗ 0.0409 0.0556

(0.0332) (0.0334) (0.0462) (0.0397) (0.0341) (0.0735)

Network 0.291∗∗∗ 0.113∗ 0.196 0.444∗∗∗ 0.231∗∗∗ 0.244
(0.0820) (0.0606) (0.2492) (0.1089) (0.0859) (0.2472)

Intensive*Network −0.329∗∗ −0.221∗∗ -0.106
(0.161) (0.111) (0.189)

ηg Yes Yes Yes Yes Yes Yes
Covig Yes Yes Yes Yes Yes Yes

Note: Samples are from the second round sessions “Simple2-NoInfo” and “Intensive2-NoInfo” as defined
and used by Cai et al. (2015b). Number of observations is 1255. Standard error (se) is reported in the
parenthesis. For the naive method, column “General” shows the result using the general measure of the
network and column “Strong” displays the result using the strong measure of the network. The SPE
method is implemented by assuming the network classification error is correlated to literacy. The se of
the naive method is computed using clustered se with villages as clusters. The se of the SPE method is
calculated based on Corollary 2 with villages as dependency neighbourhoods.

Estimation results are summarised in Table 4.7.1. The baseline model (columns (1) to

(3)) and the alternative model with an interaction term of the treatment and network

exposure (columns (4) to (6)) are estimated using the household-level samples from the

second round sessions, where no overall attendance/take-up rate or individual insurance

purchase resulting from the first round sessions in their village are revealed to the partic-

ipants. The results for the naive method using the general measure of the network data
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in columns (1) and (4) in Table 4.7.1 are the same to those in Table 2 columns (2) and

(4) of Cai et al. (2015b), based on which they draw two conclusions. First, the spillover

effect on insurance take-up is significantly positive. For example, column (1) (or column

(2)) in Table 4.7.1 reveals that a 20% increase in the ratio of friends attending the first

round intensive session will lead to a 29.1% × 20%=5.82% (or 11.3% × 20%=2.26%)

increase in farmer’s own take-up probability. Second, people are less likely to be affected

by their friends if they attend the intensive session themselves. Column (4) (or column

(5)) in Table 4.7.1 reveals that for farmers who have been directly educated about the in-

surance details, if the ratio of friends attending the first round intensive session increases

by 20%, their own take-up probability will increase by (44.4%-32.9%) × 20%=2.3% (or

(23.1%-22.1%) × 20%=0.2%); while this probability increases by 44.4% × 20%=8.88%

(or 23.1% × 20%=4.62%) for farmers who have not attended the intensive session.

If the general measure and the strong measure possess network misclassification, then

the estimates of the naive approach are biased. The SPE method can then be used

to provide some guidance of the degree and direction of the potential bias. The SPE

estimates in Table 4.7.1 are obtained by assuming that the measurement errors of the

two network measures (both general and strong) are dependent on the household-head’s

literacy. By comparing the results in columns (1) and (2) to those in column (3), we

can see that the SPE estimate of the spillover effect induced by a 20% increase in the

ratio of treated friends is 19.6% × 20%=3.92%. Thus, the naive method using the

general measure may overestimate the spillover effect, while the naive method using the

strong measure is likely to underestimate the spillover effect. In addition, based on the

SPE results in column (6), people who attend the intensive session themselves have a

(24.4%-10.6%) × 20%=2.76% increase in their take-up probability when extra 20% of

their friends are exposed to the intensive insurance-information education. While this

change increases to 24.4% × 20%=4.88% for people who do not attend the intensive

session. Hence, the comparison between columns (5) and (6) indicates that the results

for the naive method using the general measure underestimate the spillover effect for

the treated individuals, and overestimate the spillover effect for the untreated ones. In

addition, the naive method using the strong measure dramatically underestimates the

spillover effect for the treated individuals, but only slightly underestimates the spillover
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effect for the controlled individuals.

4.8. Conclusion

Motivated by applications of program evaluation under network interference, this chapter

studies the identification and estimation of treatment and spillover effects when the

network is mismeasured. The novel identification strategy proposed in this chapter

utilises two network proxies, where one of them is used as an instrumental variable for the

latent network and the other is assumed to contain only one type of measurement error. A

semiparametric estimation approach is proposed to estimate the causal effects of interest.

Simulation results confirm that the proposed estimation approach (i) outperforms the

naive estimators that neglect the network misclassification, and (ii) is preferred to the

naive approaches, even if its key assumption is mildly violated, at least in terms of bias,

mse and coverage rate. Therefore, the proposed estimation approach constitutes an

effective method to reduce the bias caused by network measurement errors, and provides

reliable causal inferences.

The proposed semiparametric estimation approach exploits a parametric structural as-

sumption of the outcome variable to avoid the curse of dimensionality, which opens new

questions on the trade-off between the potential model misspecification and the network

mismeasurement-robust estimation. It is also meaningful and feasible to investigate the

estimation in a more flexible semiparametric setup, including partially linear models,

index models and random-coefficient models.

This chapter is particularly suitable for studies where the treatment is randomly assigned

with perfect compliance. While, for some empirical studies, it is reasonable to allow

for non-compliance (Vazquez-Bare, 2020). Future research will explore the impacts of

relaxing the perfect compliance assumption, and develop methods for the identification

and estimation of spillover effects that can accommodate the non-compliance.

Finally, this chapter assumes that the exposure to the treated peers that affects the

outcome is correctly specified, meaning that the spillover effect is local through the first-

order network neighbours. The literature on network effects often stresses the existence
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of higher-order interference, i.e. the interference with friends of friends. The inclu-

sion of higher-order interference complicates the analysis in this chapter by introducing

higher-order spillovers of the treatment and of the measurement errors. It also further

complicates the dependence structure among the observable and latent network-based

variables. Given these complications, it is a nontrivial exercise to extend the analysis in

this chapter to deal with higher-order interference. However, for studies where the treat-

ment response is primarily governed by the first-order spillover, it is possible to apply the

analysis of this chapter via assuming the higher-order spillover effects can be relegated

to the unobservable error terms. The rationale is that, based on the studies of Leung

(2019a) and Sävje (2019), the exposure misspecification that results from ignoring the

higher-order interference does not alter the estimation results, if the specification errors

are well counterbalanced by the deceasing data correlation as the order of the interference

increases. Rigorous exploration along this direction is left for future research.
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4.9. Appendix

We first introduce notations used in the Appendix. IK is the K × K identity matrix.

λmax(A) and λmin(A) denote the largest and the smallest eigenvalues of a square matrix

A, respectively. We use C to represent some positive constant and its value may be

different at different uses. s.o. denotes the terms of smaller order.

4.9.1. Examples

This section provides sufficient conditions or examples for the assumptions in the main

text.

Example 1 (Assumption 4.3.3 (a)) Suppose the network links follow the dyadic for-

mation below:

A∗ij = 1[ω(Zi, Zj) > ηij] · 1[i 6= j], with i, j ∈ P

where ω : Ω2
Z 7→ R and the unobserved link specific error term ηij is independent to

{Zi}i∈P and is i.i.d. across (i, j). Then, A∗ij given Zi is a function of (Zj, ηij), which

is i.i.d. across j and F∗i =
∑

j∈P A
∗
ij is identically distributed following the binomial

distribution. Such a network formation is considered in for example Johnsson and Moon

(2015).

Example 2 (Assumption 4.3.4 (c)) For any given latent A∗ij, consider the following

data generating process of the observable Aij

Aij = UijA
∗
ij + Vij(1− A∗ij), with i, j ∈ P (4.9.16)

where Ni = {j ∈ P : Aij = 1} and the classification errors (Uij, Vij) are random

indicators taking values from {0,1}. From (4.9.16), we can obtain that

Fi =
∑
j∈P

Aij =
∑
j∈P

(Uij − Vij)A∗ij +
∑
j∈P

Vij =
∑
j∈N ∗i

(Uij − Vij) +
∑
j∈P

Vij.

Let two vectors Ui = {Uij}j∈P and Vi = {Vij}j∈P . If the random vector (Ui,Vi) is

conditionally independent to N ∗i and identically distributed across i ∈ P given (Zi,F∗i ),
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then the identical distribution of Fi given (Zi,F∗i ) holds.

Example 3 (Assumption 4.4.1) For each i ∈ P and any given latent A∗ij, suppose

the observable links are generated as

Aij = ωj
[
UijA

∗
ij + Vij(1− A∗ij)

]
,

Ãij = ω̃j
[
ŨijA

∗
ij + Ṽij(1− A∗ij)

]
,

with j ∈ P (4.9.17)

with Uij, Vij, Ũij, Ṽij, ωj and ω̃j are all binary random variables taking values from {0,1}.

ωj and ω̃j can be understood as indicators of sampling-induced errors, e.g. ωj = 0 means

unit j is not sampled when constructing Ni, while only links among pairs of sampled

units are accounted for. (Uij, Vij) and (Ũij, Ṽij) can be understood as indicators of non-

sampling-induced errors, e.g. Ũij = 0 represents unit i’s misreporting of her link with

unit j when constructing Ñi. Then, the observed sets of links are Ni = {j ∈ P : Aij = 1}

and Ñi = {j ∈ P : Ãij = 1}. Therefore,

Fi =
∑
j∈P

Aij =
∑
j∈P

(Uij − Vij)ωjA∗ij +
∑
j∈P

ωjVij =
∑
j∈N ∗i

(Uij − Vij)ωj +
∑
j∈P

Vijωj,

F̃i =
∑
j∈P

Ãij =
∑
j∈P

(Ũij − Ṽij)ω̃jA∗ij +
∑
j∈P

ω̃jṼij =
∑
j∈N ∗i

(Ũij − Ṽij)ω̃j +
∑
j∈P

Ṽijω̃j.

(4.9.18)

Then, one set of sufficient conditions for Assumption 4.4.1 is provided by the lemma

below.

Lemma 4.9.1 Let Assumption 4.3.4 (a) holds for both Ni and Ñi. Suppose the random

vector (Uij, Vij, Ũij, Ṽij, ωj, ω̃j) given (Zi,F∗i ) is i.i.d. across j for all i ∈ P. If

(a) {Uij, Vij, ωj}j∈P ⊥ {Ũik, Ṽik, ω̃k}k∈P
∣∣Zi,N ∗i ;

(b) {Uij, Vij, Ũij, Ṽij, ωj, ω̃j}j∈P ⊥ N ∗i
∣∣Zi,F∗i ;

then Assumption 4.4.1 is satisfied by Fi and F̃i given in (4.9.18).

Proof of Lemma 4.9.1. (i) From condition (a) that {Uij, Vij, ωj}j∈P ⊥ {Ũik, Ṽik, ω̃k}k∈P
∣∣Zi,N ∗i ,

we have Ni ⊥ Ñi
∣∣Zi,N ∗i , which implies Fi ⊥ F̃i

∣∣Zi,N ∗i . If we can further show that
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Fi ⊥ N ∗i
∣∣Zi,F∗i and F̃i ⊥ N ∗i

∣∣Zi,F∗i hold, then the desired result follows, because

fFi|F∗i ,F̃i,Zi(n) =
∑
J∈ΩN∗

fFi|F∗i ,F̃i,N ∗i =J ,Zi(n)× fN ∗i |F∗i ,F̃i,Zi(J )

=
∑
J∈ΩN∗

fFi|F∗i ,N ∗i =J ,Zi(n)× fN ∗i |F∗i ,Zi(J )

=fFi|F∗i ,Zi(n),

which indicates Fi ⊥ F̃i
∣∣Zi,F∗i .

Given the expressions in (4.9.18), based on the i.i.d. of (Uij, Vij, ωj) across j, applying

the same arguments used to prove Lemma 4.4.1 (a), we can show that given (Zi,F∗i ), the

distribution of
∑

j∈N ∗i
(Uij − Vij)ωj does not depend on N ∗i , i.e.

∑
j∈N ∗i

(Uij − Vij)ωj ⊥

N ∗i
∣∣Zi,F∗i . In addition, from condition (b) we can obtain the independence of

∑
j∈P Vijωj

to N ∗i given Zi,F∗i . Thus, it follows from the above results and (4.9.18) that Fi ⊥

N ∗i
∣∣Zi,F∗i . Similarly, F̃i ⊥ N ∗i

∣∣Zi,F∗i also holds.

4.9.2. Lemmas

This section introduces some useful lemmas which are used in the proofs of Appendix

Section 4.9.3.

Lemma 4.9.2 Denote H as a set of measurable functions such that |h| ≤ 1 for ∀h ∈ H,

and denote sign(x) = 1[x ≥ 0] − 1[x < 0] for any real value x. For any random

variables X and Z, a solution to maxh∈H |E[Xh(Z)]| is h(Z) = sign(E[X|Z]), and

maxh∈H |E[Xh(Z)]| = E[Xsign(X|Z)].

Proof of Lemma 4.9.2. By the law of iterated expectation

|E[Xh(Z)]| =
∣∣∣∣∫ E[X|Z]h(Z)dPr(Z)

∣∣∣∣ ≤ ∫ |E[X|Z]h(Z)| dPr(Z) ≤
∫
|E[X|Z]| dPr(Z).

Then, by |E[X|Z]| = E[X|Z]sign(E[X|Z]), it is clear that h(Z) = sign(E[X|Z]).

Lemma 4.9.3 (Uniform Law of Large Number under Dependency Neighbourhood)

For any function b : ΩW ×Θ 7→ Rp, if the following conditions hold
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(i) Θ is compact;

(ii) b(w; θ) is continuous in θ over Θ;

(iii) there exists a function h(w) with ‖b(w; θ)‖ ≤ h(w) for all θ ∈ Θ and E[h(Wi)] <∞;

(iv) for some constant η > 0, define

u(w; θ, η) = sup
θ′∈Θ, ‖θ′−θ‖<η

‖b(w; θ′)− b(w; θ)‖,

Σb
N(θ) =

N∑
i=1

∑
j∈∆(i,N)

Cov(b(Wi; θ), b(Wj; θ)),

Σu
N(θ, η) =

N∑
i=1

∑
j∈∆(i,N)

Cov(u(Wi; θ, η), u(Wj; θ, η)).

(a) for all θ ∈ Θ and any fixed η,∥∥∥∥∥∥
N∑
i=1

∑
j 6∈∆(i,N)

Cov(b(Wi; θ), b(Wj; θ))

∥∥∥∥∥∥ = o
(
‖Σb

N(θ)‖
)
,

N∑
i=1

∑
j 6∈∆(i,N)

Cov(u(Wi; θ, η), u(Wj; θ, η)) = o
(

Σu
N(θ, η)

)
.

(b) 1/N
∑N

i=1 |∆(i, N)| = O(1); (c) supθ∈Θ E[‖b(Wi; θ)‖2+δ] < C for some con-

stants δ > 0 and C > 0, and all i;

then E[b(Wi; θ)] is continuous in θ and supθ∈Θ

∥∥∥ 1
N

∑N
i=1 {b(Wi; θ)− E[b(Wi; θ)]}

∥∥∥ p→ 0.

Proof of Lemma 4.9.3. This proof is based on the proof of Lemma 1 in Tauchen (1985).

Let br(Wi; θ) be the r-th element in vector b(Wi; θ), r = 1, 2, ..., p. Define a matrix Λij(θ)

such that its rq-th entry is corr(br(Wi; θ), bq(Wj; θ)), r, q = 1, 2, ..., p. Denote a diagonal

matrix Vi(θ) = diag(Var[b1(Wi; θ)], ...,Var[bp(Wi; θ)]).

By condition (iv) (c), for all i and given η, there exist constants C1, C2 > 0 such that
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supθ∈Θ Var[br(Wi; θ)] < C1 for all r = 1, ..., p, and supθ∈Θ Var[u(Wi; θ, η)] < C2. Then,

∥∥Σb
N(θ)

∥∥ ≤ N∑
i=1

∑
j∈∆(i,N)

‖Cov(b(Wi; θ), b(Wj; θ))‖

≤
N∑
i=1

∑
j∈∆(i,N)

∥∥Vi(θ)1/2Λij(θ)Vj(θ)
1/2
∥∥

≤C1p
N∑
i=1

|∆(i, N)| = O(N),

where the last line follows from 1/N
∑N

i=1 |∆(i, N)| = O(1) in condition (iv) (b). Simi-

larly, Σu
N(θ, η) = O(N). Applying Chebyshev’s inequality, we have that for any ε > 0

Pr

(∥∥∥∥∥ 1

N

N∑
i=1

{b(Wi; θ)− E[b(Wi; θ)]}

∥∥∥∥∥ > ε

)

≤ 1

ε2N2
E

∥∥∥∥∥
N∑
i=1

{b(Wi; θ)− E[b(Wi; θ)]}

∥∥∥∥∥
2


=
1

ε2N2
tr

 N∑
i=1

∑
j∈∆(i,N)

Cov (b(Wi; θ), b(Wj; θ)) +
N∑
i=1

∑
j 6∈∆(i,N)

Cov (b(Wi; θ), b(Wj; θ))


=

p

ε2N2

(∥∥Σb
N(θ)

∥∥+ s.o.
)

=O

(
1

ε2N

)
,

where the second equality comes from that tr(A) ≤ p‖A‖∞ ≤ p‖A‖ for any p× p square

matrix A, and the third equality is due to condition (iv) (a). By choosing ε such that

ε→ 0 and ε2N →∞ as N →∞, we can get∥∥∥∥∥ 1

N

N∑
i=1

{b(Wi; θ)− E[b(Wi; θ)]}

∥∥∥∥∥ = op(1).

Similar arguments can be used to show that 1
N

∑N
i=1 {u(Wi; θ, η)− E[u(Wi; θ, η)]} =

op(1). By condition (ii) the continuity of b(w; θ) in θ, we have that with fixed θ, limu(w; θ, η) =

0 as η → 0. Thus, by dominated convergence theorem, for any ε > 0, there exists a η̄(θ)
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such that

E[u(Wi; θ, η)] ≤ ε, whenever η ≤ η̄(θ). (4.9.19)

Let B(θ) be an open ball of radius η̄(θ) about θ. Due to the compactness of Θ, there exist

a finite sequence of open balls Bk := B(θk) with k = 1, 2, ..., K such that Θ ⊂
⋃K
k=1Bk.

Let ηk = η̄(θk) and uk = E[u(Wi; θk, ηk]. By (4.9.19) and dominated convergence theo-

rem, if θ ∈ Bk then uk ≤ ε and ‖E[b(Wi; θ)]− E[b(Wi; θ
′)]‖ ≤ ε. Next, for ∀θ ∈ Θ, there

exists a k such that θ ∈ Bk, then∥∥∥∥∥ 1

N

N∑
i=1

b(Wi; θ)− E[b(Wi; θ)]

∥∥∥∥∥
≤ 1

N

N∑
i=1

‖b(Wi; θ)− b(Wi; θk)‖+

∥∥∥∥∥ 1

N

N∑
i=1

b(Wi; θk)− E[b(Wi; θk)]

∥∥∥∥∥
+ ‖E [b(Wi; θk)]− E[b(Wi; θ)]‖

≤ 1

N

N∑
i=1

u(Wi; θk, ηk)− uk + uk +

∥∥∥∥∥ 1

N

N∑
i=1

b(Wi; θk)− E[b(Wi; θk)]

∥∥∥∥∥+ ε

≤4ε (4.9.20)

whenever N ≥ N̄k(ε), by uk ≤ ε. Thus, whenever N ≥ maxk N̄k(ε), we have that

sup
θ∈Θ

∥∥∥∥∥ 1

N

N∑
i=1

{b(Wi; θ)− E[b(Wi; θ)]}

∥∥∥∥∥ ≤ 4ε.

Lemma 4.9.4 (Theorem 3 of Bradley et al. (1983)) Suppose X and Y are ran-

dom variables taking their values on a Borel space Γ and R, respectively. Suppose U

is a uniform [0, 1] random variable independent of (X, Y ). Suppose µ and γ are posi-

tive numbers such that µ ≤ ‖Y ‖γ < ∞. Let ‖Y ‖γ = (E[|Y |γ])1/γ. Then there exists

a real-valued random variable Y ∗ = g(X, Y, U) where g is a measurable function from

Γ× R× [0, 1] into R, such that

(i) Y ∗ is independent of X;



204 CHAPTER 4. SPILLOVERS WITH MISMEASURED NETWORKS

(ii) the probability distributions of Y ∗ and Y are identical;

(iii) Pr(|Y ∗ − Y | ≥ µ) ≤ 18(‖Y ‖γ/µ)γ/(2γ+1)[α(B(X),B(Y ))]2γ/(2γ+1),

where for any two σ-fields B1,B2, α(B1,B2) = sup |Pr(B1

⋂
B2)− Pr(B1)Pr(B2)|.

The following lemmas are pioneered by Stein (1986) and utilised in for example Chen

et al. (2010), Ross (2011) and Goldstein and Rinott (1996) among others, to derive

central limit theorems for dependency graphs. We re-state them here such that the

proofs are self-contained.

Lemma 4.9.5 (Meckes et al. (2009) Lemma 1) Let Z ∈ Rp be a standard normal

random vector with mean zero and covariance matrix Id.

(i) If a function f : Rp 7→ R is twice continuously differentiable with compact support,

then

E
[
tr

(
d2f(Z)

dzdz′

)
− Z ′df(Z)

dz

]
= 0.

(ii) If a random vector X ∈ Rp is such that

E
[
tr

(
d2f(X)

dxdx′

)
−X ′df(X)

dx

]
= 0

for every f ∈ C2(Rp) that is twice continuously differentiable with finite absolute

mean value E [|tr (d2f(X)/dxdx′)−X ′df(X)/dx|] <∞, then X is a standard nor-

mal random vector.

Lemma 4.9.6 (Goldstein and Rinott (1996) Lemma 3.1) Let Z ∈ Rp be a stan-

dard norm random vector and let h : Rp 7→ R have three bounded derivatives. Define

(Tuh)(x) = E[h(xe−u+
√

1− e−2uZ)] for x ∈ Rp. Then f(x) = −
∫∞

0
[Tuh(x)−E[h(Z)]]du

solves

tr

(
d2f(x)

dxdx′

)
− x′df(x)

dx
= h(x)− E[h(Z)].
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In addition, for any k-th partial derivative we have that∣∣∣∣∣ ∂kf(x)∏k
j=1 ∂xj

∣∣∣∣∣ ≤ 1

k
sup
x∈ΩX

∥∥∥∥d2h(x)

dxdx′

∥∥∥∥
∞
.

Further, for any λ ∈ Rp and positive definite p × p matrix Σ, then f ∗, denoted by the

change of variable f ∗(x) := f(Σ−1/2(x− λ)) solves

tr
(
Σ∇2f ∗(x)

)
− (x− λ)′∇f ∗(x) = h(Σ−1/2(x− λ))− E[h(Z)],

and ∣∣∣∣∣ ∂kf ∗(x)∏k
j=1 ∂xj

∣∣∣∣∣ ≤ pk

k
‖Σ−1/2‖k∞‖∇kh‖∞.

The lemma below is based on Theorem 1.4 of Goldstein and Rinott (1996) which aims

at providing a bound on the distance to normality for any sum of dependent random

vectors whose dependence structure is formed via dependency neighbourhoods.

Lemma 4.9.7 (Multivariate CLT under Dependency Neighbourhood) Let {Wi}Ni=1

be random vectors in Rp with E[Wi] = 0 and Z ∈ Rp be a standard normal random vector.

Denote

SN =
N∑
i=1

Wi and ΣN =
N∑
i=1

∑
j∈∆(i,N)

E[WiW
′
j ].

In addition, denote Sci =
∑

j 6∈∆(i,N)Wj. Assume ΣN is symmetric positive definite. If

the following conditions hold,

(i) there exists a finite, strictly positive-definite and symmetric p × p matrix Ω such

that ‖ 1
N

ΣN − Ω‖ → 0 as N →∞;

(ii) (a)

∥∥∥∥∥ N∑
i=1

∑
j,k∈∆(i,N)

E
[∣∣vec(WiW

′
j)W

′
k

∣∣]∥∥∥∥∥
∞

= o
(∥∥∥Σ

3/2
N

∥∥∥
∞

)
;

(b)

∥∥∥∥∥ N∑
i,k=1

∑
j∈∆(i,N)

∑
l∈∆(k,N)

E
[ (
WiW

′
j − E[WiW

′
j ]
)′

(WkW
′
l − E[WkW

′
l ])
]∥∥∥∥∥
∞

= o (‖Σ2
N‖∞);

(c)

∥∥∥∥∥ N∑
i=1

∑
j 6∈∆(i,N)

Cov (Wi,Wj)

∥∥∥∥∥
∞

= o (‖ΣN‖∞);
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(d) E
[
WiS

c
i

∣∣Sci] ≥ 0 for all i ∈ P;

then Σ
−1/2
N SN

d→ N(0, Ip).

Proof of Lemma 4.9.7. Denote Sci,q as the q-th element of Sci . Let h : Rp 7→ R be a

function with bounded mixed partial derivatives up to order three. Denote ∇kh the k-th

derivative of h. Let ∇rf
∗(x) = ∂f ∗(x)/∂xr and ∇2

rqf
∗(x) = ∂2f ∗(x)/∂xr∂xq. It follows

directly from the proof of Theorem 1.4 in Goldstein and Rinott (1996) that

∣∣∣E [h(Σ
−1/2
N SN

)
− E[h(Z)]

]∣∣∣
≤p

2

2

∥∥∥Σ
−1/2
N

∥∥∥2

∞
‖∇2h‖∞

p∑
r,q=1

√√√√E

[(
N∑
i=1

∑
j∈∆(i,N)

(Wi,rWj,q − E[Wi,rWj,q])

)2]

+

∣∣∣∣∣
p∑
r=1

N∑
i=1

E [Wi,r∇rf
∗(Sci)]

∣∣∣∣∣
+
p3

6

∥∥∥Σ
−1/2
N

∥∥∥3

∞
‖∇3h‖∞

p∑
r,q,u=1

N∑
i=1

E

[∣∣∣∣∣Wi,r

∑
j∈∆(i,N)

Wj,q

∑
k∈∆(i,N)

Wk,u

∣∣∣∣∣
]
, (4.9.21)

where f ∗ is defined as in Lemma 4.9.6. Consider the second term on the right hand side

of (4.9.21)

∣∣∣∣∣
p∑
r=1

N∑
i=1

E [Wi,r∇rf
∗(Sci)]

∣∣∣∣∣
≤

∣∣∣∣∣
p∑
r=1

N∑
i=1

E {Wi,r [∇rf
∗(Sci)−∇rf

∗(0)]}

∣∣∣∣∣+

∣∣∣∣∣
p∑
r=1

∇rf
∗(0)

N∑
i=1

E [Wi,r]

∣∣∣∣∣
=

∣∣∣∣∣
p∑

r,q=1

N∑
i=1

E
[
Wi,rS

c
i,q∇2

rqf
∗(S̃ci)

]∣∣∣∣∣ , (4.9.22)

where S̃ci is between Sci and 0 and the last equality comes from the mean value theorem

and the fact that E[Wi,r] = 0. Without loss of generality, suppose there exists a function

f̃ such that S̃ci = f̃(Sci). Then, we can further bound (4.9.22) as below:

∣∣∣∣∣
p∑

r,q=1

N∑
i=1

E
[
Wi,rS

c
i,q∇2

rqf
∗(S̃ci)

]∣∣∣∣∣ =

∣∣∣∣∣
p∑

r,q=1

N∑
i=1

E
[
Wi,rS

c
i,q∇2

rqf
∗
(
f̃(Sci)

)]∣∣∣∣∣
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≤p
2

2
‖Σ−1/2

N ‖2
∞‖∇2h‖∞

p∑
r,q=1

N∑
i=1

E
{
Wi,rS

c
i,qsign

(
E
[
Wi,r

∣∣Sci]Sci,q)}, (4.9.23)

where the inequality is because of Lemma 4.9.2 and |∇2
rqf
∗ ◦ f̃ | ≤ p2

2
‖Σ−1/2

N ‖2
∞‖∇2h‖∞

by Lemma 4.9.6. Therefore, we have that

∣∣∣E [h(Σ
−1/2
N SN

)
− E[h(Z)]

]∣∣∣
≤p

2

2

∥∥∥Σ
−1/2
N

∥∥∥2

∞
‖∇2h‖∞

p∑
r,q=1

√√√√E

[(
N∑
i=1

∑
j∈∆(i,N)

(Wi,rWj,q − E[Wi,rWj,q])

)2]

+
p2

2

∥∥∥Σ
−1/2
N

∥∥∥2

∞
‖∇2h‖∞

p∑
r,q=1

N∑
i=1

E
{
Wi,rS

c
i,qsign

(
E
[
Wi,r

∣∣Sci]Sci,q)}
+
p3

6

∥∥∥Σ
−1/2
N

∥∥∥3

∞
‖∇3h‖∞

p∑
r,q,u=1

N∑
i=1

E

[∣∣∣∣∣Wi,r

∑
j∈∆(i,N)

Wj,q

∑
k∈∆(i,N)

Wk,u

∣∣∣∣∣
]
, (4.9.24)

for some constant p > 0. Let us start from the first term. By the Cauchy–Schwarz

inequality

p∑
r,q=1

√√√√E

[(
N∑
i=1

∑
j∈∆(i,N)

(Wi,rWj,q − E[Wi,rWj,q])

)2]

≤

(
p∑

r,q=1

E

[(
N∑
i=1

∑
j∈∆(i,N)

(Wi,rWj,q − E[Wi,rWj,q])

)2])1/2( p∑
r,q=1

1

)1/2

=pE

[∥∥∥∥∥
N∑
i=1

∑
j∈∆(i,N)

(Wi,rWj,q − E[Wi,rWj,q])

∥∥∥∥∥
2]1/2

,

where

E

[∥∥∥∥∥
N∑
i=1

∑
j∈∆(i,N)

(Wi,rWj,q − E[Wi,rWj,q])

∥∥∥∥∥
2]

=E

[
tr

(
N∑
i=1

∑
j∈∆(i,N)

(Wi,rWj,q − E[Wi,rWj,q])
′
N∑
i=1

∑
j∈∆(i,N)

(Wi,rWj,q − E[Wi,rWj,q])

)]

=tr

(
N∑

i,k=1

∑
j∈∆(i,N)

∑
l∈∆(k,N)

E
[

(Wi,rWj,q − E[Wi,rWj,q])
′ (Wk,rWl,q − E[Wk,rWl,q])

])
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≤p

∥∥∥∥∥
N∑

i,k=1

∑
j∈∆(i,N)

∑
l∈∆(k,N)

E
[

(Wi,rWj,q − E[Wi,rWj,q])
′ (Wk,rWl,q − E[Wk,rWl,q])

]∥∥∥∥∥
∞

.

(4.9.25)

Besides, since E
[
Wi,r

∣∣Sci]Sci ≥ 0 for all i = 1, ..., N and r = 1, ..., p, the second term

becomes to

p∑
r,q=1

N∑
i=1

E
[
Wi,rS

c
i,q

]
=

p∑
r,q=1

N∑
i=1

∑
j 6∈∆(i,N)

Cov (Wi,r,Wj,q)

≤p2

∥∥∥∥∥
N∑
i=1

∑
j 6∈∆(i,N)

Cov (Wi,Wj)

∥∥∥∥∥
∞

. (4.9.26)

For the last term, we can obtain

p∑
r,q,u=1

N∑
i=1

E

[∣∣∣∣∣Wi,r

∑
j∈∆(i,N)

Wj,q

∑
k∈∆(i,N)

Wk,u

∣∣∣∣∣
]
≤

p∑
r,q,u=1

N∑
i=1

∑
j,k∈∆(i,N)

E [|Wi,rWj,qWk,u|]

≤p3

∥∥∥∥∥∥
N∑
i=1

∑
j,k∈∆(i,N)

E
[∣∣vec(WiW

′
j)W

′
k

∣∣]∥∥∥∥∥∥
∞

.

(4.9.27)

Moreover, since ‖N−1ΣN − Ω‖ → 0, implying that there exist ε, ε such that

0 < ε ≤ 1

N
λmin(ΣN) ≤ 1

N
λmax(ΣN) < ε <∞.

In addition, by the property of norm and the symmetry of ΣN , we have that

∥∥∥Σ
−1/2
N

∥∥∥2

∞
≤
∥∥∥Σ
−1/2
N

∥∥∥2

= tr
(
Σ−1
N

)
=

p∑
r=1

λ−1
r (ΣN) ≤ pλ−1

min(ΣN) = O(N−1),

where λr(ΣN) means the r-th largest eigenvalue of matrix ΣN . Similarly,

‖ΣN‖2
∞ = O(N2),

∥∥∥Σ
3/2
N

∥∥∥2

∞
= O(N3),

∥∥Σ2
N

∥∥2

∞ = O(N4). (4.9.28)

Now, plugging (4.9.25), (4.9.26) and (4.9.27) into (4.9.24) gives us

∣∣∣E [h(Σ
−1/2
N SN

)
− E[h(Z)]

]∣∣∣
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≤C
∥∥∥Σ
−1/2
N

∥∥∥2

∞

∥∥∥∥∥
N∑

i,k=1

∑
j∈∆(i,N)

∑
l∈∆(k,N)

E
[ (
WiW

′
j − E[WiW

′
j ]
)′

(WkW
′
l − E[WkW

′
l ])
]∥∥∥∥∥

1/2

∞

+ C
∥∥∥Σ
−1/2
N

∥∥∥2

∞

∥∥∥∥∥∥
N∑
i=1

∑
j 6∈∆(i,N)

Cov (Wi,Wj)

∥∥∥∥∥∥
∞

+ C
∥∥∥Σ
−1/2
N

∥∥∥3

∞

∥∥∥∥∥
N∑
i=1

∑
j,k∈∆(i,N)

E
[∣∣vec(WiW

′
j)Wk

∣∣] ∥∥∥∥∥
∞

=
∥∥∥Σ
−1/2
N

∥∥∥2

∞
o
(∥∥Σ2

N

∥∥1/2

∞ + ‖ΣN‖∞
)

+
∥∥∥Σ
−1/2
N

∥∥∥3

∞
o
(∥∥∥Σ

3/2
N

∥∥∥
∞

)
=o(1),

implying that Σ
−1/2
N SN

d→ N(0, Ip).

In what follows, we first present several lemmas that will be used to show the asymptotic

properties of the jacobian and hessian matrix of the objective function.

Lemma 4.9.8 Under Assumptions 4.5.4, 4.5.5 and the i.i.d. of xi,j across i for any

given j = 1, 2, ..., KT , we have that

sup
θ∈Θ

1

N

N∑
i=1

∥∥∥∥d2m∗(xi,j; θ)

dθdθ′

∥∥∥∥2

= Op(1); sup
θ∈Θ

1

N

N∑
i=1

∥∥∥∥dm∗(xi,j; θ)dθ

∥∥∥∥2

= Op(1);

and for θ̃N
p→ θ0,

1

N

N∑
i=1

∣∣∣m∗(xi,j; θ̃N)−m∗(xi,j; θ0)
∣∣∣2 = op(1);

1

N

N∑
i=1

∥∥∥∥∥dm∗(xi,j; θ̃N)

dθ
− dm∗(xi,j; θ

0)

dθ

∥∥∥∥∥
2

= op(1);

1

N

N∑
i=1

∥∥∥∥∥d2m∗(xi,j; θ̃N)

dθdθ
− d2m∗(xi,j; θ

0)

dθdθ

∥∥∥∥∥
2

= op(1).

Proof of Lemma 4.9.8. By Assumption 4.5.5 and the uniform convergence of i.i.d.

samples (Lemma 2.4 of Newey and McFadden (1994))

sup
θ∈Θ

1

N

N∑
i=1

∥∥∥∥d2m∗(xi,j; θ)

dθdθ′

∥∥∥∥2
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≤ sup
θ∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

∥∥∥∥d2m∗(xi,j; θ)

dθdθ′

∥∥∥∥2

− E

[∥∥∥∥d2m∗(xi,j; θ)

dθdθ′

∥∥∥∥2
]∣∣∣∣∣+ sup

θ∈Θ

∣∣∣∣∣E
[∥∥∥∥d2m∗(xi,j; θ)

dθdθ′

∥∥∥∥2
]∣∣∣∣∣

=op(1) + sup
θ∈Θ

∣∣∣∣∣E
[∥∥∥∥d2m∗(xi,j; θ)

dθdθ′

∥∥∥∥2
]∣∣∣∣∣ . (4.9.29)

Because supθ∈Θ E
[∥∥∥d2m∗(xi,j ;θ)dθdθ′

∥∥∥2
]
≤ E[H1(xi,j)] < ∞ by Assumption 4.5.5, (4.9.29)

becomes to

sup
θ∈Θ

1

N

N∑
i=1

∥∥∥∥d2m∗(xi,j; θ)

dθdθ′

∥∥∥∥2

= Op(1). (4.9.30)

Similar arguments can be used to show that supθ∈Θ
1
N

∑N
i=1

∥∥∥dm∗(xi,j ;θ)dθ

∥∥∥2

= Op(1). Be-

sides, the mean value theorem gives

1

N

N∑
i=1

∣∣∣m∗(xi,j; θ̃N)−m∗(xi,j; θ0)
∣∣∣2 =

1

N

N∑
i=1

∣∣∣∣∂m∗(xi,j; θ̄N)

∂θ′
(θ̃N − θ0)

∣∣∣∣2
≤ sup

θ∈Θ

1

N

N∑
i=1

∥∥∥∥∂m∗(xi,j; θ)∂θ

∥∥∥∥2 ∥∥∥θ̃N − θ0
∥∥∥2

=op(1), (4.9.31)

for θ̄N between θ̃N and θ0. Similarly, we can also obtain that

1

N

N∑
i=1

∥∥∥∥∥∂m∗(xi,j; θ̃N)

∂θ
− ∂m∗(xi,j; θ

0)

∂θ

∥∥∥∥∥
2

≤ sup
θ∈Θ

1

N

N∑
i=1

∥∥∥∥∂m∗(xi,j; θ)∂θ′

∥∥∥∥2 ∥∥∥θ̃N − θ0
∥∥∥2

= op(1).

(4.9.32)

Moreover, since

d2m∗(xi,j; θ̃N)

dθrdθq
− d2m∗(xi,j; θ

0)

dθrdθq
=
∂

∂θ′

(
d2m∗(xi,j; θ̄N)

dθrdθq

)
(θ̃N − θ0),

by the uniformly bounded third derivative of m∗(x; θ),

1

N

N∑
i=1

∥∥∥∥∥d2m∗(xi,j; θ̃N)

dθdθ′
− d2m∗(xi,j; θ

0)

dθdθ′

∥∥∥∥∥
2
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≤ 1

N

dθ∑
r,q=1

N∑
i=1

∣∣∣∣∣d2m∗(xi,j; θ̃N)

dθrdθq
− d2m∗(xi,j; θ

0)

dθrdθq

∣∣∣∣∣
2

≤ 1

N

dθ∑
r,q=1

N∑
i=1

∥∥∥∥ ∂

∂θ′

(
d2m∗(xi,j; θ̄N)

dθrdθq

)∥∥∥∥2 ∥∥∥θ̃N − θ0
∥∥∥2

=Op

(∥∥∥θ̃N − θ0
∥∥∥2
)

= op(1). (4.9.33)

Lemmas 4.9.9 to 4.9.11 show the key steps for establishing the asymptotics for the jaco-

bian of the objective function. The proofs are based on Section 8 of Newey and McFadden

(1994) and extended to adopt data under dependency-neighbourhoods structure.

Lemma 4.9.9 (Linearisation) Under assumptions in Lemma 4.5.4 (b), there exists a

function G(·; γ) : ΩW 7→ Rdθ which is linear in γ and satisfies

∥∥∥∥∥ 1√
N

N∑
i=1

[
g(Wi; θ

0, φ̂N)− g(Wi; θ
0, φ0)−G(Wi; γ̂N − γ0)

]∥∥∥∥∥ = op(1).

Proof of Lemma 4.9.9. Recall that g(Wi; θ, φ) = τi[Yi−m(Xi; θ, φ)]∂m(Xi;θ,φ)
∂θ

. Then,

1√
N

N∑
i=1

g(Wi; θ
0, φ̂N)− 1√

N

N∑
i=1

g(Wi; θ
0, φ0)

=
1√
N

N∑
i=1

τi

[
[Yi −m(Xi; θ

0, φ̂N)]
∂m(Xi; θ

0, φ̂N)

∂θ
− [Yi −m(Xi; θ

0, φ0)]
∂m(Xi; θ

0, φ0)

∂θ

]
,

(4.9.34)

where making use of the identity âb̂− ab = (â− a)b+ a(b̂− b) + (â− a)(b̂− b) leads to

1√
N

N∑
i=1

g(Wi; θ
0, φ̂N)− 1√

N

N∑
i=1

g(Wi; θ
0, φ0)

=− 1√
N

N∑
i=1

τi

[
m(Xi; θ

0, φ̂N)−m(Xi; θ
0, φ0)

] ∂m(Xi; θ
0, φ0)

∂θ

+
1√
N

N∑
i=1

τi
[
Yi −m(Xi; θ

0, φ0)
] [∂m(Xi; θ

0, φ̂N)

∂θ
− ∂m(Xi; θ

0, φ0)

∂θ

]
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− 1√
N

N∑
i=1

τi

[
m(Xi; θ

0, φ̂N)−m(Xi; θ
0, φ0)

] [∂m(Xi; θ
0, φ̂N)

∂θ
− ∂m(Xi; θ

0, φ0)

∂θ

]

=− 1√
N

N∑
i=1

τi

KT∑
j=1

m∗(xi,j; θ
0)
[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

] ∂m(Xi; θ
0, φ0)

∂θ

+
1√
N

N∑
i=1

τi
[
Yi −m(Xi; θ

0, φ0)
] KT∑
j=1

∂m∗(xi,j; θ
0)

∂θ

[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]
− 1√

N

N∑
i=1

τi

KT∑
j=1

m∗(xi,j; θ
0)
[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

] KT∑
j=1

∂m∗(xi,j; θ
0)

∂θ

[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]
:=G1 + G2 + G3. (4.9.35)

Firstly, consider G3. By the Cauchy–Schwarz inequality, (4.9.116) and Lemma 4.9.8,

‖N−1/2G3‖

≤C
N

N∑
i=1

KT∑
j,l=1

∥∥∥∥m∗(xi,j; θ0)
[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

] ∂m∗(xi,l; θ0)

∂θ

[
f̂T ∗i |Xi(tl)− fT ∗i |Xi(tl)

]∥∥∥∥
≤

(
sup

‖γ̂N−γ0‖∞<η

∥∥∥φ̂N − φ0
∥∥∥
∞

)2
1

N

KT∑
j,l=1

N∑
i=1

∣∣m∗(xi,j; θ0)
∣∣ ∥∥∥∥∂m∗(xi,l; θ0)

∂θ

∥∥∥∥
≤

(
sup

‖γ̂N−γ0‖∞<η

∥∥∥φ̂N − φ0
∥∥∥
∞

)2 KT∑
j,l=1

[
1

N

N∑
i=1

m∗(xi,j; θ
0)2

]1/2 [
1

N

N∑
i=1

∥∥∥∥∂m∗(xi,l; θ0)

∂θ

∥∥∥∥2
]1/2

=Op

(
‖γ̂N − γ0‖2

∞
)
. (4.9.36)

Thus, given (4.9.36) we can get that ‖G3‖ = Op(N
1/2‖γ̂N−γ0‖2

∞) = op(1) by Assumption

4.5.6.

Next, let us consider G1 + G2. Recall that the 1 ×KT row vector R(Wi; θ, φ) is defined

as

R(Wi; θ, φ) =


[Yi −m(Xi; θ, φ)]m∗(xi,1; θ)

...

[Yi −m(Xi; θ, φ)]m∗(xi,KT ; θ)


′

.

Denote φ(t; γ̂N) = [f̂T ∗i |Xi(t1), ..., f̂T ∗i |Xi(tKT )]′ and φ(t; γ0) = [fT ∗i |Xi(t1), ..., fT ∗i |Xi(tKT )]′.
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Then, simple calculations yield that

G1 + G2 =
1√
N

N∑
i=1

τi

[
KT∑
j=1

([
Yi −m(Xi; θ

0, φ0)
] ∂m∗(xi,j; θ0)

∂θ

−m∗(xi,j; θ0)
∂m(Xi; θ

0, φ0)

∂θ

)[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

] ]

=
1√
N

N∑
i=1

τi

[
∂

∂θ
R(Wi; θ

0, φ0)
(
φ(t; γ̂N)− φ(t; γ0)

)]

=
1√
N

N∑
i=1

τi

[
∂

∂θ
R(Wi; θ

0, φ0)
∂φ(t; γ0)

∂γ′
(
γ̂N − γ0

)]
+ GR, (4.9.37)

where the reminder term

GR :=
1√
N

N∑
i=1

τi
∂

∂θ
R(Wi; θ

0, φ0)

[
φ(t; γ̂N)− φ(t; γ0)− ∂φ(t; γ0)

∂γ′
(
γ̂N − γ0

)]

=
1√
N

N∑
i=1

τi[∇R1 +∇R2]

[
φ(t; γ̂N)− φ(t; γ0)− ∂φ(t; γ0)

∂γ′
(
γ̂N − γ0

)]
,

with ∂
∂θ
R(Wi; θ

0, φ0) := ∇R1 +∇R2 and

∇R1 =
[
Yi −m(Xi; θ

0, φ0)
] [

∂m∗(xi,1;θ0)

∂θ
· · · ∂m∗(xi,KT ;θ0)

∂θ

]
,

∇R2 = −∂m(Xi; θ
0, φ0)

∂θ

[
m∗(xi,1; θ0) · · · m∗(xi,KT ; θ0)

]
.

Next, we show that GR = op(1). Due to Theorem 4.5.2, we can focus on a small neigh-

bourhood of γ0 and bound the reminder term as follows:

‖N−1/2GR‖ ≤ sup
‖γ̂N−γ0‖∞<η

∥∥∥∥(φ̂N − φ0
)
− ∂φ(γ0)

∂γ′
(
γ̂N − γ0

)∥∥∥∥
∞

1

N

N∑
i=1

τi ‖∇R1 +∇R2‖

≤Op

(∥∥γ̂N − γ0
∥∥2

∞

)[ 1

N

N∑
i=1

τi ‖∇R1‖+
1

N

N∑
i=1

τi ‖∇R2‖

]
,

where the Op(‖γ̂N − γ0‖2
∞) is due to (4.9.113), and applying the Cauchy–Schwarz in-

equality to each of the term inside the bracket leads to

1

N

N∑
i=1

τi ‖∇R1‖ ≤
1

N

N∑
i=1

τi
∣∣Yi −m(Xi; θ

0, φ0)
∣∣ ∥∥∥[∂m∗(xi,1;θ0)

∂θ
· · · ∂m∗(xi,KT ;θ0)

∂θ

]∥∥∥
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≤C

[
1

N

N∑
i=1

τi
[
Yi −m(Xi; θ

0, φ0)
]2]1/2 [

1

N

KT∑
j=1

N∑
i=1

∥∥∥∥∂m∗(xi,j; θ0)

∂θ

∥∥∥∥2
]1/2

=Op(1),

where the last line follows from (4.9.117) and Lemma 4.9.8. Similarly, from the Cauchy–Schwarz

inequality and Lemma 4.9.8, we can also get that

1

N

N∑
i=1

τi ‖∇R2‖ ≤
C

N

N∑
i=1

∥∥∥∥∂m(Xi; θ
0, φ0)

∂θ

∥∥∥∥∥∥∥[m∗(xi,1; θ0) · · · m∗(xi,KT ; θ0)
]∥∥∥

≤C

[
1

N

N∑
i=1

∥∥∥∥∂m(Xi; θ
0, φ0)

∂θ

∥∥∥∥2
]1/2 [

1

N

KT∑
j=1

N∑
i=1

m∗(xi,j; θ
0)2

]1/2

=Op(1),

Therefore, it yields from the above results and Assumption 4.5.6 that

‖GR‖ =Op

(
N1/2‖γ̂N − γ0‖2

∞
)

= op(1). (4.9.38)

To fulfil this proof and find the function G, let ν̃(Wi) := τi

[
∂
∂θ
R(Wi; θ

0, φ0)∂φ(t;γ0)
∂γ′

]
and

G(Wi; γ) = ν̃(Wi)γ = τi

[
∂
∂θ
R(Wi; θ

0, φ0)∂φ(t;γ0)
∂γ′

]
γ, then by construction G(Wi; γ) is

linear in γ. Moreover, based on (4.9.36) and (4.9.38),

∥∥∥∥∥ 1√
N

N∑
i=1

[
g(Wi; θ

0, φ̂N)− g(Wi; θ
0, φ0)−G(Wi; γ̂N − γ0)

]∥∥∥∥∥ ≤‖G3‖+ ‖GR‖ = op(1).

(4.9.39)

Lemma 4.9.10 (Stochastic Equicontinuity) Let FW (w) be the true probability dis-

tribution function of Wi. Suppose assumptions in Lemma 4.5.4 (b) hold, then

1√
N

N∑
i=1

[
G(Wi; γ̂N − γ0)−

∫
G(w; γ̂N − γ0)dFW (w)

]
= op(1).
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Proof of Lemma 4.9.10. By the linearity of G(w; γ) = ν̃(w)γ in γ, we can get

∥∥∥∥∥ 1√
N

N∑
i=1

[
G(Wi; γ̂N − γ0)−

∫
G(w; γ̂N − γ0)dFW (w)

]∥∥∥∥∥
=

∥∥∥∥∥ 1√
N

N∑
i=1

[
ν̃(Wi)− E[ν̃(Wi)]

]
(γ̂N − γ0)

∥∥∥∥∥
≤C

∥∥∥∥∥ 1√
N

N∑
i=1

[
ν̃(Wi)− E[ν̃(Wi)]

]∥∥∥∥∥ ∥∥γ̂N − γ0
∥∥
∞ . (4.9.40)

Denote ν̃r(Wi) as the r-th entry of the vector ν̃(Wi). Then,

E

∥∥∥∥∥ 1√
N

N∑
i=1

[
ν̃(Wi)− E[ν̃(Wi)]

]∥∥∥∥∥
2


=
1

N
E

[
N∑
i=1

(
ν̃(Wi)− E[ν̃(Wi)]

)′ N∑
i=1

(
ν̃(Wi)− E[ν̃(Wi)]

)]

=
1

N

dθ∑
r=1

 N∑
i=1

∑
j∈∆(i,N)

Cov
(
ν̃r(Wi), ν̃r(Wj)

)
+

N∑
i=1

∑
j 6∈∆(i,N)

Cov
(
ν̃r(Wi), ν̃r(Wj)

)
=

1

N

dθ∑
r=1

N∑
i=1

∑
j∈∆(i,N)

Cov
(
ν̃r(Wi), ν̃r(Wj)

)
+ s.o., (4.9.41)

where the last line comes from Assumption 4.5.1. Note that due to Var[ν̃r(Wi)] <∞ as

in Assumption 4.5.6 and 1/N
∑N

i=1 |∆(i, N)| = O(1),

1

N

N∑
i=1

∑
j∈∆(i,N)

Cov
(
ν̃r(Wi), ν̃r(Wj)

)
≤C
N

N∑
i=1

|∆(i, N)| = O(1). (4.9.42)

Given (4.9.42), together with the consistency ‖γ̂N − γ0‖∞ = op(1), we know that

∥∥∥∥∥ 1√
N

N∑
i=1

[
G(Wi; γ̂N − γ0)−

∫
G(w; γ̂N − γ0)dFW (w)

]∥∥∥∥∥ = op(1). (4.9.43)

Lemma 4.9.11 (Mean-square Differentiability) Under assumptions in Lemma 4.5.4
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(b), there exists a function δ : ΩW 7→ Rdθ such that

∫
G(w; γ̃N − γ)dFW (w) =

∫
δ(w)dF̂W (w),

√
NE

[∥∥∥∥∫ δ(w)dF̂W (w)−
∫
δ(w)dF̃W (w)

∥∥∥∥] = o(1),

where F̂W (w) is the kernel estimator of FW (w) and F̃W (w) := 1/N
∑N

i=1 1[Wi ≤ w] is

the empirical distribution of Wi.

Proof of Lemma 4.9.11. Following the derivations of Theorem 8.1 or (Theorem 8.11)

in Newey and McFadden (1994), it is apparent from the linearity of G(w; γ) in γ that

and the law of iterated expectation,

∫
G(w; γ)dFW (w) =

∫
ν(w)γ(w)dw,

where recall that the dθ × dγ matrix ν(w) is defined as

ν(w) = E
[
τ(Xi)

∂

∂θ
R(Wi; θ

0, φ0)
∂φ(t; γ)

∂γ′
∣∣
γ=γ(w)

1dγ

∣∣∣w] .
In addition, let δ(w) := ν(w)− E[ν(w)], we have

∫
G(w; γ̃N − γ)dFW (w) =

∫
δ(w)dF̂W (w),

with F̂W (w) being the kernel estimator of the distribution of Wi.

At last, recall the empirical distribution F̃W (w) = 1/N
∑N

i=1 1[Wi ≤ w]. By an abuse

of notation, we denote κ(w
c−w̃c
h

) :=
∏Q

q=1 κ(
wcq−w̃cq
h

). Consider the difference between the

two integrals δ(F ) defined as below, which can be interpreted as a smoothing bias term,

δ(F ) :=

∫
δ(w)dF̂W (w)−

∫
δ(w)dF̃W (w)

=
1

N

N∑
i=1

 ∑
wd∈Ω

Wd

∫
ν(w)f̂keri (w)dwc − ν(Wi)


=

1

N

N∑
i=1

 ∑
wd∈Ω

Wd

∫
ν(w)

1

hQ
1[W d

i = wd]

Q∏
q=1

κ

(
wcq −W c

iq

h

)
dwc − ν(Wi)





4.9. APPENDIX 217

=
1

N

N∑
i=1

[∫
ν(wc,W d

i )
1

hQ

Q∏
q=1

κ

(
wcq −W c

iq

h

)
dwc − ν(Wi)

]

=
1

N

N∑
i=1

∫ [
ν(W c

i + hv,W d
i )− ν(Wi)

] Q∏
q=1

κ (vq) dv

:=
1

N

N∑
i=1

δi(F ). (4.9.44)

Because the identical distribution of Wi across i, it follows from (4.9.44) that

√
NE[δ(F )] =

√
NE[δi(F )]

=
√
NE

[∫
ν(W c

i + hv,W d
i )

Q∏
q=1

κ (vq) dv − ν(Wi)

]

=
√
N

∫∫
ν(w̃c + hv, w̃d)

Q∏
q=1

κ (vq) dvdFW (w̃)−
√
N

∫
ν(w)dFW (w)

=
√
N

∫∫
ν(w̃c, w̃d)

Q∏
q=1

κ (vq) dvdFW (w̃c − hv, w̃d)−
√
N

∫
ν(w)dFW (w)

=
√
N

{∫∫
ν(w̃c, w̃d)

Q∏
q=1

κ (vq) dvdFW (w̃c − hv, w̃d)−
∫∫

ν(w)

Q∏
q=1

κ(vq)dvdFW (w)

}

=
√
N

 ∑
wd∈Ω

Wd

∫∫
ν(w)

[
fW c

i ,W
d
i
(wc − hv, wd)− fW c

i ,W
d
i
(wc, wd)

] Q∏
q=1

κ (vq) dvdw
c

 ,

(4.9.45)

which together with (4.9.89) and Assumption 4.5.6, implies that

√
N ‖E[δ(F )]‖

≤
√
N

∑
wd∈Ω

Wd

∫
‖ν(w)‖

∥∥∥∥∥
∫ [

fW c
i ,W

d
i
(wc − hv, wd)− fW c

i ,W
d
i
(wc, wd)

] Q∏
q=1

κ (vq) dv

∥∥∥∥∥ dwc
≤C
√
Nh2

∑
wd∈Ω

Wd

∫
‖ν(w)‖dwc

=o(1). (4.9.46)
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Next, let δ(F ) = (δ1(F ), ..., δdθ(F ))′ with δr(F ) = 1/N
∑N

i=1 δr,i(F ) and consider

E
[∥∥∥√Nδ(F )−

√
NE[δ(F )]

∥∥∥2
]

=

dθ∑
r=1

E
[∣∣∣√Nδr(F )−

√
NE[δr(F )]

∣∣∣2]

=N

dθ∑
r=1

E

∣∣∣∣∣ 1

N

N∑
i=1

(δr,i(F )− E[δr,i(F )])

∣∣∣∣∣
2


=
1

N

dθ∑
r=1

N∑
i=1

∑
j∈∆(i,N)

Cov (δr,i(F ), δr,j(F )) + s.o.,

(4.9.47)

where the last line follows from Assumption 4.5.1. Due to the identical distribution of

Wi and (4.9.44), we can bound the covariance in (4.9.47) by

|Cov (δr,i(F ), δr,j(F ))| ≤Var [δr,i(F )] ≤ E
[
|δr,i(F )|2

]
=E

(∫ [νr(W c
i + hv,W d

i )− νr(Wi)
] Q∏
q=1

κ (vq) dv

)2
 .
(4.9.48)

From Assumption 4.5.2 we know that
∫
xκ(x)dx = 0 and

∫
x2κ(x)dx = K2, and Assump-

tion 4.5.6 that ν(w) is twice continuously differentiable in wc. Expanding νr(W
c
i +hv,W d

i )

around W c
i , then there exists a constant C > 0 such that

|Cov (δr,i(F ), δr,j(F ))| ≤h4E

(∫ v′
∂νr(W

c
i + w∗,W d

i )

∂wc∂(wc)′
v

Q∏
q=1

κ (vq) dv

)2
 ≤ Ch4.

(4.9.49)

Substituting (4.9.49) into (4.9.47), since 1/N
∑N

i=1 |∆(i, N)| = O(1) as in Assumption

4.5.2,

E
[∥∥∥√Nδ(F )−

√
NE[δ(F )]

∥∥∥2
]

=O(h4) = o(1). (4.9.50)

Based on (4.9.46) and (4.9.50), since both the mean and variance of
√
Nδ(F ) are o(1),

by Chebyshev’s inequality, it follows directly that E
[
‖
√
Nδ(F )‖

]
p→ 0.
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4.9.3. Proofs

Proofs of Section 4.3

Lemma 4.9.12 Under Assumption 4.3.2, we have that for ∀i ∈ P, εi ⊥ (Di, S
∗
i )
∣∣Zi,F∗i .

Proof of Lemma 4.9.12. If we can show that Pr(εi < e|Di, S
∗
i , Zi,F∗i ) = Pr(εi <

e|Zi,F∗i ), then the stated result follows. By the law of total probability, we have for

∀e ∈ Ωε,

Pr(εi < e|Di, S
∗
i , Zi,F∗i )

=E
[
Pr
(
εi < e

∣∣∣Di, S
∗
i , Zi,F∗i ,N ∗i , {Dj}j∈N ∗i

) ∣∣∣Di, S
∗
i , Zi,F∗i

]
, (4.9.51)

where the expectation is with respect to fN ∗i ,{Dj}j∈N∗i |Di,S
∗
i ,Zi,F∗i . By definition, S∗i =∑

j∈N ∗i
Dj, therefore, S∗i becomes fixed when given (N ∗i , {Dj}j∈N ∗i ). In addition, since

Assumption 4.3.2 (a) implies that Di is independent to (εi, Zi,F∗i ,N ∗i , {Dj}j∈N ∗i ). Then,

we know that (Di, S
∗
i ) can be eliminated from the conditional probability of εi < e in

(4.9.51), i.e.

Pr(εi < e|Di, S
∗
i , Zi,F∗i ) =E

[
Pr
(
εi < e|Zi,F∗i ,N ∗i , {Dj}j∈N ∗i

) ∣∣Di, S
∗
i , Zi,F∗i

]
=E

[
Pr(εi < e|Zi,F∗i )

∣∣Di, S
∗
i , Zi,F∗i

]
=Pr(εi < e|Zi,F∗i ), (4.9.52)

where the second line is from Assumption 4.3.2 (b) and the last line implies εi ⊥

(Di, S
∗
i )
∣∣Zi,F∗i .

Lemma 4.9.13 Under Assumptions 4.3.2 and 4.3.4, εi ⊥ (Di, S
∗
i , Si,Fi)|Zi,F∗i for ∀i ∈

P.

Proof of Lemma 4.9.13. Denote P ∗i = (N ∗i , {Dj}j∈N ∗i ) and Pi = (Ni, {Dj}j∈Ni).

Then, we know from Assumptions 4.3.2 (a) and 4.3.4 (a) that Di ⊥ (P ∗i , Pi), because

of the facts that i 6∈ N ∗i , i 6∈ Ni, Di ⊥ ({Dj}j∈N ∗i , {Dj}j∈Ni)
∣∣N ∗i ,Ni and {Di}i∈P ⊥

(N ∗i ,Ni). Moreover, since S∗i and Si are functions of P ∗i and Pi, respectively, we have



220 CHAPTER 4. SPILLOVERS WITH MISMEASURED NETWORKS

Di ⊥ (S∗i , Si). By the law of total probability,

Pr
(
εi < e

∣∣∣Di, S
∗
i , Si,Fi, Zi,F∗i

)
=Pr

(
εi < e

∣∣∣S∗i , Si,Fi, Zi,F∗i )
=E

[
Pr
(
εi < e

∣∣∣S∗i , Si,Fi, Zi,F∗i , P ∗i , Pi) ∣∣∣S∗i , Si,Fi, Zi,F∗i ] , (4.9.53)

for ∀e ∈ Ωε, where the expectation is with respect to fP ∗i ,Pi|S∗i ,Si,Fi,Zi,F∗i . We know that

S∗i , Si,Fi are fixed given (P ∗i , Pi). Thus, equation (4.9.53) becomes to

Pr
(
εi < e

∣∣∣Di, S
∗
i , Si,Fi, Zi,F∗i

)
=E

[
Pr
(
εi < e

∣∣∣Zi,F∗i , P ∗i , Pi) ∣∣∣S∗i , Si,Fi, Zi,F∗i ]
=E

[
Pr
(
εi < e

∣∣∣Zi,F∗i ) ∣∣∣S∗i , Si,Fi, Zi,F∗i ]
=Pr

(
εi < e

∣∣∣Zi,F∗i ) ,
where the second equality above is due to Assumption 4.3.4 (b).

Proof of Proposition 4.3.3. By Assumption 4.3.1 and the law of iterated expectation,

mi(d, s, z, n)

=E
[
r(Di, S

∗
i , Zi,F∗i , εi)

∣∣Di = d, Si = s, Zi = z,Fi = n
]

=
∑

(s∗,n∗)∈ΩS∗,F∗

E
[
r(d, s∗, z, n∗, εi)

∣∣Di = d, Si = s, Zi = z,Fi = n, S∗i = s∗,F∗i = n∗
]

× fS∗i ,F∗i |Di=d,Si=s,Zi=z,Fi=n(s∗, n∗). (4.9.54)

Based on Lemma 4.9.13 that εi ⊥ (Di, S
∗
i , Si,Fi)|Zi,F∗i , we have that (4.9.54) becomes

to

mi(d, s, z, n)

=
∑

(s∗,n∗)∈ΩS∗,F∗

E
[
r(d, s∗, z, n∗, εi)

∣∣Zi = z,F∗i = n∗
]
fS∗i ,F∗i |Di=d,Si=s,Fi=n,Zi=z(s

∗, n∗)

=
∑

(s∗,n∗)∈ΩS∗,F∗

m∗(d, s∗, z, n∗)fS∗i ,F∗i |Di=d,Si=s,Fi=n,Zi=z(s
∗, n∗), (4.9.55)

where the last equality is by Definition 4.3.1.
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Proofs of Section 4.4

Lemma 4.9.14 Under Assumption 4.3.2 (a), suppose Assumption 4.3.4 (a) and (b) are

satisfied by both Ni and Ñi. Then, Yi ⊥ (Fi, F̃i)
∣∣Zi,F∗i holds.

Proof of Lemma 4.9.14. First, same arguments used in the proof of Lemma 4.4.1 (a)

can be applied to show that S∗i ⊥ (Fi, F̃i)
∣∣Zi,F∗i . Second, rewrite Yi in terms of the

potential outcomes:

Yi =
∑

(d,s)∈{0,1}×ΩS∗

1[Di = d, S∗i = s]r (d, s, Zi,F∗i , εi) ,

where by the randomness of the treatment assignment and S∗i ⊥ (Fi, F̃i)
∣∣Zi,F∗i , we know

that 1[Di = d, S∗i = s] ⊥ (Fi, F̃i)
∣∣Zi,F∗i . Then, because Assumption 4.3.4 (b) implies

that (Fi, F̃i) is independent to the potential outcome r(d, s, Zi,F∗i , εi) given (Zi,F∗i ), we

can conclude that Yi ⊥ (Fi, F̃i)
∣∣Zi,F∗i .

Proof of Lemma 4.4.1. (a) If we can show that for any (s,J ) ∈ ΩS∗,N ∗ the equation

below holds,

fS∗i ,N ∗i |F∗i =n,Zi(s,J ) =fS∗i |F∗i =n,Zi(s)× fN ∗i |F∗i =n,Zi(J ), (4.9.56)

then the desired result follows. First of all, if either s > n or |J | 6= n, (4.9.56) holds

trivially. Therefore, we consider (s,J ) such that s ≤ n and |J | = n. Because for any

fixed J , {Dj}j∈J is independent to (Zi,F∗i ,N ∗i ) by Assumption 4.3.2 (a), then by i.i.d.

of Di

fS∗i |F∗i =n,N ∗i =J ,Zi(s) =f∑
j∈J Dj |F∗i =n,N ∗i =J ,Zi(s) = f∑

j∈J Dj
(s) = Cs

nf
s
D(1)fD(0)(n−s).

(4.9.57)

where fD(d) = Pr(Di = d) with d ∈ {0, 1}. On the other hand, by the law of total

probability,

fS∗i |F∗i =n,Zi(s) =
∑

J∈ΩN∗ , s.t. |J |=n

f∑
j∈J Dj |F∗i =n,N ∗i =J ,Zi(s)× fN ∗i |F∗i =n,Zi(J )
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=
∑

J∈ΩN∗ , s.t. |J |=n

f∑
j∈J Dj

(s)fN ∗i |F∗i =n,Zi(J )

=Cs
nf

s
D(1)fD(0)(n−s). (4.9.58)

Therefore, (4.9.57) and (4.9.58) lead to

fS∗i ,N ∗i |F∗i =n,Zi(s,J ) =fS∗i |F∗i =n,N ∗i =J ,Zi(s)× fN ∗i |F∗i =n,Zi(J )

=fS∗i |F∗i =n,Zi(s)× fN ∗i |F∗i =n,Zi(J ).

In addition, due to S∗i =
∑

j∈N ∗i
Dj and Assumption 4.3.4 (a), it is easy to see that

Fi ⊥ S∗i |Zi,N ∗i . Thus, similar arguments used to show (4.9.60) give us

fS∗i |Fi=n,F∗i =n∗,Zi(s) =
∑

J∈ΩN∗ , s.t. |J |=n∗
fS∗i |Fi=n,F∗i =n∗,N ∗i =J ,Zi(s)× fN ∗i |Fi=n,F∗i =n∗,Zi(J )

=
∑

J∈ΩN∗ , s.t. |J |=n∗
fS∗i |F∗i =n∗,N ∗i =J ,Zi(s)× fN ∗i |Fi=n,F∗i =n∗,Zi(J )

= fS∗i |F∗i =n∗,Zi(s)
∑

J∈ΩN∗ , s.t. |J |=n∗
fN ∗i |Fi=n,F∗i =n∗,Zi(J )

= fS∗i |F∗i =n∗,Zi(s), (4.9.59)

where the second equality is due to Fi ⊥ S∗i |Zi,N ∗i , the third equality is because of

N ∗i ⊥ S∗i |Zi,F∗i in proof (a). Hence, (4.9.59) permits that Fi ⊥ S∗i |Zi,F∗i .

(b) Given Si =
∑

j∈Ni Dj, according to Assumptions 4.3.2 (a) and 4.3.4 (a), {Di}i∈P are

i.i.d. and independent to (Zi,Ni). Thus, applying the same arguments used to show (a),

we can obtain for s ≤ n, fSi|Fi=n,Ni,Zi(s) = fSi|Fi=n,Zi(s) = Cs
nf

s
D(1)fD(0)(n−s), leading

to Ni ⊥ Si|Zi,Fi.

Moreover, because Si =
∑

j∈Ni Dj is a function of (Ni, {Dj}j∈Ni), the randomness of Si

given Ni only comes from Dj for j ∈ Ni. In addition, since {Dj}j∈P are independent

to (Zi,N ∗i ,Ni) as in Assumption 4.3.4 (a), it implies that F∗i ⊥ Si|Zi,Ni. Hence, for
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∀(s, n, n∗) ∈ ΩS,F ,F∗ ,

fSi|Fi=n,F∗i =n∗,Zi(s) =
∑

J∈ΩN , s.t. |J |=n

fSi|Fi=n,F∗i =n∗,Ni=J ,Zi(s)× fNi|Fi=n,F∗i =n∗,Zi(J )

=
∑

J∈ΩN , s.t. |J |=n

fSi|Fi=n,Ni=J ,Zi(s)× fNi|Fi=n,F∗i =n∗,Zi(J )

= fSi|Fi=n,Zi(s)
∑

J∈ΩN , s.t. |J |=n

fNi|Fi=n,F∗i =n∗,Zi(J )

= fSi|Fi=n,Zi(s), (4.9.60)

where the second equality is because F∗i ⊥ Si|Zi,Ni, the third equality is due to Ni ⊥

Si|Zi,Fi as shown at the beginning of this proof. Therefore, Si ⊥ F∗i |Zi,Fi from (4.9.60).

(c) The proof in this step follows directly from the proofs in (a) and (b).

Proof of Proposition 4.4.2. Recall that by Bayes’ Theorem, we have

fS∗i ,F∗i |Di,Si,Fi,Zi =
fSi,Fi|Di,S∗i ,F∗i ,Zi × fS∗i ,F∗i |Di,Zi

fSi,Fi|Di,Zi
. (4.9.61)

In what follows, we further rewrite the distributions in the numerator and the denomi-

nator to achieve the desired result. Based on Assumptions 4.3.2 and 4.3.4, we know that

{Di}i∈P is i.i.d. and independent to {Zi,N ∗i ,Ni}i∈P . Thus, from the fact that i 6∈ N ∗i
and i 6∈ Ni, we can conclude that

Di ⊥ (S∗i , Si, Zi,N ∗i ,Ni), for ∀i ∈ P . (4.9.62)

It further yields that Di ⊥ Si
∣∣(S∗i , Zi,F∗i ,Fi) and Di ⊥ Fi

∣∣(S∗i , Zi,F∗i ). Therefore,

consider the first term in the numerator, for any (s, n) ∈ ΩS,F

fSi,Fi|Di,S∗i ,F∗i ,Zi(s, n) =fSi|Di,S∗i ,F∗i ,Fi=n,Zi(s)× fFi|Di,S∗i ,F∗i ,Zi(n)

=fSi|S∗i ,F∗i ,Fi=n,Zi(s)× fFi|S∗i ,F∗i ,Zi(n)

=fSi|S∗i ,F∗i ,Fi=n,Zi(s)× fFi|F∗i ,Zi(n), (4.9.63)

where the last equality is because of Fi ⊥ S∗i
∣∣Zi,F∗i in Lemma 4.4.1. Besides, again by
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(4.9.62), we have Di ⊥ S∗i
∣∣Zi,F∗i and Di ⊥ F∗i

∣∣Zi. For the second term in the numerator,

fS∗i ,F∗i |Di,Zi(s, n) =fS∗i |Di,F∗i =n,Zi(s)× fF∗i |Di,Zi(n)

=fS∗i |F∗i =n,Zi(s)× fF∗i |Zi(n). (4.9.64)

Similarly, by (4.9.62), we can rewrite the denominator

fSi,Fi|Di,Zi(s, n) =fSi|Fi=n,Zi(s)× fFi|Zi(n). (4.9.65)

Now, substituting (4.9.63), (4.9.64) and (4.9.65) into (4.9.61) leads to the stated result.

Proof of Theorem 4.4.3. (a) Due to the Assumption 4.3.3, it is clear that

fZi , fF∗i |Zi , fF̃i|F∗i ,Zi , fFi|F
∗
i ,Zi

, are all identical across i ∈ P . (4.9.66)

Now, according to F̃i ⊥ Fi|Zi,F∗i in Assumption 4.4.1, we can obtain

fF∗i ,F̃i,Fi,Zi = fF̃i,Fi|F∗i ,Zi × fF∗i ,Zi = fF̃i|F∗i ,Zi × fFi|F∗i ,Zi × fF∗i ,Zi .

Because all the terms on the right hand side of the above equation are identical for all i,

then fF∗i ,F̃i,Fi,Zi is identical for all i, so as all the marginal and conditional distributions

of (F∗i , F̃i,Fi, Zi), which include fFi|Zi and fF̃i,Fi|Zi .

In addition, recall that Yi = r(Di, S
∗
i ,F∗i , Zi, εi) as in Assumption 4.3.1. By Lemma

4.9.13 and (4.9.62), we have (εi, Di) ⊥ (S∗i , F̃i,Fi)|Zi,F∗i . Moreover, from Lemma 4.4.1

we know that S∗i ⊥ (F̃i,Fi)|Zi,F∗i . Therefore,

fF∗i ,F̃i,Fi,S∗i ,εi,Di,Zi =fF̃i,Fi,S∗i ,εi,Di|F∗i ,Zi × fF∗i ,Zi

=fD × fεi|F∗i ,Zi × fF̃i,Fi,S∗i |F∗i ,Zi × fF∗i ,Zi

=fD × fεi|F∗i ,Zi × fS∗i |F∗i ,Zi × fF̃i|F∗i ,Zi × fFi|F∗i ,Zi × fF∗i ,Zi .

By the identical distribution of εi given Zi,F∗i in Assumption 4.3.3, and fS∗i |F∗i =n∗,Zi(s
∗) =

Cs∗
n∗f

s∗
D (1)fD(0)(n∗−s∗), together with (4.9.66), we can conclude that (F∗i , F̃i,Fi, S∗i , εi, Di, Zi)
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is identically distributed and so as (F∗i , F̃i,Fi, Yi, Zi).

(b) In this proof, we first show that fF̃i|F∗i ,Zi and fFi|F∗i ,Zi are identified. We then verify

the identification of fF∗i |Zi . By the law of total probability, for any (ñ, n, y) ∈ ΩF̃ ,F ,Y

fF̃i,Fi,Yi|Zi(ñ, n, y)

=
∑

n∗∈ΩF∗

fF̃i,Fi,Yi|F∗i =n∗,Zi
(ñ, n, y)× fF∗i |Zi(n

∗)

=
∑

n∗∈ΩF∗

fYi|F∗i =n∗,F̃i=ñ,Fi=n,Zi(y)× fF̃i,Fi|F∗i =n∗,Zi
(ñ, n)× fF∗i |Zi(n

∗)

=
∑

n∗∈ΩF∗

fYi|F∗i =n∗,Zi(y)× fF̃i|F∗i =n∗,Zi
(ñ)× fFi|F∗i =n∗,Zi(n)× fF∗i |Zi(n

∗), (4.9.67)

where the last equality is due to Assumption 4.4.1 and Lemma 4.9.14. Integrate both

sides of (4.9.67)

∫
y∈ΩY

yfF̃i,Fi,Yi|Zi(ñ, n, y)dy

=
∑

n∗∈ΩF∗

E[Yi|F∗i = n∗, Zi]× fF̃i|F∗i =n∗,Zi
(ñ)× fFi|F∗i =n∗,Zi(n)× fF∗i |Zi(n

∗). (4.9.68)

Besides, for any (ñ, n) ∈ ΩF̃ ,F , because of Assumption 4.4.1

fF̃i,Fi|Zi(ñ, n) =
∑

n∗∈ΩF∗

fF̃i,Fi|F∗i =n∗,Zi
(ñ, n)× fF∗i |Zi(n

∗)

=
∑

n∗∈ΩF∗

fF̃i|F∗i =n∗,Zi
(ñ)× fFi|F∗i =n∗,Zi(n)× fF∗i |Zi(n

∗). (4.9.69)

Recall that the notations below from the main text: for ∀y ∈ ΩY , the KF ×KF matrices

EF̃ ,F ,Y |Z =


∫

y∈ΩY

yfF̃i,Fi,Yi|Zi(0, 0, y)dy · · ·
∫

y∈ΩY

yfF̃i,Fi,Yi|Zi(0, KF − 1, y)dy

...
. . .

...∫
y∈ΩY

yfF̃i,Fi,Yi|Zi(KF − 1, 0, y)dy · · ·
∫

y∈ΩY

yfF̃i,Fi,Yi|Zi(KF − 1, KF − 1, y)dy

 ,

FF̃ ,F|Z =


fF̃i,Fi|Zi(0, 0) · · · fF̃i,Fi|Zi(0, KF − 1)

...
. . .

...

fF̃i,Fi|Zi(KF − 1, 0) · · · fF̃i,Fi|Zi(KF − 1, KF − 1)

 .
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In addition, recall and denote two KF ×KF diagonal matrices

TY |F∗,Z =diag (E[Yi|F∗i = 0, Zi],E[Yi|F∗i = 1, Zi], · · · ,E[Yi|F∗i = KF − 1, Zi]) ,

TF∗|Z =diag
(
fF∗i |Zi(0), fF∗i |Zi(1), · · · , fF∗i |Zi(KF − 1)

)
.

Then, given the notations above, (4.9.67) and (4.9.69) can be rewritten in the following

expressions:

EF̃ ,F ,Y |Z =FF̃|F∗,Z × TY |F∗,Z × TF∗|Z × F
′
F|F∗,Z , (4.9.70)

FF̃ ,F|Z =FF̃|F∗,Z × TF∗|Z × F
′
F|F∗,Z , (4.9.71)

where FF̃|F∗,Z and FF|F∗,Z are defined in the main text. Based on Assumption 4.4.3, we

know that FF̃|F∗,Z and FF|F∗,Z are invertible. In addition, based on Assumption 4.4.4

(b), we have that fF∗i |Zi(n) > η > 0 for ∀n ∈ ΩF∗ indicates the invertibility of TF∗|Z .

Hence, (4.9.71) implies that FF̃ ,F|Z is also invertible. It then yields from (4.9.70) and

(4.9.71) that the square matrix EF̃ ,F ,Y |Z × F
−1

F̃ ,F|Z can be factorised as

EF̃ ,F ,Y |Z × F
−1

F̃ ,F|Z = FF̃|F∗,Z × TY |F∗,Z × F
−1

F̃|F∗,Z , (4.9.72)

where the matrix EF̃ ,F ,Y |Z × F−1

F̃ ,F|Z on the left hand side of the above equation is

identifiable from the observed data, and the right hand side corresponds to its eigen-

decomposition, whose eigenvalues are the diagonal entries of TY |F∗,Z .

By Assumption 4.4.4 (a), all the KF eigenvalues in the diagonal matrix TY |F∗,Z are

strictly positive and distinct. Thus, given the eigen-decomposition of matrix EF̃ ,F ,Y |Z ×

F−1

F̃ ,F|Z in (4.9.72), its KF eigenvectors are linearly independent and are corresponding

to the KF columns of FF̃|F∗,Z . By simple algebra, we can solve the KF eigenvectors,

meaning that the columns of FF̃|F∗,Z are identifiable. Moreover, Assumption 4.4.4 (b)

ensures there is an unique maximum entry of each eigenvector, and its location re-

veals which eigenvalue it corresponds to. For example, if the largest value in some

eigenvector appears in its first entry, then this eigenvector gives the latent probabilities

[fF̃i|F∗i =0,Zi
(0), fF̃i|F∗i =0,Zi

(1), ..., fF̃i|F∗i =0,Zi
(KF − 1)]′ and corresponds to the eigenvalue

E[Yi|F∗i = 0, Zi]. Because the summation of each column in the matrix FF|F∗,Z is natu-
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rally normalised to be one, there is an unique solution for each eigenvector. The above

discussions verify that FF̃|F∗,Z can be nonparametrically identified. Same arguments can

be use to show the identification of FF|F∗,Z .

Next, let us move on to fF∗i |Zi . Define two KF × 1 vectors as

FF∗|Z =
[
fF∗i |Zi(0) fF∗i |Zi(1) · · · fF∗i |Zi(KF − 1)

]′
,

FF|Z =
[
fFi|Zi(0) fFi|Zi(1) · · · fFi|Zi(KF − 1)

]′
.

Based on the law of total probability, it is easy to get FF|Z = FF|F∗,Z × FF∗|Z . Since

FF|F∗,Z is invertible, multiplying both sides of the above equation by F−1
F|F∗,Z gives

FF∗|Z = F−1
F|F∗,Z × FF|Z , (4.9.73)

which indicates the identifiability of FF∗|Z .

Proof of Lemma 4.4.4. Recall that ∆Si := Si − S∗i . (a) Consider the case N ∗i ⊂ Ni.

For ∀(s, n) ∈ ΩS,F and (s∗, n∗) ∈ ΩS∗,F∗ such that n∗ ≤ n

fSi|S∗i =s∗,Fi=n,F∗i =n∗,Zi(s) = f∆Si|S∗i =s∗,Fi=n,F∗i =n∗,Zi(s− s∗)

=
∑

(J ∗,J ), s.t. J ∗⊂J , |J ∗|=n∗,|J |=n

f∆Si|S∗i =s∗,Fi=n,F∗i =n∗,N ∗i =J ∗,Ni=J ,Zi(s− s∗)

× fN ∗i ,Ni|S∗i =s∗,Fi=n,F∗i =n∗,Zi(J ∗,J ), (4.9.74)

where the last line is based on the law of total probability. Because N ∗i ⊂ Ni, we have

that N ∗i /Ni is empty and ∆Si =
∑

j∈Ni/N ∗i
Dj. In addition, Ni/N ∗i and N ∗i are mutually

exclusive, i.e. if i ∈ Ni/N ∗i then i 6∈ N ∗i . Due to the i.i.d. of {Di}i∈P (Assumption

4.3.2), and the independence between {Di}i∈P and (Zi,N ∗i ,Ni) (Assumption 4.3.4), we

have that ∆Si ⊥ S∗i |Zi,N ∗i ,Ni. Therefore,

f∆Si|S∗i =s∗,Fi=n,F∗i =n∗,N ∗i =J ∗,Ni=J ,Zi(s− s∗) = f∆Si|Fi=n,F∗i =n∗,N ∗i =J ∗,Ni=J ,Zi(s− s∗).

(4.9.75)

Again by the independence of {Di}i∈P , once conditional on Ni/N ∗i = J /J ∗, we know
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that ∆Si =
∑

j∈J /J ∗ Dj follows a binomial distribution if s∗ ≤ s and ∆s ≤ ∆n, and is

independent to the identity of network neighbours contained in (N ∗i ,Ni). Then (4.9.75)

becomes to

f∆Si|Fi=n,F∗i =n∗,N ∗i =J ∗,Ni=J ,Zi(s− s∗)

=f∆Si|F∗i =n∗,Fi−F∗i =n−n∗,N ∗i =J ∗,Ni/N ∗i =J /J ∗,Zi(s− s∗)

=f∆Si|Fi−F∗i =∆n,Zi(∆s), (4.9.76)

where the last equality follows the same arguments used to show Lemma 4.4.1 (a).

Substituting (4.9.76) into (4.9.74) gives the desired result.

(b) Similar arguments used in proof for the case N ∗i ⊂ Ni can be applied to obtain the

result for the case Ni ⊂ N ∗i . Therefore, we omit the proof.

Proof of Theorem 4.4.5. (a) From Proposition 4.4.2, we know that

fS∗i ,F∗i |Di,Si,Fi,Zi =
fSi|S∗i ,F∗i ,Fi,Zi × fS∗i |F∗i ,Zi × fFi|F∗i ,Zi × fF∗i |Zi

fSi|Fi,Zi × fFi|Zi
. (4.9.77)

Based on Lemma 4.4.1, we know that fS∗i |F∗i =n∗,Zi(s
∗) = Cs∗

n∗f
s∗
D (1)fD(0)(n∗−s∗) and

fSi|Fi=n,Zi(s) = Cs
nf

s
D(1)fD(0)(n−s). Similarly, from Lemma 4.4.4,

fSi|S∗i =s∗,F∗i =n∗,Fi=n,Zi(s) =C∆s
∆nf

∆s
D (1)fD(0)(∆n−∆s). (4.9.78)

Because Di is i.i.d., by Assumptions 4.3.3 and 4.3.4, fF∗i |Zi , fFi|F∗i ,Zi and fFi|Zi are iden-

tical for all i. Therefore, all distributions on the right hand side of (4.9.77) are identical

across i, together with Theorem 4.4.3, fSi|S∗i =s∗,Fi=n,F∗i =n∗,Zi(s) can be nonparametrically

identified.

Proof of Theorem 4.4.6. (a) From Theorem 4.4.5, we know that fS∗i ,F∗i |Di,Si,Fi,Zi is

identical for all i, together with Proposition 4.3.3, we know mi is also identical for all

i ∈ P .

(b) To ease the notation, denote Ti = (Si,Fi)′ and T ∗i = (S∗i ,F∗i )′. According to Assump-

tion 4.4.2, the support of Ti and T ∗i are the same, and we denote it as ΩT = {t1, t2, ..., tKT }
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with tk = (sk, nk) ∈ ΩS,F . Let us rank the possible values in ΩT by the lexicographical

ordering, according to the natural order of the integers in ΩS,F , i.e.

t1 = (0, 0),

t2 = (0, 1), t3 = (1, 1),

t4 = (0, 2), t5 = (1, 2), t6 = (2, 2),

· · ·

t (KF−1)KF
2

+1
= (0, KF − 1), · · · , t (KF−1)(KF+2)

2
+1

= (KF − 1, KF − 1).

(4.9.79)

Because by result in (a), mi(·) is identical for all i, thus we suppress the subscript i,

i.e. m(d, s, z, n) := E[Yi|Di = d, Si = s, Zi = z,Fi = n]. By notation abuse, we ignore

the arguments (d, z) in functions m and m∗, and introduce the following notations. For

any (d, z) ∈ {0, 1} ×ΩZ , denote MY |T,D=d,Z=z and MY |T ∗,D=d,Z=z as two KT × 1 column

vectors

MY |T,D=d,Z=z(m) = [m(t1),m(t2), · · · ,m(tKT )]′ , (4.9.80)

MY |T ∗,D=d,Z=z(m
∗) = [m∗(t1),m∗(t2), · · · ,m∗(tKT )]′ , (4.9.81)

where m(tk) represents the mean function m(d, sk, z, nk) = E[Yi|Di = d, Si = sk, Zi =

z,Fi = nk]. Define the KT ×KT matrix

FT ∗|T,D=d,Z=z =


fT ∗i |Ti=t1,Di=d,Zi=z(t1) · · · fT ∗i |Ti=t1,Di=d,Zi=z(tKT )

...
. . .

...

fT ∗i |Ti=tKT ,Di=d,Zi=z(t1) · · · fT ∗i |Ti=tKT ,Di=d,Zi=z(tKT )

 . (4.9.82)

From Proposition 4.3.3 and the notations in (4.9.80)-(4.9.82), we have for any (d, z) ∈

{0, 1} × ΩZ

MY |T,D=d,Z=z(m) = FT ∗|T,D=d,Z=z ×MY |T ∗,D=d,Z=z(m
∗). (4.9.83)

Given Proposition 4.4.2, for ∀(d, z) ∈ {0, 1} × ΩZ , the elements in the main diagonal of
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FT ∗|T,D=d,Z=z

fS∗i ,F∗i |Di=d,Si=s,Fi=n,Zi=z(s, n)

=
fSi|S∗i =s,F∗i =n,Fi=n,Zi=z(s)× fS∗i |N ∗i |=n,Zi=z(s)× fF∗i |Fi=n,Zi=z(n)× fF∗i |Zi=z(n)

fSi|F∗i =n,Zi=z(s)× fFi|Zi=z(n)

=
fF∗i |Fi=n,Zi=z(n)× fF∗i |Zi=z(n)

fFi|Zi=z(n)
,

where the second equality is because of Lemma 4.4.1 and Lemma 4.4.4. In addition,

based on Assumption 4.4.4 (b), we know that fF∗i |Fi=n,Zi=z(n) > 0, which also leads to

fF∗i |Zi=z(n) > 0. Therefore, by the preassumption that fFi|Zi=z(n) > 0, we can conclude

that

fS∗i ,F∗i |Di=d,Si=s,Fi=n,Zi=z(s, n) > 0 for ∀(s, n) ∈ ΩS∗,F∗ . (4.9.84)

In what follows, we prove the desired result in two steps. Firstly, we show that the square

matrix FT ∗|T,D=d,Z=z is invertible. Secondly, we show that the CASF m∗ is identifiable

from (4.9.83).

Step 1. Consider any t∗ = (s∗, n∗) and t = (s, n) such that 0 ≤ s∗ ≤ n∗ and 0 ≤ s ≤ n.

Under Assumption 4.4.5, we need to consider two cases.

Firstly, suppose N ∗i ⊂ Ni holds. Then, we know that S∗i ≤ Si and F∗i ≤ Fi. Thus,

fT ∗i |Ti=t,Di=d,Zi=z(t
∗) = 0 if at least one of the restrictions s∗ ≤ s and n∗ ≤ n is vio-

lated. Similarly, when Ni ⊂ N ∗i holds, we have that Si ≤ S∗i and Fi ≤ F∗i . Then,

fT ∗i |Ti=t,Di=d,Zi=z(t
∗) = 0 if at least one of the restrictions s ≤ s∗ and n ≤ n∗ is violated.

Given the lexicographical ordering of the elements in ΩT , it is easy to see that the ma-

trix FT ∗|T,D=d,Z=z is lower triangular if N ∗i ⊂ Ni, and is upper triangular if Ni ⊂ N ∗i .

Moreover, (4.9.84) implies that all the elements on the main diagonal of the triangular

matrix FT ∗|T,D=d,Z=z are strictly positive. Since the eigenvalues of a triangular matrix

are its diagonal entries, the matrix FT ∗|T,D=d,Z=z is therefore invertible.

Step 2. Next, we show that the CASF m∗ is identifiable. Suppose m∗ is not identifiable,

then there exists m̃∗ 6= m∗ such that m̃∗ is observationally equivalent to m∗, in the sense
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that (4.9.83) also holds for m̃∗:

MY |T,D=d,Z=z(m) = FT ∗|T,D=d,Z=zMY |T ∗,D=d,Z=z(m̃
∗). (4.9.85)

It then yields from (4.9.83) and (4.9.85) that

0 = FT ∗|T,D=d,Z=z

[
MY |T ∗,D=d,Z=z(m

∗)−MY |T ∗,D=d,Z=z(m̃
∗)
]
. (4.9.86)

Since FT ∗|T,D=d,Z=z is invertible, it follows from (4.9.86) that

MY |T ∗,D=d,Z=z(m
∗) = MY |T ∗,D=d,Z=z(m̃

∗),

meaning that m̃∗(tk) = m∗(tk) for all k = 1, 2, ..., KT , which contradicts m̃∗ 6= m∗.

Therefore, we can conclude that m∗ is identifiable.

Proofs of Section 4.5

Proof of Theorem 4.5.2. For illustration simplicity, by notation abuse, we denote

Wi as any generic vector of observable variables of interest, where Wi = (W c′
i ,W

d′
i )′ ∈

ΩW c ×ΩW d , with the Q× 1 vector W c
i := (W c

i1, ...,W
c
iQ)′ containing continuous variables

and the vector W d
i containing discrete variables. In this proof, we focus on the uniform

convergence rate of the kernel estimation f̂Wi
(w). Then, replacing Wi by the observable

variables of interest gives the stated results.

Denote w = (wc
′
, wd

′
)′ with wc = (wc1, ..., w

c
Q)′ and f̂Wi

(w) = 1/N
∑N

i=1 f̂
ker
i (w), where

f̂keri (w) := K(W c
i , w

c)1
[
W d
i = wd

]
, (4.9.87)

with K(W c
i , w

c) = h−Q
∏Q

q=1 κ
(
(W c

iq − wcq)/h
)
. Let fWi

(w) be the true distribution of

Wi. For any w ∈ ΩW ,

∣∣∣f̂Wi
(w)− fWi

(w)
∣∣∣ ≤ ∣∣∣f̂Wi

(w)− E
[
f̂Wi

(w)
]∣∣∣+

∣∣∣E [f̂Wi
(w)
]
− fWi

(w)
∣∣∣ .

Given the inequality above, we prove the uniform convergence of
∣∣∣f̂Wi

(w)− fWi
(w)
∣∣∣ and

its rate in two steps. In Step 1, we show that the bias of f̂Wi
(w), i.e. |E[f̂Wi

(w)]−fWi
(w)|,
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is O(h2) uniformly. In Step 2, we show the uniform convergence of f̂Wi
(w) to E[f̂Wi

(w)]

and establish its convergence rate.

Step 1. Firstly, let wd∗ and wc∗ := (wc∗1 , ..., w
c∗
Q )′ be any generic element in ΩW d and

ΩW c , respectively. Then, for w = (wc
′
, wd

′
)′

E
[
f̂keri (w)

]
=h−Q

∑
wd∗∈Ω

Wd

[
1[wd∗ = wd]

∫ Q∏
q=1

κ

(
wc∗q − wcq

h

)
fW c

i ,W
d
i

(
wc∗, wd∗

)
dwc∗

]
,

by changing of variables using v = (v1, ..., vQ)′ with vq = (wc∗q − wcq)/h and q = 1, ..., Q,

E
[
f̂keri (w)

]
=

∑
wd∗∈Ω

Wd

[
1[wd∗ = wd]

∫ Q∏
q=1

κ(vq)fW c
i ,W

d
i
(wc + hv, wd∗)dv

]

=

∫
fW c

i ,W
d
i
(wc + hv, wd)

Q∏
q=1

κ(vq)dv, (4.9.88)

where we denote the shorthand notation wc + hv := (wc1 + hv1, ..., w
c
Q + hvQ). Let the

Q× 1 vector f
(1)
c (w) := ∂fWi

(w)/∂wc represent the first order derivative of fWi
(w) with

respect to wc, and let the Q × Q matrix f
(2)
c (w) := ∂2fWi

(w)/∂wc∂wc
′

be the second

order derivative of fWi
with respect to wc. Consider the Taylor series expansion of

fW c
i ,W

d
i
(wc + hv, wd) around w:

fW c
i ,W

d
i
(wc + hv, wd)− fW c

i ,W
d
i
(wc, wd) = hf (1)

c (w)′v + h2v′f (2)
c (w̃)v (4.9.89)

where w̃ is between (wc +hv, wd) and (wc, wd). Since Wi is identically distributed based

on Theorems 4.4.3 and 4.4.5, we have E[f̂Wi
(w)] = E[f̂keri (w)]. Plugging (4.9.89) into

(4.9.88) gives

E
[
f̂Wi

(w)
]
− fWi

(w) =

∫ [
hf (1)

c (w)′v + h2v′f (2)
c (w̃)v

] Q∏
q=1

κ(vq)dv

=hf (1)
c (w)′

∫
v

Q∏
q=1

κ(vq)dv + h2

∫
v′f (2)

c (w̃)v

Q∏
q=1

κ(vq)dv



4.9. APPENDIX 233

≤Ch2

∫
v′v

Q∏
q=1

κ(vq)dv

=Ch2

Q∑
q=1

∫
v2
qκ(vq)dvq, (4.9.90)

where the inequality is because that each element in f
(2)
c is bounded uniformly in wc,

and the symmetric kernel function κ(·) in Assumption 4.5.2 (c) implies
∫
κ(vq)vqdvq = 0,

thus
∫
v
∏Q

q=1 κ(vq)dv = (
∫
v1κ(v1)dv1, ...,

∫
vQκ(vQ)dvQ)′ = (0, ..., 0)′. From (4.9.90), we

get

sup
w∈ΩW

∣∣∣E [f̂Wi
(w)
]
− fWi

(w)
∣∣∣ ≤ sup

w∈ΩW

∣∣∣∣∣Ch2

Q∑
q=1

∫
κ(vq)v

2
qdvq

∣∣∣∣∣ ≤ CK1Qh
2 = O(h2).

(4.9.91)

Step 2. Next, we show the uniform convergence of |f̂Wi
(w) − E[f̂Wi

(w)]|. Since ΩW c

is compact and ΩW d has finite dimension as in Assumption 4.5.2 (a), for some constant

C > 0, ΩW can be covered by less than LN = Cl−QN open balls of radius lN , where for

any w = (wc
′
, wd

′
)′, w̃ = (w̃c

′
, w̃d

′
)′ in the same ball, we let wd = w̃d. Denote the centers

of these open balls as w̄jε with j = 1, 2, ..., J(ε) and J(ε) ≤ LN . For any w, w̃ in the

same ball, the mean value theorem implies that

sup
‖w−w̃‖<ε

∣∣∣f̂Wi
(w)− f̂Wi

(w̃)
∣∣∣ ≤ sup

‖w−w̃‖<ε

1

N

N∑
i=1

|KW (W c
i , w

c)−KW (W c
i , w̃

c)|

= sup
‖w−w̃‖<ε

1

NhQ

N∑
i=1

∣∣∣∣∣
Q∏
q=1

κ

(
W c
iq − wcq
h

)
−

Q∏
q=1

κ

(
W c
iq − w̃cq
h

)∣∣∣∣∣
≤ sup
‖w−w̃‖<ε

1

NhQ+1

N∑
i=1

|κ̃′ (wc∗h )| ‖wc − w̃c‖

≤ClNh−(Q+1), (4.9.92)

where wc∗h denotes some intermediate value between (W c
i −wc)/h and (W c

i − w̃c)/h, and

κ̃′(v) represents the first order derivative of
∏Q

q=1 κ(vq) to v = (v1, ..., vQ)′. The last line

of (4.9.92) is because of the boundedness of κ(·) and the uniform boundedness of its first

order derivative (Assumption 4.5.2). Let w̄jε denote the center of an open ball containing
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w. Then,

sup
w∈ΩW

∣∣∣f̂Wi
(w)− E[f̂Wi

(w)]
∣∣∣ ≤ max

1≤j≤LN
sup

‖w−w̄jε‖<ε

∣∣∣f̂Wi
(w)− f̂Wi

(w̄jε)
∣∣∣

+ max
1≤j≤LN

∣∣∣f̂Wi
(w̄jε)− E[f̂Wi

(w̄jε)]
∣∣∣

+ max
1≤j≤LN

sup
‖w−w̄jε‖<ε

∣∣∣E[f̂Wi
(w)]− E[f̂Wi

(w̄jε)]
∣∣∣

:=R1 +R2 +R3. (4.9.93)

By (4.9.92), we find immediately that R1 and R3 can be bounded as below

R1 ≤C1lNh
−(Q+1), and R3 ≤ C3lNh

−(Q+1), (4.9.94)

for some constants C1, C3. The main task is then to find the convergence rate of R2.

Denote

QN,i := QN,i(w) = (f̂keri (w)− E[f̂keri (w)])/N,

where to east the notation, we suppress the argument w in QN,i(w). Then, f̂Wi
(w) −

E[f̂Wi
(w)] =

∑N
i=1QN,i. Following the method of Masry (1996), which aims at approx-

imating dependent random variables by independent ones, we further divide the proof

for R2 into two parts:

� Step 2.1 construct the approximation process;

� Step 2.2 shows that the independent random variable approximation converges

uniformly and verifies the uniform convergence for the reminder term.

Step 2.1. Recall that S1, ...,SqN are the mutually exclusive partitions of index set

{1, 2, ..., N} with
⋃
l=1,...,qN

Sl = {1, 2, ..., N}. Define VN(k) =
∑

i∈Sk QN,i, for k =

1, ..., qN and


W ′
N =

qN/2∑
k=1

VN(2k − 1), W
′′
N =

qN/2∑
k=1

VN(2k), if qN is even

W ′
N =

(qN+1)/2∑
k=1

VN(2k − 1), W
′′
N =

(qN−1)/2∑
k=1

VN(2k), if qN is odd
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so that f̂Wi
(w)−E[f̂Wi

(w)] = W ′
N +W

′′
N with W ′

N and W
′′
N are the sums of QN,i over the

odd-numbered subsets {S2k−1} and even-numbered subsets {S2k}, respectively. Then,

for any η > 0,

Pr(R2 > η) ≤Pr

(
max

1≤j≤LN
|W ′

N(w̄jε)| > η/2

)
+ Pr

(
max

1≤j≤LN

∣∣∣W ′′

N(w̄jε)
∣∣∣ > η/2

)
≤2LN sup

w∈ΩW

Pr (|W ′
N(w)| > η/2) . (4.9.95)

Next, we bound Pr (|W ′
N(w)| > η/2) by applying Lemma 4.9.4 and approximating the

odd-numbered {VN(2k − 1)} series by independent random variables. Enlarging the

probability space if necessary, let us introduce a random variable sequence {U1, U2, ...}

of mutually independent uniform [0, 1] random variables, which is also independent to the

odd-numbered sequence {VN(2k − 1)}. Define V ∗N(0) = 0 and V ∗N(1) = VN(1). Then by

Lemma 4.9.4, for each k ≥ 2, there is a random variable V ∗N(2k−1) that is a measurable

function of {VN(1), VN(3), ...VN(2k − 1), Uk} satisfying the three conditions below:

(a) V ∗N(2k − 1) is independent of {VN(1), VN(3), ..., VN(2k − 3)};

(b) V ∗N(2k − 1) has the same distribution as VN(2k − 1);

(c) for any µ such that 0 < µ ≤ ‖VN(2k − 1)‖∞ <∞,

Pr(|V ∗N(2k − 1)−VN(2k − 1)| > µ)

≤18(‖VN(2k − 1)‖∞/µ)1/2 sup |Pr(AB)− Pr(A)Pr(B)|, (4.9.96)

where the inequality follows by setting the γ in Lemma 4.9.4 as infinity, and the supre-

mum is over all possible sets A and B, for A,B in the σ-field of events generated by

{VN(1), VN(3), ..., VN(2k − 3)} and by VN(2k − 1), respectively. Most importantly, such

construction of V ∗N(2k− 1) guarantees that V ∗N(1), V ∗N(3), ..., V ∗N(2k− 1) are mutually in-

dependent with each other based on condition (a) above. Up to here, we have established

the approximation of the dependent random sequence {VN(2k− 1)} by the independent

one {V ∗N(2k − 1)}.
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Step 2.2. Without loss of generality, let qN be an even number. Then,

Pr (|W ′
N(w)| > η/2)

=Pr

∣∣∣∣∣∣
qN/2∑
k=1

[VN(2k − 1)− V ∗N(2k − 1)] +

qN/2∑
k=1

V ∗N(2k − 1)

∣∣∣∣∣∣ > η/2


≤Pr

∣∣∣∣∣∣
qN/2∑
k=1

V ∗N(2k − 1)

∣∣∣∣∣∣ > η/4

+ Pr

∣∣∣∣∣∣
qN/2∑
k=1

[VN(2k − 1)− V ∗N(2k − 1)]

∣∣∣∣∣∣ > η/4


:=R21(w) +R22(w). (4.9.97)

Firstly, we bound R21(w) as follows. Denote ri = |∆(i, N)|, then r̄N = sup1≤i≤N ri.

Noting that κ(·) is bounded, let supwc∈ΩWc |
∏Q

q=1 κ(vq)| = A1 for some constant A1 > 0.

Then, by construction,

|QN,i(w)| ≤ 2A1(NhQ)−1, and |VN(k)| ≤ 2rkA1(NhQ)−1 ≤ 2r̄NA1(NhQ)−1. (4.9.98)

Let λN = C[NhQ ln(N)]1/2 and we have that for N large enough, by choosing C properly,

λN |VN(k)| = 2CA1r̄N

(
ln(N)

NhQ

)1/2

≤ 1/2,

because of r̄N [ln(N)/(NhQ)]1/2 = O(1) in Assumption 4.5.2. By the inequality that

exp(x) ≤ 1 + x+ x2 when |x| ≤ 1/2, we can get

exp (±λNVN(2k − 1)) ≤ 1± λNVN(2k − 1) + λ2
NV

2
N(2k − 1).

Thus, it yields from E[λNVN(2k − 1)] = 0 and the same distribution of V ∗N(2k − 1) and

VN(2k − 1) that

E [exp(±λNV ∗N(2k − 1))] =E [exp(±λNVN(2k − 1))] ≤ 1 + λ2
NE[V 2

N(2k − 1)]. (4.9.99)

Moreover, because 1 + x ≤ exp(x) for x ≥ 0, let x = E [λ2
NV

2
N(2k − 1)] we have

E [exp(±λNV ∗N(2k − 1))] ≤ exp
(
E
[
λ2
NV

2
N(2k − 1)

])
= exp

(
E
[
λ2
NV

∗2
N (2k − 1)

])
,

(4.9.100)



4.9. APPENDIX 237

From the Markov inequality, for any generic random variable X, constants c and a > 0,

we have Pr(X > c) ≤ E[exp(aX)]
exp(ac)

. Consequently, based on the independence of {V ∗N(2k −

1)}qN/2k=1 and (4.9.100),

R21(w) =Pr

∣∣∣∣∣∣
qN/2∑
k=1

V ∗N(2k − 1)

∣∣∣∣∣∣ > η/4


=Pr

qN/2∑
k=1

V ∗N(2k − 1) > η/4

+ Pr

− qN/2∑
k=1

V ∗N(2k − 1) > η/4


≤

E

exp

λN qN/2∑
k=1

V ∗N(2k − 1)

+ E

exp

−λN qN/2∑
k=1

V ∗N(2k − 1)

 / exp(λNη/4)

≤


qN/2∏
k=1

E [exp (λNV
∗
N(2k − 1))] +

qN/2∏
k=1

E [exp (−λNV ∗N(2k − 1))]

 / exp(λNη/4)

≤2

qN/2∏
k=1

exp
(
E
[
λ2
NV

∗2
N (2k − 1)

])
/ exp(λNη/4)

≤2 exp

−λNη/4 + λ2
N

qN/2∑
k=1

E
[
V ∗2N (2k − 1)

] (4.9.101)

where the first inequality is obtained by letting a = λN and c = η/4 in the Markov

inequality. Due that {VN(2k − 1)} and {V ∗N(2k − 1)} have identical probability and

VN(k) =
∑

i∈Sk QN,i,

qN/2∑
k=1

E
[
V ∗2N (2k − 1)

]
=

qN/2∑
k=1

E
[
V 2
N(2k − 1)

]
=

qN/2∑
k=1

∑
i,j∈S2k−1

Cov (QN,i, QN,j) .

Given that the density function fW c
i

is uniformly bounded (Assumption 4.5.2 (b)), there

exists a constant A2 such that |fW c
i
| < A2. Then, because

QN,i =
1

N

{
K(W c

i , w
c)1[W d

i = wd]− E
[
K(W c

i , w
c)1[W d

i = wd]
]}
,

we have

Var [QN,i] = E
[
Q2
N,i

]
≤ 1

N2
E
[
K2(W c

i , w
c)
]
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=
1

(NhQ)2

∫ Q∏
q=1

κ2

(
wc∗q − wcq

h

)
fW c

i
(wc∗q )dwc∗

≤ A2

N2hQ

Q∏
q=1

∫
κ2 (vq) dvq =

A3

N2hQ
, (4.9.102)

with A3 = A2K
Q
2 and A3 < ∞ due that

∫
κ2 (v) dv = K2 < ∞. Recall that ri =

|∆(i, N)|. By the Cauchy–Schwarz inequality and (4.9.102)∣∣∣∣∣∣
qN/2∑
k=1

∑
i,j∈S2k−1

Cov (QN,i, QN,j)

∣∣∣∣∣∣ ≤
qN/2∑
k=1

∑
i,j∈S2k−1

|Cov (QN,i, QN,j)|

≤
qN/2∑
k=1

∑
i,j∈S2k−1

Var [QN,i]

≤ A3

2N2hQ

qN/2∑
k=1

|S2k−1|(|S2k−1| − 1),

substituting
∑q/2

k=1 |S2k−1| ≤ N and |S2k−1| ≤ ri2k−1
into the above inequality,

∣∣∣∣∣∣
qN/2∑
k=1

∑
i,j∈S2k−1

Cov (QN,i, QN,j)

∣∣∣∣∣∣ ≤ A3

2N2hQ

qN/2∑
k=1

r2
i2k−1

+N

 =
A4

NhQ
, (4.9.103)

for some constant A4 > 0, because
∑qN/2

k=1 r2
i2k−1

≤
∑qN

k=1 r
2
ik
≤
∑N

i=1 |∆(i, N)|2 = O(N)

(Assumption 4.5.2). Given (4.9.103), it is easy to see that (4.9.101) becomes to

R21(w) ≤2 exp

(
−λNη

4
+ λ2

N

A4

NhQ

)
= 2 exp

(
−λNη

4
+ A4 ln(N)

)
. (4.9.104)

Let η = 4A5[ln(N)/(NhQ)]1/2 for some constant A5 > 0. Then, we have λNη = A5 ln(N).

We can bound R21(w) uniformly as

sup
w∈ΩW

R21(w) ≤2 exp((A4 − A5) ln(N)) = 2N−α, (4.9.105)

and we choose A5 large enough such that α > 0 with α = A5 − A4.

At last, we deal with R22(w). Let B2k−3 ∈ σ{VN(1), VN(3), ..., VN(2k − 3)}, B′2k−1 ∈
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σ{VN(2k − 1)} and

α2k−1 = sup
B2k−3,B

′
2k−1

∣∣Pr(B2k−3, B
′
2k−1)− Pr(B2k−3)Pr(B′2k−1)

∣∣ .
Making use of (4.9.96), we can obtain that the reminder term

R22(w) =Pr

∣∣∣∣∣∣
qN/2∑
k=1

[VN(2k − 1)− V ∗N(2k − 1)]

∣∣∣∣∣∣ > η/4


≤

qN/2∑
k=1

Pr

(
|VN(2k − 1)− V ∗N(2k − 1)| > η

2qN

)

≤18

qN/2∑
k=1

(
2qN‖VN(2k − 1)‖∞

η

)1/2

α2k−1. (4.9.106)

Furthermore, applying (4.9.98) and η = 4A5[ln(N)/(NhQ)]1/2 to the above inequality,

R22(w) ≤ 18

qN/2∑
k=1

(
2qNA1r2k−1

ηNhQ

)1/2

α2k−1 ≤A6

(
qN r̄N

[ln(N)NhQ]1/2

)1/2 qN/2∑
k=1

α2k−1

≤A6

(
N

ln(N)

)1/2 qN/2∑
k=1

α2k−1 (4.9.107)

uniformly in w for some constantA6 > 0, where the last line is due to r̄N = O([NhQ/ ln(N)]1/2)

and qN ≤ N . Now, substitute (4.9.105) and (4.9.107) into (4.9.97),

sup
w∈ΩW

Pr (|W ′
N(w)| > η/2) ≤2N−α + A6

(
N

ln(N)

)1/2 qN/2∑
k=1

α2k−1

which, together with (4.9.95), further implies that

Pr(R2 > η) ≤4LNN
−α + 2A6LN

(
N

ln(N)

)1/2 qN/2∑
k=1

α2k−1. (4.9.108)

Let lN = [ln(N)h(Q+2)/N ]1/2 = ηhQ+1 → 0, then LN = 1/lQN = 1/[ηh(Q+1)]Q →

∞ as N → ∞. By properly choosing α, we can obtain the result that LnN
−α is

summable, i.e.
∑∞

N=1 LnN
−α < ∞. In addition, by Assumption 4.5.3, we know that

LN

(
N

ln(N)

)1/2∑qN/2
k=1 α2k−1 is also summable. It then follows from the Borel-Cantelli
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lemma that

R2 =O(η) = O

([
ln(N)

NhQ

]1/2
)

almost surely. (4.9.109)

Together with (4.9.91) and (4.9.94), we arrive the conclusion that

sup
w∈ΩW

∣∣∣f̂Wi
(w)− fWi

(w)]
∣∣∣ =Op

(
[ln(N)/(NhQ)]1/2 + h2

)
. (4.9.110)

Proof of Corollary 1. We prove the desired result in two steps. Step 1 aims at the

uniform convergence of f̂Fi|F∗i ,Zi . Step 2 fulfils the proof by establishing the uniform

convergence of f̂S∗,F∗i |Di,Si,Fi,Zi .

Step 1. From (4.9.72) we know that FF̃ ,F ,Y |Z × F
−1

F̃ ,F|Z = FF|F∗,Z × TY |F∗,Z × F−1
F|F∗,Z .

Denote B(γ0) := FF̃ ,F ,Y |Z × F
−1

F̃ ,F|Z , and let λ(γ0) and ψ(γ0) represent the eigenvalues

and eigenvectors of B(γ0). Then, we have
(
B(γ0)− λ(γ0)IKT

)
ψ(γ0) = 0.

Furthermore, recall that TY |F∗,Z is a diagonal matrix with all entries on its diagonal

strictly positive. It then yields from the eigendecomposition that for the eigenvalue

λ(γ0) = E[Yi|F∗i = n∗, Zi], its eigenvector is ψ(γ0) = [fFi|F∗i =n∗,Zi(0), ..., fFi|F∗i =n∗,Zi(KF−

1)]′. Andrew et al. (1993) shows the existence of a neighbourhood of γ0 in the parameter

space, denoted by M0, such that for any γ ∈ M0, there exist an eigenvalue function

λ(γ) and an eigenvector function ψ(γ) that are both analytic functions of γ. Given the

uniform convergence of γ̂N to γ0 proved in Theorem 4.5.2, we only need to consider the

convergence of ψ(γ) over a small neighbourhood of γ0 such that ‖γ − γ0‖∞ ≤ η with

η = o(1). The rest of the proof is exactly the same with the proof of Lemma 3 in Hu

(2008), therefore ignored here due to space limitation. Let ψ̂N := ψ(γ̂N) and ψ0 := ψ(γ0),

then we can show the uniform convergence

sup
‖γ̂N−γ0‖∞≤η

∥∥∥ψ̂N − ψ0

∥∥∥
∞

= Op

(
‖γ̂N − γ0‖∞

)
,

sup
‖γ̂N−γ0‖∞≤η

∥∥∥∥ψ̂N − ψ0 −
∂ψ(γ0)

∂γ′
(γ̂N − γ0)

∥∥∥∥
∞

= Op

(
‖γ̂N − γ0‖2

∞
)
.
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Step 2. Again, because of the uniform convergence of γ̂N , in Step 2 we consider only a

small neighbourhood of γ0. Denote ϕ = (ϕ1, ..., ϕ6)′ where each of its elements represents

one probability distribution on the right hand side of the equation (4.3):

ϕ1 =fSi|S∗i ,F∗i ,Fi,Zi , ϕ2 = fS∗i |F∗i ,Zi , ϕ3 = fFi|F∗i ,Zi , ϕ4 = fF∗i |Zi ,

ϕ5 =fSi|Fi,Zi , ϕ6 = fFi|Zi .

where we actually have that ϕ3 = ψ. Given Proposition 4.4.2, φ = φ(ϕ) = ϕ1ϕ2ϕ3ϕ4/(ϕ5ϕ6),

which is a twice continuously differentiable function of ϕ by Assumption 4.5.2. Be-

side, its estimator is constructed by φ̂N = φ(ϕ̂N) with true value φ0 = φ(ϕ0). Let

the true value of ϕ be ϕ0 = ϕ(γ0, ψ0) = (ϕ0
1, ..., ϕ

0
6)′ and let its plug-in estimator be

ϕ̂N = ϕ(γ̂N , ψ̂N) = (ϕ̂1,N , ..., ϕ̂6,N)′. Then,

dφ(ϕ)

dϕ′
=

(
ϕ2ϕ3ϕ4

ϕ5ϕ6

,
ϕ1ϕ3ϕ4

ϕ5ϕ6

,
ϕ1ϕ2ϕ4

ϕ5ϕ6

,
ϕ1ϕ2ϕ3

ϕ5ϕ6

,−ϕ1ϕ2ϕ3ϕ4

ϕ2
5ϕ6

,−ϕ1ϕ2ϕ3ϕ4

ϕ5ϕ2
6

)
. (4.9.111)

Recall that there exists a ε > 0, such that ϕ0
6 are uniformly bounded from below by ε

based on the condition stated in Corollary 1. We also know that ϕ0
5 = Cs

nf
s
D(1)fD(0)(n−s) >

ε′ uniformly over ΩW for some constant ε′. Moreover, since ϕ1 to ϕ4 are all conditional

probabilities of discrete random variables, their true values ϕ0
1 to ϕ0

4 all lie in [0, 1].

When we consider a uniform o(1) neighbourhood of γ0, by the uniform convergence of

ψ̂N in Step 1, we know that for large enough sample size, ϕ̂1,N to ϕ̂4,N are also uniformly

bounded from above and ϕ̂5,N and ϕ̂6,N are uniformly bounded from below. There-

fore, any intermediate value ϕ̃ between ϕ0 and ϕ̂N is uniformly bounded. Thus, for

the derivative in (4.9.111) evaluated at ϕ̃, there exists some constant C > 0 such that

‖dφ(ϕ̃)/dϕ′‖ ≤ C uniformly over ΩW . By the mean value theorem, we then have that

sup
‖γ̂N−γ0‖∞<η

‖φ̂N − φ0‖∞ = sup
‖γ̂N−γ0‖∞<η

‖φ(ϕ̂N)− φ(ϕ0)‖∞

≤ sup
‖γ̂N−γ0‖∞<η

∥∥∥∥dφ(ϕ̃)

dϕ′

∥∥∥∥
∞
‖ϕ̂N − ϕ0‖∞

≤C sup
‖γ̂N−γ0‖∞<η

‖ϕ̂N − ϕ0‖∞, (4.9.112)

where ϕ̃ is an intermediate vector between ϕ0 and ϕ̂N . Besides, because ϕ̂N = ϕ(γ̂N , ψ̂N)
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and ϕ0 = ϕ(γ0, ψ0), together with the fact that ϕ(γ, ψ) is continuously differentiable in

(γ, ψ) with uniformly bounded first order derivative, we get that (4.9.112) can be further

bounded by

sup
‖γ̂N−γ0‖∞<η

‖φ̂N − φ0‖∞ ≤C ′
(

sup
‖γ̂N−γ0‖∞<η

‖ψ̂N − ψ‖∞ + ‖γ̂N − γ0‖∞

)
=Op

(
‖γ̂N − γ0‖∞

)
,

for some constant C ′ > 0, and the last line is from in Step 1. Furthermore, recall that

φ = φ(ψ), where ψ = ψ(γ, ϕ) and ϕ = ϕ(γ). Thus, φ can be regarded as a function of γ

only. Applying similar arguments, we can also obtain that

sup
w∈ΩW

∥∥∥∥φ̂N − φ0 − ∂φ

∂γ
(γ̂N − γ0)

∥∥∥∥
∞

=Op

(
‖γ̂N − γ0‖2

∞
)
. (4.9.113)

Proof of Theorem 4.5.3. Now, from m(x; θ, φ) =
∑KT

j=1 m
∗(xj; θ)fT ∗i |Xi=x(tj) with

xj = (d, sj, z, nj) and tj = (sj, nj), we can get

LN(θ, φ̂N)− LN(θ, φ0)

=
1

N

N∑
i=1

τi

{[
Yi −m

(
Xi; θ, φ̂N

)]2

−
[
Yi −m

(
Xi; θ, φ

0
)]2}

=
1

N

N∑
i=1

τi

[
m
(
Xi; θ, φ̂N

)
−m

(
Xi; θ, φ

0
)]2

− 2

N

N∑
i=1

τi
[
Yi −m

(
Xi; θ, φ

0
)] [

m
(
Xi; θ, φ̂N

)
−m

(
Xi; θ, φ

0
)]

=
1

N

N∑
i=1

τi

{
KT∑
j=1

m∗(xi,j; θ)
[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]}2

− 2

N

N∑
i=1

τi
[
Yi −m

(
Xi; θ, φ

0
)]{ KT∑

j=1

m∗(xi,j; θ)
[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]}
,

(4.9.114)

where xi,j = (Di, sj, Zi, nj). Because of the uniform convergence of γ̂N , we only need

to focus on a small neighbourhood of γ0. Due to the boundedness of τ(x) and the
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Cauchy–Schwarz inequality,

∣∣∣LN(θ, φ̂N)− LN(θ, φ0)
∣∣∣

≤C
N

N∑
i=1

KT∑
j=1

m∗(xi,j; θ)
2

KT∑
j=1

[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]2

+
2

N

N∑
i=1

KT∑
j=1

τi
∣∣Yi −m (Xi; θ, φ

0
)∣∣ |m∗(xi,j; θ)| ∣∣∣f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)∣∣∣

≤C

(
sup

‖γ̂N−γ0‖∞≤η

∥∥∥φ̂N − φ0
∥∥∥
∞

)2
1

N

KT∑
j=1

N∑
i=1

m∗(xi,j; θ)
2

+ 2 sup
‖γ̂N−γ0‖∞≤η

∥∥∥φ̂N − φ0
∥∥∥
∞

KT∑
j=1

[
1

N

N∑
i=1

τi
∣∣Yi −m (Xi; θ, φ

0
)∣∣2]1/2 [

1

N

N∑
i=1

|m∗(xi,j; θ)|2
]1/2

.

(4.9.115)

Because (Di, Zi) is i.i.d., then xi,j = (Di, sj, Zi, nj) is also i.i.d. for any given j =

1, ..., KT . Then, by Assumption 4.5.4 and the uniform convergence of i.i.d. samples

(Lemma 2.4 of Newey and McFadden (1994))

sup
θ∈Θ

1

N

N∑
i=1

m∗(xi,j; θ)
2 ≤ sup

θ∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

m∗(xi,j; θ)
2 − E

[
m∗(xi,j; θ)

2
]∣∣∣∣∣+ sup

θ∈Θ

∣∣E [m∗(xi,j; θ)2
]∣∣

=Op(1), (4.9.116)

because supθ∈Θ E [m∗(xi,j; θ)
2] ≤ E[h1(xi,j)] < ∞ by Assumption 4.5.4. Similarly, the

uniform convergence of data with dependency neighbourhood structure in Lemma 4.9.3

leads to

sup
θ∈Θ

1

N

N∑
i=1

τi
∣∣Yi −m (Xi; θ, φ

0
)∣∣2 =Op(1), (4.9.117)

because of Assumption 4.5.1 and Assumption 4.5.4 (e). Hence, we can conclude that

sup
θ∈Θ

∣∣∣LN(θ, φ̂N)− LN(θ, φ0)
∣∣∣ =Op

(
sup

‖γ̂N−γ0‖∞≤η

∥∥∥φ̂N − φ0
∥∥∥
∞

)
= Op

(
‖γ̂N − γ0‖∞

)
.

(4.9.118)

Next, we show the uniform convergence of LN(θ, φ0) to L(θ, φ0) by verifying the uniform
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law of large number for dependent data as in Lemma 4.9.3. Firstly, condition (i), (ii),

(iii) and (iv)-(c) of Lemma 4.9.3 are trivially sanctified by Assumption 4.5.4 (a), (c) and

(e). Secondly, (iv) (a) of Lemma 4.9.3 holds because of Assumption 4.5.1. In addition,

we have that 1/N
∑N

i=1 |∆(i, N)| ≤ 1/N
∑N

i=1 |∆(i, N)|2 = O(1) as in Assumption 4.5.2.

Hence, we have verified that all required conditions of Lemma 4.9.3 are satisfied, implying

sup
θ∈Θ

∣∣LN(θ, φ0)− L(θ, φ0)
∣∣ (4.9.119)

= sup
θ∈Θ

∣∣∣∣∣ 1

N

N∑
i=1

τi
[
Yi −m(Xi; θ, φ

0)
]2 − E

[
τi
[
Yi −m(Xi; θ, φ

0)
]2]∣∣∣∣∣

=op(1). (4.9.120)

Then, making use of (4.9.118), (4.9.119) and Theorem 4.5.2, we can bound

sup
θ∈Θ

∣∣∣L(θ, φ0)− LN(θ, φ̂N)
∣∣∣

= sup
θ∈Θ

∣∣∣L(θ, φ0)− LN(θ, φ0) + LN(θ, φ0)− LN(θ, φ̂N)
∣∣∣

≤ sup
θ∈Θ

∣∣L(θ, φ0)− LN(θ, φ0)
∣∣+ sup

θ∈Θ

∣∣∣LN(θ, φ0)− LN(θ, φ̂N)
∣∣∣

= sup
θ∈Θ

∣∣L(θ, φ0)− LN(θ, φ0)
∣∣+Op

(
‖γ̂N − γ0‖∞

)
=op(1). (4.9.121)

As assumed in Assumption 4.5.4, θ0 uniquely minimises the objective function L(θ, φ0)

over Θ. Then, for any δ > 0, there exists a ε > 0 such that ‖θ̂N − θ0‖ > δ implies

L(θ̂N , φ
0)− L(θ0, φ0) > ε. Thus, by the definition of θ̂N ,

Pr
(∥∥∥θ̂N − θ0

∥∥∥ > δ
)

≤Pr
(
L(θ̂N , φ

0)− L(θ0, φ0) > ε
)

≤Pr
(
L(θ̂N , φ

0)− LN(θ̂N , φ̂N) + LN(θ̂N , φ̂N)− L(θ0, φ0) > ε
)

≤Pr
(
L(θ̂N , φ

0)− LN(θ̂N , φ̂N) + LN(θ0, φ̂N)− L(θ0, φ0) > ε
)

≤Pr

(
sup
θ∈Θ

∣∣∣L(θ, φ0)− LN(θ, φ̂N)
∣∣∣ > ε

)
→0, (4.9.122)
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where the last line is due to (4.9.121). It then follows from (4.9.122) that ‖θ̂N − θ0‖ =

op(1).

Proof of Lemma 4.5.4. (a) Based on Theorems 4.5.2 and 1, we know that φ̂N =

φ(γ̂N) and γ̂N
p→ γ0. Hence, in what follows, we can establish the consistency of

1
N

∑N
i=1

∂g(Wi;θ̃N ,φ̂N )
∂θ′

in a small neighbourhood of γ0. For a small constant η > 0, by

triangular inequality,

sup
‖γ̂N−γ0‖∞<η

∥∥∥∥∥ 1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′
− E

[
∂g(Wi; θ

0, φ0)

∂θ′

]∥∥∥∥∥
≤ sup
‖γ̂N−γ0‖∞<η

∥∥∥∥∥ 1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′
− 1

N

N∑
i=1

∂g(Wi; θ̃N , φ
0)

∂θ′

∥∥∥∥∥
+

∥∥∥∥∥ 1

N

N∑
i=1

∂g(Wi; θ̃N , φ
0)

∂θ′
− 1

N

N∑
i=1

∂g(Wi; θ
0, φ0)

∂θ′

∥∥∥∥∥
+

∥∥∥∥∥ 1

N

N∑
i=1

∂g(Wi; θ
0, φ0)

∂θ′
− E

[
∂g(Wi; θ

0, φ0)

∂θ′

]∥∥∥∥∥
:=H1 +H2 +H3. (4.9.123)

Given (4.9.123), it suffices to show that H1,H2,H3 are all op(1). In what follows, we

divide the rest of the proof into three steps.

Step 1. First, consider H1. By definition of g(Wi; θ, φ), we have

1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′
− 1

N

N∑
i=1

∂g(Wi; θ̃N , φ
0)

∂θ′

=
1

N

N∑
i=1

τi

{[
Yi −m(Xi; θ̃N , φ̂N)

] d2m(Xi; θ̃N , φ̂N)

dθdθ′
−
[
Yi −m(Xi; θ̃N , φ

0)
] d2m(Xi; θ̃N , φ

0)

dθdθ′

}

− 1

N

N∑
i=1

τi

[
dm(Xi; θ̃N , φ̂N)

dθ

dm(Xi; θ̃N , φ̂N)

dθ′
− dm(Xi; θ̃N , φ

0)

dθ

dm(Xi; θ̃N , φ
0)

dθ′

]
.

(4.9.124)

Making use of the identity âb̂− ab = (â− a)b+ a(b̂− b) + (â− a)(b̂− b) and applying it
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to both terms on the right hand side of (4.9.124) give us

1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′
− 1

N

N∑
i=1

∂g(Wi; θ̃N , φ
0)

∂θ′

=− 1

N

N∑
i=1

τi

[
m(Xi; θ̃N , φ̂N)−m(Xi; θ̃N , φ

0)
] d2m(Xi; θ̃N , φ

0)

dθdθ′

+
1

N

N∑
i=1

τi

[
Yi −m(Xi; θ̃N , φ

0)
] [d2m(Xi; θ̃N , φ̂N)

dθdθ′
− d2m(Xi; θ̃N , φ

0)

dθdθ′

]

− 1

N

N∑
i=1

τi

[
m(Xi; θ̃N , φ̂N)−m(Xi; θ̃N , φ

0)
] [d2m(Xi; θ̃N , φ̂N)

dθdθ′
− d2m(Xi; θ̃N , φ

0)

dθdθ′

]

− 1

N

N∑
i=1

τi

[
dm(Xi; θ̃N , φ̂N)

dθ
− dm(Xi; θ̃N , φ

0)

dθ

]
dm(Xi; θ̃N , φ

0)

dθ′

− 1

N

N∑
i=1

τi
dm(Xi; θ̃N , φ

0)

dθ

[
dm(Xi; θ̃N , φ̂N)

dθ′
− dm(Xi; θ̃N , φ

0)

dθ′

]

− . 1

N

N∑
i=1

τi

[
dm(Xi; θ̃N , φ̂N)

dθ
− dm(Xi; θ̃N , φ

0)

dθ

][
dm(Xi; θ̃N , φ̂N)

dθ′
− dm(Xi; θ̃N , φ

0)

dθ′

]
.

(4.9.125)

Recall that m(Xi; θ, φ) =
∑KT

j=1m
∗(xi,j; θ)fT ∗i |Xi(tj) and xi,j = (Di, sj, Zi, nj). We can

further rewrite (4.9.125) as

1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′
− 1

N

N∑
i=1

∂g(Wi; θ̃N , φ
0)

∂θ′

=− 1

N

N∑
i=1

τi

{
KT∑
j=1

m∗(xi,j; θ̃N)
[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]} KT∑
j=1

d2m∗(xi,j; θ̃N)

dθdθ′
fT ∗i |Xi(tj)

+
1

N

N∑
i=1

τi

[
Yi −m(Xi; θ̃N , φ

0)
]{ KT∑

j=1

d2m∗(xi,j; θ̃N)

dθdθ′

[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]}

− 1

N

N∑
i=1

τi

{
KT∑
j=1

m∗(xi,j; θ̃N)
[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]}

×

{
KT∑
j=1

d2m∗(xi,j; θ̃N)

dθdθ′

[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]}

− 1

N

N∑
i=1

τi

{
KT∑
j=1

∂m∗(xi,j; θ̃N)

∂θ

[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]} KT∑
j=1

dm∗(xi,j; θ̃N)

dθ′
fT ∗i |Xi(tj)
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− 1

N

N∑
i=1

τi

KT∑
j=1

dm∗(xi,j; θ̃N)

dθ
fT ∗i |Xi(tj)

{
KT∑
j=1

∂m∗(xi,j; θ̃N)

∂θ′

[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]}

− . 1

N

N∑
i=1

τi

{
KT∑
j=1

∂m∗(xi,j; θ̃N)

∂θ

[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]}

×

{
KT∑
j=1

∂m∗(xi,j; θ̃N)

∂θ′

[
f̂T ∗i |Xi(tj)− fT ∗i |Xi(tj)

]}
. (4.9.126)

Because that for a k × k matrix A = ab′ where a, b ∈ Rk, then ‖A‖ = ‖a‖‖b‖, the

boundedness of fT ∗i |Xi and (4.9.126),

H1 ≤C sup
‖γ̂N−γ0‖∞<η

∥∥∥φ̂N − φ0
∥∥∥
∞

1

N

KT∑
j,l=1

N∑
i=1

∣∣∣m∗(xi,j; θ̃N)
∣∣∣ ∥∥∥∥∥d2m∗(xi,l; θ̃N)

dθdθ′

∥∥∥∥∥
+ C sup

‖γ̂N−γ0‖∞<η

∥∥∥φ̂N − φ0
∥∥∥
∞

1

N

KT∑
j=1

N∑
i=1

τi

∣∣∣Yi −m(Xi; θ̃N , φ
0)
∣∣∣ ∥∥∥∥∥d2m∗(xi,j; θ̃N)

dθdθ′

∥∥∥∥∥
+ C

(
sup

‖γ̂N−γ0‖∞<η

∥∥∥φ̂N − φ0
∥∥∥
∞

)2
1

N

KT∑
j,l=1

N∑
i=1

∣∣∣m∗(xi,j; θ̃N)
∣∣∣ ∥∥∥∥∥d2m∗(xi,l; θ̃N)

dθdθ′

∥∥∥∥∥
+ 2C sup

‖γ̂N−γ0‖∞<η

∥∥∥φ̂N − φ0
∥∥∥
∞

1

N

KT∑
j,l=1

N∑
i=1

∥∥∥∥∥∂m∗(xi,j; θ̃N)

∂θ

∥∥∥∥∥
∥∥∥∥∥dm∗(xi,l; θ̃N)

dθ′

∥∥∥∥∥
C

(
sup

‖γ̂N−γ0‖∞<η

∥∥∥φ̂N − φ0
∥∥∥
∞

)2
1

N

KT∑
j,l=1

N∑
i=1

∥∥∥∥∥∂m∗(xi,j; θ̃N)

∂θ

∥∥∥∥∥
∥∥∥∥∥dm∗(xi,l; θ̃N)

dθ′

∥∥∥∥∥
:=H11 +H12 +H13 +H14 +H15. (4.9.127)

By the Cauchy–Schwarz inequality, we can further bound H11 as

H11 ≤C sup
‖γ̂N−γ0‖∞<η

∥∥∥φ̂N − φ0
∥∥∥
∞

KT∑
j,l=1

[
1

N

N∑
i=1

∣∣∣m∗(xi,j; θ̃N)
∣∣∣2]1/2

 1

N

N∑
i=1

∥∥∥∥∥d2m∗(xi,l; θ̃N)

dθdθ′

∥∥∥∥∥
2
1/2

≤Op

(
sup

‖γ̂N−γ0‖∞<η

∥∥∥φ̂N − φ0
∥∥∥
∞

)
=op(1), (4.9.128)

where the second line is due to (4.9.116) and Lemma 4.9.8, and the last line is because of

Corollary 1. For H12, it follows again from the Cauchy–Schwarz inequality and Corollary
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1 that

H12 ≤op(1)

KT∑
j=1

[
1

N

N∑
i=1

τi
∣∣Yi −m(Xi; θ

0, φ0)
∣∣2]1/2

 1

N

N∑
i=1

∥∥∥∥∥d2m∗(xi,j; θ̃N)

dθdθ′

∥∥∥∥∥
2
1/2

=op(1), (4.9.129)

where the last line is due to the uniform convergence in (4.9.119) and that proved in

Lemma 4.9.8. Given H11 = op(1), it is apparent that H13 is also a op(1). Similarly, if

we know that H14 = op(1), then H15 = op(1). Again, by the Cauchy–Schwarz inequality

and Lemma 4.9.8,

H14 ≤op(1)

KT∑
j,l=1

 1

N

N∑
i=1

∥∥∥∥∥dm∗(xi,j; θ̃N)

dθ

∥∥∥∥∥
2
1/2  1

N

N∑
i=1

∥∥∥∥∥dm∗(xi,l; θ̃N)

dθ′

∥∥∥∥∥
2
1/2

=op(1), (4.9.130)

Thus, based on (4.9.128), (4.9.129) and (4.9.130), we can conclude that H1 = op(1).

Step 2. Consider the term inside the absolute value in H2

1

N

N∑
i=1

∂g(Wi; θ̃N , φ
0)

∂θ′
− 1

N

N∑
i=1

∂g(Wi; θ
0, φ0)

∂θ′

=
1

N

N∑
i=1

τi

{[
Yi −m(Xi; θ̃N , φ

0)
] ∂2m(Xi; θ̃N , φ

0)

∂θ∂θ′
−
[
Yi −m(Xi; θ

0, φ0)
] ∂2m(Xi; θ

0, φ0)

∂θ∂θ′

}

+
1

N

N∑
i=1

τi

[
∂m(Xi; θ̃N , φ

0)

∂θ

∂m(Xi; θ̃N , φ
0)

∂θ′
− ∂m(Xi; θ

0, φ0)

∂θ

∂m(Xi; θ
0, φ0)

∂θ′

]
.

(4.9.131)

Applying again the identity âb̂ − ab = (â − a)b + a(b̂ − b) + (â − a)(b̂ − b) to (4.9.131)

and substituting m(Xi; θ, φ) =
∑KT

j=1m
∗(xi,j; θ)fT ∗i |Xi(tj) give us

H2 ≤
C

N

N∑
i=1

KT∑
j,l=1

[∣∣∣m∗(xi,j; θ̃N)−m∗(xi,j; θ0)
∣∣∣ ∥∥∥∥d2m∗(xi,l; θ

0)

dθdθ′

∥∥∥∥]

+
C

N

N∑
i=1

KT∑
j=1

[
τi
∣∣Yi −m(Xi; θ

0, φ0)
∣∣ ∥∥∥∥∥d2m∗(xi,j; θ̃N)

dθdθ′
− d2m∗(xi,j; θ

0)

dθdθ′

∥∥∥∥∥
]
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+
C

N

N∑
i=1

KT∑
j,l=1

[∣∣∣m∗(xi,j; θ̃N)−m∗(xi,j; θ0)
∣∣∣ ∥∥∥∥∥d2m∗(xi,l; θ̃N)

dθdθ′
− d2m∗(xi,l; θ

0)

dθdθ′

∥∥∥∥∥
]

+
2C

N

N∑
i=1

KT∑
j,l=1

[∥∥∥∥∥dm∗(xi,j; θ̃N)

dθ
− dm∗(xi,j; θ

0)

dθ

∥∥∥∥∥
∥∥∥∥dm∗(xi,l; θ0)

dθ′

∥∥∥∥
]

+
C

N

N∑
i=1

KT∑
j,l=1

[∥∥∥∥∥dm∗(xi,j; θ̃N)

dθ
− dm∗(xi,l; θ

0)

dθ′

∥∥∥∥∥
∥∥∥∥∥dm∗(xi,l; θ̃N)

dθ′
− dm∗(xi,l; θ

0)

dθ′

∥∥∥∥∥
]

:=H21 +H22 +H23 +H24 +H25. (4.9.132)

By the Cauchy–Schwarz inequality and Lemma 4.9.8, it is easy to show H21 to H25 are

all op(1). Consequently, we know that H2 = op(1).

Step 3. Next, consider H3. Let gr(Wi; θ, φ) be the r-th element in the column vector

g(Wi; θ, φ). Then, we can rewrite H2
3 as

H2
3 =

∥∥∥∥∥ 1

N

N∑
i=1

∂g(Wi; θ
0, φ0)

∂θ′
− E

[
∂g(Wi; θ

0, φ0)

∂θ′

]∥∥∥∥∥
2

=

dθ∑
r,q=1

[
1

N

N∑
i=1

(
∂gr(Wi; θ

0, φ0)

∂θq
− E

[
∂gr(Wi; θ

0, φ0)

∂θq

])]2

. (4.9.133)

Because E[|∂gr(Wi; θ
0, φ0)/∂θq|2] <∞ as in Assumption 4.5.5, the variance of ∂gr(Wi; θ

0, φ0)/∂θq

exists and is finite for all r, q = 1, ..., dθ. Then, the Chebyshev’s inequality implies

Pr

[∣∣∣∣∣ 1

N

N∑
i=1

∂gr(Wi; θ
0, φ0)

∂θq
− E

[
∂gr(Wi; θ

0, φ0)

∂θq

]∣∣∣∣∣ > ε

]

≤Var

[
1

N

N∑
i=1

∂gr(Wi; θ
0, φ0)

∂θq

]
/ε2

=
1

ε2N2

N∑
i=1

∑
j∈∆(i,N)

Cov

(
∂gr(Wi; θ

0, φ0)

∂θq
,
∂gr(Wj; θ

0, φ0)

∂θq

)
+ s.o.

≤ C

ε2N2

N∑
i=1

|∆(i, N)|+ s.o.

=O

(
1

ε2N

)
,

where the second equality comes from Assumption 4.5.1, and the last line is because that

1/N
∑N

i=1 |∆(i, N)| = O(1) (Assumption 4.5.2), and set ε such that ε→ 0 and ε2N →∞
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as N →∞. Thus,

1

N

N∑
i=1

∂gr(Xi; θ
0, φ0)

∂θq
− E

[
∂gr(Xi; θ

0, φ0)

∂θq

]
p→ 0, for all r, q = 1, ..., dθ, (4.9.134)

leading to H3 = op(1). Based on the results in the above three steps, we can make the

conclusion that the stated result holds.

(b) This proof is analogue to the proof of Theorem 8.1 in Newey and McFadden (1994).

All the sufficient conditions are verified in the Lemmas 4.9.9, 4.9.10 and 4.9.11. Re-

call that F̃W (w) = 1/N
∑N

i=1 1[Wi ≤ w] represents the empirical distribution and∫
δ(w)dF̃W (w) = 1/N

∑N
i=1 δ(Wi). By triangular inequality, we have

∥∥∥∥∥ 1√
N

N∑
i=1

[
g(Wi; θ

0, φ̂N)− g(Wi; θ
0, φ0)− δ(Wi)

]∥∥∥∥∥
≤

∥∥∥∥∥ 1√
N

N∑
i=1

[
g(Wi; θ

0, φ̂N)− g(Wi; θ
0, φ0)−G(Wi; γ̃N − γ0)

]∥∥∥∥∥
+

∥∥∥∥∥ 1√
N

N∑
i=1

[
G(Wi; γ̃N − γ0)−

∫
G(w; γ̂N − γ̄)dFW (w)

]∥∥∥∥∥
+

∥∥∥∥∥ 1√
N

N∑
i=1

[∫
G(w; γ̂N − γ̄)dFW (w)−

∫
δ(w)dF̂W (w)

]∥∥∥∥∥
+

∥∥∥∥√N [∫ δ(w)dF̂W (w)−
∫
δ(w)dF̃W (w)

]∥∥∥∥
=op(1), (4.9.135)

where the last line follows from Lemmas 4.9.9, 4.9.10 and 4.9.11.

Proof of Theorem 4.5.5. By Assumption 4.5.4 and the construction of δ(w), we

know that E[g̃i]=0. Since the dependency neighbourhood ∆(i, N) is symmetric as in

Assumption 4.5.7, we know that Σg̃
N is symmetric: because for ∀r, q = 1, 2, ..., dθ, its

(r, q)-th entry

N∑
i=1

∑
j∈∆(i,N)

E[g̃i,rg̃j,q] =
N∑
j=1

∑
i∈∆(j,N)

E[g̃j,rg̃i,q] =
N∑
i=1

∑
j∈∆(i,N)

E[g̃i,qg̃j,r],

where the first equality follows from change of index and the second equality is due to
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the symmetry of ∆(i, N). Under Assumption 4.5.7, the sufficient conditions for the CLT

under neighbourhood dependent data required in Lemma 4.9.7 are satisfied. Thus, we

can show that
[
Σg̃
N

]−1/2

Sg̃N
d→ N(0, Idθ). Next, we show the asymptotic normality for

√
N(θ̂N − θ0).

From (4.13) and Lemma 4.5.4 (b), we have

−

[
1√
N

N∑
i=1

g̃i + op(1)

]
=

1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′

√
N(θ̂N − θ0).

Since from Lemma 4.5.4 (a), we have that 1
N

∑N
i=1

∂g(Wi;θ̃N ,φ̂N )
∂θ′

p→ E
[
∂g(Wi;θ

0,φ0)
∂θ′

]
, where

by Assumption 4.5.5 E
[
∂g(Wi;θ

0,φ0)
∂θ′

]
is invertible. Thus,

[
1
N

∑N
i=1

∂g(Wi;θ̃N ,φ̂N )
∂θ′

]−1

exists

for large enough N . Moreover, recall that ΩN is symmetric and ΩN
p→ Ω with Ω being

positive definite and nonsingular. It indicates that Ω
−1/2
N also exists for large enough N .

Then, because ‖Ω−1/2
N ‖ = O(1) and Ω

−1/2
N =

√
N [Σg̃

N ]−1/2, we can obtain

√
N(θ̂N − θ0) =−

[
1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′

]−1 [
1√
N

N∑
i=1

g̃i + op(1)

]

=−

[
1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′

]−1

Ω
1/2
N

[
Ω
−1/2
N

1√
N

N∑
i=1

g̃i + Ω
−1/2
N op(1)

]

=−

[
1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′

]−1

Ω
1/2
N

[
[Σg̃

N ]−1/2Sg̃N + op(1)
]

d→N(0, H−1ΩH−1),

where the last line is because of[
1

N

N∑
i=1

∂g(Wi; θ̃N , φ̂N)

∂θ′

]
p→ E

[
∂g(Wi; θ

0, φ0)

∂θ′

]
and [Σg̃

N ]−1/2Sg̃N
d→ N(0, Idθ).

Proof of Corollary 2. To simplify notation, denote ˆ̃gi = g(Wi; θ̂N , φ̂N) + δ̂(Wi). Then,

∥∥∥Ω̂N − Ω
∥∥∥ =

∥∥∥∥∥∥ 1

N

N∑
i=1

∑
j∈∆(i,N)

(
ˆ̃gi ˆ̃g
′
j − E[g̃ig̃

′
j]
)∥∥∥∥∥∥
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≤

∥∥∥∥∥∥ 1

N

N∑
i=1

∑
j∈∆(i,N)

(
ˆ̃gi ˆ̃g
′
j − g̃ig̃′j

)∥∥∥∥∥∥+

∥∥∥∥∥∥ 1

N

N∑
i=1

∑
j∈∆(i,N)

(
g̃ig̃
′
j − E[g̃ig̃

′
j]
)∥∥∥∥∥∥

:=∆Ω1 + ∆Ω2. (4.9.136)

Step 1. Consider ∆Ω1 and by simple algebra

∆Ω1 ≤

∥∥∥∥∥∥ 1

N

N∑
i=1

∑
j∈∆(i,N)

[(
ˆ̃gi − g̃i

)(
ˆ̃g′j − g̃′j

)
+ g̃i

(
ˆ̃g′j − g̃′j

)
+
(

ˆ̃gi − g̃i
)
g̃′j

]∥∥∥∥∥∥
≤ 1

N

N∑
i=1

∑
j∈∆(i,N)

[∥∥∥ˆ̃gi − g̃i
∥∥∥∥∥∥ˆ̃g′j − g̃′j

∥∥∥+ ‖g̃i‖
∥∥∥ˆ̃g′j − g̃′j

∥∥∥+
∥∥∥ˆ̃gi − g̃i

∥∥∥∥∥g̃′j∥∥] (4.9.137)

Given (4.9.137), it suffices to show ∆Ω1 = op(1) by verifying that (a) g̃i and ˆ̃gi are

bounded, and (b) 1
N

∑N
i=1

∑
j∈∆(i,N) ‖ˆ̃gi − g̃i‖ = op(1).

Firstly, (a) is satisfied if |g(w; θ, φ) + δ(w; θ, φ)| is uniformly bounded over ΩW and Θ×

[0, 1]. We know that m∗(x; θ) is continuous differentiable in θ to order three (Assumption

4.5.5) and Θ is compact, implying for ∀x ∈ ΩX

|m∗(x; θ)|,
∣∣∣∣∂m∗(x; θ)

∂θ

∣∣∣∣ , ∣∣∣∣∂2m∗(x; θ)

∂θ∂θ′

∣∣∣∣ are bounded uniformly over Θ. (4.9.138)

Furthermore, since ν(w; θ, γ) is almost everywhere (a.e.) continuously differentiable in

wc (Assumption 4.5.6), it implies (by definition of ν(w; θ, γ)) that m∗(x; θ) and ∂m∗(x;θ)
∂θ

are also continuous in wc a.e. within the compact ΩW c . Therefore, for ∀θ ∈ Θ,

|m∗(x; θ)|,
∣∣∣∣∂m∗(x; θ)

∂θ

∣∣∣∣ , ∣∣∣∣∂2m∗(x; θ)

∂θ∂θ′

∣∣∣∣ are bounded uniformly over ΩX . (4.9.139)

Then, (4.9.138) and (4.9.139) together indicate the uniform boundedness of |m∗(x; θ)|

and its first and second derivatives over ΩX and Θ. Thus,

sup
w∈ΩW , (θ,φ)∈Θ×[0,1]

|g(w; θ, φ)| = sup
w∈ΩW , (θ,φ)∈Θ×[0,1]

∣∣∣∣τ(x)(y −m(x; θ, φ))
∂m∗(x; θ)

∂θ

∣∣∣∣
≤C sup

w∈ΩW , (θ,φ)∈Θ×[0,1]

∣∣∣∣∂m∗(x; θ)

∂θ

∣∣∣∣ ≤ C1,

where the first inequality is because the maximum of y and m(x; θ, φ) are finite since
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ΩW c is compact, and τ(·) is bounded (Assumption 4.5.2).

For δ(Wi; θ, φ) = ν(Wi; θ, φ)− E[ν(Wi; θ, φ)], with ν(Wi; θ, φ) = τ(Xi)
∂R(Wi;θ,φ)

∂θ
∂φ(t;γ)
∂γ′

1dγ

and the dθ ×KT vector

∂R(Wi; θ, φ)

∂θ
=


−∂m(Xi;θ,φ)

∂θ
m∗(xi,1; θ) + (Yi −m(Xi; θ, φ))

∂m∗(xi,1;θ)

∂θ
...

−∂m(Xi;θ,φ)
∂θ

m∗(xi,KT ; θ) + (Yi −m(Xi; θ, φ))
∂m∗(xi,KT ;θ)

∂θ


′

,

it is easy to see that δ(Wi; θ, φ) is a function of m∗(x; θ), ∂m∗(x;θ)
∂θ

and ∂φ(γ)
∂γ

, and it is

linear in φ. Moreover, φ is the probability function of discrete random variables therefore

strictly lies in [0, 1]. Hence, the above dicussion together with the uniform boundedness

of ∂φ(γ)
∂γ

provided in the proof of Corollary 1 leads to supw∈ΩW , (θ,φ)∈Θ×[0,1] |δ(w; θ, φ)| ≤ C2

for constant C2 > 0. So far we have established that (a) holds.

Secondly, move on to (b). For θ∗N between θ0 and θ̂N , the triangular inequality and the

mean value theorem lead to

∥∥∥ˆ̃gi − g̃i
∥∥∥ ≤∥∥∥g(Wi; θ̂N , φ̂N)− g(Wi; θ

0, φ̂N)
∥∥∥+

∥∥∥g(Wi; θ
0, φ̂N)− g(Wi; θ

0, φ0)
∥∥∥

+
∥∥∥δ(Wi; θ̂N , φ̂N)− δ(Wi; θ

0, φ̂N)
∥∥∥+

∥∥∥δ(Wi; θ
0, φ̂N)− δ(Wi; θ

0, φ0)
∥∥∥

≤

∥∥∥∥∥∂g(Wi; θ
∗
N , φ̂N)

∂θ′

∥∥∥∥∥∥∥∥θ̂N − θ0
∥∥∥+

∥∥∥g(Wi; θ
0, φ̂N)− g(Wi; θ

0, φ0)
∥∥∥

+

∥∥∥∥∥∂δ(Wi; θ
∗
N , φ̂N)

∂θ′

∥∥∥∥∥∥∥∥θ̂N − θ0
∥∥∥+

∥∥∥δ(Wi; θ
0, φ̂N)− δ(Wi; θ

0, φ0)
∥∥∥ .

(4.9.140)

Start from the first term of (4.9.140), when sample size is large enough (i.e. φ̂N is close

to φ0),∥∥∥∥∥∂g(Wi; θ
∗
N , φ̂N)

∂θ′

∥∥∥∥∥ =

∥∥∥∥∥τ(Xi)

[
− ∂m(Xi; θ

∗
N , φ̂N)

∂θ

∂m(Xi; θ
∗
N , φ̂N)

∂θ′

+
[
Yi −m(Xi; θ

∗
N , φ̂N)

] ∂2m(Xi; θ
∗
N , φ̂N)

∂θ∂θ′

]∥∥∥∥∥
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≤C

(
KT∑
j,l=1

∥∥∥∥∂m∗(xi,j; θ∗N)

∂θ

∥∥∥∥∥∥∥∥∂m∗(xi,l; θ∗N)

∂θ′

∥∥∥∥+

KT∑
j=1

∥∥∥∥∂2m∗(xi,j; θ
∗
N)

∂θ∂θ′

∥∥∥∥
)

≤C3, (4.9.141)

where the last line is because of (4.9.138) and (4.9.139). For the second term of (4.9.140),

it yields from the calculation in (4.9.35) that

∥∥∥g(Wi; θ
0, φ̂N)− g(Wi; θ

0, φ0)
∥∥∥ ≤∥∥∥φ̂N − φ0

∥∥∥
∞

[
KT∑
j,l=1

∣∣m∗(xi,j; θ0)
∣∣ ∥∥∥∥∂m∗(xi,l; θ0)

∂θ

∥∥∥∥
+τi

∣∣Yi −m(Xi; θ
0, φ0)

∣∣ KT∑
j=1

∥∥∥∥∂m∗(xi,j; θ0)

∂θ

∥∥∥∥
]

+ s.o.

≤C
∥∥∥φ̂N − φ0

∥∥∥
∞

KT∑
j=1

∥∥∥∥∂m∗(xi,l; θ0)

∂θ

∥∥∥∥+ s.o.

≤C4

∥∥∥φ̂N − φ0
∥∥∥
∞
. (4.9.142)

where the second inequality is because of the compactness of ΩY which implies both

m∗(xi,j; θ
0) and |Yi −m(Xi; θ

0, φ0)| are bounded, and the last inequality is due to (4.9.138)

and (4.9.139). To bound the third term of (4.9.140), by the dominated convergence the-

orem, we have

∂δ(Wi; θ
∗
N , φ̂N)

∂θ′
=τ(Xi)

∂

∂θ′

(
∂R(Wi; θ

∗
N , φ̂N)

∂θ

∂φ(t; γ̂N)

∂γ′
1dγ

)

− E

[
τ(Xi)

∂

∂θ′

(
∂R(Wi; θ

∗
N , φ̂N)

∂θ

∂φ(t; γ̂N)

∂γ′
1dγ

)]
.

Based on similar arguments used to obtain (4.9.141) and the uniform boundedness of

∂φ(γ)
∂γ′

over γ ∈ [0, 1] provided in the proof of Corollary 1, we can get
∥∥∥∂δ(Wi;θ

∗
N ,φ̂N )

∂θ′

∥∥∥ ≤ C5

for some constant C5 > 0. At last,

∥∥∥δ(Wi; θ
0, φ̂N)− δ(Wi; θ

0, φ0)
∥∥∥

≤|τ(Xi)|

∥∥∥∥∥∂R(Wi; θ
0, φ̂N)

∂θ

∂φ(t; γ̂N)

∂γ′
− ∂R(Wi; θ

0, φ0)

∂θ

∂φ(t; γ0)

∂γ′

∥∥∥∥∥ ‖1dγ‖
≤C

(∥∥∥∥∥∂R(Wi; θ
0, φ̂N)

∂θ
− ∂R(Wi; θ

0, φ0)

∂θ

∥∥∥∥∥+

∥∥∥∥∂φ(t; γ̂N)

∂γ′
− ∂φ(t; γ0)

∂γ′

∥∥∥∥
)
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≤C6

∥∥γ̂N − γ0
∥∥
∞ .

Given the results above, by Corollary 1, (4.9.137) can be bounded as

∆Ω1 ≤
C

N

N∑
i=1

|∆(i, N)|
(
‖θ̂N − θ0‖+

∥∥γ̂N − γ0
∥∥
∞

)
= op(1),

based on the consistency of θ̂N and γ̂N , and the fact that 1/N
∑N

i=1 |∆(i, N)| = O(1).

Step 2. Next, let us deal with ∆Ω2. Based on (4.9.25) and Assumption 4.5.7,

E[‖∆Ω2‖2] ≤ dθ
N2

∥∥∥∥∥∥
N∑

i,k=1

∑
j∈∆(i,N)

∑
l∈∆(k,N)

E
[ (
g̃ig̃
′
j − E[g̃ig̃

′
j]
)′

(g̃kg̃
′
l − E[g̃kg̃

′
l])
]∥∥∥∥∥∥
∞

≤ dθ
N2

o
(∥∥∥[Σg̃

N ]2
∥∥∥
∞

)
= o(1), (4.9.143)

where the last line comes from (4.9.28) that o(‖[Σg̃
N ]2‖∞/N2) = o(1). Hence,

∥∥∥Ω̂N − Ω
∥∥∥ =

op(1).



Chapter 5

Conclusion

This thesis explores issues regarding the identification and estimation of causal treatment

effects using the instrumental variable (IV) approaches.

Chapter 2 proposes a weak IV test for discrete outcome models employing a distorted

version of the J-statistic, and generalises the notion of rule-of-thumb to accommodate the

nonlinear nature of the models. We find that blindly applying the conventional weak IV

tests for linear models to the discrete choice models would over reject the truth of weak

IVs, which may further lead to misleading causal implications in certain circumstances.

These findings demonstrate the importance of the test proposed in this chapter, as it

provides the practitioners with a feasible weak IV test when working with discrete choice

models.

One caveat of the proposed test should be noted. By construction, the distorted J-test is

conservative in the sense that its rejecting rate under the null hypothesis (i.e. the size of

the test) is lower than the nominal rate, resulting in a relatively low power for detecting

those IVs with moderate strength (i.e. the IVs that are neither weak nor sufficiently

strong). Therefore, one possible extension of this chapter is to improve the power of the

distorted J-test, by deriving the asymptotic distribution of the test statistic and adopting

critical values that make the test less conservative.
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Chapter 3 studies an important topic related to IV strength. We use the reduction in the

size of the ATE identified set as a measure for the identification power, and conduct the

analysis of the identification gains achieved by the ATE bounds. We show that, when

the ATE is only partially identified, it is via the extreme values of the conditional treat-

ment propensity score that the instruments exert their influence. It indicates that two

instrument sets producing the same propensity score range will actually make identical

contributions to the ATE identification gains, regardless of their conventional measures

of the IV strength, such as the F -statistics or the pseudo-R2. In addition, we find that

the endogeneity degree plays a key role in determining the IV identification power. Thus,

the traditional notion of IV strength, measured by the explanatory power of IVs in the

first-stage regression is no longer a suitable measure of the IV identification power in the

context considered in this chapter.

We emphasise that the usefulness of the proposed IV identification power (IIP ) for

selecting irrelevant IVs is preliminary, and rigorous investigation of its finite sample

performance and its theoretical asymptotic properties are left for future exploration.

The study in this chapter also opens new questions, such as what instruments can be

regarded as weak IV in the framework of ATE bounding analyses. Explorations along

this direction are also left for future research.

Chapter 4 proposes a nonparametric point identification strategy for the treatment and

spillover effects of a randomised intervention, when the network data suffers from mea-

surement errors. The point identification is achieved if there exist two network proxies,

one of which acts as an instrument for the latent network. In addition, it also requires

that the two proxies contain relevant and distinct information of the true network struc-

ture. The identification result relies on two sufficient conditions, the exclusion restriction

and the one type of measurement error restriction. Nevertheless, the simulation results

have shown that the proposed method outperforms the naive approach ignoring the

measurement errors, when either of the sufficient conditions is mildly violated.

There are several extensions worth exploring. They include more flexible estimation

methods to mitigate the possibility of model misspecification; accommodating situations

where there is imperfect compliance; and exploring the consequences of higher-order
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network interference.

Exploration of these potential extensions is left for future research, and hopefully the

current thesis will be useful for any future endeavours in related fields.
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