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Abstract

Ontologies are widely used in many domains, such as biomedicine, agronomy, e-

government and bibliometrics, where they serve as shared vocabularies. They mean to

capture comprehensive domain knowledge. Ontologies are explicit and formal representa-

tions, describing concepts and the relationships between these concepts. The large ones

can contain hundreds of thousands or even millions of concepts and relationships. Their

structure can be complex, constructed by subsumption hierarchical relationships and non-

hierarchical associations. Their hierarchy structure features multiple inheritance, demand-

ing thoughtful choice of representation for the ontology hierarchy. The non-hierarchical

associations define a variety of rich information in addition to the subsumption hierarchy,

making the comprehension of ontology relationships more difficult.

Visualisations are useful to understand such data. The large size and complex struc-

ture of ontologies and associations require effective visualisations for exploring and under-

standing their underlying data, and also pose challenges for the design and development

of such visualisations. Effective visualisations should satisfy user needs and support user

activities. The non-hierarchical associations lay the foundation for performing ontology

analysis. While there is demand to emphasise these associations, existing ontology visu-

alisation tools generally treat the hierarchical structure as first-class citizens, giving much

less attention to the associations.

This research explores the approaches for visualising large ontology hierarchies and

associations. It proposes a visualisation, OntoPlot, specifically designed to facilitate the

exploration of ontology associations, whilst still preserving an ontology’s underlying large

hierarchical structure.

OntoPlot constructs a space-efficient icicle plot like hierarchy representation and em-

ploys visual compression techniques to accommodate large ontology hierarchies. It effec-

tively depicts complex associations on the ontology hierarchy in a way that the associations
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can stand out from the hierarchy, while the overview and details of associations are easily

available. It offers diverse interactivity, incorporating many desired user activities.

The usability of OntoPlot is explored via several user studies, comparing OntoPlot

with the de facto ontology editor Protégé, one of which is with domain experts. The

results confirm that OntoPlot attains the design goals for association-related tasks and

is strongly favoured by domain experts and other users. OntoPlot is also evaluated with

a case study in the context of biomedicine, demonstrating its effectiveness for assisting

domain experts to accomplish complex association tasks.

xvii
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Chapter 1

Introduction

Ontology, originating from philosophy, studies the essence of things that exist in nature, in

particular the identification and categorisation of these things and their relations (Gruber

et al., 1993). It has subsequently been given a definition in computer science as a formal

technical specification of conceptualisation that can be understood by computer (Gruber

et al., 1993).

In computer science, an ontology describes concepts and the relationships between

these concepts. A concept is a class1 of individuals. A relationship is denoted as a binary

relation.

The backbone relations in an ontology are subclass relations, which define the subsump-

tion hierarchical structure for the ontology. For example, Pizza subClassOf Food presents

a subclass relation (see Figure 1.1). Besides the subclass relations, the binary relations

can be linked by properties, expressing relevance (Staab and Studer, 2009). For example,

the classes MushroomPizza and MushroomTopping are linked by the property hasTopping

to express the relevant relation that places a restriction (see Figure 1.1). In this research,

the term association is used to define these restrictions that involve a property.

Pizza

MushroomPizza

ItalianPizza

PizzaTopping

MushroomTopping

Food

PizzaBase

ThinAndCrispyBase

DeepPanBase

subClassOf subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf
subClassOf

hasTopping

hasBase

hasBase

Figure 1.1: Simple illustration of the ontology relations with the Pizza ontology (Drum-
mond et al., 2007). The subclass relations are drawn with solid lines while the associations
are drawn with dashed lines.

1In the rest of this thesis the term class is used instead of concept.

1
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Given a collection of associations, the terms homogeneous and heterogeneous are used

throughout this thesis to denote the uniformity and non-uniformity of associations in

the collection. If the collection of associations contains only the same property, they

are called homogeneous associations. For example, in Figure 1.1 the association that

links MushroomPizza to DeepPanBase with hasBase and the one that links ItalianPizza to

ThinAndCrispyBase with hasBase are homogeneous associations, connected by the same

property hasBase. When the collection involves different properties, they are heterogeneous

associations. In Figure 1.1 the association consisting of MushroomPizza (class), hasBase

(property) and DeepPanBase (class) and the one consisting of MushroomPizza (class),

hasTopping (property) and MushroomTopping (class) are heterogeneous associations. The

homogeneous and heterogeneous associations in an ontology capture a variety of rich

information in addition to the subsumption hierarchy.

Ontologies are widely used in diverse areas, such as biomedicine, agronomy, e-gov-

ernment and bibliometrics (d’Aquin and Noy, 2012). Many large ontologies have been

developed in last two decades, which contain thousands or even tens or hundreds of thou-

sands classes. For example in the biomedical area, BioPortal (Noy et al., 2009; Salvadores

et al., 2013), a comprehensive biomedical ontology repository, currently contains 763 on-

tologies with a total of almost 10 million classes.2 These include the influential Gene

Ontology (Ashburner et al., 2000), which has close to 50,000 classes, and the SNOMED

CT ontology (Stearns et al., 2001), which currently has more than 340,000 classes.

Ontologies also have complex structures. Their hierarchical structure usually contains

multiple inheritance3, demanding efficient means to reveal all direct ancestors of a class to

users. The homogeneous and heterogeneous ontology associations, introducing additional

relationships and structure complexity, make the comprehension and use of ontologies and

their associations more difficult.

Visual tool support for the effective interrogation of such large and complex data is

essential to both ontology users and ontology developers. Visualisations provide visual

representations of data, often designed to convey knowledge and reduce user perceptual

and cognitive effort. An effective visualisation can help users get insights into data, explore

datasets and perform tasks (Munzner, 2014).

1.1 Motivation

As a response to this important need, many ontology visualisation systems have been

developed in recent decades, as explained by several survey papers (Katifori et al., 2007;

Saghafi, 2016; Dudáš et al., 2018). Given the central importance of subsumption rela-

tionships in defining an ontology, most of the existing visualisation systems rightly treat

hierarchies as first-class citizens. For example, Protégé (Noy et al., 2000), the de facto

ontology editor, shows the subsumption hierarchy of the ontology in an indented tree (see

Figure 1.2a).

2https://bioportal.bioontology.org/
3Where classes have multiple superclasses.

https://bioportal.bioontology.org/
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However, the basic hierarchical representations are not adequate for showing large and

complex ontologies effectively. While the number of classes increases, an indented tree will

become very tall, requiring considerable time for navigation. Other common hierarchy

representations, like node-link layered trees (Reingold and Tilford, 1981), are organised

and intuitive, but do not scale well (see Figure 1.2b). Basic treemaps (Shneiderman,

1992) perform well in scalability, but are not good at showing hierarchical structures (see

Figure 1.2c). Also, for ontologies containing multiple inheritance, which is normally solved

by duplicating a term under each of its parents or using multiple edges to link a term to

all its parents, the visual redundancy or interleaving of edges is inevitable. Thus, there is

a need for defining better visualisations for such data.

a
b

c
d

e
f
g

(a) Indented tree, represents
classes as nodes and subclass
relations as edges with rela-
tive vertical positions. The
nodes are indented horizon-
tally to the right correspond-
ing to their depth in the tree.

a

b
c d

e f g

(b) Node-link layered tree,
represents classes as nodes
and subclass relations as
edges. Child nodes are placed
below their parent nodes.

c

d

e

f
g

(c) Treemap, represents
classes as rectangles and
places all the child classes
enclosed within the area
assigned to their parent
classes.

Figure 1.2: Simple illustrations of basic hierarchical representations, visualising the same
hierarchy.

This leads to the motivation for this research: finding effective approaches for visu-

alising complex large ontologies and associations. Since different hierarchy representa-

tions trade off structure for scalability, it is natural to ask whether one can combine their

strength to develop a more space-efficient representation to accommodate large ontologies.

Visual compression techniques can provide a solution to reduce visual occlusion and

visualisation complexity. They are often used with interaction techniques, which allow

users to investigate and explore the details of information hidden in compressed elements.

In recent years, the utilisation of glyphs for representations of groups of nodes in graphs

and hierarchies has drawn some attention since it allows for a more compact representa-

tion by compressing or simplifying the topology (Shneiderman and Dunne, 2012; Plaisant

et al., 2002). However, arguments have been made that these abstract glyphs hide the

details of structure and the expansions of nodes require users’ explicit actions, which

slows down the process of assimilating unfamiliar datasets. It is possible to argue that

with more expressive glyphs or other visual summary techniques, the compressed struc-

ture can be understood more easily. Also, automatic mechanisms like Degree-of-Interest

(DOI) trees (Card and Nation, 2002), which calculate data degree-of-interest values and

employ the focus+context method (Furnas, 1986) to choose data portions displayed on
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constrained screen, can be explored to define compressed and expanded elements, so as to

reduce effort by users.

When focusing on use of associations rather than tree layouts, one might naturally

suggest the use of network layouts that give freedom to arrange the ontology classes based

on their connectivity. One typical example is WebVOWL (Lohmann, Link, Marbach and

Negru, 2014), which models all the relations in an ontology using the node-link repre-

sentation with force-directed layout (Fruchterman and Reingold, 1991). It can be argued

that this approach does not scale up to large ontologies, resulting the infamous “hair-

ball” effect (Jankun-Kelly et al., 2014). An earlier tool, Jambalaya (Storey et al., 2001),

visually differentiates hierarchical relationships and non-hierarchical associations, placing

the ontology classes on the tree layouts and drawing links between classes on top of the

hierarchy to represent associations, with different colours denoting different association

types. It was noted that in Jambalaya the interweaving of links dramatically reduces the

readability of visualisation. Thus, an effective approach needs to be defined to properly

organise the heterogeneous associations.

Ontologies are broadly used in many domains to support user activities. Different use

cases and tasks might require different visualisation focuses. It is hard to make a one-size-

fits-all tool. One solution that supports some tasks properly might fail in others (Munzner,

2014; Dudáš et al., 2018). In the field of visualisation, the definition of effectiveness

encompasses the match of both human cognitive system and intended use cases. It has

been argued that the ontology visualisation needs to be designed around the user needs

and the use cases that should be supported (Dudáš et al., 2018).

In this research, interviews have been conducted with experts in the biomedical domain

to study user needs. The biomedicine domain dominates the ontology community, where

more ontologies are developed and utilised than in most other domains (d’Aquin and Noy,

2012). From the interviews, the user activities with homogeneous and heterogeneous as-

sociations have been identified. The analyses related to homogeneous associations involve

not only individual associations but more importantly strengths of associations between

classes, investigated together with the underlying ontology hierarchy. The analyses per-

formed with heterogeneous associations are more complicated. Thus, an effective ontology

visualisation should allow users to easily spot the distribution of different types of asso-

ciations in the ontology hierarchy and also support the exploration of association details.

While most existing ontology tools focus on class hierarchy, they do not fully support these

complex association analyses, requiring significant user effort.

While the use cases from the interviews in the domain of biomedicine motivated this

research on visualising ontologies and associations, literature reviews have been conducted

to explore other domains. Similar user activities with ontologies and associations have

been identified in a number of application areas. For example, in the agronomy domain,

many ontologies have been created to represent and analyse agronomic data (Jonquet

et al., 2018; Drury et al., 2019). They are used to answer questions like “what are the

appropriate rice varieties for a given soil or region?” and “how many rice varieties are

bred from a particular breeding station?”. In the e-government domain, ontologies and
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associations are involved in the analyses on citizens, authorities, or investment (Fraser

et al., 2003; Wagner et al., 2006). For bibliometrics, the investigation of research areas,

scientific collaborations, publication impact factor and grant funding relies on the support

from ontologies, leading to the discovery of potential opportunities (Adam, 2002; Moed,

2006; Peroni and Shotton, 2018).

The limitations of existing tools and the demands and challenges for visualising large

ontologies and associations motivate this research. Arising from these issues, the research

objectives are formed, as discussed in the next section.

1.2 Research Objectives

The fundamental goal of this research is to investigate the facets of visualisations that can

effectively support user needs for large ontologies and their associations. This goal can be

broken down to answer the following research questions (RQ):

• RQ1: How can large ontologies be effectively visualised?

To improve the scalability of current ontology visualisations, an effective rep-

resentation needs to be defined.

Visual compression techniques can be used to compress the elements that are

not interesting. A measure of interest based on user needs and tasks is needed

for data elements (detailed definition of interest will be discussed in Chap-

ter 4). A compact and meaningful design needs to be produced to give a visual

summary of the compressed elements.

Appropriate interaction techniques need to be defined to explore an ontology’s

large hierarchy and support user activities.

• RQ2: How can homogeneous associations be effectively visualised in an ontology?

An effective approach needs to be devised to visualise homogeneous associations

alongside the ontology hierarchy structure. The associations should be clearly

shown, including to which classes they apply.

The strength of associations between classes should be recognisable easily in

the visualisation. The significant classes with most associations should stand

out from other classes.

The interactivity should be well designed to support user activities with homo-

geneous associations and exploration.

• RQ3: How can heterogeneous associations be effectively visualised in an ontology?

A representation that can effectively visualise heterogeneous associations on the

ontology hierarchy needs to be designed. Along with the demands for homo-

geneous associations, different types of associations should be distinguishable

in the visualisation. The distribution of heterogeneous associations throughout

the ontology hierarchy should be easily determined.
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The interactivity should be well designed to support user activities with het-

erogeneous associations and exploration.

1.3 Research Methodology

This research makes use of the design process model proposed by Takeda et al. (1990),

which has five sub-processes in the design cycle. Awareness of the problem refers to the

exploration of the research field, to determine the problems under certain specifications.

Suggestion process seeks the objectives to solve the problems. In the Development process,

candidates for the solutions are developed. Evaluation is the evaluation of the candidates.

Conclusion makes a decision of which candidate should be adopted.

Following this model, a user-centred design approach (Norman, 1988) was adopted,

where users are involved in the initial needs gathering, visualisation design, prototype

feedback and formal evaluation processes. Creative stimulations (Goodwin et al., 2013),

such as presentations and demonstrations of alternative visualisations and tools, were

involved to inspire users to think about the needs for visualisations and functionalities.

Figure 1.3 shows the methodology of this research.

To understand user needs, interviews with domain expert and literature surveys are

used as the starting point of this research, leading to the formulation of the research ques-

tions and research objectives. For each research question, the interviews identified details

of the use cases and the issues with the current approaches, leading to visualisation ob-

jectives. Putting these objectives into practice, specific design requirements were derived.

A prototype of the visualisation design was produced based on the requirements. For re-

search question one and two, the prototype was evaluated through quantitative usability

studies. The prototype was subsequently refined based on the results and feedback from

the evaluation. Later, an expert user study with a similar structure to the prototype

user study was conducted to test the usability of the refined prototype. The results and

feedback from the experts were gathered and analysed, leading to further improvement to

the visualisation. For research question three, the evaluation was based on domain expert

feedback and walk-through case studies, since there is no comparable tool that satisfacto-

rily supports the complex user activities on heterogeneous associations. Publications were

produced to communicate the results.

1.4 Contributions

The main contributions of this research fall into three categories: 1) new representations

of ontology hierarchies and associations, 2) design of ontology visualisation interactivity,

and 3) implementation of the visualisation to support user activities.

Firstly, a number of new visual representations that meet the challenges posed by

complex and large ontologies are presented:
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Use Cases and 
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Expert User 
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Expert User 
Study

Prototype

Prototype Refinement 

Figure 1.3: The user-centred research methodology for this research adapting the design
process model (Takeda et al., 1990).

a) A new visual representation, named OntoPlot, for visualising large ontology hierarchies

is presented. It utilises the basic style of icicle plots but accommodates ontology

classes in a more space-efficient way.

b) Visual compression techniques are employed in the visualisation. An interest measure

is defined to determine the data elements that need to be compressed, giving more

focus on the interesting classes from the user’s perspective.

c) A set of distinct glyphs is designed to visually summarise the compressed structure,

facilitating quick identification of different hierarchical structures.

d) An effective approach to emphasising homogeneous ontology associations on top of the

hierarchy is demonstrated. It is extended to show heterogeneous associations.

e) A representation for showing the many-to-many heterogeneous associations between

classes along with the ontology hierarchy is defined.

Second, a series of interactions are designed to support the exploration of ontology

hierarchy and associations. Some particular features are highlighted below:

a) The interest measure is dynamically calculated when users select properties or classes

they are interested in, and the compression is automatically performed.

b) The glyphs that represent compressed sections can be interactively expanded and col-

lapsed. Animation is employed to ease the transition of changes.

c) Appropriate features are utilised to ease the navigation around the ontology and pre-

serve the context information for users.
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Finally, as a realisation of the design, the browser-based software OntoPlot is devel-

oped. Its effectiveness to support user activities of ontology hierarchy and associations is

demonstrated via the user studies and case studies. It is publicly available online, allowing

users to visualise and interact with their own ontologies.

As discussed in Section 1.1, OntoPlot is domain agnostic and can facilitate equivalent

ontology user activities for any domain. Also, while OntoPlot is designed to visualise

ontologies and associations, it is generalisable to other hierarchically structured data,

especially those containing additional non-hierarchy relations. One typical example is

research collaborations between organisations, where the relationships between individuals

in the hierarchy show how the researchers from different organisations work together, and

the relationship strength indicates how often they collaborate.

1.5 Thesis Structure

This thesis is organised in an order the research was conducted, which progressively ad-

dressed each research question, building on the earlier work.

This introduction chapter briefly outlined the background of this research project, and

presented the research motivations and contributions.

Chapter 2 introduces the background knowledge of ontology and ontology association

data used in this research. It describes a user needs study via domain expert interviews.

It reports the interviews for all three research questions, followed by the interview analysis

to define use cases and design requirements for each research question.

Chapter 3 details the background of visualisation techniques related to this research. It

discusses hierarchy visualisations and focuses on existing ontology visualisations, followed

by the review of visual compression approaches.

Chapter 4 describes the design process for visualising large ontology hierarchies. It

explores the design space and proposes the visual representation OntoPlot, with visual

compression techniques and interactions. It addresses RQ1.

Chapter 5 presents the visualisation for homogeneous associations and describes the

research process. The rest of the chapter presents evaluations and refinements. It addresses

RQ2.

Chapter 6 explores and describes the approaches for visualising heterogeneous associ-

ations. It also demonstrates the usability of the system to support user activities through

case studies. It addresses RQ3.

Chapter 7 concludes the research, as well as describes the directions for future research.



Chapter 2

User Needs

This chapter firstly gives a background of ontology and association data, then describes

the process of analysing user needs for ontology and association visualisations. It presents

interviews with a domain expert for understanding the work involved in ontology and

association analysis. Next it describes the analysis of the interview data to identify use

cases and visualisation design requirements for each research question. Some examples are

also discussed in this chapter to show how domain experts currently perform the analyses

using ontologies.

2.1 Ontology and Association

An ontology consists of a list of concepts and relationships between these concepts. Typ-

ically, a concept is a class of individuals, and their relationships are defined as binary

relations (sometimes called predicates). The binary relations, expressed in the OWL (Hor-

rocks et al., 2003) and OWL 2 languages (Cuenca-Grau et al., 2008), are usually defined

as subsumption relations between classes.

The most prevalent relationships in an ontology are the subsumption relations be-

tween named classes, which denote subclass relations, indicating inheritance. One class

C is stated as a subclass of another class C ′, if every instance in C is included in C ′.

For example, in the Pizza ontology, MushroomPizza subClassOf Pizza presents a subclass

relation. These inheritance relationships normally form the hierarchical structure for an

ontology.

The inheritance relationships in an ontology are not required to form a strict hierarchy,

meaning that a class may have multiple superclasses, denoting multiple inheritance. More

specifically speaking, if a class A is a subclass of both B1 and B2, then every instance of

A is an instance of B1 and B2.

Beside the named class subsumption relations, the subsumption relations can be ex-

pressed with properties (sometimes called roles) and anonymous classes. This kind of

relationship places restrictions, such as someValuesFrom, allValuesFrom and hasValue,

on properties. For example, in the relationship from the Pizza ontology MushroomPizza

subClassOf hasTopping some MushroomTopping, the class MushroomPizza is linked to an-

other class MushroomTopping through a subclass of a someValuesFrom restriction on the

9
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property hasTopping. In this research, the term association is used to define this kind of

restriction that involves a property.

Expressed in the OWL Description Logic syntax (Horrocks et al., 2003), the above two

definitions can be formally expressed as follows. Axiom 2.1 states the subclass relationship

(denoted ‘v’) between named classes MushroomPizza and Pizza. Axiom 2.2 states the

association on class MushroomPizza, asserting it as a subclass of a someValuesFrom value

restriction.

MushroomPizza v Pizza (2.1)

MushroomPizza v ∃ hasTopping.MushroomTopping (2.2)

As introduced in Chapter 1, homogeneous and heterogeneous associations here refer to

a set of associations involving the same or different properties respectively. There may also

be inheritance relations between properties in an ontology, forming a property hierarchy,

which enriches the relationships between heterogeneous associations.

In addition, properties can have different facets, such as cardinality and value type (Noy

et al., 2001). Cardinality restrictions define the number of values a property can have.

Value type describes the types of values for a property, such as string, number or dates,

which are atomic values also called literals (Antoniou et al., 2012).

To enhance the expressiveness of ontologies, besides the binary relations, there are

other definitions that are used in ontology languages to express the relationships between

classes, such as equivalence and disjointness (Antoniou et al., 2012). If two classes have

exactly the same instances, they are equivalent. If two classes do not have any common

instances, they are disjoint. This kind of ontology expressivity enriches the semantics of

ontologies and facilitates complex knowledge management (Antoniou et al., 2012).

The targets of this research are the homogeneous and heterogeneous associations as-

serted by someValuesFrom restriction. Other axioms involving allValuesFrom, hasValue,

cardinality, literals, equivalence or disjointness are not the focus of association analyses,

so will not be dealt with.

2.1.1 Biomedical Ontologies

Ontologies have been widely adopted for the purpose of knowledge representation in a

number of areas, for example, biology, medicine, agronomy, e-government and bibliomet-

rics, etc. (d’Aquin and Noy, 2012). Biomedical research is one of the popular and most

successful applications of ontologies and it dominates the ontology community (Stevens

and Lord, 2009; Shah and Musen, 2009; d’Aquin and Noy, 2012). Thus, biomedical on-

tologies and their use is the focus of this research.

In biomedical research, there is an abundance of heterogeneous data, including genes,

proteins, clinical observations and laboratory data, that need to be integrated to facilitate

the formulation, evaluation and refinement of hypotheses. Biomedical ontologies drive the

computational use of this biological data. They achieve this by organising and classifying
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knowledge in a formalised and structured manner, providing unambiguous and shareable

descriptions (Shah and Musen, 2009).

Biomedical ontologies provide a basis for integrating and understanding knowledge

from multiple sources. The shared understanding of collected data is essential for biologists

to describe the same entities in the same way. One typical example is the widely-used

Gene Ontology (Ashburner et al., 2000), which defines 50,000 classes to annotate biological

entities (i. e., genes and gene products) that result from high-throughput experiments.

Besides the use of ontology itself, ontology associations also serve as a solution provider

in the biomedical research community. The structure of associations between classes in an

ontology can be used to query the data and to explore how the data relate to each other,

allowing biologists to perform the analyses related to ontology relationships.

The structure of associations in biomedical ontologies is diverse and complex. These

associations can be one-to-one (e.g., a class linked to another class) or many-to-many

(e.g., some classes linked to many other classes). They also can be of the same type (i. e.,

homogeneous associations, involving one property) or of different types (i. e., heterogeneous

associations, involving multiple properties).

To better understand user needs for ontologies and associations, interviews were con-

ducted with a domain expert in bioinformatics, which will be discussed in detail in Sec-

tion 2.2.

2.1.2 Multiple Ontologies

Although this research explores the use of single ontologies and the associations included

within them, it is worth giving a brief overview of the use of multiple ontologies. Linking

classes from multiple ontologies is another important area of research in the ontology

community, which is widely used to support ontology mapping, ontology term reuse and

ontology evolution investigation.

Ontology mapping is defined as a specification of the semantic overlap between two

ontologies (Kalfoglou and Schorlemmer, 2003). It is seen as connection between different

ontologies. As the number of ontologies increases significantly, there is a need to connect

ontologies to support interoperability (Falconer and Storey, 2007). Mappings are then pro-

vided as translation rules to resolve differences in terminology, syntax or language between

ontologies. There are five types of mappings: lexical mapping (simple lexical comparison

between term labels), xref mapping (a term is referred to another term by analogousness

or other predicates), CUI mapping (terms assigned with the same Concept Unique Identi-

fier), URI mapping (terms assigned with the same Uniform Resource Identifier) and user

submitted mapping. Mappings among ontologies constitute a key component that enables

the use of the ontologies for data integration and information exchange (Flouris et al.,

2008). Understanding ontology mappings and how ontologies are related is a critical step

in integrating data and using multiple ontologies at the same time in applications.

Ontology term reuse refers to the situation for ontology development where the same

term is present in two or more ontologies either by explicit reference directly using the

same IRI (Internationalised Resource Identifier), or via xref (a term is referred to another
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term by analogousness or other predicates) or CUI (Concept Unique Identifier). Ontology

development is seen as a reuse-oriented process (Noy et al., 2001). Reusing terms from

existing ontologies is encouraged by most ontology development methodologies to create

accurate and cost-effective ontologies and avoid redundancy of classes. However, according

to Kamdar et al. (2015) who conducted an investigation of term reuse for the ontologies

in BioPortal, term reuse is estimated to be rather low, less than 5%, while term overlaps

between ontologies is as high as about 14%. Term overlap refers to the situation in

which two terms are similar by their labels or synonyms, but do not have any reference

to each other. In other words, overlapping terms in different ontologies are regarded as

redundant. The set of terms resulting from subtracting term reuse from term overlap is

called the overlap-reuse gap. To minimise this gap, the overlapping terms between different

ontologies should be identified and replaced by reuse of existing terms.

To support the evolution of biological science and the change of knowledge, and to

correct errors and logical inconsistency, ontologies are updated continuously. In this case,

different versions of an ontology are generated. Gene Ontology (GO) can be taken as

an example. GO is updated daily (Rhee et al., 2008). All the changes are tracked to

allow versioning of the ontology. According to Dameron et al. (2013), between January

2008 and December 2012, the number of classes in GO increased by 50%, and the number

of relations grew by 85%. Meanwhile, the hierarchical structure of GO also changed.

GO consists of three branches: Biological Process (BP), Cellular Component (CC) and

Molecular Function (MF). The new classes were mostly added to the intermediate levels

rather than leaves for BP, whereas classes are added mostly as leaves for CC and MF. Given

such changeable information, it is important for a GO user to understand the similarity and

difference of various versions of GO and their structures, in order to accurately describe

the biological reality (Hill et al., 2008).

The use of multiple ontologies and the user needs for their visualisations are not ad-

dressed specifically in this research. However, more effective visualisation of single ontolo-

gies can serve as a foundation for building multiple ontology visualisation systems.

2.2 Exploratory Interviews

The data of interest in this research are ontologies and their contained associations as

introduced in Section 2.1.1. To better understand the analytical activities with such data,

a series of interviews was conducted with an experienced domain expert in bioinformatics,

whose research focuses on the development and application of biomedical ontologies, and

who has actively published in these areas for fifteen years. In order to address the different

research questions, the domain expert was interviewed a number of times over the whole

period of this research.

The interviews were semi-structured, where a list of prepared questions was used to

prompt the expert and follow-up questions allowed deeper discussion (Williamson and

Johanson, 2017). The prepared questions focused on the high-level intentions of the ac-

tivities, shown as follows:
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• What is the background of this work?

• What is the motivation of this work?

• What is the use case for this analysis?

• How do you perform the analysis currently?

• Did you encounter any difficulties?

• What features of the tool that you are using do you like or dislike?

• What new functions would you expect?

The interview data was gathered and analysed to retrieve use cases. These use cases

were broken down using the analysis framework by Munzner (2014) firstly to abstract low-

level actions and targets from each use case, then to identify the similar operations from the

use cases and provide structured guidelines to construct visualisation design requirements.

Besides the discussion with the expert, the literature that describes related works was

studied to get a thorough understanding of the current approaches. The outcome of these

analyses is described in the following sections, organised by research question.

Although the expert involved in the interviews works in the bioinformatics domain,

the identified use cases are not described in the context of biology or biomedicine and are

applicable to other ontology application areas, as discussed in Chapter 1.

2.3 Large Ontologies

This section describes the use cases, visualisation requirements and current approaches

that relate to RQ1: how can large ontologies be effectively visualised?

2.3.1 Use Cases

When working with large ontologies, the preliminary focus is the content of the ontology

and the topology of the ontology hierarchy. During early interviews with the domain

expert, a number of common use cases that are important for using large ontologies were

identified. The actions and targets derived from each use case are summarised in Table 2.1.

U1 Describe data. Given an ontology, experts want to be able to find classes in the

ontology and inspect the class information. This is important to understand and

describe the content of the ontology. Experts also want class labels to be shown so

they can easily spot classes.

U2 Focus on interesting information. As ontologies can be very large and can contain

rich information, experts want to be able to focus on the required information. The

required information is considered to be the interesting parts of an ontology. Note,

the parts of interest might be different for different users.
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U3 Generalise concepts. While investigating an interesting class in an ontology, ex-

perts want to know the path from the class to the root, being able to generalise the

class concept from the concepts of its ancestors. For example in Figure 2.1, class A

is the root. F − > E − > A is the path from class F to the root.

U4 Discover common knowledge. Given classes of interest, experts want to be able to

easily trace their paths towards the root and determine the concept that is the lowest

common ancestor, facilitating the discovery of common knowledge. For example in

Figure 2.1, both A and B are the common ancestors of C and D, while B is the lowest

common ancestor of C and D.

U5 Discover new knowledge. In order to discover new knowledge beyond the inter-

esting parts of an ontology, experts will also sometimes need to access and browse

the entire ontology to explore the contained information.

B

subClassOf subClassOf

subClassOf

E

C D F

A

subClassOfsubClassOf

Figure 2.1: A simple illustration hierarchy.

Table 2.1: Common use cases when working with ontologies.

Use Description Need Action Target
Case

U1 Describe data Find class and its information Search Class
Inspect Class
detail

See class label Locate Class

U2 Focus on interesting Easily spot required information Define Class of
information interest

Locate Class of
interest

U3 Generalise concepts See the path from a class Identify Topology
to the root

U4 Discover common Find the lowest level of common Identify Topology
knowledge ancestors for particular classes

U5 Discover new Access the entire ontology Explore Ontology
knowledge Navigate Ontology
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2.3.2 Visualisation Requirements

From the use cases and their actions and targets enumerated above, along with the typical

nature of ontological data, a number of specific design requirements for an interactive

system to explore large ontologies are identified (see also Table 2.2).

R1 In order to present the content of an ontology (U1), the visualisation should sup-

port the access of class information contained in the ontology and provide a search

function to allow users to easily find useful information.

R2 To better describe ontologies (U1), the visualisation should be expressive, which is

able to display the labels of classes.

R3 In order to let users focus on the interesting parts of an ontology (U2), the visualisa-

tion should give more prominence to these parts to allow them stand out from the

ontology hierarchy and be easily spotted by users. Note, the interesting parts may

be spread across the whole ontology.

R4 Ontologies encode a clear hierarchical structure through subclass relationships and the

hierarchy is the most useful way to arrange large ontologies. Also, the hierarchical

structure is essential for U3 and U4 to find the path from a class to the root, so it

must be prominently represented.

R5 As described in U5, the entire ontology should be embodied in the visualisation.

Since ontologies can be very large, the visualisation is required to maximise the use

of available space. Since ontologies are generally broad (i.e., much wider than they

are deep), with traditional hierarchy visualisations, the branches with large numbers

of leaf nodes (the nodes without any children, for example C, D and E in Figure 2.1)

will take up significant amounts of horizontal space. There is a need to give less

prominence to uninteresting branches with large numbers of leaf nodes.

R6 For U5, the visualisation should support the exploration of the ontology, allowing

users to easily browse and navigate through the different parts of the ontology.

Table 2.2: Visualisation design requirements for ontologies in the context of identified use
cases.

Requirement Description Use Case

R1 Provide class information and search function. U1
R2 Show class labels. U1
R3 Emphasise interesting parts. U2
R4 Clearly present ontology hierarchy structure. U3, U4
R5 Maximise the use of available screen space. U5
R6 Support browsing through the entire ontology. U5
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2.3.3 Current Approach

The tool used by domain experts to perform analyses on ontologies is Protégé (Noy et al.,

2000). Protégé is the most widely used ontology editor. It offers an indented list, which is

similar to file browsers (see Chapter 3 for a detailed description of indented list), to repre-

sent the ontology hierarchy, annotating the classes with their labels (U1) (see Figure 2.2

a©). It presents the class information as text lists in separate views (U1) (see Figure 2.2

b©) and provides a search window (U1) (see Figure 2.2 c©). Users can click a class to

expand or collapse a subtree to show or hide the classes based on their interests (U2). The

indented list can be scrolled down to browse the entire ontology (U5).

Figure 2.2: The interface of Protégé, visualising the Pizza ontology.

The expert commented that using Protégé to trace the path in the ontology hierarchy

(U3) is not easy, especially when the class is far away from the root in a very deep or

wide ontology. Also, finding common ancestors for classes (U4) is not well supported by

Protégé.

2.4 Homogeneous Associations

This section presents the use cases, visualisation requirements and current approaches that

relate to RQ2: how can homogeneous associations be effectively visualised in an ontology?

2.4.1 Use Cases

During the interviews with the domain expert, the process of using biomedical ontologies

for exploring and cataloguing the homogeneous associations was discussed. This type

of work involves understanding not only the underlying hierarchy, but also strengths of

associations between classes in different parts of the ontology. A number of common use
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cases that are important for such work are identified. The actions and targets derived

from each use case are summarised in Table 2.3.

U6 Inspect a class’s associations. For a class of interest, experts want to see the

distribution of its associations across the ontology hierarchy. Experts also want to

know the number of associations and the association details.

U7 Detect significant associations. Experts strongly demand the need to easily iden-

tify the classes with the greatest strength of associations from the ontology.

U8 Identify class effect. Experts expect to be able to clearly identify when particular

types of associations apply to most or all child classes of a given class, i.e., the

associations’ effect on a class of things.

U9 Predict possible associations. Experts want to be able to explore the siblings of

classes (e.g., in Figure 2.1 C is the sibling of D) with a given association, since a sib-

ling that does not have the association might be suspected of having the association

and be tested for it.

Table 2.3: Common use cases when working with homogeneous associations in ontologies.

Use Description Need Action Target
Case

U6 Explore a class’s See the distribution of associations Locate Association
associations See the details of associations Inspect Association

detail

U7 Detect significant Identify the classes with the Locate Association
associations greatest strength of associations Inspect Association

strength

U8 Identify class effect See when associations apply to Locate Association
a number of child classes Identify Topology

U9 Predict possible Show the sibling of classes with Locate Association
associations associations Explore Ontology

Identify Topology

2.4.2 Visualisation Requirements

Through the interviews with the domain expert, the process of analysing homogeneous

associations was discussed in detail. In response to the use cases involved in the process

and their actions and targets that are described above, the design requirements of the

visualisation are defined (see also Table 2.4).

R7 When considering associations in large ontologies, those associations might only apply

to a small subset of the ontology. An effective visualisation needs to clearly highlight

the parts of the ontology with relevant associations (U6, U8, U9) and emphasise those

with the greatest strength (U7).
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R8 The visualisation should allow users easily to obtain the detailed information of asso-

ciations (U6).

R9 Where there are large parts of the ontology without relevant associations, the visu-

alisation should be able to hide or show these so that users can consider just the

relevant parts of the ontology, or optionally view the ontology in its entirety as

desired (U9).

R10 When associations are related to children of a particular class (U8), then the class

effect needs to be easily identified.

Table 2.4: Visualisation design requirements for homogeneous associations in the context
of identified use cases.

Requirement Description Use Case

R7 Clearly highlight the parts of the ontology with U6, U7, U8, U9
(significant) associations.

R8 Show association details and strength. U6, U7
R9 Hide or show the parts of the ontology without U9

associations.
R10 Clearly highlight class effects. U8

2.4.3 Current Approach

Again, Protégé is the primary tool used by the domain expert to analyse homogeneous

associations. As discussed in Section 2.3.3, the association information of each class is

listed as text in the “Class Description” view (U6) (see Figure 2.2 b©). In order to locate

each associated class of a particular class in the ontology hierarchy (U6), experts must click

each association class label in the “Class Description” view, which the expert described

as a “tedious process”.

Then experts mark the association classes in the ontology hierarchy to investigate their

ancestors and siblings (U8, U9). Figure 2.3 shows an example of how experts present the

association classes for the Fatty Acids [Chemical/Ingredient] class in the ontology hierarchy

to find the class effect (U8). The ontology hierarchies used here are the screenshots of the

Protégé indented list, with manual annotations added in red.

To figure out the number of associations for each class (U7), domain experts either

count the associations manually or write SPARQL queries to do this. SPARQL is a

semantic query language developed to retrieve and manipulate RDF (Resource Description

Framework) format graphs such as ontology data (Prud et al., 2008). Figure 2.4 shows

one of the SPARQL queries written by experts for this purpose.

The domain expert commented that learning to write SPARQL queries is time con-

suming. Also, writing a valid query to get the correct result is not an easy task, especially

when the query syntax is complicated, consisting of various operations and restrictions.
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Figure 2.3: An example of how domain experts manually annotate screenshots of the
Protégé indented list to show the class effect: the Fatty Acids [Chemical/Ingredient] class
(left) has association with all the leaf classes in the adverse event subtree (right) (Wang
et al., 2017).

Figure 2.4: An example of the SPARQL query written by domain experts (Guo et al.,
2016).

To present the number of associations for classes in the ontology hierarchy and to

identify the class having greatest association strength (U7), experts usually add annota-

tions manually to the screenshots of the Protégé indented list to indicate the association

strength (see Figure 2.5).

Figure 2.6 shows another example of the visualisation used by experts to present the

association strength for classes (U7). In this figure, the bubble chart in view a© was

generated by Tableau. In this view, each class is represented as a circle. The size and colour

saturation of each circle represents the association strength. The bigger size and more

vivid colour indicate greater strength. Only the classes crossing the strength threshold

are labelled. The ontology hierarchy is presented in view b©, using the screenshot of the

Protégé indented list. The classes that are able to be labelled in view a© are annotated

with asterisks in this hierarchy.

In this visualisation, even with the labels in the ontology hierarchy, it is still hard to

visually match the same classes in the bubble chart and in the hierarchy.
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Figure 2.5: An example of the manual approach to show association strength within an
ontology: association numbers written next to branches of the hierarchy on a screenshot
of Protégé indented list view (Guo et al., 2016).

Figure 2.6: A bubble chart alongside an annotated Protégé indented list was used by
domain experts to show the association strength for the ontology classes (Liu et al., 2017).

2.5 Heterogenous Associations

This section describes the use cases, visualisation requirements and current approaches

that relate to RQ3: how can heterogeneous associations be effectively visualised in an

ontology?

2.5.1 Use Cases

Another major use of ontology associations is related to heterogeneous associations. The

general analyses that domain experts perform involve either comparing different types of

associations or linking associations to explore relationships between classes. The detailed

use cases that are identified from the interviews with the expert are listed below. Their

derived actions and targets are summarised in Table 2.5. Each use case is described in

terms of the simple example ontology depicted in Figure 2.7.
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U10 Compare heterogeneous associations. Experts wants to see the various dis-

tributions of the different types of associations in the ontology hierarchy and the

details of the classes they are applied to. For example in Figure 2.7, comparisons

can be performed between the heterogeneous associations involving hasBase and

hasTopping.

U11 Identify intersection classes of heterogeneous associations. When compar-

ing different types of associations, experts are also looking for the intersection classes

that are involved in all the interesting types of associations. For example in Fig-

ure 2.7, MushroomPizza is the intersection class of the heterogeneous associations

involving hasBase and hasTopping.

U12 Compare heterogeneous associations for individual classes. There is a need

to compare heterogeneous associations at class level. Experts want to see the differ-

ent distributions of various types of associations on interesting classes. For example

in Figure 2.7, experts want to compare the different distributions of the heteroge-

neous association involving hasBase and hasTopping on the classes MushroomPizza

and ItalianPizza.

U13 Link heterogeneous associations. The relationships between classes in an ontol-

ogy can be built and linked through heterogeneous associations. When performing

analysis on this kind of relationship, experts want to investigate the different types

of associations together and the classes involved in these associations. For example

in the ontology shown in Figure 2.7, MushroomPizza can be linked to Mushroom

via the class MushroomTopping and two properties hasTopping and hasSauce, from

which they can infer that MushroomPizza has Mushroom.

U14 Identify commonly associated classes for classes. When performing analyses

comparing or linking heterogeneous associations, experts need to inspect particular

interesting classes and identify the common classes associated with these classes. The

types of associations linking these classes should also be visualised. For example in

Figure 2.7, given the heterogeneous associations involving hasSauce and hasFried,

experts want to be able to identify Mushroom is the commonly associated class of

MushroomTopping and MushroomSoup by both properties.

2.5.2 Visualisation Requirements

As can be seen from the above use cases and their actions and targets, the analyses

on heterogeneous associations involve more data elements and greater complexity than

homogeneous association analyses. Thus, the visualisation will require more sophisticated

design consideration to support these analytical activities to investigate heterogeneous

associations. Such design requirements that are derived from the use cases and the actions

and targets are described below (see also Table 2.6).
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Pizza

MushroomPizza

ItalianPizza

PizzaTopping

MushroomTopping
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PizzaBase
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subClassOf subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf
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hasTopping
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subClassOf

subClassOf
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hasFried
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subClassOf
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MushroomSoup
hasSauce

hasFried

Figure 2.7: An illustration ontology adapting the Pizza ontology to illustrate simple het-
erogeneous association use cases.

Table 2.5: Common use cases when working with heterogeneous associations of ontologies.

Use Description Need Action Target
Case

U10 Compare heterogeneous See the distribution Locate Heterogeneous
associations of associations associations

See the details of Inspect Class
involved classes detail

U11 Identify intersection classes Easily spot the Locate Class
of heterogeneous associations intersection classes

U12 Compare heterogeneous See the distribution Locate Heterogeneous
associations for individual of associations on associations
classes classes Inspect Multiple

classes

U13 Link heterogeneous See the distribution Locate Heterogeneous
associations of associations on associations

classes Inspect Multiple
classes

U14 Identify commonly associated Easily spot the Locate Class
classes for classes common classes Locate Heterogeneous

associations
Inspect Multiple

classes

R11 As required in U10, the visualisation should be able to represent different types of

associations in the ontology hierarchy, allowing users easily spot their distribution

on the ontology classes.

R12 In order to give the information about the classes involved in the heterogeneous

associations (U10), the visualisation should be able to display the class details.

R13 To reveal the intersection classes of all the interesting types of associations (U11),

the visualisation should be able to automatically highlight the classes that have these

types of associations and filter out the other classes.
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R14 To support U12, U13 and U14, the visualisation should be able to display the in-

teresting heterogeneous associations and clearly show how these associations are

distributed among multiple classes.

R15 For the interesting classes, the visualisation should allow multiple selections of these

classes and automatically highlight the common classes that associate with all of

them and filter out the other classes (U14).

Table 2.6: Visualisation design requirements for heterogeneous associations in the context
of identified use cases.

Requirement Description Use Case

R11 Clearly show the distribution of heterogeneous U10
associations in hierarchy.

R12 Show class details. U10
R13 Detect and display intersection classes for U11

particular association types.
R14 Clearly show the distribution of heterogeneous U12, U13, U14

associations on multiple particular classes.
R15 Detect and display the classes commonly associate U14

with multiple particular classes.

2.5.3 Current Approach

When analysing heterogeneous associations, domain experts also use Protégé to investi-

gate the associations for classes. Figure 2.8 shows an example where experts find three

interesting associations (the blue highlighted item in view b©) for the FLUVASTATIN NA

20MG CAP [VA Product] class (the blue highlighted item in view a©) that are linked by

three different properties (U13). In this screenshot of the Protégé indented list (see view

a©), experts manually highlight the three classes (outlined with blue, green and red respec-

tively) that are associated with FLUVASTATIN NA 20MG CAP [VA Product]. This is done

manually because there is no possibility in Protégé to highlight more than one class on

the hierarchy at the same time. From these three associations, experts then identify that

the fluvastatin [Chemical/Ingredient] entity is associated with paresis AE, linked through

the FLUVASTATIN NA 20MG CAP [VA Product] drug.

Figure 2.9 is a heatmap generated in R to show the association strength between

adverse events and molecular entities under different groups of drug products (U12, U14).

The expert commented that although the heatmap can show the association strength

between different adverse events and molecular entities clearly, it is missing the hierarchical

context for the classes.

To compare heterogeneous associations, experts manually check the classes that have

interesting associations and annotate the properties on the screenshots of the Protégé

indented list (U10, U11). For example, in Figure 2.10a, the annotation a-i represents anti-

inflammatory and a-n stands for antineoplastic. Similarly, in Figure 2.10b, the annotations

G, O, R represent human gut, human oral cavity, human respiratory airway respectively.
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Figure 2.8: An example of how domain experts present three heterogeneous associations in
the ontology hierarchy by annotating screenshots of the Protégé indented list view (Wang
et al., 2017). a©: the indented list view of ontology hierarchy, b©: the class description
view listing associations for the selected class FLUVASTATIN NA 20MG CAP [VA Product].

subgroups that are associated with neuropathy AEs
(Figs. 4 and 7). We have also found an interesting obser-
vation that many agonists and antagonists of the same
targets (e.g., dopamine, serotonin, and sex hormone re-
ceptor) both lead to neuropathy AEs (Fig. 5 and Table 1).
Such observation suggests that these target molecules
require a balanced level in the host, and too high or too
low may lead to neuropathy AEs. We have also

generated a heatmap to further identify the relations be-
tween drug chemical entities and different types of neur-
opathy AEs (Fig. 7).
It is noted that many findings from our ontology

knowledge base analysis have been reported in the litera-
ture [23–31]. For example, agonists and antagonists of
the same targets associated with neuropathy AEs have
been reported previously [23, 24]. Specific chemical

Fig. 7 Heatmap analysis of drug molecular entity-AE relations. Drug molecular entities include 20 DrON terms at the third layer under ChEBI term
‘molecular entity’. Color scheme indicates the numbers of AEs for different groups of drugs: light grey is 0, dark grey is 1, and the rest are ordered
by yellow, orange and red

Guo et al. Journal of Biomedical Semantics  (2016) 7:29 Page 9 of 12

Figure 2.9: The heatmap used by experts to show the association strength between adverse
events and molecular entities linked by drug products (Guo et al., 2016).
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Here, the circles with different colours are used to indicate different activities, with red

representing increased profile and blue representing decreased profile. Experts use this

kind of visualisation to show the distributions of different types of associations. Such a

visualisation will be less effective when the number of association types increase, as it will

become hard to distinguish different properties. Also, it cannot be used to identify which

classes are associated with a class.

By analyzing the chemical entities and associated bio-
logical roles, we can identify possible AE mechanisms.
The most prominent side effects of T. wilfordii and T.
Hypoglauci extracts are their association with reduction
of reproductive functions including necrospermia, hypo-
menorrhea, and infertility [16]. Several anti-rheumatism
chemical ingredients, including triptolide, tripdiolide,
and triptolidenol, have been found to contribute to such
antifertility effects [16, 38]. These chemicals have been
contained in OCMR. Furthermore, our systematic
OCMR knowledge base analysis identified many more
neurotoxins and allergens. Interestingly, over 30 benzene
type chemicals are found, many of them are known neu-
rotoxins and allergens, such as eugenol (an allergen) [39,
40], diethyl phthalate (neurotoxin with possible adverse
reproductive outcomes) [41], and toluene (neurotoxin)
[42]. How these benzene chemical entities contribute to
known AEs associated with TCDs deserves more studies.

SPARQL query of the OCMR knowledge base
The OCMR ontology is formatted using the Web Ontol-
ogy Language (OWL) [43] format. The contents of the
OWL files can be expressed with Resource Description

Framework (RDF; https://www.w3.org/RDF/) triples and
stored in an RDF triple store database. The RDF data
model makes statements about resources in the form of
subject-predicate-object expressions (i.e., triples).
SPARQL (a recursive acronym for SPARQL Protocol
and RDF Query Language) [44] is used to retrieve data
stored in a RDF triple store. Since the OCMR ontology
has been stored in the Ontobee triple store, the Ontobee
SPARQL website (http://www.ontobee.org/sparql) could
be used to query the OCMR knowledge. Figure 8 pro-
vides an example of such a SPARQL query. As shown in
this example, a few lines of SPARQL code can be used
to identify the 33 antineoplastic chemical entities as in-
gredients of the anti-rheumatism Chinese medicines.

Discussion
This manuscript reports an interesting bioinformatics
project that started simply with the knowledge of a list
of anti-rheumatism TCDs. For the list of 26 TCDs, we
systematically and manually annotated peer-reviewed ar-
ticles and retrieved their associated organism sources
and anatomic locations in these organisms, chemical in-
gredients of these Chinese drugs, and AEs. With the

Fig. 6 Hierarchical analysis of chemical entities of anti-rheumatism TCDs based on ChEBI classification. a 14 chemicals with antineoplastic and/or
anti-inflammatory roles are lipids. Among these lipids, 12 are terpenoid chemicals, which include 4 diterpene triepoxides and 7 pentacylic
triterpenoids. In the subfigure, “a-i” represents anti-inflammatory role, and “a-n” represents antineoplastic role. To generate this screenshot,
Ontofox was used to generate a ChEBI subset using all 42 chemicals with antineoplastic and/or anti-inflammatory roles. The results were
visualized using the Protégé OWL editor. b The whole OCMR diterpenoid branch that has 22 chemical elements (including triptolide and
tripdiolide). c The whole triterpenoid branch in OCMR. This branch includes 23 chemical elements, among which are 16 pentacylic triterpenoids

Liu et al. BMC Systems Biology 2017, 11(Suppl 7):130 Page 121 of 174

(a) Different properties are annotated by dif-
ferent strings. Two types of associations (a-i
and a-n) are shown (Liu et al., 2017).

types to standardize the currently still highly heterogeneous
MicrobiomeDB data. The information captured in OHMI
can also provide prior knowledge that can be used to en-
hance queries and analyses of MicrobiomeDB data. One
such strategy is to allow users who have identified differen-
tially abundant taxa (using the existing differential abun-
dance app) to leverage OHMI to ask whether the identified
list of differentially abundant taxa is enriched for any dis-
ease processes or interactions. Such an approach is similar
to how the Gene Ontology (GO) has been used to support
data analysis, by providing prior knowledge relating to the
roles of given genes in realizing given functions, knowledge
which can then be used to support gene enrichment and
other data analysis [56]. Such a strategy has its advantages

over alternatives such as simply using relational database
representations, since the ontology-based approach sup-
ports better standardization, flexibility, interoperability, ma-
chine interpretation, and extensible tool development.
A newly funded project is to apply OHMI to study the

host-microbe interactions related to gastric cancer. Gas-
tric cancer (GC) is the fifth most prevalent malignancy
and the third leading cause of cancer death worldwide.
Almost half of new cases occur in China, and it is the
second leading cause of cancer death in China. The
strongest risk factor for gastric cancer is chronic Helico-
bacter pylori infection. People with an H. pylori infection
have a roughly six-fold greater risk of developing gastric
cancer than uninfected people. However, not all people

Fig. 6 The hierarchy of microbes associated with RA and their profiles. The red and blue circles represent the increased and decreased profiles,
respectively. Labeled letters represent locations as follows: G – human gut, O – human oral cavity; R – human respiratory airway. Those taxonomy
terms without circle and label are used only to generate the hierarchy

He et al. Journal of Biomedical Semantics           (2019) 10:25 Page 10 of 14

(b) Different properties are annotated by a
combination of different symbols and charac-
ters. Six types of associations (increasing and
decreasing of G, O, R) are shown (He et al.,
2019).

Figure 2.10: Examples of using screenshots of Protégé indented list to show heterogeneous
associations on ontology hierarchies.

2.6 Summary

Table 2.7 summarises the use cases, visualisation requirements and current approaches

described for the research questions in the above sections, derived from the interviews

with the domain expert.

As can be seen from the table, performing the analyses that involve ontology hierarchy

and complex associations currently requires considerable manual effort. There are strong

needs for designing visualisations to support such use cases.



Table 2.7: Summary of the interview data analysis outcome.

Use Case Visualisation Requirement Action Target Feasibility of

Current Approach

U1 Provide class information and search function Inspect detail Class Possible

Describe data Search Class Possible

Show class labels Locate Class Possible

U2 Emphasise interesting parts Define Class of interest Possible

Focus on interesting information Locate Class of interest Very Difficult

U3 Clearly present ontology hierarchy structure Identify Topology Difficult

Generalise concepts

U4 Clearly present ontology hierarchy structure Identify Topology Difficult

Discover common knowledge

U5 Maximise the use of available screen space

Discover new knowledge Support browse through the entire ontology Explore Ontology Possible

Navigate Ontology Possible

U6 Clearly highlight the parts of the ontology with associations Locate Association Very Difficult

Explore a class’s associations Show association details and strength Inspect detail Association Very Difficult

U7

Detect significant associations

Clearly highlight the parts of the ontology with significant

associations

Locate Association Very Difficult

Show association strength Inspect Association

strength

Very Difficult

U8 Clearly highlight the parts of the ontology with associations Locate Association Very Difficult

Identify class effect Clearly highlight class effects Identify Topology Difficult

U9 Clearly highlight the parts of the ontology with associations Locate Association Very Difficult

Predict possible associations Hide or show the parts of ontology without associations Explore Ontology Possible

Identify Topology Difficult



Table 2.7: Summary of the interview data analysis outcome continued.

Use Case Visualisation Requirement Action Target Feasibility of

Current Approach

U10

Compare heterogeneous

Clearly show the distribution of heterogeneous associations in

hierarchy

Locate Heterogeneous

associations

Very Difficult

associations Show class details Inspect detail Class Possible

U11

Identify intersection classes of

heterogeneous associations

Detect and display intersection classes for particular

association types

Locate Class Very Difficult

U12

Compare heterogeneous

Clearly show the distribution of heterogeneous associations on

particular classes

Locate Heterogeneous

associations

Very Difficult

associations for individual classes Inspect Multiple classes Very Difficult

U13

Link heterogeneous associations

Clearly show the distribution of heterogeneous associations on

particular classes

Locate Heterogeneous

associations

Very Difficult

Inspect Multiple classes Very Difficult

U14

Identify commonly associated

Detect and display the classes commonly associated with

particular classes

Locate Class Very Difficult

classes for classes Clear show the distribution of heterogeneous associations on

particular classes

Locate Heterogeneous

associations

Very Difficult

Inspect Multiple classes Very Difficult
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2.7 Conclusion

Ontologies and associations have been widely used in many domains. They facilitate

the analysis of relationship semantics in ontologies. Visualisation systems should have

targets and be able to support specific use cases. Thus, user needs analysis is an essential

process before designing a visualisation. This chapter discussed the interviews with a

domain expert and the subsequent interview data analyses for understanding user needs

of ontology and association visualisations.

The next chapter will explore existing visualisations and evaluate their effectiveness.

The outcome of the user needs analysis in this chapter and the literature review in the

next chapter motivates and guides the visualisation design and evaluation that will be

discussed in the later chapters for answering the three research questions.



Chapter 3

Visualisation Techniques

This chapter discusses the background of visualisation research related to this thesis.

It begins with an overview of hierarchy visualisations. Then the discussion focuses on

ontology visualisations and ontology association visualisations. Following this, there is a

review of visual compression approaches.

3.1 Hierarchy Visualisation

Computer-based visualisation is an interdisciplinary research area involving computer sci-

ence, graphics theory, data analytics, visual design, cognitive science and human-computer

interaction domains (Ware, 2012). It uses different visual marks such as points, lines and

areas, and visual channels like position, colour, shape and size, to encode data, com-

bined with different alignments, to create effective visual representations to support user

tasks (Munzner, 2014). Effectiveness is a goal that visualisations should aim for, which

emphasises the accuracy, completeness and efficiency of task performance. Appropriate

combinations of visual marks, channels and alignments affect the effectiveness of visualisa-

tions. Space efficiency, which is an important consideration related to the scalability of a

visualisation, is also associated with these combinations. The discussion of visualisations

in this section will focus on these two measures.

For hierarchical structures, the common visual marks are node and link (e.g., layered

tree in Table 3.1), or area (e.g., traditional treemap in Table 3.1), and the common visual

channels are connection, containment, adjacency and hybrid of the above (Munzner, 2014;

McGuffin and Robert, 2010; Schulz et al., 2011). Schulz et al. (2011) defined the alignments

of visual marks for hierarchy visualisations as layered, radial and free. Table 3.1 represents

a matrix containing some examples for different combinations of visual marks, channels

and alignments. The following discussions are organised based on the visual channels.

The described visualisations not shown in dedicated figures are illustrated in Table 3.1.

Connection

Visualisation with node-link connection is one of the most well-known hierarchy rep-

resentations, in which nodes represent classes and edges represent relationships. With
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Channel
Alignment

Layered Radial Free

Connection

(Holten, 2006)
name: layered tree

marks: node, link

(Holten, 2006)
name: radial tree

marks: node, link

Containment

(Holten, 2006)
name: traditional treemap

marks: area

(McGuffin and Robert, 2010)
name: bubble tree

marks: area

(Balzer and Deussen, 2005)
name: Voronoi treemap

marks: area

Adjacency

(McGuffin and Robert, 2010)
name: icicle plots

marks: area

(McGuffin and Robert, 2010)
name: concentric plots

marks: area

(McGuffin and Robert, 2010)
name: indented list

marks: area

Hybrid

(Zhao et al., 2005)
hybrid of connection and

containment
name: elastic tree

marks: node, link, area

(Holten, 2006)
hybrid of connection and

containment
name: balloon tree
marks: node, link, area

Table 3.1: Examples of hierarchical structure representations
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the layered alignment (layered trees), lower-level nodes are placed below their related

higher-level nodes (Reingold and Tilford, 1981), while with radial alignment (radial trees),

nodes are positioned on concentric circles based on the degree of their levels (Herman et al.,

2000). Burch et al. (2011) conducted a user study to investigate the effectiveness of layered

trees and radial trees for solving a hierarchy exploration task of finding the lowest common

ancestor of a given set of nodes. An eye tracking device was employed to identify user

behaviours. The results showed that layered trees significantly outperformed radial trees

in respect of both accuracy and completion time. The eye tracking data revealed the

participants tended to cross-check their answers more frequently with radial trees than

with layered trees, which was a sign of difficulties with interpreting a radial tree, whose

hierarchical structure was not as clear as in layered depictions and was also a less common

representation.

Containment

Although radial trees employ the available space more efficiently than layered trees,

node-link connection does not make an optimal use of the visual space. Traditional

treemaps (Shneiderman, 1992), bubble trees (Wang et al., 2006), and Voronoi treemaps

(Balzer and Deussen, 2005) place all the children of a node enclosed within the area as-

signed to that node, so as to display the hierarchical structure by means of containment

rather than connection, which makes a somewhat more efficient use of the available space.

Traditional treemaps maximise the space efficiency by utilising a space-filling technique,

which uses the whole screen space and subdivides the space of a node for its children.

However, using traditional treemaps to display the hierarchy makes it more difficult for

users to perform tasks focusing on the topological structure like tracking the path through

the tree. To solve this important limitation, nested treemaps (Demian and Fruchter,

2006), which give margins surrounding child nodes in treemaps (Figure 3.1 (left)), and

cascaded treemaps (Lü and Fogarty, 2008), which place cascaded rectangles by leaving a

small boundary between a node and its children (Figure 3.1 (right)), have been developed

to put more emphasis on the hierarchical structure. With this trade-off between space

efficiency and tree structure perception, nested treemaps and cascaded treemaps do not

work as well with deep hierarchies.

Neumann et al. (2005) proposed ArcTrees that present the hierarchy structure using

a one dimensional treemap (see Figure 3.2). This one-dimensional treemap organises the

child nodes horizontally within their parent nodes and some vertical offset is given between

the parent and child nodes. This representation can show hierarchical structure more

clearly than two-dimensional treemaps and save some vertical space. However, it faces

the scalability problem for visualising large hierarchies and particularly wide hierarchies

(containing many leaves).

Adjacency

With area adjacency, child nodes are drawn adjoining with their parent nodes. Ici-

cle plots (Kruskal and Landwehr, 1983) visualise the hierarchy structure by horizontally

aligning child nodes under their parents, such that the areas of child nodes are partitions
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Figure 3.1: Nested treemap and cascaded treemap (Lü and Fogarty, 2008).

Figure 3.2: An example of the one dimensional treemap representation in ArcTrees (Neu-
mann et al., 2005).

of the areas of their parent nodes. As the available width of the visual space for the root

limits the space for the entire plot, when the hierarchy grows wider and there are too

many leaves, those leaves may be squeezed together. This problem is somewhat solved

with concentric plots (Stasko and Zhang, 2000) by adopting a radial variation with circle

sections, where the available space for leaves partitions the circumference.

Similar to icicle plots, indented lists (Smith et al., 1984) show the hierarchy structure

with relative vertical positions. Nodes are rectangles with constant height, stacked in

the top-bottom order, based on a depth-first traversal of the hierarchy. Each rectangle is

indented horizontally to the right corresponding to its depth. While the number of nodes

increases, such a representation will become very tall. Indented list representations are

popular in file system browsers to show directory hierarchies.

McGuffin and Robert (2010) conducted a systematic comparison of space efficiency

for the representations mentioned above. In their findings, when using total area as the

metric, which calculated the percentage of the utilised area in the total area, traditional

treemaps, nested treemaps and then icicle plots used the screen space most efficiently.

Indented lists were ranked the fourth in efficiency of total area, followed by bubble trees

and concentric plots. Layered trees and radial trees were ranked as the least efficient and

the second least efficient, respectively. This ranking changed when using another metric,

leaf node area, which defined the minimum area of the leaf nodes. Traditional treemaps

remained the first place in the ranking with this metric, while layered trees and radial

trees remained the bottom two places. Indented lists were ranked second. The ranking

for nested treemaps and bubble trees was lower for the obvious reason that they used

additional space on the margin between nodes. Icicle plots were shown to be less efficient
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in terms of leaf node area than concentric plots, contrary to the result when comparing

their total areas.

Hybrid

Hybrid visualisations combine the best features of different representations for different

parts of data based on the data structure and features, allowing users to view each part

of the data in the most effective way.

For example, layered trees can clearly and intuitively show the topology of a hierarchy,

but do not use space efficiently. They leave white space between upper level nodes and pack

lower level nodes densely, so fail to scale for large hierarchies. In contrast, treemaps are

the most space-efficient but they are hard to interpret and distinguish the different levels

of a hierarchy. Elastic tree (Zhao et al., 2005) combines these two representations to offer

a trade-off between an intuitive display and efficient space usage for visualising hierarchies.

It uses node-link connection to visualise the higher-level nodes as many as possible. When

the hierarchy becomes too dense in the deeper subtrees, treemaps are adopted to represent

the lower levels. It also allows users to select and emphasise interesting structures and

content, displaying in a flexible and user preferred manner, at the cost of dual visual

representations.

Similarly, balloon trees (Lin and Yen, 2007) hybridise radial trees and bubble trees, to

solve the low space-efficient problem of bubble trees. Balloon trees represent the leaf nodes

with node-link marks and connections instead of circle area marks and containment, to

reduce the occupied space of leaves. With the node-link connection form, leaves under the

same parent are placed on the circumference of an invisible circle centred at their parent.

Since balloon trees are parent-centrically nested, it is difficult to perceive the hierarchical

structure. Also, the nodes on deep levels can be difficult to see since they are given very

little space.

3.2 Ontology Visualisation

Compared to visualising strict hierarchies, visualising ontologies is not easy. Firstly, the

multiple inheritance in ontologies poses a difficult problem that rules out a whole class of

visualisation techniques. Multiple inheritance is often solved by duplicating a class under

each of its parents or using multiple edges to link a class to all of its parents. Both have

drawbacks. With duplication, redundancy occurs; while with multiple edges, there will

be increased visual clutter. Furthermore, as discussed in Chapter 2, besides hierarchical

inheritance relationships, ontologies can contain homogeneous and heterogeneous associa-

tions, and also be enriched with other relationships such as equivalence and disjointness.

In addition, in some ontologies, the ontology classes may have up to thousands of in-

stances (Katifori et al., 2007). Depending on the task, sometimes all these instances need

to be visualised.

A comprehensive survey on ontology visualisation (Katifori et al., 2007) categorises

systems for visualising ontologies based on their visualisation types: indented list, node-

link and tree, zoomable, space-filling, focus + context or distortion, and 3D information
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landscapes. A recent survey (Saghafi, 2016) proposes two categories: graph-based methods

and multi-method visualisation techniques. The latest survey (Dudáš et al., 2018) provides

a useful classification and comprehensive evaluation of available ontology visualisation

tools. The results show that most visualisation systems focus on class hierarchies. Some

of them visualise all the relationships, while some exclusively visualise the hierarchy. One

major challenge is the scalability of the tools is still limited. Also, their usability and the

tasks and use cases they can support are often unclear.

This thesis groups and discusses ontology visualisation tools based on different visual

channels mentioned above: connection, containment, adjacency and multiple views that

employ different channels in separate views. Although this research addresses the visuali-

sation of single ontologies and their associations, prior work focusing on the visualisation

of multiple ontologies is included in this review. In the literature of multiple ontology

visualisations, the discussions mainly address the approaches for presenting links between

ontologies, while the discussions in this thesis will centre on the representations of indi-

vidual ontologies in these works. Many ontology visualisations have been developed. This

review only chooses some representative examples to discuss, as the others are similar to

the ones that are reviewed.

A few tools have been developed to model the relations in ontologies via visual nota-

tions. These kinds of visual notations normally model all the axioms in ontologies, such

as inheritance hierarchical relationships, property value restrictions, property cardinality

restrictions, literal axioms, equivalence and disjointness axioms, and do not differentiate

them using distinct representations. Figure 3.3 and 3.4 show two noteworthy examples.

As this research focuses on ontology visualisations, these visual notations that are more

related to visual languages will not be discussed in detail.

Some visualisation systems do differentiate ontology associations from the ontology

hierarchy structure, by using different visual marks, channels, colours or even dimensions.

The discussion of these systems is in the following sections.

3.2.1 Connection

Key Concept Visualisation (KC-Viz) (Motta et al., 2012) is an ontology visualisation tool

based on node-link connection. KC-Viz places the node with the highest information

richness, which is measured by the density of relations of a node, at the centre of the

visualisation. Then it arranges other nodes around the centre from middle out (see Figure

3.5). The authors evaluated KC-Viz with a user study (Motta et al., 2011). 21 participants

were asked to perform tasks that were designed to cover different exploration strategies,

using KC-Viz and OWLViz. OWLViz (Horridge, 2005) is the default visualisation in

Protégé, which uses node-link connection with layered alignment to show the ontology

hierarchy (see Figure 3.6). An ontology, which included 630 classes, was used as the data.

The results show the task completion time for KC-Viz is shorter on average, and the

satisfaction level of KC-Viz is higher than OWLViz. Although the results favour KC-Viz,

it still suffers the clutter issue with large ontologies, which is intrinsic to approaches based



3.2. ONTOLOGY VISUALISATION 35

Figure 3.3: Onto Design Graphics (ODG) (Silva-López et al., 2014) based on Unified
Modeling Language (UML) component.

Figure 3.4: Visual Web Ontology Language (VOWL) (Lohmann, Negru, Haag and Ertl,
2014) based on a well-defined user-friendly set of graphical primitives and colour scheme.

on node-link connection. Also, as the nodes are positioned based on information richness,

the hierarchical structure of the ontology is not clearly shown.
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Figure 3.5: KC-Viz visualisation (Motta et al., 2011)

Figure 3.6: OWLViz visualisation (Noy et al., 2000)

Similarly, NeXO Web (Dutkowski et al., 2013) also uses node-link connection to visu-

alise ontologies, but with a different alignment approach. It employs a radial Pythagoras

tree drawing (Grabska, 1994) to describe the hierarchical structure (see Figure 3.7), which

is more space-efficient and can handle larger ontologies than KC-Viz. With NeXO Web,

users can explore ontologies interactively by semantic zooming (Munzner, 2014), which

dynamically rescales the view of the ontology and adjusts the level of detail being dis-

played. This interaction solves the problem of invisible deep nodes, and allows users to

drill down a branch through the path. The drawback of this hierarchical representation is

that it might have overlaps between nodes on the deep levels.

3.2.2 Containment

One typical representation of containment are treemaps. Babaria (2004) illustrates how

to use treemaps to visualise Gene Ontology (GO) and genome products (instances). Size

and colour of nodes are used to show the different attributes of a class or instance, such

as “average fold change” and “acidity” (see Figure 3.8). Zooming is provided by double-

clicking on an area, such that the visualisation is rapidly updated to display the details

for the selected area. The advantage of treemaps is that users can see the overall view of

all the leaves, which is most effective when the major focus is the attribute distribution

of the leaf nodes.

CropCircles (Wang and Parsia, 2006) is inspired by treemaps but with a different

visual representation, using a hierarchical layout similar to bubble trees. All the nodes in
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Figure 3.7: NeXO Web visualisation of Gene Ontology (Dutkowski et al., 2013)

Figure 3.8: Treemap of GO (Babaria, 2004). Size shows the amount of fold change for
genes and colour shows gene acidity: green (basic) or red (acidic).

CropCircles are represented as circles. The circles of lower level nodes are nested inside

the circle of their parents with smaller size. The space given to each node is based on

the size of its subtrees. Then the child circles are ordered from the largest to the smallest

inside the parent node (see Figure 3.9). CropCircles provides a good overview of an

ontology and its topology at once. It is also zoomable, by employing a selection pane that

let users drill down the hierarchy level by level. Users can also specify which top levels
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are shown in the visualisation. The authors conducted an empirical evaluation with 18

subjects. The chosen data were two ontologies, with around 2000 classes, a maximum

depth of 11 and significantly different topologies. The experiment found out CropCircles

outperformed nested treemaps in topological tasks. In addition, it performed well against

nested treemaps in tasks requiring participants to find the deepest node, because it shows

the topology more clearly.

Figure 3.9: CropCircles visualisation (Wang and Parsia, 2006)

3.2.3 Adjacency

The most common use of adjacency for visualising ontologies are indented lists. With an

indented list, classes are presented as nodes. The whole list is expandable and retractable,

which is similar to the file browser in Windows Explorer. Since it benefits from familiarity,

it is not surprising that an indented list is often provided as a complementary visualisation

alongside the main visualisation in the majority of ontology visualisation systems. Figure

3.10 shows an example of an indented list in Protégé (Noy et al., 2000) for visualising the

classes in the Pizza ontology.

Jia et al. (2010) developed an Enhanced Radial Space-Filling (ERSF) layout to visualise

biological ontologies. They employed a 3D radial space-filling approach that is similar to

concentric plots discussed in Section 3.1, where the height of the nodes presents attribute

values. ERSF uses an orbit metaphor to visualise multiple inheritance (see Figure 3.11).

The parent adjacent to a class is its primary parent and the other parents linked by the

orbit pathways are secondary parents. Extended green edges are drawn from the centre

of the secondary parents to the orbit of the child class, connected by red points. To

distinguish the orbits, they are coloured the same as the corresponding child classes, as a

sort of colour wheel.

3.2.4 Multiple Views

In ontology visualisations, the multiple views approach, which employs different represen-

tations in separate views, normally serves one of two purposes: to visualise different parts
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Figure 3.10: Indented list in Protégé, showing the Pizza ontology.

Figure 3.11: ERSF visualisation (Jia et al., 2010).

of an ontology in different views, or to facilitate users understanding about the same part

of an ontology using different techniques in different views.

An example of multiple views is Jambalaya (Storey et al., 2001), which is a visualisation

plug-in for Protégé. In its main view with SHriMP (Simple Hierarchical Multi-Perspective)

(Storey et al., 1997), the inheritance hierarchical structure of classes and instances is rep-

resented as a set of nested rectangles, and the associations between classes and instances

are drawn as edges between them (see Figure 3.12a). Different colours are encoded to dis-

tinguish classes (blue) and instances (pale yellow). The colours are also used to represent
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different types of associations. One downside is that this nested rectangle view cannot

show deep level nodes clearly without any user interactions. To provide an alternative

overview of the hierarchy structure, Jambalaya uses another view with node-link connec-

tion, where the hierarchical relations are aligned as layers and the associations are still

drawn as edges on top of the hierarchy (see Figure 3.12b). Jambalaya allows users to filter

classes, instances and relations for display. In a later evaluation conducted by Akrivi et al.

(2006), comparing three Protégé visualisation plug-ins Jambalaya, TGVizTab (node-link

connection) (Alani, 2003), OntoViz (node-link connection) (Sintek, 2003), and the default

indented list view, Jambalaya got positive results. In this evaluation, participants were

asked to perform a set of tasks related to ontology hierarchy, classes, instances and asso-

ciations. Jambalaya performed similarly to TGVizTab and better than OntoViz on the

property related tasks. However, participants commented that they disliked the appear-

ance of edges, and these links started to obscure information in the case of many classes

and instances.

(a) Nested view of an ontology. (b) Layered tree view of the same ontology.

Figure 3.12: Jambalaya interface in Protégé (Storey et al., 2001)

A similar approach to the SHriMP view is identified in a later tool, Knoocks, proposed

by Jurcık (2012), where class hierarchy is visualised as a set of icicle plots and the associ-

ations are drawn as edges between them (see Figure 3.13). These icicle plots are oriented

horizontally, where the child classes are adjacent to their parent class on the right side.

They can be folded to save space and expanded to display class labels. Knoocks places

the icicle plots on a circular layout and draws the edges as curves, which helps reduce the

overlaps between classes and edges.

Another example is AlViz (Lanzenberger et al., 2010) plug-in for Protégé, visualising

mappings between two ontologies. It has four separate views: two indented lists for the

class hierarchies (see Figure 3.14 a©) and two node-link representations visualising the

associations between classes (see Figure 3.14 b©). The node-link representation uses a

force-directed layout to place the nodes, which aims to minimise the length of edges and

edge crossings (Fruchterman and Reingold, 1991). In the node-link representation, the

nodes are clustered classes based on the selected level of clustering adjusted by the sliders

on the right, and the edges represent the selected association. The size of the nodes

indicates the number of classes in them, and the colour encoding represents the type of
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Figure 3.13: Knoocks visualising an ontology hierarchy and associations (Jurcık, 2012).

mappings between the two ontologies, as discussed in Section 7.3.6. These four views are

connected by linking and brushing (Becker and Cleveland, 1987; Buja et al., 1991; Wybrow

et al., 2014), where selecting a node in one view results in highlighting the corresponding

nodes in the other three views. AlViz can only visualise one type of associations at a time

per user selection.

Figure 3.14: AlViz interface (Lanzenberger et al., 2010)

Similarly, OntoViewer (da Silva et al., 2012) uses an indented list (see Figure 3.15 a©)

and a 2D radial node-link tree (see Figure 3.15 b©) to visualise the class hierarchy, and

a 2.5D radial tree for the associations (see Figure 3.15 c©). The layout of the classes in

the 2.5D radial tree is the same as in the 2D radial tree, based on the ontology hierarchy

structure. The associations are drawn as curves in the third dimension. The interface
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includes a list of properties, allowing users to select the types of associations to visualise.

If multiple properties are selected, different colours are used to distinguish the types of

associations in the 2.5D radial tree. Although this 2.5D radial tree allows users to rotate

the view, the association links are still not easy to follow.

Figure 3.15: OntoViewer interface (da Silva et al., 2012)

Kuhar and Podgorelec (2012) proposed a three-view visualisation consisting of hierar-

chical circle (see Figure 3.16 a©), indented list (see Figure 3.16 b©) and node-link diagram

(see Figure 3.16 c©). In contrast to concentric plots discussed in Section 3.1, in the hi-

erarchical circle approach, child classes are drawn as inner circles adjacent to the outer

circle representing their parent class. Associations are presented as edges connecting the

inner circles. It is unclear how to draw associations between intermediate classes with

this hierarchical circle. Also, the scalability of it is limited, as inner circles will become

smaller when the depth of ontology hierarchy increases, so less space will be available for

deep nodes. The view can be switched between T-Box mode and A-Box mode to show

relationships between either classes or instances. In the indented list approach, only the

ontology hierarchy is shown by default. When users select a class, the associations applied

to this class will be drawn. The node-link diagram visualises both hierarchical relation-

ships and associations. The classes are positioned in a way to minimise the length of links

and the number of line crossings. Functionality for filtering the number of hierarchy levels,

instances and properties, zooming, and collapsing or showing all, are provided. Users can

switch the main view between the three approaches. Animation is employed to help users

comprehend the transition when they change the views.

Another tool was developed by Jiao et al. (2013) as a plug-in to the Dunnart constraint-

based diagram editor (Dwyer et al., 2008). This tool visualises large ontologies via three

views: landmark view, local view and axiom view. The landmark view utilises an or-

thogonal layered tree to visualise a simplified sub-ontology that only contains landmark

nodes, namely the key concepts. These concepts are extracted from the original ontology

based on importance scores that are calculated by a set of static and dynamic measures.

In order to further save space, if the number of leaves for a single parent node is above
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Figure 3.16: The three-view visualisation proposed by Kuhar and Podgorelec (2012),
visualising an ontology having 45 classes with a class selected.

a certain threshold, these leaves will be collapsed to a single large node attached to their

parent. The multiple inheritance in the landmark view is represented as non-orthogonal

edges above the main hierarchy orthogonal edges, directly connecting the child node with

its other parents (see Figure 3.17a). The local view visualises a subset of the ontology that

a user is interested in, using a layered tree, with nodes aligned by the constrained network

layout (Dwyer et al., 2006) and edges drawn by orthogonal edge routing (Wybrow et al.,

2009) to avoid overlaps between nodes and edges (see Figure 3.17b). The axiom view

shows the syntax of the important axioms that are related to the focal concept (see Figure

3.17c). This tool provides flexible navigation between the three views and records the

navigation history. It effectively visualises the overview structure as well as the detailed

focal points, and avoids clutter for large ontologies. However, since the ontology hierarchy

is trimmed a lot in the landmark view and there is no information provided, the size of

the hierarchy structure is unclear in the visualisation.

(a) Landmark view (b) Local view (c) Axiom view

Figure 3.17: Ontology visualisation in Dunnart (Jiao et al., 2013)
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OntoTrix (Bach et al., 2011) is designed to visualise associations but on the instance

level. It has four views: NodeTrix view (see Figure 3.18 a©), minimap view of NodeTrix

(see Figure 3.18 b©), class hierarchy view (see Figure 3.18 c©) and property hierarchy view

(see Figure 3.18 d©). NodeTrix is a hybrid network visualisation introduced by Henry et al.

(2007), which uses matrices for dense subgraphs and node-link representation to link these

subgraphs. OntoTrix employs this hybrid visualisation to show the associations between

instances. Different colours are used for different association types. In the matrices, the

intersection cell is coloured if two instances have an association. If two instances are

linked by more than one type of association, the cell will be sliced horizontally, with

different slices coloured differently. As the NodeTrix view can be zoomed, the minimap

view gives an overview of the whole NodeTrix and preserves the context for the elements

in the NodeTrix view. The class hierarchy is visualised by a node-link diagram view.

As ontology properties can also be constructed in terms of the inheritance hierarchy, a

node-link radial tree is used to visualise the property hierarchy. All these four views are

coordinated through linking and brushing. OntoTrix effectively addresses the scalability

issue for visualising large instance sets contained in ontologies, but the node-link diagram

view fails to deal with large ontology hierarchies.

Figure 3.18: OntoTrix interface (Bach et al., 2011).

3.2.5 Summary

Table 3.2 summarises the characteristics of the tools for visualising ontologies and associ-

ations discussed above.



Tool Name Visual Marks Visual Channel Alignment Association Multiple Instance Reference
Inheritance

KC-Viz node, link connection middle-out heterogeneous associations multiple edges not supported Motta et al.
(2012)

OWLViz node, link connection layered not supported multiple edges not supported Horridge (2005)

NeXO Web node, link connection radial
Pythagoras
tree drawing

not supported duplication not supported Dutkowski et al.
(2013)

GO treemap rectangle containment layered not supported not supported supported Babaria (2004)

CropCircles circle containment radial ordering not supported duplication not supported Wang and Parsia
(2006)

Protégé
indented list

rectangle adjacency layered not supported duplication not supported Noy et al. (2000)

ERSF arc, link adjacency, connection radial not supported multiple edges not supported Jia et al. (2010)

Jambalaya rectangle, node,
link

containment, connection layered heterogeneous associations duplication supported Storey et al.
(2001)

Knoocks rectangle, link adjacency, connection layered, free heterogeneous associations duplication supported Jurcık (2012)

AlViz rectangle, node,
link

adjacency, connection layered, force-
directed

homogeneous associations duplication supported Lanzenberger
et al. (2010)

OntoViewer rectangle, node,
link

adjacency, connection layered, free heterogeneous associations duplication supported da Silva et al.
(2012)

Three-view
tool

arc, node, link adjacency, connection radial, layered,
free

heterogeneous associations duplication supported Kuhar and Pod-
gorelec (2012)

Landmark node, link, syntax connection constraint lay-
ered

heterogeneous associations multiple edges not supported Jiao et al. (2013)

OntoTrix node, link connection, hybrid layered, free heterogeneous associations unknown supported Bach et al. (2011)

Table 3.2: Summary of ontology visualisation tools
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3.3 Visual Compression

When dealing with large ontologies, several approaches can be used to address the visual

clutter problem. These approaches were initially developed for large graphs. They can be

categorised into two main strategies: manipulate view and visual compression.

Manipulate view (Munzner, 2014) often operates on the view level, either reducing

data items for display or navigating to a different viewpoint. With item reduction, less

important data is removed from the visualisation. This can also be done by users using fil-

tering. Navigation changes the location of the viewpoint, often involving user interactions

such as zooming, panning, or searching.

Visual compression changes the data structure for visualisation, which is helpful for

reducing visualisation complexity and finding meaningful patterns. There are three major

approaches for visual compression: aggregation, clustering and simplification. Shneider-

man and Dunne (2012) defined aggregation as organising data items into groups based on

data attributes and/or replacing the groups with single elements; clustering as organising

data items into clusters based on structural connectivity algorithms and/or replacing the

clusters with single elements; and simplification as replacing common structural patterns

with simplified glyphs.

3.3.1 Aggregation

Attribute-based aggregation groups data items to give insights into data attributes and

reveal patterns. This approach is normally used for data with properties. Linage (Nobre

et al., 2018) shows an example of using aggregation for hierarchically structured multi-

variate data. The hierarchy is visualised as a node-link layered tree on the left, orientated

horizontally (see Figure 3.19). If a node has certain attributes, this node is considered

interesting. The interesting nodes are given distinct rows, while other nodes are grouped

together into one row using a short line to separate parent and child nodes. A recursive

algorithm runs through the hierarchy to identify different subtree structures around in-

teresting nodes, for example, a leaf node is interesting (see Figure 3.19 node 6©) and an

intermediate node is interesting (see Figure 3.19 node 3©). Simply speaking, if a node is

interesting, the branch containing it will be split from its siblings. The attributes for a

node are presented as blocks on the row of the node, with colours indicating attribute

values.

3.3.2 Clustering

Clustering by structural connectivity is a widely used approach for graph visualisations.

With clustering, each produced cluster is a subset of nodes, which is normally replaced

by a metanode. The edges between metanodes are produced by combining edges to nodes

within the metanode. Archambault et al. (2010) visualised a network (see Figure 3.20a)

using Path-Preserving Clustering (PPC) algorithm (Archambault et al., 2008), shown in

Figure 3.20b. The size of metanodes indicates the number of contained nodes, and the

thickness of edges indicates the number of connections. The colours encode attribute values

for both nodes and metanodes. Users can “open” metanodes to investigate their contents.
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Figure 3.19: An example of Lineage aggregation (Nobre et al., 2018). The interesting
nodes are coloured black.

The authors conducted a user study to evaluate how this clustering approach affected the

visualisation readability. The participants were asked to perform some tasks related to

reading global and local structures with attributes. The results showed that there was

no significant difference when the clustering was used. However, if the network is highly

connected, in other words, there are many connections between nodes, the clustering can

improve performance, as the visualisation complexity is significantly reduced.

(a) The visualisation without clustering. (b) The visualisation with clustering.

Figure 3.20: Clustering of a network (Archambault et al., 2010).

3.3.3 Simplification

Simplification refers to the practice of replacing common patterns of nodes and edges with

compact and meaningful glyphs. A common pattern is known as a motif (Dunne and

Shneiderman, 2013), and a glyph is defined by Munzner (2014) as an object made of mul-

tiple visual marks. Simplification with glyphs raises the visibility of common structures,

and also reduces visualisation complexity.

Fuchs et al. (2014) defined three variations of a glyph: contour only, structure only

and contour + structure. Figure 3.21 shows an example of these three variations for a

star glyph. The authors conducted user studies to investigate the effect of using contour

on similarity perception of star glyphs. The results showed that glyphs without contours
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made the tasks of detecting data similarity easier, while glyphs with contours facilitated

the tasks of finding shape similarity.

(a) (b) (c)

Figure 3.21: Glyph variations (Fuchs et al., 2014): (a) contour only, (b) structure only,
(c) contour + structure.

Dunne and Shneiderman (2013) developed a tool to automatically identify common

motifs in networks: fan motif, connector motif and clique motif, and simplify them into

glyphs with different shapes (see Figure 3.22). A fan motif consists of a head node and its

leaf nodes. Replacing fan motifs with fan glyphs can reduce the visualisation complexity

dramatically if there are hundreds or thousands of leaves. A connector motif consists of

anchor nodes and their span nodes. The replacement of connector motifs with connector

glyphs can simplify a network with a dense centre. Clique glyphs are used to replace clique

motifs, which is a complete graph where each pair of nodes is connected by at least one

edge. Replacing clique motifs with clique glyphs can make the overall connectivity of a

network easier to understand.

Figure 3.22: Fan, connector and clique motif (top) and their simplification glyphs (bottom)
(Dunne and Shneiderman, 2013).

An example of motif simplification for visualising a network is shown in Figure 3.23.

Figure 3.23 (a) shows the initial network, and (b) shows a simplified version. The simplified

network has 25 nodes instead of 513 nodes in the original network and requires less screen

space. Users can click to investigate the contents of any glyphs and align the glyphs

manually. A user study conducted with this representation with a set of tasks related to

topology, attributes and overview, gave a positive result. Finding nodes by their labels

and finding the shortest path length was significantly more accurate and faster with the

motif simplification approach than without it. Participants estimated the number of nodes

in the simplified network more accurately but more slowly than in the original network.

One tool, which applies motif simplification to visualise hierarchies, called SpaceTree,

was developed by Plaisant et al. (2002). SpaceTree visualises hierarchies with layered

trees. Subtrees that are too large to display in the available screen space are replaced by
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Figure 3.23: Motif simplification (Dunne and Shneiderman, 2013): (a) the original network
(b) a simplified version using fan and connector glyphs.

triangular glyphs (see Figure 3.24). Darker glyphs indicate the subtrees with more nodes.

Taller glyphs depict deeper subtrees, while wider glyphs depict subtrees with more leaves.

When clicking a glyph, the hidden subtree is expanded with the maximum number of

levels that can be fit onto the screen, and the hierarchy is animated to adjust its position.

SpaceTree provides search and filtering functions to only display the subtrees on the path

from the root to the node of interest. The user study shows that participants were confident

with choosing the subtrees with large number of nodes, but often misinterpreted the width

of the glyphs corresponding to the number of direct descendants rather than total leaves

in the branch. This result reveals that the glyphs in SpaceTree are too abstract, failing to

convey the structure details.

Figure 3.24: SpaceTree showing a hierarchy (Plaisant et al., 2002).

A similar approach is proposed by Heer and Card (2004). This approach extended

original Degree-of-Interest (DOI) trees by employing multiple focuses and space constraint.

As shown in Figure 3.25, uninteresting subtrees are collapsed into triangles, so that the

tree can be arranged within a constrained area. Users are allowed to interactively explore

by collapsing and expanding, and specify multiple interesting nodes. The algorithm pro-

gressively recomputes DOI values based on user interests and the space constraint, where

nodes with lower interest values are automatically grouped into blocks if the screen space

is not enough to show all the expanded subtrees entirely.
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Figure 3.25: DOI Tree visualising a hierarchy with 600,000 nodes (Heer and Card, 2004).

3.4 Conclusion

Different ontologies and associations have various data volumes and structural features,

requiring representative visualisations to address different issues and convey useful infor-

mation. However, from the literature survey, it is clear that an effective, intuitive and

easy to use visualisation tool is still missing. Existing approaches fail to show hierarchical

structure effectively and achieve high scalability at the same time. The analyses on ho-

mogeneous and heterogeneous associations are also not supported well by current tools.

Some of them introduce visual clutter when visualising large datasets. The interaction

techniques such as zooming and panning that are employed to handle large ontologies

cause a loss of context.

Employing appropriate combinations of visual marks, channels and alignments can

enhance the effectiveness and scalability of a visualisation. Meanwhile, visual compression

can be viewed as a promising strategy to tackle the complexity and scalability issues of

visualisations. As all static representations have limits for the quantity of information

that can be shown on a finite display space, when the limits are reached, interactions

must be used to provide supplementary functionality for browsing and navigating through

datasets.

To highlight the outcomes from this chapter, adjacency channel seems to be the best

choice among node-link connection and area containment, with a good compromise of

intuitiveness and scalability. Hybrid channel representations also provide another option,

combining the best features of different channels, but may carry the drawback that they

are less uniform and familiar to users. Therefore, exploring different alignments and

possible hybrids of adjacency representations looks promising. Multiple inheritance in

ontologies is one issue that needs to be addressed. Visual compression approaches such as

structural clustering and motif simplification are also worth investigating for producing

a compact and meaningful design to further improve the effectiveness and scalability of

the visualisation. The interactions that can dynamically compress the items that are

unwanted by users are proposed as a solution to explore and handle large ontologies, and

avoid the issue of context loss caused by other interactive techniques.



Chapter 4

Visualising Large Ontologies

This chapter explores new approaches for visualising large ontology hierarchies. It firstly

examines the design space of hierarchy visualisations. Then it describes the initial design

for ontology visualisation in this research. The employed visual compression technique

and interaction are also explored.

4.1 Design Space Exploration

The exploration of the design space for ontology visualisations starts from the approaches

that are based on the layout of treemaps, which applies existing treemap variants to ex-

plore the data. Then icicle plot variants are investigated, resulting in a hybrid of icicle

plot and treemap that draws from the strengths of both representations. The exploration

process shows the evolution of the visualisation in this research. The pros and cons of

each approach are also discussed. As discussed in Chapter 3, node-link connection based

approaches suffer scalability issues. Also, a user study conducted by Fu et al. (2013) found

that node-link visualisations fall short of showing ontology hierarchies constructively. As

the hierarchy is important to ontology data analysis, node-link connection based visuali-

sations are not considered.

4.1.1 Nested Treemap

Initially, a nested treemap (discussed in Chapter 3) was utilised to visualise and explore

the ontology data. An example of the nested treemap visualising an ontology is shown in

Figure 4.1. The ontology classes are visualised as rectangles and the ontology hierarchy

structure is represented by enclosing the child nodes within the parent nodes. The margins

surrounding the child nodes depict the intermediate nodes.

Treemap representations demonstrate good scalability for visualising large hierarchies.

Nested treemaps use margins between nodes in different levels to emphasise the hierar-

chical structure, which is one of the requirements for ontology visualisations (U3, U4, see

Table 2.1).

The visualised ontology in Figure 4.1 is the Ontology of Adverse Events (OAE) (He

et al., 2014), having 5606 classes and 18 levels. This ontology has a moderate size that

51
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is not very large, but as can be seen in the figure, some nodes that are deep leaves or

intermediate nodes are already too small to be shown. This could be solved by increasing

the overall size of the treemap and prioritising the deepest nodes. However, with this

approach, the overall size of the visualisation relies on the structure of the hierarchy and

is hard to accommodate within the screen. While scrolling is inevitable to investigate

treemaps, the path from a node to the root is hard to follow, as the containment approach

might require scrolling both vertically and horizontally to trace a path.

Figure 4.1: Nested treemap for the OAE ontology.

Another issue is, even though the treemap layout is trying to squarify the leaves that

sets their height/width ratio as close as possible to one, some leaves are still larger than

others, even though they have no greater importance. This problem has been proved to

fall in the category of NP-hard problems by Bruls et al. (2000), which indicates it is not

feasible to show all the leaf nodes in treemaps as squares.

4.1.2 Sliced Treemap

To tackle the issues of the nested treemap, another representation named “sliced treemap”

was created. Figure 4.2 shows three levels of the sliced treemap for OAE. In the sliced

treemap, rather than being nested together, each level of the treemap is visualised sepa-

rately as a “map”. The levels from the root to leaves are arranged from left to right. The

relative position of boxes in different maps indicates the hierarchical relationships. For

example, in Figure 4.2, the node highlighted in a© is the parent of the nodes highlighted

in b©.

A sliced treemap can show the nodes on each level clearly. However, the hierarchical

relationships are hard to interpret and it is difficult to map between different levels without
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the assistance of any interaction, such as brushing. Also, this visualisation requires exces-

sive space, which negates the original benefit of treemaps. As can be seen from Figure 4.2,

only three levels can be fit in this figure if a reasonable space is given to leaf nodes. This

is problematic given ontologies frequently have more than ten levels.

Figure 4.2: Three levels of a sliced treemap displaying the OAE ontology.

4.1.3 Icicle Plot Variant

Another option was to take advantage of icicle plots (discussed in Chapter 3), which

primarily emphasise the ontology hierarchy structure using boxes, where the children of

a given node are displayed directly below the parent node, and the parent box’s width is

the total width of all of its children (see Figure 4.3a). Icicle plots are more intuitive than

treemaps, and can also show each level of hierarchy clearly.

4.1.3.1 Hybrid Icicle Plot and Treemap

One disadvantage of icicle plots is the visualised hierarchy may not be too wide, i.e., have

many leaf nodes, which is a common property of ontologies. In order to mitigate this

disadvantage, the use of treemaps can be adopted in an icicle plot to accommodate the

leaf nodes.

Figure 4.3b shows an example of this hybrid icicle plot and treemap, visualising the

same hierarchy as in Figure 4.3a. In this hybrid representation, if a parent node has

multiple leaf nodes, these leaf nodes are put into the parent node, following the layout of

squarified nested treemaps. For example, as shown in Figure 4.3, node a© is the parent of

the leaf nodes highlighted in the blue rectangle, and node b© is the parent of the leaf nodes

highlighted in the red rectangle. The size of the “container” nodes a© and b© depends on

the number of leaves inside them. The other nodes have a unified node size, no matter

how many children they have and do not cover all their children as in icicle plots.

This hybrid representation reduces the overall width of the visualisation at the cost

of a moderate increase in height. One major issue of it is that it is less uniform than

either icicle plots or treemaps, potentially making it difficulty to interpret the hierarchical

structure. For example, in Figure 4.3, node c© is a child of node a©, same as the leaf nodes

highlighted in the blue rectangle. This can be easily identified with an icicle plot, while in
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a
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(a) Icicle plot.

a
b

c

(b) Hybrid icicle plot and treemap.

Figure 4.3: Comparison of an icicle plot and the hybrid icicle plot and treemap.

the hybrid representation, it needs mental effort to perceive the structure of the subtree

under node a©, since node c© has a different arrangement to its sibling leaf nodes.

4.1.3.2 GridPlot

In order to eliminate the inconsistency of the arrangement for leaf nodes and non-leaf

nodes in the hybrid representation, another visual representation was explored, shown in

Figure 4.4b, named “GridPlot”, visualising the same hierarchy as in Figure 4.4a. The blue

and red rectangle highlight the same group of leaf nodes.

(a) Hybrid icicle plot and treemap. (b) GridPlot.

Figure 4.4: Comparison of the hybrid icicle plot and treemap and GridPlot.

In GridPlot, each node is drawn as a dot rather than a rectangle as in the hybrid

representation. The dots are arranged in a grid structure according to the following rule:

starting from the root, put the root in the top left box; all the child nodes sharing the same

parent are grouped inside the box under their parent’s box; if a child has a descendant,

i.e., it is not a leaf, it will be moved out from the group and put inside a new box on the

same level as its siblings. As a result, the parent of a node is always either inside the box

on top of that node, or inside the box on upper left of it. The size of each box depends on

the number of nodes inside it. Like the squarified treemap arrangement for the leaf nodes

in the hybrid representation (see Figure 4.4a), the grouped leaf nodes are arranged in a

way to make their box as close to a square as possible.
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Comparing to an icicle plot (see Figure 4.3a), the leaf nodes in GridPlot are placed

more compactly, while comparing to the hybrid representation (see Figure 4.4a), the hi-

erarchical structure of GridPlot is more clear and the visual elements are more uniform.

The arrangement of leaf nodes in GridPlot addresses the matter that ontologies need lots

of horizontal space and provides a possible solution.

4.2 OntoPlot

This section introduces the chosen design of the visualisation developed in this research,

named “OntoPlot”, which benefits from the outcome of the design space exploration for

visualising large ontology hierarchies. The section presents the employed visual compres-

sion technique, followed by the discussion of the design of glyph representations used for

visual summary. The interaction functions are also described.

This section describes both a visualisation approach and an implemented system. The

description here is the first version. The system is later revised, which will be discussed

in the following chapters. The revised system is available at http://ialab.it.monash.

edu/ontoplot/, with sample ontologies to try for non-ontology-experts. A demonstration

video is provided in the link, illustrating the interface and functionality of the revised

system. Also, the source code of OntoPlot is available on GitHub (https://github.com/

yingyangvis/ontoplot).

4.2.1 Visual Representation

Figure 4.5b shows the basic visual style of the design. This design removes unnecessary

segments in GridPlot that created visual noise and are likely to be misleading (see Fig-

ure 4.5a). The resulting visualisation (see Figure 4.5b) is similar in style to an icicle plot

(see Figure 4.5c) and is named “OntoPlot”.

As discussed in Section 4.1.3, the use of a standard icicle plot to visualise an ontology

hierarchy with many leaf nodes would not be ideal since the overall width of the visu-

alisation would be proportional to the number of leaf nodes. To mitigate this, Wagner

et al. (2018) used an approach that aggregates or removes the lower level nodes in an

icicle plot representation and employed this icicle plot as a navigation panel to browse

the hierarchically structured data. Conversely, OntoPlot shows the whole hierarchy. The

nodes in OntoPlot are represented as circle glyphs within the boxes traditionally used

in icicle plots. Where a number of a given node’s children are leaf nodes, these nodes

are consolidated (wrapped) together in a single box that is taller and wider in order to

accommodate multiple circle glyphs. A similar approach of wrapping leaves was identified

in Graham and Kennedy (2007) which arranges leaf nodes in grids under the enclosure of

their parent node. Even with the wrapping of leaf nodes, a large ontology may still be

very wide. For this reason, the visualisation requires interaction to easily navigate and

scroll horizontally through the entire ontology (U5, see Table 2.1).

http://ialab.it.monash.edu/ontoplot/
http://ialab.it.monash.edu/ontoplot/
https://github.com/yingyangvis/ontoplot
https://github.com/yingyangvis/ontoplot
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(a) Removing visual
noise in GridPlot. The
unnecessary segments
are highlighted with red
rectangles.

(b) OntoPlot. (c) Icicle plot.

Figure 4.5: Comparison of GridPlot, OntoPlot and icicle plot.

4.2.2 Visual Compression

As discussed in Chapter 2, an essential need of large ontology visualisations is being able

to find and focus on interesting information from the ontology hierarchy (U1, U2, see

Table 2.1).

While considering the interesting information and the class to which it applies, there

will often be a large subset of the ontology which is uninteresting in terms of the task at

hand (e.g., classes pinned or searched by users (as discussed in Section 5.3.2) or classes

having associations (as discussed in Section 5.1.1)). For this reason, a form of visual com-

pression (discussed in Chapter 3) that compresses the uninteresting subtrees is employed

to give more prominence to the interesting parts of the hierarchy.

4.2.2.1 Glyphs for Visual Summary

Three cases worthy of compression are identified. The parts of the ontology being com-

pressed are replaced with three compression glyphs, using the motif simplification approach

discussed in Chapter 3 (see Figure 4.6):

• Leaf nodes: Where an interesting node has multiple uninteresting leaf nodes as

children, these nodes will already be shown as a number of circle glyphs in a single

box. These multiple circles are replaced with a single square glyph.

• Chain: Where an interesting node has a descendent subtree that is a chain of only

uninteresting nodes, this chain is replaced with a single box containing a thin block

glyph.

• Subtree: Where an interesting node has a descendent subtree that contains only

uninteresting nodes and does not fall into the previous two categories, the subtree

is replaced with a single box containing a triangle glyph.
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(a) Leaf nodes, expanded. (b) Leaf nodes, collapsed.

(c) Chain, expanded. (d) Chain, collapsed.

(e) Subtree, expanded. (f) Subtree, collapsed.

Figure 4.6: Examples of visual compression.

Given the classes that are interesting, any subtree in the hierarchy can be considered

interesting or uninteresting depending on whether it contains any interesting classes. Us-

ing this, the hierarchy is walked through to get the set of nodes (classes) that can be

compressed as described above. As shown in Algorithm 1, a recursive depth-first traversal

of the tree is performed from the root node, where for each node the recursive call returns

the number of interesting nodes in the subtree and an array of any collapsible nodes. If the

node is interesting, it adds its children that are uninteresting to the collapsible node array.

If the node is uninteresting along with its children, it replaces the collapsible node array

with just itself (collapsing it would hide the entire subtree). The second parameter of the

function in the algorithm is passed by reference and returns a value. The function is called

with the root node of the hierarchy and when it returns it will have populated the array

given in the second argument with the root of each uninteresting subtree. This algorithm

gives a set of nodes that are at the root of each subtree as collapsible nodes. Since these

collapsible nodes can be discovered in a single depth-first traversal, this process is linear

in the number of classes.
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Algorithm 1: Get uninteresting parts of a hierarchy.

uninterestingParts(node, nodeArray)
1 Initialise empty array childNodeArray, variable count = 0;
2 if node.interesting then
3 count = 1;

4 foreach child in node.childNodes do
5 Initialise childCount = uninterestingParts(child, childNodeArray);
6 count += childCount;

7 if count = 0 then
8 Add node into nodeArray;

9 else
10 foreach element in childNodeArray do
11 Add element into nodeArray;

12 return count;

4.2.2.2 Design Space of Glyphs

As discussed in Chapter 3, visual summary glyphs are used to replace common patterns

in the data, for the purpose of raising the visibility of common structures and reduce the

visualisation complexity.

There are different design settings for the glyphs: contour only, structure only, contour

+ structure and metaphor (Ward, 2002). Figure 4.7 draws examples of each of them for

the three cases discussed in Section 4.2.2.1 (leaf nodes, chain and subtree) that are worthy

of compression.

The glyphs in this research use the contour setting. The reason for this is that it is

more consistent with the circle glyphs that represent classes in the visualisation than the

structure setting. Also, the contour setting is simpler than the contour + structure setting

and metaphor setting, which gives a better choice for large ontology visualisations that

might consist of many visual elements, and it is easier to read when shown at a small size.

4.2.3 Interaction

This section describes the interaction supporting the investigation and exploration of on-

tologies.

4.2.3.1 Collapse and Expansion

While the visual compression is performed automatically to hide the uninteresting parts

of the ontology hierarchy, in an interactive visualisation the subtrees could always be

expanded and collapsed interactively in order to show or hide parts of the ontology (U5,

see Table 2.1).

Double-clicking on the glyph of a compressed part of the tree (square, thin block or

triangle) can expand a subtree. A subtree can also be compressed by double-clicking on

the circle glyph corresponding to the root of that subtree.
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(a) Contour, leaf nodes. (b) Contour, chain. (c) Contour, subtree.

(d) Structure, leaf nodes. (e) Structure, chain. (f) Structure, subtree.

(g) Contour + structure, leaf
nodes.

(h) Contour + structure, chain. (i) Contour + structure, sub-
tree.

(j) Metaphor, leaf nodes. (k) Metaphor, chain. (l) Metaphor, subtree.

Figure 4.7: Sketch of different settings of glyphs for compressed hierarchy subtrees.

Interactive collapsing or expanding operations are performed efficiently without recom-

puting and redrawing the entire visualisation. Instead, the system gets the position of the

double-clicked node and retrieves the parts of the visualisation that are on the right and

below this node. The positions of all of these parts are recomputed based on the expanded

or collapsed region in a linear pass over each element, and then they are redrawn.

4.2.3.2 Pinning Class Label

The class labels are not displayed by default since these take up a large amount of space

and can cause problems with occlusion when densely packed, but they sometimes need to

be displayed on the visualisation (U1, see Table 2.1).

Class labels can be shown by shift-clicking class glyphs if users are interested in par-

ticular classes. The shift-clicking pins the class labels on top of the clicked class glyphs

(see Figure 4.8). This allows interesting classes to be marked and easily spotted in the

ontology hierarchy.
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Figure 4.8: An example of pinning a series of class labels from the ancestors to a leaf class
of interest.

4.2.3.3 Search

The visualisation offers a search field. When a term is entered in the search field, a

scrollable list of matching classes in the ontology will be displayed (see Figure 4.9 a©).

The matching classes are highlighted in the ontology hierarchy with an additional circle

drawn around their class glyphs (for example, see Figure 4.9 b©).

Selecting a class from the matching classes list scrolls the view of the visualisation to

make that class visible. Also, the class label of the selected matching class is shown on the

top of its class glyph (see Figure 4.9 c©). If the matching class happens to be compressed

in a compression glyph, the selection will expand the compression glyph to show this class.

Figure 4.9: When the user enters the search term “process” and selects the class cardiac
arrhythmia (process) from the matching classes list, the label of the cardiac arrhythmia
(process) class is displayed. As all the classes in the cardiac arrhythmia (process) subtree
contain the term “process”, their glyphs are surrounded by additional circles. Note, the
search panel consisting of the search field and the matching classes list is cropped and
brought together in this image.

4.3 Conclusion

This chapter described the attempts using treemaps and icicle plots for visualising large

ontology hierarchies. It presented the OntoPlot visualisation, which draws on the advan-

tages of the representation of treemaps and icicle plots to seek a balance between the

width and the height of the visualisation. OntoPlot clearly shows the ontology hierarchy

structure and improves the space-efficiency of the visualisation. It employs visual com-

pression technique and uses visual summary glyphs to give to the interesting information
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in ontologies and reduce the visual structural complexity. It also offers interactivity to

explore ontology hierarchies.

The next chapter will discuss the process of visualising homogeneous associations using

OntoPlot. It will discuss a prototype system based on the approaches presented in this

chapter, a user evaluation of the prototype, resulting revisions to the system, and finally

an expert user evaluation.
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Chapter 5

Visualising Homogeneous

Associations

The last chapter discussed the visualisations for ontology hierarchies and presented the

design of OntoPlot. This chapter describes the work for visualising homogeneous associ-

ations in ontology hierarchies (involving one property), building on the work described in

the last chapter.

In this chapter, a prototype OntoPlot visualisation for homogeneous associations is

demonstrated and evaluated. A refinement of the prototype, based on the results and

feedback of the evaluation, is described. An expert user study that tests the usability of

the refined OntoPlot is then presented. The refined OntoPlot and expert user study are

described in (Yang et al., 2019). Finally, some extensions to OntoPlot after the expert

user study are described in the last section of the chapter.

5.1 Prototype

This section discusses the prototype of OntoPlot for visualising homogeneous associations

involving a single property. It firstly describes the visual interface and then presents the

interaction supported by the visualisation.

5.1.1 Visual Interface

Figure 5.1 shows the visual interface of the prototype.

When an ontology is loaded for visualisation, a list of object properties found within

the ontology is presented (see Figure 5.1 a©).

When a property is selected, the classes that have associations with the selected prop-

erty are treated as interesting, and the parts of the hierarchy not containing any interesting

classes will be considered uninteresting. The system detects the uninteresting parts and

uses the visual compression technique introduced in Chapter 4 to collapse them within

the ontology. For example, Figure 5.1 b© shows a subtree compressed as a triangle.

Then the associations are visualised by colouring the circle glyphs of classes to which

the associations apply (for example, see Figure 5.1 c©).

63
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Figure 5.1: The visual interface of the OntoPlot prototype. a© is the property list. b©
is an example of a subtree compressed as a triangle. c© is a class that has associations.
Classes with associations are highlighted in colour based on the key d© on the right-hand
side. Note, the search field e© introduced in Section 4.2.3.3 is shown on the top-right.

5.1.1.1 Colour Key

A range of colours is used, where intensity signifies the number of associations applying to

that class. The colour key is dynamic depending on the maximum number of associations

of the selected property applying to any class (see Figure 5.2).

Nodes with the minimum and maximum number of associations are separately coloured

(see Figure 5.2a). To emphasise the maximum value, the colour dark red is always

used to draw the circle glyphs with the highest number of associations (U7, see Table 2.3).

Further colours are used to categorise values interpolated between these. If the maximum

value is less than or equal to six, each intermediate value is represented as discrete colour

values in the colour key (see Figure 5.2b).

(a) When the maximum value is
greater than six, the intermediate
colours are shown as a range.

(b) When the maximum value is
less than or equal to six, the inter-
mediate colours are given discrete
values.

Figure 5.2: Colours for associations. Unique colours show the minimum and maximum
number of associations.

5.1.2 Interaction

This section describes the interaction facilitating the exploration of association information

in ontologies.
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5.1.2.1 Scrolling

Although visual compression techniques are employed to reduce the visual elements that

are uninteresting, the visualisation will frequently be wider and occasionally taller than the

screen. Also, any compressed parts can be interactively expanded. Thus, the visualisation

supports scrolling horizontally and vertically to browse the entire ontology.

5.1.2.2 Information Pop-ups for Classes

Initially, the information of associations is not displayed in text form. Instead, the visu-

alisation displays the class ID, class label and the number of associations on a class in a

pop-up window while the glyph corresponding to a class is being hovered over (U6, see

Table 2.3), as shown in Figure 5.3.

Figure 5.3: A pop-up window shows association information while hovering over classes.

5.1.2.3 Class Selection

Classes can be selected by clicking on them to investigate individual associations. When

a class is selected, the visualisation updates to colour only the classes that the selected

class has associations with (U8, U9, see Table 2.3), as shown in Figure 5.4 a©. The

interesting and uninteresting parts are recomputed. The visualisation visually compresses

the uninteresting parts of the ontology hierarchy and only shows associations that the

selected class is involved in. The selected class is given a black outline and its class label

is displayed (see Figure 5.4 b©).

As discussed in Chapter 2, ontology hierarchies usually contain multiple inheritance.

OntoPlot addresses this issue by duplicating child classes under each of their parent classes.

If the selected class has been duplicated, i.e., it appears multiple times in the hierarchy,

these identical classes will be coloured green.

While a class is selected, the right-hand panel of the visualisation displays additional

information on that class, including a textual list of all its associations (U6, see Table 2.3),

as shown in Figure 5.4 c©.

Deselecting a class is performed by clicking on an already selected class. When a class

is deselected, the visualisation goes back to its original state of showing all the associations

with the selected property.
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Figure 5.4: The visualisation when the class FMA 3710 is selected.

5.2 Prototype Evaluation

In order to determine if the design of the prototype supports the use cases and meets the

design requirements for visualising large ontologies and their homogeneous associations

discussed in Chapter 2, a user-based evaluation was conducted.

21 participants were recruited, including 2 domain experts and 19 general users.

5.2.1 Study Design

In the user study, the prototype of OntoPlot was compared with Protégé (Noy et al.,

2000).

The reason of choosing Protégé is because it is a robust tool. Protégé is the most

widely used and actively maintained tool for ontology creation and editing in the ontology

engineering community (based on citations). It provides a baseline representation—an

indented list—for ontology hierarchy browsing and visualises non-hierarchical associations

as text lists in separate views (see Figure 5.5).

Also, as mentioned in Chapter 2, domain experts frequently use Protégé to perform

their ontology-based analysis, and also present their work using screenshots of the Protégé

indented list view with manually added annotations to indicate the association strength

in hierarchies (see Figure 2.5).

Protégé is a fully-featured ontology engineering environment, with many panes, views

and functionality not necessary for the study. To avoid confusing the participants with

a complex interface, Protégé was simplified by removing the unnecessary items from the

interface, such as “Data properties” and “Individuals” panes, and the “Class Annotations”

views. Some check boxes in the views and search window were also deselected to avoid

irrelevant information being shown to participants. To better support the tasks, the

interface layout of Protégé was modified to avoid view switching. The “Object properties”

pane and the “Classes” pane were positioned side-by-side, the “Class Description” view

and the “Class Usage” view were placed next to each other on top of the “Property Usage”

view. Figure 5.5 shows the interface layout configured for the study.
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Figure 5.5: Protégé interface as configured for use in the study. a©: Class pane, b©:
Object Property pane, c©: Class Description view, d©: Class Usage view, e©: Property
Usage view.

5.2.2 Comparison with WebVOWL

As mentioned in Chapter 3, several tools support the display of non-hierarchical associ-

ations alongside an ontology’s inheritance hierarchy. The suitability of these tools was

investigated for comparison in the study. The Protégé visualisation plug-ins Jambal-

aya (Storey et al., 2001) and Knoocks (Jurcık, 2012) are no longer maintained and do not

work with the current version of Protégé. Neither OntoViewer (da Silva et al., 2012) nor

the three-view tool described in (Kuhar and Podgorelec, 2012) are publicly available.

WebVOWL (Lohmann, Link, Marbach and Negru, 2014), which visualises ontology

hierarchical and non-hierarchical relationships using a connection-based style, has also

been attempted. Figure 5.6 shows the comparison between WebVOWL and OntoPlot

visualising the Pizza ontology (Drummond et al., 2007). The Pizza ontology in the visual-

isations has 101 classes without duplication for multiple inheritance. As WebVOWL does

not support filtering relationships based on classes or properties, Figure 5.6a visualises all

148 associations in this ontology, while Figure 5.6b shows one property selected resulting

in 19 associations in OntoPlot. As can be seen from the comparison, WebVowl does not

differentiate hierarchical and non-hierarchical relationships, thus the hierarchy structure

is not depicted as clearly as in OntoPlot. OntoPlot also better emphasises interesting

associations in the ontology hierarchy. However, WebVOWL does take the advantage of

node-link connections such that it can avoid duplicating classes under each of their par-

ents to indicate multiple inheritance, which is the disadvantage of OntoPlot. In addition,

the target and source classes of the relationships can be directly determined from the

visualisation in WebVOWL without any interactions.
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(a) The Pizza ontology visualised in WebVOWL.
All classes and associations are shown.

(b) The Pizza ontology visualised in OntoPlot.
Based on the selected property, the interesting
classes are shown and highlighted. Other parts
are visually compressed.

Figure 5.6: Visual comparison between WebVOWL and OntoPlot on the Pizza ontology.
Note, as the Pizza ontology does not contain multiple inheritance, there are no duplicated
classes in OntoPlot.

Although the node and links can be followed in the Pizza ontology with WebVOWL,

when attempting to visualise an ontology of the size required for the user study, the read-

ability of the visualisation in WebVOWL reduced dramatically. As discussed in Chap-

ter 1.1, one obvious drawback of node-link connection is the resulting “hairball” effect

when encountering large ontologies. Figure 5.7 shows an example of the visualisations of a

larger ontology generated by WebVOWL. The investigation was done using the ODNAE

ontology (Guo et al., 2016), which has 1,545 classes and 810 associations. As can be seen

from the visualisations, it is not easy to identify and trace the hierarchy structure and the

non-hierarchical associations, either when zooming in for detailed view (see Figure 5.7a)

or when zooming out for overview (see Figure 5.7b). Moreover, WebVOWL only supports

ontologies (OWL format) that are less than 5MB and the ontology OCVDAE (Wang et al.,

2017) with 2,949 classes and 8,308 associations required by the tasks in the user study

is beyond this boundary (OCVDAE 6.7MB, ODNAE 2MB). Thus WebVOWL is not a

suitable and a comparable tool to OntoPlot for the user study.

5.2.3 Tasks

As discussed in Chapter 2, a range of important use cases and user needs for biomedical

ontologies were identified from the literature as well as from interviews with the domain

expert. To test the usability of the prototype with respect to the identified user needs,

ten tasks were designed from the use cases and organised into three groups, shown in

Table 5.1.

The first group of tasks (G1) focuses on the hierarchical structure of ontologies. While

these are basic hierarchy comprehension tasks, they are essential to almost all analyses of
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(a) Zooming in to examine the relationships of
individual classes.

(b) Zooming out to see the overview of the rela-
tionships in the ontology. The highlighted part
represents the portion of the ontology shown in
(a).

Figure 5.7: When visualising the ODNAE ontology with 1,545 classes and 810 associations
in WebVOWL.

ontologies. For example, tasks T1, T2, and T3 ask about parent-child relationships, requir-

ing exploration of the ontology hierarchical structure (U5), and they investigate whether

the visual compression and glyphs in the prototype impact the cognition of the ontology

hierarchy. Similarly, T4 asks participants to trace the hierarchical path from a class to

the root which is related to generalising concepts (U3). T5 examines the intersection of

two subtrees supporting common knowledge discovery (U4).

The second group of tasks (G2) focuses on non-hierarchical associations. Both T6 and

T7 require an exploration of the associations for a class (U6). T6 asks for all classes asso-

ciated with a class, while T7 asks for the total number of them. T8 requires participants

to find the class with the highest number of associations in the ontology, which identifies

significant classes (U7).

The third group of tasks (G3) further examines the associations together with the

hierarchical structure. These tasks are the most complex ones but essential for analysing

associations on the class level. T9 asks for the parent having the most children with

associations, which helps determining the class effect (U8). T10 finds the outlier (class

without associations) among a group of sibling classes with associations, providing evidence

for predicting undiscovered associations (U9).

5.2.4 Hypotheses

The prototype was hypothesised to perform similarly to Protégé for G1 hierarchy tasks

(H1), since both tools clearly emphasise the hierarchical structure of ontologies. The

prototype was expected to outperform Protégé on G2 association tasks (H2) and G3



Table 5.1: Tasks in the experiment.

Group Task Use case Description Example instruction

G1. Hierarchy T1 U5 Identify the parent of a class. Please tell me the parent of “skin of body”.
T2 U5 Identify the child(ren) of a class. Please tell me the children of “limb segment”.
T3 U5 Identify the sibling(s) of a class. Please tell me the siblings of “anatomical space”.
T4 U3 Identify the path from a class to the root. Please tell me the path from “process” to the root.
T5 U4 Identify the closest common ancestor of two classes. Please tell me the closest common ancestor of “anatomical collection” and “anatomical surface”.

G2. Association T6 U6 Identify the classes associated with a class. Please tell me the classes which have the “may prevent” association with the “Pain” class.
T7 U6 Identify the number of associations of a class. Please tell me the number of “may prevent” associations of the “Hypertrophy” class.
T8 U7 Identify the class having the highest number of associations. Please tell me the class which has the most “may treat” associations.

G3. Hierarchy + T9 U8 Identify the parent class with the most children who are Please tell me the class which has the most children that have the “adjacent to” association
Association associated with a class. with the “full formed stage” class.

T10 U9 Identify a class that is not associated with a specified class, Please tell me the class whose siblings all have the “site of metabolism” association with the
but all of its sibling(s) are associated with that class. “Channelopathy” class, but that class itself does not have such an association.
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hierarchy and association combined tasks (H3), since it is designed to support ontology

association analysis.

5.2.5 Datasets

Two biomedical ontologies CVDO (Barton et al., 2014) and OCVDAE (Wang et al., 2017)

with sufficiently different sizes were used for the study, so that the evaluation could be

conducted on two difficulty levels. CVDO (518 classes) was chosen as a small dataset, and

OCVDAE (4,589 classes) was chosen as a large dataset. In total, there are 8 object prop-

erties and 551 non-hierarchical associations in CVDO. In OCVDAE, there are 118 object

properties and 20,269 non-hierarchical associations. In order to keep the experiment to a

reasonable time, the classes with less than 25 associations were selected to ask questions

about.

In addition, a training ontology was created to introduce the tasks to the participants.

As most participants were not expected to have experience with ontologies, the training

ontology was kept simple and small. The training ontology contained 15 classes, 2 object

properties, and 6 associations, but covered all possible situations in the larger ontologies

used in the study.

5.2.6 Procedure

Initially, a within-subjects design was used for the experiment: 2 tools×2 ontology sizes×
10 tasks (+ training). One pilot test was run, and it revealed that the experiment took

too long to cover all tasks in the 2 ontologies. Then a decision was made to split the tasks

into two task sets and balance the ontology size and task type in each set. The final design

was 2 tools× 2 ontology sizes× 5 tasks (+ training) where each participant performed all

10 tasks, but these tasks were split across the two ontologies (5 tasks each).

Participants performed tasks using the same ontology with different tools. To avoid

issues of memorisation, all class and object property labels were systematically renamed

and shortened to be different but the same length when used in each tool.

The order of tasks for each tool was fixed, but the order of tools shown to different

participants was counterbalanced.

Before the experiment, participants were asked to answer some questions regarding

their background knowledge and experience with ontologies, visualisation and ontology

visualisation.

Participants were required to complete training before performing the experimental

tasks. They were firstly shown an introductory video to explain the basic concepts of

ontologies. Participants also completed training on each tool before using each of them.

They were shown introductory videos to demonstrate the interface and functions of the

tool, and were then required to use the tool to answer 10 sample questions with the training

ontology. The sample questions covered all experiment tasks in order to allow participants

to be familiarised with the tools and the tasks. While answering the sample questions,

participants were guided to practise the functions that were needed in the actual tasks

for each tool, such as searching, clicking classes or object properties, double-clicking to
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expand or collapse subtrees, hovering the mouse cursor over classes to read class labels and

association information, marking classes by pinning labels on them in the prototype, and

going back or forward in Protégé. After each training question, participants were shown

the correct answer, and an explanation was given if they did not answer correctly. In this

case, the participants would be asked to answer the same questions again with different

data.

A website was developed to guide participants through the study, give them access to

training tasks, tasks and survey questions, and also to collect participants’ answers and

record completion time for each task. When participants were ready to begin a task, they

clicked a button to load that task. When they finished a task, they clicked a button to

indicate they had completed this task and were ready to progress to the next task. As

switching object properties in the large ontology (OCVDAE) in the prototype required a

couple of seconds to load the visualisation, the loading time was excluded from the task

completion time. To keep the experiment within a reasonable time, a time warning was

triggered for each task at the 2-minute point. For any task, if participants found it too

difficult to answer, they could choose to skip that task.

After completing the tasks for each tool, participants were asked to complete a survey,

rating the difficulty level and the confidence level of their answers for each group of tasks.

Participants’ preferences and comments were also collected at the end of the experiment.

As Protégé is an existing system, participants were also asked whether they had used

Protégé before the experiment.

Each experiment session lasted approximately one hour, including training and surveys.

5.2.7 Participants and Apparatus

The 21 participants included 2 domain experts, and 19 university students and academics.

Of these, 8 were female, and 13 were male. Their age ranged from 21 to 61. All participants

had normal or corrected-to-normal vision, and none were colour-blind.

Of the 21 participants, 8 participants had experience using visualisations and 5 had

experience in developing visualisations. 7 participants had experience using ontologies, and

3 had ontology development experience. Among all the participants, only the 2 domain

experts had used Protégé, while another 2 participants had used other ontology-based

systems like Unified Medical Language System (UMLS) and tools developed by the Gene

Ontology Consortium.

The participants recruited from the university used a 1.6 GHz Intel Core i5 laptop

with 4GB of RAM, using a 24-inch monitor with a resolution of 3840x2160 pixels. The

domain experts did the experiment remotely, using their own laptops at a resolution of

1600x900 pixels. For the remote participants, their experiments were observed via video

calls.

5.2.8 Results

The results of one participant were considered to be invalid. In most of the tasks the

participant did not use the correct class referred to in the question, and sometimes waited
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for the time warning message to appear and then randomly chose a class as the answer.

By excluding this participant therefore 20 valid samples were used for the analysis.

Accuracy and completion time were measured for each task. Difficulty level, confidence

level, preference ranking and learning effort (as rated by participants) were collected.

As the data was not normally distributed, the non-parametric Wilcoxon test was used

to compare accuracy between the two tools (Field et al., 2012). For the completion time

data, only the time for correct answers was used. Therefore, the non-parametric Whitney-

Mann test was used for unequal samples (Niroumand et al., 2013). For the rated results,

Wilcoxon test was also used to analyse significance.

Accuracy. Figure 5.8 shows the details of mean accuracy for each tool per task, and

Table 5.2 contains the accuracy Wilcoxon test results.
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Figure 5.8: Mean accuracy for each tool per task.

Table 5.2: Summary of statistical significance (Wilcoxon test p values) of accuracy dif-
ference as summarised in Figure 5.8, for both ontologies and each of the two individual
ontologies.

Task Overall CVDO (small) OCVDAE (large)

T1 1 1 1
T2 0.34470 0.34580 1
T3 0.01788* 0.18140 0.07186
T4 0.11980 1 0.08897
T5 0.76560 0.34580 0.77280
T6 0.57080 0.37110 1
T7 0.00943** 0.00476** 0.21860
T8 0.00012*** 0.00190** 0.03689*
T9 0.00260** 0.01966* 0.07260
T10 0.00063*** 0.01966* 0.01966*

***p < 0.001 **p < 0.01 *p < 0.05

For most of the Hierarchy tasks (G1) both tools achieved high accuracy, with Protégé

having marginally better performance. One exception is for T3 (examining siblings), there

is a significant difference (p<0.05) between the prototype and Protégé, with Protégé per-

forming better than the prototype. The test also reveals the prototype outperformed

Protégé for the Association tasks (G2) which asked for counting and ranking associations
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(T7, T8), with significant differences (p<0.01 and p<0.001) between the prototype and

Protégé. Highly significant differences were also found for both tasks (T9, T10) in Hierar-

chy + Association (G3), with Protégé performing worse than the prototype. These results

were not affected by ontology size, except in T10 where the accuracy of both tools on the

large ontology dropped by 30% compared to the small ontology.

Completion Time. Results for completion time are shown in Figure 5.9, and the

significance of time resulted from the Whitney-Mann test can be found in Table 5.3.
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Figure 5.9: Mean completion time for each tool per task.

Table 5.3: Summary of statistical significance (Whitney-Mann test p values) of differences
in completion time as summarised in Figure 5.9, for both ontologies and each of the two
individual ontologies.

Task Overall CVDO (small) OCVDAE (large)

T1 0.75840 0.85340 0.48130
T2 0.09095 0.06760 0.66070
T3 0.01051* 0.00032*** 0.88680
T4 0.00047*** 0.00414** 0.01254*
T5 0.46120 0.39300 0.88840
T6 0.78180 0.84210 0.79840
T7 0.03823* 0.37580 0.09324
T8 0.08108 - 0.07552
T9 0.92310 - 1
T10 0.82350 0.28180 -

***p < 0.001 **p < 0.01 *p < 0.05

The prototype and Protégé have similar performance in completion time for most of

the tasks. A significant difference (p<0.05) between the tools for T3 (examining siblings)

was found, with Protégé taking less time than the prototype. Also, participants using

the prototype took a notably longer time than those using Protégé for T4 (finding the

path), with a high significance (p<0.001). For T7 (counting number of associations), the

prototype considerably outperformed Protégé, with p < 0.05. As only the completion

time for the correct answers was considered and most of the participants failed in the G3

tasks with Protégé, there are no completion time data for Protégé for T8 and T9 with the
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small dataset, and for T10 with the large dataset. Therefore, the statistical test results

are missing for these tasks.

Participant Rating. Participants rated the difficulty (lower is better) and confidence

(higher is better) for each group of tasks on a five-point Likert scale ranging from 1 to 5.

Figure 5.10a and Figure 5.10b show the percentage of participants’ rating for both tools

per task group, and Table 5.6 contains the rating Wilcoxon test results.
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Figure 5.10: Participants’ rating of the two tools: (a) difficulty rating for each group of
tasks, (b) confidence rating for each group of tasks.

Table 5.4: Summary of statistical significance (Wilcoxon test) of differences in difficulty
and confidence ratings, summarised in Figures 5.10a and 5.10b.

Group Difficulty Confidence

G1 0.36820 0.45550
G2 0.00071*** 0.01865*
G3 0.00016*** 0.00145**

***p < 0.001 **p < 0.01 *p < 0.05

Overall, participants felt that performing G1 tasks in Protégé was slightly easier than

in the prototype, and more participants rated Protégé difficulty 1 than for the prototype.

From Figure 5.10a it is obvious that participants rated the G2 and G3 tasks in the proto-

type as far easier than in Protégé. The statistical test reveals high significances (p<0.001)

between the prototype and Protégé for these two groups of tasks.

On the confidence of their answers, participants gave a higher rating to Protégé than

to the prototype for G1 tasks, while the situation is reversed for G2 and G3 tasks. The

Wilcoxon test shows the differences of confidence between the two tools for G2 and G3

tasks are significant (p<0.05 and p<0.01).

The result of the preference rating can be seen in Figure 5.11a. For G1 tasks, 52%

of the participants preferred Protégé over the prototype, while for G2 and G3 tasks they

mostly preferred the prototype with a high percentage of around 88%.

Figure 5.11b shows participants’ rating of the learning effort for both tools, also on

a five-point Likert scale ranging from 1 (easiest) to 5 (hardest). More participants rated
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the learning effort 1 for Protégé than for the prototype, with 25% for Protégé and 15%

for the prototype. On the other hand, 5% of participants rated the learning effort 5 for

Protégé, while none gave this same rating for the prototype. Although the overall rating

for the prototype is less than for Protégé, the Wilcoxon test shows there is no significant

difference between the tools (p = 0.806).
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Figure 5.11: Participants’ rating of the two tools: (a) preference rating for each group of
tasks, and (b) learning effort rating.

Participant Feedback. Some participants felt Protégé was more familiar and ac-

ceptable so it was easier to perceive structure, while others commented the prototype

was easier to learn as it looked simple and clearly showed information. One participant

commented that the prototype was powerful and its interactions were well-developed, but

it needed users to follow the procedure to perform tasks, so it might be a challenge for a

first-time user. There are also some contradictory results. A couple of participants rated

the prototype better than Protégé on difficulty and confidence but at the end preferred

Protégé over the prototype. One commented: “Protégé is more familiar and OntoPlot is

too new... I need more time and effort to get used to OntoPlot”.

Aside from being unfamiliar with the prototype, participants commented the prototype

was easy to use: “it is easier to collapse and expand in OntoPlot due to its seamless

interaction area”, and “I quite like the mark label function as it kept reminding me previous

targets”. They also commented that the prototype better supported G2 and G3 tasks:

“I can directly see the answer from the colour”, “I found redrawing the visualisation by

association and class is very helpful”, and “I prefer OntoPlot over Protégé as I felt could

finish the task more quickly”.

Some participants liked the appearance of the prototype. They commented: “the

colour in OntoPlot is nice”, and “I like the combination of list and visualisation”. Several

participants felt it was hard to perceive siblings in the prototype, while others found the

prototype helped in showing siblings: “the arrangement of siblings is efficient”. A few felt

scrolling in the prototype is harder than in Protégé if the visualisation was large. This

may suggest that users are more familiar with vertical scrolling than horizontal scrolling.

Participants also gave some suggestions on how to improve the prototype. One partic-

ipant asked for a zooming in and out interaction such that users did not need to pan a lot

when the visualisation was big. Some participants suggested adoption of useful functions
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Table 5.5: Overall summary of statistical significance of results. The tool mentioned in
the columns outperforms the other in terms of the given metric (O: OntoPlot, P: Protégé).

Group Task Accuracy Time Difficulty Confidence Preference Learning Effort

G1

T1 - O

O P P

O

T2 P P

T3 P * P *

T4 P P ***

T5 P P

G2
T6 O P

O *** O * OT7 O ** O *

T8 O *** O

G3
T9 O ** P

O *** O ** O
T10 O *** O

***p < 0.001 **p < 0.01 *p < 0.05

from Protégé to improve the prototype, such as being able to “search on object property”

and “show all labels.” One participant suggested to “give an option to show all labels, or

when clicking a class to redraw the visualisation should automatically label all associated

(coloured) nodes”. One participant commented: “it is a bit confusing when collapse and

expand ... probably can use animation to smooth transaction”.

Summary. Table 5.5 presents a summary of all the results. Overall, the results show

that Protégé slightly outperformed the prototype for most of the hierarchy tasks (G1) on

both accuracy and completion time. For G2 and G3 tasks, the prototype significantly

outperformed Protégé on accuracy, but the completion time of both tools were similar. In

general, participants’ difficulty rating, confidence rating and preference ranking were in

line with the expectations of the study.

5.2.9 Discussion

The results show that Protégé slightly outperformed the prototype for G1 structure-related

tasks, therefore rejecting the hypothesis H1. To explain this, it was observed that most

participants made mistakes in the prototype on the tasks involving visual compression or

cases where sibling classes were visually separated in multiple boxes (because some were

grouped together as leaf nodes). Interestingly, although the indented list in Protégé is

a common method for hierarchical visualisation, several participants mistakenly took the

sibling above a class (at the same indentation level) as the parent of that class.

For G2 and G3 association-related tasks, the prototype outperformed Protégé on ac-

curacy as expected (H2, H3). The main reason why participants got incorrect answers

using Protégé was because they did not fully investigate the views to check all the as-

sociations listed in Protégé. Also, as Protégé cannot filter unneeded associations, some

participants referred to the wrong associations when performing tasks. The reason for
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errors in the prototype, however, was quite different. Most participants who did not get

the correct answers forgot to click the classes specified in the tasks, so the prototype did

not redraw the visualisation based on a particular class and they therefore referred to the

wrong associations.

Surprisingly, the completion time of both tools for G2 and G3 tasks were similar.

Observation revealed that most participants first spent some time thinking what they

needed to do for each tool after reading the tasks. For Protégé, the process of browsing and

distinguishing different associations was quite time-consuming. For the prototype, most

participants spent time on interacting with the visualisation. As the prototype provides

more interactions than Protégé, such as mouse hover, click, double-click, and shift-click,

only a few users could clearly remember which interaction matched which function. As a

result, most participants used multiple interactions in order to recall the functions during

the experiment.

5.3 Prototype Refinement

The results and feedback from the prototype user study were considered, leading to some

design and interaction refinements described in this section.

5.3.1 Visual Representation

Some modifications were made to the visual representation for both hierarchy and associ-

ation. The refined visualisation is shown in Figure 5.12. The details are discussed in the

following sections.

Figure 5.12: Overview of the refined visualisation.

5.3.1.1 Different Separation of Boxes

In the prototype the leaf nodes are wrapped in a single box. During the user study this

was found to be error-prone where sibling classes were separated in different boxes if some

were leaf nodes but some had descendants.
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To strive for consistent visual representation for the sibling classes and differentiate

between neighbouring boxes containing siblings of the same parent class versus neighbour-

ing boxes from different subtrees, the refined visualisation uses a partial and faint line in

the first case and a solid line in the second case (see Figure 5.13).

Figure 5.13: Solid lines are shown between different subtree boxes, e.g. a©. A partial and
faint line is shown between sibling boxes, e.g. b©.

5.3.1.2 Compression of Leaf Nodes

There could be many leaf nodes in an ontology and the majority of them could be un-

interesting. In the prototype, if a group of leaf nodes contains any leaf nodes that have

associations, this group of nodes is not compressed (see Figure 5.14a).

To make the visualisation more compact and emphasise more of the interesting leaf

nodes, in the refined visualisation the leaf nodes are ordered by the number of associations

they have. The nodes that do not have any associations are compressed as a square (see

Figure 5.14b). Note, the compression glyphs (square, thin block or triangle) are labelled

with the number of hidden nodes inside them (for example, see Figure 5.14b a©).

(a) Compression of leaf nodes in the proto-
type.

(b) Compression of leaf nodes in the refined
visualisation.

Figure 5.14: An example of refined compression of leaf nodes.

5.3.1.3 Class Labels

As discussed in Section 4.2.3.2, the prototype did not display class labels by default and

they needed to be manually pinned to the visualisation for investigation. This gives little

context of the classes in the ontology.
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To address this and still avoid the visual occlusion, the labels of parent classes of

displayed subtrees are shown greedily where space exists, as their boxes are often quite

wide. If there is not enough space, the labels are truncated (see Figure 5.15).

Figure 5.15: Parent classes are labelled where possible.

5.3.1.4 Association Labels

In the prototype, when a property is selected, the classes that have the associations with

the selected property are highlighted by colouring their circle glyphs.

To emphasise the classes with associations in the ontology hierarchy, these classes are

given association labels in the refined visualisation (see Figure 5.16a). The association

labels are coloured the same as the circle glyphs, indicating the number of associations of

the applied classes. Also, the association labels are positioned diagonally to allow labelling

of neighbouring classes without occlusion.

As there are some cases where nodes with associations are within the hierarchy rather

than just the leaf nodes (see Figure 5.16b), the visualisation allows clicking and dragging

the association labels to arrange them.

(a) Classes with associations are labelled and
coloured based on the number of associa-
tions.

(b) Association labels are initially positioned
diagonally below the class they label to min-
imise overlaps, but can be manually dragged
and arranged, if necessary.

Figure 5.16: Examples of association labels.
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5.3.2 Interaction

There are some refinements to the way interaction works in the prototype, focusing on

improving the usability to support the exploration of the ontology hierarchy and associa-

tions.

5.3.2.1 Expanding and Collapsing

As discussed in Section 4.2.3.1, double-clicking on glyphs can either collapse or expand a

subtree.

To help preserve users’ mental map, the refined visualisation highlights the portion

of the hierarchy being collapsed or expanded prior to the operation and then highlights

the same portion for a short period (several seconds) after the operation has completed.

This highlighting is shown in Figure 5.17. The specific highlighting period is calculated

based on the size of the collapsed or expanded regions, giving enough time to observe the

changes especially when a large subtree has been expanded.

(a) The highlighting before expanding the
double-clicked triangle glyph. The box of
the triangle is highlighted, indicating where
the change will happen.

(b) The highlighting after expanding the
double-clicked triangle glyph. The whole ex-
panded subtree that was hidden by the tri-
angle glyph is highlighted.

Figure 5.17: An example of highlighting portions when double-clicking a triangle glyph to
expand a subtree.

Subtrees can be collapsed regardless of whether the classes they contain are interesting

or uninteresting, or whether they include a selected class. If a subtree contains interesting

classes, the glyph is displayed with a coloured glow, which indicates the maximum number

of associations in the collapsed subtree (for example, see Figure 5.18 a©). If a subtree

containing a selected class is collapsed, a pulsing red circle will be shown around the glyph

for the collapsed subtree (see Figure 5.18 b©).

5.3.2.2 Class Selection and Focus Mode

When a class is selected, it will be given a black outline in the prototype. In the refined

visualisation, subtle arrows are drawn around the periphery, denoting the direction of the

associations (one pointing in at the top-left if it is the target of the selected association

type and another pointing out at the top-right if it is the source of the selected association

type, see Figure 5.19 a©).

Additionally, a pop-up window is displayed below the selected node (see Figure 5.19

b©). This indicates the class label and the number of associations of the selected class.
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Figure 5.18: The collapsed subtree a© containing association classes is highlighted with
a coloured glow. The collapsed subtree b© containing the selected class and association
classes is highlighted with a pulsing red circle and a coloured glow. The red glow of b©
and yellow glow of a© indicate the maximum number of associations inside the subtrees.

Figure 5.19: When a class is selected, OntoPlot highlights it a© and shows additional
information and controls b©.

.

It provides a “PIN LABEL” button to mark the class with its label, rather than using

shift-clicking as in the prototype where the key combination is not easy to remember.

In the prototype, selecting a class recomputes the interesting and uninteresting parts,

which causes immediate visual change to the whole ontology hierarchy. In the refined

visualisation, selecting classes does not cause any recomputing, but only updates the colour

of the classes, which acts like the typical selection behaviour in most software. Instead, a

focus mode is introduced and a “FOCUS MODE” button is provided in the pop-up window.

Clicking the “FOCUS MODE” button after selecting a class will recompute the interesting

and uninteresting parts and go into the focus mode, focusing on the associations for the

selected class and compressing the uninteresting parts of the hierarchy (see Figure 5.20).

While in this mode, a dark notification bar is shown at the top of the visualisation as a

reminder (see Figure 5.20 a©). When in the focus mode, clicking the “FOCUS MODE”

button in the pop-up will leave the mode.

In case the visualisation is scrolled away from the selected node, the refined visualisa-

tion shows a pulsing arrow at the boundary of the view that points to the glyph for the

selected class. Clicking the arrow will scroll the visualisation to locate the selected class

in the middle of the view.
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Figure 5.20: The focus mode for class AE severity G2 provides a compressed view that
allows users to focus on an interesting subset of the ontology based on the associations for
just this class. Note the notification bar at the top of the view.

5.3.2.3 Search

In the refined visualisation, the matching classes for the search term are not drawn with

an additional circle around their class glyphs, as there could be many additional circles

and this could cause a busy visualisation and make it hard to locate important classes.

Selecting a class from the search result list is equivalent to clicking a class in the

refined visualisation, such that the visualisation is updated to centre on the selected class,

colouring only the classes that have associations with the selected class.

5.4 Expert User Study

To test the usability of the refined visualisation of OntoPlot, an expert user study was

conducted with 12 new participants, all domain experts or experienced ontology users.

5.4.1 Study Structure

The study design and tasks were the same as in the prototype user study described in

Section 5.2. Regarding datasets, the prototype user study used a small manually con-

structed (and hence unrealistic) ontology for the training, and participants performed the

tasks with ontologies CVDO and OCVDAE. That study found little difference in the re-

sults between the two ontology sizes, hence the decision was made to evaluate only the

larger ontology (OCVDAE, 4,589 classes) in this expert study and use the smaller on-

tology (CVDO, 536 classes) for the training tasks. Therefore, a within-subjects design:

2 tools×1 ontology size×10 tasks (+ training) were used for this expert user experiment.

The other procedure details were identical to the prototype user study.
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5.4.2 Participants and Apparatus

All 12 participants had experience in the field of ontologies or knowledge graphs. Eleven of

them identified as having experience using ontologies, including three with more than three

years of experience. Ten participants had experiences using Protégé, one of whom had

more than three years of experience. Another two participants had used other ontology

tools, including the tools developed by the Gene Ontology Consortium and a proprietary

tool used for a knowledge graph construction engine. Of the 12 participants, three were

female and nine were male. Their age ranged from 18 to 41. All participants had normal or

corrected-to-normal vision, and none suffered colour-blindness. None of them participated

in the prototype user study.

The six participants recruited locally from Monash University used a 2.3 GHz Intel

Core i5 laptop with 8GB of RAM, using a 24-inch monitor with a resolution of 3840x2160

pixels. The six participants recruited from other institutions did the experiment remotely,

using their own computers at a resolution of 1600x900 pixels. For the remote participants,

the experiments were observed via video call.

5.4.3 Results

All 12 participants completed the study. Again, accuracy and completion time was mea-

sured for each task. Difficulty level, confidence level, preference ranking and learning effort

as rated by the participants were collected. The non-parametric Wilcoxon test was used

to compare accuracy between the two tools, and the non-parametric Whitney-Mann test

for unequal samples was used to analyse completion time data. For the rated results, the

Wilcoxon test was also used.

Accuracy. Figure 5.21a shows the details of mean accuracy for each tool per task.

Overall, participants achieved higher accuracy on most tasks with OntoPlot than with

Protégé. The two exceptions are for T1 (finding parent) and T4 (finding path), which have

equal accuracy (100%) for both tools. The Wilcoxon test revealed that for T8 (finding

class with most associations), OntoPlot significantly outperformed Protégé (p < 0.05).

Completion Time. Results for completion time are shown in Figure 5.21b. For most

of the Hierarchy tasks (G1), participants spent less time on Protégé than on OntoPlot.

Especially for T2 (finding children) and T3 (finding siblings), the Whitney-Mann test

revealed that Protégé significantly outperformed OntoPlot (p < 0.01). For T5 (finding

common ancestor), OntoPlot and Protégé had very close completion time, with OntoPlot

being slightly faster. Of the Association tasks (G2), for task T6 (finding individual associ-

ations) OntoPlot had a slightly longer average completion time than Protégé. The results

show that tasks for finding and counting most associations (T7, T8), OntoPlot signifi-

cantly outperformed Protégé (p < 0.001). Highly significant differences were also found

for the combined Hierarchy + Association tasks (G3) (T9, T10), with OntoPlot substan-

tially outperforming Protégé. Taking accuracy into account, these results indicate that,

especially for complex tasks (G3), OntoPlot requires substantially less time and achieves

much higher accuracy than Protégé.
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(b) Mean completion time for each tool per task.

Figure 5.21: Participants’ performance using the two tools in the expert user study.

Participant Rating. A five-point Likert scale ranging from 1 to 5 was again used to

measure participants’ rating of difficulty (lower is better) and confidence (higher is better)

for each group of tasks and each tool. Figure 5.22a and Figure 5.22b show the percentage

of participants’ rating results, and Table 5.6 summarises the results.
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Figure 5.22: Participants’ rating of the two tools in the expert user study.

Table 5.6: Summary of average difficulty and confidence ratings as shown in Figures 5.22a
and 5.22b.

Group
Difficulty Confidence

OntoPlot Protégé OntoPlot Protégé

G1 1.583 1.5 4 3.917
G2 2.083 3 3.75 3.167
G3 2.417 3.5 3.667 2.5
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Overall, participants rated G1 tasks performed in Protégé as slightly less difficult than

in OntoPlot. For G2 and G3 tasks, participants rated OntoPlot as less difficult than

Protégé. Three participants rated Protégé difficulty at 5 (highest) for G3 tasks.

When asked about confidence rating, participants felt slightly more confident with

OntoPlot than with Protégé for G1 tasks and gave much higher confidence rating to

OntoPlot for G2 and G3 tasks.

Figure 5.23a shows the result of the preference rating. For G1 tasks, seven participants

preferred Protégé over OntoPlot, whereas the situation is entirely reversed for G2 and G3

tasks. All the participants preferred OntoPlot for these tasks.

The result of the learning effort rating is shown in Figure 5.23b, also using a five-point

Likert scale ranging from 1 (easiest) to 5 (hardest). One participant rated learning effort

1 for OntoPlot, while one participant rated it 5 for Protégé. The average rating is 2.625

for OntoPlot and 3.25 for Protégé. There is no significant difference between the tools (p

= 0.056).
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Figure 5.23: Participants’ rating of the two tools in the expert user study.

Participant Feedback. At the end of the experiment each participant was given the

chance to provide feedback and give comments. Some participants felt Protégé was more

familiar and acceptable, e.g., commenting “The vertical aligned indented list is easier

to perceive hierarchy structures”. Most of the participants gave positive feedback for

OntoPlot, e.g., commenting “OntoPlot interface is more friendly”, “OntoPlot needs effort

to learn, but makes tasks easier”, or “OntoPlot has more compact view of the ontology”.

Some participants also provided more specific feedback such as “Lighter lines and darker

lines are helpful for distinguishing siblings and non-siblings”, “The labels make finding

associations much easier”, “Association labels are easy to read”, or “Tagging feature is

nice”. One participant also commented on Protégé: “It is very difficult to find common

ancestors with Protégé”.

A few participants also provided helpful feedback for further improvements of On-

toPlot, e.g., “Probably can use colour coding for the sibling lines to make them more

obvious”, “The subtle arrows could be more effective if they can indicate the number

of pointing in and pointing out associations”, or “Probably can filter association classes

further when there are many associations”.
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Table 5.7: Summary of statistical significance for the expert user study results. The tool
mentioned in the columns outperforms the other in terms of the given metric (O: OntoPlot,
P: Protégé).

Group Task Accuracy Time Difficulty Confidence Preference Learning Effort

G1

T1 - P

P O P

O

T2 O P**

T3 O P**

T4 - P

T5 O O

G2
T6 O P

O O OT7 O O***

T8 O* O***

G3
T9 O O***

O O O
T10 O O**

Significance: ***p < 0.001 **p < 0.01 *p < 0.05

Summary. Table 5.7 presents a summary of all the results. Overall, OntoPlot moder-

ately outperformed Protégé on accuracy for most tasks, and significantly (i.e., statistically

significantly) outperformed Protégé for the task T8. On completion time, Protégé out-

performed OntoPlot for most G1 tasks and significantly outperformed it on two tasks,

while OntoPlot significantly outperformed Protégé for most G2 and G3 tasks. No sig-

nificant difference was revealed by the statistical test for the participants’ rating data.

These results are consistent with those from the prototype user study, while in the expert

study the users had noticeably better accuracy rates using both tools and they performed

significantly faster using OntoPlot than Protégé on the G2 and G3 (association) tasks.

5.4.4 Discussion

The expert user study shows that OntoPlot did not perform significantly differently than

Protégé for Hierarchy tasks (G1) on accuracy, which confirmed the hypothesis H1 (Sec-

tion 5.2.4). A common error made by several participants in Protégé was to mistake the

sibling shown above a class (at the same indentation level) as the parent of that class,

often when there was a distance between them in the indented list, which was the same

mistake found in the prototype user study but occurred less. On completion time, Protégé

significantly outperformed OntoPlot for the tasks involving finding children and siblings.

This can be explained by the fact that most participants were Protégé users and were

familiar with the indented list for showing hierarchy structure. Also, in order to test

the participants’ perception of glyph compression, this group of tasks was designed to

force participants to collapse or expand the subtrees. The participants spent some time

on understanding which glyph or class they should collapse or expend in OntoPlot, and

double-checked their answers. In Protégé most of the participants were able to skilfully
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interact with the indented list. However, for the finding common ancestor task, the partic-

ipants spent a little less time in OntoPlot than in Protégé as they could mark the classes

by labels, and this made the task easier.

For association-related tasks (G2 and G3), OntoPlot outperformed Protégé on most

of the tasks as expected (accepting H2, H3). Especially, for the completion time, there

are some significant differences between the tools. The main reason why participants

spent more time in Protégé was because in Protégé a user cannot select both classes and

associations at the same time. Thus, the participants had to distinguish different classes

or associations by themselves. The reason why OntoPlot took marginally more time for

task T6 (finding individual association classes) was that some participants spent some

time on scrolling the visualisation or dragging the association labels.

5.5 Visualisation Extensions

This section describes a number of extensions to the visualisation presented in Section 5.3,

in order to better support large ontology hierarchies and associations. Some extensions are

based on the results of the expert user study, focusing on the usability of the visualisation.

5.5.1 Hill Glyph

As introduced in Section 4.2.2.1, there are three structures that can be compressed in

the visualisation. In addition to these three structures, a fourth case was identified to

further compress the uninteresting ontology sections to give a more compact visualisation

emphasising the interesting parts.

When more than one of the previously described cases occur as siblings, i.e., multi-

ple compression glyphs happen to be siblings (highlighted with red background in Fig-

ure 5.24a), these glyphs are replaced with a single hill glyph (highlighted with red back-

ground in Figure 5.24b), labelled with the total number of nodes hidden inside this glyph.

To allow this replacement, the classes are firstly clustered by whether there is any as-

sociation with them or within the subtrees they are the root of, then they are ordered

alphabetically. The glyphs of classes and subtrees that do not have any associations are

arranged together and then replaced by a hill glyph. The same as in the previous de-

sign, the leaf nodes are ordered by the number of associations they have. The leaf nodes

without any associations are grouped and replaced by a square (see Figure 5.14b). In

order to put this kind of square together with other compression glyphs, the squares now

are partitioned out from the leaf boxes containing associations (see Figure 5.24a a©) into

separate boxes (see Figure 5.24a b©).

As with previous described compression glyphs, double-clicking can expand hill glyphs.

As hill glyphs apply two levels of compression (compressing compression glyphs), in order

to allow collapsing the expanded sibling glyphs back to a hill glyph, after expanding a

hill glyph, a “hill collapse button” with two indicator lines is drawn above these sibling

glyphs on their parent box (see Figure 5.24a c©). Users can double-click this “button”
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(a) Sibling glyphs, expanded. (b) Sibling glyphs, collapsed.

Figure 5.24: An example of hill glyph visual compression.

to collapse the sibling glyphs to a hill glyph. Double-clicking any of the collapsed sibling

glyphs expands that subtree, as before.

5.5.2 Hidden Structure Visual Summary

To assist users to better understand the structure hidden by compression glyphs, when

users hover on a glyph with mouse cursor, a miniature representation of the compressed

structure will be displayed in a pop-up window (see Figure 5.25), giving information about

the shape and the size of the compressed part. This allows the hidden structure to be

quickly observed without expansion.

Figure 5.25: Visual summary of the hidden structure in a triangle glyph.

If the compressed subtree being examined contains a subtree root class, which is a

single class at the top level, such as the glyph presenting a chain or a subtree, the label of

the subtree root class will be shown on the top of the miniature in the pop-up window (for

example, Figure 5.25 a©), facilitating easy browsing of the contextual information through

the ontology.

5.5.3 Scrollable Class Labels

As mentioned in Section 5.3.1.3, class labels are greedily displayed in the boxes beside

their class circle glyphs. As ontologies can be very wide and the parent boxes for subtrees

are also often wide, labels displayed at the left-hand side of a box may have been scrolled

off the screen.

To address this and preserve the context for the classes in user viewpoint, the label

positions are automatically adjusted during scrolling to be positioned at the leftmost on

screen within their containing boxes, where the label still fits within the box, as shown in

Figure 5.26.
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Figure 5.26: A situation when ancestor class circles are scrolled out of the view. a© the
scrolled labels are automatically repositioned during scrolling to stay visible on screen.

5.5.4 Non-overlapping Association Labels

As described in Section 6.1.1.2, to reduce the occlusion of neighbouring association labels,

the labels are positioned diagonally. Classes with associations can occur densely and

some association labels can overlap, especially when there are nodes with associations

within the hierarchy rather than just the leaf nodes. Although the visualisation allows

users to manually drag and arrange the association labels, a new technique is added into

the visualisation to automatically shift the overlapping association labels vertically down

where space exists (this space is generally free due to ontologies typically being wide and

flat). Figure 5.27 shows an example.

(a) Overlapping association labels. (b) Previously overlapping association labels a©
are automatically shifted vertically down to elim-
inate overlaps.

Figure 5.27: An example of automatic shifting of overlapping association labels in (a) to
get non-overlapping association labels in (b).
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5.5.5 Minimap

This section describes a new technique, the minimap, shown at the bottom of the main

visualisation, which gives an overview of the whole ontology hierarchy and associations

and provides a navigation through the ontology.

This minimap uses the full width of the screen and shows the whole hierarchy scaled

to fill this width. The parts of the ontology that are compressed are shown as lighter grey

(for example, Figure 5.28 a©) and the other parts are shown as darker grey (for example,

Figure 5.28 b©). The association classes are highlighted using coloured circles on the

minimap, matching the colours in the main visualisation (for example, Figure 5.28 c©).

These circles are shown with a larger size, independent to the size of the non-association

classes in the minimap that might be too small to see. The colours of the hierarchy and

circles are synchronised with the main visualisation while users interact with it, such as

selecting, collapsing or expanding.

If the entire ontology is not visible in the main visualisation, an overlay will be drawn

on top of the minimap to indicate the visible portion of the ontology (see Figure 5.28 d©).

When users scroll the main visualisation, the overlay on the minimap will be updated

accordingly. As some sections of the hierarchy will usually be compressed (such as the

middle of Figure 5.28) and the minimap shows the entire uncompressed hierarchy, the

width of the overlay region can change during scrolling.

If users click on the minimap, the main visualisation will be scrolled and centred on

the location of the class that the user clicked.

Figure 5.28: The minimap of the main visualisation is displayed at the bottom.

5.5.6 Import and Export

To make OntoPlot more responsive to general audiences, file import and export function-

alities were added.
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Users can upload and visualise their own ontologies. The supported input format is

Web Ontology Language (OWL). When an ontology is uploaded by a user, it is appended

to the top of the ontology list on the left pane, allowing later use by the user. The uploaded

ontology is then preprocessed and visualised. As OntoPlot is a web-based software and

implemented with JavaScript, the OWL files need to be preprocessed and transformed into

CSV (Comma-Separated Values) files that are required by OntoPlot. Thus, a JAR (Java

ARchive) file was implemented using the Java-based OWL API (Horridge and Bechhofer,

2011) to convert the ontology OWL files into CSV files. The JAR file is stored on the

server side and this transformation is performed on the server when a user first uploads

an OWL file.

To allow users to present the visualisations of ontologies and associations easily in

their publications, OntoPlot supports export of the current visualisation in Scalable Vector

Graphics (SVG) format. Users can prepare a compressed visualisation showing information

of interest to make a figure. The label pinning allow users to show selected labels and

produce a figure that highlights specific classes. This exported figure shows the whole

visualisation not just the view (which may show only a section of the ontology).

5.6 Performance Measure

As OntoPlot employs visual compression techniques to collapse the parts of an ontology

that are not interesting in terms of the selected property, the loading and processing time

for OntoPlot to visualise an ontology cannot be measured solely based on the size of the

ontology and the number of the associations that the ontology contains. The structure

of an ontology, and more specifically, the distribution of the ontology associations in the

hierarchy, also affects the performance of OntoPlot.

Some rough measurements have been done to explore the performance of OntoPlot

when initially visualising certain ontologies of different sizes and structures, with different

properties selected. The selection of properties aimed to cover different resulting num-

bers of compressed branches and uncompressed classes. The results are summarised in

Table 5.8. Note, the number of classes of each ontology includes duplication for multiple

inheritance. The tests were done on the local host run on a laptop with a 2.3 GHz Intel

Core i5 CPU, 8GB of RAM and Intel Iris Plus Graphics 640 GPU.

After an ontology has been initially visualised, OntoPlot does caching of any com-

pressed and uncompressed parts of the ontology to avoid recomputing of the whole visual-

isation during user interactions and view changes, and keeps on caching the changed parts

of the ontology.

5.7 Conclusion

This chapter demonstrated the process of visualising homogeneous associations in ontology

hierarchies. It includes prototype design, prototype evaluation, prototype refinement,

expert user study and extension works. The results of the expert evaluation, along with

the results of the prototype evaluation, demonstrate the value of OntoPlot for analysis
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Table 5.8: Summary of OntoPlot performance time.

Ontology No. of No. of No. of No. of Time

Classes Associations Compressed Branches Uncompressed Classes

OCVDAE 4,589 8,308 55 159 1.40s
65 638 3.49s
30 1,347 8.73s

ODNAE 8,184 810 13 23 2.48s
7 874 4.61s
8 5,590 19.83s

CIDO 44,024 3,950 13 56 4.41s
220 14,567 42.28s
342 15,525 141.32s

GO 758,689 19,538 29 31 184.23s
118 933 253.31s
2,467 212,536 1012.74s

tasks as well as showing a noticeable improvement was achieved in the refined OntoPlot,

especially for the hierarchy-based tasks.

The next chapter will describe the approaches for visualising heterogeneous associations

that involve more than one property.
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Chapter 6

Visualising Heterogeneous

Associations

Chapters 4 and 5 presented the work for visualising large ontologies and their homogeneous

associations, which address the research questions one and two. This chapter answers the

third research question (see Chapter 1): how can heterogeneous associations (involving

multiple properties) be effectively visualised in an ontology?

This chapter is organised as follows. Section 6.1 explores the design space and de-

scribes the approaches for showing multiple properties in the ontology hierarchy. More

specifically, the new interactive visualisation techniques described in this chapter support

multi-property selection and multi-class selection. These techniques are implemented as

extensions to OntoPlot. Relevant terminologies for the techniques are also introduced

in this section. Section 6.2 presents two case studies, illustrating the common tasks in-

volving heterogeneous associations that domain experts undertake with ontologies, and

demonstrating how the new techniques in OntoPlot support these tasks via a cognitive

walk-through. As the formatting of this section tries to keep the figures and associated

text close together to show step-by-step processes during the walk-through, there is some

empty space left on some pages.

6.1 Visual Design

This section firstly describes the design for visualising multiple properties. Then it de-

scribes the approach for the selection of multiple classes.

6.1.1 Visualising Multiple Properties

As mentioned in Section 5.1.1, when an ontology is loaded, the object properties found in

that ontology are listed on the left-hand side of the OntoPlot interface. OntoPlot employs

a new approach to allow users to simultaneously select more than one property that they

are interested in.

To indicate the matches between properties and classes (U10, see Table 2.5), when

users hover their mouse over a selected property, the circles of the classes that have that

95
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property will be enlarged in the main visualisation and in the minimap. When users hover

over a class, the properties applied to that class are highlighted and other properties

become more transparent.

6.1.1.1 Pie Glyphs Attempt

The first attempt for visualising multiple properties in the ontology hierarchy used pie

glyphs.

When users select more than one property, the circle glyphs are replaced with pie

glyphs. The pie glyphs are partitioned with each sector responsible for one selected prop-

erty. The clockwise order of the sectors matches the order of the selected properties on

the property list. The colour of a sector uses the same colour scale introduced in Sec-

tion 5.1.1.1, indicating the number of associations linked by the property that the sector

represents.

For example, as shown in Figure 6.1, when two properties BFO 0000066 and BFO 000-

0082 are selected, the pie glyph is divided into two sectors. Following the clockwise

direction, sector 1 is responsible for the first property BFO 0000066 and sector 2 is for

the second property BFO 0000082. To give more horizontal space for the visualisation,

all the figures in this chapter show a cropped property list, superimposed on the main

visualisation rather than how it is displayed in a left-hand pane in OntoPlot.

If only one property is selected, the behaviour would be as described in the previous

chapter.

Figure 6.1: The visualisation with two properties selected. a© is the cropped property list
showing property BFO 0000066 and BFO 0000082 are selected.

Figure 6.2 shows the situation for three properties. When the third property BFO 0000167

is selected, its corresponding sector 3 is added into the pie glyph as a third segment.

Figure 6.2: The visualisation with three properties selected. Note, as there is no association
linked by the third property BFO 0000167 to the class shown in the callout, sector 3 of
that class is coloured white.
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The main drawback of using pie glyphs to visualise multiple properties is that when

there are many properties selected, sectors will become too small to distinguish. Also,

associating each property to its corresponding sector requires mental effort since they

each have different orientations.

6.1.1.2 Association Labels

To address the problems of using pie glyphs, an alternative solution based on the associ-

ation labels was devised.

As mentioned in Section 6.1.1.2, when a property is selected, the classes that have

associations linked by this property are all highlighted by colouring the background of

their association labels.

For visualising multiple properties, a series of small boxes are prepended to the associ-

ation labels, where a box is responsible for a property and the order of boxes matches the

order of the selected properties. The colour of each box reflects the number of associations

linked to the labelled class by the property that the box represents, using the same colour

scale as in Section 5.1.1.1 (U10, see Table 2.5). Figure 6.3 shows an example.

Figure 6.3: The association labels when three properties are selected. Box 1 is responsible
for the first property BFO 0000066, and so on.

Some interactions are employed to facilitate the matching between boxes and prop-

erties (U10, see Table 2.5). When a user hovers over a box, its corresponding property

is highlighted by a thicker border and other properties on the property list are faded

(see Figure 6.4 a©). All the boxes on the association labels across different classes that

are responsible for the same property are also highlighted with thicker borders (see Fig-

ure 6.4 b©). A tooltip is shown, giving the number of associations for the class with the

corresponding property (see Figure 6.4 c©).

To allow users to quickly investigate the association classes for each class linked by each

selected property (U12, see Table 2.5), when users double-click a box on the association

label of an interesting class to select that box, all the other association labels will be

hidden. Only the classes linked by the corresponding property of the selected box to the

class of interest are highlighted with coloured labels (for example, see Figure 6.5). As the

associations between classes are many-to-many relationships, this approach facilitates the

exploration of associations for individual classes without losing current selection of classes.
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Figure 6.4: An example of the visualisation when a user mouse hover over a box of an
association label.

Users can double-click the selected box to deselect it. Then the visualisation leaves this

mode and shows all the hidden association labels.

Figure 6.5: When a user double-clicks the second box a© on the association label of the
FMA 7088 class, only the classes having BFO 0000082 association with FMA 7088 are
labelled (for example, b©).

6.1.1.3 Union and Intersection

There are two operations for multiple property selection: union and intersection. For

union, the classes that have any of the selected properties are highlighted (coloured and

labelled, see Figure 6.6a). For intersection, only the classes that have all the selected

properties are highlighted as shown in Figure 6.6b (U11, see Table 2.5).

There is a special case for intersection. In the intersection mode, if a class has all the

selected properties but associated with different classes, this class will be coloured as grey

and the boxes on its association label are all white (see Figure 6.6b a©). The classes linked

by all selected properties to another class are coloured and labelled with coloured boxes

(see Figure 6.6b b© and c©).

When multiple properties are selected, the system automatically checks all the classes

that the selected properties are applied to. The intersection option is only available if

there is at least one class that has all those selected properties applied to it.
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(a) Union of BFO 0000054 and BFO 0000055 properties.

(b) Intersection of BFO 0000054 and BFO 0000055 properties. The classes marked as b© and c©
are linked by both properties to each other. While the class marked as a© has both properties
applied to it, it is linked to two other classes (not shown) by these two properties respectively.

Figure 6.6: Union and intersection for multiple properties.

6.1.2 Multiple Class Selection

Another new approach in OntoPlot is allowing users to select multiple classes to perform

analysis (U12, U13, see Table 2.5). Users select more than one class by shift-clicking classes

(holding the shift key and clicking multiple classes). The selected classes are given thick

blue borders to indicate the selection. The new approaches supporting multiple classes

selection are described in detail as follows.

6.1.2.1 Highlighting Property List

When users select a class, the property list is reordered and the properties that are applied

to the selected class will be moved to the top of the list and given a grey background colour.
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If multiple classes are selected, the properties that are applied to all the selected classes

will be given a dark grey background colour (see Figure 6.7).

Figure 6.7: When the classes marked as a© and b© are selected, the property list is updated.
Both of the BFO 0000054 and BFO 0000055 properties are moved to the top of the list,
with BFO 0000054 having a dark grey background, indicating BFO 0000054 is applied to
both selected classes. When a user hovers over the BFO 0000055 property on the property
list, the class b© is enlarged, indicating BFO 0000055 is only applied to class b©.

6.1.2.2 Colour Glow

As discussed in Section 5.1.2.3, when users select a class, the visualisation is updated and

only the classes that have associations with the selected class are labelled and coloured.

As the new system allows selection of multiple classes, in order to let users be aware

of all the classes that have associations, the classes that have associations but not with

the selected class are turned grey, surrounded in a coloured glow matching their original

colours (see Figure 6.8). This gives a hint to support users to inspect which classes they

might want to further select to perform analysis.

Figure 6.8: When selecting the class marked as a©, the classes that have associations with
it are labelled and coloured (for example, b©). The classes that have associations with
other classes rather than a© are surrounded by a coloured glow (for example, c©).
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6.1.2.3 Grid Labels

When selecting multiple classes, a grid label that consists of a grid and label text is

prepended to each selected class as shown for the two selected classes in Figure 6.9 a© and

b© (U12, U13, see Table 2.5), instead of its normal label.

Figure 6.9: Grid labels of the selected classes DOID 1869 and DOID 8805, with three
properties BFO 0000054, BFO 0000055 and BFO 0000172 selected.

In each grid, the rows represent selected properties and the columns represent classes.

The classes here are the association classes of any selected class and the selected classes

themselves. The order of the rows again matches the order of the selected properties and

association label boxes described in Section 6.1.1.2. The order of the columns matches

the left-to-right position of the association classes and the selected classes in the main

hierarchy visualisation (see highlighting of Figure 6.9 b©).

If two association/selected classes happen to be ancestor-descendants, the ancestor

class column is always put to the left of the descendant class column. If an association

class happens to have identical classes (caused by multiple inheritance), only one column

is created in the grid to present all those identical classes.

A leader line of each grid label is drawn between the selected class circle in the hierarchy

and the column representing the selected class in the grid label. If users accidentally select

classes that are identical but under different parents in the hierarchy, only one grid label

will be generated, and the grid label will be linked to all the selected identical classes via

additional leader lines.

To reduce the visual occlusion, the leader lines are lighter than the other visual elements

(to show them clearly, they have been manually darkened for some figures in this chapter).

Only when users mouse over a grid label, the leader line of that label is darkened.

Associating both a column and a row, a cell in the grid is responsible for a class and a

property. The cell that belongs to an association class is coloured based on the colour scale

introduced in Section 5.1.1.1, indicating the number of associations linked by the property

that the cell stands for, between the association class and the selected class (for example,
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Figure 6.9 1©). The cells positioned on the column representing the selected class are all

coloured as blue (for example, Figure 6.9 2©).

As users might select numerous classes, in order to keep the grids organised for easy

comparison, the grids are arranged greedily in vertical lines starting from the left, and

their order matches the left-to-right positions of the selected classes (see Figure 6.10).

Figure 6.10: Five classes are selected in the visualisation and five grid labels are generated.
The numbers 1© 2© 3© 4© 5© labelling the grid labels match the numbers labelling the selected
classes, indicating the corresponding grid label and class respectively. Note, leader lines
are shown for each grid label, though very faintly.

To avoid overlaps between the main visualisation and the grids, the grids are initially

positioned below the longest association label (for example, Figure 6.10 a©). It is also

possible for users to drag and arrange the grid labels manually.

As the main visualisation can be wider than the view, when users scroll the view, the

grid labels will be kept on the view. If an association class is located outside of the current

view, users can double-click a cell on the grid label and the visualisation will be centred on

the association class that the cell represents. If the association class has identical classes in

the hierarchy due to multiple inheritance, when users double-click the same cell repeatedly,

the visualisation will scroll to cycle between each of the identical classes in turn.

When users brush over a cell, all the columns in all the grid labels representing the

same class will be highlighted by thick black borders (for example, Figure 6.11 a©), and

all the circles in the hierarchy that represent the same class will be enlarged and high-

lighted by thick black borders (see Figure 6.11 b©). This allows an easy comparison of

associations between classes. The corresponding circles in the minimap are also enlarged

simultaneously. The property that the hovered over cell represents is also highlighted in

the list (see Figure 6.11 c©). Additionally, the label of the hovered over class will be shown

on the pop-up tooltip on the upper right of the grid (see Figure 6.11 d©).
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Figure 6.11: Highlighting is displayed when users hover the mouse over a cell on a grid
label. Note, the leader line of that grid label is darkened in the visualisation. Others are
faintly visible.

6.1.2.4 Show Common Node

While the grid labels display all the association classes for each selected class, there is a

need to easily identify the common association classes for all the selected classes (U14, see

Table 2.5).

The system supports this by providing a “SHOW COMMON NODE” button (see

Figure 6.12 a©) on the notification bar (introduced in Section 5.3.2.2). When users select

multiple classes and click this button, the visualisation will be updated and only the

classes that have the selected properties with all the selected classes will be highlighted

with colours and labels (shown in Figure 6.12). The grid labels are hidden in this mode.

6.1.2.5 Multi-Focus Mode

As described in Section 5.3.2.2, the visualisation provides a focus mode to compress the

hierarchy and show only the association classes for the selected class. In the new visu-

alisation interface, the “FOCUS MODE” button is moved to the notification bar (see

Figure 6.13 a©) from its original location in the pop-up tooltip.

If multiple classes are selected, all the selected classes are used to recompute the

interesting and uninteresting parts of the hierarchy (introduced in Section 4.2.2). The

visualisation goes into a Multi-focus mode (see Figure 6.13). This gives emphasis on the

associations for classes of interest and provides a compact view to bring these heteroge-

neous associations together (U12, U13, see Table 2.5).

6.1.2.6 Search Function Refinement

As mentioned in Section 5.3.2.3, the visualisation supports search. When users enter a

term in the search field, the matched class labels in the ontology will be displayed as a
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Figure 6.12: The show common node mode identifies the common node b© for the selected
classes c© and d©, indicating b© is linked by one of the selected properties BFO 0000055
(see arrow) to both c© and d©.

Figure 6.13: The multi-focus mode for the selected classes b© and c©. In focus mode the
visualisation is compressed and only shows the association classes d© and e© for b© and c©
together with their ancestor classes.
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scrollable list. If users click a class label, that class will be selected and the visualisation

will be updated to show associations of that selected class. The view will also be centred

on that class.

To support multiple selection of classes, this search function is refined to draw a bounc-

ing arrow pointing to the searched class to indicate the location of that class, rather than

making a selection of it as in the previous visualisation. This allows users to make a de-

cision whether they want to select the searched class, while leaving their current selection

as is.

6.2 Case Studies

This section demonstrates the capability of the new system to support experts to perform

the analysis of associations in biomedical ontologies. Two case studies are presented to

show how the new approaches facilitate the analysis involving multiple properties and

classes to explore the associations. Case studies are widely used to evaluate the usability

of new designs (Lam et al., 2011; Sedlmair et al., 2012; Wagner et al., 2018; Nobre et al.,

2018). These walk-through case studies provide strong evidence for the satisfaction of the

design requirements of OntoPlot and the usability of this interactive system to support the

complex user tasks, showing the practical value of OntoPlot, though the need for training

is acknowledged. The host-microbiome interactions ontology (He et al., 2019) and the drug

adverse events ontologies (Guo et al., 2016; Wang et al., 2017) are used in the case studies

that are chosen based on the discussions in the interviews, where analyses are similar to

those in the papers.

6.2.1 Comparing properties to explore associations between microbiomes

and diseases

A microbiome is the aggregate of microbes living in an organism. It impacts its host’s

biological processes and is associated with diseases. The ontology of host-microbiome in-

teractions (OHMI) (He et al., 2019) describes the associations between hosts, microbiomes

and diseases. The analysis process of increase or decrease interactions of microbes in dif-

ferent diseased hosts is demonstrated here using OHMI in OntoPlot. OntoPlot supports

experts to explore this OHMI ontology and to confirm or disprove their hypotheses.

6.2.1.1 Comparing microbe interactions in different diseased patient guts

Firstly, after browsing the property list, the expert finds a property microbe susceptibly

depleted (compared to fibromyalgia patients) in gut of human with disease, which compares

the decrease of microbes in the guts of fibromyalgia patients with other disease patients,

is more specific than another property microbe susceptibly depleted in gut of human with

disease.
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Workflow

Step 1. In order to figure out what the differences are between the results produced

by these two properties, the expert selects both properties to conduct an

investigation.

Step 2. From the resulting visualisation shown below, the expert notices three

diseases colorectal cancer ( a©), diarrhea ( b©) and juvenile rheumatoid arthritis

( c©), have only one box coloured on their association labels, which

corresponds to the more general property. This means these three diseases

have certain microbes depleted in their infected patients’ guts, while

comparing to fibromyalgia patients there is no difference in the quantities of

microbes between the patients with these three diseases and the patients

with fibromyalgia.

The expert finds out that one class rheumatoid arthritis ( d©) is highlighted by

a label with both boxes coloured, which means the patients with rheumatoid

arthritis disease have a decreased number of microbes in their guts even

comparing with the microbe number in the fibromyalgia patient guts.

Step 3. To investigate what microbes in the guts of patients are associated with the

rheumatoid arthritis disease, the expert selects the rheumatoid arthritis class

and the visualisation is updated accordingly to show its associations.

Step 4. As the distribution of the associations of the rheumatoid arthritis class is a bit

sparse and difficult to see together, in order to filter out irrelevant

information for the selected class and properties and make the visualisation

more compact, the expert clicks the “FOCUS MODE” button and the

visualisation goes into the focus mode of rheumatoid arthritis, bringing

information of importance close together.
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Step 5. In the focus mode (shown below), the expert can easily spot that there are

several microbes linked either by the microbe susceptibly depleted (compared

to fibromyalgia patients) in gut of human with disease property (for example,

c©) or microbe susceptibly depleted in gut of human with disease property

(for example, d©), and also some microbes linked by both properties, i.e.,

having the two label boxes coloured, indicating they are intersection classes

(explained in Section 6.1.1.3, for example, a© and b©).

Step 6. The expert then wants to see only the intersection classes, so selects the

intersection operation.

Then the visualisation is redrawn to produce the focus mode of intersection

associations for the rheumatoid arthritis class (see below).

This visualisation clearly shows two bacteria Bacteroides ( a©) and

Bifidobacterium bifidum ( b©) linked by both selected properties to the disease

rheumatoid arthritis.

Step 7. The expert notes that rheumatoid arthritis patients had Bacteroides and

Bifidobacterium bifidum bacteria depleted in their guts. This is also consistent

when comparing to fibromyalgia patients.
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6.2.1.2 Comparing microbe interactions in different diseased species

Next, the expert finds three properties microbe susceptibly expanded in gut of human with

disease, microbe susceptibly expanded in gut of mouse with disease and microbe susceptibly

expanded in gut of rat with disease related to the expansion of microbes in the guts of

diseased hosts. Note the different hosts: humans, mice and rats.

Hypothesis 1

A microbe that expands in the gut of human with a disease could also expand in the gut

of mouse or rat with the same disease.

Workflow 1

Step 1. To test the hypothesis, the expert selects these three properties to generate

the visualisation.

Step 2. Then the expert notices that the intersection operation is unavailable for

these three properties, indicating that no expanded microbe can be found in

all these three diseased species’ guts.

Step 3. After browsing the resulting visualisation shown below, the expert sees from

the distribution of the coloured label boxes that there are two microbes

Prevotella and Escherichia coli ( a©) expanded in diseased human and rat guts

and another microbe Prevotella copri ( b©) expanded in diseased human and

mouse guts.

Step 4. In order to figure out which diseases are associated with each microbe, the

expert uses shift-clicking to select these three microbes simultaneously.
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Step 5. The resulting visualisation is shown below.

Each grid label shows the association situation for each microbe class. In the

grid labels, each column represents a disease class, and each row represents a

selected property.

The expert quickly identifies from the grid labels that there is no microbe

expanded in human guts and mouse or rat guts with the same disease, as

there is no column with more than one cell coloured.

Step 6. Then the expert clicks the “FOCUS MODE” button and goes into the

multi-focus mode for the selected classes.

Step 7. As the visualisation is still wider than a single screen, the expert cannot fully

observe the whole disease subtree. The expert clicks the cell of colorectal

cancer in the grid label, and the visualisation scrolls to the disease subtree.
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Step 8. The whole disease subtree is shown below. Note, the three selected microbe

classes are scrolled out of the view, but their grid labels are kept in the view,

with leader lines pointing off screen.

The expert hovers the mouse cursor over each coloured cell in a grid label

(for example, the colorectal cancer cell) and examines the information of each

associated disease from the pop-up tooltip a© and the corresponding enlarged

class circles b© in the hierarchy.

Step 9. After investigating each disease class in the grid labels, the expert notices

that Prevotella expanded in colorectal cancer, systemic lupus erythematosus

and enthesitis-related juvenile idiopathic arthritis human guts, and ankylosing

spondylitis rat guts. Prevotella copri expanded in rheumatoid arthritis human

guts and arthritis mouse guts. Escherichia coli expanded in rheumatoid

arthritis human guts and arthritis rat guts.

Step 10. The expert notes that there is no common disease having microbes expanded

in all three species, so would reject hypothesis 1. There are two microbes

Prevotella and Escherichia coli expanded in human and rat guts but with

different diseases, and one microbe Prevotella copri expanded in human and

mouse guts but also with different diseases.

Hypothesis 2

There might be the same host-microbiome interactions between mice and rats as they are

similar species.

Workflow 2

Step 1. The expert deselects the microbe susceptibly expanded in gut of human with

disease property and the visualisation is recomputed.
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Step 2. This time the intersection operation is available, which indicates there is at

least one common class of the microbe susceptibly expanded in gut of mouse

with disease and microbe susceptibly expanded in gut of rat with disease

properties, so the expert selects the intersection operation to see the

common class(es).

Step 3. The expert notices from the resulting visualisation (shown below) that

although there is a class arthritis disease that still remains labelled, none of

the boxes on its label are coloured.

This indicates that this intersection class arthritis disease has microbes

expanded in both its diseased mouse and rat guts, but the microbes are

different in different host species as none of the microbe classes is linked to it

by both of these two selected properties.

Step 4. Then the expert selects the arthritis class and clicks the union operation,

using the union mode to investigate its associated microbes.

Step 5. From the resulting visualisation shown below, the expert observes that the

arthritic mice have Prevotella copri microbes ( a©) expanded in their guts,

while arthritic rats have Escherichia coli microbes ( b©) expanded in their guts.
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Step 6. The expert notes that there is a common disease arthritis having microbes

expanded in its infected mouse or rat guts, but the microbes are different.

There is no common microbe expanded in the guts of diseased mice and rats,

so the expert would reject hypothesis 2.

Hence, no common pair of host-microbiome interaction is found either

among human, mouse and rat, or between any two of them.

6.2.1.3 Comparing microbe interactions in different diseased human hosts

Finally, the expert wants to explore the ontology to compare multiple properties to see

interactions in different human hosts.

Workflow

Step 1. The expert selects six properties, microbe susceptibly depleted in gut of

human with disease, microbe susceptibly expanded in gut of human with

disease, microbe susceptibly depleted in oral cavity of human with disease,

microbe susceptibly expanded in oral cavity of human with disease, microbe

susceptibly depleted in respiratory airway of human with disease and microbe

susceptibly expanded in respiratory airway of human with disease, which

might be comparable and interesting to explore together to see the

host-microbiome interaction situations in three human organisms that this

ontology mainly focuses on: human guts, oral cavities and respiratory

airways.

Step 2. From the distribution of the coloured label boxes (shown below), the expert

does not spot any microbes expanded or depleted in all these three hosts, as

there is no microbe having all six label boxes coloured (for example, a©).
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Step 3. From the minimap (shown below), the expert notices that there are several

red circles ( a©), which represent the most associations, in the right part of

the ontology that are not currently displayed on the main visualisation.

Thus the expert hovers the mouse over these circles on the minimap and from

the labels shown on the pop-up tooltips (for example, b©), the expert finds

out these circles all represent the rheumatoid arthritis disease class and the

duplication of the circles is caused by the multiple inheritance of this class.

Step 4. The expert clicks one of the circles on the minimap to scroll the main

visualisation to the location of that class.
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Step 5. Then the expert finds out the disease rheumatoid arthritis ( a©) has microbes

interacting with all three hosts when the hosts are infected by this disease, as

all six label boxes of it are coloured.

The expert moves the mouse over this disease and notes the number of

associations of this disease for each selected property from the pop-up tooltip

( b©).

Step 6. In order to see the distribution of these associations better, the expert

shift-clicks the rheumatoid arthritis class and a grid label is generated for it ( a©).
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Step 7. From the grid label (shown below), the expert directly observes the situation

of expansion or depletion of each microbe in rheumatoid arthritis patients’

organs.

The expert notes that there are some microbes with more than one cell

coloured, indicating there is more than one interaction with the diseased

hosts, so the expert hovers on the columns to get the labels of the microbes

from the pop-up tooltip.

For example, Porphyromonas ( a©) is depleted in rheumatoid arthritis patients’

guts and respiratory airways.

Step 8. The expert deselects the rheumatoid arthritis class to reset the visualisation

and investigate other classes.
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Step 9. After browsing the microbe subtree, the expert observes that some sibling

microbe classes have the same properties applied to them.

In order to figure out what the associated diseases are for each microbe and

whether there are any diseases common to the siblings, the expert uses

shift-clicking to select the sibling microbes and clicks the “SHOW

COMMON NODE” button. Then the expert clicks the “FOCUS MODE”

button to compress uninteresting subtrees.

The figure below shows an example of the resulting visualisations, showing

common nodes for the sibling microbes Eikenella, Kingella and Neisseria sp.

( a©) in the multi-focus mode.

The expert hovers the mouse over the coloured label box to get the

information of the property that the box represents from the pop-up tooltip

( b©). Consequently, all the boxes on the association labels of different classes

for the same property are highlighted.

The expert notes that rheumatoid arthritis diseased patients have the sibling

microbes Eikenella, Kingella and Neisseria sp. depleted in their oral cavities.

Step 10. Similarly, the expert notes that the sibling classes Bacteroides sp. and

Bacteroides fragilis have one common disease rheumatoid arthritis for the

microbe susceptibly expanded in gut of human with disease property,

indicating both microbes expanded in the rheumatoid arthritis patients’ guts.
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Step 11. The expert also notices that the Escherichia group microbes (the six

ancestor-descendant classes) all have the same property microbe susceptibly

expanded in gut of human with disease applied to them ( a©), but there is no

common disease found after clicking the “SHOW COMMON NODE” button

as all the label boxes turn to white ( b©).

Step 12. The expert notes that the disease rheumatoid arthritis has microbes

interacting in all the three diseased hosts: human guts, oral cavities and

respiratory airways, but the microbes are different. No microbe has been

found depleted or expanded in all the three hosts with any diseases. The

sibling microbes Eikenella, Kingella and Neisseria sp., and another sibling

microbes Bacteroides sp. and Bacteroides fragilis had the same

host-microbiome interaction with a disease.

6.2.2 Linking properties to explore associations between drugs and their

adverse events

An administration of a drug is a medical intervention to relieve illness. Following a medi-

cal intervention, unintended consequences like adverse events may occur. Two ontologies,

the Ontology of Drug Neuropathy Adverse Events (ODNAE) that describes the neuropa-

thy adverse events and their associated drugs (Guo et al., 2016), and the Ontology of

Cardiovascular Drug Adverse Events (OCVDAE) that describes the adverse events of car-

diovascular drugs (Wang et al., 2017), are presented here to demonstrate the analysis

processes of drugs and their adverse events using OntoPlot.
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6.2.2.1 Analysing agonist and antagonist neuropathy-inducing drugs and their

targets in ODNAE

Certain drugs that act as agonists or antagonists of neurotransmitters contribute to the

neuropathy adverse events. To investigate how the drugs induce neuropathy, the expert

starts by analysing the agonist and antagonist drugs and their targets in the ODNAE

knowledge base.

Workflow

Step 1. The expert selects the ODNAE ontology. By default, the first property

adverse event occurs in is selected to draw the visualisation.

Step 2. After the visualisation is loaded, the expert searches the term “agonists” and

gets a list of classes whose name contains the term “agonists”.

Step 3. The expert browses the results list and finds some interesting classes that are

related to the neurotransmitters such as “adrenergic”, “dopamine”,

“hormone” and “serotonin”.

Step 4. The expert selects these interesting classes one-by-one to investigate their

associations.

For example, the expert clicks “Adrenergic Agonists” in the search result

list. As shown below, the visualisation jumps to the Adrenergic Agonists class

and a bouncing arrow is drawn pointing to that class a© with a pop-up

tooltip b© showing its information.

Step 5. Then the expert clicks the Adrenergic Agonists class and its descendants such

as Adrenergic alpha-Agonists [MoA] and Adrenergic alpha2-Agonists [MoA]

classes to figure out what the associations are that these classes are involved

in.

OntoPlot helps this by moving the properties applied to the clicked class to

the top of the property list and colouring the background of the properties

grey.

The expert also clicks the sibling class Adrenergic Antagonists [MoA] of

Adrenergic Agonists and the descendants of Adrenergic Antagonists [MoA]

such as Adrenergic alpha-Antagonists [MoA] and Adrenergic beta-Antagonists

[MoA] for the same purpose.
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Step 6. Same exploration happens for the Dopamine Agonists, Hormone Receptor

Agonists and Serotonin Agonists classes that are on the search results list.

Step 7. From the exploration mentioned above, the expert finds out that two

properties has participant and has role are used interchangeably to link the

agonist or antagonist drugs to their targets.

Step 8. Then the expert selects these two properties and deselects the adverse event

occurs in property to redraw the visualisation.

Step 9. The new generated visualisation is shown below.

From the visualisation, the expert observes there are lots of classes involved

in the agonist and antagonist interactions.
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Step 10. To locate the interesting adrenergic group classes, the expert clicks

“Adrenergic Agonists” in the search results list again.

From the visualisation shown below, the expert observes there is one

adrenergic agonist and four adrenergic antagonists present in the ontology.

Step 11. In order to investigate what the drugs are for each adrenergic agonist or

antagonist, the expert shift-clicks these classes one-by-one to get their grid

labels.

OntoPlot guides this process by drawing a colour glow surrounding the

classes that have associations (for example, a©) after selecting any classes, to

give a hint indicating where the other association classes are.
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Step 12. After selecting all the adrenergic group classes, the expert clicks the

“FOCUS MODE” button.

Then the visualisation goes into the multi-focus mode of the selected

adrenergic group classes ( a©), showing the agonist and antagonist drugs and

their adrenergic targets in one place (see below).

The expert hovers over each cell in the grid labels to investigate how the

drugs associate with each target.

For example, the highlighting of Sotalol Oral Tablet class ( b©) and the

coloured cell in the grid labels of adrenergic beta1 ( c©) and adrenergic beta2

( d©), shows the drug Sotalol Oral Tablet is the antagonist of both adrenergic

beta1 and adrenergic beta2.

Step 13. The expert repeats the same process to find out the inducing agonist and

antagonist drugs for the other interesting neurotransmitters: dopamine,

serotonin and hormone.

6.2.2.2 Analysing cardiovascular drugs and their adverse events based on

drug mechanism of action classification in OCVDAE

A mechanism of action (MoA) is a biochemical interaction through which a drug produces

its effects. Classifying drugs under MoA is an effective way to bind drugs to the interactions

they trigger. In OCVDAE, the expert wants to find out whether any cardiovascular drugs

that are under a common MoA cause the same adverse events.
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Workflow

Step 1. The expert selects the OCVDAE ontology.

Then the expert finds the property has MoA might be used for the MoA

classes, so the expert selects this property to generate the visualisation.

Step 2. After browsing the visualisation as shown below, the expert confirms

has MoA is used to link the MoA classes ( a©) and the drug products ( b©),

which is what the expert wants.

Step 3. Then the expert chooses three interactions Norepinephrine Uptake Inhibitors

[MoA], Small Ion Transport Pump Interactions [MoA] and Na-K ATPases

Interactions [MoA] from the Active Transporter Interactions [MoA] group to

start the exploration.
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Step 4. The expert shift-clicks these three interactions and clicks the “FOCUS

MODE” button. The resulting visualisation is shown below.

The expert then hovers the mouse over the cells in the grid labels to find out

the drugs associated with each interaction.

The expert observes that the leaf classes (for example, a©), which are the

final drug substances, are duplicated and grouped under two different

categories, Drug Products by Generic Ingredient Combinations ( b©) and Drug

Products by VA Class ( c©).
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Step 5. The expert shift-clicks these leaf drug classes to select them. The resulting

visualisation is shown below. Note, the green association labels indicate these

classes are identical classes to the selected classes (due to multiple inheritance).

From the updated property list, the expert finds out one property drug

associated with AE ( a©) is commonly applied to these selected drugs and

might be used to link the drugs and the adverse events.

Step 6. The expert selects the drug associated with AE property to add it to the

visualisation. The resulting visualisation is shown below.

Then the expert hovers over the grid cells and confirms this property links

the drugs and the adverse events (for example, fatigue AE a©).
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Step 7. To see only the common adverse events for these six drugs, the expert clicks

the “SHOW COMMON NODE” button.

From the resulting visualisation (shown below), the expert notes five adverse

events fatigue AE, headache AE, diarrhea AE, nausea AE and anorexia AE are

associated with all the selected drugs, which are classified under the Active

Transporter Interactions [MoA] group ( a© on the minimap).

a

6.3 Summary

Figure 6.14 summarises the key features of OntoPlot used in the two case studies. This

figure organises these features that are designed for heterogeneous association tasks based

on the workflow of each use case. Other general functions like search, minimap or pop-up

tooltips are not included in this outline.

As each row in this summary figure is only for one feature, the similarities and differ-

ences between use cases can be discovered. After selecting interesting properties, experts

are usually interested in particular classes. They make the selection of classes, then in-

vestigate the distribution of the associations for the selected classes using grid labels and

the focus mode. They also use the “show common node” function to get the commonly

associated classes for the selected classes. The property intersection operation is used

either to get intersection classes for interesting properties or to get the intersection classes

for interesting properties and classes. Experts can also explore more properties or classes

at any stage of the analysis.

6.4 Discussion

As described in the case studies, experts use multiple properties in various ways to per-

form analysis. Depending on the different ontology structures, experts need to compare

properties (Section 6.2.1), find complementary information from different properties (Sec-

tion 6.2.2.1) or use multiple properties as a chain to link different groups of classes (Sec-

tion 6.2.2.2).

The OntoPlot revisions that are designed for visualising multiple properties support

these diverse user needs. The visualisation provides association labels and grid labels, with
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Figure 6.14: Summary of key features of OntoPlot for heterogeneous association use cases.
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each box (or cell) representing an association that consists of a labelled class, an associated

class and a property. These representations put the desired information together in a

compact form, facilitating users to get an overview of the data and make comparisons.

The interactions also ease the analysis process by finding and filtering information for

users, such as double-clicking a grid label cell to scroll the view and locate a class, and

double-clicking an association label box to hide unrelated associations.

As discussed in Chapter 2, currently these types of analyses sometimes need to be done

by querying the ontology using SPARQL queries. For example, for the case described in

Section 6.2.2.1, Guo et al. (2016) created SPARQL queries to identify agonist or antagonist

drugs for each neurotransmitter. Similarly, He et al. (2019) wrote a number of SPARQL

queries to retrieve the associated microbes for six different host profiles, which is the

case demonstrated in Section 6.2.1.3. However, experts have stated that writing SPARQL

queries requires significant effort, especially when complicated queries are needed. Experts

need to understand the syntax and logic of the queries. Also, this kind of text-based query

is error prone, requiring manual checking of results, which is time consuming. OntoPlot

directly supports such analyses through interaction without the need for writing SPARQL

queries.

For some other cases like the ones demonstrated in Section 6.2.1.3 and 6.2.2.1, experts

are known to have manually checked each association in Protégé and visualised the asso-

ciations by labelling them on the screenshot of the ontology hierarchy (He et al., 2019)

as shown in Figure 2.10b or using tables (Wang et al., 2017). The cases that involve

union and intersection of properties (Section 6.2.1.1, 6.2.1.2) or showing common node

for classes (Section 6.2.1.3, 6.2.2.2) also are quite time consuming and error prone with

manually checking. Manually checking is often impractical, especially for the cases that

are supported by switching between union and intersection to check the associations for

particular classes. OntoPlot makes these tasks much easier.

Given that sometimes the ontologies being used are previously unknown to experts,

OntoPlot guides experts through the exploration process to find useful information, such as

selecting related properties or classes. Highlighting applied to the property list to indicate

the involved properties for selected classes and colour glow highlights around unselected

classes are valuable approaches, as demonstrated in the use cases.

Although the case studies demonstrated in this chapter are specific to the bioinfor-

matics domains, similar tasks need to be performed for most ontologies. Thus OntoPlot

is applicable to ontologies from other domains, such as agronomy, e-government and bib-

liometrics, as discussed in Chapter 1. The visualisation also can be adapted to other hi-

erarchical datasets to support equivalent cases, especially those involving non-hierarchical

relations that need to be analysed.

6.5 Conclusion

This chapter discussed the approaches for visualising heterogeneous associations that in-

volve multiple properties and classes in an ontology hierarchy. The visualisation encodes
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this information in the association labels and grid labels, interactively supporting vari-

ous user tasks and allowing analyses to be conducted more efficiently than with existing

approaches to ontology visualisation.

The next chapter will summarise the work presented in this thesis and discuss the

future research directions.



Chapter 7

Conclusions

Expressive ontologies contain rich information captured by class hierarchies and associ-

ations. Their large and complex structure demands effective visualisations to support

user activities with such data. Most existing ontology visualisation systems emphasise

ontology hierarchies, making it hard to find information about the non-hierarchical as-

sociations. Using these systems to perform analysis on ontology associations is tedious

and time consuming. This is especially true for complex activities that involve diverse

associations, which require considerable manual effort.

The research presented in this thesis was motivated by the needs for effective visuali-

sations to support the exploration of large ontologies and associations.

7.1 Contributions

Chapter 4 addressed the first research question of how large ontologies can be effectively

visualised. It presented a new visual representation, OntoPlot, for showing the hierarchy

structure, achieving higher space-efficiency than basic hierarchy representations like node-

link layered trees, indented lists and icicle plots, and depicting the hierarchical structure

more clearly than treemaps. The chapter also introduced a set of glyphs allowing visual

compression for data elements that are not of current interest to users, with different glyph

shapes representing different compressed structures. It presented two user studies showing

that OntoPlot can effectively visualise large ontology hierarchies to help the cognition and

comprehension of their hierarchical structure.

To answer the second research question of how homogeneous associations can be ef-

fectively visualised in an ontology, Chapter 5 described approaches that clearly represent

homogeneous ontology associations on top of the hierarchy and emphasise the significant

associations. The concept of interest was used to automatically compute the interesting

and uninteresting parts of the ontology based on user interests of properties and classes,

and dynamically update these sections of the visualisation during user interactions. The

user evaluations confirmed that OntoPlot clearly shows the homogeneous associations and

satisfactorily supports the exploration of them in the ontology hierarchy, which is strongly

supported by the statistically significant positive results from an expert user study.
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Chapter 6 presented a representation for visualising complex heterogeneous associ-

ations consisting of diverse properties and classes, alongside the ontology hierarchy, to

address the third research question of how heterogeneous associations can be effectively

visualised in an ontology. These designs were implemented and demonstrated via Onto-

Plot, with well-defined interactivity to facilitate users to perform analyses on ontology

hierarchies and associations. The described case studies demonstrated OntoPlot’s strong

capability and usability for visualising heterogeneous associations and facilitating the com-

plex user tasks.

7.2 Limitations

Although comprehensive research has been conducted to address the research problems,

there are still some limitations to the work.

7.2.1 Evaluation

First, the designed representations were evaluated through user studies and case studies,

which can be considered preliminary if put into the context of real working environments.

Even though this research followed the user-centred design methodology and is user-driven,

to fully assess the usability of the system, it would be worthwhile to do more testing and

observations of expert users utilising OntoPlot for their analysis tasks. Further research

in this direction is planned.

7.2.2 Scalability

Secondly, the scalability of the proposed visualisation is still limited. Very large ontologies

that have tens or hundreds of thousands of classes and associations impose computational

challenges to the system and scalability issues to the visualisation. To facilitate easy

overview and browsing of such large data, further compression might be a solution. For

example, another two possible cases that could be compressed are sibling leaf association

classes and intermediate level classes that do not have any associations. As illustrated in

Figure 7.1, two glyphs, such as ellipse and diamond, could be introduced to visually sum-

marise these two cases. This would save more space that could be used to accommodate

additional data elements on screen. Interactions can be employed to allow exploration of

these compressed parts of hierarchies if individual associations or the path of classes are

interesting to users. Although this kind of compression would achieve a more compact

view for visualisations, it requires additional attention and investigation from users as it

is applied on interesting parts of ontologies. There is also a cost of additional glyphs.

In addition, as discussed in Chapter 1 multiple inheritance can exist in ontology hierar-

chies. It is currently addressed by duplicating classes under each of their parents, which

introduces considerable additional data elements, especially when the duplicated classes

are on shallow levels and are the roots of big subtrees. This kind of duplicated subtree

could potentially also be compressed and replaced by single glyphs to reduce the size of
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data elements in visualisations. However, this approach also requires extra investigation

to understand the structure of these hidden subtrees.

(a) A hierarchy before further compression.

-

÷!
(b) The hierarchy after further compression.

Figure 7.1: Illustration of possible further compression for sibling leaf association classes
(highlighted in the blue boxes) and uninteresting intermediate level classes (highlighted
in the red boxes).

7.3 Future Directions

This research has addressed the research questions for visualising ontologies and associ-

ations, introduced in Chapter 1. However, there are many issues and challenges in the

ontology visualisation research area. Several potential future works are outlined as follows.

7.3.1 Ontology Class Lables

During the discussions and user studies with the domain experts, one interesting finding is

that they mostly focused on the class labels in visualisations. This might be a result that

they get used to Protégé for their daily research, which is purely a list of class labels and

represents ontologies in a highly expressive way. Although OntoPlot greedily displays the

class labels where it is possible, there is room to improve. For example, to maintain the

orientation of the association labels as horizontal, which is a more conventional reading

direction than the diagonal orientation, one potential solution could be changing the ori-

entation of the hierarchy instead. However, this may introduce new challenges to read the

hierarchy structure and class labels aligned within ontology hierarchy. Thus, a smart and

effective way to show the large number of ontology class labels in a compact visualisation

requires more research.

7.3.2 Ontology Property Composition

One use case was discovered during the discussions with domain experts and is worth

visualising. Ontology property composition, which links classes via different properties,

constructing a chain of ontology associations, is important to visualise with the ontology

hierarchy. One challenge of this work is how to define which classes should be included in

this composition, as the association set may include all the classes in an ontology. One

possible focus could be to dynamically identify and refine subsequent interesting classes

based on user’s current selection of classes.
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7.3.3 Many-to-Many Ontology Association

Currently, the many-to-many associations between classes are shown as grid labels only for

selected classes. It is beneficial to provide an overview of the association links between each

pair of classes alongside the ontology hierarchy. One possibility is using a matrix view to do

this as presented in Yang et al. (2016) and employing small mosaic box glyphs within the

matrix to accommodate multiple properties. Another possibility is the use of hypergraphs

to depict the associations between classes, which has been identified in Valdivia et al.

(2021). More effective representations need to be explored to handle large ontologies and

show the complex many-to-many mappings of associations in such ontologies.

7.3.4 Ontology Axioms

As discussed in Section 2.1, the associations defined in this research are expressed through

the someValuesFrom restrictions. However, other data property restrictions like allValues-

From and hasValue, which also contain rich information, are not handled by the current

system. Moreover, besides the subClassOf axioms, there are more axioms involved in an

ontology, such as the ones that express property cardinality, property value type literals,

class equivalence and disjointness, and property inheritance hierarchy. Visualising these

axioms is important for understanding the underlying structure of an ontology and the

logical relationships between ontology classes and properties. Some visual annotations or

visual languages have been developed to explore this topic, such as ODG (Silva-López

et al., 2014) and VOWL (Lohmann, Negru, Haag and Ertl, 2014) that were mentioned in

Chapter 3.2. These kind of visual representations work well for small subsets of axioms.

How to increase their scalability to make sense for the whole ontology is still an open

question.

7.3.5 Ontology Instances

Although most ontology visualisations focus on ontology classes, ontology instances that

define individual objects for a class serving as fundamental components for a knowledge

base, are also worth visualising. When talking about the instances that are contained

within ontologies, these instance sets are often very large and treated as leaves in the

ontology hierarchy, which substantially increases the width of the hierarchy and intro-

duces new scalability issues to the visualisations, requiring more efficient use of space

and more compact visual compression techniques. While coming to the instances that

form knowledge graphs as backbones for linked data, the data volume grows to tens of

millions (Paulheim, 2017). Whether visualising these instances alongside the ontology

schema is useful to identify the relationships between entities and how to visualise such

massive data is interesting to explore.

7.3.6 Multiple Ontologies

Visualising links between classes that are from more than one ontology is also an interest-

ing topic. As discussed in Section 7.3.6, such a feature would facilitate important ontology
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activities such as ontology mapping, ontology term reuse and ontology evolution investi-

gation, but also face significant challenges to effectively accommodate the huge number of

classes and associations contained in those ontologies.

The first question is how to align multiple ontology hierarchies together. For visualis-

ing two sets of data, here two ontologies, Ondov et al. (2018) defined five arrangements:

stacked, adjacent, mirrored, overlaid and animated. When coming to more than two

ontologies, the arrangement becomes more complicated. The technique term small multi-

ples (Tufte, 1985) is used to depict this situation, where a series of similar representations

using the same scale and axes are juxtaposed. Several approaches have been developed to

visualise multiple hierarchies using the small multiples display (Chevenet et al., 2006; Telea

and Auber, 2008; Burch and Lohmann, 2015), but are limited in terms of scalability. One

can imagine that using visual compression techniques would allow a number of ontologies

to be compactly visualised as a series of small graphics showing only the interesting parts

among the ontologies.

Another question is how to show the links between multiple ontologies. Existing ap-

proaches used to visualise relationships between multiple representations can be cate-

gorised as following: edge drawing, colouring and matrix (Graham and Kennedy, 2010;

Granitzer et al., 2010; Ivanova and Lambrix, 2014). While an individual ontology itself

also contains associations between its own classes, how to effectively use these approaches

to distinguish these intra-ontology associations with inter-ontologies relationships is worth

further exploration.

7.4 Closing Remarks

This thesis has presented approaches for visualising large ontologies and ontology asso-

ciations. These approaches have been shown to effectively support the exploration and

analyses of complex ontology class relations. Their usability is demonstrated through

user studies and case studies. This research not only advances the state-of-the-art in the

ontology visualisation area but these techniques can also be applied to other hierarchi-

cally structured data visualisations, especially those showing non-hierarchical relations

alongside hierarchy structures.
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protege.stanford.edu/svn/ontoviz-tab/ . Accessed June 2020.

Smith, S. R., Barnard, D. T. and Macleod, I. A. (1984). Holophrasted displays in an
interactive environment, International Journal of Man-Machine Studies 20(4): 343–355.

Staab, S. and Studer, R. (2009). Handbook on Ontologies, 2nd edn, Springer Publishing
Company, Incorporated.

Stasko, J. and Zhang, E. (2000). Focus + Context Display and Navigation Techniques
for Enhancing Radial, Space-filling Hierarchy Visualizations, IEEE Symposium on In-
formation Visualization, 2000. InfoVis 2000., IEEE, pp. 57–65.

Stearns, M. Q., Price, C., Spackman, K. A. and Wang, A. Y. (2001). SNOMED clinical
terms: overview of the development process and project status., Proceedings of the
AMIA Symposium, American Medical Informatics Association, p. 662.

Stevens, R. and Lord, P. (2009). Application of Ontologies in Bioinformatics, Handbook
on Ontologies, Springer, pp. 735–756.

Storey, M.-A., Musen, M., Silva, J., Best, C., Ernst, N., Fergerson, R. and Noy, N. (2001).
Jambalaya: Interactive visualization to enhance ontology authoring and knowledge ac-
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