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Abstract 

 

Mechanical ventilation (MV) is a critical treatment to patients with acute respiratory failure 

(ARF). However, suboptimal MV settings may lead to poor patient-ventilator interaction 

(PVI) which predisposes to frequent occurrence of asynchronous breathing (AB). Effort in 

optimising PVI to reduce AB occurrence is often an arduous task, as PVI assessment is 

typically evaluated retrospectively by computing asynchronous index (AI). Thus, the 

prevalence and consequences of AB are frequently underestimated. Hence, an approach 

capable of detecting and evaluating the magnitude of AB could potentially provide better MV 

management.  

 

This thesis investigates the quality of PVI on patient’s outcome by computing AB 

frequency and its corresponding magnitude of AB using machine learning approach. A 

clinical observational trial was carried out to collect airway waveform data of mechanical 

ventilated respiratory failure patients. The trial successfully collected around 2 million 

breathing cycles. These data were then manually classified into normal and asynchronous 

breaths and subsequently used for validating and testing of the machine learning approach. 

Convolutional Neural Network (CNN) models were trained to detect AB using prospective 

and retrospective mechanical ventilated respiratory failure patient’s airway waveform data. 

The CNN model trained with one-dimension airway waveform data structure was able to 

detect AB with 90% accuracy, suggesting that CNN model can be used for AB detection.  

 

In addition, a Generative Adversarial Network (GAN) and Convolutional Autoencoder 

(CAE) algorithms were also developed to quantify the magnitude of each detected AB. These 

methods were capable of reconstructing asynchronous affected airway waveform data to a 
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normal airway waveform. The reconstruction enabled the quantification of the magnitude of 

asynchrony. The ability of these developed machine learning models to reconstruct the 

airway waveform data were compared with an existing model-based method. We found that 

among these methods, CAE outperformed the other two in reconstructing AB with least 

distortion with mean absolute percentage error (MAPE) of 0.21%.  

 

Finally, a metric, Ventilator-Interaction (VI) was developed to assess the quality of 

patient-ventilation interaction. We investigated the AI and VI in 18 mechanically ventilated 

respiratory failure patients by performing correlation analysis between patient’s AI and PVI 

with their arterial blood gases (ABG). It was found that patients recruited in this study have 

varying AI and both metrics demonstrated different magnitudes. However, it also showed that, 

despite patient’s AI was high, the magnitude of AB induced could be minimal, suggesting 

that AI alone may not be sufficient to monitor the quality of patient interaction. The 

developed VI metric may potentially help clinicians to assess the quality of MV treatment, as 

VI measures the ‘resistivity’ between the patients with the ventilatory support. 

 

In summary, the machine learning models presented in this thesis are capable of detecting 

and quantifying the magnitude of AB. These models can potentially aid clinicians to evaluate 

the patient’s condition during lung treatment; thus, allowing better MV decision making. 
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Chapter 1 

Introduction 

 

1.1 Respiratory Physiology 

Human respiratory system is part of our human body system; the function is to maintain 

adequate supply of oxygen (O2), an element needed for breaking down sugars and fatty acid 

to produce energy as well as to ensure sufficient expulsion of carbon dioxide (CO2), a by-

product of metabolism (Bates, 2009). Figure 1.1 shows an overview structure of respiratory 

system. 

 

Figure 1.1: Overall structure of the human respiratory system (Bates, 2009) 

In order to channel the air into the lungs from the atmosphere, a differential pressure must 

be created between the surrounding environment and inside the lung, and this can be done 
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through muscular work. During inspiration, the external intercostal muscles and diaphragm 

muscles contract to increase the volume of the thoracic cavity. The increment in volume 

creates negative pressure in the lung; thus, enabling air from atmosphere to flow into the lung. 

Conversely, during expiration, the inspiratory muscles relax to allow elastic recoil of the 

chest wall to deflate the lungs until the pressure in the lung is greater than atmospheric 

pressure; thus, the air flows out of the lung. These processes are known as ventilation, a 

muscular pumping action to draw air from the atmosphere into the lung and expel air from 

lungs back to the environment. Figure 1.2 shows the process of inspiration and expiration.  

 
Figure 1.2. During inspiration, the chest moves outwards and upwards to increase volume; 

conversely, when the chest contracts, air is rushed out from lungs due to the increase of lungs 

pressure during expiration (Newton & Joyce, 2010).  

 

Lung is adapted for gaseous exchange as the vast surface area consists of millions of 

alveoli enhances the efficiency to diffuse oxygen into the blood capillaries. This is achieved 

by possessing a tree-like structure that consists of branches that become progressively 

abundant as they undergo bifurcations. Trachea and alveoli are bifurcated about 23 times into 
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an area approximately the size of a tennis court (Barrett et al., 2019; Bates, 2009). Figure 1.3 

shows the branching between trachea and alveolar in the human lungs.  

 
Figure 1.3: A dichotomous branching between trachea and alveolar in human lung (Barrett et 

al., 2019).  

 

Perfusion or gaseous exchange process occurs at alveolus where the oxygen is diffused 

into blood capillaries and binds with haemoglobin to form oxyhaemogoblin; whereas, carbon 

dioxide diffuses out of blood capillaries and expels into the atmosphere during expiration. 

Typical adult human lung contains around 480 million alveoli with an average diameter of 

200 μm (Ochs et al., 2004). Figure 1.4 shows the cross section of capillaries. Type I and Type 

II cells are major cells forming the alveolar wall (pneumocytes). Type I cells play a crucial 

role in forming the alveolar wall; whereas, Type II cells secrete proteins and lipids to reduce 

the surface tension of alveolar to prevent collapse. The membrane separating the alveolar air 

and the blood has an average thickness of 2μm (Knudsen & Ochs, 2018). Hence, huge 

respiratory surface area and thin alveolar promote rapid gases exchange; thus, allowing the 

body to maintain an adequate level of arterial partial pressure of oxygen (PaO2) and arterial 

pressure of carbon dioxide (PaCO2). Furthermore, satisfactory elimination of carbon dioxide 

helps the body to maintain pH in a normal range.  
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Figure 1.4: A cross section of capillaries under elector microscope showing Type I (AEC 1), 

surfactant-storing lamellar bodies (LB) in Type II (AEC 2 ) cell, collagen fibrils (col), 

alveolar lumen (Alv), capillary lumen (Cap) and (Endo) capillary endothelial cell (Knudsen 

& Ochs, 2018).  

 

1.2  Respiratory Failure  

Respiratory failure is a condition where the lung fails in gas exchange function (Pappert et al., 

1994). This condition leads to CO2 retention or O2 inadequacy in the blood system. The 

respiratory system consists of two parts: the lung governs gas-exchanging perfusion process, 

and the pump controls ventilation in the lungs (Roussos & Koutsoukou, 2003). 

Hypoventilation or poor ventilation occurs when air fails to enter the alveoli; while, 

hypoxemia or poor perfusion results from ventilation/perfusion mismatching. These are the 

main factors of respiratory failure.  

 

The pump that controls ventilation consists of chest wall, respiratory muscles and central 

nervous system. Damage to any organ in the system potentially lead to hypoventilation. 

Hypoventilation usually caused by central nervous system defection, respiratory muscles 

fatigue and neuromuscular transmission impairment. Unsuccessful to create negative 

intrapleural pressure by respiratory muscles will result in respiratory failure as the air fails to 

enter the lungs. Besides that, the reduction of effective or healthy surface area for gas 
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exchange perfusion due to blockage in conducting airways or fluid accumulation in alveolar 

is another reason for respiratory failure. Presence of fluid in the lung or known as pulmonary 

oedema impedes the oxygen from diffusing into the capillaries; thus, reduces the oxygen in 

the body and causes hypoxemia. Causes of pulmonary oedema include pneumonia, near 

drowning, and chemical fumes inhalation.  

1.2.1 Acute Respiratory Distress Syndrome  

Acute respiratory distress syndrome (ARDS) is a form of severe respiratory failure and was 

first characterized by Ashbaugh et al. (Ashbaugh et al., 1967). The definition of ARDS has 

evolved over the years due the lack of diagnostic biomarkers especially on the inflammation 

and permeability of lungs; hence, the definition often relies on clinical features and chest 

imaging as surrogate (Thompson et al., 2017). The Berlin definition of ARDS proposed in 

2012 includes the use of computed tomography for qualifying opacities diagnostics to 

achieve a more reliable definition to improve case recognition (Ferguson et al., 2012). ARDS 

is defined as follows:  

• The acute disorder onset time is within 1 week of clinical insult. 

• Bilateral opacities are consistent with pulmonary oedema on chest radiographs 

and not fully explained by effusions, lobar collapse or nodules.  

 

ARDS can be categorized into mild, moderate and severe by computing the PaO2/FiO2 ratio 

with a minimum level of 5 cmH2O positive end expiratory pressure (PEEP) or non-invasive 

continuous positive airway pressure (CPAP) for mild ARDS. The categories are shown as 

below:  

• Mild ARDS (200 < PaO2/FiO2 ≤ 300 mmHg) 

• Moderate ARDS (100 < PaO2/FiO2 ≤ 200 mmHg) 

• Severe ARDS (PaO2/FiO2 ≤ 100 mmHg)  
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ARDS can occur due to widespread inflammation in the lung and potentially induce 

injuries to alveolar or cause pulmonary oedema and atelectasis (Bernard et al., 1994; 

Thompson et al., 2017). This further impairs the capability and effectiveness of ventilation 

and perfusion process in the lung. Common etiologic risk factors to ARDS development 

include pneumonia, pancreatitis, pulmonary contusion, drowning, drug overdose, major 

trauma, severe burns and pulmonary vasculitis (Ferguson et al., 2012). Despite advancement 

in supportive care; studies show that ARDS still imposes high mortality rate at range from   

30% to 60% (Bellani et al., 2016; Phua et al., 2009; Villar et al., 2011). Furthermore, reports 

also suggested that sub-optimal administrated treatment could induce lung injuries (Brower et 

al., 2000; Meade et al., 2008; Mercat et al., 2008) resulting in risk of death and intensive care 

unit (ICU) stay increment. This implies that, death due to ARDS is sometimes caused by 

injuries during support treatment.  

 

1.3 Mechanical Ventilation 

Mechanical ventilation (MV) is a vital treatment for respiratory failure patient with the 

purpose of supporting their work of breathing to reinstate or maintain oxygenation. The use 

of ventilatory assistance can be traced back to 19th century where ventilatory assistance was 

provided via negative pressure ventilator (Kacmarek, 2011; Arthur S. Slutsky, 2015). The 

device was an air-tight box with the patient maintained in a sitting position. The ventilation 

was achieved via sub-atmospheric pressure generated by pumping air into and out of the 

device manually. In the 1930s, negative pressure ventilation became more clinical realistic 

when the use of Drinker iron lung negative pressure ventilator was deployed to treat polio 

patients (Drinker & Shaw, 1929). However, the effort to avoid device leakage as well as 

difficulty in maintaining effective ventilation leads to negative pressure ventilator elimination 
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and replacement by positive pressure ventilators. Positive-pressure ventilators allow PEEP 

establishment and able to sustain high airway pressure; this increases the lung’s ability to 

recruit and retain alveoli for better ventilation-perfusion matching, atelectasis decrement and 

alveolar ventilation improvement (Luciano Gattinoni et al., 2010; Rossi et al., 1994).  

 

Rapid advancement in technology and more recent research has improved the functions 

and reliability of the positive-pressure ventilators (Kacmarek, 2011) such as introducing 

various MV modes and treatment strategies to improve the chance for lung recovery (Downs 

et al., 1974; Singh et al., 2014; Stock et al., 1987; van der Staay & Chatburn, 2018). Despite 

these methods are introduced to improve treatment; different modes and approaches pose 

different functions and advantages. Subsequently, this complicates clinical decision making. 

Importantly, there is a lack of guidelines, consensus and standardisation on MV management. 

This limitation often leads to varying MV settings or, in some cases, fails to optimise 

ventilator settings to fit patient-specific condition (L. Gattinoni et al., 2003; Hubmayr, 2011; 

Kostic et al., 2011). Ironically, a lifesaving MV treatment has the potential to impose 

ventilator-induced lung injuries (VILI) which further worsens the lung condition if use 

incorrectly (L. Gattinoni et al., 2003; Kallet & Branson, 2007).  

 

A classic example of different in MV management is the contradiction in setting high or 

low ventilation airway pressure or positive end expiratory pressure (PEEP). There is no 

specific standard protocol to determine optimum PEEP level (Chase et al., 2014; Sundaresan 

et al., 2011). PEEP is used to recruit collapsed lung units and prevent them from closing 

during expiration. Collapsed lung units will lower the blood oxygen due to their inability to 

perform gas exchange process. However, when determining an optimum PEEP level, a 

delicate trade-off is required between maximising gas exchange (Tusman et al., 1999) while 
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preventing further damaging the lungs (Ricard et al., 2003; Arthur S Slutsky & Ranieri, 2013) 

due to the lack of non-invasive medical equipment to diagnose patient’s condition. Thus, 

finding a balance to prevent further injuries while assuring optimal treatment is challenging 

due to the nature of heterogeneity of patient’s condition towards treatment. Hence, MV 

settings selection are often based on clinical intuition and medical experience (V. J. Major et 

al., 2018). 

1.3.1 Problem Statement 

The goal of MV treatment is to improve gas exchange and assist work of breathing. 

Establishment of optimal interaction between ventilator and the patient is thus essential and 

necessary for optimal MV performance. This patient-ventilator interaction (PVI) relies on the 

interplay between patient pathophysiology and the ventilatory support; in other words, PVI 

describes the ventilator response to the breath delivered by the ventilator, consecutively, the 

patient responds to the mechanical breath (Epstein & Chatburn, 2011; Gilstrap & MacIntyre, 

2013; Sassoon & Foster, 2001). The quality of patient ventilation interaction implies how 

well a patient is interacting with the ventilator. A better quality means patient is synchronised 

with the ventilator, whereas a low quality means patient is experiencing AB and there is a 

significant mismatch between patient demand and ventilator supply (Moorhead et al., 2013). 

It is evident that atrocious PVI is associated with dire outcomes; therefore, achieving and 

upholding quality of PVI is utmost important. However, optimum PVI is difficult to achieve 

due to the complex interaction of patient pathophysiology and mechanical breath delivery. 

Imperfect PVI occurs because the interplay of both the patient and ventilator is confounded 

by multifaceted factors related to patient or ventilator (Karen G Mellott et al., 2009). A 

patient-related factor often associates with highly dynamic behavioural, mechanical, chemical, 

as well as disease-states. While a ventilator-related factor often involves suboptimal MV 

settings delivered by clinicians or due to presence of noise in the ventilator circuit. 
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Nonetheless, these factors induce poor quality of PVI which then predispose to asynchronous 

breathing (AB) occurrence. AB occurrence is often unpredictable and spontaneous; moreover, 

lack of automatic real-time AB detection technique is still limited at clinical bedside (Dres et 

al., 2016; Georgopoulos et al., 2006). Henceforth, visual inspection which is the standard 

approach to detect AB events is arduous and inapplicable in a time critical clinical 

environment (Colombo et al., 2011; I. I. Ramirez et al., 2017). As a result, the frequency and 

impact of AB towards patient’s condition are frequently undervalued; thus, effort to eradicate 

AB to improve PVI becomes a challenging task. While asynchrony index (AI) is the standard 

approach to quantify the quality of PVI during treatment. Although the correlation between 

AI with patient’s outcomes have been investigated extensively, the actual causative 

mechanism of AB predisposing to adverse patient’s condition still remain unknown and 

sometimes contradictive. For example Blanch et al. (Blanch et al., 2015) and Martos-Benítez 

et al. (Martos-Benítez et al., 2020) found that severe AB occurrence (AI>10%) is associated 

with high mortality and lower PaO2/FiO2 ratio, but a study conducted by Rolland et al. 

(Rolland-Debord et al., 2017) found that severe AB occurrence is not associated with adverse 

outcome. Such contradiction may imply that AI computation alone may fail to reflect the 

actual impact of AB. Hence, it is speculated that, the magnitude of patient-effort induced in 

AB might play a deterministic role in affecting patient’s outcome. Hence, there is a need to 

develop methods to detect and quantify AB to reflect patient’s PVI quality during treatment.  

 

In short, mechanical ventilation treatment is necessary to reinstate oxygenation as well as 

to provide supportive work of breathing to respiratory failure patients. But methods in 

providing optimal patient-ventilator interaction treatment remain obscure due to lack of 

understanding and real-time detection of the problem. Furthermore, it is evident that, poor 

PVI can cause irreversible dire impact towards patient’s condition if leave untreated (Epstein 
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& Chatburn, 2011; E. Kondili et al., 2003). Hence, there is a need for a real-time non-

invasive method to provide insights to patient’s PVI condition that could potentially improve 

MV treatment.  

 

1.4 Research Objective and Scope 

The aim of this research is to investigate how the degree of ‘mismatching’ due to suboptimal 

PVI (Christer A. Sinderby & Beck, 2012) impacts patient’s impacts patient’s mechanical 

ventilation treatment outcome via developing machine learning models to monitor and 

quantify asynchronous breathing. Machine learning approach potentially provides a unique 

solution to automatically quantify patient-specific PVI condition. 

 

The scope of this project comprises of 4 major components as noted below: 

1. Conduct clinical observational trial and setting up data acquisition system for mechanical 

ventilation patient data collection in intensive care unit (ICU).  

2. Development of an automated detection of patient asynchronous breathing method via 

machine learning convolutional neural network (CNN).  

3. Development of machine learning models, a) generative adversarial network (GAN) and b) 

convolutional autoencoder (CAE) for quantifying mechanical ventilation asynchrony 

magnitude.  

4. Investigation of the patient-ventilator interaction via quantification of asynchrony index 

and asynchrony magnitude assessment on actual clinical data. 
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The first work focuses on setting-up clinical trial to collect data for model development and 

validation. The second work revolves around developing a model to detect AB in real time. 

The third work focuses on the development of a model to quantify severity of AB. Lastly, the 

final research scope involves investigation of the effect of AB on patient’s outcome by using 

the developed methods and a new developed metric to assess PVI. 

 

1.5 Summary of thesis layout 

The thesis is outlined as follows: 

• Chapter 2 provides literature review on causative factors and asynchronous breathing 

trait identification via waveform analysis. It also covers overview of the related work 

in patient-ventilator interaction monitoring and assessment. The related work is 

separated into two sections: asynchronous breathing monitoring and magnitude of 

asynchronous breathing quantification. 

 

• Chapter 3 describes the details of clinical trial setup that provides clinical data for 

model development. This chapter also provides an overview of data acquisition 

system used to collect continuous mechanical ventilation airway waveform data 

during the clinical trial.  

 

• Chapter 4 presents the development of a machine learning model for asynchronous 

breathing detection. The model is tested with different data composites and data 

quantities. The performance of each model in differentiating asynchronous breathing 

and non-asynchronous breathing is presented.   
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• Chapter 5 introduces two different machine learning models developed to quantify 

the magnitude of AB via reconstructing airway pressure. A comparison study between 

the developed machine learning models with an existing method is performed.  

 

• Chapter 6 presents the investigation on how quality of patient-ventilator interaction 

impacts the patient’s outcome using the developed models in Chapters 4 and 5. A 

ventilation index metric for assessing the quality of patient-ventilator interaction is 

introduced in this chapter. This metric and asynchronous index are studied in our 

patient cohort.  

 

• Chapters 7 and 8 concludes the finding of the research and describes the future work 

of improving models to better assess patient-ventilator interaction during mechanical 

ventilation treatment. 

 

1.6 Contributions 

This thesis investigates the application of machine learning models to monitor and assess the 

quality of patient-ventilator interaction during mechanical ventilation treatment. The machine 

learning models can be trained and applied at patient bedside to monitor patient-ventilator 

interaction in real-time. These models potentially provide unique information to clinicians to 

understand and assess patient’s condition in real time. It is essential that the developed 

models are robust to noises and erratic shapes. The major contributions of this thesis are:  

• A data-driven model to distinguish between normal or asynchronous breathing in real 

time.  

• A data-driven model capable of quantifying the magnitude of asynchronous breathing. 
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• A novel metric to assess patient-ventilator interaction.  

• A correlation study on the quality of patient-ventilator interaction affecting patient’s 

outcome. 



 

 14 

 

Chapter 2 

Background 

 

There are two main unresolved conundrums in asynchronous breathing: the frequency of 

asynchronous breathing occurrence and the magnitude of asynchronous breathing. This 

chapter provides an overview of related work in the effort of detecting and quantifying the 

magnitude of asynchronous breathing. This chapter begins by describing the causal 

mechanisms and patterns of each type of asynchronous breathing. In section 2.2, we 

summarize the existing methods at bedside to detect asynchronous breathing and measure the 

magnitude of asynchronous breathing. This is followed, in Section 2.3, by an overview of 

existing and proposed machine learning approaches to identify or measure the magnitude of 

asynchronous breathing.  

2.1 Asynchronous breathing 

Patient-ventilator asynchrony or asynchronous breathing (AB) is a phenomenon when the 

timing is not matching with the timing of ventilator cycle (Bulleri et al., 2018; Karen G 

Mellott et al., 2009; K. G. Mellott et al., 2014; Gastón Murias et al., 2016; Nilsestuen & 

Hargett, 2005; Sassoon & Foster, 2001; Souza Leite et al., 2020). However, given the 

complexity and heterogeneity of patient’s response to treatment, AB incidence is common 

during treatment and it can occur spontaneously in any ventilation modes. Studies have 

shown that approximately 25% of patients may experience AB during mechanical ventilation 

(MV) treatment (Blanch et al., 2015; Robinson et al., 2013; A. W. Thille et al., 2006). It is 

speculated that, the occurrence of AB is mainly due to poor patient ventilator interaction (PVI) 

because of excessive sedation (B. M. De Wit et al., 2009; Holanda et al., 2018; Vaschetto et 

al., 2014) or suboptimal mechanical ventilation (MV) settings selection (de Wit, 2011; 



Chapter 2. Background   15 

 

Epstein, 2011; K. G. Mellott et al., 2014; A. W. Thille et al., 2006). Frequent AB occurrence 

may cause dire impacts such as prolonging patient’s dependency on MV, increasing sedative 

drugs usage, and worsening mortality rate (Blanch et al., 2015; Branson et al., 2013; M. de 

Wit et al., 2009).  

 

There are seven known types of asynchronies namely: ineffective triggering, auto-

triggering, double triggering, reverse triggering, flow asynchrony, premature cycling and 

delayed triggering. These asynchronies can be identified via airway pressure-time and flow-

time waveform interpretation (Nilsestuen & Hargett, 2005; I. Ramirez & Arellano, 2018). In 

the following section, we provide a brief description of each type of AB. 

 

2.1.1 Ineffective triggering  

Ineffective triggering or miss-trigger occurs when ventilator fails to detect the presence of 

patient’s breathing effort and often occurred in partial support ventilation mode (Blanch et al., 

2015; K. G. Mellott et al., 2014). A study conducted by Thille et al. (A. W. Thille et al., 2006) 

stated that ineffective triggering is accounted for more than 98% of all asynchronies. 

Consequently, frequent ineffective triggering occurrence may predispose to patient’s 

ventilatory demand unsatisfactory (B. M. De Wit et al., 2009); thus resulting in respiratory 

fatigue or injury due to work of breathing increment. Besides, ineffective triggering may 

build up intrinsic positive end-expiratory pressure (PEEPi) in the lung, causing the patient’s 

effort insufficient to overcome the trigger threshold (Branson et al., 2013; G. Murias et al., 

2016; A. W. Thille et al., 2006). PEEPi occurs when the patient’s inspiratory time is shorter 

than ventilator inspiratory time, the ventilator continues to provide flow to patient leaving 

exhalation time to be reduced (Sassoon & Foster, 2001). 
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It is believed that ineffective triggering occurs because of diminished respiratory drive due 

to long term MV treatment or disease condition which weakens patient’s effort to trigger 

ventilator sensor (Branson et al., 2013; Bulleri et al., 2018). Furthermore, deep sedation or 

unsuitable threshold sensitivity ventilator settings by clinicians may also provoke ineffective 

triggering event (Branson et al., 2013; Gurevitch & Gelmont, 1989; Sassoon & Foster, 2001).  

 

Ineffective triggering (A. W. Thille et al., 2006) can be described as a simultaneous 

decrease in airway pressure and an increase in air flow without assisted cycle. Figure 2.1 

depicts the occurrence of ineffective triggering (red arrows), where a small positive inflection 

will appear at the expiration of the flow waveform; while, a small negative inflection will 

appear at the expiration of the pressure waveform. The subsequent breathing cycle fails to be 

initiated as the deflection does not surpass the threshold. Oesophageal monitoring or 

measuring diaphragm electrical activity is also one of the ways to detect ineffective triggering 

during MV besides visual inspection on pressure or flow waveform (Ashutosh et al., 1975; 

Branson et al., 2013; Georgopoulos et al., 2006; I. Ramirez & Arellano, 2018); however, 

oesophageal monitoring requires invasive placement of oesophageal catheter which is not a 

standard routine care in ICU.  

 
Figure 2.1: Red down arrows point towards the failed triggered effort in pressure/time 

waveform; whereas, red up arrows show ineffective efforts in flow/time waveform.  
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2.1.2 Auto-triggering  

Auto-triggering occurs when the ventilator delivers airflow in the absence of patient’s 

initiation (A. W. Thille et al., 2006) or cardiogenic oscillations (Imanaka et al., 2000). Auto-

triggering event can be described as the absence of negative airway pressure prior to 

machine-delivered drop; thus, delivering unscheduled breathing cycles. Figure 2.2 depicts the 

scenario where breathing cycles were initiated automatically due to the absence of patient 

induced pressure drops in the beginning of inhalation. Similar to detecting ineffective 

triggering, oesophageal monitoring is the gold standard of detecting the presence of auto-

triggering (Branson et al., 2013). 

 
Figure 2.2: As the breathing cycles were triggered due leakage; thus, resulting in absence of 

airway pressure drop in pressure/time waveform (red circle) as oppose to pressure drop due to 

patient effort (red arrow) 

 

Auto-triggering event arises mainly due to introduction of noise into the circuit because of 

leakage, presence of liquid or even hiccups which affects the sensitivity of the sensor; thus 

causing flow or pressure profile distortion (Georgopoulos et al., 2006; Gilstrap & MacIntyre, 

2013; Eumorfia Kondili et al., 2007). The occurrence of auto-triggering can be associated 

with several factors such as inappropriate ventilator trigger setting (Henry et al., 2016) or 

excessively low trigger sensitivity (too sensitive) causing difficulty in precisely detecting 
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patient’s effort. Auto-triggering often leads to severe consequences such as PEEPi increment, 

hyperventilation and promote ventilator-induced-lung-injury (VILI) (Henry et al., 2016).  

 

2.1.3 Double triggering  

Double triggering refers to the development of 2 consecutives breath cycles separated by 

abbreviated expiratory time, half or lesser of the inspiratory time (A. W. Thille et al., 2006). 

Double triggering is common during volume control continuous mandatory ventilation and 

pressure support ventilation (Blanch et al., 2015); however, double triggering may also occur 

during pressure support ventilation with high flow termination criterion (Sassoon & Foster, 

2001). Inappropriate ventilator settings may cause excessive demand for flow or volume due 

to short ventilator inspiratory time; resulting in mandatory breath delivery followed by a 

second breath as the trigger threshold is surpassed. Consequently, pulmonary barotrauma or 

volutrauma will occur (Karen G Mellott et al., 2009; A. W. Thille et al., 2006). Furthermore, 

sighs, coughs while breathing, or inappropriate settings may also trigger such phenomenon.  

 

Double triggering can be spotted at the bedside via flow and pressure waveforms 

inspection (Liao et al., 2011). Figure 2.3 shows that the expiratory time of the second 

breathing cycle (black arrow) is shorter than the others (red arrow). Double triggering occurs 

when neural inspiratory time is longer than the ventilatory inspiratory time.  
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Figure 2.3. The expiration time is shorter during double triggering (black arrow) than 

expiration of normal breathing cycles (red arrow).  

 

2.1.4 Reverse triggering  

 

Reverse triggering was originally reported in 1980s, yet, it is still a frequently under-

recognized form and unique type of neuromechanically asynchrony. (Akoumianaki et al., 

2013; Branson et al., 2013). It was described as a form of diaphragmatic muscle contractions 

triggered by ventilator insufflations and referred such phenomenon as “entrainment”, in 

which patient’s respiratory center is activated in response to a passive insufflation of the 

lungs. There are several hypotheses explaining the occurrence of reverse triggering. Murias et 

al. (Gastón Murias et al., 2016) stated the occurrence of reverse triggering maybe due to the 

increase of compliance as previously closed alveoli and airways have been successfully 

recruited during MV; as for spontaneous breathing patients, the increase of compliance 

maybe due to activation of patient’s inspiratory muscle. The compliance increment causes a 

drop in pressure during inspiratory plateau. However, the exact causal mechanism is 

unknown as the occurrence of reverse triggering was reported in brain-death patients (Delisle 

et al., 2016) and heavily sedated ARDS patients (Akoumianaki et al., 2013). Despite the 

unknown cause, reverse triggering might result in inducing double-triggering, increasing 

oxygen consumption and plateau pressure instability (Branson et al., 2013).  
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Similarly, reverse triggering can be observed through waveforms analysis, where, reverse 

triggering occurs when a drop in pressure is apparent in breathing cycle (I. Ramirez & 

Arellano, 2018). Figure 2.4 depicts two ‘reversely triggered’ breathing cycles in 

pressure/time waveform. The pressure waveforms exhibit apparent drop in pressure followed 

by increment of pressure during reverse triggering.  

 
Figure 2.4: The red arrows show negative deflections deforming an airway pressure profile 

during reverse triggering.  

 

2.1.5 Flow Asynchrony  

Flow asynchrony occurs when the patient demand is not matching with the ventilator flow 

(Blokpoel et al., 2016) causing patient’s breathing workload to increase. Marini and 

colleagues (Branson et al., 2013) found out that when flow delivery is reduced, the patient’s 

work of breathing increases by more than 50% in order to satisfy their ventilatory demand. 

Flow asynchrony can lead to the creation to PEEPi which is the key factor contributing to 

barotrauma or volutrauma. Clinicians are able to detect flow asynchrony via ventilator 

waveform analysis; where a concave shape negative dip with a concomitant constant flow 

pattern occurs on pressure waveform (I. Ramirez & Arellano, 2018). Figure 2.5 shows the 

pressure waveform has been “scoped out” during flow asynchrony. As the peak flow set on 
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the ventilator no longer cater the patient’s flow demand due to increment of patient effort, the 

airway pressure waveform will be gradually dished out (Nilsestuen & Hargett, 2005).  

 
Figure 2.5: Two examples of breathing cycles experience concave shape negative drop on 

pressure waveform when flow asynchrony occurs.  

 

2.1.6 Premature cycling  

Premature cycling or early termination occurs when patient’s inspiratory time is lesser than 

the ventilator inspiratory time (K. G. Mellott et al., 2014). Such event often occurs due to 

poor satisfying of patient’s ventilatory demand and potentially associates with double 

triggering asynchrony when patient continues to contract inspiratory muscle; thus, resulting 

in triggering threshold and initiating new breath (Branson et al., 2013; Karen G Mellott et al., 

2009). There are 2 known mechanism which could possibly trigger premature termination: 

early in flow delivery or late in flow delivery (Nilsestuen & Hargett, 2005). Early in flow 

delivery will initiate an overshoot of pressure threshold (breath-termination criteria) at the 

initial inspiration due to rapid valve-opening causing the ventilator breath to be terminated 

prematurely. On the other hand, when the flow delivery to the patient is delayed, flow-

termination point may occur earlier due to higher peak flow; thus, resulting in flow-

termination criterion being met sooner during inspiration. Premature cycling will cause 

excessive inspiratory work into and during expiratory phase as well as an overestimation of 
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respiratory rate (Karen G Mellott et al., 2009). Premature cycling will induce a positive 

deflection at the end of expiration on flow waveform; whereas a negative deflection will 

appear at the end of expiration on pressure waveform (Nilsestuen & Hargett, 2005). Figure 

2.6 shows the first breath is normal whereas the second and third breath encounters premature 

cycling. It can be observed that in flow/time waveform, the flow spikes while the airway 

pressure drops immediately after the end of inspiratory cycle, indicating the patient’s effort 

endures.  

 
Figure 2.6: The red down arrows show the continuation of inspiratory effort after inspiratory 

cycle is ended in pressure/time waveform. The red up arrows show a sudden spike in the 

expiratory flow due to patient’s inspiratory effort.  

 

2.1.7 Delayed triggering  

Delayed triggering or delayed termination occurs when ventilator continues to provide 

mechanical breath even when patient’s muscular inspiration is complete (Holanda et al., 

2018). Delayed triggering might due to presence of air leakage in the system (Bulleri et al., 

2018; Calderini et al., 1999) or inappropriate timing in cycling setting (Subira et al., 2018). In 

addition, patients with chronic obstructive pulmonary disease (COPD) and asthma are 

speculated at risk for delayed triggering occurrence due to presence of airway resistance 

(Chiumello et al., 2007). Delayed triggering will cause severe consequences such as 
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promoting PEEPi or potentially causes ineffective triggering on the next breath due to limited 

exhalation time. The accumulation of pressure in the lung will result in increased of 

expiratory load and potentially damage the lung due to barotrauma (Karen G Mellott et al., 

2009). Pressure spike can be observed on pressure waveform prior the beginning of 

exhalation when delayed triggering occurs. On the other hand, a rapid decline in respiratory 

flow can be observed when delayed triggering occurs (I. Ramirez & Arellano, 2018). Figure 

2.7 shows the first and second breaths are delayed triggering, while the 3rd breath is a normal 

breath. It can be observed from pressure/time waveform that, the breathing cycles affected by 

delayed triggering experience spikes before the start of exhalation phrase; similarly, a sudden 

decline can be detected at the end of inspiration cycle in flow waveform.  

 
Figure 2.7: The black circle shows spikes occur near the end of inspiration; the red arrows 

show a rapid decline in flow due to limited exhalation time.  

 

2.2 Existing Methods to AB Detection and Quantification 

Despite the prevalence of AB during MV, the frequency of AB occurrence or impact of AB 

events towards treatment’s outcome is still unknown (Blanch et al., 2015; K. G. Mellott et al., 

2014; W. A. Thille & Brochard, 2007). Unexplained causal factors to AB events and low 

recognizing ability of the professional often confound clinicians to correct AB (I. I. Ramirez 



Chapter 2. Background   24 

 

et al., 2017). Thus, delivering patient-tailored MV treatment to improve PVI or correct AB is 

often a daunting task.  

 

However, due to the lack of autonomous AB detection method on the bedside, 

investigations on the exact causal mechanism and severity of AB on patient’s outcome are 

impeded (Dres et al., 2016). Moreover, the conventional method of quantifying AB involves 

trained personnel to visually inspect airway pressure and flow waveforms to compute 

asynchronous index (AI) to describe the quality of PVI (Chao et al., 1997). This process is 

arduous and time consuming. Henceforth, there remains a huge research interest in 

developing an autonomous methods or models to detect AB and a metric system to measure 

the degree of affected patient-specific AB effort. These approaches will potentially aid 

clinicians to determine the causal mechanism to eradicate AB occurrence (de Haro et al., 

2019; Subira et al., 2018). The following outlines the existing methods or models to detect 

the presence of AB or to quantify the magnitude of AB.  

 

2.2.1 Measurement of Oesophageal Pressure 

Akoumianaki et al. (Akoumianaki et al., 2014) proposed the use of oesophageal pressure to 

detect AB. This method measures the difference between airway pressure and oesophageal 

pressure to estimate the trans-pulmonary pressure. Oesophageal pressure is useful to 

determine the amount of airway pressure from the ventilator needed to overcome lung and 

chest wall elastance. The oesophageal pressure can be used to detect the presence of AB by 

knowing the level of muscle effort. However, this method is not common in ICU as it 

requires invasive probes which imposes additional cost and might induce further injuries.  
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2.2.2 NAVA  

Electrical activity of the diaphragm can be measured by applying electrodes incorporated into 

a nasogastric tube (C. A. Sinderby et al., 1997). The magnitude of the electrical activity of the 

diaphragm (EAdi) signal correlates well with respiratory drive of the patient. Neurally assisted 

ventilatory assist (NAVA) (C. Sinderby et al., 1999) is a mode of assisted mechanical 

ventilation which measures the EAdi to satisfy patient’s ventilatory demand by matching 

spontaneous breathing demand from patient. Besides that, the timing and intensity of the EAdi 

signal from the patient is also useful to assess the interaction between patient and the 

ventilator which may able to provide additional information and assessment for the clinicians 

(C. Sinderby et al., 2013). However, NAVA is uncommon in ICU due to costly equipment 

such as NAVA catheter (Hjelmgren et al., 2016). 

 

2.2.3 Spectral Analysis of Airway Flow 

Gutierrez et al. (Gutierrez et al., 2011) proposed a method of assessing AI by using spectral 

analysis of airway flow waveform. This method implements Fourier transformation to 

discrete time dependant signal into infinite number of sine and cosine waves. The frequencies 

and amplitudes of the waves are then displayed as a frequency spectrum with the amplitude 

ratio of the first harmonic peak (H1) to that zero frequency is taken as a measure of spectral 

organization. The results show that the frequency of an asynchronous patient has irregular 

spectrum with lower and wider H1 peaks and disappearance of higher frequency harmonics as 

compared with spectrum of a synchronized patient. Although this method is less invasive and 

achieved 83% of sensitivity and specificity, but, only taking airway flow changes into 

consideration, neglects the mismatch of both flow and pressure that defines an AB, which 

could lead to lower AB detection accuracy. Moreover, this method is limited to retrospective 

analysis; which is not feasible to deploy in real time critical clinical decision.  
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2.2.4 ALIEN 

Automated Logging of Inspiratory and Expiratory Non-synchronized Breathing (ALIEN) is 

designed to detect AB automatically (Chiew et al., 2015). This method uses a combination of 

different approaches to detect AB by detecting irregular or anomalous deflections in airway 

pressure and flow compared to typical waveforms. ALIEN algorithm separates the 

waveforms into segments and checks the gradient sign. The segmented signals will be 

discarded if the net change in flow or pressure is lesser than threshold. Under pressure and 

flow control, ALIEN algorithm can achieve high specificity and sensitivity; however, during 

volume-controlled mode, flow-based inspiratory AB detection becomes less reliable, thus 

forcing ALIEN to rely only on the pressure waveform to detect AB. Besides, the lack of 

robustness to anomalies present in breathing cycles might deteriorate the performance to 

detect AB.  

 

2.2.5 Iterative Pressure Reconstruction 

Iterative pressure reconstruction (IPR) is a mathematical model developed by Chiew et al. 

(Chiew et al., 2018) to estimate respiratory mechanics of AB. The model incorporates a 

single compartment model to reconstruct to an asynchrony free airway pressure waveform. 

The difference in area under the graph between the reconstructed breathing cycle and original 

AB is defined as the magnitude of AB. Despite the model proves its effectiveness in restoring 

AB to asynchrony free airway pressure profile; the lack of robustness to eliminate patient 

effort occurring in different location impinges on the performance of the model.  

 

2.2.6 Iterative Flow Reconstruction 

Iterative interpolative flow reconstruction method was proposed by (Kannangara et al., 2016) 

with the purpose to better estimate respiratory mechanics via reconstructing asynchrony 
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affected airway profile. In addition to respiratory mechanics estimation, the method can 

quantify the magnitude of AB as indicator of PVI. However, the author stated that the 

efficiency of the method maybe affected when reconstructing aberrant breathing cycles.  

 

2.2.7 PREDATOR 

Pressure Reconstruction by Eliminating the Demand Effect of Spontaneous Respiration 

(PREDATOR) (Redmond et al., 2014) is an approach designed to reconstruct pressure 

profiles to assess underlying respiratory mechanics. While the timing of diaphragmatic 

contraction only affects the position of asynchrony occurrence in a breathing cycle; this leads 

the rest of the breathing cycle are the ‘correct’ datapoints. PREDATOR reconstructs 

breathing cycles affected by reverse-triggering via shadowing the ‘correct’ data from 

previous breathing cycles. The reconstructed breathing cycles allow better estimation of 

elastance and resistance values. Similarly, the difference in area under the curve between 

reconstructed airway profile waveform using PREDATOR and original AB can be used to 

describe the magnitude of AB. The performance of PREDATOR can be affected if the 

reverse-triggering exhibits early asynchrony, as less ‘correct’ data can be adopted to fit the 

model.  

 

2.3 Machine Learning Approach 

The developed methods in literature review is uncommon at clinical bedside as some can be 

invasive (Akoumianaki et al., 2014), costly (C. Sinderby et al., 1999) or lack of robustness 

(Chiew et al., 2018; Kannangara et al., 2016) when dealing with aberrant breathing cycles. 

Therefore, the model developed should avoid introducing additional costs or imposing further 

injuries to patients; while, ensuring the developed model is robust as well as computationally 
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simple. For these reasons, we believe that machine learning can potentially transcend the 

existing models in detecting and quantifying the magnitude AB due to its reliability, 

robustness and the ability to learn from data without explicitly programming.  

 

Machine learning is a subfield of artificial intelligence and is closely related with statistics 

(João & André, 2012). The main objective is to optimally realize embeddings via translating 

high-dimensional vectors into a relatively low-dimensional data, as well as to cluster and 

classify different categories. The ability to extract meaningful features and group them by 

learning from past-experienced data makes machine learning adept in building computational 

model. For such, machine learning techniques have been extensively deployed to solve 

problems in various fields. For business applications, machine learning is often deployed to 

perform predictions (Wei-Yang et al., 2012). In autonomous robotics, machine learning is 

commonly developed for visual processing (Giusti et al., 2016) and tactile sensing 

(Bandyopadhyaya et al., 2014).  

 

There are two main types of machine learning: supervised and unsupervised learning. In 

the former, supervised learning involves a model to learn to map the input examples with the 

output labelled datasets. The performance of a trained model is usually validated with 

withheld target variables. Once ready, the model will be used for categorization and 

classification with new data. On the other hand, in unsupervised learning, a model learns to 

draw inferences from datasets consisting of input examples without corresponding output 

labelled data. The purpose of unsupervised learning is to discover intrinsic properties or 

patterns in the data embedded in the low-rank subspaces. This allows hidden or undetected 

inherent information to be exploited for data analysis. Therefore, the objective or training 

approach of machine learning may vary depending on the application.  
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Nonetheless, although studies on the feasibility and the implementation of machine 

learning in respiratory related field such as respiratory mechanics estimation (Perchiazzi et al., 

2002; Perchiazzi et al., 2017), lung injuries detection (Räsänen & León, 1998) or MV modes 

identification (Leon & Lorini, 1997) have already been investigated. However, the 

deployment of machine learning approach in AB detection and quantification is still limited. 

The following outlines several existing or proposed machine learning techniques to detect 

and quantify AB.  

 

2.3.1 LSTM 

Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) is another type of 

recurrent neural network, in which, the architecture is distinctive from the conventional 

neural networks. In LSTM, the output of the current input is influenced by the previous 

computation steps. Henceforth, LSTM is widely deployed to solve temporal sequence 

problems such as speech recognition in natural language processing (Kaisheng et al., 2014) 

due to its ability to memorize data to process sequences of inputs. 

 

Zhang et al (L. Zhang et al., 2020), proposed a two-layer LSTM machine learning 

technique to detect double triggering and ineffective triggering. The model extracts the 

temporal features from flow and pressure ventilator waveform simultaneous and determine 

the occurrence of asynchronies. Despite the method achieved remarkable performance; the 

method is limited to two types of asynchronies detection. Besides, the feasibility of deploying 

different machine learning algorithms in other types of AB has not been examined.  
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2.3.2 CNN 

Convolutional Neural Network (CNN) is a biologically-inspired subclass of supervised 

machine learning models and it was first introduced by LeCun (Lecun et al., 1998) in 1994 to 

perform digits recognition from handwritten images. CNN was designed to extract useful 

spatial features while reducing computational resources dependency in which powerful 

central processing unit is absence in the 90s. The sharing of CNN’s trainable weights in the 

kernels in convolutional layer momentously reduce the total number of parameters in the 

model as the “information” or weights are distributed in the model. This is in contrasts with 

neurons in multilayer perceptron (MLP) where each neuron has individual parameters vector. 

Hence, CNN greatly decreases the parameters to train; thus, saving resources and time 

needed for convergence to minima while ensuring spatially correlated inputs are not affected.  

 

In recent years, CNNs have achieved impressive and astonishing outcomes in critical tasks 

such as object classification (Redmon et al., 2016; Szegedy et al., 2015) and audio 

recognition (Abdel-Hamid et al., 2013). CNN is able to achieve remarkable accomplishments 

due to its ability to capture and learn complex features or patterns automatically by adopting 

its convolutional layers. Hence, we hypothesise that CNN can detect AB with high accuracy 

due to its robustness to anomalies in breathing cycles and ability to extract essential and 

intrinsic AB features. In Chapter 4, we present the implementation of CNN to identify AB.  

 

2.3.3 CAE 

Autoencoder is a type of unsupervised machine learning algorithm that learns to imitate its 

inputs to its outputs (Baldi, 2012; Y. Zhang, 2018). An autoencoder model constitutes two 

sections namely encoder and decoder. Interestingly, the operation of these sections serves the 

opposite functionalities. The encoder extracts and compresses the critical information in the 
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inputs to reduce the dimensionality while preserving the essential details. On the other hand, 

the decoder learns to map and reconstruct the output to match the input with least distortion. 

This process involves the optimization of parameters in the convolutional layers to filter 

unwanted features as well as ‘remember’ the intrinsic properties in the inputs.  

 

While convolutional autoencoder (CAE) is a traditional autoencoder integrated with 

convolutional layers (Y. Zhang, 2018). The supremacy of convolutional layers in anomalies 

removal and features extraction makes CAE adept in capturing essential intrinsic patterns. 

CAE are commonly applied to filter noise (Ali et al., 2018) or to restore image (Mao et al., 

2016). In Chapter 5, we develop a CAE model to reconstruct AB to asynchrony free 

breathing cycle. This allows us to quantify AB by measuring the difference of area under the 

curve between AB with reconstructed asynchrony free breathing cycle.  

 

2.3.4 GAN 

Generative adversarial network or GAN is a class of unsupervised machine learning 

technique (Goodfellow et al., 2014) which involves two neural networks: generator and 

discriminator competing with each other in a zero-sum game framework. The generator 

learns to produce synthetic data which look as close as real images given a random 

distribution; whereas the discriminator learns to distinguish whether the generated data from 

generator is close to the real data. The discriminator will penalize the generator by tuning the 

parameters if the generated data is distinct from actual data. Ultimately, the generator will 

generate realistic data after trained; while, the discriminator will fail to distinguish between 

actual data and generated synthetic data.  

 



Chapter 2. Background   32 

 

The ability of GAN to generate new data by learning the distribution in the training 

datasets automatically makes GAN adept in realistic synthetic photographs creation from text 

(Bodnar, 2018) and images restoration (Yeh et al., 2017). In Chapter 5, we deploy GAN 

technique to restore a presuming normal breathing given AB as input. Similarly, the 

difference between the generated normal breathing and AB can be computed to quantify the 

magnitude of AB. 

 

2.4 Summary  

It is well established that AB occurrence is spontaneous and often concomitant with random 

magnitude and erratic asynchronies patterns. The standard method to identify AB is through 

observation of the ventilator waveforms at bedside, but, long-term visual inspection is an 

onerous and dauting task. Therefore, the prevalence and consequences of AB are often 

underestimated because the absence or lack of monitoring tools to identify them (Dres et al., 

2016). Table 2.1 summarizes the development of models to detect and quantify AB over 

years. It is clear that, the performance of several mathematical models may be affected due to 

aberrant breathing cycles or the occurrence of patient effort in different timing in AB; 

henceforth, a high robustness to noises model is favourable. Moreover, a non-invasive model 

but computational simple and without the usage of additional probes may benefit the 

popularity of monitoring tools at bedside.  

 

Last but not least, autonomous dedicated techniques or software to monitor AB is essential 

as it enables the extension and expansion of research on elucidating the harmful physiological 

effects of AB (de Haro et al., 2019). In the next chapter, we will be presenting the clinical 

trial setup in intensive care unit to collect ventilator waveform data for model development 

and validation.  
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Table 2.1: Summary of the development of AB detection and quantification 

Authors and methods Approach Advantages Disadvantages 

AB Detection 

Oesophageal measurement 

(Akoumianaki et al., 2014) 

Sensor Measurement • High accuracy as it measures muscle 

activity 

• Requires invasive probes 

NAVA (C. Sinderby et al., 

2013) 

Sensor Measurement • High accuracy as it measures muscle 

activity 

• Able to quantify the patient ventilator-

interaction 

• Costly as it requires additional 

instruments 

Spectral Analysis (Gutierrez 

et al., 2011) 

Fast Fourier 

Transformation 
• Automatic 

• High Accuracy 

• Uses existing flow waveform from 

ventilator 

• Only measures flow waveform 

• Only able to be conducted 

retrospectively.  

ALIEN (Chiew et al., 2015) Mathematical Model • High accuracy  

• Real time 

• Uses both pressure and flow waveform 

• Lack of robustness  

LSTM (L. Zhang et al., 2020) Machine Learning • High accuracy  

• Real time 

• Uses both pressure and flow waveform 

• Only able to detect two types of AB 

AB Quantification 

Iterative Pressure 

Reconstruction (Chiew et al., 

2018) 

Mathematical Model • Real time 

• Allows respiratory mechanics 

estimation 

• Lack of robustness 

• Time of patient effort occurrence in a 

breathing cycle may affect 

performance 

Iterative Flow Reconstruction 

(Kannangara et al., 2016) 

Mathematical Model • Real time 

• Allows respiratory mechanics 

estimation 

• Lack of robustness to anomalies or 

noises  

 

PREDATOR (Redmond et 

al., 2014) 

Mathematical Model • Uses previous information for better 

AB reconstruction  

• Performance may be affected if early 

asynchrony occurs  
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Chapter 3 

Clinical Trial  

 

This chapter presents the design and setup of a clinical observational trial conducted in this 

research to collect data for model development. Clinical trial is essential as it documents the 

data from cohort studies, treatment process and patient’s outcomes. The data collected from 

this trial are imperative for model development, testing, as well as to study the impact of 

patient-ventilator interaction towards treatment in this research.  

3.1 Introduction 

In this study, Clinical Application of Respiratory Elastance (CARE), a clinical observational 

trial is conducted to investigate the quality of AB towards patient’s outcome. The trial is 

conducted in intensive care unit (ICU) in International Islamic University Malaysia (IIUM), 

Kuantan, Malaysia. The trial collects mechanical ventilator airway pressure and flow 

waveform data of respiratory failure patients together with their clinical chart. The trial is 

approved by IIUM Research Ethics Committee (IREC) with trial number IREC-666 and it is 

registered with the Australia New Zealand Clinical Trial Registry (ANZCTR 

12618000468224) (Chiew et al., 2018). In this chapter, the study design, data collection 

process as well as initial processing of the data are presented.  

 

3.2 Study Design 

3.2.1 Patients 

The patients in the ICU, diagnosed with acute respiratory failure and ventilated using Puritan 

Bennett PB980 ventilator (Covidien, Boulder, CO, USA) are screened for inclusion into the 
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study. Written consent is obtained from patient’s family members recruited into the trial. The 

inclusion and exclusion criteria are as follows:  

Inclusion Criteria 

1. Patients requiring invasive mechanical ventilation (MV) (Intubation or tracheotomy).  

2. Patients with PaO2/ FiO2 [oxygen partial pressure to fraction of inspired oxygen] ratio < 

300 mmHg). 

3. Arterial line in situ.  

 

Exclusion Criteria 

1. Patients who are likely to be discontinued from MV within 24 hours.  

2. Patients with age < 16.  

3. Any medical condition associated with a clinical suspicion of raised intracranial pressure 

and/or a measured intracranial pressure ≥ 20 cmH2O.  

4. Patients who have a high spinal cord injury with loss of motor function and/ or have 

significant weakness from any neurological disease.  

5. Patients who are moribund and/or not expected to survive for > 72 hours.  

6. Lack of clinical equipoise by intensive care unit (ICU) medical staff managing the patient. 

 

3.2.2 Data acquisition system 

In this trial, the CURE software (Szlavecz et al., 2014) is implemented to collect data from 

the ventilator. CURE software was programmed in JAVA, a general-purpose programming 

language which allows CURE software to run on any platform ranging from mobile devices 

to personal computers. This study uses the Intel Next Unit of Computing (NUC) and a 
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GeChic On-Lap 1502i Touch Screen Monitor to house the CURE Software. The data 

acquisition system specifications are listed in Table 3.1: 

 

Table 3.1: Data acquisition system hardware specification. 

Specifications  General Descriptions 

Processing Unit Intel NUC  

Processor Intel core i5 (5th generation) 

RAM: 8GB 

Storage: 256 GB SSD 

Operating System: Windows 10 

Monitor  GeChic On-Lap 1502i  

Resistive Touch Screen 

Resolution 1920x1080 

 

The data acquisition system is mounted on the arm holder of Puritan Bennett PB980 

ventilator. Figure 3.1 shows the processing unit and touch screen monitor emplaced on 

CURE mounting device.  

 
Figure 3.1: The CURE mounting device (red box) is designed to rest on the arm of Puritan 

Bennet 980, while holding the touch screen and processing unit (black circle) in place.  
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An automatic backup system operates by periodically duplicating and transferring data to 

another storage medium such as external drive or cloud storage automatically. The backup 

system consists of a portable modem to provide wireless internet connection, an external hard 

disc and Rclone, an open-source software to encrypt and upload patient’s data to cloud 

storage services. The software is programmed to execute upon Windows system bootup to 

upload data to both cloud and local storage periodically. Besides, the external hard disc acts 

as additional backup in case of unavailable internet access. Figure 3.2 shows the external hard 

disc attached to NUC processing unit to backup data automatically.  

 

Figure 3.2: The NUC processing unit saves patient data to external hard disc automatically 

and periodically to prevent data loss.  
 

3.3 Recruited Patient 

A total of 24 patients were recruited into CARE trial within 2 years duration (14 August 2017 

– 6 February 2020). The demographics of the recruited patients are shown in Table 3.2 and 

Table 3.3. The collected data consists of more than 1500 hours or equivalent to 2.1 million 

breathing cycles ventilated using different MV modes such as synchronized intermittent 

mandatory ventilation (SIMV), bilevel positive airway pressure (BiPAP), continuous positive 

airway pressure (CPAP), and spontaneous ventilation (SPONT) modes. In addition to 

ventilator waveform data collection, patient’s bed charts and National Audit on Intensive 
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Care Unit were collected. These data comprise of valuable patient’s condition such as arterial 

blood gas (ABG), MV length, duration of ICU stay as well as patient’s basic information 

such age and gender. A few samples of mechanical ventilation waveform are shown in Figure 

3.3. As the breathing waveform patterns may alter due to the change of MV settings (Hess, 

2005); therefore, huge diversities of MV settings may benefit model development and 

validation. 

 

Figure 3.3: The top plot displays the airway pressure waveforms; while the bottom plot 

shows the airway flow waveforms.  
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Table 3.2: Patient demographics, admission reasons and ventilation mode.  

No. Gender Age 

Hours of 

Data 

Collected 

No. of 

Breath 
Clinical Diagnosis 

Initial 

P/F 

Ratio 

Ventilation 

Modes 

1 Female 43 168 270,126 Thyroid Carcinoma 150 SIMV 

2 Male 54 59 61,832 Pneumonia 202 SIMV/ SPONT 

3 Male 52 44 46,067 SVC Obstruction 95 SIMV 

4 Male 64 20 21,286 HAP 238 SIMV 

5 Female 63 139 152,229 Klebsiella Sepsis 146 SIMV 

6 Female 73 5 5,989 Pneumonia 298 SIMV/ SPONT 

7 Female 64 34 38,846 Pneumonia 117 SIMV / BiPAP 

8 Male 48 35 36,566 CAP 128 SIMV/ SPONT 

9 Male 42 5 6,953 Severe Pneumonia 97 CPAP/ SIMV 

10 Female 60 3 2,488 
Acute Coronary Syndrome 

with Cardiac Asthma 80 
SIMV/ SPONT 

11 Male 64 3 502 HAP 289 SIMV/ BiPAP 

12 Male 74 3 3,444 HAP 253 SIMV/ BiPAP 

13 Male 63 14 6,075 HAP 104 SIMV/ BiPAP 

14 Male 53 49 38,908 HAP 133 SIMV 

15 Female 62 55 83,385 HAP 143 SIMV/ SPONT 

16 Female 34 112 120,172 Pneumonia 155 SIMV/ SPONT 

17 Male 43 42 52,960 Acute Pancreatitis 157 SIMV/ SPONT 

18 Female 61 64 62,145 Right Lobar Pneumonia 92 SIMV/ SPONT 

19 Male 48 303 368,689 CAP 350 SIMV/ SPONT 

20 Female 53 156 216,984 CAP 
241 

BiPAP /SIMV/ 

SPONT 

21 Female 65 119 169,651 

Recurrent Multifocal 

Infarct with Poor 

Neurological Recovery 106 

SIMV/ BiPAP 

22 Male 48 113 128,573 
Partially Treated 

Pneumonia 202 
SIMV/ SPONT 

23 Male 66 114 149,158 HAP 119 SIMV 

24 Male 53 49 56,227 HAP 246 SIMV/ SPONT 

HAP – Hospital acquire pneumonia; CAP – Community acquire pneumonia; SVC – Superior 

vena cava 
 

Table 3.3. Summarized patients’ demographic and clinical characteristics. Figures are 

presented as median [25th-75th percentiles] or percentages.  
Patients n = 24 

Age (years) 57 [48-64] 

Gender (% men) 58% 

Reason for admission n (%)  

Acute respiratory failure 22 (91.7%) 

- Sepsis 1 (4.2%) 

- Pneumonia 18 (75%) 

- Others 3 (12.5%) 

Postsurgical 1 (4.2%) 

Obstruction 1 (4.2%) 

APACHE II 15.5 [12.5–21.5] 

SOFA at admission 6.5 [4.0-10.0] 

Length of data collection (hours) 49.0 [17.0-113.5] 

Number of data (breathing cycles *100,000) 0.55 [0.14-1.39] 

APACHE II – Acute physiology and chronic health evaluation II; SOFA – Sequential organ 

failure assessment.  
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3.3.1 Manual AB Inspection 

Most of the MV modes administrated to the recruited patients during treatment were similar; 

henceforth, Patients 1 to 7 comprise of more than 600,000 breathing cycles treated with 

prevalent MV modes (SIMV, BiPAP and SPONT) during treatment were manually 

categorized into two categories namely: normal and asynchrony. The data from the initial 7 

patients comprises of various AB shapes and features and the data will be useful for model 

development. To ensure impartiality, these data used for model development and validation 

were cross-checked by three trained researches. During the process of manual AB inspection, 

multiple computers were deployed to process the recorded ventilator waveform data and 

saved them individually in Matlab binary file format (.mat) and standard compressed image 

format (.jpeg) using Matlab 2017b (Natick,MA). The researchers then categorized them 

through manual inspection on pressure data. The researchers took more than two weeks to 

complete the analysis. Asynchrony index (AI) (M. de Wit et al., 2009) was calculated using 

the following equation:  

𝐴𝐼 =  
𝑁𝑜. 𝑜𝑓 𝐴𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 𝐵𝑟𝑒𝑎𝑡ℎ𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝐵𝑟𝑒𝑎𝑡ℎ𝑠
 × 100% (3.1) 

 

Table 3.4 shows the composition of manually classified breathing cycles in Patients 1 to 7. 

It shows that every recruited patient experienced different AI with median 39.5% 

[interquartile range (IQR): 11.5-53.2]. Patient 3 experienced lowest AI at 1.37%; whereas, 

the highest AI was at 64.8% experienced by Patient 4. This result shows that the AI varies 

among patients.  
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Table 3.4: Composition of types of breathing cycle experienced by the first seven patients.  

 Number of breaths Percentage 

Patient Asynchrony Normal AI (%) 

1 69,620 200,506 25.77 

2 33,426 28,406 54.06 

3 633 45,434 1.37 

4 13,793 7,493 64.80 

5 60,066 92,163 39.46 

6 403 5,586 6.73 

7 19,581 19,265 50.41 

Sum 197,522 398,853 - 

Median 19,581 28,406 39.46 

IQR [3,923–53,406] [10,436–80,481] [11.49–53.15] 

 

In this observational trial, patients were ventilated with different MV settings despite 

similar clinical diagnosis. This finding shows patients intra- and inter-variability and 

information variation is useful for developing a robust asynchronous breathing detection 

model. While the study design is set to collect data continuously for 72 hours, a number of 

patient data had less than 72 hours. This shorter data period is mainly due to the 

discontinuation of CURE soft from ventilator as ventilator maintenance is required. In 

addition, MV patients are often scheduled for other clinical procedure, where the patient is 

connected to portable MVs. Therefore, some of the data acquisition is not continued after 

clinical procedure.  

 

In this trial, when determining asynchronous breathing via manual inspection, the lack of 

taxonomy to consistently identify AB (Chanques et al., 2013; Colombo et al., 2011; Gogineni 

et al., 2012) may predispose to wrong AB evaluation. It is a challenge where manual 

inspection of breathing asynchrony is subjective. Thus, the manual classification of 

asynchronous breathing cycles carried out in this research were compared with two other 

independent researchers trained to identify AB. The researchers studied the literature on 

definition of AB and established an agreement among each other on identifying the traits of 

AB. The ‘ground truth’ is the breathing cycle classified by the researchers as AB or normal 
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breathing cycle. Specifically, 500 randomly chosen breathing cycles from the collected data 

to categorize into two categories: normal and asynchrony. The breathing cycles were 

annotated manually between researchers and their accuracy between them are recorded. Table 

3.5 shows that the researchers reached more than 80% accuracy computed using Equation 3.2 

when categorizing 500 breathing cycles. The accuracy found in this study was similar to 

other literature finding (Epstein, 2011; I. I. Ramirez et al., 2017), where they have found 

variation of accuracy among observers. This result suggested that determining AB through 

manual inspection may be subjective and there is a need to automate an objective method in 

identifying AB.  

Table 3.5: Manual inspection accuracy attained by three independent researchers. 

Researcher Accuracy 

Researcher 1 85.2% 

Researcher 2 83.2% 

Researcher 3 84.6% 

Avg. Accuracy 84.3% 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝐵𝑟𝑒𝑎𝑡ℎ𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒 𝑑𝑒𝑛𝑜𝑡𝑒𝑑 𝑏𝑦 𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑟𝑠

 𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑏𝑟𝑒𝑎𝑡ℎ𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒𝑠
 × 100% (3.2) 

 

3.4 Summary 

CARE trial was setup to collect data for model development and validation. 24 patients from 

different demographics were recruited via the trial. We found out manual inspection of 

asynchronous breathing is subjective and may differ between researchers. In the next chapter, 

we present the development of machine learning model to detect AB using the manually 

classified breathing cycles carried out in this study.  
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Chapter 4 

Asynchrony Detection 

 

Abundant ventilator waveform data collected from the clinical trial presented in Chapter 3 

allow us to use data driven model approach to classify breathing cycles. The ability of 

detecting asynchronies plays a vital role in evaluating the quality of ventilator treatment. 

Henceforth, in this chapter, we present investigation on the application of a machine learning 

algorithm namely convolutional neural network to detect asynchronous breathing. We 

examined the optimal number and data composite type for convolutional neural network 

training to achieve good accuracy using Monte-Carlo simulation. The result on the 

performance of the trained model on clinical data validation is presented in Section 4.4.  

 

4.1 Introduction  

Asynchronous Breathing (AB) is an erratic event that occurs due to poor patient-ventilator 

interaction (PVI) during mechanical ventilation (MV) treatment (Blokpoel et al., 2016). The 

impact of AB can be critical to patients as frequent occurrence of AB may impose further 

injuries to the lungs, lengthen patient’s dependency on the MV and worsen mortality rate 

(Beitler et al., 2016; Branson et al., 2013). Poor PVI occurs due to the mismatching of the 

timing between patient’s natural breathing pattern and the support from the mechanical 

ventilator. Hence, promoting and maintaining harmonious PVI is the key to reduce AB 

occurrence rate.  

 

While AB is usually spontaneous and manifests erratic and abnormal ventilator waveforms; 

but, the standard approach of detecting AB is via long-term visual inspection of the ventilator 
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waveforms at bedsides by the clinicians (Colombo et al., 2011; I. I. Ramirez et al., 2017; A. 

W. Thille et al., 2006). As a result, identifying AB becomes arduous and challenging as it 

requires continuous and consistent ventilator waveform respiratory signals interpretation. 

Hence, an automated computerized and robust algorithm is necessary for AB detection to 

better MV management.  

 

In this chapter, we deploy Convolutional Neural Network (CNN) machine learning 

algorithm to detect the presence of AB automatically. In order to understand the feasibility of 

and performance of CNN, we trained the CNN model with different data structure and data 

quantity. We hypothesized that CNN is robust to anomalies and able to detect AB with high 

accuracy.  

 

4.2 Convolutional Neural Network 

CNN was introduced to recognize digits from handwritten images (Lecun et al., 1998) in the 

90s. The adaptable kernels in CNN accelerate the learning process to capture complex 

essential features (Krizhevsky et al., 2017) and decrease the dependency on computational 

resources. Henceforth, CNN technique is applied in various fields and has shown positive 

outcomes specifically in object and audio recognition (Krizhevsky et al., 2017; Lee et al., 

2009).  

 

Typically, a CNN model comprises of an input and output layer, convolutional layer, 

activation layer, pooling layer and fully connected layer. The fully connected layer and 

convolutional layer comprise of trainable parameters which improves to optimize prediction 

accuracy during training process. The following section describes the operation of each layer 

in CNN.  
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4.2.1 Convolutional Layer 

The filters or kernels in convolutional layer are adept in features extraction from input, 𝑖 with 

the aid from the adaptable weights. The weights, 𝑊 with size of width, 𝑀 by height, 𝑁, and 

bias, 𝑏 in each convolution layer, ℓ are adjusted throughout the training process in order to 

improve the ability of capturing the critical features (O'Shea & Nash, 2015). A nonlinear 

activation function, σ will be applied to the summation of the convolutions to obtain output, 

𝑂 ; where 𝑂 is a tensor size of width, 𝑥 and height, 𝑦. Equation (4.1) represents the operation.  

𝑂
𝑥ℓ+1,𝑦ℓ+1
ℓ =  𝜎 ( ∑ ∑ 𝑊𝑀,𝑁  ∗ 𝑖(𝑥+𝑀)(𝑦+𝑁)

ℓ−1

𝐻

𝑁=0

𝑊

𝑀=0

+ 𝑏) (4.1) 

 

4.2.2 Activation Layer 

Activation function plays a role in capping the input elements within a manageable range via 

normalizing and rectifying unacceptable range of values (Nwankpa et al., 2018). There are 

different variants of activation functions which yield different output such as Linear, Tanh, 

Sigmoid, Softmax and ReLU functions. Equation (4.2) shows an activation function namely 

Rectified Linear Units or ReLU. The superior performance of ReLU in computation time 

reduction as compared with other types of activations has been proven (Krizhevsky et al., 

2017); hence, ReLU is commonly applied to the output of convolutional layer. On the other 

hand, Softmax function, a type of activation function is applied to the output of the fully 

connected layer to ensure the predicted outcome is constrained within 0 and 1. Softmax 

function can expressed in Equation (4.3). 

𝑓(𝑥) = max(𝑖𝑥,𝑦
ℓ , 0) (4.2) 

𝜎(𝑖𝑥,𝑦) =  
𝑒𝑖𝑥,𝑦𝑎

∑ 𝑒𝑖𝑥,𝑦𝑘𝑘
𝑘=1

  𝑓𝑜𝑟 𝑎 =   0, 1, 2, … , 𝑘 (4.3) 
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4.2.3 Pooling layer  

The pooling layer reduces the computational complexity by reducing the dimension of the 

feature maps from previous layer gradually. This greatly decreases the number of parameters 

required to be trained and controls the overfitting during training (O'Shea & Nash, 2015). 

Max pooling (Scherer et al., 2010) is a pooling operations which applies a filter size of (𝑀, 𝑁) 

to partition the inputs into multiple non-overlapping sub-regions. The maximum element of 

the sub-regions of size 
𝑖𝑥

𝑀
 ,

𝑖𝑦

𝑁
  is selected as output. Max-pooling operation can be expressed 

as:  

                      𝑂𝑥,𝑦
ℓ−1 =  max (𝑖𝑥×𝑀,𝑦×𝑁

ℓ ) (4.4) 

 

4.2.4 Fully Connected Layer 

Fully connected layer is usually introduced at the end of the network which unites the entire 

activations in the previous layer. The trainable weights, 𝑊 and bias, 𝑏 , in neurons in the 

fully connected layers are connected to each other and the connectivity resembles the 

biological neurons in animal brain (Hebb, 2005; Langille & Brown, 2018). The output, 𝑂 of 

the function of a neuron given, 𝑛 inputs can be defined as: 

                    𝑂𝑥,𝑦
ℓ−1 =  ∑ 𝑊𝑖𝑖𝑥,𝑦𝑖

𝑛

𝑖=1

+ 𝑏𝑖 (4.5) 

 

4.2.5 Objective Function 

An objective function or loss function is a measurement to evaluate the deviation between the 

model’s predicted outcomes with the actual results (Janocha & Czarnecki, 2017). Objective 

function will compute a large error value to ‘punish’ the model if predictions diverge too 

much from actual results. Gradually, the model will learn to reduce the error and improve the 
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prediction accuracy during backpropagation where the weights and biases are tuned 

proportional to error magnitude. Cross-entropy loss, or log-loss is a common loss function 

implemented on machine learning to quantify the dissimilarity between two probability 

distributions. Similarly, cross-entropy loss will increase if the predicted outcome diverges 

from actual results. Cross-entropy loss function, 𝐽(𝜃) can be expressed as:  

𝐽(𝜃) =  − ∑ 𝑡𝑖log (�̂�)

𝑁

𝑖

 (4.6) 

where N indicates the total number of classes (Normal and AB), label 𝑖  is the correct 

classification and �̂� is the predicted output from the model.  

 

4.2.6 Optimizer 

An optimizer is core to machine learning training as it helps to control or adjust the weights 

and learning rate to optimize the objective function (Sun et al., 2020). Mini-batch stochastic 

gradient-based optimization is one of the commonly applied optimization approaches in 

machine learning field. The advantage of mini-batch stochastic gradient descent (SGD) to 

compute gradient of a randomly sampled dataset with the size of mini-batch, 𝜂 instead of 

entire dataset leads to cheap computation of the gradient on each iteration (M. Li et al., 2014; 

Robbins & Monro, 1951). The efficiency and feasibility of SGD is proven in notable machine 

learning applications such as (Graves et al., 2013; D. Li et al., 2013). Examples of 

optimization algorithm that uses the concept of SGD are Adadelta (M. Zeiler, 2012) and 

Adam (Kingma & Ba, 2017). Equations to update the weights in the model using Adadelta 

are expressed in Equations 4.7 to 4.9; whereas Adam equations are described in Equations 

4.10 to 4.12.  
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                   𝐷𝑡 =  𝛽𝐷𝑡−1 + (1 − 𝛽)[𝜃𝑡 −  𝜃𝑡−1]2 (4.7) 

                𝑣𝑡 =  𝛽𝑣𝑡−1 + (1 − 𝛽)[
𝜕

𝜕𝜃𝑡
𝐽(𝜃)]2 (4.8) 

                 𝜃𝑡 =  𝜃𝑡−1 −
√𝐷𝑡−1 +  𝜖

√𝑣𝑡 + 𝜖
∗

𝜕

𝜕𝜃𝑡
𝐽(𝜃) (4.9) 

where 𝑡  is time step, 𝜃  represents the trainable weight or parameter, 𝜖  equals to 10e-6, a 

constant to ensure equation stability and 𝛽 is the momentum value.  

                       𝜃1 =  𝜃𝑡−1 −
𝛼

√
𝑣𝑡

1 − 𝛽2
𝑡  

+ 𝜖
∙ (

𝑚𝑡

1 − 𝛽1
𝑡 

) 
(4.10) 

                     𝑚𝑡 =  𝛽1𝑚𝑡−1 + (1 −  𝛽1)
𝜕

𝜕𝜃𝑡
𝐽(𝜃)  (4.11) 

                           𝑣𝑡 =  𝛽2𝑚𝑡−1 + (1 −  𝛽2) [
𝜕

𝜕𝜃𝑡
𝐽(𝜃)]

2

  (4.12) 

where 𝛼 is the learning rate, 𝛽1 and 𝛽2 are hyper parameters with 0.9 and 0.999 respectively, 

𝑚 and 𝑣 are moving average of gradient and squared gradient respectively.  

 

4.3 Methodology 

In this chapter, our focus is to investigate the feasibility of implementing CNN to detect AB 

occurrence as well as to examine the optimal configurations (data composite type and 

training data quantity) for CNN model training. Therefore, the CNN model is not trained to 

categorize AB. It is hypothesized that CNN is able to detect AB, despite the heterogeneity of 

AB patterns and shapes. Such robust and automated machine learning model can eradicate 

the need to programming explicitly to detect AB and provide critical patient’s condition 

information to clinicians in real time.  
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4.3.1 Patient Data for CNN Development  

The 600,000 manually categorized patient’s airway pressure waveforms from CARE trial as 

described in Chapter 3, are used for model training and performance evaluation. 10,000 AB 

and 10,000 of normal breathing (NB) cycles are selected for training and randomly choose 

non-repeated 3000 AB and 3000 NB from the remaining breathing cycles for training 

validation. Finally, the performance of the trained model is tested with about 600,000 

classified datasets. These validation data are obtained from the first seven manually annotated 

patient’s breathing cycles. Despite the validation dataset comprise only seven patients, we 

believe that, these data contain abundance apparent erratic and abnormal AB features 

ventilated using different MV modes and settings. Thus, it is sufficient for CNN to ‘learn’ 

capture them and identify them in high accuracy.  

 

4.3.2 Data Composite Type  

To understand the performance of CNN when trained with different data composite types; we 

train the CNN model with four different data structures. The patient’s data are processed 

using Matlab 2017a (The MathWorks, Natick, MA). Details of the data composite type are 

shown as follows:  

• 1-Dimension Data 

The discrete airway pressure waveform profile from ventilator are arranged in a sequence 

and fed to CNN algorithm. The magnitude of each breathing cycle is normalized to 1 and 

the total of number of data points per breathing cycle is resampled to 150 data points to 

match with the CNN algorithm input size.  
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• Line Graph 

The airway pressure profile is mapped and plotted in a white background with solid black 

line. The linewidth is set as 0.5 during plotting on Matlab and saved as portable network 

graphics (.png) image format at 150x150 pixels as shown in Figure. 4.1. (Left). 

• Area Graph 

The configuration of Area Graph is similar to Line Graph except the area under the curve 

is shaded; similarly, Area Graph is saved as portable network graphics (.png) image 

format at 150x150 pixels. Figure. 4.1. (Middle) shows an example of a normal airway 

pressure plotted and shaded.  

• Array Data 

The configuration of Array Data is similar to Area Graph, apart from that the data format 

is a Python array. Similar to Area Graph, the graph is assigned with integer 1 to represent 

black pixels. The advantage of this method is avoiding the necessity to save the waveform 

into an image file; while preserving the data structure in 150 width and 150 height 

configurations. Figure. 4.2. (Right) shows the configuration of Array Data. 

 

Figure 4.1: Examples of normal breath plotted in Line configuration (Left), Area 

configuration (Middle) and Array configuration (Right) with zoom-out box showing the pixel 

information of each configurations. As shown in the zoom-out box, Line and Area 

configuration underwent anti-aliasing when saving into (.png) image format; hence, grey 

pixels are produced due to interpolation at the edges or boundaries. Array configuration omits 

the need of undergoing anti-aliasing, as the waveform pattern is stored in python array. 
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As the aim of this study is to examine the feasibility of CNN to detect AB; thus, the types 

of asynchrony are not specified, and we only included asynchronies that are identifiable via 

visual observation on airway pressure profile for training and validation. AB such as reverse 

triggering, double triggering, flow asynchrony and delayed triggering (A. W. Thille et al., 

2006) are included in the training dataset. Examples of AB present in the pressure waveform 

are shown in Figure. 4.2. A configuration of 150 × 150 pixels is chosen to enable manual 

annotation by the researchers. We found that reducing a size lesser than 150 × 150 pixels will 

reduce the image sharpness and clarity, whereas increasing the size greater will consume 

additional computation resources without significant return. A min-max normalisation to cap 

airway pressure within 0 to 1 was applied to ensure faster convergence of model during 

training (Jayalakshmi & A, 2011; Jin et al., 2015; Sola & Sevilla, 1997) as well as to ensure 

equal comparison of breathing cycles from different MV settings. 

 

Figure 4.2: Normalised asynchronous pressure. 1st column: Pressure waveform of a breath 

cycle with reverse triggering. A negative deflection is present at the breath cycle. 2nd column: 

Pressure waveform of a breath cycle with double triggering. The breathing cycle will appear 

to have shorter expiration as compared with the others. 3rd column: Pressure waveform of a 

breath cycle with delayed triggering. A spike will appear on the pressure waveform just 

before exhalation. 4th column: Pressure waveform of a breath cycle with flow asynchrony. A 

concave shape negative dip will appear on the pressure waveform. 

 

4.3.3 CNN Architecture 

The CNN architecture applied in this study is similar to LeNet-5 (Lecun et al., 1998); apart 

from we apply some modifications to accommodate different inputs configuration. The 

architecture comprises of two convolutional layer, two max pooling layer and two fully 
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connected layers. Furthermore, we apply ReLU activation to every output from convolutional 

layer and Max pooling layer is applied to the outputs from convolutional layer. Besides, two 

fully connected layers with a size of 128 neurons and 2 output neurons are introduced to our 

proposed model. To prevent overfitting, dropout layer (Srivastava et al., 2014) is introduced 

to the layer after the flattened layer prior the first fully connected layer and in between fully 

connected layer. The output neurons yield a score ranging from 0 to 1 for each category: 

Asynchronous Breathing (AB) and Normal Breathing (NB). The highest score yields the 

category of the breathing cycle. In addition, binary crossentropy loss function is deployed 

along with ‘Adadelta’ optimizer set to default (𝛽 = 0) to update the parameters during 

training this two-class classification model. All the models are trained 50 epochs with 32 

mini-batch size training samples. Figure 4.3 shows the sequence of the CNN process where 

the input passes through multiple layers for feature learning and classification. 

 

Table 4.1: Architecture of CNN according to data type. 

Layers 

1-Dimension Data Line Graph, Area Graph, 

Array Data 

Settings/ Name Settings/ Name 

Input  150x1 150x150x1 

Convolution 32x3 32x3x3 

Activation ReLU ReLU 

Convolution  32x3 32x3x3 

Activation ReLU ReLU 

Max Pooling 2 2x2 

Dropout 0.5 0.5 

Fully Connected  128 128 
Activation ReLU ReLU 

Dropout 0.5 0.5 
Fully Connected  2 2 

Activation Softmax Softmax 
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Figure 4.3: A generalised CNN training process flow. 

 

4.3.4 Computational Setup and Training Process 

All the CNN models are programmed in Python programming language (Python Software 

Foundation) and trained offline on a desktop computer (Core i5-7400 CPU, 8GB DDR4 

RAM, NVIDIA GTX 1050Ti 4GB GPU). Theano (The Theano Development et al., 2016), a 

library written in python is implemented throughout the research to enable Graphical 

Processing Unit (GPU) usage to train machine learning models. As machine learning is 

computationally intensive, the deployment of GPU in our model training allows parallelism 

which significantly reduces our resources and time required in tuning the parameters (Chetlur 

et al., 2014).  

 

4.3.5 Sensitivity and Specificity Analysis 

True Positive (TP) is the number of times when the CNN model can correctly identify AB, 

and True Negative (TN) is the number of times when the model identifies NB. False Negative 

(FN) denotes the total number of times when the model has incorrectly classified normal 

breathing cycle as AB, and False Positive (FP) is the number of times when normal breathing 

cycles have been identified as AB.  
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4.3.6 Study I: CNN Models’ Performance and Evaluation 

Monte-Carlo simulation is conducted for each CNN model trained with different data 

composite type and different number of training datasets to study the performance of the 

CNN models. Specifically, the training sets per category for each CNN models were, n: 300, 

1000, 5000 and 10,000. The training datasets are randomly chosen from 20,000 manually 

classified breathing cycles comprising both AB and NB.  

 

The performance of the models is evaluated using sensitivity and specificity analysis. The 

Monte-Carlo simulation is repeated for 100 iterations, with each iteration’s sensitivity and 

specificity recorded. To avoid arbitrary results, all CNN models are rebooted with a new 

model every iteration during Monte-Carlo simulation. During Monte-Carlo simulation, all 

models are initialised with a random number generator by seeding the same value to ensure 

equal comparison. Figure 4.4 shows a schematic flow of the Monte-Carlo simulation. 

Nonetheless, in order to ensure impartiality, the validation dataset of 6000 breathing cycles 

are isolated from the training data.  

Figure 4.4: Monte-Carlo simulation process to test robustness of CNN models. 
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4.3.7 Study II: Performance Evaluation using Clinical Data 

This study extends the previous study, where we investigate the performance of highest 

accuracy trained in 1-dimensional and 2-dimensional data in Monte-Carlo simulation CNN 

model to validate with clinical data. The 600,000 manually categorised breathing cycles from 

7 mechanically ventilated patients are used for model evaluation.  

 

4.4 Results 

4.4.1 Study I: Robustness Test  

In this study, four CNN models are developed and trained with different data composite type 

and data quantity. The CNN models are named according to the data structure they are 

trained in. The four CNN models are: a) CNN_1D (one dimension data), b) CNN_Line (Line 

Graph), c) CNN_Area (Area Graph) and d) CNN_Array (Array Data).  

 

Figure 4.5 shows the sensitivity and specificity plot of Monte-Carlo simulation when 

trained with different number of training data from each category. The results show that, for 

each CNN model, when trained with randomly chosen datasets, the performance of CNN 

models improves proportionally to the training data quantity. Interestingly, when CNN_Area 

was trained with n lesser than 5000, CNN_Area achieved relatively higher consistency as it 

clustered together; despite low sensitivity and specificity performance. On the contrary, 

CNN_Line attained the least consistency when trained with n lesser than 5000, as the 

performance is scattered.  

 

The distribution plot in Figure 4.6 shows the summary of the performance of CNN models 

from each data structure when trained with 10,000 training data. All CNN data structure type 
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achieved high performance with near 100% sensitivity and specificity when trained with 

10,000 training datasets per category and validated with 3000 datasets from each category. 

 

 
Figure 4.5: Monte-Carlo simulation of each data structure. Top left: Monte-Carlo results of 

CNN 1D. Bottom left: Monte-Carlo results of CNN_Area. Top Right: Monte-Carlo results of 

CNN_Array. Bottom Right: Monte-Carlo results of CNN_Line. 
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Figure 4.6: Performance of CNN models trained with 10,000 training data from different 

data structures. 

Table 4.2 shows the summary of total training time of Monte-Carlo simulation for each 

data structure and quantity. The results show that the time required to complete the training 

increases proportionally as the data quantity increases; except, CNN_1D required the least 

training time regardless of training data quantity as compared CNN trained with 2-

dimensional data. CNN required 5 hours to complete the Monte-Carlo simulation when 

trained with merely 300 image training datasets; whereas, CNN_1D only required 10 times 

lesser.  

Table 4.2: Total simulation run time of Monte-Carlo simulation for each type of data 

configuration and data quantity. 

 Data Type 

Data Quantity 

/Category 
1-Dimension Data 

Line Graph, Area Graph, 

Array Data 

300 0.5 hour 5 hours 

1000 1 hour 45 hours 
5000 2 hours 75 hours 

10,000 4 hours 150 hours 

 

Table 4.3 shows the summary of the CNNs performance from Monte-Carlo simulation. It 

was found out that when trained with 300 data, CNN_1D achieved lowest consistency with 
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95th percentile and 5th percentile difference of 70% sensitivity when compared with other 2-

demensional data structure. Similarly, CNN_1D had highest specificity 95th percentile and 5th 

percentile difference when trained with 10,000 when compared with other data composite 

type. On the contrary, 2-dimensional data structures (Array, Area and Line) achieved 

relatively lower median sensitivity and specificity than 1-demensional data structure type 

when trained with 5000 datasets or lesser.  

Table 4.3: The summary of sensitivity and specificity of the CNN models during Monte 

Carlo simulation. 

Data  
Quantity 

CNN_1D CNN_Array CNN_Area CNN_Line 

Sen Spe Sen Spe Sen Spe Sen Spe 

300 37.8 

[1.9-72.3] 

96.3 

[91.8-98.0] 

3.7 

[2.1-5.9] 

57.4 

[50.4-76.5] 

6.3 

[2.9-15.2] 

93.5 

[91.7-95.1] 

4.2 

[1.1-12.0] 

85.1 

[66.5-93.8] 

1000 74.4 

[43.5-81.7] 

96.2 

[94.1-97.7] 

48.0 

[12.7-77.6] 

96.1 

[94.2-97.7] 

24.6 

[15.3-36.2] 

95.1 

[93.2-96.2] 

4.7 

[0.8-17.8] 

88.0 

[70.8-95.8] 

5000 78.8 

[51.2-83.5] 

96.7 

[95.3-97.7] 

76.5 

[52.0-87.7] 

95.2 

[97.5-98.2] 

51.6 

[36.6-68.9] 

95.8 

[94.5-96.6] 

2.1 

[0.3-31.3] 

93.3 

[80.6-99.4] 

10,000 99.9 

[99.7-100] 

99.6 

[99.1-99.9] 

99.9 

[99.7-100] 

100 

[99.9-100] 

99.8 

[99.6-99.9] 

100 

[99.9 -100] 

100 

[99.8-100] 

99.6 

[99.4-99.8] 

Sen = Sensitivity, Spe = Specificity, Median [5th – 95th percentile] 

 

Table 4.4 shows the sensitivity, specificity and accuracy of the best CNN model based on 

the Monte-Carlo simulation. Results show that, all the models achieved an average accuracy 

of more than 99%; while, CNN_Area and CNN_Array achieved 100% accuracy when 

validated with another set of validation data. 

 

Table 4.4: Sensitivity analysis of the robustness of the best CNN models From the Monte-

Carlo simulation. 

CNN_1D CNN_Array CNN_Area CNN_Line 
Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc 

100.00 99.90 99.95 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.90 99.95 

Sen = Sensitivity, Spe = Specificity, Acc = Accuracy 
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4.4.2 Study II: Performance on Clinical Data  

Table 4.5 shows the performance of CNN_1D and CNN_Array when tested on clinical data. 

Results showed that CNN_1D attained high average specificity of 91.44% and sensitivity of 

73.37% and CNN_Array only yielded specificity of 90.34% and sensitivity of 68.27%. Both 

CNN models showed good accuracy in AB detection; but both CNN models performed 

poorly in Patient 3 who was ventilated using SIMV pressure control mode. CNN_1D and 

CNN_Array had sensitivity of 24.01% and 22.42%, respectively. CNN_1D and CNN_Array 

also achieved relatively poor performance in detecting normal breathing cycles in Patient 4 

with specificity of 54.77% and 57.54% respectively. Overall, despite the performance of 

CNN_1D and CNN_Array degraded in some cases; their overall performance achieved an 

average of near 90.0% accuracy with more than 500,000 validation clinical data.  

 

Table 4.6 shows the comparison between the AI computed manually and CNN computed 

AI. The results show that there are some discrepancies in performance between CNN_1D and 

CNN_Array when detecting the presence of AB. It is observed that the performance of 

CNN_1D deteriorated when identifying AB in patients in PC or SPONT modes such as 

Patients 2, 3 and 6.  
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Table 4.5: Patient demographic along with CNN_1D and CNN_Array performance.  

 CNN_1D CNN_Array 

Patient 

No. 
Diagnostic MV Mode 

Total 

Breathing 

Cycle 

Sen Spe Acc Sen Spe Acc 

P1 
Thyroid 

carcinoma 

SIMV 

(VC mode) 
270,126 92.81 99.15 97.43 83.18 98.59 94.00 

P2 Pneumonia 

SIMV 

(VC mode)/ 

SPONT 

61,832 84.03 93.46 87.67 76.82 94.16 82.38 

P3 
SVC 

Obstruction 

SIMV 

(PC mode) 
46,067 22.83 99.80 95.81 20.84 99.38 96.46 

P4 HAP 
SIMV 

(VC mode) 
21,286 97.84 54.77 70.79 94.02 57.54 73.35 

P5 
Klebsiella 

Sepsis 

SIMV 

(VC mode) 
152,229 86.68 94.26 91.10 83.31 88.62 86.55 

P6 Pneumonia 
SIMV 

(VC mode)/ 

SPONT 

5,989 40.99 99.55 90.48 24.84 99.75 80.02 

P7 Pneumonia 

SIMV 

(VC mode)/ 

BiPAP 

38,846 96.42 94.89 95.65 94.88 94.33 94.60 

 Total/Average 596,675 73.37 91.44 89.34 68.27 90.34 86.76 

 25th Percentile 25,676 51.75 93.66 88.37 37.84 90.01 80.61 

 Median 46,067 86.68 94.89 91.10 83.18 94.33 86.55 

 75th Percentile 129,630 95.52 99.45 95.77 91.34 99.18 94.45 

*SVC – Superior vena cava; HAP – Hospital acquired pneumonia; SIMV – Synchronous 

intermittent mandatory ventilation; SPONT – Spontaneous; BiPAP – Bilevel Positive Airway 

Pressure; VC – Volume mode; PC – Pressure Control; Sen – Sensitivity; Spe – Specificity; 

Acc – Accuracy 

 

Table 4.6: Comparison between manual and CNN computed AI.  

 AI (%) 

Patient No. Manual CNN_1D CNN_Array 

P1 25.77 27.10 29.80 

P2 54.06 62.62 67.93 

P3 1.37 5.17 3.72 

P4 64.80 37.19 43.33 

P5 39.46 41.66 39.04 

P6 6.73 15.48 26.34 

P7 50.41 49.61 50.15 

Median 39.46 37.19 39.04 

IQR [11.49–53.15] [18.34–47.62] [29.21–48.45] 

IQR – Interquartile Range 
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4.5 Discussion 

4.5.1 Study I: Robustness Test   

The distribution plot in Figure 4.5 shows that when trained with 300 breathing cycles, 

CNN_1D and CNN_Line had the lowest performance compared to others, with their 

sensitivity and specificity scattered in Monte-Carlo simulation. When CNN_1D was trained 

with more data, the precision improved significantly, and its performance begin to be 

consistent. However, CNN_1D still struggled to maintain consistency even when trained with 

10,000 training datasets. Table 4.3 shows that CNN_1D had the highest specificity 5th and 

95th percentile difference. We speculate that the inconsistency CNN’s performance was due 

to the outlier data points or anomalies in the training data. The presence of irregularities in 

the training data may decrease the CNN performance (Khamis et al., 2005) as non-essential 

features are extracted for training. Similarly, possible reason behind CNN_1D lower 

performance when trained with 10,000 is due to model overfitting as repetitive insignificant 

features and irregularities were introduced into CNN. In this case, dropout is an effective 

method to prevent overfitting. Henceforth, by introducing different dropout rate or batch 

normalization method in the model may help to improve the model’s performance (Ioffe & 

Szegedy, 2015; Srivastava et al., 2014).  

CNN_Array’s performances improved when trained with more data and began to cluster 

when trained with more than 5000 datasets. Inconsistency CNN_Array’s performance when 

trained with lesser amount of data shows that CNN struggled to capture the vast 2-

dimensional latent information from the data structure; however, both median sensitivity and 

specificity achieved by CNN_Array is still greater than CNN_Area and CNN_Line when 

trained with 5000 data or lesser. Furthermore, CNN_Area had sensitivity and specificity 

clustered close together when trained with only 300 data points. This result shows that, 

CNN_Area had consistency in extracting and learning essential features; although, the 
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performance was still far behind from CNN_1D. The superiority of CNN_Area performance 

as compared with CNN_Line showed that shading area under the curve provides additional 

information; thus, enhanced CNN performance.  

 

Furthermore, Table 4.3 shows that the median of CNN_Area and CNN_Line were lower 

than CNN_1D and CNN_Array when trained with training datasets lesser than 5000. We 

believed that the ability of CNN_Area and CNN_Line to extract features drop noticeably 

when analysing anti-aliased images due to the presence of redundant anti-aliased pixel 

information. By removing redundant pixel information, the dimension of the data is altered 

leaving only binary data; thus, CNN does not require additional training dataset to extract and 

distinguish these anti-aliased features.  

 

Table 4.4 shows that all the CNN models achieved an average of 99% sensitivity and 

specificity or more than 99.95% accuracy when conducted with validation data to test the 

robustness of CNN models. This result showed that CNN is a highly robust machine learning 

algorithm that is capable of capturing AB regardless of input data type (1D or Image) when 

trained with adequate amount of data. However, the vast amount of information in 2 

dimensional data structure abates the performance of CNN to extract and learn the features; 

thus, requiring additional amount of training data for CNN to learn and understand the 

underlying patterns. In contrast, the inconsistent CNN_1D performance had led to relatively 

higher specificity 5th and 95th percentile gap as compared with 2-dimensional data structure 

type when trained with 10,000. It is believed that, the abundance of pixel information in 2-

dimensional data structure benefits CNN during training; thus, CNN_Area, CNN_Line and 

CNN_Array achieved relatively consistent performance compared with CNN_1D.  
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Furthermore, Table 4.2 shows that CNN_1D required least training time to complete 

Monte-Carlo simulation. Simulation completion time is affected by the training data sizes. 2-

dimensional data structure consists of 150 by 150 pixels or equivalent to 22,500 pixels 

information; whereas 1-dimensional data only consists of 150 datapoints. Moreover, 

additional pixels information indicates additional memory consumption in the system. Hence, 

additional resources and time is required to train 2-dimensional data composite types.  

 

Nonetheless, despite both CNN_Area and CNN_Array achieved similar performances and 

outperform CNN_1D when trained with 10,000 datasets, CNN_1D data structure type is still 

favourable due to the remarkable performance and consistency when trained with lower 

training dataset quantity. Besides, low training time could potentially conserve more 

resources as CNN_1D consistently attains the least amount of training time among all models.  

 

4.5.2 Study II: Performance on Clinical Data 

The results in Table 4.5 show that CNN_1D and CNN_Array are capable to distinguish AB 

and NB effectively. However, the lack of training data from different ventilation mode could 

compromise the performance of CNN. As the amount of training dataset with pressure-

controlled (PC) ventilation mode may be relatively lesser than the breathing cycles under the 

different modes; hence, CNN_1D and CNN_Array failed to identify AB correctly in these 

patients. In addition, the atrocious performance of the models to identify normal breath in 

Patient 4 could suggest that 10,000 normal or AB training data ventilated using different MV 

modes is insufficient. As breathing cycles can be altered due to the change of MV modes 

(Baedorf Kassis et al., 2021; Daoud et al., 2012; Leon & Lorini, 1997), assuring training data 

comprising balance amount of AB and normal breathing cycle ventilated using different MV 
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will potentially prevent biasness in the model. training data is insufficient; thus, causing the 

model to underfit during Monte-Carlo simulation analysis.  

 

Furthermore, despite Monte-Carlo simulation shows that CNN_Array achieved high 

sensitivity and specificity; its performance is relatively poor when compared to CNN_1D in 

the clinical data validation. It is possible that the performance deterioration is due to the 

feature alteration or loss during conversion from 1-dimensional to 2-dimensional data 

structure. Furthermore, poor CNN_Array performance may also be due to the lack of 

trainable parameters in fully connected layer, impeding the ability to cater large quantity 

pixel information in 2-dimensional data structure (Bansal et al., 2017; Basha et al., 2020).  

 

Besides that, Table 4.6 shows there are discrepancies between manually computed AI and 

AI attained by CNN models. Similarly, the difference in performance could indicate that 

CNN_1D and CNN_Array models are underfitting due to the lack of AB features ventilated 

under different MV modes. For example, Patient 6 was ventilated using a mixture between 

SPONT and SIMV. The lack of training data ventilated using SPONT could be the reason 

behind the deterioration of CNN_1D to compute AI closer to the AI computed manually for 

Patient 6. Nonetheless, despite the difference in performance, CNN_1D achieved better 

average sensitivity and specificity than CNN_Array. Hence, the CNN model trained with 1-

dimensional data structure is preferred in AB detection task in this study.  

 

4.5.3 Limitation  

In summary, the 1-dimensional data format in this study is the optimal data type to perform 

AB detection. There are a few limitations in the developed models that we wish to highlight. 

The first limitation is that this study only detects the present of asynchronies in airway 
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pressure. The absence of the ability of detect flow waveform could deprecate the assessment 

of patient-ventilator interaction. One of the concerns in this research is that the effect of 

normalisation of the training data is not studied thoroughly. In particular, normalisation may 

alter the data, potentially lose its original form (KumarSingh et al., 2015; U POR, 2011). It is 

however, normalisation offer opportunities to compare inter- and intra- variability of AB, 

reducing the amount of data needed for model training and faster convergence (Jin et al., 

2015). 

 

Moreover, the MV settings or patient-specific breathing pattern may limit the 

performances of the CNN models. In this study, the training data mainly consists of SIMV 

and VC , where patient-effort is obvious in airway pressure (Ramirez & Arellano, 2018). This 

allows us to investigate the effect of asynchrony induced in AB in correlation with patient’s 

oxygenation during MV in the following chapter. Other settings such as neurally adjusted 

ventilator assist, proportional assisted ventilation or airway pressure release ventilation were 

not included (V. J. Major et al., 2018). The variabilities in pressure or flow profile in different 

MV modes thus requires a wider range of AB and NB data for the development of a one size-

fit-all CNN model. 

 

Another limitation is that the CNN models developed here may not be able to detect all 

forms of asynchrony. CNN may fail to identify them due to the subtle features defining these 

asynchronies. For example, ineffective triggering is described as a simultaneous decrease in 

airway pressure and an increase in airflow without assisted cycle (A. W. Thille et al., 2006). 

Figure 4.7 shows an example of ineffective triggering; however, as the magnitude of the 

deflection is small, CNN may fail to capture the deflection due to unclear features. Similarly, 

asynchronies that were dependent of previous breathing cycles and not present in the current 
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cycle may be detected using different machine learning approach (L. Zhang et al., 2020) 

More studies are needed in order to determine the appropriate settings to capture the pattern 

of AB with small deflection magnitude. 

 

Finally, all CNN models in this study are only capable of distinguishing AB and NB 

breathing cycles but unable to quantify magnitude of asynchronies or recognize types of AB. 

Further studies on quantifying AB are required to provide additional information on patient-

ventilator interaction to the clinicians.  

 
Figure 4.7: Example of ineffective triggering with both pressure and flow waveform.  

4.6 Summary  

In this chapter, we have presented the development of CNN models to detect AB using 

airway pressure data from the MV. It was found that performance of CNN varies with 

different data structure and quantity. In this study which involved airway pressure waveform, 

the 1-dimension data structure is the preferred data type for CNN training due to accuracy 

and consistency, besides rapid training completion time could potentially save more 
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resources. Furthermore, we conclude that the performance of each CNN model regardless of 

data composite type can achieve high accuracy when trained with additional data.  

 

In summary, we show that the CNN’s ability in detecting AB is promising and it can be 

implemented at bedside to monitor the quality of PVI during MV treatment automatically. As 

CNN model is only able to detect the presence of AB during MV; the ability to assess the 

magnitude of AB is still absent. In the next chapter, we present two machine learning models 

to quantify the magnitude of AB. The chapter includes a comparison study between the 

developed machine learning models with an existing mathematical model.  
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Chapter 5 

Asynchrony Magnitude Quantification 

 

This chapter presents the development of machine learning algorithms in quantifying the 

magnitude of asynchronous breathing. The ability to assess the degree of severity of 

asynchronous breathing may help to further understand the effects of asynchronous breathing 

towards patient’s condition. We present two different machine learning algorithms that 

potentially compute the magnitude of asynchrony. The machine learning algorithms are 

ABReGAN and ABReCA. The performance of these methods is then compared with an 

existing mathematical model. 

 

5.1 Introduction 

The shape of a breathing cycle may be altered due to the presence of patient effort. For 

example, reverse triggering is a neuromechanically triggered AB when the diaphragmatic 

muscle contraction is triggered by ventilator insufflations (Akoumianaki et al., 2013). The 

presence of reverse triggering imposes anomalies to the mechanical ventilation airway 

pressure waveform. Consequently, the patient’s effort (asynchrony) masks the underlying 

physiological properties; (Brochard et al., 2012; Talmor et al., 2008); therefore leading to 

mis-identification of respiratory mechanics (Chiew et al., 2015; Lucangelo et al., 2007; V. 

Major et al., 2015). Figure 5.1 shows an example of poor fitting of using single compartment 

model due to the presence of patient effort. Hence poor estimation of respiratory mechanics 

using conventional model severely hinders the usage of model-based respiratory mechanics 

in MV monitoring and guidance.  
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Figure 5.1: Linear regression yields elastance of 30 cmH2O/L and resistance of 4 cmH2Os/L; 

however, the actual airway pressure has elastance of 35 cmH2O/L and resistance of 10 

cmH2Os/L. Presence of patient effort leads to miscalculation of elastance and resistance 

values.  

 

Airway pressure or flow profile reconstruction is a technique to reconstruct or ‘restore’ 

AB to an asynchrony free breathing cycle in the effort to better estimation of the underlying 

respiratory mechanics (Chiew et al., 2018; Kannangara et al., 2016). Once reconstructed, the 

airway profile will manifest a normal breathing cycle. As a result, the difference in area under 

the curve between the reconstructed breathing cycle and AB can be defined as the magnitude 

of an AB. Chiew et al (Chiew et al., 2018) proposed a method namely iterative pressure 

reconstruction (IPR), a mathematical model which uses single compartment model to 

reconstruct AB to normal breathing cycle for better respiratory mechanics estimation. 

However, IPR lacks robustness when reconstructing asynchronies that present at different 

location, as a result, this impinges on the performance to reconstruct AB. Therefore, high 

robustness machine learning approach is proposed to improve the performance to reconstruct 

AB with least error. 
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In this chapter, two different machine learning techniques to reconstruct airway pressure 

are presented. The first method uses Generative Adversarial Network (GAN), an 

unsupervised machine learning technique that utilizes two neural networks namely 

discriminator, D and generator, G competing each other in a zero-sum game framework 

(Goodfellow et al., 2014). Ultimately, the trained G model will learn to restore AB to a clean 

airway pressure. The second approach utilizes another unsupervised machine learning 

algorithm, namely convolutional autoencoder (CAE) (Y. Zhang, 2018) to reconstruct AB to 

asynchrony free breathing cycle. These models are trained and validated with simulated 

patient effort imposed breathing cycles.  

 

This chapter further extends the study by including a comparison study between the 

performance of developed machine learning models and a mathematical model to reconstruct 

breathing cycles. We hypothesise that the exemplary high robustness of machine learning to 

‘learn’ and ‘understand’ essential and intrinsic AB properties could outperform conventional 

mathematical model to better reconstruct AB. Ultimately, the best performing model is 

selected for further testing with actual clinical data. 

5.2 Methods 

5.2.1 Simulated AB for Training and Validation  

In order to prepare data for machine learning training and assessment, a forward simulation 

was performed. The forward simulation incorporates both single compartment model, SCM, 

and gaussian effort model, GEM (Arunachalam et al., 2020), to generate normal breathing 

cycle and patient’s effort respectively.  
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SCM can be extended to simulate different magnitude and patterns of AB by imposing 

patient effort generated using GEM into the function. The single compartment model with 

patient effort, is defined: 

𝑃𝑎𝑤(𝑡) = 𝐸𝑉(𝑡) + 𝑅𝑄(𝑡) +  𝑃0 + 𝑃𝑒  (5.1) 

 

where 𝑃𝑎𝑤 (cmH2O) is the airway pressure at time 𝑡 (s), consists volume, 𝑉 (L), the integral 

of airway flow, 𝑄  (L/s), the respiratory (resistance, 𝑅  (cmH2Os/L) and elastance, 𝐸 

(cmH2O/L)) and 𝑃𝑒  (cmH2O) is the patient effort.  

 

On the other hand, GEM model utilizes three Gaussian basis functions to model the 

nonlinear patient effort. These basis functions allow GEM to simulate different shapes and 

sizes of patient effort present in reverse triggering. GEM can be expressed as follow:  

𝑃𝑒 =  ∑ 𝐴𝑖𝑒
−(

𝑓−𝜇𝑖
𝜎𝑖

)
23

𝑖=1

 (5.2) 

  

The gaussian effort model consists peak effort of pressure of ith Gaussian curve, 𝐴𝑖(cmH2O), 

normalized patient effort timing, 𝑓, center of ith Gaussian curve, 𝜇𝑖  and width of ith Gaussian 

curve 𝜎𝑖.  

 

In this study, a total of 1,000 normal breathing cycle with their corresponding 420,000 

unique AB were simulated using the parameter range shown in Table 5.1. Each simulated 

pressure waveform is normalized to 0 and 1 and resampled to 64 data points. Normalization 

and resampling are necessary to reduce variability of the signal magnitude and duration. As a 

result, the normalized breathing cycle will yield a range of respiratory mechanics E from 1 to 

1.77 and R from 0.08 to 0.62 during models’ performance validation. These values are 

relatively smaller than the actual E and R used to simulate breathing cycles. Furthermore, as 
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the volume and flow settings were kept constant, therefore, only volume control (VC) mode 

breathing cycles were generated in this study. 

 

Table 5.1: Parameters used for synthetic data generation simulation.  

Parameters (Unit) Range Resolution 

Elastance, E (cmH2O/L) 25-60 5 

Resistance, R (cmH2Os/L) 1-20 1 

Magnitude of Pressure, A1 (cmH2O) 1-10 1 

Magnitude of Pressure, A2 (cmH2O) 1-10 1 

Magnitude of Pressure, A3 (cmH2O) 1-10 1 

Centroid of Gaussian curve, µ  -3 – 3 3 

Width of Gaussian curve, 𝜎  1 Constant 

 

5.2.2 Model Training and Development  

The main objective of the developed machine learning models (GAN and CAE) is to 

reconstruct AB with least distortion to compute the magnitude of AB. We begin training the 

models using the simulated AB as input and the simulated normal breathing cycles as output. 

The trained models’ performance is evaluated by determining the difference of the ground 

truth respiratory mechanics (RM) with the RM of the reconstructed AB. Figure 5.2 shows the 

overall flow of models’ performance evaluation in this study. Detailed information of GAN 

and CAE models training and development process are discussed in Section 5.2.5 and 5.2.6 

respectively.  

 

 
Figure 5.2: Overview machine learning models performance evaluation process.  
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5.2.3 Models’ Performance Evaluation 

The RM parameters (resistance, 𝑅  and elastance, 𝐸 ) value of each model reconstructed 

airway pressure, 𝑃𝑎𝑤  will be estimated by fitting the single compartment model equation 

using linear regression (Bates, 2009): 

𝑃𝑎𝑤(𝑡) = 𝐸𝑉(𝑡) + 𝑅𝑄(𝑡) +  𝑃0 (5.3) 

  

where airway flow, 𝑄, and lung volume, 𝑉 were kept constant and pressure offset 𝑃0 was 

kept as zero.  

 

The performance of the developed models is validated using error profiles such as Mean 

Absolute Percentage Error (MAPE), Sum Squared Error (SSE) and Absolute Percentage 

Error (APE). These errors measure the disparity between the reconstructed elastance, 𝐸𝑟𝑒𝑐  

and resistance, 𝑅𝑟𝑒𝑐with the actual elastance, 𝐸𝑎𝑐and resistance, 𝑅𝑎𝑐.  

 

APE computes error by measuring the absolute distance between actual and predicted 

points; while, MAPE extends APE by measuring the mean error. Formula to compute APE 

and MAPE are shown as below:  

𝐴𝑃𝐸 = [
(𝑅𝑀𝐴𝑐𝑡 −  𝑅𝑀𝑅𝑒𝑐)

𝑅𝑀𝐴𝑐𝑡
] ×  100% (5.4) 

  

𝑀𝐴𝑃𝐸 = 𝑀𝑒𝑎𝑛 [
(𝑅𝑀𝐴𝑐𝑡 −  𝑅𝑀𝑅𝑒𝑐)

𝑅𝑀𝐴𝑐𝑡
] ×  100% (5.5) 

  

where 𝑅𝑀𝐴𝑐𝑡 is the actual respiratory mechanics and 𝑅𝑀𝑅𝑒𝑐 is the reconstructed respiratory 

mechanics. While, the sum of squared error, SSE formula is shown as below:  

𝑆𝑆𝐸 = ∑(𝑅𝑀𝐴𝑐𝑡 −  𝑅𝑀𝑅𝑒𝑐)2 
(5.6) 
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5.2.4 Computational Setup 

All the machine learning models are trained offline on a computer running on Windows 10 

with Intel Core i5-7400 CPU (4 cores), 32 GB DDR4 RAM and NVIDIA GTX 1050Ti 4GB 

GPU. The models are developed in Python 3.5 (Python Software Foundation) and Python 

library, Theano (The Theano Development et al., 2016). Theano allows parallel computation 

using Graphical Processing Unit (GPU) to reduce resources and training time consumption.  

 

5.2.5 Generative Adversarial Network (GAN) 

Generative Adversarial Network (GAN) is an unsupervised deep learning architecture that 

involves two neural network namely generator, 𝐺(𝑖𝑛𝑜𝑖𝑠𝑒)  and discriminator, 𝐷(�̅�, 𝑇) 

contesting each other in a zero-sum game framework (Goodfellow et al., 2014). Ultimately, 

the generator learns to generate a synthetic data, �̅� similar to actual data points by mapping 

the random uniform noise sample, 𝑖𝑛𝑜𝑖𝑠𝑒  inputs. On the other hand, the 𝐷 receives synthetic 

data, �̅� from 𝐺  to determine whether the generator produces output close to the target, 𝑇. 

During training, both 𝐺 and 𝐷 will contest with each other, where 𝐺 will minimize its error 

by generating a synthetic data which is close to real data distribution, 𝑇; whereas, 𝐷 will 

maximize its ability to determine the authenticity (real or fake) of the generated synthetic 

data. Eventually, 𝐺 will learn to generate synthetic data similar to real data distribution by 

mapping the inputs. The objective function of GAN can be expressed as: 

 
𝑚𝑖𝑛

𝐺

𝑚𝑎𝑥

𝐷
𝐽(𝐷, 𝐺) = 𝐸𝑟[𝑙𝑜𝑔𝐷(�̅�)] + 𝐸𝑟 [log (1 − 𝐷(𝐺(𝑖𝑛𝑜𝑖𝑠𝑒)))]  

 

(5.7) 

where 𝐸𝑟 is the error computed by the discriminator or the generator. The output result of the 

discriminator is regarded as optimal when the distribution of the generated data is close or 

equivalent to the real data (Goodfellow et al., 2014).  
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AB Reconstruction Generative Adversarial Network (ABReGAN) 

AB Reconstruction Generative Adversarial Network (ABReGAN) uses the GAN algorithm to 

reconstruct AB to a normal breathing cycle for the use of quantifying the magnitude of AB. 

The 𝐺 in ABReGAN is designed to accept simulated AB as inputs, 𝐼 and generate synthetic 

data, �̅� . The flow of ABReGAN reconstruction training process is shown in Figure 5.3. 

During the training process, 𝐺  will learn the distribution of AB patterns and generate 

synthetic normal breathing cycle with least distortion. On the other hand, 𝐷 will update the 

parameters according to the difference between the generated and actual normal breathing. 

Ultimately, once ABReGAN is trained, the 𝐺 will learn to reconstruct AB to an asynchrony 

free breathing cycle when given AB as input.  

 

 

Figure 5.3: ABReGAN architecture during training. Asynchronous breathing will be the input 

of generator and discriminator will compare the generated �̅� data with ground truth, 𝑇. 

 

ABReGAN Architecture and performance evaluation 

Figures 5.5, 5.6 and Table 5.2 show overall ABReGAN architecture respectively. ABReGAN is 

trained 128 mini-batch size with adaptive moment estimation (Adam) (Kingma & Ba, 2017) 

as optimizer as denoted in Equation 4.10 to 4.12 and trained for 10,000 iterations. Batch 

normalization momentum is set as 0.8 and alpha value for LeakyRelu set as 0.2. Once 

ABReGAN is trained, it is validated with 420,000 of its own training datasets to evaluate the 
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performance of ABReGAN in recognizing its ‘observed’ data. In order to evaluate the 

robustness of ABReGAN, k-fold cross validation technique is applied (Berrar, 2018). K-fold 

cross-validation technique is a common practice to evaluate the robustness of a machine 

learning model. K-fold process involves shuffling and partitioning of the whole training data 

into different training and testing groups with k number of times. In this study, the 

performance of ABReGAN is evaluated by a 10-fold cross validation on the 420,000 

simulated breathing cycles. The flowchart shown in Figure 5.4 depicts the k-fold evaluation 

process. Ten percent of the training dataset are reserved for model testing while the rest are 

used for training. The following outlines the operations implemented in ABReGAN. 

 

 
Figure 5.4. Evaluation process of the 10-fold cross validation for ABReGAN to test its 

robustness. All of the data are randomly shuffled before 10-fold analysis.  
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Figure 5.5: The generator accepts AB as input and learns to output normal breathing cycles.  

 

 
Figure 5.6: The discriminator compares the difference between the ground truth and 

synthetic output from generator and determines if they look alike.  
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Table 5.2: Architecture of ABReGAN.  

Discriminator  Generator 

Layer Settings /Name Layer Settings /Name 

Input 64x1 Input 64x1 

Convolution 3x1x32 Activation LeakyReLU (𝛽 = 0.2) 

Activation Tanh Normalization Batch Normalization (𝛼 = 0.8) 

Dropout 0.5 Hidden Layer 512 neurons 

Max Pooling 2 Activation LeakyReLU (𝛽 = 0.2) 

Convolution 3x1x32 Normalization Batch Normalization (𝛼 = 0.8) 

Activation Tanh Hidden Layer 1024 neurons 

Dropout 0.5 Activation LeakyReLU (𝛽 = 0.2) 

Max Pooling 2 Normalization Batch Normalization (𝛼 = 0.8) 

Hidden layer 128 neurons Output layer 64x1 

Activation Tanh Activation LeakyReLU (𝛽 = 0.2) 

Output layer 1 Normalization Batch Normalization (𝛼 = 0.8) 

Activation Sigmoid   

 

Generator, 𝐺 

The 𝐺  in ABReGAN contains 4 hidden layers, 4 activation layers followed by batch 

normalization layer and it is compiled with binary cross-entropy as loss function as expressed 

in Equation (4.6) and shown in Figure 5.5. Batch normalization is implemented on the 

outputs of all fully connected layers to reduce overfitting (Ioffe & Szegedy, 2015). Batch-

Normalization is a technique to improve stability and computational speed during training by 

normalizing and scaling the inputs, 𝑖𝑖 for machine learning. Batch-Normalization normalized 

output 𝑥 can be expressed as follows: 

𝑀𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ 𝐼𝑛𝑝𝑢𝑡 𝑀𝑒𝑎𝑛, 𝜇𝑏 =
1

𝜂
∑ 𝑖𝑖

𝜂

𝑖=1

 (5.8) 

𝑀𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ 𝐼𝑛𝑝𝑢𝑡 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝜎𝑏
2 =

1

𝜂
∑(𝑖𝑖 − 𝜇𝑏)2

𝜂

𝑖=1

 (5.9) 

𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑀𝑒𝑎𝑛, 𝜇𝑚𝑜𝑣 =  𝛼(𝜇𝑚𝑜𝑣) + (1 − 𝛼)𝜇𝑏 (5.10) 
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𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝜎𝑚𝑜𝑣
2 =  𝛼(𝜎𝑚𝑜𝑣

2) + (1 − 𝛼)𝜎𝑏
2 (5.11) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑂𝑢𝑡𝑝𝑢𝑡, 𝑥 =
𝑖𝑖 − 𝜇𝑚𝑜𝑣

√𝜎𝑚𝑜𝑣
2 + 0.001

 (5.12) 

where 𝜂 is the total number of mini-batch and 𝛼 is the momentum value.  

In addition, LeakyReLU (Maas, 2013) activation layer is applied in 𝐺 to improve GAN 

stability and training (Radford et al., 2015; Xu et al., 2015). Unlike ReLU activation layer 

Equation (4.2), LeakyReLU allows certain range of negative values as inputs, 𝑖; thus, enables 

the model to learn additional information. LeakyReLU can be denoted as follows:  

𝑓(𝑖) = max(𝑖, 𝛾(𝑖)) (5.13) 

where 𝛾 is the allowable negative value to pass through the LeakyReLU.  

Discriminator, 𝐷 

Figure 5.6 shows the architecture of discriminator. The 𝐷  architecture consists 2 

convolutional layers with 32 filters, 4 activation layers, 2 hidden layers and 2 pooling layers 

and it is compiled using binary cross-entropy as loss function as described in Equation (4.6). 

While the convolution layer, max pooling and hidden layer operations in 𝐷 are denoted in 

Equation (4.1), Equation (4.4), and Equation (4.5) respectively; Tanh and sigmoid activation 

functions (Nwankpa et al., 2018) in 𝐷 can be expressed as follows: 

𝑇𝑎𝑛ℎ, 𝜎(𝑖) =  
𝑒𝑖 − 𝑒−𝑖

𝑒𝑖 + 𝑒−𝑖
 

 

(5.14) 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑, 𝜎(𝑖) =  
1

1 + 𝑒−𝑖
 (5.15) 

where 𝑖 is the input to the activation function.  
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Results 

Figure 5.7 contains two subplots. The top graph depicts the generator losses, while the 

bottom graph describes the losses of discriminator for real data (Dis-real) and losses of 

discriminator for reconstructed data (Dis-fake) during training. It can be observed that, the 

generator losses were erratic in the earlier runs before stabilized at approximately 1.7 error 

between iteration 1700 to iteration 6000; The variance of the loss was found to increase 

beyond iteration 6000. On the other hand, the discriminator attained high fluctuation of losses 

throughout the entire training process, but they remained stable. Furthermore, the Dis-real 

and Dis-fake losses stabilized between iteration 1000 to 6000 before Dis-fake losses 

surpassed Dis-real losses. Despite both Dis-real and Dis-fake losses exhibited high variance; 

the losses remained stable approximately at 0.7 loss. Table 5.3 shows the results of k-fold 

validation for reconstructing AB. ABReGAN achieved mean MAPE of 26.35% and 189.04% 

when estimating elastance values and resistance values respectively.  

 
Figure 5.7: Subplots of generator (top) and discriminator (bottom) losses obtained from one 

of ABReGAN model from k-fold analysis. 

Table 5.3: Performance of ABReGAN obtaining normalized elastance and resistance values 

in the 10-fold validation analysis.  

Respiratory mechanics  MAPE (%) 

Elastance, E 26.35 [25.30 – 26.90] 

Resistance, R 189.04 [184.28 – 199.77] 

Median [25th -75th percentile] 
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Figure 5.8 top left and right figures show two successfully reconstructed AB as the 

reconstructed airway pressure intimately resembles the actual airway pressure with minimal 

error (SSE = 0.04 (Top left), 0.09 (Top right)). The absolute error between 𝐸𝑟𝑒𝑐  and 𝐸𝑎𝑐  were 

0.01 (Top left) and 0.01 (Top right) cmH2O/L and 𝑅𝑟𝑒𝑐 and 𝑅𝑎𝑐were 0.04 (Top left) and 0.07 

(Top right) cmH2Os/L respectively. Figure 5.8 bottom left and right graphs denote examples 

of failed reconstruction as ABReGAN generated normal breathing cycle with huge 

discrepancy (SSE = 4.452 (Bottom left), 0.88 (Bottom right)). The absolute error between 

𝐸𝑟𝑒𝑐  and 𝐸𝑎𝑐  were 0.46 (Bottom Left) and 0.40 (Bottom Right) cmH2O/L. Absolute error 

between 𝑅𝑟𝑒𝑐and 𝑅𝑎𝑐were 0.57 (Bottom left) and 0.13 (Bottom Right) cmH2Os/L.  

 

 

Figure 5.8: Comparison of ABReGAN reconstructed airway pressure, target normal airway 

pressure and AB. Top left and right figures show that the generated airway pressure agrees 

the features defining a normal breathing cycle but with the presence of minor magnitude of 

oscillations. Bottom left and right figures show ABReGAN fails to reconstruct to actual 

normal breathing.  
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Discussion 

Non-convergence issues (mode collapse and vanishing gradient) are common during GAN 

training due to the enormous difficulties in finding the equilibrium between the generator and 

discriminator (Arjovsky & Bottou, 2017; Salimans et al., 2016; Thanh-Tung & Tran, 2020). 

Ideally, both neural networks should update proportionally; however, if one of the networks 

outperforms another, they could repeatedly diminish the progress one another and cause non-

convergence. In this study, although ABReGAN was trained successfully as the training 

process of ABReGAN was stable and steady as shown in Figure 5.7; the k-fold validation 

results show that ABReGAN attained high error when computing both elastance and 

resistance. Atrocious elastance and resistance estimation may due to the failure of 

convergence of ABReGAN. However, achieving or maintaining stability in GAN during 

training is difficult as stopping criteria to GAN training is unclear (Mescheder et al., 2018); 

therefore, it is not ideal to obtain the least validation error during training and additional 

studies are required to improve ABReGAN. Detail discussion and further analysis on the 

performance of ABReGAN when evaluated with 420,000 datasets continues in Section 5.2.7.  

 

In summary, although ABReGAN was able to reconstruct, its effectiveness and capability 

may be limited due to the error attained in Figure 5.7. Henceforth, we develop another 

machine learning model, in the effort to investigate alternative approach to better reconstruct 

AB. The following section describes an alternative machine learning algorithm to reconstruct 

AB to quantify the magnitude of AB.  

 

5.2.6 Convolutional Autoencoder  

Autoencoder (Baldi, 2012) is a neural network model that is designed and trained to 

reproduce its input in an unsupervised manner. An autoencoder model comprises two main 
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blocks namely encoder and decoder and employs a symmetric structure. The encoder is 

trained to compress input and extracts critical information into a lower dimensional 

representation; whereas, the decoder learns to reproduce the input using the given latent 

representation extracted by encoder.  

 

Convolutional autoencoders (CAE) (Y. Zhang, 2018) are conventional autoencoders 

composes with convolutional layers in encoder and decoder layers. The efficiency and 

superiority of the adaptable kernels in convolutional layer helps the crucial spatial 

information extraction from the inputs; thus, accelerates the convergence process. Similar to 

autoencoder, CAE comprises an encoder to input features selection and compression as well 

as a decoder to decompress and reassemble original inputs based on the feature 

representation. The compressed representation contains essential information from the input 

representations at the lowest possible reconstruction error; this information is critical for the 

decoder to reassemble back to its inputs with least distortion. Representation of the feature 

map from encoder with convolutional layer can be computed using the following equation:  

𝐸𝑛𝑐𝑜𝑑𝑒𝑟, �̅� = 𝑓(𝑥) = 𝜎(𝑖 ∗ 𝑊 + 𝑏)  (5.7) 

where 𝑖 is the input, 𝜎 is an activation, * denotes convolution operation, 𝑊 and 𝑏 represents 

weight and bias respectively. 

 

On the other hand, the decoder will map the output from encoder, �̅�  and perform a 

convolution operation. The objective of the decoder is to ensure the output from decoder, 𝑧 

will have the exact same features and dimensions with the input. The decoder can be 

expressed using the following equation:  

𝐷𝑒𝑐𝑜𝑑𝑒𝑟, 𝑧 = 𝑓′(𝐸𝑛𝑐𝑜𝑑𝑒𝑟) = 𝜎(�̅� ∗ 𝑊 + 𝑏) (5.8) 
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where 𝜎 is an activation, * denotes the convolution operation, and 𝑊 and 𝑏 represents weight 

and bias. 

 

AB Reconstruction Convolutional Autoencoder (ABReCA) 

AB Reconstruction Convolutional Autoencoder (ABReCA) consists multiple convolutional 

layers with each layer contains trainable filters and every output from each layer undergoes 

batch normalization and max pooling operation. Figure 5.9 shows the overall flow of 

ABReCA, where it reconstructs the normal breathing cycle from an AB input. During training 

phase, the encoder learns to capture and identify the crucial patterns of simulated AB to 

assemble them into a compressed representation; while, the decoder expands the compressed 

representation and reconstructs it into a normal breathing. Although the concept to 

reconstruct AB using CAE has been realised, the optimal architecture of ABReCA is still 

undetermined. Henceforth, we perform k-fold cross validation to investigate the performance 

of ABReCA trained with different number of convolution filters, F, and encoder/decoder layer, 

P.  

 

 
Figure 5.9: A simple flow diagram describing the flow of ABReCA to reconstruct an AB. 
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ABReCA Architecture and performance evaluation 

In this study, we perform 10-fold cross validation to study the performance of ABReCA 

trained with various combination of F = 1,2,4,8,16,32 and P = 1,2,3,4,5,6. Figure 5.10 shows 

the flowchart of the 10-fold cross-validation. For every k-folds iteration, the training set 

consists 378,000 training datasets, whereas the testing set comprises 42,000 unique breathing 

cycles which then be used for performance evaluation. 30% of the training data are reserved 

for validation to select the model with lowest validation error during training to be evaluated 

using performance metrics (MAPE). The behaviour of ABReCA when trained with different 

combinations F and P is recorded for investigation. Each ABReCA model is trained for 100 

epochs with 128 batch size and assessed by computing the difference between elastance of 

reconstructed AB, 𝐸𝑟𝑒𝑐  and, resistance of reconstructed AB, 𝑅𝑟𝑒𝑐 with the, elastance of actual 

breathing cycle 𝐸𝑎𝑐  and, resistance of actual breathing cycle 𝑅𝑎𝑐  using the performance 

metrics MAPE. 

 
Figure 5.10: 420,000 dataset were segregated into 10 different training/validation sets when 

k is folded 10 times. The training dataset were shuffled prior segregation.  
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The main architecture of ABReCA consists convolutional layer, batch normalization layer, 

activation function (ReLU), pooling (Max-pooling) and unpooling layers. Several operations 

are repeated from other models for example: the operation of convolutional layer is described 

in Equation (4.1), ReLU activation function is denoted in Equation (4.2), Max-pooling 

function is described in Equation (4.4); whereas. batch normalization is mentioned in 

Equation (5.8 – 5.12) in this chapter. Unpooling layer is newly introduced in ABReCA with 

the purpose to revert the downsampled outcomes of pooling operation (M. D. Zeiler & Fergus, 

2014). Essentially, unpooling operation upsamples small inputs into a larger size by repeating 

each temporal step with size, 𝑚  times along the axis. Figure 5.11 depicts the unpooling 

operation.  

 

Figure 5.11: Unpooling operation doubles the size of the input by repeating the values in 

each cell.  

 

On the other hand, we apply Mean Squared Error, MSE as the training loss function to 

evaluate the performance for parameters adjustment during training (Janocha & Czarnecki, 

2017). MSE computes the loss, 𝐿 by calculating the difference of the ground truth, 𝑇 and 

reconstructed output from decoder, 𝑧 over batch size, 𝜂. MSE can be expressed as follows:  

𝑀𝑆𝐸, 𝐿 =
1

𝜂
∑(𝑇 − 𝑧)2

𝜂

𝑖=1

 (5.9) 
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Similarly, ABReCA uses Adaptive moment estimation, Adam as optimizer to compute the 

objective function (Kingma & Ba, 2017). The hyper-parameters of Adam are set to default 

initially with learning rate equals to 0.001 as well as momentum term ß1 and ß2 equals to 0.9 

and 0.999 respectively. Equations to express Adam are described in Equation 4.10 to 4.12.  

 

Results  

We performed 10-Fold analysis to determine the optimal number of encoder/decoder layers, 

P and the amount of convolution filter, F, applied to every convolutional layer. Tables 5.4 

and 5.5 show that as the F and P increase, the error to obtain accurate RM reduces. However, 

when ABReCA was trained with only 1 CNN filter, its performance deteriorated regardless of 

the number of encoder and decoder layers. Figure 5.12 shows the relation between the 

number of CNN filters and number of encoder/decoder layers. The results show that when 

ABReCA was trained with 32 CNN filters and 6 encoder and decoder layers, ABReCA 

reached its peak performance by achieving an average of MAPE median 0.9% resistance and 

7.8% elastance mean error when trained. In contrast, when trained with 3 encoder/decoder 

layers and 1 convolution filter, ABReCA achieved median MAPE of 138.1% and 21.3% when 

computing resistance and elastance values respectively. In fact, ABReCA achieves median 

error of more than 80% when trained with 1 CNN filter regardless of number of 

encoder/decoder layers. Nonetheless, ABReCA achieved relatively better performance in 

computing elastance values than resistance values as shown in Tables 5.4 and 5.5.  
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Table 5.4: Mean absolute percentage error for elastance from K-Fold analysis.  
N

u
m

b
er

 o
f 

F
il

te
rs

 
Number of Encoder/Decoder Layers (MAPE Elastance %) 

 1 2 3 4 5 6 

1 
11.2 

[10.9-28.4] 

14.5 

[11.8-82.4] 

21.3 

[11.4-24.6] 

10.5 

[10.0-15.5] 

11.5 

[8.7-17.0] 

14.4 

[10.9-17.7] 

2 
11.8 

[10.0-18.7] 

10.1 

[8.7-11.3] 

8.9 

[7.1-14.8] 

8.6 

[5.2-12.5] 

5.2 

[3.2-14.6] 

6.1 

[4.8-11.1] 

4 
9.0 

[8.2-12.9] 

9.5 

[7.4-18.0] 

5.4 

[3.8-6.9] 

5.3 

[4.2-6.3] 

2.3 

[1.5-4.2] 

2.4 

[1.9-2.7] 

8 
12.9 

[11.0-14.7] 

7.6 

[5.7-15.8] 

3.7 

[3.3-5.5] 

3.5 

[2.2-4.2] 

1.6 

[1.0-2.3] 

1.3 

[0.8-1.7] 

16 
11.7 

[9.7-19.5] 

6.6 

[4.5-11.2] 

4.6 

[3.4-5.2] 

2.9 

[2.7-3.7] 

0.9 

[0.6-1.2] 

1.5 

[1.2-1.7] 

32 
15.7 

[8.2-16.4] 

7.2 

[6.5-11.5] 

5.0 

[3.5-11.0] 

2.3 

[2.2-3.0] 

1.1 

[0.8-1.6] 

0.9 

[0.6-1.3] 

Median [Interquartile Range] 

Table 5.5: Mean absolute percentage error for resistance from K-Fold analysis  

N
u

m
b

er
 o

f 
F

il
te

rs
 

Number of Encoder/Decoder Layers (MAPE Resistance %) 

 1 2 3 4 5 6 

1 
85.8 

[78.6-123.4] 

126.6 

[100.0-191.9] 

138.1 

[94.9-168.9] 

125.2 

[91.9-137.0] 

119.4 

[88.7-156.1] 

131.2 

[124.5-152.7] 

2 
79.1 

[57.4-91.1] 

78.5 

[64.1-102.4] 

73.3 

[45.6-100.0] 

60.2 

[47.3-97.4] 

48.3 

[24.7-130.0] 

40.8 

[25.5-119.5] 

4 
74.2 

[57.6-78.3] 

58.0 

[49.0-119.8] 

28.3 

[27.4-48.2] 

31.5 

[25.6-34.1] 

17.2 

[10.0-28.0] 

20.6 

[15.1-21.9] 

8 
70.6 

[61.9-111.4] 

39.8 

[30.6-79.5] 

28.4 

[18.4-41.7] 

20.4 

[16.4-28.1] 

9.8 

[8.6-13.1] 

12.1 

[6.0-14.0] 

16 
78.6 

[57.3-88.1] 

39.6 

[28.6-71.2] 

20.9 

[16.7-26.2] 

20.4 

[15.1-24.9] 

8.2 

[4.8-9.6] 

9.1 

[6.5-11.6] 

32 
68.4 

[57.2-110.9] 

33.4 

[29.9-39.3] 

19.6 

[16.7-27.2] 

22.3 

[15.6-29.6] 

8.7 

[7.0-12.0] 

7.8 

[6.0-10.3] 

Median [Interquartile Range] 

 

 
Figure 5.12: The trends show the performance of ABReCA computing correct elastance (left) 

and resistance (right) when trained with different filter numbers and number of 

encoder/decoder layers  
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Figure 5.13 shows the optimal configuration of ABReCA applied in this study. The 

encoder comprises 6 convolutional layers, followed by batch normalization layers and max 

pooling operation. By doing so, the inputs are compressed down to tensor size of 1 by 32 

convolution filters. The decoder mirrors the architecture of encoder by repeatedly upsampling, 

batch normalizing and applying convolutional layers to restore to the size of inputs. 

 
Figure 5.13: The optimal architecture of ABReCA comprises 32 convolution filters and 6 

layers depth of encoder and decoder layers. Each convolutional layer is followed by batch 

normalization and max-pooling. 

 

Figure 5.14 shows the training and validation loss when ABReCA was trained with optimal 

sets of encoder/decoder layer and convolutional filters. Among 10 k-fold analysis, the model 

achieves the lowest validation error with 1.7e-05 at epoch 85 during training and it is selected 

for further analysis in the subsequent performance comparison.  
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Figure 5.14: Training and validation loss of ABReCA with 32 CNN filters and 6 

encoder/decoder layers. The model achieving lowest validation error (1.7e-05 MSE) during 

training was selected.  

 

Figure 5.15 shows four examples of ABReCA reconstructed AB. Top left and right figures 

show two successfully reconstructed AB as the reconstructed airway pressure intimately 

resembles the actual airway pressure with minimal error (SSE = 0.001 (Top left), 0.002 (Top 

right)). The absolute error between 𝐸𝑟𝑒𝑐  and 𝐸𝑎𝑐   were 0.003 (Top left) and 0.009 (Top right) 

cmH2O/L and 𝑅𝑟𝑒𝑐  and 𝑅𝑎𝑐  were 0.096 (Top left) and 0.001 (Top right) cmH2Os/L 

respectively. The bottom left and right plots show examples of failed reconstructions. As 

shown in the Figure 5.15 ABReCA reconstructed normal breathing cycle with errors (SSE = 

0.074 (Bottom left) and 0.517 (Bottom right)). The absolute error between 𝐸𝑟𝑒𝑐  and 𝐸𝑎𝑐  were 

0.102 (Bottom left) and 0.259 (Bottom right) cmH2O/L. Absolute error between 𝑅𝑟𝑒𝑐 and 

𝑅𝑎𝑐were 0.068 (Bottom left) and 0.185 (Bottom right) cmH2Os/L.  
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Figure 5.15: Three different types of AB were selected for testing. Top left and right figures 

show that the ABReCA reconstructs airway pressure with minor distortion. Bottom left and 

right figures show ABReCA fails to reconstruct to actual normal breathing. 

 

Discussion 

Tables 5.4 and 5.5 and the trend shown in Figure 5.12 show that, when ABReCA was trained 

with only 1 CNN filter, its performance deteriorated regardless of the number of encoder and 

decoder layers. This shows that, the model requires greater number of trainable parameters in 

convolution filter to capture and learn the intricate and erratic AB features to restore AB to 

asynchrony free breathing cycle (Basha et al., 2020; Krizhevsky et al., 2017). Furthermore, 

the difference in median MAPE was almost similar when ABReCA was trained with F = 16 

and 32; despite the increment in encoder and decoder layers. This indicates that the ABReCA 

with convolution filter size of 16 is sufficient to AB reconstruction. Nonetheless, the model 

trained with F = 32 and P = 6 is still preferred due its achievement in lowest median MAPE 

among all.  
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It is hypothesized that, ABReCA is able to achieve low error is due to the encoder 

repeatedly removing trivial AB features in the inputs; ultimately, those essential AB features 

are compressed into one size-tensor through convolutional layers and max-pooling operation. 

Similarly, the decoder repeatedly expands and learns the information in compressed 

representation to reconstruct AB through convolutional layers. Moreover, introducing 

multiple convolutional layers grows the number of trainable neurons; thus, allowing ABReCA 

to ‘memorize’ large quantity of AB intrinsic properties (O'Shea & Nash, 2015) and enables 

better AB reconstruction.  

 

The training and validation losses shown in Figure 5.14 suggest that ABReCA’s learning 

and reconstruction capability increases during training; despite, the validation loss fluctuates 

even though ABReCA has reached its maximum performance. This fluctuation is likely due to 

variability of the learning rate regularized by Adam during training. Although high variance 

in validation loss could indicate model overfitting and introducing dropout could improve the 

performance (Gal & Ghahramani, 2015; Srivastava et al., 2014); but this can be ignored as 

the validation loss is low with an average MSE of 3.6e-04.  

 

Figure 5.15 shows four reconstructed breathing cycles using ABReCA. It is observed that 

ABReCA reconstructed with errors when tested with breathing cycles with late asynchrony 

triggering. This could indicate that ABReCA is not proficient in reconstructing breathing 

cycles with late patient effort triggering; this could possibly due to overfitting as mentioned 

earlier. Overall, the error obtained by ABReCA is relatively lower as compared with 

ABReGAN. Besides that, ABReCA has slight advantage in reconstructing pressure waveform, 

as the oscillation is absent from the ABReCA reconstructed breathing cycles compared with 
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the ABReGAN generated breathing cycles. Thus, error difference between reconstructed and 

actual normal breathing cycle by ABReCA is minimal. 

 

5.2.7 Model comparison 

 

This section presents a comparison study between the developed machine learning models 

(ABReGAN and ABReCA) with IPR. To ensure impartiality and unbiased comparison, all the 

models are tested and evaluated using same validation dataset using four different 

performance metrics namely SSE, APE, MSE and MAPE. The validation dataset comprises 

entire 420,000 simulated AB that were generated for machine learning training.  

 

Results  

Figure 5.16 and Table 5.6 shows that ABReCA achieved the best performance followed by 

IPR then ABReGAN. It successfully achieved MSE with only 5e-6 and 1e-5 or MAPE 0.2 % 

and 2.64 % when estimating elastance and resistance respectively. This shows that ABReCA 

performs relatively better when estimating elastance values than estimating resistance values. 

On the other hand, ABReGAN attained the highest error among all with MAPE of 28.91 % 

and 224.47 % or MSE of 7.80 and 1.44 when computing elastance and resistance respectively. 

IPR achieved MAPE of 7.34% and 19.59% as well as MSE of 0.02 and 0.005 when 

computing elastance and resistance respectively.  

Table 5.6: Performance of each type of models tested with 420,000 validation datasets.  
Model RM SSE  MSE APE (%) MAPE (%) 

ABReGAN 

E 
0.013  

[0.003 – 0.042] 
7.80 

7.38  
[3.45 – 13.75]  

28.91% 

R 
0.005  

[0.001 – 0.015]  
1.44 

54.35  

[19.45 – 90.11]  
224.47% 

ABReCA 

E 
2e-6 

[5e-7 – 6e-6] 
5e-6 

0.18 

[0.08 – 0.26] 
0.20 % 

R 
8e-6 

[2e-6 – 2e-5] 
1e-5 

1.45 

[0.56 – 2.37] 
2.64 % 

IPR 

E 
0.013 

[0.003 – 0.030] 
0.02 

6.56 

[2.99 – 10.98] 
7.34% 

R 
0.003 

[0.001 – 0.006] 
0.005 

11.35 

[6.13 – 21.61] 
19.59% 

RM – Respiratory mechanics; E – Elastance; R – Resistance  
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Figure 5.16: Empirical cumulative distribution plot of resistance (Left) and elastance (Right) 

APE of different models when tested with 420,000 of unique simulated AB.  

 

Discussion 

Figure 5.16 shows the empirical cumulative distribution function of APE attained by 

ABReGAN, ABReCA and IPR to compute elastance (Left figure) and resistance (Right figure) 

when validated with all 420,000 simulated data. Despite Figure 5.8 shows that ABReGAN is 

able to reconstruct AB with minimal error; the inconsistent performance and high error rate 

as shown in Figure 5.16 may hinder the implementation of ABReGAN at clinical bedside. 

Furthermore, although ABReGAN was trained and validated using the exact dataset as 

ABReCA; the former model achieved lowest accuracy in RM estimation. It is speculated that 

poor architecture impedes the efficiency and ability of ABReGAN in extracting features; thus, 

modifying architecture or optimization approach may potentially help in performance 

improvement (Arjovsky et al., 2017; Bi et al., 2020).  

 

Although the results suggested that ABReCA is able to eliminate patient-effort via 

reconstructing AB with least distortion; the estimation of resistance value by ABReCA is 

relatively lower when estimating the elastance value. This is mainly due to the poor 

reconstruction of AB with late patient effort triggering as shown in Figure 5.15. One of the 

reasons behind this deterioration of performance is likely related to model fitting during 
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training as mentioned earlier. Similarly, introducing dropout layer could potentially overcome 

model overfitting or the lack of training data with different asynchrony patterns and features. 

Nonetheless, further investigation is necessary to improve the performance of ABReCA.  

 

Figure 5.16 shows that IPR is able to capture and estimate the true underlying respiratory 

mechanics in some cases; however, the performance of IPR deteriorates as the IPR fails to 

estimate both elastance and resistance values. It is speculated that timing of patient effort 

occurrence in asynchronous breathing cycle may affect the performance of IPR; thus, 

impeding the performance of IPR to restore AB to normal breathing cycle. In this case, 

machine learning eliminates the needs to explicitly design mathematical models to cater 

every possible AB shapes and sizes.  

 

Overall, both ABReGAN and ABReCA are able to perform pressure reconstruction when 

given AB as input. In the following section, we investigate the performance of ABReCA when 

tested using clinical data randomly selected from the CARE trial recruited patients.  

 

5.2.8 Magnitude of Asynchrony  

The difference in area under the curve of ABReCA reconstructed airway pressure and original 

airway pressure can be defined as the magnitude of AB. Figure 5.17 shows examples of AB 

magnitude, 𝑀𝑎𝑠𝑦𝑛. The magnitude of AB can be quantified using Equation 5.10:  

𝐴𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑦 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒, 𝑀𝑎𝑠𝑦𝑛 =
|𝐴𝑈𝐶𝑅𝑒𝑐 − 𝐴𝑈𝐶𝐴𝑠𝑦𝑛|

𝐴𝑈𝐶𝑅𝑒𝑐
× 100% (5.10) 

where 𝑀𝑎𝑠𝑦𝑛 denotes the magnitude of asynchrony for each breathing cycle. 𝐴𝑈𝐶𝑅𝑒𝑐  is the 

area under the curve of the reconstructed breathing cycle and 𝐴𝑈𝐶𝐴𝑠𝑦𝑛 is the area under the 

curve of the asynchrony airway pressure. The computed magnitude of asynchrony can be 
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used as a metric to measure the degree of MV controlled breath is affected patient-specific 

AB effort (Kannangara et al., 2016).  

 
Figure 5.17: Examples of 4 different AB with different 𝑀𝑎𝑠𝑦𝑛. 16.3% and 20.1% (Top Left 

to right) 13.5% and 13.9% (Bottom Left to right). Difference in area under the curve of 

breathing cycles indicates the magnitude of the asynchrony. 

 

Results and discussion 

Figure 5.18 shows examples of 6 randomly chosen and different breathing cycles with 

asynchrony experienced by CARE trial recruited patient reconstructed using ABReCA. The 

top four figures denote successful reconstructions whereas the bottom left and right denote 

failed reconstructions.  
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Figure 5.18: 6 different AB experienced by patient with different 𝑀𝑎𝑠𝑦𝑛. 23.1% and 9.1% 

(Top Left to right), 20.2% and 17.4% (Middle Left to right) and 36.1% and 6.46% (Bottom 

Left to right). Magnitude of asynchrony is defined as the difference in area under the curve of 

reconstructed breathing cycles with original asynchrony breathing. 

 

Results from Figure 5.18 show that ABReCA is capable of reconstructing any types of AB 

collected from actual patient despite ABReCA was trained with simulated data. The results 
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show that ABReCA captures the shape of ABs and reconstructs them with ‘reasonable’ 

normal shape and pattern. It is however, imperfect reconstruction may occur due to the lack 

of actual patient data inclusion into training data. As patients breathing pattern are variable, it 

may be difficult to reconstruct AB into a erfect normal breathing. Hence, additional simulated 

data is required for training to improve the performance (Ying, 2019), but this may also lead 

to unwanted overfitting due to similar feature distribution and variation (Vezhnevets & 

Barinova, 2007). Therefore, more studies are required to generate quality dataset or 

determine optimal settings to improve ABReCA’s performance.  

 

5.3 Limitations  

The presence of patient effort muscular effort may alter the airway pressure or/and flow 

waveform profile; however, ABReCA method has only demonstrated the ability to reconstruct 

AB present in pressure waveform. Hence, further investigations are required to develop a 

model to reconstruct and quantify the magnitude of asynchronies in airway flow profile. 

Besides that, the simulated data might be insufficient to train a robust model as the model 

was only trained and validated with total of 420,000 simulated breathing cycles. Furthermore, 

patient effort may occur in other ventilation mode, but, ABReCA is only developed using VC 

simulated data. Hence, future work should extend the number of simulated data to generate 

every possible shapes and aspects of AB experienced by patients as well as breathing data 

from various ventilator modes to improve the performance of ABReCA. The respiratory 

mechanics of respiratory failure patients maybe altered (Chiew et al., 2011; Chiew et al., 

2015). Hence, covering additional range of respiratory mechanics of the patients will allow 

ABReCA to capture AB in different patient-specific respiratory mechanics; potentially 

perform a better and more accurate reconstruction. However, setting a higher range of 

respiratory mechanics and smaller resolution (resolution =1) will also include significant 
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additional data. It is estimated that more than 5 million breathing cycles can be generated if 

using the settings in Table 5.7. 

Table 5.7: Number of combinations required to cover wider range of respiratory mechanics. 

Parameters (Unit)  Range Resolution Combination(s) 

Elastance, E (cmH2O/L)  15-60 1 45 

Resistance, R (cmH2Os/L)  1-20 1 20 

Magnitude of Pressure, A1 (cmH2O)  1-10 1 10 

Magnitude of Pressure, A2 (cmH2O)  1-10 1 10 

Magnitude of Pressure, A3 (cmH2O)  1-10 1 10 

Centroid of Gaussian curve, µ  -3 – 3 1 6 

Width of Gaussian curve, 𝜎  1 Constant 1 

 Total combination 5,400,000 

 

5.4 Summary  

Two different machine learning models namely ABReGAN and ABReCA to reconstruct 

airway pressure waveform to assess the magnitude of AB are presented in this chapter. 

Despite the models were trained and validated using same dataset, ABReCA achieved 

remarkable low error. Moreover, when tested with clinical data, ABReCA is able to 

reconstruct patient’s breathing cycle that agrees the patterns and shapes of a normal breathing 

cycle. In the next chapter, both CNN model from Chapter 4 and ABReCA are deployed 

simultaneously along with a novel metric system developed to study the correlation between 

PVI and patient’s arterial blood gases. 
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Chapter 6 

Application of CNN and Autoencoder in Patient 

Asynchronous Index and Asynchrony Magnitude 

Quantification 

 

In this chapter, we present a preliminary study of implementing the developed models from 

Chapter 4 and Chapter 5 to establish correlations between the effect of patient-ventilator 

quality and patient’s oxygenation level. This chapter will also investigate into the impact of 

patient-ventilator interaction quality towards patient’s outcomes. As the frequency and the 

impact of asynchronous breathing occurrence towards patient’s condition during treatment is 

still unknown; it is imperative to measure and evaluate the effect asynchronous breathing.  

 

6.1 Introduction  

Partial pressure of oxygen, PaO2 and partial pressure of carbon dioxide, PaCO2 measurements 

are part of the routine when evaluation of various disease states such as respiratory failure 

(Collins et al., 2015). PaO2 and PaCO2 values can be measured via conducting blood gas 

analysis, a diagnostic tool generally used to measure the partial pressure of gas in blood by 

taking blood from circulatory system (capillary, vein, or artery) (Luciano Gattinoni et al., 

2018). An arterial blood gas (ABG) is a blood sample extracted from an artery and it provides 

valuable information such as respiratory and metabolic disorder (Sood et al., 2010). While 

patient-specific oxygenation and ventilation can be assessed non-invasively through pulse 

oximetry measurement, ABG measurement is still the standard in ICU (Pretto et al., 2014). 

Hence, in this study, we investigate the relationship between the quality of PVI and patient’s 

oxygenation status, via ABG measurement to interpret patient’s outcome during MV 
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treatment. A novel metric namely ventilator-interaction index (VI) is introduced to assess the 

quality of PVI.  

 

Despite multiple cohorts or studies have been conducted in the effort of elucidating the 

impact and frequency of AB occurrence; the direct effects of AB are still unknown (de Haro 

et al., 2019). Moreover, most of the studies conducted are limited to a short evaluation period 

(ranging from several minutes to 24 hours), neglecting the magnitude of AB and taking the 

patient’s oxygenation state into account (Blanch et al., 2015; B. M. De Wit et al., 2009; M. de 

Wit et al., 2009; Rué et al., 2017; A. W. Thille et al., 2006). For example: Martos-Benítez et 

al. (Martos-Benítez et al., 2020) conducted a study to identify the relationship of AB with 

sedation level, hemogasometric and clinical results; they showed that severe AB occurrence 

(AI>10%) was associated with a lower PaO2/FiO2 ratio. However, the study conducted only 

observed 30 minutes of ventilatory waveforms and neglected asynchronies with patient effort 

induced such as reverse triggering. Thus, we speculate that computing the frequency of AB 

occurrence alone may not be sufficient to reflect the actual patient’s quality of patient-

ventilator interaction. Therefore, we sought to determine if the magnitude of AB plays a role 

in affecting patient’s PaO2 and PaCO2 level. This is achieved by conducting correlation 

analysis between ABG with the VI metric of collected ABG at that particular hour.  

 

The following section presents the studies of the impact of quality of PVI towards 

patient’s oxygenation level during MV treatment. In Section 6.2, we describe our approach to 

investigate the relationship between VI and patient’s condition. This is followed, in Section 

6.3, the results and discussion of our investigation. The limitations are discussed in Section 

6.4 then we conclude our findings in Section 6.5.  
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6.2 Models and Algorithms  

An algorithm is written to incorporate both machine learning models (CNN model – 

described in Chapter 4) and (ABReCA – described in Chapter 5) to study the outcome of 

mechanically ventilated patients from CARE trial (Chapter 3). Figure 6.1 shows an overview 

of the algorithm to access AI and VI hourly. The algorithm is divided into two layers: pre-

processing layer and analytics layer.  

 
Figure 6.1: Flow diagram of algorithm to assess AI and VI hourly.  
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In the pre-processing layer, the patient’s data are pre-processed prior to any analysis. This 

layer prepares the raw ventilator waveform by performing several tasks such as data filtering, 

resampling, and normalizing. Besides that, this layer keeps track of the time of airway 

breathing occurrence and organize them in hourly manner.  

 

The analytics layer handles the pre-processed airway breathing cycles to analyse the 

patient’s condition via AI and VI computation. This layer comprises of CNN and ABReCA 

models to quantify the AB frequency and magnitude; while, statistical tests are conducted to 

the outcomes to establish findings using Matlab 2017b (Natick, MA). 

 

Prior the execution of the algorithm, the machine learning models are initialized with the 

same random seed during model development to ensure equality and reproducibility. The 

models and algorithms implemented are written and executed in Python 3.6 running on an 

Intel Core i5 7th generation 3GHz central processing unit, a NVIDIA GTX 1050Ti graphics 

processing unit and Windows 10 with 32 GB random access memory. The following 

describes the operation of each layer.  

 

6.2.1 Data Source - Patient data  

The CARE trial recruited 24 patients of ventilator waveform data, but 6 patients with total of 

number of breathing cycles collected lesser than 10,000 data or total hours of data collected 

lesser than 12 hours are excluded from this study. Patient excluded are P6, P9, P10, P11, P12 

and P13. The final study cohort consists of 18 patients (10 males and 8 females).  
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6.2.2 Pre-processing layer 

The raw ventilator pressure waveforms are subjected to noise (Arnal, 2018; Hess, 2005); thus, 

data pre-processing is required prior to feeding in the developed asynchrony detection and 

asynchrony magnitude quantification algorithm.  

Data Conversion: The first step in data processing involves file conversion. We convert the 

ventilator raw waveform data in (.txt) file format to floating points formatting (.mat) Matlab 

file format using Matlab 2017b (Natick, MA). During format conversion, the Matlab 

algorithm replaces the annotations ‘BS’ and ‘BE’ in the raw file with the number 0 in both 

pressure and flow data to indicate the position of the start or end of a breathing cycle.  

 

Segmentation: After data conversion, the raw data is structured to contain flow in first 

column and pressure in second column. We segment the raw data into individual breathing 

cycle via locating the position of 0 present in both pressure and flow waveform. Subsequently, 

the breathing cycle is articulated into inhalation and expiration section.  

 

Filtering: The presence of noise due to ventilator circuitry leakage or presence of oscillations 

because of liquid accumulation in the circuit is common during MV (Stauffer et al., 1981). As 

the collected airway breathing cycles contain copious amount of noises; hence, a Savitzky-

Golay filter with window size of 5 and order of 2 is applied to remove the outliers. In 

addition, airway pressure that contains peak pressure more than 60 cmH2O, inspiratory 

elastance lesser than 0, inspiratory volume lesser than 25ml and total number of data points of 

a breathing cycle lesser than 50 are discarded and marked as noise (Kim et al., 2019).  
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Normalisation: Normalisation is necessary as the machine learning models were trained with 

normalised data as well as to reduce variability. Each breathing cycle and inspiration section 

of airway pressure is normalized to 0 and 1 by using the following equation: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑏𝑟𝑒𝑎𝑡ℎ𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒, �̂� =  
𝑖

𝑚𝑎𝑥(𝑖)
− min (𝑖) (6.1) 

Where 𝑖 is the breathing cycle and �̂� is the normalized output.  

 

Resampling: Data resampling is necessary to ensure consistency in the length of signal. This 

can be achieved by introducing new data points within the signal via interpolation method. 

This method ensures datapoints uniformity to match with model’s input configuration, while 

preserving the valuable information in the signal. CNN model accepts 150 number of data 

points, while ABReCA accepts 64 number of data points.  

 

Arterial Blood Gasses: A total of 114 patient’s bed charts with ABG information are 

collected for analysis.  

 

6.2.3 Analytics layer 

The analytics layer is the core layer. This layer applies the developed machine learning 

models to identify and quantify the magnitude of asynchrony as well as to compute the 

patient’s AI and PVI. The following outlines the processes involved.  

 

Breathing Classification: In Chapter 4, the CNN 1D model which achieved highest accuracy 

is selected to perform AB detection. CNN 1D accepts the normalised and resampled airway 

pressure waveform to determine if the breathing cycle is normal or asynchronous. If the 

breathing cycle is AB, the magnitude of AB will be assessed. The frequency and time of AB 
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and normal breathing cycles occurrence are recorded. Asynchrony index (AI) is computed 

hourly using Equation 3.1. 

 

AB magnitude Quantification: If AB is detected, ABReCA model will accept the inspiration 

section of airway pressure waveform and reconstructs it. The magnitude of asynchrony is 

computed by computing the ratio of the difference in area of reconstructed airway pressure to 

the under the curve of original AB airway pressure. Magnitude of AB can be calculated using 

the following equation:  

𝐴𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑦 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒, 𝑀𝑎𝑠𝑦𝑛 =
|𝐴𝑈𝐶𝑅𝑒𝑐 − 𝐴𝑈𝐶𝐴𝑠𝑦𝑛|

𝐴𝑈𝐶𝑅𝑒𝑐
× 100% (6.2) 

where 𝐴𝑈𝐶𝑅𝑒𝑐  is the area under the curve of reconstructed airway pressure and 𝐴𝑈𝐶𝐴𝑠𝑦𝑛 is 

the area under the curve of original AB airway pressure (Chatburn & Mireles-Cabodevila, 

2020; Chiew et al., 2018). 

 

Patient-ventilator Interaction Assessment: Equation 6.2 is then extended to describe the 

quality of patient-ventilator interaction by simply subtracted by 100% as described in 

Equation 6.3. While Equation 6.4 computes the average ventilator-interaction index (VI) 

within an hour by summing the VI values within an hour and divided by the total number of 

breathing cycles occurrence in an hour.  

𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑜𝑟-𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥, 𝑉𝐼 =  100% − 𝑀𝑎𝑠𝑦𝑛 (6.3) 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑉𝐼 𝑖𝑛 𝑎 ℎ𝑜𝑢𝑟, 𝑉𝐼ℎ𝑜𝑢𝑟 =  
∑ 𝑉𝐼  𝑖𝑛 𝐴𝑛 𝐻𝑜𝑢𝑟

𝑇𝑜𝑡𝑎𝑙 𝐵𝑟𝑒𝑎𝑡ℎ𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒 𝑖𝑛 𝐴𝑛 𝐻𝑜𝑢𝑟
  (6.4) 

This novel VI metric enables better reflection of the ‘resistivity’ between the patient with the 

ventilatory support. In other words, the higher the VI value the better the quality of 
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interaction between patient and ventilator. The AI and VI for the patients recruited in the 

CARE trial are calculated and studied. 

6.3 Results and Discussion 

6.3.1 Relationship between VI and AI 

 

Figure 6.2 shows the VI versus AI plot for this patient cohort. It is observed that the CNN 

detected AI ranges from 0% to 99.4%, showing inter- and intra-patient variation of AI in 

different hours. On the other hand, when VI is measured, it is found that VI is not a direct 

inverse of AI. A Pearson’s correlation RVI/AI of -0.49 is found between VI and AI, showing a 

negative relationship between VI and AI metrics, as expected. In other words, as AI increases 

the VI decreases, because patient’s ‘resistivity’ towards ventilatory support intensifies as the 

patient experience more frequent of AB occurrence. But higher AI does not lead to exact 

lower VI because the VI metric takes into consideration of the magnitude of each 

asynchronous breathing cycle within an hour.  

 
Figure 6.2: Patients’ VI versus AI scatter plot.  

Figure 6.3 shows plots of 10 consecutive breathing cycles comprising both normal and 

asynchronous breathing cycles experienced by Patients 1 (Top), 24 (Middle) and 21 (Bottom) 



Chapter 6. Application of CNN and Autoencoder in Patient AI and 𝑀𝑎𝑠𝑦𝑛 Quantification  108 

 

respectively. A red background in a breathing cycle shows a breathing cycle classified as 

asynchrony by the CNN algorithm whereas green background indicates a normal breathing 

cycle. The black coloured region is the airway profile reconstruction performed by the 

ABReCA model for quantification of the VI. 

 
Figure 6.3: Patient 1 (Top) experienced AI of 50% with average magnitude of asynchrony of 

14.78% and VI of 85.23% within 10 breathing cycles. Patient 24 (Middle) experienced AI of 

50% with average magnitude of asynchrony of 46.26% and VI of 53.73% within 10 breathing 

cycles. Patient 21 (Bottom) experienced AI of 60% with average magnitude of asynchrony of 

3.16% and VI of 96.83% within 10 breathing cycles.  

 

In these 30 breathing cycles as shown in Figure 6.3, the breathing cycles denoted as AB 

have some form of fluctuations or anomalies in their airway pressure profile. Using the 

ABReCA, the magnitude of these anomalies can be quantified as magnitude of asynchrony. 

Among these 3 patients’ AI and VI, Patients 1 and 24 had AI of 50% while Patient 21 

experienced AI of 60%. While the AI for Patient 21 was high, the patient experienced 

relatively lesser average magnitude of asynchrony of 3.16% and VI of 96.83% as compared 

with Patient 1 and Patient 24 with magnitude of asynchrony of 14.78% and 46.26% 

respectively. As a result, Patient 1 and Patient 21 attained VI more than 80%; whereas, 

Patient 24 experienced lowest VI of 53.73%. Thus, this result clearly shows that measuring 
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AI alone may not be sufficient to access the quality of PVI. A VI metric that correlates with 

the AI metric while taking in consideration of the magnitude of AI could be a better 

assessment of the quality of MV treatment. 

 

6.3.2 Correlation between AI and VI versus Patient’s ABG during Treatment 

 

Table 6.1 shows the patient demographics and the summary of the data analysis for this 

study. The patients’ VI, AI, PaO2, PaCO2, are also shown in Figure 6.4. Most patients (n=14 

of 18) were diagnosed with pneumonia. The MV modes for these patients were SIMV, 

SPONT and BiPAP. The patients’ PaO2 was median 91.0 mmHg (IQR: 75.2-117.8)) and 

PaCO2 was 39.1 mmHg (IQR: 35.0-44.2).  

 

As shown in Figure 6.4 and Table 6.1, both AI and VI are very different for each patient. 

The AI for this patient cohort is median 23.5% [IQR: 2.5.7–50.6] with minimum and 

maximum AI at 0% and 99.4% respectively. The AI for this patient cohort is similar to AI 

reported in other literatures (Chiew et al., 2015; K. G. Mellott et al., 2014) but AI as high as 

99.4% is also observed during treatment; this could represent poor management of patient-

ventilator interaction (Akoumianaki et al., 2013).  

 

Most patients had high AI index (AI>10%) (A. W. Thille et al., 2006), however, they 

maintained more than 70% VI most of the time during MV treatment, despite the patients 

experienced frequent AB occurrence. For example, Patients 8 and 15 had AI value of more 

than 70% using CNN classification. This AI value in theory, indicates a suboptimal 

ventilation delivery; however, these patients also have high VI achieving about 80%. These 

results suggest that in this patient cohort, patient’s desynchrony towards MV assistance was 

common, but the magnitude of asynchrony was quite low for most of the time, where they did 
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not resist with the ventilatory support. One reason behind such phenomenon could be the MV 

supply may not exactly match patient’s demand but the degree of dyssynchronous effect is 

insufficient to alter the patient’s airway waveform that are usually used as an indication of 

asynchrony (Akoumianaki et al., 2013; Yoshida et al., 2018).  

Table 6.1: Patients’ demographic included in this study.  

No. Clinical Diagnosis 
Initial P/F 

Ratio 

MV 

mode 

PaO2  

(mmHg) 

PaCO2 

(mmHg) 
AI (%) VI (%) 

P1 
Thyroid 

Carcinoma 
150 SIMV 

89.4 
[81.2–93.6] 

38.4 
[32.9–41.0] 

29.4 
[3.6–42.9] 

76.0  
[70.0–81.0] 

P2 Pneumonia 202 
SIMV/ 
SPONT 

105.0 
[86.2–118.3] 

39.6 
[37.7–42] 

30.4 
[12.8–61.6] 

93.2 
[82.0–98.1] 

P3 SVC Obstruction 95 SIMV 
94.3 

[81.0–137.5] 
49.0 

[46.1–52.7] 
0.4 

[0.1–1.1] 
98.8 

[98.4–99.4] 

P4 HAP 238 SIMV 
133.0 

[130.8–142.8] 
31.3 

[30.0–34.1] 
26.1 

[19.3–56.3] 
91.4  

[83.8–94.5] 

P5 Klebsiella Sepsis 146 SIMV 
175.0 

[141.5–186.3] 
38.8 

[31.0–41.6] 
38.4 

[24.6–49.8] 
89.5 

[84.6–97.1] 

P7 Pneumonia 117 
SIMV / 

BiPAP 

97.2 

[79.7–126.0] 

32.0 

[31.4–34.3] 

45.8 

[40.8–58.4] 

76.6  

[63.3–85.9] 

P8 CAP 128 
SIMV/ 
SPONT 

95.8 
[87.9–109.0] 

44.9 
[42.3–45.4] 

74.2 
[58.4–87.6] 

75.4 
[74.6–77.4] 

P14 HAP 133 SIMV 
107.0 

[103.0–120.3] 
47.1 

[45.9–48.3] 
25.3 

[4.5–44.4] 
92.7 

[87.3–99.4] 

P15 HAP 143 
SIMV/ 

SPONT 

109.0 

[97.2–114.0] 

43.7 

[41.8–47.3] 

70.5 

[33.8–87.4] 

82.9 

[73.0–94.3] 

P16 Pneumonia 155 
SIMV/ 
SPONT 

86.7 
[73.3–95.1] 

37.9 
[36.7–40.7] 

41.4 
[5.4–60.6] 

86.0 
[82.5–93.4] 

P17 Acute Pancreatitis 157 
SIMV/ 
SPONT 

117.0 
[103.0–130.8] 

36.4 
[34.2–37.3] 

40.3 
[9.03–56.5] 

83.7  
[71.0–87.6] 

P18 
Right Lobar 

Pneumonia 
92 

SIMV/ 

SPONT 

66.6 

[62.2–79.3] 

63.5 

[59.1–81.7] 

34.2 

[9.5–67.6] 

93.0 

[79.1–97.8] 

P19 CAP 350 
SIMV/ 
SPONT 

81.3 
[67.1–102.0] 

35.0 
[29.5–38.3] 

46.5 
[13.3–60.8] 

90.2 
[71.7–95.3] 

P20 CAP 241 
BiPAP 
/SIMV/ 
SPONT 

129.0 
[109.0–154.0] 

38.4 
[34.4–40.3] 

2.9 
[0.2–14.7] 

94.6 
[90.4–99.6] 

P21 

Recurrent 
Multifocal Infarct 

with Poor 
Neurological 

Recovery 

106 
SIMV/ 
BiPAP 

73.8 
[68.2–90.7] 

46.6 
[41.0–48.1] 

18.0 
[10.8–47.3] 

98.2 
[97.1–98.9] 

P22 
Partially Treated 

Pneumonia 
202 

SIMV/ 
SPONT 

86.3 
[64.4–90.8] 

37.8 
[34.4–38.4] 

1.6 
[0.6–2.7] 

96.8 
[93.7–98.1] 

P23 HAP 119 SIMV 
81.3 

[69.7–89.1] 
44.2 

[40.2–48.2] 
14.9 

[2.8–19.5] 
96.9 

[95.5–98.3] 

P24 HAP 246 
SIMV/ 
SPONT 

89.2 
[86.1–105.0] 

39.6 
[38.1–41.5] 

1.3 
[0.6–2.6] 

72.9 
[83.6–93.8] 

Median  148  91.0 39.1 23.5 92.7 

IQR  [119–202]  [75.2–117.8] [35.0–44.2] [2.5–50.6] [81.8–97.3] 

Median 
of 

medians 
   39.2 95.1 29.9 90.8 

IQR of 
medians 

   [37.8–44.9] [86.3–109.0] [14.9–41.4] [82.9–94.6] 

CAP – Community Acquired Pneumonia; HAP – Hospital Acquired Pneumonia; SVC – 

Superior Vena Cava; SIMV – Synchronized Intermittent-Mandatory Ventilation; BiPAP – 

Bilevel positive airway pressure; SPONT – Spontaneous breathing 
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Figure 6.4: Patients’ PaO2, PaCO2, AI and VI presented in boxplot.  

 

Table 6.2 shows the Pearson’s correlation coefficient and the significance values when 

testing AI, VI with PaO2 and PaCO2. A positive correlation (R>0) between VI versus PaO2 

and negative correlation (R<0) between VI versus PaCO2 suggest a quality MV management 

may enhance patient’s oxygenation intake and carbon dioxide expulsion. This trend can be 

observed in 7 patients (Patients 5, 7, 8, 14, 19, 20, and 23). However, there are three patients, 

Patients 1, 3, and 21 exhibited the opposite trend.  

 

A negative relationship can be seen in Patients 17, 22 and 24 when conducting the 

correlation test in VI versus PaO2 and VI versus PaCO2. Similarly, a positive relationship 

between VI and PaO2 and PaCO2 can be observed in Patients 2, 4, 15, 16, and 18 in which 

both patient’s PaO2 and PaCO2 level increased. These results suggested that while high VI 

can be viewed as good patient-ventilator interaction, it does not truly reflect MV patients 
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quality. There are other cofounding factors such as optimal ventilator settings and sedation 

used that influence the quality of MV delivery in a patient (Aragón et al., 2019; Guo et al., 

2018). 

Table 6.2: The correlation coefficient (R value) and significance (P value) when tested with 

AI or VI with PaO2 or PaCO2.  
  VI AI 

  PaO2 PaCO2 PaO2 PaCO2 

Patient 
ABG 

Data 
R Value P Value R Value P Value R Value P Value R Value P Value 

P1^ 13 -0.48 0.09 0.18 0.55 0.44 0.14 -0.17 0.59 

P2 11 0.13 0.71 0.23 0.50 -0.43 0.19 0.14 0.69 

P3^ 8 -0.53 0.17 0.18 0.66 0.40 0.33 -0.10 0.81 

P4 3 0.41 0.73 0.91 0.28 -0.50 0.66 -0.85 0.35 

P5* 15 0.17 0.54 -0.57 0.03 -0.25 0.38 0.57 0.03 

P7* 4 0.84 0.16 -0.25 0.75 0.90 0.10 0.27 0.73 

P8* 4 0.65 0.35 -1.0 0.01 -0.11 0.89 -0.36 0.64 

P14* 7 0.32 0.49 -0.52 0.23 -0.49 0.26 0.32 0.48 

P15 6 0.82 0.04 0.08 0.88 -0.75 0.09 -0.39 0.45 

P16 19 0.16 0.50 0.24 0.31 0.04 0.86 0.23 0.35 

P17 7 -0.37 0.41 -0.04 0.93 0.57 0.18 0.08 0.86 

P18 11 0.42 0.19 0.53 0.09 -0.41 0.21 -0.47 0.15 

P19* 41 0.35 0.02 -0.27 0.09 0.43 0.00 -0.26 0.11 

P20* 18 0.49 0.04 -0.06 0.80 -0.50 0.03 -0.23 0.36 

P21^ 14 -0.18 0.54 0.28 0.33 -0.05 0.85 0.05 0.86 

P22 17 -0.19 0.48 -0.26 0.31 0.12 0.64 0.20 0.44 

P23* 19 0.10 0.68 -0.30 0.21 -0.09 0.72 0.11 0.65 

P24 6 -0.28 0.58 -0.40 0.43 0.79 0.06 0.71 0.11 

25th 6.3 -0.19 0.16 -0.30 0.21 -0.43 0.10 -0.26 0.35 

Median 11 0.17 0.45 -0.05 0.32 -0.07 0.24 0.07 0.47 

75th  16.5 0.42 0.54 0.23 0.66 0.43 0.66 0.23 0.69 

Patients with * indicate attaining positive VI correlation with PaO2 but negative correlation 

with PaCO2. Patients with ^ indicate attaining negative VI correlation with PaO2 but positive 

correlation with PaCO2. 

6.3.3 Patients’ VI Correlation versus ABG (Positive, Neutral and Negative) 

 

Figure 6.5 first column shows the scatter plots of VI versus PaO2 and PaCO2 of Patient 19 

(Top), Patient 23 (Middle) and Patient 1 (Bottom). Patient 19 exhibited positive VI versus 

PaO2 correlation with R = 0.35, Patient 23 showed a weak correlation of VI against PaO2 

with R = 0.10, and Patient 1 showed a negative correlation of VI against PaO2 with R = -0.48.  
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Figure 6.5: Illustration of the strength of relationship of VI (Left column) and AI (Right 

column) when tested against PaO2 and PaCO2 displayed in scatter plot. Patient 19 (Top row), 

Patient 23 (Middle row) and Patient 1 (Bottom row) exhibited positive (RP19 = 0.35), neutral 

(RP23 = 0.10) and negative (RP1 = -0.48) correlation with tested VI against PaO2 respectively. 
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Patient 19’s PaO2 was found to be higher at higher AI; and lower PaCO2 value with lower 

AI value. This finding is different from literature (Epstein, 2011; Martos-Benítez et al., 2020; 

Yonis et al., 2015), where a higher AI should result in poor oxygenation which may 

predispose to lower PaO2 and higher PaCO2. However, for the same patient, the VI showed 

positive correlation with PaO2 and vice versa when tested against PaCO2. This finding 

indicates that a VI metric can be high despite of higher AI as it accounts for the magnitude of 

AB. A weak correlation of VI against PaO2 and PaCO2 observed in Patient 23 and a negative 

VI trend was observed in Patient 1. These results show that an obvious trend in PaO2 and 

PaCO2 cannot be observed despite of high VI and low AI. It also suggests that there are other 

factors that contributes to the PaO2 and PaCO2 trend (Park et al., 2015).  

 

Figure 6.6 shows the box-whiskers plot of VI, AI, PaO2 and PaCO2 for Patient 19. It is 

observed that Patient 19 experienced high PaO2 variation in Day 1, suggesting acute onset of 

patient condition. The PaO2 values reduced sharply from 120 mmHg to around 70 mmHg on 

Day 2 and remains consistent at around median 75 mmHg throughout the MV treatment. 

PaCO2 increased gradually during the initial 5 days of lung treatment but declined steadily 

starting from Day 6. The PaCO2 values had relatively lower variability as compared with 

PaO2. The AI metric showed relatively higher variance on Days 1, 2, 3, 6, 7, 8 and 11 during 

treatment as compared with VI metric which showed little deviation throughout the treatment 

except on Day 5. The VI metric showed that the patient’s lower ventilator interaction from 

Day 2 to Day 5 before reaching 80%. This could indicate that patients not adapting to MV 

support in early ventilation period. The VI started stabilises from Day 6 onwards, suggesting 

that the MV settings fulfilled the patient’s ventilatory demand. The VI trend observation also 

is supported by the rise of PaCO2 in the first five days and before seeing a decreasing trend 

after Day 6.  
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Figure 6.6: Subplots of box plot showing the variance in VI, AI, PaO2 and PaCO2 

experienced by Patient 19. Box plot is replaced with scatter plot if only one ABG is collected 

on that day.  

 

The VI, AI, PaO2 and PaCO2 for Patient 1 is shown in Figure 6.7 in box plots. As 

compared with Patient 19, Patient 1’s condition was stable as low fluctuation in PaO2 and 

PaCO2 during treatment is observed. Despite high variability of AI was attained from Day 2 

to 5, VI indicated consistent and stable patient’s ‘resistivity’ with MV delivery. In fact, VI 

showed steady increment throughout the patient’s MV treatment. However, the effect of 

higher AI and VI was not obvious in Patient 1 PaO2 or PaCO2 level. Such incident could 

indicate that there are multiple factors which could cause deterioration or improvement of 

PaO2 (Blackwood et al., 2006) aside from MV patient-ventilator interaction. 
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Figure 6.7: Subplots of box plot tracking the change in VI, AI, PaO2 and PaCO2 experienced 

by Patient 1. Box plot is replaced with scatter plot if only one ABG is collected on that day. 

 

Ideally, the AI should exhibit positive correlation with PaCO2 level in the blood due to 

frequent AB occurrence. Conversely, a positive correlation is expected when tested VI with 

PaO2 because good VI indicates optimal MV treatment as patient exhibits lesser ‘resistivity’. 

However, this trend is only observed in some of the patients in this study cohort. This result 

suggests that there are other factors leading to the deterioration or improvement of patient’s 

PaO2 and PaCO2 during MV besides AB occurrence. As a result, VI or AI metric alone may 

not truly reflect the patient’s condition when establishing the relationship between PVI and 

ABG.  

 

6.4 Summary 

The CNN AI classification and VI metric calculated using ABReCA were used to assess the 

quality of MV management. These two metrics were able to provide additional insight to 

patient’s response to MV treatment that was previously unavailable, potentially benefits the 
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clinicians to promote or to achieve optimal patient-ventilator interaction. Despite both VI and 

AI metric do not exhibit strong correlation with the patient’s outcome; we speculate that AB 

occurrence is one of many factors predisposing to poor oxygenation during MV, and more 

research investigating into this problem is required.  
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Chapter 7 

Conclusions 

7.1 Conclusions  

In this thesis, we have presented machine learning models to detect asynchronous breathing 

(AB) and to quantify the magnitude of AB and a metric to evaluate patient-ventilator 

interaction (PVI). The developed models and metrics were tested with simulated and clinical 

data. Finally, these machine learning models were used to investigate the quality of PVI 

towards patient’s clinical outcome.  

 

In Chapter 3, a clinical study (CARE trial) to collect patient’s ventilator waveform data 

and patient’s arterial blood gases (ABG) was presented. CARE trial recruited 24 

mechanically ventilated respiratory failure patients with total of more than 2 million 

breathing cycles. The different mechanical ventilation (MV) modes and settings among the 

recruited patients help to create a database for machine learning training and performance 

validation. Besides that, the heterogeneity of patient’s condition towards different MV 

treatment may aid in elucidating the impact of frequent AB occurrence towards patient’s 

ABG. The manual categorised breathing cycles showed that the first seven recruited patients 

experienced asynchronous index (AI) of median 39.46% [interquartile range (IQR):11.49%–

53.15%]. The results and findings showed that the patients experienced different AB index as 

it is patient-specific and depends on MV settings. Thus, there is a need to develop models and 

metric to assess PVI automatically in order to explicate patient’s condition and outcomes.  

 

Chapter 4 highlighted the development and implementation of Convolutional Neural 

Network (CNN), a machine learning algorithm to detect AB automatically. Monte-Carlo 

simulation was conducted to identify the optimal dataset quantity and data composite type for 
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CNN training. The results showed that 1-dimensional data structure with 10,000 training 

datasets from each breathing cycle category achieved relatively better performance as 

compared with other configurations. Overall, CNN was able to detect AB occurrence with 

sensitivity of 73.37% and specificity of 91.44% when validated with more than 500,000 

breathing cycles. The ability to detect AB automatically enables the potential to monitor the 

quality of PVI in large.  

 

Chapter 5 focused on the development of two machine learning models, namely generative 

adversarial network (GAN) and convolutional autoencoder (CAE) to quantify the magnitude 

of AB through reconstructing AB to asynchrony free breathing cycles. The magnitude of AB 

is defined as the difference in area under the curve between original AB and reconstructed 

breathing cycle. The performance of GAN and CAE was compared with a mathematical 

model to reconstruct AB with least error. The results showed that, CAE outperformed other 

models by attaining lowest mean absolute percentage error (MAPE) of 0.21% when 

evaluated with validation dataset.  

 

Chapter 6 investigated the effect of quality of MV treatment on patient’s outcome (ABG). 

This was done by deploying the trained models to classify and quantify AB to evaluate PVI 

of CARE trial recruited patients. Ventilator-interaction index (VI), a metric to measure the 

magnitude of AB was developed to better describe PVI. Correlation analysis was conducted 

to establish the relationship between VI and patient’s pressure of oxygen, PaO2 and partial 

pressure of carbon dioxide, PaCO2. Results showed that, the developed metric was able to 

describe or capture the changes in PaO2 or PaCO2 values when there is a change in VI amidst 

several patients. Surprisingly, when tested with clinical data, we found that the magnitude of 

AB experienced by patients is minimal as compared with AI values. This shows that, AI 
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computation alone maybe insufficient to describe patient’s actual condition during treatment. 

However, the relationships between AI or VI metric systems and PaO2 or PaCO2 in most 

patients are vague. Hence, we speculated that other possibilities could contribute to 

deterioration or improvement of oxygenation and carbon dioxide level besides the quality of 

MV treatment. Therefore, additional studies to expound causal mechanism or the nature of 

AB to patient’s outcome are still required. Nonetheless, this metric offers a novel approach to 

quantify PVI which could potentially provide additional insight to patient’s condition for the 

clinicians. 

 

In conclusion, this thesis has shown machine learning models are able to identify and 

possibly, quantify the magnitude of AB in real time. While these models have shown 

promising results in clinical application; there is necessity to improve the ability of machine 

learning to categorize different types of AB. Thus, the ability to detect AB in real time and 

large scale enables better understanding of MV quality during treatment. 
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Chapter 8 

Future Work 

 

There are many experiments, improvements and adaptations have been remained for future 

due to the lack of time (i.e. clinical trials setup, patient’s recruitment and patient’s data 

collation are very time consuming.). This chapter provides several suggestions and proposals 

to investigate into different potential approach or model consideration to improve the 

research. The first section gives some suggestions on improving data quality collected from 

clinical trial. This is followed, in Section 8.2 by discussions on improving the models to 

provide the insight of patient’s condition.  

8.1 Clinical Trial  

8.1.1 Real-Time Clinical Data Collection  

The clinical trial (CARE trial) as described in Chapter 3 was designed to provide patient’s 

breathing pattern as well as patient’s bed chart which holds vital signs such as blood pressure, 

arterial blood gasses, MV settings and many more. Although these data help to reflect 

patient’s condition during treatment, these data are often recorded retrospectively and 

manually. Hence, it is often difficult to pair with the collected real time data from the 

ventilator due to inconsistency. For example, the blood pressure may not be measured and 

recorded hourly consistently; whereas, patient’s vital signs information can be recorded by 

clinicians early or later within the hour. The lack of consistency in clinical data may 

predispose to analysis imprecision. Therefore, if available and feasible, clinical data should 

be collected in real time and in parallel to ventilatory data or ensure the patient’s data 

collection is in consistent manner. 
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8.1.2 Additional Clinical Collection 

Currently, only arterial blood gases are collected and extracted from patient’s bed charts for 

biomarker analysis. The analysis can be improved by collecting additional clinical data such 

as thermodilution cardiac output and sedation level as these are proven to cause AB 

occurrence (M. de Wit et al., 2009; Imanaka et al., 2000). These data can help to elucidate the 

causative mechanism of AB in order to better manage the quality of MV. 

8.2 Asynchronies Detection and Quantification  

8.2.1 CNN Model 

Currently, the developed model as presented in Chapter 4 is only capable of differentiate 

between AB and normal breathing. While the model can identify double triggering, reverse 

triggering, flow asynchrony and delayed-triggering; but the lack of competency in 

categorizing different AB may impede elucidation the causal mechanism or impact of AB. 

Besides, the absence of taking flow waveform into consideration may affect the performance 

of the model as flow waveform may accommodate crucial information defining an 

asynchrony. Henceforth, a machine learning model that takes both pressure and flow 

waveforms into account is necessary to classify different types of AB in high accuracy. 

Besides that, additional studies are required to understand and avoid the effect of unbalance 

training dataset towards CNN performance due the lack of equal sample AB during training. 

Moreover, the presence of noise due to leakage or presence of secretion (Arnal, 2018) is 

prevalent during MV treatment. An additional category to detect the presence of secretion 

maybe useful as indicator for clinicians to remove secretion. Besides that, additional work is 

still required to train CNN model to identify AB in different MV modes aside from VC mode. 

Hence, setting up additional clinical trial to collect more clinical data with different MV 

modes is necessary. The ability to detect different AB in different MV modes will enable us 
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to study in-depth on the AB aetiology and its effect towards patient’s recovery in a larger 

scale. 

 

The lack of agreement between researchers during AB classification may impede the 

performance of CNN to detect AB. Therefore, additional work and effort can be carried out 

to standardise AB classification. In particular, involving more trained clinicians, and 

annotating more AB data may improve the model’s performance and consistency (Nagendran 

et al., 2020). This process to refine the performance of CNN model can be repeated until the 

detected breathing cycles are agreed or similar with the consented AB traits (Sidey-Gibbons 

& Sidey-Gibbons, 2019). 

 

Moreover, the absence of ability to detect AB occurrence due to leakage or noise such as 

double triggering or auto-triggering (A. W. Thille et al., 2006) may also impede the 

implementation of VI as a metric to assess MV quality. The PVI equation computes the 

magnitude of AB by calculating the area under the curve of asynchrony affected region. 

However, the occurrence of AB due to leakage are often not altered by patient’s effort; thus, 

the breathing cycles are often look ‘normal’ as it does not involve any muscles contraction or 

‘entrainment’. Therefore, expanding an additional category in CNN to detect double 

triggering and auto-triggering may help to improve the VI metric by simply excluding the 

calculation of area under the curve of those breathing cycles. 

 

Another potential future work in AB detection is to investigate the effect of normalised 

breathing data towards machine learning model development. It is known normalisation of 

breath could potentially alter the data form and thus the machine learning model may not 

capture these unique breaths. Thus, with more non-subjective clinical data, we can investigate 
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the effects of normalisation or any data processing method to better understand the machine 

learning model development process, its advantages and disadvantages. 

 

Lastly, CNN model can be integrated with CURE software which runs natively on JAVA 

environment by using deep learning 4 JAVA (DL4J) library (Team, 2016). DL4J enables the 

deployment and execution of Python developed machine learning models on JAVA program 

by simply loading the trained model. This will allow ease of deployment of model at clinical 

bedside without the need to re-program CURE software in Python to deploy CNN to detect 

AB.  

 

8.2.2 AB Model Quantification 

The performance of ABReCA has shown robustness to reconstruct AB to asynchrony free 

breathing cycle with minimal error, despite it was trained using simulated data. However, the 

lack of additional training dataset which caters the patterns of other MV modes may limit its 

potential to be deployed in ICU environment. Therefore, future work should diversify the 

patterns of simulated breathing cycles.  

 

Furthermore, as autoencoder is adept in dimensionality reduction, the latent representation 

in ABReCA’s code layer can be exploited to explore the undiscovered intrinsic properties of 

breathing cycles (Wang et al., 2015). Principal component analysis (PCA) to emphasize 

variation or patterns in the data (Moore, 1981) to discover unexplored underlying information 

in the breathing cycles. These critical features can be used to track or monitor patient’s 

condition as the disease progresses; thus, allowing better MV monitoring.  
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8.2.3 Integrating the Two Models to Classify and Quantify breathing cycles 

We have presented two machine learning models namely CNN and ABReCA to classify and 

quantify respectively. These models were trained independently and requires two different 

training datasets and configuration. As a result, training these models to improve performance 

separately may consume additional time and resources. Currently, we have learned the 

optimal configuration to train ABReCA to reconstruct AB with least error. Therefore, we can 

develop an integrated machine learning model which is able classify and quantify the 

magnitude of AB concurrently by using the latent information from ABReCA. Figure 8.1 

shows the overview of the integrated machine learning model to quantify and classify 

simultaneously. The integrated system can help to accelerate the deployment of machine 

learning model in ICU to monitor patient’s condition. 

 
Figure 8.1: An overview of integrated system able to classify different types of AB and 

reconstruct to quantify the magnitude of AB.  

 

As ABReCA’s neurons are well trained; re-training the integrated system is not necessary. 

Transfer learning is a technique to re-purpose the existing model to perform other objectives 
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without the need to develop a model from scratch (Sinno Jialin & Qiang, 2010; Tan et al., 

2018). By doing so, time and resources to re-train the model can be avoided; thus, encourages 

and accelerates the model’s performance evaluation and deployment. It is however, extra 

investigation is needed to prepare additional training dataset which comprise different types 

of AB such as auto triggering, reverse triggering and double triggering may be required in 

order to realise this concept.  

 

8.2.4 Detection and Quantification of AB in other MV Modes 

In this thesis, we have demonstrated the methods to detect and quantify the patient-effort 

present in AB during VC MV mode. However, this work needs to be extended to different 

MV modes, especially, patients maybe ventilated in different MV setting. In particular, we 

believe that development of an extended ABReCA that enables flow reconstruction is also 

important, as AB occurrence in Pressure controlled mode is equally prevalent. For this 

purpose, additional clinical data obtained from MV PC mode is required to train a model to 

detect and perform flow reconstruction. Futuremore, a mathematical model capable of 

simulating synthetic AB during pressure controlled could also be helpful in training the 

extended model.  
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