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Abstract
Large nuclear deformations during cell migration through confined spaces have been as-

sociated with nuclear membrane rupture and DNA damage. However, the associated stresses

remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution

of nuclear shape and stresses during confined migration of a cell through a deformable matrix.

Plastic deformation of the nucleus observed for a cell with stiff nucleus transiting through a

stiffer matrix lowered nuclear stresses, but also led to kinking of the nuclear membrane, indicat-

ing the region of possible nuclear membrane rupture. In line with model predictions, transwell

migration experiments with fibrosarcoma cells showed that while nuclear softening increased

invasiveness, nuclear stiffening led to plastic deformation and higher levels of DNA damage.

In addition to highlighting the advantage of nuclear softening during confined migration, our

results suggest that plastic deformations of the nucleus during transit through stiff tissues may

lead to bending-induced nuclear membrane disruption and subsequent DNA damage.

We then incorporated a glycocalyx assumed to be attached to the cell membrane as a

continuum and modelled it as a Neo-Hookean hyperelastic material. Glycocalyx polymer chains

collectively act as a polymer brush under external stresses. The glycopolymer thickness and

density has been shown to strongly correlate with the metastatic potential of a cancer cell,

pointing to the glycocalyx mechanically facilitating confined cell migration. Indeed, our results

recorded in this thesis demonstrate that upon indentation, a thick glycocalyx acts as a shock

absorber or cushion under large strains primarily by increasing the surface area of external

force application. Cell spreading was also found to impact the mechanics of cellular glycocalyx

apart from its thickness and density.

We then developed a tissue level model for efficient detection of tumor nodule embedded

in healthy tissue. A physician palpates a tissue to detect an embedded nodule and to estimate its

mechanical properties relative to the surrounding tissue based on the estimation of contact forces

and apparent tissue stiffness. Utilizing a hyperelastic material model, we propose a general

methodology to analyze the extent to which the stiffness, size and depth of a nodule embedded

i



in a tissue affect its detectability. Using dimensional analysis, we generate simple power-law

relations to predict physical and material properties of tumor nodules embedded in healthy

tissue during indentation. Our results indicate that indenter radius and indentation depth are

critical parameters in nodule detection and a thin indenter and large indentation depth increase

detection sensitivity of an embedded tumor nodule. Our results also show that anisotropic

material properties of either a tissue or an embedded nodule render the embedded tumor nodule

undetectable using indentation. We define palpation sensitivity maps that can be used to predict

material and physical properties of tumor nodules in healthy tissues.

ii



Contents

Abstract i

List of Tables ix

List of Figures xi

List of Abbreviations xxiii

List of Symbols xxv

1 Introduction 1

1.1 Introduction to Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Extracellular Matrix (ECM) in Cancer . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The ECM as a Mechanical Barrier to Invasion . . . . . . . . . . . . . . 3

1.2.2 Rheology of soft materials . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Modeling the rheology of cells and tissues . . . . . . . . . . . . . . . . 6

1.3 Cancer Metastasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Mechanisms of Invasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Modes of cell migration . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Nucleus as a Rate-Limiting Factor in Cell Migration . . . . . . . . . . . . . . 13

iii



1.5.1 Biological Implications of Nuclear Rupture . . . . . . . . . . . . . . . 15

1.6 The Cellular Glycocalyx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6.1 Formation of Glycocalyx . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6.2 Glycocalyx in Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.9 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.10 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Modelling of confined cell migration 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Viscoelasticity of cell and extracellular matrix (ECM) . . . . . . . . . . . . . . 25

2.2.1 Viscoelasticity formulation in the time-domain . . . . . . . . . . . . . 25

2.3 Plasticity of the nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Cytoskeletal strain stiffening . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 Computational Methods . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 Nuclear and tissue properties collectively dictate dynamics of confined

migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



2.6.2 Degree of confinement and nuclear/tissue properties collectively dictate

average cell speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.3 Plastic deformation of the nucleus and kink formation during pore entry 41

2.6.4 Nuclear plasticity and DNA damage: insights from experiments . . . . 48

2.6.5 Scaling relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Mechanical modelling of the cellular glycocalyx 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2 Physical description of the modelling problem . . . . . . . . . . . . . 67

3.2.3 Finite Element Model . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.1 Magnitude and localization of maximum stresses change in cell body

and glycocalyx with increasing glycocalyx thickness during spherical

indentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.2 Evolution of indentation loads during spherical indentation of cellular

glycocalyx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.3 Compression of cellular glycocalyx against ECM . . . . . . . . . . . . 73

v



3.3.4 ECM displacement due to compression of cellular glycocalyx against

ECM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.5 Mechanical implications of glycocalyx as a double brush . . . . . . . . 79

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Detection of tumor nodule embedded inside healthy tissue 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Physical description of the modelling problem . . . . . . . . . . . . . 87

4.2.2 Numerical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.3 Loading and boundary conditions . . . . . . . . . . . . . . . . . . . . 88

4.2.4 Material model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.5 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.6 Dimensional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.1 Detection of composite stiffness of tissue and nodule using Hertzian

and finite element approach . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.2 Effect of non-dimensional parameters on indentation load . . . . . . . 98

4.3.3 Effect of anisotropy on nodule detection . . . . . . . . . . . . . . . . . 103

4.4 Palpation sensitivity chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vi



4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Summary and Conclusions 111

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Scope for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

List of Publications 115

References 117

vii



viii



List of Tables

2.1 Comparison with other FE-based cell migration models . . . . . . . . . . . 30

2.2 Material parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Material parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Stiffness dependence of Glycocalyx on L and N . . . . . . . . . . . . . . . . 68

4.1 Material parameters used in the model . . . . . . . . . . . . . . . . . . . . 92

4.2 Difference between FE solution and Hertz solution for homogeneous tissue

of G0 = 1 kPa for varied tissue thickness . . . . . . . . . . . . . . . . . . . . 97

4.3 Difference between FE solution and Hayes’ solution for homogeneous tis-

sue of G0 = 1 kPa for varied tissue thickness . . . . . . . . . . . . . . . . . 97

ix



x



List of Figures

1.1 Growth of a tumor over time. (A) Tumor growth in breast cancer. (B) Tumor

growth in colon cancer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Intracellular components of a representative cell. (a) A typical cell with

organelles. (b) Essential filamentous constituents of a typical cell. Created with

BioRender. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Schematics of common viscoelastic models. (A) Maxwell model, (B) Voigt

model, (C) Standard Linear Solid (SLS) model, and (D) Generalized Maxwell

model. k and η denote spring stiffness and damper viscosity respectively. . . . 8

1.4 Schematic of the process of cancer metastasis. Created with BioRender. . . . 10

1.5 Schematics of 2D and 3D migration. (A) Process of protrusion and retraction

of focal adhesions (FAs) required by a cell to migrate on 2D substrates. (B)

3D migration of a cell through confinement in a fibrous matrix with the help of

focal adhesions (FAs) attached to matrix fibers. Created with BioRender. . . . . 12

1.6 Glycocalyx stiffness increases with increased polymer density. Polymer den-

sity in glycocalyx attached to cell body increases either with increased poly-

merization and attachment of glycopolymers to cell membrane or by increased

polymerization and attachment of sidechains to existing polymer backbone. . . 17

2.1 Model definition. (A) Schematic of the simulated problem. (B) Finite element

model with mesh. Lateral and transverse boundaries of the tissue (1 and 2) are

constrained in their perpendicular directions. (C) Dimensions of various parts

of the modelled cell (only 1/4th of the cell is shown due to symmetry). . . . . . 31

2.2 Model process flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi



2.3 Material parameters used in the model. (A) Viscoelastic properties of various

materials in the model. (B) Temporal variation of input force. (C) Assumed

dependence of cytoplasmic stiffness (Ec) with shear stress (σshear) encountered

by the cell. Ec is increased in discrete steps as indicated by datapoints and

a smooth curve is interpolated, i.e., the points are used to define a function

between the two variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Interplay of nuclear and tissue stiffness on dynamics of pore entry for mi-

gration through homogeneous tissue. (A) Cellular deformation just after en-

try into pore for different extents of degree of confinement (D0/φ ). Ec was

increased from an initial value of 1 Pa to a possible maximum of 1.1 Pa un-

der shear-induced cytoskeletal stiffening and En was assumed to be 1 kPa. (B)

Force (Fentry) and time (Tentry) required for a cell (with En = 1 kPa) to enter a

pore of given size and their dependence on tissue stiffness (ET = E1 = E2) and

D0/φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Interplay of nuclear and tissue stiffness on dynamics of pore entry for in-

terfacial migration. (A) Nuclear deformation for the case of cell entry through

an interface between two dissimilar tissues. Dependence of (B) Tentry, and (C)

Fentry on E1/E2 for D0/φ = 1.67 and En = 1 kPa. . . . . . . . . . . . . . . . . 39

2.6 Deformation of ECM after nucleus entry into pore. (A) Contour plots of

vertical tissue displacement (uy) at the time of nucleus entry into the pore, i.e.,

when the entire nucleus has just completed entering the pore. (B) Spatial de-

pendence of uy along the tissue length at the time of pore entry for different

values of ET and En and D0/φ = 1.67. Pore entry occurs at normalized tissue

length = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Cell migration speed through confinement. (A) Instantaneous cell velocity

(vx) calculated from the start of the simulation (t = 0 s) till the instant of pore

entry. D0/φ = 1.67 for these three cases. . . . . . . . . . . . . . . . . . . . . . 41

xii



2.8 Morphological changes in cell/nucleus during confined migration. (A) Shapes

of the cell and the nucleus at the time of pore entry for different combinations of

ET and En and D0/φ = 1.67. xCN(t) represents the distance between the leading

edge of the cell and the front edge of the nucleus at time t. xN(t) represents the

distance between the nucleus center and its front edge at time t. Dotted lines

depict breaks in the cell profiles. (B) Temporal evolution of cytoplasmic stretch

(xCN(t)/xCN(0)) and nuclear stretch (xN(t)/xN(0)) along the direction of migra-

tion for D0/φ = 1.67. (C) Dependence of nuclear circularity (D/L) on En/ET

for D0/φ = 1.67 and different values of En. . . . . . . . . . . . . . . . . . . . 42

2.9 Quantification of intracellular and intranuclear stresses during confined

migration. The spatiotemporal evolution of stress distribution before and after

entry of a 5µm nucleus into a 3µm pore, i.e., D0/φ = 1.67. Contours and

colourbars indicate von Mises stresses (σMises) developed in the cytoplasm and

nucleus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xiii



2.10 Nuclear plasticity during confined migration. (A) Spatial map of plastic

strain (εplastic) accumulated in the nucleus just after pore entry. The total strain

(εtotal) in a body is defined as the sum of elastic (εelastic) and plastic strain, i.e.,

εtotal = εelastic + εplastic. εelastic is defined as the reversible strain in the body

whereas, εplastic is irreversible. We use a strain hardening material property def-

inition given by: σ = a+bεn
plastic, where σ is the applied stress, σyield = a, and

a, b and n are material properties. (B) Spatial distribution of von Mises stress in

the nucleus along the vertical direction just after nuclear entry (D0/φ = 1.67).

(C) Temporal evolution of hoop stresses (σθθ ) in the nuclear membrane from

the start of simulation to the instant the nucleus completely enters the pore. The

two cylindrical components of stresses, namely, radial (σrr) and hoop (σθθ )

stress in the nuclear membrane are depicted along with the region of nuclear

membrane from which the curves are extracted (D0/φ = 1.67). Green-Black

and Red-Blue curves correspond to two different combinations of ET and En

as shown. Green and Red dots in the representative snapshot of the nuclear

membrane correspond to kinked mesh elements on the nuclear membrane at its

interface with the nucleus for En = 0.2 kPa and En = 2 kPa respectively. Sim-

ilarly, Black and Blue dots correspond to kinked mesh elements on the nuclear

membrane at its interface with the cytoplasm. . . . . . . . . . . . . . . . . . . 46

2.11 Plastic deformation of nuclei in cells migrating through an interface and

spatiotemporal evolution of plastic deformation. (A) E1 and E2 refer to the

Young’s moduli of tissues 1 and 2 on both sides of the interface. D0/φ = 1.67

for all the cases. Contours represent the spatial distribution of plastic strain

(εplastic). (B) Plastic strain accumulated in a cell as a function of time during

constricted migration for D0/φ = 1.67. En = ET = 2 kPa. Red arrows indicate

the region where necking first occurs and plasticity is initiated. The colourbar

indicates magnitude of plastic strain in the nucleus (εplastic = εtotal− εelastic). . 47

xiv



2.12 Experiment setup and mechanical characterization of cells. (A) Phase con-

trast images of HT-1080 fibrosarcoma cells treated with vehicle (DMSO), 1

µM blebbistatin (Blebb) or 10 µM RO-3306 (RO) for 12 hours. Scale bar =

30 µm. (B) Representative XZ plane images of DAPI stained nuclei of DMSO,

Blebb and RO-treated cells. Scale bar = 5 µm. (C) Quantitative analysis of

nuclear volume (n = 20− 50 nuclei per condition across 2 independent exper-

iments). Error bars represent ±SEM. Statistical significance was determined

by one-way ANOVA/Fisher Test; NS: p > 0.05. (D) Probing nuclear stiffness

of cells with a stiff pyramidal probe. Cells were treated with DMSO, Blebb

or RO for 12 hours prior to experiments. Nuclear stiffness values were esti-

mated by fitting ≥ 2 µm of indentation data using Hertz model. (E) Quan-

tification of nuclear stiffness of DMSO-treated, Blebb-treated and RO-treated

cells (n = 40−60 nuclei per condition across 2 independent experiments). Er-

ror bars represent ±SEM. Statistical significance was determined by one-way

ANOVA/Fisher Test; ∗ p < 0.05, ∗∗∗ p < 0.001. (F) Schematic of transwell

migration assay through 3 µm pores; Cells were seeded in the upper chamber

containing plain DMEM supplemented with DMSO or drugs. Lower cham-

ber was labelled with DMEM containing 20% serum for creating a chemokine

gradient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.13 Influence of nuclear stiffness on pore migration efficiency and nuclear plas-

ticity. (A) Representative DAPI stained images of nuclei in upper chamber (re-

ferred to as TOP) and lower chamber (referred to as BOTTOM) at 8, 18 and 28

hrs after cell seeding; Scale bar = 100 µm. (B) Quantification of translocation

efficiency of DMSO/Blebb/RO-treated cells at 3 different time-points (n≥ 900

nuclei per condition were counted in the upper chamber; experiment was re-

peated thrice). (C) Quantification of nuclear circularity of DMSO/Blebb/RO-

treated cells at the top (8 hr time point) and at the bottom surface of the pores at

3 different time-points (n > 80 nuclei per condition; experiment was repeated

twice). Error bars represent ±SEM. Statistical significance was determined by

one-way ANOVA/Fisher Test; ∗∗∗ p < 0.001, ∗∗ p < 0.01, NS: p > 0.05. . . . . 50

xv



2.14 Plastic deformation of the nucleus increases susceptibility to damage. (A)

Representative γH2Ax-stained images of DMSO/Blebb/RO-treated cells in up-

per chamber (referred as TOP) and lower chamber (referred as BOTTOM) of

transwell pores 28 hrs after cell seeding. Nuclei are outlined with white dotted

lines; Scale Bar = 20 µm. (B) Quantification of ratio of integrated γH2Ax inten-

sity between BOTTOM layer and TOP layer in DMSO/Blebb/RO-treated cells

(n = 40−120 nuclei per condition; experiment was repeated twice). Error bars

represent ±SEM. Statistical significance was determined by Mann-Whitney

test; ∗∗∗ p < 0.001, NS: p > 0.05. (C) Quantification of γH2AX expression

intensity normalized to DMSO condition at the TOP layer. . . . . . . . . . . . 51

2.15 Plastic deformation of the nucleus increases susceptibility to damage. (A)

Representative Lamin A/C (green) and DAPI (blue) stained images of DMSO/Blebb/RO-

treated cells in Top and Bottom layer of transwell pores at 28 hrs after cell

seeding. White arrows indicate nuclear blebs. Scale bar = 20 µm. (C) Quan-

tification of average number of blebs per nucleus in DMSO/Blebb/RO-treated

cells in top and bottom layer of the transwell inserts (n > 250 nuclei per con-

dition pooled from two independent experiments). Error bars represent ±SEM.

Statistical significance was determined by Mann-Whitney test; ∗∗∗ p < 0.001,

NS: p > 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.16 Scaling relationships. (A) Scaling relationship between Fentry (pN/µm) and

Tentry (s) for D0/φ = 1.67. (B) Non-dimensional cellular force scaled with pos-

sible parameters affecting the cellular force generation during confined migra-

tion for D0/φ = 1.67. Scaling between nuclear circularity and (C) the coupled

effect of tissue and nuclear stiffness, and (D) force required by a cell to enter a

pore. All datapoints refer to the condition D0/φ = 1.67. E1 and E2 vary from

0.13 to 5 kPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xvi



2.17 Proposed model of nuclear damage. (A) Phase diagram depicting the zones of

non-plastic and plastic nuclear deformation required for pore entry for different

values of En, ET and D0/φ . (B) Proposed model of nuclear damage. Compres-

sive forces imposed by the surrounding tissues cause initial nuclear membrane

damage. This serves as the precursor to nuclear bleb formation. . . . . . . . . . 57

3.1 Glycocalyx attached to plasma membrane of cells. (A) Schematic of an AFM

probe indenting a glycocalyx brush. (B) Enzymatic removal of cell surface

glycocalyx. MDA-MB-231 Cells were treated with 0 and 500 milliunit (mE)

neuraminidase for 3 h and was fixed and stained with WGA-FITC to visual-

ize surface glycan. Images are representative confocal maximum intensity im-

ages. (C) Glycocalyx mediates invasiveness of MDA-M-231 cells. Invasion

was checked after encapsulating cells in 3D collagen gels using live cell imag-

ing. Figure shows 12 h migration trajectories. (D) Quantification of the cell

migration trajectories over 12 h (n>120 cells from 2 independent experiments,

Statistical significance were determined using Mann-Whitney test, ***: P<0.001). 63

3.2 Variation of brush stiffness E with glycocalyx thickness L, density N and

indentation depth δ . The units of L and N are µm and µm−2 respectively. The

range of validity of the brush model by Dokukin et al. (2016) is also indicated

by the dotted lines. The value of E taken in simulations corresponds to h/L =

0.8 (corresponding to a 20% indentation depth, or δ/L = 0.2). . . . . . . . . . 65

3.3 Variation of brush stiffness E with glycocalyx thickness L, density N at

indentation depth h/L = 0.8 or δ/L = 0.2. The units of L and N are µm and

µm−2 respectively. The colorbar indicates the value of effective stiffness E, in

Pa, calculated from the entropic brush model and the Hertz contact model. . . . 66

3.4 Model schematics used for simulations of spherical indentation of a cell

with glycocalyx surrounding it. A rigid indenter of radius = 10 µm is dis-

placed by 40% of initial glycocalyx thickness (L). The axis of symmetry,

boundary conditions of the system and undeformed dimensions are shown. The

axial and radial directions are denoted in the figure by Z and R respectively. . . 69

xvii



3.5 Model schematics used for simulations of glycocalyx compression due to

cells sandwiched between a rigid plate and ECM. Two degrees of cell spread-

ing area were studied, denoted by radii of 1 µm and 10 µm and the initial gly-

cocalyx thickness was taken to be either 1 µm or 5 µm. The rigid plate is

displaced in the axial direction by 1 µm. The axial and radial directions are

denoted in the figure by Z and R respectively. . . . . . . . . . . . . . . . . . . 70

3.6 von Mises stress contours in cell body and cell glycocalyx for N = {100, 200,

500} µm−2 and (A) L = 1 µm, (B) L = 5 µm, and (C) L = 10 µm. Maximum

indentation depth δ/L is 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 Variation of normal indentation load F with relative indentation depth h/L

for L = {1, 5, 10} µm and N = {100, 200, 500} µm−2. Green dashed line and

arrow mark the region beyond which the brush model is applicable. Maximum

indentation depth δ/L is 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 von Mises stress contours in cells along with the glycocalyx for L = 1 µm

and N = {1000, 10,000} µm−2. Two combinations of Ecell and EECM are ana-

lyzed where Ecell = 2 kPa and EECM = {1, 5} kPa were used for the simulations.

Colourbar depicts the von Mises stress. . . . . . . . . . . . . . . . . . . . . . 75

3.9 von Mises stresses in the deformed cellular glycocalyx along the axis of

symmetry for: (A-D) L = {1, 5} µm and N = {100, 1000} µm−2. Various

combinations of Ecell = {0.5, 2} kPa and EECM = {1, 5} kPa were used for the

simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.10 Normal contact forces between the cellular glycocalyx and ECM for: (A-D)

L = {1, 5} µm and N = {100, 1000} µm−2. Various combinations of Ecell =

{0.5, 2} kPa and EECM = {1, 5} kPa were used for the simulations. . . . . . . . 77

3.11 ECM axial displacement along the axis of symmetry for: (A-D) L = {1, 5}

µm and N = {100, 1000} µm−2. Various combinations of Ecell = {0.5, 2} kPa

and EECM = {1, 5} kPa were used for the simulations. . . . . . . . . . . . . . . 78

xviii



3.12 ECM displacement due to a sandwiched cell for L = {1, 5} µm and N =

10,000 µm−2. (A) ECM displacement in +y-direction along the contact sur-

face (longitudinal direction) of ECM and cell for a cell spread radius of 1 µm.

(B) ECM displacement in +y-direction along the contact surface (longitudinal

direction) of ECM and cell for a cell spread radius of 10 µm. Various com-

binations of Ecell = {0.5, 2} kPa and EECM = {1, 5} kPa were used for the

simulations. Solid curves indicate L = 1 µm and dashed curves indicate L = 5

µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.13 Mechanical implications of glycocalyx as a double brush. (A) Contact force

between the glycocalyx and ECM, and (B) ECM vertical displacement uy along

its entire length, for {L1,L2} = {1, 5} µm and {N1,N2} = {10,000, 1000}

µm−2. Dotted curves represent a cell spread radius of 10 µm and solid curves

represent a cell spread radius of 1 µm. Various combinations of Ecell = {0.5, 2}

kPa and EECM = {1, 5} kPa were used for the simulations. . . . . . . . . . . . 80

4.1 Flowchart of the modelling process. . . . . . . . . . . . . . . . . . . . . . . 86

4.2 A cross-sectional schematic of indentation of a soft tissue with an embedded

nodule. The indenter of radius R is hemispherical and nodule of diameter D and

depth d is spherical. The nodule is embedded in a tissue of finite thickness h. A

prescribed indentation depth δ leads to the generation of an indentation load F . 88

4.3 A representative finite element model depicting the axisymmetric setup

where the indenter is displaced downwards (-y direction) along the axis of

symmetry. Boundary conditions are also marked. Radial and axial directions

are denoted by x-axis and y-axis respectively. . . . . . . . . . . . . . . . . . . 89

4.4 Model validation with experimental data of spherical indentation. The de-

pendence of indentation load (F) on the ratio of indentation depth (δ ) to in-

denter radius ratio (R) is shown. Data from our simulations are compared with

experimental data from Zhang et al. (2014). . . . . . . . . . . . . . . . . . . . 93

xix



4.5 Comparison of the computationally generated indentation load F0 with an-

alytical Hertzian solution FH up to a maximum indentation depth δ = 2

mm. Homogeneous tissues (without nodule) of various thicknesses (h) are con-

sidered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Instantaneous tissue stiffness measured as a function of indentation load

and depth. (A) Relation of instantaneous tissue stiffness (dF/dδ ) with the

indentation depth normalized by tissue thickness (δ/h). (B) Relation between

dF/dδ and
√

Rδ , parameters of the Hertz model to determine composite tissue

stiffness. Both plots are for h = 10 mm, R = 3 mm and D = 5 mm. . . . . . . . 100

4.7 Dependence of nodule detectability on nodule depth. (a) Variation of F/R2G0

with d/R for R = 3 mm (dashed line) and 5 mm (dotted line). (b) Variation of

F/R2G0 with d/R for δ/h = 0.05 (dotted line) and 0.1 (dashed line). Both

(a) and (b) refer to cases where Gn/G0 = 15 and D = 5 mm. The power-law

dependence is denoted beside the fitted curve. . . . . . . . . . . . . . . . . . . 101

4.8 Dependence of nodule detectability on nodule diameter. (a) Variation of

F/R2G0 with D/R for R = 3 mm (dashed line) and 5 mm (dotted line), and (b)

Variation of F/R2G0 with D/R for δ/h = 0.05 (dotted line) and 0.1 (dashed

line). Gn/G0 and d in all cases were fixed at 15 and 0.5 mm respectively. The

power-law dependence is denoted beside the fitted curve. . . . . . . . . . . . . 103

xx



4.9 Effect of anisotropy on nodule detection. (A) A schematic of GOH mate-

rial model. a01 and a02 denote two fiber families of same mechanical prop-

erties but separated by an angle 2γ embedded in a fibrous tissue. (B) Depen-

dence of indentation load F on fiber orientation κ for isotropic nodule embed-

ded in anisotropic tissue (blue circles) and for anisotropic nodule embedded in

isotropic tissue (red squares). Both curves correspond to d/R = 0.17, D/R = 1.67

and δ/h = 0.1. (C) Stress profiles in anisotropic tissue embedded with isotropic

nodule under indenter from tissue surface to end of nodule. The change in von

Mises stress profiles is shown for various degrees of fiber dispersion. (Inset)

Stress profiles just under the indenter are magnified for clarity. All curves cor-

respond to d/R = 0.17, D/R = 1.67 and δ/h = 0.1. (D) Stress profiles in isotropic

tissue embedded with anisotropic nodule under indenter from tissue surface to

end of nodule. All curves correspond to d/R = 0.17, D/R = 1.67 and δ/h =

0.1. (C, D) The change in von Mises stress profiles is shown for various de-

grees of fiber dispersion. (B-D) For anisotropic nodule embedded in isotropic

tissue, initial Gn = 24.6 kPa, initial G0 = 10 kPa, while for isotropic nodule in

anisotropic tissue, initial Gn = 250 kPa, initial G0 = 24.6 kPa. . . . . . . . . . . 105

4.10 Palpation sensitivity chart for %∆F/F0 versus nodule diameter and depth

relative to indenter radius for Gn/G0 = 5, 10 and 15 for large indentation

depths δ/h = 0.1 and 0.2. Grayscale represents the value of %∆F/F0. The

detectable and undetectable regimes and %∆F/F0 of contour lines > 20% (de-

tection threshold) are indicated for all cases. . . . . . . . . . . . . . . . . . . . 108

4.11 Summary of the contributions of this study on embedded nodule detection. 110

xxi



xxii



List of Abbreviations
CT Computed Tomography

ECM Extracellular Matrix

MMP Matrix Metalloproteinase

ER Endoplasmic reticulum

TFM Traction Force Microscopy

AFM Atomic Force Microscopy

SLS Standard Linear Solid

FA Focal Adhesion

2D Two Dimensional

3D Three Dimensional

EMT Epithelial to Mesenchymal Transition

PDMS Polydimethylsiloxane

LINC Linker of the Nucleoskeleton and Cytoskeleton

DNA Deoxyribonucleic Acid

PCM Pericellular Matrix

HA Hyaluronic Acid

BM Basement Membrane

ABP Actin Bundling Protein

FE Finite Element

FEM Finite Element Method

BC Boundary Condition

PDE Partial Differential Equation

DMEM Dulbecco’s Modified Eagle Media

xxiii



FBS Fetal Bovine Serum

PFA Paraformaldehyde

DAPI 4’,6-diamidino-2-phenylindole

γH2Ax Gamma H2A histone family member X

BSA Bovine Serum Albumin

PBS Phosphate Buffer Solution

Blebb Blebbistatin

CDK Cyclin-dependent Kinase

DMSO Dimethyl Sulfoxide

SEM Standard Error of the Mean

ANOVA Analysis of Variance

HGPS Hutchinson Gilford Progeria Syndrome

xxiv



List of Symbols
H+ Hydrogen ion (proton)

OH− Hydroxide ion

γdev(t) Deviatoric strain as a function of time

σdev(t) Deviatoric stress as a function of time

G0 Instantaneous shear modulus

GR(t) Time-dependent shear relaxation modulus

gR(t) Dimensionless time-dependent shear relaxation modulus

σvol(t) Time-dependent volumetric stress

p(t) Time-dependent hydrostatic pressure

K0 Instantaneous bulk modulus

KR(t) Time-dependent bulk relaxation modulus

kR(t) Dimensionless time-dependent bulk relaxation modulus

E0 Young’s modulus

ν Poisson’s ratio

τi Relaxation time; i = 1, 2, ..., N

εvol Volumetric strain

[K ] Spring stiffness matrix

{u} Displacement vector

{F} Force vector

Ec Young’s modulus of cytoplasm

σshear Shear stress

ρA Density

FP Cell-generated protrusion force

xxv



∆t Stable time increment

Lmin Smallest mesh dimension

cd Dilatational wave speed through element

Nt No. of DAPI stained nuclei on top surface of transwell membrane per frame

Nb No. of DAPI stained nuclei on top surface of transwell membrane per frame

φ Undeformed pore size for cell migration

D0 Undeformed diameter of nucleus

ET Young’s modulus of tissue

En Young’s modulus of nucleus

E1,E2 Young’s modulus of Tissue 1 and Tissue 2

Tentry Time for pore entry of nucleus

Fentry Maximum force required for pore entry of nucleus

vx Cell velocity along direction of migration

uy Vertical tissue displacement

〈vx〉 Mean cell speed in direction of migration

xCN Normalized distance between cell leading edge and nucleus proximal edge

D/L Nuclear circularity

σMises von Mises stress

σθθ Hoop stress

σrr Radial stress

εplastic Plastic strain

εtotal Total strain

εelastic Elastic strain

τc Relaxation time constant of cytoplasm

FD Flexural rigidity

Dc Diffusion coefficient of water

xxvi



σy Yield stress

Fsingle brush Force due to brush polymer chains of the same length

kB Boltzmann constant

T Temperature

Rprobe Radius of indenter probe

Rcell Radius of cell

N Brush density

L Brush thickness

FHertz Hertz contact force

νprobe Poisson’s ratio of indenter probe

νglycocalyx Poisson’s ratio of glycocalyx

Eprobe Young’s modulus of indenter probe

Eglycocalyx Young’s modulus of glycocalyx

h Distance between indenter tip and cell body

Fdouble brush Force due to brush polymer chains of two different lengths

Ψ Strain energy function

C1 Material constant for Neo-Hookean model

D1 Material constant for Neo-Hookean model

I1 1st invariant or trace of right Cauchy-Green deformation tensor

λi Principal stretches; i = 1, 2, 3

J Determinant of deformation gradient

Ecell Young’s modulus of cell

EECM Young’s modulus of ECM

Gn Shear modulus of tumor nodule

G0 Shear modulus of healthy tissue

d Nodule depth

xxvii



ux Displacement in x-direction

λm Limiting stretch ratio

φ Angle between mean directions of two families of fibers

λn Stretch ratio of nodule

νn Poisson’s ratio of nodule

FHayes Force predicted by the Hayes model

a Radius of contact circle formed between indenter and substrate

ω Factor used to introduce the effect of substrate thickness on FHayes

FFE Force predicted by finite element model

C,k1,k2 Material parameters of GOH model

σ11 Uniaxial stress (normal stress) in loading direction

κ Fiber dispersion index

∆F Difference in indentation load with and without embedded nodule

xxviii



Chapter 1

Introduction

1.1 Introduction to Cancer

C ancer is one of the leading causes of death globally. A report by the National Institutes

of Health (NIH) states that globally, an estimated 8.2 million people died of cancer

in 2012 (NIH, 2018). Of these deaths, nearly 65% occurred in underdeveloped regions of the

world including parts of Asia. A WHO report puts the same figure in 2018 as 9.6 million

deaths and nearly 1 in 6 individuals globally getting affected by cancer (WHO, 2018). Research

into cancer, its causation and therapeutics has been a hot topic for decades with some tangible

results. In understanding cancer, one of the often neglected aspects is the mechanics that is

involved in it. Understanding the mechanics of cancer and exploiting it for diagnostic and

therapeutic purposes hold great promise both at the cellular and the tissue levels.

A major reason why cancers are so difficult to treat completely is that they proliferate and

spread to various parts of the body. It is extremely difficult to specifically target the regions

where cancer cells might be lodged in the body without harming the healthy cells as far as

possible. Moreover, cancers tend not to reveal themselves until they reach a critical mass by

when valuable time is already lost. Talmadge and Fidler (2010) note that the processes of tumor

initiation, progression and metastasis are extremely slow and develop over several years (10-12

or even more) before they reach the size (≈ 1 cm and ≈ 109 cells) when they can be detected

by imaging technologies (Fig. 1.1). Cancers such as lung cancer are broadly classified into

6 categories based on preclinical stage: IA, IB, II, IIIA, IIIB and IV. The preclinical stage of

cancer development is positively correlated to its detectability using diagnostic techniques such

Computed Tomography (CT) with sensitivity for the first stage (IA) being as low as 8.83% (ten

Haaf et al., 2015). It is therefore imperative that novel detection techniques be devised and
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mechanics of cancer progression at the cell and tissue levels be studied to effectively counter

cancer.

Cancer cells have a high propensity to migrate through confined environments, for in-

stance, squeezing through layers of epithelial cells to access the bloodstream (intravasation)

and extravasating out to form a secondary tumor at a distant location. Cancer cells have been

shown to be softer than healthy cells (Suresh et al., 2005; Guck et al., 2005; Suresh, 2007;

Cross et al., 2007) and they survive extreme deformations caused due to squeezing through tight

spaces. Cancer cells differ from normal cells in that they differentiate more and can metastasize

to other remote regions of the body. Similarly, immune cells have been reported to have lamin

A-deficient nuclear lamina and therefore, can be easily deformed due to reduced structural in-

tegrity of nuclei (Rowat et al., 2013).

Figure 1.1: Growth of a tumor over time. (A) Tumor growth in breast cancer. (B) Tumor

growth in colon cancer.

1.2 The Extracellular Matrix (ECM) in Cancer

Tissues primarily comprise of three components: cells, extracellular matrix (ECM) and blood

vessels. The ECM serves as a scaffold and lends structure to cells and tissues and facilitates

mechanotransduction (Frantz et al., 2010; Sapir and Tzlil, 2017). Cell cytoskeleton is linked

to the ECM via integrin-based adhesions. The dynamic nature of cell-ECM coupling drives

or modulates cell migration through this matrix (Schmidt and Friedl, 2010). The ECM might

also lead to change in signalling pathways and modulation of micro and macroscopic properties

of tissues. There exists a complex network of mechanotransduction and signalling pathways
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between cells, ECM and tissue boundaries with the ECM often acting as a mediator.

The ECM is composed of complex sugars, proteins and water (Frantz et al., 2010). It re-

models itself depending on pathological conditions such as cancer, wounds and aging. Proteins

such as collagen, elastin and fibronectin are mainly associated with the ECM (Alberts et al.,

2007). All these constituents result in the ECM being a heterogeneous matrix. Collagen fib-

rils, one of the most abundant proteins in ECM of tissues facilitate cell migration, adhesion

and remodelling of tissues apart from imparting mechanical structure and strength (Rozario and

DeSimone, 2010). Tissue compliance greatly correlates with collagen fibres orientation, stiff-

ening and crosslinking (Frantz et al., 2010). Normal and healthy tissues are more compliant

than tumors despite the fact that cancer cells are generally softer than healthy cells. This results

from the fact that the ECM in tumor tissues is stiffer than in healthy tissues. The increased stiff-

ness of tumors acts as a marker to detect embedded cancerous nodules in healthy tissues and

indicates the stage of progression of cancer as can be evidenced by a nearly 10-fold increase

of stiffness of mammary tissue due to increased collagen deposition and crosslinking (Handorf

et al., 2015). Altered ECM dynamics such as excess production of ECM or greater deposi-

tion of various types of collagen might be an indicator of cancers (Huijbers et al., 2010; Frantz

et al., 2010). In addition to biochemical changes like increased production of matrix metal-

loproteinases (MMPs) and growth factors such as CD44 by cancer cells, the collagen fibers

in the ECM transition from a non-oriented fashion to highly oriented tracks that facilitate cell

migration (Levental et al., 2009). This is accompanied by deregulation of ECM remodelling

enzymes (Lu et al., 2012).

1.2.1 The ECM as a Mechanical Barrier to Invasion

The ECM with its constituent collagen fibers and protein macromolecules act as a barrier to

cell migration in 3D. Directional collagen fibers may sometimes serve as tracks for adhesion-

dependent migration of cells, but randomly aligned fibers may impede migration by induc-

ing mechanical confinement. A feedback mechanism exists between cells and the ECM and

therefore, any change in physical properties of the ECM leads to changes in cell signalling

and properties as well (Samuel et al., 2011). Migrating cells can undergo either protease-

independent or protease-dependent migration through subnuclear-sized confining matrices or

3



pores. If cells are unable to sufficiently squeeze through or adequately deform matrices, for

instance in densely packed and stiff ECM, then they secrete matrix metalloproteinases (MMPs)

to degrade the ECM (Kumar et al., 2016; Wisdom et al., 2018). Highly invasive cancer cells,

such as MDA-MB-231 and HT1080 with softened and compliant nuclei were shown to read-

ily deform under matrix-induced confinement after treatment by MMP inhibitors (Das et al.,

2019). Cells transiting through highly plastic matrices were also shown to migrate in a protease-

independent manner (Wisdom et al., 2018). Actin-rich invadopodia of cells can either be used

to secrete MMPs to degrade ECM or mechanically push open pores in the ECM for effective

cell migration (Friedl and Wolf, 2010; Kumar et al., 2016, 2018a; Wisdom et al., 2018).

1.2.2 Rheology of soft materials

Rheology is the study of mechanical deformation of objects or bodies and is generally used to

describe the flow of materials under external forces. This deformation is intrinsically linked to

the material properties of the system. Soft materials such as cells and tissues are highly complex

and inhomogeneous, with a variety of internal structures that directly or indirectly influence the

rheology of these materials. For instance, cells are composed of organelles such as nucleus, en-

doplasmic reticulum, mitochondria and cytoskeleton-forming protein filaments like actomyosin

fibers and microtubules (Fig. 1.2a and b). These constituents render cellular rheology to be time

and strain-rate dependent and transform dynamically in response to external forces and stresses.

Therefore, rheological characteristics of such materials can only be approximately quantified at

a somewhat coarse-grained level.

Cells continually remodel their cytoskeleton under application of stresses and therefore,

rheological models should ideally capture this behaviour (Gardel et al., 2004a,b). Soft materials

like cells and tissues can be considered to be elastic, hyperelastic or viscoelastic depending on

the timescales and strains involved. For instance, a material can be modeled to be elastic if the

strain and timescale of deformation are extremely small with respect to the dimensions of the

substrate and relaxation timescales of the material respectively. If material deformation is large

enough to be comparable to the dimensions but much lower than material relaxation timescales,

then a hyperelastic model is more suited that takes large nonlinear deformations under consid-

eration. However, cyclic and time-dependent strains are more appropriately modelled by vis-
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Figure 1.2: Intracellular components of a representative cell. (a) A typical cell with or-

ganelles. (b) Essential filamentous constituents of a typical cell. Created with BioRender.

coelastic models. This is because neither elastic nor hyperelastic models are time-dependent.

Therefore, the physical phenomenon of, for example, phase lag between indentation load and

substrate surface displacement can be modelled realistically by considering the substrate as a

viscoelastic body.

Rheology of cells has been experimentally quantified using some common techniques:

1. Bulk rheology technique - A sample is placed between two parallel plates oscillating at a

certain frequency. This technique is popularly used to quantify the viscoelastic properties

of cells. This technique cannot be used at high frequencies (> 100 Hz) due to instrument

inertia (Del Giudice et al., 2017). Another limitation is that very low viscosity fluids are

difficult to be measured by this process.

2. Magnetic bead cytometry - A magnetic bead is tracked by laser under application of an

external magnetic field (Hoffman et al., 2006). It gives a quantitative measurement of the

local mechanical properties of cells. However, uncertainties related to bead attachment

to the substrate lead to uncertainties in mechanical property quantification (Kasza et al.,

2007).

3. Microfluidics - Cells are passed along with fluid through micron-sized channels to study

their rheological properties under fluid-induced shear (Lange et al., 2015; Mietke et al.,
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2015).

4. Atomic force microscopy (AFM) - A cell is indented by a cantilever tip and a quantifica-

tion of the tip deflection gives the cell stiffness (Sen et al., 2005). This is a widely used

method to extract mechanical properties of cells non-invasively. It has a distinct advan-

tage over other methods listed here in that it is able to scan and generate entire cell profile

for multiple cells. However, it is a very low throughput technique (≈ 10 cells/h).

5. Microrheology technique - The motion of beads embedded in cells is tracked over time.

This is a more general method than magnetic bead cytometry. It involves multiple beads

inserted in cells whose movement under the influence of thermal fluctuations is studied

over time to determine elastic material properties of the cell. However, bead movement is

not just influence by thermal fluctuation, but also by cytoskeletal filament dynamics and

motor proteins (Hoffman et al., 2006).

1.2.3 Modeling the rheology of cells and tissues

Elastic models

The simplest rheological model of cells and tissues is a linear elastic model. Linear elastic

models have been used extensively in studies under small strains to quantify and model var-

ious mechanical characterisitcs of cells and tissues (Theret et al., 1988; Esteban-Manzanares

et al., 2017). However, such models have limited applicability as most cells and tissues regu-

larly undergo large nonlinear strains and therefore, a material model to incorporate large strain

behaviour is needed.

Hyperelastic models

Nonlinear elastic or hyperelastic models are used to model systems that undergo large deforma-

tions beyond the small strain elastic limit. The stress increases nonlinearly with large strains for

such materials like rubber and soft tissues. Hyperelastic models have often been used to model

tissues (Zhang et al., 2014) and cells (Zhou et al., 2005; Cao et al., 2016). Some of the common

hyperelastic models are as follows:
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1. Mooney-Rivlin

2. Neo-Hookean

3. Ogden

4. Arruda-Boyce

5. Yeoh

6. Fung

Of these models, the Arruda-Boyce and Neo Hookean models are mechanistic models de-

rived from theoretical considerations of the microstructure of the material, whereas, the others

are phenomenological, which, though consistent with theory, were not derived from first princi-

ples. All hyperelastic models are described by a strain-energy density function that can be used

to define the stress-strain behaviour of these models.

Viscoelastic models

Soft materials have time- and strain-rate dependent mechanical properties. Such time-dependent

dynamic behaviour is better captured by viscoelastic models as opposed to rate-independent

elastic and hyperelastic models (Guilak et al., 2000; Trickey et al., 2004; Desprat et al., 2005;

Zhou et al., 2005; Han et al., 2012). A viscoelastic system is composed of a combination of

elastic springs and viscous dampers. A spring is capable of undergoing instantaneous deforma-

tion on the application of a force. A damper, on the other hand, gradually deforms to reach a

steady saturated state of deformation, provided that the force is applied for a sufficient amount

of time. Therefore, viscoelastic materials behave as elastic if the time duration of deformation

of the system is instantaneous or very short when compared to relaxation time constant of the

material. Spring-damper models have classically been employed to model muscle contraction

and extension and indentation of soft tissues apart from numerous other industrial applications.

Such models can be broadly classified into three categories:

1. Maxwell model - spring and damper in series configuration,

2. Kelvin-Voigt or Voigt model - spring and damper in parallel configuration,
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3. Standard Linear Solid (SLS) model - A spring in series with a Voigt configuration

Figure 1.3: Schematics of common viscoelastic models. (A) Maxwell model, (B) Voigt model,

(C) Standard Linear Solid (SLS) model, and (D) Generalized Maxwell model. k and η denote

spring stiffness and damper viscosity respectively.

The schematics of these three models are as shown in Fig. 1.3. The Maxwell model

(Fig. 1.3a) results in a linear creep strain upon sudden application of stress and a sudden elastic

drop in strain upon stress removal. On the other hand, the Voigt model (Fig. 1.3b) results in a

nonlinear creep strain that saturates with time and an inelastic recovery phase. Therefore, the

Kelvin-Voigt model is better at modelling creep behaviour seen in cellular materials. The SLS

model (Fig. 1.3c) is a combination of both the Maxwell and Voigt model and thus is capable

of effectively modelling both creep and stress relaxation of a substrate. A generalized Maxwell

model contains several Maxwell components in parallel (Fig. 1.3d). It may be used to model

systems that have a set of relaxation times due to a set of material components. A generalized

Voigt and a generalized SLS model are similar to a generalized Maxwell model.

1.3 Cancer Metastasis

Cancer metastasis refers to the process of cancer cells getting dislodged from a primary tu-

mor mass, travelling through the vasculature and creating a new tumor mass at a distant loca-

tion. Cancer metastasis can be attributed to ∼ 90% of deaths due to cancer worldwide (Gupta

and Massagué, 2006). Cancer cells generally migrate either in mesenchymal or amoeboidal

mode (Zhu and Mogilner, 2016). Cells migrating in the mesenchymal mode are generally
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elongated and spindle-shaped with focal adhesions, whereas, in the amoeboidal mode, cells

are more rounded with minimal adhesion with ECM. Whereas mesenchymal migration utilizes

MMP-based ECM degradation to clear space for the cell to migrate, amoeboidal migration does

not use MMPs but requires larger pore sizes to migrate (> 7 µm2) (Wolf et al., 2013). Confine-

ment of cells has been shown to lead to changes in intracellular signalling (Hung et al., 2016).

Cells interchangeably undergo mesenchymal and amoeboidal migration in confined conditions,

undergoing mesenchymal to amoeboidal transition (MAT) or vice-versa (AMT) depending on

which molecular mechanism is suppressed. Studies show that while the mesenchymal mode acts

upon Rac-activated actin protrusion, the amoeboidal mode depends on Rho-activated myosin

contractility (Sanz-Moreno et al., 2008). Metastatic cancer cells have been characterized by a

distinct lack of polarity over healthy cells that results from weakened or minimal cell-cell and

cell-ECM adhesions and amoeboid migration (Schmidt and Friedl, 2010; Lu et al., 2012).

Tumors are generally a genetically heterogeneous population of cells which contain some

cells that have certain metastasis-favouring mutations (Gupta and Massagué, 2006). Highly

metastatic cells have been found to have greater genetic mutability and DNA alterations. Can-

cerous tumors require greater supply of oxygen and nutrients and therefore, a new network of

blood vessels and capillaries are formed around the tumor (Carmeliet and Jain, 2000). The

cancer metastasis process in general is comprised of the following essential steps as shown in

Fig. 1.4:

1. Dislodgement of a cancer cell due to loss of cell-cell adhesion in primary tumor

2. Simultaneous epithelial to mesenchymal transition of dislodged cancer cell

3. Migration of cancer cell through ECM mesh

4. Intravasation or entry of cancer cell in blood vessel by invading epithelial tissue lining of

vessel wall

5. Transit of cancer cell via the bloodstream to a distant location

6. Attachment or adherence of cancer cell to the epithelial tissue lining of vessel wall

7. Extravasation or exit of cancer cell from blood vessel by invading through epithelial tissue

lining and into ECM of target tissue
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8. Formation of secondary tumor at target site

Figure 1.4: Schematic of the process of cancer metastasis. Created with BioRender.

1.4 Mechanisms of Invasion

There is a stark contrast between the mechanisms of cell migration in 2D and 3D. While in

2D, cells migrating on a substrate predominantly produce cyclic protrusions and retractions

of an actin-rich lamellipodium while simultaneously generating focal adhesions (FAs), a cell

migrating in 3D does not have a unique mechanism of migration (Fig. 1.5) (Yamada and Sixt,
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2019). In fact, cells may use various mechanisms, sometimes multiple to migrate depending

mainly on the degree and type of confinement, actomyosin contractility and focal adhesions.

While focal adhesions are critical to migration on 2D substrates, mechanical confinement alone

can sometimes be sufficient for cells to migrate in 3D (Paluch et al., 2016; Reversat et al.,

2020). A comprehensive map of types of cell migration and conditions leading to these are

summarized in Paul et al. (2017). Tissue invasion predominantly occurs in 3D through matrices

or epithelial cell layers. Two modes of 3D migration become exceptionally important during

invasion: mesenchymal mode and amoeboidal mode. While the former relies on degradation of

the ECM by secreting enzymes such as MMPs and migrates with the aid of FAs, the latter does

not require FAs and MMPs to migrate (Paul et al., 2017; Yamada and Sixt, 2019). The mode

that a cell would use to invade a tissue depends on mechanical environmental factors such as

stiffness and confinement and on molecular signalling mechanisms in the cell.

The cytoskeleton is a critical component in cell migration and invasion. Studies show

that cancer cells generate actin-rich invadopodia during intravasation into blood vessels and

extravasation out into tissues (Leong et al., 2014). Invadopodia are actin-rich protrusions that

are stiff and are created by polymerization of parallel-oriented actin filaments. These structures

are created by cells for two primary purposes: to release MMPs to degrade the local matrix

and to mechanically separate endothelial cells or matrix fibers to make space for cell migra-

tion (Kumar et al., 2018a; Das et al., 2019). Microtubules impart structural stability to the cell

and nucleus during confined migration and vimentin intermediate filaments have been recently

found to facilitate fast amoeboid migration (Lavenus et al., 2020). Additionally, bundling of

vimentin intermediate filaments are found to impede cancer cell invasion. Under ECM-induced

confinement, vimentin intermediate filaments protect the nucleus from excessive DNA dam-

age and rupture (Patteson et al., 2019). However, excessive confinement can lead to nuclear

blebbing and rupture and hinder migration (Mistriotis et al., 2019).

1.4.1 Modes of cell migration

Classical models of cell migration in 2D comprise of the formation of protrusions in direction

of motion, attachment of this protruded region to the substrate through focal adhesions and

retraction of the cell rear, almost giving the effect of a cell travelling like a wave (Fig. 1.5a).
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Figure 1.5: Schematics of 2D and 3D migration. (A) Process of protrusion and retraction of

focal adhesions (FAs) required by a cell to migrate on 2D substrates. (B) 3D migration of a

cell through confinement in a fibrous matrix with the help of focal adhesions (FAs) attached to

matrix fibers. Created with BioRender.

These models were widely accepted even in 3D as microscopy techniques were not advanced

enough to probe into cell migration in 3D matrices. The three major modes of cell migration

currently known are: mesenchymal, amoeboidal and blebbing. In mesenchymal migration, cells

migrate with the help of actin-rich protrusions in the direction of migration. The mesenchymal

and amoeboidal modes are the two most commonly found modes of 3D migration.

Under certain conditions, it has been found that cells undergo a transition from one mode

to the other in 3D. Mesenchymal mode involves migration with the help of formation of integrin-

based focal adhesions on the substrate and actin-rich protrusions in the direction of migration

(Fig. 1.6b). Amoeboidal mode involves rounded geometries where focal adhesions do not play
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a pivotal role and cells migrate without attaching themselves to the extracellular matrix through

integrin adhesions. Blebbing or lobopodial mode of cell migration is an intermediate between

mesenchymal and amoeboidal modes. A cell migrates by forming blebs or rounded structures

generated in the direction of migration by the asymmetric distribution of intracellular pres-

sure. A cell is always in contact with its environment either through adhesions or friction or

simply through confinement. Therefore, while focal adhesions are critical for cell motility and

mechanosensation on 2D substrates or 3D fibrous matrices (Fig. 1.5b), in case of 3D non-fibrous

matrices (such as through epithelial tissues), friction and confinement seem to suffice for cell

movement (Paluch et al., 2016).

Several studies have been performed to understand the mechanics of cell migration by

measuring degree of plasticity of the nucleus and the velocity of cells under various degrees

of confinement ranging from low to extreme (Pajerowski et al., 2007; Lautscham et al., 2015).

Such parameters can be systematically studied through microfluidic channels, as such channels

can be manually fabricated to give the desired amount of confinement and geometry for the cells

to pass through. Such microfluidic devices are fabricated using transparent polymers such as

Polydimethylsiloxane (PDMS). This makes it feasible to image cell movement in 3D through

microscopes or other imaging devices. These parameters would be difficult to accurately image

in real time in randomly arranged 3D matrices and scaffolds such as hydrogels. When cells pass

through 3D microfluidic channels, they do not form focal adhesions as they do in 2D. Thus,

it has been hypothesized that cells push the channels laterally outward to propel themselves

forward.

1.5 Nucleus as a Rate-Limiting Factor in Cell Migration

The nucleus is the stiffest organelle in a cell. It is stiffer than the cytoplasm and plasma mem-

brane. The cytoplasm and plasma membrane can readily remodel themselves to squeeze through

extremely small spaces, but the nucleus serves as the rate-limiting factor during cell migration

through microfluidic channels or 3D matrices and scaffolds. The nucleus is intricately linked

to the cytoplasm by the LINC (Linker of the Nucleoskeleton and Cytoskeleton) complex. This

intricate linking ensures that forces are transmitted from the cytoskeleton to the nucleus. If
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this LINC complex were to be absent or dysfunctional, then cell migration would be adversely

affected, as the pulling forces generated by the cytoskeleton to pull the nucleus along with it

would be absent (Graham et al., 2018). Therefore, a mechanical crosstalk exists between nu-

clear stiffness and contractility. Moreover, there is an increase in myosin motor density at the

rear of the nucleus that is thought to help in squeezing the nucleus during 3D migration through

confinement. Therefore, optimal movement of nucleus and cell requires a functional linkage

between cytoplasm and nucleus and contractility and stiffening of actomyosin cytoskeleton.

The nuclear membrane that envelopes the nucleus is made up of two major proteins,

Lamins A/C and B (McGregor et al., 2016). These, and Lamin A/C in particular, are responsible

for maintaining the structural integrity of the nucleus and its membrane (Davidson and Lam-

merding, 2014). Deficiency of Lamin A/C has been associated with an increase in cell motility

because the nucleus becomes softer and can squeeze through tight spaces easily (Harada et al.,

2014; Denais et al., 2016; Yamada and Sixt, 2019). On the other hand, increase in nuclear stiff-

ness caused by progerin (a mutant form of lamin A) suppresses cell migration (Booth-Gauthier

et al., 2013). Additionally, the decrease in levels of Lamin B has been shown to lead to a de-

crease in cell migration in neurons (Coffinier et al., 2010). Here, it must also be noted that,

although a decrease in lamin A/C levels leads to an increase in cell motility, several studies

have shown that this may also lead to nuclear rupture and DNA damage (Raab et al., 2016; Xia

et al., 2019). DNA damage in cell nuclei might even lead to tumorigenic tendencies in cells

migrating through confinement (Irianto et al., 2017).

Nuclei are mechanotransducers of the cell, that is, they translate external mechanical

stresses into chemical DNA signals that result in genetic changes (Navarro et al., 2016; Elosegui-

Artola et al., 2017; Kirby and Lammerding, 2018). These genetic changes help the cell to

react against external stresses and stimuli. A recent study (Renkawitz et al., 2019) has also

demonstrated that nuclei might help a cell decide upon the path of least resistance in a con-

fined environment that would result in the least possible DNA damage. Cell nuclei migrating

under extreme confinement (through microfluidic channels and transwell pores) have been seen

to form blebs and ultimately rupture to release DNA material into the cytoplasm (Raab et al.,

2016; Xia et al., 2019; Mistriotis et al., 2019).
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1.5.1 Biological Implications of Nuclear Rupture

Nuclear stiffness is regulated by lamins (A/C and B) and chromatin compaction (Lammerding

et al., 2006; Davidson and Lammerding, 2014; Maurer and Lammerding, 2019; Stephens et al.,

2019). During confined migration, the cell cytoskeleton including actomyosin, vimentin and

microtubule filaments act to mechanically deform the nucleus (Stephens et al., 2017; Patteson

et al., 2019). The LINC complex connecting the cytoskeleton to the nucleus helps in mechan-

otransduction and subsequent genetic changes in the cell (Swartz et al., 2014; Tajik et al., 2016;

Irianto et al., 2017; Stephens et al., 2019).

Nuclear membrane blebbing has been generally found to precede nuclear rupture. Mem-

brane blebs are formed due to increased intranuclear pressure under compression and lamins

A/C (but not lamin B) are found to be localized in the blebs (Denais et al., 2016). When cells are

compressed in confined environments, the pressure inside the nucleus becomes larger than that

in the cytoplasm which is evidenced by increased nuclear membrane tension. Rupture occurs

when intranuclear pressure become greater than the membrane tension of the bleb and greater

than the cytoplasmic pressure. Here it must be noted that the cell nucleus has been shown to

divide the cytoplasm into two compartments and regulate their intracellular pressures during

3D lobopodial migration (Petrie et al., 2014) thereby acting as a piston thereby separating the

cell cytoplasm into two compartments. However, cytoplasmic pressures have not been found

to increase drastically in other modes of 3D migration, such as mesenchymal or amoeboidal.

Intranuclear pressure has also been found to increase due to water influx in the nucleus under

confinement (Mistriotis et al., 2019). They propose that confinement activates RhoA signalling

leading to an increase in myosin-dependent cortical contractility at the rear of the cell. Cel-

lular confinement, nucleus acting as a piston and the increase in rear actomyosin contractility

leads to a local cytoplasmic pressure gradient at the cell rear. This leads to a passive influx of

cytoplasmic material into the nucleus through channels such as nuclear pore complexes (NPCs).

Nuclear damage and rupture have been shown to lead to changes in chromatin compaction

and DNA damage. Such changes in DNA and chromatin fibers under mechanical stresses may

also lead to tumorigenic tendencies in cells (Irianto et al., 2017). Nuclear membrne bleb rup-

ture leads to the outflow of chromatin fibres into the cytoplasm. Unless the nuclear membrane

rupture or damage is extreme or sustained over a long duration, it can be repaired using ESCR-

15



TIII machinery (Denais et al., 2016; Raab et al., 2016). However, if the membrane rupture is

unrepaired, the accompanying DNA damage ultimately leads to cell death.

1.6 The Cellular Glycocalyx

A thick outer coat of sugars and proteins, beyond the cell membrane is generally found in

most eukaryotic cells, called the glycocalyx. Cell adhesion and migration are modulated by the

glycocalyx (also known as pericellular coat/matrix) with the former decreasing and the latter

increasing with glycocalyx formation (Jones et al., 1995). This coat is such that long polymeric

chains (sometimes made of ≈ 20,000 monomeric units) act as randomly coiled springs beyond

their persistence length (≈ 10 nm (Shurer et al., 2019)) and as rigid beams below it. The

persistence length of such chains increases with increase in brush density N (Fig. 1.6). Such a

coat has long been observed experimentally (Jones et al., 1995; Chang et al., 2016), but rarely

modelled physically. Recent physical models developed shed light onto the possibility that this

coat might be made of two classes of polymers, distinguished by their chain lengths (Iyer et al.,

2009; Dokukin et al., 2016).

Experimental data and intensity mapping of the glycocalyx (or, pericellular matrix (PCM))

shows that it increases in thickness over time before saturating, indicating a diffusion-based

growth or polymerization in the region (Chang et al., 2016). Significantly, the authors find that

this swelling is not the result of polymerization of hyaluronic acid (HA), but rather due to the

attachment of aggrecan molecules (forming sidechains) to the vacant sites in the HA polymeric

chain. Attachment of aggrecan to HA leads to the stretching out of the HA polymer backbone

due to steric hindrance thus forming a polymer brush around the cell. A thick glycocalyx can

reduce cell receptor signalling and adhesion by creating large physical gaps between cell and

ECM (Kuo et al., 2018). The glycocalyx also lends an effective stiffness to the cell against

mechanical stresses due to its polymer brush-like architecture.
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Figure 1.6: Glycocalyx stiffness increases with increased polymer density. Polymer density

in glycocalyx attached to cell body increases either with increased polymerization and attach-

ment of glycopolymers to cell membrane or by increased polymerization and attachment of

sidechains to existing polymer backbone.

1.6.1 Formation of Glycocalyx

Glycocalyx is made of proteins and long-chain polysaccharides (large sugar molecules) (Shurer

et al., 2019). Tumor cells have been found to secrete these polymers in large quantities and

they are frequently found densely packed on surfaces of cancer cells (Turley et al., 2016). Cell

surface receptors are embedded on the cell membrane amongst this dense network of polymer
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brushes that cause steric hindrance to any molecule beyond a certain size (> 40 nm) (Chang

et al., 2016; Kuo et al., 2018). This leads to alteration or regulation of receptor function by the

glycocalyx polymers and might lead to developing characteristics of cancer cells by altering

signalling (Paszek et al., 2014).

Glycocalyx consists of long chain linear HA or bottlebrush mucin polymers secreted by

cells and attached onto the cell membrane. Synthesis of HA is effected by enzymes called syn-

thases that regularly add HA monomers that are created in the cytoplasm on the plasma mem-

brane by membrane receptors such as CD44 (Kuo et al., 2018). HA polymers are negatively

charged and attract positively charged molecules such as protons (H+). However, if negatively

charged proteoglycans such as versicans attach themselves to the HA polymer as sidechains, the

combined polymer gets stretched significantly due to the resultant electrostatic steric hindrance.

Mucins are bottlebrush polymers that contain glycan (sugar molecules) sidechains along a cen-

tral polymer backbone that is attached to the plasma membrane with transmembrane receptors.

These sidechains also have a similar effect on increase of length of the negatively charged mucin

polypetides as HA polysaccharides with sidechains due to steric hindrance. Glycan sidechains

attach to the −OH− group on the mucin polypetide backbone and the attachment density deter-

mines the persistence length of the polymer.

1.6.2 Glycocalyx in Cancer

Some studies have suggested that the mechanical properties of the glycocalyx brush facili-

tates migration of cancer cells through confinement by manipulating the extracellular matrix

and applying force on it (Kimata et al., 1983; Iyer et al., 2009; Chang et al., 2016; Shurer

et al., 2019). The glycocalyx has also been linked to increased metastatic behaviour of cancer

cells (Zhang et al., 1995). Studies also show that with the advancement of tumor stage the

molecular weight of the attached glycoproteins increases, that is, they become bulky and con-

tribute to the metastatic potential of such cells (Paszek et al., 2014). Cell signalling and invasion

are altered by formation of glycocalyx. A bulky glycocalyx also serves to regulate cell-matrix

adhesions via integrins and integrin clustering. Bulky and dense glycocalyx also lead to the

rounding of cells and regulation of shape (Shurer et al., 2019). Cellular rounding and loss of

adhesions are markers for metastasis of cancer cells and promote amoeboid migration through
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confinement. Indeed, cancer cells have been shown to migrate without the requirement of adhe-

sions, simply by pushing against the confinement walls laterally (Bergert et al., 2015) implying

the mechanical as well as the chemical effects/benefits of glycocalyx in such cells.

1.7 Motivation

After developing a reasonable understanding of the available relevant literature, some lacu-

nae/open issues have been identified for further research in this thesis. These are as follows:

• State-of-the-art experimental techniques are insufficient to quantify or visualize the intra-

cellular or intranuclear stresses and forces.

• There is great scope of improving upon the current models of cell migration by simulating

the physics involved as closely as possible.

• The mechanics underlying nuclear blebbing and rupture under confined migration and

subsequent DNA damage are unclear.

• Although it is known that most of the cells in their natural environment have a thick brush-

like coating of sugars, known as glycocalyx, it is unclear what its mechanical implications

are.

• At the tissue scale, efficient methods of embedded tumor nodule detection for the training

of surgical simulators are lacking. Accurate nodule detection is essential to treat cancers

at an early stage.

1.8 Hypothesis

We hypothesize, based on our understanding of the literature and the existing open issues, that:

• Building finite element models, we can predict the intracellular stresses during cell mi-

gration in-vivo, and quantify the detectability of embedded tumours.
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• Contrary to reports in the literature based mainly on micropipette aspiration implicating

local increase in membrane tension for nuclear membrane rupture, we hypothesize that it

occurs in-vivo under the influence of compressive stresses.

• The density and thickness of cellular glycocalyx, made up of long chain polymers, has

been shown in literature to correlate with metastatic potential of cancer cells. We hypoth-

esize that this glycocalyx layer acts as a shock absorber under external stresses and when

metastatic cells migrate through confined microenvironments.

1.9 Research Objectives

In this thesis, the finite element method is used for the mechanical analysis of cell migration

through confined environments, implication of glycocalyx associated with cell membrane of mi-

grating cells and detection of material heterogeneity in the context of cancer nodules embedded

in healthy tissues. Specifically, the objectives of this thesis are as follows:

1. Estimation of the evolution of intracellular and intranuclear forces and stresses during con-

fined migration.

2. Estimation of nuclear strains and role of plasticity in confined migration.

3. Study of the mechanical implication of glycocalyx in confined migration.

4. Understanding why cancer or immune cells have greater proliferation or migration capabil-

ities than healthy cells.

5. Prediction and creation of palpation sensitivity charts to help guide surgical simulators and

robotic surgery applications to achieve greater accuracy at detecting embedded tumor

nodules in healthy tissues.

These objectives are accomplished and implemented using computational methods and

the results are compared with experiments. Items 1-4 are in the cellular context and item 5 is at

the tissue level. Therefore, this thesis is dedicated to develop a better understanding of cancer

through predictive mechanical models at the cellular and tissue levels.
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1.10 Thesis Outline

This thesis is organized in the following chapters:

X Chapter-1 provides an in-depth introduction and literature review of concepts in cell mi-

gration and mechanics pertaining to cancer and links this to the mechanics of indentation

and detection of material heterogeneities at the tissue level. It lays the basis for this thesis

and highlights the reasons why this thesis was carried out.

X Chapter-2 describes the model used for understanding the mechanics of confined cell

migration. It analyses the cellular stresses and forces involved in such migration and the

implications on nuclear mechanics. It addresses an open issue of the physics of nuclear

membrane blebbing and rupture during confined migration.

X Chapter-3 extends the model used in Chapter-2 to the context of glycocalyx-mediated

cell-ECM mechanical interplay. It analyses the mechanical effect the glycocalyx has on

cellular stresses and ECM deformation and explores why it might be necessary/beneficial

in metastatic cancer cells under external stresses.

X Chapter-4 probes the mechanics of cancerous tumors at the tissue level. It explores the

efficiency of palpation techniques using non-dimensional analysis to detect tumors em-

bedded in healthy tissues.

X Chapter-5 summarizes the findings of this thesis and lays the foundation for possible

future work.

X Chapter-6 enumerates the scientific contributions resulting from this work in the form of

publications and conference abstracts.
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Chapter 2

Modelling of confined cell migration
Note: This chapter has been modified from the following published article: Mukherjee A,

Barai A, Singh R K, Yan W, Sen S, "Nuclear Plasticity Increases Susceptibility to Damage

During Confined Migration", PLoS Computational Biology, 16(10): e1008300.

2.1 Introduction

Cells transit through a myriad of environments, ranging from 2D basement membranes (BM) to

3D collagen networks for morphogenesis, division and proliferation, wound healing and cancer

invasion (Alexander et al., 2013). Cells sense their surrounding mechanical environment and

transit through a pore that poses the least mechanical resistance, a process intrinsically linked

to their chances of survival (Renkawitz et al., 2019). PDMS devices, widely used for studying

confined migration, are significantly stiffer (≈MPa) than soft tissues (≈ kPa) in vivo, thus fail-

ing to recapitulate the interplay of nucleus and tissue properties that likely dictates the dynamics

of confined migration. The importance of nuclear properties, namely stiffness, in regulating the

efficiency of confined migration, is well appreciated. While physical properties of the nucleus

are dictated by expression of the intermediate filament protein Lamin (A/C and B) (Lammerding

et al., 2006; Davidson and Lammerding, 2014; Maurer and Lammerding, 2019) and its phos-

phorylation (Das et al., 2019; Buxboim et al., 2014), nuclear deformation is mediated by the

actomyosin and the microtubule cytoskeleton which are physically coupled to the nucleus via

nesprins (Yeung et al., 2005; Roux et al., 2009). Additionally, localized cytoplasmic stiffening

at sites of increased stress from the external environment (De et al., 2007; Zemel et al., 2010;

Kim et al., 2017), might facilitate nuclear compression thereby aiding in confined migration.

Computational modeling of cell migration has primarily been achieved either by idealiz-
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ing them as solid continuum spring/spring-dashpot models (Guilak et al., 1999; Zhou et al.,

2005; Cao et al., 2016) or as liquid droplets bounded by deformable membranes (Liu et al.,

2006; Moure and Gomez, 2017). These assumptions are reasonable in light of a cell being

biphasic, exhibiting solid-like behaviour in certain situations and liquid-like character in others.

However, both of these types of models have their limitations; whereas solid continuum mod-

els are unable to replicate similar levels of extreme cellular deformation that occurs in-vivo,

liquid droplet models are unable to quantify intracellular stresses. Appropriate visualization of

the evolution of stresses within cellular structures such as the actin cytoskeleton and nucleus

is critical to complement experimental observations. The current state-of-the-art experimental

procedures are unable to predict the stresses that the nucleus undergoes while migrating through

3D confined environments. Traction force microscopy that calculates the stress on the surface

of a substrate by relating the deformation of that surface to the stress using Hooke’s law is a

critical tool for visualizing mechanical interaction between a cell and its environment (Aung

et al., 2014), but is limited by its inability to quantify intracellular stresses.

Extreme nuclear deformations during migration through 3 µm transwell pores have been

shown to cause plastic deformation (Raab et al., 2016; Deviri et al., 2019) as well as nuclear

membrane rupture (Denais et al., 2016; Le Berre et al., 2012; Xia et al., 2019). Whether or not

nuclear plasticity and nuclear damage are inter-related remains unknown. Also, the extent to

which tissue properties influence the plastic deformation of the nucleus has not been probed.

For probing nuclear deformation and deformation-induced damage, here we have developed a

plane strain finite element model to simulate confined cell migration through a tissue-mimetic

environment where mechanical properties of the cell and nucleus have been considered. Study-

ing the collective influence of nuclear and tissue stiffness on the dynamics of pore migration,

our results predict the magnitude of cellular force required to squeeze through a constriction

and the intracellular stresses sustained by the cell. Our results predict that stiff nuclei pass-

ing through stiffer tissues undergo plastic deformations leading to nuclear membrane bending,

which may be the cause of nuclear rupture documented experimentally. We validate these pre-

dictions using experiments wherein nuclear stiffening led to plastic deformation of the nucleus

and higher DNA damage. In addition to predicting a scaling relationship between the timescales

and force-scales associated with pore entry, our results establish a direct link between nuclear

plasticity and nuclear damage during constricted migration.
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2.2 Viscoelasticity of cell and extracellular matrix (ECM)

Cell membrane (plasma membrane) and nuclear membrane are lipid bilayers that are dotted

with various protein complexes and ion channels that allow for the transmigration of molecules.

In a coarse-grained scenario, the cell membrane can be considered to be composed of a combi-

nation of a lipid bilayer, glycocalyx (polymer chains of glycolipids and glycoproteins (Shurer

et al., 2019)) and the actin cytoskeleton meshwork attached to the lipid bilayer. This compos-

ite cell membrane behaves as a viscoelastic material that flows like a viscous liquid over short

timescales but exhibits a solid-like elastic behaviour at sufficiently long timescales. This leads

to the experimental observation of cells attaching themselves onto 2D substrates forming stable

shapes (Desprat et al., 2005; Hoffman et al., 2006; Kasza et al., 2007). A similar argument can

be extended for the choice of the nuclear membrane and nuclear lamina composite as a vis-

coelastic material due to the similarities in their intrinsic composition with cell membrane and

cytoskeleton respectively.

Considering the cell as a closed system consisting of a fibrous mixture (actin cytoskeleton,

actomyosin fibres, microtubules and intermediate filaments) and a solvent (cytosol) with no

net transport of molecules through the cell membrane, we model it as viscoelastic solid as

opposed to poroelastic that assumes a net flux of solvent molecules. The tissue(s) through

which the cell migrates is/are also considered as viscoelastic solids because we consider them

to be individually closed systems which if stressed, lead to solvent molecules in the vicinity

of the stressed region to get displaced from their initial locations temporarily before returning

to their original position after stress is relieved. These assumptions are consistent with several

experimental studies have demonstrated the viscoelastic nature of cells and tissues.

2.2.1 Viscoelasticity formulation in the time-domain

To describe the constitutive relationship governing an isotropic viscoelastic material, we define

the deviatoric and volumetric parts of the stress tensor. For the time-dependent deviatoric stress,
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time-varying shear strain εdev(t) and shear stress σdev(t) are related as:

σdev(t) = G0

∫ t

0
gR(t− s)ε̇dev(s)ds (2.1)

where G0 is the instantaneous shear modulus and gR(t) = GR(t)/G0 is the dimensionless time-

dependent shear relaxation modulus of the viscoelastic material. The time-dependent volumet-

ric behaviour (σvol) of the material is defined as a change in hydrostatic pressure (p(t)) over

time and is given by the equation:

σvol(t) = p(t) =−K0

∫ t

0
kR(t− s)ε̇vol(s)ds (2.2)

where K0 is the instantaneous bulk modulus and kR(t) = KR(t)/K0 is the dimensionless time-

dependent bulk relaxation modulus of the viscoelastic material. The instantaneous moduli G0

and K0 are related to the Young’s modulus E0 and Poisson’s ratio ν as G0 = E0/2(1+ν) and

K0 = E0/3(1−2ν) respectively. A viscoelastic material is defined by a Prony series expansion

of the dimensionless relaxation modulus given by the equation:

gR(t) = 1−
N

∑
i=1

gP
i (1− exp−t/τG

i ) (2.3)

where N, gP
i and τG

i , i = 1,2, ...,N, are material constants. The shear stress then is given by:

σdev(t) = G0

(
εdev−

N

∑
i=1

εi

)
(2.4)

where εi =
gP

i
τG

i

∫ t
0 exp−s/τG

i εdev(t− s)ds. A similar expression can be acquired for the volumetric

response, as shown below:

σvol(t) = p(t) =−K0

(
εvol−

N

∑
i=1

εi

)
(2.5)

where, εi =
kP

i
τK

i

∫ t
0 exp−s/τK

i εvol(t− s)ds.
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2.3 Plasticity of the nucleus

Previous studies have demonstrated that stressed nuclei undergo plastic deformation, i.e., they

are irreversibly deformed under the application of stresses (Pajerowski et al., 2007; Tocco et al.,

2018). Plastic deformation in non-fibrous biological materials arise due to irreversible dislo-

cation or dislodgement of molecules from their unperturbed positions. In fibrous biological

materials like collagen, plasticity under tensile strains is caused due to un-entanglement of

fibers (Kim et al., 2017). Plasticity is generally quantified as a strain or stress regime that ex-

tends beyond a critical threshold elastic limit below which molecular dislocations are reversible.

An elastic material is assumed to have a linear stress-strain curve within a threshold termed as

the proportional limit, beyond which the slope of the curve changes and the relation may become

nonlinear. Plastic deformation leads to energy dissipation and therefore, the onset of plastic-

ity signifies a new stable energy state for the material from the previous metastable strained

state. Plasticity induced nuclear damage and rupture due to extreme stresses originating under

confinement, for instance, may lead to genetic perturbation (Raab et al., 2016; Xia et al., 2019).

2.4 Cytoskeletal strain stiffening

Actin bundling proteins (ABPs) get attached to actin filaments with increasing stresses in the

cytoplasm (Gardel et al., 2004a,b). Moreover, actin filaments frequently bundle together in a

direction perpendicular to the direction of application of external force. These mechanisms con-

tribute to the eventual stiffening of actomyosin networks. Studies indicate that depending on the

actin concentration and crosslinking density the stiffness of such crosslinked fibres can change

drastically (Gardel et al., 2004a,b, 2008). In our model, using the ABAQUS/Explicit subroutine

VUSDFLD, we implemented this experimental observation such that if the cytoplasmic shear

stress increased beyond 20 kPa, the cytoplasmic shear stiffness was increased in discrete steps

from 1.0001 Pa to 1.1 Pa, and the system re-equilibrated.
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2.5 Methods

2.5.1 Computational Methods

For studying dynamics of confined cell migration, a plane strain finite element (FE) model

of the system was created in ABAQUS/Explicit. FE models involve discretizing the sys-

tem into smaller elements by meshing it (dividing the system into several discrete polygonal

elements/parts). Numerical techniques (explicit central-difference time integration rule) are

then used to arrive at an approximate solution to the equation of motion of the general form

[M]{ü}= {P}−{I}. This is a general equation for dynamic equilibrium with the lumped mass

matrix [M], acceleration vector {ü}, and {P} and {I} denoting external and internal force vec-

tors respectively. This equation is computed at each node of each polygonal element that the

object is made of. Discontinuities resulting due to cellular organelles and granular structures at

the nanoscale are homogenized and considered as a continuum at the microscale. The explicit

dynamics procedure of ABAQUS involves performing a large number of small time increments.

Where a stable time increment is denoted by ∆t, accelerations at time t are used to advance ve-

locity solutions to t +∆t/2 and displacement solutions to t +∆t. The accelerations at time t are

calculated by solving the equation of motion for an increment number i as:

üi = M−1(Pi− Ii)

This can then be used in:

u̇i+1/2 = u̇i−1/2 +
∆ti+1 +∆ti

2
üi

ui+1 = ui +∆ti+1u̇i+1/2

A computational domain needs to be selected for numerical simulations in FEM so that

boundary conditions (BCs) are applied to the PDEs that are solved as part of the problem. Since
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our desired direction of cell migration is the +x−direction in the Cartesian coordinate system as

shown in Fig. 2.1B, we assume that the deformation or volume change of the cell perpendicular

to the plane of migration (xy−plane) would be much lower than that in plane and hence can be

neglected. This is complemented by our chosen material parameters of all system components

where the Poisson’s ratio (ν) is 0.3 indicating that all the materials are slightly compressible

(Table 2.2), that is, a change in area in the xy−plane does not accompany a similar change in

the yz− or xz−planes. This assumption finds credibility in experimental observations of cell

migration through microchannels where the cell deforms or gets polarized in the direction of

migration but the accompanying lateral deformation is negligible (Stroka et al., 2014; Thiam

et al., 2016). This study models a situation where a cell migrates through a confined pore

or channel. In such confined channels (in-vivo or microfluidic channels), the cell fills up the

channel cross-section area and is therefore constrained in the directions perpendicular to the

direction of migration. In this study, the cell migration is assumed to occur in the xy−plane

and hence, strains occur in the xy−plane. Therefore, we consider no-strain boundary conditions

in the xz− and yz− planes. However, stress is non-zero in these lateral directions as the cell

pushes against the channel walls, and hence, we use a 2D plane strain and not a 2D plane stress

condition.

In our formulation, entry of a 10 µm diameter cell with a 5 or 6 µm diameter (D0) nucleus

into a pore (φ ={3, 5} µm diameter) at the interface of two tissues was simulated with the

system assumed to be in a quasi-static state for the entire duration of the simulation (Fig. 2.1A,

B). This was verified by observing the kinetic energy of the entire system to be much lower than

its internal energy. The internal energy of the system is the sum of the elastic strain energy of

the system, the energy dissipated due to plastic deformation, and the energy dissipated due to

viscoelastic deformation. Pore entry was mediated by active protrusive forces (FP) generated by

the cell at the cell front as shown in Fig. 2.1 and as proposed in experiments (Smith et al., 2007;

Friedl and Wolf, 2010). Loads varying between 0 and 2.5 pN were individually applied to ≈

260 nodes in the region shown in Fig. 2.1. A comparison of the salient features of two other FE

models (Cao et al., 2016; Zhu and Mogilner, 2016) with our model is presented in Table 2.1.

Here, ‘Y’ denotes the presence of a feature whereas, ‘N’ denotes its absence. While this list is

not exhaustive, it lists some of the mechanically and physically critical features that aid in cell

migration in 3D matrices.
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Table 2.1: Comparison with other FE-based cell migration models

Model Feature

Zhu and

Mogilner (Zhu

and Mogilner,

2016)

Cao et. al. (Cao

et al., 2016)
Current Study

Consideration of

cytoskeleton
Y N Y

Cytoskeletal stiffening N N Y

Nuclear Plasticity N Y Y

Viscoelastic cellular

components
N N Y

Viscoelastic

gel/tissue/ECM
N N Y

The cell is composed of the following components: cell membrane, cytoplasm, nuclear

membrane and nucleus. All the components except the nucleus are approximated as Kelvin-

Voigt viscoelastic elements (Fung, 1993) where stress (σ ) developed in a system depends on

the strain (ε) and strain rate (ε̇) and is given by the equation σ = Kε +ηε̇ . Here, K is an elas-

ticity modulus that corresponds to spring or solid stiffness and η is viscosity of the constituent

fluid. The viscoelastic character of each component in the system is represented in the form of

normalized creep compliance (Fig. 2.3A). Creep is a characteristic feature of a viscoelastic ma-

terial that defines the amount by which a system deforms under persistent stress. Compliance

is the reciprocal of stiffness (Pa) and is a measure of the ease with which a body deforms under

stress.

The nucleus is considered to be elastoplastic with its behaviour described by a strain hard-

ening power law equation σyield = a+bεn
plastic, similar to Ludwik’s equation (Ludwik, 1909).

The plastic strain is denoted by εplastic. The coefficients a,b and the exponent n were estimated
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Figure 2.1: Model definition. (A) Schematic of the simulated problem. (B) Finite element

model with mesh. Lateral and transverse boundaries of the tissue (1 and 2) are constrained in

their perpendicular directions. (C) Dimensions of various parts of the modelled cell (only 1/4th

of the cell is shown due to symmetry).

Figure 2.2: Model process flow.

to be equal to 41 Pa, 17 Pa and 2.89 respectively (R2 = 0.9981), with data trend similar to those
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Figure 2.3: Material parameters used in the model. (A) Viscoelastic properties of various

materials in the model. (B) Temporal variation of input force. (C) Assumed dependence of

cytoplasmic stiffness (Ec) with shear stress (σshear) encountered by the cell. Ec is increased in

discrete steps as indicated by datapoints and a smooth curve is interpolated, i.e., the points are

used to define a function between the two variables.

reported by Pajerowski et al. (2007). The total strain in the system is the sum of both elastic and

plastic strains (εtotal = εelastic + εplastic). Yield stress (σyield) is defined as the stress at which a

substance develops permanent plastic deformation. When there is no plastic strain in the nu-

cleus (i.e., nucleus deforms elastically), σ = a = σyield . When σ < σyield , then σ = Eεelastic,

where, εelastic < σyield/E. Plastic strain εplastic is given by: εplastic ≥ σyield/E. In a strain hard-

ening material, the yield stress increases with strain, thus implying that it becomes progressively

difficult to strain the material.

The elastic properties of the nucleus arise from the lamin network below the nuclear mem-

brane along with chromatin fibres. Plastic nature of nuclei have been reported in several studies

demonstrating the irreversible change in shape of nuclei deformed under stress (Pajerowski

et al., 2007; Stephens et al., 2017; Tocco et al., 2018). A recent study (Stephens et al., 2017)

also demonstrated that nuclei stiffen progressively with strain, a phenomenon attributed to chro-

matin compaction at small strains and to Lamin A/C at large strains. Plastic deformation in non-

fibrous biological materials arise due to irreversible dislocation or dislodgement of molecules

from their unperturbed positions. In fibrous biological materials like collagen, plasticity under

tensile strains is caused due to unentanglement of fibers (Kim et al., 2017). The tissues repre-

senting the two sides of the interface are also modelled to be viscoelastic. A Poisson’s ratio of

ν = 0.3 which is a typical value considered for compressible biomaterials (Cao et al., 2016),
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was chosen for the cellular components as well as the two tissues. This value also sits well

with our assumption that the out-of-plane volume change is negligible compared to the in-plane

deformation. All elastic material properties are listed in Table 2.2.

Table 2.2: Material parameters

Component
Density (ρ)

(kg/m3)

Young’s

Modulus

(E) (kPa)

Poisson’s

ratio (ν)

Undeformed

thickness

(µm)

Reference

Cell

Membrane
1050 0.3 0.3 0.05

Cytoplasm 1030 0.001 0.3 4.95
(Guo et al.,

2013)

Nuclear

Membrane
1800 0.2 - 5 0.3 0.05

(Dahl et al.,

2005)

Nucleus 1800 0.2 - 5 0.3 9.9

(Dahl et al.,

2005; Stephens

et al., 2017)

Tissue 1, 2 1500 0.13 - 5 0.3 100
(George et al.,

2018)

Cells are known to exert forces by actomyosin contraction resulting from myosin mo-

tors sliding on actin filaments (De et al., 2007; Zemel et al., 2010). During migration, cells

regulate F-actin polymerization and generate protrusions (Stricker et al., 2010), leading to an

increase in force generated. Crosslinking of actin filaments with proteins such as α-actinin,

filamin and scruin stiffens these fibers and they bundle together to generate protrusive forces.

Myosin II plays an important role in creation and regulation of stress fibers and force gener-

ation (Peterson et al., 2004; Stricker et al., 2010). To mimic these phenomena in our model,

we assumed that the cell generates force (FP) at the leading edge in the direction of motion

(x-axis) in a smooth monotonic fashion (Fig. 2.3B). FP was assumed to be generated in a dis-
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tributed fashion at the cell front as shown in Fig. 2.3B such that the magnitude of the maximum

force (≈ 6.4 nN) generated by the cell remained in the physiologically relevant range (Ra-

bodzey et al., 2008; Neelam et al., 2015). Cytoskeletal stress stiffening was implemented in

our model using the ABAQUS/Explicit subroutine VUSDFLD (see Supplementary Informa-

tion and Figs. 2.2 and 2.3C). In each time increment, the model algorithm checks if the cyto-

plasmic shear stress increased beyond 20 kPa, the cytoplasmic shear stiffness was increased

in discrete steps from 1.0001 Pa to 1.1 Pa, and the system re-equilibrated (Fig. S1e, Fig.

S3) (Gardel et al., 2004a,b; Licup et al., 2015). This variation can be curve-fit as per the equation

log10(E − 1) = 49.41 log10σshear− 68.31, where E and σshear represent cytoplasmic stiffness

and shear stress, respectively. The simulation was stopped once the nucleus enters the pore

completely.

An explicit formulation was implemented to successfully resolve large nonlinear defor-

mations in meshes in the Lagrangian or material domain. In this energy-based formulation, the

stable time increment (∆t) to solve the numerical problem depends on the stress wave velocity

through the smallest element in the mesh (∆t ≈ Lmin/cd), where Lmin is the smallest element

dimension in the mesh and cd is the dilatational wave speed through the element. Mass scaling

was used to ensure that ∆t was of the order O(-4). Frictionless hard contact was assumed at the

cell-gel interface to simulate non-adherence of cell to the gel or channel walls. The cell surface

was thus allowed to separate after contact with the gel surface. For the cases of D0/φ = 1 and

1.67, a total of 31183 bilinear plane strain CPE4R elements were used in the model, of which

the two tissues were composed of 7469 and 7366 elements and the cell was composed of 16348

elements. For the case of D0/φ = 1.2, while the two tissues had the same number of elements as

mentioned above, the cell was composed of 15870 elements, leading to a total of 30705 CPE4R

elements in the model. A mesh sensitivity analysis was done on the nuclear membrane and the

cell membrane to arrive at the optimal mesh element dimensions to minimize mesh distortion.

The optimal minimum element dimension was found to be 0.005 µm and the maximum was 20

µm. The mesh size was modulated so as to be fine in the regions that were expected to come

in contact or that would undergo large deformation. The nuclear membrane as well as the cell

membrane, 0.05 µm in thickness, had 10 elements in the through-thickness direction to mitigate

the effects of excess artificial bending stiffness of the membranes. This value for the optimum

number of elements was arrived at using mesh sensitivity analysis. Additionally, a distortion

control algorithm in-built in ABAQUS was used to counter mesh distortions (prevent element
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inversion and excessive distortion) when minimum to maximum dimension ratio of a mesh el-

ement decreased below 0.1. This was done to ensure that the kink in the nuclear membrane

observed in our results is not a numerical artifact of the FEM simulation.

2.5.2 Experimental Methods

Cell culture and reagents:

HT-1080 fibrosarcoma cells obtained from National Center for Cell Science (NCCS) (Pune,

India), were cultured in DMEM (high glucose, Invitrogen) containing 10% FBS (Hi-media).

For nuclear stiffness experiments, cells were plated sparsely on glass coverslips coated with

rat-tail collagen I (Cat # 3867, Sigma) at a coating density of 10 µg/cm2. Cells were incubated

with DMSO (i.e., vehicle), 1 µM blebbistatin (Cat # B0560, Sigma) or 10 µM RO-3306 (Cat #

ab141491, Abcam) for 12 hours prior to probing with AFM.

Atomic Force Microscopy (AFM) and Imaging:

For measuring nuclear stiffness, stiff tips (32 kHz, TR400PB, Asylum Research) with nominal

stiffness of 120 pN/nm were used, with exact values of cantilever stiffness determined using

thermal calibration method. Cells were indented towards the center right on top of the nucleus,

and indentation data more than 2000 nm were fitted with Hertz model to obtain estimates of

nuclear stiffness.

For transwell migration studies, 105 cells were seeded on the upper chamber of 24 well

plate cell culture inserts containing 3 µm pores (Cat # 353096, Merck). The inserts were

coated with rat-tail collagen I. For creating a gradient, the upper chambers were filled with

plain DMEM supplemented with drugs and the lower chambers filled with DMEM containing

20% FBS. After 8, 18 and 28 hrs, cells were fixed with 4% PFA and then stained with DAPI for

45 minutes. After washing with PBS, membrane was cut and mounted on a glass slide using

mounting media. Confocal z-stack images were acquired at 20x magnification using Scanning

Probe Confocal Microscope (Zeiss, LSM 780) at identical exposure and gain settings. Images

analysis and quantification was performed using Fiji-Image J software. Translocation efficiency
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was calculated using the equation Nb
Nt+Nb

×100 where Nt and Nb represent the number of DAPI-

stained nuclei on the top and bottom surfaces of the membrane per frame.

For γH2Ax and Lamin A/C staining, fixed cells were permeabilized with 0.1% Triton-X

100 for 8-10 mins, blocked with 2% bovine serum albumin (BSA) for 1 hr at room temperature,

and then incubated with γH2Ax rabbit monoclonal antibody (Cat # 9718S, CST) and anti-Lamin

A/C mouse monoclonal antibody (Abcam, Cat # ab8984) overnight at 4◦ C. The following

day, after washing with PBS, Alexa-Fluor 488 anti-rabbit IgG and Anti-Mouse Alexa fluor

555 was added for 2 hr at room temperature. Nuclei were stained with DAPI for 5 min at

room temperature. Images were acquired at 40x magnification using Scanning Probe Confocal

Microscope (Zeiss, LSM 780) at identical exposure and gain setting.

2.6 Results

2.6.1 Nuclear and tissue properties collectively dictate dynamics of con-

fined migration

The nucleus which is the largest and stiffest organelle inside the cell, is physically connected to

the cytoskeleton through the LINC complex McGregor et al. (2016). Consequently, compres-

sion of the cell during confined migration is associated with compression of the nucleus with the

extent of cytoplasmic/nuclear deformations dictated by their mechanical properties in relation to

that of the surrounding tissues. For studying dynamics of confined migration, a finite element

model was developed wherein physical properties of cell membrane, cell cytoplasm, and nu-

cleus were taken into account. Consistent with experiments, the cell membrane, cell cytoplasm

and nuclear membrane were modeled as viscoelastic Kelvin-Voigt materials (Fig. 2.1-2.3; re-

fer to Computational Methods section for details) Desprat et al. (2005); Hoffman et al. (2006);

Kasza et al. (2007). A similar viscoelastic description was also used in modeling tissue be-

havior Chaudhuri (2017). Furthermore, consistent with stress-induced permanent deformation

of the nucleus, an elastoplastic behavior was assumed for the nucleus Pajerowski et al. (2007);

Tocco et al. (2018). Finally, cytoskeletal strain stiffening behavior observed with reconstituted
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cytoskeletal networks was also accounted for Gardel et al. (2004a,b, 2008).

In our model, cell migration through pores in tissues was assumed to be frictionless and

mediated by protrusive forces (FP) exerted at the leading edge, with E1 and E2 representing the

Young’s moduli (stiffness) of Tissue 1 and Tissue 2, respectively (Fig. 2.1A, B). Simulation

with E1 = E2 correspond to a situation wherein a cell squeezes through a pore in a given tis-

sue/hydrogel. In comparison, E1 6= E2 corresponds to a cell migrating at the interface of two

distinct tissues/hydrogels (Rape and Kumar, 2014; George et al., 2018). To first probe the effect

of nuclear size on migration efficiency, simulations were performed wherein dynamics of cell

entry into a pore of given size (i.e., φ = {3,5} µm) was tracked for different sizes of nucleus

(i.e., D0 = 5 and 6 µm) and for varying tissue stiffness (i.e., ET : (0.13−5) kPa) (Fig. 2.4A). In

these simulations, nuclear stiffness was kept constant at En = 1 kPa. For entry into a pore within

the same tissue, i.e., ET = E1 = E2, the time for pore entry (Tentry) as well as the maximum force

required for pore entry (Fentry) remained unchanged irrespective of ET when the nucleus was

smaller or equal to the pore size (i.e., D0/φ ≤ 1) (Fig. 2.4B). However, both these quantities

increased with increase in ET for D0/φ > 1, highlighting the role of the nucleus in regulating

confined migration. When E1 6= E2, Tentry and Fentry were comparable to values corresponding

to the higher tissue stiffness (Fig. 2.5A-C).
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Figure 2.4: Interplay of nuclear and tissue stiffness on dynamics of pore entry for mi-

gration through homogeneous tissue. (A) Cellular deformation just after entry into pore for

different extents of degree of confinement (D0/φ ). Ec was increased from an initial value of

1 Pa to a possible maximum of 1.1 Pa under shear-induced cytoskeletal stiffening and En was

assumed to be 1 kPa. (B) Force (Fentry) and time (Tentry) required for a cell (with En = 1 kPa) to

enter a pore of given size and their dependence on tissue stiffness (ET = E1 = E2) and D0/φ .

Entry into small pores (D0/φ = 1.67) was mediated by widening of the pores as evident

from the vertical displacement of the tissues in a En-dependent manner (Fig. 2.6A). While dis-

placements far from the pore entry decayed to zero in most cases, for the case corresponding to

ET = 2 kPa,En = 1 kPa, vertical displacement of the tissue was non-zero even at distances far

from the entry point. The maximum vertical tissue displacement exhibited a non-monotonic de-

pendence on En/ET with lowest displacement corresponding to ET = 2 kPa,En = 1 kPa where

non-zero displacements were observed far from the entry point (Fig. 2.6B). Together, these re-

sults suggest that pore migration through deformable matrices is collectively dictated by nucleus

and tissue properties with entry time-scales and force-scales strongly coupled to each other.
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Figure 2.5: Interplay of nuclear and tissue stiffness on dynamics of pore entry for interfa-

cial migration. (A) Nuclear deformation for the case of cell entry through an interface between

two dissimilar tissues. Dependence of (B) Tentry, and (C) Fentry on E1/E2 for D0/φ = 1.67 and

En = 1 kPa.

Figure 2.6: Deformation of ECM after nucleus entry into pore. (A) Contour plots of vertical

tissue displacement (uy) at the time of nucleus entry into the pore, i.e., when the entire nucleus

has just completed entering the pore. (B) Spatial dependence of uy along the tissue length at

the time of pore entry for different values of ET and En and D0/φ = 1.67. Pore entry occurs at

normalized tissue length = 0.
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2.6.2 Degree of confinement and nuclear/tissue properties collectively dic-

tate average cell speed

To probe how nuclear/tissue properties and the extent of confinement influence cell motility, cell

velocity (vx) was tracked along the direction of migration, i.e., x-direction. vx remained nearly

zero for an extended duration, and shot up drastically towards the end (Fig. 2.7A). The normal

force on the cell imposed by the ECM resists the rapid movement of the cell and cell stalls before

entry into the pore. This normal resistive force imposed by the ECM depends on nucleus and

ECM stiffness in our model. The cell enters the pore after a critical protrusive force FP (<Fentry)

is attained. From our model predictions, it was found that≈ 40−45% of the cell nucleus needs

to enter the pore just before the drastic increase in instantaneous speed. The dependence of the

average velocity 〈vx〉 on En/ET was dictated by D0/φ and En (Fig. 2.7B). Sensitivity of 〈vx〉 to

En/ET increased with En for all D0/φ . However, for D0/φ = 1.2, 〈vx〉 scaled positively with

En/ET and negatively with En. As per our expectations, 〈vx〉 increases with decrease in D0/φ as

this implies that the cell has to overcome less mechanical resistance from the ECM to enter the

pore. However, we find that although 〈vx〉 has negligible sensitivity to En/ET for D0/φ = 1 and

En = 0.2 kPa, a monotonically increasing trend emerges for En = {2,5} kPa as ET decreases

from 5 kPa to 0.5 kPa. When instantaneous velocity was quantified in case of D0/φ = 1, some

stalling behaviour of the cell was observed similar but for less time duration than Fig. 2.7A. This

was due to the mechanical resistance of ECM on cell cytoplasm. Stalling was more pronounced

for En = ET = 5 kPa, as can be expected.

A few overlapping regions are also seen in Fig. 2.7B, especially for D0/φ = {1.2,1.67}.

This implies that mechanical resistance provided by the ECM on cells are probably at par with

each other for these values of D0/φ . Here, it should be noted that the observed non-monotonic

behaviour for D0/φ = 1.67 is due to the choice of selection of timesteps that are output as

a result of the simulations. For considerations of reasonable computational time, I chose to

output the result at timestep differences of 1 second. This was motivated by the reason that

in the highly confined migration cases (D0/φ = 1.67), the time taken by the cell to migrate is

very long and a 1 second resolution seemed more prudent than guessing a suitable intermediate

timestep.
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Figure 2.7: Cell migration speed through confinement. (A) Instantaneous cell velocity (vx)

calculated from the start of the simulation (t = 0 s) till the instant of pore entry. D0/φ = 1.67

for these three cases.

(B) The dependence of average cell velocity (〈vx〉) on En/ET for different values of En and

D0/φ .

Tracking temporal evolution of the normalized distance between the leading edge of the

cell and the proximal edge of the nucleus (xCN(t)) revealed several-fold increase in xCN over

the initial undeformed distance xCN(0), indicative of cytoplasmic stretching in the direction of

migration (Fig. 2.8A, B). In comparison, the extent of nuclear stretch (xN(t)/xN(0)) was much

less. While the period of near zero velocity coincided with duration of cytoplasmic stretch

with negligible nuclear deformation, the sudden increase in cell velocity (t ≈ (150−180) sec)

corresponded to nuclear entry into the pore. Nuclear circularity (i.e., D/L) plotted as a function

of En/ET collapsed onto a master curve depending on the magnitude of En (Fig. 2.8C). Lowest

D/L (≈ 0.36) was observed for En = 1 kPa and ET = 5 kPa. Together, these results suggest that

cell speed is dictated not only by nuclear/tissue properties, but also by the extent of confinement.

2.6.3 Plastic deformation of the nucleus and kink formation during pore

entry

Alteration in nuclear circularity during pore entry is indicative of varying extents of nuclear

stresses during and after entry (Fig. 2.9). Among the representative cases shown in Fig. 2.9,
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Figure 2.8: Morphological changes in cell/nucleus during confined migration. (A) Shapes

of the cell and the nucleus at the time of pore entry for different combinations of ET and En

and D0/φ = 1.67. xCN(t) represents the distance between the leading edge of the cell and the

front edge of the nucleus at time t. xN(t) represents the distance between the nucleus center and

its front edge at time t. Dotted lines depict breaks in the cell profiles. (B) Temporal evolution

of cytoplasmic stretch (xCN(t)/xCN(0)) and nuclear stretch (xN(t)/xN(0)) along the direction

of migration for D0/φ = 1.67. (C) Dependence of nuclear circularity (D/L) on En/ET for

D0/φ = 1.67 and different values of En.

the highest stress in the nucleus was observed for the case of En = 0.2 kPa, ET = 2 kPa, where

|ET −En| is maximum. Surprisingly, when the nucleus was 5 times stiffer (i.e., En = 1 kPa),

stress in the nucleus was lower, and the nucleus was more elongated, raising the possibility of its

plastic deformation. In our model, plastic deformation of the nucleus follows a strain hardening

power law with the nuclear stress σ given by the expression σ = a+ bεn
plastic, with a, b and n

representing material parameters acquired by fitting experimental data (see Methods). Indeed,
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plastic deformation was observed for cases wherein the nucleus was stiff (i.e., En > 1 kPa)

and the tissue stiffer (i.e., ET > En) (Fig. 2.10A). For these cases, dramatic drop in nuclear

circularity was observed, i.e., D/L < 0.6 (Fig. 2.8C). Plastic deformation was also observed for

cells with stiff nuclei (En = 5 kPa) transiting through moderately stiff matrices (En = 1−2 kPa);

however, localized kinking did not occur for these cases. Plastic nuclear deformation was found

to be associated with reduced nuclear stresses (Fig. 2.10B).
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Figure 2.9: Quantification of intracellular and intranuclear stresses during confined mi-

gration. The spatiotemporal evolution of stress distribution before and after entry of a 5µm nu-

cleus into a 3µm pore, i.e., D0/φ = 1.67. Contours and colourbars indicate von Mises stresses

(σMises) developed in the cytoplasm and nucleus.

Interestingly, profiles of plastically deformed nuclei revealed the presence of kinks at the

front edge with large kink formation observed for the cases of En > 1 kPa, ET = (2,5) kPa

(Fig. 2.10A). Interfacial migration (i.e., E1 6= E2) through stiff matrices was also found to be

facilitated by plastic deformation (Fig. 2.11A). A plot of temporal evolution of hoop stress (σθθ )

during pore entry revealed varying stress profiles across the front end of the nuclear membrane
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marked by the green-black and red-blue dots (Fig. 2.10C). For a stiff nucleus, necking was

observed at the lateral edges when it is squeezed to enter the pore (Fig. 2.11B). This was also

observed to be the location of initiation of plastic deformation. Necking temporally precedes

kink formation at the front edge of the nucleus. For soft nucleus, i.e., En = 0.2 kPa, the front

end of the nuclear membrane (i.e., green-black dots) was under compressive stresses (negative

hoop stress) only. In contrast, for stiff nucleus, i.e., En = 2 kPa, while the outer edge of the

front end of the nuclear membrane (i.e., blue dot) underwent drastic increase in compressive

stresses, the inner edge of the nuclear membrane (i.e., red dot) underwent a sudden switch from

compressive to tensile stresses. A bifurcation in stresses (red and blue curves, Fig. 2.10C) in

the membrane creates a condition of extreme bending deformations which might be indicative

of localized structural disintegration. In addition to highlighting the prominent role of plastic

deformation of the nucleus in enabling entry into small pores, our results suggest that buildup

of stresses during entry may lead to nuclear membrane damage.
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Figure 2.10: Nuclear plasticity during confined migration. (A) Spatial map of plastic strain

(εplastic) accumulated in the nucleus just after pore entry. The total strain (εtotal) in a body is

defined as the sum of elastic (εelastic) and plastic strain, i.e., εtotal = εelastic + εplastic. εelastic

is defined as the reversible strain in the body whereas, εplastic is irreversible. We use a strain

hardening material property definition given by: σ = a+bεn
plastic, where σ is the applied stress,

σyield = a, and a, b and n are material properties. (B) Spatial distribution of von Mises stress

in the nucleus along the vertical direction just after nuclear entry (D0/φ = 1.67). (C) Temporal

evolution of hoop stresses (σθθ ) in the nuclear membrane from the start of simulation to the

instant the nucleus completely enters the pore. The two cylindrical components of stresses,

namely, radial (σrr) and hoop (σθθ ) stress in the nuclear membrane are depicted along with the

region of nuclear membrane from which the curves are extracted (D0/φ = 1.67). Green-Black

and Red-Blue curves correspond to two different combinations of ET and En as shown. Green

and Red dots in the representative snapshot of the nuclear membrane correspond to kinked mesh

elements on the nuclear membrane at its interface with the nucleus for En = 0.2 kPa and En = 2

kPa respectively. Similarly, Black and Blue dots correspond to kinked mesh elements on the

nuclear membrane at its interface with the cytoplasm.
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Figure 2.11: Plastic deformation of nuclei in cells migrating through an interface and spa-

tiotemporal evolution of plastic deformation. (A) E1 and E2 refer to the Young’s moduli of

tissues 1 and 2 on both sides of the interface. D0/φ = 1.67 for all the cases. Contours represent

the spatial distribution of plastic strain (εplastic). (B) Plastic strain accumulated in a cell as a

function of time during constricted migration for D0/φ = 1.67. En = ET = 2 kPa. Red arrows

indicate the region where necking first occurs and plasticity is initiated. The colourbar indicates

magnitude of plastic strain in the nucleus (εplastic = εtotal− εelastic).
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2.6.4 Nuclear plasticity and DNA damage: insights from experiments

To finally compare our simulation predictions with experiments, confined migration experi-

ments were performed using HT-1080 fibrosarcoma cells which are highly invasive and are

capable of switching from proteolytic to non-proteolytic migration upon inhibition of protease

activity (Wolf et al., 2003). This switch is enabled by nuclear softening through phosphory-

lation of Lamin A/C, and can also be induced by treatment with the non-muscle myosin II

inhibitor blebbistatin (hereafter Blebb) (Das et al., 2019). To assess the importance of nuclear

stiffness and nuclear plasticity during confined migration, experiments were performed in the

presence of Blebb and the CDK inhibitor RO-3306 (hereafter RO), which inhibits lamin A/C

phosphorylation (Kumar et al., 2018b). Cells treated with DMSO served as controls. At the

drug doses used, no obvious differences in cell morphology were observed (Fig. 2.12A). While

nuclear volume was preserved across the three conditions (Figs. 2.12B, C), AFM probing of

nuclear stiffness with a stiff tip right at the center of the cell (above the nucleus), and fitting of

∼ 2 µm of force curves revealed reduction in nuclear stiffness of Blebb-treated cells compared

to controls (Fig. 2.12D, E). In comparison, RO-treated nuclei were significantly stiffer.
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Figure 2.12: Experiment setup and mechanical characterization of cells. (A) Phase contrast

images of HT-1080 fibrosarcoma cells treated with vehicle (DMSO), 1 µM blebbistatin (Blebb)

or 10 µM RO-3306 (RO) for 12 hours. Scale bar = 30 µm. (B) Representative XZ plane

images of DAPI stained nuclei of DMSO, Blebb and RO-treated cells. Scale bar = 5 µm. (C)

Quantitative analysis of nuclear volume (n = 20−50 nuclei per condition across 2 independent

experiments). Error bars represent ±SEM. Statistical significance was determined by one-way

ANOVA/Fisher Test; NS: p > 0.05. (D) Probing nuclear stiffness of cells with a stiff pyramidal

probe. Cells were treated with DMSO, Blebb or RO for 12 hours prior to experiments. Nuclear

stiffness values were estimated by fitting ≥ 2 µm of indentation data using Hertz model. (E)

Quantification of nuclear stiffness of DMSO-treated, Blebb-treated and RO-treated cells (n =

40− 60 nuclei per condition across 2 independent experiments). Error bars represent ±SEM.

Statistical significance was determined by one-way ANOVA/Fisher Test; ∗ p < 0.05, ∗∗∗ p <

0.001. (F) Schematic of transwell migration assay through 3 µm pores; Cells were seeded in the

upper chamber containing plain DMEM supplemented with DMSO or drugs. Lower chamber

was labelled with DMEM containing 20% serum for creating a chemokine gradient.
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Figure 2.13: Influence of nuclear stiffness on pore migration efficiency and nuclear plas-

ticity. (A) Representative DAPI stained images of nuclei in upper chamber (referred to as TOP)

and lower chamber (referred to as BOTTOM) at 8, 18 and 28 hrs after cell seeding; Scale

bar = 100 µm. (B) Quantification of translocation efficiency of DMSO/Blebb/RO-treated cells

at 3 different time-points (n ≥ 900 nuclei per condition were counted in the upper chamber;

experiment was repeated thrice). (C) Quantification of nuclear circularity of DMSO/Blebb/RO-

treated cells at the top (8 hr time point) and at the bottom surface of the pores at 3 differ-

ent time-points (n > 80 nuclei per condition; experiment was repeated twice). Error bars

represent ±SEM. Statistical significance was determined by one-way ANOVA/Fisher Test;
∗∗∗ p < 0.001, ∗∗ p < 0.01, NS: p > 0.05.
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Figure 2.14: Plastic deformation of the nucleus increases susceptibility to damage. (A) Rep-

resentative γH2Ax-stained images of DMSO/Blebb/RO-treated cells in upper chamber (referred

as TOP) and lower chamber (referred as BOTTOM) of transwell pores 28 hrs after cell seeding.

Nuclei are outlined with white dotted lines; Scale Bar = 20 µm. (B) Quantification of ratio of in-

tegrated γH2Ax intensity between BOTTOM layer and TOP layer in DMSO/Blebb/RO-treated

cells (n = 40− 120 nuclei per condition; experiment was repeated twice). Error bars repre-

sent ±SEM. Statistical significance was determined by Mann-Whitney test; ∗∗∗ p < 0.001, NS:

p > 0.05. (C) Quantification of γH2AX expression intensity normalized to DMSO condition at

the TOP layer.
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Figure 2.15: Plastic deformation of the nucleus increases susceptibility to damage. (A)

Representative Lamin A/C (green) and DAPI (blue) stained images of DMSO/Blebb/RO-treated

cells in Top and Bottom layer of transwell pores at 28 hrs after cell seeding. White arrows

indicate nuclear blebs. Scale bar = 20 µm. (C) Quantification of average number of blebs

per nucleus in DMSO/Blebb/RO-treated cells in top and bottom layer of the transwell inserts

(n > 250 nuclei per condition pooled from two independent experiments). Error bars represent

±SEM. Statistical significance was determined by Mann-Whitney test; ∗∗∗ p < 0.001, NS:

p > 0.05.

To assess the implications of these alterations in nuclear stiffness on the efficiency of con-

fined migration, transwell migration through 3 µm pores was performed wherein cells were

plated on the top of the transwell pores and the fraction of cells reaching the bottom was quan-

tified at three different time-points, i.e., 8, 18 and 28 hours after seeding (Figs. 2.12F, 2.13A).

Cells were stained with DAPI for ease of cell counting as well as for assessing nuclear morphol-

ogy before and after transit through the pores. Time-snaps of the number of cells that transited
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through the pores and reached the bottom surface illustrated the clear advantage of nuclear soft-

ening during confined migration. While the number of nuclei at the bottom were comparable

in DMSO and Blebb-treated cells at all the three time-points, the number of RO-treated nuclei

were significantly lesser (Fig. 2.13A). Quantification of translocation efficiency, i.e., the frac-

tion of cells that transited through the pores, revealed Blebb-treated cells to be the most efficient

in pore migration, and RO-treated cells to be the least efficient (Fig. 2.13B).

To next assess the possibility of nuclei undergoing plastic deformation during pore migra-

tion, nuclei shape was quantified by measuring nuclear circularity as a function of time. Nuclear

circularity of DMSO and Blebb-treated cells remained unchanged across the three time-points,

and were comparable with cells that remained at the top surface (Fig. 2.13C). Though nuclear

circularity of RO-treated cells was comparable to that of DMSO and Blebb-treated cells at the 8

hr time-point, there was a gradual drop in nuclear circularity with time with maximum drop of

≈ 25% observed at the 28 hour time-point. The dramatic change in nuclear circularity of RO-

treated cells suggests that nuclei of these cells have undergone plastic deformation and retain

their deformed shapes.

To finally probe the link between the nature of nuclear deformation (i.e., elastic versus

plastic) and nuclear damage, cells were stained with γH2Ax, a marker of DNA damage, before

and after transwell migration (Fig. 2.14A). Quantification of γH2Ax intensity normalized to

DMSO condition revealed higher basal level of damage in RO-treated cells, but no change in

Blebb-treated cells (Fig. 2.14C). These baseline differences were amplified to different extents

after transwell migration. Quantification of the ratio of γH2Ax levels between BOTTOM layer

and TOP layer revealed ≈ (30−50)% increase in DMSO and Blebb-treated cells (Fig. 2.14B).

In comparison, ≈ 200% increase was observed in RO-treated cells. To establish a direct corre-

lation between γH2Ax levels and nuclear damage, nuclei co-stained with Lamin A/C and DAPI

were imaged for visualizing formation of nuclear blebs (white triangles, Fig. 2.15A). For all the

three conditions, the proportion of nuclei with blebs remained unchanged in cells in the TOP

layer, but increased after transwell migration to different extents (Fig. 2.15B). Specifically, the

proportion of cells with nuclear blebs increased from ≈ 30% in DMSO/Bleb-treated cells to

≈ 90% in RO-treated cells. Together, these results validate our model predictions and suggest

that plastic deformation of the nucleus increases susceptibility to DNA damage.

53



2.6.5 Scaling relationships

The cellular force required for a nucleus to successfully enter a pore is expected to depend

on both nuclear stiffness and tissue stiffness. Plotting of Fentry versus Tentry corresponding to

D0/φ = 1.67 for different combinations of ET and En revealed a nearly cubic scaling relation-

ship with a factor of 2.78 (Fig. 2.16A). The dynamic change in nuclear circularity over the

period of entry into the pore is then a function of the aforementioned factors. The ratio of

initial nuclear size to initial pore size (D0/φ ) is of limited value for analyzing cell migration

through deformable matrices because the pore size widens with the passage of a cell nucleus

through it. A non-dimensionalized scaling relationship between nuclear circularity (D/L) and

a combination of tissue and nuclear stiffness (E1E2/E2
n ) shows the slopes followed by cells of

varying nuclear stiffness (Fig. 2.16C). Force required by a cell of given cell/nuclear stiffness for

entering a pore is well fit by the following power law with an exponent of 0.43 (R2 = 0.75) (Eq.

1) (Fig. 2.16B):

F
EcD

=

(
E1 +E2 +En

Ec
.
L
D
.

t
τc

)0.43

(2.6)

where, Ec, t and τc refer to cytoplasmic stiffness, time of pore entry and viscoelastic time

constant of the cytoplasm respectively. The dimensional force itself was found to increase

exponentially with D/L with the exponents dictated by En and the extent of plastic deforma-

tion (Fig. 2.16D). The magnitude of the exponent was highest for the case of stiff nucleus

(En = 1 kPa) undergoing plastic deformation, lowest for the case of stiff nucleus undergoing

non-plastic deformation, and intermediate for the case of soft nucleus (En = 0.2 kPa) under-

going non-plastic deformation. These scaling relationships can be utilized for predicting cell

generated forces based on experimentally observed parameters such as nuclear circularity and

mechanical properties of various cellular and tissue structures.
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Figure 2.16: Scaling relationships. (A) Scaling relationship between Fentry (pN/µm) and Tentry

(s) for D0/φ = 1.67. (B) Non-dimensional cellular force scaled with possible parameters affect-

ing the cellular force generation during confined migration for D0/φ = 1.67. Scaling between

nuclear circularity and (C) the coupled effect of tissue and nuclear stiffness, and (D) force re-

quired by a cell to enter a pore. All datapoints refer to the condition D0/φ = 1.67. E1 and E2

vary from 0.13 to 5 kPa.

2.7 Discussion

The numerical model of cell migration under confinement presented in this study incorporates

essential cellular features at the microscale, namely, nuclear elastoplasticity and viscoelasticity55



of other cellular components and extracellular matrices in addition to stress-stiffening of cyto-

plasm that make it more realistic than previous FE models (Table 2.1). The dramatic increase

in instantaneous migration speed of the nucleus observed in our simulations is consistent with

experimental observations (Lautscham et al., 2015; Krause et al., 2019), and can be attributed to

the sudden release of the built-up potential energy due to deformation of internal elastic springs

in the cell and nucleus and its conversion into kinetic energy. Though the maximum possible

intracellular protrusive force (FP) defined in our model is comparable to literature reported val-

ues (Rabodzey et al., 2008; Neelam et al., 2015), the forces predicted by our model are nearly an

order of magnitude lower than the values reported by Lele and co-workers (Neelam et al., 2015).

These differences may arise due to the experimental setup and/or sensitivity of experimental as-

says. For example, in the aforementioned literature, micropipette aspiration was performed on

cells adherent on glass and migrating through stiff PDMS micropillars (E ≈ 2 MPa).

Our model predicts that while migrating through matrices stiffer than the nucleus (i.e.,

ET/En > 1), the nucleus undergoes plastic deformation (Fig. 2.17A). Plastic deformation of the

nucleus was also observed for the case of a cell with a stiff nucleus (En = 5 kPa) migrating

through a relatively soft matrix (ET = 1− 2 kPa). However, kink formation was observed for

the first case only. Long-term change in nuclear circularity of RO-treated cells observed at the

28 hr time-point, but not of DMSO and Blebb-treated cells, is indicative of nuclei of RO-treated

cells undergoing plastic deformation. However, at the 8 hr time-point, nuclear circularity of

RO-treated cells which transited to the bottom of the pores was comparable to that of DMSO

and Blebb-treated cells as well as with that of cells at the top. Given the broad heterogeneity in

nuclear stiffness measurements, we speculate that RO-treated cells which reached the bottom

of the transwell pores at the 8 hr time-point correspond to a sub-population of cells with softer

nuclei which underwent elastic deformation during pore migration.

Since Lamin A/C levels scale with tissue stiffness (Swift et al., 2013), our results of

cells with stiff nuclei migrating through stiffer tissues correspond to cancers such as osteosar-

coma, wherein migration-induced DNA damage has been shown to cause genomic heterogene-

ity (Irianto et al., 2017). Stiff nuclei have been reported to result from increased lamin A con-

centration in the nucleus (Harada et al., 2014), especially in the genetic mutations caused in

the Hutchinson Gilford Progeria Syndrome (HGPS) (Kaufmann et al., 2011; Verstraeten et al.,

2008). In comparison, the absence of nuclear kinks in cells with soft nuclei passing through
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Figure 2.17: Proposed model of nuclear damage. (A) Phase diagram depicting the zones of

non-plastic and plastic nuclear deformation required for pore entry for different values of En,

ET and D0/φ . (B) Proposed model of nuclear damage. Compressive forces imposed by the

surrounding tissues cause initial nuclear membrane damage. This serves as the precursor to

nuclear bleb formation.

stiff matrices suggests that nuclear softening may represent a robust strategy utilized by cells

to migrate through pores without undergoing nuclear membrane rupture. Consistent with this

idea, γH2Ax levels and the average number of nuclear blebs were comparable in control and

Blebb-treated cells, but significantly elevated in RO-treated cells.

The relative insensitivity of average cell speed to En/ET suggests that tissue stiffness-

dependent temporal tuning of nuclear stiffness by lamin A/C phosphorylation may enable can-

cer cells to migrate at comparable efficiency through tissues of varying composition and pore

sizes. Approximating the nuclear membrane and the lamina as a simply supported elastic plate

of thickness h, the flexural rigidity (FD) can be given as (Timoshenko and Woinowsky-Krieger,

1959):

FD ≈
Eh3

(1−ν2)
(2.7)

where, E and ν are elastic properties of the nuclear lamina. Since thickness h has a relatively

greater influence on flexural rigidity compared to stiffness E, a thin lamina is more prone to

damage due to bending than a soft lamina. This might explain increased blebbing due to nuclear
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damage reported in laminopathies (loss of lamin A/C) but not in immune cells or cancers with

soft nuclei.

The chromatin contained within the nucleus is a major determinant of nuclear deforma-

tion. Mechanotransduction between the actin cytoskeleton and nucleoplasm through the inter-

connecting LINC complex has been shown to play a critical role in chromatin dynamics during

DNA repair Swartz et al. (2014) and gene transcription (Tajik et al., 2016; Stephens et al.,

2019). The spatial organization of the chromatin changes with nuclear stress and shape change.

Compact chromatin network acts as an elastic spring to resist small deformations (Stephens

et al., 2019). While small strains lead to strain stiffening of nuclei due to chromatin com-

paction (Stephens et al., 2017), large deformation of nuclei is facilitated by the actin and vi-

mentin cytoskeleton (Patteson et al., 2019) and Lamin A/C (Stephens et al., 2017). Change in

spatial organization of chromatin fibers can possibly lead to permanent plastic deformation of

nuclei. A full rupture in the membrane allows the intranuclear pressure to become more than

the intracellular pressure, thus facilitating the leakage of genetic material into the cytosol. An

alternate mechanism is also observed in cells migrating under confinement where the nuclear

membrane gets mechanically decoupled from the nuclear lamina which leads to membrane

blebbing due to chromatin flow into this vacant pocket of space (Deviri et al., 2017). This ex-

perimental observation can be linked to our model prediction (Fig. 2.17B) where we find that

the nuclear lamina bends when the nucleus undergoes plastic deformation. This extreme nu-

clear bending as seen in Figs. 2.10A and C might result in delamination of the nuclear cortex

from the nuclear membrane leading to bleb formation.

Nuclear blebbing has also been reported to be caused by influx of water into the nucleus

under confinement (Mistriotis et al., 2019). In this study, we did not consider the effect of

water influx into the nucleus, the characteristic time (τ) for which is found to be governed by

the equation: τ = r2
n/Dc, where rn is the radius of nucleus and Dc is the diffusion coefficient of

water. Thus, for an undeformed nucleus of rn = 2.5 µm and Dc = 50 µm2/s (Moeendarbary

et al., 2013), τ = 0.125 s, which is extremely small compared to the timescales of migration

(minutes to hours), even smaller for deformed nuclei. Moreover, since we consider a quasi-static

viscoelastic description of the model, we did not consider the transient poroelasticity of nuclei

or cytoplasm. Our results show that there is a time-dependent spatial gradient of compressive

forces on the nuclear lamina due to actomyosin fibres during nuclear entry into a pore. In such
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a situation, by the time the nucleus completely enters into the pore, the front of the nucleus

relative to the direction of migration has been under compressive stresses much longer than

the rear. Therefore, the probability of nuclear membrane rupture at the nuclear front is much

higher than at the rear as has been consistently reported in experiments. Compressive stresses

beyond a critical threshold (yield stress σy) causes the nucleus to yield and this yield zone is also

found to spread starting from the frontolateral region of the nucleus where necking occurs due

to constriction to the rear of the nucleus (Fig. 2.11B). In case of stiff nuclei transiting through

stiffer matrices (En ≥ 1 kPa, ET ≥ En), plasticity-induced deformation of the nuclear membrane

leads to buckling and finally membrane failure. The combination of nuclear stress profiles and

γH2Ax results suggests that plastic nuclear deformation that initiates at the nuclear lamina gets

propagated throughout the nucleus.

Nuclear membrane rupture in micropipette aspiration experiments has been attributed to

tensile stresses at the anterior periphery of the nucleus (Zhang et al., 2019; Xia et al., 2019).

Similar results have been recapitulated by Cao et al. (Cao et al., 2016) in their model where they

proposed that the front and lateral edges of the nucleus might be susceptible to tensile-stress

induced damage during migration through ECM-like environments. Though these findings im-

plicate tensile stresses as a factor contributing to nuclear damage, nuclei are primarily subjected

to compressive forces during confined migration. Our observations of kink formation at the tip

of the nuclear membrane proximal to the direction of migration correlates with experimental

observations of the spatial location of nuclear damage during migration through extreme con-

finement in stiff environments (Raab et al., 2016; Hatch and Hetzer, 2016; Deviri et al., 2019).

Since kink formation is expected to occur between the stages of nuclear compression, subse-

quent blebbing and eventual rupture, resolving it temporally during experiments is challenging.

However, there might be some indication of kink formation in-vitro in a study by Lammerding

and co-workers (Denais et al., 2016) where they show that lamin B is depleted from the region

where membrane bleb is formed. They suggest that this is due to detachment of lamina from

the membrane. In our simulations, this detachment can be related to mechanical delamination

(similar to delamination in composite structures) under compression. The kink formation might

be a consequence of excessive bending of the nuclear lamina driven by the combined effects of

tissue stiffness and the peri-nuclear cytoskeleton. Formation of smaller lateral kinks might aid

in the initiation of plastic deformation. We propose that rapid buildup of compressive and ten-

sile stresses at the point of pore entry induces nuclear envelope damage; subsequent localized
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delamination of the lamina from the nuclear membrane may serve as a precursor to experimen-

tally observed nuclear blebbing (Fig. 2.15A). The genetic material, already under significant

external pressure and previously held back by the structural integrity of the nuclear lamina,

then oozes out through the damaged orifice to form a bleb that may eventually rupture subject

to membrane tension. However, unless the damage is extreme, nuclear rupture is repaired using

ESCRT machinery (Denais et al., 2016; Raab et al., 2016; Deviri et al., 2017). Our results sug-

gest that compressive stress-induced membrane damage and nuclear blebbing only occurs in a

specific window depending on nuclear/tissue stiffness and extent of confinement, and may be

critical for migration through stiff environments. Our experimental observations indeed support

this idea as change in nuclear circularity indicative of plastic deformation of the nucleus was

only observed in RO-treated cells, where DNA damage was maximum. The lack of plastic de-

formation in Bleb-treated cells which were more invasive and had lesser DNA damage suggests

that nuclear softening may be a more effective invasion strategy compared to nuclear plasticity.

2.8 Conclusion

In conclusion, we have developed a numerical model of confined cell migration that contributes

to our understanding of the underlying physics of nuclear deformation and stresses during con-

fined migration. We further validate our key prediction of nuclear plasticity leading to nuclear

damage using experiments wherein RO-induced nuclear stiffening led to plastic deformation

and higher DNA damage. Our model suggests that nuclear membrane damage in stiff nuclei

plastically deformed by compressive stresses, may serve as the precursor for bleb formation that

ultimately facilitates successful migration of a cell through stiff tissues.
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Chapter 3

Mechanical modelling of the cellular

glycocalyx

3.1 Introduction

A thick outer coat of sugars and proteins, called the glycocalyx, is generally found beyond the

cell membrane in most eukaryotic cells. This coat is such that long polymeric chains (sometimes

made of ≈ 20,000 monomeric units) act as randomly coiled springs beyond their persistence

length (usually about 10 nm (Shurer et al., 2019)) and as rigid beams below it. Such a coat

has long been observed experimentally (Chang et al., 2016), but rarely modelled physically.

Recent physical models developed shed light onto the possibility that this coat might be made

of two classes of polymers, distinguished by their chain lengths (Iyer et al., 2009; Dokukin

et al., 2016).

Experimental data and intensity mapping of the glycocalyx (or, pericellular matrix (PCM))

by (Chang et al., 2016) show that it increases in thickness over time before saturating, indicating

a diffusion-based growth or polymerization in the region. Significantly, the authors find that this

swelling is not the result of polymerization of HA, but rather due to the attachment of aggrecan

molecules to the vacant sites in the HA polymeric chain. Attachment of aggrecan to HA leads to

the stretching out of the HA polymer backbone due to steric hindrance thus forming a polymer

brush around the cell.

The morphology of glycocalyx polymers found around cells can be differentiated into two

primary types, namely, mushroom and brush depending on the side-chain length and orienta-

tion (Shurer et al., 2019). The mushroom configuration is found to occur when the polymer

attachment density (N) is low where the polymers become more rounded and their persistence
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length decreases due to less steric hindrance. Conversely, for high N and consequent high steric

hindrance, the persistence length of glycocalyx polymers increases and they form elongated

brush-like structures. These membrane configurations can be broadly classified according to

the attachment density of glycocalyx polymers leading to formation of various polymer shapes

on cell membranes into categories such as: flat or 2D, blebs, tubes and pearls. Fig. 3.1A shows

a schematic of glycopolymer brush on a cell being compressed under indentation forces and

Fig. 3.1B depicts existence of a glycocalyx (brush form) around a cell that is removed by the

application of the enzyme Neuraminidase.

We developed a basic finite element model of cell migration in Chapter 2. However,

we had considered a cell devoid of a coat of glycocalyx. In this Chapter, we consider a cell

decorated with glycopolymers forming a brush attached to the cell membrane and evaluate its

mechanical properties and impact on cell indentation and compression against the surrounding

ECM. We first created axisymmetric models of cell indentation by a spherical indenter and gly-

cocalyx compression with ECM due to a sandwich configuration using a hyperelastic definition

of the glycocalyx. We then implemented these models to study cell migration through a matrix

and understand the role of glycocalyx in aiding this process.

3.2 Materials and Methods

3.2.1 Methodology

We designed continuum models to mimic the mechanical effect of glycocalyx. According to

AFM indentation data on the glycocalyx presented by the group of I. Sokolov (Iyer et al., 2009;

Sokolov et al., 2013; Dokukin et al., 2016), we could not find evidence of adhesive contact

between the AFM indenter and glycocalyx. Therefore, we did not use the JKR model (Johnson

et al., 1971) which is used for adhesive contact between two elastic bodies.

The entropic brush model used to predict the indentation load on an indenter indenting a

glycocalyx brush (Dokukin et al., 2016) assumed to be made up of polymer chains was equated

to the Hertz model for contact between an indenter and a finitely thick glycocalyx on an in-
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Figure 3.1: Glycocalyx attached to plasma membrane of cells. (A) Schematic of an AFM

probe indenting a glycocalyx brush. (B) Enzymatic removal of cell surface glycocalyx. MDA-

MB-231 Cells were treated with 0 and 500 milliunit (mE) neuraminidase for 3 h and was fixed

and stained with WGA-FITC to visualize surface glycan. Images are representative confocal

maximum intensity images. (C) Glycocalyx mediates invasiveness of MDA-M-231 cells. Inva-

sion was checked after encapsulating cells in 3D collagen gels using live cell imaging. Figure

shows 12 h migration trajectories. (D) Quantification of the cell migration trajectories over 12

h (n>120 cells from 2 independent experiments, Statistical significance were determined using

Mann-Whitney test, ***: P<0.001).

finitely large cell. For a glycocalyx assumed to be comprised of polymer chains of nearly the

same length, the force is given as (Dokukin et al., 2016):

Fsingle brush ≈ 100kBT R∗N3/2e−
2πh

L L (3.1)

where, kB = Boltzmann constant (1.38×10−23 J.K−1), T = temperature (298 K), R∗= (Rprobe×
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Rcell)/(Rprobe +Rcell) with Rcell in our case→ ∞. Therefore, in our case R∗→ Rprobe. N is the

brush density, L is the length of brush and h is the distance between the indenter tip and cell

body at the instant when the force is predicted. This predicted force is then equated to that

predicted by the Hertz contact model, given by:

FHertz =
4
3

E∗R1/2
probeδ

3/2 (3.2)

where,

1
E∗

=
1−ν2

probe

Eprobe
+

1−ν2
glycocalyx

Eglycocalyx
(3.3)

and δ is the indentation depth related to h as δ = 1− h. Assuming a fully compressive gly-

cocalyx (that is, νglycocalyx = 0) and Eprobe → ∞, we get E∗ = Eglycocalyx. For a finitely thick

glycocalyx layer on a semi-infinite cell, we use the correction proposed by Dimitriadis et al.

(2002):

Fcorrected =
4
3

EglycocalyxR1/2
probe(L−h)3/2 f (χ) (3.4)

where, χ =
√

Rδ

L , and f (χ) is given as:

f (χ) =
[
1− 2α0

π
χ +

4α2
0

π2 χ
2− 8

π3

(
α

3
0 +

4π2

15
β0

)
χ

3 +
16α0

π4

(
α

3
0 +

3π2

5
β0

)
χ

4
]

(3.5)

Here, considering a glycocalyx layer bonded to the cell surface, α0 and β0 are given as:

α0 =−
1.2876−1.4678νglycocalyx +1.3442ν2

glycocalyx

1−νglycocalyx
(3.6)

β0 =
0.6387−1.0277νglycocalyx +1.5164ν2

glycocalyx

1−νglycocalyx
(3.7)

For νglycocalyx = 0, α0 = −1.2876 and β0 = 0.6387. It is clearly visible that as glycocalyx

thickness L increases with respect to indenter radius and indentation depth, χ decreases and
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Fcorrected → FHertz eventually. Therefore, equating Eq. 3.1 with Eq. 3.4, we get:

100kBT RprobeN3/2e−
2πh

L L =
4
3

EglycocalyxR1/2
probe(L−h)3/2 f (χ) (3.8)

Through Eq. 3.8 we can easily calculate the apparent glycocalyx stiffness Eglycocalyx correspond-

ing to N and L of a given polymer brush. Since the entropic brush formula (Eq. 3.1) is valid for

0.2< h/L < 0.8, we use the Eglycocalyx corresponding to h/L = 0.2 as our initial glycocalyx stiff-

ness in our further simulations (Fig. 3.2). We evaluate the brush equations at room temperature

(T = 298 K).

Figure 3.2: Variation of brush stiffness E with glycocalyx thickness L, density N and in-

dentation depth δ . The units of L and N are µm and µm−2 respectively. The range of validity

of the brush model by Dokukin et al. (2016) is also indicated by the dotted lines. The value of

E taken in simulations corresponds to h/L = 0.8 (corresponding to a 20% indentation depth, or

δ/L = 0.2).

Dokukin et al. (2016) also formulated an expression for a double brush that consists of

two different categories of brushes (with different brush sizes and densities, namely, L1, L2 and

N1, N2 respectively). In such a scenario, the force due to this double brush could be predicted
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as:

Fdouble brush ≈ 100kBT Rprobe[N
3/2
1 e−

2πh
L1 L1 +N3/2

2 e−
2πh
L2 L2] (3.9)

Eq. 3.9 can then be equated with the corrected Hertz contact model in Eq. 3.4 to calculate the

equivalent initial stiffness of the glycocalyx. As can be expected, the glycocalyx stiffness is

very low as compared to general cell stiffness (by nearly O(2)) (Fig. 3.3).

Figure 3.3: Variation of brush stiffness E with glycocalyx thickness L, density N at inden-

tation depth h/L = 0.8 or δ/L = 0.2. The units of L and N are µm and µm−2 respectively. The

colorbar indicates the value of effective stiffness E, in Pa, calculated from the entropic brush

model and the Hertz contact model.

66



Table 3.1: Material parameters

Component
Density (ρ)

(kg/m3)

Young’s

Modulus

(E) (Pa)

Poisson’s

ratio (ν)

Cell 1050
500, 1800,

2000
0.5

ECM 1800 1000, 5000 0.5

3.2.2 Physical description of the modelling problem

Spherical indentation of glycocalyx

The glycocalyx is made up of brush polymers that lend it an effective stiffness under external

stresses. This stiffness might be a result of combined effects of a finite persistence length and

steric hindrance between the brush polymeric chains. AFM indentation studies of cells with

glycopolymers attached to the cell membrane have shown that glycocalyx stiffness varies with

its thickness (polymer length) and polymer density (Iyer et al., 2009; Dokukin et al., 2016). To

simulate AFM indentation on cells with glycocalyx attached to the cell membrane, we created

an axisymmetric FE model where the cell and its associated glycocalyx were assumed to very

large compared to the spherical indenter to neglect edge effects (Fig. 3.4). The cell nucleus

was assumed to not contribute significantly to the mechanics of indentation. The boundary

conditions on the indenter in the cylindrical coordinate system were as follows: uz = 0, at

t = 0s, uz = 0.4L, at t = T , and ur = 0, for t → [0,T ]. The boundary conditions on the cell and

glycocalyx taken together were: ur = 0, for r = 0 and t → [0,T ]. Also, uz = ur = 0 for z = 0.

Compression of glycocalyx of cell sandwiched between rigid plate and ECM

Cells sitting sandwiched between the ECM and a rigid substrate, often an example of interfa-

cial migration, can be found to push against the ECM (George et al., 2018). To simulate such
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Table 3.2: Stiffness dependence of Glycocalyx on L and N

L (µm) N (µm−2) Equivalent E (Pa)

1 100 0.054

1 200 0.15

1 500 0.6

1 1000 1.7

1 10000 53.7

5 100 0.024

5 200 0.068

5 500 0.27

5 1000 0.757

5 10000 24

10 100 0.017

10 200 0.048

10 500 0.19

10 1000 0.536

10 10000 17

situations, we created FE models modulating the initial glycocalyx thickness L as 1 and 5 µm

and cell spreading radius as 1 and 10 µm (Fig. 3.5). The cell nucleus was assumed to not play

a significant mechanical role in these compression simulations and it was assumed that an ag-

gregate cellular stiffness due to the effects of cytoskeleton, nucleus and other organelles would

suffice. Experimental studies have shown that glycopolymers lead to clustering of integrin-
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Figure 3.4: Model schematics used for simulations of spherical indentation of a cell with

glycocalyx surrounding it. A rigid indenter of radius = 10 µm is displaced by 40% of initial

glycocalyx thickness (L). The axis of symmetry, boundary conditions of the system and unde-

formed dimensions are shown. The axial and radial directions are denoted in the figure by Z

and R respectively.

mediated focal adhesions that attach the cell to the underlying substrate (Paszek et al., 2014).

In line with these experimental observations, the glycocalyx is absent in the region where the

cell is attached to the rigid plate in our simulations. Moreover, the ECM was chosen to be large

enough (50×50 µm2) as compared to the cell so as to mitigate any possible edge effects.

3.2.3 Finite Element Model

The finite element model used in this study was implemented in the commercial software

ABAQUS. The mesh elements were chosen to be two-dimensional hybrid 4-node bilinear ax-

isymmetric quadrilateral (CAX4RH) with reduced integration. The minimum elemental dimen-

sion in the mesh was chosen as 0.1 µm. The glycocalyx was modelled as a compressible Neo
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Figure 3.5: Model schematics used for simulations of glycocalyx compression due to cells

sandwiched between a rigid plate and ECM. Two degrees of cell spreading area were studied,

denoted by radii of 1 µm and 10 µm and the initial glycocalyx thickness was taken to be either

1 µm or 5 µm. The rigid plate is displaced in the axial direction by 1 µm. The axial and radial

directions are denoted in the figure by Z and R respectively.

Hookean material, which can be written in terms of strain energy function Ψ as:

Ψ =C1(I1−3−2ln J)+D1(J−1)2 (3.10)

where, C1 and D1 are material constants related to Lamé parameters µ and λ as C1 = µ/2 and

D1 = λ/2 respectively. I1 is the 1st invariant or trace of the right Cauchy-Green deformation

tensor, given by:

I1 = λ
2
1 +λ

2
2 +λ

2
3 (3.11)
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and J is the determinant of deformation gradient, given by:

J = λ1λ2λ3 (3.12)

where, λ1, λ2 and λ3 are the principal stretches.

In the simulations for spherical indentation of glycocalyx, the lower edge of the cell body

domain was constrained in all degrees of motion (encastered) as shown in Fig. 3.3. Due to the

axisymmetric condition, only half of the full domain in 2D plane was modelled and symmetric

boundary conditions were imposed on the domain. A maximum displacement of 40% of the

initial glycocalyx thickness was applied on the rigid spherical indenter. Since the material model

chosen is hyperelastic and therefore strain-independent, a total simulation time of 1 second

was applied. The radial R and axial Z coordinates in the model in Fig. 3.4 correspond to X

and Y coordinates in the 2D Cartesian coordinate system. Contact between the indenter and

glycocalyx was assumed to be frictionless.

In the simulations for glycocalyx compression due to cells sandwiched between a rigid

plate and ECM, the upper edge of the ECM domain was constrained in all degrees of motion

(encastered) as shown in Fig. 3.5. Similar to Fig. 3.4, due to the axisymmetric condition, only

half of the full domain in the 2D plane was modelled and symmetric boundary conditions in

the cylindrical coordinate system were imposed on the domain. The cell in each condition was

considered to be sandwiched between the ECM and a rigid plate and a maximum displacement

of 1 µm was applied to the rigid plate. The cell volume was conserved in all cases and the

cell spreading only affected the geometry of the sandwiched cell. The glycocalyx thickness

was varied and contact between glycocalyx and ECM was assumed to frictionless. The cell

and glycocalyx were assumed to be attached at their lower surface to the rigid plate by the ‘tie’

condition.
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3.3 Results

3.3.1 Magnitude and localization of maximum stresses change in cell body

and glycocalyx with increasing glycocalyx thickness during spheri-

cal indentation

Indenting a Neo Hookean glycocalyx attached to an elastic cell body of effective stiffness Ecell

= 1.8 kPa by a spherical indenter of 10 µm radius, we determined the evolution of von Mises

stresses in the glycocalyx and the cell. We found that for a thin glycocalyx, that is, for L = 1µm,

stresses arising due to indentation are maximally localized to the cell body under the indenter

(Fig. 3.6A). However, as we transition from a thin to a thick glycocalyx (L = 1 µm → 5 µm

→ 10 µm), a 40% indentation depth (h/L = 0.4) leads to a change in localization of maximal

stresses from cell body (Fig. 3.6A) to the glycocalyx and cell being nearly equally stressed

(Fig. 3.6B) and finally to the glycocalyx bearing most of it (Fig. 3.6C). Additionally, the von

Mises stresses were found to increase with increase in polymer brush density N and decrease

in polymer length L. These figures also demonstrate that stresses in the cell body decrease with

glycocalyx thickness.

3.3.2 Evolution of indentation loads during spherical indentation of cel-

lular glycocalyx

The evolution of indentation loads with indentation depth demonstrate a nonlinear dependence

of load on indentation depth as shown in Fig. 3.7. The nonlinearity increases with increase

in polymer or glycocalyx density N. Fig. 3.7 also shows that indentation loads have a greater

dependence on glycocalyx density N rather than glycocalyx thickness L. This can be understood

physically by the fact that closely attached fibres or brush impose greater steric hindrance for

indenters of a finite size than sparsely distributed fibres. It is to be noted that the entropic brush

equation that relates force and indentation depth for a certain L and N are valid beyond an

indentation depth (δ/L) of 0.2 as shown by the green arrow in Fig. 3.7.
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Figure 3.6: von Mises stress contours in cell body and cell glycocalyx for N = {100, 200,

500} µm−2 and (A) L = 1 µm, (B) L = 5 µm, and (C) L = 10 µm. Maximum indentation depth

δ/L is 0.4.

3.3.3 Compression of cellular glycocalyx against ECM

A thin glycocalyx (L = 1 µm) was found to be under larger stresses when cell and ECM were

both stiff, that is, Ecell = 2 kPa and EECM = 5 kPa for L = 1 µm and N = 10,000 µm−2 and the
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Figure 3.7: Variation of normal indentation load F with relative indentation depth h/L

for L = {1, 5, 10} µm and N = {100, 200, 500} µm−2. Green dashed line and arrow mark the

region beyond which the brush model is applicable. Maximum indentation depth δ/L is 0.4.

peak von Mises stress in this case was ≈ 3-4 times greater than for N = 1000 µm−2 (Fig. 3.8).

A sparse glycocalyx (N = 1000 µm−2) was also found to deform more than a dense one. Intra-

cellular stresses increased with increase in EECM and were higher for N = 10,000 µm−2 when

compared to N = 1000 µm−2 (≈ 4 times higher). Correspondingly, the deformation of cellu-

lar glycocalyx was found to decrease as N increased from 1000 to 10,000 µm−2. This might

indicate that a dense glycocalyx deforms the cell more than a sparse one.

A change of an order of O(1) to O(2) of magnitude of von Mises stresses was observed as

N changed from 100 to 1000 µm−2 in all the four cases shown in Fig. 3.9. Interestingly, von

Mises stresses along the axis of symmetry in a thin glycocalyx increase by an order O(3) as

compared to those in a thick glycocalyx. This was found to be true even if cells had the same

spreading radii. Greater cell spread radius (10 µm) led to an increase in von Mises stresses in

case of N = 1000 µm−2 and L = 1 µm when compared to more rounded cells. However, for

a thick glycocalyx, cell spreading and cell and ECM stiffness did not have a significant effect

on von Mises stresses. It was additionally found that contact force between the glycocalyx and

ECM increased in a highly nonlinear manner with increase in glycocalyx compression depth
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Figure 3.8: von Mises stress contours in cells along with the glycocalyx for L = 1 µm and N

= {1000, 10,000} µm−2. Two combinations of Ecell and EECM are analyzed where Ecell = 2 kPa

and EECM = {1, 5} kPa were used for the simulations. Colourbar depicts the von Mises stress.

(Fig. 3.10). Maximum contact forces were observed to be the highest when cell and ECM

were both stiff (2 and 5 kPa respectively). It was also found that greater cell spreading led to

greater contact force between the glycocalyx and the ECM for a thin glycocalyx. However, as

in Fig. 3.9, for a thick glycocalyx, contact forces were found to depend only on N and not on

cell or ECM stiffness. A thin glycocalyx (L = 1 µm) around the cell was found to result in an

increase in maximum contact forces by an order of O(2) greater than those in a thick glycocalyx

(L = 5 µm) in case of a rounded cell and O(3) in case of a spread cell.
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Figure 3.9: von Mises stresses in the deformed cellular glycocalyx along the axis of sym-

metry for: (A-D) L = {1, 5} µm and N = {100, 1000} µm−2. Various combinations of Ecell =

{0.5, 2} kPa and EECM = {1, 5} kPa were used for the simulations.

3.3.4 ECM displacement due to compression of cellular glycocalyx against

ECM

ECM displacement was found to increase with decrease in glycocalyx thickness and increase

in spreading (Fig. 3.11). Additionally, ECM displacement also increased with increase in N
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Figure 3.10: Normal contact forces between the cellular glycocalyx and ECM for: (A-D)

L = {1, 5} µm and N = {100, 1000} µm−2. Various combinations of Ecell = {0.5, 2} kPa and

EECM = {1, 5} kPa were used for the simulations.

and Ecell/EECM ratio. For thick glycocalyx, ECM displacement was found to depend only on

N and EECM and not on Ecell , whereas, for N = 1000 µm−2, ECM displacement increased with

cell spread area for a thin glycocalyx by atleast an order O(1). There was a difference of up to

an order O(3) between the peak ECM displacement for a thin versus a thick glycocalyx for the

same spread area. However, such a large difference was not observed between a thin and a thick

glycocalyx for more rounded cells.
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Figure 3.11: ECM axial displacement along the axis of symmetry for: (A-D) L = {1, 5} µm

and N = {100, 1000} µm−2. Various combinations of Ecell = {0.5, 2} kPa and EECM = {1, 5}

kPa were used for the simulations.

For a highly dense glycocalyx (N = 10,000 µm−2), more rounded cells were found to

impose largely localized ECM displacement (Fig. 3.12). Peak ECM displacement was also

found to increase with decrease in brush thickness. Moreover, the peak ECM displacement in

spread cells was ≈ 2 times greater than in rounded cells.
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Figure 3.12: ECM displacement due to a sandwiched cell for L = {1, 5} µm and N = 10,000

µm−2. (A) ECM displacement in +y-direction along the contact surface (longitudinal direction)

of ECM and cell for a cell spread radius of 1 µm. (B) ECM displacement in +y-direction

along the contact surface (longitudinal direction) of ECM and cell for a cell spread radius of 10

µm. Various combinations of Ecell = {0.5, 2} kPa and EECM = {1, 5} kPa were used for the

simulations. Solid curves indicate L = 1 µm and dashed curves indicate L = 5 µm.

3.3.5 Mechanical implications of glycocalyx as a double brush

Dokukin et al. (2016) suggest that the cellular glycocalyx is made up of at least two different

lengths and densities of polymer brushes and the force due to this double brush polymer can

be predicted by Eq. 3.9. Thus, using Eq. 3.4 and Eq. 3.9 we calculated the corresponding

glycocalyx stiffness. We used the values L1 = 1 µm, L2 = 5 µm and N1 = 10,000 µm−2,

N2 = 1000 µm−2 thus assuming that short brushes are densely attached to the cell membrane,

whereas, long brushes are sparsely distributed.

Our results show that the contact force between the cellular glycocalyx and the ECM

depends only on cell spreading as evidenced by the fact that all dotted curves and all solid

curves overlap (Fig. 3.13A). Moreover, similar to Fig. 3.12, ECM displacement varies only

with EECM and cell spreading (Figs. 3.13B, C).
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Figure 3.13: Mechanical implications of glycocalyx as a double brush. (A) Contact force

between the glycocalyx and ECM, and (B) ECM vertical displacement uy along its entire length,

for {L1,L2} = {1, 5} µm and {N1,N2} = {10,000, 1000} µm−2. Dotted curves represent a

cell spread radius of 10 µm and solid curves represent a cell spread radius of 1 µm. Various

combinations of Ecell = {0.5, 2} kPa and EECM = {1, 5} kPa were used for the simulations.

3.4 Discussion

The numerical model presented in this study considers the glycocalyx to be a continuum where

its mechanical properties can be defined by the aggregated brush stiffness and resistance to

indentation or compression provided by steric hindrance. Here it must be noted that we con-

sider that the individual glycopolymer strands along with their sidechains are close enough and

the polymer brush is dense enough to be considered as a continuum. Moreover, we choose to

simplify the mechanical behaviour of the glycocalyx by choosing it to be a Neo Hookean hy-

perelastic material rather than a poroelastic material with fluid flow under stress. In our model,

we do not consider flow of solvent molecules under stress due to lack of comprehensive ex-

perimental data on the stress-strain relationships of the glycocalyx brush. Also, on account of

these glycopolymers having contour lengths (0.1− 5 µm) much longer than their persistence

lengths (5− 10 nm), they frequently behave as randomly coiled flexible chains (Kuo et al.,
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2018). These chains can assume random configurations and orientations without a preferred

direction, and therefore, we consider the entire glycocalyx as isotropic and homogeneous.

To calculate the initial stiffness of glycocalyx brush, we equate the forces predicted by

the entropic brush model for single and double brush and equate these to those provided by

the Hertz contact model for an indentation depth δ /L of 0.2. Additionally, by virtue of the

glycocalyx proteins like mucins with their glycan sidechains being brush-like polymers, we

also assume the glycocalyx as a whole to be fully compressible (ν = 0). To further account for

nonlinear deformations of the glycocalyx, we consider it to be Neo-Hookean hyperelastic.

Our experimental results show that the cellular glycocalyx facilitates cell migration in

3D. Additionally, cancer cells have been shown to secrete higher levels of hyaluronic acid and

glycoproteins. This is also manifested in thicker glycocalyx coats around cancer cells. Coupled

with the fact that greater glycocalyx concentration on the cell membrane of metastatic cancer

cells also led to cell rounding (by reducing integrin-based adhesions), there is a high probability

that glycocalyx has a significant mechanical influence on cancer cell migration. However, the

significance of the mechanical aspect of the glycocalyx has not been adequately studied in

previous literature. We hypothesized that the glycocalyx acts as a polymer brush to cushion the

cell against extracellular stresses as well as help the cell squeeze through confinement.

To elucidate the mechanical implications of the cellular glycocalyx, we simulated two

cases of extracellular stresses imposed on it. Firstly, we considered a rigid indenter (an AFM

probe) indenting the glycocalyx and the cell underneath. Secondly, we considered a situation

where the cell along with its associated glycocalyx compresses itself against an ECM. Inter-

estingly, we found that a thick glycocalyx cushions the cell underneath it from extracellular

stresses, that is, maximal stresses develop in the glycocalyx rather than the cell body as the

thickness increases. Moreover, the peak stresses in the system decrease as the glycocalyx thick-

ness increases. These observations are accompanied with the finding that a dense glycocalyx

results in greater contact forces between the indenter and glycocalyx than a sparse glycoca-

lyx, irrespective of its thickness. This supports our initial hypothesis and suggests that a thick

glycocalyx, such as that around a highly metastatic cancer cell might facilitate cell migration

through mechanically hostile and confined environments. Analyzing the results of compression

of cell against the ECM matrix, we find that building up on our indentation studies, for a certain

glycocalyx thickness, increased glycopolymer density leads to greater ECM deformation (less
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glycocalyx deformation) and greater stresses in the glycocalyx. The increase in peak stresses

within a thin glycocalyx is not only a function of glycopolymer density, but also a function

of cell spreading and cell and ECM stiffness. However, surprisingly, for a thick glycocalyx

there was no variation in peak stresses with change in any of the above parameters. Moreover,

stresses were much less than in a thin glycocalyx. Similar trends were found to be true in case

of contact forces and ECM displacements as well. All of these point to the possibility that a

thick glycocalyx is mechanically beneficial for a cell migrating through confined environment

or under large external stresses imposed on it, for instance, during intravasation or extravasation

through blood vessel epithelia during metastasis. However, it must be noted that the stresses

inside the glycocalyx or the contact forces or the ECM displacement due to the glycocalyx in

this study were relatively less as compared to the cellular or nuclear stresses that a migrating

cell without a glycocalyx as proposed in Chapter 2 has to endure. Incorporating a glycocalyx

on top of a cell therefore leads to a reduction in cellular stresses.

3.5 Conclusion

In conclusion, we developed axisymmetric models of cells with glycocalyx attached to their

plasma membrane indented by a rigid probe to simulate AFM indentation. Additionally, we

developed axisymmetric models of glycocalyx-mediated compression of cells sandwiched be-

tween ECM and a rigid plate. Approximating the glycocalyx as a continuum and defining its

material properties based on a brush model, our simulation results demonstrate the efficacy of

such a glycocalyx in acting as a buffer or shock-absorber for a cell against external stresses.

The efficacy of the glycocalyx as a buffer depends on its thickness and density. These results

are validated by experiments from the literature which indicate that the metastatic potential of

cancer cells is positively correlated to the glycocalyx thickness and density.
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Chapter 4

Detection of tumor nodule embedded

inside healthy tissue
Note: This chapter has been modified from the following manuscript: Mukherjee A, Gupta

A, Sen S, Yan W, Saigal A, Singh R K, "Palpation sensitivity of an embedded nodule using the

finite element method", Under Review

4.1 Introduction

Palpation is the method of probing and feeling an object to gain more insight into its mechan-

ical properties. A physician or surgeon palpates a tissue to detect an embedded nodule and to

estimate its mechanical properties relative to the surrounding tissue based on the judgment of

contact forces and apparent tissue stiffness (Howe et al., 1995). With the emergence of ad-

vanced imaging methods like magnetic resonance imaging (MRI), computed tomography (CT)

and ultrasound a few decades ago, it has become much easier to detect stiff and dense nodules

embedded in tissues. Once the tumor is located and images generated, surgeons proceed with

tumor removal using 2D scan images. This is a major clinical challenge as the surgeons do not

usually have the luxury of a simultaneous MRI or CT procedure being done to locate the tumor

in real-time. Therefore, in such cases the surgeon must feel the tumor embedded in the tissue

either with their fingers or with a surgical tool.

Palpation is done to sense stiff nodules in the breast, liver, pancreas, stomach and other

tissues. Palpation for tumors in laparoscopic or minimally invasive surgeries require the surgeon

to feel the nodule using a surgical tool, a process which isolates the sense of touch that surgeons

rely on. It is therefore desired that the detection and localization of a tumor through palpation
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be as accurate as possible. With the advent of robotic surgery, these laparoscopic procedures are

executed by robotic instruments that are controlled remotely by a surgeon. A major limitation to

the currently available robotic surgery instruments is that they are unable to transmit the forces

that their end-effectors experience during a surgical procedure. As a result, the surgeon is unable

to perceive the encountered forces. The problem of efficient nodule detection is important from

a robotics and healthcare point of view.

Contact models have traditionally been used to quantify the mechanical characteristics of

various materials. Sneddon (1965) developed an analytical expression for the force applied on

an indenter of general shape to indent a substrate by a desired amount. Hayes et al. (1972) found

that a non-linear relationship exists between indentation depth and load applied when indenting

a cartilage tissue using a spherical indenter. Their results indicate that the indentation depth

for any given load is less when applied with a large radius indenter than when applied with a

small radius indenter. Conversely, it implies that for a given indentation depth, the applied load

would be higher for an indenter with a large radius. A study by Konstantinova et al. (2017)

has suggested that a minimal contact area for measurement is desirable for achieving accurate

measurements from an inhomogeneous material during palpation. Spherical indentations were

investigated using four of the most commonly used hyperelastic models (Fung, Mooney-Rivlin,

Neo-Hookean and Arruda-Boyce models) by Zhang et al. (2014). They proposed a method

based on dimensional analysis, Hertz formulation and finite element simulations to establish

a relationship between material properties of biological tissues and indentation responses. Al-

though the Hertz contact model is arguably the most popular method to quantify material prop-

erties and is applicable for hard materials, its applicability to soft materials that deform easily

is debatable.

Previous palpation or indentation studies on soft materials/ tissues have typically utilized

the Hertz contact formulation and based their predictions of tissue material properties on this

formulation (Konstantinova et al., 2013, 2017). However, this formulation is applicable only

in homogeneous elastic materials for very small deformations, which cannot be assumed in

soft tissues with embedded cancerous nodules. Moreover, most tissues are anisotropic, with

orientation-dependent mechanical properties that make the application of the Hertz contact for-

mulation erroneous. Therefore, there is a need to comprehensively study indentation/ palpation

mechanics in heterogeneous soft tissues with embedded nodules with and without anisotropic
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material characteristics.

Indentation has been widely studied in literature to gain insight into the correlation of

indentation depth, applied load, material hardness and contact area of indenter. However,

such correlations have not been studied extensively in cases where a relatively stiff nodule

(5 ≤ Gn/G0 ≤ 15) is embedded inside a tissue of finite thickness thus rendering the system

inhomogeneous. Here, Gn and G0 are the shear stiffnesses of nodule and tissue respectively.

In addition, most of the studies reported in the literature are specific to the tissue and nodule

properties used in the simulation. Hence, a non-dimensional study which is valid for a wide of

range of tissues and nodule properties is imperative.

This study develops a computational model of indentation with a hemispherical indenter

to relate the physical and material properties of an embedded nodule to the indentation load.

Such relations would be beneficial to predict the location and properties of embedded nodules

with unknown properties. The developed model has been compared with the Hertzian contact

model and also benchmarked against the experimental results reported in the literature (Zhang

et al., 2014). Based on the validated finite element model, correlations have been developed

between non-dimensional force and ability of a robotic probe to detect an embedded nodule in

a soft tissue and identify regimes of possible nodule detection. Palpation sensitivity, defined as

the difference between indentation load in presence and that in absence of an embedded nodule

is determined based on which nodule detection regimes are plotted. Additionally, the effect of

anisotropic material properties on embedded nodule detection has been assessed by analyzing

the effect of fiber dispersion on indentation loads and consequent stress evolution in tissue and

nodule.

4.2 Materials and Methods

An axisymmetric model of indentation was developed to simulate a condition where a tumor

nodule is embedded inside an otherwise healthy tissue (Fig. 4.1). The motivation for developing

this model was to analyze the detectability (palpation sensitivity) of such an embedded nodule

using laparoscopic instrumented probes. The developed model (homogeneous tissue) was val-

idated with experimental results from Zhang et al. (2014) and also compared with Hertzian
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contact model predictions.

An embedded tumor was then incorporated in our simulations and indentation loads were

computed for two cases, namely, Case I: without the embedded nodule, and Case II: with the

embedded nodule. Loads on the indenter were then compared for these two cases and the

effects of the contrast of shear moduli of nodule versus tissue, nodule size and position and

indentation depth were determined. Fig. 4.1 demonstrates the modelling process flow in this

work. Dimensional analysis was used to generate predictive relationships between indentation

load and physical characteristics of the embedded nodule and palpations sensitivity maps were

constructed to determine regimes of nodule detectability. This model might be helpful in pre-

dicting location of an embedded cancer nodule in any organ provided the material parameters

of the healthy tissue are known.

Figure 4.1: Flowchart of the modelling process.
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4.2.1 Physical description of the modelling problem

Laparoscopic surgical procedures are performed on organs that remain constrained in their orig-

inal environment, for instance, the liver sits on top of the rib-cage and spine. Therefore, we

created our model such that it simulates indentation of such organs under boundary conditions

that mimic their native environment. In our simulations, a spherical indentation probe of radius

R was displaced downwards by a predefined amount (δ ) along the axis of symmetry and the

resultant contact forces (F), which were a function of nodule stiffness (Gn) along with its di-

ameter (D) and depth (d), were quantified (Fig. 4.2). The tissue was assumed to be of a finite

thickness (h) with a rigid underlying substrate that was used to simulate hard bone underneath

soft tissues (Fig. 4.3). The indentation depth was defined to be 0.5, 1 and 2 mm for tissue

thickness of h = 10, 20 and 50 mm. The indenter was chosen to have a spherical tip (Figs. 4.2

and 4.3) as it is unaffected by edge effects that occur in flat cylindrical indenters and to better

resemble a human finger during palpation exercises. Furthermore, a curved surface conforms

to the indented tissue surface more than a flat cylindrical surface. Moreover, the nonlinearity of

responses due to this profile are lesser than conical or pyramidal indenters (Valero et al., 2016).

Two types of indenters were used in simulations (thin and thick) corresponding to radii of 3 and

5 mm respectively. Laparoscopic instruments used in minimally-invasive surgical procedures

generally have diameters ranging from 3 mm to 30 mm so that they fit inside the trocars. Among

these, instruments with diameters of 5 mm, 6 mm and 10 mm are the most common. The tissue

width was determined such that it was > 5 times the indenter radius to minimize edge effects.

Nodules of diameters in the range 0.5 to 6 mm were simulated (1 nodule per condition) to lie

along the axis of symmetry at a depth that was in the range 0.1 to 3.5 mm.

4.2.2 Numerical formulation

The finite element model used in this study was implemented using the commercial software

ABAQUS. Hybrid or mixed-formulation elements were employed to mesh the incompressible

soft tissues. Two-dimensional hybrid 4-node bilinear axisymmetric quadrilateral (CAX4H)

stress elements were used in this study as opposed to two-dimensional plane stress elements
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Figure 4.2: A cross-sectional schematic of indentation of a soft tissue with an embedded

nodule. The indenter of radius R is hemispherical and nodule of diameter D and depth d is

spherical. The nodule is embedded in a tissue of finite thickness h. A prescribed indentation

depth δ leads to the generation of an indentation load F .

used by Sangpradit et al. (2009) and Konstantinova et al. (2017). Plane stress formulation

neglects the out-of-plane stresses and are thus incapable of mimicking the physics of the inden-

tation process. Axisymmetric models therefore are more capable of closely mimicking inden-

tation physics. Nodules of various sizes (diameter D ranging from 0.5 to 6 mm) were assumed

to be embedded at various depths (d) along the axis of symmetry. A mesh convergence analysis

based on von Mises stress under the indenter was done, and it was determined that a minimum

element dimension of 0.1 mm was sufficient to model the system. The total number of elements

in the model were around 4750.

4.2.3 Loading and boundary conditions

Indentation generally assumes that the diameter of the indenter tip is very small relative to the

width of the substrate and that the indentation depth to substrate thickness δ/h << 1. In the

axisymmetric model used in our simulations, the axis of the indenter is perpendicular to the

tissue surface and coaxial with the diameter of the nodule (Fig. 4.3). The boundary conditions

of the model in the Cartesian coordinate system are as follows: ux = 0 at x= 0, uy = 0 at y= 0 for

the tissue, and uy = 0 at t = 0, and uy =−δ at t = T for the indenter. The cylindrical coordinate

system (r,Z,θ ) is equivalent to the Cartesian coordinate system (x,y,z) at θ = 0. Therefore, x

88



Figure 4.3: A representative finite element model depicting the axisymmetric setup where

the indenter is displaced downwards (-y direction) along the axis of symmetry. Bound-

ary conditions are also marked. Radial and axial directions are denoted by x-axis and y-axis

respectively.

and y correspond to r and Z in the cylindrical coordinate system. This mimics tissues such

as muscles resting on hard bones or visceral organs like liver and pancreas resting on the ribs.

Indentation depths of 0.5, 1.0 and 2.0 mm corresponding to δ/h= 0.05, 0.1 and 0.2 respectively

for a tissue thickness of 10 mm, are applied. The model is based upon contact and indentation

studies done by Lebedev and Ufliand (1958), Hayes et al. (1972) and Costa and Yin (1999).

The studies by Hayes et al. (1972) and Costa and Yin (1999) considered the tissue to be a finite

elastic space instead of considering the tissue to be semi-infinite. The contact between indenter

and tissue is considered to be frictionless and hard contact as we do not consider adhesion of

tissue and indenter surfaces.

4.2.4 Material model

The properties of a material are ultimately a function of its microstructure and rheology and

therefore, should be modeled to include such effects. However, a coarse-grained approximation

of the microstructural properties can be found to suffice while describing tissue-level material

properties if the chosen material model sufficiently accounts for the macroscopic manifestation
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of the microstructural properties.

Arruda-Boyce hyperelastic model

In this study, we use an Arruda-Boyce hyperelastic model to describe tissue deformation be-

havior due to its physical macromolecular basis as it incorporates the mechanics of polymer

chains (Arruda and Boyce, 1993). It has been previously validated and implemented by several

indentation studies on soft tissues (Liu et al., 2004; Sangpradit et al., 2009; Zhang et al., 2014;

Pan et al., 2016). Moreover, although there are several other hyperelastic models available, such

as: Neo-Hookean, Mooney-Rivlin, Ogden and Fung, there is no clear consensus in the literature

regarding the suitability of a particular hyperelastic model for soft tissue simulations. We do

not account for viscous effects in our model as the indentation process we consider in our study

lasts for timescales (≈ 1 - 2 seconds) less than viscoelastic timescales (> 10 seconds). Thus, we

consider the materials used in this study to be strain-rate independent for short timescales.

Tissue material properties have been found to have a large variation which might be due

to the variation in conditions they were tested in, the mammal the tissue belonged to, the testing

instrument used or due to intrinsic tissue inhomogeneities. The Young’s modulus of healthy

breast and brain tissues is found to lie within the range of 3 to 3.5 kPa and that of tumors

may range between 5 to 15 times that of the healthy tissue depending on their type (Samani

et al., 2007; Murphy et al., 2016). Thus, we selected an initial shear modulus (G0) value of

1 kPa to model healthy tissue and 5, 10 and 15 kPa values to model cancerous tissue (G =

E/(2(1+ν))). A hyperelastic Arruda-Boyce model (Arruda and Boyce, 1993) was used with

maximum limiting stretch (λm) as 1.05 and the tissue was assumed to be nearly incompressible

(ν = 0.4999). These are generalized values for the sake of simplicity and they have been non-

dimensionalized in our further analysis. The Arruda-Boyce model is specified as follows:

Ψ = G
{1

2
(Ī1−3)+

1
20λ 2

m
(Ī1

2−9)+
11

1050λ 4
m
(Ī1

3−27)

+
19

7000λ 6
m
(Ī1

4−81)+
519

673750λ 8
m
(Ī1

5−243)
}
+

1
M

(J2
el−1

2
− ln(Jel)

)
(4.1)

where Ψ = strain energy per unit reference volume, G, λm and M are temperature-dependent

material parameters, Ī1 = λ̄ 2
1 + λ̄ 2

2 + λ̄ 2
3 is the 1st deviatoric stretch invariant, Jel is elastic volume
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ratio between deformed and undeformed volumes of a differential volume element. Deviatoric

stretches are defined as λ̄i = J1/3
el λi where λi denote principal stretches. The Arruda-Boyce

model can also be expressed as:

Ψ = G
5

∑
i=1

αiβ
i−1(Ī1

i−3i)+
1
D

(J2
el−1

2
− ln(Jel)

)
(4.2)

where, α1 =
1
2 , α2 =

1
20 , α3 =

11
1050 , α4 =

19
7000 , α5 =

519
673750 , and β = 1

λ 2
m

. For the incompressible

Arruda–Boyce model to be consistent with linear elasticity, with G0 as the initial shear modulus

of the material, the following condition has to be satisfied:

∂Ψ

∂ I1

∣∣∣
I1=3

=
G0

2
(4.3)

Substituting Eq. 4.2 in Eq. 4.3, we get:

∂Ψ

∂ I1

∣∣∣
I1=3

= G
5

∑
i=1

iαiβ
i−1Ī1

i−1
=

G0

2
(4.4)

Now, inserting the values of αi and β in Eq. 4.4, we get the initial shear modulus as:

G0 = G
(

1+
3

5λ 2
m
+

99
175λ 4

m
+

513
875λ 6

m
+

42039
67375λ 8

m

)
(4.5)

D ≈ 0 refers to the condition of near incompressibility (ν ≈ 0.5). A summary of the

material parameters employed in the model are specified in Table 4.1.

91



Table 4.1: Material parameters used in the model

Material

Shear

Modulus

G(kPa)

Young’s

Modulus

E(kPa)

Maximum

limiting

stretch (λm)

Poisson’s

Ratio (ν)
References

Tissue 1 3 1.05 0.4999

(Samani et al.,

2007; Murphy

et al., 2016)

Nodule 5, 10, 15 15, 30, 45 1.05 0.4999

(Skovoroda et al.,

1995; Samani

et al., 2007)

Gasser Ogden Holzapfel (GOH) anisotropic hyperelastic model

To analyze the effect of anisotropy on nodule detection, the Gasser Ogden Holzapfel (GOH)

anisotropic hyperelastic material model (Holzapfel et al., 2000; Gasser et al., 2006) was used to

model anisotropic tissue or cellular properties. This model assumes that a material is composed

of two families of fibers whose mean directions are separated by an angle 2γ . While the two

fiber families have the same mechanical properties, the macroscopic material properties of the

substance vary with γ . This has been shown to be the case in arterial walls and cardiac mus-

cles (Gasser et al., 2006). In this model, the strain energy for an incompressible material can be

defined as:

Ψ =
C
2

(
Î1−3

)
+

k1

k2

[
exp
{

k2

(
κ Î1 +(1−3κ)Î4−1

)2}
−1
]

(4.6)

where, λ is the stretch and C, k1 and k2 are material parameters. The 1st part of the equation

corresponds to a Neo-Hookean ground matrix or base material and the 2nd part corresponds

to the anisotropic fibres. Î1 is the 1st invariant and Î4 is a pseudo invariant to describe the

anisotropic nature of fibres. The uniaxial stress σ11 (normal stress in the loading direction) can
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then be defined as:

σ11 = λ .
dΨ

dλ
(4.7)

4.2.5 Model validation

We validated our model with experimental observations from the study by Zhang et al. (2014).

To replicate their study, we used an axisymmetric model of spherical indentation on a homoge-

neous substrate of shear modulus G0 = 0.246 MPa and maximum locking stretch λm = 2.1. The

substrate material was assumed to be Arruda-Boyce hyperelastic and the indenter was assumed

to be rigid. The spherical indenter had a radius of 3 mm and the homogeneous tissue was 51

mm in radius and 31 mm thick. As shown in Fig. 4.4, the error between our simulations and

the experimental data was within 6% for δ/R≤ 0.5.

Figure 4.4: Model validation with experimental data of spherical indentation. The depen-

dence of indentation load (F) on the ratio of indentation depth (δ ) to indenter radius ratio (R)

is shown. Data from our simulations are compared with experimental data from Zhang et al.

(2014).
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4.2.6 Dimensional analysis

Dimensional analysis techniques have been used in several studies on indentation to identify

various physical dependencies of the indentation load and hardness of the material (Liu et al.,

2010; Low et al., 2015; Yan et al., 2006; Zhang et al., 2014). This technique allows one to

develop general relations between physical quantities without the necessity of specifying units

of measurement.

The indentation load has been assumed to be the output response in this study. We assume

that G0 represents the apparent stiffness observed by the indenter for the case when nodule is

absent (reference case) and Gn represents the stiffness of embedded nodule. We also assume

that the indentation load would depend on the material parameters of the hyperelastic model

such as the Poisson’s ratio ν , stretch ratio λ and model parameters namely, nodule diameter

D, nodule depth d, indenter radius R and indentation depth δ/h. The ratio δ/h helps mitigate

the effect of finite tissue thickness. The indentation load depends on the independent variables

λn,λ0,νn,ν0,Gn,G0,D,d,R and δ/h where the subscripts “n" and “0" refers to the nodule and

tissue (without nodule) parameter, respectively. Therefore, indentation load F can be expressed

as:

F = f (λn,λ0,νn,ν0,Gn,G0,D,d,R,δ/h) (4.8)

Since our model considers the tissue and nodule to be incompressible, νn and ν0 can be

neglected from further analysis. Moreover, it was demonstrated by Zhang et. al. (Zhang et al.,

2014) that indentation load varies with the stretch ratio λm of the tissue, but we do not consider

variations in λn and λ0 in our study. This reduces the number of variables on which indentation

load depends:

F = f (Gn,G0,D,d,R,δ/h) (4.9)

Thus, using the Buckingham Pi theory of dimensional analysis, we consider indenter ra-

dius R and shear modulus of tissue without nodule G0 to be independent parameters. The
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indentation load (F) can then be simply written as:

∏
1

=
F

R2G0
(4.10)

where, ∏1 is a non-dimensional parameter describing the indentation load. This non-

dimensional parameter can be considered physically similar to the strain imposed by an indenter

of radius R on a healthy tissue of shear modulus G0. Further relating this imposed strain to the

dimensionless parameters nodule diameter and depth, shear modulus of nodule and indentation

depth, we get:

F
R2G0

= ∏
2

(Gn

G0
,
D
R
,

d
R
,
δ

h

)
(4.11)

Simulations relating both sides of Eq. 4.11 have been carried out in the subsequent sections

to explore the predictability of the presence of an embedded cancer nodule in a healthy tissue.

4.3 Results and discussion

The results in this section allow us to derive relations between the indentation load and the

factors affecting it in an attempt to increase the efficiency and predictivity of nodule detection

and localization. The substrate tissue stiffness assumed in our model is similar to soft human

tissues like the brain (Murphy et al., 2016), liver, breast, tongue, tonsils and spleen. Cancerous

nodules have been shown to have an increased stiffness of nearly 5 to 15 times that of the cor-

responding healthy tissue (Skovoroda et al., 1995; Samani et al., 2007). Using simulations, we

analyze the limitations of the Hertz contact theory predictions and its efficacy in determination

of composite tissue stiffness (tissue with an embedded nodule). Although some earlier stud-

ies (Konstantinova et al., 2013, 2017) have analyzed the effect of embedded nodule diameter

and depth on indentation load, they have used Hertz contact model to relate the load to nodule

physical properties. We also analyze the effect of nodule parameters such as stiffness, diameter

and depth on indentation loads and this allows us to create a palpation sensitivity chart to define

regions of nodule detectability. Additionally, we study how indentation or palpation loads are
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affected if an anisotropic nodule is embedded in an isotropic tissue and vice-versa.

4.3.1 Detection of composite stiffness of tissue and nodule using Hertzian

and finite element approach

Detection of composite tissue (tumor nodule embedded inside healthy tissue) stiffness is the

first essential step to detect a nodule and determination of its characteristics. Composite tissue

relatively stiffer than its local environment might indicate presence of embedded nodule and it

can then be further probed locally to detect properties of the nodule. The classical Hertz for-

mulation can be used to determine force (FHertz) and deformation relationship in elastic contact

between two bodies. One of which has very high stiffness and, hence, can be assumed to be

rigid. The other body which is deformable, is generally described as:

FHertz =
4G0R1/2δ 3/2

1−ν2 =
16G0δ

√
Rδ

3
(4.12)

where G0 is the shear modulus of deformable body, R and δ are the indenter radius and

indentation depth respectively and ν ≈ 0.5, assuming incompressibility. Tissues are generally

heterogeneous and have a finite thickness. Hayes et al. (1972) suggested a mathematical for-

mulation that takes into account the effect of tissue thickness in linear elastic materials:

FHayes =
4aG0δ

1−ν
×ω

(R
h
,
δ

h

)
(4.13)

where a = radius of contact circle, G0 = shear modulus of substrate, δ = indentation depth, R =

indenter radius, h = tissue thickness, ω = factor used to introduce the effect of substrate thick-

ness. On comparing the FE solution with the analytical solution for indentation on a substrate

of finite thickness by (Hayes et al., 1972) we found that for δ/h < 5%, the FE solution matches

the Hertz solution more closely (≤ 1.55% difference) rather than Hayes’ solution (≤ 4.64%

difference) (Tables 4.2, 4.3).

A linear elastic model of contact between a hemispherical indenter and a tissue was there-

fore first validated by comparing it to the Hertzian model of contact for small strains. Fig. 4.5
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Table 4.2: Difference between FE solution and Hertz solution for homogeneous tissue of

G0 = 1 kPa for varied tissue thickness

Tissue thickness, h

(mm)

Maximum difference

(FFE −FHertz) (×10−4) (N)

(
FFE−FHertz

FHertz

)
×100%

10 4.054 1.55%

20 1.337 0.51%

30 0.496 0.19%

40 0.005 0.0019%

50 -0.025 -0.0096%

Table 4.3: Difference between FE solution and Hayes’ solution for homogeneous tissue of

G0 = 1 kPa for varied tissue thickness

Tissue thickness, h

(mm)

Maximum difference

(FFE −FHayes) (×10−4) (N)

(
FFE−FHayes

FHayes

)
×100%

10 -1.20 -3.27%

20 0.74 2.18%

30 1.22 3.69%

40 1.45 4.44%

50 1.50 4.64%

suggests that the Hertz solution is sufficiently accurate to quantify the stiffness of homogeneous

tissue of finite thickness when δ/h≤ 5%. It was also found that in case of finitely thick tissues,
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the Hertz solution is not suitable for large indentation depths (δ/h≥ 10%). The Hertz solution

underestimates the tissue stiffness at large indentation depths as seen in Fig. 4.5 where greater

force amplitude of the solid curve (red) implies higher effective tissue stiffness. Even the dashed

(black) and dotted (magenta) curves diverge slightly from the predicted Hertz solution at a δ/h

ratio of 10% and 4% respectively. Using the Hertz formulation in Eq. 4.12, one cannot detect

heterogeneities in the substrate except by comparing the coupled material properties of the sub-

strate with a reference. A spherical indenter can be employed to determine the coupled stiffness

in the presence of an embedded nodule using the Hertz contact solution. This equation can be

modified to attain the form:

dF
dδ

= 8G
√

Rδ (4.14)

where dF/dδ represents instantaneous stiffness evolving with the indentation depth as the

load is increased on the indenter tip. An instantaneous stiffness as a function of non-dimensional

deformation for nodules located at different depths (embedded near the tissue surface (i.e. d =

0.5 mm and d = 3.5 mm) relative to a homogeneous tissue (without nodule) (Fig. 4.6a). Initially,

the instantaneous stiffness increases with indentation depth before saturating at greater inden-

tation depths. However, a near-linear relationship is found to exist between dF/dδ and
√

Rδ

whose slopes (= 8G) determine the shear moduli G of the composite incompressible tissues (Fig.

4.6b). This indicates that the Hertz formulation can be employed to detect the coupled stiffness

of substrates but it cannot differentiate between presence and absence of a nodule, especially if

the nodule is located deep inside the tissue (d = 3.5 mm). The effect of tissue thickness on our

results was mitigated by using the non-dimensional indentation depth δ/h relative to the tissue

thickness.

4.3.2 Effect of non-dimensional parameters on indentation load

The radius of the indenter (R) is expected to be an important factor in nodule detection as this

radius along with the indentation depth determines the contact surface area between the in-

denter and tissue surface. Contact force should vary with a variation in the contact area for a

constant indentation depth. The optimal design and size of the indenter can allow a robotic in-
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Figure 4.5: Comparison of the computationally generated indentation load F0 with analyt-

ical Hertzian solution FH up to a maximum indentation depth δ = 2 mm. Homogeneous

tissues (without nodule) of various thicknesses (h) are considered.

strumented probe to be much more sensitive towards sensing embedded nodules in tissues. This

can make the robotic palpation process more efficient. Therefore, using dimensional analysis,

we investigated its influence on peak indentation load for indenters of two radii: 3 mm and 5

mm. Dimensional analysis techniques allow us to develop general physical relations between

quantities of interest in a system.

Effect of nodule depth, d on indentation load

The effect of nodule depth (d) on dimensionless indentation load was investigated for an inden-

tation depth (δ ) of 0.5 mm that corresponds to a normalized depth (δ/h) of 0.05. Our results

show that for a representative nodule of diameter D = 5 mm and Gn/G0 = 15, a thin inden-

tation/palpation probe (R = 3 mm) is more sensitive to variation in nodule depth relative to

indenter radius (d/R) (Fig. 4.7a). That is, the detection resolution of a thin indenter is higher

than a thick one for a constant nodule diameter (D/R). Even for a relatively deeply embed-

ded nodule, that is, as d/R increases, a thick probe is less likely to detect it based on relative
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Figure 4.6: Instantaneous tissue stiffness measured as a function of indentation load and

depth. (A) Relation of instantaneous tissue stiffness (dF/dδ ) with the indentation depth nor-

malized by tissue thickness (δ/h). (B) Relation between dF/dδ and
√

Rδ , parameters of the

Hertz model to determine composite tissue stiffness. Both plots are for h = 10 mm, R = 3 mm

and D = 5 mm.

comparison with the surrounding areas. Therefore, palpation probes with small radii are better

suited to detection of an embedded nodule. Curve-fitting of the data as in Fig. 4.7a reveals pre-

dictive relationships between dimensionless indentation load and the nodule depth normalized

by indenter radius. As shown in Fig. 4.7A, for R = 3 mm, the dimensionless force varies as:

F/(R2G0) =−7.14(d/R)0.23 +7.96 (4.15)

and for R = 5 mm, it varies as:

F/(R2G0) =−2.26(d/R)0.36 +2.40 (4.16)

These relations show that although a larger probe is capable of sensing greater indentation loads

as evidenced by the power of d/R, the curvature resulting from a smaller probe leads to greater

sensing resolution, as given by the coefficient of d/R.

Fig. 4.7b shows the influence of indentation depth on load for an embedded nodule. It was
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Figure 4.7: Dependence of nodule detectability on nodule depth. (a) Variation of F/R2G0

with d/R for R = 3 mm (dashed line) and 5 mm (dotted line). (b) Variation of F/R2G0 with

d/R for δ/h = 0.05 (dotted line) and 0.1 (dashed line). Both (a) and (b) refer to cases where

Gn/G0 = 15 and D = 5 mm. The power-law dependence is denoted beside the fitted curve.

found that loads decrease more rapidly (greater initial slope) in case of δ/h = 0.1 for a range of

nodule depths. There ceases to be an appreciable difference in indentation loads with increase

in d/R beyond a certain value which increases with δ/h. For δ/h = 0.05, the dimensionless

force varies as:

F/(R2G0) =−7.09(d/R)0.23 +7.90 (4.17)

and for larger indentation depth δ/h = 0.1, it varies as:

F/(R2G0) =−9.21(d/R)0.61 +12.10 (4.18)

These results show that as indentation depth increases, the effect of nodule depth on indentation

load increases. Therefore, the deeper a probe palpates, the greater the chance is of detecting an

embedded nodule, a prediction that is physically reasonable.
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Effect of nodule diameter, D on indentation load

Cancer nodules have been found to have a positive correlation between diameter and malig-

nancy over time. Small early-stage cancerous nodules if detected, can be removed to avoid later

complications. Although nodule size, malignancy and stiffness are independent quantities in

cancer, they are usually correlated, i.e. a large nodule is more likely to be stiffer and malignant

than a small one as tumor sizes increase with maturity (Evans et al., 2012).

Dimensionless indentation load increases nonlinearly with nodule diameter as shown in

Fig. 4.8a. For R = 3 mm, dimensionless load can be curve-fit as:

F/(R2G0) = 0.87(D/R)1.5 +1 (4.19)

and for R = 5 mm as:

F/(R2G0) = 0.73(D/R)1.8 +0.51 (4.20)

Both curves fit the simulated data very well with R2 > 0.99. Unlike the case of load dependence

on nodule depth d/R in Fig. 4.7a, the coefficients of D/R for δ/h = 0.05 and 0.1 are not too far

apart. Therefore, the sensing resolution of nodule diameter change is relatively similar in both

cases.

Increasing indentation depth relative to the tissue thickness increases the detectability of

larger nodules as shown in Fig. 4.8b. The dimensionless force is found to vary with D/R for

δ/h = 0.05 as:

F/(R2G0) = 0.87(D/R)1.53 +1.07 (4.21)

and for δ/h = 0.1 as:

F/(R2G0) = 2.05(D/R)2.05 +3.32 (4.22)

For large indentation depths (δ/h≥ 0.1), a steep increase in indentation load beyond a threshold
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nodule diameter (D/R > 1) is found to occur. This is reflected in the greater power of D/R for

δ/h = 0.1. Greater indentation depth can predict the diameter of a nodule with higher sensitivity

based on higher indentation load.

Figure 4.8: Dependence of nodule detectability on nodule diameter. (a) Variation of F/R2G0

with D/R for R = 3 mm (dashed line) and 5 mm (dotted line), and (b) Variation of F/R2G0 with

D/R for δ/h = 0.05 (dotted line) and 0.1 (dashed line). Gn/G0 and d in all cases were fixed at

15 and 0.5 mm respectively. The power-law dependence is denoted beside the fitted curve.

4.3.3 Effect of anisotropy on nodule detection

Many tissues are most accurately described as anisotropic with material properties differing

with fiber orientation, for instance, arteries, cardiac tissue and muscular tissues (Holzapfel et al.,

2000; Gasser et al., 2006). Directional distribution of internal fibers in a tissue alters its me-

chanical properties. A fibrous material has greater mechanical strength in the direction of fiber

orientation than transverse to it. To investigate the effect of anisotropic material properties on

detection of an embedded nodule, we employed the GOH material model as described above.

The strain energy of a GOH material model is as defined in Eq. 4.6 in Section 4.2.4. Here,

Î4 = λ 2
x cos2 γ +λ 2

y sin2
γ , with λx and λy being stretches in the x and y directions. For a cylin-

drical coordinate system, x and y are replaced by r and z respectively. Two fibre families (both
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assumed to have the same mechanical properties) with directions a01 and a02 are separated by

an angle 2γ , as shown in Fig. 4.9a.

By fitting Eq. 4.7 to experimental data, we can identify the variables C, k1 and k2. Due to

the difficulty of acquiring relevant data to quantify the anisotropy in tissues, for our study we

use the pig aorta experimental data provided by Peña et al. (2010). They found C, k1 and k2 to

be 24.6 kPa, 4.9 kPa and 2.93, respectively. They also found the inter-fiber angle to be nearly

46◦. Using these material parameters interchangeably to define the tissue and the nodule, we

assessed the influence of fiber dispersion index (κ) on nodule detection. κ varies from 0 to 1/3,

where κ = 0 when fibers are highly directional parallel to the indentation axis and κ = 1/3 when

all fibers are dispersed homogeneously and its effect on strain energy can be quantified from

Eq. 4.6.

Our results show that although an anisotropic nodule embedded in an isotropic tissue ver-

sus an isotropic nodule embedded in an anisotropic tissue can be differentiated between using

indentation, fiber orientation itself had no significant influence on nodule detection (Fig. 4.9A).

In fact, fibrous tissue occluded an embedded nodule from getting detected by a palpation probe

leading to non-significant changes in indentation load.
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Figure 4.9: Effect of anisotropy on nodule detection. (A) A schematic of GOH material

model. a01 and a02 denote two fiber families of same mechanical properties but separated by

an angle 2γ embedded in a fibrous tissue. (B) Dependence of indentation load F on fiber ori-

entation κ for isotropic nodule embedded in anisotropic tissue (blue circles) and for anisotropic

nodule embedded in isotropic tissue (red squares). Both curves correspond to d/R = 0.17, D/R

= 1.67 and δ/h = 0.1. (C) Stress profiles in anisotropic tissue embedded with isotropic nodule

under indenter from tissue surface to end of nodule. The change in von Mises stress profiles

is shown for various degrees of fiber dispersion. (Inset) Stress profiles just under the indenter

are magnified for clarity. All curves correspond to d/R = 0.17, D/R = 1.67 and δ/h = 0.1. (D)

Stress profiles in isotropic tissue embedded with anisotropic nodule under indenter from tissue

surface to end of nodule. All curves correspond to d/R = 0.17, D/R = 1.67 and δ/h = 0.1.

(C, D) The change in von Mises stress profiles is shown for various degrees of fiber dispersion.

(B-D) For anisotropic nodule embedded in isotropic tissue, initial Gn = 24.6 kPa, initial G0 =

10 kPa, while for isotropic nodule in anisotropic tissue, initial Gn = 250 kPa, initial G0 = 24.6

kPa.
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Interestingly, stresses in the composite tissue under the indenter increased by an order O(2)

in case of anisotropic tissues with isotropic embedded nodule (Fig. 4.9C) over isotropic tissues

with anisotropic embedded nodule (Fig. 4.9D). The largest peak stress was found when the

fibers in the tissue were highly directional parallel to the indentation axis (κ = 0). A significant

difference of ≈ 1300% between the peak stresses in κ = 0 and κ = 0.3 was observed in Fig.

4.9B while there was a difference of only 18.75% between the same conditions in Fig. 4.9D with

change in fiber dispersion index. It is also interesting to note that the stresses at the tissue-nodule

interface in Figs. 4.9C and 4.9D do not show appreciable change but the stresses drastically

decrease in the tissue under the indenter above the tissue-nodule interface in Fig. 4.9C. We find

these trends to be similar even if we increase the indentation depth δ/h to 20%. Therefore, our

results suggest that embedded isotropic nodules in fibrous tissue or fibrous nodules in smooth

tissue cannot be detected simply by palpating the tissue and measuring the indentation load,

but would additionally require an estimation of internal stress field generated in the system.

Tumors have been shown to generally lack a definite fiber direction and thus can be considered

isotropic. Tissues that are usually palpated to detect nodules are breast (non-invasive palpation),

liver, pancreas, intestine and other abdominal organs (invasive/laparoscopic palpation). Many

of these tissues including breast, liver, pancreas and intestine are either glandular or made of

smooth muscles, the quantitative palpation technique described in our study can be readily

applied to detect embedded isotropic tumors. However, for fibrous tissues such as heart, arteries

and muscles, additional techniques are required to predict presence and properties of isotropic

tumor nodules. Therefore, instrumented indentation to detect cancer/tumor nodules embedded

in fibrous tissues might not be a favorable technique to predict the location, size and material

properties of cancer tissues.

4.4 Palpation sensitivity chart

Based on our aforementioned non-dimensional analyses, we determine regimes where an isotropic

nodule embedded in an isotropic tissue can be detected by a palpation probe with reasonable

accuracy. Studies suggest that a change of at least 7% in loads felt by a human finger is required

to discriminate a hard surface from a soft one (Pang et al., 1991). To allow for instrument and

sensor errors, in our study, we use a very conservative threshold of 20% between indentation
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loads with and without a nodule to determine the presence of an embedded nodule. This quan-

tity is defined as ∆F/F0 = (F−F0)/F0 and is termed as palpation sensitivity in this study, where

F is the indentation load in presence of nodule and F0 is the load in absence of nodule. The pal-

pation sensitivity charts in Fig. 4.10 allow us to predict regimes where an embedded nodule

would be detectable by a palpation probe of a given radius. These charts summarize and quan-

tify our predictions that the detectability of an embedded nodule parameterized by the change

in indentation load in presence and in absence of nodule increase with increasing diameter and

decreasing depth of nodule. Large nodules deeply embedded in tissues can also be detected

by this process. These charts also demonstrate that with increasing nodule stiffness, there is a

leftward shift of the threshold (20%) line indicating greater sensitivity of palpation process with

increasing stiffness. However, this process suggests that palpation would not be able to detect

stiff and very small nodules even if they are located close to the tissue surface.

It is interesting to note that the palpation sensitivity of embedded nodules decreases in case

of greater indentation depth δ/h = 0.2 than δ/h = 0.1. This might be because as indentation

depth increases in a tissue of finite thickness, the effect of the rigid underlying substrate leads

to a nonlinear increase in indentation loads both in presence and in absence of nodule. The

effect of the underlying rigid substrate in case of tissues in the abdomen such as a thin section

of liver over a hard bone must be considered during palpation. This palpation sensitivity map

might serve as a guideline for precise instrumented palpation or robotic surgery before surgical

removal of tumor from healthy tissue. Due to the generality of our model and results, various

material and physical properties of an embedded nodule relative to the surrounding healthy

tissue might be gained by analyzing the output indentation loads.
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Figure 4.10: Palpation sensitivity chart for %∆F/F0 versus nodule diameter and depth

relative to indenter radius for Gn/G0 = 5, 10 and 15 for large indentation depths δ/h = 0.1

and 0.2. Grayscale represents the value of %∆F/F0. The detectable and undetectable regimes

and %∆F/F0 of contour lines > 20% (detection threshold) are indicated for all cases.
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4.5 Conclusion

This study proposes a general methodology to detect the presence and location of an embedded

spherical inhomogeneity in a soft material and the extraction of its material properties. Using

a hyperelastic material model our study examines the effect of nodule diameter and nodule

depth on detection and localization of an embedded nodule inside a tissue. Our study also

analyzes the influence of anisotropic material properties of the tissue and nodule itself on nodule

detection. Our dimensional analysis results can be employed to analyze any indentation study

on any homogeneous hyperelastic material with an embedded inhomogeneity, as this model

is independent of indenter size and individual mechanical properties of substrate and nodule.

The contributions of this study are summarized in Fig. 4.11. Following key conclusions can be

drawn from this study:

• The Hertzian model cannot sufficiently predict the presence of an embedded nodule in

a soft tissue beyond an indentation depth of > 5%. Moreover, it cannot predict the ma-

terial or physical properties of an embedded nodule. Hence, there is a need for a better

predictive model for inhomogeneous hyperelastic materials.

• Contact force between the indenter and the tissue with an embedded nodule depends on

the aspect ratio of nodule relative to the indenter. A thin indenter can predict the nodule

depth with greater accuracy and sensitivity than a thick indenter.

• Indentation load alone is insufficient to predict the presence of an embedded isotropic

nodule in an anisotropic tissue due to change in fibre dispersion or vice versa. However,

it can clearly differentiate between an isotropic nodule embedded in an anisotropic tissue

versus an anisotropic nodule embedded in an isotropic tissue.

• Stresses in the composite tissue under the indenter increased by an order O(2) in case of

anisotropic tissues with embedded isotropic nodule over isotropic tissues with embedded

anisotropic nodule.

• A predictive palpation sensitivity map has been developed in this study to define regions

of detectability of nodule using a threshold of 20% increase of indentation load in pres-

ence of nodule to that in case of a homogeneous tissue.
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It must be noted that in the section where we assess the detectability of an isotropic nodule

in anisotropic tissue and vice-versa, we assume the tissue and nodule to have properties similar

to arteries from the literature, mainly due to unavailability of experimental results. However,

the conclusions from the study are general and can be extended to other kinds of tissues that

have been shown to have layered morphology with two families of fibers. Tissues of this kind

include the stomach wall, tendons and ligaments. The purpose of this study is to assess tumor

nodule detectability via laparoscopic/minimally invasive surgical procedures.

In our study, to take into account noisy acquisition of force signals during instrumented

palpation, we set a very conservative threshold of %∆F/F0 = 20% below which we assume

that an embedded nodule cannot be detected. It is likely that using high-precision force sensors

for signal acquisition would have a better nodule detection resolution. The palpation sensitivity

maps proposed in this thesis can be used in conjunction with imaging techniques to detect tumor

nodules. Using modern imaging techniques like MRI, an estimated region where the nodule is

located can be detected via 2D images of the tissue. The instrumented palpation probe can then

be used to determine the exact location of the nodule in the real tissue. It can also be used

to determine the approximate nodule stiffness relative to tissue stiffness to estimate the tumor

condition or stage.

Figure 4.11: Summary of the contributions of this study on embedded nodule detection.
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Chapter 5

Summary and Conclusions
Cancer development and spreading mechanisms have been studied a lot from a molecular

and systems point of view. However, a mechanical understanding of cancer metastasis and tu-

mor detection has not been sufficiently emphasised in the literature. In this thesis, the modelling

of cancer mechanics at the cellular and tissue levels is described in three parts. In the first part

of this thesis, the development of a cell migration model is described. This model considers

a cell devoid of glycocalyx migrating through an extracellular matrix (ECM). Cell migration

is crucial in processes of tissue development, cancer metastasis and wound healing, to name a

few. Very often the migrating environment involves interfacial migration, that is, cell migration

at the interface of two dissimilar types of tissues. In such a scenario, how the relative mechani-

cal properties of cell nucleus and tissue enable or impede migration was studied as part of this

thesis. The system was modelled to be viscoelastic. Additionally, we considered cytoskele-

tal stiffening under strain and plastic deformation of the nucleus. Our results show that cells

migrate through confined environments mainly by two strategies: nuclear softening or plastic

deformation of stiff nuclei. Neutrophils instrumental in wound healing and highly metastatic

cancer cells have been shown to have soft nuclei whereas, osteosarcoma cells (bone cancer)

and HGPS (progeria) cells have been shown to have stiff nuclei. Soft nuclei deform easily and

facilitate confined migration. Stiff and plastic nuclei in our model were predicted to undergo

compression-induced extreme nuclear membrane bending that could be related to nuclear mem-

brane blebbing and rupture incidences observed in experiments. This leads us to speculate on

the possibility that plastic deformation and nuclear rupture in such scenarios might be a DNA

damage limiting and survival mechanism of cells while ensuring successful migration through

confinement. To validate our model predictions, we also performed experiments on stiff and

soft nuclei showing that stiff nuclei indeed undergo plastic deformation under confinement and

result in greater DNA damage.

In the second part of this thesis, we built up on our cell migration model to incorporate
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a glycocalyx that is assumed to be attached to the cell membrane as a continuum and mod-

elled as a Neo-Hookean hyperelastic material. Glycocalyx is made of sugar molecules and

polypeptide polymers with sidechains. These polymer chains collectively act as a polymer

brush in the event of external forces or stresses. Moreover, the glycocalyx has been shown to

regulate cell membrane shapes depending on polymer chain length and polymer density and

segregate integrin-based adhesions. Additionally, the glycopolymer thickness and density have

been shown to strongly correlate with the metastatic potential of a cancer cell. These experi-

mental observations point to the glycocalyx mechanically facilitating confined cell migration.

Indeed, our results recorded in this thesis demonstrate that upon indentation, a thick glycocalyx

acts as a shock absorber or cushion under large strains primarily by increasing the surface area

of external force application. Further analysis of cell compression in a sandwiched configura-

tion between a rigid plate (on which the cell is assumed to be attached) and the ECM revealed

that cell spreading is a critical factor that determines intracellular stresses, ECM displacement

due to glycocalyx and contact forces between glycocalyx and ECM. These additional factors

were found to have an impact on the mechanics of cellular glycocalyx apart from its thickness

and density.

Combining the first and second part of the thesis by moving on to the tissue level of

tumor formation and detection, we created a model to detect an embedded tumor in healthy

tissue. This model was created to mimic indentation or probing a tissue using a laparoscopic

probe. In laparoscopic surgeries, the surgeon cannot palpate a tissue to "feel" the location,

stiffness and size of an embedded tumor as in a conventional surgery. The surgeon must use

a thin laparoscopic probe for the procedure. This leads to a possible loss of sensation for the

surgeon. We used dimensional analysis techniques and developed predictive power laws to

relate indentation loads to size and location of embedded nodules in tissue. Additionally, we

developed palpation sensitivity maps to predict the regions of detectability of an embedded

tumor nodule based on its stiffness relative to the surrounding tissue, size and location. In

contrast to a human perception threshold of around 7% difference in perceived loads required

to detect difference in stiffness of two objects, we used a very conservative threshold of 20%

to account for possible measurement/instrument errors. These maps and relations can be used

by clinicians to predict presence or absence of an embedded tumor nodule. It must be noted

that tumors form progressively over time. It is the result of cell migration and a plethora of

molecular and chemical changes in cells that clump together and accelerate the growth of a
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tumor. The cellular glycocalyx and ECM play a significant role in tumor formation as they are

instrumental in facilitating cell migration and also impart stiffness to the tumor. A cancer cell

is often softer than a healthy cell, however, a cancerous tumor is stiffer than healthy tissue.

5.1 Contributions

This research aims at understanding and modelling the mechanics of cancer cells and tumors.

The main contributions of this research work are as follows:

• A new continuum model for confined interfacial cell migration was developed. Predic-

tions of this model can be used to complement experimental observations.

• The importance of nuclear softening on the one hand and plastic strain hardening on the

other were studied to define regimes where either of these could be used as strategies by

cells to migrate.

• A possible reason for nuclear rupture in-vivo was proposed based on computer simula-

tions.

• A novel continuum model of glycocalyx brush was developed.

• The mechanical influence of cellular glycocalyx in presence of extracellular stresses was

studied.

• A tissue-scale model was developed to detect embedded spherical tumor nodules in healthy

tissue.

• Dimensional analysis was used to predict indentation loads as simple power law functions

of nodule size and location.

• Palpation sensitivity maps were created to define regions of detectability of embedded

nodule based on its stiffness, size and location. These maps and relations can guide

clinicians to perform more precise surgeries and to train haptic simulators.
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5.2 Scope for future research

Modelling of cell and tissue mechanics pertaining to cancer has huge potential as advanced

experimental techniques uncover more of the mysteries that lie at these levels. Moreover, in-

terdisciplinary research at the interface of engineering, physics and biology can give a holistic

understanding into these biological systems. Therefore, in our view, this study can be extended

by increasing the complexity of cell migration model to analyze the influence of fibrous ECM

on cell mechanics during migration. The effect of various organelles and the dynamics of the

actin cytoskeleton during migration are other avenues that can be explored. Additionally, the

effect of various nodule shapes embedded in healthy tissue on their detectability can be studied.

114



List of Publications

Journal Publications: Included in Thesis

1. Mukherjee A, Barai A, Singh R K, Yan W, Sen S, 2020, “Nuclear Plasticity Increases

Susceptibility to Damage During Confined Migration”, PLoS Computational Biology,

16(10):e1008300. doi: 10.1371/journal.pcbi.1008300

2. Mukherjee A, Gupta A, Sen S, Yan W, Saigal A, Singh R.K, “Palpation sensitivity of an

embedded nodule using the finite element method”, ASME Journal of Engineering and

Science in Medical Diagnostics and Therapy, (Accepted)

Manuscript under Preparation

1. “Modelling the mechanical impact of glycocalyx on confined cell migration”

Journal Publications: Not included in Thesis

1. Barai A, Mukherjee A, Das A, Sen S, 2020,“α-actinin-4 is a regulator of myosin IIB

expression and myosin IIA localization”, (Under Preparation)

International Conferences

1. Mukherjee A, Barai A, Singh R K, Yan W, Sen S, 2020,“Evolution of Cell/Substrate

Stresses During Confined Interfacial Migration ”, 64th Biophysical Society Annual Meet-

ing 2020, San Diego, USA

115



2. Mukherjee A, Singh R K, Yan W, Sen S, 2019,“Evolution of Stresses at Cell-Gel Inter-

faces During Confined Interfacial Migration”, 63rd Biophysical Society Annual Meeting

2019, Baltimore, USA

116



References
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., 2007. Molecular Biology

of the Cell. New York: Garland Science .

Alexander, S., Weigelin, B., Winkler, F., Friedl, P., 2013. Preclinical intravital microscopy of

the tumour-stroma interface: invasion, metastasis, and therapy response. Curr. Opin. Cell

Biol. 25, 659–671.

Arruda, E.M., Boyce, M.C., 1993. A three-dimensional constitutive model for the large stretch

behavior of rubber elastic materials. J. Mech. Phys. Solids 41, 389–412.

Aung, A., Seo, Y.N., Lu, S., Wang, Y., Jamora, C., del Álamo, J.C., Varghese, S., 2014. 3D

traction stresses activate protease-dependent invasion of cancer cells. Biophys. J. 107, 2528–

2537.

Bergert, M., Erzberger, A., Desai, R.A., Aspalter, I.M., Oates, A.C., Charras, G., Salbreux, G.,

Paluch, E.K., 2015. Force transmission during adhesion-independent migration. Nat. Cell

Biol. 17, 524–529.

Booth-Gauthier, E.A., Du, V., Ghibaudo, M., Rape, A.D., Dahl, K.N., Ladoux, B., 2013.

Hutchinson–gilford progeria syndrome alters nuclear shape and reduces cell motility in three

dimensional model substrates. Integr. Biol. 5, 569–577.

Buxboim, A., Swift, J., Irianto, J., Spinler, K.R., Dingal, P.D.P., Athirasala, A., Kao, Y.R.C.,

Cho, S., Harada, T., Shin, J.W., et al., 2014. Matrix elasticity regulates lamin-a, c phospho-

rylation and turnover with feedback to actomyosin. Curr. Biol. 24, 1909–1917.

Cao, X., Moeendarbary, E., Isermann, P., Davidson, P.M., Wang, X., Chen, M.B., Burkart, A.K.,

Lammerding, J., Kamm, R.D., Shenoy, V.B., 2016. A chemomechanical model for nuclear

morphology and stresses during cell transendothelial migration. Biophys. J. 111, 1541–1552.

Carmeliet, P., Jain, R.K., 2000. Angiogenesis in cancer and other diseases. Nature 407, 249–

257.

117



Chang, P.S., McLane, L.T., Fogg, R., Scrimgeour, J., Temenoff, J.S., Granqvist, A., Curtis, J.E.,

2016. Cell surface access is modulated by tethered bottlebrush proteoglycans. Biophys. J.

110, 2739–2750.

Chaudhuri, O., 2017. Viscoelastic hydrogels for 3d cell culture. Biomater. Sci. 5, 1480–1490.

Coffinier, C., Chang, S.Y., Nobumori, C., Tu, Y., Farber, E.A., Toth, J.I., Fong, L.G., Young,

S.G., 2010. Abnormal development of the cerebral cortex and cerebellum in the setting of

lamin b2 deficiency. Proc. Natl. Acad. Sci. U.S.A. 107, 5076–5081.

Costa, K., Yin, F., 1999. Analysis of indentation: implications for measuring mechanical prop-

erties with atomic force microscopy. J. Biomech. Eng. 121, 462–471.

Cross, S.E., Jin, Y.S., Rao, J., Gimzewski, J.K., 2007. Nanomechanical analysis of cells from

cancer patients. Nat. Nanotechnol. 2, 780–783.

Dahl, K.N., Engler, A.J., Pajerowski, J.D., Discher, D.E., 2005. Power-law rheology of isolated

nuclei with deformation mapping of nuclear substructures. Biophys. J. 89, 2855–2864.

Das, A., Barai, A., Monteiro, M., Kumar, S., Sen, S., 2019. Nuclear softening is essential for

protease-independent migration. Matrix Biol. .

Davidson, P.M., Lammerding, J., 2014. Broken nuclei–lamins, nuclear mechanics, and disease.

Trends Cell Biol. 24, 247–256.

De, R., Zemel, A., Safran, S.A., 2007. Dynamics of cell orientation. Nat. Phys. 3, 655.

Del Giudice, F., Tassieri, M., Oelschlaeger, C., Shen, A.Q., 2017. When microrheology, bulk

rheology, and microfluidics meet: broadband rheology of hydroxyethyl cellulose water solu-

tions. Macromolecules 50, 2951–2963.

Denais, C.M., Gilbert, R.M., Isermann, P., McGregor, A.L., Te Lindert, M., Weigelin, B.,

Davidson, P.M., Friedl, P., Wolf, K., Lammerding, J., 2016. Nuclear envelope rupture and

repair during cancer cell migration. Science 352, 353–358.

Desprat, N., Richert, A., Simeon, J., Asnacios, A., 2005. Creep function of a single living cell.

Biophys. J. 88, 2224–2233.

118



Deviri, D., Discher, D.E., Safran, S.A., 2017. Rupture dynamics and chromatin herniation in

deformed nuclei. Biophys. J. 113, 1060–1071.

Deviri, D., Pfeifer, C.R., Dooling, L.J., Ivanovska, I.L., Discher, D.E., Safran, S.A., 2019.

Scaling laws indicate distinct nucleation mechanisms of holes in the nuclear lamina. Nat.

Phys. 15, 823–829.

Dimitriadis, E.K., Horkay, F., Maresca, J., Kachar, B., Chadwick, R.S., 2002. Determination of

elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J.

82, 2798–2810.

Dokukin, M., Ablaeva, Y., Kalaparthi, V., Seluanov, A., Gorbunova, V., Sokolov, I., 2016.

Pericellular brush and mechanics of guinea pig fibroblast cells studied with afm. Biophys. J.

111, 236–246.

Elosegui-Artola, A., Andreu, I., Beedle, A.E., Lezamiz, A., Uroz, M., Kosmalska, A.J., Oria,

R., Kechagia, J.Z., Rico-Lastres, P., Le Roux, A.L., et al., 2017. Force triggers yap nuclear

entry by regulating transport across nuclear pores. Cell 171, 1397–1410.

Esteban-Manzanares, G., González-Bermúdez, B., Cruces, J., De la Fuente, M., Li, Q., Guinea,

G.V., Pérez-Rigueiro, J., Elices, M., Plaza, G.R., 2017. Improved measurement of elas-

tic properties of cells by micropipette aspiration and its application to lymphocytes. Ann.

Biomed. Eng. 45, 1375–1385.

Evans, A., Whelehan, P., Thomson, K., McLean, D., Brauer, K., Purdie, C., Baker, L., Jordan,

L., Rauchhaus, P., Thompson, A., 2012. Invasive breast cancer: relationship between shear-

wave elastographic findings and histologic prognostic factors. Radiology 263, 673–677.

Frantz, C., Stewart, K.M., Weaver, V.M., 2010. The extracellular matrix at a glance. J. Cell Sci.

123, 4195–4200.

Friedl, P., Wolf, K., 2010. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol.

188, 11–19.

Fung, Y.C., 1993. Mechanical properties of living tissues. volume 547. Springer.

Gardel, M., Shin, J.H., MacKintosh, F., Mahadevan, L., Matsudaira, P., Weitz, D., 2004a. Elas-

tic behavior of cross-linked and bundled actin networks. Science 304, 1301–1305.

119



Gardel, M., Shin, J.H., MacKintosh, F., Mahadevan, L., Matsudaira, P., Weitz, D., 2004b. Scal-

ing of f-actin network rheology to probe single filament elasticity and dynamics. Phys. Rev.

Lett. 93, 188102.

Gardel, M.L., Kasza, K.E., Brangwynne, C.P., Liu, J., Weitz, D.A., 2008. Mechanical response

of cytoskeletal networks. Method. Cell Biol. 89, 487–519.

Gasser, T.C., Ogden, R.W., Holzapfel, G.A., 2006. Hyperelastic modelling of arterial layers

with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35.

George, E., Barai, A., Shirke, P., Majumder, A., Sen, S., 2018. Engineering interfacial migration

by collective tuning of adhesion anisotropy and stiffness. Acta Biomater. 72, 82–93.

Graham, D.M., Andersen, T., Sharek, L., Uzer, G., Rothenberg, K., Hoffman, B.D., Rubin, J.,

Balland, M., Bear, J.E., Burridge, K., 2018. Enucleated cells reveal differential roles of the

nucleus in cell migration, polarity, and mechanotransduction. J. Cell Biol. 217, 895–914.

Guck, J., Schinkinger, S., Lincoln, B., Wottawah, F., Ebert, S., Romeyke, M., Lenz, D., Er-

ickson, H.M., Ananthakrishnan, R., Mitchell, D., et al., 2005. Optical deformability as an

inherent cell marker for testing malignant transformation and metastatic competence. Bio-

phys. J. 88, 3689–3698.

Guilak, F., Jones, W.R., Ting-Beall, H.P., Lee, G.M., 1999. The deformation behavior and

mechanical properties of chondrocytes in articular cartilage. Osteoarthr. Cartil. 7, 59–70.

Guilak, F., Tedrow, J.R., Burgkart, R., 2000. Viscoelastic properties of the cell nucleus.

Biochem. Biophys. Res. Comm. 269, 781–786.

Guo, M., Ehrlicher, A.J., Mahammad, S., Fabich, H., Jensen, M.H., Moore, J.R., Fredberg, J.J.,

Goldman, R.D., Weitz, D.A., 2013. The role of vimentin intermediate filaments in cortical

and cytoplasmic mechanics. Biophys. J. 105, 1562–1568.

Gupta, G.P., Massagué, J., 2006. Cancer metastasis: building a framework. Cell 127, 679–695.

ten Haaf, K., van Rosmalen, J., de Koning, H.J., 2015. Lung cancer detectability by test,

histology, stage, and gender: estimates from the nlst and the plco trials. Cancer Epidemiol.

Biomarkers Prev. 24, 154–161.

120



Han, S.K., Madden, R., Abusara, Z., Herzog, W., 2012. In situ chondrocyte viscoelasticity. J.

Biomech. 45, 2450–2456.

Handorf, A.M., Zhou, Y., Halanski, M.A., Li, W.J., 2015. Tissue stiffness dictates development,

homeostasis, and disease progression. Organogenesis 11, 1–15.

Harada, T., Swift, J., Irianto, J., Shin, J.W., Spinler, K.R., Athirasala, A., Diegmiller, R., Din-

gal, P.D.P., Ivanovska, I.L., Discher, D.E., 2014. Nuclear lamin stiffness is a barrier to 3d

migration, but softness can limit survival. J. Cell Biol. 204, 669–682.

Hatch, E.M., Hetzer, M.W., 2016. Nuclear envelope rupture is induced by actin-based nucleus

confinement. J. Cell Biol. 215, 27–36.

Hayes, W., Keer, L.M., Herrmann, G., Mockros, L., 1972. A mathematical analysis for inden-

tation tests of articular cartilage. J. Biomech. 5, 541–551.

Hoffman, B.D., Massiera, G., Van Citters, K.M., Crocker, J.C., 2006. The consensus mechanics

of cultured mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 103, 10259–10264.

Holzapfel, G.A., Gasser, T.C., Ogden, R.W., 2000. A new constitutive framework for arterial

wall mechanics and a comparative study of material models. J. Elast. 61, 1–48.

Howe, R.D., Peine, W.J., Kantarinis, D., Son, J.S., 1995. Remote palpation technology. IEEE

Eng. Med. Biol. 14, 318–323.

Huijbers, I.J., Iravani, M., Popov, S., Robertson, D., Al-Sarraj, S., Jones, C., Isacke, C.M., 2010.

A role for fibrillar collagen deposition and the collagen internalization receptor Endo180 in

glioma invasion. PloS One 5.

Hung, W.C., Yang, J.R., Yankaskas, C.L., Wong, B.S., Wu, P.H., Pardo-Pastor, C., Serra, S.A.,

Chiang, M.J., Gu, Z., Wirtz, D., et al., 2016. Confinement sensing and signal optimization

via Piezo1/PKA and myosin II pathways. Cell Rep. 15, 1430–1441.

Irianto, J., Xia, Y., Pfeifer, C.R., Athirasala, A., Ji, J., Alvey, C., Tewari, M., Bennett, R.R.,

Harding, S.M., Liu, A.J., et al., 2017. Dna damage follows repair factor depletion and por-

tends genome variation in cancer cells after pore migration. Curr. Biol. 27, 210–223.

121



Iyer, S., Gaikwad, R., Subba-Rao, V., Woodworth, C., Sokolov, I., 2009. Atomic force mi-

croscopy detects differences in the surface brush of normal and cancerous cells. Nat. Nan-

otechnol. 4, 389–393.

Johnson, K.L., Kendall, K., Roberts, a., 1971. Surface energy and the contact of elastic solids.

Proc. R. Soc. A 324, 301–313.

Jones, L.M., Gardner, M.J., Catterall, J.B., Turner, G.A., 1995. Hyaluronic acid secreted by

mesothelial cells: a natural barrier to ovarian cancer cell adhesion. Clin. Exp. Metastasis 13,

373–380.

Kasza, K.E., Rowat, A.C., Liu, J., Angelini, T.E., Brangwynne, C.P., Koenderink, G.H., Weitz,

D.A., 2007. The cell as a material. Curr. Opin. Cell Biol. 19, 101–107.

Kaufmann, A., Heinemann, F., Radmacher, M., Stick, R., 2011. Amphibian oocyte nuclei

expressing lamin a with the progeria mutation e145k exhibit an increased elastic modulus.

Nucleus 2, 310–319.

Kim, J., Feng, J., Jones, C.A., Mao, X., Sander, L.M., Levine, H., Sun, B., 2017. Stress-induced

plasticity of dynamic collagen networks. Nat. Commun. 8, 842.

Kimata, K., Honma, Y., Okayama, M., Oguri, K., Hozumi, M., Suzuki, S., 1983. Increased

synthesis of hyaluronic acid by mouse mammary carcinoma cell variants with high metastatic

potential. Cancer Res. 43, 1347–1354.

Kirby, T.J., Lammerding, J., 2018. Emerging views of the nucleus as a cellular mechanosensor.

Nat. Cell Biol. 20, 373–381.

Konstantinova, J., Cotugno, G., Dasgupta, P., Althoefer, K., Nanayakkara, T., 2017. Palpation

force modulation strategies to identify hard regions in soft tissue organs. PloS One 12.

Konstantinova, J., Li, M., Aminzadeh, V., Althoefer, K., Dasgupta, P., et al., 2013. Evaluating

manual palpation trajectory patterns in tele-manipulation for soft tissue examination, in: Conf

Proc IEEE Int Conf Syst Man Cybern, IEEE. pp. 4190–4195.

Krause, M., Wei Yang, F., Lindert, M.t., Isermann, P., Schepens, J., Maas, R.J., Eid, K.,

Venkataraman, C., Lammerding, J., Madzvamuse, A., et al., 2019. Cell migration through 3d

122



confining pores: speed accelerations by deformation and recoil of the nucleus. Philos. Trans.

R. Soc. B .

Kumar, S., Das, A., Barai, A., Sen, S., 2018a. MMP secretion rate and inter-invadopodia

spacing collectively govern cancer invasiveness. Biophys. J. 114, 650–662.

Kumar, S., Das, A., Sen, S., 2018b. Multicompartment cell-based modeling of confined migra-

tion: regulation by cell intrinsic and extrinsic factors. Mol. Biol. Cell 29, 1599–1610.

Kumar, S., Kapoor, A., Desai, S., Inamdar, M.M., Sen, S., 2016. Proteolytic and non-proteolytic

regulation of collective cell invasion: tuning by ECM density and organization. Sci. Rep. 6,

19905.

Kuo, J.C.H., Gandhi, J.G., Zia, R.N., Paszek, M.J., 2018. Physical biology of the cancer cell

glycocalyx. Nat. Phys. 14, 658–669.

Lammerding, J., Fong, L.G., Ji, J.Y., Reue, K., Stewart, C.L., Young, S.G., Lee, R.T., 2006.

Lamins a and c but not lamin b1 regulate nuclear mechanics. J. Biol. Chem. 281, 25768–

25780.

Lange, J.R., Steinwachs, J., Kolb, T., Lautscham, L.A., Harder, I., Whyte, G., Fabry, B., 2015.

Microconstriction arrays for high-throughput quantitative measurements of cell mechanical

properties. Biophys. J. 109, 26–34.

Lautscham, L.A., Kämmerer, C., Lange, J.R., Kolb, T., Mark, C., Schilling, A., Strissel, P.L.,

Strick, R., Gluth, C., Rowat, A.C., et al., 2015. Migration in confined 3d environments is de-

termined by a combination of adhesiveness, nuclear volume, contractility, and cell stiffness.

Biophys. J. 109, 900–913.

Lavenus, S.B., Tudor, S.M., Ullo, M.F., Vosatka, K.W., Logue, J.S., 2020. A flexible network

of vimentin intermediate filaments promotes the migration of amoeboid cancer cells through

confined environments. J. Biol. Chem. , jbc–RA119.

Le Berre, M., Aubertin, J., Piel, M., 2012. Fine control of nuclear confinement identifies a

threshold deformation leading to lamina rupture and induction of specific genes. Integr. Biol.

4, 1406–1414.

123



Lebedev, N., Ufliand, I.S., 1958. Axisymmetric contact problem for an elastic layer. PMM J.

Appl. Math. Mech. 22, 442–450.

Leong, H.S., Robertson, A.E., Stoletov, K., Leith, S.J., Chin, C.A., Chien, A.E., Hague, M.N.,

Ablack, A., Carmine-Simmen, K., McPherson, V.A., et al., 2014. Invadopodia are required

for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 8, 1558–

1570.

Levental, K.R., Yu, H., Kass, L., Lakins, J.N., Egeblad, M., Erler, J.T., Fong, S.F., Csiszar, K.,

Giaccia, A., Weninger, W., et al., 2009. Matrix crosslinking forces tumor progression by

enhancing integrin signaling. Cell 139, 891–906.

Licup, A.J., Münster, S., Sharma, A., Sheinman, M., Jawerth, L.M., Fabry, B., Weitz, D.A.,

MacKintosh, F.C., 2015. Stress controls the mechanics of collagen networks. Proc. Natl.

Acad. Sci. U.S.A. 112, 9573–9578.

Liu, D., Zhang, Z., Sun, L., 2010. Nonlinear elastic load–displacement relation for spherical

indentation on rubberlike materials. J. Mater. Res. 25, 2197–2202.

Liu, W.K., Liu, Y., Farrell, D., Zhang, L., Wang, X.S., Fukui, Y., Patankar, N., Zhang, Y., Bajaj,

C., Lee, J., et al., 2006. Immersed finite element method and its applications to biological

systems. Comput. Methods Appl. Mech. Eng. 195, 1722–1749.

Liu, Y., Kerdok, A.E., Howe, R.D., 2004. A nonlinear finite element model of soft tissue

indentation, in: International Symposium on Medical Simulation, Springer. pp. 67–76.

Low, T.F., Pun, C.L., Yan, W., 2015. Theoretical study on nanoindentation hardness measure-

ment of a particle embedded in a matrix. Philos. Mag. 95, 1573–1586.

Lu, P., Weaver, V.M., Werb, Z., 2012. The extracellular matrix: a dynamic niche in cancer

progression. J. Cell Biol. 196, 395–406.

Ludwik, P., 1909. Elements of technological mechanics, in: Elements of Technological Me-

chanics. Springer, pp. 11–35.

Maurer, M., Lammerding, J., 2019. The driving force: Nuclear mechanotransduction in cellular

function, fate, and disease. Annu. Rev. Biomed. Eng. 21.

124



McGregor, A.L., Hsia, C.R., Lammerding, J., 2016. Squish and squeeze—the nucleus as a

physical barrier during migration in confined environments. Curr. Opin. Cell Biol. 40, 32–

40.

Mietke, A., Otto, O., Girardo, S., Rosendahl, P., Taubenberger, A., Golfier, S., Ulbricht, E.,

Aland, S., Guck, J., Fischer-Friedrich, E., 2015. Extracting cell stiffness from real-time

deformability cytometry: theory and experiment. Biophys. J. 109, 2023–2036.

Mistriotis, P., Wisniewski, E.O., Bera, K., Keys, J., Li, Y., Tuntithavornwat, S., Law, R.A.,

Perez-Gonzalez, N.A., Erdogmus, E., Zhang, Y., et al., 2019. Confinement hinders motility

by inducing rhoa-mediated nuclear influx, volume expansion, and blebbing. J. Cell Biol. 218,

4093–4111.

Moeendarbary, E., Valon, L., Fritzsche, M., Harris, A.R., Moulding, D.A., Thrasher, A.J.,

Stride, E., Mahadevan, L., Charras, G.T., 2013. The cytoplasm of living cells behaves as

a poroelastic material. Nat. Mater. 12, 253.

Moure, A., Gomez, H., 2017. Phase-field model of cellular migration: Three-dimensional

simulations in fibrous networks. Comput. Methods Appl. Mech. Eng. 320, 162–197.

Murphy, M.C., Jones, D.T., Jack Jr, C.R., Glaser, K.J., Senjem, M.L., Manduca, A., Felmlee,

J.P., Carter, R.E., Ehman, R.L., Huston III, J., 2016. Regional brain stiffness changes across

the Alzheimer’s disease spectrum. NeuroImage Clin. 10, 283–290.

Navarro, A.P., Collins, M.A., Folker, E.S., 2016. The nucleus is a conserved mechanosensation

and mechanoresponse organelle. Cytoskeleton 73, 59–67.

Neelam, S., Chancellor, T., Li, Y., Nickerson, J.A., Roux, K.J., Dickinson, R.B., Lele, T.P.,

2015. Direct force probe reveals the mechanics of nuclear homeostasis in the mammalian

cell. Proc. Natl. Acad. Sci. U.S.A. 112, 5720–5725.

NIH, 2018. Cancer statistics. https://www.cancer.gov/about-cancer/understanding/

statistics.

Pajerowski, J.D., Dahl, K.N., Zhong, F.L., Sammak, P.J., Discher, D.E., 2007. Physical plas-

ticity of the nucleus in stem cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 104, 15619–

15624.

125

https://www.cancer.gov/about-cancer/understanding/statistics
https://www.cancer.gov/about-cancer/understanding/statistics


Paluch, E.K., Aspalter, I.M., Sixt, M., 2016. Focal adhesion–independent cell migration. Annu.

Rev. Cell Dev. Biol. 32, 469–490.

Pan, Y., Zhan, Y., Ji, H., Niu, X., Zhong, Z., 2016. Can hyperelastic material parameters be

uniquely determined from indentation experiments? RSC Adv. 6, 81958–81964.

Pang, X.D., Tan, H.Z., Durlach, N.I., 1991. Manual discrimination of force using active finger

motion. Percept. Psychophys. 49, 531–540.

Paszek, M.J., DuFort, C.C., Rossier, O., Bainer, R., Mouw, J.K., Godula, K., Hudak, J.E.,

Lakins, J.N., Wijekoon, A.C., Cassereau, L., et al., 2014. The cancer glycocalyx mechani-

cally primes integrin-mediated growth and survival. Nature 511, 319–325.

Patteson, A.E., Vahabikashi, A., Pogoda, K., Adam, S.A., Mandal, K., Kittisopikul, M., Sivagu-

runathan, S., Goldman, A., Goldman, R.D., Janmey, P.A., 2019. Vimentin protects cells

against nuclear rupture and dna damage during migration. J. Cell Biol. 218, 4079–4092.

Paul, C.D., Mistriotis, P., Konstantopoulos, K., 2017. Cancer cell motility: lessons from migra-

tion in confined spaces. Nat. Rev. Cancer 17, 131.

Peña, E., Alastrué, V., Laborda, A., Martínez, M., Doblaré, M., 2010. A constitutive formulation

of vascular tissue mechanics including viscoelasticity and softening behaviour. J. Biomech.

43, 984–989.

Peterson, L.J., Rajfur, Z., Maddox, A.S., Freel, C.D., Chen, Y., Edlund, M., Otey, C., Burridge,

K., 2004. Simultaneous stretching and contraction of stress fibers in vivo. Mol. Biol. Cell 15,

3497–3508.

Petrie, R.J., Koo, H., Yamada, K.M., 2014. Generation of compartmentalized pressure by a

nuclear piston governs cell motility in a 3d matrix. Science 345, 1062–1065.

Raab, M., Gentili, M., de Belly, H., Thiam, H.R., Vargas, P., Jimenez, A.J., Lautenschlaeger,

F., Voituriez, R., Lennon-Duménil, A.M., Manel, N., et al., 2016. ESCRT III repairs nuclear

envelope ruptures during cell migration to limit DNA damage and cell death. Science 352,

359–362.

Rabodzey, A., Alcaide, P., Luscinskas, F.W., Ladoux, B., 2008. Mechanical forces induced by

the transendothelial migration of human neutrophils. Biophys. J. 95, 1428–1438.

126



Rape, A.D., Kumar, S., 2014. A composite hydrogel platform for the dissection of tumor cell

migration at tissue interfaces. Biomaterials 35, 8846–8853.

Renkawitz, J., Kopf, A., Stopp, J., de Vries, I., Driscoll, M.K., Merrin, J., Hauschild, R., Welf,

E.S., Danuser, G., Fiolka, R., et al., 2019. Nuclear positioning facilitates amoeboid migration

along the path of least resistance. Nature 568, 546.

Reversat, A., Gaertner, F., Merrin, J., Stopp, J., Tasciyan, S., Aguilera, J., de Vries, I.,

Hauschild, R., Hons, M., Piel, M., et al., 2020. Cellular locomotion using environmental

topography. Nature , 1–4.

Roux, K.J., Crisp, M.L., Liu, Q., Kim, D., Kozlov, S., Stewart, C.L., Burke, B., 2009. Nesprin

4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization.

Proc. Natl. Acad. Sci. U.S.A. 106, 2194–2199.

Rowat, A.C., Jaalouk, D.E., Zwerger, M., Ung, W.L., Eydelnant, I.A., Olins, D.E., Olins, A.L.,

Herrmann, H., Weitz, D.A., Lammerding, J., 2013. Nuclear envelope composition determines

the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol.

Chem. 288, 8610–8618.

Rozario, T., DeSimone, D.W., 2010. The extracellular matrix in development and morphogen-

esis: a dynamic view. Dev. Biol. 341, 126–140.

Samani, A., Zubovits, J., Plewes, D., 2007. Elastic moduli of normal and pathological human

breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol.

52, 1565.

Samuel, M.S., Lopez, J.I., McGhee, E.J., Croft, D.R., Strachan, D., Timpson, P., Munro, J.,

Schröder, E., Zhou, J., Brunton, V.G., et al., 2011. Actomyosin-mediated cellular tension

drives increased tissue stiffness and β -catenin activation to induce epidermal hyperplasia and

tumor growth. Cancer Cell 19, 776–791.

Sangpradit, K., Liu, H., Seneviratne, L.D., Althoefer, K., 2009. Tissue identification using

inverse finite element analysis of rolling indentation, in: IEEE Int. Conf. Robot. Autom.,

IEEE. pp. 1250–1255.

127



Sanz-Moreno, V., Gadea, G., Ahn, J., Paterson, H., Marra, P., Pinner, S., Sahai, E., Marshall,

C.J., 2008. Rac activation and inactivation control plasticity of tumor cell movement. Cell

135, 510–523.

Sapir, L., Tzlil, S., 2017. Talking over the extracellular matrix: How do cells communicate

mechanically?, in: Semin. Cell Dev. Biol., Elsevier. pp. 99–105.

Schmidt, S., Friedl, P., 2010. Interstitial cell migration: integrin-dependent and alternative

adhesion mechanisms. Cell Tissue Res. 339, 83.

Sen, S., Subramanian, S., Discher, D.E., 2005. Indentation and adhesive probing of a cell

membrane with afm: theoretical model and experiments. Biophys. J. 89, 3203–3213.

Shurer, C.R., Kuo, J.C.H., Roberts, L.M., Gandhi, J.G., Colville, M.J., Enoki, T.A., Pan, H.,

Su, J., Noble, J.M., Hollander, M.J., et al., 2019. Physical principles of membrane shape

regulation by the glycocalyx. Cell .

Skovoroda, A., Klishko, A., Gusakyan, D., Mayevskii, Y.I., Yermilova, V., Oran-skaya, G.,

Sarvazyan, A., 1995. Quantitative analysis of the mechanical characteristics of pathologically

changed soft biological tissues. Biophysics 40, 1359–1364.

Smith, L.A., Aranda-Espinoza, H., Haun, J.B., Dembo, M., Hammer, D.A., 2007. Neutrophil

traction stresses are concentrated in the uropod during migration. Biophys. J. 92, L58–L60.

Sneddon, I.N., 1965. The relation between load and penetration in the axisymmetric boussinesq

problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57.

Sokolov, I., Dokukin, M.E., Guz, N.V., 2013. Method for quantitative measurements of the

elastic modulus of biological cells in afm indentation experiments. Methods 60, 202–213.

Stephens, A.D., Banigan, E.J., Adam, S.A., Goldman, R.D., Marko, J.F., 2017. Chromatin and

lamin a determine two different mechanical response regimes of the cell nucleus. Mol. Biol.

Cell 28, 1984–1996.

Stephens, A.D., Banigan, E.J., Marko, J.F., 2019. Chromatin’s physical properties shape the

nucleus and its functions. Curr. Opin. Cell Biol. 58, 76–84.

Stricker, J., Falzone, T., Gardel, M.L., 2010. Mechanics of the f-actin cytoskeleton. J. Biomech.

43, 9–14.

128



Stroka, K.M., Jiang, H., Chen, S.H., Tong, Z., Wirtz, D., Sun, S.X., Konstantopoulos, K., 2014.

Water permeation drives tumor cell migration in confined microenvironments. Cell 157,

611–623.

Suresh, S., 2007. Biomechanics and biophysics of cancer cells. Acta Biomater. 3, 413–438.

Suresh, S., Spatz, J., Mills, J.P., Micoulet, A., Dao, M., Lim, C., Beil, M., Seufferlein, T., 2005.

Connections between single-cell biomechanics and human disease states: gastrointestinal

cancer and malaria. Acta Biomater. 1, 15–30.

Swartz, R.K., Rodriguez, E.C., King, M.C., 2014. A role for nuclear envelope–bridging com-

plexes in homology-directed repair. Mol. Biol. Cell 25, 2461–2471.

Swift, J., Ivanovska, I.L., Buxboim, A., Harada, T., Dingal, P.D.P., Pinter, J., Pajerowski, J.D.,

Spinler, K.R., Shin, J.W., Tewari, M., et al., 2013. Nuclear lamin-a scales with tissue stiffness

and enhances matrix-directed differentiation. Science 341, 1240104.

Tajik, A., Zhang, Y., Wei, F., Sun, J., Jia, Q., Zhou, W., Singh, R., Khanna, N., Belmont, A.S.,

Wang, N., 2016. Transcription upregulation via force-induced direct stretching of chromatin.

Nat. Mater. 15, 1287.

Talmadge, J.E., Fidler, I.J., 2010. AACR Centennial Series: The biology of cancer metastasis:

historical perspective. Cancer Res. 70, 5649–5669.

Theret, D.P., Levesque, M., Sato, M., Nerem, R., Wheeler, L., 1988. The application of a ho-

mogeneous half-space model in the analysis of endothelial cell micropipette measurements.

J. Biomech. Eng. , 110:190–199.

Thiam, H.R., Vargas, P., Carpi, N., Crespo, C.L., Raab, M., Terriac, E., King, M.C., Jacobelli,

J., Alberts, A.S., Stradal, T., et al., 2016. Perinuclear arp2/3-driven actin polymerization

enables nuclear deformation to facilitate cell migration through complex environments. Nat.

Commun. 7, 10997.

Timoshenko, S.P., Woinowsky-Krieger, S., 1959. Theory of Plates and Shells. McGraw-Hill.

Tocco, V.J., Li, Y., Christopher, K.G., Matthews, J.H., Aggarwal, V., Paschall, L., Luesch, H.,

Licht, J.D., Dickinson, R.B., Lele, T.P., 2018. The nucleus is irreversibly shaped by motion

of cell boundaries in cancer and non-cancer cells. J. Cell. Physiol. 233, 1446–1454.

129



Trickey, W.R., Vail, T.P., Guilak, F., 2004. The role of the cytoskeleton in the viscoelastic

properties of human articular chondrocytes. J. Orthop. Res. 22, 131–139.

Turley, E.A., Wood, D.K., McCarthy, J.B., 2016. Carcinoma cell hyaluronan as a “portable”

cancerized prometastatic microenvironment. Cancer Res. 76, 2507–2512.

Valero, C., Navarro, B., Navajas, D., García-Aznar, J., 2016. Finite element simulation for

the mechanical characterization of soft biological materials by atomic force microscopy. J.

Mech. Behav. Biomed. 62, 222–235.

Verstraeten, V.L., Ji, J.Y., Cummings, K.S., Lee, R.T., Lammerding, J., 2008. Increased

mechanosensitivity and nuclear stiffness in hutchinson–gilford progeria cells: effects of far-

nesyltransferase inhibitors. Aging Cell 7, 383–393.

WHO, 2018. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer.

Wisdom, K.M., Adebowale, K., Chang, J., Lee, J.Y., Nam, S., Desai, R., Rossen, N.S., Rafat,

M., West, R.B., Hodgson, L., et al., 2018. Matrix mechanical plasticity regulates cancer cell

migration through confining microenvironments. Nat. Commun. 9, 4144.

Wolf, K., Mazo, I., Leung, H., Engelke, K., Von Andrian, U.H., Deryugina, E.I., Strongin,

A.Y., Bröcker, E.B., Friedl, P., 2003. Compensation mechanism in tumor cell migration:

mesenchymal–amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol.

160, 267–277.

Wolf, K., Te Lindert, M., Krause, M., Alexander, S., Te Riet, J., Willis, A.L., Hoffman, R.M.,

Figdor, C.G., Weiss, S.J., Friedl, P., 2013. Physical limits of cell migration: control by ECM

space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201,

1069–1084.

Xia, Y., Pfeifer, C.R., Zhu, K., Irianto, J., Liu, D., Pannell, K., Chen, E.J., Dooling, L.J., Tobin,

M.P., Wang, M., et al., 2019. Rescue of dna damage after constricted migration reveals a

mechano-regulated threshold for cell cycle. J. Cell Biol. , 201811100.

Yamada, K.M., Sixt, M., 2019. Mechanisms of 3d cell migration. Nat. Rev. Mol. Cell Biol. 20,

738–752.

130

https://www.who.int/news-room/fact-sheets/detail/cancer


Yan, W., Sun, Q., Feng, X.Q., Qian, L., 2006. Determination of transformation stresses of

shape memory alloy thin films: a method based on spherical indentation. Appl. Phys. Lett.

88, 241912.

Yeung, T., Georges, P.C., Flanagan, L.A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W.,

Weaver, V., Janmey, P.A., 2005. Effects of substrate stiffness on cell morphology, cytoskeletal

structure, and adhesion. Cell Motil. Cytoskel. 60, 24–34.

Zemel, A., Rehfeldt, F., Brown, A., Discher, D., Safran, S., 2010. Optimal matrix rigidity for

stress-fibre polarization in stem cells. Nat. Phys. 6, 468.

Zhang, L., Underhill, C.B., Chen, L., 1995. Hyaluronan on the surface of tumor cells is corre-

lated with metastatic behavior. Cancer Res. 55, 428–433.

Zhang, M.G., Cao, Y.P., Li, G.Y., Feng, X.Q., 2014. Spherical indentation method for determin-

ing the constitutive parameters of hyperelastic soft materials. Biomech. Model. Mechanobiol.

13, 1–11.

Zhang, Q., Tamashunas, A.C., Agrawal, A., Torbati, M., Katiyar, A., Dickinson, R.B., Lam-

merding, J., Lele, T.P., 2019. Local, transient tensile stress on the nuclear membrane causes

membrane rupture. Mol. Biol. Cell 30, 899–906.

Zhou, E., Lim, C., Quek, S., 2005. Finite element simulation of the micropipette aspiration of a

living cell undergoing large viscoelastic deformation. Mech. Adv. Mater. Struc. 12, 501–512.

Zhu, J., Mogilner, A., 2016. Comparison of cell migration mechanical strategies in three-

dimensional matrices: a computational study. Interface Focus 6, 20160040.

131


	Abstract
	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction
	Introduction to Cancer
	The Extracellular Matrix (ECM) in Cancer
	The ECM as a Mechanical Barrier to Invasion
	Rheology of soft materials
	Modeling the rheology of cells and tissues

	Cancer Metastasis
	Mechanisms of Invasion
	Modes of cell migration

	Nucleus as a Rate-Limiting Factor in Cell Migration
	Biological Implications of Nuclear Rupture

	The Cellular Glycocalyx
	Formation of Glycocalyx
	Glycocalyx in Cancer

	Motivation
	Hypothesis
	Research Objectives
	Thesis Outline

	Modelling of confined cell migration
	Introduction
	Viscoelasticity of cell and extracellular matrix (ECM)
	Viscoelasticity formulation in the time-domain

	Plasticity of the nucleus
	Cytoskeletal strain stiffening
	Methods
	Computational Methods
	Experimental Methods

	Results
	Nuclear and tissue properties collectively dictate dynamics of confined migration
	Degree of confinement and nuclear/tissue properties collectively dictate average cell speed
	Plastic deformation of the nucleus and kink formation during pore entry
	Nuclear plasticity and DNA damage: insights from experiments
	Scaling relationships

	Discussion
	Conclusion

	Mechanical modelling of the cellular glycocalyx
	Introduction
	Materials and Methods
	Methodology
	Physical description of the modelling problem
	Finite Element Model

	Results
	Magnitude and localization of maximum stresses change in cell body and glycocalyx with increasing glycocalyx thickness during spherical indentation
	Evolution of indentation loads during spherical indentation of cellular glycocalyx
	Compression of cellular glycocalyx against ECM
	ECM displacement due to compression of cellular glycocalyx against ECM
	Mechanical implications of glycocalyx as a double brush

	Discussion
	Conclusion

	Detection of tumor nodule embedded inside healthy tissue
	Introduction
	Materials and Methods
	Physical description of the modelling problem
	Numerical formulation
	Loading and boundary conditions
	Material model
	Model validation
	Dimensional analysis

	Results and discussion
	Detection of composite stiffness of tissue and nodule using Hertzian and finite element approach
	Effect of non-dimensional parameters on indentation load
	Effect of anisotropy on nodule detection

	Palpation sensitivity chart
	Conclusion

	Summary and Conclusions
	Contributions
	Scope for future research

	List of Publications
	References

