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Abstract 

Huntington’s disease (HD) is an inherited, neurodegenerative disease with typical onset in 

middle adulthood. HD causes progressive cognitive, motor, and psychiatric 

symptoms. Cognitive decline is an essential feature of HD, which emerges early in the 

disease and leads to devastating effects on functioning and quality of life. Due to the 

importance of cognition, research has characterised the course of cognitive symptom 

progression in HD. Until now, longitudinal cognition research in HD has been 

limited to clinician-based assessment at infrequent (e.g., annual) timepoints. Clinic-based 

assessments, however, preclude understanding of how people are functioning in their natural 

(i.e., home) environment, or in relation to daily sleep and exercise levels. In this thesis 

research, I examined remote, smartphone-based cognitive assessment as a solution for 

enabling rapid, inexpensive, frequent, and convenient collection of cognitive data in 

HD. Specifically, we developed a novel ‘bring your own’ smartphone-based cognitive 

assessment with ongoing monitoring of sleep and physical activity, provided by an 

inexpensive wearable device, to capture dynamic interactions between cognition, sleep, and 

physical activity. Our system was an exclusively remote means of collecting data on the day 

to day cognitive functioning, sleep, and physical activity habits of people with 

premanifest- and early manifest-HD. The research showed that the mobile app-activity 

monitoring system we developed was feasible and acceptable by people with the expanded 

HD repeat. The data it yielded were reliable and showed known groups validity, 

distinguishing between HD and neurologically healthy controls. The cognitive measures were 

also sensitive to severity, separating performance of manifest-HD and premanifest-HD 

participants and controls. We found associations between the sleep and physical activity 

habits of participants and their cognitive functioning. We also applied diffusion modelling to 

cognitive decision data collected in the app and found that we could augment distinctions 
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between the manifest- and premanifest-HD groups. Overall, we showed for the first time in 

HD, that a mobile app could be designed and implemented without ever 

meeting participants in person or supplying formal training, and that the app could generate 

reliable, valid data on cognition, sleep, and physical activity. Remote cognitive and lifestyle 

assessment is an important enabler for the collection of large datasets needed for discovering 

genetic modifiers of disease onset and conducting post-marketing surveillance of treatments.  
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Chapter 1: General Introduction and Thesis Overview 

1.1 General Overview of the Themes Covered in the Introduction and Description of the 

Thesis Structure 

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease, 

which has a typical onset in middle adulthood and results in progressive cognitive, motor, and 

psychiatric symptoms, and eventually death (F. O. Walker, 2007). Additionally, sleep and 

circadian abnormalities are well documented (for review see Herzog-Krzywoszanska & 

Krzywoszanski, 2019; Morton, 2013; Y. Zhang et al., 2019). The disease is caused by a CAG 

triplet repeat expansion in the huntingtin gene, which is located on the short arm of 

chromosome four, and results in an expanded stretch of polyglutamine in the huntingtin 

protein (Pringsheim et al., 2012; Ross et al., 2014). The expanded huntingtin protein is 

neurotoxic and causes neuronal death, especially in the striatum and cortex (Blumenstock & 

Dudanova, 2020; F. O. Walker, 2007). The average number of CAG repeats in the general 

population is 16-20 (Pringsheim et al., 2012). Clinical manifestation of HD can occur in 

people with repeat lengths of 36 or greater with the age of onset inversely correlated with the 

length of the expansion (Pringsheim et al., 2012; Ross et al., 2014). Although the CAG repeat 

number is the primary determinant of age of onset, family members with identical repeat 

numbers can have significant variability in age of onset, meaning separate genetic and 

environmental factors can modify the age of onset of HD (Long et al., 2018; Trembath et al., 

2010; Wexler et al., 2004). These genetic and environmental modifiers of disease onset are 

important targets for disease modification strategies (Long et al., 2018; Wexler et al., 2004) 

especially for people who may not benefit from current pharmacological therapeutic 

strategies (e.g., Rodrigues & Wild, 2020).  

 People with HD can experience cognitive and psychiatric symptoms, yet clinical 

diagnosis (manifest-HD) is based on the emergence of significant observable motor 
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dysfunction and confirmation of the presence of the expanded HD repeat via genetic testing 

(Cardoso, 2009; Pringsheim et al., 2012). Nonetheless, the cognitive symptoms in HD are a 

critical aspect of the disease because they can appear many years before clinical diagnosis 

(Maroof, Gross, & Brandt, 2011; J S Paulsen et al., 2008; Paulsen, Smith, & Long, 2013; 

Stout et al., 2014) and have a similar or larger effect on functioning and quality of life than 

motor symptoms (Eddy & Rickards, 2013; Ross, Pantelyat, Kogan, & Brandt, 2014; Van 

Liew, Gluhm, Goldstein, Cronan, & Corey-Bloom, 2013). Cognitive symptoms can also 

cause functional impairments prior to disease diagnosis (Duff et al., 2010; You et al., 2014). 

The period prior to clinical diagnosis will hereafter be referred to as premanifest-HD. 

Researchers have specifically focused on identifying genetic and environmental modifiers of 

cognitive, rather than just motor, symptom onset and expression because cognitive symptoms 

occur in premanifest-HD and affect functioning and quality of life (Long et al., 2018; Moss et 

al., 2017).  

Attempts to identify modifiers of cognitive symptom onset have a key limitation, 

which is that the acquisition of the data needed for the studies takes several years because the 

studies require sample sizes in the thousands and because data collection relies on face-to-

face assessments, limiting progress (Long et al., 2018; Moss et al., 2017). Fast, efficient, cost 

effective methods of phenotyping people with the expanded HD repeat are needed for large 

scale studies so that additional modifiers of cognitive aspects of disease onset can be 

identified and so responses to therapeutics can be efficiently monitored.  

Remote, computerised, self-administered, performance-based cognitive tasks may 

provide a solution to some of the limitations inherent in the face-to-face cognitive 

assessments that are typically utilised in HD research  (e.g., Long et al., 2018; Moss et al., 

2017; Jane S Paulsen et al., 2014; Stout et al., 2012). Computerised cognitive tasks, including 

those on smart-phones and tablet devices, can enable rapid, inexpensive, accurate, and 
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convenient collection of cognitive data including the ability to conduct multiple assessments 

over time (Bauer et al., 2012; Dufau et al., 2011; Fredrickson et al., 2010; Koo & Vizer, 

2019; Moore, Swendsen, & Depp, 2017; Zorluoglu, Kamasak, Tavacioglu, & Ozanar, 2015), 

which may allow for long term monitoring of response to therapeutic interventions. 

Additionally, modern smartphones can pair with relatively inexpensive actigraphy devices 

that track the physical activity and sleep habits of users (Ferguson, Rowlands, Olds, & 

Maher, 2015; Montgomery-Downs, Insana, & Bond, 2012; Takacs et al., 2014) and can also 

collect such data through their own sensors (Barnett et al., 2018; Tung et al., 2014). 

Consequently, researchers can pair ongoing monitoring of sleep and physical activity with 

ongoing assessment of cognitive functioning and capture dynamic interactions between these 

factors (Allard et al., 2014; Kaye et al., 2011; McCrae, Vatthauer, Dzierzewski, & Marsiske, 

2012). Subsequently, researchers may then be able to determine the degree to which sleep 

and physical activity habits affect onset or progression of cognitive symptoms.  

In my Introduction, I describe remote computerised assessment of cognition and 

explain that it can be used to collect reliable and valid measures of cognitive functioning data 

in a way that is more efficient and convenient than face-to-face assessment in the clinical 

setting. Additionally, I will highlight the importance of pairing cognitive assessment with 

measures of sleep and physical activity, which can readily be obtained remotely, due to their 

potential relationships with cognitive functioning. Utilisation of remote assessment to 

measure these factors is novel in HD; therefore, I also describe studies from other populations 

in which remote assessment has generated reliable, valid and informative data. Such studies 

have informed development of remote assessment methodology used in this HD project.  

1.1.1. Overview of the thesis aims and thesis structure. The overarching goal of my 

thesis research was to design, create, test, and then utilise an exclusively remote means of 

collecting clinically and scientifically useful data on the day to day cognitive functioning, and 
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sleep and physical activity habits of people with premanifest- and early manifest-HD. The 

overall goal was broken down into specific aims. First, I aimed to demonstrate that people 

with the expanded HD repeat could complete the remote assessment protocol that we planned 

to use in the thesis research project (i.e., feasibility, acceptability, covered in Chapter Two). 

Next, I aimed to demonstrate that the cognitive tasks we developed for the research project 

would be reliable, and valid, across several forms of validity, and sensitive to cognitive 

functioning in HD. These aims are addressed in Chapters Three and Four. Finally, I also had 

the aim of adding to the limited literature on how sleep and physical activity habits relate to 

cognitive functioning in HD. This aim is addressed in Chapter Five.  

I present my thesis in the following format: 

 Chapter One provides an overview of cognition in HD and what is known about the 

relationships between sleep-cognition and physical activity-cognition interactions in HD and 

why a better understanding of these interactions is needed. Chapter One also provides an 

overview of the current options that exist to conduct remote assessment of cognition, sleep, 

and physical activity, and explains that combined remote assessment of these factors in HD is 

needed but has not been attempted. Chapter Two describes the development and feasibility 

testing of the study protocol used in the thesis research. Chapters Three to Five are 

manuscripts reporting my findings relating to each of the main research aims. In Chapter Six, 

I integrate the results from Chapters Two to Five and discuss the broader clinical implications 

of the thesis research findings. Note, that this thesis is presented in line with Monash 

University guidelines and requirements as a ‘thesis by publication’. Some chapters comprise 

published papers, or papers under review. Due to the required format of the thesis, there will 

be some degree of unavoidable overlap and repetition of content for some chapters. 
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1.2. Cognition in Huntington’s Disease 

Severe cognitive decline is a primary symptom of Huntington’s disease and causes 

marked functional deficits for people with HD, which can be separated from deficits 

stemming from the movement aspects of the disorder (Eddy & Rickards, 2015; F. O. Walker, 

2007). The onset of cognitive decline is insidious and progressive and affects multiple 

domains of functioning, including, attention, processing speed, psychomotor speed, verbal 

and visual memory, decision making, and executive functioning (Ghilardi et al., 2008; 

Glikmann-Johnston, Fink, Deng, Torrest, & Stout, 2019; Ho et al., 2003; Stout et al., 2014; 

Stout, Rodawalt, & Siemers, 2001; Tabrizi et al., 2012; F. O. Walker, 2007). Cognitive 

deficits may be detected one to two decades before clinical diagnosis and as much as ten 

years before motor symptoms are detectable. The early onset of cognitive decline in people 

with the expanded HD repeat and the significant negative effects that those cognitive 

symptoms have on functioning and quality of life underscores the importance of cognitive 

assessment in HD as a means of understanding the natural course of the disease and in efforts 

to develop disease modifying treatments (Paulsen et al., 2008; Stout et al., 2012; Tabrizi et 

al., 2012).  

The cognitive deficits that occur in HD are secondary to a range of neurochemical 

changes and to neuronal death, which is most severe in the striatum (Blumenstock & 

Dudanova, 2020; F. O. Walker, 2007). The neurochemical changes, striatal atrophy, and 

accompanying breakdown of fronto-striatal networks are associated with declines in a range 

of cognitive functions, including psychomotor functioning, processing speed, verbal learning, 

impulsivity, impaired judgement, planning, and rule learning (Bamford, Caine, Kido, Cox, & 

Shoulson, 1995; Blumenstock & Dudanova, 2020; Campodonico et al., 1998; Johnson, Potts, 

Sanchez-Ramos, & Cimino, 2017; Mörkl et al., 2016; O'Callaghan, Bertoux, & Hornberger, 

2014; Peinemann et al., 2005; Starkstein et al., 1992).  
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Although an array of neurochemical changes and focal neuronal atrophy occur in the 

striatum, such changes are widespread and occur in other brain areas, such as the 

hippocampus and other cortical regions, with premotor and sensorimotor cortices particularly 

affected; neurochemical changes and atrophy in cortical regions are detectable prior to 

clinical diagnosis (Blumenstock & Dudanova, 2020; Glikmann-Johnston, Fink, et al., 2019; 

Rosas et al., 2005). As with striatal atrophy, the cortical atrophy that occurs in HD and the 

subsequent breakdown of cortical and cortical-subcortical networks throughout the brain are 

linked with a range of cognitive deficits (Glikmann-Johnston, Fink, et al., 2019; O'Callaghan 

et al., 2014; Rosas et al., 2005). For example, striatal and hippocampal atrophy and 

reductions in connectivity between the striatum and the hippocampus are suspected to 

contribute to spatial memory defects that occur in HD (Glikmann-Johnston, Fink, et al., 2019; 

Possin et al., 2017) and fronto-striatal disruptions may contribute to behavioural changes 

(O'Callaghan et al., 2014). 

Regarding the trajectory of cognitive changes in HD, decline in the premanifest 

period may be rapid enough for clear changes to be measured over a period of as little as six 

months (Beste et al., 2013). More typically, a period of 24 months or greater may be needed 

for clear declines in cognitive performance to be detectable (Ho et al., 2003; Stout et al., 

2012). Because noticeable cognitive declines, at least in the premanifest stage, can take 12 – 

24 months to become apparent, studies assessing cognitive functioning and cognitive 

symptom progression commonly use a protocol of once-yearly assessments (e.g., Beste et al., 

2013; Ho et al., 2003; Stout et al., 2012; Stout et al., 2014; Tabrizi et al., 2013).  Such studies 

have informed about cognitive symptom onset and progression, but are limited by the lengthy 

gap in between assessments and by the fact that all assessments were conducted in the clinic. 

Once yearly in-clinic assessments provide little information about the day-to-day cognitive 

and functional independence of a person in the pre-manifest period. As a result, these 
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longitudinal studies may lack ecological relevance. The use of infrequent assessments also 

limits the understanding of how cognitive function may vary across a day or week, in 

response to environmental and contextual factors such as mood, physical activity levels, or a 

poor night’s sleep (Allard et al., 2014; Kaye et al., 2011; McCrae et al., 2012). Such 

information would be very useful for developing non-pharmacological means of managing 

cognitive symptoms. For example, if a variable sleep schedule negatively affects cognition in 

HD, as it can in the general population (Bei, Wiley, Trinder, & Manber, 2016), then 

clinicians could promote a regular sleep schedule as a way of maximising the cognitive 

functioning of their patients. Altogether, pairing frequent in-home assessment of cognition 

with ongoing monitoring of sleep and physical activity habits has the potential to provide a 

rich understanding of how sleep and physical activity habits and day to day cognitive 

functioning interact in HD. Moreover, such an approach may capture how cognitive 

functioning fluctuates over short periods, even with time of day, and how people with the 

expanded HD repeat are functioning in the community, rather than in the clinic.  

Smartphone-based cognitive assessment has the potential to provide the means to 

conduct frequent and convenient in-home assessment because computerised cognitive 

assessment can enable rapid, inexpensive, accurate, and convenient means of collecting 

cognitive data (Bauer et al., 2012; Dufau et al., 2011; Fredrickson et al., 2010; Moore et al., 

2017; Zorluoglu et al., 2015). Additionally, remote cognitive assessment can be paired with 

remote assessment of sleep and physical activity habits. As I will describe below, sleep and 

physical activity habits can have important implications for cognitive functioning, both in the 

general population and in Huntington’s disease. Assessment of these factors and how they 

relate to cognitive functioning will be important for efforts to understand long-term 

environmental modifiers of cognition in HD but may also have important implications for 

how people with the expanded HD repeat can manage their day-to-day cognitive symptoms.  
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1.2.1. Sleep disturbance and cognition in Huntington’s disease. Sleep disturbance 

is common in HD (Arnulf et al., 2008; Herzog-Krzywoszanska & Krzywoszanski, 2019; Y. 

Zhang et al., 2019). Disturbed sleep and changes in sleep wake cycles have been documented 

with self-report measures (Goodman, Morton, & Barker, 2010; Taylor & Bramble, 1997), 

actigraphy (Aziz, Anguelova, Marinus, Lammers, & Roos, 2010; Diago et al., 2018; 

Goodman et al., 2011; Morton et al., 2005), and polysomnography based methodologies 

(Arnulf et al., 2008; Cuturic, Abramson, Vallini, Frank, & Shamsnia, 2009; Wiegand, Möller, 

Lauer, et al., 1991; Wiegand, Möller, Schreiber, Lauer, & Krieg, 1991; Y. Zhang et al., 

2019). The amount of sleep disturbance experienced by people with the expanded HD repeat 

can vary by disease stage. Those in the manifest stage often experience a greater degree of 

sleep disturbance than those in the premanifest stage who may have greater sleep disturbance 

than healthy controls and non-affected family members (Aziz et al., 2010; Goodman & 

Barker, 2010; Herzog-Krzywoszanska & Krzywoszanski, 2019; Lazar et al., 2015).  

Although, sleep disturbance in manifest-HD can be worse than in premanifest-HD, 

there appears to be no homogenous pattern of sleep disorders in HD (Happe & Trenkwalder, 

2002; Herzog-Krzywoszanska & Krzywoszanski, 2019; Morton, 2013) making a description 

of the course of sleep disturbances difficult. For example, Goodman et al. (2010) classified 

35.3% and 26.5% of 66 study participants, with varying stages of HD, as having mild or 

severe sleep disturbance, respectively, and as being more sleep disordered than their carers or 

healthy control participants. Somewhat differently, Taylor and Bramble (1997) reported that 

87.8% of respondents to a mail survey reported experiencing sleep problems. One cannot 

extract a clear picture of the type and severity of sleep disturbance across the two studies 

because neither study reported the proportion of premanifest- versus manifest-HD 

participants that were involved in their studies. Moreover, methodologies between the two 

studies differed, making it impossible to compare results directly. Goodman et al. (2010) used 
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a scoring system to rate the degree of sleep disturbance in their participants, whereas, Taylor 

and Bramble (1997) reported on the prevalence of any type of sleep problem reported by 

participants in their study. Additionally, disordered REM sleep has been observed in some 

studies (Arnulf et al., 2008; Hansotia, Wall, & Berendes, 1985; Silvestri et al., 1995) but also 

as absent (Wiegand, Möller, Lauer, et al., 1991). Nonetheless, changes in circadian rhythms, 

particularly a tendency towards waking later in the morning, appears to be a common early 

symptom (Aziz et al., 2010; Diago et al., 2018; Herzog-Krzywoszanska & Krzywoszanski, 

2019). The lack of a homogenous account of sleep disturbance in HD may be due to studies 

including participants of varying disease progression, utilisation of different study procedures 

and methodologies, but also the small sample sizes used in many studies.  

Large prospective studies that collect ongoing information about how people sleep in 

their home environment may help to provide a clearer picture of the natural course of sleep 

changes in HD, especially as wearable sensors now exist that can measure 

electroencephalogram and electrocardiogram signals while worn in the home (Arnal et al., 

2019; Boe et al., 2019). Additionally, prospective home-based monitoring of sleep provides 

an ecologically valid understanding of sleep habits and how they relate to cognition (McCrae 

et al., 2012). McCrae et al. (2012) argue that sleep diaries have an important role to play in 

understanding sleep habits of people with sleep complaints. In contrast, Y. Zhang et al. 

(2019) argue that comprehensive polysomnography studies are needed to investigate and 

understand the sleep changes in HD. A combined approach is probably the best practice as 

objective and subjective measures of sleep can relate to non-overlapping aspects of sleep 

functioning (L. Zhang & Zhao, 2007) and hence the inclusion of both methods of assessment 

should give the most thorough assessment of sleep in HD. Importantly, subjective and 

objective measures of sleep can be combined in studies which occur outside of the laboratory 

since sleep diaries and sleep questionnaires can easily be completed at home (Aziz et al., 
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2010; Taylor & Bramble, 1997; L. Zhang & Zhao, 2007) and because several wearable 

sensor devices are available which can measure a range of sleep variables from sleep timing 

through to measurement of electrooculography and electrocardiogram signals (Arnal et al., 

2019; Boe et al., 2019; Ferguson et al., 2015; Maskevich, Jumabhoy, Dao, Stout, & 

Drummond, 2017). If these technologies can be combined with cognitive assessment that can 

also be completed in the home, a detailed understanding of the sleep habits of people with the 

expanded HD repeat can be established, as could an understanding of how sleep habits relate 

to cognitive functioning in the home.  

The presence of disturbed sleep in HD has important implications for cognitive 

functioning for several reasons; a) disordered sleep is associated with negative cognitive 

outcomes across the human lifespan (Antoniadis, Ko, Ralph, & McDonald, 2000; Beebe, 

2011; Ellenbogen, 2005; Killgore, 2010; Yaffe, Falvey, & Hoang, 2014); b) sleep 

disturbances are expected to exacerbate the neurological symptoms of HD (Goodman & 

Barker, 2010); c) later habitual wake times in HD samples correlate with poorer cognitive 

functioning (Aziz et al., 2010; Diago et al., 2018), and; d) disturbed sleep may be associated 

with reduced thalamic brain volumes in manifest-HD (Baker et al., 2016). To address these 

issues, characterisation is needed of both the nature of sleep disturbance in HD and any 

associated effects on symptomatology and functioning. Of particular importance will be 

understanding how sleep disturbance relates to cognitive functioning in HD, which is 

currently understudied.  

Several studies have investigated sleep disturbance in HD, but few have investigated 

the link between sleep disturbance and cognitive functioning. Two HD studies have 

investigated links between sleep and cognition in humans (Aziz et al., 2010; Diago et al., 

2018) and additional studies have been conducted using mouse models (Pallier et al., 2007; 

Pallier & Morton, 2009). Regarding the relationship between sleep and cognition in humans, 
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similar studies by Aziz et al. (2010) and Diago et al. (2018) observed a relationship between 

later habitual wake time and poorer cognitive functioning. Aziz and colleagues mailed a 

series of sleep questionnaires to participants, which included questions about their sleep 

quality in the past month and their usual bed and wake times and then conducted an in-clinic 

assessment three weeks later including cognitive tasks from the Unified Huntington’s Disease 

Rating Scale  (UHDRS, Huntington Study Group, 1996). Later habitual wake up time 

associated with poorer cognitive performance on several tests, including tests of processing 

speed and higher-level attention and inhibition. Diago et al. (2018) utilised a very similar 

approach to assessing sleep-cognition interactions. Participants (n = 23 premanifest-HD and n 

= 15 manifest-HD) completed sleep questionnaires and UHDRS cognitive tasks, and also 

observed associations between later habitual wake time and cognitive performance on tests of 

processing speed and inhibition. Importantly, Diago et al. (2018) included premanifest-HD 

participants in their correlations, whereas Aziz et al. (2010) only included manifest-HD 

participants, meaning that the combined findings indicate that the relationship between 

habitual wake time and cognition appears to be important for HD across a range of the 

disease severity spectrum.  

HD mouse models provide further evidence that sleep habits, and in particular sleep 

schedules, have important relations to cognitive functioning in HD (Pallier et al., 2007; 

Pallier & Morton, 2009) similar to what has been found in the human studies by Aziz et al. 

(2010) and Diago et al. (2018). For example, Pallier and Morton (2009) reported 

improvements in cognition and apathy of R6/2 HD mice following pharmacological 

treatment to correct disintegrated sleep/wake patterns. Pallier and Morton controlled the sleep 

patterns of the mice by treating them with Alprazolam, to put them to sleep, and Modafinil, to 

wake them. They assessed cognition using a two-choice swim tank task, with an acquisition 

and a reversal phase, and assessed apathy by testing if the mice would wake in response to 
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mild cage disturbance. The mice with the amended sleep schedule outperformed their 

untreated cage mates on the two-choice swim task, indicating they had better spatial memory 

functioning. Further, the treated mice, which were previously resistant to rousing (Pallier et 

al., 2007), had identical rousing behaviour to wild-type mice following pharmacological 

treatment, indicating apathy had been reduced.  

The above studies represent most of what is known about sleep-cognition 

relationships in HD and as such, sleep-cognition relationships are understudied and require 

further investigation. Nonetheless, the broader sleep literature clearly demonstrates that sleep 

disturbances have negative consequences for cognitive functioning, even in healthy 

populations.  For example, sleep disturbance compromises memory and learning (Born & 

Wagner, 2004; Diekelmann & Born, 2010; M. P. Walker & Stickgold, 2014), vigilance and 

alertness (Jewett, Dijk, Kronauer, & Dinges, 1999; J. Lim & Dinges, 2008), emotional 

functioning (Kahn-Greene, Lipizzi, Conrad, Kamimori, & Killgore, 2006; Killgore, Balkin, 

& Wesensten, 2006), and working memory (J. Lim & Dinges, 2010). Therefore, sleep 

disturbance can logically be expected to negatively affect cognition in HD. Thus, hypotheses 

that sleep disturbance in HD will exacerbate symptomatology (Goodman & Barker, 2010; Y. 

Zhang et al., 2019) seem reasonable as do suggestions that treatments of sleep disturbance 

may have an ameliorating effect on symptoms (Morton, 2013; Pallier & Morton, 2009; 

Videnovic, Leurgans, Fan, Jaglin, & Shannon, 2009). Better characterisation of the 

relationship between sleep and cognition is needed in HD to define which aspects of sleep or 

sleep disturbance are most closely related to cognitive function in HD, and to inform 

treatment strategies. For instance, habitual wake time appears to be associated with cognitive 

functioning (Aziz et al., 2010; Diago et al., 2018), and may be a target for interventions 

aimed at improving cognitive functioning in HD. Large scale and prospective remote 
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assessment of sleep and cognition can provide a means of disentangling of these 

relationships. 

1.2.2. Physical activity and cognition in Huntington’s disease. Insufficient physical 

activity associates with poorer cognitive functioning across the human lifespan and is a risk 

factor for the development of dementias including Alzheimer’s disease and Parkinson’s 

disease (Colcombe & Kramer, 2003; Esteban-Cornejo, Tejero-Gonzalez, Sallis, & Veiga, 

2015; Hamer & Chida, 2009; Lautenschlager, Cox, & Kurz, 2010; Sibley & Etnier, 2003). In 

particular, physical exercise can benefit cognition and protect against neurodegeneration by 

increasing neuroplasticity, neuroprotection, and neurorestorative processes (Hirsch, Iyer, & 

Sanjak, 2016; Hötting & Röder, 2013). Despite these known benefits, the relationship 

between physical activity and cognition in HD is understudied. One observational study in 

HD has investigated the relationship between physical activity and cognition and indicated 

that higher amounts of physical activity were related to better cognitive functioning (Wallace 

et al., 2016). Several physical activity interventions have been conducted in HD, but few of 

these had cognitive tests as primary outcome measures and the results in terms of 

improvements in cognition have been mixed (for review, see Fritz et al., 2017). Additionally, 

lifestyle passivity, meaning low level engagement in physically and cognitively demanding 

activities, may be associated with earlier onset of motor symptoms (Trembath et al., 2010). 

Mouse studies also provide some evidence that exercise can benefit cognition in HD. Mice 

raised in enriched environments, which includes areas to play, running wheels and other toys, 

had better spatial memory than mice kept in enclosures (Nithianantharajah, Barkus, Murphy, 

& Hannan, 2008; Wood et al., 2010).  The effect of increased exercise on cognition cannot be 

disentangled from the effect of the enriched environment, thus these studies do not 

definitively show that exercise alone leads to improvements in spatial memory.   
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As mentioned, physical activity intervention studies in HD that measured cognition as 

an outcome variable have had mixed results in terms of whether or not the interventions 

resulted in improvements to cognitive functioning. Only one study of six studies reviewed by 

Fritz et al. (2017) had cognition as a primary outcome measure. Cruickshank and colleagues 

(2015) conducted a physical activity intervention that resulted in some cognitive 

improvements. The intervention ran for nine-months and with 15 participants with manifest-

HD. The intervention included one supervised and three self-directed exercise sessions per 

week, along with an occupational therapy session (Cruickshank et al., 2015). The authors 

reported that following the intervention, study participants had improved performance on the 

Hopkins Verbal Learning Test (HVLT), a measure of verbal learning and memory (Brandt & 

Benedict, 2001), and increased grey matter volume in the right caudate and bilaterally in the 

dorsolateral prefrontal cortex. The participants did not improve on other cognitive tests, such 

as the Trail Making Test and Symbol Digits Modalities Test, and no control cohort was 

available for comparison. Additionally, no significant improvements in cognition were noted 

following a similar intervention by the same group (Thompson et al., 2013) and no cognitive 

improvements were noted following three other physical activity intervention studies (Busse 

et al., 2013; Quinn et al., 2014; Quinn et al., 2016). Taken together, the findings from the 

above studies seem to indicate that physical activity may not benefit cognition in HD as it 

does in other populations. It is important to remember that thus far there have been relatively 

few physical activity intervention studies, with fewer still focusing on cognitive functioning 

outcomes. Moreover, available studies have often been limited by small sample sizes, lack of 

control groups, and variations in intervention approach and intervention outcome 

measurement (Fritz et al., 2017). Nonetheless, there are several reasons to continue 

investigating physical activity-cognition interactions in HD and to expect that physical 

activity may benefit cognition, particularly since studies in other neurodegenerative disease 
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indicate that physical activity does benefit cognition. A large body of evidence demonstrates 

that lifetime physical activity is associated with reduced risk, delayed onset, and attenuated 

progression of neurodegenerative diseases other than HD, such as Alzheimer’s disease and 

Parkinson’s disease (Brown, Peiffer, & Martins, 2013; Hamer & Chida, 2009; Paillard, 

Rolland, & de Souto Barreto, 2015; Rovio et al., 2005). Evidence also shows that physical 

activity can have direct benefits for cognition for healthy older adults (Colcombe & Kramer, 

2003; Kramer et al., 1999) and people with dementia and other neurodegenerative disease 

(Heyn, Abreu, & Ottenbacher, 2004; Lautenschlager et al., 2010; Vidoni & Burns, 2015) and 

across the lifespan in the general population (Colcombe & Kramer, 2003; Esteban-Cornejo et 

al., 2015; Sibley & Etnier, 2003). Considering some specific examples, amongst a large 

Finnish cohort of 1449 persons aged 65 – 79 years, engaging in leisure time physical activity 

at least twice a week during mid-life was associated with a significantly reduced risk of 

dementia (odds ratio [OR] 0.48 [95% CI 0.25–0.91] and Alzheimer’s disease [OR] 0.38 

[0.17–0.85] (Rovio et al., 2005). The findings of this study were very robust because Rovio 

and colleagues controlled for age, sex, education, follow-up time, locomotor disorders, 

apolipoprotein E genotype, vascular disorders, smoking, and alcohol use. Additionally, the 

study was effectively prospective because the researchers had access to participants’ self-

reported physical activity data as part of their participation in an earlier study, improving 

reliability of data over a retrospective recall methodology. Furthermore, in a meta-analysis of 

16 prospective studies investigating associations between physical activity and onset of 

Alzheimer’s and Parkinson’s disease, overall physical activity levels were inversely 

associated with risk of both Alzheimer’s and Parkinson’s disease (Hamer & Chida, 2009). 

Specifically, relative risk of Alzheimer’s disease for the highest physical activity category 

compared to the lowest was 0.72 [95% confidence interval (CI) = 0.60–0.86, p < 0.001] and 

the relative risk of Parkinson’s disease was 0.82 [95% CI = 0.57–1.18, p = 0.28]. Hence, the 
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association between physical activity and reduced risk of developing dementia, Alzheimer’s 

disease, and Parkinson’s disease appears robust.  Exercise may protect against 

neurodegenerative processes in disorders such as Parkinson’s disease and Alzheimer’s by 

enhancing neurogenesis and synaptogenesis (Paillard et al., 2015). Given that exercise seems 

protective of the onset of Parkinson’s and Alzheimer’s diseases, it is reasonable to expect that 

exercise may also have a protective role in HD. Indeed, Trembath et al. (2010) demonstrated 

that lifestyle passivity (low level engagement in physically and cognitively demanding 

activities) associated with earlier onset of motor symptoms. The possibility that cognitive 

symptom onset will be affected in a similar way seems high but needs to be properly 

investigated.  

Exercise may be a protective factor for HD in the long term, but it may also improve 

cognition in the short term, as has been observed in other populations (Colcombe & Kramer, 

2003; Heyn et al., 2004; Kramer et al., 1999). As an example, Colcombe and Kramer (2003) 

analysed 18 prospective studies which assessed the effect of structured cardiovascular 

training interventions on cognitive performance in healthy older adults, aged 55 and above. 

Results indicated that cognitive function of exercisers improved significantly more than 

control participants for executive functioning, speeded tasks, and visuospatial tasks. Taken 

together, exercise likely plays an important role in delaying onset of neurodegenerative 

disorders such as Alzheimer’s disease and Parkinson’s disease and may also confer benefits 

on cognition in ageing populations following intervention. Potentially then, both of these 

relationships may hold in Huntington’s disease and require investigation. As with sleep, 

remote assessment of physical activity will allow collection of large amounts of data which 

can be used to determine the relationship between physical activity and cognition in HD. 

Wearable actigraphy devices provide a viable means of remotely assessing physical activity 

(Montgomery-Downs et al., 2012; Takacs et al., 2014; Wallace et al., 2016) as is explained in 
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detail below. The importance of understanding any benefit that physical activity may have on 

delaying onset of cognitive symptoms in HD is underscored by remembering that the 

cognitive symptoms in HD lead to functional declines prior to diagnosis (Duff et al., 2010; 

You et al., 2014) and that they cause significant reductions in quality of life and functioning 

(Eddy & Rickards, 2013, 2015; Ross et al., 2014; Van Liew et al., 2013). Therefore, long-

term prospective studies are needed to determine associations between physical activity, or 

other lifestyle factors, and onset of cognitive symptoms. Meanwhile, shorter term 

observational studies can be used to probe contemporaneous associations between physical 

activity and cognition by combining prospective assessment of cognition and sleep over the 

period of one or several weeks, with ongoing assessment of cognition. As will be described 

next, these goals can be achieved by the use of mobile phone and wearable sensor 

technologies and will allow ongoing assessment to be achieved without requiring participants 

to attend the laboratory or clinic.  

1.3. Remote and computerised Assessment of Cognition, Sleep, and Physical Activity 

1.3.1. Computerised assessment of cognition. The most common method of 

measuring cognitive performance in neuropsychological assessment is the use of pen and 

paper-based assessments (Parsey & Schmitter-Edgecombe, 2013). Due to this, automated or 

computerised cognitive assessment methods are often viewed as experimental, or novel in 

nature, which serves to undermine their usage (Wesnes, 2014). The use of automated testing 

procedures, however, predates many of the tests used in clinical neuropsychology today 

(Wesnes, 2014). For example, Wesnes (2014), reports that in 1868, Francois Donders 

developed a complex mechanical device which was used to accurately measure verbal or 

manual response times of human participants following presentation of a stimulus, such as a 

coloured light, letter-symbol, or sound. Additionally, psychologists have been using 

computerised cognitive tasks since as early as the 1960s, and more extensively since the 
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development of the personal computer in the 1980s (Hagelkruys et al., 2016; Wesnes, 2014), 

including extensively in evaluation of cognitive functioning in military and sport psychology 

settings (Parsey & Schmitter-Edgecombe, 2013). 

Currently, computerised neuropsychological testing is used with a variety of 

populations, ranging from children with ADHD (Chamberlain et al., 2011), to assessing 

cognitive function in older adults (Darby et al., 2014; Eve & De Jager, 2014; Y. Y. Lim et al., 

2012; Tierney et al., 2014; Tornatore, Hill, Laboff, & McGann, 2005) and for measurement 

of cognitive impairment in samples diagnosed with psychiatric illnesses (Hamo, 

Abramovitch, & Zohar, 2018; Iverson, Brooks, Langenecker, & Young, 2011; Sweeney, 

Kmiec, & Kupfer, 2000). Computerised tests are also used to evaluate the effects of sports-

related concussion (Collie, Makdissi, Maruff, Bennell, & McCrory, 2006; Makdissi et al., 

2001), and for cognitive assessment of people with dyslexia (Hagelkruys et al., 2016). Thus, 

because automated and computer based psychological testing procedures have been utilised 

for over 100 years, and 50 years, respectively, rejection of their utilisation based on concerns 

that they are novel or overly experimental is unjustified. Moreover, as noted by Wesnes 

(2014) and Zygouris and Tsolaki (2015), provided that a measure has satisfactory 

psychometrics, the decision to use a computerised or pen and paper based test, or, by 

extension, a combination of the two, should be driven by selection of the test which is best 

suited to measure change over time, as well as selecting the measure that can best be used to 

achieve the aim(s) of the clinician or researcher. For instance, remote computerised 

assessment may be best suited to continued measurement of cognitive functioning in HD, 

where mobility and the ability to attend in person testing can become steadily compromised 

over time due to loss of driving ability (Beglinger et al., 2010; Farrell et al., 2019; Vaccarino 

et al., 2011).  
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  The wide usage of computerised neuropsychological measures may be in part due to 

the many potential benefits that they possess in comparison to pen and paper-based tests, 

such as the symbol digit modalities and Stroop interference tests which are included in the 

UHDRS cognitive battery. These properties mean that computerised cognitive assessment 

can potentially be used to measure and monitor cognitive functioning in large neuro-

epidemiological studies (Fredrickson et al., 2010). In a joint position paper on the usage of 

computerised neuropsychological measures (Bauer et al., 2012), the American Academy of 

Clinical Neuropsychology and the National Academy of Neuropsychology in the US 

identified six strengths of computerised neuropsychological tests. These strengths included: 

a) the capacity to test a large number of individuals quickly; b) ready availability of 

assessment services without advanced notice; c) the ability to precisely measure performance 

on time-sensitive tasks, such as reaction time; d) potentially reduced assessment times 

through the use of adaptive testing protocols; g) automated data exporting for research 

purposes, h) increased accessibility to patients in areas or settings in which professional 

neuropsychological services are scarce; and i) the ability to integrate and automate 

interpretive algorithms such as a decision rule for determining impairment or statistically 

reliable change. Thus, computerised cognitive testing is well suited to efficiently collect large 

amounts of detailed data related to cognitive functioning, even in a geographically dispersed 

sample.   

The use of algorithms can reduce floor and ceiling affects and aid differential 

diagnosis by being programmed to detect impairment patterns indicative of specific disorders 

(Bauer et al., 2012; Mohr, Walker, Randolph, Sampson, & Mendis, 1996; Parsey & 

Schmitter-Edgecombe, 2013; Wild, Howieson, Webbe, Seelye, & Kaye, 2008). Additionally, 

the reduction of floor effects means computer-based tests may be more suitable for detecting 

mild cognitive impairment and early signs of dementia, than pen and paper-based tests (Wild 
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et al., 2008). This makes computerised cognitive testing ideal for detecting and measuring 

onset and progression of cognitive symptoms in premanifest-HD, as well as responses to 

interventions, because impairments, and any alterations in cognitive functioning, may 

initially be very mild, and because the level of difficulty of the cognitive tests can be adjusted 

to suit the disease stage of patients and participants.  

A common caveat surrounding the use of computerised testing is that many newly 

developed computerised tests should be used with caution due to some of them being 

insufficiently normed or validated (Bauer et al., 2012; Hagelkruys et al., 2016; Schlegel & 

Gilliland, 2007; Wild et al., 2008). This is clearly not a criticism that is specific to 

computerised tests, but rather it relates to the development of all psychological testing 

batteries. Another common criticism of computerised tests is that they may be intimidating 

and unfamiliar to some segments of the populations, especially older adults (Wesnes, 2014). 

However, a variety of tests batteries designed to measure dementia and cognitive impairment 

have been successfully used with older-aged participants, and by participants with cognitive 

impairment (Darby et al., 2014; Eve & De Jager, 2014; Fredrickson et al., 2010; Koo & 

Vizer, 2019; Y. Y. Lim et al., 2012; Mohr et al., 1996; Stout et al., 2014; Tierney et al., 2014; 

Zorluoglu et al., 2015; Zygouris & Tsolaki, 2015). Therefore, computerised cognitive 

batteries clearly are suitable for use with neurodegenerative samples and with people who 

may have limited experience with computer technology. For example, Collerton et al. (2007) 

randomised elderly participants (N = 81, all aged 85) to either a computerised cognitive 

battery or a pen and paper battery. Those that completed the computerised battery rated it as 

less difficult and more acceptable than those that completed the pen and paper battery. 

Moreover, a greater percentage of participants completed the computerised battery than 

completed the pen and paper battery (100% v 91%) and the experimenters rated those 

completing the computerised battery as less likely to appear distressed compared to those 
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completing pen and paper tests. Importantly, the scores on both batteries correlated 

significantly, medium to strong effect sizes, with scores on the Mini-Mental State 

Examination (MMSE; Folstein, Folstein, & McHugh, 1975) and participants reporting 

subjective memory problems scored lower on all tasks, with the difference reaching statistical 

significance on two of the computerised tasks. Thus, the results indicate that cognitive data 

can be collected via computer in a way that is at least as valid and acceptable to older 

participants as data collected on pen and paper tasks. Together with many of the studies 

mentioned above, this demonstrates that computerised batteries can be used in many patient 

groups, including those with cognitive impairments.  

One final advantage of computerised cognitive tasks is the ability to mathematically 

model data (e.g., data from binary decision making tasks). These models are often more 

sensitive to individual cognitive change than paper-based tools used in clinic settings 

(Busemeyer & Diederich, 2010; Ratcliff & McKoon, 2008; Ratcliff, Smith, Brown, & 

McKoon, 2016; Voss, Nagler, & Lerche, 2013) and may be particularly useful for detecting 

the mild cognitive changes that occur in premanifest-HD. Modelling cognitive data with drift 

diffusion methods (Ratcliff, 1978; Ratcliff et al., 2016) produces variables that measure a 

person’s speed of information encoding and the amount of information they require before 

making a decision (Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010; Voss et al., 

2013). Importantly for the study of cognition in HD, the striatum is thought to modulate the 

amount of information a person choses to consider prior to making a decision (Bogacz et al., 

2010; Frank, 2006). For example, decision making cautiousness or rashness can be 

manipulated via deep brain stimulation or by changing doses of dopaminergic medication in 

Parkinson’s disease patients (Frank, Samanta, Moustafa, & Sherman, 2007; Herz et al., 2018; 

Huang et al., 2015). Severe striatal atrophy and behavioural changes, such as impulsivity, 

occur in HD (Stout et al., 2001; F. O. Walker, 2007), and so cognitive modeling of decision 
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making tasks from HD patients, may help to determine if striatal and behavioural changes in 

HD are linked as is suspected (O'Callaghan et al., 2014).  

1.3.2. Remote computerised assessment of cognition. To date, the majority of studies 

utilising computerised cognitive assessment were administered face-to-face in the clinic. 

More recently, several mobile phone and tablet-based assessment tools have been developed 

that can be used by research participants in their own homes (Allard et al., 2014; Darby et al., 

2014; Eve & De Jager, 2014; Jongstra et al., 2017a; Lipsmeier et al., 2018; Rentz et al., 2016; 

Zygouris et al., 2017). Shifting computerised assessment to be self-administered by people in 

their own homes utilises two of the greatest strengths of computerised assessment, including 

increasing the capacity to test a large number of people quickly, and improved accessibility to 

patients in areas or settings in which professional neuropsychological services are limited 

(Bauer et al., 2012). These qualities are apt for responding to the urgent need for simple, 

inexpensive methods of detecting early neurodegenerative decline (Bauer et al., 2012; 

Sperling et al., 2011). Also, mobile platforms enable repeated assessment of cognition, which 

can provide a more reliable description of cognitive difficulties than is possible with 

infrequent assessments in the clinic (Allard et al., 2014). Remote computerised assessment is 

a relatively new direction in the field of computerised cognitive assessment. Nonetheless, 

studies utilising unsupervised cognitive assessment protocols have been published with 

promising result and some with important implications for the idea of conducting remote 

cognitive assessment in HD. I briefly review some key remote assessment studies next. 

Eve and De Jager (2014) developed and assessed a laptop-based, self-administered, 

online cognitive screening tool, the Cognitive Function Test (CFT), in a two-stage process. 

The first stage involved 50 healthy adults aged 50 – 65 years, with no dementia diagnosis or 

significant memory complaints. Participants completed the CFT and pen and paper tests of 

cognition in their own homes under the supervision of an administrator. In the second stage 
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of the study, a separate cohort of 195 adults, aged, 50 - 65 years, completed the CFT online, 

with no supervision or prior training. Scores from these two cohorts were compared. Eve and 

De Jager (2014) reported two key results. First, total scores on the CFT were strongly and 

positively correlated with total scores from the pen and paper tests, indicating that the CFT 

shared concurrent validity with the pen and paper tests. Second, scores obtained on the CFT 

by the supervised and unsupervised samples were similar, indicating that test performance 

did not vary based on the presence or absence of a test administrator. The key finding from 

this study, as it relates to the prospect of remote assessment in HD, is that cognitively healthy 

participants completed the cognitive battery in their own home without prior training or 

supervision and without a loss of validity in results. This indicates that the same approach 

may be possible with a HD sample. An important caveat, however, is that participants in Eve 

and De Jager’s study were cognitively healthy, and so it is unclear if a cognitively impaired 

sample would have the same success.  

Darby et al. (2014) conducted a similar study, testing an online cognitive battery, the 

CogState Brief Battery (CBB) with 150 participants aged between 55 – 83 years. The 

participants were experienced with the cognitive battery, having previously completed the 

battery under supervised conditions as part of an earlier study by the same research group 

(Fredrickson et al., 2010). In the Darby et al. (2014) study, participants completed the battery, 

unsupervised, once a month on a home computer for a period of twelve months. Because the 

psychometric properties of the CBB had been previously established (Fredrickson et al., 

2010), the primary aim of Darby and colleagues was to assess the feasibility of asking the 

participants to conduct repeated self-assessment sessions over the 12 month period of the 

study. The eventual attrition rate for the study was moderately high. Only 63% of the 150 

participants continued to complete testing at three months, 58% at six months, and less than 

43% of the 150 participants completed testing at the 12-month period.  The key finding from 
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this study was that, despite a high attrition rate, Darby et al. (2014) showed that an internet-

based online assessment could be successfully implemented. Their attrition rate highlights the 

need to develop methods for keeping participants engaged if planning to conduct longitudinal 

assessment. Similar to Eve and De Jager (2014), the sample was cognitively healthy and so it 

remains difficult to draw a conclusion about the feasibility of attempting a similar approach 

with a cognitively impaired or neurodegenerative population. In another more recent study, 

Lipsmeier et al. (2018) demonstrated that people with a neurodegenerative disease can 

complete unsupervised home-based assessment. Lipsmeier et al. (2018) deployed a 

smartphone-based motor symptom assessment tool in 44 people with Parkinson’s disease. 

The application contained six tests which the participants were asked to complete on a daily 

basis for six months. At the start of the study, Lipsmeier and colleagues trained the 

participants to use the application. Similar to Darby et al. (2014), Lipsmeier and colleagues 

assessed the feasibility of asking the study participants to self-administer tests at home 

without any supervision.  Overall, 61% of all possible tests were completed over the six-

month study period, and 90% of participants completed a test at least once every four days. 

The results from Lipsmeier and colleagues’ study demonstrate the feasibility of remote, 

smartphone-based assessment in a neurodegenerative group, including task self-

administration without supervision. Thus, Lipsmeier and colleagues’ results suggest that, with 

prior training, remote cognitive assessment is likely to be feasible, particularly for people in 

the premanifest or early manifest stage of HD. The feasibility of attempting remote cognitive 

assessment in HD without providing any formal training in the clinic remains unknown. If 

remote cognitive assessments can be completed without first training patients or participants, 

such an approach would maximise one of the main benefits of remote assessment, which is 

reduced attendance at hospitals by patients and participants (Klimova, 2017; Koo & Vizer, 

2019). Altogether, untrained remote cognitive assessment has several potential benefits for 
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the field of HD, but the feasibility of the approach must be demonstrated before it is 

attempted on a large scale.  

1.3.3. Remote assessment of sleep and physical activity. Coupling remote 

assessment of cognition with assessment of lifestyle and behavioural factors such as sleep 

and physical activity will allow investigation of the relationships between these factors. 

Additionally, in the longer term, the large amounts of data that can be rapidly and 

conveniently collected in this way will be beneficial for attempts to uncover environmental 

modifiers of cognitive age of onset in HD.  A variety of means of assessing environmental 

and lifestyle factors remotely currently exist (Arnal et al., 2019; Barnett et al., 2018; Boe et 

al., 2019; Boulos, Wheeler, Tavares, & Jones, 2011; Estudillo-Valderrama, Roa, Reina-

Tosina, & Naranjo-Hernández, 2009; Kaye et al., 2011; Worringham, Rojek, & Stewart, 

2011).  

A small number of studies have attempted remote monitoring of sleep and/or physical 

activity in HD samples using actigraphy devices (Goodman et al., 2011; Morton et al., 2005; 

Wallace et al., 2016). Actigraphy is a form of monitoring sleep and activity that uses a 

portable, usually wrist mounted, device that can be conveniently worn for long periods of 

time (Ancoli-Israel et al., 2003; Chesson Jr, Coleman, Lee-Chiong, & Pancer, 2007; Sadeh, 

2011). Actigraph devices use accelerometers to monitor movement, and activity data is 

converted into sleep/wake scores using computerised scoring algorithms (Ancoli-Israel et al., 

2003; Sadeh, 2011). Movement can be sampled as much as several times per second and 

devices may have enough memory to remotely record activity for several weeks (Ancoli-

Israel et al., 2003). Actigraphy is accepted to provide sensitive measures of sleep/wake 

patterns and sleep disturbance in various sleep disorders as well as with medical and 

neurobehavioural disorders, especially in situations where polysomnography, the gold 

standard method of measuring sleep is not available or appropriate (Chesson Jr et al., 2007; 



Page | 44  

 

Ferguson et al., 2015; Sadeh, 2011). In HD studies Actigraphy should be used to measure 

sleep wake total sleep time and sleep efficiency, because night time chorea can confound the 

measurement of total sleep time and sleep efficiency (Maskevich et al., 2017; Townhill et al., 

2016). In summary, actigraphy devices are useful and valid tools for conducting ongoing 

measurement of sleep and activity data, and previous studies have shown that people with the 

expanded HD repeat can operate these devices properly over the course of research studies. 

Hence, it is feasible to couple remote assessment of sleep and cognition with remote 

assessment of cognition in HD. Moreover, coupling prospective measurement of sleep and 

physical activity, from actigraphy and self-report measures, with frequent cognitive 

assessment will provide a detailed account of dynamic interactions between cognition, sleep, 

and physical activity, both in short- and long-term studies (Allard et al., 2014; Kaye et al., 

2011; McCrae et al., 2012), which can then inform about short- and long-term modifiers of 

cognitive symptoms in HD.  

1.4. Conclusion and Summary of Research Aims 

Overall, my thesis introduction has explained that cognitive symptoms are a primary 

and debilitating feature of HD, but that current efforts to identify modifiers of cognitive 

symptom progression and onset are limited by utilising infrequent clinic-based assessments 

that require several years to accumulate useful datasets. Moreover, infrequent assessment of 

cognition, sleep, and physical activity in HD mean that understanding how these variables 

fluctuate in the day to day lives of people with the HD CAG expansion is limited. I have argued 

that these limitations can be addressed by combining remote computerised assessment of 

cognition with remote assessment of sleep and physical activity. Lastly, I have explained that 

at present no one has attempted to combine remote assessment of cognition, sleep, and physical 

activity in HD. This last point leads into the aims of the thesis research, which were presented 

above and are again summarised here.  
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First, I aimed to demonstrate that people with the expanded HD repeat could complete 

the protocol (i.e., feasibility, acceptability, covered in Chapter Two). Next, I aimed to 

demonstrate that the cognitive tasks we developed for the research project would be reliable, 

and valid, across several forms of validity, and sensitive to cognitive impairment in HD 

compared to controls. These aims are addressed in Chapters Three and Four. Finally. I also 

had the aim of adding to the limited literature on how sleep and physical activity habits relate 

to cognitive functioning in HD. This aim is addressed in Chapter Five.  
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Chapter Two: Study One 

Development and Initial Feasibility Testing of the Remote Assessment Protocol 

2.1. Explanatory Notes 

 In this chapter I present an account of the development and initial feasibility testing of 

the remote assessment protocol that was used in the thesis research. In Chapter One, I 

explained that, to my knowledge, no one has attempted to combine remote assessment of 

cognition, sleep, and physical activity in HD and that, to my knowledge, no one has 

attempted remote cognitive assessment in a cognitively compromised sample without 

providing any in-person training. Because of this, we took a careful and considered approach 

to the development of our remote assessment protocol to make sure that people with the 

expanded HD repeat would find the protocol acceptable. This chapter provides an overview 

of that developmental work, which we hope will be a useful guide to fellow research groups 

who also wish to conduct remote assessment of cognition, or other factors such as sleep and 

physical activity, in HD or other cognitively compromised populations. See Figure 1 for a 

visual flow-chart of key steps taken during protocol development. This chapter also includes 

results from Study One of the thesis, wherein we addressed our first research aim, which was 

to demonstrate that people with the expanded HD repeat could complete the protocol (i.e., 

feasibility, acceptability). We used the findings from this chapter to update and improve our 

remote assessment protocol before beginning the studies presented in Chapters Three to 

Five.   

2.2. Development of HD-Mobile and Remote Assessment Methodology 

The final version of the remote assessment protocol utilised in the studies presented in 

Chapters Two to Five of the thesis included three cognitive tasks and four questionnaires 

which were administered in HD-Mobile and use of Fitbit One sleep and activity monitors. 

See Table 1 for a summary of these measures. As part of participant eligibility screening and 
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recruitment, participants also completed an online self-report demographic and symptom 

severity questionnaire. We considered several cognitive tasks, questionnaires, and actigraphy 

devices for inclusion in the protocol, but not all were included.  

 

Figure 1. Flow chart summarising the key steps undertaken in developing HD-Mobile and all 

elements of the study protocol utilised in in the studies presented in Chapters Two to Five.   

 

Participant burden was a primary consideration in selecting the final suite of cognitive 

tasks, questionnaires, and activity monitoring device. We aimed to collect as much 

scientifically robust, relevant, and useful information as needed to answer our research 

questions, with the minimal possible time commitment and burden to participants. We 

considered burden related to but separate from time commitment. For example, a 

Initial protocol development

• Review of literature to guide design of study protocol, HD-Mobile, selection of tests and measures 

• Selection of cognitive tests, questionnaires, and actigraphy device

•Development of participant instructions

•In-house testing and review of study protocol, HD-Mobile, cognitive tasks, questionnaires, and 
participant instructions

•Improvements to HD-Mobile cognitive tasks, questionnaires, and participant instructions based off 
feedback

Consumer panel meetings

•First consumer panel meeting

•Improvements to protocol, HD-Mobile, cognitive tasks, questionnaires, and participant 
instructions based of feedback

•Second consumer panel meeting

•Improvements to protocol, HD-Mobile, cognitive tasks, questionnaires, and participant 
instructions based off feedback

Feasibility study

•Pilot feasibility study with 9 HD and 10 control participants

•Feedback provided by participants on all aspects of protocol

•Improvements to protocol, HD-Mobile, cognitive tasks, questionnaires, and participant 
instructions based off feedback

•Updating HD-Mobile and participant instructions for use in the research presented in chapters 
Three to Five
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questionnaire with a small number of questions may have a minimal time commitment, but 

significant burden if the questions were complex and difficult for participants to understand 

and answer. A brief account of the selection of cognitive tasks, questionnaires, and selection 

of the Fitbit One over other sleep and activity monitoring devices is provided.  

Table 1.  

Summary of Measures Used in the Thesis Research Project 

Name of Measure Method of Measurement Domain assessed 

Speeded Tapping Computerised cognitive task Cognition (psychomotor 

speed and coordination) 

Two-Choice Discrimination Computerised cognitive task Cognition (decision 

making) 

Object Information and 

Location Learning (OILL) 

Computerised cognitive task Cognition (visual 

recognition memory) 

Daily Mood Sleep and 

Activity Questionnaire 

(DMSAQ) 

Self-report questionnaire Mood, sleep, physical 

activity 

Hospital Anxiety and 

Depression Scale (HADS) 

Self-report questionnaire Mood 

Scale of Outcomes in 

Parkinson’s disease – Sleep 

scale (SCOPA-SLEEP) 

Self-report questionnaire Nighttime sleep and 

daytime sleepiness 

Karolinska Sleepiness Scale 

(KSS) 

Self-report questionnaire Situational sleepiness 

Fitbit One Body worn accelerometer Sleep and physical 

activity 
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2.2.1. Selection and development of cognitive tasks. We selected the cognitive tasks 

for HD-Mobile with several criteria in mind. First, the tasks had to be relevant to cognitive 

domains known to be impaired in HD and to be suitable for completion on a smartphone. 

They also had to be easy to learn and understand with minimal instructions as participants 

would be completing tasks without the presence of an examiner. Ideally, the tasks would be 

relatively quick to complete, but sensitive to cognitive impairments in HD. By meeting these 

requirements, we could minimise participant burden and time commitment while collecting 

enough data to answer our research questions. We began the process of cognitive task 

selection with three candidate cognitive tasks. The tasks, Speeded Tapping, Two-choice 

discrimination, and a prospective memory task, were candidate  

tasks for another cognitive assessment smartphone application, the Brain Health App, which 

our group was developing at the same time. The Brain Health app was for use in a healthy 

ageing study with the tasks selected to be sensitive to the onset of dementia. HD and several 

other forms of dementias such as Alzheimer’s disease, have some overlapping areas of 

cognitive impairment as the diseases progress (Lezak, Howieson, Bigler, & Tranel, 2012). 

Hence, we considered the tasks included in the Brain Health App as good candidates for 

inclusion in HD-Mobile because they were designed for smartphones and would likely assess 

cognitive domains affected by HD.  

Of the three Brain Health App tasks, we retained Speeded Tapping and Two-choice 

Discrimination. We retained Speeded Tapping for use with HD-Mobile as it is computerised, 

sensitive to symptom progression in HD, can be understood and completed by participants 

with manifest-HD, and clear deficits in performance are seen in manifest- and premanifest-

HD samples when compared to healthy control samples (Stout et al., 2014; Tabrizi et al., 

2012). We retained Two-choice Discrimination as although this style of task had not 

previously been used in HD research, related tasks have been successfully used with and 
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shown to be sensitive to cognitive changes in Parkinson’s Disease, which is also a subcortical 

neurodegenerative movement disorder (Herz et al., 2018; Huang et al., 2015). Two-choice 

Discrimination style tasks generate large amounts of data which can be modelled 

mathematically resulting in detailed information about cognitive processes that determine 

performance on the tasks (Voss et al., 2013). Additionally, the variables obtained from 

modeling of Two-choice tasks can be mapped on to neural substrates (Frank, 2006; Frank et 

al., 2007; Herz et al., 2018; Huang et al., 2015), including the striatum which is a primary site 

of atrophy in HD (F. O. Walker, 2007). We chose not to retain the prospective memory task as 

the format of the task suited a longer-term longitudinal research approach than the two-day 

and eight-day study periods that we anticipated using for for the research project.  

In place of the prospective memory task, we included Object Identification and 

Location Learning (OILL), a visual recognition memory task. The task was based on the 

paradigm developed by Buffalo, Bellgowan, and Martin (2006) and adapted from the version 

used by (Glikmann-Johnston, Halag-Milo, Hendler, & Gazit, 2020) which was designed for 

use on tablet devices. Visual memory deficits exist in early HD and visual tasks with similar 

methodology to OILL can be completed by manifest-HD samples and detect impairments in 

their visual memory functioning (Begeti, Schwab, Mason, & Barker, 2016; Glikmann-

Johnston, Carmichael, Mercieca, & Stout, 2019). Hence, we expected people with the 

expanded HD repeat would be able to understand and complete the OILL task and that OILL 

would be sensitive to visual memory symptom progression in HD. Because we modified the 

task for presentation on smartphones, we conducted in-house testing and development was 

optimise performance of the task. This included optimising the difficulty level to avoid or 

minimise floor and ceiling effects by adjusting the number of stimuli to be learned and by 

testing color and black-and-white versions of the task stimuli. The in-house testing indicated 

an optimal level of difficulty would be achieved with eight coloured stimuli. We retained this 
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format for thesis study protocol. We also sought feedback on task instructions, for all three 

tasks, from in-house testers and the participants from the study described in this chapter so 

that these could be optimised for clarity and conciseness. 

2.2.2. Selection of actigraphy device. We considered several consumer grade activity 

monitoring devices for use within the research project. We did not use polysomnography 

(PSG), the gold standard of sleep measurement (Montgomery-Downs et al., 2012), because 

PSG is typically laboratory based (Tonetti, Pasquini, Fabbri, Belluzzi, & Natale, 2008) and 

the protocol and research project were remote in nature. Research grade actigraphy devices 

were not viable due to their much higher cost compared to consumer grade actigraphy 

devices (de Zambotti, Claudatos, Inkelis, Colrain, & Baker, 2015; Ferguson et al., 2015). 

However, research has demonstrated comparable levels of accuracy for measuring sleep and 

physical activity levels between consumer and research grade actigraphy devices (de 

Zambotti et al., 2015; Ferguson et al., 2015; Maskevich et al., 2017; Montgomery-Downs et 

al., 2012).  

We consulted the research literature to aid in the choice of an actigraphy device and 

selected the Fitbit One for use in the thesis research project.  Regarding the literature, 

Ferguson et al. (2015) assessed seven consumer grade activity devices (Fitbit One, Fitbit Zip, 

Jawbone UP, Misfit Shine, Nike Fuleband, Striiv Smart Pedometer, and Withings Pulse) for 

measurement of physical activity and sleep. Of these devices, they rated the Fibit One, Fitbit 

Zip and Withings Pulse as the best performing devices. The Fitbit Zip, however, does not 

measure sleep, so it was not considered for use. The Fibit One and Jawbone Up were assessed 

elsewhere in the literature. Fitbit One and Jawbone Up were evaluated with healthy 

participants by Montgomery-Downs et al. (2012), and de Zambotti et al. (2015), respectively, 

and Maskevich et al. (2017) assessed both devices with a HD sample. Both devices were 

found to overestimate total sleep time, as was observed by Ferguson et al. (2015). However, 
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overestimates of sleep time also occur with research grade actigraphy (Montgomery-Downs 

et al., 2012). Nevertheless, the Fitbit and Jawbone devices were rated as cost effective and 

viable alternatives to much more expensive research grade actigraphy devices (de Zambotti et 

al., 2015; Maskevich et al., 2017; Montgomery-Downs et al., 2012). Other than the Ferguson 

et al. (2015) paper, we found no other peer reviewed evaluation of the Withings Pulse at the 

time of our evaluation process. As more information was available on the Fitbit One and 

Jawbone Up, we considered both for use in the project. We chose the  Fitbit One chosen due 

to it having a lower cost and because it outperformed the Jawbone Up in the direct a direct 

comparison by Ferguson et al. (2015).  

2.2.3. Selection and development of questionnaires. HD-Mobile includes three 

established and validated questionnaires and one questionnaire which we developed 

specifically for the study. See Appendix 1 for copies of each questionnaire. The established 

questionnaires are the Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 

1983), the Scale of Outcomes in Parkinson’s Disease – Sleep scale (SCOPA-SLEEP; 

Marinus, Visser, van Hilten, Lammers, & Stiggelbout, 2003), and the Karolinska Sleepiness 

Scale (KSS; Kaida et al., 2006). We included the HADS to allow us to examine the effects 

that anxiety and depression can have on sleep quality (Riemann, Berger, & Voderholzer, 

2001) and cognitive functioning (Austin, Mitchell, & Goodwin, 2001) and to allow direct 

comparisons of anxiety and depression symptoms between participant groups. Both 

subjective (SCOPA-SLEEP scale, KSS, DMSAQ) and objective (Fitbit One) sleep measures 

were included because both are equally important in measuring sleep disturbance (Choi-

Kwon & Jeon, 2017; Landry, Best, & Liu-Ambrose, 2015; Lang et al., 2013).    

We included the KSS to measure current alertness (Kaida et al., 2006) and to enable 

consideration of the effects of alertness levels on participant’s performance on HD-Mobile 

cognitive tasks. The SCOPA-SLEEP questionnaire was selected to provide a measure of 
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participant nighttime sleep quality and daytime sleepiness in the month prior to participation 

in the study. We included the questionnaire we developed, the Daily Mood, Sleep, and 

Activity Questionnaire (DMSAQ), so we would have a subjective measure of sleep and wake 

timing and physical activity levels over the week, to compliment actigraphy data, as well as a 

subjective measure of daily mood to compliment the retrospective measure of mood provided 

by the HADS.  

2.3. Consumer Panel Meetings and Further Methodology Development 

As part of development of the overall remote assessment methodology, we held two 

rounds of meetings with members of the HD community, which we termed ‘consumer panel 

meetings’.  collaboration between researchers, clinicians, and patients is an essential 

component of good research practice and for the successful design and implementation of 

healthcare (Coulter & Ellins, 2006; Leidy & Vernon, 2008; Ocloo & Matthews, 2016; Payne 

et al., 2011). In particular, collaboration and consultation with patients and participants is 

critical when researchers plan to ask people with cognitive impairments to self-administer 

cognitive tests (Hagelkruys et al., 2016). The consumer panels consisted of a small group of 

people, nine for round one and six for round two, who either had premanifest- or manifest-

HD or were family members or carers of someone with HD. We held the meetings so that the 

panel members, some of whom would be the very people to participate in the thesis research 

project, could give input into the design of the project’s protocol. We also aimed to ensure, 

pre-emptively, that the research project and its expected outcomes would be meaningful and 

of interest to the panel members, and by extension the HD community. We translated their 

suggestions and input from the first round of meetings into the protocol and we presented 

these adjustments to the panel, for their approval and further comment, at the second round of 

consumer panel meetings. Feedback from the second round of meetings was implemented 

prior to recruiting participants for the feasibility study described in this chapter. We held the 
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first round of meetings in October and November of 2016 and the second round of meetings 

in December of 2016. Two meeting dates were offered for each round of meetings to 

accommodate the various schedules of invitees. A brief summary of the goals and outcomes 

of each meeting are presented below.  

2.3.1. Goals and outcomes of first round of consumer panel meetings. Our goals 

for the first round of meetings were to seek the input of panel members on several points of 

interest that were directly related to the protocol design. To achieve these goals, we posed 

several key questions to panel members. I present the specific goals and summarized 

learnings from panel member responses in Table 2.  

During the meeting, panel members were shown a prototype version of HD-Mobile 

and provided several suggestions for improvements, such as increasing the size of fonts, 

buttons, and images in the app, and to reduce the length of some of the task instructions. 

Based on feedback from the panel members, the International Physical Activity Questionnaire 

(IPAQ; Hagströmer, Oja, & Sjöström, 2006) was excluded from HD-Mobile due to the length 

and complexity of some of the questions that it contained. We responded to the panel’s 

suggestions and implemented changes to HD-Mobile and the planned research protocol 

before meeting again with the panel two months later. 
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2.3.2. Goals and outcomes of second round of consumer panel meetings. Our 

goals for the second round of meetings were to present the changes made to HD-Mobile and 

the study instructions and to ask panel members if they had any further suggestion for 

improvements to any aspects of the protocol. I present the specific questions posed to panel 

members in the second round of meetings in Table 3.  

Table 2.  

Summary of Key Questions Posed to Consumer Panel Members at First Round of Consumer 

Panel Meetings and Responses Received 

Questions for consumer panel Response from consumer panel 

How confident would members of the HD 

community be in independently 

downloading and installing smartphone 

applications? 

Most people with premanifest- and early 

manifest-HD should be able to confidently 

use smartphones independently. Those in 

later stages of the disease may need some 

assistance from close family members or the 

study investigators. 

What level of time commitment and 

involvement do panel members feel would 

acceptable for them and other HD 

community members when participating in 

a research project? 

Most people in their community would be 

accepting of spending five to fifteen minutes 

per day interacting with HD-Mobile over 

the course of the week. This was the 

planned time commitment we were 

considering requesting of participants in the 

studies presented in Chapters Three to Five. 

Which format would HD community 

members most like to have study 

instructions delivered to them (e.g., written 

The panel suggested that both written and 

video versions of the study instructions 

should be provided. 
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instructions, video-based instructions, or 

both)? 

 The panel members responded positively to the changes made to HD-Mobile from the 

first meeting. They specifically liked the reduced text in task instructions and stated the 

menus and content were well laid out. They also gave positive feedback to the inclusion of 

practice trials for some of the cognitive tasks. We provided participants with copies of the 

written study instructions and played sections of the video instructions to the group, to which 

they provided feedback. We implemented suggested changes and updated the instructions 

prior to launching the feasibility study. 

Table 3.  

Summary of Key Questions Posed to Consumer Panel Members at Second Round of 

Consumer Panel Meetings and Responses Received 

Questions for consumer panel Response from consumer panel 

How confident are panel members that they 

could engage with and understand HD-

Mobile, Fitbit One, and the overall protocol 

based upon changes made? 

Panel members felt confident that HD 

affected participants should be able to 

complete the study independently or with 

some support from family members or from 

the researchers conducting the study. 

Do panel members suggest any further 

changes to HD-Mobile, study instructions, 

or any aspect of the protocol? 

The language used was too technical in 

places and recommended reducing the use 

of acronyms in the video and written 

instructions. They felt both instructions 

types should begin with a clear overview of 

what was required on each day of the study 
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How confident are panel members that they 

or family their members could follow and 

understand the written and video 

instructions? 

Panel members liked that the video and 

phone instruction included vision and 

photos of operation of HD-Mobile on a 

phone and operation of the Fitbit One. 

Notwithstanding some suggested changes, 

they believed people with the expanded HD 

repeat would be able understand and follow 

the instructions. 

 

2.4. Feasibility Study of HD-Mobile and Remote Assessment Protocol 

2.4.1. Objective and aims. Our overall objectives for the feasibility study were to ensure that 

our proposed remote assessment protocol, which required independent operation of HD-

Mobile and a Fitbit One device, could be completed by premanifest- and manifest-HD 

participants and to gain further direct input on how to improve the protocol. To achieve these 

objectives we recruited a small sample of participants (nine HD people with the expanded 

HD repeat and ten healthy control participants) and asked them to complete a truncated, two-

day, version of our study protocol, in which they would perform all aspects of HD-Mobile 

and would operate the Fitbit One. We then conducted a semi-structured interview in which 

we asked participants to provide ratings on how confident they felt completing all aspects of 

the protocol (e.g., how confident they felt completing the questionnaires, completing the 

cognitive tasks, operating the Fitbit) and invited participants to suggest improvements we 

could make to any aspect of the protocol. Inviting feedback from participants on study 

protocols a key aspect of patient focused research design (Leidy & Vernon, 2008).  We 

assessed completion rates and type and quantity of any data loss. We hypothesised there 

would be no difference between participants with expanded HD repeat and healthy control 
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participants in their confidence to independently complete HD-Mobile cognitive tasks, 

operate Fitbit One devices, or to complete all required aspects of their participation. We also 

hypothesised any data loss would be within acceptable limits.  

2.4.2. Method. 

2.4.2.1. Participants. Nine participants with the expanded HD repeat, five with 

premanifest-HD and four with manifest-HD (MAge = 47.2, SD = 5.54) and ten healthy control 

participants (Mage = 44.64 SD = 8.5) were involved in the feasibility testing. All participants 

were required to be residents of Australia, fluent in English, 30 – 65 years of age, and to have 

access to an Android or Apple smartphone running Android 4.0 or iOS 7 (or above) above 

operating systems. Exclusion criteria were history of neurological illness (other than HD), 

psychiatric disorder, significant head injury, drug abuse, or current participation in any 

clinical drug trial. Participants with manifest-HD were further required to have a diagnosis of 

HD from a neurologist or neuropsychiatrist. Premanifest-HD participants were required to 

have a CAG expansion of at least 39 repeats and a disease burden score (DBS) of ≥ 200 

(calculated as age x [CAG – 35.5]; Penney Jr, Vonsattel, Macdonald, Gusella, & Myers, 

1997). Participants were recruited through the ‘ENRU-STOUT’ participant database at 

Monash University (managed by the Georgiou-Karistianis Experimental Neuropsychology 

Research Unit and the Stout Group), which is a database of people who have consented to 

being contacted about research participation opportunities.  

2.4.2.2. Materials.  See Table 1 for the full list of measures and devices that 

participants used and completed during each of the studies presented in the thesis, including 

the study presented in this chapter. Each of the questionnaires, the cognitive tasks, and the 

Fitbit devices are described in detail in subsequent chapters. So, to avoid repetition, and 

because I do not analysed from any of the measures in this chapter, I have not presented 

further details on the thesis research materials here.   
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2.4.2.3. Procedure. Following recruitment, participants were provided with all 

information and materials needed to complete study set-up and preparation. Participants were 

sent an email containing the HD-Mobile app (Android users), or instructions for downloading 

from the Apple Store (iPhone users), as well as username and password details for HD-

Mobile and for their pre-created Fitbit account. Packs containing a Fitbit One and associated 

accessories, printed instructions, a USB flash drive containing video and written instructions, 

and another copy of username and password information were sent to participants’ residential 

address. The written and video instructions informed participants of what was required on 

each day of the study as well as providing directions for downloading and installing HD-

Mobile and the Fitbit app on their phones. Contact information of research staff was provided 

so participants could request assistance if needed. Participants could select a day to begin the 

study and were instructed to set up all apps and equipment on the day before beginning 

participation.  

Active participation took place over a two day, approximately 48-hour, period. We 

instructed participants to begin wearing the Fitbit and to log in to HD-Mobile and complete 

the Day 1 tasks, within an hour of waking on Day 1. Before accessing the Day 1 tasks, 

participants were required to read the explanatory statement and complete the consent form 

from within HD-Mobile. Day 1 tasks included the SCOPA-SLEEP scale, the HADS, and the 

KSS. On the morning of Day 2, within an hour of waking, participants were required to log 

into HD-Mobile and complete the Day 2 tasks, which consisted of the DMSAQ, the KSS, and 

the cognitive tasks. Participants continued wearing the Fitbit for all of Day 2 until the 

morning of Day 3. On Day 3 participants could remove the Fitbit and return the device and 

accessories in a pre-paid return envelope. Following completion of active participation, 

participants were then contacted via phone, at a time of their choosing, and completed the 

structured interview (see Appendix 2 for the content of the structured interview).  
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2.4.2.4. Data analyses. Statistical analysis was performed using IBM SPSS V.24 

software. Missing data were excluded listwise from the analyses. Alpha was set at .05 for all 

analyses. We used two methods to determine how successfully participants could complete 

the study protocol independently. First, following completion of the study, including 

completion of all steps involving HD-Mobile and usage of the Fitbit for 48 hours, participants 

gave ratings, via structured interview, of their confidence when completing various aspects of 

the protocol. Ratings were given in a range of zero to ten, with zero being no confidence and 

ten being full confidence, and were calculated for the whole sample and were also separated 

and compared by group. We investigated confidence data for group level differences using 

independent samples t-tests. Second, we quantified study completion rates and types and 

kinds of any data. We did this as a less subjective means of understanding how successfully 

participants could complete the study independently. For example, a participant may have felt 

confident in their ability to operate the Fitbit but may have made operator errors leading to 

their sleep data not being recorded by the device, indicating their confidence, to a degree, 

may have been misplaced. This also acted as a check of the reliability of data transfer 

between HD-Mobile and our database and reliability of the Fitbit.  

2.5. Results 

Overall, participants generally felt confident in completing all aspects of the study. 

Mean ratings for all aspects of the study, for both the HD and control groups, were 7.67/10 or 

higher (see Figure 2), indicating moderate to high levels of confidence.  The lowest mean 

rating, M = 7.67, SD = 1.64, range = 5.00 – 10.00, was given by the HD group for confidence 

in setting-up and using the Fitbit. The highest ratings given by the HD group were confidence 

in completing the questionnaires in HD-Mobile, M = 8.50, SD = 0.80, range = 7.00 – 9.50, 

and for the usefulness and informativeness of the written instructions, M = 8.50, SD = 1.12, 

range = 8.00- 10.00. A similar pattern of results was seen for the control group whose lowest 
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rating was also related to the Fitbit, this time the rating of the overall usability of the Fitbit, M 

= 8.28, SD = 2.08, range = 4.00 – 10.00 and, as with the HD group, the highest rating was for 

confidence in completing the questionnaires in HD-Mobile, M = 8.90, SD = 1.22, range = 

6.00 – 10.00. Apparent in Figure 7 is a slight trend for control participants to rate the 

confidence in completing individual aspects of the study slightly higher than HD participants. 

However, with this small initial sample, there were no significant differences (all ps ≥ .46) 

and both HD, M  = 8.06, SD = 1.51, range = 6.00 – 10.00 and healthy control groups M = 

8.45, SD = 1.17, range = 6.50 – 10.00, were similarly confident in their ability to complete 

the study independently following working through the study instructions.  
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Figure 2. Mean and 95% CI for participant ratings of confidence to independently complete 

various aspects of the study and on usefulness of the written instructions. Note: Ratings were 

on a scale of 1 – 10 with 10 indicating highest confidence. 

 

In addition to providing ratings on their confidence to complete the study, we asked 

participants to suggest improvements to the study protocol, such as suggesting how to 
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improve HD-Mobile or how to improve the participant instructions. We also sought 

comments for each individual rating so that reasons for poor and good rating could be 

understood and, together with other solicited suggestions, improvements made to the study 

protocol. Feedback from participants was mostly positive, with occasional suggestions for 

improvement. Only two participants provided a non-positive response, with these being in 

relation to how they felt about completing the study remotely on their smartphones: 

“personally I feel ambivalent” (HD participant) and “5/10 because HD is making it harder for 

me to do things. IQ seems intact, but processing is muddled”. Table 4 provides a summary of 

participant responses for key aspects of the protocol. Of note, we found most participants 

used the written instructions and did not view the video instructions. Only five participants 

reported viewing the video instructions.  

Table 4. Summary of participant feedback and responses for key aspects of the protocol.  

Aspect of protocol commented on Comments and feedback provided 

Written Instructions “They were very informative, but there was 

a lot of information, so a summary or flow 

chart would be useful” (healthy control 

participant). 

“I was confused when to start and looked at 

the video for help. It wasn’t clear. A timeline 

or breakdown would help” (healthy control 

participant). “Straightforward and easy to 

use” (HD participant). 

Video instructions “Easy to use. I referred to the video 

instructions when I couldn’t understand the 

written instructions” (healthy control 
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participant). “Really good” (HD 

participant). 

Object Identity and Location Learning task “The example had three images and the 

actual one had eight. I wasn’t ready to 

memorise eight to ten pictures” (healthy 

control participant).  

“You have to really read it [the prompts] to 

pick up if you needed to remember object or 

location. People might miss that” (healthy 

control participant). 

“It was a little confusing. I was focusing on 

the pictures rather than what was being 

asked [whether to remember object identity 

or location]” (HD participant). 

Two-choice Discrimination task Several participants commented that they 

initially struggled on Two-choice 

Discrimination as their idea of “few” was 

five or six and was much less than what was 

expected from the task.  

Completing the study remotely   “Really good. It is a good way to be able to 

do it. It takes 5 - 10 minutes to do” (HD 

participant).  

“Convenience is awesome”, and “No 

problem. It was easy and the reminders were 

helpful” (healthy control participant). 
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“It was very natural; I use my phone a lot” 

(HD participant). 

 “Personally, I feel ambivalent as I have 

now done so many studies” (HD 

participant)  

“5/10 because HD is making it harder for 

me to do things. IQ seems intact, but 

processing is muddled” (HD participant).  

  

Regarding study completion rates, all participants who enrolled in the study 

completed Day 1 and Day 2 tasks and made themselves available for the structured interview 

at the end (see Figure 3 for summary of completion rates and data loss). All questionnaires 

and all cognitive tasks were completed in HD-Mobile and all data was successfully 

transferred to our database for analysis. However, modest data loss occurred from the Fitbit: 

81.58% of sleep data and 89.47% of activity data was obtained. One manifest-HD participant 

was unable to pair the Fitbit to their phone meaning no sleep or activity data was recorded for 

that participant. Another manifest-HD participant appeared to connect the Fitbit to the phone, 

but had no activity or sleep data recorded, indicating a fault with the device. Three healthy 

control participants forgot to set sleep mode on one of the two nights. However, one night of 

sleep data was recoverable by using the sleep diary completed in HD-Mobile to create a sleep 

log in Fitbit. One healthy control participant removed the Fitbit at night, not realising it was 

supposed to be worn to bed.  
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Figure 3. Percentages of participants completing the study after beginning and percentages of 

data types collected without loss. Note: N =19. 

 

2.6. Discussion 

This is the first work we know of to attempt remote cognitive assessment in HD and 

also the first to simultaneously remotely assess cognition, sleep, and activity.  Results 

demonstrate our remote assessment protocol, utilising HD-Mobile and Fitbit One activity 

monitors, is feasible for use within a HD sample, thus achieving our primary objective of the 

pilot feasibility study. That we were successful in this was evidenced by the consistently high 

mean ratings for confidence of participants to independently complete all aspects of the 

protocol, and most importantly that ratings did not differ between the HD and healthy control 

groups. If ratings provided by the HD group were lower than controls, it would indicate that 

some elements of the protocol were causing them specific additional burden or confusion, 

which would be problematic for plans to deploy the protocol in a large sample or project. We 

would also have failed to meet key recommendations from the literature that computerised 

cognitive assessment batteries be designed with any cognitive or technical literacy deficits of 
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target samples in mind (Bauer et al., 2012; Hagelkruys et al., 2016; Parsey & Schmitter-

Edgecombe, 2013).  

An additional key indicator of the feasibility and strength of design of the protocol 

was the 100% completion rate, demonstrating objectively that participants could successfully 

use HD-Mobile and the Fitbit activity device and found the process tolerable. Tolerability 

was also highlighted by the positive comments received from participants regarding how they 

felt about completing cognitive tasks and questionnaires on their smartphones, with only two 

of 19 participants responding in a non-positive manner. The feasibility of using of HD-

Mobile was further supported by the finding that no loss of data occurred. All questionnaires 

and tasks were completed, and all data was successfully transmitted to our database. It is 

likely that these positive results were influenced by our decision to consult with HD-

community members during development of the remote assessment protocol. This approach 

aligns with recommendations from the United States Food and Drug Administration (US 

Food and Drug Administration, 2017) and several authors (Coulter & Ellins, 2006; Leidy & 

Vernon, 2008; Ocloo & Matthews, 2016; Payne et al., 2011) that have advocated the value of 

patient perspectives on their conditions and available therapies and research endeavors 

related to their conditions. Congruently, the consumer panel identified several areas for 

improvement that our research group had not considered and would have likely remained in 

the protocol if not for consumer panel input. After the feasibility study, following participant 

suggestions, we were able to make yet further improvements to the protocol prior to the 

studies presented in subsequent chapters. 

The loss of some sleep and physical activity data through the Fitbit caused some 

concern. The data loss was primarily due to user error and we identified two primary means 

of better supporting participants in Phase Two of the project. First, we adjusted the written 

and video instructions to provide clearer instructions on Fitbit operation and we also began 
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monitoring Fitbit usage more closely. Eventually, we learned that daily monitoring of Fitbit 

usage was needed as participants sometimes connected the Fitbit correctly, but forgot to log 

sleep on some nights or depleted the battery without realising, meaning data loss would occur 

if Fitbit use was only checked at the commencement of the study.  

Our next major aim was to evaluate the quality of data generated from the HD-Mobile 

cognitive tasks, and to consider reliability and key forms of validity, such as known groups 

validity.  This was an essential step given our overarching goal of employing our remote 

assessment methodology in large scales studies, such as those monitoring cognitive outcomes 

of clinical trials, as concern has been previously raised in the literature regarding a tendency 

for some computerised cognitive assessment measures to be insufficiently validated (Bauer et 

al., 2012; Schlegel & Gilliland, 2007; Wild et al., 2008). Thus, although we could be 

confident that large scale deployment of HD-Mobile was feasible, specific validation of the 

HD-Mobile cognitive tasks was needed. I present a validation study of the HD-Mobile 

cognitive tasks in the following chapter.   
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Chapter Three: Study Two 

Feasibility and Initial Validation of ‘HD-Mobile’, a Smartphone Application for Remote 

Self-administration of Performance-based Cognitive Measures in Huntington’s Disease 

3.1. Explanatory Notes 

 In this chapter, I present Study Two from the thesis research. This chapter addresses 

our second research aim, which was to demonstrate that the cognitive tasks we developed for 

the research project would be reliable, and valid, across several forms of validity, and 

sensitive to cognitive impairment in HD compared to controls. To address this aim we 

compared the performance of premanifest-HD, manifest-HD, and healthy control participants 

on the HD-Mobile cognitive tasks. We also assessed how HD-Mobile cognitive outcomes, for 

participants with the expanded HD repeat, compared to pen-and-paper cognitive task data and 

to measures of symptom severity. The results indicated that the HD-Mobile cognitive tasks 

had robust test-retest reliability, known-group and concurrent validity, achieving our aim. 

The results of Study Two extended the results of Study One, by demonstrating that remote 

assessment of cognition in HD is not only feasible but can generate reliable, valid, and 

scientifically meaningful data.   

Note. This chapter was published in the Journal of Neurology and is presented in its 

published form. Within the chapter is a reference to supplementary material. The 

supplementary material that was submitted with the study manuscript included content from 

Study One, presented in Chapter Two, and so is not reproduced later in this chapter or the 

appendix to the thesis.   

McLaren, B., Andrews, S. C., Glikmann-Johnston, Y., Mercieca, E.-C., Murray, N. W. G., 

Loy, C., Bellgrove, M. A., Stout, J. C. (2020). Feasibility and initial validation of 

‘HD-Mobile’, a smartphone application for remote self-administration of 
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performance-based cognitive measures in Huntington’s disease. Journal of 

Neurology.  

  



Vol.:(0123456789)1 3

Journal of Neurology 
https://doi.org/10.1007/s00415-020-10169-y

ORIGINAL COMMUNICATION

Feasibility and initial validation of ‘HD‑Mobile’, a smartphone 
application for remote self‑administration of performance‑based 
cognitive measures in Huntington’s disease

Brendan McLaren1   · Sophie C. Andrews1,2,3   · Yifat Glikmann‑Johnston1   · Emily‑Clare Mercieca1   · 
Nicholas W. G. Murray5 · Clement Loy4,5 · Mark A. Bellgrove1   · Julie C. Stout1 

Received: 15 May 2020 / Revised: 29 July 2020 / Accepted: 13 August 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Objective  Smartphone-based cognitive assessment measures allow efficient, rapid, and convenient collection of cognitive 
datasets. Establishment of feasibility and validity is essential for the widespread use of this approach. We describe a novel 
smartphone application (HD-Mobile) that includes three performance-based cognitive tasks with four key outcome measures, 
for use with Huntington’s disease (HD) samples. We describe known groups and concurrent validity, test–retest reliability, 
sensitivity, and feasibility properties of the tasks.
Methods  Forty-two HD CAG-expanded participants (20 manifest, 22 premanifest) and 28 healthy controls completed HD-
Mobile cognitive tasks three times across an 8-day period, on days 1, 4, and 8. A subsample of participants had pen-and-
paper cognitive task data available from their most recent assessment from their participation in a separate observational 
longitudinal study, Enroll-HD.
Results  Manifest-HD participants performed worse than healthy controls for three of four HD-Mobile cognitive measures, 
and worse than premanifest-HD participants for two of four measures. We found robust test–retest reliability for manifest-HD 
participants (ICC = 0.71–0.96) and with some exceptions, in premanifest-HD (ICC = 0.52–0.96) and healthy controls (0.54–
0.96). Correlations between HD-Mobile and selected Enroll-HD cognitive tasks were mostly medium to strong (r = 0.36–0.68) 
as were correlations between HD-Mobile cognitive tasks and measures of expected disease progression and motor symptoms 
for the HD CAG-expanded participants (r = − 0.34 to − 0.54).
Conclusions  Results indicated robust known-groups, test–retest, concurrent validity, and sensitivity of HD-Mobile cognitive 
tasks. The study demonstrates the feasibility and utility of HD-Mobile for conducting convenient, frequent, and potentially 
ongoing assessment of HD samples without the need for in-person assessment.

Keywords  Huntington’s disease · Cognition · Remote assessment · Neuropsychology

Introduction

Cognitive impairments in Huntington’s disease (HD) 
often appear many years before clinical diagnosis [1, 2] 
which, according to traditional diagnostic criteria for HD, 
is based on the emergence of significant observable motor Electronic supplementary material  The online version of this 
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dysfunction [3, 4]. The impact of cognitive symptoms on 
functioning and quality of life in HD extends beyond the 
impact of motor symptoms alone [5, 6]. Because exciting 
new potential treatments for HD are currently in clinical 
trials [7], the current need is even greater for efficient, cost-
effective methods of phenotyping people with the HD gene 
in large-scale studies. Such studies are important to enable 
future investigations of additional genetic modifiers and for 
monitoring response to therapeutics. For example, recent 
studies investigating genetic modifiers of age of onset of 
cognitive symptoms required sample sizes in the thousands, 
but because data in these studies were collected using face-
to-face assessments with clinicians, the acquisition of suf-
ficient datasets took many years, limiting the rate of progress 
[8, 9].

Remote, self-administered, performance-based cogni-
tive tasks may provide a solution to the problem of labor-
intensive face-to-face assessments. For example, a mobile 
app-based approach could enable rapid, inexpensive, accu-
rate, and convenient means of collecting cognitive data [10]. 
Furthermore, remote computerized (e.g., smartphone-based) 
methods increase the inclusiveness of participation by 
improving accessibility for people who are geographically 
dispersed [11–13]. Additionally, self-administered tasks can 
enable frequent repeat testing, which is ideal for monitoring 
cognitive change over time [13, 14], and by extension, ideal 
for monitoring day-to-day fluctuations in functioning that 
would be invisible in, for example, an annual clinic visit 
[15–17]. Thus, several compelling reasons support the use of 
remote self-assessment of cognitive abilities. Remote assess-
ment may complement traditional clinic-based assessment, 
or, when clinic-based assessments are impracticable, may 
be an alternative that can provide an indication of func-
tion where no other assessments would be possible. Such 
a requirement may be best served by cognitive assessments 
on smartphones, which are now a ubiquitous technology that 
could be utilized at minimal cost under a ‘bring your own’ 
model.

We have created a ‘bring your own’ mobile app, HD-
Mobile, designed for use on smartphones and for assessment 
of functioning in HD. In this first step, we tested HD-Mobile 
using three computerized performance-based cognitive 
assessment tasks, including Speeded Tapping, Two-choice 
Discrimination, and Object Information and Location Learn-
ing (OILL), which allow assessment of several cognitive 
domains in a brief testing session. Our aim was not to con-
duct a full cognitive battery remotely. Instead, at this stage 
of research, we wanted to explore cognitive assessments 
that would be able to be performed without intervention of 
a clinician, and that would include tests across a range of 
response requirements, including selecting correct answers, 
choosing between alternatives, and performing a speeded 
motor task. A brief assessment is particularly important 

for success in the context of participants working indepen-
dently without clinician support and needing to incorporate 
the assessment into their daily life [10]. Speeded Tapping 
is a measure of psychomotor speed and motor control that 
is sensitive to disease stage and symptom progression in 
HD [2, 18]. Two-choice discrimination tasks are computer-
ized tasks that assess binary-choice decision making, can be 
modeled mathematically [19], and are sensitive to cognitive 
impairment in Parkinson’s disease, another sub-cortical neu-
rodegenerative disorders [20, 21]. Object Information and 
Location Learning [22] is a task with two visual learning and 
recognition conditions that examine hippocampal-dependent 
memory. Research with other visuospatial memory-based 
tasks has identified deficits in visuospatial-based memory 
performance in manifest-HD participants [23, 24]. Taken 
together, Speeded Tapping and visual memory-based tasks 
can be completed by manifest-HD participants and are sen-
sitive to cognitive impairment in HD, and Two-choice dis-
crimination tasks have been successfully used with other 
neurodegenerative samples. Considering this, we included 
these three cognitive tasks in HD-Mobile as we expected 
the tasks to assess several domains of cognitive function-
ing which are affected in HD while being brief to complete 
and simple enough for participants to self-administer in the 
absence of a clinician.

Remote self-assessment using cognitive measures will 
be of limited value until their feasibility and validity are 
established [11, 16, 25]. Hence, the aim of this study was 
to determine the feasibility of remote self-administration, 
without any face-to-face contact or in-person training, using 
cognitive tasks in people with the HD gene expansion (i.e., 
HD gene expansion carriers; HDGEC) and healthy control 
participants. We also aimed to assess the known-groups and 
concurrent validity, sensitivity to indicators of disease pro-
gression, and test–retest reliability of the three HD-Mobile 
performance-based outcome measures.

Method

Participants

We studied 69 participants, including 42 genetically con-
firmed HD gene-expansion carriers and 28 healthy con-
trols (Table 1). Twenty-two HD gene-expansion carriers 
were in the premanifest stage of HD (premanifest-HD) and 
20 were diagnosed and in the early stages of manifest HD 
(manifest-HD). Inclusion criteria were being between 18 
and 70 years of age, fluency in English and having access 
to an Android or Apple smartphone running Android 4.0 
or iOS 7 (or above) operating systems. Exclusion criteria 
included current participation in any clinical drug trial, 
history of neurological illness (other than HD), psychiatric 
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disorder, significant head injury, or drug abuse. Manifest-
HD participants had all been diagnosed by a neurologist 
or neuropsychiatrist. For the premanifest-HD group, CAG 
expansions were 41 or more, and disease-burden score 
(DBS) was ≥ 200 (calculated as age × [CAG − 35.5]) [26]. 
We also calculated the CAG-Age product for HD gene-
expansion carriers (calculated as age × [CAG − 33.6]) [27]. 
As is typical in HD samples, the manifest-HD group was 
significantly older than the premanifest-HD and healthy 
control groups (p = 0.005 and p = 0.033, respectively). The 
control group had a higher level of education than the pre-
manifest-HD group (p = 0.018). The manifest-HD group 
had significantly higher Unified Huntington’s Disease Rat-
ing Scale (UHDRS) total motor score (TMS), DBS, and 
CAG-Age product scores than the premanifest-HD group 
(all ps < 0.008), and lower UHDRS Total Functioning 
Capacity (TFC) score than the premanifest-HD and healthy 
control groups (both ps < 0.001). There were no other sig-
nificant differences between groups (all ps > 0.06). One 
healthy control participant self-reported significant levels 
of anxiety and depression and one manifest-HD participant 
reported significant anxiety. These participants were not 
excluded from analyses. For a subset of analyses in which 
we examined convergence of performance on HD-Mobile 
with a separate ongoing study (Enroll-HD), we included 
all nineteen participants, (manifest-HD = 7, premanifest-
HD = 12) for which such data were available, and chose 
their most recent Enroll-HD assessment for these analyses.

We recruited participants through participant databases 
at Monash University, Melbourne, and Westmead Hospital, 
Sydney. Additional participants were recruited using adver-
tisements for the study posted on Facebook and at local HD-
community events.

Materials

HD-Mobile is a smartphone application developed by our 
group for touch screen smartphones operating Android 4.0 
and iOS 7 and above. HD-Mobile can send reminder mes-
sages to participants, administer cognitive tests and self-
report questionnaires, and automatically transmit data to 
the lab server.

For this study, HD-Mobile included three performance-
based cognitive tasks; Speeded Tapping, Two-choice Dis-
crimination, and Object Identity and Location Learning 
(OILL). Briefly, Speeded Tapping is a bimanual speeded 
finger-tapping task. For this task, participants viewed the 
mobile phone display which showed two lolly jars (see 
Fig. 1a). Using onscreen instructions, participants were 
asked to ‘fill the jars’ by tapping the response ‘TAP’ buttons 
on the screen as fast as possible with alternating thumbs. The 
task comprised three blocks, each completed with 50 correct 
(alternated) taps. The main dependent variable was mean 
inter-tap interval (milliseconds), termed “tapping speed”. 
Following inverse log transformation to correct for non-
normality, higher values represented faster tapping speed.

Table 1   Participant 
characteristics

HADS Hospital Anxiety and Depression Scale, UHDRS TFC Unified Huntington’s Disease Rating Scale 
Total Functional Capacity, UHDRS TMS Unified Huntington’s Disease Rating Scale Total Motor Score, 
which was only available for participants involved with Enroll-HD

Characteristic Healthy controls Premanifest-HD Manifest-HD

n 28 22 20
Age [mean years (SD), range] 44.43 (11.11)

28–65
42.09 (8.52)
21–58

51.60 (8.03)
31–65

Education [mean years (SD), range] 14.80 (1.66)
12–19

13.25 (2.09)
10–18

14.33 (2.14)
12–18

CAG repeat length [mean (SD), range] – 42.95 (2.16)
41–51

42.88 (2.11)
41–49

Disease-burden score [mean (SD), range] – 304.12 (56.13)
217.50–435.00

379.64 (58.85)
275.00–484.50

CAG-age product (CAP) [mean (SD), range] – 382.47 (66.45)
270.86–541.72

475.62 (60.78)
367.00–589.38

HADS anxiety [mean (SD), range] 6.07 (4.60)
0–16

6.36 (4.29)
0–15

5.85 (3.62)
2–17

HADS depression [mean (SD), range] 3.14 (3.48)
0–16

3.50 (3.26)
0–11

5.40 (4.45)
0–14

UHDRS TFC (self-report) [mean (SD), range] 12.96 (0.19)
12–13

12.64 (0.90)
9–13

9.26 (2.42)
6–13

n – 12 7
UHDRS TMS [mean (SD), range] 1.25 (2.55)

0–7
15.89 (12.59)
1–40
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The Two-choice Discrimination task (Fig. 1b) was mod-
elled after the Numerosity Discrimination task [19]. Par-
ticipants chose rapidly between two alternatives, with lim-
ited information to guide their choices, and used feedback 
to guide future choices. Participants were presented with a 

scene depicting snowflakes and were instructed to quickly 
decide, without counting, whether there were “few” or 
“many” snowflakes on the screen. After each decision, feed-
back was provided in the form of a happy (correct choice) 
or sad face (incorrect choice). Three blocks of forty trials 
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were completed. The dependent variable was overall accu-
racy (percent correct), with higher scores indicating better 
performance.

The Object Identification and Location Learning (OILL) 
task was based on the paradigm developed by Buffalo and 
colleagues [28] and adapted from the version used by Glik-
mann-Johnston et al. [22]. The task assessed visual memory 
in two conditions, Object Identity and Object Location. Each 
condition occurred twice and included three block types: 
learning, distractor, and recognition (see Fig. 1c). The learn-
ing trials involved sequential presentation of eight unique 
color fractal objects in separate locations on the screen 
with participants instructed to remember either the objects 
themselves (object identity condition) or the locations of 
the objects (object location condition). The distractor block 
was a letter identification task. The recognition block tested 
participants’ recognition of the object (object identity condi-
tion), or the location (object location condition) by present-
ing them with a series of fractals to which they had to select 
‘yes’ or ‘no’ buttons displayed on the screen. Overall accu-
racy (percent correct) for object identity and object location 
trials was recorded and used in subsequent analyses. Higher 
scores indicated better performance.

In addition, HD-Mobile included a series of question-
naires assessing mood, sleep, and activity and participants 
wore Fitbit One activity/sleep monitors. Of these, only a 
mood measure, Hospital Anxiety and Depression Scale 
(HADS) [29], was inlcuded in the current report. Data 
from Fitbit devices and other questionnaires were used for 
a separate set of analyses with separate aims and are not 
reported here. The HADS is a widely used and reliable [30, 
31] 14-item self-report questionnaire that assesses anxiety 
and depression. During recruitment, participants completed 
a self-report version of the UHDRS TFC [32], a five-item 
scale, which assesses functional capacity and has accept-
able accuracy when self-completed [33]. Participants pro-
vided ratings of their own ability to complete the daily 
activities described by the scale. The questions, along with 

all demographic questions, were completed via an online-
questionnaire before participants downloaded HD-Mobile. 
Scores range from zero to 13, with higher scores indicat-
ing greater functional capacity. The Enroll-HD cognitive 
battery includes several well-establised pen-and-paper 
cognitive tasks including Symbol Digits Modalities Test, 
F–A–S and Animals fluency subtests from the Controlled 
Oral Word Association Test, and the word-reading condi-
tion from the Stroop Color Word Test. We also had total 
motor score (TMS), a clinician derived measure of motor 
symptoms [32], data available for seventeen of the nineteen 
Enroll-HD participants.

Procedure

Following recruitment, we provided participants with video 
and written instructions for the installation of HD-Mobile 
and described what they were required to do each day of the 
study. No face-to-face training was provided to participants 
as the aim was to assess if participants could complete the 
protocol entirely remotely with no provision of in-person 
training. Participation occurred over an 8-day period, during 
which participants completed at least one study procedure on 
each day, including completing the cognitive tasks on three 
separate occasions. We were limited to an 8-day study period 
due to the battery life of the Fitbit One devices. Selecting 
an 8-day study period allowed the devices to be mailed to 
participants and then worn for as long as possible with a 
minimal chance that participants would need to recharge the 
devices part-way through the study. We then spaced the cog-
nitive assessment days out within the 8-day study period. At 
9 am each morning of the study, participants would receive 
a notification on their phone from HD-Mobile reminding 
them to complete their daily tasks. On the morning of day 
1, participants logged into HD-Mobile and completed an 
electronic informed consent form, the three cognitive tasks, 
all the questionnaires, and began wearing the Fitbit One. 
The cognitive tasks were completed again on days 4 and 8. 
Participants were asked to complete tasks within an hour of 
waking on days 1, 4, and 8. Participants continued wearing 
the Fitbit until the morning of day 8. The HD-Mobile app 
enforced the completion of a standard set of procedures in 
an order specified by us; for example, day 1 tasks could not 
be accessed until informed consent was completed and day 
2 tasks could not be accessed until day 1 tasks were com-
pleted. Total time commitment required from participants 
was two and a half hours. Remarkably, we experienced no 
attrition in the study.

Data analysis

Statistical analyses were performed using IBM SPSS V.24 
software. Missing data were excluded pairwise from the 

Fig. 1   Screenshots and schematic diagrams of HD-Mobile cogni-
tive tasks. An example screenshot of Speeded Tapping (a) mid-way 
through the task is shown. Each Two-choice Discrimination (b) trial 
lasted for between 250 and 5500 milliseconds (ms). Snowflakes were 
presented for up to 1500 ms, at which point they disappeared from the 
screen to prevent counting. Participants then had a further 4000 ms to 
respond. A response within 250–5500 ms triggered feedback (a happy 
or sad emoticon) for 500 ms followed by a 500 ms inter-trial interval. 
If participants did not respond within the response window a 1000 ms 
inter-trial interval was used. Response buttons were disabled dur-
ing feedback and the inter-trial interval. The OILL task (c) involved 
presentation of colored fractals on a black background in one of 16 
possible locations on an invisible 4 × 4 grid. The encoding phase was 
23.5 s in duration, with each of eight fractals presented for 3000 ms, 
followed by 500 ms gap between each fractal. During distractor and 
recognition trials, stimuli were presented on a screen until a response 
was provided by participants

◂
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analyses. Alpha was set at 0.05 for all analyses. Mean of 
response times from Speeded Tapping was positively skewed 
and was, therefore, transformed using the reciprocal of the 
natural log. Our primary means of determining feasibility 
were via assessing study completion rates. We required an 
overall study completion rate of 90% by HD gene-positive 
participants to match adherence rates of a smartphone-based 
study in Parkinson’s disease [34] and to be confident that 
most premanifest- and early manifest-HD patients could 
operate HD-Mobile and participate in remote assessment. 
Prior to this study, we developed the project to ensure fea-
sibility in two ways. First, we met an advisory panel of nine 
members of the HD community who either had premani-
fest- or manifest-HD or were family members or carers of 
someone with HD. The advisory panel gave direct input into 
the remote assessment protocol, including giving direct feed-
back on the design of HD-Mobile and supporting materials, 
to ensure the project would be feasible. Second, we also 
conducted a pilot study (n = 5 premanifest-HD, n = 4 man-
ifest-HD, and n = 10 healthy control participants) to ensure 
feasibility. The HD gene-positive and healthy control par-
ticipants were confident in using HD-Mobile, with no differ-
ence in confidence levels (see supplement for data from this 
study). Hence, for this study, we assessed completion rates 
to determine if the indications of feasibility obtained from 
the pilot study held for a larger sample.

We viewed the examination of known-group validity of 
HD-Mobile cognitive tasks from the point of view that the 
literature has clearly established differences in the magni-
tude of cognitive impairment between people with manifest-
HD, premanifest-HD, and healthy control participants. Peo-
ple with manifest-HD have clear cognitive deficits compared 
to controls and people with premanifest-HD, who are near-
ing clinical onset, have milder cognitive deficits that may not 
be discernable versus healthy controls [2, 35]. Because all 
participants were recruited into the study with established 
group designations, based on their HD-status, to establish 
known-group validity, we required HD-Mobile tasks to be 
able to detect the significant cognitive impairments that are 
reliably present in manifest-HD groups when compared to 
healthy control groups. We did not compare HD-Mobile 
cognitive task performance to in-person collected baseline 
cognitive data because the group-level cognitive profiles of 
manifest- and premanifest-HD groups are reliably estab-
lished and as we were deliberately not meeting with our par-
ticipants. Known-group validity was examined using mixed 
between- and within-subject analyses of variance (ANOVA) 
with Tukey’s Honestly Significant Difference post hoc test to 
analyze the effects of group (premanifest-HD, manifest-HD, 
healthy control) and day (1, 4, 8) on cognitive performance 
for each task.

To examine variability in performance across the days 
(test–retest reliability), we used the intraclass correlation 

coefficient (ICC) and set an ICC value of 0.70 as a bench-
mark for acceptable reliability [36]. To examine relation-
ships between day 8 HD-Mobile cognitive task perfor-
mance and results from Enroll-HD assessment (concurrent 
validity), as well as associations with TMS and DBS 
(sensitivity to indicators of disease progression), we used 
Pearson’s correlation coefficients. We analyzed day 8 cog-
nitive data for these analyses to limit the impact of practice 
effects. We utilized available Enroll-HD cognitive data in 
concurrent validity assessment. Although we were not 
attempting to approximate the Enroll-HD cognitive tasks, 
we expected participants performing poorly on Enroll-HD 
tasks would also perform poorly on HD-Mobile cogni-
tive tasks, indicating concurrent validity with established 
measures of cognition in HD. We particularly expected 
agreement between tasks loading on similar domains (e.g., 
SDMT has psychomotor and visual memory components, 
Speeded Tapping has a psychomotor component, and the 
OILL task has a visual memory component). We set a 
medium effect size (r ≥ 0.30) as an indicator of acceptable 
levels of concurrent validity and sensitivity. We assessed 
relationships between HD-Mobile cognitive task perfor-
mance and DBS, rather than self-report TFC, due to the 
strong ceiling effect for TFC scores in premanifest-HD.

Results

We assessed the feasibility of our study design by observ-
ing attrition rates within our participant groups. We expe-
rienced zero attrition over the course of the study. We also 
had impressive adherence as all participants completed all 
HD-Mobile cognitive tasks and questionnaires. However, 
due to a minor programming fault, we lost a small amount 
of day 8 cognitive data; three participants for Two-choice 
Discrimination (n = 2 manifest-HD, n = 1 healthy control), 
two participants for the OILL task (n = 2 manifest-HD), 
and one manifest-HD participant for Speeded Tapping, 
which resulted in a slight reduction of sample size for 
some analyses. Initially, HD-Mobile sent task data to our 
server after participants returned to the main menu fol-
lowing the completion of each task. The participants men-
tioned above completed all tasks but did not return to the 
main menu on day 8 before exiting HD-Mobile and delet-
ing the application, meaning some cognitive data were 
lost. HD-Mobile was updated to send data to the server 
immediately upon completion of tasks and questionnaires 
and no further data loss occurred. We next assessed the 
psychometric properties of the HD-Mobile cognitive tasks.
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Known‑group validity

For Speeded Tapping, the manifest-HD group performed 
worse than the premanifest-HD and control groups 
(Fig. 2a). We found a large and significant main effect 
of group, F(2, 66) = 16.89, p < 0.001, ηp

2 = 0.34, with 
the manifest-HD group tapping slower than the healthy 
control and premanifest-HD groups, both with p ≤ 0.001 
and large effects, d = 1.64 and 1.03, respectively. The 
premanifest-HD and control groups did not differ in tap-
ping speed (p = 0.16), although there was a medium effect 
size (d = 0.59). There was a main effect of day, Green-
house–Geisser adjusted F(1.84, 121.11) = 8.32, p = 0.001, 
ηp

2 = 0.11, indicating an improvement in tapping speed 
over the study days, but this effect did not interact with 
group (p = 0.35).

For accuracy (percent correct) on Two-choice Discrimi-
nation, the group main effect was again large and signifi-
cant, F(2, 63) = 6.17, p = 0.004, ηp

2 = 0.16 (Fig. 2b). The 
manifest-HD group performed less accurately than the 
healthy control group with a large effect, p = 0.002 and 
d = 0.93, but did not differ from the premanifest-HD group, 
p = 0.14, d = 0.057. Healthy control and premanifest-HD 
groups did not differ on accuracy, p = 0.27, d = 0.55. We 
again observed a main effect of day, F(2, 126) = 5.43, 

p = 0.005, ηp
2 = 0.079, with gradual improvement over 

the study, and no interaction with group (p = 0.59).
For OILL Object Identity, we found a large and significant 

main effect of group, F(2, 64) = 9.64, p < 0.001, ηp
2 = 0.23 

(Fig. 2c). The manifest-HD group was less accurate than 
the healthy control group, p = 0.001, and premanifest-HD 
group, p < 0.001, which were both large effects, d = 1.08 
and 1.22, respectively. There was no difference between the 
healthy control and premanifest-HD groups on this meas-
ure, p = 0.78. There was no effect of day or interaction with 
group (both ps > 0.72). In contrast, Object Location did 
not demonstrate a group effect, F(2, 64) = 1.53, p = 0.23, 
ηp

2 = 0.046 (Fig. 2d). There was no effect of day, p = 0.063, 
ηp

2 = 0.040, but the interaction with group was significant, 
F(4, 128) = 2.52, p = 0.044, ηp

2 = 0.073, which appeared to 
be driven by a decrease in the control group’s score from day 
4 to 8, whereas the other two groups improved.

Test–retest reliability

HD-Mobile cognitive tasks demonstrated moderate to excel-
lent intraclass correlations for most outcome variables for 
all three participant groups (ICCs = 0.60–0.96; Table 2). 
Three intraclass correlation coefficients did not reach accept-
able reliability, including OILL Object Location for the 

Fig. 2   Mean and 95% confidence interval for premanifest-HD, mani-
fest-HD, and healthy control groups performance on HD-Mobile cog-
nitive tasks for a Speeded Tapping, b Two-choice Discrimination, c 
OILL Object Identity, d OILL Object Location, *p ≤ 0.05 for mani-

fest-HD vs premanifest-HD; **p ≤ 0.01 for manifest-HD vs premani-
fest-HD; ***p ≤ 0.001 for manifest-HD vs premanifest-HD. #p ≤ 0.05 
for manifest-HD vs healthy control, ##p ≤ 0.01 for manifest-HD vs 
healthy control; ###p ≤ 0.001 for manifest-HD vs healthy control
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premanifest-HD group, ICC = 0.54, and percent correct on 
the Two-choice Discrimination for both the premanifest-HD 
group, ICC = 0.52, and healthy control group, ICC = 0.54 
(Table 2).

Concurrent validity

To determine concurrent validity of the HD-Mobile cogni-
tive tasks, we assessed the relationship between performance 
on day 8 HD-Mobile cognitive task variables and selected 
Enroll-HD cognitive tasks, for the HD participants in our 
study who were part of Enroll-HD. For Speeded Tapping 
and OILL tasks, we observed medium to strong correlations 
(r = 0.36–0.68) with the Enroll-HD cognitive tasks, includ-
ing Symbol Digits Modalities Test, F–A–S and Animals 
subtests from the Controlled Oral Word Association Test 
and the word-reading condition from the Stroop Color–Word 
Test, where better performance on HD-Mobile tasks corre-
lated with better performance on Enroll-HD paper and pen 
tasks (Table 3). Correlations between percent correct on the 
Two-choice discrimination task and the Enroll-HD cogni-
tive tasks were non-significant and at most weak, although 
we noted that none of the Enroll-HD tasks had comparable 
Two-choice decision requirements.

Sensitivity to indicators of disease progression

We assessed the sensitivity of HD-Mobile cognitive tasks 
to indicators of disease progression via correlation with 
DBS, an indicator of age and genetically estimated dis-
ease burden, and to motor symptom progression (TMS) 
by analyzing correlations between day 8 cognitive task 
performance, DBS, and TMS across our HD participants 
(premanifest-HD and manifest-HD combined). Ideally, 
we would have preferred to use an available functional 
capacity measure (TFC), as we had self-report TFC data 
for all participants and only had TMS data for Enroll-HD 
participants, but ceiling effects on TFC in our sample pre-
cluded this possibility. For DBS, higher disease burden 
correlated with poorer performance on all HD-Mobile cog-
nitive tasks, with p values ranging from < 0.001 to 0.042, 
and effect sizes in the medium to large range, r = − 0.35 
to − 0.54. Increased TMS had medium to strong correla-
tions with poorer performance on OILL Object (r = − 0.57, 
p = 0.028) and Location trials (r = − 0.71, p = 0.003), but 
correlated non-significantly with poorer performance on 
Speeded Tapping (p = 0.15) and Two-Choice Discrimina-
tion (p = 0.41).

Table 2   Intraclass correlation 
coefficients for test–retest 
reliability of HD-Mobile 
cognitive task outcome 
variables for premanifest-HD, 
manifest-HD, and control 
groups

Speeded Tapping RT 1/ln inter-tap interval in milliseconds on Speeded Tapping task, OILL Object Identity 
% Correct percent correct on Object Identification and Location Learning task object identification trials, 
OILL Object Location % Correct percent correct on Object Identification and Location Learning task loca-
tion identification trials, Discrimination % Correct percent correct on Two-choice Discrimination task

Premanifest-HD Manifest-HD Healthy controls

Speeded Tapping RT 0.96 0.96 0.96
Discrimination % Correct 0.52 0.77 0.54
OILL Object Identity % Correct 0.75 0.71 0.68
OILL Object Location % Correct 0.54 0.78 0.60

Table 3   Pearson product-
moment correlations between 
HD-Mobile and ENROLL-HD 
cognitive tasks outcome 
variables

SDMT Symbol Digit Modalities Test, FAS F-A-S verbal fluency task, Animals animals verbal fluency task, 
Stroop Word Stroop test word trial, Speeded Tapping RT 1/ln inter-tap interval in milliseconds on Speeded 
Tapping task, OILL Object Identity % Correct percent correct on Object Identification and Location Learn-
ing task object identity trials, OILL Object Location percent correct on Object Identification and Location 
Learning task location identity trials, Two-Choice Discrimination % Correct percent correct on Two-choice 
Discrimination task
*≤ 0.05
**≤ 0.01

SDMT FAS Animals Stroop Word

Speeded Tapping RT (n = 18) 0.67** 0.48* 0.64** 0.47*
OILL Object Identity % Correct (n = 16) 0.63** 0.44 0.57* 0.36
OILL Object Location % Correct (n = 16) 0.54* 0.68** 0.61* 0.50*
Discrimination % Correct (n = 16) − 0.001 0.28 0.07 − 0.13
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Discussion

The key finding from this study is that a ‘bring your own’ 
approach to mobile-app-based remote assessment of cog-
nitive and behavioral data in people with premanifest-HD 
and manifest-HD generates cognitive outcomes compara-
ble to in-person testing across several aspects of psycho-
metric validity. To our knowledge, this is the first work 
to conduct exclusively remote, self-administered, mobile 
app-based assessment of cognitive performance in a neu-
rodegenerative population. Remarkably, we experienced 
no attrition in the study. All participants completed all 
HD-Mobile questionnaires and tasks, despite us not meet-
ing with participants face-to-face, indicating they found 
the tasks, and the time commitment required to com-
plete them, acceptable. A strength of the study is that it 
included both early manifest- and premanifest-HD partici-
pants, which broadens applicability to a range of levels 
of HD severity. We do not yet know whether the use of 
HD-Mobile is suitable for people with moderate to severe 
HD, as they were excluded from the study. Nonetheless, 
the findings of robust known groups and concurrent valid-
ity, sensitivity, and test–retest reliability of HD-Mobile, 
with some noted exceptions, indicate the app meets key 
recommended standards for computerized neuropsycho-
logical assessment devices set by the American Academy 
of Clinical Neuropsychology and the National Academy 
of Neuropsychology [11].

The known-group validity of HD-Mobile cognitive 
tasks was demonstrated as we detected the expected 
impaired performance of the manifest-HD group com-
pared to controls for at least one outcome measure on all 
three cognitive tasks, and compared to the premanifest-HD 
on at least one outcome measure for two of the cognitive 
tasks. This shows HD-Mobile has parity with analogous 
in-person cognitive assessment measures [2, 23, 24]. For 
example, studies investigating visual memory function in 
HD [22, 23] observed differences between manifest-HD 
and controls, but not premanifest-HD and controls, which 
matches our findings on the Object Identity condition from 
the OILL task. Moreover, Speeded Tapping separated 
manifest-HD from premanifest-HD and controls similar 
to the in-person version of the task used by Stout and col-
leagues [2]. Only the Object Location condition in our 
OILL task did not separate the participant groups. Thus, 
overall, there appears to be limited to no loss of function 
or sensitivity in shifting from in-person clinician-directed 
assessment to remote clinician-free self-administered 
assessment using HD-mobile. It is possible that because 
our study was conducted remotely, without a researcher 
to provide prompts, participants may have occasionally 
missed the cues to remember Object Identity or Object 

Location, an occurrence noted by HD participants who 
assisted with the development of the app, resulting in them 
being unsure as to which information to attend. In future 
iterations, addition of a voice-based or on-screen prompt 
for each condition may improve the sensitivity and robust-
ness of this task.

In addition to known-group validity, HD-Mobile cog-
nitive tasks generally achieved robust concurrent validity, 
sensitivity, and test–retest reliability. Each is a property that 
new assessment tools must possess to meet basic standards 
of test development and to have clinical and/or scientific 
utility [11, 25]. In this first iteration of HD-Mobile, some 
analyses did not reach a priori targets for acceptable levels 
of reliability, sensitivity, or validity. Possible reasons for 
these outcomes are discussed below. We observed concur-
rent validity as HD-Mobile and Enroll-HD cognitive tasks 
measuring similar cognitive domains had medium to strong 
correlations in the expected directions. In contrast, Two-
choice Discrimination performance was unrelated to Enroll-
HD measures, probably because none of the Enroll-HD tasks 
assess cognitive domains relevant to the Two-choice task. 
A limitation of the study was our relatively small sample 
size. We did not apply a Bonferroni correction to correla-
tions as this would have been overly conservative due to 
our small sample size and the number of comparisons. HD-
Mobile cognitive tasks were sensitive to disease burden and 
motor symptom progression, as increased disease burden 
and motor symptoms generally correlated to a medium to 
strong degree with poorer HD-Mobile cognitive task perfor-
mance. Only correlations between Two-choice Discrimina-
tion and Speeded Tapping performance with TMS did not 
reach target correlations. We expect at least Speeded Taping 
should have correlated more strongly with TMS due to the 
motor component of the task. Perhaps the smaller sample 
size for this correlation (n = 18) limited the ability to capture 
a true relationship. This can be reassessed in future studies 
which will have much larger sample sizes. Thus, perfor-
mance on HD-Mobile cognitive tasks mostly agreed with 
established in-person pen-and-paper assessments and poorer 
performance was related to higher levels of disease burden 
and motor symptoms. Together, these findings provide ini-
tial evidence for the robustness and utility of HD-Mobile 
and further shows parity with current in-person assessment 
approaches.

Test–retest reliability was acceptable across the groups 
with a few exceptions, OILL Object Location and Two-
choice Discrimination in the premanifest-HD, and Two-
choice Discrimination in healthy controls. In these cases, 
we noted that practice effects, which are ubiquitous in 
cognitive testing, may have played a role. Consistent 
with this, we observed significant improvements across 
repeated testing on Two-Choice Discrimination and near 
significant improvement on OILL Object Location. Future 
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studies could be designed to distinguish between practice 
effects and intra-individual variability arising from natu-
ral variations in effort, mood, fatigue, etc., which reduce 
test–retest reliability [37]. Detecting and understanding 
reasons for fluctuations in day-to-day cognitive function-
ing is important for advising patients on how to best man-
age their symptoms.

Future studies can also focus on longitudinal validation 
of HD-Mobile on a time-scale relevant to disease progres-
sion to ensure HD-Mobile can detect within-person disease 
progression. The use of a remote assessment approach, 
using HD-Mobile, will be beneficial for measuring intra-
individual variability and longitudinal change due to the 
ability to conduct more frequent assessments in larger sam-
ples, and at lower costs, compared to clinic-based assess-
ments. Larger future studies with HD-Mobile could also 
enable an investigation of the effects of mood and sleep 
on cognitive function using self-report outcomes obtained 
within the app and will enable additional validation of the 
current HD-Mobile cognitive tasks and assessment of the 
feasibility of adding additional tasks to the app. While the 
addition of more tasks would provide a broader assess-
ment of functioning, the additional time commitments may 
result in reductions in compliance. Future studies can aim 
to identify the ideal balance between comprehensiveness 
of assessment and participant burden. Keeping in mind 
that we ensured feasibility through HD-community input 
and a pilot study, a limitation of this study is that we do 
not know how many participants chose not to participate 
due to not being comfortable completing tasks on their 
phone or due to not possessing a smartphone that met 
the technical requirements of HD-Mobile. Future studies 
should aim to determine the proportion and characteristics 
of HD gene-positive persons who are unable or unwilling 
to participate in remote assessment so that researchers can 
carefully define the limits of generalizability of results 
from remote assessment studies.

In summary, our findings demonstrate that HD-Mobile 
performance-based cognitive tasks have promising utility for 
assessing cognitive functioning of HD samples in a disease 
stage-specific manner. More broadly, we demonstrate that 
smartphone-based assessment allows convenient, frequent, 
and potentially ongoing assessment of HD samples without 
the limitation of geographical barriers, allowing collection 
of data from more representative samples than is possible 
when participants must present in person at testing sites. 
These results justify deploying HD-Mobile in studies with 
significantly larger samples than this feasibility study. Our 
findings also have important implications for measuring cog-
nitive functioning in HD in relation to assessing responses to 
therapeutics and may be particularly helpful in post-market-
ing surveillance of ongoing use of new therapeutic drugs in 
conjunction with traditional assessment methods.
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Chapter Four: Study Three 

Diffusion Modeling of a Two-choice Decision-making Task in Premanifest and Manifest 

Huntington’s Disease 

4.1. Explanatory Note 

In this chapter, I present Study Three from the thesis research. In this chapter I present 

further work which focused on addressing our second  research aim, which was to 

demonstrate that the cognitive tasks we developed for the research project would be reliable, 

and valid, across several forms of validity, and sensitive to cognitive impairment in HD 

compared to controls. The study presented in Chapter Four provided an important extension 

of the work presented in Chapter Three. In Chapter Three, I demonstrated that HD-Mobile 

cognitive tasks had discriminant validity in that they could separate the manifest-HD group 

from the premanifest-HD and healthy control groups based on cognitive performance. The 

analysis strategy that we used in Chapter Three, however, did not detect cognitive 

performance differences between the premanifest-HD and healthy control groups.  In chapter 

Four, we applied cognitive modelling to data from the Two-choice Discrimination task, 

which enabled us to detect cognitive performance deficits in premanifest HD versus healthy 

control groups. The results from Study Three provided further demonstration of the 

discriminant validity of HD-mobile and also provided a further demonstration that sensitive 

and informative cognitive assessment can be achieved using smartphones and without ever 

needing to meet patients or participants in person.   

Note. This chapter was submitted to the Journal of the International Neuropsychological 

Society and is presented in its submitted format. Within this chapter, there are several 

references to supplementary materials. The supplementary materials that were submitted with 

this paper are presented in Appendix 3.   
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Abstract 

Objective: Sensitive cognitive assessment is essential for monitoring cognitive change and 

response to disease modifying interventions in Huntington’s disease (HD). We applied a 

hierarchical Bayesian diffusion model to decision-making data collected from HD-Mobile a 

smartphone-based cognitive assessment application. We aimed to determine the model’s 

fitness for interpretation and whether the model could detect decision-making performance 

deficits between people with premanifest-HD and manifest-HD compared to healthy control 

participants. 

Method Forty-two HD CAG-expanded participants (20 manifest, 22 premanifest) and 29 

healthy controls completed HD-Mobile cognitive tasks three times across an eight-day 

period, on days one, four, and eight, along with several self-report questionnaires. 

Participants completed all tasks independently in their homes. We applied a hierarchical 

Bayesian model to data from the Two-Choice Discrimination decision task and examined 

Pearson’s correlations between model outcomes, cognitive data from the other HD-Mobile 

tasks, and questionnaire data.  

Results Model data was sufficiently reliable to allow group-level comparisons across all four 

key parameters produced by the model, and to enable correlation analysis of individual 

participant performance for two of the model parameters with disease severity variables. The 

model was highly sensitive, detecting performance differences across groups, with both 

manifest- and premanifest-HD performing worse than healthy controls. We also detected 

several significant correlations between model parameters and self-reported measures of 

sleep and sleepiness.  

Conclusions Diffusion modeling using hierarchical Bayesian analysis of HD-Mobile 

cognitive task data is highly sensitive for detecting cognitive signs in both premanifest- and 
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manifest-HD, outperforming behavioral measures from the same task in detecting differences 

between the premanifest-HD and control groups. 

Keywords:  Huntington’s Disease, Diffusion Modeling, Bayesian Analysis, Sleep 

Quality, Clinical Mathematical Psychology, cognition, neurodegeneration 
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Diffusion Modeling of a Two-choice Decision-making Task in Premanifest and Manifest 

Huntington’s Disease 

 

Huntington’s disease (HD) is an autosomal dominant, neurodegenerative disease, 

which has a typical onset in middle adulthood, and results in progressive cognitive, motor, 

and psychiatric symptoms (Walker, 2007). The cognitive symptoms in HD are often 

detectible many years before clinical diagnosis (Maroof, Gross, & Brandt, 2011; Stout et al., 

2014), contribute significantly to declines in functioning and quality of life (Eddy & 

Rickards, 2013, 2015; Ross et al., 2014), and result from widespread neuronal atrophy which 

is most severe in the striatum (Walker, 2007). Striatal atrophy and accompanying breakdown 

of fronto-striatal networks are associated with cognitive deficits (e.g., Bamford, Caine, Kido, 

Cox, & Shoulson, 1995; Campodonico et al., 1998; Starkstein et al., 1992) and behavioral 

changes such as impulsivity and impaired judgment (Johnson, Potts, Sanchez-Ramos, & 

Cimino, 2017; Mörkl et al., 2016).   

Large longitudinal studies of HD, typically utilizing annual cognitive testing, have 

contributed to what is now a strong account of how the cognitive symptoms of HD develop 

and evolve over time (e.g., Paulsen, Smith, & Long, 2013; Tabrizi et al., 2013). Recently, our 

group has developed smartphone-based mobile apps to enable us to shift some cognitive 

assessments to be self-administered independently, facilitating testing in more ecologically-

relevant settings (i.e., home) and at intervals that enable frequent sampling of cognition and 

the possibility of understanding the dynamics of cognitive function in relation to regular 

elements of daily life, such as sleep and physical activity (McLaren et al., 2020).  

In this study, we extended this at-home assessment approach one step further by 

applying formal cognitive modeling to data collected on the mobile app, further extending the 

possible utility and value of home-based, unsupervised data collection approaches. Cognitive 
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modelling has been applied only rarely in neurodegenerative diseases (Busemeyer & Stout, 

2002; Herz et al., 2018; Huang et al., 2015) but not to data collected from smartphones. This 

approach opens the potential to move beyond observable measures such as errors and 

response time to examine and quantify the internal relationships within data series using 

equations that can reveal and quantify the interplay of cognitive processes that yield the 

observable outcomes (Busemeyer & Diederich, 2010). To our knowledge, no previous studies 

have attempted to apply cognitive models to datasets collected by participants with 

neurodegenerative diseases in an unsupervised setting. If such approaches turn out to be 

fruitful, however, this approach raises the possibility of building a rich understanding of 

cognitive impairment using much larger scale and lower cost data collections, in conjunction 

with a host of other measures such as passive activity monitoring, which markedly adds to the 

potential for understanding of these diseases (Allard et al., 2014; Kaye et al., 2011; McCrae, 

Vatthauer, Dzierzewski, & Marsiske, 2012) . 

For our study, to facilitate self-administration in people with cognitive impairment, 

we selected a simple two-choice decision-making task (McLaren et al., 2020). The task we 

used has homologies to a classical neuropsychological task, the Wisconsin Card Sorting Test, 

in that participants are provided with little instruction, and must make a series of selections, 

each followed by feedback, enabling them to learn by trial and error to improve choice 

accuracy. In our task (Figure 1), participants observed a scene with snowflakes falling from 

the sky and chose either the “few” or “many” response option. Each choice was followed by 

feedback “correct” or “incorrect.” Three hundred and sixty trials were completed, requiring 

about 10 – 15 minutes, providing the opportunity for learning from experience to improve 

choice accuracy. 

We applied the classic cognitive model for two-choice decision task, the Ratcliff 

Diffusion Model (RDM; Ratcliff, 1978; Ratcliff & McKoon, 2008; White, Ratcliff, Vasey, & 
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McKoon, 2010), to the data from this study. The RDM assumes that stimuli related to a 

decision process are translated into “evidence,” accumulated randomly until one of two 

decision boundaries (i.e., “few,” “many”) are reached (see Figure 2). The evidence 

accumulation process unfolds over time, making it possible to extract response time 

predictions from the model by characterizing response latencies (i.e., latency to reach a 

decision boundary). In the RDM, the decision process is modeled as several components, or 

parameters, each instantiated in a term in the model equation, from which values can be 

derived for each participant (i.e., parameter estimates). In effect, this yields additional model-

generated dependent measures that can be studied along with other study outcomes to provide 

information about a person’s cognitive functioning.  Specifically, the four parameters derived 

from the RDM are detailed in Table 1. Henceforth, to facilitate readability, in this paper RDM 

variables will be referred to by their psychological meanings, as per Table 1. For example, we 

will use “evidence accumulation speed” in place of the parameter term Drift Rate.  

 

Figure 1. Schematic diagram of the Two-choice Discrimination task. Trial durations were 250 

– 5500 milliseconds (ms).  Snowflakes were presented for up to 1500ms, then disappeared 

from the screen to prevent counting. Participants had 5500 ms to respond. Responses ranging 

from 250 to 5500 ms triggered feedback (i.e., happy or sad emoticon) for 500 ms followed by 

a 500 ms inter-trial interval. A 1000 ms inter-trial interval occurred if responses were out of 

window. Response buttons were disabled during feedback and the inter-trial interval. 

An additional key process in applying cognitive modeling is the application of formal 

quality checks to the model-generated outcomes. This step evaluates whether the model fits 

are able to account for the data well enough to engender confidence in the subsequent 
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interpretation of the resulting model outcomes. The adequacy of model fits may be 

jeopardized in cases of insufficient or noisy data, yielding parameter estimates that are 

unacceptably biased, resulting in data that is unreliable and unfit for interpretation (Kruschke, 

2014). Our study was clearly at risk for problems with data quality given that we used a 

novel, self-administration testing approach in cognitively impaired people, and we were only 

able to access in a reasonably limited sample size. To address this concern, we applied the 

RDM using a Bayesian analysis, which is better equipped to handle sparse and noisier data 

(Kruschke, 2014; Wagenmakers et al., 2018), and subsequently limited our focus to the 

modeling results that were sufficiently robust. This method also facilitated our understanding 

of the limitations of the dataset we generated, for studies incorporating cognitive modeling.  

 Thus, our aims in this study were to determine: 1) whether we could use data 

collected by self-administration in people with the HD CAG expansion in the context of 

cognitive modeling, to yield parameter estimates that met the thresholds for interpretability;  

2) whether new variables generated from the model, which provide an account of the 

cognitive operations at play in the decision-making process, would demonstrate known 

groups validity. That is, they would be able to distinguish between the HD and healthy 

control groups; and, 3) whether the parameter estimates would relate to disease severity or 

other measures of participant function, including other cognitive tasks collected by self-

administration, and self-reports of sleep and alertness. We expected that the parameter 

estimates, at least in the evidence accumulation speed (Drift Rate) and perhaps 

encoding/motor execution time (Non-decision Time), would relate to disease severity. 

Specifically, we hypothesized that evidence accumulation speed would be lowest in the 

manifest-HD group and greatest in the control group, reflecting slowed processing speed, 

with the premanifest-HD group midway between manifest-HD and controls.  
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Figure 2. A Sample Path of the Ratcliff Diffusion Model. The graph is a simulation of a 

single trial, wherein a participant needs to decide between options A and B; option A is 

arbitrarily assigned to the top boundary (which in this example happens to be one). The drift 

represents the average direction of the sample path over time; since it is aimed towards the 

upper boundary, this drift rate is positive. The bias is the value of the sample path at time zero 

– it is where the sample path begins. Note that in this implementation of the model, the bias is 

obtained as a proportion β of the boundary α. The length of the horizontal line before the 

diffusion path represents the non-decision time. The response time is recorded as the time the 

path hits a boundary, plus the non-decision time.  

 

Table 1.  

Ratcliff Diffusion Model Parameters 

Concept Symbol Effect in the 

Model 

Psychological Meaning Possible 

Neural 

Pathway 

Drift μ Slope of 

general 

direction of 

diffusion 

Measures rate and direction 

of general evidence 

accumulation/encoding 

speed  

Fronto-

Parietal 

Pathway 

Boundary α When the 

process hits 

this boundary, 

a particular 

decision is 

made 

A measure of how cautious 

the person is in the decision 

task; how much evidence is 

needed until a decision can 

be made 

Fronto-Basal 

Ganglia 

Pathway 

Bias  β Starting point, 

relative to 

boundary, of 

Measuring response bias in 

the person across trials 

Both Fronto-

Parietal and 

Fronto-Basal 
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diffusion 

process at the 

beginning of a 

trial 

Ganglia 

Pathways 

Non-decision 

Time 

τ Recorded 

Response time 

broken up into 

Process Time 

+ Non-

Decision Time 

Typically interpreted as 

encoding time and 

motor/execution time, 

neither of which is 

otherwise measured in the 

standard model 

Unknown – 

Too vague a 

concept to 

map to neural 

functioning 

Variability in 

Drift* 

σ Spread of 

mean drift 

rates within a 

group 

A measure of the amount of 

individual difference in 

evidence accumulation rate 

within a group 

N/A – A 

measure 

between 

people 

Note. A description of the major parameters involved in the Ratcliff Diffusion Model, 

including what they do in the model and how they are typically interpreted cognitively. The 

pathway suggestions are based on a review done by (Mulder et al., 2014) that correlates 

BOLD signals with drift diffusion parameter estimates. *Variability in drift is not typically 

included in the model, but our implementation found this to be an important factor. See 

Supplement below. It may help the reader to compare this Table with Figure 2. 

 

Method 

Participants 

Our sample included 22 participants with premanifest HD, 20 with early manifest HD, 

and 29 healthy controls (Table 2). Participants were required to be 18 – 70 years of age, 

fluent in English, and to have an Android or Apple smartphone running Android 4.0 (or 

above) or iOS 7 (or above) operating systems. We excluded participants with a history of 

neurological illness (other than HD), significant head injury, psychiatric disorder other than 

depression or anxiety, drug abuse, or current involvement in any clinical drug trial. Manifest-

HD participants required prior diagnosis by an HD specialist clinician. Premanifest 

participants were required to have a CAG expansion of at least 41 and disease burden score 

(DBS) of ≥ 200 (calculated as age x [CAG – 35.5]; Penney, Vonsattel, Macdonald, Gusella, & 

Myers, 1997). We also calculated the CAG-Age product for premanifest- and manifest-HD 

participants (calculated as age x [CAG – 33.6]; Zhang et al., 2011). The manifest-HD group 
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was significantly older than the premanifest HD and healthy control groups (p = .005 

and .027, respectively) and had lower self-reported Total Functional Capacity (Unified 

Huntington’s Disease Research Rating Scale [UHDRS], Huntington Study Group, 1996) than 

premanifest HD and healthy control groups (both ps < .001), as expected. The manifest-HD 

group had significantly higher total motor score (TMS; (UHDRS, Huntington Study Group, 

1996), DBS, and CAG-Age product scores than the premanifest group (all ps < .008). The 

premanifest-HD group had less education than the healthy control group (p = .012). There 

were no other significant differences between groups (all ps > .10).   

We recruited participants through databases at Monash University, Melbourne, and 

Westmead Hospital, Sydney, which include volunteers who have consented to being 

contacted for research opportunities. Additional participants were recruited using 

advertisements for the study posted on Facebook and at local HD community events.   

Table 2.  

Participant Characteristics  

Characteristic Healthy Controls Premanifest-HD Manifest-HD 

n 29 22 20 

Age (Mean Years (SD), Range) 44.31 (10.93) 

28 - 65 

42.09 (8.52) 

21 - 58 

51.60 (8.03)a, c 

31 - 65 

Education (Mean Years (SD), Range) 14.88 (1.68) 

12 -19 

13.25 (2.09)c 

10 - 18 

14.33 (2.14) 

12 - 18 

CAG Repeat length (Mean Years (DS), 

Range) 

- 42.95 (2.16) 

41 - 51 

42.88 (2.11) 

41 - 49 

Disease-burden score (Mean (SD), 

Range) 

- 304.12 (56.13) 

217.50 – 435.00 

379.64 (58.85) 

275.00 – 484.50 

CAG-Age Product (Mean (SD), 

Range) 

 382.47 (66.45) 

270.86 – 541.72 

475.62 (60.78) 

367.00 – 589.38 

HADS Anxiety (Mean (SD),  

Range) 

6.00 (4.53) 

0 – 16 

6.36 (4.29) 

0 – 15 

5.85 (3.62) 

2 – 17 

HADS Depression (Mean (SD),  

Range) 

3.17 (3.42) 

0 – 16 

3.50 (3.26) 

0 – 11 

5.40 (4.45) 

0 – 14 

UHDRS TFC (Self-report) (Mean (SD), 

Range) 

12.97 (0.19) 

12 - 13 

12.64 (0.90) 

9 - 13 

9.26 (2.42)b, d 

6 - 13 

n - 12 7 

Note. HADS = Hospital Anxiety and Depression Scale, UHDRS TFC = Unified Huntington’s 
Disease Rating Scale Total Functional Capacity, UHDRS TMS = Unified Huntington’s Disease 
Rating Scale Total Motor Score, which was only available for participants involved with 
Enroll-HD, a p < .05 with respect to premanifest-HD, b p < .01 with respect to premanifest-HD, 
c p < .05 with respect to controls, d p < .01 with respect to controls.  
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Materials 

We developed a custom designed smartphone application, HD-Mobile, for this study. The 

application was designed for touch screen smartphones operating Android 4.0 and iOS 7 and 

above. HD-Mobile was used to send automated reminder messages to participants, to 

administer cognitive tests and self-report questionnaires, and to automatically transmit data to 

the lab server.  HD-Mobile included the Two-choice Discrimination task, as modeled after the 

Numerosity Discrimination task described by Ratcliff and McKoon (2008). Participants 

viewed a scene depicting falling snowflakes and were instructed to quickly decide, without 

counting, whether there were “few” or “many” snowflakes on the screen. To facilitate 

learning, they received immediate feedback after each choice, either a happy (correct choices) 

or sad face (incorrect choices). Three blocks of 40 trials were presented at each time-point 

(days one, four, and eight), (see Figure 2). The cut-off value for each block, above which the 

“many” response was correct and below which the “few” response was correct, was 

randomized between the values of 45 and 55 snowflakes. We randomized the number of 

snowflakes per trial to ± 20 of the cut-off value, maintaining at least 40% of trials for each 

response (“few”, “many”).  We analyzed “few” and “many” responses as separate conditions, 

as the “few” condition was designed to be easier and the “many” to be more challenging.  

HD-Mobile included two additional tasks, Object Information and Location Learning 

(OILL) and Speeded Tapping, and questionnaires, described elsewhere (McLaren et al., 

2020). Briefly, OILL assesses Object Identity and Object Location working memory, 

recorded as percent correct responses and mean response time. Speeded Tapping is a 

bimanual speeded thumb-tapping task, used to assess psychomotor speed. 

Self-report questionnaires included the SCale of Outcomes in PArkinsons disease – 

Sleep (SCOPA –SLEEP) (Marinus, Visser, van Hilten, Lammers, & Stiggelbout, 2003), the 

Hospital Anxiety and Depression Scale (HADS; Zigmond & Snaith, 1983), and the 
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Karolinska Sleepiness Scale (KSS; Åkerstedt & Gillberg, 1990), as described in McLaren et 

al (2020). Briefly, SCOPA-SLEEP assesses night-time sleep (5 items, termed “Sleep 

Disturbance”) and daytime sleepiness (6 items, termed “Daytime Sleepiness”), and includes  

a question about Sleep Quality in the past month. Higher subscale scores indicate poorer 

night-time sleep and more daytime sleepiness. The HADS is a widely used and reliable 

(Cosco, Doyle, Ward, & McGee, 2012; De Souza, Jones, & Rickards, 2010; Zigmond & 

Snaith, 1983) 14-item self-report questionnniare, which assesses feelings of anxiety and 

depression over the previous week. The KSS is a single question indicating subjective 

alertness at the present time.  

Procedure  

We provided instructions for installation of HD-Mobile and study procedures in 

written and video formats. Participation occurred across eight days, with at least one study 

task per day. Cognitive tests were on days one, four, and eight, yielding about 360 data points 

per person for the Two-choice Discrimination task. We requested that tasks be completed 

within an hour of waking on each day. Participants were messaged by HD-Mobile daily at 

9am to remind them to complete their daily tasks (unless already complete). Across the eight 

days, the study commitment required under 2.5 hours.  

Data Analysis 

We used IBM SPSS V.26 for basic descriptive statistics, group comparisons, and 

correlational analyses, excluding missing data listwise. Alpha was set at .05 for all analyses. 

We assessed demographic group differences using one-way analysis of variance and 

independent measures t-tests. We used Pearson’s to examine correlations between parameter 

estimates from modeling and the other cognitive outcomes and, demographic and clinical 

variables.  
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Data Modeling Using Hierarchical Bayesian Diffusion Analysis 

We fit performance data to the Ratcliff Diffusion Models using a hierarchical 

Bayesian version of the RDM (see Vandekerckhove, Tuerlinckx, & Lee, 2011; Wiecki, Sofer, 

& Frank, 2013), which yields separate sets of parameter estimates, one set for each group, a 

second set for each participant, for use respectively in group comparisons, and in individual 

differences correlations (e.g., associations with clinical variables; (Kruschke, 2014; 

Wagenmakers et al., 2018).  

To ensure the accuracy and reliability of the parameter estimates, we first tested 

several models to assess the explicit assumptions of the Bayesian approach. We then selected 

the model best for minimizing the deviance from the data, akin, in principle, to residuals in 

regression analysis, using the Deviance Information Criterion method (DIC; Fox, 2010; 

Spiegelhalter, Best, Carlin, & Van der Linde, 2014), as summarized here with full details of 

comparisons in the supplement. Two main classes of models were fit: (1) a variability model, 

which allowed differing variability in drift rates for each group, and (2) the age-regression 

model, wherein mean drift rate was a regression equation based on participant age. The age-

regression model was selected because age is known to affect response times, and thus 

needed to be statistically controlled (Ratcliff, 2008). In the end, however, the variability 

model had the better combination of low DIC and high reliability in the parameter estimates, 

hence, we present results from the variability model. 

We assessed reliability of the parameter estimates using the Gelman-Rubin statistic 

𝑅̂ (Gelman & Rubin, 1992). 𝑅̂ values less than 1.1 are considered to be more reliable and 

therefore appropriate for interpretation. We examined differences in parameter estimates 

between groups using the Bayesian hypothesis testing method (detailed in the supplement); 

like the null hypothesis significance testing, this approach uses a pre-set level of dissimilarity 

(e.g., p = .05).  Rather than “significantly different,” however, the term used in Bayesian 
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hypothesis testing is “credibly different”, to highlight the philosophical differences in the two 

approaches. Another difference from null hypothesis testing is that Bayesian approach yields 

probability estimates of any directional differences. A probability of observed difference of 

50%, suggests that the two parameters are approximately equal, while deviations from 50% 

(either in the direction of 0% or 100%) indicate likely differences between the groups. Hence, 

even if two groups are not credibly different, we can still describe how similar or dissimilar 

they were and the direction of any differences.  

Results 

We first summarize the main reliability and model comparison results, with more 

details in the supplement, followed by a group-level comparison of parameter estimates. We 

then highlight the relationships observed through correlation between the RDM individual 

estimates and other task variables.     

We found that all four RDM parameters, evidence accumulation speed (Drift Rate), 

response cautiousness (Boundary), response bias (Bias), and encoding/motor execution time 

(Non-Decision Time), were reliable at the group level (Gelman-Rubin statistic 𝑅̂’s for all 

group-level parameters were less than 1.1). In contrast, of the individual-level parameters, 

only evidence accumulation speed and response cautiousness estimates were sufficiently 

reliable to include in the planned correlation analyses. The bias parameter 𝑅̂’𝑠 exceeded the 

1.1 in 14% of cases and the encoding/motor execution time parameter 𝑅̂’𝑠  exceeded 1.1 in 

90% of cases. Thus, whereas we were able to examine group level differences for all four 

parameters, at the individual level, we only interpreted evidence accumulation speed and 

response cautiousness parameters.  

Group Level Comparisons of Parameter Estimates 

Group comparisons generally showed similarities in RDM parameters across groups 

(Table 3), although several credible differences in drift rates were observed. Specifically, the 
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manifest-HD group accumulated evidence more slowly (lower Drift rate) than controls in 

both the “few” condition (1.55 vs 2.37; probability that manifest-HD < healthy controls was 

more than 99%), which is relatively easy, and the more difficult “many1” condition (1.95 vs 

2.91; probability that manifest-HD < healthy controls was more than 99%). Furthermore, the 

premanifest-HD group also demonstrated slower evidence accumulation than healthy 

controls, but only in the more difficult “many” condition (2.20 vs 2.91; probability that 

premanifest-HD < healthy controls was more than 99%), but not the “few” condition (2.04 vs 

2.37; probability that premanifest-HD < healthy controls was 92%). Manifest and premanifest 

groups were similar in the “many” condition (1.95, 2.04, respectively; probability that 

manifest-HD < premanifest-HD was 84%). In contrast, for the “many” condition, the 

manifest-HD group was credibly slower than the premanifest-HD group (1.55 vs 2.04; 

probability that manifest-HD < premanifest-HD was 98%), who were not credibly different 

from controls (2.04 vs 2.37; probability that premanifest-HD < healthy controls is 92%). 

Within groups, only controls differed credibly in their evidence accumulation speed between 

the “few” and “many” conditions, with faster rates in the “many” condition (probability that 

“few” < “many” was 98%). The namesake parameter of the variability model, which provides 

a measure of the spread of individual scores within a group, was not found to be credibly 

different across groups; however, as there was still a substantial probability of differences. 

We assess the consequences of likely differences for clinical application in the supplement.  

 

 
1 The labels of “easy” and “difficult” are traditional in the experimental paradigms used with the 

RDM, but they do not exactly fit the task here. For instance, “few” trials that have a number of 

snowflakes close to the block’s cutoff score would be quite difficult, in that many participants would 

be expected to give the incorrect label, while “many ”trials with a large number of snowflakes would 

lead to a cognitively simple decision of choosing “many.” However, the traditional labels of easy and 

difficult really aim to convey the cognitive load required of the participant to bare when encoding the 

stimuli on a trial, either by introducing more to process or by introducing more noise in the stimuli. In 

this sense, the “many” condition is “difficult” in that it has more snowflakes that need to be 

cognitively processed, while the “few” condition has less (and hence, “easier”). This difference in the 

average number of stimuli to process is really what defines the conditions, and this difference is 

captured in the higher drift rates (i.e., more to process) in the “many” condition. 
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Table 3.  

Group-level Mean (standard deviation) for Each RDM Parameter.  

Group-Condition Drift μ 

(mean) 

Boundary 

α (mode) 

Bias β Non-Dec Time 

Rate η (mean) 

Variability 

σ (mean) 

      

MHD – Few  1.55 (.15)a,b 3.88 (.38) .28 (.10) 5.67 (1.37) [.176 s] .67 (.13) 

MHD – Many 1.95 (.17)c 3.94 (.39) .25 (.04) 5.67 (1.37) [.176 s] .70 (.13) 

PM – Few   2.04 (.18)b 3.54 (.30) .24 (.03) 7.74 (1.74) [.129 s] .81 (.15) 

PM – Many  2.20 (.19)d 3.51 (.31) .25 (.03) 7.74 (1.74) [.129 s] .85 (.15) 

HC – Few  2.37 (.16)a 3.59 (.25) .21 (.02) 7.22 (1.55) [.138 s] .83 (.13) 

HC – Many  2.91 (.19)c,d 3.89 (.27) .19 (.02) 7.22 (1.55) [.138 s] .99 (.15) 

 
Note. Charting the point estimates of group-level parameters (MHD = manifest-HD Group; PM = 

premanifest-HD; HC = healthy controls). Measures of central tendency in parentheses indicate which 

was calculated from each parameter’s posterior distribution, in accordance with the most appropriate 

measure given the shape of the posterior. The non-decision time was given an exponential distribution 

as a prior, which is parameterized by a rate; the mean of this distribution, and hence the mean non-

decision time for each group, is 1/rate, and this mean is given in square brackets in seconds. 

Superscript letters correspond to pairwise credible differences as follows: (a) MHD was lower in drift 

than HC in Few; (b) MHD was lower than PM in Few; (c) HD was lower than HC in Many; (d) PM 

was lower than HC in Many. Bold indicates that HC showed a credible difference in drift between the 

Few and Many conditions.   

 

Correlations Between Model Parameters and Demographic and Clinical Variables 

For correlation analyses, with the only two parameters that demonstrated acceptable 

reliability being evidence accumulation speed and response cautiousness, we combined the 

manifest- and premanifest-HD groups into a single group, given that these two groups are on 

a continuum for symptoms and demographic characteristics. We used Pearson product-

moment correlations to examine associations between model parameters and key 

demographic, clinical, cognitive, and sleep quality variables. We did not apply a Bonferroni 

correction for multiple comparisons due to the exploratory nature of these analyses. For the 

combined HD group, neither evidence accumulation speed (Drift rates) nor response 

cautiousness (Boundary) parameters, for either the “few” or “many” conditions, were 

correlated with age, years of education, Disease Burden Score, or self-reported Total 
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Functional Capacity (all ps ≥ .064). In the healthy control group, however, higher response 

cautiousness in the “many” condition associated with older age (p = .021) and fewer years of 

education (p = .037), indicating that in “many” trials, older and less educated healthy control 

participants required more evidence before making a decision. No other correlations for the 

healthy control group were significant (all ps > .077). 

 To examine how model parameters related to performance on the HD-Mobile app 

tests, we examined correlations between evidence accumulation speed and response 

cautiousness, and outcome variables from the three HD-Mobile cognitive tasks (Table 4). For 

the HD group, we found that faster evidence accumulation speed in the  “few” condition 

associated with faster Speeded Tapping (p = .05) and Two-choice Discrimination task 

performance (p = .02), as well as better on the Two-choice Discrimination (p = .001) and 

OILL tasks (p = .001). In effect, those HD participants with faster evidence accumulation on 

“few” trials were generally faster and more accurate on Two-choice Discrimination, and also 

faster in their responses on Speeded Tapping and more accurate on OILL. Faster evidence 

accumulation on “many” trials also associated significantly with greater overall percent 

correct on Two-choice Discrimination (p = .002). Also, the response cautiousness results 

indicated that HD participants who required more evidence (higher Boundaries) before a 

decision tended to be slower on Speeded Tapping (“few” and “many”trial ps = 0.011 and 

0.015, respectively). In contrast, for the healthy control group, we observed few significant 

correlations. Specifically, those with faster evidence accumulation tended to be more accurate 

on the Two-choice Discrimination task (p = .046), but to have slower OILL response times (p 

= .027). A more cautious decision style for the “many” condition was associated with slower 

Two-choice Discrimination response times (p = .026).  

For sleep and alertness measures, we found that for the HD group, participants with 

greater response cautiousness for both the “few” and “many” conditions also tended to report 
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themselves as experiencing more daytime sleepiness (p = .009 and p = .031, respectively). 

For the healthy control group, those with faster evidence accumulation in the “many” 

condition reported having better self-rated sleep quality (p = .024) and higher alertness (p 

= .008). Also, in control participants, greater response cautiousness in the “few” condition 

was associated with poorer self-reported sleep quality (p = .015).  

Table 4.  

Pearson Product-moment Correlations Between RDM Variables and HD-Mobile Cognitive 

Task Outcome Measures.  

HDC (n = 42) Speeded 

Tapping RT 

Two-

choice % 

Correct 

Two-choice 

RT 

OILL % 

Correct 

OILL RT 

Drift Few .31* .52*** .37* .50*** .15 

Drift Many .23 .49** .21 .28 .12 

Boundary Few -.39* .16 -.19 .02 .16 

Boundary Many -.38* .16 -.26 -.15 .09 

HC (n = 29)      

Drift Few .06 .21 .13 .21 -.03 

Drift Many .16 .38* -25 .05 .41* 

Boundary Few .02 .11 -.04 .22 -.13 

Boundary Many .10 .23 -.42* .05 .34 

Note. HDC = combined manifest- and premanifest HD group, HC = healthy control group, 

Speeded Tapping RT = 1/ln inter-tap interval in milliseconds on Speeded Tapping task, Two-

choice % Correct = percent correct on the Two-choice Discrimination task, Two-choice RT = 

1/ln of mean response time in milliseconds on Two-choice Discrimination task, OILL % 

Correct = overall percent correct on Object Identification and Location Learning task OILL 

RT = mean response time in milliseconds on the Object Identification and Location Learning 

task,  *≤ .05, ** ≤ .01, *** ≤ .001. Because the relationship between RDM parameters and 

outcome measures (accuracy and mean response time) is highly non-linear, we do not expect 

perfect correlations between the two. The correlations between the RDM parameters and 

other task measures, which were not used to fit the model, provide some indication of the 

generalizability of the RDM parameters.  
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Table 5.  

Pearson Product-moment Correlations Between RDM Variables and Self-reported Sleep, 

Sleepiness, and Alertness Measures 

HD-combined 

(n = 42) 

Sleep 

Disturbance 

Sleep Quality Daytime 

Sleepiness 

Average 

Alertness 

Drift Few .02 -.09 -.10 .14 

Drift Many -.16 .09 -.18 .05 

Boundary Few .22 -.16 .40** .14 

Boundary Many .13 -.09 33* .08 

HC (n = 29)     

Drift Few .10 .15 .07 .06 

Drift Many -.34 -.42* .23 -.48** 

Boundary Few .26 .43* .11 .15 

Boundary Many -.23 -.19 .27 -.33 

Note. HD-combined = combined manifest- and premanifest HD group, HC = healthy control 

group, Sleep Disturbance = Sum of questions 1 – 5 from the SCOPA-SLEEP questionnaire 

(lower scored indicate better sleep), Sleep Quality = score from Q6 of SCOPA-SLEEP 

questionnaire (lower scores indicate better sleep), Daytime Sleepiness = sum of questions 7 – 

12 from SCOPA-SLEEP Questionnaire (lower scores = less daytime sleepiness), Average 

Alertness = Average of responses on KSS questionnaire completed on Day one, four, and 

eight (lower scores = higher alertness), *≤ .05 ** ≤ .01.  

Discussion 

In the first study to apply RDM analysis to two-choice decision making task data 

collected from smartphones, we detected group-level differences between premanifest- and 

manifest-HD and healthy control participants in cognitive parameters generated by the model, 

which were not apparent using observable performance, alone (McLaren et al., 2020). 

Because participants self-administered the task on smartphones, outside of the supervised 

clinic setting, this approach appears to suit the need for repeated longitudinal assessments to 

examine variability across time and in association to lifestyle factors such as sleep quality 

(Allard et al., 2014; Kaye et al., 2011; McCrae et al., 2012). Because we also observed 

differences in the premanifest-HD participant group, which overall differs only in small 

degrees from controls, an assessment method such as app-based self-assessment may also 

enable efficient and large-scale data collections, engendering the statistical power needed to 

observe the relatively small effects demonstrated by people in premanifest disease stages.  
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We expected, and observed, that the manifest-HD group would have slowed evidence 

accumulation (Drift Rate) in the RDM model due to their known slowing in speed of 

information processing (Stout et al., 2014) and because the evidence accumulation process is 

reliant on neural networks including the fronto-parietal pathway (Brosnan et al., 2020; 

Mulder, Van Maanen, & Forstmann, 2014) which are disrupted in manifest-HD (Poudel et al., 

2014). This finding also adds speed of evidence accumulation to the cognitive processes 

showing detectable changes in premanifest HD (e.g., Beste et al., 2013; Labuschagne et al., 

2013; Paulsen et al., 2013; Stout et al., 2014; You et al., 2014), which may have implications 

for the decision making in day-to-day functioning of those affected, especially situations in 

which information must be encoded and evaluated rapidly prior to making a decision, such as 

driving (Daneshi, Azarnoush, & Towhidkhah, 2020; Ratcliff, Smith, Brown, & McKoon, 

2016).  This observation highlights the importance of examining how evidence is 

accumulated and used in decision making in HD, which may also have implications for how 

people with HD respond to clinical interventions. The older age of the manifest-HD group 

did not account for the slower evidence accumulation speed; the premanifest-HD group 

showed the effect as well, yet they were of similar age to the control group. Further, previous 

research showed that older age is associated more with changes in decision cautiousness 

rather than evidence accumulation speed (Ratcliff, 2008). Moreover, the age regression 

models we tested demonstrated that evidence accumulation rates continued to differ between 

groups even when accounting for the effect of age (see the supplement for additional 

parameter analyses with age). 

None of the group-level response cautiousness (Boundary) parameters were credibly 

different from one another, indicating that all groups required, on average, similar amounts of 

evidence before reaching a decision. We expected heterogeneity in response cautiousness 

values between groups because higher levels of striatal activation, the structure most heavily 
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affected in HD (Walker, 2007), is associated with reduced decision thresholds (Forstmann et 

al., 2008) and because impulsivity is observed in HD (Johnson et al., 2017; Mörkl et al., 

2016). In particular, the decision cautiousness parameter is commonly associated with BOLD 

signals in the fronto-basal ganglia pathway (Mulder et al., 2014), which exhibits signs of 

atrophy in premanifest-HD (Stoffers et al., 2010). However, the exact direction of difference 

was difficult to predict due to the paucity of previous studies, and the unique pattern of 

neuronal pathology in HD, which limits the generalizability from other populations. We 

postulate the homogeneity in Boundary values may be secondary to our task instructions. 

Studies investigating Boundary values usually employ a speeded condition, instructing 

participants to respond as quickly as possible, and an accuracy condition, instructing accurate 

responses (e.g., Forstmann et al., 2008; Huang et al., 2015; Ratcliff, 2002), whereas we had 

only a speeded condition. Including speed and accuracy conditions may have enabled 

quantification of how, or whether, research participants adjust decision thresholds subsequent 

to direct instruction to decide rapidly or cautiously; indeed, there is strong evidence that 

speed/accuracy instructions affect the boundary in a selective fashion (Ratcliff, 2008). 

Instructing all participants to respond rapidly (i.e., somewhat impulsively) may have masked 

this symptom in the HD groups, if present, because controls may have also performed more 

quickly than they would have otherwise. As such, it will be informative in future studies to 

assess how and if decision cautiousness values change across conditions for premanifest- and 

manifest-HD and control groups when given both speed and accuracy instructions.  

We did not find evidence of differences in response bias (Bias) or encoding/motor 

execution times (Non-decision Time) across conditions or groups, which we believe warrants 

further investigation given that HD is known to affect motor control negatively (Walker, 

2007), which would have led to slower motor execution on the task. Alternatively, we may 

have been unable to observe effects in non-decision times because we were unable to come to 
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a satisfactory fit for this data due to convergence issues (see supplement for more details). 

Indeed, non-decision time was by far the most erratic parameter, in that its estimation was 

especially difficult and unreliable given the paucity of data (relative to other binary decision 

tasks; see the supplement for more details). This may be a natural consequence of clinical in-

home assessment (Carpenter, Wycoff, & Trull, 2016).  Perhaps this indicates that non-

decision time is particularly difficult using remote ambulatory assessment, in that there are 

relatively more missing data points for some participants, which may limited available data 

for use in estimating the non-decision time parameter. Further model and protocol 

development in this direction would be helpful, especially as it may add to our understanding 

of the cognitive profile of HD.  

We carefully audited the quality and robustness of our data and found data quality was 

sufficient for reliable group level comparisons for all variables, however for individual 

parameter values, we could use only evidence accumulation speed  and response cautiousness 

data but not bias and encoding/motor execution time data for inferential statistics. The 

insufficient reliability of the Bias and Non-decision Time data was most likely due to some 

participants having large amounts of missing data (see the supplement for more on missing 

data). Our review of the raw data revealed that some participants appeared to rush through 

blocks of trials, repeatedly responding prior to the response window opening. Ensuring 

proper engagement and optimal effort is a known challenge for studies which have remote or 

unsupervised elements (Carpenter et al., 2016; Henson, Wisniewski, Hollis, Keshavan, & 

Torous, 2019) and so future iterations of the task should include methods to detect and 

prevent sub-optimal effort from participants.  

We conducted exploratory correlational analyses between the two reliable individual 

estimate RDM variables and other key variables from our dataset to examine evidence for the 

validity and meaningfulness of the decision parameters generated from the modeling process. 
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The relationships between the evidence accumulation speed and response cautiousness 

variables and sleep-related variables were generally congruent with past literature. For 

example, disturbed sleep and more daytime sleepiness in our participants were associated 

with reductions in evidence accumulation rates and increases in response cautiousness, which 

has been observed in previous research (Patanaik, Zagorodnov, Kwoh, & Chee, 2014; Ratcliff 

& Van Dongen, 2009; Walsh, Gunzelmann, & Van Dongen, 2014). Interestingly, significant 

correlations generally emerged differently for the two groups. For example, for the HD 

group, self-reported daytime sleepiness, but not poorer self-reported night-time sleep quality, 

associated with increased response caution. Whereas for control participants poorer night-

time sleep, but not daytime sleepiness, associated with response caution. Moreover, 

correlations between RDM variables and age and education were dissimilar for the HD and 

healthy control groups. These findings prompt the question of whether decision making 

processes of people with manifest- and premanifest-HD are affected differently by impaired 

sleep and fatigue, and by factors such as age and education, compared to the general 

population. In particular, understanding how the decision making of HD patients is affected 

by sleep disturbance and fatigue, which are common in HD (Herzog-Krzywoszanska & 

Krzywoszanski, 2019), should aid clinicians to guide management of cognitive symptoms of 

sleep disturbed and fatigued patients. The exploratory nature of these correlations only 

suggests this, however; future research should investigate further. 

 Future studies could implement longitudinal assessment on a time scale relevant to 

disease progression in HD (i.e., capturing declines in function across 12 to 24 months, Stout 

et al., 2012) to determine how well modeling of two-choice task performance in HD detects 

within-person disease progression. Inclusion of additional task conditions, e.g., speed and 

accuracy, and means of monitoring participant effort, will also address limitations noted in 

the present study. Another promising future direction would be to use the posteriors obtained 
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from the RDM data to predict group membership. For instance, one could have a person go 

through the same assessment, and while the model estimates this person’s parameters, it 

could also estimate the probability of being in each group (control, premanifest-HD, 

manifest-HD; or in a clinical trial, on drug or placebo) through a signal detection method or 

otherwise a logistic regression that uses the posterior estimates from previous applications of 

the model.  

In summary, our findings demonstrate applying RDM analysis to our two-choice 

decision making task data provides a highly sensitive method for detecting cognitive signs in 

both premanifest- and early manifest-HD. Without modeling the task data, we could not 

detect differences between the premanifest-HD and control groups (McLaren et al., 2020). 

We have shown, for the first time, that premanifest- and manifest-HD participants experience 

deficits in their evidence accumulation speed when processing visual stimuli during decision 

making. A final key aspect of the study is that data collection was conducted entirely outside 

of the laboratory, with participants self-administering the task on their own smartphones, 

which enables frequent and ongoing assessment without the limitation of geographical 

barriers. These combined factors mean this approach may be particularly useful for large 

longitudinal studies in HD and in post-marketing surveillance of ongoing use of new 

therapeutic drugs. 
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Chapter Five: Study Four 

Greater Time in Bed and Less Physical Activity Associate with Poorer Cognitive 

Functioning Performance in Huntington’s Disease 

5.1. Explanatory Note 

 The research presented in this chapter addresses my final research aim, which was 

adding to the limited literature on how sleep and physical activity habits relate to cognitive 

functioning in HD. The study presented in Chapter Two gave the first evidence that remote 

assessment of cognition, sleep, and physical activity in Huntington’s disease was feasible. 

Then, the studies presented in Chapters Three and Four showed that the HD-Mobile cognitive 

tasks generated cognitive data that was reliable, valid, and scientifically and clinically 

meaningful. Study Four represented the culmination of the overall research project because it 

combined all aspects of our remote assessment protocol and provided insight into how sleep, 

physical activity, and cognition associate in people with the expanded HD repeat as they live 

in their homes and communities. Study Four extended the findings of previous research in 

HD by assessing sleep, physical activity, and cognition in the one study and by adding 

ecological relevance to the findings because some data were collected in real time, rather than 

using retrospective self-report, and all assessments were conducted in the home.   

Note. This chapter was submitted to the journal SLEEP and is presented in its submitted 

format.    
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Abstract 

Study Objectives 

This study aimed to investigate how sleep and physical activity habits related to cognitive 

functioning, in naturalistic settings, in early Huntington’s disease (HD). 

Methods 

Forty-two participants with the expanded HD repeat (20 manifest, 22 premanifest) and 29 

healthy controls wore Fitbit One sleep and activity monitors for seven days and seven nights. 

They used a smartphone application to complete daily sleep and activity diaries, sleep and 

mood inventories, and a brief battery of cognitive tests, which were completed on day 8 of 

the study. All data was collected in naturalistic home and community settings.  

Results 

Amongst participants with the expanded HD gene, greater time spent in bed, measured by 

Fitbit, was associated with poorer accuracy and response speed on a test of visual memory, 

whereas lower levels of physical activity, measured by Fitbit, was associated with poorer 

accuracy on a test of executive functioning and working memory. Neither time in bed nor 

physical activity associated with a test of psychomotor speed. Groups were mostly similar 

across a range of Fitbit and self-report measures of sleep and physical activity, although the 

Manifest-HD group spent more time in bed than the Premanifest-HD and Healthy Control 

groups, and self-reported better sleep quality and more time spent sitting than the Healthy 

Control group and the Premanifest-HD group, respectively.   

Conclusions 

Sleep timing and physical activity relate to cognitive functioning in HD and may be 

important targets for management in behavioural intervention studies aimed at improving 

cognition in HD.   
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Cognitive impairments are a primary feature of Huntington’s disease HD; 1, and limit 

day to day functioning and quality of life 2,3. Disordered sleep and sub-optimal levels of 

physical activity have been consistently associated with poorer cognitive functioning across 

the lifespan in the general population 4-11, and are known risk factors for the development of 

dementias including Alzheimer’s and Parkinson’s disease dementias12-14. In comparison, 

although previous studies have separately investigated interactions between sleep and 

cognition, and physical activity and cognition 15-17 in HD, the relationship between sleep, 

physical activity, and their relative association with cognition in HD has not been examined. 

Measuring both sleep and physical activity when assessing their relationship to cognitive 

functioning is an important step because the three factors have complex interactions18-20. For 

example, exercise can benefit cognition directly, but also indirectly by improving sleep 

quality which can then have flow on benefits for cognitive functioning18,20. Past studies that 

assessed sleep-cognition and physical activity-cognition interactions in HD measured 

cognitive performance in the lab, rather than naturalistic settings, limiting the generalizability 

of findings to real world functioning. In the current study, we aimed to address these gaps by 

providing a more comprehensive picture of how sleep and physical activity jointly relate to 

cognitive functioning and by measuring all factors in naturalistic home and community 

settings.  Understanding these relationships will take an important step toward empirically 

based lifestyle interventions and better symptom management for patients.    

Sleep disturbance in HD is common and known to be related to cognition 21-23. 

Estimated rates of sleep disturbance in HD vary depending on assessment method and metric 

of measurement, however, it has been reported that close to 90% of HD patients will report 

experiencing sleep problems 24. Consistently higher rates of sleep disturbance are present in 

premanifest- and manifest- HD patients than in healthy controls or non-affected family 

members, and in people with manifest-HD compared to premanifest-HD, indicating 
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progressively worsening sleep with advancing disease 15,21,22,25,26. Common early sleep 

symptoms include changes in circadian rhythm, increased awakenings at night, and increased 

time to first rapid eye movement (REM) episode 21,27,28. The limited research available on 

relationships between sleep and cognition suggests that a later habitual wake time correlates 

with poorer cognitive functioning 15,16. Specifically, Aziz and colleagues15 (n = 21 

participants with premanifest-HD and n = 37 participants with manifest-HD ) and Diago and 

colleagues16 (with n = 23 participants with premanifest-HD and n = 15 with manifest-HD) 

reported that those who woke later in the morning had worse cognitive functioning across 

tests of processing speed and higher level attention and inhibition. Combining the results of 

both studies shows that habitual wake time relates to cognition for both people with 

premanifest- and manifest-HD. Nonetheless, more work is needed to fully understand the 

relationships between sleep timing and habits and cognition in HD.   

In terms of physical activity, only one previous observational study examined 

relationships between physical activity and cognition in HD 17. Physical activity was 

measured with Fitbit Ultra activity monitors and calculated by combining mean steps, 

distance walked, and stairs climbed over a three day period. The participants, 48 people with 

the expanded HD repeat (44 in the premanifest stage and four in the early manifest stage), 

who engaged in more physical activity, performed better on the Symbol Digit Modalities Test 

(SDMT), a measure of processing speed sensitive to cognitive symptom progression in HD 

29. In contrast, level of physical activity was not associated with performance on the Stroop 

Colour and Word Test, a measure of higher-level attention. This suggests physical activity 

levels may not associate equally with all domains of cognition, which is consistent with 

findings in non-clinical samples 4,30,31. Further, a meta-analysis of physical activity 

interventions in HD identified six studies that utilized cognitive measures to assess 

intervention outcomes; although the results were mixed, few significant improvements in 
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cognition were found 32. Given these mixed results, there is a clear need to investigate the 

relationships between physical activity and cognition in HD across both the premanifest and 

manifest stages and with a broader range of cognitive tests.  

In this study, we examined how sleep and physical activity relate to the day-to-day 

cognitive functioning in premanifest- and manifest-HD. For the assessment of sleep and 

physical activity, we used both passive activity monitoring and subjective (self-report) 

measures, and related these to cognitive measures from a self-administered mobile 

application 33 in people within their everyday settings of home and their communities. 

Previously, only a very small set of cognitive tasks have been used when assessing sleep-

cognition and physical activity-cognition interactions in HD. These have mainly consisted of 

the three tests included in the Unified Huntington’s Disease Rating Scale (UHDRS 34) 

cognitive battery (i.e., Symbol Digit Modalities Test, Phonemic Fluency, and Stroop Color-

Word Interference). The current study extends this by utilising new cognitive tasks and 

broadening the range of domains assessed in relation to sleep and physical activity habits in 

HD. We also used a combination of passive and subjective measures of because active and 

self-report sleep measures relate to separate sleep parameters35. We had two primary aims. 

The first was to understand how sleep and physical activity habits, assessed jointly using 

activity recording, in real time, rather than separate studies, in natural rather than clinical 

settings, relates to cognitive functioning in people with the expanded HD repeat. The second 

aim was to widen the range of measures used simultaneously to characterise sleep and 

physical activity in HD, and to investigate an alternative data collection method that enables 

self-assessment of cognition in proximity to actual sleep and physical activity by employing a 

mobile app.  
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Method 

Participants 

 We studied forty-two people with the expanded HD repeat (20 manifest, 22 

premanifest), and 29 healthy control participants (Table 1) across eight days. For inclusion in 

the study, we required participants to be 18 – 70 years of age, fluent in English, and to own 

an Android or Apple smartphone running at least Android 4.0 or iOS 7 operating systems. 

We excluded participants who were currently enrolled in any clinical drug trial, had a history 

of neurological illness (other than HD), psychiatric disorder other than depression or anxiety 

(both are common features of HD 1), significant head injury, or substance abuse. To be 

included in the HD CAG expansion group, participants had to have CAG expansion of 39 or 

more. Further, to be in the Manifest-HD group, participants were required to have been 

diagnosed with HD. To be included in the Premanifest-HD group, we required participants to 

have disease burden scores (DBS) of ≥ 200 calculated as age x [CAG – 35.5] 36. For 

additional clinical characterisation, we also calculated the CAG-Age product (CAP score) for 

Premanifest and Manifest HD participants as age x [CAG – 33.6] 37. The Manifest-HD group 

was older than the Premanifest-HD and Healthy Control groups (p = .005 and .027, 

respectively), and had lower self-reported total functional capacity (TFC) 38 than Premanifest-

HD and Healthy Control groups (both ps < .001), as expected. The Manifest-HD group had 

higher UHDRS total motor scores (TMS), DBS and CAG-Age product scores than the 

Premanifest-HD group (all ps < .008). The Premanifest-HD group had fewer years of formal 

education than the Healthy Control group (p = .012). The groups did not differ in their 

anxiety or depression scores and the Premanifest- and Manifest-HD groups did not differ in 

average CAG expansion length. We recruited participants through participant databases at 

Monash University, Melbourne, and Westmead Hospital, Sydney, which included volunteers 

who had consented to being contacted about research participation opportunities.  



Table 1.  

Group-level Comparisons for Participant Characteristics and Subjective and Objective Sleep and Physical Activity Variables. 

Characteristic Manifest-HD Premanifest-HD Healthy Controls Group differences (p-value) 
and effect size, Cohens d 

n 20 22 29 MHD - PHD MHD – HC PHD - HC 
Age (Mean Years (SD), Range) 51.60 (8.03) 

31 - 65 
42.09 (8.52) 

21 - 58 
44.31 (10.93) 

28 - 65 
p = .005 
d = 1.15 

p = .027 
d = 0.76 

P = .69 
d = 0.23 

Education (Mean Years (SD), Range) 14.33 (2.14) 
12 - 18 

13.25 (2.09) 

10 - 18 
14.88 (1.68) 

12 -19 
p = .18 
d = 0.51 

p = .59 
d = 0.29 

p = .012 
d = 0.86 

CAG Repeat length (Mean Years (DS), Range) 42.88 (2.11) 
41 - 49 

42.95 (2.16) 
41 - 51 

- p = .89
d = 0.03

- - 

Disease-burden score (Mean (SD), Range) 379.64 (58.85)  
275.00 – 484.50 

304.12 (56.13) 
217.50 – 435.00 

- p < .001
d = 1.31

- - 

CAG-Age Product (Mean (SD), 
Range) 

475.62 (60.78)  
367.00 – 589.38 

382.47 (66.45) 
270.86 – 541.72 

- p < .001
d = 1.46

- - 

HADS Anxiety (Mean (SD),  
Range) 

5.85 (3.62) 
2 – 17 

6.36 (4.29) 
0 – 15 

6.00 (4.53) 
0 – 16 

p = .92
d = 0.13

p = .99 
d = .04 

p = .95 
d = .08 

HADS Depression (Mean (SD),  
Range) 

5.40 (4.45) 
0 – 14 

3.50 (3.26) 
0 – 11 

3.17 (3.42) 
0 – 16 

p = .23
d = 0.49

p = .10 
d = 0.56 

p = .95 
d = .10 

UHDRS TFC (Self-report) (Mean (SD), 
Range) 

9.26 (2.42) 

6 - 13 
12.64 (0.90) 

9 - 13 
12.97 (0.19) 

12 - 13 
p < .001
d = 1.86

p < .001 
d = 2.16 

p = .69 
d = 0.51 

UHDRS TMS* (Self-report) (Mean (SD), 
Range) 

15.89 (12.59) 

1 – 40 
(n = 7) 

1.25 (2.55) 
0 – 7 

(n = 12) 

- p = .006 - - 

Note., HADS = Hospital Anxiety and Depression Scale, UHDRS TFC = Unified Huntington’s Disease Rating Scale Total Functional Capacity, 

UHDRS TMS = Unified Huntington’s Disease Rating Scale Total Motor Score, which was only available for a subset of participants.
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               We also recruited people with the expanded HD repeat and healthy control 

participants using advertisements for the study posted on Facebook and at local HD 

community events. (See Table 1 for participant characterisation). 

Equipment and Measures 

We used a smartphone application, HD-Mobile 39, to measure cognition and for 

participants to report on their sleep, physical activity, and mood. HD-Mobile was designed 

for touch screen smartphones running Android 4.0 and iOS 7 (and above) operating systems. 

The app includes three cognitive tasks and a questionnaire feature that was used for self-

report measures. In total, we collected data on three self-report questionnaires and three 

cognitive tasks using HD-Mobile, which included the Object Information and Location 

Learning (referred to as the Visual Memory task in this paper), Two-choice Discrimination, 

and Speeded Tapping. We have previously described the tasks in detail 39. Briefly, the Visual 

Memory task assesses learning and memory for visual stimuli in two conditions, object 

identity and object location. For this study, we recorded the overall accuracy (percent correct) 

and mean response speed (in milliseconds) and used both in subsequent analyses. The Two-

choice Discrimination task assesses perceptual decision making and has a working memory 

component as participants are required to learn from feedback accumulated across trials to 

improve their accuracy. For this task, participants view a scene depicting snowflakes falling 

from the sky, and are instructed to quickly decide, without counting, whether there are “few” 

or “many” snowflakes on the screen. Participants receive feedback, in the form of a “happy 

face” for correct decisions and a “sad face” for incorrect decisions, which they can use to 

adjust their subsequent decisions. Overall accuracy (percent correct) and response speed 

(milliseconds) were the dependent variables. Speeded Tapping is a bimanual speeded finger-

tapping task that requires the participant to tap buttons on the smartphone screen as fast as 
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possible with alternating thumbs, providing a measure of psychomotor speed. The dependent 

variable was mean inter-tap interval (milliseconds), termed “tapping speed”.   

The subjective self-report questionnaires included on HD-Mobile included the SCale 

of Outcomes in Parkinson’s disease – Sleep (SCOPA –SLEEP) 40, the Hospital Anxiety and 

Depression Scale HADS  41, and a sleep and activity diary that we designed for the study. The 

SCOPA-SLEEP scale was originally developed for the measurement of night-time sleep (5 

items) and daytime sleepiness (6 items) in the past month in patients with Parkinson’s 

disease, and has shown good reliability, α = .89 for night-time sleep items and .85 for 

daytime sleepiness items, and validity when used with HD patients 15. Higher scores for each 

of the subscales indicate poorer night-time sleep and higher levels of daytime sleepiness. The 

HADS is a widely used and reliable 41-43 14-item self-report questionnaire, which assesses 

feelings of anxiety and depression over the previous week. The sleep and activity diary 

included a standard sleep diary and questions about physical activity. The sleep diary 

required participants to report the time they closed their eyes with the intention of sleeping on 

the previous night, the time they woke that morning, and to rate how well they slept on the 

previous night, using a seven-point Likert scale (very well to very badly; lower scores 

indicating better sleep). For the activity diary, participants reported the amount of time they 

spent engaging in moderate to vigorous physical activity on the previous day and also 

estimated the time they spent sitting. We provided participants with examples of moderate 

and vigorous physical activity to use as a guide to anchor their ratings.  

We used the Fitbit One to assess sleep and physical activity objectively. The Fitbit 

One is a lightweight, portable, activity monitor that utilizes a triaxial accelerometer to 

measure total step count, total activity calories, minutes spent in sedentary behaviours during 

the day, as well as aspects of sleep such as time in bed, total sleep time, and sleep efficiency 

44,45. The Fitbit One has good validity for detecting total steps and energy expenditure, and is 
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reliable as a measure of sleep habits (time in bed and wake/sleep schedules) in the general 

population 17,44,46 and in HD, although it is not recommended as a measure of total sleep time 

or sleep efficiency in HD due to unsatisfactory agreement with benchmark polysomnography 

and EEG measures 47,48. From the Fitbit we used “time in bed” and “activity calories” as 

measures of sleep and physical activity habits in our analyses because they are reliable 

measures in HD and because both sleep habits and activity levels have previously been linked 

to cognitive functioning in HD 15-17. For both time in bed and activity calories, we calculated 

the mean for each participant over the seven days and nights of the study. For inclusion in the 

analysis, each participant had to have at least three days, or nights, of available data.   

To measure sleep characteristics using the Fitbit One, participants set the device to 

“sleep mode” when they were ready to go to sleep, and then manually ended sleep mode once 

they had awoken and planned to get up for the day, thereby providing a measure of the 

amount of time the person spent attempting to sleep. We used this variable, referred to as 

“time in bed”, in subsequent analyses. In some cases, the FitBit data indicated that a 

participant had neglected to end sleep mode on arising from bed (i.e., clear activity periods 

commenced in the morning following the inactivity of sleep or clear activity at night after 

setting sleep mode). In these cases, we manually adjusted the end period of sleep based on the 

combination of FitBit activity data and the participant’s sleep diary. We estimate this 

occurred in approximately 30% of entries for participants with the HD gene expansion and 

23% of entries for participants in the Healthy Control group. Note that because in some cases 

we used the self-report data to refine the Fitbit sleep estimates, these two methods were non-

independent, and it was therefore not possible to directly study their agreement using 

correlations. This procedure is similar to methods used in contemporary sleep studies 49-51 and 

helps to ensure the accuracy of the time in bed measure by removing the effect of operator 

error, such as participants forgetting to turn sleep mode off after waking. In addition to time 
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in bed, we also obtained a measure of habitual sleep and wake times from the Fitbit. We 

calculated this as the average sleep and wake time taken over the seven nights and mornings 

of the study. We required participants to have at least three days of usable data available 

before calculating and using their sleep or physical activity data in any analyses. Overall, four 

participants from the healthy control group and two participants with the expanded HD repeat 

did not have sufficient Fitbit time in bed or activity calorie data. 

Procedure  

 We provided participants with both video and written instructions to enable them to 

install HD-Mobile on their smartphones and, and to operate the Fitbit devices. The 

instructions described what participants were required to do each day of the study. 

Participation occurred across an eight-day period, during which participants were required to 

complete one or more study procedures each day. We instructed participants to complete 

tasks and questionnaires within an hour of waking on each day of the study. This was to 

ensure the sleep diary was completed soon upon awakening, while the memory of their 

previous night’s sleep was fresh, and to try to ensure all participants completed cognitive 

tasks at a similar point in their circadian cycles. On the morning of Day 1, participants logged 

into HD-Mobile and completed an electronic informed consent form, the three cognitive 

tasks, all of the questionnaires, and attached the Fitbit One. The sleep and activity diary was 

completed on all days of the study and the cognitive tasks were completed again on Days 4 

and 8. For this study we only analysed the cognitive data collected on Day 8 because we were 

interested in how seven days of sleep and physical activity would relate to cognition on the 

eighth day. Participants continued wearing the Fitbit until the morning of Day 8. Total time 

commitment for the active parts of the study was two and a half hours, although we collected 

data passively using the Fitbit for seven days and nights. 
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Data Analysis 

We compared Manifest-HD, Premanifest-HD, and Healthy Control groups on 

demographic, cognitive, and mood variables and both subjective and passively derived sleep 

and physical activity variables using a series of one-way analyses of variance (ANOVA) both 

subjective and passive monitoring of sleep and PA with Tukey’s Honestly Significant 

Difference post-hoc tests. Note that we did not study the concordance between the self-report 

and Fitbit measures of sleep and physical activity because these measures differed in terms of 

the specific constructs they were intended to measure, or in the case mentioned above of 

sleep timing, the measures were not independent. We have previously presented group level 

comparisons of HD-Mobile cognitive task data which included analysis of the cognitive data 

which was collected on Days 1, 4, and 8 33. The cognitive data presented below are from Day 

8 only, as explained above.   

We computed five separate hierarchical multiple regression models to determine the 

effects of sleep and physical activity (tested as independent variables within the model) on 

performance on the five cognitive outcome measures from the HD-Mobile in the participants 

with the expanded HD only. In addition to the sleep and physical activity independent 

variables, each model also included DBS and the HADS depression subscale score (HADS-

D) as the first step, to account for effects of depression symptoms and estimated disease 

progression on cognition, which was followed by entering mean activity calories and time in 

bed in the second step. We initially included a time in bed by activity calories interaction 

term to assess if the sleep and physical activity measures interacted in their associations with 

cognitive performance. The interaction term was non-significant in all models and generally 

weakened each model. As such, the regression models below are presented without the 

interaction term.  Statistical analyses were performed using IBM SPSS V. 26 software. 



Page | 127  

 

Missing data were excluded pairwise from the regression analyses. Alpha was set at .05 for 

all analyses. 

Results 

 Our main goal was to examine the joint relationships of sleep and physical activity 

levels in relation to cognition in patients with the expanded HD repeat. To provide a context 

for these results, we first describe group comparisons on subjective and passive sleep and 

physical activity measures, and performance on the cognitive tasks. We then turn to our main 

analyses, where we model the relative associations of sleep and physical activity with mobile 

app based cognitive measures. 

Group Level Comparisons of Sleep, Physical Activity, and Cognitive Performance  

We report comparisons for passive measures of sleep and physical activity first. In 

terms of the Fitbit sleep findings, the Manifest-HD group spent on average more time in bed 

than both the Premanifest-HD and Healthy Control groups. Habitual sleep times were very 

similar across groups, averaging just before 11 pm; average wake times were more variable, 

with averages across the group ranging from just before 7 am in the Healthy Controls and 

closer to 7:40 am in the Manifest-HD group, with no significant differences, but the 

Manifest-HD group showed a statistical trend (p =.056) for arising later than the Healthy 

Controls. See Table 2 for all sleep and physical activity variable comparisons. There were no 

significant differences in Fitbit physical activity measures between the three groups. The 

groups were similar across two self-report sleep outcomes from the SCOPA-SLEEP 

questionnaire, night time sleep disturbance and daytime sleepiness. In contrast, the Manifest-

HD group’s scores on the sleep diary rating of sleep somewhat contradicted their SCOPA-

SLEEP scores. They self-reported better sleep than the Healthy Control group on the diary 

measure, but not on SCOPA-SLEEEP questions. In terms of physical activity, diary-based 

records of minutes of moderate to vigorous physical activity were highly variable but did not 
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differ significantly between groups. In contrast, diary-based records indicated more sitting 

time reported by Manifest-HD compared to both Premanifest-HD and Healthy Control 

groups. This contrasted somewhat with Fitbit data which indicated time spent sedentary was 

similar for all three groups.  

In terms of cognitive data collected on Day 8, as expected the Manifest-HD group 

performed significantly worse than Healthy Controls on all cognitive outcomes except on the 

accuracy measure of the Visual Memory task where they performed worse than the 

Premanifest-HD group. The Healthy Control group were intermediate on Visual Memory and 

not significantly different from either other group.  The Manifest HD group was also slower 

than the Premanifest-HD group on Speeded Tapping. There were no significant differences 

between Premanifest-HD and Healthy Control participants on any of the cognitive measures. 

A summary of group-level cognitive performances on the HD-Mobile cognitive tasks, as 

measured on Day 8 of the study, is presented in Table 2.  

  



Table 2.  

Group-level Comparisons for Passive and Subjective Sleep and Physical Activity Variables and HD-Mobile Cognitive Variables.  

Characteristic Manifest-HD Premanifest-HD Healthy Controls Group differences (p-value) 
and effect size, Cohens d 

Sleep variables 
  SCOPA-NS 
(Mean (SD), 
Range) 

4.90 (3.28) 
0 - 15 

4.68 (2.59) 
0 - 9 

5.28 (2.80) 
0 - 11 

p = .97 
d = 0.07 

p = .90 
d = 0.12 

p = .75 
d = 0.22 

SCOPA-DS 
(Mean (SD), 
Range) 

2.40 (2.96) 
0 – 9 

2.14 (1.89) 
0 - 8 

1.66 (1.01) 
0 - 3 

p = .90 
d = 0.18 

p = .41 
d = 0.42 

p = .67 
d = 0.32 

Sleep diary rating of sleep 
(Mean (SD), 
Range) 

2.45 (0.85) 
1.0 – 4.50 

2.79 (0.78) 
1.00 – 4.13 

3.04 (0.81) 
1.63 - 4.63 

p = .37 
d = 0.41 

p = .038 
d = 0.71 

p = .52 
d = 0.32 

Fitbit time in bed 
(Mean (SD), 
Range) 

9:03.29 (0:58.17) 
07:36.25 – 11:00.42 

8:09.14 (52.05) 
05:57.00 – 09:34.08 

7:53.24 (52.19) 
05:32.40 – 09:31.17 

p = .007 
d = 0.98 

p < .001 
d = 1.27 

p = .60 
d = 0.30 

Fitbit habitual sleep time 
(Mean (SD), 
Range) 

22:55.20 (0:51.38) 
21:44.17 – 00:25.34 

22:51.04 (0:58.10) 
21:07.17 – 00:11.34 

22:59.17 (1:09.24) 
20:49.42 – 

02:00:10.20 

p = .98 
d = 0.08 

p = .98 
d = 0.06 

p = .91 
d = 0.13 

Fitbit habitual wake time 
(Mean (SD), 
Range) 

7:36.50 (1:09.06) 
05:37.42 – 10:04.34 

7:05.29 (0:40.37) 
05:50.42 – 07:55.51 

6:51.29 (0:59.28) 
05:19.08 – 09:00.59 

p = .28 
d = 0.55 

p = .056 
d = 0.71 

p = .71 
d = 0.28 

Physical activity variables 
Activity diary: Minutes of moderate and vigorous 
activity 
Mean (SD), 
Range 

74.85 (66.39) 
0.00 -255.00 

130.39 (144.04) 
3.75 – 487.50 

84.22 (108.28) 
0.00 – 412.50 

p = .25 
d = 0.50 

p = .96 
d = 0.10 

p = .32 
d = 0.36 

Activity diary: Minutes sitting 
Mean (SD), 
Range 

513.21 (182.17) 
240.00 – 832.50 

377.31 (160.00) 
157.50 – 750.00 

356.48 (161.86) 
125.63 – 690.00 

p = .028 
d = 0.79 

p = .005 
d = 0.91 

p = .90 
d = 0.13 

Fitbit minutes sedentary 
(Mean (SD), 
Range) 

619.44 (110.31) 
450.71 – 807.43 

615.74 (134.00) 
254.43 – 886.00 

664.17 (92.74) 
507.00 – 798.00 

p = .99 
d = 0.03 

p = .38 
d = 0.44 

p = .33 
d = 0.42 

Fitbit activity calories 
Mean (SD), 
Range 

1224.00 (501.02) 
333.33 – 1936.43 

1329.42 (473.97) 
741.14 – 2452.00 

1120.07 (354.07) 
588.57 – 1814.57 

p = .73 
d = 0.22 

p = .71 
d = 0.24 

p = .26 
d = 0.50 
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Fitbit steps 
Mean (SD), 
Range 

8413.26 (3819.36) 
1799.00 – 13838.14 

8759.72 (3004.04) 
2922.86 – 14690.71 

8669.72 (2832.18) 
4064.14 – 13758.57 

p = .94 
d = 0.10 

p = .96 
d = 0.08 

p = .99 
d = 0.03 

Cognitive variables 
Visual Memory Accuracy (percent of correct 
choices) 
Mean (SD), 
Range 

63.82 
(12.64) 

74.70 (11.52) 71.55 (13.32) p = .022 
d = 0.90 

p = .10 
d = 0.60 

p = .66 
d = 0.25 

Visual Memory Response Speed (milliseconds) 
Mean (SD), 
Range 

2598.31 (770.08) 2182.07 (516.35) 1834.82 (544.64) p = .089 
d = 0.63 

p <.001 
d = 1.14 

p = .12 
d = 0.64 

Two-choice Discrimination Accuracy (percent of 
correct choices) 
Mean (SD), 
Range 

81.81 
(8.44) 

84.71 (5.59) 88.08 (6.03) p = .37 
d = .41 

p = .007 
d = 0.86 

p = .19 
d = 0.58 

Two-choice Discrimination Response Speed 
(milliseconds) 
Mean (SD), 
Range 

1452.16 (414.01) 1249.08 (209.67) 1089.39 
(169.34) 

p = .054 
d = .62 

p < .001 
d = 1.15 

 p = .10 
d = 0.84 

Speeded Tapping Response Speed (milliseconds) 
Mean (SD), 
Range 

 305.27 (199.64) 178.44 (138.49) 128.53 (46.64) p = .01 
d = 0.74 

p < .001 
d = 1.22 

 p = .40 
d = 0.48 

Note. SCOPA-NS = Nighttime sleep disturbance subscale from the SCOPA-SLEEP questionnaire (possible scores range from 0 – 20), SCOPA-
DS = daytime sleepiness subscale from the SCOPA-SLEEP questionnaire (possible scores range from 0 – 24), 
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Sleep Habits, Physical Activity Levels, and HD-Mobile Cognitive Tasks Performance in 

Participants With the Expanded HD Repeat 

Visual Memory Accuracy. For visual memory, the first step in the model showed higher DBS 

was associated with lower visual memory accuracy (β = - 0.46, p = .003). Higher HADS-D 

scores tended to be associated with lower accuracy, although the relationship did not reach 

significance (β = - 0.27, p = .074). Together, DBS and HADS-D scores explained a 

significant amount of the variation in Visual Memory accuracy, F(2, 34) = 6.77, p = .03, 

accounting for 28.5% of the variability in percent correct (adjusted R2 = .24). We added Fitbit 

time in bed and Fitbit activity calories into the model and observed a significant improvement 

in the strength of the model, ΔF(2, 32) = 3.65, p = .037, accounting for an additional 13.3% 

of the variability in Visual Memory accuracy. In the second step of the model, we found 

participants who spent more time in bed and those with greater DBS tended to have fewer 

correct responses on the Visual Memory task (the final model is summarised in Table 3). 

Neither HADS-D scores nor Fitbit activity calories were associated with visual memory 

accuracy in the final model. Overall, the final model explained 41.8% of the variability in 

Visual Memory accuracy (F(4, 32) = 5.74, p = .001, adjusted R2 = .35).  

Visual Memory response speed. The first step of the model, using DBS and HADS-D to 

predict Visual memory response speed, was not significant F(2, 33) = 3.14, p = .057, 

accounting for 16% of the variability in Visual Memory response speed (adjusted R2 = .11). 

Neither DBS (β = .31, p = .057) nor HADS-D scores (β = 0.25, p = .12) was not associated 

significantly with response speed. Nonetheless, it appeared there was a trend towards slower 

responses when disease burden was higher. Adding Fitbit time in bed and Fitbit activity 

calories to the model significantly improved the explanation of variance in response speed, 

ΔF(2, 31) = 5.20, p = .011, accounting for an additional 18.1% of the variability in response 

speed. In the final model, we found participants who were more physically active (greater 
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Fitbit activity calories) tended to respond faster (Table 3). The other three predictor variables 

were not associated significantly with Visual Memory response speed. The final model, F(4, 

31) = 4.57, p = .005, explained 37.1% of the variability in response speed (adjusted R2 = .29).  

Table 3.  

Final multiple regression model associating Visual Memory Task accuracy, Visual Memory 

Task response time, Two-choice Discrimination accuracy, and Two-choice Discrimination 

response speed. 

 B SE B β p Sr2 

Visual Memory accuracy      

  Intercept 131.568 18.704 - < .001*** - 

  DBS - 0.063 0.028 - 0.327 .031* .092 

  HADS-D - 0.449 0.482 - 0.135 .356 .016 

  Fitbit Time in Bed - 0.081 0.032 - 0.379 .018* .114 

  Fitbit activity calories 0.003 0.004 0.094 .514 .007 

Visual Memory response speed      

  Intercept -950.946 860.798 - .278 - 

  DBS 1.519 1.284 0.177 .246 .027 

  HADS-D 10.390 22.050 0.070 .641 .004 

 Fitbit Time in Bed 5.214 1.495 0.543 .001*** .235 

 Fitbit activity calories 0.036 0.178 0.029 .842 .001 

Two-choice accuracy      

  Intercept 85.251 12.390 - < .001*** - 

  DBS - .016 0.018 - 0.139 .400 .017 

  HADS-D 0.224 0.317 0.114 .485 .011 

  Fitbit Time in Bed - 0.013 0.022 - 0.106 .536 .009 

  Fitbit activity calories 0.007 0.003 0.445 .009** .178 

Two-choice Response Speed      

  Intercept 111.390 488.432 - .821 - 

  DBS 2.177 0.728 0.448 .005** .173 

  HADS-D 16.401 12.511 0.195 .200 .033 

 Fitbit Time in Bed 1.005 0.848 0.185 .245 .027 

  Fitbit activity calories - 0.77 0.101 - 0.112 .452 .011 

Speeded Tapping Response Speed      

  Intercept -395.239 319.419 - .225 - 

  DBS 1.343 0.476 0.461 .008** .183 

  HADS-D - 7.010 8.182 - 0.139 .398 .017 

  Fitbit Time in Bed 0.420 0.555 0.129 .454 .013 

  Fitbit activity calories 0.005 - 0.066 0.012 .939 < .001 

Note. DBS = disease burden score, HADS-D = total score from the depression subscale of the 

Hospital Anxiety and Depression questionnaire, * p ≤ .05, ** p ≤ .01, p ≤ .001. 

Two-choice Discrimination Accuracy. Entering DBS and HADS-D into the first step of the 

model accounted for 8.9% of the variability in percent correct on Two-choice Discrimination 

(adjusted R2 = .03), and the model was not significant, F(2, 33) = 1.62, p = .21, nor were 

either the DBS or HADS-D, β = - 0.30, p = .085, and β = 0.05, p = .75, respectively. Entering 
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Fitbit time in bed and Fitbit activity calories in the second step significantly improved 

explanatory power, ΔF(2, 31) = 4.41, p = .021, accounting for an additional 20.2% of the 

variability in Discrimination Accuracy. In the final model (4, 31) = 3.187, p = .027, which 

explained 29.1% of variability (adjusted R2 = .20) higher Fitbit activity calories were 

associated with higher percentages of correct decisions on the task (see Table 3), and no other 

variables were significantly associated with Discrimination accuracy.   

Two-choice Discrimination Response Speed. In the first step of the model, DBS and HADS-

D significantly predicted Two-choice Discrimination response speed, F(2, 33) = 9.11, p 

= .001, accounting for 35.6% of the variability in response speed. Only DBS was a significant 

predictor in this model (β = - 0.53, p = .001). The final model, F(4, 31) = 5.16, p = .003, 

explained 40% of the variability (adjusted R2 = .32) in Two-choice Discrimination response 

speed, but adding Fitbit time in bed and Fitbit activity calories to the model did not provide a 

significant improvement, ΔF(2, 31) = 1.14, p = .33, only accounting for an additional 4.4% of 

the variability in response speed (Table 3).  

Speeded Tapping Task. In the first step of the model, DBS (β = - 0.49, p = .002), but not 

HADS-D (β = - 0.10, p = .52), associated significantly with tapping speed. Together, DBS 

and HADS-D significantly predicted Speeded Tapping response speed F(2, 36) = 5.63, p 

= .008, and explained 25% of the variability (adjusted R2 = .21.  The final model, F(4, 32) = 

2.84, p = .04, explained 26% (adjusted R2 = .17) of the variability in tapping speed. Only 

DBS was a significant predictor; participants with higher DBS had slower tapping speed 

(Table 3).  

Discussion 

The aim of this study was to investigate how sleep and physical activity habits, 

assessed jointly, related to the cognitive functioning of people with the expanded HD repeat 
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in naturalistic settings. We observed that, over and above the effects of disease burden and 

depression symptoms, more time spent in bed and less physical activity associated with 

poorer functioning on several measures of cognition in our sample of participants with 

premanifest-and manifest-HD. Specifically, more time in bed associated with reduced 

accuracy and speed of response on the Visual Memory task. Less physical activity associated 

with reduced accuracy on the Two-choice Discrimination task, which measures executive 

functioning and has a working memory component. In contrast, we found no relationship 

between time in bed or physical activity levels and basic psychomotor speed, as measured by 

the Speeded Tapping task. To our knowledge, this study provides the first evidence that sleep 

and physical activity are differentially associated with cognitive function in HD, extending 

the findings of previous sleep-cognition 15,16 and physical activity-cognition research in HD 

17. Interestingly, we found that time in bed and activity calories did not interact in any 

significant fashion in any of the regression models. Additionally, through utilising a range of 

self-report and objective measures of sleep and physical activity, we add to the limited body 

of knowledge of the day-to-day sleep and physical activity habits of people with the HD-gene 

expansion. Similar to past research 15,16, bedtime amongst Manifest-HD, Premanifest-HD and 

Healthy control groups were similar, but compared to the other two groups the Manifest-HD 

group spent longer in bed and tended to have a later wake time compared with the Healthy 

Controls. Interestingly, the Manifest-HD group self-reported better sleep quality over the 

course of the study than the Healthy Control group. We saw no difference between the 

Premanifest-HD and Healthy Control groups on any of our measures.  Overall, physical 

activity levels amongst the groups appeared similar, which is in keeping with limited 

previous evidence 17, although individuals in the Manifest-HD group reported a greater time 

spent sitting.  
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 We expected that physical activity and sleep parameters would provide similar 

amounts of explanatory power within each regression model, with cognitive task performance 

relating to both physical activity levels and time spent in bed, and that they might interact in 

some way, but neither of these expectations were met. Moreover, time in bed and physical 

activity had a weak and non-significant correlation. We found that physical activity and time 

in bed never jointly associated significantly with the same cognitive functioning measure. For 

example, greater physical activity levels associated with accuracy of decision making on the 

Two-choice Discrimination task but had a non-significant relationship to Visual Memory task 

performance. Conversely, more time in bed associated significantly with Visual Memory, but 

not Two-choice Discrimination task performance. These findings were counter to our 

expectations, but actually accord with past studies because, as discussed below, sleep or 

physical activity appear to affect different domains of cognition to different degrees in HD 

15,17,52 and non-HD samples 4,53,54.  

Considering exercise and cognition interactions further, studying premanifest-HD 

participants, Wallace and colleagues17 found that greater physical activity was associated 

with better performance on the SDMT, a task with a working memory component, but not 

with the Stroop Word Reading task, which relies on cognitive inhibition for some trials. 

Similar to the SDMT, the Two-choice Discrimination task also has a working memory load 

as participants must keep feedback from previous trials in mind while making decisions on 

each trial. This is consistent with research with healthy older adults, where a meta-analysis4 

showed that regular physical activity benefits executive control processes, which include 

working memory. Further research will be required to determine how robust the above 

findings of physical activity-working memory relationships are in HD and to establish any 

cause and effect relationship that may exist. This is because in the general population 

physical activity does not always benefit or associate with executive control processes to a 
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greater degree than other cognitive domains, such as basic attention or learning and memory  

31,55 and physical activity-cognition relationships in HD are likely to be just as complex.  

Regardless, it appears a pattern is emerging of physical activity associating with cognition in 

HD with a possibility of some specific association with working memory performance. Little 

is known about how day-to-day physical activity levels of people with the expanded HD 

repeat compare to those of the general population, but our findings and those of Wallace and 

colleagues 17 indicate that general activity levels of people with the expanded HD repeat may 

be similar to the general population at least until the early manifest stage. 

Regarding sleep-cognition interactions, our findings are also consistent with emerging 

evidence that cognitive functioning in HD is sensitive to sleep habits and timing. For 

example, Aziz and colleagues 15 and Diago and colleagues 16 found that later wake-time in 

their samples (which were of similar size to our sample and also contained a mix of manifest- 

and premanifest-HD participants) was associated with poorer cognitive performance, and we 

found the same effect on cognitive function with increased time spent in bed. Both later wake 

time and higher levels of time in bed may reflect impaired night-time sleep. Less time in deep 

sleep stages, lower duration of rapid eye movement sleep, and higher numbers of awakenings 

during sleep have been recorded in HD 21,22. Subsequently, it is reasonable to expect those 

experiencing such disturbed sleep will require more hours in bed to feel sufficiently rested. It 

is possible that the effect of time in bed could be confounded with disease stage in our study 

as the Manifest-HD spent more time in bed and also had the worst cognitive performance. 

We note, however, that we controlled for disease burden before entering time in bed into the 

regression models and our results mirror those of previous studies, so we believe our findings 

are robust.     

Contrary to expectation, using the Sleep diary, Manifest-HD participants rated their 

nightly sleep as better than the Healthy Control group. This is surprising as we know from 
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the literature that people with manifest-HD regularly experience sleep disturbance 21,22 and it 

is also surprising as there were no between-group differences on the SCOPA-SLEEP night-

time sleep scale which measures night-time sleep disturbance. The  Manifest-HD group 

reporting better sleep than Healthy Controls is perhaps related to a combination of related 

factors including known insight issues in HD 56, the tendency for people with the expanded 

HD repeat to underreport sleep problems 57, or the subsequent limitations of using self-report 

sleep questionnaires in HD 22. Because of the above issues, future studies assessing 

associations between behaviour, such as sleep and physical activity habits, and cognition, 

researchers might consider utilizing passive monitoring rather than use of self-report.  

Coupling ongoing assessment of sleep and physical activity habits with repeated cognitive 

assessment has the added benefit of in the capturing real time associations between daily 

behaviours and cognitive functioning in a manner that cannot be achieved with the use of 

retrospective self-report measures 58-60. 

Our study had two primary limitations that must be mentioned. First, our study had a 

small sample size, which limited the power to detect relationships among variables and the 

number of predictor variables that could be assessed within the regression models. 

Regression models can become overfitted when sample sizes are low 61, and so the robustness 

of the relationships we observed in this study should be assessed in future with larger sample 

sizes. Second, because Fitbits 47 and actigraphy in general 48 lack accuracy for assessing sleep 

architecture in HD, we had no means of validating the Manifest HD group’s unexpected self-

reports of high sleep quality against reliable objective data. Future observational studies of 

sleep at home in HD could solve this problem utilizing EEG-based devices such as the Dreem 

Headband, which can be worn in the home and measures aspects of sleep architecture, such 

as sleep stages, with comparable accuracy to polysomnography 62. 
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Overall, our results showed that time in bed and physical activity levels have 

important associations with day-day-cognitive functioning in people with the expanded HD 

repeat. These findings are congruent with past similar studies in HD 15-17 but extend their 

findings in two important ways. First, our findings have greater ecological relevance because 

all assessments were done in the home. Second, we captured ‘real time’ associations between 

sleep and physical activity habits and cognitive functioning in a way that was not done in past 

studies. This is because there was no temporal separation between our ongoing passive 

monitoring of sleep and physical activity and the assessment of cognition in our study, such 

as there has been in many in past studies 17,22,57.   

 Future observational studies of sleep, physical activity, and cognition in HD should 

also employ longitudinal assessment to determine if, and in what way, long-term physical 

activity and sleep habits are linked to cognitive symptom progression in HD, an area of 

knowledge which is sorely lacking. Additionally, given the emerging findings of 

relationships between sleep timing, physical activity, and cognition in HD, we recommend 

that these factors be considered as targets of future interventions aimed at improving 

cognition in HD. The findings of such studies will be critical to allow clinicians to support 

their patients to manage their symptoms alongside, or even in the absence of, future treatment 

options that may emerge from the current flux of clinical trials.  
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Chapter Six: General Discussion 

The overarching goal for my thesis research was to design, create, test, and then 

utilise an exclusively remote means of collecting clinically and scientifically useful data on 

the day to day cognitive functioning and sleep and physical activity habits of people with 

premanifest- and early manifest-HD. This involved demonstrating that people with the 

expanded HD repeat could complete the protocol (i.e., feasibility, acceptability, which was 

covered in Chapter Two) and that the HD-Mobile cognitive tasks would be reliable, achieve 

several forms of validity, and be sensitive to cognitive functioning in HD compared to 

controls. These aims were addressed in Chapters Three and Four. I also had the goal of 

adding to the limited literature on how sleep and physical activity habits relate to cognitive 

functioning in HD. This aim was addressed in Chapter Five. I will next present a summary of 

the key background information that was related to my thesis research, which I presented in 

Chapter One, and will also summarise the main findings from the empirical research that was 

presented in Chapters Two to Five. 

In Chapter One I explained that the work presented in my thesis was prompted by 

three realisations: 1) The field of Huntington’s disease study needed a rapid, inexpensive, 

accurate, and convenient means of collecting cognitive data in order to provide rich datasets 

that can be used to aid the identification of modifiers of cognitive symptom onset and 

expression; 2) Sleep and physical activity were understudied as factors potentially 

influencing cognition in HD, particularly in the context of home-based monitoring where 

cognition, sleep, and physical activity outcomes could be measured in combination rather 

than using retrospective reports; and 3) Remote assessment using mobile apps is a 

methodology that has sufficiently matured in recent years to make it possible for people from 

the HD-community to perform cognitive tests and questionnaires via their smartphones. 
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Lastly, I explained that no one had attempted to combine remote assessment of cognition, 

sleep, and physical activity in HD. The above points all lead into my listed research aims.  

In Chapter Two, I demonstrated the feasibility and acceptability of the remote 

assessment protocol. Participants with the expanded HD repeat and control participants 

completed the protocol with equally high levels of confidence and did so without in-person 

training. In Chapter Three, I showed that the HD-Mobile cognitive tasks had robust test-retest 

reliability, known groups validity, concurrent validity, and sensitivity to indicators of disease 

progression. Next, in the study presented in Chapter Four, I successfully applied cognitive 

modeling to data from the Two-choice Discrimination task and detected group-level 

differences in evidence accumulation speed between premanifest- and manifest-HD and 

control participants which were not apparent when viewing the observable performance on 

the task. Lastly, in Chapter Five, I showed that reduced physical activity and more time spent 

in bed was associated with poorer cognitive functioning in the combined group of 

premanifest- and manifest-HD participants. Together, these findings demonstrate that remote 

assessment of cognition, sleep, and physical activity in HD, in which participants are asked to 

self-administer all assessments without in-person training, is feasible and acceptable, and 

yields data that is reliable and achieves several forms of validity. The findings also showed 

that the remote assessment methodology produced useful information about the day to day 

cognitive functioning of people with the expanded HD repeat, including how their cognitive 

functioning relates to their sleep and physical activity habits. 

6.1. Integrated Overview of Findings and Implications 

6.1.1. Remote assessment of cognition, sleep, and physical activity in HD is feasible, 

reliable, valid, and provides scientifically and clinically meaningful Data. The first major 

implication of my findings is that remote, smartphone-based, cognitive assessment in HD is 

feasible in the absence of providing in-person training. This has rarely, if at all, been achieved 
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with a cognitively compromised sample and has important implications for the scalability of 

cognitive assessment in HD and other cognitively compromised populations. First, regarding 

novelty, we know of no previous studies which have attempted the same approach. Koo and 

Vizer (2019) reviewed studies that used mobile phone and tablet based cognitive assessment 

tools in older adults. They identified 29 studies in total, of which only five included any home-

based assessment. Of those five studies, only one (Tung et al., 2014) included a cognitively 

impaired sample, however, in that study participants did not self-administer any cognitive 

tasks, but rather only wore GPS trackers. A prior review paper by Zygouris and Tsolaki (2015) 

summarised computerised cognitive assessment of older adults more broadly, including a 

review of all computerised batteries, not just those based on smartphones or tablets. They 

identified a total of 17 batteries, some of which involved self-assessment, but in all cases, 

participants were either trained how to use the assessment battery, or they were supervised by 

a clinician. We found one study that, similar to our methodology, utilised self-administration 

of cognitive tasks on smartphones in the home environment (Lipsmeier et al., 2018), however, 

unlike our study, the participants underwent in-person training at the beginning of the study. 

Thus, my thesis research project has made an important and novel advancement in cognitive 

assessment by demonstrating that people with HD can self-administer cognitive tasks in their 

home, in the absence of attending the clinic for training at any stage.  

Smartphones are now ubiquitous, and the ability to employ smartphones in the absence 

of any in-person training provides major benefits by limiting the need for patients and research 

participants to attend hospitals and clinics (Bauer et al., 2012; Klimova, 2017; Koo & Vizer, 

2019; Rentz et al., 2016). Indeed, mobile devices have the potential to provide ongoing, 

repeated, cognitive assessment, or even just cognitive screening, without requiring patients to 

attend the clinic, and reduce associated staffing and resource requirements in comparison to in-

person assessment. These have been primary reasons for the development of mobile testing 
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approaches (Darby et al., 2014; Klimova, 2017; Koo & Vizer, 2019; Rentz et al., 2016). The 

benefits of home-based testing also accrue in that many cognitively impaired people lack 

independent transport options to get to appointments, and this is particularly important in 

people with HD who often lose the ability to drive (Beglinger et al., 2010; Farrell et al., 2019; 

Vaccarino et al., 2011). The benefits of not having to attend a clinic for cognitive assessment 

extends to people who live in geographically remote areas. The outbreak and global pandemic 

of coronavirus 2019 (COVID-19) also underscores the utility of having remote assessment 

options for situations where the extreme infectiousness of a virus makes face-to-face 

assessments dangerous (Yuan, Li, Lv, & Lu, 2020). Hence, our methodology, which combines 

mobile assessment with self-administration, fully maximises the benefits of mobile based 

assessment. 

The second important outcome of my research is that HD-Mobile can reliably assess 

several aspects of cognitive functioning, including psychomotor speed (e.g., Speeded Tapping 

task), visual learning and memory (e.g., the OILL task), and several aspects of decision making 

(e.g., the Two-choice Discrimination task). Because we had to address many unknowns at the 

start of this study, we selected tasks that we thought would work in an unsupervised setting 

with only minimal onscreen instructions, and deliberately limited the duration of the cognitive 

battery. Nonetheless, there is the potential to add more or different tasks in future studies. 

Demonstrating reliability and validity of any assessment tools should be an essential 

requirement before they can be used in any context, followed by ongoing validation efforts 

(American Psychological Association, 2017; Bauer et al., 2012; Daniëls et al., 2020). The 

results from my thesis research showed that HD-Mobile is capable of detecting aspects of 

cognitive functioning that are relevant to HD, which is an essential property for a battery to 

have if it is, for example, to be used for assessing the outcomes of a clinical trials (Stout, 

Andrews, & Glikmann-Johnston, 2017). Therefore, in future applications, HD-Mobile and the 
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cognitive tasks within could be a useful adjunct within clinical trials and for post-marketing 

monitoring of treatments, either in the immediate sense and whether or not functioning in these 

areas remain stable following treatment. Moreover, because the mobile-based platform allows 

more frequent assessment than clinic-based assessment, both variability in cognitive 

functioning and how trial participants function in the more naturalistic environment of their 

own homes, outside of the clinic setting, can be assessed in a way not possible with clinic visits, 

which usually occur relatively infrequently (Allard et al., 2014; Kaye et al., 2011; Koo & Vizer, 

2019; Moore et al., 2017; Toh et al., 2014).  

My thesis results also demonstrate that we were able to reliably measure the sleep and 

physical activity habits of people with the expanded HD repeat, and that we could detect 

relationships between sleep, physical activity, and cognitive functioning. This result is 

particularly important for understanding if, and to what degree, there is interplay between these 

factors and HD signs and symptoms. The major benefit of coupling ongoing assessment of 

contextual, or environmental, factors such as sleep and physical activity habits with repeated 

cognitive assessment in the home is that real time associations between daily behaviours and 

cognitive functioning can be captured (Allard et al., 2014; Kaye et al., 2011; McCrae et al., 

2012). Moreover, prospective objective assessment, in contrast to asking for retrospective self-

reports of habits and behaviour, is generally more accurate and reliable (Allard et al., 2014; 

McCrae et al., 2012). Benefits of this approach are particularly important in HD research 

because limited insight and underreporting of sleep difficulties are known to occur in 

retrospective self-reports of people with HD (Ho, Robbins, & Barker, 2006; Hoth et al., 2007; 

Videnovic et al., 2009; Y. Zhang et al., 2019). Better understanding of how environmental 

factors relate to symptom progression and onset in HD is critical for the development of non-

pharmacological interventions, physical activity interventions, or efforts to improve sleep 
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habits and sleep hygiene (Fritz et al., 2017; Goodman & Barker, 2010; Mo, Hannan, & Renoir, 

2015), for example, but has not been achieved as of yet.  

 One of the best known studies of the relationship between lifestyle factors and motor 

symptom onset in HD relied entirely on retrospective self-report measures to capture 

information on lifestyle (Trembath et al., 2010). In this study participants had to retrospectively 

recall their engagement in leisure-time physical and intellectual activities during each decade 

of their life from their teens until their diagnosis. Thus, the accuracy of these results is 

dependent on the accuracy of each person’s recall of their activity levels across multiple 

decades of life. Results indicated that passive lifestyles (i.e., lower levels of physical activity 

and less cognitively engaging activities) were associated with earlier motor onset. Although it 

would be impractical to conduct a mobile app study across such a long period as decades, 

prospective assessment in large samples, longitudinally, over even 24 months, may help to 

create a more accurate picture of the long term levels of physical activity in people with HD. 

Our method of monitoring also provides a means to improve understanding of how lifestyle 

factors, such as sleep and exercise habits, relate to cognitive symptom progression via 

information-rich prospective observational studies. Importantly, because all assessments can 

be done in the home, with high frequency, the cognitive data obtained will have higher 

ecological validity than data collected at infrequent time points in the lab or in the clinic.  

A final important implication of my research is that because we have shown that remote 

cognition, sleep, and physical activity can be assessed in HD, without meeting with participants 

or providing them with formal training, we can be confident that our approach can also be 

applied to other neurodegenerative or cognitively compromised populations. We have already 

seen that people with early signs of dementia and people with Parkinson’s disease are able to 

self-administer cognitive and other tests on smartphones and computer devices after in-person 

training (Koo & Vizer, 2019; Lipsmeier et al., 2018; Zygouris & Tsolaki, 2015). The results 
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from my thesis project show that with a careful and considered approach, fully remote 

assessment, without in-person training, and with all the associated benefits, should be possible 

in other neurodegenerative populations. We believe that an important key to our success was 

the community consultation that we undertook in the process of developing the project and the 

methodology; we went through several rounds of input and idea exchange, and review of our 

app as it developed, with a sample of just those people who we would ask to use the app on 

their own; I address the importance of community consultation further in the section that 

follows. Next, I discuss some key clinical implications of findings from my thesis research. 

6.1.2. Clinical implications of the thesis findings. In Chapter Four I demonstrated that 

both premanifest- and manifest-HD participants had less evidence of accumulation speed 

compared to controls, differences that only emerged following diffusion modeling of the two-

choice discrimination task. Importantly, in the absence of applying mathematical modeling to 

the Two-choice Discrimination task data, differences in performance between premanifest-HD 

and control groups were undetectable. The finding from diffusion modelling was that 

premanifest- and manifest-HD participants had a reduced rate of evidence accumulation, a 

manifestation of slowed processing, which has functional implications for contexts in which 

processing of visual evidence is required for making decisions. Driving is one such context 

(Daneshi, Azarnoush, & Towhidkhah, 2020). 

Driving is a complex functional ability, which is commonly impaired in HD (Farrell et 

al., 2019; Jacobs, Hart, & Roos, 2017; Williams, Downing, Vaccarino, Guttman, & Paulsen, 

2011). Several studies have had some success using cognitive batteries to predict fitness to 

drive in patients with manifest-HD, particularly using processing speed, cognitive flexibility, 

and visual attentional control as predictors (Beglinger et al., 2012; Devos, Nieuwboer, Tant, 

De Weerdt, & Vandenberghe, 2012; Farrell et al., 2019; Hennig, Kaplan, Nowicki, Barclay, & 

Gertsberg, 2014; Jacobs et al., 2017). Nonetheless, no consensus or gold-standard cognitive 
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battery exists for predicting fitness to drive in HD (Jacobs et al., 2017) and cognitive batteries 

have shown varied predictive utility for driving fitness in HD (Farrell et al., 2019; Jacobs et al., 

2017). Diffusion modeling of two-choice discrimination tasks, such as the one used in my 

thesis, may make a valuable addition to any cognitive battery aimed at predicting driving fitness 

in HD. For example, the ability to estimate the time to collision of two objects is a critical 

ability when driving (Daneshi et al., 2020) and diffusion models have been shown be the best 

choice for modeling data from time to collision studies (Daneshi, Azarnoush, Towhidkhah, 

Gohari, & Ghazizadeh, 2019). Indeed, Daneshi et al. (2020) showed, in a driving simulator 

task that assessed time to collision decisions, that healthy participants increased their evidence 

accumulation speed when required to make driving decisions under time pressure compared to 

when not under time pressure. Relevant to these findings, in Chapter Four, I showed that 

premanifest- and manifest-HD participants were unable to accelerate evidence accumulation 

in the Two-choice Discrimination task to the same extent as healthy controls. Inability to 

accelerate evidence accumulation under time pressure when driving could have disastrous 

consequences for people with premanifest- and manifest-HD as it may heighten propensity for 

accidents. Hence, the evidence accumulation deficits we observed in Chapter Four may have 

implications for driving ability, and as such, tasks assessing evidence accumulation ability may 

have promise as predictors of driving ability in HD.  

Another clinical implication of the modelling results from Chapter Four relates to the 

possible neurological correlates of the reduced evidence accumulation speed in HD 

participants. The slowed evidence accumulation may be due to structural deficits in the fronto-

parietal pathway since the fronto-parietal pathway has been linked with evidence accumulation 

speed in the general population (Brosnan et al., 2020; Mulder, Van Maanen, & Forstmann, 

2014), and because the pathway is known to be affected in manifest-HD (Poudel et al., 2014). 

Poudel et al. (2014) demonstrated that higher radial diffusivity, indicative of demyelinative 
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processes (Song et al., 2005), correlated with poorer performance on SDMT and Stroop and 

with worse motor symptoms in manifest-HD participants. Even though Poudel et al. (2014) 

observed significantly greater radial diffusivity in premanifest-HD versus controls, these levels 

did not associate significantly with motor signs or any cognitive measures. Hence, we add 

evidence of another specific cognitive deficit that may be related to neuronal changes in the 

fronto-parietal pathway in HD, that of reduced evidence accumulation speed. Moreover, we 

show that these deficits have functional implications in premanifest-HD, not just manifest-HD. 

For future studies the role of the fronto-parietal pathway, and that of any other pathways, in 

evidence accumulation in HD can be substantiated with research that integrates cognitive 

modelling with neuroimaging.  

Findings from the thesis project on the relationships between sleep, physical activity, 

and cognition in HD also have important clinical implications. In Chapter Five, I showed that 

greater time spent in bed and lower levels of physical activity, averaged over seven days, were 

related to poorer cognitive functioning on HD-Mobile cognitive tasks, measured on the eighth 

day. Both findings were congruent with past findings in HD which showed that later habitual 

wake times (Aziz et al., 2010; Diago et al., 2018) and lower levels of physical activity (Wallace 

et al., 2016) related to poorer cognitive functioning. Our findings added a new component, 

ecological validity, in that all data in my studies were collected within the home environment, 

meaning we had a direct measure of how sleep and physical activity habits relate to the day-

to-day functioning of people with the expanded HD repeat rather than how they function under 

the specialised settings of a clinic or laboratory. Moreover, in my research cognitive 

assessments were conducted in close proximity to the measures of sleep and physical activity, 

which is key for understanding the dynamic interaction of these factors (McCrae et al., 2012; 

Rentz et al., 2016).  Our results also prompt the need for further sleep and physical activity 

interventions, and longitudinal observational studies in HD so that cause and effect 
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relationships between sleep, physical activity, cognition, and broader HD signs and symptoms, 

can be confidently established. Indeed, careful investigation of environmental and behavioural 

modifiers of cognitive and other symptoms in HD are sorely needed (Fritz et al., 2017; 

Goodman & Barker, 2010; Mo et al., 2015). Additionally, our results suggest that sleep and 

physical activity interventions that aim to improve cognition should consider managing 

physical activity levels and sleep timing, particularly managing time in bed and waking time.  

 6.1.3. Community consultation in the design and development of research 

programs. In Chapter Two, I described how we involved members of the HD community in 

the development of the study protocol. The strategy of meeting with members of the HD 

community was guided, in part, by the United States Food and Drug Administration’s Voice 

of the Patient reports (US Food and Drug Administration, 2017). The reports advocate for 

involving patients in the process of designing and running research projects, courses of 

treatments, and the development of guidelines that affect the patients. Indeed, collaboration 

between researchers, clinicians, and patients is an essential component of good research 

practice and for the successful design and implementation of healthcare (Coulter & Ellins, 

2006; Leidy & Vernon, 2008; Ocloo & Matthews, 2016; Payne et al., 2011). In particular, 

collaboration and consultation with patients and participants is critical when researchers plan 

to ask people with cognitive impairments to self-administer cognitive tests (Hagelkruys et al., 

2016). For example, Leidy and Vernon (2008) recommended that involvement of participants 

during the development of new instruments include small scale focus groups during 

development, followed by one-one cognitive debriefing sessions. In the cognitive debriefing 

sessions, participants can provide further specific feedback about the instrument, such as if they 

had difficulty understanding instructions, with feedback used to further improve the assessment 

tool (Leidy & Vernon, 2008). The benefit of this process was shown in Chapter Two. Our lab 

specialises in HD research and our research team collectively has multiple decades of HD 
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research experience, yet the HD community members we consulted with had several insights 

and suggestions for protocol design that we had not considered. For example, we planned to 

include the International Physical Activity Questionnaire (Hagströmer et al., 2006) within HD-

Mobile, but decided not to because the HD-community members found the questions too long 

and confusing. We made further adjustments to our protocol following the “cognitive 

debriefing” sessions, such as adding a clear flow chart of required activities to the participant 

instructions, so that participants could easily understand what they were being asked to do. The 

input from community members likely contributed to there being zero attrition amongst the 91 

participants who took part in my research. Although, the short protocol length was also likely 

a factor. These results further demonstrate the importance of patient consultation in the 

development of research, and I argue that further patient-centered focus will be crucial for the 

development of longitudinal research protocols, which is the planned next step following from 

my thesis.  

Poor adherence is an obstacle for remotely completed longitudinal research protocols 

and for attempts at phone-based interventions (e.g., Darby et al., 2014; Henson, Peck, & 

Torous, 2019; Jongstra et al., 2017b; Lipsmeier et al., 2018). For example, when requiring 

people with Parkinson’s disease to complete brief daily tasks on a smartphone, Lipsmeier et al. 

(2018) had an adherence rate of 61% at the six month mark. Similarly, Darby et al. (2014), 

asked healthy older adults to complete a web-based cognitive battery once a month over a 

twelve month period. 95% percent of participants completed the battery in the first month, but 

this fell to 67% at month three and 43% at month twelve. The above studies do not report on 

whether or not the design period involved consultation with consumers. Nonetheless, it is clear 

that if remote, self-administered, cognitive assessment strategies are to be useful adjuncts to 

clinical trials or useful for capturing environmental modifiers of functioning, as proposed 

(Allard et al., 2014; Koo & Vizer, 2019; Rentz et al., 2016), then better adherence is needed. 
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This is especially true as people that remain in remote assessment studies when others drop out 

may not be truly representative of the population from which they were drawn, reducing the 

generalisability of study results (Darby et al., 2014). Careful consultation with patients and 

their families, which we utilised in the study we report in Chapter Two, and as is advocated for 

by many (Coulter & Ellins, 2006; Hagelkruys et al., 2016; Leidy & Vernon, 2008; US Food 

and Drug Administration, 2017), and a focus on development of the therapeutic alliance 

between researchers and research participants, as advocated for by Henson, Peck, et al. (2019), 

may help to improve adherence in longitudinal remote assessment studies. In the study 

presented in Chapter Two we used the same protocol development process outlined by Leidy 

and Vernon (2008) for facilitating patient involvement in research and medicine. Specifically, 

we met with a group of community members during protocol development to understand their 

needs and preferences, and then met one on one with participants after they completed the 

protocol to get their experience-driven advice on how to further improve the protocol. An 

identical process may help to identify and eliminate reasons for study dropout in longitudinal 

versions of our protocol. Regarding therapeutic alliance, Henson, Peck, et al. (2019) and 

Henson, Wisniewski, Hollis, Keshavan, and Torous (2019) have argued that a focus on 

development and maintenance of the therapeutic alliance between clinicians or researchers and 

participants has often been overlooked by developers of digital mental health intervention tools, 

and has resulted in poor uptake of and adherence to digital mental health tools. Therapeutic 

alliance relates to the relationship and rapport between patient and therapist and a working 

alliance between the two, including an agreement on goals and tasks to be completed as well 

as the development of a bond between patient and therapist (Bordin, 1979; Henson, Peck, et 

al., 2019). Henson, Peck, et al. (2019) propose that adherence and engagement with mental 

health intervention apps will be improved if therapists liaise with patients and set goals related 

to app usage. A similar process may be beneficial in longitudinal remote assessment, whereby 
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clinicians and researchers regularly have contact with patients or participants and set and track 

goals related to test administration. This would have staffing requirements that would to some 

degree undo one of the proposed benefits of remote self-administration (Darby et al., 2014; 

Klimova, 2017). Nonetheless, if adherence rates were substantially improved, the benefits to 

quality and amount of data collected may outweigh the additional staffing costs.   

6.2. Limitations and Future Directions 

There were three primary limitations in my project that were related to our use of Fitbit 

One devices in the protocol. The first of these was a smaller than ideal sample size, the second 

was some loss of sleep and exercise data due to improper use of Fitbits, and the third was the 

limited ability of the Fitbit to directly measure sleep in HD. Each of these lead to options for 

future directions. Regarding sample size, our small sample size was a general limitation across 

Chapters Three to Five, limiting the power of some statistical analyses. Sample size was small 

because our recruitment was limited by logistical issues tied to the use of a set number of Fitbits 

available for our study. Rate of progress in collecting data was also limited by the time it took 

for the entire process of posting Fitbits to participants, having them complete the protocol, and 

then send the Fitbits back. This raises the first possible future direction, which involves further 

development of HD-Mobile to remove the need for the use of third-party activity trackers such 

as the Fitbit. Smartphone applications can now be used to collect large amounts of information 

from the phones themselves, including basic activity information such steps taken and distance 

travelled, sit to stand transitions, aspects of sleep timing, as well as details of phone usage such 

as the amount of messages sent, time taken to reply to messages, and other similar details 

(Barnett et al., 2018; Ben-Zeev, Scherer, Wang, Xie, & Campbell, 2015; Case, Burwick, Volpp, 

& Patel, 2015; Henson, Wisniewski, et al., 2019; Lipsmeier et al., 2018; Torous, Kiang, Lorme, 

& Onnela, 2016). Hence, utilising the wide range of data collected by smartphones presents a 

valid option for passively collecting data on activity levels and other aspects of functioning, 
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without the requirement for third party monitoring devices, potentially limiting the chances of 

operator error and lost data. Alternatively, future protocols can continue to utilize third party 

trackers, which continue to improve in terms of user friendliness, the accuracy of the data they 

generate on physical activity, and the diversity of the data outcomes they provide, such as heart 

rate measures, and more accurate and in depth measurement of sleep (Arnal et al., 2019; Boe 

et al., 2019; Kang, Kim, Byun, Suk, & Lee, 2019; Thomson et al., 2019). Hence, if third party 

trackers are used, a greater depth and quality of information can be collected and likely with a 

lesser chance of loss of data due to operator error. The choice of method for future studies will 

depend on the type and amount of data needed and the associated costs. For example, third 

party devices may be useful for collecting data on heart rate which cannot be collected by a 

smartphone alone, but the cost of providing wearable devices to a large cohort of research 

participants may be prohibitive.  

Both Fitbit One devices, and actigraphy based sleep monitoring devices are limited in 

their ability to assess aspects of sleep architecture such as total sleep time, sleep efficiency, 

number of awakenings, etc, in HD (Maskevitch et al., 2017; Townhill et al., 2016).  Hence, we 

could only use the Fitbit to measure overall sleep/wake patterns. This represents the third 

limitation of using Fitbit devices in the study because we were unable to validly assess the 

relationship between sleep architecture and cognitive functioning in participants with the 

expanded HD repeat. Although the results from Chapter Five and the studies by Aziz et al., 

2010 and Diago et al., 2018 demonstrate that sleep timing, particular time in bed and habitual 

wake times have important relationships with cognitive functioning, the ability to precisely 

assess sleep architecture in the home will likely be of great benefit for developing a fine detailed 

understanding of how sleep functioning and cognitive functioning relate in HD in a community 

setting. Subsequently this knowledge may assist the development of targeted sleep 

interventions in HD. New technologies using headbands that provide electroencephalogram 
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recordings and can also measure heart rate, breathing rate, eye movements, and other key sleep 

indicators (Arnal et al., 2019; Shambroom, Fabregas, & Johnstone, 2012) have promising 

utility, as compared to lab-based polysomnography, for assessing elements of sleep architecture 

in healthy individuals in home and community settings. These devices appear to be promising 

for assessing sleep architecture/cognition relationships in HD. However, before conducting a 

large-scale study investigating relationships between sleep variables and cognition using any 

of these methods, they should first be specifically validated against polysomnography with a 

sample of premanifest and especially manifest HD participants to understand how validly the 

devices measure sleep in HD.  

A final future direction for the research presented in this thesis is further development 

and implementation of two-choice decision making tasks and cognitive modelling in HD. I 

have argued above that two-choice decision making task data, after processing with diffusion 

models, may be a particularly useful addition to cognitive batteries aimed at predicting fitness 

to drive in HD, and this relationship could be further examined in future studies.  Our group 

published the first papers showing decision making impairments in HD nearly 20 years ago 

(Stout et al., 2001) and followed this work with cognitive modelling that disentangled the 

cognitive processes that were impaired in HD compared to healthy controls (Busemeyer & 

Stout, 2002). The earlier work from the Stout lab used a more complex four-choice decision 

making task, which would be unsuitable for unsupervised home-based mobile assessment, 

however, and used a different class of cognitive models. That approach too helped to uncover 

the cognitive processes affected in HD that underlay their decision-making performance, in 

particular, the tendency to overweigh the most recent outcomes of their choices, and the 

tendency to learn relatively better from positive than negative feedback. Overall, however, the 

use of formal models in studies of cognition in neurodegenerative disease is rare, despite the 

evidence that they can generate sensitive and clinically relevant outcomes that enhance what 
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can be learned from performance-based measures of cognitive functions. Parameters generated 

by cognitive models of task performance have also been linked to specific known neural 

correlates. For example, response cautiousness, which is instantiated in the boundary parameter 

in the diffusion model we used (Voss et al., 2013) is strongly linked to the function of the 

striatum (Bogacz et al., 2010; Herz et al., 2018; Damian M. Herz, Zavala, Bogacz, & Brown, 

2016), which is a primary site of neuronal atrophy in HD (F. O. Walker, 2007). If cognitive 

modelling can be developed to be efficiently implemented in the future, and then be applied in 

larger scale studies in neurodegenerative samples using remotely collected densely sampled 

data, it will be possible to herald an era in cognitive neuroscience in which ‘big data’ 

approaches can be applied to push frontiers of knowledge about cognition in neurodegenerative 

diseases, and its role in clinical progression.  

Overall, my research supports the value of Two-Choice Discrimination Tasks in further 

research, but as I note in Chapter Four, future studies would benefit from task conditions in 

which speed accuracy trade-offs are deliberately manipulated. Such investigations may show 

how well people with HD can shift their response style based on the demands of the task 

context, which is a key capability for many aspects of daily life, such as driving. Regardless of 

outcome, such an approach should provide new valuable information about decision making 

processes in premanifest- and manifest-HD and how these might affect daily decision-making, 

particularly impulsivity, and functioning across the HD disease process. 

  Future studies incorporating neuroimaging and diffusion modelling in HD would be 

beneficial, although obviously imaging in the context of at-home mobile assessment is 

impractical. Separate aspects of data collection however, using fMRI for example (see Mulder 

et al., 2014 for a review of how this has been conducted in the general population), could 

facilitate an understanding of how subcortical pathology in HD relates to decision making 

processes, such as speed of encoding and regulation of decision making thresholds. If decision 
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variables are found to link closely to imaging measures, this heralds the possibility that decision 

making tasks could then be used as markers of disease progression in people with the expanded 

HD repeat. Further, given treatments for HD are aimed at interrupting subcortical atrophy, 

decision making tasks may be potential proxies for monitoring response to therapeutics. 

Clearly, the implementation of such an approach requires significant additional developments, 

but the research in this thesis provides some initial evidence that invites speculation about how 

cognitive testing with modelling might be developed for future studies and even clinical trials.  

6.3. Final Conclusions 

The goal for this thesis was to design, create, test, and then utilise an exclusively 

remote means of collecting clinically and scientifically useful data on the day to day 

cognitive functioning and sleep and physical activity habits of people with premanifest and 

early manifest HD. To my knowledge, this was the first project to attempt fully remote 

cognitive assessment in a neurodegenerative population where the participants self-

administered all tasks without receiving any in-person training. To my knowledge my project 

was also the first to apply diffusion modelling to data collected from smartphones and the 

first to investigate the relationships between sleep and physical activity habits and cognitive 

functioning in HD, with all data collected in participants’ homes. Overall, we provided 

several novel findings to the field of HD research. 

To summarise the key findings, I showed that our methodology for remote assessment 

of cognition, sleep, and physical activity in HD was feasible and acceptable by people with 

the expanded HD repeat and that the data collected was reliable, valid, and scientifically 

meaningful. Importantly, the cognitive data collected was sensitive to cognitive functioning 

in HD. We were able to separate manifest-HD from premanifest participants and controls on 

cognitive performance, and also to separate premanifest-HD from controls on cognitive 

performance. Additionally, we were able to assess and find important relationships between 



Page | 163  

 

the sleep and physical activity habits of participants and their cognitive functioning. All of 

these findings were achieved without ever needing to meet participants, without them 

needing to travel to a clinic or laboratory and without the need to provide any formal training. 

I hope the findings of this thesis will prompt a new approach to assessment of cognition and 

important lifestyle factors in HD that speed the discovery of modifiers of disease onset and 

improve the assessment of therapeutic outcomes, hence benefiting the HD community.  
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Appendix 

 

Appendix 1 Questionnaires included in HD-Mobile 

 
Scale of Outcomes in Parkinson’s Disease – Sleep (SCOPA-SLEEP) scale 

 

Presentation instructions: Questions for this questionnaire will be answered on a discrete 

four-point scale, the response options are shown below. Participants will be presented with 

all options and will need to respond to all options before being able to continue.  

NS: Night time sleepiness 

Response options: never – sometimes – regularly – often 

In the past month, … 

 

1. … have you had trouble falling asleep when you went to bed at night? 

2. … to what extent do you feel that you have woken too often? 

3. … to what extent do you feel that you have been lying awake for too long at night? 

4. … to what extent do you feel that you have woken up too early in the morning? 

5. … to what extent do you feel you have had too little sleep at night? 

Overall, how well have you slept at night during the past month? 

response options: very well – well – rather well – not well but not badly - rather badly – 

badly – very badly 

 

DS: Daytime sleepiness 

Response options: never – sometimes – regularly – often 

 

1. How often in the past month have you fallen asleep unexpectedly either during the day or 

in the evening? 

2. How often in the past month have you fallen asleep while sitting peacefully? 

3. How often in the past month have you fallen asleep while watching TV or reading? 

4. How often in the past month have you fallen asleep while talking to someone? 

5. In the past month, have you had trouble staying awake during the day or in the evening? 

6. In the past month, have you experienced falling asleep during the day as a problem? 
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Hospital Anxiety and Depression Score 
 

Presentation instructions: Questions for this questionnaire will be answered on a discrete 

four-point scale, the response options are shown below. Participants will be presented with 

all options and will need to respond to all options before being able to continue. **Note** If 

any participant endorses responses that put them in the “severe” category, the researchers 

will need to be notified immediately.  

Instructions for participants: Please read each item below and select the reply which comes closest 

to how you have been feeling in the past week. Ignore the numbers printed at the edge of the 

questionnaire. Don’t take too long over your replies, your immediate reaction to each item will 

probably be more accurate than a long, thought-out response 
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Score Interpretation 

0 – 7 Normal 

8 – 10 Mild 

11 – 14 Moderate 

15 – 21 Severe 

 
 
 
 
 
 

 

Daily Mood, Sleep and Activity Questions 
 

Each day participants will be asked to answer a few brief questions regarding their mood, sleep and 

activity information from the previous day. The questions are: 

1. For how long (if at all) did you nap yesterday? 

2. At what time last night did you close your eyes with the intention of falling asleep?  

3. After deciding to go to sleep, how many minutes did you take to fall to sleep?  

4. How many times did you wake up during the night? 

5. Adding all the time you woke, how many minutes did you spend awake during the night? 

6. What time did you wake up this morning (for the final time)?  

7. What time did you get out of bed this morning (for the final time)? 

8. Overall, how well did you sleep last night (7-point likert scale, very well to very badly)   

9. In the previous day, how often did you feel tense or wound up? (four-point likert scale, not at 

all to most of the time). 

10. In the previous day, how often did you feel cheerful? (four-point likert scale, not at all to 

most of the time) 

11. Thinking back to yesterday, in the course of your day, approximately how long did you spend 

doing moderate or vigorous physical activity? This can include work, leisure, household and 

garden activities. Vigorous physical activities refer to activities that take hard physical effort 

and make you breathe much harder than normal. Moderate activities refer to activities that 

take moderate physical effort and make you breathe somewhat harder than normal). 
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12. Thinking back to yesterday, in the course of your day, approximately how long did you spend 

sitting? This may include time spent sitting at a desk, visiting friends, reading or sitting or 

lying down to watch television, or time spent sitting in a motor vehicle. 

 

Karolinska Sleepiness Scale 

 
Please mark the number that best corresponds to how sleepy you feel right now.  You may mark any 
number, but mark only one number. 
 
 

_____ 1. Extremely alert 

_____ 2. Very alert 

_____ 3. Alert 

_____ 4. Rather alert 

_____ 5. Neither alert nor sleepy 

_____ 6. Some signs of sleepiness 

_____ 7. Sleepy – but no difficulty remaining awake 

_____ 8. Sleepy, some effort to keep awake 

_____ 9. Extremely sleepy – fighting sleep 
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Appendix 2 Semi-structured Interview Script 

How do you rate the overall useability of the CogLab Mobile App (1 – 10) 

 

 

How confident did you feel in being able to understand how to complete the questionnaires? 

(1 -10) 

 

 

How confident did you feel in being able to understand how to complete the Tapping Task 

(Brain Game 1)? (1-10) 

 

 

How confident did you feel in being able to understand how to complete the SnowflakesTask 

(Brain Game 2) (1-10) 

 

 

How confident did you feel in being able to understand how to complete the Memory Task 

(Brain Game 3) (1-10) 

 

Overall, how did you feel about completing tasks and questionnaires on your smartphone? 

 

 

Do you have any suggestions for improving CogLab mobile 

 

  

How useful/informative did you find the video instructions? (1 – 10, N/A did not watch) 

 

 

How Useful/informative did you find the written instructions (1 – 10, N/A did not read) 

 

 

Following reading/viewing the instructions how confident did you feel that you could 

complete the study independently? (1-10) 

 

 

Do you have any suggestions for improving the participant instructions? 

 

  

How do you rate the overall usability of Fitbit One? (1 – 10) 

 

 

How confident did you feel in setting-up and using the Fitbit (1-10) 

 

 

Did you remember to wear the Fitbit at all times? 

 

 

Did you remember to set sleep mode every night? 
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Did you encounter any problems/difficulties during your participation? 

  



Appendix 3 Supplementary Material for Study Three

Brendan McLaren Ricardo J. Romeu Sophie Andrews Mark Bellgrove

Julie Stout

Introduction

Here we present the details of the two main classes of models that we tested against the data reported

in the main text. Both are hierarchical diffusion models that use the ’dwiener’ package in JAGS

(Vandekerckhove, Tuerlinckx, & Lee, 2010), as discussed in the main text; however, they differ in

the assumptions that are made. We will also highlight, when appropriate, minor variants that were

also tested.

The first model, which we call the variability model, is a basic diffusion model, largely

following the example given in (Vandekerckhove et al., 2010); however, the variability model will

also treat variance in mean drift rate between the three groups as a parameter to be estimated. We

expand upon this more below.

The second major model is a regression model, wherein we suppose that we can regress the

mean drift rate on the age of the subject, and the intercept, slope, and variance of this regression

equation will depend on group (for one variant) or on subject, which comes from a group (for the

second variant; see below). These models were tested because age is a known factor that can affect

response times (Ratcliff & McKoon, 2008), and since our main focus was on the drift rates, we

naturally thought to regress on age of the participants to see if there was an effect above and beyond

that of merely aging. While this may be a helpful exercise from a diffusion modeling perspective,

we should note there may be an objection to regressing on age from a Huntington’s researcher’s

perspective. The main objection is that the disease is inexorably linked to aging, as it is a progressive

disease that naturally becomes worse with age (Walker, 2007). Therefore, it could be that regressing

on age may actually remove the very object of study for a Huntington’s researcher. Nonetheless, as
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we will see, the regression models largely agree with the results presented in the main text, and in

many instances even give us the same estimated values for the parameters across groups.

All code used to fit the models, including the text files with the JAGS models we will detail

in a moment, can be found on the Open Science Framework page corresponding to this article:

https://osf.io/k2urm/.

Before we begin with the model details, however, we will briefly review the basics of Bayesian

modeling using a simple coin flipping example. While this will certainly not suffice for the complete

novice to Bayesian analysis, we hope the simplicity of the example will help illustrate the main

concepts that are important for interpreting and understanding the main modeling results. More

information on Bayesian modeling can be found in (Kruschke, 2014; Wagenmakers et al., 2018;

Vehtari, Gelman, & Gabry, 2017).

Bayesian Modeling

The most fundamental aspect of Bayesian modeling is to explicitly state and incorporate our prior

assumptions about a set of data we wish to model, in such a way that our observed data may change

and update our prior beliefs in a reasonable way. The end result - that of transforming our prior

beliefs by observing data - is known as a posterior distribution, and these distributions will be of

great importance when analyzing our model parameters.

To illustrate, we take a modified example from Kruschke (2014). Suppose we are flipping a

coin and we wish to determine its probability of it coming up "heads." This probability is a latent

variable that must be inferred from observing the coin being flipped, and so we perform a simple

experiment wherein we flip the coin, say, N = 30 times and record z, the number of heads observed.

If we have no information on the coin, we might suppose that any probability of coming up heads

(call it θ) is equally likely. We can represent this prior belief by placing a Beta(1, 1) distribution

over the possible values of θ – this can be seen as the blue curve in the Fig. 1. Now, suppose we have

flipped our coin 30 times and happened to have observed z = 23 heads. What should our posterior

probability over θ be? What makes this example so simple is that we can arrive at a simple formula

for calculating the posterior distribution over θ: our posterior will be Beta(a0 + z, b0 + (N − z)).

That is, we add the number of heads to the first parameter a0 and add the number of tails to the

second parameter b0. In our case, a0 = b0 = 1. Thus, our posterior is Beta(1 + 23, 1 + 7), and this

curve is shown in black on Fig. 1.

2
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Figure 1: An illustration on how our prior beliefs should change in accordance with observed data,
using Bayes’ Rule.

The reader should immediately take note that the mean of the posterior is around .75,

indicating that the data lead us to believe the coin to be biased. This should make perfect sense,

given the particular data sequence we have observed. While this example is extremely simple, the

basic ideas still pertain to the more complicated diffusion model we will discuss in due time: (1) we

need to explicitly establish our prior beliefs in the form of a distribution over the admissible values

of our parameter(s) of interest; (2) we need to input the observed data into the model, yielding us

a posterior estimate of each parameter. Note that the estimates we obtain are not point estimates,

but rather an entire distribution of possible scores. Indeed, even in our simple coin example, our

model recognizes that θ values other than .75 are possible, just not as likely. That is, the posterior

distribution captures not only what values are most likely, but also details the amount of uncertainty

we have in that estimate after having observed our data.

Of course, in more general settings, the models become more complicated, and as a result,

the Bayesian analyses also become more complicated. In general cases,we do not have an explicit

and simple formula for arriving at our posterior distributions, and we must therefore estimate them

3
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through simulation. Programs like JAGS make it easy for the general researcher to simulate from the

posterior distribution - which gives one a set of samples that can be used to estimate most properties

of the posterior with ease - without having to hand-code these simulation techniques (which are

known as Markov Chain Monte Carlo [MCMC] simulations). While the actual implementation

becomes a bit more complicated, the same basic principle of updating priors in light of new data is

the same.
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Figure 2: An example of updating beliefs about a parameter difference between two hypothetical
groups. The top panel shows the priors, the middle shows the posteriors after having observed data
from both groups, and the final panel shows the difference between the two posteriors (Group 2 -
Group 1). See the text for more details.

In particular, MCMC methods will give us sampled points from the posterior distribution, and

these samples will accurately reflect the true posterior distribution if the MCMC chain is allowed

4
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to sample for a long enough time (Kruschke, 2014; Wagenmakers et al., 2018). Indeed, plotting

a histogram of the MCMC samples gives a rough estimate of the true posterior distribution. We

can then ask essentially any question of interest by probing these posterior samples. For example,

in relation to our coin example, we might ask: (1) What is the probability of the bias in the coin

being greater than or equal to .75? This would be estimated by noting the proportion of posterior

samples that are at or above .75. (2) Is the coin a fair one? We can give an estimated answer to this

by observing the highest density interval of the posterior samples, which is similar in concept to

a confidence interval for the posterior distribution. However, the highest density interval actually

gives us the range of values that captures 95% of the sampled values, so that the true value has a

95% chance of being within the highest density interval (once we accept the observed data, that is).

If the coin is biased, then the highest density interval should exclude .5 as a credible (i.e., likely

given the data) value for the coin. Applying both of these questions to our posterior samples will

generally answer most of the questions we might have about a model, and are in fact the main

questions we asked about the best fitting diffusion model in the results section of the main paper.

Perhaps a concrete will be helpful for the naive reader. Figure 2 presents an example of

Bayesian updating in action; the jagged histograms are there to remind the reader that these

distributions are not exact, but rather a plotting of sampled points that are meant to approximate the

true, underlying posterior. The figure overall represents a typical Bayesian hypothesis test using

HDIs. This example, e.g., represents the prototypical scenario involved in testing if two groups

have a different value for some parameter in a model. At the top of the figure, we see the prior

distributions of the parameter for both groups; they overlap because this example assumes the same

prior distribution for each group. The middle panel depicts the estimated posterior distributions of

the parameter for each group; the reader can see that the distributions have now separated, indicating

that, with new evidence, we no longer believe that both groups have a similar distribution for this

parameter. The bottom panel shows the posterior difference distribution between the two tested

groups for this particular parameter; this distribution is obtained by "subtracting" one distribution

from the other. To better understand this, remember that each depicted histogram is represented by a

vector of sampled points from the posterior; to obtain the difference distribution, we simply subtract

one vector from the other and plot the resulting histogram. Using the difference distribution, we can

see what the posterior difference value is relative to a difference of zero between the two groups;

zero is represented as the vertical line in the bottom panel. The HDI is represented as the horizontal,

red line on the x-axis that lies below the bulk of the posterior distribution. This red line shows

5
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the interval within which there is a 95% chance that the true value of the difference is within that

interval, given the data and the model used. The expected difference, given the data and model, can

be obtained by taking the mean of this histogram. The probability of a difference, say Group 2 >

Group 1, can be found by finding the proportion of this difference histogram that is above zero. (In

this case, we look at above zero because this difference happens to be Group 2 - Group 1, so that

G2 −G1 > 0 is the same as G2 > G1.)

From here, the Bayesian hypothesis test would check if the hypothesis of a zero difference is

a credible one, given the model and the data. This is checked by observing if zero is within the HDI

of the difference distribution; this is because the HDI indicates the most likely parameter values, so

being outside the HDI is equivalent to being a highly unlikely value, given the data1. In this example,

zero is well outside the HDI, so that we would conclude that we have credible evidence that groups

2 and 1 differ on this particular parameter; looking at the proportion of the histogram above zero

will give you the probability that the difference exists, while the mean and standard deviation of the

differences will give an estimate of the expected difference, plus the range of expected noise.

The Variability Model

In this section, we will detail the modeling assumptions and implementations that were used for the

main model presented in the text, as well as some variants that we tested alongside the main-text

model (which in this supplement we will call the variability or variable model for reasons that will

soon become apparent). The reader is encouraged to compare the following exposition with the

JAGS model in the "VariabilityModel.txt" file.

First, we input the data into JAGS using the "y" vector, which is a column vector that stores

all the response times across all subjects and conditions (with the total number of data points given

as Ntotal). Each element of y is a response time in seconds, and is positive for correct trials and

negative for incorrect trials. All response times less than 100 ms were discarded from analysis,

as these response times are generally considered too fast to be "real" responses, and can severely

impact the estimation of τ, the non-decision time, among other parameters. By "discarded," we

mean that these data points were recoded as missing data, and MATLAB is told this by making the

corresponding element in y a NaN value (for Not A Number). The response times in y are distributed
1It is important to emphasize that the results are dependent on the particular model that was

chosen for analysis and the observed data. So as to prevent a repetitive "given the data and model"
throughout, the reader should keep in mind that all statements related to a Bayesian hypothesis test,
including point estimates from the posteriors, are assuming a given model and data set.

6
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according to the dwiener distribution, which is dependent on boundary ("alpha"), non-decision time

("tau"), bias ("beta"), and the drift rate ("delta"). The reader should note that alpha is dependent on

the condition ("cond") and the subject ID ("subj"), while the non-decision times (NDT), the biases,

and the drift rates are changing from trial-to-trial (i.e., only indexed by i, which runs through all

data points). This is implementing the trial-to-trial variability of these parameters, an assumption

that has been adopted by the latest developments of the diffusion model (Ratcliff & McKoon, 2008;

Ratcliff et al., 2016). Following the data vector y, we see that we make the assumption that: (1)

τ (NDT) comes from a uniform distribution with some upperbound Uτ , which is itself assumed

to be a subject-level parameter; (2) β (bias) is assumed to come from the Beta distribution, with

subject/condition level parameters of "Abeta" and "Bbeta", meaning that we assume the bias can

change from person to person, and also from condition to condition within a single person; and (3)

δ (the drift rate on the current trial) is assumed to come from a normal distribution, with a mean

v[c, s] dependent on the condition (Few vs Many) and the subject ID, and a precision2 of 1. We

emphasize that these last 3 parameters are indexed by i, meaning that they change from trial to trial.

Next come the specifications of the subject-level parameters. These are the "individual

differences" parameters whose mean estimates were used in the correlational analyses in the main

text. Remember that the Bayesian estimation procedure of MCMC will output a distribution of

possible scores; we can extract a point estimate by merely taking the mean of this distribution. First

is the upperbound Uτ , which is assumed to be distributed as an exponential with some rate ηg that is

dependent on the group of the subject. This seemed a reasonable guess at a prior for Uτ , since NDTs

tend to be in the range of 100 - 300 ms or so, and since our data are coded in seconds, this translates

to small values for the NDT. Note that the NDT is not assumed to change across conditions. The

subsequent "for-loop" traverses the 2 conditions in the experiment, and thus all parameters within

this condition loop are dependent on the subject and the condition. The next line says that the

subject-level mean drift rates (denoted as v) are distributed as normal with a mean µc,g dependent

on the condition and the group from which subject s originates, and with a precision estimate "prec"

that is also dependent on the condition and group. Indeed, this "prec" random variable is what gives

the variable model its name, as the typical assumption is to set this standard deviation variable to a

value like .1 or 1 (Ratcliff McKoon, 2008). While setting the variability is common, this makes the

assumption that the variances are the same across all groups, and we wanted to test that assumption

by estimating the variance in each group. Next comes the boundary parameter α, which is assumed
2JAGS parameterizes the normal distribution as having a mean and a precision, which is given

by 1/(σ2), where σ is the standard deviation.

7
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to come from a Gamma distribution (it can only take positive values here), where the rate and shape

parameters "Aalpha" and "Balpha" are assumed to change between conditions and groups. It is

from these rate and shape group-level estimates that we can compare the boundaries across groups.

A Gamma distribution was chosen for its support being non-negative real (≥ 0) and being a fairly

flexible distribution. We also assume that the shape parameters from the Beta distribution for the

bias (Abeta and Bbeta) each came from a Gamma distribution, and each of these distributions has a

condition/group level rate and shape parameter. The Gamma distribution for Abeta and Bbeta were

chosen for similar reasons to the boundary choice.

Finally come the group-level parameters, where the hierarchy stops. Most of these parameters

are assumed to change between conditions and groups, though the rate of the upperbound for the

NDTs was assumed to only change across groups. From the first line under the "# Group level

priors:" section, we assume that η[g] ∼ Gamma(1, 1), a somewhat uninformed prior3. Under the

subsequent condition loop within the group-level parameters, we see that the mean of the mean

drift rates µ[c, g] was assumed to come from a standard normal distribution. The next line converts

the standard deviation (the variability in the model) to a precision, and the standard deviation is

assumed to come from a Gamma(1,1) distribution (must be positive). The "Aalpha" and "Balpha"

were assumed to come from an exponential distribution, as it was not expected that the boundaries

would be very large. Finally, the rates and shapes of the Gamma distributions for the subject-level

bias parameters Abeta and Bbeta were all assumed to be themselves drawn from a Gamma(1,1)

distribution. We observed group differences by examining the posterior distributions of all of these

parameters (or some combination to look at means, medians, etc.).

There were two major variations on this main model, the first we arbitrarily called the

"Standard model" (because it was the first that was tested) and the other we called the "Alternative

model," because some of the priors were an alternative to the ones chosen initially.

In particular, in the Standard model ("HierHDmodel.txt"), both the non-decision time and

the bias were assumed to come from a uniform distribution, each with its own upperbound ("Ut"

and "Ub", for the NDT and bias, resp.). They were both assumed to be only dependent on subject

and not on condition. "Ut" was assumed, for each person, to come from an exponential distribution

with some rate ηg dependent on group. "Ub" was assumed to come from a Beta distribution, as it

must be within the range of [0, 1] (recall that the bias was parameterized as a percentage of the

3In fact, all the priors for the group-level distributions were chosen to be relatively uninformed,
as it was not clear exactly what these parameters should look like.

8
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boundary). This subject-level Beta distribution had its own parameters "Au" (A for upper) and "Bu"

(B for upper). Each of these were only dependent on group, and, for each group, they were assumed

to come from a Gamma(1,1) distribution. The other notable change here is the prior distribution

for v[c, s], the mean drift rate for each individual. It still comes from a normal distribution, with an

overall mean dependent on group and condition, but the precision here is now a constant of 1, not

estimated. Indeed, it is a fixed constant of 1 for all groups.

In the Alternative model ("AltHierHD.txt"), we changed largely the prior distributions of

some variables and their dependency on condition. We assumed that the trial-to-trial bias "beta[i]"

comes from a Beta distribution, in exactly the same way as in the Variable model, with Abeta and

Bbeta as before. Unlike in the standard model, however, the Alternative model allowed the bias to

change between condition and subject, which makes the Alternative model have more parameters

than the Standard model.

It should also be noted that the prior for the NDT was also changed in some implementations

of these models, in such a way as to bound the NDT away from zero. In fact, we had an implemen-

tation that was similar to that in Ratcliff et al. (2016) and in Ratcliff & McKoon (2008), where the

NDT comes from a uniform distribution centered around some value Tz and with some spread sz.

However, our programs had a great deal of trouble implementing this model, because it was always

possible to sample values for the NDT that were larger than most of the available response times. (In

fact, it was sometimes very likely, depending on the starting values of the Markov chains.) Indeed,

bounding the NDT away from zero always had the possibility of sampling a value that was greater

than some of the response times in the data, and sampling such a value made the model invalid, and

would thus make the program crash. Even having a more liberal criterion for removing response

times did not seem to alleviate this problem. The estimation of the model seemed to always be

subject to randomly crashing, making the implementation of the models unreliable in practice. We

implemented the uniform distribution because it had been used in previously successful work with

the dwiener module in JAGS (Vandekerckhove et al., 2010); however, as noted in the main text, this

led to extremely unreliable estimates at the subject-level. Future work should experiment more with

this issue, since at this point, it is unclear if the major problem is the ambulatory nature of the data

(few data points, many missing data points sometimes) or if the problem is the assumption of a

uniform distribution for the NDTs.

Table 1 demonstrates the DICs (Deviance Information Criterion - a measure of model fit to

the data) for each of the models tested.

9
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Model DIC(Var) - DIC(Model)
Standard -293.7

Alternative -183.7
Variability 0

Regression-Subject 306.3
Regression-Group/Condition 89.7

Regression-Group Only 3.2
Table 1: The (relative) Deviance Information Criterion for each of the models tested on the data,
relative to the variability model for ease of interpretation. Negative values indicate a worse fit
than the variability model, while positive values indicate a better fit. While the regression models
generally fit better than the variability model, they produce the same parameter estimates, albeit
through "noisier" posterior distributions. The regression models treated the group-level mean drift
rates as affine functions of the age of the participant. We focus on the variability model for ease of
presentation and its easier interpretation, but highlight some caveats in the section of this supplement
related to the regression models.

The Regression Model

The regression model is, in many ways, identical to the variability model. That is, it has many of the

same prior distributions, using the same justifications of a lack of prior knowledge, and similarly is

hierarchical, allowing for an assessment of group differences as well as individual differences. The

main difference between the regression model and the variability model is the allowance of each

individual mean drift rate v[c, s] to be described thus:

v[c, s] ∼ Normal(µ[group[s]], ε[c, group[s]])

µ[group[s]] = β0[group[s]] + β1[group[s]] ∗ Age[s].
(1)

That is, each individual mean drift rate v comes from a hierarchical group-level normal distribution,

with this group distribution having a mean given by the simple linear regression equation in (1).

This regression equation states that the intercept and slope are group-dependent only, and the mean

of the mean drift rate v is determined by these parameters applied to the added data of age for each

person. Note that in this particular model, the regression on the mean of means is not dependent on

the condition c of the experiment; only the variance is assumed to change across conditions.

Another instance of the regression model that we implemented allows the regression coeffi-

cients to change across each subject, while also allowing the variance of v[c, s] to change across

groups and conditions:
v[c, s] ∼ Normal(µ[s], ε[c, group[s]])

µ[s] = β0[s] + β1[s] ∗ Age[s].
(2)
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Thus, the regression equation is similar to before, but now allows the coefficients to change

according to each subject. It is additionally assumed that each intercept parameter β0[s] and each

slope parameter β1[s] for each subject s is drawn from a group-level distribution as follows:

β0[s] ∼ Normal(µInt[group[s]], 1)

β1[s] ∼ Normal(µSlope[group[s]], 1).
(3)

Both of µInt[g] and µSlope[g], for each group g, was given a hyperprior of coming from a standard

normal distribution.

As the DIC’s demonstrate, the regression models, especially the subject-level regression

model, performed better than the non-regression models. However, their interpretation is a bit

cumbersome, and in fact yields largely the same estimates as the variability model presented in the

main text, which is why we decided to focus on the variability model.

Figure 3 presents the regression lines for each group, as estimated from the mean of the

posterior distributions for each regression coefficient using the "Group Only" model for simplicity.

While these regression lines increase with age (which might not be expected), this may be somewhat

misleading, as the posterior distributions had a large amount of variability relative to the estimated a

posteriori means. More data are needed in order to confirm the increasing slope of these regression

lines (an example of the noisy posterior distributions for the intercepts is given in Figure 4).

Nevertheless, taking the coefficients as valid, we see that the three groups become more and more

disparate in their mean drift rates as age increases. This suggests that a Huntington’s diagnosis has

an effect on encoding of stimuli above and beyond that of merely aging.

Figure 5 presents estimated distributions of drift rates for all three groups. These distributions

represent the distributions of individual drift rate estimates for each population; they are estimates of

where the v[c, s] come from for each subject, given their group membership. These estimates were

calculated by using the group-regression model estimates for the regression coefficients, and using

the average age of each group in the regression equation. The standard deviation was estimated

from the group level variability in drift (ε) for each group. The distributions, especially those

for the Huntington group and the healthy controls, are fairly separable. Indeed, these separations

are replicated in the analyses for the variability model. However, the regression model found no

appreciable difference in drift rates across conditions for any of the groups, which suggests that

the within-group difference in mean drift rate for healthy controls in the main text is probably
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Figure 3: Regression lines for each group of mean drift rate against age. There appear to be clear
separations between the groups as age increases. The mean age for the premanifest and healthy
control groups were about 44, and the mean age for the Huntington’s group was about 50.

attributable to the spread in ages in the group. This is to be expected, as this is how the model

is coded, but additionally we did not find any appreciable difference in variance across the two

conditions, and variance was allowed to vary freely across groups and conditions. It should also be

emphasized that the means of these distributions (i.e., the means estimated by the regression lines)

are very similar to those estimated using the variability model (i.e., with no regressing on age).

Limitations of the Model

While the model was able to demonstrate expected (and hoped for) group differences, there are some

limitations to the model that should be kept in mind. First and foremost, as these analyses were done

on ambulatory data, there are a large number of missing data points involved in the analyses, and the

number of known data points per person were much less than is typically collected for a diffusion

model analysis (Ratcliff & McKoon, 2008). While the Bayesian method was implemented to

counteract these difficulties, they should nonetheless be kept in mind when evaluating the evidence.
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Figure 4: An example of comparing posterior distributions of regression coefficients from the
group-regression model. As can be readily seen, the variance in these estimates is quite large,
and the means are all close to zero, suggesting that more data are needed in order to have more
confidence in the estimates. A similar case occurs for the estimation of the slopes.

Certainly, more data is better, especially in the Bayesian framework, where our posteriors could

serve as the interested readers’ priors (Kruschke, 2014; Wagenmakers et al., 2018).

A more pressing limitation is the lack of results for the non-decision time in the main models

we tested. The major issue was that convergence of the MCMC chains for the individual-level

non-decision times (τ ) was very often absolutely horrendous. As mentioned in the main text, these

convergence issues mean we cannot place a great deal of trust in the estimates, as the posteriors

estimated in this fashion are not accurate reflections of the underlying true posteriors. An attempt to

mitigate this problem was the use of the Alternative model, which changed the prior distribution

on the non-decision times. However, this model also suffered with its τ estimates. Indeed, all the

models tested suffered this issue. This is a shame, because there are known motor issues with

Huntington’s, and it would be a great validation of the model if it were able to capture that expected

difference. While the group-level estimates of the non-decision times had good convergence

statistics, these estimates were undoubtedly affected by the poor estimation of the individual level

13
Page 210



Huntington’s & Diffusion Models 14

0 1 2 3 4 5 6

- Mean Drift Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
n
s
it
y

Dist of Mean Drift: Few Condition

HD

Cont

PS

0 1 2 3 4 5 6

- Mean Drift Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e
n
s
it
y

Dist of Mean Drift: Many Condition

HD

Cont

PS

Figure 5: Posterior mean estimates of the group level distributions of drift rate. That is, these are the
distributions: v[c, s] ∼ Normal(β̄0 + β̄1Ā, ¯ε[c, group[s]]), where the bars indicate a sample average.
There are readily apparent separations that are more easily tested using the variability model from
the main text. The means of these estimated posteriors are surprisingly similar to the means obtained
without regressing in the variability model. The left panel has the posteriors for the Few condition,
the right for the Many. The means are, by assumption, not different, but the variance is very slightly
different between the two.

estimates; thus, we should treat the observed null group level results of the non-decision times with

caution. We speculate that it is the ambulatory setting of the data, including both the limited number

of data points and the (sometimes large) number of missing data points per person (more on this

below), that is the major culprit of this estimation problem. It may be that more data are needed to

accurately estimate this parameter at the individual level, even in a hierarchical Bayesian framework.

Future work could find better implementations of the non-decision time in the hierarchical model so

that it is estimated accurately and robustly in such an applied setting.

Extra Details

In this section, we detail some extra insights that could not fit into the main text. We go over the

details of the missing data, with particular focus on the amount for each group and a discussion of

the consequences of this for the model; we also highlight the reliability issues we ran into - for the

non-decision time in particular - for the variability model; and finally, we touch on an interesting

consequence of the variability estimates in our model when wanting to practically implement the

model in clinical work.
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Figure 6: Group-level estimated density kernels for the response times of each group, partitioned
by condition ("few"/"easy" vs. "many"/"difficult") and correctness (correct/incorrect). Response
time is given in milliseconds. Overall, we can see a clear rightward shift (higher response times in
the median/average) in the HD group compared to the controls in particular, and possibly in the
pre-manifest group as well, along with fatter tails in the HD group. This latter result indicates that
the HD group is much more likely than the other groups to have longer response times.

Before we do so, however, we present Figure 6 that depicts the response time distributions for

each group, partitioned by both condition ("few" vs. "many"; "easy" vs. "difficult") and correctness.

It seems clear from the figure that we should expect a significant different between the HD group

and the controls; the results involving the pre-manifest patients is a bit more subtle, but nonetheless

captured by the models, as described in the main text. The reader should also note the fast errors,

i.e., the "bumps" that occur to the left of zero in all groups and in both conditions. Overall, at least

with respect to the clear difference between HD and controls, it appears that the model needed

to explain both a rightward shift (i.e., longer response times) in addition to a fattening of the

tails of these distributions, in both conditions. (The fatter tails can be seen by noting that the

estimated density for HD dominates the density for the other two groups after approximately 1200
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ms in all correctness and condition combinations.) From the results of the main text, the model

suggests that a lower mean drift rate in the HD group, combined with a somewhat smaller spread

of individual differences of drift rate within the HD group, was sufficient to explain both of these

apparent phenomena in these response time distributions. Indeed, a smaller drift rate would push

the distribution "rightward" (i.e., increase response times, on average/median), and with the group

as a whole a bit more homogeneous in their lower drift rates than controls, we might expect a higher

chance in the HD group of having much longer response times, leading to the fattened tails for the

HD group.

In addition, the reader should note that the response time distributions for the pre-manifest

and control groups are nearly identical for correct response times, but there is a slight rightward

shift and fattening of tails for incorrect trials; this is especially pronounced in the incorrect response

times in the "many"/"difficult" condition.

Missing Data

Group Total Data Missing Data Max Proportion
HD 240 (26) 5.8 (12) 15%

Premanifest 258 (60) 6.9 (14) 13%
Controls 237 (15) 1.8 (5) 10%

Table 2: Analysis of Missing Data. Number of total trials, with average (standard deviation), for
each group, along with the average number of missing trials (standard deviation) for each group.
The "Max Proportion" statistic finds the maximum proportion of missing/total trials to give a more
relative measure. Overall, we found that, while the clinical groups tended to have more total trials,
they also tended to have more missing data on average, and greater variability in the amount of
missing data per person. Indeed, this is corroborated by the higher max proportions in the clinical
groups (higher missing:total ratios in the clinical groups).

Table 2 contains the basic statistics related to missing data from each group. Each person

could vary in the number of total trials, because they may differ in the number of days in the

assessment that chose to participate in, as well as in the number of missing data points recorded for

each person. The most common reason for missing data was a response that was too quick. There

were also a couple participants that appeared to start the task normally, but then rush through when

they got bored, as indicated by having starting data similar to the previous session, followed by

a long string of missing data until the session was over. As the Bayesian approach allows for the

imputation of these values from past data, we left these missing values in our model fits, especially

given that, even with a complete set of data, the number of trials is typically quite small for a

diffusion analysis, as mentioned in the main text.
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While a natural imputation method, which would not rely on JAGS, would be to replace the

missing data with the mean of the complete data, the worry was that this approach would have a

strong influence on the estimation of all parameters. Indeed, the relatively high amount of missing

data in the clinical groups, combined with an already low maximum amount of data, would have

almost certainly led to this mean-imputation method giving us tainted results in all parameters from

the model, as having the exact same repeated value in response times would make the distribution

the model is trying to fit a degenerate one. This would lead either to a complete breakdown in

the estimation process, or in estimates that are completely nonsensical. Letting JAGS handle the

imputation, then, seemed like a reasonable compromise.

Reliability and Stability of the Variability Model Parameter Estimates

As mentioned in the main text, we ran into some issues of stability of our estimates. The exact

details can be found in the relevant text files posted to the article’s OSF page ("RhatSummary2.txt").

While the group-level estimates were quite stable, most of the individual-level estimates were not.

The only parameters that had 100% of their R̂′s below the acceptable level of 1.1 (where R̂′s

closer to 1 are best) were the boundary (response cautiousness) and drift (evidence accumulation

speed) parameters, hence their focus in the main text. The parameters used to calculate the bias

(Abeta and Bbeta) had the majority of individual estimates as acceptable, but a good size of them

were not. It is for this reason that we did not feel comfortable speculating on bias across groups.

However, the most shocking case was in the individual estimates of the non-decision time: only

a bit over 4% of the estimates were deemed acceptable, with the highest R̂ being about 2.6. The

reader should consider that the ideal Gelman-Rubin is 1, and only a deviation of 0.1 is generally

considered tolerable, which should put into perspective how terrible of a convergence an R̂ of 2.6

really is. This almost certainly comes from the large amounts of missing data from both clinical

groups. Additionally, these Gelman-Rubin results are quite general across the models: while the

exact percentages of acceptable R̂′s obviously differ across models, the general pattern is the same.

In fact, the pattern is a bit worse in the regression models, since they are using the same amount of

data to estimate more parameters, which seemed to make the estimation of all parameters suffer.

This latter occurrence is a large reason why we did not focus on the regression models in the main

text.

These issues are important to highlight, because a poor R̂ is reflective of the estimation

procedure giving extremely inaccurate estimates of the true posteriors. This inaccuracy, then,
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leads to incorrect and unjustified assertions about the differences between groups. The Ratcliff

Diffusion Model, for all its accomplishments, is still a very complex model, a glutton for data, and

unfortunately it would seem that the ambulatory setting of the current paper is too much of a strain

on the model for certain of its parameters. As mentioned in the main text, this is a great shame,

because of the known associations between HD and motor control, and the intended relationship

between the NDT and motor control in the diffusion model (see the main text for references). This

fact should then highlight the significance of the main findings of the paper: that even with all the

complications that come with a dataset from an in-home assessment, the diffusion model is just

powerful enough to detect an otherwise elusive result with at least one of its parameters.

More on Individual Differences

In the main text, we mentioned that the main model that was used, the variability model in this

supplement, included a measure of individual difference spread in the groups that we simply labeled

variability. In this section, we elaborate a bit more on this concept, as we believe it may have

important ramifications for any practical implementation of this model. Indeed, that it was the best

non-regression model, and that the better fitting regression models also allowed for changes in

variability between groups, should warrant further inquiry. Figure 7 illustrates an artificial example.

The means and standard deviations for each estimate are reported in Table 3 of the main

text. While we did not find any credible differences using the HDI criterion, we wish to highlight

some results that were noteworthy. We found that there was a 93% chance that controls > HD in

variability, and that there was only a 56% chance that HD < pre-manifest in variability. This latter

result is particularly interesting, as the symmetry in the difference distribution (HD - pre-manifest)

indicates that the mean difference in variability between HD and pre-manifest was almost zero.

This suggests that both clinical groups may have a similar spread of individual scores, but one is

shifted slightly to the right compared to the other. (This can be seen in Figure 5, for instance.) As

for across-conditions, within-group comparisons, the only notable comparison was that there was

a 79% chance that Few < Many variability with controls only. These relatively high probabilities

suggest that, with more data, this issue of the spread of individual differences across the groups may

be worth further testing and scrutiny.

Now, with those numbers under our belts, we should know how to use them. First, we should

understand the problem as tackled in the main paper, compared to how a clinician might use the

model. In the main text, we were given the group assignments of each person (full Huntington’s,
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Figure 7: An example showing the importance of the spread of individual scores within each
group. With narrower individual spread within a group, we can be more confident in our group
assignments once we have an observed score, which can potentially be immensely helpful in a
predictive scenario in a clinical setting. The "LLR" is the log-likelihood ratio of choosing the
blue over the red distribution when deciding from which distribution the observed score of -0.4
came. Larger LLRs indicate more evidence that the score came from the blue distribution. Having
a smaller spread nearly doubled the log-likelihood. The particular parameters that were used to
simulate this example were: (Top) Blue mean = -1, blue standard deviation = 1; red mean = 1, red
standard deviation = 1; (Bottom) blue mean and standard deviation = (-1, .5); red mean and standard
deviation = (1, .75).
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pre-manifest, control), and the model set out to see, given these group assignments, what differences

were observable between the groups. The central finding of the main text was that the groups

differed in their drift rates. Now, the clinician who may find this result useful needs to consider

that s/he has the opposite problem: the clinician is given a score, and from this must determine

the appropriate group assignment for their patient. The posterior distributions of mean drift rate

within each group, found using the data from the main text, can assist in this group assignment,

as these distributions give the clinician some prior information about what to expect from each

group in terms of drift rate scores. That is, the clinician is faced with a signal detection problem

(Green, Swets, et al., 1966), and the results of this paper give the distributions that s/he can use to

decide what is "signal" (e.g., pre-manifest) and what is "noise" (e.g., healthy control). This may

be particularly helpful in the service of tracking disease progression, or even progress within a

treatment regimen.

Now, to elaborate further, consider the example given in Figure 7 of this supplement. (The

numbers are artificial and do not correspond to what was actually found in the main text, but the

reader can hopefully excuse the simplification in the service of clarity.) Suppose that the clinician

found a score of -0.4 for a patient, and must decide if the patient should be classified as, say,

pre-manifest (red) or fully HD (blue). The top portion of Figure 7 shows a common and sometimes

frustrating situation in clinical modeling: that of great variability in scores within each group. What

the clinician can do in this case, say, is take the approximate density at the observed score for both

the blue and red distributions, and take a ratio of the blue density to red density. This gives the

likelihood that the patient came from the blue versus the red distribution of scores. The likelihood

numbers are typically too small to be meaningfully understood, so taking a log is done to make the

numbers more understandable. Doing so produces the "LLR" (log-likelihood ratio) given in the top

portion of Figure 5. The clinician might come up with a simple rule, such as, "If the LLR is above

zero, there is more evidence that the patient came from the blue distribution [HD group]." However,

with only an LLR of 0.8, the clinician may not be particularly confident in the assignment.

The situation is a bit better in the bottom portion of Figure 5, where the spread of each

distribution has been reduced (but the means remain the same). Now, using the same score, but with

these different distribution statistics, the LLR is seen to be about 1.42, almost double what was

observed in the previous situation. While not astronomically different, the point to be made here is

that less spread of individual scores in a group means that an observed score close to the mean of
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the group will give the clinician greater confidence in assigning the new, unknown patient to that

lower-variability group.

We imagine that this classification scheme may be particularly useful to clinicians who may

want to monitor patient performance over a sequence of testing sessions. For instance, a researcher

may want to chart the estimated individual drift for the person, and at the same time look at the

log-likelihood ratio of that person being in one group versus another (pre-manifest vs control,

or HD vs pre-manifest, for instance). This may allow the researcher to have a set of scores that

tracks progress while the patient undergoes some experimental treatment regimen, for instance.

A substantial change in the log-likelihood of being in the severe patient group may be evidence,

then, that the treatment regimen is working as intended. This kind of classification-based progress

reporting could be done using the posterior distributions that we observed in the main text. And,

since we found some preliminary evidence that the HD group had less individual difference than

the other groups4, a practical implementation of the current work would lead to something akin to

the bottom panel of Figure 7, with more confidence in the assignment of group membership.

In particular, an interested researcher could use the current model in a future application of

the current experimental paradigm, and update the prior distributions on the group mean drift rates

using the estimates of µ and σ (group drift and variability, resp.) as the prior estimates of group

mean and group spread of scores in a subsequent fitting of the model.
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