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Abstract

Computer software plays a significant role in modern life. A large number of technologies and

software methodologies have been employed to develop enormous varieties of computer software

on different platforms (e.g., Linux and Windows) from very simple applications to complex

enterprise software systems, which makes software security one of the most impactful and critical

problems of cybersecurity. Due to the ubiquity of computer software, software vulnerabilities

(SVs) (i.e., specific potential flaws, weaknesses or oversights in computer software that attackers

can use to carry out malicious actions) have become a serious and crucial concern in the software

industry and the field of software security.

Although there are significant and ongoing efforts being made to develop machine learning and

deep learning approaches for detecting dangerous and malicious threads and vulnerabilities that

can severely compromise software security, this issue still remains open with several emerging

problems involving SV detection and function identification methods that need rigorous and

dedicated study.

The first challenging problem is how to transfer efficiently the learning on SVs from labelled

projects to other unlabelled projects. This problem deals with the scarcity of labelled SVs

in projects that require the laborious manual labelling of code by software security experts.

Labelled vulnerable code is needed in order to train the models, but the process of labelling

vulnerable source code is very tedious, error-prone and challenging even for domain experts.

This has led to few labelled projects compared with the vast volume of unlabelled ones.

The second challenging problem is how to efficiently exploit the semantic and syntactic relation-

ships inside source code to detect SVs at a fine-grained level (i.e., the statement level) than the

function or program levels. This problem highlights code statements that are highly relevant to

the corresponding SV. For most publicly available datasets, SVs are only labelled at the pro-

gram or function levels, not at the statement level. In doing fine-grained SV detection, we can

significantly speed up the process of isolating and detecting SVs, thereby reducing the time and

cost involved.

The third challenging problem is how to leverage the information from binary programs to

deal with the function identification problem, a preliminary step in binary analysis for many

applications such as malware detection and binary instrumentation, to name a few. This problem

seeks to obtain the optimal solutions to deal with all cases (e.g., the function scope identification

problem) of the function identification problem.
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The thesis aims to rigorously investigate and provide solutions to these three challenging prob-

lems by using recent advances in the deep learning field which have been demonstrated to be

successful in some application domains such as computer vision and natural language process-

ing. However, due to the complexity of software data, the application of deep neural networks to

software security is not straight-forward and requires filling the gaps in understanding in order

to propose novel deep learning models that fit the characteristics of the software data. Let us

start the journey of bringing deep learning closer to software security.
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Chapter 1

Introduction

Software security is a crucial and significant research problem in cybersecurity wherein all aspects

of how to detect and analyse dangerous and malicious threats in order to secure given software

are speculated on and studied. One of the most impactful problems in software security is

software vulnerability detection (SVD), in which we need to develop automatic tools such as

machine learning or deep learning approaches to specify whether a given piece of software has

any vulnerabilities. For SVD, although approaches based on machine learning and deep learning

can help to automate this task, those approaches demand rich datasets or software projects with

vulnerability labels. Moreover, because the task of labelling software with vulnerability type is

labor-intensive and involves the intervention of security experts with strong knowledge domain

of software analysis, many real-world software projects currently are not labelled at all or only

partly labelled. This raises a critical research question of how to transfer knowledge from machine

learning and deep learning models trained on labelled software projects to achieve models that

can accurately predict the vulnerability of software in unlabelled target software projects.

In addition to addressing the first research question of how to develop novel methods for trans-

ferring the knowledge learned from labelled software projects to unlabelled ones, this thesis also

puts a focus on developing efficient and accurate deep learning-based methods for SVD at a fine-

grained level in the second research question. The final research problem studied in this thesis

is to develop deep learning-based methods inspired by recent advances in the deep learning field

to target the problem of function scope identification in a given piece of binary software. This

binary code analysis problem plays an important role as a preprocessing step whose outcomes

can be used in other tasks including binary SVD and malware detection.

Although deep learning has achieved breakthrough results in multiple application domains such

as visual object recognition [Krizhevsky et al., 2012] and language modelling [Sutskever et al.,
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2014a], the success of deep learning in software security and software-relevant tasks is still

limited. To the best of our knowledge, this is one of the very first theses to study and propose

novel deep learning-based methods with the aim of bringing deep learning closer to software

security, one of the most important problems in cybersecurity.

In the introduction chapter, we first present an overall view of software vulnerabilities (SVs)

in the software industry and the field of computer security, as well as their potential to cause

serious damage to a nation’s economy and people’s lives. We then review the main approaches

for the SVD problem in terms of their strengths and drawbacks, followed by the scope and aims

of the thesis. Finally, we summarise the significance and the main contributions of the thesis.

1.1 Software vulnerabilities

Computer software plays a significant role in modern life. A large number of technologies and

software methodologies have been employed to develop enormous varieties of computer software

on different platforms (e.g., Linux, Windows, Google’s Android and Apple’s iOS) from very

simple applications to complex enterprise software systems. Because of the variety of computer

software as well as the diversity in its development processes, a great deal of computer software

faces SVs, which can be exploited by hackers or vandals leading to severe and serious economic

damage.

In the field of software security, SVs are specific potential flaws, glitches, weaknesses or over-

sights in software. Attackers can leverage these vulnerabilities to carry out malicious actions,

such as exposing or altering sensitive information and disrupting/destroying/taking control of a

system/program [Dowd et al., 2006]. Fig. 1.1 shows an example of a software vulnerability (i.e.,

a heap-based buffer overflow error) in a C/C++ source code function. In particular, this source

code aims to encode a user’s input string with certain characters. The programmer assumes

that the encoding expansion process only expands a given character by a factor of 4 (in the

declaration); however, the encoding of each ampersand expands by 5 (in the implementation).

As a consequence, when the encoding procedure expands a string, it is possible to overflow the

destination buffer if attackers provide a string with many ampersands.

Although much effort has been devoted and many solutions have been proposed for SVD, the

number of SVs and the severity of the threat imposed by them have gradually increased and

caused considerable damage to individuals and companies [Ghaffarian and Shahriari, 2017]. For

example, SVs in popular browser plugins have threatened the security and privacy of millions
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Figure 1.1: Example of a heap-based buffer overflow error in a C/C++ source code function.
(source: https://cwe.mitre.org/data/definitions/122.html).

of internet users (e.g., Oracle Java (US-CERT 2013) and Adobe Flash Player (US-CERT 2015;

Adobe Security Bulletin 2015)). Additionally, SVs in fundamental and popular open-source

software have also threatened the security of thousands of companies as well as their customers

around the globe (e.g., ShellShock (Symantec Security Response 2014), Heartbleed (Codenomi-

con 2014) and Apache Commons (Breen 2015)).

Furthermore, due to the rapid growth of computer software, potential SVs have become universal

in software development and deployment processes, creating severe threats to cybersecurity, and

leading to costs of about USD 600 billion globally each year [McAfee and CSIS, 2017]. In

addition, the quantity of reported SVs has soared for each vulnerability type (e.g., Overflow or

Denial of Service (DoS)) year by year. Summary statistics on vulnerabilities by type are given in

Table 1.1 and Fig. 1.2. These threats create an urgent need for automatic tools and methods

to efficiently and effectively deal with a large amount of vulnerable code with a minimal level of

human intervention.

1.2 Software vulnerability detection

Typical approaches proposed to the SVD problem include those based on machine learning and

deep learning methods, as depicted in Fig. 1.3. All proposed approaches have their strengths

and drawbacks.

Machine learning-based methods. Techniques based on machine learning such as data

structures [Cozzie et al., 2008, White and Lüttgen, 2013], program structures [Brumley et al.,
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Year

#
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nera-
bili-
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DoS

Code
Exe-
cu-
tion

Overflow

Memory
Cor-
rup-
tion

Sql
In-
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tion

XSS
Directory
Traver-

sal

Http
Re-
sponse
Split-
ting

Bypass
some-
thing

Gain
In-
for-
ma-
tion

Gain
Priv-
ileges

CSRF

File
In-
clu-
sion

#
ex-
ploits

1999 894 177 112 172 2 7 25 16 103 2
2000 1020 257 208 206 2 4 20 48 19 139
2001 1677 403 403 297 7 34 123 83 36 220 2 2
2002 2156 498 553 435 2 41 200 103 127 74 199 2 14 1
2003 1527 381 477 371 2 49 129 60 1 62 69 144 16 5
2004 2451 580 614 410 3 148 291 110 12 145 96 134 5 38 5
2005 4935 838 1627 657 21 604 786 202 15 289 261 221 11 100 15
2006 6610 893 2719 663 91 967 1302 322 8 267 271 184 18 849 30
2007 6520 1101 2601 953 95 706 884 339 14 267 323 242 69 700 44
2008 5632 894 2310 699 128 1101 807 363 7 288 270 188 83 170 74
2009 5736 1035 2185 700 188 963 851 322 9 337 302 223 115 138 735
2010 4652 1102 1714 680 342 520 605 275 8 234 282 238 86 73 1493
2011 4155 1221 1334 770 351 294 467 108 7 197 409 206 58 17 557
2012 5297 1425 1458 843 423 242 758 122 13 343 389 250 166 14 615
2013 5191 1454 1186 859 366 156 650 110 7 352 511 274 123 1 205
2014 7946 1598 1574 850 420 305 1105 204 12 457 2104 239 264 2 401
2015 6480 1792 1825 1079 749 217 778 150 12 577 748 367 248 5 127
2016 6447 2029 1494 1326 717 94 497 99 15 444 843 600 87 7 1
2017 14714 3154 3004 2495 745 508 1518 279 11 629 1639 459 327 18 6
2018 16556 1853 3041 2368 400 517 2042 531 11 708 1424 247 461 31 4
2019 12174 919 2277 1247 296 410 1593 280 4 495 900 129 398 40
Total 122774 23603 32718 18081 5339 7853 15303 4130 166 6375 10989 5006 2521 2235 4333

% Of All 19.2 26.6 14.7 4.3 6.4 12.5 3.4 0.1 5.2 9 4.1 2.1 1.8

Table 1.1: Statistics on vulnerabilities by type (source: www.cvedetails.com/vulnerabilities-by-
types.php).

Figure 1.2: Trends of vulnerability types by year (source: www.cvedetails.com/vulnerabilities-
by-types.php).

2011], dynamic analysis [Grieco et al., 2016] and symbolic execution [Cadar and Sen, 2013,

Avancini and Ceccato, 2013, Meng et al., 2016] play important roles in the SVD problem at

the binary code level for cases in which the corresponding source code is not always available.

These methods bring the promise of automated work, which can potentially learn generalisations

about malware; however, there are few machine learning-based malware detection approaches
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Figure 1.3: Estimated timeline of typical machine learning-based and deep learning-based meth-
ods proposed for the SVD problem.

that have low false positive rates and high scalability [Saxe and Berlin, 2015].

Machine learning techniques have also been widely used to create SVD methods at the source

code level. In particular, patterns and features (e.g., software metrics [Chidamber and Kemerer,

1994], code churn metrics [Nagappan et al., 2006] or code measures [Ostrand et al., 2004])

representing software source codes are selected as the input for SVD methods. However, these

features and patterns cannot figure out and distinguish code regions of different semantics in

many cases. Furthermore, some handcrafted features that can perform effectively in one project

may not perform well in other projects [Zimmermann et al., 2009] due to poor generalisation.

Deep learning-based methods. The rapid rise of deep learning is in part due to its ability

to learn feature representations and complex non-linear structures in datasets. Although deep

learning has undergone a renaissance in the past few years and achieved breakthrough results in

multiple application domains such as visual object recognition [Krizhevsky et al., 2012], language

modelling [Sutskever et al., 2014b] and speech recognition [Hinton et al., 2012], the application

of deep learning to cybersecurity is still at an early stage when applied to larger, more complex

and mixed datasets.

Some recent works [Li et al., 2018, Dam et al., 2017, Peng et al., 2015, Saxe and Berlin, 2015, Raff

et al., 2017] have advanced the application of deep learning for the SVD problem and surpassed

SVD methods based on machine learning and data mining [Li et al., 2017] techniques at both

binary and source code levels; however, they themselves encounter some critical limitations as

follows:

1. They cannot transfer efficiently the learning on SVs obtained from labelled projects to

unlabelled projects (i.e, labelled and unlabelled projects may come from different data

domains).

5



2. They cannot detect SVs at a fine-grained and flexible level (i.e., the code statement level),

only at the function or program levels.

In computer security, we often encounter situations where source code is not available and only

binaries are accessible. In these situations, binary analysis is an essential tool enabling many

applications such as malware detection and common vulnerability detection [Perkins et al., 2009].

In binary analysis, function identification is usually the first step and aims to specify function

scope in binary programs. In both binary analysis and function identification, tackling the loss

of high-level semantic structures in binaries which results from compilers during the process of

compilation is likely the most challenging problem. There have been many effective methods for

dealing with the function identification problem from heuristic solutions [Kruegel et al., 2004]

to complex approaches employing machine learning (e.g., ByteWeight [Bao et al., 2014] and

Nucleus [Andriesse et al., 2017]) or deep learning techniques (e.g., [Shin et al., 2015]). These

methods have shown promising performance; however, they still encounter the following issue:

3. They cannot address the function scope identification problem, the toughest and most

essential sub-problem in the function identification problem, wherein the scope (i.e., the

indexes or addresses of all machine instructions in a function) of each function must be

specified.

1.3 Scope and aims

This thesis aims to leverage the potential and promising abilities of the deep learning approach

to address the shortcomings, mentioned in Section 1.2, existing in most current methods for

effectively and efficiently tackling the SVD and function identification problems. In particular,

we propose several novel deep learning-based methods for addressing the three following research

questions:

(Q.1) How to transfer efficiently the learning on software vulnerabilities from labelled projects

(i.e., source domains) to other unlabelled projects (i.e., target domains).

(Q.2) How to efficiently exploit the semantic and syntactic relationships inside source code to

detect vulnerabilities at a fine-grained level with more flexible scope (i.e., the code statement

level) than the function or program levels.

(Q.3) How to leverage the information from binaries (i.e., byte instructions) and assemblies

(i.e., machine instructions) programs to deal with all cases (i.e., the function start identification,

6



function end identification, function boundary identification and function scope identification

problems) of the function identification problem, especially the function scope identification

problem, the toughest and most essential problem.

1.4 Significance

The significance of the thesis is structured around three central lines of work to address the three

aforementioned problems remaining in existing current work on software security by answering

the three research questions (i.e., Q.1, Q.2 and Q.3) mentioned in Section 1.3. It is worth noting

that to the best of our knowledge, this is one of the first thesis projects studying how to leverage

the power of deep learning to solve the aforementioned critical and urgent problems in software

security which can cause serious and severe damage to a nation’s economy and people’s lives.

This thesis serves as a bridge to connect deep learning approaches proven to be successful in

some application domains to software security. The initial success of the approaches that we

have proposed in this thesis demonstrates the potential of applying deep learning approaches to

real-world problems of software security. we summarise these problems and the significance of

the thesis as follows:

Firstly, one of the most crucial issues of the SVD is dealing with the scarcity of labelled vulner-

abilities in projects that require laborious manual labelling of code by software security experts.

Labelled vulnerable code is needed to train the models and the process of labelling vulnerable

source code is very tedious, time-consuming, error-prone and challenging even for domain ex-

perts. This has led to few labelled projects compared with the vast volume of unlabelled ones.

The first research question of the thesis (i.e., how to efficiently transfer the learning on SVs from

labelled projects to other unlabelled projects) aims to address this issue of the SVD problem.

Our research is one of the first works proposing deep learning-based methods for the transfer

learning problem in SVD.

Secondly, despite their promising performance, current deep learning-based methods are only

able to detect SVs at the function-[Lin et al., 2018, Li et al., 2018] or program-[Dam et al., 2017]

levels. However, in real-world situations, programs or even functions can consist of hundreds

or thousands of code statements and the source of most vulnerabilities often arises from a

significantly smaller scope, usually a few core statements. The second research question of

the thesis (i.e., how to efficiently exploit the semantic and syntactic relationships inside source

codes to detect vulnerabilities at a fine-grained level with more flexible scope than the function

or program levels) aims to detect SVs at a fine-grained level, i.e., several code statements within
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functions or programs. This includes highlighting statements that are highly relevant to the

corresponding vulnerability of associated code statements. For most publicly available datasets,

vulnerabilities are only labelled at the program or function levels, not at the code statement

level. In doing this, we can then significantly speed up the process of isolating and detecting

SVs, thereby reducing the time and cost involved. Our research is one of the first works using

deep learning approaches to discover effective solutions to detect SVs at the code statement level

within functions or programs in SVD.

Finally, function identification is a preliminary step in binary analysis for many applications from

malware detection to common vulnerability detection and binary instrumentation, to name a

few. However, existing function identification methods [Bao et al., 2014, Shin et al., 2015,

Andriesse et al., 2017] cannot address the function identification problem effectively, especially

for the hardest one, the function scope identification problem. The third research question of

the thesis (i.e., how to leverage the information from binaries and assemblies to deal with all

cases of the function identification problem) aims to find the solutions to deal with all cases (i.e.,

the function start, function end, function boundary and function scope identification problems)

of the function identification problem of binary analysis in SVD. Our research introduces some

effective remedies that are the answers for solving all cases of the function identification problem.

1.5 Organisation and contributions of the thesis

The main contributions of this thesis are summarised in three main parts (i.e., Parts I, II and

III) which reflect and aim to answer the three research questions (i.e., Q.1, Q.2 and Q.3). In

what follows, we summarise the organisation and content of each part.

Part I “Deep Domain Adaptation for Software Vulnerability Detection” aims to

address the problem relevant to the first research question (Q.1).

Part I presents novel deep learning-based approaches proposed to address the first research

question (Q.1) and consists of Chapters 3 and 4. Chapter 3 introduces the work to tackle

the problem of transfer learning (aka domain adaptation) from a labelled software project to

another unlabelled software project. To the best of our knowledge, this is the first work that

has studied deep domain adaptation for SVD. The contribution of this chapter is to propose a

novel architecture named the Code Domain Adaptation Network (CDAN) and a novel approach

named the Semi-supervised Code Domain Adaptation Network (SCDAN) that is based on the

skeleton of CDAN for this specific problem.
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Chapter 4 addresses the same problem of the transfer learning for SVD but from a deeper

angle in which we first identify the existing drawbacks of the previous work mainly based on

the generative adversarial network (GAN) principle which inherently suffers from the mode

collapsing problem. The approach we propose in Chapter 4 can tackle the inherent missing mode

and boundary distortion problems of GANs, hence significantly improving the first approach

mentioned in Chapter 3.

Part II “Learning to Explain Software Vulnerability” aims to address the problem

relevant to the second research question (Q.2).

Part II presents another piece of work regarding proposing novel learn-to-explain approaches

that can assist us in performing SVD at a fine-grained level. The motivation comes from our

observation that a given source code section (i.e., a function or program) can consist of hundreds

or thousands of lines of code statements, but only a few of them might be the main source of vul-

nerabilities. This raises a question regarding whether we can employ or develop learn-to-explain

deep learning-based approaches to identify code statements that really contribute to the deci-

sion on vulnerabilities and highlighted code statements that are really relevant to the vulnerable

code statements in the given source code section. This way of thinking is reasonable because

we believe that what the model bases its predictions on concurs with the natural vulnerable

characteristics of the source code given the fact that the model learns those characteristics from

a mixed variety of source code.

Our contributions to this line of thinking include two novel deep learning-based approaches

proposed in Chapters 5 and 6 for which we note that this is the first time the desire for fine-

grain-level SVD has been proposed and addressed successfully to some extent. Briefly, the

approach we propose in Chapter 5 originates from a novel information-bound formula on which

we rely to devise further technical components. Moreover, the novel information-bound formula

has been developed to more efficiently exploit the sequential nature of source codes. The second

approach, presented in Chapter 6, goes even further in terms of theory in which we leverage

the information bottleneck theory [Tishby et al., 2000, Tishby and Zaslavsky, 2015] to the novel

information-bound formula for the problem of interest, which then serves as a regularisation

term to support the automatic inference of the number of selected vulnerable code statements.

Part III “Deep Sequence-to-sequence Models for Function Scope Identification in

Binary Programs” aims to address the problem relevant to the third research ques-

tion (Q.3).
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Part III addresses the third research question and is presented in Chapters 7 and 8. For Part III,

we focus on the function scope identification problem for binary software which is one of the most

important tasks in binary analysis. More specifically, we have proposed two novel learning-based

approaches to tackle the problem. The first approach is developed based on the spirit of pointer

networks [Vinyals et al., 2015b], while the second approach, named the Code Action Network,

is inspired by the spirit of a Turing machine [Turing, 1938] in which the underlying idea is to

equivalently transform the task of function scope identification (i.e., the hardest problem in the

function identification problem) into the learning of a sequence of action states including NI

(next inclusion), NE (next exclusion) and FE (function end) corresponding to byte instructions

(at the byte level) or machine instructions (at the machine instruction level) of binary programs.

The two proposed approaches, especially the Code Action Network, currently achieve state-of-

the-art-performance and surpass both other existing approaches based on machine learning and

deep learning. This line of work can be leveraged along with the work mentioned in Part II

to fulfill real-world binary SVD in which complex binary software is inputted to the system

and subsequently split into many binary functions on which we run fine-grain-level detection

to highlight the machine instructions likely causing vulnerabilities. It is worth noting that

binary SVD is both more useful and more challenging than source code SVD from a practical

perspective.

An overall view of the contributions of the thesis is depicted in Fig. 1.4.

Figure 1.4: Overall view of the thesis on the software vulnerability detection (SVD) problem;
the names of all mentioned chapters are simplified for the purpose of visualisation.
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Chapter 2

Related Background

In this chapter, we review the related background to the thesis. As previously stated, the thesis

mainly focuses on leveraging the potential and promising abilities of deep learning approaches

to effectively and efficiently tackle the software vulnerability detection (SVD) problem. We first

briefly give an introduction to deep learning in terms of some typical popular architectures,

namely, deep feedforward neural networks (DNNs) and convolutional neural networks (CNNs),

as well as reviewing information theory (e.g., entropy, mutual information and information bot-

tlenecks). We then provide a fundamental view of deep sequence models in deep learning such

as recurrent neural networks (RNNs), bidirectional recurrent neural networks (bi-RNNs) and

pointer networks that are specialised and extremely useful for working with sequence data (e.g.,

source code, time series and text). Finally we discuss deep generative models (e.g., variational

autoencoders (VAEs) and generative adversarial networks (GANs)), deep domain adaptation

(e.g., using the GAN principle, Wasserstein distance and virtual adversarial training), and spec-

tral graphs for semi-supervised deep domain adaptation.

2.1 Introduction to deep learning

2.1.1 Deep feedforward neural networks

Artificial neural networks (ANNs) were inspired by the idea of building an intelligent machine

that can imitate the human brain’s architecture. ANNs are at the core of deep learning. They

are versatile, powerful and scalable, making them capable of tackling large and highly complex

machine learning tasks such as visual object recognition and classification (i.e, classifying billions

of images, ImageNets [Russakovsky et al., 2014]), language modelling (e.g., Google translation),
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SVD, speech recognition (e.g., Apple’s Siri), recommendation systems (e.g., Youtube) and self-

learning machines (e.g., DeepMind’s AlphaGo [Silver et al., 2017], which can beat the human

world champion in the game Go by examining millions of past games and then playing against

itself).

The standard well-known architectures of ANNs are deep feedforward neural networks (DNNs)

(i.e., multi-layer perceptrons (MLPs)). An MLP is composed of one input layer, one or more

hidden layers and one output layer. Every layer is fully connected to the next layer (i.e.,

connection from the input layer to the first hidden layer, from the hidden layer to the next

hidden layer, and from the last hidden layer to the output layer). An example architecture of

an MLP is depicted in Fig. 2.1.

The DNN shown in Fig. 2.1 has one input layer (i.e., contains input data) with three neu-

rons x = (x1, x2, x3), two hidden layers where the first hidden layer contains four neurons

h1 = (h1
1, h

1
2, h

1
3, h

1
4) and the second hidden layer has three neurons h2 = (h2

1, h
2
2, h

2
3), and one

output layer with two neurons o = (o1, o2). Depending on different problems (e.g., traffic sign

recognition or digit classification), we may have different numbers of neurons in each layer (i.e.,

the input layer, hidden layers and output layer). For example, in handwritten digit classification

(i.e., each digit is an image having 28 × 28 pixels), the number of neurons in the input layer

should be 28× 28 = 756, which is equal to the dimension of the flattened vector of each image.

The number of neurons in two hidden layers can be in {128, 256, 512} for instance, while the

number of neurons in the output layer should be 10 (i.e., handwritten digits go from 0 to 9).

We compute the values of the hidden layers and output layer of the network depicted in Fig.

2.1 as follows:

h1 = σ(W>
xhx+ b)

h2 = σ(W>
hhh

1 + c)

o = φ(W>
hoh

2 + d)

where Wxh, Whh and Who are the weight matrices from the input layer to the first hidden

layer, from the first hidden layer to the second hidden layer and from the second hidden layer

to the output layer, while b, c and d are the bias vectors of the first hidden layer, the second

hidden layer and the output layer respectively. We often use the ReLU function for σ and the

softmax function for φ in classification problems.
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Figure 2.1: Architecture of a deep feedforward neural network with three neurons at the input
layer followed by two hidden layers with four and three neurons respectively, while there are two
neurons at the output layer.

Training DNNs. In 1986, Rumelhart et al. proposed an idea for training DNNs called back-

propagation [Rumelhart et al., 1986] that is described as gradient descent today.

In the back-propagation algorithm, in the first phase, for each mini-batch of the training data

the backpropagation algorithm first makes corresponding predictions (the forward pass goes

through from the input layer to hidden layers and then to the output layer). The results from

the output layer are then evaluated using an objective function (i.e., a cost or loss function). In

the second phase, the gradients of the cost function then go through each layer in the network in

reverse to measure the error contribution from each connection (reverse pass) and finally slightly

tweak the connection weights to reduce the error (gradient descent step).

There are two well-known problems, namely, the vanishing gradients and exploding gradients

problems, faced in training DNNs. In the training process, in some cases gradients get smaller

and smaller when moving down to the lower (previous) layers. As a result, a gradient descent

update leaves the lower layer connection weights almost unchanged and the training process

hardly converges to an optimal solution. This problem is called the vanishing gradients problem.

In other cases, in the training process the gradients get larger and larger when moving back to

the lower layers so many layers get large weight updates and the training process becomes

divergent. This is the exploding gradients problem.

Around 2010, especially in the research proposed by Glorot and Bengio [Glorot and Bengio,

2010], the authors mentioned that using a good initialisation strategy for model weight param-

eters and using appropriately corresponding activation functions can significantly alleviate the
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vanishing gradients and exploding gradients problems.

2.1.2 Convolutional neural networks

Convolutional neural networks (CNNs) [LeCun et al., 1998] are a kind of DNNs that are spe-

cialised for processing image data. The name “convolutional neural network” indicates that

the network employs a mathematical operation called convolution which is a specialised kind of

linear operation. CNNs are DNNs that use convolution in place of general matrix multiplication

in at least one of their layers.

CNNs have achieved breakthrough performance on many complex visual tasks [Krizhevsky et al.,

2012, Tran et al., 2015] such as visual object recognition, self-driving cars, automatic video

classification systems and more. CNNs also successfully show high performance on other tasks

such as voice recognition and natural language processing (NLP).

In 1998, Lecun and colleagues [LeCun et al., 1998] introduced a typical famous architecture of

a CNN named LeNet-5 as depicted in Fig. 2.2. This architecture shows some common building

blocks often used in CNNs including fully connected layers (i.e., as used in DNNs), convolutional

layers and pooling layers.

Figure 2.2: Architecture of LeNet-5 (a convolutional neural network) with some building blocks
including convolutional layers, pooling layers and fully connected layers.

Convolutional layers. Convolutional layers as shown in Fig. 2.2 are the most important

part of a CNN. The neurons in the first convolutional layer are connected to pixels in small

rectangles (i.e., the receptive fields) of the input layer. This principle is kept for the connection

between other layers (e.g., the connection between the second convolutional layer and the first

convolutional layer). The neurons in the second convolutional layer are also connected only

some neurons in the first convolutional layer in the receptive fields. This architecture allows

the network to concentrate on small low-level (i.e., general) features in some first hidden layers,
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then assemble them into larger higher-level (i.e., specific) features in some next hidden layers.

In particular, a neuron located in row i and column j of a given layer is connected to the outputs

of some neurons in the previous layer located in rows i to i+ fh−1 and columns j to j+ fw−1,

where fh and fw are the height and width of the receptive field. If we desire to obtain a layer

that has the same height and width as the previous layer, we need to add zeros around the

inputs, as shown in Fig. 2.3 (left-hand figure). This is called zero padding. Furthermore, we

can also gain a much smaller layer by spacing out the receptive fields and the shift from one

receptive field to the next is called the stride as depicted in Fig. 2.3 (right-hand figure). In this

case, a neuron located in row i and column j in the upper layer is connected to the outputs of

the neurons in the previous layer located in rows i × sh to i × sh + fh − 1 and columns j × sw
to j × sw + fw − 1, where sh and sw are the vertical and horizontal strides.

Figure 2.3: Connections between layers in a CNN with zero padding (left-hand figure) and using
stride where the vertical and horizontal strides are equal to 2 (right-hand figure).

Filters and feature maps. In reality, a convolutional layer often applies multiple filters

(i.e, trainable filters and each filter outputting one feature map) to gain multiple corresponding

feature maps, making the convolutional layer capable of detecting multiple features from its

inputs. In particular, a neuron located in row i and column j of the feature map k in a given

convolutional layer l is connected to the outputs of the neurons in the previous layer l − 1,

located in rows i× sh to i× sh + fh− 1 and columns j× sw to j× sw + fw− 1, across all feature

maps (in layer l− 1). We note that all neurons in the same row i and column j but in different

feature maps of a convolutional layer are connected to the outputs of the exact same neurons in

the previous layer.

We can summarise the preceding process by using Eq. (2.1) to further demonstrate how to
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compute the output of a given neuron of a convolutional layer.

oi,j,k = bk +
fh−1∑
u=0

fw−1∑
v=0

fk′−1∑
k′=0

o′i×sh+u,j×sw+v,k′ × wu,v,k′,k (2.1)

where

• oi,j,k is the output in row i and column j in the feature map k of convolutional layer l.

• o′i×sh+u,j×sw+v,k′ is the output in row i× sh + u and column j× sw + v in the feature map

k′ of the previous convolutional layer l − 1.

• wu,v,k′,k is the connection weight (i.e., it is updated during the training process) between

any neuron in the feature map k of convolutional layer l and its inputs in row u and column

v of the corresponding receptive field and feature map k′ of the previous convolutional layer

l − 1 while bk is the bias of the feature map k of convolutional layer l.

Pooling layers. The main goal of the pooling layers is to subsample (i.e., shrink) the input

convolutional layer in order to reduce the computational cost. Pooling layers not only reduce the

memory usage, but also reduce the number of parameters, so eliminating the risk of overfitting.

Pooling layers have no weights and they only aim to aggregate the inputs using an aggregation

function such as the max or mean. We also need to define the size, the stride and the padding

type (i.e., zero padding or not padding) for the pooling layers as for the convolutional layers.

2.1.3 Information theory

2.1.3.1 Entropy

We denote X as a random variable if it takes on values from a set of possible values X with

specified probabilities. Entropy is a measure of the uncertainty of a random variable. It aims to

measure the averaged amount of information required in order to be able to describe the random

variable. Assume that we have a discrete random variable X and a probability mass function

p(x) = p(X = x), x ∈ X where X often stands for the event space and seeing any x from X as

observing the event X = x. The entropy of H(X) of a discrete random variable X is defined as:

H(X) = −
∑
x∈X

p(x)logp(x) (2.2)

where the log is to base 2 and the entropy is expressed in bits. The entropy is the number of
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bits on average required to describe the random variable.

We can further extend the definition of a single random variable as described in Eq. (2.2) to a

pair of random variables. Assuming that we have two discrete random variables X and Y drawn

from a joint distribution p(x, y), the joint entropy H(X,Y ) is defined as:

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y)logp(x, y)

Furthermore, we can also define the conditional entropy of a random variable given another

random variable. That can be considered the expected value of the entropies of the conditional

distributions that is averaged over the conditioning random variable. Assuming that we have

two discrete random variables X and Y drawn from a joint distribution p(x, y), the conditional

entropy H(Y |X) is defined as:

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x)log(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y)log(y|x)

2.1.3.2 Relative entropy and mutual information

Relative entropy. The term “relative entropy” is often used to represent the measure of two

distributions. Assume that we have two different distributions p and q with two corresponding

probability mass functions p(x) and q(x). The relative entropy, also called the Kullback–Leibler

distance, is defined as follows:

DKL(p||q) =
∑
x∈X

p(x)logp(x)
q(x) (2.3)

where we use some conventions in which 0log0
0 = 0, 0log0

q = 0 and plogp0 =∞. We note that if

there is any value x ∈ X such that p(x) > 0 and q(x) = 0 then DKL(p||q) =∞.

From Eq. (2.3), we can see that the Kullback–Leibler distance is not symmetrical (i.e., DKL(p||q)

6= DKL(p||q)) and does not satisfy the triangle inequality (i.e., DKL(r||p) ≤ DKL(q||p) +

DKL(r||q)). These problems are known as the drawbacks of the Kullback–Leibler distance

and prevent it from being an optimal measure of the true distance between two distributions.
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Mutual information. The term “mutual information” is used for measuring the dependence

between two random variables. Mutual information captures how much the knowledge of one

random variable reduces the uncertainty of the other.

Assume that we have two random variables X and Y drawn from the joint distribution p(x, y)

with two corresponding marginal distribution p(x) and p(y). The mutual information between

X and Y denoted by I(X,Y ) is the relative entropy between the joint distribution p(x, y) and

the product distribution p(x)p(y), and is defined as follows:

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log p(x, y)
p(x)p(y) (2.4)

= DKL(p(x, y)||p(x)p(y))

The relationship between entropy and mutual information. The formula for the mutual

information between two random variablesX and Y described in Eq. (2.4) can be further derived

as follows:

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y)log p(x, y)
p(x)p(y)

=
∑
x,y

p(x, y)log p(x, y)
p(x)p(y)

=
∑
x,y

p(x, y)logp(x|y)
p(x) (2.5)

= −
∑
x,y

p(x, y)logp(x) +
∑
x,y

p(x, y)logp(x|y)

= −
∑
x

p(x)logp(x) +
∑
x,y

p(x, y)logp(x|y)

= H(X)−H(X|Y )

From Eq. (2.5), we can conclude that mutual information I(X,Y ) can be used to denote the

reduction in the uncertainty of X using the knowledge of Y . The mutual information I(X,Y )

is always larger than or equal to 0 (i.e., I(X,Y ) ≥ 0). The mutual information I(X,Y ) obtains

the largest value equal to H(X) if and only if X is completely determined by Y while achieving

the smallest value equal to 0 if and only if X and Y are independent.
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2.1.3.3 Information bottlenecks

An information theory of deep learning. In the supervised learning problem of deep learn-

ing, we often aim to predict corresponding outputs (e.g., labels) {yi}ni=1 given inputs {xi}ni=1.

A DNN will learn some latent representations (i.e., latent features in a latent space that contain

useful information to describe the data) {x̃i}ni=1 of the input data in terms of enabling good

predictions and generalisations.

Assume that the whole hidden layer in Fig. 2.4 is denoted by a random variable X̃ while the

input layer and the output layer are denoted by random variables X and Y respectively. We

can describe this hidden layer by two conditional distributions: the encoder p(x̃|x) and the

decoder p(y|x̃). This transformation process preserves the information of the input layer X

without considering which individual neurons within the hidden layer X̃ encode which features

(i.e., neurons) of X. An optimal encoder process of the mutual information between X and the

desired output Y denoted by I(X,Y ) can create the most compact encoding (i.e., minimally

sufficient statistic) X̃ of the input data X while X̃ still has enough information (i.e., X̃ can

capture the important features of X as well as remove the unnecessary parts of X that do not

make any contributions to the prediction of Y ) to predict Y as accurately as possible.

Figure 2.4: Architecture of a simple deep neural network in a supervised learning context.

Information bottlenecks and optimal representations. An information bottleneck [Tishby

et al., 2000, Tishby and Zaslavsky, 2015] is proposed to be a computational framework that aims

to find the most compact encoding X̃ of the input data X. In particular, it is the optimal trade-

off between the compression X̃ and the prediction of the desired output Y as described in the

following optimisation problem:

min
p(x̃|x),p(y|x̃),p(x̃)

{
I(X, X̃)− βI(X̃, Y )

}
(2.6)
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where β specifies the amount of relevant information captured by the encoding process (i.e., the

representations X̃ and I(X̃, Y )).

2.2 Deep sequence models

2.2.1 Recurrent neural networks

Recurrent neural networks (RNNs) [Rumelhart et al., 1986] are a class of DNNs. RNNs are spe-

cialised for processing sequential data (e.g., time series, sentences, documents, or audio samples).

RNNs are extremely useful for natural language processing (NLP) systems [Cho et al., 2014a,

Sutskever et al., 2014b] such as automatic translation, speech-to-text and sentiment analysis.

Leveraging the idea of sharing parameters across different parts of a model, an RNN can not

only extend and apply to data of different forms, but also generalise across them.

An RNN is similar to a DNN, except it has connections pointing backward. A visualisation of

an RNN’s architecture is depicted in Fig. 2.5 (left-hand figure). At each time step t, the state

of a recurrent neuron (i.e, the hidden state denoted by ht) will receive the input vector xt as

well as the state vector from the previous step t− 1 (i.e., ht−1) to obtain the state vector ht. In

particular, we have:

ht = f(ht−1,xt)

We can unroll the RNN network through time to gain a new visualisation as depicted in Fig.

2.5 (right-hand figure). Each recurrent neuron has two relevant input weights. One is for the

input vector xt, and the other is for the state vector ht−1 of the previous time step t − 1 . At

the time step t, if we denote the weight from the input vector xt to the state ht of the current

recurrent neuron by Wxh and the weight from the state ht−1 of the previous recurrent neuron

to the state ht of the current recurrent neuron by Whh, the state ht of the current recurrent

neuron is computed as follows:

ht = φ(W>
xhxt + W>

hhht−1 + b)

where b is the bias vector and φ(.) is the activation function (e.g., the ReLU or Tanh functions).

At the time step t, if we denote Why as the weight from the state ht of the current recurrent

neuron to the corresponding output denoted by yt, the output yt is computed as follows:
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yt = φ(W>
hyht + c)

where c is the bias vector and φ(.) is the activation function (e.g., the softmax function).

Figure 2.5: Architecture of a recurrent neural network with the outputs y plus the hidden states
h of recurrent neurons.

Memory cell. Because the state of a recurrent neuron at the time step t is a function or can

be considered a lossy summary of all previous inputs and recurrent neurons at previous time

steps, we can say that a recurrent neuron’s state has a form of a memory. The part of an RNN

preserving some states across time steps is called a memory cell, or just a cell for simplicity.

Multi-layer RNNs. We can stack multiple layers of a memory cell to gain a deep multi-layer

RNN. The architecture of a multi-layer RNN can be depicted as in Fig. 2.6. Compared to a

basic one-layer RNN, a multi-layer RNN has an additional weight denoted by Rhh between the

recurrent neurons of different layers. We compute the state hlt of the recurrent neuron at the

time step t of the layer l with l > 1 as follows:

hlt = φ(R>hhhl−1
t + W>

hhh
l
t−1 + d)

where d is the bias vector and φ(.) is the activation function (e.g., the ReLU or Tanh functions)

while hl−1
t and hlt−1 are hidden states of the previous layer (l − 1) and the previous time step

(t− 1) respectively.

Training RNNs. To train an RNN, we first unroll it through time and then use a regular

backpropagation process. This approach is named backpropagation through time (BPTT).

Similar to a regular backpropagation process, in the first phase the forward process goes through
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Figure 2.6: Architecture of a deep RNN (left-hand side) and unrolled through time (right-hand
side).

the unrolled RNN to obtain an output sequence that is evaluated using an objective function

(i.e., a cost or loss function). In the second phase, the gradients of the cost function are propa-

gated backward through the unrolled RNN to update the RNN’s parameters using the gradients

obtained during BPTT.

To train an RNN for a long input sequence, we need a long unrolled RNN (i.e., it has many

time steps), which may suffer from two serious issues, namely, the vanishing and exploding

gradients problem (i.e, this problem makes a long unrolled RNN difficult to train to be able to

achieve an optimal solution), as emerges in a DNN and the short-term memory problem (i.e.,

the lost information about some of the first inputs in the memory cell when traversing a long

RNN). To deal with the first problem, there have been many approaches introduced such as

initialising good model parameters, using nonsaturating activation functions (e.g., ReLU) and

applying batch normalisation [Ioffe and Szegedy, 2015] or gradient clipping [Pascanu et al., 2013]

techniques. To handle the second problem, various types of memory cells with long-term memory

have been introduced like LSTMs [Hochreiter and Schmidhuber, 1997] and gated recurrent units

(GRUs) [Cho et al., 2014b].

2.2.2 Long short-term memory networks

Long short-term memory (LSTM) networks are a type of RNNs capable of learning long-term

dependencies, first proposed by Hochreiter and Schmidhuber [Hochreiter and Schmidhuber,

1997] and gradually improved over the years by other researches [Sak et al., 2014, Zaremba

et al., 2014]. An LSTM network can address the exploding and vanishing gradients problems as

well as the short-term memory problem (i.e., the lost information about some of the first inputs
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in the memory cell of a long RNN) in training RNNs effectively.

The key idea of an LSTM network is about storing a long-term memory. An LSTM network can

learn to figure out what information from the inputs should be read and stored in the long-term

state denoted by ct as well as what information should be thrown out from ct. A visualisation

of an LSTM network is shown in Fig. 2.7. As depicted in Fig. 2.7, there are four layers in an

LSTM network: the main layer and three additional layers (i.e., gate controllers), namely, the

forget gate, the input gate and the output gate.

• The main layer at the time step t aims to analyse the current input vector xt and the

previous (short-term) state ht−1 to gain the output gt (i.e., ht in a basic cell RNN). In an

LSTM cell, the layer’s output gt does not go straight out, but instead goes through a gate

controller to decide what parts are stored in the long-term state (i.e., ct).

• Using the logistic activation function, the forget gate ft aims to learn which parts of the

long-term state ct should be erased. The input gate it aims to control which parts of gt
should be added to the long-term state ct while the output gate ot aims to learn which

parts of the long-term state ct should be outputted for both ht and yt.

The following equation (i.e., Eq. (2.7)) summarises the aforementioned computing process of

the four layers at the time step t:

it = σ
(
W>

xixt + W>
hiht−1 + bi

)
ft = σ

(
W>

xfxt + W>
hfht−1 + bf

)
ot = σ

(
W>

xoxt + W>
hoht−1 + bo

)
gt = tanh

(
W>

xgxt + W>
hght−1 + bg

)
ct = ft ⊗ ct−1 + it ⊗ gt

yt = ht = ot ⊗ tanh(ct−1) (2.7)

where Wxi, Wxf , Wxo and Wxg are the weight matrices from the input vector xt to each of the

four layers while Whi, Whf , Who and Whg are the weight matrices from the previous short-

term state ht−1 to each of the four layers, and bi, bf , bo and bg are the bias vectors to each of

the four layers respectively. In general, the output yt can be different from the short-term state

ht (i.e., yt = φ(W>
hyht + by)) where by is the bias vector, Why is the weight from ht to yt, and

φ(.) is the activation function (e.g., the softmax function)).
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Figure 2.7: Architecture of a long short-term memory (LSTM) network.

2.2.3 Gated recurrent unit networks

A gated recurrent unit (GRU) network [Cho et al., 2014b] depicted in Fig. 2.8 can be considered

a simplified version of an LSTM network. Following are the simplifications at the time step t:

• Both short-term ht and long-term ct states are merged into one single state denoted by

ht.

• A single gate controller zt is introduced to control both the input gate and the forget gate.

If zt outputs 1, the forget gate is open and the input gate is closed and vice versa (i.e., if

zt outputs 0, the forget gate is closed and the input gate is open). This process operates

whenever a memory should be stored in a location whose current memory will be erased

first before having a new incoming memory.

• There is no output gate in a GRU network. However, there is a new gate controller named

rt proposed to control which part of the previous state ht−1 will be used in the main layer

gt.

Equation (2.8) summarises the aforementioned computing process at the time step t:

zt = σ
(
W>

xzxt + W>
hzht−1 + bz

)
rt = σ

(
W>

xrxt + W>
hrht−1 + br

)
gt = tanh

(
W>

xgxt + W>
hg(rt ⊗ ht−1) + bg

)
yt = ht = zt ⊗ ht−1 + (1− zt)⊗ gt (2.8)

where Wxz, Wxr and Wxg are the weight matrices from the input vector xt to each layer zt,
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rt and gt, while Whz, Whr and Whg are the weight matrices from the previous state ht−1

to each layer zt, rt and gt. In addition, bz, br and bg are the bias vectors to each layer

zt, rt and gt respectively. In general, the output yt can be different from the state ht (i.e.,

yt = φ(W>
hyht + by)) where by is the bias vector, Why is the weight from ht to yt, and φ(.) is

the activation function (e.g., the softmax function)).

Figure 2.8: Architecture of a gated recurrent unit (GRU) network.

2.2.4 Bidirectional recurrent neural networks

Bidirectional recurrent neural networks (bi-RNNs) [Schuster and Paliwal, 1997] are a class of

DNNs. In bi-RNNs, at a specific time step t the input information in the past (i.e., the forward

states used in RNNs) and the future (i.e., the backward states, which are usually also useful) can

be leveraged to learn the corresponding state and prediction (i.e., for both ht and yt). This is

different from RNNs (i.e., at a specific time frame, RNNs can only capture the input information

in the past to learn the corresponding state and prediction). Bi-RNNs can effectively address

this limitation of RNNs.

A bi-RNN combines two RNNs, where one RNN moves forward while the other RNN moves

backward through time. The overall structure of a bi-RNN is depicted in Fig. 2.9. A bi-RNN

takes a sequence of input data B = (i1, i2, ..., il) for mapping to a corresponding sequence of

target output Y = (y1,y2, ...,yl). The computation of a bi-RNN is as follows:

h1
k = a(H>h1

k−1 +U>ik)

g1
k = a(H>g1

k+1 + V >ik)

ok = W>

 h1
k

g1
k

 and pk = softmax (ok)
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where k = 1, ..., l, h1
0, and g1

l+1 = g1
0 are initial hidden states, a (·) is the element-wise activation

function and θ = (U ,V ,W,H) is the model (i.e., the model parameters). We further note that

pk, k = 1, . . . , l is a discrete distribution over the target labels. To find the best model θ∗ we

need to solve the following optimisation problem:

max
θ

∑
(B,Y)∈D

logp (Y | B)

where we define

logp (Y | B) =
l∑

k=1
logp (yk | y1, ...,yk−1, i1, i2, ..., il) =

l∑
k=1

logp (yk | ok)

We denote D as the training set including pairs (B,Y) of the data and their corresponding

target labels, and ok as a function or it can be considered a lossy summary of the sequence

(y1, ...,yk−1, i1, i2, ..., il).

Figure 2.9: Structure of a bidirectional recurrent neural network. The bi-RNN will learn to
map the input sequences of items (i1, i2, ..., il) to the target output sequence (y1,y2, ...,yl) with
the loss Li at each time step t. ht represents the forward-propagated hidden state (towards the
right) while gt stands for the backward-propagated hidden state (towards the left). At each
time step t, the predicted output can benefit from the relevant information from the past from
its ht and from the future from its gt.

2.2.5 Sequence-to-sequence models

Although DNNs are powerful machine learning models, they can only be used with the problems

where the dimensionality of their inputs and outputs is known and fixed. This is a considerable

limitation of DNNs due to many significant problems (i.e., NLP problems [Sutskever et al.,
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2014b, Cho et al., 2014a]) best expressed with sequences whose lengths are not known prior

such as machine translation and question answering.

A sequence-to-sequence network (seq2seq network or encoder-decoder network) has been pro-

posed to deal with sequence-to-sequence problems. A seq2seq network normally consists of two

different RNNs. The first and second RNNs are called the encoder and the decoder respectively.

The aim of the encoder is to read and encode an input sequence (i.e., a source sequence), one

time step at a time, to obtain the final fixed dimensional vector representation (i.e., context

vector) for the input sequence. The context vector is then fed to the second RNN to gain an

output sequence (i.e., a target sequence). In seq2seq networks, LSTMs are used for the memory

cells in both the encoder and the decoder due to their ability to learn data with long-range

temporal dependencies, which makes them a natural choice for this application because of the

considerable time lag between the inputs and their corresponding outputs.

Assume that we have an input sequence (x1, ...,xT ) and its corresponding output sequence

(y1, ...,yT ′ ), the goal of a seq2seq network is to estimate (i.e., maximise) the conditional prob-

ability p(y1, ...,yT ′ |x1, ...,xT ) as:

p(y1, ...,yT ′ |x1, ...,xT ) =
T
′∏

t=1
p(yt|x1, ...,xT ,y1, ...,yt−1) (2.9)

The seq2seq network computes this conditional probability by first obtaining the fixed dimen-

sional representation v of the input sequence (x1, ...,xT ) given by the last hidden state of the

encoder and then computing the probability of (y1, ...,yT ′ ) with the decoder with a standard

formulation whose initial hidden state is set to the representation v of (x1, ...,xT ). Equation

(2.9) can be rewritten as:

p(y1, ...,yT ′ |x1, ...,xT ) =
T
′∏

t=1
p(yt|v,y1, ...,yt−1) (2.10)

In Eq. (2.10), each p(yt|v,y1, ...,yt−1) distribution is represented with a softmax over all the

words in the vocabulary. Note that we require each sentence to end with a special end-of-

sentence symbol EOS, which enables the model to define a distribution over sequences of all

possible lengths. The overall process is visualised in Fig. 2.10, where the shown seq2seq network

computes the representation of A, B, C and EOS, and then uses this representation to compute

the probability of W , X, Y , Z and EOS.
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Figure 2.10: Architecture of a seq2seq model reading an input sentence including A, B, C
and EOS, and producing W , X, Y , Z and EOS as the output sentence. The model stops
making predictions after outputting the end-of-sentence token EOS. Note that the encoder
using an LSTM reads the input sentence in reverse. By doing so, we introduce many short-term
dependencies in the data, aiming to simplify the optimisation problem.

2.2.6 Attention mechanism

Using a fixed-length context vector to encode the meaning of a whole input sequence, regardless

of how long it may be, can be a problem with standard seq2seq networks. For example, assume

that we have two sentences, “I cannot be happier with the results of my study in my first year”

compared with “I cannot be happy with the results of my study in my first year” with only one

word different; however, this different word causes a large meaning difference between these two

sentences. Both the encoder and decoder must be nuanced enough to represent this change as a

very slightly different point in space. This causes a big challenge for standard seq2seq models.

The attention mechanism was introduced and gradually improved over the years by many re-

searchers such as [Bahdanau et al., 2014] and [Luong et al., 2015], to address the aforementioned

problem faced in standard seq2seq models. The general idea is to provide an elegant way for

the decoder to pay attention to and focus on specific parts of the source sequence (i.e., it is

strongly relevant for predicting a target word at each time step) during the translation process.

In particular, this seq2seq model aims to encode the input sentence into a sequence of vectors

and chooses a subset of these vectors adaptively while decoding the translation.

Bahdanau and colleagues [Bahdanau et al., 2014] proposed a novel architecture as depicted in

Fig. 2.11 for neural machine translation. In this model, the authors used a bi-RNN for the

encoder and an RNN for the decoder.

In a standard seq2seq model, we have the following joint probability:

p(y1, ...,yT ′ ) =
T
′∏

t=1
p(yt|v,y1, ...,yt−1) (2.11)

where v = f(h1, ...,hT ) and ht = g(xt,ht−1) with f and g as nonlinear functions. We often use

an LSTM cell for g while f(h1, ...,hT ) = hT is the context vector generated from the sequence
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of the encoder’s hidden states (i.e., the representation of the input sequence).

In Bahdanau’s model, each conditional probability in Eq. (2.11) is defined as:

p(yt|v,y1, ...,yt−1) = a(yt−1, st,vt)

The decoder’s hidden state at time step t denoted by st is computed as:

st = b(st−1,yt−1,vt)

where a and b are nolinear functions.

The probability of each target word yt is conditioned on a specific context vector vt while the

context vector vt is the weighted sum of all encoders’ hidden states:

vt =
T∑
j=1

αtjhj

The weight αtj of each encoder’s hidden state hj is computed by

αtj = exp(c(st−1,hj))∑T
k=1 exp(c(st−1,hk))

(2.12)

The term c(st−1,hj) in Eq. (2.12), for example, computes the alignment score, aiming to

measure the match between the input at position j and the output at position t. In particular,

c(st−1,hj) is computed as follows:

c(st−1,hj) = q>tanh(W [st−1;hj ]

where q and W are the learnable weight vector and the matrix respectively.

2.2.7 Pointer networks

Pointer networks [Vinyals et al., 2015b] are a novel neural architecture that aims to learn the con-

ditional probability of an output sequence whose elements are discrete tokens which correspond

to positions in an input sequence. A pointer network overcomes the limitation of requiring

the size of the output dictionary to be fixed prior as in the introduced sequence-to-sequence

paradigms. The main idea of a pointer network is repurposing the attention mechanism of

[Bahdanau et al., 2014] to create pointers to input elements.
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Figure 2.11: Architecture of Bahdanau et al.’s seq2seq attention mechanism model in generating
the t-th target word yt given a source sequence (x1, ...,xT ).

Assume that we have a training pair (I,O) where I = {i1, i2, ..., il} and O = {n1, n2, ..., nm} are

the sequence of l data points and m indices between 1 and l respectively. A pointer network

whose structure can be depicted as in Fig. 2.12 learns the model parameters θ by maximising

the following conditional probabilities for the training set:

θ∗ = argmax
θ

∑
I,O

logp(O|I; θ)

where we have defined

p(O|I; θ) =
m∏
i=1

pθ(ni|n1, ..., ni−1, I; θ) (2.13)

To solve the problem in Eq. (2.13), a pointer network uses an attention mechanism as follows:

uji = v>tanh(Uhhj +Ussi), j ∈ {1, ..., l}

p(ni|n1, ..., ni−1, I) = softmax(uji), j ∈ {1, ..., l}

where i ∈ {1, ...,m}. The vector v and the matrices Uh and Us are learnable parameters.

{h1,h2, ...,hl} and {s1, s2, ..., sm} are the encoder’s hidden states and the decoder’s hidden

states respectively.
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The softmax function aims to normalise the vector ui to be an output distribution over the

dictionary of inputs. Unlike the standard attention mechanism, in a pointer network we do not

combine the encoder states to provide more extra information to the decoder. We use ui as

pointers to the input data to find the most appropriate input element for the output at the time

step i of the decoder. Furthermore, we use the corresponding ini−1 as the input for the decoder’s

state si to set the condition on ni−1.

Figure 2.12: Structure of a pointer network, which includes an encoding RNN (on the left-hand
side with orange colour) aiming to encode the input sequence to be fed to the generating network
(on the right-hand side with light-blue colour). At each step, the output from the generating
network using a content-based attention mechanism over the inputs is a softmax distribution
with a size equal to the length of the input sequence.

2.3 Deep generative models

2.3.1 Variational autoencoders

Variational autoencoders (VAEs) [Kingma and Welling, 2014] are neural variational models that

aim to learn approximations of the data distributions. Assume that a neural variational model

is parameterised by θ and the dataset X = {xi}Ni=1 consists of N independent and identically

distributed samples of some continuous or discrete variable xi. It aims to maximise the following

log-likelihood function:

θ∗ = argmax
θ

log
N∏
i=1

pθ(xi) (2.14)

to obtain the best parameter θ∗ of the model to approach the data distribution.

If a neural variational model is representative of the dataset, for every data point xi there should

exist at least one setting of the latent variables which causes the model to generate something
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very similar to xi. We assume that the data is generated by a random process, as depicted in

Fig. 2.13 (left-hand figure), which involves an unobserved continuous random variable z (e.g.,

z ∼ N (0, I)). The process first generates a value z from some prior distribution pθ(z), and then

a value xi is generated from some conditional distribution pθ(xi|z). In this case, the likelihood

function mentioned in Eq. (2.14) is written as:

pθ(xi) =
∫
pθ(xi|z)pθ(z)dz (2.15)

It is impossible to compute pθ(xi) because we cannot compute the integral pθ(xi|z) for all the

possible values of z. To narrow down the value space in order to facilitate faster searching (i.e.,

the key idea behind the VAE is to attempt to sample values of z that are likely to have produced

xi and to compute pθ(xi) just from those), an approximation function was proposed to output

qφ(z|xi), which is parameterised by φ given an input xi as depicted in Fig. 2.13 (right-hand

figure).

Eq. 2.15 can be rewritten as:

logpθ(xi) = Ez∼qφ(z|xi) [logpθ(xi)]

= Ez∼qφ(z|xi)

[
logpθ(xi|z)pθ(z)

pθ(z|xi)

]
= Ez∼qφ(z|xi)

[
logpθ(xi|z)pθ(z)

pθ(z|xi)
qφ(z|xi)
qφ(z|xi)

]

= Ez∼qφ(z|xi) [logpθ(xi|z)]− Ez∼qφ(z|xi)

[
logqφ(z|xi)

pθ(z)

]
+ Ez∼qφ(z|xi)

[
logqφ(z|xi)

pθ(z|xi)

]
= Ez∼qφ(z|xi)[logpθ(xi|z)]−DKL[qφ(z|xi)‖pθ(z)] +DKL[qφ(z|xi)‖pθ((z|xi)]

Figure 2.13: Standard VAE model is represented as a graphical model in the left-hand figure
and a variant with the variational parameters φ is learned jointly with the generative model
parameters θ (in the right-hand figure). The rectangle with N shows that we can sample z and
x N times when the model parameters φ and θ remain fixed.

VAEs have emerged as one of the popular approaches to unsupervised learning of complex

distributions because they are built on top of standard function approximators (DNNs) that
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can be trained with stochastic gradient decent. The key insight behind VAEs is that they are

trained to maximise the variational lower bound L(; θ) on log-likelihood for each data sample

xi of the dataset:

L(xi; θ) = Ez∼qφ(z|xi)[logpθ(xi|z)]−DKL[qφ(z|xi)‖pθ(z)] (2.16)

where qφ(z|xi) is a posterior distribution, and pθ(z) is a prior distribution for the latent variable

z. The first term of Eq. (2.16) can be considered the data reconstruction likelihood (from the

given z code). The second term tries to make the posterior qφ(z|xi) and the prior pθ(z) close to

each other. One of the easy choices for the prior pθ(z) is normal Gaussian distribution N (0, I).

This way, an encoder-decoder model can be trained to maximise the lower bound L(xi; θ). The

encoder of this network is qφ(z|xi), which can be modelled as a neural network that learns to

output the parameters (mean µ and variance Σ) of the posterior distribution qφ(z|xi) given the

data xi as input. The encoder also tries to force the learning to be close to the chosen prior

pθ(z). On the other hand, the decoder of this model is pθ(xi|z), which can be modelled as a

neural network that resembles a reconstruction of the data xi from the code z sampled from

the learned posterior qφ(z|xi). Fig. 2.14 shows the typical architecture of a VAE encoder and

decoder.

The VAE is one of the most popular approaches to variational learning in deep generative

models. However, the main challenge of variational methods is how to find an effective way to

minimise DKL[qφ(z|xi)‖pθ(z)] towards 0 to let pθ(xi) converge (in term of distribution) to the

true distribution. It is not straightforward to ensure that DKL[qφ(z|xi)‖pθ(z)] = 0. In practice,

variational methods often obtain very good likelihoods, but are known to produce lower quality

or blurry samples.

2.3.2 Generative adversarial networks

Generative adversarial networks (GANs) [Goodfellow et al., 2014a] are one of the most successful

generative models. They aim to perform implicit density estimation by training the generator

G such that G (z) fed by z ∼ pz can mimic the true data in a given dataset. From a game

perspective, a GAN can be seen as a game of two players: the discriminator D and the generator

G. The task of the discriminator is to discriminate the true data and generate samples, while the

task of the generator is to make its generated samples indistinguishable from the true samples
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Figure 2.14: Typical architecture of a VAE encoder and decoder. The orange boxes are the
objectives of the encoder and decoder, while z is sampled using the equation z = µ+diag (σ)1/2 ε
and ε ∼ N (0, I). [Doresch, 2016]

(see Fig. 2.15). A GAN is formulated as a minimax problem:

min
G

max
D

(Epd [logD (x)] + Epz [log (1−D (G (z)))])

where pd is the empirical data distribution.

It can be proven that at the Nash equilibrium point, the distribution pg induced by G (z) with

z ∼ pz is exactly the data distribution, and the discriminator cannot distinguish between the

true and generated samples:

pg = pd

D (x) = 1
2 , ∀x

In particular, GANs use the Jensen–Shannon divergence to minimise the divergence between

two distributions pd and pg. Some (e.g., [Huszar, 2015]) believe the main reason behind GANs’

success is their use of the Jensen–Shannon divergence instead of using the Kullback–Leibler

divergence.

34



Figure 2.15: Diagram of a generative adversarial network.

Although GANs have shown great performance in many generative tasks to replicate rich real-

world content such as images, human language, and music, they have a well-known limitation

in term of the mode collapsing problem [Goodfellow et al., 2014a, Santurkar et al., 2018]. With

this problem, the generated samples miss some modes in the true data or can only partly recover

some modes in the true data.

2.4 Deep domain adaptation

2.4.1 Using the generative adversarial network principle

In many cases, direct access to vast quantities of labelled data for the task of interest (i.e.,

the target domain) is either costly or otherwise impossible, but labels are readily available for

related training sets (i.e., the source domain). The deep domain adaptation approach [Ganin

and Lempitsky, 2015] not only aims to learn the representations of the data from both the source

and target domains, but also aims to minimise the divergence between the source and target

domains. Hence, the learning obtained from the source domain can be effectively transferred to

the target domain.

Mathematically, the source and target data are mapped via the generator G to a joint feature

space. Inspired by the GAN principle, an additional discriminator is then invoked to bridge

the gap between the source and target domains in this joint feature space. Another source

classifier C is simultaneously employed to classify the source data with labels. When the gap

between the source and target domains in the joint space vanishes, we can use the source

classifier C to transfer the learning from the source to the target domains. Denote the source

and target datasets by S =
{(
xS1 , y1

)
, . . . ,

(
xSNS , yNS

)}
where the labels yi ∈ {−1, 1} and
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T =
{
xT1 , . . . ,x

T
NT

}
. The generator G, the domain discriminator D, and the source classifier C

are trained via the following optimisation problem:

min
C

NS∑
i=1

`
(
C
(
G
(
xSi

))
, yi
)

(2.17)

where ` (y, y′) specifies the loss function (e.g., the cross-entropy loss).

min
G

max
D

(Ex∼pS [logD (G (x))] + Ex∼pT [log (1−D (G (x)))]) (2.18)

where pS (·) = 1
NS

∑NS
i=1 δxSi

(·) and pT (·) = 1
NT

∑NT
i=1 δxTi

(·) are the empirical distributions over

the source and target data. Here we note that δx(·) is the atom measure at the sample x. With

the above notions, the optimisation problem in Eq. (2.18) can be equivalently rewritten as:

min
G

max
D

O (G,D,C) (2.19)

where we have defined

O (G,D,C) = 1
NS

NS∑
i=1

logD
(
G
(
xSi

))
+ 1
NT

NT∑
i=1

log
[
1−D

(
G
(
xTi

))]

Putting the optimisation problems in Eqs. (2.17 and 2.19) together, we arrive at the joint
objective function with the trade-off parameter λ > 0:

J (G,D,C) = 1
NS

NS∑
i=1

`
(
C
(
G
(
xSi
))
, yi
)

+ λ

(
1
NS

NS∑
i=1

logD
(
G
(
xSi
))

+ 1
NT

NT∑
i=1

log
[
1−D

(
G
(
xTi
))])

where we seek the optimal generator G∗, the domain discriminator D∗, and the source classifier

C∗ by solving

(C∗, G∗) = argminC,GJ (G, D, C)

D∗ = argmaxDJ (G, D, C)

2.4.2 Using the Wasserstein (Earth Mover’s) distance

Wasserstein distance. Let (X , η) be a compact metric space where η(x,y) is the distance

function of two data points x ∈ Rd and y ∈ Rd in X (a compact metric set; in this case, every

open cover of X contains a finite subcover). We denote Prob(X ) as the space of probability

measures defined on X . The σ-th Wasserstein distance between two Borel probability distribu-

tion measures (for a Borel probability measure, all continuous functions are measurable) pr ∈
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Prob(X ) and pg ∈ Prob(X ) with finite moments of order σ (i.e.,
∫
η(x,y)σdpr(x) <∞,∀y ∈ X )

is defined as follows:

Wσ(pr, pg) = inf
γ∈Ω(pr,pg)

(
∫
η(x,y)σdη(x,y))1/σ (2.20)

= inf
γ∈Ω(pr,pg)

(Ex∼pr,y∼pgη(x,y)σ)1/σ

where σ ≥ 1 while Ω(pr, pg) is the set containing all joint distributions γ(x,y) whose marginals

are pr(x) and pg(y) respectively. Intuitively, γ(x,y) can be considered a policy where we specify

how much “mass” should be transported from x to y to transform the distribution pr into the

distribution pg.

The Kantorovich-Rubinstein theorem indicates that when X is separable and σv = 1, the dual

representation [Villani, 2008] (i.e., the main idea is the transformation from minimising the cost

in Eq. (2.20) to maximising the profit as in Eq. (2.21) of the Wasserstein distance described in

Eq. (2.20) can be written as follows:

W1(pr, pg) = sup
‖f‖L≤1

Ex∼pr [f(x)]− Ey∼pg [f(y)] (2.21)

where f denotes the mapping from Rd to R and the Lipschitz semi-norm ‖f‖L is defined as

‖f‖L = sup |f(x)− f(y)| /η(x,y) while η(x,y) ≥ |f(x)− f(y)| for all x and y.

The Lipschitz constraint plays an important role in the Wasserstein distance because it aims to

block f from arbitrarily enhancing small differences. The Lipschitz constraint ensures that if

two input data are similar, their outputs from f are similar as well.

Domain adaptation using Wasserstein distance. In the unsupervised learning context,

the greatest challenge in domain adaptation is that two different domains have different data

distributions. Therefore, the classifier obtained from the source domain may be significantly

biased in the target domain. Several recently proposed methods [Redko et al., 2016, Shen

et al., 2018] leverage the advantages of the Wasserstein distance in minimising the discrepancy

between two different data distributions in order to bridge the gap between the source and target

representations through adversarial training. As a result, the proposed models can learn feature

representations invariant to the change of domains in an effective way.

The work in [Shen et al., 2018] uses the domain critic introduced in [Arjovsky et al., 2017]

to estimate the Wasserstein distance between the source representation (e.g., hS = fg(xS))

and the target representation (e.g., hT = fg(xT )) distributions (i.e., phS and phT ) in the joint
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space where fg is a feature extractor parameterised with θg by a DNN that maps the data

from both source and target data in Rm into a joint feature space Rd. The domain critic aims

to learn a function fw : Rd → R parameterised with θw to map a feature representation to a

real corresponding number. The Wasserstein distance between two distributions then can be

computed as follows:

W1(pr, pg) = sup
‖fw‖L≤1

Ep
hS

[
fw(hS)

]
− Ep

hT

[
fw(hT )

]
(2.22)

= sup
‖fw‖L≤1

Ep
xS

[
fw(fg(xS))

]
− Ep

xT

[
fw(fg(xT ))

]

We can approximate the empirical Wasserstein distance in Eq. (2.22) by maximising the domain

critic loss Lwd with respect to θw if the {fw} (i.e., the parameterised family of the domain critic

function fw) are all 1-Lipschitz:

Lwd(xS ,xT ) = 1
NS

∑
xS∈S

fw(fg(xS))− 1
NT

∑
xT∈T

fw(fg(xT ))

There are some potential ways to enforce the Lipschitz constraint. Arjovsky et al. [2017] proposed

to clip the weight θw of the domain critic fw in an interval [−c, c] with the value of c = 0.01

after each gradient update step. However, this can cause the problem of capacity underuse, as

well as the gradient vanishing or exploding problems [Gulrajani et al., 2017]. Gulrajani et al.

[2017] proposed an elegant solution to enforce the gradient penalty Lgrad for the parameter θw
of the domain critic fw as follows:

Lgrad(h̃) = (
∥∥∥∇

h̃
fw(h̃)

∥∥∥
2
− 1)2

where h̃ = αhS + (1− α)hT , α ∈ U [0, 1], hS ∼ phS and hT ∼ phT .

We can estimate the empirical Wasserstein distance by solving the following problem:

max
θw
{Lwd − γLgrad}

where γ is the trade-off (i.e., balancing) coefficient.

Finally, domain invariant representation learning can be obtained by solving the following min-

imax problem:

min
θg

max
θw
{Lwd − γLgrad} (2.23)
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Eq. 2.23 is then added to the main objective function as the second term along with the first

(main) term (i.e., we minimise the target prediction loss) to form the final optimisation function

of the model, for example, as follows:

min
θg ,θc

{
Lc + λmax

θw
[Lwd − γLgrad]

}

where Lc is the target prediction loss (i.e., Lc = 1
NS

∑NS
i=1 l(fc(fg(xSi )), ySi ) where l is the cross-

entropy loss function) for the source data and θc is the parameters of the source data classifier

fc.

2.4.3 Using the maximum mean discrepancies distance

In recent years, DNNs have shown promising ability in learning transferable features that can

generalise to new tasks in domain adaptation effectively; however, the features for transferability

often drop significantly in high layers, resulting in increasing domain discrepancy compared

with lower layers due to the transformation of learning data representation from general to

specific along the networks (e.g., CNNs). Therefore, how to reduce the data bias to enhance the

transferability in task-specific layers is an important problem.

In 2015, Long et al. [2015] proposed a novel deep domain adaptation architecture that aims

to generalise CNNs for domain adaptation. In this proposed network, the representations in

high hidden (i.e., task-specific) layers are mapped (embedded) to a reproducing kernel Hilbert

space (RKHS) where we can explicitly match the mean embeddings of different domain distri-

butions. The authors claimed that using an optimal multi-kernel selection method for the mean

embedding matching can further reduce the discrepancy between different data domains.

In particular, the proposed architecture focuses on the multiple kernel variant of maximum

mean discrepancies (MK-MMD) introduced in [Gretton et al., 2012b]. If we denote the RKHS

by Hk, defined on a topological space X , which is endowed with a characteristic kernel k, the

mean embedding of a distribution p in Hk will be a unique element µk(p) with Ex∼pf(x) =

〈f(x), µk(p)〉Hk for all f ∈ Hk. The MK-MMD distance between two different distributions pS
and pT denoted by dk(pS , pT ) is defined as the RKHS distance between the mean embeddings

of pS and pT . We formularise the square of the MK-MMD distance as follows:

d2
k(pS , pT ) 4=

∥∥∥ExS∼pSφ(xS)− ExT∼pT φ(xT )
∥∥∥2

Hk
(2.24)

where the distribution pS = pT iff d2
k(pS , pT ) = 0 [Gretton et al., 2012a] (this is the most
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important property) and the characteristic kernel associated with φ (the feature map, i.e.,

k(xS ,xT ) =
〈
φ(xS), φ(xT )

〉
) is defined as the convex combination of n positive semi-definite

(PSD) kernels {ku}:

K 4=
{
k =

n∑
u=1

βuku :
n∑
u=1

βu = 1, βu ≥ 0,∀u
}

In practice, we often use a family of n Gaussian kernels (i.e., positive definite kernels) {ku}nu=1

where γu in k(xi,xj) = e−‖xi−xj‖
2/γu varies between 2−10 and 2−15 with a multiplicative step-

size of 20.5 [Gretton et al., 2012b].

Using the kernel trick, we can rewrite Eq. (2.24) as follows:

d2
k(pS , pT ) = ExS1∼pS ,xS2∼pSk(xS1 ,xS2 ) + ExT1 ∼pT ,xT2 ∼pT k(xT1 ,xT2 )− 2ExS1∼pS ,xT1 ∼pT k(xS1 ,xT2 )

(2.25)

where xS1 ,xS2
iid∼ pS , xT1 ,xT2

iid∼ pT and k ∈ K.

Due to the O(n2) complexity of the computation mentioned in Eq. (2.25) (i.e., it is not expected

when working with deep CNNs), Long et al. introduced an unbiased estimate of the MK-MMD

distance in order to enforce the computation to match O(n) linear complexity as follows:

d2
k(pS , pT ) = 2

NS

NS/2∑
i=1

gk(zi) (2.26)

where gk(zi)
4= k(xS2i−1,x

S
2i) + k(xT2i−1,x

T
2i) − k(xS2i−1,x

T
2i) − k(xS2i,xT2i−1), zi

4= (xS2i−1,x
S
2i,

xT2i−1,x
T
2i), xS2i−1,x

S
2i
iid∼ pS and xT2i−1,x

T
2i
iid∼ pT .

In the domain adaptation scenario, the unbiased estimate of the MK-MMD distance is applied to

DlS =
{
hSli

}
and DlT =

{
hT li

}
where hSli and hT li are the l-th (i.e., we can choose different values

of l depending on the architecture of the models as well as the number of labelled source data

and the number of parameters in the layers that are fine-tuned) layer hidden representations of

the source and target data points xSi and xTi respectively. Therefore, in this case the values of

zi described in Eq. (2.26) will be
(
hS2i−1,h

S
2i,h

T
2i−1,h

T
2i

)
, and the MK-MMD distance between

the source and target evaluated on the l-th hidden layer representation is d2
k(DlS ,DlT ).

Finally, the MK-MMD distance (i.e, we minimise this distance) is added to the main objective

function as the second term along with the first (main) term (i.e., we minimise the target

prediction loss) to form the final optimisation function of the model, for example, as follows:

min
Θ

 1
NS

NS∑
i=1

l(θ(xSi ), ySi ) + λ
l2∑
l=l1

d2
k(DlS ,DlT )


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where Θ is the network parameters, while l is the cross-entropy loss function, and θ(xSi ) is the

conditional probability that the network assigns the data xSi to the corresponding label ySi . We

denote l1 and l2 as the layers used to minimise the MK-MMD distance.

2.4.4 Using virtual adversarial training

The limitation of domain adversarial training. In domain adversarial training, we have

the following objective function:

J (G,D,C) = 1
NS

NS∑
i=1

`
(
C
(
G
(
xSi

))
, yi
)

+ λ

 1
NS

NS∑
i=1

logD
(
G
(
xSi

))
+ 1
NT

NT∑
i=1

log
[
1−D

(
G
(
xTi

))]

where we denote the source and target datasets by S =
{(
xS1 , y1

)
, . . . ,

(
xSNS , yNS

)}
with the

labels, for example, yi ∈ {−1, 1} (i.e., −1: non-vulnerable source code and 1: vulnerable source

code) and T =
{
xT1 , . . . ,x

T
NT

}
respectively, while C is the source classifier to classify the source

samples, and D is the domain discriminator to discriminate the source and target samples. We

use the cross-entropy loss function for l.

We seek the optimal generator G∗, the domain discriminator D∗, and the source classifier C∗

by solving:

(C∗, G∗) = argminC,G J (G,D,C) andD∗ = argmaxD J (G,D,C)

Using the GAN principle, we encourage the Jensen-Shannon divergence between the latent

features of the source and target data via the feature generator G to be small. Ganin and

Lempitsky [2015] concluded that when the source classifier error and the feature divergence

between the source and target data are both small, domain adaptation tends to be obtained.

However, Shu et al. [2018] pointed out that if the feature generator G has infinite capacity and

the source-target supports are disjointed, then G can lead to arbitrary transformations to the

target domain in order to match the source feature distribution. In this case, domain adversarial

training may not be sufficient for domain adaptation.

Domain adaptation using virtual adversarial training. Shu et al. [2018] proposed ap-

plying the cluster assumption [Chapelle and Zien, 2005] (i.e., if the data distribution contains
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clusters, the data points in the same cluster should come from the same class, and the optimal

decision boundaries should not cross high-density regions of the data) to domain adaptation.

In particular, the work in [Shu et al., 2018] aims to minimise the conditional entropy in Eq.

(2.27) for the target distribution in order to force the source classifier C to be confident on the

unlabelled target data. As a result, the decision boundaries of the source classifier C are driven

away from the target data.

Lc(C,G,T) = −ExT∼T

[
C
(
G
(
xT
))

logC
(
G
(
xT
))]

(2.27)

In practice, the conditional entropy mentioned in Eq. (2.27) must be empirically estimated using

the available data. However, if the source classifier C is not locally-Lipschitz, the conditional

entropy may break down [Grandvalet and Bengio, 2005] because without the locally-Lipschitz

constraint, the source classifier C can abruptly change its prediction in the vicinity of the training

data. To prevent this problem, Shu et al. [2018] introduced a solution that incorporates the

locally-Lipschitz constraint via virtual adversarial training [Miyato et al., 2018] described as

follows:

Lv(C,G,D) = Ex∼D

[
max
‖r‖≤ε

DKL(C (G (x)) ||C (G (x+ r))
]

(2.28)

Note that we minimise Eq. (2.28) to enforce source classifier consistency within the norm-ball

neighborhood of each data point x, and virtual adversarial training can be applied to both the

target and source data (i.e., D can be S or T). The locally-Lipschitz constraint in Eq. (2.28) is

then added to the final objective function as an additional term.

2.4.5 Using spectral graphs for semi-supervised domain adaptation

A spectral graph [Zhu et al., 2009] is a useful tool for capturing the geometrical and distributive

information carried in the data. It is usually formulated as an undirected graph whose vertices

are the data instances. In the context of semi-supervised learning, we are given a training set

X = Xl ∪Xu where Xl = {(xi, yi)}li=1 is labelled data, and Xu = {xi}l+ui=l+1 is unlabelled data.

We construct the spectral graph SG = (V, E) where the vertex set V includes all labelled and

unlabelled instances (i.e., V = {xi}l+ui=1). An edge eij = xixj ∈ E between two vertices xi and

xj represents the similarity of the two instances. Let µij be the weight associated with the edge

eij . The underlying principle is to enforce that if µij is large, then yi and yj are expected to

receive the same label. The set of edges SG and its weights can be built as follows:

• Fully connected graph: Every pair of vertices xi, xj is connected by an edge. The edge
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weight decreases when the distance ‖xi − xj‖ increases. The Gaussian kernel weight func-

tion widely used is given by

µij = exp
(
−‖xi − xj‖2/

(
2σ2

))

where σ is known as the bandwidth parameter and controls how quickly the weight de-

creases.

• k-NN: Each vertex xi determines its k nearest neighbors (k-NN) and makes an edge with

each of its k-NN. The Gaussian kernel weight function can be used for the edge weight.

Empirically, k-NN graphs with small k tend to perform well.

• ε-NN: We connect xi and xj if ‖xi − xj‖ ≤ ε. Again the Gaussian kernel weight function

can be used to weight the connected edges. In practice, ε-NN graphs are easier to construct

than k-NN graphs.

It is noteworthy that when constructing a spectral graph, we avoid connecting the edge of two

labelled instances since we do not need to propagate a label between them. Fig. 2.16 illustrates

an example of a spectral graph constructed using a 3D dataset using k-NN with k = 5.

Figure 2.16: Example of a spectral graph.

After building the spectral graph, a semi-supervised learning problem is formulated as assigning

labels to the unlabelled vertices. We need a mechanism to rationally propagate labels from the

labelled vertices to the unlabelled ones. Again, the key idea here is to encourage xi to have the

same label as xj if the weight µij is large.

To assign labels to the unlabelled instances, it is desirable to learn a mapping function f : X −→

Y where X and Y are the domains of the data and labels respectively, such that

• f (xi) is as close to its label yi as possible for all labelled instances xi (1 ≤ i ≤ l).

43



• f should be smooth on the whole graph SG, i.e., if xi is very close to xj (i.e., xi, xj are

very similar or µij is large), the discrepancy between fi and fj (i.e., |fi − fj |) is small.

We arrive at the following optimisation problem:

min
f

∞× l∑
i=1

(fi − yi)2 +
∑

(i,j)∈E
µij (fi − fj)2

 (2.29)

where by convention we define ∞× 0 = 0 and fi = f (xi).

The optimisation problem in Eq. (2.29) reaches its minimum when the first term is exactly

0 and the second term is as small as possible. It can be therefore rewritten as a constrained

optimisation problem:

min
f

 ∑
(i,j)∈E

µij (fi − fj)2

 (2.30)

s.t. : ∀li=1 : fi = yi

To extend the representation ability of the prediction function f , we relax the discrete function f

to be real-valued. The drawback of the relaxation is that in the solution, f(xi) is now real-valued

and hence does not directly correspond to a label. This can be addressed by thresholding f(xi)

at zero to produce discrete label predictions, i.e., if f(xi) ≥ 0, predict y = 1, and if f(xi) < 0,

predict y = −1.
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Part I

Deep Domain Adaptation for

Software Vulnerability Detection
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Preface to Part I

In Part I, Chapters 3 and 4, we summarise our proposed methods to address the first crucial

problem existing in current software vulnerability detection (SVD) methods, which is relevant

to the first research question (Q.1): “how to transfer efficiently the learning on software vul-

nerabilities from labelled projects (i.e., source domains) to other unlabelled projects (i.e., target

domains)”. Owing to the ubiquity of computer software, the SVD problem has become an impor-

tant problem in the software industry and in computer security. Two significant issues in SVD

arise when using machine learning, namely: i) how to learn automatic features that can improve

the predictive performance of vulnerability detection, and ii) how to overcome the scarcity of la-

belled vulnerabilities in projects that require the laborious labelling of code by software security

experts.
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Chapter 3

Deep Domain Adaptation for

Vulnerable Code Function

Identification

Owing to the ubiquity of computer software, the SVD problem has become an important prob-

lem in the software industry and in computer security. Two significant issues in SVD arise

when using machine learning, namely: i) how to learn automatic features that can improve the

predictive performance of vulnerability detection, and ii) how to overcome the scarcity of la-

belled vulnerabilities in projects that require the laborious labelling of code by software security

experts.

In this chapter, we address these two crucial concerns by proposing a novel architecture named

the Code Domain Adaptation Network (CDAN) which leverages deep domain adaptation with

automatic feature learning for SVD. Based on this architecture, we keep the principles and reap-

ply state-of-the-art deep domain adaptation methods to indicate that deep domain adaptation

for SVD is plausible and promising. Moreover, we further propose a novel method named the

Semi-supervised Code Domain Adaptation Network (SCDAN) that can efficiently utilise and

exploit information carried in unlabelled target data by considering them the unlabelled portion

in a semi-supervised learning context. The proposed SCDAN method enforces the clustering

assumption, which is a key principle in semi-supervised learning.
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3.1 Motivations

Software vulnerabilities are specific flaws or oversights in a piece of software that allow attackers

to undertake malicious activities: expose or alter sensitive information, disrupt or destroy a

system, or take control of a computer system or program [Dowd et al., 2006]. Due to the

ubiquity of computer software, the growth and diversity in its development processes, a great

deal of computer software potentially includes software vulnerabilities, and this fact makes the

problem of software security vulnerability identification an important concern in the software

industry and in the field of computer security. Consequently, we need automatic tools and

methods that can accurately detect software vulnerabilities with a minimal level of human

intervention. For this purpose, there exist many vulnerability detection systems and methods,

ranging from open source to commercial tools, and from manual to automatic methods [Shin

et al., 2011, Neuhaus et al., 2007, Yamaguchi et al., 2011, Grieco et al., 2016, Li et al., 2016,

Kim et al., 2017, Li et al., 2018].

Another issue in SVD research is the scarcity of labelled projects, since the process of labelling

vulnerable source code is a tedious, time-consuming, error-prone and challenging task even for

domain experts. As a result, we have few labelled projects compared with a vast volume of

unlabelled ones. A viable solution is to apply transfer learning or domain adaptation which

aims to devise automatic methods that make it possible to perform transfer learning from the

source domain with labels to the target domains without labels.

In this chapter, we first propose the Code Domain Adaptation Network (CDAN), a novel ar-

chitecture which can tackle software source code and transfer learning from labelled software

projects (source domain) to unlabelled projects (target domain). CDAN uses the generator G

composed by a bidirectional RNN and a subsequent map to map sequential code tokens from

source code to an intermediate layer in the network regarded as the joint feature layer. To bridge

the gap between source and target domains in the joint feature layer, we employ an additional

discriminator D. From a game perspective, the task of the discriminator D is to discriminate the

source and target source codes, while the task of the generator G is to make indistinguishable

the source and target source codes. At the Nash equilibrium point of this game, the gap be-

tween the source and target projects vanishes and consequently, the supervised source classifier

C trained on the source project can be transferred to predict well on the target project.

We further observe that when successfully bridging the gap between the source and target

projects, the target source code can be considered as the unlabelled portion of the source project

in a semi-supervised learning context. The information carried in the target source code is cer-
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tainly helpful in boosting the predictive performance. To further utilise the information carried

the unlabelled target source codes, we propose the Semi-supervised Code Domain Adaptation

Network (SCDAN) wherein the clustering assumption [Chapelle and Zien, 2005], which states

that the decision boundary should not cross high-density regions inside data, is enforced. To

this end, we simultaneously encourage the source classifier C of the SCDAN to be confident in

its decisions for predicting the source and target source codes, and provide smooth predictive

outputs C (x) on the source and target projects. The first behavior can be achieved via minimi-

sation of the conditional entropy with respect to the source and target distributions [Grandvalet

and Bengio, 2005]. To address the second behavior, we use a spectral graph [Zhu et al., 2009]

to represent the geometry of data and then solve an optimisation problem to encourage the

smoothness of C over the spectral graph.

Leveraging semi-supervised learning with domain adaptation has been studied in shallow domain

adaptation [Kumar et al., 2010, Yao et al., 2015]. Mostly related to ours is DIRT-T [Shu et al.,

2018] which leverages semi-supervised learning with deep domain adaptation. DIRT-T enforces

the clustering assumption by minimising the conditional entropy and using virtual adversarial

perturbation (VAP) [Miyato et al., 2018] to impose by smoothness over C (x). The underlying

idea of VAP is to enforce smoothness locally around each training example x. Due to the discrete

and sequential nature of source codes, VAP cannot be directly applied to source code domain

adaptation. To compare and contrast our proposed methods with DIRT-T in the context of

software domain adaptation, we adopt the DIRT-T code to apply VAP in the joint feature

layer. However, we observe two things that reduce the success of VAP when applied to source

code data: i) VAP only encourages the local smoothness around the training examples and

their representations, and ii) VAP requires solving a hard-to-solve optimisation for each training

example. In the latter case, the workaround in DIRT-T is to undertake a one-step gradient

ascent from a random solution, which is typically distant from the ideal solution.

To demonstrate the advantages of our proposed SCDAN, we conduct experiments using the

datasets collected by [Lin et al., 2018] which consist of 6 real-world datasets: FFmpeg, LibTIFF,

LibPNG, VLC, Pidgin and Asterisk. We experiment with transfer learning for 6 pairs of source

and target domains, namely, FFmpeg→ LibTIFF, FFmpeg → LibPNG, Pidgin → LibPNG,

VLC→ LibPNG, Asterisk→ LibPNG and Pidgin→ LibTIFF. For the baselines, we reapply the

models DDAN, MMD and DIRT-T proposed in [Ganin and Lempitsky, 2015, Long et al., 2015,

Shu et al., 2018] using our proposed architecture. The experimental results show that DDAN,

DIRT-T and MMD significantly improve and outperform the Deep Code Network approach

(VulDeePecker) in [Li et al., 2018] which is purely trained on the source project and then tested
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on the target project. SCDAN further outperforms DDAN, DIRT-T and MMD by a wide

margin. Here we note that when training SCDAN, we only use the semi-supervised principle to

enforce the clustering assumption and do not use any labels from the target project. To prove

the ability of SCDAN to utilise the label information that may exist in the target project, we

further assume that a small portion of the source codes in the target domain has labels and

train SCDAN in this setting. As expected, our SCDAN with a few labels in the target domain

is superior when compared to the SCDAN without those labels.

To summarise, our contributions in this chapter include the following points:

• Our work is the first to formulate transfer learning from a source of sequences to a tar-

get of sequences. Moreover, our contribution is to formulate a novel architecture named

CDAN for software vulnerability detection, which is an extremely important problem in

cybersecurity. Not only does our work involve both a model contribution and a significant

real-world application of DDA, we believe it is a new building block for a wide array of

other applications in other domains such as behavior modeling in fintech where temporal

dynamics are important, or sequence modeling in computational biology.

• Based on the proposed architecture, we reapply the models DDAN, MMD and DIRT-T

proposed in [Ganin and Lempitsky, 2015, Long et al., 2015, Shu et al., 2018]. We subse-

quently propose SCDAN to more efficiently exploit and utilise information from unlabelled

target data. We further demonstrate the effectiveness and advantage of SCDAN by under-

taking experiments on 6 real-world datasets. The experimental results show that SCDAN

outperforms the baselines by a wide margin.

3.2 Related work for Deep Code Domain Adaptation

Most of previous work in the software vulnerability detection problem [Neuhaus et al., 2007,

Shin et al., 2011, Yamaguchi et al., 2011, Li et al., 2016, Grieco et al., 2016, Kim et al., 2017]

has been developed based on handcrafted features which are manually chosen by knowledgeable

domain experts who may have outdated experience and underlying biases. In many situations

handcrafted features normally do not generalize well: features that work well in a certain software

project may not perform well in other projects [Zimmermann et al., 2009]. To mitigate the

dependency on handcrafted features, the use of automatic features in SVD has been studied

recently [Dam et al., 2017, Li et al., 2018, Lin et al., 2018]. Dam et al. [2018] and Lin et al.

[2018] shared the same workaround for automatic feature learning. These researches employed a

50



Recurrent Neutral Network (RNN) to transform sequences of code tokens to vectorial features,

which are further fed to a separate classifier (e.g., Support Vector Machine [Cortes and Vapnik,

1995] or Random Forest [Breiman, 2001]) for classification purposes. Due to the independence

of learning the vector representation and training the classifier, it is likely that the resulting

vector representations of [Dam et al., 2017, Lin et al., 2018] do not fit well with the classifiers,

hence compromising the predictive performance. To address this issue, the work of [Li et al.,

2018] combined the learning of data representations and the training of the classifier in deep

neural networks. A bidirectional RNN is used to take sequential inputs, and the outputs from

this bidirectional RNN are then feedforwarded via some dense layers to the output softmax layer

for prediction.

Studies in domain adaptation can be broadly categorised into two themes: shallow [Borgwardt

et al., 2006, Gopalan et al., 2011] and deep domain adaptations [Ganin and Lempitsky, 2015,

Tzeng et al., 2015, Long et al., 2015, Shu et al., 2018, French et al., 2018]. The recent studies

[Ganin and Lempitsky, 2015, Tzeng et al., 2015, Long et al., 2015, Shu et al., 2018, French et al.,

2018] have showed the advances (i.e., higher predictive performance and capacity to tackle

structural data) of deep over shallow domain adaptation. Deep domain adaptation encourages

the learning of new representations for both source and target data in order to minimise the

divergence between them [Ganin and Lempitsky, 2015, Tzeng et al., 2015, Long et al., 2015, Shu

et al., 2018, French et al., 2018]. Source and target data are mapped to a joint feature space via

a generator, and the gap between source and target distributions is bridged in this joint space

by minimising the divergence between the forwarded distributions. For instance, the methods

proposed in [Ganin and Lempitsky, 2015, Tzeng et al., 2015, Long et al., 2015, Shu et al.,

2018, French et al., 2018] minimise the Jensen-Shannon divergence between the two relevant

distributions relying on the GAN principle [Goodfellow et al., 2014a], while the work of [Long

et al., 2015] minimises the maximum mean discrepancy (MMD), and the work of [Courty et al.,

2017] minimises the Wasserstein distance between them. However, all aforementioned works

mainly focus on transfer learning in the image domain, and to the best of our knowledge, none

of the existing works have tackled sequential inputs, especially for source code in the context of

software domain adaptation.

3.3 Deep Code Domain Adaptation

Most of the works in Deep Domain Adaptation cope with vector or image data. However, source

code in Code Domain Adaptation is sequential data where from a given chunk of source code
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Figure 3.1: Architecture of our Code Domain Adaptation Network (CDAN). The generator G
takes the sequential code tokens in vectorial form and maps this sequence to the joint layer (i.e.,
the joint space). Inspired by the GAN principle, the discriminator D is invoked to discriminate
the source and target data. The source classifier C is trained on the source domain with labels.
At the Nash equilibrium point, the source and target distributions are identical in the joint
space and consequently, the classifier C can be transferred to predict well on the target data.
We note that the source and target networks share parameters and are identical.

we first extract a sequence of code tokens and then transform this to a sequence of vectors using

embedding matrices. We therefore need to devise a new generator that can efficiently tackle

sequential data. In addition, we observe that when the generator can successfully bridge the

gap between the source and target domains in the joint feature space, the target data samples

without labels can be thought as the unlabelled portion of a semi-supervised problem in the

joint feature space. Together with the labelled portion (i.e., the source data samples and their

labels), this unlabelled portion contributes to improving the transfer learning performance. We

start this section with the problem statement of Deep Code Domain Adaptation, followed by the

technical details of the Code Domain Adaptation Network. Finally, we present how to utilise the

information carried in the target samples to enable semi-supervised learning in the joint feature

space.

3.3.1 The problem statement

Given a source dataset S =
{(
xS1 , y1

)
, . . . ,

(
xSNS , yNS

)}
where yi ∈ {0, 1} (i.e., 1: vulnerable

code and 0: non-vulnerable code) and xSi =
[
xSi1, . . . ,x

S
iL

]
is a sequence of L embedding vectors,

and the target dataset T =
{
xT1 , . . . ,x

T
NT

}
where xTi =

[
xTi1, . . . ,x

T
iL

]
is also a sequence of L

embedding vectors. We wish to bridge the gap between the source and target domains in the

joint feature space so that we can transfer a classifier trained on the source domain to predict

well on the target domain.
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3.3.2 Data processing and embedding

We preprocess the datasets before injecting them into deep networks. First, we standardise the

source code by: removing comments and non-ASCII characters, mapping user-defined variables

to symbolic names (e.g., “var1”, “var2”) and user-defined functions to symbolic names (e.g.,

“func1”, “func2”), and replacing integers, real and hexadecimal numbers with a generic <num>

token and strings with a generic <str> token. Second, we embed statements in source code into

vectors. Specifically, each statement x consists of two parts including opcode and statement in-

formation. We embed both opcode and statement information to vectors, then concatenate the

vector representations of opcode and statement information to obtain the final vector representa-

tion i of x. For instance, in the (C language) statement “for(var1=num;var1<=num;var1++)”,

the opcode is for, and the statement information is (var1=1;var1<=10;var1++). To em-

bed the opcode, we multiply the one-hot vector of the opcode by the opcode embedding

matrix. To embed the statement information, we tokenise it to a sequence of tokens, e.g.,

(,var1,=,num,;,var1,<=,num,;,var1,++,), construct the frequency vector of the statement in-

formation, and multiply this frequency vector by the statement information embedding ma-

trix. We reserve the opcode assign for the assignment statements, e.g., “var3[var5++] =

(png_byte)var7;”. In addition, the opcode embedding and statement embedding matrices are

learnarable variables in our model.

3.3.3 Deep Code Domain Adaptation with bidirectional recurrent neural net-

work

To handle the sequential data in the context of domain adaptation of software vulnerability

detection, we propose an architecture termed as the Code Domain Adaptation Network (CDAN),

which uses a bidirectional recurrent neural network (bidirectional RNN) to process the sequential

input from both source and target domains (i.e., xSi =
[
xSi1, . . . ,x

S
iL

]
and xTi =

[
xTi1, . . . ,x

T
iL

]
.

Denoting the output of the bidirectional RNN by B (x), we then use fully connected layers to

connect the output layer of the bidirectional RNN with the joint feature layer wherein we bridge

the gap between the source and target domains. The generator is consequently the composition

of the bidirectional RNN and the subsequent fully connected layers. We have G (x) = f (B (x))

where f (·) represents the map formed by the fully connected layers. The architecture of the

CDAN is presented in Fig. 3.1 wherein the source and target networks share parameters and

are identical.

Akin to Deep Domain Adaptation [Ganin and Lempitsky, 2015], we employ the source classifier
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C to classify the source samples and the domain discriminator D to discriminate the source

and target samples. The generator G maps sequential code tokens in vectorial form of the

source code to the joint layer. The discriminator D is employed to discriminate the source

and target data. Together with the generator G which aims to make data in the joint layer

indistinguishable, both the discriminator D and generator G cooperate to make the source and

target distributions identical in the joint space. We name this model DDAN, and according to

the Deep Domain Adaptation [Ganin and Lempitsky, 2015] approach, the objective function of

DDAN is as follows:

J (G,D,C) = 1
NS

NS∑
i=1

`
(
C
(
G
(
xSi

))
, yi
)

+ λ

 1
NS

NS∑
i=1

logD
(
G
(
xSi

))
+ 1
NT

NT∑
i=1

log
[
1−D

(
G
(
xTi

))] (3.1)

where we seek the optimal generator G∗, the domain discriminator D∗, and the source classifier

C∗ by solving:

(C∗, G∗) = argminC,G J (G,D,C) andD∗ = argmaxD J (G,D,C)

It is remarkable that DDAN uses information of the target data in the process of bringing source

and target data together in the joint space. However, this cannot further utilise and exploit the

information of the clustering structure carried in the target data. In what follows, we present

how to further exploit the clustering structure information carried in the target data.

3.3.4 Semi-supervised Deep Code Domain Adaptation

We observe that when successfully bridging the gap between the source and target domains in

the joint layer of the CDAN, the target samples can be regarded as the unlabelled portion of

a semi-supervised learning problem. To enforce semi-supervised learning, the source classifier

should satisfy the clustering assumption [Chapelle and Zien, 2005] which states that its decision

boundary should not cross high-density regions of the source and target data in the joint feature

space. The clustering assumption can be guaranteed if we impose the source classifier C to give

a unique prediction result for all samples in a cluster. To address this, we propose to maintain

the two following constraints:

1. The source classifier C should be confident in its predictive decisions on the source and

target data.
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2. The function C (·) should be smooth over the source and target data in the joint space

(i.e., if u and v are close in the joint space, the discrepancy between C (u) and C (v) is

small).

Following the study in [Grandvalet and Bengio, 2005], we achieve the first constraint as [Grand-

valet and Bengio, 2005]:

min
C,G
H (C,G) (3.2)

where the conditional entropy H (C,G) can be computed as:

H (C,G) = Ex∼PS [−C (G (x)) log [C (G (x))]]

+ Ex∼PS [− [1− C (G (x))] log [1− C (G (x))]]

+ Ex∼PT [−C (G (x)) log [C (G (x))]]

+ Ex∼PT [− [1− C (G (x))] log [1− C (G (x))]]

Using the spectral graph constructed on the source and target data in the joint feature space, we

can achieve the second constraint. We construct the spectral graph SG = (V, E) where the set

of vertices V = S ∪ T and the set of edges E are constructed as discussed earlier. To encourage

the smoothness of the function C (·) on the spectral graph, we propose to minimise:

min
C,G
S (C,G) (3.3)

where we have defined S (C,G) as:

S (C,G) =
∑

(u,v)∈E
µuvKL (Bu, Bv)

=
∑

(u,v)∈E
µuv

[
C (u) logC (u)

C (v) + (1− C (u)) log1− C (u)
1− C (v)

]

where Bu specifies the Bernoulli distribution with P (y = 1 | u) = C (u) and P (y = −1 | u) =

1−C (u), the weight µuv = exp
{
−‖u− v‖2 /

(
2σ2

)}
, and KL (Bu, Bv) specifies the Kullback-

Leibler divergence between two distributions. Here we note that if u = G (x) and v = G (t) are

close in the joint space (i.e., the weight µuv is high, B (u) (i.e., C (u)) and B (v) (i.e., C (v)) are

encouraged to be close. This shows that the classifier function C (·) is smooth over the source

and target data in the joint space.

Combining the optimisation problems in Eqs. (3.1, 3.2, and 3.3), we arrive at the following
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objective function:

I (C,G,D) = J (C,G,D) + αH (C,G) + βS (C,G) (3.4)

where α, β > 0 are the trade-off parameters. We seek the optimal generator G∗, domain

discriminator D∗, and source classifier C∗ by solving:

(C∗, G∗) = argminC,G I (G,D,C) andD∗ = argmaxD I (G,D,C)

It is worth noting that the two above techniques are complementary to ensure the clustering

assumption. Given a data sample x in a cluster, this data sample stays close to its neighbors in

the cluster. The smoothness obtained from the spectral graph imposes the slight difference in

the predictive outputs of x of its neighbors, while the minimisation of the conditional entropy

ensures a high confidence in the predictive output of x. As a result, the classifier gives the

same prediction for x and its neighbors, and this behavior is propagated on the entire cluster

for which the classifier would give a unique prediction label to all data samples in this cluster.

Virtual adversarial perturbation.

To be able to compare with DIRT-T [Shu et al., 2018], we apply virtual adversarial perturbation

(VAP) [Miyato et al., 2018] on the joint feature space rather than on the training example x.

The reason is that the training example x is a sequence of discrete statements, and it does not

make sense to perturb x.

For DIRT-T, in the final objective function (3.4), S (C,G) is replaced by the VAP Lv which is

defined as:

Lv (C,G) =
∑

x∈S∪T
max
‖r‖≤ε

KL (C (G (x)) , C (G (x) + r))

Specifically, we adopt the DIRT-T [Shu et al., 2018] code and apply it to our problem. As

mentioned previously, we observe two things that make VAP unfit for our problem: i) the VAP

mechanism only encourages local smoothness around the training examples G (x), and ii) it is

challenging to find the ropt that maximises KL (C (G (x)) , C (G (x) + r)). The workaround in

DIRT-T [Shu et al., 2018] is to undertake a one-step gradient ascent from a randomly initialised

r, and the rendered ropt is quite distant from the optimal ropt.
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Categories Datasets #vul-funcs #non-vul-funcs

Multimedia

FFmpeg 187 5,427
VLC 25 5,548
Pidgin 42 8,268
Asterisk 52 8,796

Image LibPNG 43 551
LibTIFF 81 695

Table 3.1: Summary statistics of 6 real-world datasets with the number of vulnerable functions
(#vul-funcs) and non-vulnerable functions (#non-vul-funcs).

3.4 Implementation and results

In this section, we present the experimental results for our proposed Semi-supervised Code

Domain Adaptation Network (SCDAN) on 6 real-world datasets [Lin et al., 2018]. We also

compare the proposed SCDAN with VulDeePecker without domain adaptation, DDAN, MMD

and DIRT-T using our proposed architecture (CDAN). In addition, when training the DDAN,

MMD, DIRT-T and SCDAN, we do not use any label information from the target domain.

3.4.1 Experimental setup

3.4.1.1 Experimental datasets

We used the real-world dataset collected by [Lin et al., 2018] which contains the source code of

vulnerable and non-vulnerable functions obtained from 6 real-world software project datasets,

namely, FFmpeg, LibTIFF, LibPNG, VLC, Pidgin and Asterisk. These datasets cover both

multimedia and image application categories. The summary statistics of these projects are

shown in Table 3.1. In our experiment, some of the datasets from the multimedia category were

used as the source domain whilst other datasets from the image category were used as the target

domain (see Table 3.2).

3.4.1.2 Model configuration

For training the five mentioned methods including VulDeePecker, MMD, DIRT-T, DDAN and

SCDAN, we used a dynamic one-layer bidirectional recurrent neural network using LSTM cells to

tackle varied sequence lengths where the size of hidden states is in {128, 256}. We embedded the

opcode and statement information to the {150, 150} dimensional embedding spaces respectively.

For the source classifier and discriminator, we used a deep neural network with two hidden

layers in which the size of each hidden layer is in {200, 300}. We employed the Adam optimiser
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[Kingma and Ba, 2014] with an initial learning rate in {0.001, 0.0001}, while the mini-batch size

is 50. The trade-off parameters λ, α and β are in {10−1, 10−2}. For SCDAN, we used the fully

connected graph for constructing the spectral graph and varied the Gaussian kernel width in

{2−10, 2−9}.

We split the data of the source domain into two random partitions: The first partition contains

80% for training and the second partition contains 20% for validation. We also split the data

of the target domain into two random partitions containing 80% for training the model of

VulDeePecker, MMD, DIRT-T, DDAN and SCDAN via the objective function in Eq. (3.4)

without using any label information and 20% for testing the model. We additionally apply

gradient clipping regularisation [Pascanu et al., 2013] to prevent over-fitting when training the

model. We implemented our proposed method in Python using Tensorflow [Abadi et al., 2016],

an open-source software library for Machine Intelligence developed by the Google Brain Team.

We ran our experiments on a computer with an Intel Xeon Processor E5-1660 which had 8 cores

at 3.0 GHz and 128 GB of RAM.

3.4.2 Experimental results

3.4.2.1 Code Domain Adaptation for a fully non-labelled target project

Quantitative results. We investigated the performance of our proposed method SCDAN

compared with methods using our proposed architecture (CDAN) including VulDeePecker (VULD)

[Li et al., 2016] without domain adaptation, DDAN [Ganin and Lempitsky, 2015], MMD [Long

et al., 2015] and DIRT-T [Shu et al., 2018] with VAP to be applied in the joint feature layer.

The VulDeePecker method was only trained on the source data and then tested on the target

data. The DDAN as well as MMD, DIRT-T and SCDAN employed the target data without

using any label information for domain adaptation and semi-supervised learning respectively.

In Table 3.2, the experimental results show that the VulDeePecker, MMD, DIRT-T, DDAN and

SCDAN techniques achieved a high performance for detecting vulnerable and non-vulnerable

functions for all performance measures including FNR, FPR, Recall, Precision and F1-measure.

In most cases of the source and target domains, the versions using the domain adaptation tech-

nique including MMD, DIRT-T, DDAN and SCDAN achieved much higher performance results

compared with VulDeePecker in almost measures, most significantly for SCDAN. Also, SCDAN

achieved higher performances for FPR, FNR, Recall, Precision and F1-measure compared with

MMD, DIRT-T and DDAN in almost cases of the different source and target domains. Fur-

thermore, SCDAN always obtained the highest F1-measure in all cases. For example, for the
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Source → Target Methods FNR FPR Recall Precision F1-measure

Pidgin → LibPNG

VULD 42.86% 1.08% 57.14% 80% 66.67%
MMD 37.50% 0% 62.50% 100% 76.92%
DIRT-T 33.33% 1.06% 66.67% 80% 72.72%
DDAN 37.50% 0% 62.50% 100% 76.92%
SCDAN 33.33% 0% 66.67% 100% 80%

FFmpeg → LibTIFF

VULD 43.75% 6.72% 56.25% 50% 52.94%
MMD 28.57% 12.79% 71.43% 47.62% 57.14%
DIRT-T 25% 9.09% 75% 52.94% 62.07%
DDAN 35.71% 6.98% 64.29% 60% 62.07%
SCDAN 14.29% 5.38% 85.71% 57.14% 68.57%

FFmpeg → LibPNG

VULD 25% 2.17% 75% 75% 75%
MMD 12.50% 3.26% 87.50% 70% 77.78%
DIRT-T 15.11% 2.20% 84.89% 80% 84.21%
DDAN 12.50% 2.17% 87.50% 77.78% 82.35%
SCDAN 12.50% 1.08% 87.50% 87.50% 87.50%

VLC→ LibPNG

VULD 57.14% 1.08% 42.86% 75% 54.55%
MMD 45% 4.35% 55% 60% 66.67%
DIRT-T 50% 1.09% 50% 80% 61.54%
DDAN 33.33% 2.20% 66.67% 75% 70.59%
SCDAN 33.33% 1.06% 66.67% 80% 72.73%

Pidgin → LibTIFF

VULD 35.29% 8.27% 64.71% 50% 56.41%
MMD 30.18% 12.35% 69.82% 50% 58.27%
DIRT-T 38.46% 8.05% 61.54% 53.33% 57.14%
DDAN 27.27% 8.99% 72.73% 50% 59.26%
SCDAN 30% 5.56% 70% 58.33% 63.64%

Asterisk →LibPNG

VULD 11.11% 15.38% 88.89% 36.36% 51.61%
MMD 25% 8.67% 75% 42.86% 54.55%
DIRT-T 14.29% 5.38% 85.71% 54.55% 66.67%
DDAN 12.50% 7.61% 87.50% 50% 63.64%
SCDAN 14.29% 4.30% 85.71% 60% 70.59%

Table 3.2: Performance results in terms of false negative rate (FNR), false positive rate (FPR),
Recall, Precision and F1-measure of VulDeePecker (VULD), MMD, DIRT-T, DDAN and SC-
DAN methods for predicting vulnerable and non-vulnerable code functions on the testing set of
the target domain.

case of the source domain (FFmpeg) and target domain (LibPNG), SCDAN achieved the F1-

measure (87.50%) compared with the F1-measure (82.35%, 84.21%, 77.78% and 75%) obtained

with DDAN, DIRT-T, MMD and VulDeePecker respectively.

Visualisation. We use a t-SNE [Maaten and Hinton, 2008] projection, with perplexity equal

to 30, to visualise the feature distributions of the source and target domains in the joint space.

Specifically, we project the source and target data in the joint space (i.e., G (x)) into a 2D space

without domain adaptation (VULD) and with domain adaptation (SCDAN). In Fig. 3.2, we

observe the cases when performing domain adaptation from a single software project to another:

FFmpeg → LibPNG. For the purpose of visualization, we only select a subset of the source

project against the entire target project. As shown in Fig. 3.2, without domain adaptation

the blue points (which represent the source data) and the green points (which represent the

target data) are separate, while with domain adaptation the points are merged, as expected.
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Figure 3.2: 2D t-SNE projection for the case of the FFmpeg→ LibPNG domain adaptation. The
blue and green points represent the source and target domains respectively. Without undertaking
domain adaptation (VULD) the source and target data are separate (left). When undertaking
domain adaptation (SCDAN), the source and target data are intermingled (right).

Source → Target Methods FNR FPR Recall Precision F1-measure

FFmpeg → LibPNG

SCDAN 12.50% 1.08% 87.50% 87.50% 87.50%
SCDAN-10 22.22% 0% 77.78% 100% 87.50%
SCDAN-20 16.67% 0% 83.33% 100% 90.91%
SCDAN-30 14.29% 0% 85.71% 100% 92.31%
SCDAN-40 12.50% 0% 87.50% 100% 93.33%
SCDAN-50 0% 0% 100% 100% 100%

FFmpeg → LibTIFF

SCDAN 14.29% 5.38% 85.71% 57.14% 68.57%
SCDAN-10 28.57% 1.08% 71.43% 83.33% 76.92%
SCDAN-20 0% 3.23% 100% 70% 82.35%
SCDAN-30 20% 0% 80% 100% 88.89%
SCDAN-40 0% 1.05% 100% 83.33% 90.91%
SCDAN-50 8.33% 0.0% 91.67% 100% 95.65%

Table 3.3: Results in terms of false negative rate (FNR), false positive rate (FPR), Recall,
Precision and F1-measure of SCDAN-10, SCDAN-20, SCDAN-30, SCDAN-40, SCDAN-50 and
SCDAN for predicting vulnerable and non-vulnerable functions on the testing set of the target
domain. Note that SCDAN-0 is SCDAN.

We observe a strong correspondence between the success of domain adaptation in terms of the

classification accuracy of the target domain and the overlap between the domain distributions

in such visualization.

3.4.2.2 Code Domain Adaptation for a partly labelled target project

In this experiment, we trained SCDAN for the case when there is a small portion of the training

set in the target domain having labels. We then investigated the performance of SCDAN in

predicting the vulnerable and non-vulnerable functions on the testing set of the target domain.

We investigated five cases. In the first case (SCDAN-10), we set 10% data of the training set
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of the target domain to have labels. In the second case (SCDAN-20), we assume 20% data of

the training set of the target domain have labels. For other cases (SCDAN-30, SCDAN-40 and

SCDAN-50), we set 30%, 40% and 50% of the data of the training set of the target domain to

have labels respectively.

The results shown in Table 3.3 indicate that using a small fraction of the training set in the

target domain that has labels, SCDAN can achieve a much higher performance than (VulDeeP-

ecker, MMD, DIRT-T and DDAN) in almost all measures, especially in term of the F1-measure.

SCDAN-50 obtains nearly a 9.9% and 14.28% improvement over SCDAN-20 and SCDAN respec-

tively in terms of the F1-measure for the case of the source domain FFmpeg and target domain

LibPNG. In the case of the source domain FFmpeg and target domain LibTIFF, SCDAN-50

achieves a 16.15% and 39.49% improvement over SCDAN-20 and SCDAN respectively in term

of the F1-measure. In general, SCDAN-10, SCDAN-20, SCDAN-30, SCDAN-40 and SCDAN-50

achieve a high performance for all measures (FNR, FPR, Recall, Precision and F1-measure),

especially for SCDAN-50.

3.5 Closing remarks

In this chapter, we addressed two main concerns in automated software vulnerability detection:

i) how to automatically learn features that can help improve the predictive performance of

vulnerability identification, and ii) how to overcome the scarcity of labelled vulnerabilities in

software projects, vulnerabilities that require the laborious labelling of code by software experts.

We proposed a novel architecture named the Code Domain Adaptation Network (CDAN) which

leverages deep domain adaptation with automatic feature learning for software vulnerability

identification, and the Semi-supervised Code Domain Adaptation Network (SCDAN) method.

The SCDAN method enforces the clustering assumption to enable the source code information to

be combined with the target source code in a semi-supervised context. The experimental results

for six real-world software datasets showed that using our proposed architecture (CDAN), deep

domain adaptation for software vulnerability detection is plausible and promising. All state-

of-the-art deep domain adaptation methods using CDAN significantly outperformed the Deep

Code Network without domain adaptation (VULD). Furthermore, the SCDAN method also

significantly surpassed the performance of the DDAN, MMD and DIRT-T baseline methods.
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Chapter 4

Dual-component Deep Domain

Adaptation: A New Approach for

Cross-project Software Vulnerability

Detection

In the previous chapter, we have proposed a new architecture CDAN and a new method SCDAN

to address the transfer learning problem of software vulnerabilities from a labelled source of

sequences to an unlabelled target of sequences. However, due to using the generative adversarial

network (GAN) principle to bridge the gap between source and target domains as in other

deep domain adaptation adversarial approaches, our proposed CDAN architecture and SCDAN

method may suffer from the problems of mode collapsing and boundary distortion [Goodfellow,

2016, Santurkar et al., 2018, Hoang et al., 2018, Le et al., 2019a] that negatively impact on the

predictive performance.

In this chapter, we propose a new method, the Dual Generator-Discriminator Deep Code Domain

Adaptation Network (Dual-GD-DDAN), for tackling the problem of transferring learning from

labelled to unlabelled software projects in SVD to resolve the mode collapsing and boundary

distortion problems faced in previous approaches.
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4.1 Motivations

In the software industry, software vulnerabilities relate to specific flaws or oversights in software

programs which allow attackers to expose or alter sensitive information, disrupt or destroy a

system, or take control of a program or computer system. The software vulnerability detection

problem has become an important issue in the software industry and in the field of computer

security. Computer software development employs of a vast variety of technologies and different

software development methodologies, and much computer software contains vulnerabilities.

This has necessitated the development of automated advanced techniques and tools that can

efficiently and effectively detect software vulnerabilities with a minimal level of human interven-

tion. To respond to this demand, many vulnerability detection systems and methods, ranging

from open source to commercial tools, and from manual to automatic methods have been pro-

posed and implemented. Most of the previous works in software vulnerability detection (SVD)

[Almorsy et al., 2012, Kim et al., 2017] have been developed based on handcrafted features which

are manually chosen by knowledgeable domain experts who may have outdated experience and

underlying biases. In many situations, handcrafted features normally do not generalize well.

For example, features that work well in a certain software project may not perform well in other

projects. To alleviate the dependency on handcrafted features, the use of automatic features in

SVD has been studied recently [Li et al., 2018, Lin et al., 2018, Le et al., 2019b]. These works

have shown the advantages of automatic features over handcrafted features in the context of

software vulnerability detection.

However, most of these approaches lead to another crucial issue in SVD research, namely, the

scarcity of labelled projects. Labelled vulnerable code is needed to train these models, and

the process of labelling vulnerable source code is very tedious, time-consuming, error-prone,

and challenging even for domain experts. This has led to few labelled projects compared with

the vast volume of unlabelled ones. A viable solution is to apply transfer learning or domain

adaptation which aims to devise automated methods that make it possible to transfer a learned

model from the source domain with labels to the target domains without labels. Studies in

domain adaptation can be broadly categorised into two themes: shallow [Gopalan et al., 2011]

and deep domain adaptations [Ganin and Lempitsky, 2015, Long et al., 2015, Shu et al., 2018].

These recent studies have shown the advantages of deep over shallow domain adaptation (i.e.,

higher predictive performance and capacity to tackle structural data). Deep domain adaptation

encourages the learning of new representations for both source and target data in order to

minimise the divergence between them [Ganin and Lempitsky, 2015, Long et al., 2015, Shu et al.,
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2018]. The general idea is to map source and target data to a joint feature space via a generator,

where the discrepancy between the source and target distributions is reduced. Notably, the

work of [Ganin and Lempitsky, 2015, Shu et al., 2018] employed generative adversarial networks

(GANs) [Goodfellow et al., 2014a] to close the gap between source and target data in the joint

space. However, most of aforementioned works mainly focus on transfer learning in the computer

vision domain. The work of [Nguyen et al., 2019] is the first work which applies deep domain

adaptation to SVD with promising predictive performance on real-world source code projects.

The underlying idea is to employ the GAN to close the gap between the source and target

domains in the joint space and enforce the clustering assumption [Chapelle and Zien, 2005] to

utilise the information carried in the unlabelled target samples in a semi-supervised context.

GANs are known to be affected by the mode collapsing problem [Goodfellow, 2016, Santurkar

et al., 2018, Hoang et al., 2018, Le et al., 2019a]. In particular, the study in [Santurkar et al.,

2018] recently studied the mode collapsing problem and further classified this into the missing

mode problem i.e., the generated samples miss some modes in the true data, and the boundary

distortion problem i.e., the generated samples can only partly recover some modes in the true

data. It is certain that deep domain adaptation approaches that use the GAN principle will

inherently encounter both the missing mode and boundary distortion problems. Last but not

least, deep domain adaptation approaches using the GAN principle also face the data distortion

problem. The representations of source and target examples in the joint feature space degenerate

to very small regions that cannot preserve the manifold/clustering structure in the original space.

Our aim in this chapter is to address not only the deep domain adaptation mode collapsing prob-

lem, but also the boundary distortion problem when employing the GAN as a principle in order

to close the gap between source and target data in the joint feature space. Our two approaches

are: i) apply manifold regularisation for enabling the preservation of manifold/clustering struc-

tures in the joint feature space, hence avoiding the degeneration of source and target data in

this space, and ii) invoke dual discriminators in an elegant way to reduce the negative impacts

of the missing mode and boundary distortion problems in deep domain adaptation using the

GAN principle as mentioned before. We name our mechanism when applied to SVD as Dual

Generator-Discriminator Deep Code Domain Adaptation Network (Dual-GD-DDAN). We em-

pirically demonstrate that our Dual-GD-DDAN can overcome the missing mode and boundary

distortion problems which is likely to happen as in Deep Code Domain Adaptation (DDAN)

[Nguyen et al., 2019] in which the GAN was solely applied to close the gap between the source

and target domains in the joint space (see the discussion in Sections 4.3.3 and 4.4.3, and the

visualization in Fig. 4.3). In addition, we incorporate the relevant approaches – minimising
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the conditional entropy and manifold regularisation with spectral graph – proposed in [Nguyen

et al., 2019] to enforce the clustering assumption [Chapelle and Zien, 2005] and arrive at a new

model named Dual Generator-Discriminator Semi-supervised Deep Code Domain Adaptation

Network (Dual-GD-SDDAN). We further demonstrate that our Dual-GD-SDDAN can over-

come the mode collapsing problem better than SCDAN in [Nguyen et al., 2019], hence obtaining

better predictive performance.

We conducted experiments using the datasets collected by [Lin et al., 2018], that consist of

five real-world software projects: FFmpeg, LibTIFF, LibPNG, VLC and Pidgin to compare our

proposed Dual-GD-DDAN and Dual-GD-SDDAN with the baselines. The baselines consider to

include VULD (i.e., the model proposed in [Li et al., 2018] without domain adaptation), MMD,

DIRT-T, DDAN and SCDAN as mentioned [Nguyen et al., 2019] and D2GAN [Nguyen et al.,

2017] (a variant of the GAN using dual-discriminator to reduce the mode collapse for which

we apply this mechanism in the joint feature space). Our experimental results show that our

proposed methods are able to overcome the negative impact of the missing mode and boundary

distortion problems inherent in deep domain adaptation approaches when solely using the GAN

principle as in DDAN and SCDAN [Nguyen et al., 2019]. In addition, our method outperforms

the rival baselines in terms of predictive performance by a wide margin.

4.2 Related work for Deep Code Domain Adaptation

In this section, we introduce work related to ours. First, we present the recent work in automatic

feature learning for software vulnerability detection. Finally, we present some recent work in

deep domain adaptation.

Automatic feature learning in software vulnerability detection minimises intervention from se-

curity experts [Li et al., 2018, Lin et al., 2018, Dam et al., 2018]. Particularly, Dam et al. [2018]

and Lin et al. [2018] shared the same approach employing a Recurrent Neutral Network (RNN)

to transform sequences of code tokens to vectorial features for automatic feature learning, which

are then fed to a separate classifier (e.g., Support Vector Machine [Cortes and Vapnik, 1995] or

Random Forest [Breiman, 2001]) for classification purposes. However, owing to the independence

of learning the vector representations and training the classifier, it is likely that the resulting

vector representations of [Lin et al., 2018, Dam et al., 2018] may not fit well with classifiers

to enhance the predictive performance. To deal with this problem, the study introduced in [Li

et al., 2018] combined the learning of the vector representations and the training of a classifier

in deep neural networks. This work leverages a bidirectional RNN to take sequential data as
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inputs and the outputs from the bidirectional RNN are then fed to a deep feedforward neural

network for prediction.

Deep domain adaptation aims to bridge the gap between the source and target domains in a joint

space [Ganin and Lempitsky, 2015, Tzeng et al., 2015, Shu et al., 2018, French et al., 2018]. These

methods try to minimise a divergence (e.g., Jensen-Shannon divergence, f -divergence, maximum

mean discrepancy (MMD) or Wasserstein distance) between the source and target distributions

in the joint space. For instance, the methods proposed in [Ganin and Lempitsky, 2015, Tzeng

et al., 2015, Long et al., 2015, Shu et al., 2018, French et al., 2018] minimise the Jensen-Shannon

divergence between two relevant distributions relying on the GAN principle [Goodfellow et al.,

2014a], while Long et al. [2015] proposed to minimise the MMD, and the work of [Courty

et al., 2017] minimises the Wasserstein distance between two relevant distributions. The study

proposed in [Nguyen et al., 2017] relies on the GAN principle with using two discriminators

aiming to tackle the problem of mode collapse encountered in generative adversarial networks

(GANs). In addition, most of aforementioned works proposed to transfer a pretrained model

on the dataset ImageNet [Deng et al., 2009] to other image sources. The work of [Purushotham

et al., 2017] proposed to apply deep domain adaptation for multivariate time-series data. This

work based on the Variational RNN [Chung et al., 2015], and the GAN principle was applied on

the latent representation. Recently, relying on the GAN principle [Goodfellow et al., 2014a], the

work of [Nguyen et al., 2019] proposed to tackle sequential inputs, particularly source code, in

software domain adaptation. The underlying idea is to use the GAN principle to close the gap

between the source and target domains in the joint space and enforce the clustering assumption

to utilise the information of unlabelled target samples in a semi-supervised learning context.

Leveraging semi-supervised learning with domain adaptation has been studied in shallow domain

adaptation [Kumar et al., 2010, Yao et al., 2015]. DIRT-T [Shu et al., 2018] leveraged semi-

supervised context by enforcing the clustering assumption via minimising the conditional entropy

and using virtual adversarial perturbation (VAP) [Miyato et al., 2018] to impose by smoothness

over the decision output. Another work of [Nguyen et al., 2019] proposed to leverage semi-

supervised context by enforcing the clustering assumption via minimising the conditional entropy

and manifold regularisation with spectral graph which was proven to be more appropriate to

discrete sequential data like source codes.
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4.3 Deep Code Domain Adaptation with GAN

4.3.1 Problem statement

A source domain dataset S = {(xS1 , y1), . . . , (xSNS , yNS )} where yi ∈ {0, 1} (i.e., 1: vulnerable

code and 0: non-vulnerable code) and xSi = [xSi1, . . . ,xSiL] is a sequence of L embedding vectors,

and the target domain dataset T = {xT1 , . . . ,xTNT } where x
T
i = [xTi1, . . . ,xTiL] is also a sequence

of L embedding vectors. We wish to bridge the gap between the source and target domains in

the joint feature space. This allows us to transfer a classifier trained on the source domain to

predict well on the target domain.

4.3.2 Deep Code Domain Adaptation with bidirectional RNN

To handle sequential data in the context of domain adaptation of software vulnerability detec-

tion, the work of [Nguyen et al., 2019] proposed an architecture referred to as the Code Domain

Adaptation Network (CDAN). This network architecture recruits a bidirectional RNN to pro-

cess the sequential input from both source and target domains (i.e., xSi = [xSi1, . . . ,xSiL] and

xTi = [xTi1, . . . ,xTiL]). A fully connected layer is then employed to connect the output layer of

the bidirectional RNN with the joint feature layer while bridging the gap between the source and

target domains. Furthermore, inspired by the Deep Domain Adaptation approach [Ganin and

Lempitsky, 2015], the authors employ the source classifier C to classify the source samples, the

domain discriminator D to distinguish the source and target samples and propose Deep Code

Domain Adaptation (DDAN) whose objective function is as follows:

J (G,D,C) = 1
NS

NS∑
i=1

`(C(G(xSi )), yi)

+ λ( 1
NS

NS∑
i=1

logD(G(xSi )) + 1
NT

NT∑
i=1

log[1−D(G(xTi ))])

4.3.3 The shortcomings of DDAN

We observe that DDAN suffers from several shortcomings. First, the data distortion problem

(i.e., the source and target data in the joint space might collapse into small regions) may occur

since there is no mechanism in DDAN to circumvent this. Second, since DDAN is based on

the GAN approach, DDAN might suffer from the mode collapsing problem [Goodfellow, 2016,

Santurkar et al., 2018]. In particular, Santurkar et al. [2018] have recently studied the mode

collapsing problem of GANs and discovered that they are also subject to i) the missing mode
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Figure 4.1: Illustration of the missing mode and boundary distortion problems of DDAN. In the
joint space, the target distribution misses source mode 2, while the source distribution can only
partly cover the target mode 2 in the target distribution and the target distribution can only
partly cover the source mode 1 in the source distribution.

problem (i.e., in the joint space, either the target data misses some modes in the source data or

vice versa), and ii) the boundary distortion problem (i.e., in the joint space either the target data

partly covers the source data or vice versa), which makes the target distribution significantly

diverge from the source distribution. As shown in Fig. 4.1, both the missing mode and boundary

distortion problems simultaneously happen since the target distribution misses source mode 2,

while the source distribution can only partly cover the target mode 2 in the target distribution

and the target distribution can only partly cover the source mode 1 in the source distribution.

4.4 Dual Generator-Discriminator Deep Code Domain Adapta-

tion

4.4.1 Key idea of our approach

We employ two discriminators (namely, DS and DT ) to classify the source and target examples

and vice versa and two separate generators (namely, GS and GT ) to map the source and target

examples to the joint space respectively. In particular, DS produces high values on the source

examples in the joint space (i.e., GS(xS)) and low values on the target examples in the joint

space (i.e., GT (xT )), while DT produces high values on the target examples in the joint space

(i.e., GT (xT )) and low values on the source examples (i.e., GS(xS)). The generator GS is trained

to push GS
(
xS
)
to the high value region of DT and the generator GT is trained to push GT (xT )

to the high value region of DS . Eventually, both DS(GS(xS)) and DS(GT (xT )) are possibly

high and both DT (GS(xS)) and DT (GT (xT )) are possibly high. This helps to mitigate the

issues of missing mode and boundary distortion since as in Fig. 4.1, if the target mode 1 can
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only partly cover the source mode 1, then DT cannot receive large values from source mode

1. Another important aspect of our approach is to maintain the cluster/manifold structure

of source and target data in the joint space via the manifold regularisation to avoid the data

distortion problem.

4.4.2 Dual Generator-Discriminator Deep Domain Adaptation Network

To address the two inherent problems in the DDAN mentioned in Section 4.3.3, we employ two

different generators GS and GT to map source and target domain examples to the joint space

and two discriminators DS and DT to distinguish source examples against target examples and

vice versa together with the source classifier C which is used to classify the source examples with

labels as shown in Fig. 4.2. We name our proposed model as Dual Generator-Discriminator

Deep Code Domain Adaptation Network (Dual-GD-DDAN).

Updating the discriminators. The two discriminators DS andDT are trained to distinguish

the source examples against the target examples and vice versa as follows:

min
DS

((1 + θ)
NS

NS∑
i=1

[−logDS(GS(xSi ))] + 1
NT

NT∑
i=1

[−log[1−DS(GT (xTi ))]]
)

(4.1)

min
DT

( 1
NS

NS∑
i=1

[−log[1−DT (GS(xSi ))]] + (1 + θ)
NT

NT∑
i=1

[−logDT (GT (xTi ))]
)

(4.2)

where θ > 0. Note that a high value of θ encourages DS and DT place higher values on GS
(
xS
)

and GT
(
xT
)
respectively.

Updating the source classifier. The source classifier is employed to classify the source

examples with labels as: minC 1
NS

∑NS
i=1 `(C(GS(xSi )), yi), where ` specifies the cross-entropy

loss function for the binary classification.

Updating the generators. The two generators GS and GT are trained to i) maintain the

manifold/cluster structures of source and target data in their original spaces to avoid the data

distortion problem, and ii) move the target samples toward the source samples in the joint space

and resolve the missing mode and boundary distortion problems in the joint space.

To maintain the manifold/cluster structures of source and target data in their original spaces, we

propose minimising the manifold regularisation term as: minGM(GS , GT ) where M(GS , GT )
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is formulated as:

M(GS , GT ) =
NS∑
i,j=1

µij ||GS(xSi )−GS(xSj )||2 +
NT∑
i,j=1

µij ||GT (xTi )−GT (xTj )||2

in which the weights are defined as µij = exp{−||h(xi)−h(xj)||2/(2σ
2)} with h(x) = concat(

←−
hL(x),

−→
hL(x)) where

−→
hL(x) and

←−
hL(x) are the last hidden states of the bidirectional RNN with input

x.

To move the target samples toward the source samples and resolve the missing mode and bound-

ary distortion problems in the joint space, we propose minimising the following objective func-

tion: minD K(GS , GT ) where K(GS , GT ) is defined as:

K(GS , GT ) = 1
NS

NS∑
i=1

[−logDT (GS(xSi ))] + 1
NT

NT∑
i=1

[−logDS(GT (xTi ))] (4.3)

Moreover, the source generator GS has to work out the representation that is suitable for the

source classifier, hence we need to minimise the following objective function:

min
GS

1
NS

NS∑
i=1

`(C(GS(xSi )), yi)

Finally, to update GS and GT , we need to minimise the following objective function:

1
NS

NS∑
i=1

`(C(GS(xSi )), yi) + αM(GS , GT ) + βK(GS , GT )

where α, β > 0 are two non-negative parameters.

4.4.3 The rationale for our Dual Generator-Discriminator Deep Domain Adap-

tation Network approach

Below we explain why our proposed Dual-GD-DDAN is able to resolve the two critical problems

that occur with the DDAN approach. First, if xSi and xSj are proximal to each other and are

located in the same cluster, then their representations h(xSi ) and h(xSj ) are close and hence, the

weight µij is large. This implies GS(xSi ) and GS(xSj ) are encouraged to be close in the joint

space because we are minimising µij ||GS(xSi )−GS(xSj )||2. This increases the chance of the two

representations residing in the same cluster in the joint space. Therefore, Dual-GD-DDAN is

able to preserve the clustering structure of the source data in the joint space. By using the same
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Figure 4.2: Architecture of our Dual-GD-DDAN method. The generators GS and GT take the
sequential code tokens of the source domain and target domain in vectorial form respectively
and map this sequence to the joint layer (i.e., the joint space). The vector representation of
each statement x in source code is denoted by i. The discriminators DS and DT are invoked to
discriminate the source and target data. The source classifier C is trained on the source domain
with labels. We note that the source and target networks do not share parameters and are not
identical.

argument, we reach the same conclusion for the target domain.

Second, following Eqs. (4.1, 4.2), the discriminator DS is trained to encourage large values for

the source modes (i.e., GS(xS)), while the discriminator DT is trained to produce large values

for the target modes (i.e., GT (xT )). Moreover, as in Eq. (4.3), Gs is trained to move the source

domain examples xS to the high-valued region of DT (i.e., the target modes or GT (xT )) and

GT is trained to move the target examples xT to the high-valued region of DS (i.e., the source

modes or GS(xS)). As a consequence, eventually, the source modes (i.e., GS(xS)) and target

modes (i.e., GT (xT )) overlap, while DS and DT place large values on both source (i.e., GS(xS))

and target (i.e., GT (xT )) modes. The mode missing problem is less likely to happen since, as

shown in Fig. 4.1, if the target data misses source mode 2, then DT cannot receive large values

from source mode 2. Similarly, the boundary distortion problem is also less likely to happen

since as in Fig. 4.1, if the target mode 1 can only partly cover the source mode 1, then DT

cannot receive large values from source mode 1. Therefore, Dual-GD-DDAN allows us to reduce

the impact of the missing mode and boundary distortion problems, hence making the target

distribution more identical to the source distribution in the joint space.

4.4.4 Dual Generator-Discriminator Semi-supervised Deep Domain Adapta-

tion Network

When successfully bridging the gap between the source and target domains in the joint layer

(i.e., the joint space), the target samples can be regarded as the unlabelled portion of a semi-
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supervised learning problem. Based on this observation, Nguyen et al. [2019] proposed to enforce

the clustering assumption [Chapelle and Zien, 2005] by minimising the conditional entropy and

using manifold regularisation with the spectral graph.

Using our proposed Dual-GD-DDAN, the conditional entropy H (C, GS , GT ) is defined as

H (C, GS , GT ) = Ex∼PS [−C (GS (x)) log [C (GS (x))]]

+ Ex∼PS [− [1− C (GS (x))] log [1− C (GS (x))]]

+ Ex∼PT [−C (GT (x)) log [C (GT (x))]]

+ Ex∼PT [− [1− C (GT (x))] log [1− C (GT (x))]]

Let SG = (V, E) where the set of vertices V = S∪T be the spectral graph defined as in [Nguyen

et al., 2019]. The manifold regularisation term is defined as

S (C, GS , GT ) =
∑

(u,v)∈E
µuvDKL (Bu, Bv)

=
∑

(u,v)∈E
µuv

[
C (u) logC (u)

C (v) + (1− C (u)) log1− C (u)
1− C (v)

]

where Bu specifies the Bernoulli distribution with P (y = 1 | u) = C (u) and P (y = −1 | u)

= 1 − C (u). The weight µuv is equal to exp{−‖u− v‖2 /
(
2σ2)}, and DKL (Bu, Bv) specifies

the Kullback-Leibler divergence between two distributions. Here we note that u = GS
(
xS
)
and

v = GT
(
xT
)
are two representations of the source sample xS and the target sample xT in the

joint space respectively.

To be able to guarantee the clustering assumption for utilising the unlabelled target samples

in a semi-supervised context, we leverage the minimisation of conditional entropy and manifold

regularisation via spectral graph with our Dual Generator-Discriminator mechanism to propose

Dual Generator-Discriminator Semi-supervised Deep Code Domain Adaptation Network (Dual-

GD-SDDAN). The new formulas for updating the domain classifier C and two generators GS
and GT in Dual-GD-SDDAN are as follows.

Updating the source classifier. The source classifier C in our proposed Dual-GD-SDDAN

is updated by solving

min
C

 1
NS

NS∑
i=1

`
(
C
(
GS

(
xSi

))
, yi
)

+ γH (C, GS , GT ) + λS (C, GS , GT )


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where γ and λ are two non-negative parameters.

Updating the generators. The generators GS and GT in our proposed Dual-GD-SDDAN

are updated by minimising the following objective function

1
NS

NS∑
i=1

`
(
C
(
GS

(
xSi

))
, yi
)

+ αM (GS , GT )

+ βK (GS , GT ) + γH (C, GS , GT ) + λS (C, GS , GT )

4.5 Implementation and results

In this section, firstly, we compare our proposed Dual-GD-DDAN with VulDeePecker without

domain adaptation, MMD, D2GAN, DIRT-T and DDAN using the architecture CDAN proposed

in [Nguyen et al., 2019]. Secondly, we do Boundary Distortion Analysis to further demonstrate

the efficiency of our proposed Dual-GD-DDAN in alleviating the boundary distortion problem

caused by using the GAN principle. Finally, we compare our Dual-GD-SDDAN and SCDAN

introduced in [Nguyen et al., 2019].

4.5.1 Experimental setup

4.5.1.1 Experimental datasets

We use the real-world datasets collected by [Lin et al., 2018], which contain the source code of

vulnerable and non-vulnerable functions obtained from five real-world software projects, namely,

FFmpeg (#vul-funcs: 187, #non-vul-funcs: 5,427), LibTIFF (#vul-funcs: 81, #non-vul-funcs:

695), LibPNG (#vul-funcs: 43, #non-vul-funcs: 551), VLC (#vul-funcs: 25, #non-vul-funcs:

5,548) and Pidgin (#vul-funcs: 42, #non-vul-funcs: 8,268) where #vul-funcs and #non-vul-

funcs is the number of vulnerable and non-vulnerable functions respectively. The datasets

contain both multimedia (i.e., FFmpeg, VLC and Pidgin) and image (i.e., LibPNG and LibTIFF)

application categories. In our experiment, datasets from the multimedia category were used as

the source domain whilst datasets from the image category were used as the target domain (see

Table 4.1).
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4.5.1.2 Data processing and embedding

We preprocess datasets before inputting into the deep neural networks (i.e., baselines and our

proposed method). Firstly, we standardise the source code by removing comments, blank lines

and non-ASCII characters. Secondly, we map user-defined variables to symbolic names (e.g.,

“var1”, “var2”) and user-defined functions to symbolic names (e.g., “func1”, “func2”). We

also replace integers, real and hexadecimal numbers with a generic <num> token and strings

with a generic <str> token. Thirdly, we embed statements in source code into vectors. In

particular, each statement x consists of two parts: the opcode and the statement informa-

tion. We embed both opcode and statement information to vectors, then concatenate the

vector representations of opcode and statement information to obtain the final vector repre-

sentation i of statement x. For example, in the following statement (C programming language)

“if(func3(func4(num,num),&var2)!=var11)”, the opcode is if, and the statement information is

(func3(func4(num,num),&var2)!=var11). To embed the opcode, we multiply the one-hot vec-

tor of the opcode by the opcode embedding matrix. To embed the statement information, we

tokenise it to a sequence of tokens (e.g., (,func3,(,func4,(,num,num,),&,var2,),!=,var11,)), con-

struct the frequency vector of the statement information, and multiply this frequency vector by

the statement information embedding matrix. In addition, the opcode embedding and statement

embedding matrices are learnable variables.

4.5.1.3 Model configuration

For training the eight methods – VulDeePecker, MMD, D2GAN, DIRT-T, DDAN, Dual-GD-

DDAN, SCDAN and Dual-GD-SDDAN – we use one-layer bidirectional recurrent neural net-

works with LSTM cells where the size of hidden states is in {128, 256} for the generators. For

the source classifier and discriminators, we use deep feedforward neural networks with two hid-

den layers in which the size of each hidden layer is in {200, 300}. We embed the opcode and

statement information in the {150, 150} dimensional embedding spaces respectively. We employ

the Adam optimiser with an initial learning rate in {10−3, 10−4}. The mini-batch size is 64.

The trade-off parameters α, β, γ and λ are in {10−1, 10−2, 10−3}. θ is in {0, 1}, and 1/(2σ2) is

in {2−10, 2−9}.

We split the data of the source domain into two random partitions containing 80% for training

and 20% for validation. We also split the data of the target domain into two random partitions.

The first partition contains 80% for training the models of VulDeePecker, MMD, D2GAN, DIRT-

T, DDAN, Dual-GD-DDAN, SCDAN and Dual-GD-SDDAN without using any label information
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while the second partition contains 20% for testing the models. We additionally apply gradient

clipping regularisation [Pascanu et al., 2013] to prevent over-fitting in the training process of

each model. We implement eight mentioned methods in Python using Tensorflow [Abadi et al.,

2016] which is an open-source software library for Machine Intelligence developed by the Google

Brain Team.

4.5.2 Experimental results

4.5.2.1 Code domain adaptation for a fully non-labelled target project

We investigate the performance of our proposed Dual-GD-DDAN compared with other methods

including VulDeePecker (VULD) without domain adaptation [Li et al., 2018], DDAN [Nguyen

et al., 2019], MMD [Long et al., 2015], D2GAN [Nguyen et al., 2017] and DIRT-T [Shu et al.,

2018] with VAP applied in the joint feature layer using the architecture CDAN introduced in

[Nguyen et al., 2019]. The VulDeePecker method is only trained on the source data and then

tested on the target data, while the MMD, D2GAN, DIRT-T, DDAN and Dual-GD-DDAN

methods employ the target data without using any label information for domain adaptation.

In Table 4.1, the experimental results show that our proposed Dual-GD-DDAN achieves a higher

performance for detecting vulnerable and non-vulnerable functions for most performance mea-

sures, including FNR, FPR, Recall, Precision and F1-measure in almost cases of the source and

target domains, especially for F1-measure. Particularly, our Dual-GD-DDAN always obtains

the highest F1-measure in all cases. For example, for the case of the source domain (FFmpeg)

and target domain (LibPNG), Dual-GD-DDAN achieves an F1-measure of 88.89% compared

with an F1-measure of 84.21%, 84.21%, 80%, 77.78% and 75% obtained with DDAN, DIRT-T,

D2GAN, MMD and VulDeePecker respectively.

4.5.2.2 Boundary distortion analysis

Quantitative results. To quantitatively demonstrate the efficiency of our proposed Dual-

GD-DDAN in alleviating the boundary distortion problem caused by using the GAN principle,

we reuse the experimental setting in Section 5.2 [Santurkar et al., 2018]. The basic idea is, given

two datasets S1 and S2, to quantify the degree of cover of these two datasets. We train a classifier

C1 on S1, then test on S2 and another classifier C2 on S2, then test on S1. If these two datasets

cover each other well with reduced boundary distortion, we expect that if C1 predicts well on S1,

then it should predict well on S2 and vice versa if C2 predicts well on S2, then it should predict
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Source → Target Methods FNR FPR Recall Precision F1-measure

Pidgin → LibPNG

VULD 42.86% 1.08% 57.14% 80% 66.67%
MMD 37.50% 0% 62.50% 100% 76.92%
D2GAN 33.33% 1.06% 66.67% 80% 72.73%
DIRT-T 33.33% 1.06% 66.67% 80% 72.73%
DDAN 37.50% 0% 62.50% 100% 76.92%

Dual-GD-DDAN 33.33% 0% 66.67% 100% 80%

FFmpeg → LibTIFF

VULD 43.75% 6.72% 56.25% 50% 52.94%
MMD 28.57% 12.79% 71.43% 47.62% 57.14%
D2GAN 30.77% 6.97% 69.23% 64.29% 66.67%
DIRT-T 25% 9.09% 75% 52.94% 62.07%
DDAN 35.71% 6.98% 64.29% 60% 62.07%

Dual-GD-DDAN 12.5% 8.2% 87.5% 56% 68.29%

FFmpeg → LibPNG

VULD 25% 2.17% 75% 75% 75%
MMD 12.5% 3.26% 87.5% 70% 77.78%
D2GAN 14.29% 2.17% 85.71% 75% 80%
DIRT-T 15.11% 2.2% 84.89% 80% 84.21%
DDAN 0% 3.26% 100% 72.73% 84.21%

Dual-GD-DDAN 0% 2.17% 100% 80% 88.89%

VLC→ LibPNG

VULD 57.14% 1.08% 42.86% 75% 54.55%
MMD 45% 4.35% 55% 60% 66.67%
D2GAN 28.57% 4.3% 71.43% 55.56% 62.5%
DIRT-T 50% 1.09% 50% 80% 61.54%
DDAN 33.33% 2.20% 66.67% 75% 70.59%

Dual-GD-DDAN 28.57% 2.15% 71.43% 71.43% 71.43%

Pidgin → LibTIFF

VULD 35.29% 8.27% 64.71% 50% 56.41%
MMD 30.18% 12.35% 69.82% 50% 58.27%
D2GAN 40% 7.95% 60% 60% 60%
DIRT-T 38.46% 8.05% 61.54% 53.33% 57.14%
DDAN 27.27% 8.99% 72.73% 50% 59.26%

Dual-GD-DDAN 29.41% 6.76% 70.59% 57.14% 63.16%

Table 4.1: Performance results in terms of false negative rate (FNR), false positive rate (FPR),
Recall, Precision and F1-measure of VulDeePecker (VULD), MMD, D2GAN, DIRT-T, DDAN
and Dual-GD-DDAN for predicting vulnerable and non-vulnerable code functions on the testing
set of the target domain (best performance in bold).

well on S1. This would seem reasonable since if boundary distortion occurs (i.e., assume that S2

partly covers S1), then C2 trained on S2 would struggle to predict S1 well which is much larger

and possibly more complex. Therefore, we can utilise the magnitude of the accuracies and the

accuracy gap of C1 and C2 when predicting their training and testing sets to assess the severity

of the boundary distortion problem.

Source → Target Methods Accuracy Accuracy
Tr-src/ Ts-tar/ Acc-gap Tr-tar/ Ts-src/ Acc-gap

Pidgin → LibPNG DDAN 98.8% 96% 2.8% 97% 92% 5%
Dual-GD-DDAN 99% 97% 2% 97% 95% 2%

FFmpeg → LibPNG
Methods Accuracy Accuracy

Tr-src/ Ts-tar/ Acc-gap Tr-tar/ Te-src/ Acc-gap
DDAN 95.9% 92% 3.9% 91% 83.3% 7.7%

Dual-GD-DDAN 97% 96% 1% 98% 95.6% 2.4%

Table 4.2: Accuracies obtained by the DDAN and Dual-GD-DDAN methods when predicting
vulnerable and non-vulnerable code functions on the source and target domains. Note that
Tr-src, Ts-tar, Tr-tar, Ts-src, and Acc-gap are the shorthands of the train source, test target,
train target, test source, and accuracy gap respectively. For the accuracy gap, a smaller value
is better.

Inspired by this observation, we compare our Dual-GD-DDAN with DDAN using the represen-
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tations of the source and target samples in the joint feature space corresponding to their best

models. In particular, for a given pair of source and target datasets and for comparing each

method, we train a neural network classifier on the best representations of the source dataset

in the joint space, then predict on the source and target dataset and do the same but swap the

role of the source and target datasets. We then measure the difference of the corresponding

accuracies as a means of measuring the severity of the boundary distortion. We choose to con-

duct such a boundary distortion analysis for two pairs of the source (FFmpeg and Pidgin) and

target (LibPNG) domains. As shown in Table 4.2, all gaps obtained by our Dual-GD-DDAN

are always smaller than those obtained by DDAN, while the accuracies obtained by our pro-

posed method are always larger. We can therefore conclude that our Dual-GD-DDAN method

produces a better representation for source and target samples in the joint space and is less

susceptible to boundary distortion compared with the DDAN method.

Visualisation. We further demonstrate the efficiency of our proposed Dual-GD-DDAN in al-

leviating the boundary distortion problem caused by using the GAN principle. Using a t-SNE

[Maaten and Hinton, 2008] projection, with perplexity equal to 30, we visualise the feature dis-

tributions of the source and target domains in the joint space. Specifically, we project the source

and target data in the joint space (i.e., G (x)) into a 2D space with domain adaptation (DDAN)

and with dual-domain adaptation (Dual-GD-DDAN). In Fig. 4.3, we observe these cases when

performing domain adaptation from a software project (FFmpeg) to another (LibPNG). As

shown in Fig. 4.3, with undertaking domain adaptation (DDAN, the left figure) and dual-

domain adaptation (Dual-GD-DDAN, the right figure), the source and target data sampled are

intermingled especially for Dual-GD-DDAN. However, it can be observed that DDAN when

solely applying the GAN is seriously vulnerable to the boundary distortion issue. In particular,

in the clusters/data modes 2, 3 and 4 (the left figure), the boundary distortion issue occurs since

the blue data only partly cover the corresponding red ones (i.e., the source and target data do

not totally mix up). Meanwhile, for our Dual-GD-DDAN, the boundary distortion issue is much

less vulnerable, and the mixing-up level of source and target data is significantly higher in each

cluster/data mode.

4.5.2.3 Quantitative results of Dual Generator-Discriminator Semi-supervised Deep

Code Domain Adaptation

In this section, we compare the performance of our Dual-GD-SDDAN with Semi-supervised

Deep Code Domain Adaptation (SCDAN) [Nguyen et al., 2019] on four pairs of the source and
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Figure 4.3: 2D t-SNE projection for the case of the FFmpeg → LibPNG domain adaptation.
The blue and red points represent the source and target domains in the joint space respectively.
In both cases of the source and target domains, data points labelled 0 stand for non-vulnerable
samples and data points labelled 1 stand for vulnerable samples.

target domains. In Table 4.3, the experimental results show that our Dual-GD-SDDAN achieves

a higher performance than SCDAN for detecting vulnerable and non-vulnerable functions in

terms of FPR, Precision and F1-measure in almost cases of the source and target domains,

especially for F1-measure. For example, to the case of the source domain (VLC) and target

domain (LibPNG), our Dual-GD-SDDAN achieves an F1-measure of 76.19% compared with

an F1-measure of 72.73% obtained with SCDAN. These results further demonstrate the ability

of our Dual-GD-SDDAN for dealing with the mode collapsing problem better than SCDAN

[Nguyen et al., 2019], hence obtaining better predictive performance in the context of software

domain adaptation.

Source → Target Methods FPR FNR Recall Precision F1-measure

FFmpeg → LibTIFF SCDAN 5.38% 14.29% 85.71% 57.14% 68.57%
Dual-GD-SDDAN 3.01% 35.29% 64.71% 73.33% 68.75%

FFmpeg → LibPNG SCDAN 1.08% 12.5% 87.5% 87.5% 87.5%
Dual-GD-SDDAN 0% 17.5% 82.5% 100% 90.41%

VLC→ LibPNG SCDAN 1.06% 33.33% 66.67% 80% 72.73%
Dual-GD-SDDAN 4.39% 11.11% 88.89% 66.67% 76.19%

Pidgin → LibTIFF SCDAN 5.56% 30% 70% 58.33% 63.64%
Dual-GD-SDDAN 2.98% 37.5% 62.5% 71.43% 66.67%

Table 4.3: Performance results in terms of false negative rate (FNR), false positive rate (FPR),
Recall, Precision and F1-measure of SCDAN and Dual-GD-SDDAN methods for predicting
vulnerable/non-vulnerable code functions on the testing set of the target domain (best perfor-
mance in bold).
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4.6 Closing remarks

The software vulnerability detection problem is an important problem in the software industry

and in the field of computer security. One of the most crucial issues in SVD is to cope with

the scarcity of labelled vulnerabilities in projects that require the laborious labelling of code by

software security experts. In this chapter, we propose the Dual Generator-Discriminator Deep

Code Domain Adaptation Network (Dual-GD-DDAN) method to deal with the missing mode

and boundary distortion problems which arise from the use of the GAN principle when reducing

the discrepancy between source and target data in the joint space. We conducted experiments

to compare our Dual-GD-DDAN method with the state-of-the-art baselines. The experimental

results show that our proposed method outperforms these rival baselines by a wide margin in

term of predictive performances.
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Part II

Learning to Explain Software

Vulnerability (Fine-grain-level

Vulnerability Detection)
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Preface to Part II

In the previous part (i.e., Part I), we have presented our proposed methods for dealing with one

of the most crucial issues in software vulnerability detection (SVD), coping with the scarcity

of labelled vulnerabilities in projects that require the laborious manual labelling of code by

software security experts. Our proposed methods are the first work to formulate the transferred

learning of software vulnerabilities from a labelled source of sequences to an unlabelled target of

sequences. We believe our proposed novel CDAN architecture is a new building block for a wide

array of other applications in other domains such as behaviour modelling in financial technology

(fintech) where temporal dynamics are important and sequence modelling in computational

biology.

In Part II, Chapters 5 and 6, we summarise our proposed methods to deal with the second

problem existing in current SVD methods, which is relevant to the second research question

(Q.2): “how to efficiently exploit the semantic and syntactic relationships inside source code to

detect vulnerabilities at a fine-grained level with more flexible scope (i.e., the statement level)

than the function or program levels”.
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Chapter 5

Information-theoretic Source Code

Vulnerability Highlighting

Software vulnerabilities (SVs) are a crucial and serious concern in the software industry and

in computer security. A variety of methods have been proposed to detect vulnerabilities in

real-world software. Recent methods based on deep learning approaches for automatic feature

extraction have improved software vulnerability identification compared with machine learning

approaches based on hand-crafted feature extraction. However, these methods can usually only

detect SVs at a function-[Lin et al., 2018, Li et al., 2018] or program-[Dam et al., 2017] level,

which is much less informative because, out of hundreds (thousands) of code statements in a

program or function, only a few core statements contribute to a software vulnerability. This

requires us to find a way to detect software vulnerabilities at a fine-grained level. For most

publicly available datasets, vulnerabilities are only labelled at the program or function levels,

not at the statement level. In doing this, we can then significantly speed up the process of

isolating and detecting SVs, thereby reducing the time and cost involved.

In this chapter, we propose a novel learn-to-explain model based on the concept of mutual

information that can help us to detect and isolate SVs at a fine-grained level (i.e., statements

that are highly relevant to a software vulnerability) in both unsupervised and semi-supervised

learning settings. Our proposed method involves two key stages. In the first stage, we train a

reference deep learning model with the aim of approximating the true conditional distribution

p(Y | F ) (i.e., the true probabilistic labelling assignment mechanism) of label Y (i.e., vulnerable

or non-vulnerable) with respect to the source code F by pm (Y | F ) offered by the reference

model. In the second stage, we learn another model that aims to explain the reference model

by specifying the top-K statements in the given source code that mostly contribute to the
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vulnerability prediction decision for this model.

5.1 Motivations

In the field of software security, software vulnerabilities (SVs) are specific potential flaws, glitches,

weaknesses or oversights in parts of software. Attackers or vandals can leverage these vulnerabil-

ities to carry out malicious actions, such as exposing or altering sensitive information, disrupting

or destroying a system, or taking control of a program or computer system [Dowd et al., 2006].

Owing to the rapid growth and dramatic diversity of software, a large amount of computer

software potentially contains vulnerabilities, which can create severe threats to cybersecurity,

resulting in expenditure costs of about USD 600 billion globally each year [McAfee and CSIS,

2017]. These threats call for an urgent need of advanced approaches (i.e., automatic tools and

methods) to efficiently and effectively deal with the large amount of vulnerable code with a

minimal level of human intervention.

In this chapter, we propose a novel method that allows us to find and highlight code statements

in functions or programs that are truly relevant to the presence of significant code vulnera-

bilities. Given vulnerable source code (i.e., functions or programs), we aim to highlight the

top-K statements that are the most relevant to the vulnerable and non-vulnerable class labels.

By referring to the vulnerable source code with a high probability, the highlighted statements

contain the core statements that contribute to the overall code vulnerabilities. Moreover, our

proposed method specifies and highlights the statements that explain the vulnerability intrinsic

to the given source code. Our proposed method involves two key stages. In the first stage,

we train a reference deep learning model, with the aim of approximating the true conditional

distribution p(Y | F ) (i.e., the true probabilistic labelling assignment mechanism) of label Y

(where Y = 1 means a vulnerability and Y = 0 means otherwise) w.r.t the source code F by

pm (Y | F ) offered by the reference model. In the second stage, we learn another model that

aims to explain the reference model by specifying the top-K statements in the given source code

that mostly contribute to the vulnerability prediction decision for this model.

The idea is to select a subset of K statements that maximises the mutual information to the

corresponding label given by the reference model. A similar information-theoretic metric has

been employed in the L2X model [Chen et al., 2018] for instance-wise feature selection for

the case of vectorial data. Although that model can be adopted to work for sequential data

(e.g., source code), our proposed method is different from L2X in the following aspects: i) our

formulation for mutual information takes into consideration the sequential nature of source code
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(in contrast to L2X), and ii) inspired from this formulation, we propose a novel architecture

using a multi-Bernoulli distribution for selecting the top-K mostly relevant statements rather

than employing a multinomial distribution as in L2X. The advantage of this approach is two-

fold. First, this allows us to better control the random selection process. Second, it allows us to

incorporate the information from ground truth in a semi-supervised context wherein we assume

that a small portion of source code data might have annotations of core statements that cause

a vulnerability. Our key contributions include:

• We propose a novel learn-to-explain model that is based on mutual information and takes

into account the sequential nature of data to better evaluate mutual information. Using

this theory, we propose a novel architecture based on multi-Bernoulli distribution for

random subset of statements selection. Unlike the multinomial distribution used in L2X,

our mechanism is more controllable and enables us to train the model in a semi-supervised

context. In addition, our proposed model can be used to highlight the core statements

that are a subset of the most relevant statements of vulnerable source code. It can also

explain how the reference model works by identifying the most important statements that

contribute to its prediction.

• We conduct experiments on the datasets collected by [Li et al., 2018], that contain source

code of vulnerable and non-vulnerable functions from two real-world software data sources

and compare our proposed method to a state-of-the-art baseline L2X approach on these

two datasets. We further investigate our proposed method in the semi-supervised context

by comparing it to itself in an unsupervised context. We demonstrate that our proposed

method can detect vulnerable code statements in functions much more effectively than

L2X in unsupervised context and its semi-supervised variant can significantly boost the

performance.

5.2 Related work for fine-grain-level vulnerability detection

There are two typical approaches for software vulnerability detection (SVD) including methods

based on either hand-crafted or automatic extraction of features. Most previous work in software

vulnerability detection [Neuhaus et al., 2007, Shin et al., 2011, Yamaguchi et al., 2011, Almorsy

et al., 2012, Li et al., 2016, Grieco et al., 2016, Kim et al., 2017] has been developed based on

hand-crafted features of data which are manually chosen by knowledgeable domain experts and

may thus carry outdated experience, expertise and underlying biases [Zimmermann et al., 2009].
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To lessen the dependency on hand-crafted features, the use of automatically learned features

for SVD has been recently studied, notably [Dam et al., 2017, Li et al., 2018, Lin et al., 2018].

In particular, these works leverage deep learning models to automatically extract features, and

have shown great advances over those based on hand-crafted features.

Despite showing promising performances, current deep learning-based methods are only able to

detect software vulnerabilities at the function [Lin et al., 2018, Li et al., 2018] or program [Dam

et al., 2017] levels. In real-world situations, programs or even functions are often very long

and may consist of hundreds or thousands of lines of code. The source of most vulnerabilities

arises from a significantly smaller scope, usually a few core statements. We thus want to be

able to detect software vulnerabilities at a more fine-grained level, i.e., several code statements

within functions or programs. This includes highlighting statements that are highly relevant

to the corresponding vulnerability and associated code statements. In doing this, we can then

significantly speed up the process of isolating and detecting software vulnerabilities, thereby

reducing the time and cost involved.

To the best of our knowledge, there is one deep learning-based method, named VulDeeLocator

[Li et al., 2020] (posted on ArXiv for fine-grain-level vulnerability detection). However, besides

the original source codes F and their vulnerability labels Y , VulDeeLocator needs further infor-

mation relevant to vulnerable code statements to obtain what is called intermediate code-based

vulnerability candidate representation from its preprocessing steps, and then use the interme-

diate code-based representation in the training and testing processes rather than the original

source code F . This is totally different from our proposed approach which can be run in an unsu-

pervised setting (only requires the source codes F and their vulnerability labels Y , and not uses

information relevant to vulnerable code statements) for the task of fine-grain-level vulnerability

detection. VulDeeLocator not only cannot work in the unsupervised setting, but also cannot

work directly with source code (i.e., it requires to compile source code to Lower Level Virtual

Machine (LLVM) intermediate code. If source code cannot be compiled to LLVM intermediate

code, we cannot use VulDeeLocator).

5.3 Motivating example

We give an example of a source code function obtained from the CWE-119 dataset to demon-

strate software vulnerability detection (SVD) at a fine-grained level, shown in Fig. 1. This

function has a few core vulnerable code statements highlighted in red that are the main source

of the vulnerability. The statement “if (fgets (inputBuffer, CHAR_ARRAY_SIZE, stdin) !=
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Figure 5.1: Example of a source code function obtained from the CWE-119 dataset. The left-
hand and right-hand figures are the first and second parts of the function. For demonstration
purpose and simplicity, we choose a simple source code function. There are some parts of the
function omitted for the brevity.

NULL)” is a potential vulnerability because we read data from the console using fgets(). Likewise

the two statements “if (data >= 0)” and “buffer[data] = 1;” cause another potential vulnerabil-

ity because we attempt to write to an index of the array that exceeds the upper bound. Since the

real-world source codes might contain hundreds of statements, we want to be able to highlight

several statements in the function that are highly relevant to the presence of a vulnerability and

contain the core vulnerable statements. In doing so, we can significantly speed up the process

of isolating and detecting software vulnerabilities, and therefore reduce the cognitive load of the

security analyst.

5.4 Information-theoretic Code Vulnerability Highlighting

We begin with the problem statement of Information-theoretic Code Vulnerability Highlighting

(ICVH), followed by the technical details of ICVH in the unsupervised and semi-supervised

contexts.

5.4.1 The problem statement

Consider a dataset D = {(F1, Y1) , . . . , (FN , YN )} where Yi ∈ {0, 1} (where 1 : vulnerable code

and 0 : non-vulnerable code) and Fi =
[
f i1, . . . ,f

i
Ni

]
is source code with a sequence of Ni

statements (i.e., Fi is the i-th source code section in the dataset D) while the lower-case f

stands for a statement in the corresponding source code F (e.g., f ik is the k-th code statement

in the source code Fi). Given a source code F = [f1, . . . ,fL], we denote the subset FS =
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Figure 5.2: Architecture of the reference model using a bi-RNN.

[fi1 , . . . ,fiK ] = [fj ]j∈S where S = {i1, . . . , iK} ⊂ {1, . . . , L} (i1 < i2 < ... < iK). Most existing

work in software vulnerability detection involves detecting vulnerabilities at the program or

function level. However, in source code only several core statements are highly relevant to a

given vulnerability. In this work, we undertake vulnerability detection at a fine-grained level

than at the function or program level. In other words, we learn to emphasise the code blocks

that are directly and highly relevant to the vulnerabilities. Specifically, given a function F , our

task is to select a subset FS where S = {i1, . . . , iK} ⊂ {1, . . . , L} in such a way that FS is highly

relevant to the presence of a vulnerability.

5.4.2 The reference model

The reference model aims to learn a model distribution pm(Y | F ) that can approximate the

true distribution p(Y | F ) where Y is the label of the corresponding source code F and Y, F ∼

p(Y, F ) = p(F )p(Y | F ). To obtain pm(Y | F ), we use a network architecture with a combination

of a bidirectional recurrent neural network (bi-RNN) to learn vector representations of source

code and a deep feedforward neural network, which takes the outputs of the bi-RNN as inputs,

to model the distribution pm(Y | F ). The architecture of the reference model is depicted in

Fig. 5.2 where mi, hi and oi = concat(mi,hi) with i = 1, .., L are the hidden states and the

output of the bi-RNN respectively, while C is the prediction layer, andM,H,U and G are model

parameters. We note that without loss of generalisation and to simplify the notion, we use fi to

represent both a symbolic code statement and its embedding vector that is fed to the networks.

Data preprocessing and embedding is discussed in the Data Processing and Embedding section

in the Experiment section.
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5.4.3 The explaining model: Information-theoretic Code Vulnerability High-

lighting

The proposed explaining model aims to explain the reference model by specifying the top-

K statements (i.e., the top-K vulnerability-relevant statements) in the given source code that

mostly contribute to the vulnerability prediction decision of the reference model. Our proposed

model does not use any information about ground truth of vulnerable code statements in the

training. We name this setting as unsupervised context.

5.4.3.1 Theoretical formulation with mutual information to capture the sequential

nature of data

To select the most relevant subset FS , we aim to maximise the mutual information: I (FS , Y )

where we view Y obtained from the reference model as a random variable that is characterised

using pm (Y | F ), which is previously trained using the whole training set D. Mathematically,

we aim to solve the following optimisation problem:

max Ep(F )
[
Ep(S|F ) [I (FS , Y )]

]
(5.1)

Eq. (5.1) means that given source code F ∼ p(F ) (data distribution), we need to devise the

random selection process characterised by p(S | F ) to select the subset FS such that the mutual

information of FS and the label Y is maximised. The two main problems here are: i) how to

design the random selection process p(S | F ), and ii) how to obtain I(FS , Y ). We develop the

following relevant theory to efficiently derive I(FS , Y ) and solve Eq. (5.1). We have,

I (FS , Y ) =
K∑
k=1

Efi1:k−1

[
I
(
fik , Y | fi1:k−1

)]

The following lemma tackles Efi1:k−1
[I(fik , Y | fi1:k−1)] and this term can be further derived as

follows. We have

Efi1:k−1

[
I
(
fik , Y | fi1:k−1

)]
≈Efi1:k

[
Epm(Y |fi1:k) [logpm (Y | fi1:k)]

]
+ const

The next lemma gives a lower bound to Efi1:k
[Epm(Y |fi1:k )[logpm(Y | fi1:k)]]. We can obtain a
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lower bound to Efi1:k
[Epm(Y |fi1:k )[logpm(Y | fi1:k)] by

Efi1:k

[
Epm(Y |fi1:k) [logQ (Y | fi1:k)]

]

for every Q (Y | F ). The proofs of the above lemmas can be found in the Appendix. Combining

Lemmas 1, 2 and 3, the optimisation problem in Eq. (5.1) can be now rewritten:

max Ep(F )

[
Ep(S|F )

[
K∑
k=1

Efi1:k

[
Epm(Y |fi1:k) [logQ(Y | fi1:k)]

]]]
(5.2)

5.4.3.2 Network design in the unsupervised context

To design the random selection process for selecting S = {i1, ..., iK} (i1 < i2 < ... < iK) to

form p(S | F ) and formulate Q(Y | fi1:k) for k = 1, . . . ,K, we employ a bi-RNN with sequence

length L. As shown in Fig. 5.4, for each statement fk or its embedding vector, which is also

denoted by fk, we use a Bernoulli random variable Zk with P(Zk = 1) = µk (i.e., we apply the

sigmoid activation over µk to convert it to a probability) to specify if fk is selected or not (i.e.,

Zk = 1 means fk is selected). We compute Zkfk for all k and then feed them to another bi-RNN

where we make a prediction of the label at the hidden states with Zk = 1 to mimic Q(Y | fi1:k).

In addition, we have approximated the sub-sequence of statements [fi1 , ...,fik ] by the sequence

[Z1f1, ..., ZLfL] in which the inactive (not selected) statements are substituted by the vector 0.

To render the above random selection process continuous and differentiable for training, we

employ the Concrete (Gumbel-softmax) distribution [Jang et al., 2016, Maddison et al., 2016]

to undertake relaxation on the Bernoulli random variable Zk. In particular, we sample Vk from

the Concrete distribution as: [Vk, 1− Vk] ∼ Concrete(µk, 1− µk).

We now denote V � F as [Vkfk]k=1,...,L and the sequence V � F is injected into the second

bi-RNN. We denote SK as the set of indices with the top K values for Vk. The optimisation

problem in Eq. (5.2) can be rewritten as follows:

max Ep(F )

Ep(S|F )

 ∑
k∈SK

 1∑
y=0

pm (Y = y | V � F ) logp(Y = y | h2
k,m

2
k)

 (5.3)

where log p(Y = y | h2
k,m

2
k) relates to the log-likelihood of the second bi-RNN. The architecture

of our proposed Information-theoretic Code Vulnerability Highlighting applied to code vulner-

ability identification is depicted in Fig. 5.4 where m1
i , h1

i , m
2
i and h2

i with i = 1, .., L are the

hidden states of two bi-RNNs while Mj , Hj , Uj , Gj with j = 1, 2 and W are model parameters.
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Our ICVH model can be applied to both source code and binary code vulnerability identification.

In the testing phase, we choose the code statements whose indices lie in SK with top K values

for µk. We can interpret µk as the probability to select the k-th code statement in our subset.

Figure 5.3: Training phase of the ICVH model.

Figure 5.5: Testing phase of our ICVH model using the trained model obtained from the training
phase.

For our explaining ICVH model, we aim to obtain high performances not only on approaching

Figure 5.4: Architecture of our Information-theoretic Code Vulnerability Highlighting (ICVH)
network using bi-RNNs. The pink cells refer to those code statements in SK , and we formulate
p(Y | h2

k,m
2
k) using the softmax function.
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close to (or have a good explanation of) the reference model (i.e., a high F1-score for the label

prediction Y obtained from the reference model), but also on the selecting and highlighting

process of vulnerable code statements in vulnerable functions (i.e., the VCA and VCP measures

which are both mentioned in the experiment section). The working processes of our ICVH model

in the training (i.e., in the unsupervised context) and testing phases are visualised in Fig. 5.3

and Fig. 5.5 respectively.

5.4.3.3 Network design in the semi-supervised context

It is very convenient to incorporate the annotations of the core vulnerable statements in the

ground truth to our network design. Specifically, let Fc = [fi1 , ...,fim ] be the core vulnera-

ble statements for a given source code. We maximise the probabilities of selecting the core

statements and not selecting other statements in the first bi-RNN as follows:

max

∑
k∈Ic

logµk +
∑
k/∈Ic

log(1− µk)

 ,
where Ic = [i1, ..., im]. We then add the above objective function to the main objective function

in Eq. (5.3) with the trade-off parameter λ > 0.

5.5 Implementation and results

First, we compare our Information-theoretic Code Vulnerability Highlighting (ICVH) method

with L2X introduced in [Chen et al., 2018] and the random selection method (RSM) where

we randomly choose statements from functions in order to compare with ground truths of vul-

nerable code statements in the unsupervised context. Second, we investigate ICVH in the

semi-supervised context in which there is a small portion of data having ground truth of core

vulnerable code statements. Finally, we inspect the explanatory capability of ICVH by identi-

fying example misclassifications by the reference model and then analysing the reason for these.

From machine learning and data mining perspectives, it seems that the existing methods in

interpretable machine learning [Ribeiro et al., 2016, Shrikumar et al., 2017, Lundberg and Lee,

2017, Chen et al., 2018] with adoption are ready to apply. Unfortunately, besides [Chen et al.,

2018], none of others can be adopted to be applicable to the specific context of statement-grained

vulnerability detection.

We cannot compare with VulDeeLocator [Li et al., 2020] because: i) it cannot work directly with
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Datasets #vul-funcs #non-vul-funcs
CWE-119 5,582 5,099
CWE-399 1,010 1,313

Table 5.1: Summary statistics of CWE-119 and CWE-399 datasets with the number of vulnerable
functions (#vul-funcs) and non-vulnerable functions (#non-vul-funcs).

source code (i.e., it requires to compile source codes to Lower Level Virtual Machine intermediate

code), and ii) it requires information relevant to vulnerable statements for extracting tokens from

program code according to a given set of vulnerability syntax characteristics, hence it cannot

be operated in the unsupervised setting.

5.5.1 Experimental setup

5.5.1.1 Experimental datasets

We used the real-world datasets collected by [Li et al., 2018] which contain the source code

of vulnerable functions (vul-funcs) and non-vulnerable functions (non-vul-funcs) obtained from

two real-world software datasets, containing buffer error vulnerabilities (CWE-119) and resource

management error vulnerabilities (CWE-399). The summary statistics of these datasets are

shown in Table 5.1. For both CWE-119 and CWE-399, we remove functions that are identical.

The minimum, mean, and maximum length of functions in CWE-399 and CWE-119 are (4; 51;

177) and (4; 21; 164) respectively. For the 1,010 vulnerable functions of CWE399 and 5,582

vulnerable functions of CWE119, the percentage of vulnerable statements and non-vulnerable

statements is 5.50% and 8.13% respectively. These percentages between vulnerable and non-

vulnerable statements demonstrate that our proposed VCP and VCA measures are reasonable.

Labelling core vulnerable statements for evaluation. The CWE-399 and CWE-119 data

sets have only vulnerable and non-vulnerable labels for their source codes. Our aim in this work

is to detect the statements responsible for causing the vulnerability. Although our proposed

method does not need the information of vulnerable statements at all in the training phase, this

information is necessary in evaluating its performance. To obtain this information regarding the

location of vulnerable statements in source code for the CWE-399 and CWE-119 data sets, we

further processed these data sets. To obtain the ground truth of vulnerable code statements,

we used the description of vulnerability information (i.e., the comments and annotations) in

the original source code as well as the differences between the vulnerable versions and the fixed

versions (i.e., non-vulnerable versions) of the source code.
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5.5.1.2 Data processing and embedding

We preprocess the datasets before injecting them into the deep networks. First, we standard-

ise the source code by: removing comments and non-ASCII characters, mapping user-defined

variables to symbolic names (e.g., “var1”, “var2”) and user-defined functions to symbolic names

(e.g., “func1”, “func2”), and replacing strings with a generic <str> token. Second, we embed

statements in source code into vectors. For instance, in the following statement (C programming

language) “if(func3(func4(2,2),&var2)!=var11)”: to embed this code statement, we tokenise it to

a sequence of tokens (e.g., if,(,func3,(,func4,(,2,2,),&,var2,),!=,var11,)), construct the frequency

vector of the statement, and multiply this frequency vector by the statement embedding matrix.

The statement embedding matrix represents the learnable variables in our model.

5.5.1.3 Model configuration

We implemented ICVH and L2X in Python using Tensorflow [Abadi et al., 2016], an open-

source software library for Machine Intelligence developed by the Google Brain Team. We ran

our experiments on a server with an Intel Xeon Processor E5-1660 which had 8 cores at 3.0 GHz

and 128 GB of RAM. The length of each function is padded or cut to 100 code statements. For

the reference model (i.e., the learning model), we used a bidirectional recurrent neural network

(bi-RNN) using LSTM cells, where the size of the hidden states is in {128, 256}, combined with

a deep feedforward neural network having two hidden layers with the size of each hidden layer in

{100, 200, 300}. For L2X, we used the structure with parameters as mentioned in [Chen et al.,

2018] and for each dataset, we used 10 epochs as suggested in [Chen et al., 2018] for the training

process. For our ICVH method, regarding the first and second bi-RNN, we used LSTM cells

where the size of hidden states is in {128, 256}. The deep feedforward neural networks consisted

of two hidden layers with the size of each hidden layer in {100, 200, 300}. The trade-off parameter

λ is in {10−1, 10−2}.

We employed the Adam optimiser [Kingma and Ba, 2014] with an initial learning rate in

{0.001, 0.003}, while the mini-batch size is 100 and the temperature τ for the Gumbel-softmax

distribution is in {0.1, 0.5}, for both L2X and ICVH. For the reference (learning) model and

explaining model (L2X and our ICVH method), we split the data of each dataset into three ran-

dom partitions. The first partition contains 80% for training, the second partition contains 10%

for validation and the last partition contains 10% for testing. We additionally apply gradient

clipping regularisation [Pascanu et al., 2013] to prevent over-fitting when training the model.
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5.5.1.4 Measures

To compare the performance of RSM and L2X with our proposed ICVH method, we propose two

main measures of interest, namely vulnerability coverage proportion (VCP) and vulnerability

coverage accuracy (VCA).

The VCP aims to measure the proportion of correctly detected vulnerable statements over

all vulnerable statements in a given dataset. The VCP hence is mathematically defined as
#detectedV CS

#allV CS where #detectedV CS is the number of vulnerable code statements detected cor-

rectly and #allCV S is the number of all vulnerable code statements in a dataset.

The VCA is considered more strictly, because it measures the ratio of the successfully detected

functions over all functions in a dataset. In addition, a function is considered successfully

detected by a method if this method can detect successfully all vulnerable statements in this

function. Mathematically, the VCA can be expressed as #detectedV Func
#allV Func where #detectedV Func

is the number of successfully detected functions and #allV Func is the number of functions in

a dataset.

In addition to VCP and VCA measures, we also reported the label (i.e., Y ) classification F1-score

on CWE-399 and CWE-119 data sets for our proposed method and baselines.

5.5.2 Experimental results

5.5.2.1 Learning process (the reference model)

We aim to learn a model distribution pm(Y | F ) that can approximate the true distribution

p(Y | F ) where y is the label corresponding to the source code F . To obtain pm(Y |F ), we

use the network architecture as depicted in Fig. 5.2. We measure the F1-score of the reference

model (learning model) on CWE-119 and CWE-399 real-world datasets. As showed in Table 5.2,

using this architecture we obtained a high predictive performance for learning the approximate

distribution pm(Y |F ). In particular, the learning model obtained 99.25% and 94.29% for F1-

score for CWE-399 and CWE-119 respectively.

In the explaining process described in the next section, we aim to explain the reference model by

specifying the most important code statements in each function F that have the most significant

role for the reference model to make its decision about the corresponding label Y.
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Model Datasets F1-score

The reference (learning) Model CWE-399 99.25%
CWE-119 94.29%

Table 5.2: Performance results in term of F1-score of the reference (learning) model on the
testing set of CWE-399 and CWE-119.

5.5.2.2 Explaining code vulnerability highlighting with selected code statements

in the unsupervised context

We compared the performance of our ICVH method with L2X [Chen et al., 2018] and the

random selection method (RSM) in the unsupervised context for explaining the reference model

and highlighting the vulnerable code statements. In this approach we do not use any information

about ground truth of vulnerable code statements in the training process. We wanted to find

out the top K statements that mostly influence the decision of the vulnerability of each function.

The number of selected code statements for each function used in each method is fixed equal to

10 (i.e., K = 10). When comparing L2X and ICVH in the explainable or interpretable model,

we not only aim to obtain a high F1-score for a good explanation, but also aim to measure how

the selected and highlighted statements cover the core vulnerable statements.

The experimental results in Table 5.3 show that our proposed method (ICVH) achieved a higher

performance for both VCP and VCA measures, and F1-score compared with L2X on the CWE-

399 and CWE-119 datasets. In particular, for CWE-119, our proposed method (ICVH) achieved

89.13% for VCP and 86.27% for accuracy while L2X achieved 83.21% and 77.74% for VCP and

accuracy respectively.

The higher F1-score that was achieved by ICVH shows that it can approximate (or achieve

better explainability of) the reference model compared with L2X. The larger VCP and VCA

measures show that our proposed method can detect vulnerable code statements in vulnerable

functions much more accurately and effectively compared with L2X.

Datasets K Methods VCP VCA F1-score

CWE-399 10
RSM 36.36% 30.87% NA
L2X 80.41% 71.00% 99.10%

ICVH (ours) 86.82% 80.46% 99.40%

CWE-119 10
RSM 40.37% 33.28% NA
L2X 83.21% 77.74% 97.30%

ICVH (ours) 89.13% 86.27% 99.23%

Table 5.3: Performance results in terms of VCP, VCA and F1-score on the testing set of CWE-
399 and CWE-119 for the random selection method (RSM), L2X and our ICVH method (best
performance among methods for each dataset in bold).
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Datasets K Methods VCP VCA F1-score

CWE-399

5
ICVH 69.46% 54.65% 99.21%

S2-ICVH-5 89.05% 85.42% 100%
S2-ICVH-10 90.67% 88.57% 99.76%

10
ICVH 86.82% 80.46% 99.40%

S2-ICVH-5 91.72% 88.54% 100%
S2-ICVH-10 95.11% 92.86% 99.76%

CWE-119

5
ICVH 67.53% 58.72% 99.39%

S2-ICVH-5 90.53% 86.84% 99.52%
S2-ICVH-10 94.24% 91.73% 99.51%

10
ICVH 89.13% 86.27% 99.23%

S2-ICVH-5 95.10% 92.85% 99.51%
S2-ICVH-10 98.63% 98.03% 99.50%

Table 5.4: Performance results in terms of VCP, VCA and F1-score on the testing set of CWE-
399 and CWE-119 for our proposed method in the unsupervised context (ICVH) and semi-
supervised context (S2-ICVH) (best performance among methods for each value of K in bold).

5.5.2.3 Explaining code vulnerability highlighting in the semi-supervised context

with the variation of K

We investigated the performance of ICVH for two different contexts, including the unsupervised

learning (ICVH) and semi-supervised learning (S2-ICVH) contexts for explaining the reference

model and highlighting the vulnerable statements. In the semi-supervised context, we assume

that there is a small portion of the training set (i.e., 5% or 10%) having ground truth of vulnerable

code statements. We investigated the performance of ICVH from both unsupervised and semi-

supervised contexts with some different values of K (i.e., K = 5, 10 code statements that are

highly relevant to the presence of a vulnerability).

The experimental results in Table 5.4 show that by using a small portion of data having ground

truth (i.e., 5% or 10%) of vulnerable code statements, the model performance is significantly

increased. For example, for CWE-399, in the case of K = 10, the model performance in the

unsupervised context (ICVH) achieved 86.82% and 80.46% for VCP and VCA respectively, while

the model performance in the semi-supervised context for S2-ICVH-5 (5% of data in the training

process having ground truth of vulnerable code statements) and S2-ICVH-10 (10% of data in

the training process having ground truth of vulnerable code statements) obtained (91.72% for

VCP and 88.54% for VCA) and (95.11% for VCP and 92.86% for VCA) respectively.

The experimental results in Table 5.4 show that the more selected code statements we have, the

higher performance in two main measures including VCP and accuracy we obtain. For instance,

to dataset CWE-119, in the case with K = 5, ICVH obtained 67.53% for VCP and 58.72% for

VCA while with K = 10, ICVH obtained 89.13% for VCP and 86.27% for VCA respectively.

The high values of F1-score (over 99% for all cases mentioned in Table 5.4) show that our
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True label: 1 (vulnerable) and predicted label: 1 (vulnerable)

Figure 5.6: The true and predicted label from the model are shown in the first row. The source
code function and selected code statements highlighted relevant to vulnerabilities are shown
with K = 5.

proposed methods can approach very close to (or have a good explanation of) the learning

model while the high values of VCP and VCA show that our proposed methods can effectively

and efficiently detect vulnerable code statements in vulnerable functions.

5.5.2.4 Visualisation of detected and highlighted code statements

Here we illustrate how we can visualise the highlighted code statements in vulnerable functions,

in order to demonstrate the ability of our method to detect and highlight core vulnerable code

statements in vulnerable functions to aid security auditors and code developers. We set K = 5

for the function in Fig. 5.6 and K = 10 for the functions in Fig. 5.7. In these figures, the

coloured lines (i.e., the green and red lines) highlight the detected code statements obtained

when using our ICVH in the unsupervised context. In addition, each red line specifies the

core vulnerable statement obtained from the ground truth and these lines are detected by our

method.

For example, in Fig. 5.6, the corresponding function has two core vulnerable statements includ-

ing “memset ( var1 , str , 100 - 1 ) ;” and “memmove ( var3 , var1 , strlen ( var1 ) * sizeof ( char

) ) ;”, which lead to a vulnerability, because in this case we initialise var1 as a large buffer that is

larger than the small buffer used in the sink (i.e., var1 is larger than var3). Our ICVH method

with K = 5 can detect these core vulnerable statements that make the corresponding function

vulnerable. In Fig. 5.7, the function has some core vulnerable code statements including “if (

fgets ( var2 , var3 , stdin ) != NULL )”, which is a potential vulnerability because we read data

from the console using fgets(), and “if ( var1 >= 0 )” and “var7 [ var1 ] = 1 ;” which are also a

potential vulnerability in the case we attempt to write to an index of the array that is above the
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True label: 1 (vulnerable) and predicted label: 1 (vulnerable)

Figure 5.7: The true and predicted label from the model are shown in the first row. The source
code function and selected code statements highlighted relevant to vulnerabilities are shown
with K = 10. The left-hand and right-hand figures are the first and second parts of the function
respectively. For demonstration purpose, there are some parts of the function omitted for the
brevity.

upper bound. Our ICVH method with K = 10 can detect all of these core potential vulnerable

code statements that make the corresponding function vulnerable.

Interestingly, we can use the vulnerability relevance probability µk associated with each state-

ment to visualise a heat map over the source code as shown in Fig. 5.8. This is intuitive and

informative as it shows which statements or blocks of statements are highly relevant to the

vulnerabilities.

5.5.2.5 Investigation of misclassification of the non-vulnerable functions

In this section, we investigate the case when some non-vulnerable functions are predicted as

vulnerable functions as depicted in Fig. 5.9. These functions appear as non-vulnerable in the

ground truth. However, the reference model predicted them as vulnerable. Using K = 5, for

the left-hand function shown in Fig. 5.9, the green selected code statements “for ( var4 = 0 ;

var4 < var5 ; var4 ++ )” and “var3 [ var4 ] = var2 [ var4 ] ;” can in some cases (e.g., if var2

is larger than var3) lead to a potential vulnerability. For the right-hand function shown in Fig.

5.9, the green selected code statement “wmemset ( var1 , str , 50 - 1 ) ;” will be a vulnerable

code statement if we change “50 - 1” into “100 - 1”, because in this case we would initialise the

source buffer as a buffer that is larger than the buffer used in the sink (i.e., “wcsncat ( var4 ,

var1 , wcslen ( var1 ) ) ;”). These are some typical examples for the case when non-vulnerable

functions are predicted as vulnerable functions. The main reasons are likely due to: i) the key
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Figure 5.8: Example heat map that represents the vulnerable relevance probabilities over the
given source code.

contributed code statements for marking the label of a function can be a potential vulnerability

in some specific cases (e.g., depending on behaviour in the calling functions), or ii) the key

contributed code statements for marking the label of a function can be a potential vulnerability

if we have a minor code change effected in them.

True label: 0 (non-vulnerable) and predicted label: 1 (vulnerable)

Figure 5.9: The true and predicted labels are show in the first row. The source code functions
and selected code statements are shown with K = 5.

5.5.2.6 Threats to validity

Key construct validity threat is whether our assessments of the techniques demonstrate identifi-

cation of vulnerable statements. We used widely accepted measures of accuracy for vulnerability

detection from related work in our assessment. Key internal validity threats are the training data

used and training approach used. We used a two step process to learn a reference deep learning
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model to approximate distribution of statement vulnerabilities, and explanatory learned model

to specify the top-K statements that contribute to predicted vulnerability. We used two real-

world datasets to train and evaluate our models. Key external validity threats include whether

our approach will generalise to other vulnerabilities, and whether it will work on other source

datasets. We mitigated by using two common but different vulnerabilities, and two real-world

and significantly different projects.

5.6 Closing remarks

We have proposed a new method to detect software vulnerabilities at a fine-grained level than

the function or program levels in both unsupervised and semi-supervised contexts. Our proposed

method aims to maximise the mutual information between selected code statements (i.e., FS) and

the response variable (i.e., Y ) of a function or program offered by the reference model trained

in the learning phase. By maximising this mutual information, the selected statements are

expected to strongly correlate with the existence of a vulnerability, hence potentially containing

the core vulnerable statements. In addition, our proposed model is able to play the role of an

explanatory model that explains which statements in a given source mostly contribute to the

prediction of the reference model. Our experimental results on real-world datasets showed that

by using our proposed methods we can detect software vulnerabilities at a fine-grained level

effectively and accurately.
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Chapter 6

Information-Theoretic End-to-End

Models to Identify Code Statements

Causing Software Vulnerability

Instead of considering the proposed approach as a learn-to-explain model as mentioned in the

previous chapter, in this chapter, we propose a novel end-to-end approach and view our pro-

posed approach as one based on using mutual information to detect the code statements highly

relevant to the ground-truth label Y (i.e., vulnerable or non-vulnerable). We aim to tackle the

challenge of fine-grained vulnerability detection by formulating it as the problem of learning a

set of latent variables for the statements of each individual function, each of which models a

statement’s relevance to the function’s vulnerability. Accordingly, to learn those latent vari-

ables, we propose an amortised variational inference framework derived from the maximisation

of mutual information.

6.1 Motivations

In the field of software security, software vulnerabilities (SVs) are specific potential flaws,

glitches, weaknesses or oversights in software. Attackers can leverage these vulnerabilities to

carry out malicious actions, such as exposing or altering sensitive information and disrupt-

ing/destroying/taking control of a system/program [Dowd et al., 2006]. Due to the rapid growth

and dramatic diversity of software, potential vulnerabilities present pervasively in software de-

velopment and deployment processes, which can create severe threats to cybersecurity, leading to

expenditure costs of about USD 600 billion globally each year [McAfee and CSIS, 2017]. These
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threats call for an urgent need of automatic tools and methods to efficiently and effectively deal

with a large amount of vulnerable code with a minimal level of human intervention.

In this chapter, we are interested in software vulnerability detection (SVD) at the source code

level, where there exist two typical approaches based on either human expertise or deep (ma-

chine) learning approaches. Most previous work in software vulnerability detection [Neuhaus

et al., 2007, Shin et al., 2011, Yamaguchi et al., 2011, Almorsy et al., 2012, Li et al., 2016, Grieco

et al., 2016, Kim et al., 2017] belongs to the former, which involves the knowledge of domain

experts. The performance of these methods can be negatively affected by outdated experience,

expertise and underlying biases [Zimmermann et al., 2009]. Recently, deep learning approaches

have been used to automatically conduct SVD and have shown great advances, notably in [Dam

et al., 2017, Li et al., 2018, Lin et al., 2018].

Despite the promising performance, current deep learning-based methods are only able to detect

software vulnerabilities at the function-[Lin et al., 2018, Li et al., 2018] or program-[Dam et al.,

2017] level. However, in real-world situations, programs or even functions can consist of hundreds

or thousands of lines of code statements and the source of most vulnerabilities often arises from

a significantly smaller scope, usually a few core statements. Fig. 1 shows the source code of a

simple function that is vulnerable. Among these lines of statements, it turns out that only the

statements highlighted in red actually lead to the function’s vulnerability. The core statements

underpinning a vulnerability are even much sparser in source code of real-world applications.

In this chapter, instead of detecting whether a function1 is vulnerable, we aim to accurately iden-

tify the statements that are highly relevant to a function’s vulnerability, which we referred to as

the “vulnerability-relevant statements”. By highlighting such vulnerability-relevant statements,

we can significantly speed up the process of isolating and detecting software vulnerabilities,

thereby reducing the time and cost involved. To achieve this aim, we propose a novel probabilis-

tic end-to-end approach, which consists of two components: i) a random selection process ε that

picks out a subset F̃ = ε (F ) ⊂ F (i.e., a source code section consists of many code statements)

retaining the most crucial information of the ground-truth label Y , and ii) a classifier acting

on F̃ to mimic p (Y | F ) (i.e., the ground-truth conditional label-data distribution). With this

notation, our goal can be formulated to learn the selection process for each F to make p
(
Y | F̃

)
from the classifier as close as possible to p (Y | F ). To achieve this, two important technical

challenges arise: one is the construction of the selection process and the other is the principle

to guide the training of the entire system.
1It can also be a program or an application. Hereafter, we use “function” to denote a collection of code

statements.
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Figure 6.1: Example of a source code function obtained from the CWE-119 dataset. The left-
hand and right-hand figures are the first and second parts of the function with some parts omitted
for brevity respectively. For demonstration purpose and simplicity, we choose a simple and short
source code function. The statement “if (fgets (inputBuffer, CHAR_ARRAY_SIZE, stdin) !=
NULL)” is a potential vulnerability because the program reads data from the console without
sufficient checking/validation using the “fgets()” system function, and the two statements “if
(data >= 0)” and “buffer[data] = 1;” may then attempt to write to an index of the array that
exceeds the upper bound.

To address the first challenge, we devise two mechanisms to construct the selection process.

Specifically, the first mechanism assumes that each function contains K vulnerability-relevant

statements and uses a multinomial distribution to select those K statements [Chen et al., 2018].

To further enhance flexibility, we then propose another mechanism that draws a binary latent

vector for each function from independent Bernoulli distributions. An element of the binary

vector corresponds to a statement in a function. Importantly, in the semi-supervised context,

where a small portion of source code data has vulnerability-relevant statements labelled (i.e.,

core vulnerable statements) by experts, the second mechanism also enables us to incorporate

such ground-truth information of the vulnerability-relevant statements.

To address the second challenge, we first propose a variational inference approach derived from

the maximisation of the mutual information between F̃ and Y , which is expected to identify all

of the vulnerability-relevant statements of a function. However, this approach may be unable

to eliminate the irrelevant statements, that is to say, the statements that it identifies may

be a super set of the true vulnerability-relevant statements. To address this, inspired by the

information bottleneck theory [Tishby et al., 2000, Tishby and Zaslavsky, 2015], we further

propose a regularisation term derived from the minimisation of the mutual information between

F̃ and F to ensure that only the vulnerability-relevant statements are kept.
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In summary, our main contributions from this chapter can be highlighted as follows:

• We study an important problem of fine-grain-level vulnerability detection, which has a

variety of applications in different areas such as software engineering and cybersecurity.

Automated deep learning-based techniques for this problem have not yet been well studied.

• We propose a novel probabilistic framework learned by variational inference with various

model constructions and training mechanisms, which are derived from an information-

theoretic perspective. Our proposed approaches can work effectively and efficiently in both

unsupervised and semi-supervised settings, hence providing important modelling tools as

well as practical toolboxes for software developers and security experts.

• We comprehensively evaluate our proposed framework with different variants for real-

world software datasets in both unsupervised and semi-supervised cases. Our extensive

experiments show that our approaches can accurately identify the vulnerability-relevant

statements in an end-to-end manner.

6.2 Related work for fine-grain-level vulnerability detection

Deep learning has been applied successfully to source code and binary software vulnerability

detection [Dam et al., 2017, Lin et al., 2018, Li et al., 2018, Le et al., 2019b, Nguyen et al.,

2019]. However, the mentioned work detects vulnerabilities at either the function or program

level, not at the more fine-grained code statement level. Although we conduct experiments to

demonstrate our work for fine-grained source code vulnerability detection, ours is also applicable

to binary software as in [Le et al., 2019b].

The combination of our first principle (Principle 1) and the multinomial random selection process

is similar to [Chen et al., 2018], which was proposed to explain a pre-trained reference model

by maximising the relevant mutual information. However, our proposed application is totally

different and our work demonstrates that the use of mutual information is an efficient tool

for fine-grained vulnerability detection. Other learn-to-explain models [Ribeiro et al., 2016,

Shrikumar et al., 2017, Lundberg and Lee, 2017] are though not ready for our application, but

might be leveraged to improve our model further. We leave this for future development.

The formulation of our second principle (Principle 2) is an instance of information bottleneck

theory [Tishby et al., 2000]. Regarding the application of the information bottleneck theory,

Alemi et al. [2016] developed a practical realization of this theory to learn a robust representation
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for defending against adversarial examples [Goodfellow et al., 2014b], while Wang et al. [2009]

applied this theory in the context of semi-supervised learning.

To the best of our knowledge, there is one deep learning-based method, named VulDeeLocator

[Li et al., 2020] (posted on ArXiv for fine-grain-level vulnerability detection). However, besides

the original source codes F and their vulnerability labels Y , VulDeeLocator needs further infor-

mation relevant to vulnerable code statements to obtain what is called intermediate code-based

vulnerability candidate representation from its preprocessing steps, and then use the interme-

diate code-based representation in the training and testing processes rather than the original

source code F . This is totally different from our proposed approach which can be run in an unsu-

pervised setting (only requires the source codes F and their vulnerability labels Y , and not uses

information relevant to vulnerable code statements) for the task of fine-grain-level vulnerability

detection. VulDeeLocator not only cannot work in the unsupervised setting, but also cannot

work directly with source code (i.e., it requires to compile source code to Lower Level Virtual

Machine (LLVM) intermediate code. If source code cannot be compiled to LLVM intermediate

code, we cannot use VulDeeLocator).

6.3 Statement-grained Source Code Vulnerability Highlighting

(S2CVH)

Most of publicly available datasets only have vulnerability labels (i.e., Y ) for the entire source

codes (i.e., F ) and have no information of code statements causing vulnerabilities. Our proposed

methods only require vulnerability labels at the source code level (i.e., Y for the entire source

codes) and are capable of pointing out the code statements highly relevant to these vulnerability

labels. We hence call this setting as unsupervised, meaning that the training process does

not require labels at the code statement level (i.e., ground-truth of vulnerable code statements

causing vulnerabilities). In addition, in Section 6.3.4, we assume that a tiny portion of the source

codes has labels at the code statement level. We hence name this setting as semi-supervised.

Moreover, once trained, given a test source code, our model can provide both the vulnerability

label for this entire source code and indicate the code statements inside the source code mostly

causing the vulnerability.

We denote a source code section (e.g., a C/C++ function or program) as F = [f1, . . . ,fL], which

consists of L lines of code statements f1, . . . ,fL (L can be a large number, e.g., thousands). In

practice, each code statement is represented as a vector, which is extracted by some embedding
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methods. As those embedding methods are not the focus of this chapter, we leave these details to

the experiment section. We assume that F ’s vulnerability Y ∈ {0, 1} (where 1 : vulnerable and

0 : non-vulnerable) is observed (labelled by experts). As previously discussed, there is usually

a small subset with K code statements that actually lead to F being vulnerable, denoted as

F̃ = [fi1 , . . . ,fiK ] = [fj ]j∈S where S = {i1, . . . , iK} ⊂ {1, . . . , L} (i1 < i2 < ... < iK). It is worth

noting that for different F, K can be different. Here our goal is to find F̃ (i.e., vulnerability-

relevant statements) for each specific F . To select the vulnerability-relevant statements, we

propose a learnable random selection process ε, i.e., F̃ = ε (F ), whose training principles and

constructions are presented as follows.

6.3.1 Training principles

6.3.1.1 Principle 1

Mutual information is a measure of the dependence between two random variables and it captures

how much knowledge of one random variable reduces the uncertainty about the other. Therefore,

if we view F̃ and Y as random variables, the selection process ε can be learned by maximising

the mutual information between F̃ and Y , formulated as follows:

max
ε

I
(
F̃ , Y

)
. (6.1)

By the definition of mutual information, we can expand Eq. (6.1) further as the Kullback-Leibler
divergence of the product of marginal distributions of F̃ and Y from their joint distribution
[Cover and Thomas, 2006]:

I(F̃ , Y ) =
∫
p
(
F̃ , Y

)
log

p
(
F̃ , Y

)
p
(
F̃
)
p(Y )

dF̃dY

=
∫
p
(
Y | F̃

)
p
(
F̃
)
log

p
(
Y | F̃

)
p
(
F̃
)

p
(
F̃
)
p(Y )

dF̃dY

=EF̃

[∫
p
(
Y | F̃

)
log

p
(
Y | F̃

)
p(Y ) dY

]

=EF̃

[∫
p
(
Y | F̃

)
log

q
(
Y | F̃

)
p(Y ) dY

]
+ EF̃

[
DKL

(
p
(
Y | F̃

)
‖q
(
Y | F̃

))]
≥EF̃

[∫
p
(
Y | F̃

)
log

q
(
Y | F̃

)
p(Y ) dY

]

=
∫
p
(
Y, F̃

)
log

q
(
Y | F̃

)
p(Y ) dY dF̃

106



Note that in the above derivation, we introduce a variational distribution q(Y |F̃ ) to approximate

the posterior p
(
Y | F̃

)
, hence deriving a variational lower bound of I

(
F̃ , Y

)
[Alemi et al., 2016,

Chen et al., 2018] for which the equality happens if q
(
Y | F̃

)
= p

(
Y | F̃

)
. We further proceed

as:

I(F̃ , Y ) ≥
∫
p
(
Y, F̃ , F

)
log

q
(
Y | F̃

)
p(Y ) dY dF̃dF

=
∫
p (Y | F ) p

(
F̃ | F

)
p (F ) log

q
(
Y | F̃

)
p(Y ) dY dF̃dF

=EFEF̃ |F

[∫
p(Y |F )logq(Y |F̃ )

p(Y ) dY

]

I(F̃ , Y ) ≥ EFEF̃ |F

[∫
p(Y |F )logq(Y |F̃ )

p(Y ) dY

]
= EFEF̃ |F

[∑
Y

p(Y |F )logq(Y |F̃ )
]

+ const.

Notably, F̃ |F := F̃ ∼ p(·|F ) := ε (F ) is the same representation of the random selection process

and p(Y |F ) is the ground-truth conditional distribution of the code’s vulnerability on all of its

statements.

To model the conditional variational distribution q(Y |F̃ ), we introduce a classifier implemented

with a neural network, which takes F̃ as input and outputs its vulnerability. With the classifier,

our objective is to learn the selection process as well as the classifier to maximise the mutual

information:

maxε,q

(
EFEF̃ |F

[∑
Y

p(Y |F )logq(Y |F̃ )
])

. (6.2)

Principle 1 facilitates a joint training process for the classifier and the selection process. Specif-

ically, the classifier is learned to identify whether a subset of the statements causes a function’s

vulnerability or not while the selection process is designed to select the best subset according to

the feedback of the classifier.

6.3.1.2 Principle 2

With Principle 1, we can learn to pick the statements that are related to a function’s vulnerabil-

ity. However, the principle does not theoretically guarantee to eliminate the statements that are

unrelated to vulnerability. Therefore, the set of selected statements can possibly be a superset

of the true vulnerability-relevant statements. In the worst case, a selection process can always
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select all the statements in a function, which is still a valid solution of the above maximisation.

To further improve over Principle 1, inspired by information bottleneck theory [Tishby et al.,

2000, Slonim and Tishby, 2000], we propose an additional term for training the selection process

ε, derived from the following principle:

max
ε

(
I(F̃ , Y )− λI(F, F̃ )

)
, (6.3)

where λ is a hyper-parameter indicating the weight of the second mutual information.

It serves as a regulariser to minimise the mutual information between F and F̃ , which encourages

F̃ to be as “different” to F as possible. In other words, the selection process prefers to select

a smaller subset that excludes the statements unrelated to vulnerability. Accordingly, we can

derive an upper bound of the minimisation:

I(F̃ , F ) =
∫
p
(
F̃ , F

)
log

p
(
F̃ |F

)
p(F̃ )

dF̃dF

=
∫
p
(
F̃ , F

)
logp

(
F̃ |F

)
dF̃dF −

∫
p(F̃ )logp(F̃ )dF̃

≤
∫
p
(
F̃ , F

)
logp

(
F̃ |F

)
dF̃dF −

∫
p(F̃ )logr(F̃ )dF̃

= EFEF̃ |F

[
log

p
(
F̃ |F

)
r(F̃ )

]
,

for any r
(
F̃
)
.

If we combine two terms (i.e., I(F̃ , Y ) and I(F, F̃ )) by max
(
I(F̃ , Y )− λI(F, F̃ )

)
, we can get a

unified training objective:

maxε,q

(
EFEF̃ |F

[∑
Y

p(Y |F )logq(Y |F̃ )
]

−λEFEF̃ |F

[
log

p
(
F̃ |F

)
r(F̃ )

])
, (6.4)

where r
(
F̃
)
is a specified prior distribution that encourages a compact representation of F̃ .

6.3.2 Construction of the selection process

After discussing the training objectives derived from the two principles, we introduce the pro-

posed constructions of the selection process ε. Without loss of generality, we assume that all
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source codes have the length of L statements (i.e., filling with 0 (s) for shorter source codes and

truncating longer source codes). Next, for each function, we introduce a binary latent vector

Z ∈ {0, 1}L, each element of which, zi, indicates whether fi is related to F ’s vulnerability. As the

generation of Z depends on F , we denote Z(F ). With Z, we can further construct F̃ = ε (F ) by

F̃ = Z (F ) � F , where � represents the element-wise product. To construct Z, we propose two

specific strategies with the multivariate Bernoulli (multi-bernoulli) distribution and multinomal

(multi-nomial) distribution respectively.

6.3.2.1 Multi-bernoulli random selection process

For this case, we model Z ∼
∏L
i=1 Bernoulli(pi), which yields: f̃i =


fi with probability pi

0 with probability 1− pi
.

We further construct pi = ωi (F ;α) where ω is a neural network parameterized by α, taking F

as input, and outputting a probability. To learn ω with back-propagation by Principle 1 and 2,

we apply a Gaussian mixture model for the continuous relaxation:

p(f̃i|F ) = piN (f̃i | fi, σ2) + (1− pi)N (f̃i | 0, σ2),

where σ > 0 is a small number.

To facilitate the learning of Principle 2, we derive I(F̃ , F ):

EFEF̃ |F

[
log

p
(
F̃ |F

)
r(F̃ )

]
= EFEF̃ |F

[
L∑
i=1

log
p
(
f̃i|F

)
r(f̃i)

]

=
L∑
i=1

EF

[∫
p(F̃ | F )log

p
(
f̃i|F

)
r(f̃i)

dF̃

]

=
L∑
i=1

EF [DKL(p(f̃i|F )‖r(f̃i))].

Minimizing I(F̃ , F ) is now equivalent to minimizing the KL divergence between p(f̃i|F ) and

r(f̃i). Therefore, one can view r(f̃i) as the prior distribution, which is constructed by r(f̃i) =

N (f̃i|0, σ2). Given the fact that p(f̃i|F ) is a Gaussian mixture distribution, the intuition is that

the prior prefers the small values centered at zero. In this way, p(f̃i|F ) is encouraged to select

fewer number of statements, which explains why Principle 2 serves as a regulariser. Moreover,

the KL divergence DKL(p(f̃i|F )‖r(f̃i)) can be computed by the following approximation [Gal

and Ghahramani, 2016]:
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ωi (F ;α)
2σ2 ‖fi‖2 + (logσ + 1

2σ
2) + const.

We employ another neural network g
(
F̃ ;β

)
to define q(Y |F̃ ). We apply the Gumbel softmax

distribution [Maddison et al., 2016, Jang et al., 2016] to do continuous relaxation that allows

us to jointly train ω (·;α) and g (·;β). Let ai, bi
iid∼ Gumbel(0, 1), we sample: Zi (F ;α) ∼

Concrete(logωi (F ;α) , log (1− ωi (F ;α))) where τ > 0 is the temperature variable as follows:

Zi (F ;α) = exp((logωi (F ;α) + ai)/τ)
exp((logωi (F ;α) + ai)/τ) + exp((log (1− ωi (F ;α)) + bi)/τ)

The final objective function for Eq. (6.4) is rewritten:

max
α,β

(
EFEa,b

[∑
Y

p(Y |F )loggY (F � Z (F ;α) ;β)
]

−λEF

[
L∑
i=1

ωi (F ;α)
2σ2 ‖fi‖2

])
. (6.5)

We note that Eq. (6.5) is the optimisation for Principle 2, whereas that for Principle 1 only

involves the first term in this objective function. It is worth noting that the objective function

in Eq. (6.5) is meaningful as i) the first term indicates that the variational classifier g (·;β)

and the selection network ω (·;α) need to be in cooperation in such a way that the latter picks

out relevant code statements that provide sufficiently information for the former to predict

well the vulnerability label, and ii) the second term favors compact and sparse subsets of code

statements by means of penalizing less relevant code statements. As such, the selection network

is encouraged to choose the most compact and relevant statements to the vulnerability label. In

addition, as shown in Eq. (6.5), the selection process tends to penalize statements having high

embedding vector length.

6.3.2.2 Multi-nomial random selection process

In addition to the multi-bernoulli random selection process, inspired by [Chen et al., 2018], we

propose another construction, which is a process of selecting maximally K vulnerability-relevant

statements out of L statements. Specifically, the selection process consists of K draws from a

categorical distribution, each of which randomly selects one statement. Next, we pick those

statements that have been selected at least once to form the set of F̃ . Similar to [Chen et al.,

2018], we use the concrete distribution [Maddison et al., 2016, Jang et al., 2016] as the continuous
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relaxation of the categorical distribution. The parameter of the concrete distribution is modeled

by a neural network ω (·, α), i.e., Concrete(logω (F ;α)). Given Cj(F ) ∼ Concrete(logω (F ;α)),

we then define the vector V (F ;α) ∈ RL as:

Vi (F ;α) = max
1≤j≤K

Cji (F ) (1 ≤ i ≤ L),

and arrive at the following optimisation problem for jointly training ω(·;α) and g (·;β) as:

max
α,β

(
EFEa

[∑
Y

p(Y |F )loggY (F � V (F ;α) ;β)
])

. (6.6)

In addition, the resulting optimisation problem in Eq. (6.6) is developed by leveraging Principe

1 and the multi-nomial selection process, hence can be thought as an adoption of L2X [Chen

et al., 2018] to our specific problem of statement-grained vulnerability detection. However, this

variant S2CVH1-mulN (Principle 1 + multi-nomial) is not capable of penalizing unrelated code

statements (i.e., the number of selected code statements K must be specified beforehand) and

extending to the semi-supervised setting.

6.3.2.3 Combination of principles and random selection processes

Here we first compare the two proposed principles. Specifically, Principle 2 is an extension of

Principle 1, by additionally minimizing I(F, F̃ ), which is encouraged to select a smaller subset

that excludes the statements unrelated to a vulnerability. For the multi-bernoulli selection

process, we do not need to specify K in advance, as it selects the statements with independent

Bernoulli distributions while for the multi-nomial one, K has to be set as a hyper-parameter. On

this point, the multi-bernoulli one is therefore more flexible. Moreover, one can figure out that

Principle 2 only works with the multi-bernoulli selection process, which helps to automatically

learn the number of vulnerability-relevant statements for an individual function (we simply

choose a statement fi into F̃ if ωi (F ;α) = P (Zi = 1) ≥ 0.5). Finally, another important

advantage of multi-bernoulli is its ability to work in the semi-supervised setting, which will be

elaborated on later.

By combining the principles and selection processes, three variants are proposed in this chapter,

i.e., S2CVH1-mulN (Principle 1 + multi-nomial), S2CVH1-mulB (Principle 1 + multi-bernoulli),

and S2CVH2-mulB (Principle 2 + multi-bernoulli). We summarise these variants in Table 6.1

where we denote some notations as: i) P1 stands for “requiring to specify the number of selected
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statements K beforehand”, ii) P2 stands for “allowing to automatically figure out the number of

selected statements”, and iii) P3 stands for “allowing to incorporate the annotations of the core

vulnerable statements in ground truth to our network design in the semi-supervised setting”. In

the experiment section, we will examine those comparisons empirically.

Model variant Principle Selection process Property
S2CVH1-mulN 1 Multi-nomial P1
S2CVH1-mulB 1 Multi-bernoulli P2, P3S2CVH2-mulB 2 Multi-bernoulli

Table 6.1: Combination of two principles and two random selection processes.

6.3.3 Working process of our proposed end-to-end approach

In the training phase, our proposed methods only require the source code data (i.e., F ) and

the corresponding source-code vulnerability labels (i.e., Y ) and do not need any information of

vulnerable code statements (i.e., the unsupervised setting). In particular, our model includes

two key components: the selection network ω (·;α) and the variational classifier g (·;β). In what

follows, we present the technical details of the training and testing phases.

6.3.3.1 Training phase

Given a source code F including L statements, the selection network outputs ω (F ;α) either

in [0, 1]L(for the multi-bernoulli selection process) or in the simplex ∆L−1 = {π ∈ RL :

‖π‖1 = 1andπ ≥ 0} (for the multi-nomial selection process) for which each coordinate ωi (F ;α)

represents the influence level of the corresponding statement to the vulnerability label. Subse-

quently, we sample a binary latent vector Z ∈ {0, 1}L (i.e., the generation of Z depends on F ,

so we denote Z(F )) and form the subset F̃ = Z(F )� F . We note that f̃i = fi or 0 depending

on Zi(F ) = 1 or 0 and the probability of the event f̃i = fi is proportional to the coordinate

ωi (F ;α), hence the statement with higher influence level is more likely selected. The subset F̃

is then fed to the variational classifier g (·;β) to predict the vulnerability label (i.e., Y ) as accu-

rately as possible according to the objective functions in Eq. (6.6) or Eq. (6.5). Therefore, the

selection network and the variational classifier need to cooperate to fulfill the task. Specifically,

the selection network is trained to pick out the most influential statements in order that the

variational classier has enough information to predict well the vulnerability label. Moreover,

Principles 1 and 2 base on mutual information, which eventually leads to minimise the loss of

the variational classifier w.r.t the ground-truth vulnerability label, but different from Principle

1, our Principle 2 has a sparsity penalty term that serves as a decent regulariser to further filter
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out the irrelevant statements for achieving smaller subsets. The diagram of our training phase

is shown in Fig. 6.2.

6.3.3.2 Testing phase

After the training phase, the selection network is capable of selecting the most vulnerability-

relevant statements of a given source code F by means of offering high value for the corresponding

coordinates ωi (F ;α), meaning that ωi (F ;α) represents the influence level of the statement fi.

We hence can base on the magnitude of ωi (F ;α) to pick out the most relevant statements.

Particularly, for the multi-bernoulli selection process, we simply decide to select fi if ωi (F ;α) ≥

0.5, whilst for the multi-nominal selection process, we pick the top K relevant statements based

on the top K values of ω (F ;α). The diagram of our testing phase is shown in Fig. 6.3.

6.3.4 Semi-supervised setting

In real-world source code data, we may encounter situations where the core vulnerable state-

ments in a small proportion of functions are manually annotated and we call this as the semi-

supervised setting. For the multi-bernoulli selection process, it is very convenient to incorporate

the annotations of the core vulnerable statements. Specifically, let Fc = [fi1 , ...,fim ] be the

core vulnerable statements of an annotated function. For all the annotated functions, we can

leverage such ground-truth information by adding the maximisation of a log likelihood as an

additional training objective:

max

∑
k∈Ic

logpk +
∑
k/∈Ic

log(1− pk)

 ,

where Ic = [i1, ..., im]. We then add the above objective function to the main objective function

in Eq. (6.5) with the trade-off parameter ν > 0.

6.4 Implementation and results

6.4.1 Proposed approach and baselines

We revise the baselines to compare with our proposed methods in terms of our Principles 1 and

2, and the multi-bernoulli and multi-nominal selection processes. From machine learning and

data mining perspectives, it seems that the existing methods in interpretable machine learning
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Figure 6.2: Training phase of our proposed end-to-end approach. For the visualization purpose,
assuming that we have a source code section F = [f1,f2,f3,f4,f5,f6] going through the se-
lection network to obtain the output probabilities for statements in F as Z = [0, 1, 0, 0, 1, 1].
Therefore, we have F̃ = [0,f2,0,0,f5,f6] . The values of F and F̃ are then used in the objective
functions in Eq. (6.6) or Eq. (6.5) in the training process.

Figure 6.3: Testing phase of our proposed end-to-end approach using the trained model obtained
from the training phase. For the visualization purpose, assuming that we aim to obtain the
vulnerable statements and the label for a source code section F = [f1,f2,f3,f4,f5]. Firstly,
F goes through the trained selection network to obtain the output Z = [0, 1, 0, 1, 0]. Therefore,
we have F̃ = [0,f2,0, f4,0]. The values of F̃ are then fed to the trained variational classifier
network to predict the vulnerability label Y of F .

[Ribeiro et al., 2016, Shrikumar et al., 2017, Lundberg and Lee, 2017, Chen et al., 2018] with

adoption are ready to apply. Unfortunately, besides [Chen et al., 2018], none of others can be

adopted to be applicable to the specific context of statement-grained vulnerability detection.

We cannot compare with VulDeeLocator [Li et al., 2020] because: i) it cannot work directly with

source code (i.e., it requires to compile source codes to Lower Level Virtual Machine intermediate

code) and ii) it requires information relevant to vulnerable statements for extracting tokens from

program code according to a given set of vulnerability syntax characteristics, hence it cannot

be operated in the unsupervised setting.
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In fact, among three variants of our proposed approach, namely, S2CVH1-mulN, S2CVH1-mulB

and S2CVH2-mulB (c.f. Table 6.1), the variant S2CVH1-mulN, which is developed based on

Principle 1 (maximising the mutual information) and the multi-nominal selection process can

be regarded as an adoption of L2X [Chen et al., 2018] towards our application. We hence can

consider S2CVH1-mulN as a baseline to compare with the other two in terms of the effectiveness

of principles and selection processes. Specifically, we demonstrate that Principle 2 is superior

Principle 1 in this specific context since the later can maintain comparable performance with the

former, whilst always selecting smaller subset in a source code. Moreover, the multi-bernoulli

selection process is also superior the multi-nominal one as it is convenient to extend to the semi-

supervised setting and capable of automatically inferring the number of selected code statements,

whilst the number of selected code statements K must be specified beforehand in the another

selection process.

Another naive baseline that we consider is the random selection method (RSM), where we

randomly choose statements from functions in order to match with the ground truth of vulnerable

code statements in the unsupervised setting.

In addition to comparing to the baselines in the unsupervised setting, we conduct experiments

for S2CVH2-mulB in the semi-supervised setting for which we assume a tiny portion of source

codes has ground-truth of core vulnerable statements causing vulnerabilities. With this setting,

we aim to illustrate that our proposed multi-bernoulli selection process is useful and efficient in

this practical context. Finally, we inspect the explanatory capability of our proposed method

(i.e., S2CVH2-mulB) by identifying example misclassification generated by the model and then

analyse the reason for these.

6.4.2 Experimental setup

6.4.2.1 Experimental datasets

We used the real-world datasets collected by [Li et al., 2018] which contain the source code

of vulnerable functions (vul-funcs) and non-vulnerable functions (non-vul-funcs) obtained from

two real-world software project datasets, consisting of buffer error vulnerabilities (the CWE-119

vulnerability category has 5,582 vul-funcs and 5,099 non-vul-funcs) and resource management

error vulnerabilities (the CWE-399 vulnerability category has 1,010 vul-funcs and 1,313 non-

vul-funcs). For both the CWE-119 and CWE-399 categories, we removed functions that are

identical. The minimum, mean, and maximum length of functions in CWE-399 and CWE-119

are (4; 51; 177) and (4; 21; 164) respectively.
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6.4.2.2 Labelling core vulnerable statements for evaluation

The CWE-399 and CWE-119 datasets have only vulnerable and non-vulnerable labels for their

source codes. Our aim in this work is to detect the statements responsible for causing the vulner-

ability. Although our proposed methods do not need the information of vulnerable statements

at all in the training phase, this information is necessary in evaluating their performance. To

obtain this information regarding the location of vulnerable statements in source code for the

CWE-399 and CWE-119 datasets, we further processed these datasets. To obtain the ground

truth of vulnerable code statements, we used the description of vulnerability information (i.e.,

the comments and annotations) in the original source code as well as the differences between the

vulnerable versions and the fixed versions (i.e., non-vulnerable versions) of the source code. In

addition, for 1,010 vulnerable functions of CWE399 and 5,582 vulnerable functions of CWE119,

the percentage between vulnerable statements and non-vulnerable statements is 5.50% and 8.13%

respectively.

6.4.2.3 Data processing and embedding

We preprocessed the datasets before injecting them into deep networks. First, we standard-

ised the source code by: removing comments and non-ASCII characters, mapping user-defined

variables to symbolic names (e.g., “var1”, “var2”) and user-defined functions to symbolic names

(e.g., “func1”, “func2”), and replacing strings with a generic <str> token. Second, we embedded

source code statements into vectors. For instance, considering the following statement (using

C programming language) “if(func3(func4(2,2),&var2)!=var11)”, to embed this code statement,

we tokenised it to a sequence of tokens (e.g., if,(,func3,(,func4, (,2,2,),&,var2,),!=,var11,)), and

then we used a 150-dimensional token embedding followed by a Dropout layer with a dropped

fixed probability p = 0.2 and (a 1D convolutional layer with the filter size 150 and kernel size 3,

and a 1D max pooling layer) or (a 1D max pooling layer) to encode each statement in a function

F . Finally, a mini-batch of functions in which each function had L encoded statements were fed

to the models.

6.4.2.4 Measures and evaluation

To evaluate the performance of the proposed methods and baselines in detecting the core vul-

nerable code statements, we proposed two measures: vulnerability coverage proportion (VCP)

and vulnerability coverage accuracy (VCA).
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The VCP aims to measure the proportion of correctly detected vulnerable statements over

all vulnerable statements in a given dataset. The VCP hence is mathematically defined as
#detectedV CS

#allV CS where #detectedV CS is the number of vulnerable code statements detected cor-

rectly and #allCV S is the number of all vulnerable code statements in a dataset.

The VCA is considered more strictly, because it measures the ratio of the successfully detected

functions over all functions in a dataset. In addition, a function is considered successfully

detected by a method if this method can detect successfully all vulnerable statements in this

function. Mathematically, the VCA can be expressed as #detectedV Func
#allV Func where #detectedV Func

is the number of successfully detected functions and #allV Func is the number of functions in

a dataset.

In addition to VCP and VCA measures, we also reported the label (i.e., Y ) classification accuracy

(ACC) on CWE-399 and CWE-119 datasets for our proposed methods (i.e., S2CVH1-mulN,

S2CVH1-mulB and S2CVH2-mulB).

6.4.2.5 Model configuration

For training our proposed methods including S2CVH1-mulN, S2CVH1-mulB and S2CVH2-mulB,

we implemented these methods in Python using Tensorflow [Abadi et al., 2016]. The length of

each function is padded or truncated to with L = 100 code statements. The trade-off parameter

λ is in {10−1, 2×10−1, 10−2, 2×10−2, 2×10−3} while σ is in {2×10−1, 3×10−1, 2×10−2, 3×10−2}

and ν is in {10−1, 10−2}. For the networks ω (·;α) and g (·;β), we used deep feedforward neural

networks having three and two hidden layers with the size of each hidden layer in {100, 300}

respectively. The dense hidden layers are followed by a ReLU function as nonlinearity and

Dropout [Srivastava et al., 2014] with a retained fixed probability p = 0.8 as regularisation.

The last dense layer of the network ω (·;α) for learning a discrete distribution is followed by a

sigmoid function for the multi-bernoulli selection process or a softmax function for the multi-

nomial selection process while the last dense layer of the network g (·;β) is followed by a softmax

function for predicting.

We employed the Adam optimiser [Kingma and Ba, 2014] with an initial learning rate of 10−3,

while the mini-batch size is 100 and the temperature τ for the Gumbel softmax distribution

is in {0.5, 0.7}. We split the data of each dataset into three random partitions. The first

partition contains 80% for training, the second partition contains 10% for validation and the

last partition contains 10% for testing. For each dataset, we used 10 epochs for the training

process. We additionally applied gradient clipping regularisation to prevent over-fitting. For
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each method, we ran the corresponding model 5 times and reported the averaged VCP and VCA

measures as well as the ACC. We ran our experiments on an Intel Xeon Processor E5-1660 which

has 8 cores at 3.0 GHz and 128 GB RAM.

For the random selection method (RSM), we first randomly chose K (e.g., 10 or 15) code state-

ments from each function in the CWE-119 and CWE-399 datasets. We then compute the VCP

and VCA measures of RSM in these datasets in the unsupervised setting to compare with our

proposed methods (i.e., S2CVH1-mulN, S2CVH1-mulB and S2CVH2-mulB).

6.4.3 Experimental results

6.4.3.1 Code vulnerability highlighting with selected code statements in the un-

supervised setting

We compared the performance of RSM with our proposed methods, namely, S2CVH1-mulN,

S2CVH1-mulB and S2CVH2-mulB in the unsupervised setting (i.e., we do not use any informa-

tion of ground truth of vulnerable code statements in the training process) for highlighting the

vulnerable code statements.

The experimental results in Table 6.2 for the CWE-399 vulnerability category show that our

S2CVH2-mulB method achieved the most effective performance in terms of average-K (i.e., for

our S2CVH1-mulB and S2CVH2-mulB methods, these can automatically obtain the optimal

number of selected code statements for each function, so we can then compute the average

number of selected statements for all functions in the dataset), VCP and VCA compared with

the S2CVH1-mulB, S2CVH1-mulN and RSM methods. In particular, S2CVH2-mulB has a

average-K value 9.3 and obtained 87.2% for VCP and 82.0% for VCA while S2CVH1-mulB has

a average-K value 10.9 and obtained 82.4% for VCP and 75.0% for VCA.

Our S2CVH1-mulN method obtained 79.1% for VCP and 69.0% for VCA using K = 15. For the

S2CVH1-mulN method, we need to specify the number of selected statements in each function

beforehand, so we have the same fixed value of selected statements for all functions in the dataset.

In contrast, RSM using K = 15 can only achieve a value of 48.7% for VCP and 38.0% for VCA.

The S2CVH1-mulN and RSM methods need to select more statements (K) to achieve high values

for VCP and VCA compared with S2CVH1-mulB and S2CVH2-mulB methods, especially for

the S2CVH2-mulB method.

The experimental results in Table 6.3 for the CWE-119 vulnerability category again show that

our S2CVH2-mulB method obtained the most effective performance in terms of average-K, VCP
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Dataset Methods average-K/K VCP VCA ACC

CWE-399

S2CVH2-mulB 9.3 87.2% 82.0% 92.9%
SSCVH1-mulB 10.9 82.4% 75.0% 87.1%
S2CVH1-mulN 10 73.7% 61.0% 88.0%

adopted from L2X [Chen et al., 2018] 15 79.1% 69.0% 88.9%
RSM 15 48.7% 38.0% NA

Table 6.2: Performance results for VCP, VCA and ACC on CWE- 399 (best performance in
bold).

Dataset Methods average-K/K VCP VCA ACC

CWE-119

S2CVH2-mulB 6.9 94.2% 91.8% 89.3%
SSCVH1-mulB 7.2 92.4% 87.6% 89.0%
S2CVH1-mulN 7 89.1% 84.5% 89.0%

adopted from L2X [Chen et al., 2018] 10 93.5% 90.9% 90.0%
RSM 10 49.9% 46.9% NA

Table 6.3: Performance results for VCP, VCA and ACC on CWE-119 (best performance in
bold).

and VCA compared with S2CVH1-mulB, S2CVH1-mulN and RSM. In particular, for a average-

K of 6.9, S2CVH2-mulB achieved 94.2% for VCP and 91.8% for VCA.

We note that all of our proposed methods including S2CVH2-mulB, S2CVH1-mulB and S2CVH1-

mulN achieved a high classification accuracy on the label prediction (i.e., Y ) of functions. All

of the methods obtained an classification accuracy (ACC) on the label prediction higher than

87% for both CWE-399 and CWE-119. This means that all of our proposed methods have

achieved a good highlighting performance in terms of making label predictions and highlighting

the vulnerable code statements.

6.4.3.2 Code vulnerability highlighting in the semi-supervised setting

We investigate the performance of our S2CVH2-mulB method in the unsupervised setting com-

pared with the semi-supervised setting for highlighting the vulnerable statements. In the semi-

supervised setting, we assume that there is a small portion of the training set (i.e., 5% named

S2CVH2-mulB-S5, 10% named S2CVH2-mulB-S10) having ground truth of labelled vulnerable

code statements.

The experimental results in Table 6.4 for both CWE-399 and CWE-119 show that by using

a small portion of data having ground truth (i.e., 5% or 10%) of vulnerable code statements,

the model performance is increased for CWE-399 and significantly increased for CWE-119. For

instance, for CWE-119, the model performance in the unsupervised setting (S2CVH2-mulB) with

a average-K value 6.9 obtained 94.2% for VCP and 91.8% for VCA while the model performance

in the semi-supervised setting for S2CVH2-mulB-S5 and S2CVH2-mulB-S10 having average-K

value (6.6 and 6.3) achieved (96.2% for VCP and 94.7% for VCA) and (99.5% for VCP and
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99.5% for VCA) respectively.

Datasets Methods average-K VCP VCA ACC

CWE-399
S2CVH2-mulB 9.3 87.2% 82.0% 92.9%

S2CVH2-mulB-S5 8.9 87.8% 82.0% 95.1%
S2CVH2-mulB-S10 8.8 88.5% 83.0% 96.4%

CWE-119
S2CVH2-mulB 6.9 94.2% 91.8% 89.3%

S2CVH2-mulB-S5 6.6 96.2% 94.7% 92.8%
S2CVH2-mulB-S10 6.3 99.5% 99.5% 94.2%

Table 6.4: Performance results for VCP, VCA and ACC on CWE-399 and CWE-119 for our
S2CVH2-mulB in the unsupervised and semi-supervised settings (best performance in bold).

In the semi-supervised setting, both S2CVH2-mulB-S5 and S2CVH2-mulB-S10 achieved a high

classification accuracy (ACC, higher than 92%) for both CWE-399 and CWE-119 on the label

prediction (i.e., Y ) of functions. This means that in the semi-supervised setting, our method

(S2CVH2-mulB) achieves a better highlighting performance compared with that in the un-

supervised setting in terms of making label prediction and highlighting the vulnerable code

statements.

6.4.3.3 Explanatory capability of our proposed method

Visualisation of detected and highlighted code statements. In this section, we illustrate

how we visualise the highlighted code statements in vulnerable functions. This shows the ability

of our proposed method as a useful tool for developers to identify vulnerable statements. Using

our S2CVH2-mulB method, the number of code statements detected in each function will be

selected automatically. In Figures (6.6, 6.5 and 6.6), the coloured lines (i.e., the green and

red lines) highlight the detected code statements obtained when using S2CVH2-mulB in the

unsupervised setting. In addition, each red line specifies the core vulnerable statement obtained

from the ground truth and these lines are also detected by our method.

For example, in Fig. 6.6, the corresponding function has two core vulnerable statements includ-

ing “memset ( var1 , str , 100 - 1 ) ;” and “memmove ( var4 , var1 , strlen ( var1 ) * sizeof ( char

) ) ;”, which lead to a vulnerability, because in this case we initialise var1 as a large buffer that is

larger than the small buffer used in the sink (i.e., var1 is larger than var4). Our S2CVH2-mulB

method, with the number of automatically detected code statements equal to 5, can detect these

core vulnerable statements that make the corresponding function vulnerable.

In Fig. 6.5, the function has some core vulnerable code statements including “if ( fgets ( var2

, var3 , stdin ) != NULL )”, which is a potential vulnerability because we read data from the

console using fgets(), and “if ( var1 > wcslen ( var7 ) )” which is also a potential vulnerability
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True label: 1 (vulnerable) and predicted label: 1 (vulnerable)

Figure 6.4: The true and predicted labels from the model are shown in the first row. The source
code function and selected code statements highlighted relevant to vulnerabilities are shown
with colours (see text).

because there is no maximum limitation for memory allocation. Our S2CVH2-mulB method,

with the number of automatically detected code statements equal to 6, can detect and highlight

all of these core potential vulnerable code statements that make the corresponding function

vulnerable.

True label: 1 (vulnerable) and predicted label: 1 (vulnerable)

Figure 6.5: The true and predicted labels from the model are shown in the first row. The source
code function and selected code statements highlighted relevant to vulnerabilities are shown
with colours. The left-hand and right-hand figures are the first and second parts of the function
with some parts omitted for brevity respectively.

In Fig. 6.6, the function has two key vulnerable statements including “for ( var4 = 0 ; var4

< var5 ; var4 ++ )” and “var3 [ var4 ] = var2 [ var4 ] ;”, which can in some cases (e.g., if

var2 is larger than var3) lead to a potential vulnerability. Our S2CVH2-mulB method, with the

number of automatically detected code statements equal to 4, can detect these key vulnerable

statements that make the corresponding overall function vulnerable.
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True label: 1 (vulnerable) and predicted label: 1 (vulnerable)

Figure 6.6: The true and predicted labels from the model are shown in the first row. The source
code function and selected code statements highlighted relevant to vulnerabilities are shown
with colours (see text).

Investigation for the case of the misclassification of non-vulnerable functions. In this

section, we investigate the case when some non-vulnerable functions are predicted as vulnerable

functions (i.e., false positives). Consider the examples depicted in Fig. 6.7. These functions

appear as non-vulnerable in the ground truth. However, the model predicted them as vulnerable.

In Fig. 6.7, the selected code statements (i.e., using our S2CVH2-mulB method) are shown with

colours. For the left-hand function shown in Fig. 6.7, the selected code statements “if ( var2 >=

0 )” can in some cases (e.g., attempting to write to an index of the array that is above the upper

bound) lead to a potential vulnerability. For the right-hand function shown in Fig. 6.7, the

selected code statement “wmemset ( var1 , str , 50 - 1 ) ;” will be a vulnerable code statement

if we change “50 - 1” into “100 - 1”, because in this case we would initialise the source buffer

as a buffer that is larger than the buffer used in the sink (i.e., “wcsncat ( var4 , var1 , wcslen (

var1 ) ) ;”.

These are some typical examples for the case when non-vulnerable functions are predicted as

vulnerable functions. The main reasons are likely due to: i) the key contributed code statements

for marking the label of a function can be a potential vulnerability in some specific cases (e.g.,

depending on behaviour in the calling functions), or ii) the key contributed code statements for

marking the label of a function can be a potential vulnerability if we have a minor code change

applied to them.
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True label: 0 (non-vulnerable) and predicted label: 1 (vulnerable)

Figure 6.7: The true and predicted labels are show in the first row. The source code functions
and selected code statements are shown with colours.

6.5 Closing remarks

We have proposed new methods to detect software vulnerabilities at the source code statement

level, a more fine-grained level than at the function or program level, in both unsupervised and

semi-supervised settings. In particular, our S2CVH1-mulN and S2CVH1-mulB methods aim to

maximise the mutual information between selected code statements F̃ and the response variable

label Y of a function or program. By maximising the mutual information, the selected state-

ments are expected to strongly correlate with the existence of a vulnerability, hence potentially

containing the core vulnerable statements. Compared with the S2CVH1-mulN and S2CVH1-

mulB methods, our S2CVH2-mulB method has an additional regularisation term that minimises

the mutual information between the selected code statements F̃ and all code statements F (i.e.,

by minimizing this mutual information, we aim to eliminate the irrelevant information of F to

obtain the most compact representation F̃ that can predict well the label Y ). The experimen-

tal results on real-world datasets have shown that our proposed methods can effectively and

accurately detect software vulnerabilities at a fine-grained level.
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Part III

Deep Sequence-to-sequence Models

for Function Scope Identification in

Binary Programs
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Preface to Part III

In the previous part (i.e., Part II), we have presented our proposed approaches to address the

problem of the fine-grained vulnerability detection which has a variety of applications in different

areas such as software engineering and cybersecurity. Automated deep learning-based techniques

for this problem have not yet been well studied. Our proposed approaches can work effectively

and efficiently in both unsupervised and semi-supervised settings, hence providing important

modelling tools as well as practical toolboxes for software developers and security experts. By

detecting and highlighting such vulnerability-relevant statements, we can significantly speed up

the process of isolating and detecting software vulnerabilities (SVs), thereby reducing the time

and cost involved.

In Part III, Chapters 7 and 8, we summarise our proposed methods to deal with the third

problem, existing in current software vulnerability detection (SVD) methods, which is relevant

to the third research question (Q.3): “how to leverage the information from binaries (i.e., byte

instructions) and assemblies (i.e., machine instructions) programs to deal with all cases (i.e.,

the function start identification, function end identification, function boundary identification

and function scope identification problems) of the function identification problem, especially the

function scope identification problem, the toughest and most essential problem”.
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Chapter 7

Code Action Network for Binary

Function Scope Identification

Function identification is a preliminary step in binary analysis for many applications from mal-

ware detection to common vulnerability detection and binary instrumentation, to name a few.

In this chapter, we propose the Code Action Network (CAN), whose key idea is to encode the

task of function scope identification to a sequence of three action states: NI (next inclusion),

NE (next exclusion) and FE (function end) in order to efficiently and effectively tackle function

scope identification, the hardest and most crucial task in function identification. A bidirectional

recurrent neural network is trained to match binary programs with their sequence of action

states. To work out function scopes in a binary, this binary is first fed to a trained CAN to

output its sequence of action states, which can be further decoded to discover the function scope

in the binary.

7.1 Motivations

In computer security, we often encounter situations where source code is not available or im-

possible to access and only binaries are accessible. In these situations, binary analysis is an

essential tool enabling many applications such as malware detection, common vulnerability de-

tection [Perkins et al., 2009]. Function identification is usually the first step in many binary

analysis methods. This aims to specify function scopes in a binary and is a building block to a

diverse range of application domains including binary instrumentation [Laurenzano et al., 2010],

vulnerability research [Pewny et al., 2015], and binary protection structures with Control-Flow

Integrity. In both binary analysis and function identification, tackling the loss of high-level se-
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mantic structures in binaries which results from compilers during the process of compilation is

likely the most challenging problem.

There have been many effective methods for dealing with the function identification problem

from heuristic solutions (statistical methods for binary analysis) to complicated approaches

employing machine learning or deep learning techniques. In an early work, Kruegel et al. [2004]

through his research which leveraged statistical methods with control flow graphs concluded that

the task of function start identification can be trivially solved for regular binaries. However, later

research in [Zhang and Sekar, 2013] argued that this task is non-trivial and complex in some

specific cases wherein it is too challenging for heuristics-based methods to discover all function

boundaries. Other influential works and tools that rely on signature database and structural

graphs include IDA Pro, Dyninst, (Binary Analysis Platform) BAP, and Nucleus [Andriesse

et al., 2017]. Andriesse et al. [2017] has recently proposed a new signature-less approach to

function detection for stripped binaries named Nucleus which is based on structural Control Flow

Graph analysis. More specifically, Nucleus identifies functions in the intraprocedural control flow

graph (ICFG) by analyzing the control flow between basic blocks, based on the observation that

intraprocedural control flow tends to use different types and patterns of control flow instructions

than inter-procedural control flow.

Inspired from the idea of a Turing machine, we imagine a memory tape consisting of many cells on

which machine instructions of a binary are stored. The head is first pointed to the first machine

instruction located in the first cell. Each machine instruction is assigned to an action state in

the action state set {NI, NE, FE} depending on its nature. After reading the current machine

instruction and assigning the corresponding action state to it, the head is moved to the next cell

and this procedure is halted as we reach the last cell in the tape (see Section 7.4.1). Eventually,

the sequence of machine instructions in a given binary is translated to the corresponding sequence

of action states. Based on this incentive, in this chapter, we propose a novel method named

the Code Action Network (CAN) whose underlying idea is to equivalently transform the task of

function scope identification to learning a sequence of action states. A bidirectional Recurrent

Neural Network is trained to match binary programs with their corresponding sequences of

action states. To predict function scopes in any binary, the binary is first fed to a trained

CAN to output its corresponding sequence of action states on which we can then work out

function scopes in the binary. The proposed CAN can tackle binaries for which there exist

external gaps between functions and internal gaps inside functions wherein each internal gap in

a function does not contain instructions from other functions. By default, our CAN named as

CAN-B operates at the byte level and can cope with all binaries that satisfy the aforementioned
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condition. However, for the binaries that can be further disassembled into machine instructions,

another variant named as CAN-M is able to operate at the machine instruction level. CAN-M

can efficiently exploit the semantic relationship among bytes in an instruction and instructions

in a function as well as requiring much shorter sequence length compared with the Bidirectional

RNN in [Shin et al., 2015] which also works at the byte level. In addition, our proposed CAN-B

and CAN-M can directly address the function scope identification task, hence inherently offering

the solution for other simpler tasks including the function start/end/boundary identifications.

We undertake extensive experiments to compare our proposed CAN-B and CAN-M with state-

of-the-art methods including IDA, Bidirectional RNN, ByteWeight no-RFCR, and ByteWeight

on the dataset used in [Shin et al., 2015, Bao et al., 2014]. The experimental results show that

our proposed CAN-B and CAN-M outperform the baselines on function start, function end and

function boundary identification tasks as well as achieving very good performance on function

scope identification and also surpass the Nucleus [Andriesse et al., 2017] on this task. Our

proposed methods slightly outperform the Bidirectional RNN proposed in [Shin et al., 2015]

on the function start and end identification tasks, but significantly surpass this method on

the function boundary identification task – the more important task. This demonstrates the

capacity of our methods in efficiently utilising the contextual relationship carried in consecutive

machine instructions or bytes to properly match the function start and end entries for this task.

As expected, our CAN-M obtains the best predictive performances on most experiments and

is much faster than the Bidirectional RNN proposed in [Shin et al., 2015]. Particularly, CAN-

M takes about 1 hour for training with 20,000 iterations which is nearly 4 times faster than

the Bidirectional RNN proposed in [Shin et al., 2015] using the same number of iterations for

training and the same number of bytes for handling input. This is due to the fact that CAN-M

operates at the machine instruction level, while the Bidirectional RNN proposed in [Shin et al.,

2015] operates at the byte level.

We also do error analysis to qualitatively compare our CAN-M and CAN-B with the baselines.

We observe that there are a variety of instruction styles for the function start and function

end (e.g., in the experimental dataset, there are a thousand different function start styles and

function end styles). In their error analyses, Shin et al. [2015] and Bao et al. [2014] mentioned

that for functions which encompass several function start styles or function end styles, their

proposed methods tend to make mistakes in predicting the function start or end bytes with

many false positives and negatives. However, it is not the case for our proposed methods, since

we further observe that for the functions which contain more than one function start style or

function end style which account for 98.38% and 28% of the testing set respectively our proposed
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CAN-M has 0.24% and 1.09% false positive rates respectively.

7.2 Related work for function identification

Machine learning has been applied to binary analysis and function identification in particular.

The seminal work of [Rosenblum et al., 2008] modeled function start identification as a Condi-

tional Random Field (CRF) in which binary offsets and a number of selected patterns appear

in the CRF. Since the inference on a CRF is very expensive, though feature selection and ap-

proximate inference were adopted to speed up this model, its computational complexity is still

very high. ByteWeight [Bao et al., 2014] is another successful machine learning based method

for function identification aiming to learn signatures for function starts using a weighted prefix

tree, and recognises function starts by matching binary fragments with the signatures. Each

node in the tree corresponds to either a byte or an instruction, with the path from the root

node to any given node representing a possible sequence of bytes or instructions. Although

ByteWeight significantly outperformed disassembler approaches such as IDA Pro, Dyninst, and

Binary Analysis Platform (BAP), it is not scalable enough for even medium-sized datasets [Shin

et al., 2015].

Deep learning has undergone a renaissance in the past few years, achieving breakthrough results

in multiple application domains such as visual object recognition [Krizhevsky et al., 2012],

language modelling [Sutskever et al., 2014a], and software vulnerability detection [Le et al.,

2019b, Nguyen et al., 2020a, 2019]. The study in [Shin et al., 2015] is the first work which applied

a deep learning technique for the function identification problem. In particular, a bidirectional

recurrent neural network (bidirectional RNN) was used to identify whether a byte is a start

point (or end point) of a function or not. This method was proven to outperform ByteWeight

[Bao et al., 2014] while requiring much less training time. However, to address the boundary

identification problem with [Shin et al., 2015], a simple heuristic to pair adjacent function starts

and function ends was used (see Section 5.3 in that paper). Consequently, this approach is not

able to efficiently utilise the context information of consecutive bytes and machine instructions

in a function and the pairing procedure might lead to inconsistency since the networks for

function start and end were trained independently. Furthermore, this method cannot address

the function scope identification problem, the hardest and most essential sub problem in function

identification, wherein the scope (i.e., the addresses of all machine instructions in a function) of

each function must be specified.

129



7.3 Function identification

This section discusses the function identification problem. We begin with definitions of the sub

problems in the function identification problem, followed by an example of source code in the

C language and its binaries compiled with the optimisation level O1 using gcc on the Linux

platform for the x86-64 architecture.

7.3.1 Problem definitions

Given a binary program P , our task is to identify the necessary information (e.g., function starts,

function ends) in its n functions {f1, ..., fn} which is initially unknown. Depending on the nature

of information we need from {f1, ..., fn}, we can categorise the task of function identification

into the following such problems.

Function start/end/boundary identification.

In the first problem, we need to specify the set S = {s1, ..., sn} which contains the start in-

struction byte for each of the corresponding functions in {f1, ..., fn}. If a function (e.g. fi) has

multiple start points, si will be the first start instruction byte for fi. In the second problem,

we need to identify the set E = {e1, ..., en} which contains the end instruction byte for each of

the corresponding functions in {f1, ..., fn}. If a function (e.g. fi) has multiple exit points, ei
will be the last end instruction byte for fi. In the last problem, we have to point out the set of

(start, end) pairs SE = {(s1, e1) , ..., (sn, en)} which contains the pairs of the function start and

the function end for each of the corresponding functions in {f1, ..., fn}.

Function scope identification.

This is the hardest problem in the function identification task. In this problem, we need to find

out the set {(f1,s1 , ..., f1,e1) , ..., (fn,sn , ..., fn,en)} which specifies the instruction bytes in each

function f1, ..., fn in the given binary program P . Here we note that because functions may be

not contiguous, the instruction bytes (fi,si , ..., fi,ei) may also be not contiguous. It is apparent

that the solution of this problem covers the three aforementioned problems. Since our proposed

CAN addresses this problem, it inherently offers solutions for the other problems.
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7.3.2 Running example

In Fig. 7.1, we show an example of a short source code fragment for a function in the C program-

ming language, the corresponding assembly code in the machine instruction and corresponding

hexadecimal mode of the binary code respectively which was compiled using gcc with the opti-

misation level O1 for the x86-64 architecture on the Linux platform. We further observe that in

real binary code, the patterns for the entry point vary over a wide range and can start with push,

mov, movsx, inc, cmp, or, and, etc. In the example, the assembly code corresponding with the

optimisation level O1 on Linux has three ret statements. Furthermore, in real binary code, the

ending point of a function can vary in pattern beside the ret pattern. These make the task of

function identification very challenging. For the challenges of the function scope identification

task, we refer the readers to [Bao et al., 2014, Shin et al., 2015] and the discussions therein.

Figure 7.1: Example source code of a function in C language programming (left), the corre-
sponding assembly code (middle) with some parts omitted for brevity and the corresponding
hexadecimal mode of the binary code (right).

7.4 Code Action Network for function identification

7.4.1 Key idea

In what follows, we present the key idea of our CAN. In a binary, there are external gaps between

functions as well as internal gaps inside a non-contiguous function. The external gaps might

contain data, jump tables or padding-instruction bytes which do not belong to any function

(e.g., additional instructions generated by a compiler such as nop and int3 ). The internal gaps

in general might contain data, jump tables or instructions from other functions (e.g., nested

functions). We further assume that the internal gaps do not contain any instruction from other

functions. It means that if there exist functions nested in a function, our CAN ignores these

internal functions. However, we believe that the nested functions are extremely rare in real-
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world binaries. For example, in the experimental dataset, we observe that there are only 506

nested functions over the total of 757,125 functions (i.e., the occurrence rate is 0.067%).

Figure 7.2: (The left-hand figure) Key idea and architecture of the Code Action Network.
Assume that we have a sequence of instruction bytes in three functions where the functions
may not be contiguous and there exist gaps between the functions. The Code Action Network
transforms this sequence of instruction bytes to those of action states (i.e., NI, NE and FE).
(The right-hand figure) The architecture of the Code Action Network. Each output value takes
one of three action states NI, NE or FE. The Code Action Network will learn to map the input
sequences of items (i1, i2, ..., il) to the target output sequence (y1,y2, ...,yl) with the loss Li at
each time step t. The h represents for the forward-propagated hidden state (toward the right)
while the g stands for the backward-propagated hidden state (toward the left). At each time
step t, the predicted output ot can benefit from the relevant information of the past from its h
and the future from its g.

The key idea of CAN is to encode the task of function scope identification to a sequence of

three action states NI (next inclusion), NE (next exclusion) and FE (function end). With the

aforementioned assumption, the binaries of interest consist of several functions and the functions

in a binary do not intermingle, that is, each function only contains its machine instructions, data,

or jump-tables and do not contain any machine instruction of other functions. Each function can

be therefore viewed as a collection of bytes where each byte is from a machine instruction of this

function (i.e., instruction byte) or data/jump-tables inside this function (i.e., non-instruction

byte). To clarify how to proceed over a binary function given a sequence of action states, let us

imagine this binary program including many instruction and non-instruction bytes as a tape of

many cells wherein each cell contains a instruction or non-instruction byte and a pointer firstly

points to the first cell in the tape. The action state NI includes the current instruction or non-

instruction byte in the current cell to the current function and moves the pointer to the next cell

(i.e., the next instruction or non-instruction byte). The action state NE excludes the current

instruction or non-instruction byte in the current cell from the current function and moves the
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pointer to the next cell. The action state FE counts the current instruction or non-instruction

byte in the current cell, ends the current function, starts reading a new function, and moves the

pointer to the next cell.

To further explain how to transform a binary program to a sequence of action states, we consider

an example binary code depicted in Fig. 7.2 (the left-hand figure). Assume that we have a

sequence of instruction and non-instruction bytes, which belong to Function 1, Function 2 and

Function 3 respectively where the functions may be not contiguous and there exist gaps between

the functions (e.g., the gap between Function 1 and Function 2 includes the padding-instruction

byte (pad-ins-byte) G2 and the non-instruction (non-ins-byte) byte G3). The pointer of CAN

firstly points to G1, labels this padding-instruction byte (pad-ins-byte) as NE since G1 does

not belong to any function, and moves to the instruction byte F11. The instruction byte F11

is labelled as NI since it belongs to the function Function 1. The pointer then moves to the

non-instruction byte F12 which can come from a jump-table or data and labels it as NE because

F12 does not belong to any function. After that, the pointer moves to the instruction byte

F13 and the non-instruction byte F14 subsequently. F13 and F14 are then labelled as NI and

NE respectively since F13 belong to the function Function 1 while F14 does not belong to any

function, and the pointer moves to the instruction byte F15 and labels it as FE since it is the

end of the function Function 1 and we need to start reading the new function (i.e., the function

Function 2). The pointer subsequently moves to the instruction byte G2 and the non-instruction

G3 which can come from a jump-table or data and labels them as NE since they do not belong

to any function. The pointer then traverses across the instruction bytes F21, F22 and F23, and

labels them as NI, NI and FE respectively. The pointer now starts reading the new function (i.e.,

the function Function 3). This process is repeated until the pointer reaches the last instruction

or non-instruction byte and we eventually identify all functions.

It is worth noting that if binaries can be disassembled and a function in these binaries can be thus

viewed as a collection of instructions and non-instructions, we can perform the aforementioned

idea at the machine instruction level wherein each cell in the tape represents an instruction or

non-instruction of a binary. The advantages of performing the task of function identification

at the machine instruction level include: i) the sequence length of the bidirectional RNN is

significantly reduced and ii) the semantic relationship among bytes in a machine instruction and

machine instructions can be further exploited. As a consequence, the gradient exploding and

vanishing which often occur with long RNNs can be avoided and the model is easier to train

while obtaining higher predictive performance and much shorter training times as shown in our

experiments.
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7.4.2 Preprocess input statement

Byte level. To process data for the byte level, we simply take the raw bytes in the text

segment of the given binary and input them to CAN-B.

Machine instruction level. To process data for the machine instruction level, we first use

Capstone1 to disassemble the binaries and preprocess the machine instructions obtained from

the text segment of a binary before inputting them to CAN-M. This preprocessing step aims

to work out fixed length inputs from machine instructions. For each machine instruction, we

employ Capstone to detect entire machine instructions, then eliminate redundant prefixes to

obtain core parts that contain the opcode and other significant information.

We note that the core part obtained may have various sizes of 4 to 8 bytes or even more for the

x86 and x86-64 architectures. For the x86 architecture, we keep the first 4 bytes from the left for

machine instructions which are longer than 4 bytes and (2) padding 0 to the right of the machine

instructions which have fewer than 4 bytes. For example, the machine instruction “move edx,

dword ptr [ebp - 0x4dc]” has the corresponding value “8b9524fbffff” in hex format which is 6

bytes long, we then remove the last 2 bytes and keep the first 4 bytes to get the numerical value

“8b9524fb”. For the machine instruction “mov dword ptr [ebp - 0xc], eax” which contains 3

bytes “8945f4” in the hex format, we then pad with 0 to fill in the fourth byte and gain the

numerical value “8945f400”. Likewise, for the x86-64 architecture, we keep the first 8 bytes from

the left for machine instructions which are longer than 8 bytes and (2) padding 0 to the right of

the machine instructions which have fewer than 8 bytes. For example, the machine instruction

“mov qword ptr [rbp - 0xe0], 0” has the corresponding value “48c78520ffffff00000000” in hex

format which is 11 bytes long, we then remove the last 3 bytes and keep the first 8 bytes to get

the numerical value “48c78520ffffff00”. For the machine instruction “mov rax, qword ptr [rsp

+ 0x20]” which contains 5 bytes “488b442420” in the hex format, we then pad with 0 to fill

in the sixth, seventh and eighth bytes and gain the numerical value “488b442420000000”. In

addition, the reason for choosing the first 4 or 8 bytes as aforementioned is that more than 75%

of instructions in the x86 or x86-64 architectures have their sizes less than or equal 4 or 8 bytes

respectively and the first 4 or 8 bytes in the core parts of the x86 or x86-64 instructions contain

the most crucial information (e.g., the opcode or other significant information). Moreover, when

a binary can be disassembled, the relevant software like Capstone can further identify non-

instruction items and we pad these items with 0 to ensure that their sizes are a multiple of 4 or

8 according to the x86 and x86-64 architectures. Certainly, a naive possible solution for both
1www.capstone-engine.org
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x86 and x86-64 architectures is to preserve the machine instructions with the maximal length

in each architecture and pad the shorter machine instructions. However, this solution leads to

extremely high and imbalanced inputs, hence making the network hard to train and tame.

7.4.3 Code Action Network architecture

7.4.3.1 Training procedure

The Code Action Network (CAN) is a multicell bidirectional RNN whose architecture is depicted

in Fig. 7.2 (the right-hand figure) where we assume the number of cells over the input is 2. Our

CAN takes a binary program B = (i1, i2, . . . , il) including l instructions (and non-instructions)

for CAN-M or instruction bytes (and non-instruction bytes) for CAN-B and learns to output

the corresponding sequence of action states Y = (y1, y2, ..., yl) where each yk takes one of three

action states NI (i.e., yk = 1), NE (i.e., yk = 2) or FE (i.e., yk = 3). The computational process

of CAN is as follows:

h1
k = tanh(H>h1

k−1 + U>ik); g1
k = tanh(G>g1

k+1 + V >ik); h2
k = tanh(H>h2

k−1 +W>[
h1
k

g1
k

])

g2
k = tanh(G>g2

k+1 +R>[
h1
k

g1
k

]); ok = S>[
h2
k

g2
k

]; pk = softmax (ok)

where k = 1, ...l, h1
0, h2

0, g1
l+1 = g1

0, g2
l+1 = g2

0 are initial hidden states and θ = (U, V, W, H,

G, R, S) is the model. We further note that pk, k = 1, . . . , l is a discrete distribution over the

three labels NI, NE and FE.

To find the best model θ∗, we need to solve the following optimisation problem:

max
θ

∑
(B,Y)∈D

logp (Y | B) (7.1)

whereD is the training set including pairs (B,Y) of the binaries and their corresponding sequence

of action states.

Because ok is a function (lossy summary) of i1:l, we further derive logp(Y | B) as:

logp (Y | B) =
l∑

k=1
logp (yk | y1:k−1, i1:l) =

l∑
k=1

logp (yk | ok)
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Substituting back to the optimisation problem in Eq. (7.1), we arrive the following optimisation

problem:

max
θ

∑
(B,Y)∈D

l∑
k=1

logp (yk | ok)

where p(yk | ok) is the yk- th element of the discrete distribution pk or in other words, we have

p(yk | ok) = pk,yk .

7.4.3.2 Testing procedure

In what follows, we present how to work out the function scopes in a binary using a trained

CAN. The machine instructions (and non-instructions) for CAN-M or instruction (and non-

instruction) bytes for CAN-B in the testing binary are fed to the trained model to work out the

predicted sequence of action states. This predicted sequence of action states is then decoded

to the function scopes inside the binary. As shown in Fig. 7.3, the binary in Fig. 7.2 when

inputted to the trained CAN outputs the sequence of action states NE, NI, ..., NI and FE, and

is later decoded to the scopes of the functions Function 1, Function 2 and Function 3.

Figure 7.3: Testing procedure of our Code Action Network. The sequence of machine instructions
(and non-instructions) or instruction bytes (and non-instruction) bytes in a binary program is
fed to the trained Code Action Network to work out the sequence of action states. Subsequently,
the sequence of action states is decoded to the set of functions in this binary.

7.5 Implementation and results

In this section, firstly, we present the experimental results of our proposed Code Action Network

for the machine instruction level (CAN-M) and the byte level (CAN-B) compared with other

baselines including IDA, ByteWeight (BW) no-RFCR, ByteWeight (BW) [Bao et al., 2014], the

Bidirectional RNN [Shin et al., 2015], and Nucleus [Andriesse et al., 2017]. Secondly, we perform
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error analysis to qualitatively investigate our proposed methods. We also investigate the model

behaviour of our CAN-M with various RNN cells and with different size for hidden states.

7.5.1 Experimental setup

7.5.1.1 Experimental dataset

We used the dataset from [Bao et al., 2014, Shin et al., 2015], which consists of 2,200 different

binaries including 2,064 binaries obtained from the findutils, binutils, and coreutils packages and

compiled with both icc and gcc for Linux at four optimisation levels O0, O1, O2 and O3. The

remaining binaries for Windows are from various well-known open-source projects which were

compiled with Microsoft Visual Studio for the x86 (32 bit) and the x86-64 (64 bit) architectures

at four optimisation levels Od, O1, O2 and Ox.

7.5.1.2 Experimental setting

We divided the binaries into three random parts; the first part contains 80% of the binaries

used for training, the second part contains 10% of the binaries used for testing, and the third

part contains 10% of the binaries for validation. For CAN-M, we used a sequence of 250 hidden

states for the x86 architecture and 125 hidden states for the x86-64 architecture where the

size of hidden states is 256. For CAN-B, akin to the Bidirectional RNN in [Shin et al., 2015],

we used a sequence length of 1,000 hidden states for the x86 and x86-64 architectures. We

employed the Adam optimiser with the default learning rate 0.001 and the mini-batch size of

32. In addition, we applied gradient clipping regularisation [Pascanu et al., 2013] to prevent

the over-fitting problem when training the model. We implemented the Code Action Networks

in Python using Tensorflow [Abadi et al., 2016], an open-source software library for Machine

Intelligence developed by the Google Brain Team.

7.5.2 Experimental results

7.5.2.1 Code Action Network versus baselines

We compared our CAN-M and CAN-B using the long short-term memory (LSTM) cell and

the hidden size of 256 with IDA, the Bidirectional RNN, ByteWeight (BW) no-RFCR, and

ByteWeight (BW) in the task of function start, function end, function boundary and function

scope identification. For the well-known tool IDA as well as the Bidirectional RNN, ByteWeight
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no-RFCR, and ByteWeight methods, we reported the experimental results presented in [Bao

et al., 2014] and [Shin et al., 2015]. Obviously, the task of function scope identification wherein

we need to specify addresses of machine instructions in each function is harder than that of

function boundary identification. To compute the function scope results, given a predicted

function by CAN variants, we considered their start and end instructions for CAN-M and start

and end bytes for CAN-B, and then evaluated measures (e.g., Precision, Recall and F1-score)

based on this pair. In addition, in the function scope identification task, a pair is counted as

a correct pair if all predicted bytes or machine instructions accompanied with this pair forms

a function that exactly matches to a valid function in the ground truth. In contrast, in the

function boundary identification task, we only require the start and end positions of this pair to

be correct.

The experimental results in Table 7.1 show that our proposed CAN-M and CAN-B achieved

better predictive performances (i.e., Recall, Precision and F1-score) compared with the base-

lines in most cases (PE x86, PE x86-64, ELF x86 and ELF x86-64). For the function boundary

identification task, our CAN-B and CAN-M significantly outperformed the baselines in all mea-

sures, especially for CAN-M. Interestingly, the predictive performance of our proposed methods

on the harder task of function scope identification was higher or comparable with that of the

baselines on the easier task of function boundary identification. In comparison with the Bidirec-

tional RNN proposed in [Shin et al., 2015], our proposed methods slightly outperform it on the

function start and function end identification tasks, but significantly surpass this method on the

function boundary identification task - the more important task. This result demonstrates the

capacity of our methods in efficiently utilising the contextual relationship carried in consecutive

machine instructions or bytes to properly match the function start and end entries for this task.

Regarding the amount of time taken for training, our CAN-M took approximately 3,490 seconds

for training in 20,000 iterations, while our CAN-B and the Bidirectional RNN using the same

number of iterations with the sequence length 1,000 took about 12,030 seconds (i.e., roughly

four times slower). This is due to a much smaller sequence length of CAN-M compared with

CAN-B and the Bidirectional RNN.

7.5.2.2 Code Action Network versus Bidirectional RNN, ByteWeight and Nucleus

We also compared the average predictive performance for case by case including the function

start, function bound and function scope identifications of our CANM and CAN-B using the

hidden size of 256 and LSTM cell with the Bidirectional RNN, ByteWeight, and Nucleus in

both Linux and Windows platforms. For Nucleus [Andriesse et al., 2017], we reported the
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experimental results reported in that paper. The experimental results in Table 7.2 indicate that

our CAN-M and CAN-B again outperformed the baselines, while CAN-M obtained the highest

predictive performances in all measures (Recall, Precision and F1-score).

7.5.2.3 Error analysis

For a qualitative assessment, we performed error analysis of our CAN-M and CAN-B for all

cases including PEx86, PEx64, ELFx86 and ELFx64.

At the machine instruction level, we observed that there are 4,714, 4,464, 3,320 and 8,147

different types of machine instructions for function start while there are 1,926, 5,523, 9,082 and

11,421 different types of machine instructions for function end in the PEx86, PEx64, ELFx86

and ELFx64 datasets respectively. At byte level, we found that there are 91, 49, 41 and 53

different types of instruction bytes for function start while there are 166, 125, 133 and 126

different types of bytes for function end in the PEx86, PEx64, ELFx86 and ELFx64 datasets

respectively. Obviously, these diverse ranges in the function start and function styles make the

task of function identification really challenging. In all four cases (PEx86, PEx64, ELFx86 and

ELFx64), the compilers in use often add padding between functions such as nop and int3 .

We summarise some observations for the performance of our methods as follows:

• Shin et al. [2015] and Bao et al. [2014] commonly mentioned that for the functions that

contain either several function start or function end styles inside, their models tend to

confuse in determining the true start or end points, hence offering many false positives.

This is due to a high level of ambiguity in the start or end entries for these functions.

However, it is not the case for our proposed CAN-M and CAN-B. For example, at the

machine instruction level with PE x86, we found that the functions which contain more

than one function start style or function end style account for 98.38% and 28.00% of the

testing set and when predicting these functions, our proposed CAN-M has 0.28% false

negative rate and 0.24% false positive rate as well as 1.56% false negative rate and 1.09%

false positive rate.

• Our proposed methods also share the same behavior as the method in [Shin et al., 2015]

in predicting some first and last items in an input sequence, that is, the CAN-M and

CAN-B sometimes offer false positives and negatives when predicting some first and last

instructions or bytes in an input sequence. More specifically, if an input sequence involves

several functions, the start of the first function and the end of the last function are more
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likely to be predicted incorrectly. This is possibly due to the scarcity of context before or

after them. For example, at the machine instruction level with PE x86, we record that

there is about 2.39% of input sequences which contain function ends at some first and last

input items. When predicting these function end entries, our proposed CAN-M obtains

21.21% false positive rate and 27.27% false negative rate.

Task Architectures ELF x86 ELF x86-64 PE x86 PE x86-64
Methods R P F1 R P F1 R P F1 R P F1

(f.s)

IDA 58.34% 70.97% 64.04% 55.50% 74.20% 63.50% 87.80% 94.67% 91.11% 93.34% 98.22% 95.72%
BW no-RFCR 96.17% 98.36% 97.25% 97.57% 99.11% 98.33% 92.13% 96.75% 94.38% 96.22% 97.74% 96.97%

BW 97.94% 98.41% 98.17% 98.47% 99.14% 98.80% 95.37% 93.78% 94.57% 97.98% 97.88% 97.93%
Bidirectional RNN 99.06% 99.56% 99.31% 97.80% 98.80% 98.30% 98.46% 99.01% 98.73% 99.09% 99.52% 99.30%

CAN-B 99.23% 99.41% 99.32% 98.19% 99.05% 98.62% 98.95% 99.53% 99.24% 99.20% 99.46% 99.33%
CAN-M 99.35% 99.61% 99.48% 98.02% 99.34% 98.68% 99.52% 99.67% 99.59% 99.05% 99.53% 99.29%

(f.e)
Bidirectional RNN 97.87% 98.69% 98.28% 95.03% 97.45% 96.22% 98.35% 99.24% 98.79% 99.20% 99.28% 99.24%

CAN-B 99.16% 99.38% 99.27% 98.34% 99.20% 98.77% 98.82% 99.39% 99.10% 99.15% 99.30% 99.22%
CAN-M 99.30% 99.56% 99.43% 97.97% 99.29% 98.63% 99.56% 99.71% 99.64% 99.12% 99.31% 99.21%

(f.b)

IDA 56.53% 70.63% 62.80% 53.46% 72.84% 61.66% 87.10% 93.93% 90.39% 93.24% 98.11% 95.61%
BW no-RFCR 90.58% 92.85% 91.70% 91.59% 93.17% 92.37% 90.48% 95.03% 92.70% 91.35% 92.87% 92.10%

BW 92.29% 92.78% 92.53% 92.52% 93.22% 92.87% 93.91% 92.30% 93.10% 93.13% 93.04% 93.08%
Bidirectional RNN 95.34% 97.75% 96.53% 89.91% 94.85% 92.31% 95.27% 97.53% 96.39% 97.33% 98.43% 97.88%

CAN-B 98.08% 98.29% 98.18% 96.45% 97.24% 96.84% 97.81% 98.36% 98.08% 97.89% 98.27% 98.08%
CAN-M 98.43% 98.68% 98.55% 96.13% 97.34% 96.73% 98.99% 99.14% 99.06% 97.63% 98.39% 98.01%

(f.sc) CAN-B 98.03% 98.25% 98.14% 96.28% 97.10% 96.69% 97.75% 98.31% 98.03% 97.83% 98.22% 98.02%
CAN-M 98.40% 98.65% 98.52% 95.94% 97.21% 96.57% 98.97% 99.12% 99.05% 97.52% 98.28% 97.90%

Table 7.1: Comparison of our Code Action Network and baselines (Best in bold, second best in
underline). Noting that f.s, f.e, f.b and f.sc stand for func. start, func. end, func. boundary and
func. scope respectively, while R, P and F1 represent Recall, Precision and F1-score respectively.

Tasks Function Start Function Bound Function Scope
Methods Recall Precision F1 Recall Precision F1 Recall Precision F1
Nucleus 94% 96% 94.99% 88% 96% 91.83% 88% 96% 91.83%

ByteWeight 97.44% 97.30% 97.37% 92.96% 92.84% 92.90% - - -
Bidirectional RNN 98.60% 99.22% 98.92% 94.46% 97.14% 95.78% - - -

CAN-B 98.89% 99.36% 99.12% 97.56% 98.04% 97.80% 97.47% 97.97% 97.72%
CAN-M 98.99% 99.54% 99.26% 97.80% 98.39% 98.09% 97.71% 98.32% 98.01%

Table 7.2: Comparison with the baselines including the Bidirectional RNN, ByteWeight and
Nucleus using average scores for all architectures (x86 and x86-64) for both Linux and Windows
of our Code Action Network. The experimental results for Nucleus are from the original paper
using the same dataset (best performance in bold, second best in underline).

7.5.2.4 Variation in RNN cells

In Table 7.3, we studied the performances of our CAN-M with various RNN cells including long

short-term memory (CAN-M-LSTM) and gated recurrent unit (CAN-M-GRU) when the hidden

size was set to 256. It can be observed that the model using LSTM achieved better performance

in almost all measures including Recall, Precision and F1-score than that using GRU in most

cases (PE x86, PE x86-64, ELF x86 and ELF x86-64).
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7.5.2.5 Variation in the size of the hidden states

In Table 7.4, we studied the performances of our CAN-M using different hidden sizes varying

in the range of {128, 256} while employing the LSTM cell. The experimental results show that

CAN-M-LSTM-256 obtained higher performance in most measures including Recall, Precision

and F1-score compared with CAN-M-LSTM-128 in all cases (PE x86, PE x86-64, ELF x86

and ELF x86-64), while CAN-M-LSTM-128 gained higher performance in Precision for function

start and function end in three cases (PE x86, PE x86-64 and ELF x86).

Architectures ELF x86 ELF x86-64
Methods Recall Precision F1-score Recall Precision F1-score

CAN-M-LSTM (func. start) 99.35% 99.61% 99.48% 98.02% 99.34% 98.68%
CAN-M-LSTM (func. end) 99.30% 99.56% 99.43% 97.97% 99.29% 98.63%
CAN-M-LSTM (func. bound) 98.43% 98.68% 98.55% 96.13% 97.34% 96.73%
CAN-M-LSTM (func. scope) 98.40% 98.65% 98.52% 95.94% 97.21% 96.57%
CAN-M-GRU (func. start) 98.52% 99.45% 98.98% 96.91% 97.67% 97.29%
CAN-M-GRU (func. end) 98.67% 99.60% 99.13% 96.84% 97.59% 97.21%

CAN-M-GRU (func. bound) 97.18% 98.05% 97.61% 93.64% 94.28% 93.96%
CAN-M-GRU (func. scope) 97.09% 97.99% 97.54% 93.02% 93.72% 93.37%

Architectures PE x86 PE x86-64
Methods Recall Precision F1-score Recall Precision F1-score

CAN-M-LSTM (func. start) 99.52% 99.67% 99.59% 99.05% 99.53% 99.29%
CAN-M-LSTM (func. end) 99.56% 99.71% 99.64% 99.12% 99.31% 99.21%

CAN-M-LSTM (func. bound) 98.99% 99.14% 99.06% 97.63% 98.39% 98.01%
CAN-M-LSTM (func. scope) 98.97% 99.12% 99.05% 97.52% 98.28% 97.90%
CAN-M-GRU (func. start) 98.86% 99.32% 99.09% 97.63% 98.78% 98.20%
CAN-M-GRU (func. end) 98.97% 99.43% 99.20% 97.43% 98.58% 98.00%
CAN-M-GRU (func. bound) 97.54% 97.98% 97.76% 95.54% 96.59% 96.06%
CAN-M-GRU (func. scope) 97.46% 97.91% 97.68% 95.26% 96.38% 95.82%

Table 7.3: Comparison of variants of CAN using different types of RNN cells including LSTM
and GRU.
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Architectures ELF x86 ELF x86-64
Methods Recall Precision F1-score Recall Precision F1-score

CAN-M-LSTM-128 (func. start) 99.15% 99.63% 99.39% 97.90% 98.49% 98.19%
CAN-M-LSTM-128 (func. end) 99.12% 99.60% 99.36% 97.76% 98.34% 98.05%
CAN-M-LSTM-128 (func. bound) 98.23% 98.69% 98.46% 95.53% 96.05% 95.79%
CAN-M-LSTM-128 (func. scope) 98.19% 98.66% 98.42% 95.23% 95.78% 95.50%
CAN-M-LSTM-256 (func. start) 99.35% 99.61% 99.48% 98.02% 99.34% 98.68%
CAN-M-LSTM-256 (func. end) 99.30% 99.56% 99.43% 97.97% 99.29% 98.63%
CAN-M-LSTM-256 (func. bound) 98.43% 98.68% 98.55% 96.13% 97.34% 96.73%
CAN-M-LSTM-256 (func. scope) 98.40% 98.65% 98.52% 95.94% 97.21% 96.57%

Architectures PE x86 PE x86-64
Methods Recall Precision F1-score Recall Precision F1-score

CAN-M-LSTM-128 (func. start) 99.32% 99.80% 99.56% 98.44% 99.68% 99.06%
CAN-M-LSTM-128 (func. end) 99.38% 99.87% 99.62% 98.22% 99.46% 98.84%
CAN-M-LSTM-128 (func. bound) 98.67% 99.14% 98.90% 97.82% 98.18% 98.00%
CAN-M-LSTM-128 (func. scope) 98.65% 99.12% 98.88% 97.29% 98.11% 97.70%
CAN-M-LSTM-256 (func. start) 99.52% 99.67% 99.59% 99.05% 99.53% 99.29%
CAN-M-LSTM-256 (func. end) 99.56% 99.71% 99.64% 99.12% 99.31% 99.21%

CAN-M-LSTM-256 (func. bound) 98.99% 99.14% 99.06% 97.63% 98.39% 98.01%
CAN-M-LSTM-256 (func. scope) 98.97% 99.12% 99.05% 97.52% 98.28% 97.90%

Table 7.4: Comparison of variants of CAN using different hidden state size in the range of {128,
256}. The best results (%) are emphasised in bold.

7.6 Closing remarks

In this chapter, we have proposed the novel Code Action Network (CAN) for dealing with the

function identification problem, a preliminary and significant step in binary analysis for many

security applications such as malware detection, common vulnerability detection and binary

instrumentation. Specifically, the CAN leverages the underlying idea of a multicell bidirectional

recurrent neural network with the idea of encoding the task of function scope identification to

a sequence of three action states NI (next inclusion), NE (next exclusion) and FE (function

end) in order to tackle function scope identification, the hardest and most crucial task in func-

tion identification. The experimental results show that the CAN can achieve state-of-the-art

performance in terms of efficiency and efficacy.
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Chapter 8

Code Pointer Network for Binary

Function Scope Identification

In this chapter, we propose the Code Pointer Network (CPN), which leverages the underlying

idea of a pointer network to efficiently and effectively tackle function scope identification (i.e.,

the hardest and most crucial task in function identification). Our proposed CPN includes one

encoder and one decoder. The encoder takes the sequence of all machine instructions in a binary,

while the decoder reads out the function scopes in the given binary. In addition, our proposed

CPN can directly address the function scope identification task, hence inherently offering the

solutions for other simpler tasks including function start, function end and function boundary

identification.

8.1 Motivations

In computer security, we often face the situation where source code is not available or impossible

to access and only binaries are accessible. In these situations, binary analysis is an essential

tool enabling many extensive applications such as malware detection [Caballero et al., 2010],

common vulnerability detection [Perkins et al., 2009]. Function identification is usually the first

step in many binary analysis methods. This aims to identify function scopes in a binary and can

contribute to a wide variety of application domains including searching for vulnerabilities [Pewny

et al., 2015], binary instrumentation [Laurenzano et al., 2010], binary protection structures with

Control-Flow Integrity [Prakash et al., 2015], and binary software vulnerability detection [Le

et al., 2019b, Nguyen et al., 2020a]. One of the most challenging problems in both binary

analysis and function identification is how to tackle the scarcity of high-level semantic structures
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in binaries which might originate from compilers during the process of compilation.

There have been many effective approaches proposed for solving the function identification prob-

lem from simple heuristics solutions to more complicated methods employing machine learning

or deep learning techniques. In an early work of the function identification problem, Kruegel

et al. [2004] pointed out that the task of function start identification is trivially solved for reg-

ular binaries. However, later research of [Perkins et al., 2009] and [Zhang and Sekar, 2013]

revealed that this task is non-trivial and complex in some specific cases where it is too difficult

for heuristics-based methods to figure out all function boundaries. ByteWeight [Bao et al., 2014]

is a machine learning based method for function identification. It learns signatures for function

starts using a weighted prefix tree, and recognises function starts by matching binary fragments

with the signatures. Each node in the tree corresponds to either a byte or an instruction, with

the path from the root node to any given node representing a possible sequence of bytes or

instructions. Although ByteWeight significantly outperformed disassembler approaches such as

IDA Pro, Dyninst [Bernat and Miller, 2011], BAP [Brumley et al., 2011], and the CMU Binary

Analysis Platform, it is not scalable enough for even medium-sized datasets. In particular, it

took about 587 compute-hours for training a dataset of 2,064 binaries [Shin et al., 2015]. Re-

cently, Andriesse et al. [2017] proposed a new solution for function identification, which is based

on Control Flow Graph analysis. This method was comparable with ByteWeight in terms of

predictive performance while requiring less computational time.

The study in [Shin et al., 2015] is the first work that applied a deep learning technique for

the function identification problem. In particular, a bidirectional recurrent neural network was

used to identify whether a byte is a start point (or an end point) of a function or not. This

method was proven to outperform ByteWeight while requiring much less training time. However,

this method cannot address the function scope identification problem, the toughest and most

essential sub problem in function identification, wherein the scope (i.e., the indexes or addresses

of all machine instructions in a function) of each function must be specified. The only way to

fulfill this task using this method is to first pair corresponding function starts and function ends

and make assumption that the scope inside each pair comprises a function. In addition, if both

start points and end points are simultaneously necessary, two separate bidirectional RNNs must

be trained independently and this certainly cannot exploit the semantic relationship among start

points, end points, and other machine instructions in a function.

In this chapter, we propose a method named the Code Pointer Network (CPN) that employs the

idea of a pointer network [Vinyals et al., 2015b] in the specific context of function identification.

Our proposed CPN includes one encoder and one decoder. The encoder takes the sequence of
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all machine instructions in a binary while the decoder reads out function scopes in the given

binary. In addition, unlike the work of [Shin et al., 2015], our proposed CPN can directly address

the function scope identification task, hence it inherently offers the solutions for other simpler

tasks including function start, function end, and function boundary identifications. We establish

extensive experiments to compare our proposed Code Pointer Network with the Bidirectional

RNN proposed in [Shin et al., 2015] on 120,000 binaries compiled from 120,000 C/C++ programs

generated by Csmith [Yang et al., 2011] – a famous tool for generating codes using for the purpose

of testing compilers. The experimental results shows that our proposed method significantly

outperforms the baseline on function start, function end, and function scope identification tasks,

especially for the hardest task of function scope identification. Regarding the amount of time

taken for training, our proposed CPN is three times faster than baseline (i.e., around two hours

in comparison with six hours) using the same number of iterations (i.e., 40,000 iterations).

8.2 Related work for function identification

In this section, we introduce some work related to ours. We firstly present the pointer network

and its applications, and then move to discuss work in function identification.

A pointer network [Vinyals et al., 2015b] is a seq2seq model that deals with the case when

the target dictionary is varied and non-fixed. The underlying idea of a pointer network is

to employ a content-based attention mechanism to form a discrete distribution over inputs.

Pointer networks have been applied to several real-world problems including finding convex

hulls, Delaunay triangulation, the traveling salesman problem [Vinyals et al., 2015b], sorting an

array [Vinyals et al., 2015a], and natural language processing [Gulcehre et al., 2016].

Function identification is not a real problem when working with source codes [Nguyen et al.,

2019, 2020c]. However, this is a preliminary step in binary analysis. Besides the works that

used heuristics, several machine learning works have attempted to solve this problem. The

seminal work of [Rosenblum et al., 2008] modeled function start identification as a Conditional

Random Field (CRF) in which binary offsets and a number of selected idioms (patterns) appear

in the CRF. Since the inference on a CRF is very expensive, the computational complexity

of this work is very high. Bao et al. [2014] used a weighted prefix tree to learn signatures

for function starts, and then recognise function starts by matching binary fragments with the

signatures. However, because of its high computational complexity, this work is not suitable for

large-scale data sources. Recent methods [Shin et al., 2015, Nguyen et al., 2020b] proposed to

employ a bidirectional RNN for function start (or function end) and function scope identification
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respectively. However, those work cannot be applied directly to or cannot address all cases (e.g.,

in the case, there exist functions nested in a function) of the toughest and most essential problem

– the function scope identification problem. In 2017, Andriesse et al. [2017] based on Control

Flow Graph analysis to propose a new solution for function identification.

8.3 Function identification

This section addresses the function identification problem. We begin with definitions of the sub

problems in the function identification problem, followed by a typical example of source code

generated by Csmith and its binaries compiled under optimisation levels O1 and Ox. Finally,

we discuss on the challenges in this task.

8.3.1 Problem definitions

Given a binary program P , our task is to identify the necessary information in its n functions

{f1, ..., fn} which is initially unknown. According to the nature of information we need from

{f1, ..., fn}, we can categorise the task of function identification into the following such problems.

Function start identification.

In this problem, we need to specify the set S = {s1, ..., sn} which contains the first machine

instructions of the corresponding functions in {f1, ..., fn}.

Function end identification.

In this problem, we need to identify the set E = {e1, ..., en} which contains the end machine

instructions of the corresponding functions in {f1, ..., fn}.

Function boundary identification.

The function boundary identification problem is harder than the function start and function

end identification problem. In this problem, we have to point out the set of (start, end) pairs

SE = {(s1, e1) , ..., (sn, en)} which contains the pairs of the function start and the function ends

of the corresponding functions in {f1, ..., fn}.
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Function scope identification.

This is the hardest problem in the function identification task. In this problem, we need to find

out the set {(f1,s1 , ..., f1,e1) , ..., (fn,sn , ..., fn,en)} which specifies the machine instructions in each

function f1, ..., fn in the given binary program P . It is apparent that the solution of this problem

covers those of three aforementioned problems. We note that our proposed CPN addresses this

hardest problem, hence inherently offering solutions for the other problems.

8.3.2 Running example

In Fig. 8.1, we show a typical example of a function generated by Csmith. According to our

observation, source codes generated by Csmith have a wide range of variety in both control

and data flows. Fig. 8.2 shows the assembly code of the source code in Fig. 8.1 which was

compiled with the optimisation levels O1 and Ox on the Windows platform. It can be observed

that the entry pattern for each optimisation level is different. Besides that the assembly code

corresponding with the option Ox has three rets (i.e., return instruction) and the last ret is the

real end point while the assembly code corresponding with the option O1 has only one ret. We

further observe that in the real generated binary codes, the patterns for the entry point vary in

a wide range and can start with push, mov, movsx, inc, cmp, or, and, etc. These make the

task of function identification very challenging.

Figure 8.1: Example source code of a function generated by Csmith.
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(3.a) Compiled using MVS with O1. (3.b) Compiled using MVS with Ox.

Figure 8.2: Assembly codes of the example source code in Fig. 8.1 compiled using Microsoft
Visual Studio (MVS) with the x86 architecture and Window platform under the optimisation
levels O1 (left) and Ox (right).

8.3.3 Challenges of function identification tasks

In what follows, we list some challenges of the task of function identification. These challenges

originate from various behaviors of compilers when compiling source codes under various com-

binations of optimisation levels (e.g., O1, O2, and O3 or Ox), processor architectures (e.g., x86

and x64), and platforms (e.g., Windows or Linux).

Not every machine instruction belongs to a function.

Compilers may introduce additional instructions for alignment and padding between or within

a function which leads to some machine instructions that do not belong to any function.

Functions may be non-contiguous.

There may exist gaps between functions which can jump tables, data, or even instructions for

completely different functions. In addition, as observed by [Harris and Miller, 2005], function

sharing code can also lead to non-contiguous functions.

Functions may have multiple entries.

High-level languages use functions as an abstraction with a single entry. When compiled, how-

ever, functions may have multiple entries as a result of specialization. In addition, the number

of patterns for function start can be enormous and varied according to optimisation levels,

processor architectures, and platforms.
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8.4 Code Pointer Network for function identification

In this section, we present our proposed Code Pointer Network (CPN) that can tackle the

function identification task. We start with the discussion of how to process instructions to input

to our CPN, followed by technical details for the training and testing procedures.

8.4.1 Processing input statement

We compiled the source code programs for the x86 architecture with three different optimisation

levels (O1, O2 and Ox). Each machine instruction may have a different size which can be 4, 5,

6, 7, 8 bytes or even more. To the best of our knowledge, the first 4 bytes in x86 architecture

mostly contains the crucial information for a machine instruction (i.e., the opcode and other

crucial addresses), hence before feeding these machine instructions to the CPN, we preprocess

them as follows: (1) keep the first 4 bytes from the left for machine instructions which are

longer than 4 bytes and (2) padding 0 to the right of the machine instructions which have fewer

than 4 bytes. For example, the machine instruction “mov dword ptr [0x42b008], 0x0” has the

corresponding value “C70508B0420000000000” in hex format which is 10 bytes long, we then

remove the last 6 bytes and keep the first 4 bytes to get the numerical value “C70508B0”. For

the machine instruction “xor al, al” which contains 2 bytes “32C0” in the hex format, we then

pad with 0 to fill in the third and fourth bytes, and gain the numerical value “32C00000”.

8.4.2 Code Pointer Network

8.4.2.1 Training procedure

The Code Pointer Network architecture is depicted in Fig. 8.3. Our CPN takes as input

a binary program including a sequence of many machine instructions which may belong to

different functions. The task of the CPN is to read out the scope of the first function in the

input binary program. To this end, as in a typical pointer network, our proposed CPN consists

of two components: one encoder and one decoder. The encoder’s task is to encode the sequence

of machine instructions in a binary program, while the decoder tries to decode the encoded

output of the encoder to read out the indexes of the machine instructions in the first function

in the given binary program. In addition, to signal the end of the function, we introduce the

specific symbol EOF whose value is iE which is randomly initialised. This value iE is inputted

to the CPN encoder right after the last instruction in the binary program (cf. Fig. 8.3).

To reduce the sequence length of the CPN encoder, at a time, we input two consecutive functions
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Figure 8.3: Architecture of the Code Pointer Network (CPN).

including gaps between functions if existing in a binary program to the encoder. For example, as

shown in Fig. 8.3, a binary program that consists of 4 functions forms 3 pairs of two consecutive

functions (i.e., (gap, func1, gap, func2, gap), (gap, func2, gap, func3, gap) and (gap, func3, gap,

func4, gap)), and the encoder takes each pair at a time. Let us now define the input sequence

I = {i1, i2, ...., il+1} (i.e., the machine instructions in a pair) and the output sequence O =

{n1, n2, ...., nm, nm+1} where nm+1 specifies the index of the symbol EOF and which includes

the indexes of machine instructions in the first function in the input pair. We learn the model

parameters θ by maximizing the following conditional probabilities over the training set D which

includes the pair I and the indexes of machine instructions in its first function O:

θ∗ = argmax
θ

∑
(I,O)∈D

logp(O|I; θ)

where we have defined

p(O|I; θ) =
m∏
k=1

p(nk|n1, ..., nk−1, I; θ) (8.1)

We now denote {h1,h2, ....,hl+1} and {s0, s1, s2, ...., sm} with s0 = s as the encoder hidden

states and decoder hidden states respectively. Since sk is a function of n1, ..., nk−1, I or a lossy

summary of this sequence, we can reasonably simplify p(O|I; θ) as follows:

p(O|I; θ) =
m∏
k=1

p(nk|sk; θ)

logp(O|I; θ) =
m∑
k=1

logp(nk|sk; θ)

To define the probability logp(nk|sk; θ) where nk ∈ {1, 2, . . . , l + 1}, we first compute the align-
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Figure 8.4: Alignment scores in the CPN.

ment scores between the decoder hidden state sk and the encoder hidden states hj , ∀j =

1, . . . , l + 1:

ajk = vTtanh(Uhhj + Ussk) (8.2)

or ajk = vTtanh

U
 hj
sk


 (8.3)

where the vector v and the matrices U, Uh, Us are learnable parameters.

We then apply the softmax to [ajk]l+1
j=1 to gain the vector bk and define p(nk|sk; θ) as the nk-th

element in this vector:

bk = softmax
(
[ajk]l+1

j=1

)
p(nk|sk; θ) = bk,nk

8.4.2.2 Predicting procedure

In the predicting procedure, given a specific binary program, we first input this binary program

into the encoder of the trained model to read out the first function (machine instructions and

their positions). The detected function is then eliminated from the binary program and the

remaining binary code is once again inputted to the CPN. This process is repeated until the last

function. We visualise the process for the predicting procedure in Fig. 8.5.

8.5 Implementation and results

In this section, we present the experimental results of our proposed Code Pointer Network

compared with the Bidirectional RNN [Shin et al., 2015]. We also investigate the performance

of our CPN with various RNN cells (e.g., long short-term memory (LSTM) and gated recurrent
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Figure 8.5: Predicting procedure of the CPN.

unit (GRU) cells), and alignment score formulas as shown in Eqs. (8.2 and 8.3). We note that

we could not experiment with ByteWeight [Bao et al., 2014] since this method is not scalable

enough for our data (i.e, ByteWeight took about 587 compute-hours for training a dataset of

2,064 binaries [Shin et al., 2015] while our data has 120,000 random C/C++ programs). In

addition, the Bidirectional RNN has been proven to outperform ByteWeight.

8.5.1 Experimental setup

8.5.1.1 Data collection

We used Csmith [Yang et al., 2011], which is a well-known tool for generating random C/C++

programs conforming dynamically and statically to the C99 standard, to generate 120,000 ran-

dom C/C++ programs. Each generated program has a number of functions in the range {2, 3, 4,

5}. Binaries were then compiled from the source programs using Microsoft Visual Studio in the

debug mode with one of three different optimisation levels O1 (for creating the smallest code),

O2 (for creating the fastest code), and Ox (with full optimisation options including smallest and

fastest code) under x86 (32 bit) architecture. Finally, we used DIA2Dump1 to read the debug

files (i.e., *.pdb) for creating the labelled dataset.

8.5.1.2 Experimental setting

We divided the binaries into three random parts; the first part contains 80% of the binaries used

for training, the second part contains 10% of the binaries used for testing, and the third part

contains 10% of the binaries for validation. For each the method, we trained the competitive

methods over 40,000 iterations.

For the Bidirectional RNN, we used identical settings and the architecture proposed in [Shin

et al., 2015]. In particular, we chopped the binaries into chunks of 1,000 bytes. This means
1https://docs.microsoft.com/en-us/visualstudio/debugger/debug-interface-access/debug-interface-access-sdk
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that we run recurrent neural networks forward and backward on a 1000-byte sequence from the

corresponding binaries. The size of the hidden state for the forward and backward RNN is 32.

Then the forward and backward RNN are concatenated to feed into a linear transformation and

the soft-max function. This process produces a probability distribution to identify whether a

byte corresponds to the beginning (or end) of a function or not. We employed the RMSprop

optimiser with the learning rate varying in the range of {0.01, 0.1} and the batch size is set to 32.

We trained the models for function start identification task and function end identification task

separately. The Bidirectional RNN proposed in [Shin et al., 2015] is not directly applicable to

function scope identification. To make it applicable to this task, we first paired the corresponding

function starts and function ends detected by two bidirectional RNNs and assume that each pair

forms a boundary for a function where all machine instructions in this boundary are counted

as that in this function and counted it as a correct function prediction if this matches exactly a

real function.

For our model in the training process, we used the encoder with a sequence of 100 hidden states

where the hidden state size is 128. For each binary, we concatenate sequentially two functions as

input for the Code Pointer Network in the encoder process. We employed the Adam optimiser

with the default learning rate 0.001 and the batch size 128. In addition, we applied gradient

clipping regularisation [Pascanu et al., 2013] to prevent the over-fitting problem when training

the model. Because our CPN solves the function scope identification task, it can be inherently

applicable to the function start and function end identification tasks.

We implemented the Code Pointer Network and the Bidirectional RNN in Python using Ten-

sorflow [Abadi et al., 2016], an open-source software library for Machine Intelligence developed

by the Google Brain Team. We ran our experiments on an Intel Xeon Processor E5-1660 which

has 8 cores at 3.0 GHz and 128 GB of RAM.

8.5.1.3 Metrics

In order to evaluate performances of function identification methods, we employ three measures

including recall (R), precision (P) and F1-score (F1) which are widely used to report predictive

performances on imbalanced datasets. This is due to the fact that the number of function starts,

function ends, etc., are fewer than the number of machine instructions. Given a dataset with

two kinds of labels: positive and negative labels, the precision is the fraction of the number of

true positive instances among the number of original positive instances. The recall is the faction

of the number of true positive instances among the number of predicted positive instances. The
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Figure 8.6: Confusion table.

F1-score is the most important measure which aggregates both precision and recall. The recall,

precision and F1-score have the following forms:

P = TP
TP + FP

R = TP
TP + FN

F1 = 2× P×R
P + R

where TP, FP and FN are the number of true positives, false positives and false negatives

respectively which can be defined using a confusion table as shown in Fig. 8.6.

Optimisation O1

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN 96.53% 97.26% 96.89% 94.09% 94.64% 94.36% 92.77% 93.15% 92.96%
Bidirectional RNN 86.30% 98.14% 91.84% 96.42% 81.58% 88.38% 81.56% 82.17% 81.87%

Optimisation O2

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN 95.18% 93.27% 94.23% 89.60% 87.87% 88.73% 87.55% 88.20% 87.87%
Bidirectional RNN 82.48% 98.16% 89.63% 87.86% 72.52% 79.45% 73.14% 78.43% 75.69%

Optimisation Ox

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN 94.43% 93.77% 94.10% 89.07% 88.57% 88.82% 87.34% 88.01% 87.67%
Bidirectional RNN 74.39% 80.02% 77.10% 79.62% 70.14% 74.58% 71.18% 73.21% 72.18%

Table 8.1: Comparison of our Code Pointer Network and the Bidirectional RNN. The best
results (%) are emphasised in bold.

8.5.2 Experimental results

8.5.2.1 Code Pointer Network versus Bidirectional RNN

We compare our method using Eq. (8.3) for computing alignment scores and long short-term

memory (LSTM) for RNN cell with the Bidirectional RNN proposed in [Shin et al., 2015]. The

experimental results show that our proposed method achieves better performance in most cases

in terms of predictive performance and training time. In particular, Table 8.1 indicates that
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Optimisation O1

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN-LSTM-01 95.32% 96.42% 95.87% 92.75% 90.85% 91.79% 90.27% 91.19% 90.73%
CPN-GRU-01 92.78% 96.45% 94.58% 90.14% 90.52% 90.33% 84.91% 87.40% 86.14%
CPN-RNN-01 91.32% 96.16% 93.68% 90.07% 90.42% 90.24% 85.26% 86.54% 85.90%
Optimisation O2

Methods Function Start Functions End Function Scope
R P F1 R P F1 R P F1

CPN-LSTM-01 93.09% 93.38% 93.23% 87.04% 87.36% 87.20% 86.75% 87.96% 87.35%
CPN-GRU-01 93.03% 93.25% 93.14% 87.48% 87.69% 87.58% 84.35% 85.45% 84.90%
CPN-RNN-01 91.76% 92.86% 92.30% 86.52% 87.63% 87.07% 83.41% 84.24% 83.82%
Optimisation Ox

Methods Function Start Functions End Function Scope
R P F1 R P F1 R P F1

CPN-LSTM-01 92.47% 93.16% 92.81% 86.35% 85.54% 86.94% 86.56% 87.71% 87.12%
CPN-GRU-01 90.81% 93.94% 92.35% 85.87% 88.71% 87.27% 84.59% 84.73% 84.65%
CPN-RNN-01 90.53% 92.43% 91.47% 84.95% 87.56% 86.24% 83.32% 84.17% 83.74%

Table 8.2: Comparison of the variants of CPN using different types of RNN cells including
LSTM, GRU and the standard RNN cell. The best results (%) are emphasised in bold.

our proposed CPN achieved better predictive performance (i.e., R: Recall, P: Precision, and F1:

F1-score) with a wide margin in most cases, especially for the highest optimisation level Ox our

CPN significantly outperformed the baseline in all measures. Regarding the training time, our

CPN is approximately three times faster than the baseline. In particular, with the same number

of iterations (i.e., 40,000 iterations), the CPN took around 2 hours to finish, while the baseline

took around 6 hours.

8.5.2.2 Variations in RNN cells

In Table 8.2, we compare the performances of our CPN using different RNN cells such as long

short-term memory (CPN-LSTM-01) and gated recurrent unit (CPN-GRU-01) with the basic

RNN cell (CPN-RNN-01) with Eq. (8.2) for computing alignment score. It can be observed

that LSTM achieved better performance than GRU which in turn performed better than the

basic RNN cell in most cases.

8.5.2.3 Variation in attention mechanism techniques

In Table 8.3, we compare the performances of our CPN using different formulas for comput-

ing alignment score as in Eq. (8.2) (CPN-LSTM-01) with Eq. (8.3) (CPN-LSTM-02) while

employing the LSTM cell. The experimental results show that CPN-LSTM-02 obtained better

performances in most cases compared with CPN-LSTM-01.
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Optimisation O1

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN-LSTM-01 95.32% 96.42% 95.87% 92.75% 90.85% 91.79% 90.27% 91.19% 90.73%
CPN-LSTM-02 96.53% 97.26% 96.89% 94.09% 94.64% 94.36% 92.77% 93.15% 92.96%
Optimisation O2

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN-LSTM-01 93.09% 93.38% 93.23% 87.04% 87.36% 87.20% 86.75% 87.96% 87.35%
CPN-LSTM-02 95.18% 93.27% 94.23% 89.60% 87.87% 88.73% 87.55% 88.20% 87.87%
Optimisation Ox

Methods Function Start Function End Function Scope
R P F1 R P F1 R P F1

CPN-LSTM-01 92.47% 93.16% 92.81% 86.35% 85.54% 86.94% 86.56% 87.71% 87.12%
CPN-LSTM-02 94.43% 93.77% 94.10% 89.07% 88.57% 88.82% 87.34% 88.01% 87.67%

Table 8.3: Comparison of variants of CPN using Eq. (8.2) (CPN-LSTM-01) and Eq. (8.3)
(CPN-LSTM-02) for computing alignment score. The best results (%) are emphasised in bold.

8.6 Closing remarks

In this chapter, we have proposed the novel Code Pointer Network for dealing with the function

identification problem, a preliminary and significant step in binary analysis for many security

applications such as malware detection, common vulnerability detection and binary instrumen-

tation. Specifically, the Code Pointer Network leverages the underlying idea of a pointer network

in order to tackle the function scope identification, the hardest and most crucial task in function

identification. The experimental results show that the Code Pointer Network can achieve the

state-of-the-art performances in terms of efficiency and efficacy.
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Chapter 9

Conclusion

In this chapter, we review all of our contributions to the software vulnerability detection (SVD)

problem in terms of addressing some of the crucial problems existing in current SVD methods.

At the end of the chapter, we discuss some possible extensions to our work mentioned in Chapters

3 and 7.

9.1 Summary

In this thesis, we have successfully advanced the deep learning approach to propose novel deep

learning-based methods to address the remaining problems existing in current SVD methods.

These problems are relevant to the three aforementioned research questions:

(Q.1) How to transfer efficiently the learning on software vulnerabilities from labelled projects

(i.e., source domains) to other unlabelled projects (i.e., target domains).

(Q.2) How to efficiently exploit the semantic and syntactic relationships inside source code to

detect vulnerabilities at a fine-grained level with more flexible scope (i.e., the statement level)

than the function or program levels.

(Q.3) How to leverage the information from binaries (i.e., byte instructions) and assemblies

(i.e., machine instructions) programs to deal with all cases (i.e., the function start identification,

function end identification, function boundary identification and function scope identification

problems) of the function identification problem, especially the function scope identification

problem, the toughest and most essential problem.

Our contributions in Part I, Deep Domain Adaptation for Software Vulnerability Detection,

are novel deep learning-based methods, i.e., the answers to research question (Q.1) “How
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to transfer efficiently the learning on software vulnerabilities from labelled projects (i.e.,

source domains) to other unlabelled projects (i.e., target domains)”.

In the work summarised in Chapter 3, Deep Domain Adaptation for Vulnerable Code Func-

tion Identification, we first propose the Code Domain Adaptation Network (CDAN), a novel

architecture which can tackle software source code and transfer learning from labelled software

projects (source domain) to unlabelled projects (target domain) using the GAN principle. At

the Nash equilibrium point, the gap between the source and target domains vanishes, and con-

sequently the supervised source classifier trained on the source domain can be transferred to

predict well in the target domain. We observe that when successfully bridging the gap between

the source and target domains, the target source code can be considered the unlabelled portion

of the source domain in a semi-supervised learning context. The information carried in the

target source code is certainly helpful in boosting the predictive performance. To further utilise

the information carried in the unlabelled target source code, we propose the Semi-supervised

Code Domain Adaptation Network (SCDAN), wherein the clustering assumption [Chapelle and

Zien, 2005] is enforced. In particular, we simultaneously encourage the source classifier of the

SCDAN to be confident in its decisions for predicting the source and target source code, and

provide smooth predictive outputs in the source and target domains.

Our work is the first to formulate transferred learning from a source of sequences to a target

of sequences. Moreover, our contribution is formulation of a novel architecture named CDAN

for SVD, which is an extremely important problem in cybersecurity. Not only does our work

involve both a model contribution and a significant real-world application of DDA, we believe

it is a new building block for a wide array of other applications in other domains such as

behaviour modelling in fintech where temporal dynamics are important and sequence modelling

in computational biology.

Based on the proposed architecture (CDAN), we reapply the models DDAN, MMD and DIRT-T

proposed in [Ganin and Lempitsky, 2015, Long et al., 2015, Shu et al., 2018]. We subsequently

propose SCDAN to more efficiently exploit and utilise information from unlabelled target data.

We further demonstrate the effectiveness and advantage of SCDAN by undertaking experiments

on six real-world datasets. The experimental results show that SCDAN outperforms the baselines

by a wide margin.

In the work summarised in Chapter 4, Dual-component Deep Domain Adaptation: A New

Approach for Cross-project Software Vulnerability Detection”, we aim to address the problems

of both mode collapsing and boundary distortion in deep domain adaptation methods employing
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the GAN as a principle in order to close the gap between source and target data in the joint

feature space. Our approaches apply manifold regularisation for enabling the preservation of

manifold/clustering structures in the joint feature space, hence avoiding the degeneration of

source and target data in this space, and invoking dual discriminators in an elegant way to

reduce the negative impacts of the mode collapsing and boundary distortion problems in deep

domain adaptation using the GAN principle as mentioned. We name our mechanism when

applied to SVD the Dual Generator-Discriminator Deep Code Domain Adaptation Network

(Dual-GD-DDAN).

In addition, we incorporate the relevant approaches in terms of minimising conditional entropy

and manifold regularisation with a spectral graph proposed in [Nguyen et al., 2019] to enforce

the clustering assumption [Chapelle and Zien, 2005] and arrive at a new model named the Dual

Generator-Discriminator Semi-supervised Deep Code Domain Adaptation Network (Dual-GD-

SDDAN). The experimental results show that our Dual-GD-SDDAN can overcome the mode

collapsing and boundary distortion problems better than SCDAN in [Nguyen et al., 2019], hence

obtaining better predictive performance.

Our contributions in Part II, Learning to Explain Software Vulnerability, are novel deep learning-

based methods, i.e., the answers to research question (Q.2): “How to efficiently exploit

the semantic and syntactic relationships inside source code to detect vulnerabilities at a

fine-grained level with more flexible scope (i.e., the statement level) than the function or

program levels”.

In the work summarised in Chapter 5, Information-theoretic Source Code Vulnerability High-

lighting, we propose a novel learn-to-explain model that is based on mutual information and

takes into account the sequential nature of data to better evaluate mutual information. Using

this theory, we propose a novel architecture based on multi-Bernoulli distribution for random

subsets of statement selection (i.e., we aim to highlight the top-K statements that are the most

relevant to the vulnerable and non-vulnerable class labels). Unlike the multinomial distribution

used in L2X [Chen et al., 2018], our mechanism is more controllable and enables us to train the

model in a semi-supervised context. In addition, our proposed model can be used to highlight

the core statements that are a subset of the most relevant statements of vulnerable source code.

It can also explain how the reference model works by identifying the most important statements

that contribute to its prediction.

We conduct experiments on the datasets collected by [Li et al., 2018] that contain source code of

vulnerable and non-vulnerable functions from two real-world software data sources and compare
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our proposed method to a state-of-the-art baseline L2X approach on these two datasets. We

further investigate our proposed method in a semi-supervised learning context by comparing it

to itself in an unsupervised learning context. We demonstrate that our proposed method can

detect vulnerable code statements in functions much more effectively than L2X in unsupervised

context and its semi-supervised variant can significantly boost the performance.

In the work summarised in Chapter 6, Information-theoretic End-to-end Models to Identify Code

Statements Causing Software Vulnerability, we study the important problem of fine-grained

vulnerability detection, which has a variety of applications in different areas such as software

engineering and cybersecurity. Automated deep learning-based techniques for this problem have

not yet been well studied. In particular, we propose a novel probabilistic framework learned

by variational inference with various model constructions and training mechanisms which are

derived from an information-theoretic perspective. Our proposed approaches can work effectively

and efficiently in both unsupervised and semi-supervised contexts. These approaches have great

potential to serve as powerful tools for practitioners including developers and security experts.

We comprehensively evaluate our proposed framework with different variants for real-world

software datasets in both unsupervised and semi-supervised cases. Our extensive experiments

show that our approaches can accurately identify the vulnerability-relevant statements in an

end-to-end manner.

Our contributions in Part III, Deep Sequence-to-sequence Models for Function Scope Identi-

fication in Binary Programs, are novel deep learning-based methods, i.e., the answers to

research question (Q.3): “How to leverage the information from binaries (i.e., byte instruc-

tions) and assemblies (i.e., machine instructions) to deal with all cases (i.e., the function

start identification, function end identification, function boundary identification and func-

tion scope identification problems) of the function identification problem, especially the

function scope identification problem, the toughest and most essential problem”.

In the work summarised in Chapter 7, Code Action Network for Binary Function Scope Identi-

fication, we propose a novel method named the Code Action Network (CAN) whose underlying

idea is to equivalently transform the task of function scope identification into learning a se-

quence of action states. Inspired by the idea of a Turing machine, we imagined a memory tape

consisting of many cells on which machine instructions of a binary are stored. The head is first

pointed to the first machine instruction located in the first cell. Each machine instruction is

assigned to an action state in the action state set {NI, NE, FE} depending on its nature. After

reading the current machine instruction and assigning the corresponding action state to it, the
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head is moved to the next cell and this procedure is halted as we reach the last cell in the tape.

We undertake extensive experiments to compare our proposed CAN-B (at the byte level) and

CAN-M (at the machine instruction level) with state-of-the-art methods including IDA, the

Bidirectional RNN, ByteWeight no-RFCR, and ByteWeight on the dataset used in [Shin et al.,

2015, Bao et al., 2014]. The experimental results show that our proposed CAN-B and CAN-M

outperform the baselines on function start, function end and function boundary identification

tasks, as well as achieving very good performance on function scope identification and also

surpassing the Nucleus [Andriesse et al., 2017] on this task. Moreover, our method CAN-M

takes about 1 hour for training with 20,000 iterations which is nearly four times faster than

the Bidirectional RNN proposed in [Shin et al., 2015] using the same number of iterations for

training and the same number of bytes for handling input. This is due to the fact that CAN-M

operates at the machine instruction level, while the Bidirectional RNN proposed in [Shin et al.,

2015] operates at the byte level.

In the work summarised in Chapter 8, Code Pointer Network for Binary Function Scope Identi-

fication, we propose a novel method named the Code Pointer Network (CPN) that employs the

idea of a pointer network [Vinyals et al., 2015b] in the specific context of function identification.

Our proposed CPN includes one encoder and one decoder. The encoder takes the sequence of

all machine instructions in a binary, while the decoder reads out the function scopes in the given

binary. In addition, unlike the work of [Shin et al., 2015], our proposed CPN can directly address

the function scope identification task, hence inherently offering the solutions for other simpler

tasks including function start, function end, and function boundary identifications. We establish

extensive experiments to compare our proposed CPN with the Bidirectional RNN proposed in

[Shin et al., 2015].

The experimental results shows that our proposed method significantly outperforms the baseline

on function start, function end and function scope identification tasks, especially for the hardest

task of function scope identification. Regarding the amount of time taken for training, our

proposed CPN is three times faster than baseline (i.e., around two hours in comparison with six

hours) using the same number of iterations (i.e., 40,000 iterations).

9.2 Future work

In this section, we discuss some possible future extensions to our work mentioned in Chapters 3

and 7.
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In Chapter 3, our CDAN architecture has some limitations, and below we propose our solutions.

Firstly, in the CDAN architecture, we use a bidirectional RNN with long short-term memory

(LSTM) cells for the generator G to model the relationship between code statements in each

function. The LSTM cell can address the exploding and vanishing gradients problems, as well

as the short-term memory problem known to exist in RNNs and bidirectional RNNs. However,

LSTM models are difficult to train because they require memory bandwidth-bound computa-

tions. In particular, an LSTM model uses four linear layers (multilayer perceptron) that require

a large memory bandwidth to be computed for each cell and for each sequence time step. More-

over, in practice, the long short-term memory cell may still encounter the short-term memory

problem when dealing with a long sequence length of data.

To address this problem, we propose applying self-attention layers [Vaswani et al., 2017] to the

generator G used in CDAN. Self-attention layers have demonstrated more efficiency in modelling

long term dependencies in temporal sequences compared to conventional sequential models such

as RNNs, LTSMs and GRUs. The major advantage of the self-attention architecture is that at

each step we have direct access to all the other steps using the self-attention mechanism, which

leaves almost no room for information loss as far as message passing is concerned. We can look

at both future and past elements at the same time which also brings the benefit of bidirectional

RNNs. As a result, in considering a source code function as a temporal sequence and each

code statement in a function as an element in this temporal sequence, we can apply the idea of

the self-attention mechanism in further effectively obtaining the dependency relationship among

code statements in each function.

Secondly, in the computational process of CDAN architecture, there is a possible issue with using

H = concat(h1, ..., hL) to obtain the output o. In particular, if the value l (i.e., the time steps)

used in the bidirectional RNN B (x) is too large (e.g, L > 100), the concatenation vector from h1

to hL denoted by H = concat(h1, ...,hL) can be considerably long. It is difficult for the network

to find which statements it should focus on to achieve high label prediction performance (i.e.,

for a given section of source code, there are only some specific code statements that contribute

to the vulnerability of the source code).

To deal with this problem, we propose applying the attention mechanism to the outputs of the

generator G. This allows us to focus on the code statements in the source code that contribute

more to the vulnerability detection decision of the source classifier, as well as forming a joint

space that better fits the transfer of learning from the source to target domains.

The new architecture CDAN-A that integrates the attention mechanism and self-attention layers
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into CDAN can help to further exploit the semantic relationships among statements in source

code and bring higher predictive performance. The architecture of CDAN-A is presented in Fig.

9.1 wherein, as before, the source and target networks share parameters and are identical. The

representation of each function in the joint space named o = G (x) is formed as follows:

O = [o1, o2, ...,oL]

γ = softmax(Ow>)

o = γ>O

Where w is a trainable vector while O is the output of the self-attention layers. Each vector

oj with j ∈ [1, ..., L] stands for the representation of the i-th statement in the function. The

vector γ plays a role as a weighted coefficient vector with the sum of all its element values equal

to 1. Each element value in vector γ will specify the weight corresponding to each statement

that contributes to the label prediction process (vulnerable label or non-vulnerable label) of the

function. The output vector o = γ>O is a linear combination between O and γ aiming not

only to focus on statements that mostly contribute to the vulnerability prediction decision of

the model, but also to form a joint space that better fits the transfer of learning from the source

to target domains.

In particular, given a source code function xi including L code statements [xi1, . . . ,xiL], the

representation of xi = [xi1, . . . ,xiL] in the joint (latent) space represented as O = [o1, . . . ,oL]

using self-attention layers is formed as follows:

• Scaled Dot-Product Attention: We first compute the query Q, the key K and the value

V matrices. We do that by packing our embeddings [ii1, . . . , iiL] where iij ∈ Rd, ∀j ∈

{1, .., L} (i.e., where iik is the embedding vector of the statement xik) into a matrix

X and multiplying it by the weighted matrices being trained including WQ ∈ Rd×dk ,

WK ∈ Rd×dk and WV ∈ Rd×dv where dk = dv = d/n. We then calculate the outputs of

the Scaled Dot-Product Attention as follows:

Attention(Q,K, V ) = softmax(QK
ᵀ

√
dk

)V

We use a multi-headed version with n heads as introduced in [Vaswani et al., 2017]:

Ol = MultiHead-Attention(X) = Concat(head1, ...,headn)WO
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Figure 9.1: Architecture of our Code Domain Adaptation Network using the attention mecha-
nism technique (CDAN-A). The generator G takes a sequence of code statements (i.e., each code
statement in vectorial form) and maps this sequence to the joint layer (i.e., the joint space). We
apply the attention mechanism to form the generator G that maps the input source code to the
joint space. We note that the source and target networks share parameters and are identical.
Recall that iik is the embedding vector of the statement xik.

where headi = Attention(OlWQi , O
lWKi , O

lWVi) with O0 = X.

• Add and LayerNorm #1: The output from the Scaled Dot-Product Attention Ol is com-

bined with Ol−1 (with O0 = X) to gain the input for the first LayerNormalisation (Lay-

erNorm #1):

Ol = LayerNormalisation(Ol +Ol−1)

• Feedforward neural network: The outputs Ol from the first Layernormalisation (Layer-

Norm #1) will be inputted to a feedforward neural network g(., α) consisting of two neural

layers with the first layer using the ReLU activation function:

Olg = g(Ol, α)

• Add and LayerNorm #2: The outputs Olg obtained from the feedforward neural network

g(., α) is combined with the output from the LayerNorm #1 (Ol ) before being inputted

to the second LayerNormalisation (LayerNorm #2) to gain the outputs for the current

self-attention layer:

Ol = LayerNormalisation(Ol +Olg)
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Based on our new proposed CDAN-A architecture, we propose the SCDAN-A method that lever-

ages the ideas of Semi-supervised Deep Code Domain Adaptation (SCDAN) with our CDAN-A

architecture.

In Chapter 7, to further take advantage of the context information of the machine instructions

around each machine instruction when predicting its label, we propose to integrate an

attention mechanism into CAN at the last layer (i.e. at the second layer) to obtain CAN-

A.

The attention mechanism applied in CAN-A allows us to further incorporate the context infor-

mation of machine instructions before and after a given machine instruction when predicting

its label, and thus achieve higher predictive performance. For example, in Fig. 9.2, we can

see that predicting the label (i.e. NI) of the machine instruction (mov edx, dword ptr [rdi +

rax*4]) at the address (0x4fd) can benefit from utilising the context information of the machine

instructions around it.

Figure 9.2: Example source code of a function in C language programming (left); the corre-
sponding assembly code (middle) with some parts omitted for brevity and the corresponding
hexadecimal mode of the binary code (right).
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Figure 9.3: Architecture of the Code Action Network with the attention mechanism (CAN-A).
The context vector chk captures the context of the previous machine instructions i1, ..., ik−1, while
the context vector cgk captures the context of the next machine instructions ik+1, . . . , il. As a
consequence, the context of the machine instructions around the machine instruction ik is taken
into account when predicting the label of this machine instruction.

CAN-A is also a multicell bidirectional RNN whose architecture is depicted in Fig. 9.3 where

we assume the number of cells over the input is 2. CAN-A takes a binary program B =

(i1, i2, . . . , il) including l instructions (non-instructions) for CAN-AM or instruction bytes (non-

instruction bytes) for CAN-AB and learns to output the corresponding sequence of action states

Y = (y1,y2, ...,yl) where each yk takes one of three action states NI (i.e., yk = 1), NE (i.e.,

yk = 2) or FE (i.e., yk = 3). The computational process of CAN-A is as follows:

h1
k = tanh(H>h1

k−1 + U>ik); g1
k = tanh(G>g1

k+1 + V >ik)

h2
k = tanh

H>h2
k−1 +W>

 h1
k

g1
k


 ; g2

k = tanh

G>g2
k+1 +R>

 h1
k

g1
k




sh
(
h2
k,h2

i

)
=
(
vh
)>

tanh
(
W h

[
h2
k h2

i

])
,∀i < k

ahk (i) =
exp

(
sh
(
h2
k,h2

i

))
∑k−1
j=1 exp

(
sh
(
h2
k,h2

j

)) ; chk =
k−1∑
i=1

ahk (i)h2
i
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sg
(
g2
k,g2

i

)
= (vg)> tanh

(
W g

[
g2
k g2

i

])
,∀i > k

agk (i) = exp
(
sg
(
g2
k,g2

i

))∑l
j=k+1 exp

(
sg
(
g2
k,g2

j

)) ; cgk =
l∑

i=k+1
agk (i)g2

i

ok = S>concat(h2
k, chk ,g2

k, c
g
k); pk = softmax (ok)

where h1
0, h2

0, g1
l+1 = g1

0, g2
l+1 = g2

0 are initial hidden states and θ = (U, V,W,H,G,R, S,

W h,W g, vh, vg) is the model. We further note that pk, k = 1, . . . , l is a discrete distribution

over the three labels NI, NE and FE.

It is worth noting that the context vector chk captures the context of the previous machine instruc-

tions i1, ..., ik−1 and the context vector cgk captures the context of the next machine instructions

ik+1, . . . , il, hence the context of the machine instructions around the machine instruction ik is

taken account of when predicting the label of the machine instruction ik.

To find the best model θ∗, we need to solve the following optimisation problem:

max
θ

∑
(B,Y)∈D

log p (Y | B) (9.1)

whereD is the training set including pairs (B,Y) of the binaries and their corresponding sequence

of action states.
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Appendix A

Supplementary Proofs

In this appendix, we provide formal proofs and derivations for some lemmas mentioned in

Chapter 5.

A.1 Lemmas for the Information-theoretic Code Vulnerability

Highlighting method

The existing work in software vulnerability detection involves detecting vulnerabilities at the

program or function level. In fact, in source code only several core statements are highly relevant

to a given vulnerability. In this work, we undertake vulnerability detection at a fine-grained level

than at the function or program levels. In other words, we learn to emphasise the code blocks

that are directly and highly relevant to the vulnerabilities. The proposed approach involves using

the information-theoretic mutual information to identify the vulnerable scope. Specifically, let

us consider source code F = [f1, . . . ,fL] with label y ∈ {0, 1} (i.e., y = 1 means vulnerable and

y = 0 means non-vulnerable). Our task is to select a subset FS = [fi1 , . . . ,fiK ] = [fj ]j∈S where

S = {i1, . . . , iK} ⊂ {1, . . . , L} (i1 < i2 < ... < iK) in such a way that FS is highly relevant to

the presence of a vulnerability. The information-theoretic quantity of interest for this aim is the

mutual information: I (FS , Y ) where the random variable Y is characterised using pm (Y | F )

which is previously trained using the whole training set D = {(Fi, yi)}i=1,...,N wherein each

F = [fj ]j=1,...,L consists of its code statements or machine instructions. Mathematically, we aim

to solve the following optimisation problem:

max Ep(F )
[
Ep(S|F ) [I (FS , Y )]

]
(A.1)
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The interesting part is how to manipulate I (FS , Y ) where FS = [fi1 , . . . ,fiK ] consists of sequen-

tial data. Let FS = [fi1 , . . . ,fiK ] = [fj ]j∈S where S = {i1, . . . , iK} ⊂ {1, . . . , L}. We note that

fi1:n is [fi1 , . . . ,fin ].

We have:

Lemma 1.

I (FS , Y ) =
K∑
k=1

Efi1:k−1

[
I
(
fik , Y | fi1:k−1

)]
Proof. We have with noting that fi1:0 = ∅:

I (FS , Y ) = Epm(Y,FS)

[
log pm (Y, FS)

pm (Y ) pm (FS)

]

= Epm(Y,FS)

[
log

pm(Y,fiK | fi1:K−1)
∏K−1
k=1 pm

(
fik | fi1:k−1

)
pm (Y )

∏K
k=1 p

(
fik | fi1:k−1

) ]

= Epm(Y,FS)

[
log

pm(Y,fiK | fi1:K−1)
∏K−1
k=1 pm

(
Y,fik | fi1:k−1

)
pm (Y )

∏K
k=1 p

(
fik | fi1:k−1

)∏K−1
k=1 pm (Y | fi1:k)

]

= Epm(Y,FS)

[
K∑
k=1

log
pm
(
Y,fik | fi1:k−1

)∏K
k=1

[
p
(
fik | fi1:k−1

)
pm
(
Y |fi1:k−1

)]]

=
K∑
k=1

Epm(Y,FS)

[
log

pm
(
Y,fik | fi1:k−1

)∏K
k=1

[
p
(
fik | fi1:k−1

)
pm
(
Y |fi1:k−1

)]]

I (FS , Y ) =
K∑
k=1

Epm(Y,fi1:k)

[
log

pm
(
Y,fik | fi1:k−1

)
pm
(
Y |fi1:k−1

)
p
(
fik | fi1:k−1

)]

=
K∑
k=1

Efi1:k−1

[
I
(
fik , Y | fi1:k−1

)]

The following lemma tackles Efi1:k−1

[
I
(
fik , Y | fi1:k−1

)]
, and this quantity can be further derived

as follows.

Lemma 2. We have

Efi1:k−1

[
I
(
fik , Y | fi1:k−1

)]
≈ Efi1:k

[
Epm(Y |fi1:k) [log pm (Y | fi1:k)]

]
+ const

Proof. We derive as follows:

Efi1:k−1

[
I
(
fik , Y | fi1:k−1

)]
= Efi1:k−1

[
E
pm
(
Y,fik |fi1:k−1

) [log pm
(
Y,fik | fi1:k−1

)
pm
(
Y |fi1:k−1

)
p
(
fik | fi1:k−1

)]]
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≈ Efi1:k−1

[
E
pm
(
Y,fik |fi1:k−1

) [log pm
(
Y,fik | fi1:k−1

)
pm (Y | F ) p

(
fik | fi1:k−1

)]]

= Efi1:k−1

[
E
pm
(
Y,fik |fi1:k−1

) [logpm (Y | fi1:k) p
(
fik | fi1:k−1

)
pm (Y | F ) p

(
fik | fi1:k−1

) ]]

= Efi1:k−1

[
E
pm
(
Y,fik |fi1:k−1

) [logpm (Y | fi1:k)
pm (Y |F )

]]
= Efi1:k

[
Epm(Y |fi1:k) [log pm (Y | fi1:k)]

]
+ const

Noting that we approximate pm(Y | fi1:k−1) by pm(Y |F ).

The next lemma gives a lower bound to Efi1:k

[
Epm(Y |fi1:k) [log pm (Y | fi1:k)]

]
by

Efi1:k

[
Epm(Y |fi1:k) [logQ (Y | fi1:k)]

]

for every Q (Y | F ).

Lemma 3. We can obtain a lower bound to Ef1:k

[
Epm(Y |fi1:k) [log pm (Y | fi1:k)]

]
by

Efi1:k

[
Epm(Y |fi1:k) [logQ (Y | fi1:k)]

]

for every Q (Y | F ).

Proof. This is obvious from:

Efi1:k

[
Epm(Y |fi1:k) [log pm (Y | fi1:k)]

]
= Efi1:k

[
Epm(Y |fi1:k) [logQ (Y | fi1:k)]

]
+ Efi1:k

[DKL (pm (Y | fi1:k) ‖Q (Y | fi1:k))]
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