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Abstract iii

Abstract

With the advent of data science, statistical modelling has become increasingly popular

over the past decade. Probabilistic programming languages contrive to make such models

available to a broader audience, including disciplines such as physics, where efficiency and

scalability are crucial to the overall modelling process. The encapsulation of statistical

constructs into simple syntactical structures allows for models to be defined declaratively

without requiring any programming expertise. While traditional probabilistic languages

allow for rapid prototyping of machine learning models, they do not handle discrete

parameters in a scalable manner.

This research aims to (1) develop efficient data structures and algorithms to represent the

graphical structure of statistical models while maintaining caches of intermediate results

such as sufficient statistics to allow for efficient updates and (2) explore the extent to

which statistical operations such as augmentation, collapsing and Gibbs sampling can be

supported and (3) develop a scheme with symbolic support for automatically performing

these operations.
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Chapter 1

Introduction

The recent growth in data science as a discipline has prompted widespread development

in many areas of artificial intelligence and machine learning. Advances in data storage

and processing technologies have allowed large collections of raw data to accumulate.

The sheer size of such data warehouses require the development of highly scalable ma-

chine learning techniques such as generative statistical modelling, in order to provide

valuable key insights about the data. These insights can then be translated into future

predictions and inferences to assist in key decision-making.

While considerable research interest in machine learning leads to the requirement for

many novel algorithms, the need for scalability and efficiency also means programming

complexity. While skilled programmers would have no issues navigating such novel

algorithms, this inherent programming difficulty limits the scope of applicability of novel

machine learning techniques to other fields such as physics and biology. Researchers in

these other fields may not have the programming cabability. Probabilistic programming

languages are being developed as a solution to this problem.

1.1 Probabilistic programming languages

Probabilistic programming languages support implicit statistical constructs that users

can directly call and use, similar to using a code library, in order to rapidly develop and

test machine learning algorithms. These languages intend to provide several key advan-

tages over using standard programming languages for the implementation of machine

learning models:

• The ability to declare statistical models using short, simple syntax translates di-

rectly into a drastic reduction in programming time and effort for users.

1
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• Higher ease of use as much of the complexity is abstracted away by the program-

ming syntax and statistical constructs

• Improved code modularity and maintainability as the model grows in complexity,

due to the declarative nature of the model

1.1.1 Gibbs sampling with BUGS

Consider the following specification of a Latent Dirichlet Allocation [5, 7] model imple-

mented in BUGS [40] (a probabilistic programming language):

model {

for (k in 1:K) {

phi[k,1:V] ~ ddirich(beta[])

}

for (d in 1:M) {

theta[d,1:K] ~ ddirich(alpha[])

for (n in 1:N) {

z[d,n] ~ dcat(theta[d,])

w[d,n] ~ dcat(phi[z[d,n],])

}

}

}

While this model definition bears striking similarities to a standard imperative program,

it is not actually executed in a top to bottom, left to right ordering as a standard program

would be. The BUGS parser first converts this into a graphical structure, which can

then be processed further in order to exploit relationships such as statistical conjugacy

present between distributions.

While existing probabilistic programming languages perform quite well on models re-

quiring sampling from continuous distributions, they do not perform quite as well on

models which require discrete sampling [62]. Additionally, due to the innate nature of

sampling, it is possible to optimize many models by providing parallel versions of the

model in question. Error reporting can also be problematic in models due to the in-

herent complexity associated with the number of possible interactions between different

types of distributions. Since probabilistic programming languages aim to be as general

as possible, providing proper debugging support is highly desirable. While existing lan-

guages sometimes provide workarounds for potential issues arising in such situations, for
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example: trying different priors, this may not be particularly helpful in the context in

question [56].

1.1.2 Compiling to GPUs with Theano

The ability to generate higher level code (for example: Java or C++ code) for statistical

models is very valuable, as it allows for closer scrutiny of the model in question. This

also allows for easier embedding of models in different contexts, as the higher level

code would be compilable on many different interfaces. An obvious extension is to also

generate code that is compatible with GPUs or other distributed systems. Given the

clear parallelizable nature of many models and sampling techniques, this would allow

models to scale into very large datasets. Many neural network architectures use a similar

approach in order to scale the problem they are solving to much larger datasets.

Figure 1.1: CNN diagram

Consider the following Theano [4] code for implementing neaural network based on a

convolutional layer similar to the one of figure 1.1. The input consists of 3 features maps

corresponding to an RGB color image of size 120x160. Two convolutional filters with 9x9

receptive fields are used. (Example sourced from [27]. Code non-essential to the model

specification process has been omitted.) Of particular interest is the declarative nature

of the model specification process and the relative ease with which complex architectural

units can be defined with a few lines of code (for example, the convolutional layers).

x = T.matrix(’x’) # the data is presented as rasterized images

y = T.ivector(’y’) # the labels are presented as 1D vector of

# [int] labels

# Construct the first convolutional pooling layer:
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layer0 = LeNetConvPoolLayer(

rng,

input=layer0_input,

image_shape=(batch_size, 1, 28, 28),

filter_shape=(nkerns[0], 1, 5, 5),

poolsize=(2, 2)

)

# Construct the second convolutional pooling layer

layer1 = LeNetConvPoolLayer(

rng,

input=layer0.output,

image_shape=(batch_size, nkerns[0], 12, 12),

filter_shape=(nkerns[1], nkerns[0], 5, 5),

poolsize=(2, 2)

)

layer2_input = layer1.output.flatten(2)

# construct a fully-connected sigmoidal layer

layer2 = HiddenLayer(

rng,

input=layer2_input,

n_in=nkerns[1] * 4 * 4,

n_out=500,

activation=T.tanh

)

# classify the values of the fully-connected sigmoidal layer

layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10)

# the cost we minimize during training is the NLL of the model

cost = layer3.negative_log_likelihood(y)

# create a list of all model parameters to be fit by gradient descent

params = layer3.params + layer2.params + layer1.params + layer0.params

# create a list of gradients for all model parameters

grads = T.grad(cost, params)
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In the case of deep neural networks, both the convolution process and the training of

weights can be setup as matrix multiplication problems. Once this is done, the key com-

plexity arises in efficiently parallelizing the matrix multiplication problem onto GPUs.

There are distributed algorithms which perform these operations at high efficiency even

for large datasets. This is automatically handled by most present deep learning systems.

The result is that the complex processing which happens in the background is encap-

sulated from the user, who only needs to create a simple model specification making

the entire process accessible to a much wider audience and thereby driving the overall

popularity of the underlying techniques.

1.1.3 Programmable Inference with Gen

A key issue in probabilistic languages arises in providing flexibility in terms of supporting

many different inference schemes. When different schemes are supported, it is important

to provide users with some control of the overall inference process in order to ensure a

robust system, that is able to meet the user’s needs.

Gen [17] is a probabilistic programming language that allows users to gain a high degree

of control over the inference process, by allowing them to write code for the inference

process, while still leveraging other available inference libraries.

Consider the following model defined in Gen.

@gen function generate_datum(x::Float64, prob_outlier::Float64,

noise::Float64, @ad(slope::Float64), @ad(intercept::Float64))

if @addr(bernoulli(prob_outlier), :is_outlier)

(mu, std) = (0., 10.)

else

(mu, std) = (x * slope + intercept, noise)

end

return @addr(normal(mu, std), :y)

end

generate_data = MapCombinator(generate_datum)

@gen function model(xs::Vector{Float64})

slope = @addr(normal(0, 2), :slope)

intercept = @addr(normal(0, 2), :intercept)
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noise = @addr(gamma(1, 1), :noise)

prob_outlier = @addr(uniform(0, 1), :prob_outlier)

@diff begin

addrs = [:prob_outlier, :slope, :intercept, :noise]

diffs = [@choicediff(addr) for addr in addrs]

argdiff = all(map(isnodiff,diffs)) ? noargdiff : unknownargdiff

end

n = length(xs)

ys = @addr(generate_data(xs, fill(prob_outlier, n),

fill(noise, n), fill(slope, n), fill(intercept,n)),

:data, argdiff)

return ys

end

Gen supports custom proposal distributions. In the code below, ”is outlier proposal”

is a custom proposal distribution which is used with Metropolis Hastings algorithm in

”parameter update”

@gen function is_outlier_proposal(previous_trace, i::Int)

is_outlier = previous_trace[:data => i => :is_outlier]

@addr(bernoulli(is_outlier ? 0.0 : 1.0), :data => i => :is_outlier)

end

and Julia functions to support inference.

function make_constraints(ys::Vector{Float64})

constraints = Assignment()

for i=1:length(ys)

constraints[:data => i => :y] = ys[i]

end

return constraints

end

function parameter_update(trace, num_sweeps::Int)

for j=1:num_sweeps

trace = default_mh(model, select(:prob_outlier), trace)

trace = default_mh(model, select(:noise), trace)

trace = mala(model, select(:slope, :intercept), trace, 0.001)

end

end
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function is_outlier_update(trace, num_data::Int)

for i=1:num_data

trace = custom_mh(model, is_outlier_proposal, (i,), trace)

end

return trace

end

Users can then combine any of these aspects to perform inference. For example, in the

following code, an inference program has been implemented using the previously defined

make constraints function. In this inference program, ”default mh” proposes new values

for random choices based on a default proposal distribution, and uses the Metropolis-

Hastings rule to accept or reject them. In situations where the default proposal function

causes slow convergence, users may setup their own updates and initialization to attempt

to improve performance. ”is outlier update” updates the trace based on the custom

proposal defined in ”is outlier proposal” and assigns outlier status to a point based

sampling from a bernoulli distribution. The model specification is defined in the ”model”

function, and this information is used in all future updates.

function inference_program_1(xs::Vector{Float64}, ys::Vector{Float64})

constraints = make_constraints(ys)

(trace, _) = initialize(model, (xs,), constraints)

for iter=1:100

selection = select(:prob_outlier, :noise, :slope, :intercept)

trace = default_mh(model, selection, (), trace)

trace = is_outlier_update(trace, length(xs))

end

return trace

end

The language provides access to some in-built helper functions for inference. In the

example above, default mh, select and initialize are examples of such functions.

Gen is built on top of Julia, and custom algorithms are incorporated using Julia func-

tions. The inference function listed here uses default mh, which proposes new assign-

ments for random choices according to a default proposal distribution and then decides

based on Metropolis-Hastings whether to accept or reject.
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1.2 Research aims and evaluation

This section delves into the expected outcomes of this research as well as exploring

avenues for evaluating the final framework created.

1.2.1 Research aims and expected outcomes

While many probabilistic programming languages have been proposed to automatically

generate statistical models, and their general capabilities are approaching maturity in

some areas, one area where we see they are not able to perform well is in sampling

on discrete data where often times the probability models used do not support general

schemes like naive Gibbs sampling [41] and Hamiltonian MC [10]. More generally we

see some fundamental gaps in the capabilities of existing systems, as follows:

• There is no probabilistic programming language that takes full advantage of suf-

ficient statistics and maintaining intermediate results along with statistical oper-

ations such as collapsing and augmentation in order to improve the efficiency of

the sampling process (to the best of our knowledge).

• While some languages perform well in the case of continuous sampling, they per-

form much worse in the case of discrete sampling, due to the underlying sampling

scheme. For example, this applies for the BUGS or Stan solutions for LDA, a

characteristic problem in unsupervised learning.

• Most probabilistic languages are very general in the models they allow and in the

functionality available as a programming language. However, doing so generally

comes at the cost of lower efficiency than languages which allow a more restricted

set of operations (Refer Section 3.1.1 and 3.1.3).

To overcome these issues, this research proposes a general architecture for a restricted

class of models, which operates at a reasonable efficiency for supported models, and

makes maximal use of sufficient statistics and intermediate results. This is developed as a

capability that can be used to extend existing mature systems such as [10, 17], and is not

intended as a full, independent standard alone probabilistic programming environment.

For the purposes of experimentation, a basic probabilistic programming language was

created and integrated with the system. While some initial exploration was done to

integrate into Stan, this proved to be too difficult. The system developed will also aim

to generate models which produce results with accuracy similar to those produced by the

original models, as reported in literature. Additional support for statistical operations

will be provided, leading to the possibility of easily extending simpler models in order

to generate more complex models.
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In conclusion, the expected research outcomes of this research include:

• Developing efficient data structures and algorithms to represent the intermediate

graphical structure of statistical models while maintaining caches of intermediate

results such as sufficient statistics

• Providing support for statistical operations such as augmentation and collapsing,

using reusable components in order to simplify the process of constructing complex

models as well as making the task of extending existing models more approachable.

• Developing a scheme with symbolic support for automatically performing these

operations.

1.2.2 Worked Example

Consider evaluation in the case of LDA [5] for the model shown in figure 1.2:

θ Z wα

Φβ

M
N

K

Figure 1.2: LDA Plate diagram

Here, M denotes the number of documents, Nm is number of words in document m. α

is the parameter of the Dirichlet prior on the per-document topic distributions. β is

the parameter of the Dirichlet prior on the per-topic word distribution. θm is the topic

distribution for document m. Φk is the word distribution for topic k. zm,n is the topic

for the n-th word in document m. Wm,n is the n-th word in document m.

The generative process for LDA is as follows:

~Φk ∼ Dirichlet(~β)

~θm ∼ Dirichlet(~α)

~zm,n ∼ Categorical( ~θm)

~wm,n ∼ Categorical(~Φzm,n)

From the model denoted above, the total probability can be defined as

P (W,Z, θ,Φ|α, β) =
K∏
k=1

P (Φk|β)
M∏
m=1

P (θ|α)

Nm∏
n=1

P (Zm,n|θm)P (Wm,n|ΦZm,n)
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The standard analysis of LDA involves integrating out θ,Φ in order to do collapsed

Gibbs sampling on Z. Using the independence of all θm and of all Φk, the integral can

be simplified and separated to

∫
θm

P (θm|α) ·
Nm∏
n=1

P (Zm,n|θm)dθm

Note that an equivalent formula exists for the Φ side as well for which the analysis is

identical. The term from the θ side can be simplified to

∫
θm

Γ
(∑K

k=1 αk

)
∏K
k=1 Γ(αk)

K∏
k=1

θ
nm,k,(·)+αk−1

m,k dθj

Here nm,k,v denotes the number of times document m contains word v with the topic k

assigned, and nm,k,(·) =
∑V

v=1 nm,k,v or in other words, nm,k,(·) denotes the number of

times topic k has been assigned in document m.

The integral above has the same form as the Dirichlet distribution and is finally simplified

to

∫
θm

Γ
(∑K

k=1 αk

)
∏K
k=1 Γ(αk)

K∏
k=1

θ
nm,k,(·)+αk−1

m,k dθj =
Γ
(∑K

k=1 αk

)
∏K
k=1 Γ(αk)

∏K
k=1 Γ(nm,k,(·) + αk)

Γ(
∑K

k=1 nm,k,(·) + αk)

This corresponds to integrating out θ on the document side. This does not require

symbolic integration as the product term is an unnormalized Dirichlet distribution whose

integral matches the normalizer of the distribution. On the word side, integrating out

Φ is a similar process and leaves us with the following term:

K∏
k=1

Γ
(∑V

v=1 βv

)
∏V
v=1 Γ(βv)

∏V
v=1 Γ(n(·),k,v + βv)

Γ
(∑V

v=1 n(·),k,v + βv

)
The full conditional for a word indexed by (m,n) is required for Gibbs sampling as

the update equation from which the sampler draws the hidden variable. This can be

obtained from the joint distribution (formed by the two terms above). Hence, the update

equation for the Gibbs sampler is given by (derived as per page 22 of [31] 1 and with v

corresponding to Wm,n:

p(Zm,n = k|Z−(m,n), w) ∝ (nm,k,(·) + αk)
n(·),k,v + βv∑V
v=1 n(·),k,v + βv

(1.1)

1http://www.arbylon.net/publications/text-est2.pdf
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A key takeaway from this analysis is the need for symbolic reasoning in the context

of optimizing efficiency. The counts nm,k,v are 3-dimensional in nature. However, by

setting up the computation of the counts in the form of nm,k,(·) =
∑

n 1Zm,n=k, it is

possible to perform the sampling using several 2-dimensional data structures, efficiently.

In order to set up these data structures automatically, the compiler needs to be able to

perform symbolic reasoning, which is one of the key challenges of this research.

Thus, the Gibbs sampling algorithm for Latent Dirichlet Allocation is as follows:

Initialization

nkm = 0 document-topic count

nm = 0 document-topic sum

nvk = 0 topic-term count

nk = 0 topic-term sum

for all documents m ∈ [1,M ] do

for all words n ∈ [1, Nm] do
sample topic Zm,n = k from the multinomial distribution and increment

counts

nkm++; nm++; nvk++; nk++;

end

end

Gibbs sampling over burn-in and sampling periods

while not finished do

for all documents m ∈ [1,M ] do

for all words n ∈ [1, Nm] do
given that word wm,n having term v is currently assigned to k

nkm −−; nm −−; nvk −−; nk −−;

Multinomial sampling according to update equation 1.1

sample topic k ∼ equation above and use new assignment of topic to

increment counts

nkm++; nm++; nvk++; nk++;

end

end

Check for convergence

end

Algorithm 1: Gibbs Sampling algorithm for LDA

Presented below is the code generated for LDA by the system. Note that the algorithm

uses c0 for nkm, c0 1 for nm, c1 for nvk and c1 1 for nk

//Initialization

for (int m = 0; m < M; m++){

for (int n = 0; n < N; n++){
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z[m][n]=Math.Random()*K;

c0[m][z[m][n]]++;

c0_1[m]++;

c1[z[m][n]][w[m][n]]++;

c1_1[z[m][n]]++;

}

}

//For each iteration of the Markov Chain run the following:

for (int m = 0; m < M; m++){

for (int n = 0; n < N; n++){

c0[m][z[m][n]]--;

c0_1[m]--;

c1[z[m][n]][w[m][n]]--;

c1_1[z[m][n]]--;

//Sample from full conditional

double[] p = new double[K];

for (int k = 0; k < K; k++){

p[k]=(Math.pow(a_1+c0_1[m],-1))*(Math.pow(b_1+c1_1[k],-1))

*(c0[m][k]+a[k])*(c1[k][v]+b[v]);

}

//cumulate values

for (int k = 1; k < K; k++){

p[k]+=p[k-1];

}

int k;

double val = Math.random()*p[K-1];

for (k = 0; k < K; k++){

if (p[k]>val)break;

}

z[m][n]=k;

c0[m][z[m][n]]++;

c0_1[m]++;

c1[z[m][n]][w[m][n]]++;

c1_1[z[m][n]]++;

}

}

In this case, it is apparent that the final resulting algorithm of the analysis process is

quite straightforward to understand, while the analysis required to reach that point is not

quite as simple. The generated algorithm can be checked for time and space complexity
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by simple inspection. The similarity of any generated code to the human-generated

version for this model could also similarly be tested. In general the human generated

versions of the algorithm will be available in the publications related to that work and

can be used as a baseline for comparison to the code/algorithm generated by this system.

In addition to this, model-specific evaluation (such as perplexity for the model above)

can be carried out in a similar fashion by running the evaluation metric on both the

standard version and generated version of the algorithm followed by a comparison of

results.

1.2.3 Evaluation

Evaluation of this work will primarily be based on the following criteria:

Efficiency - The efficiency of the final algorithm generated by the platform would be

evaluated for both time and space complexity. Where possible time and space

locality will be exploited in caching in order to optimize these complexities.

Accuracy - The evaluation of accuracy or predictive performance will vary from model

to model. The aim here is to achieve a level of performance comparable to that

achieved by existing algorithms/techniques. Where applicable metrics such area

under receiver operating characteristic curve (AUC-ROC), mean square error and

mean absolute error will be used to quantify accuracy.

Models - A set of models that cannot be automatically generated by existing prob-

abilistic programming languages has been identified. These models will be used

for testing evaluation. There are many different ways of developing code for a

given algorithm so automatic inspections or comparison of code is not feasible.

Therefore we can do human inspection of code/algorithm for comparison, or run-

time performance comparisons. The results of these experiements can be found in

Chapter 7.

Evaluating Variants - Different variants for a particular model can be developed by

the system. In general, however, there is no theory to easily say which variant

my be superior in a particular context: multi-core, GPU, distributed computing,

streaming data, small samples, etc. Therefore we demonstrate how variants can be

automatically generated, by providing generated examples of the code for different

variants. Generated code for different variants is provided in Chapter 7. This code

can then be used for complexity analysis, which will inform users about the best

situation to use a particular variant in.



Chapter 2

Probability and Bayesian

Modelling

This chapter provides a brief review of basic probability theory to support the thesis.

First consider Bayesian modelling. This is a basic review of notation and terms, and

more detail can be seen in text books such as [24]. This chapter briefly covers the Bayes

Theorem, discrete distributions, conjugate priors, augmentation methods and Gibbs

sampling.

2.1 Bayesian Modelling

For probabilistic and Bayesian modelling, one has a data sample to analyse ~x, and a

parameterised probability model p(~x|~θ) which is referred to as the data distribution or

data likelihood, and multiple data items are assumed to be independently and identi-

cally distributed. Thus for a sequence of data ~x1, ..., ~xI represented as X, the full data

likelihood becomes p(X|~θ) =
∏I
i−1 p(~xi|~θ).

The task of Bayesian analysis is to estimate the unknown parameter ~θ, more precisely

infer its posterior distribution, p(~θ|X, ~α) which is constructed from the prior distribution

p(~θ|~α) and the data likelihood using the Bayes Theorem. The parameters of the prior

distribution, ~α, are usually treated as a hyper-parameter of the model.

With Bayes’ theorem, the posterior distribution can be derived as:

p(~θ|X, ~α) =
p
(
X|~θ

)
p(~θ|~α)

p(X|~α)
=

p(X|~θ)p(~θ|~α)∫
p(X|~θ′)p(~θ′|~α)d~θ′

, (2.1)

14
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where p(X|~α) is the marginal distribution with the parameter ~θ marginalised/integrated

out.

After the model parameters are estimated, the standard use of a Bayesian model is to

apply it to a new sample ~x∗ to make predictions:

p(~x∗|X, ~α) =

∫
p(~x∗|~θ)p(~θ|X, ~α)dθ,

where the integral is often hard to compute so instead approximations are used. Selecting

data and prior distributions, and constructing the connections of those distributions are

the main tasks of Bayesian modelling. After a model is built, the training of the model is

about the inference of the parameters by inferring their posterior distributions, referred

to as Bayesian inference. The primary task of more complex Bayesian modelling is to

approximate the unknown data likelihood p(~x|~θ) by performing approximate Bayesian

inference. The technique used in this thesis is Gibbs sampling, introduced later in this

chapter.

2.2 Probability Distributions for Discrete Data

This thesis focuses on Bayesian inference for discrete data, so data distributions for

discrete data are reviewed here. Observations of a sample is V dimensional vector,

which can either be binary ~x ∈ {0, 1}V or count-valued ~x ∈ NV , where N = {0, 1, 2, · · · }.
The data collection consists of N iid samples, denoted as X = [~x1, · · · , ~xN ], meaning

that X is a V by N discrete matrix and ~xi is its ith column.

If an entry xj of data vector ~x is a binary variable, a natural model is the Bernoulli

distribution.

xi,j ∼ Bern(θj) ,

where usually the scalar θj would be different per dimension j. One may also use a

vector version

~xi ∼ Bern(~θ) ,

and these are used below where the distribution is not naturally in a vector form.

If ~x is a count-valued vector, one can use the Poisson, negative-binomial, or multinomial

distributions as the data distribution.

~x ∼ Pois(~θ),

~x ∼ NB(~r, ~p),

~x ∼ Multi(x·, ~θ),
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Table 2.1: Conjugate priors

Data distribution Prior distribution Posterior distribution

x ∼ Bern(θ) θ ∼ Beta(α, 1/β) θ ∼ Beta(α+ x, β + 1− x)

x ∼ Pois(θ) θ ∼ Gamma(α, 1/β)1 θ ∼ Gamma(α+ x, 1/(β + 1))

x ∼ NB(r, p) p ∼ Beta(α, β) p ∼ Beta(α+ x, β + r)

~x ∼ Cat(~θ) ~θ ∼ Dir(~α) ~θ ∼ Dir(~α+ ~x)

~x ∼ Multi(x·, ~θ) ~θ ∼ Dir(~α) ~θ ∼ Dir(~α+ ~x)

x ∼ Gamma(α, 1/β) β ∼ Gamma(α0, 1/β0) β ∼ Gamma(α0 + α, 1/(β0 + x))

where for Poisson, the rate ~θ ∈ RV+ and R+ = {x : x ≥ 0}; for negative-binomial, ~r ∈ RV+
and ~p ∈ (0, 1)V ; for multinomial, ~θ is a probability vector; and total count x· =

∑V
v=1 xv

is assumed given.

The comparisons between the above three choices can be summarised as follows:

1. The Poisson and negative-binomial distributions are scalar distributions so vec-

torised in the above presentation.

2. When the total count of a data vector x· is known, ~x ∼ Pois(~θ) is equivalent to

~x ∼ Multi(x·, ~θ/θ·).

3. The negative binomial is an extension of the Poisson. The Poisson distribution

does not allow the variance to be adjusted independently from the mean, while the

negative-binomial distribution consist of one more parameter to model the data

variance independently.

2.2.1 Conjugate Prior Distributions

Prior distributions are needed for the above discrete distributions. In practice, conjugate

priors are frequently used. These enable the posterior to have the same algebraic form

as the prior, which significantly reduces the complexity of inference by bypassing the

computation of the integral in Eq. (2.1). This means ease of forming a posterior, often

times ease in sampling, and also a fairly straight forward interpretation of inference.

Standard conjugate priors used in this thesis are given in Table 2.1

Consider the Bernoulli and beta as an example. The prior distribution is the beta,

θ ∼ Beta(α, β). After observing one sample x, the posterior becomes θ ∼ Beta(α +

x, β + 1 − x). A data sample updates the model parameter with Bayes’ theorem, but

does so with a simple change to the parameters of the prior. Where n positive data

are observed, and m negative, then the posterior would be θ ∼ Beta(α + n, β + m). If

fewer samples are observed or the data space is sparse, the prior would have a stronger

influence on the posterior, while the uncertainty of the posterior is reduced when more

samples are observed.
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Note that not all parameters in these conjugate priors have simple distributions. The

beta and Dirichlet distributions and the first argument to the gamma distribution do

not have natural conjugate priors. Moreover, they are critical for the basic discrete

distributions, especially when doing hierarchical modelling. To address this problem,

the method of data augmentation is introduced next.

2.2.2 Non-parametric distributions

Non-parametric models have been increasingly used in recent machine learning ap-

proaches. While there is an extensive literature on non-parametric models and their

computation in the statistics community [34, 37] and coming out of the machine learn-

ing community [53, 54], for the purposes of this thesis we can use a finite approximation

that avoids the involvement of non-parametric theory.

So, for example, the Dirichlet process can be approximated by a Dirichlet as follows. Let

H() be the base distribution for the Dirichlet process, and let α be the concentration

parameter, and let K be an integer. We use a K-dimensional Dirichlet to approximate

the Dirichlet process.

µk ∼ H() for k in 1, ...,K

~π ∼ DirichletK

( α
K
, . . . ,

α

K

)
µ ∼ G =

K∑
i=1

πkδµ=µk

Here, G is approximately a sample from the Dirichlet process as K →∞. This technique

is used extensively in the research community.

Similar approximations exist for the Gamma process. Thus in this thesis, non-parametric

methods can be avoided. Arguably, this is not the most efficient or effective way to do

non-parametric computation, but it is adequate.

2.3 Data Augmentation

Conjugacy makes inference simple but it also limits the flexibility of building Bayesian

models. The technique of data augmentation can be used with the prior distributions

above to convert a non-conjugate distribution into a simple form, which may be conju-

gate.

A full worked example is given with the Poisson-Gamma-Gamma model in the next

subsection, but consider the basic form. A simple hierarchical model might take the
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form p (x|θ) and p (θ|β), where x is the data, θ is a model parameter and β is a hyper-

parameter. If the likelihood p (x|θ) as a function of θ is not conjugate to the prior p (θ|β),

then complications can arise in estimation. Augmentation can sometimes address this. A

new variable is introduced, t, and assume it is discrete for now, with a joint distribution

p (x, t|θ), which must have the following properties:

• it marginalises out back to the original model, p (x|θ) =
∑

t p (x, t|θ),

• the joint likelihood p (x, t|θ) has a simpler functional form in θ, and is now (hope-

fully) conjugate to p (θ|β), and

• the conditional p (t|x, θ, β) can be sampled efficiently.

In this case, we can sample t in an MCMC step and then go on and estimate or sample

θ.

An example of augmentation is given below. The Student t-Distribution is used to model

the marginal distribution of the mean x of a Gaussian with unknown variance. Aug-

menting the model with variable λ with strategic choice of parameters and distribution

sets up the 2 terms in red to get cancelled out, leading to a simplification of the model.

p(x|ν) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

)(1 +
x2

ν

)− ν+1
2

Introduce λ ∼ gamma
(
ν+1

2 , 1 + x2

ν

)
:

p(λ|ν, x) =

(
1 + x2

ν

) ν+1
2

Γ
(
ν+1

2

) λ
ν−1
2 e
−
(

1+x2

ν

)
λ

p(λ, x|ν) =
1

√
νπΓ

(
ν
2

)λ ν−1
2 e
−
(

1+x2

ν

)
λ

x|λ, ν ∼ Gaussian
(

0,
ν

2λ

)
Note, however, this is not data augmentation but parameter augmentation, but the

behavior is similar.
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2.3.1 The Poisson-Gamma-Gamma Model

Now we consider the following hierarchical Bayesian model:

α ∼ Gamma(a0, 1/b0),

β ∼ Gamma(c0, 1/d0),

θ ∼ Gamma(α, 1/β),

x ∼ Pois(θ).

Given the Poisson-Gamma conjugacy in Table 2.1, consider the posterior for θ, α, β given

the single data x. The joint probability illustrates conjugacy:

p (x, θ|α, β) =
θx

x!
e−θ

βα

Γ(α)
θα−1e−βθ

We can show that θ’s posterior given x is also a gamma: θ|x, α, β ∼ Gamma (α+ x, 1/(β + 1)).

This gamma posterior is conjugate to the gamma prior of β, which is the scale pa-

rameter. The posterior of β given x, θ is a gamma distribution as well: β|x, θ ∼
Gamma(c0 + α, 1/(d0 + θ)). But there is no ready form for the posterior of α due

to the term Γ(α).

Marginalising out θ yields a probability for x given α and β:

p (x|α, β) ∝ Γ(α+ x)

Γ(α)

βα

(β + 1)α+x
. (2.2)

This is also not conjugate to the gamma prior of α because of the ratio Γ(α+x)
Γ(α) . This

ratio is called the Pochhammer symbol and sometimes a rising factorial, and denoted by

(α)x [64].

So sampling for β and θ given x can be done efficiently. But there is no efficient way

to sample for α given x, regardless of whether θ is marginalised out or not, and general

purpose but slow schemes need to be used such as Metropolis-Hastings.

Fortunately, the Pochhammer symbol can be augmented with an auxiliary variable t:
Γ(α+x)

Γ(α) =
∑x

t=0 S
x
t α

t where Sxt indicates an unsigned Stirling number of the first kind [13,

55]. With t, Eq. (2.2) can be augmented as follows. First reexpress the initial probability.

p (x|α, β) ∝
x∑
t=0

Sxt α
t βα

(β + 1)α+x

=
∞∑
t=0

δt≤x S
x
t α

t βα

(β + 1)α+x

∝
∞∑
t=0

p (x, t|α, β)
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Now match the terms:

p (t|x, α, β) ∝ δt≤x S
x
t α

t .

Moreover, the likelihood p (x, t|α, β) as a function of α is now conjugate to the prior

distribution for α because it is in a gamma form.

Therefore, the posterior of α given x, t can be written as:

α|x, t, β ∼ Gamma

(
a0 + t, 1/

(
b0 + log

β

β + 1

))
. (2.3)

Now to work with this neat gamma distribution for α we first need to sample t from

t ∼ p (t|x, α), where

p (t|x, α) =
Sxt α

t∑x
t=0 S

x
t α

t

Fortunately, the above Pochhammer symbol is the normalisation term of the posterior

of another distribution called the Chinese Restaurant Process [55] with α as its concen-

tration parameter, x as the number of customers, and t as the number of tables assigned

for those customers. For the case above only the number of tables t is needed, and the

distribution of t is called the Chinese Restaurant Table (CRT) distribution by [70].

t|x, α ∼
x∑
i=1

Bern

(
α

α+ i− 1

)
, (2.4)

where α
α+i−1 is the probability of opening a new table for the ith customer. Thus p (t|x, α)

can be sampled efficiently using this sum of Bernoulli variables.

Refer to this augmentation as the CRT augmentation. These various formula then get

pieced together to obtain a sampler for α given x and β as follows:

1. sample t|x, α using the CRT distribution of Equation (2.4),

2. sample α|x, t, β using the gamma distribution of Equation (2.3)

This CRT augmentation has been used extensively to build hierarchical models with

gamma distributions for Poisson-distributed data [33, 64, 66, 68, 71, 72].

2.3.2 The Multinomial-Dirichlet-Gamma Model

Consider the following model:

αv ∼ Gamma(a0, 1/b0),

~θ ∼ Dir(~α),

~x ∼ Multi(x·, ~θ),



Probability and Bayesian Modelling 21

where ~x ∈ NV , ~θ is a probability vector, and ~α ∈ RV+. Given the Multinomial-Dirichlet

conjugacy in Table 2.1, θ’s posterior is also Dirichlet:

~θ ∼ Dir(α+ ~x).

Marginalising out ~θ yields:

p (~x|~α) ∝ Γ(α.)

Γ(α· + x·)

V∏
v=1

Γ(αv + xv)

Γ(αv)
.

The CRT augmentation deals with the product of right-hand side gamma ratios. The

left-hand side ratio can be manipulated with a beta distribution.

For the left-hand side gamma ratio, introduce a beta distributed auxiliary variable

p|x, α· ∼ Beta(α·, x·) and augment the ratio like so:

Γ(αv)

Γ(α· + x·)
∝
∫
p
pα·−1(1− p)x·−1. (2.5)

For the right-hand side gamma ratios, for each v introduce an auxiliary CRT variable

tv given xv, αv using Equation (2.4).

This becomes:

p
(
~x,~t, p|~α

)
∝

V∏
v=1

pαvαtvv =
V∏
v=1

αtvv e
− log 1

p
αv ,

which as a likelihood for ~α is conjugate to the gamma prior of each αv. The posterior

of αv given tv, p is:

αv|tv, p ∼ Gamma

(
a0 + tv, 1/

(
b0 + log

1

p

))
. (2.6)

Refer to this technique as the beta-CRT augmentation. In summary, the steps are:

1. for each v, sample tv|xv, αv using the CRT distribution of Equation (2.4),

2. sample p ∼ Beta(α·, x·).

3. sample α|~t, p using the gamma distribution of Equation (2.6)
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Table 2.2: Auxiliary variable samplers for terms in β.

FORM AUXILIARY VARIABLES NEW FORM

(I + β)−α q ∼ Γ(α, I + β), α, I > 0 e−qβ

Γ(β + n)/Γ(β) t ∼ CRT(β, n), n ∈ Z+ βt

Γ(β)/Γ(β + α) q ∼ be(β, α), α, β > 0 qβ

β(β + α)...(β + (n− 1)α) t ∼ Poch(α, β, n), n ∈ Z+ βt

α(α+ β)...(α+ (n− 1)β) t ∼ Poch(β, α, n), n ∈ Z+ βn−t

Note that in addition to beta-CRT, the CRT augmentation can also be applied to model

a vector of count-valued data:

αv ∼ Gamma(a0, 1/b0),

β ∼ Gamma(c0, 1/d0),

~θ ∼ Gamma(~α, 1/β),

~x ∼ Pois(~θ),

where ~x ∈ NV .

The major difference between CRT and beta-CRT for modelling a data vector is that in

the former one, ~θ is unnormalised, while it is normalised probability vector in the latter

one. The beta-CRT augmentation has also been heavily-used in building hierarchical

models based on the multinomial-Dirichlet [64, 66, 67].

2.3.3 Different Augmentations

Examples of some known augmentations used when Bayesian modelling of discrete data,

as collected from previously mentioned Gibbs sampling papers, are given in Table 2.2.

To see how this would be used consider the following scenario: Suppose you wanted to

sample

p (β|n) ∝ β(n)e−β ,

for n ∈ Z+. Now this is close to a gamma distribution, but the term β(n) is the

problem. It matches the second row in the table under FORM. To sample according to

this, sample as described in the second column, t ∼ CRT(β, n), and now the probability

is transformed by replacing FORM with NEW FORM.

p (β|n, t) ∝ βte−β ,

which is now easy to sample. Likewise, in any functional form we wish to sample from,

the augmentations listed in column 2 let us transform, FORM into NEW FORM.
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An algorithm for sampling from CRT(β, n) simulates sequential table sampling from a

Chinese restaurant process, and is given in Algorithm 2. This cleans up the algorithm

in Equation (2.4).

CRT-sample(β, n):
// n ∈ Z+, β > 0
t = 1 // first data always opens table
for i = 1 to n− 1 do

t = t+ Bern
(

β
β+i

)
// does new data open a table?

end
return t //distributed proportional to βtSnt

Algorithm 2: Simple sampling tables for a CRT(β, n)

An algorithm for sampling a Pochhammer symbol, Poch(α, β, n), is similar to the CRT

algorithm, and given in Algorithm 3.

Pochhammer(α, β, n):
// n ∈ Z+, α, β > 0
t = 0
for i = 0 to n− 1 do

t = t+ Bern
(

β
β+αi

)
end
return t

Algorithm 3: Sampling a Pochhammer symbol

2.4 Bayesian Inference

Bayesian inference is used to estimate the parameters of a Bayesian model using their

posterior distributions. The posterior of the model parameter ~θ can be obtained by

Bayes’ theorem, Eq. (2.1). But to exactly compute the posterior, we need to calculate

the integral in the marginal distribution, p(X|~α) which is usually intractable.

To deal with this, approximate Bayesian inference algorithms are used. Two of the most

commonly-used approximate Bayesian inference techniques are Markov Chain Monte

Carlo (MCMC) sampling and variational inference. The former approach obtains (ap-

proximate) samples from the posterior. The latter approach approximates the posterior

with a variational distribution. These two are a broad family of methods with much

recent research.

This thesis works with a specific type of MCMC sampling called Gibbs sampling. It

is often a simple method to implement and also a sufficiently general method to allow

substantial application, for instance in recent machine learning algorithms [33, 64, 66,
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68, 71, 72], in one of the first probabilistic programming approaches BUGS, and also

supported by some distributed processing methods [8, 35].

2.4.1 Gibbs Sampling

Gibbs sampling [25], which forms the basis for BUGS, is a special case of a very general

MCMC method called Metropolis-Hastings sampling. For this the conditional posterior

distribution of each dimension of θ, θv, is used to resample θv. So

θ∗v ∼ p
(
θ∗v |~θ¬v,X

)
.

where ~θ¬v is the vector ~θ with the scalar value θ∗v removed. Gibbs sampling works best

when this conditional posterior has a simple form, which usually happens in conjugate

models. Some models maybe partially conjugate, as is the case for the Multinomial-

Dirichlet-Gamma model above. So for these, data augmentation can work well.

Using Gibbs sampling (or other MCMC sampling algorithms) one collects samples from

the posterior, and these can be used to characterise the posterior. So a number of Gibbs

samples may be run to “burn-in” the sampler and thereafter samples are retained. We

then use the samples to compute the following properties of the posterior. Let ~θ(s) be

the sth collected sample. Then

~θ ≈
S∑
s=1

~θ(s)/S (posterior mean)

p (~x∗|X) ≈
S∑
s=1

p
(
~x∗|~θ(s)

)
/S (predictive distribution)

2.4.2 Operations in Gibbs Sampling

The two main classes of operations used in developing efficient Gibbs samplers are col-

lapsing and augmentation, covered next.

2.4.2.1 Collapsing Operations

Collapsing (or marginalization) is the process of integrating over some or all param-

eters of the model and may be associated with a reduction of the data to sufficient

statistics of the marginal model. If the marginalized distribution is tractable, it can

then be directly used in inference. Figure 2.1 denotes an example of marginalization as

applied to a graphical structure, where the new node ‘s’ has been marginalized out of

the graph leading to a new connection between nodes ‘lc’ and ‘b’. In the discrete case,
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marginalizing involves summing over the possible states of the marginalized variable and

in the continuous case, the variable would be integrated out instead.

For the example in Figure 2.1, s is being marginalised out. The new set of variables

thus becomes X/{s}, and the following formula achieves the marginalisation:

p(X/{s}) =
∑

s∈values(s)

p(X)

Figure 2.1: Collapsing

2.4.2.2 Augmentation Operations

Data augmentation is the inverse operation of marginalization. Data augmentation

involves adding parameters to the model to make it more tractable. This is particularly

helpful when the complexity of adding parameters is less significant than the benefits of

simplifying the distributions of the model. Figure 2.2 denotes an example of augmenta-

tion as applied to a graph, where the new node ‘u’ has been introduced into the graph

and has been connected with ‘t’,‘lc’ and ‘toc’, due to being conditioned on them.

Figure 2.2: Augmentation

In general, augmentation is done strategically in order to simplify the model. In this

case, let X denote the nodes in the graph except u. The new joint distribution p(u,X)
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must satisfy

p(X) =
∑

u∈values(u)

p(u,X) .

Moreover, we know from the shape of the undirected graph that

p(u,X)

p(X)
= p(u|X) = p(u|t, lc, toc) ,

and thus

p(u,X) = p(X)p(u|t, lc, toc) .

Examples of some known augmentations were given in Table 2.2.

2.5 Machine Learning with Gibbs Sampling

Researchers in the machine learning community are using Gibbs sampling particularly for

unsupervised learning in discrete domains, for which the method is particularly suited

[12, 13, 18, 19, 33, 38, 55, 64, 64, 66–68, 70–72]. The majority of these methods do

augmentation and collapsing to achieve efficiency. In the area of non-parametric topic

models, for instance, superior results [6] with similar speed to sophisticated distributed

variational methods were obtained by using a technique called hogwild Gibbs [35] that

allows the use of multi-core processing. For all of these algorithms, existing methods in

the probabilistic programming community are unable to support development of corre-

sponding efficient algorithms.



Chapter 3

Literature Review

This section provides an overview of the prior work relevant to this thesis.

The main body of literature is present under probabilistic programming, which relates

to work presenting abstractions in the area of statistics and machine learning, to enable

users to write code that builds models and performs training or inference with these

probabilistic constructs. A number of influential probabilistic programming languages

have been reviewed, with particular attention paid to aspects such as language design,

statistical abstractions, symbolic support and robustness. The review covers key aspects

of classic probabilistic programming languages and also provides a brief overview of

recent developments.

Symbolic processing is another area that influences this thesis, as the developed system

is very reliant on the symbolic primitives present in this area of computer science. The

relevant work from this area can be divided into symbolic systems and pattern matching

algorithms. Symbolic systems provide general symbolic support for use in a plethora of

use cases. Pattern matching algorithms are primarily focused on performing symbolic

search based on symbolic structures.

3.1 Probabilistic Programming

Probabilistic programming [29, 47] is a programming paradigm introduced with the

objective of enabling the description of probabilistic models using simple syntax and

then performing inference on those models. While most probabilistic programming

languages extend other basic programming languages (such as Java), several others

(such as BUGS and Stan) offer their own declarative formulation for program syntax.

Declarative programming languages focus on what needs to happen, rather than how

it happens. This is distinct from imperative languages which focus on instructing the

27
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compiler step by step how program execution should occur. Imperative languages offer

more control to the programmer while declarative languages are more user friendly.

At present, a wide variety of probabilistic programming languages are available. Nearly

all probabilistic languages are Bayesian, simply due to the difficulty of creating other

frameworks for automated reasoning about general models. Among the Bayesian prob-

abilistic programming languages, some (BUGS [41], STAN [10], AutoBayes [22], JAGS

[48] and Infer.NET [44]) allow only a restrictive subset of models to be represented

compared to frameworks based on more general programming languages such as IBAL

[45], BLOG [43], Figaro [46], and Church [28]. This is a trade-off between flexibility

and efficiency, as the restricted languages are much faster, in general, compared to the

more flexible languages [26]. In this review, we will be primarily evaluating the more

restrictive class of languages, as scalability is a primary requirement of the system under

development.

From a probabilistic programming perspective, declarative languages have the distinct

benefit of allowing users less versed in programming to execute their own statistical

models with relative ease, while allowing expert users to rapidly prototype their models

using the innate flexibility provided by not needing to specify standard distribution

semantics and axioms related to probability and statistics.

This section introduces several probabilistic programming languages that have seen great

use over the past decade and offers a critical analysis of various aspects of the language

design and its impact on usability, efficiency and extensibility.

3.1.1 BUGS

BUGS is a probabilistic programming language for performing Bayesian inference using

Gibbs sampling. BUGS is written in Component Pascal, a lesser known programming

language [40]. While Bayesian analysis is commonplace at present, BUGS was introduced

in an era where techniques based on simulation were rare. While Bayesian methodologies

were still applied, they were mostly viable in situations where closed form solutions could

be derived using statistical conjugacy, or when numerical integration techniques could

be applied to the problem at hand. The introduction of BUGS led to the implementa-

tion of Bayesian methods in a wide range of fields including ecology, actuarial science,

genetics and sports modelling. BUGS currently exists as 2 projects WinBUGS[41] and

OpenBUGS[50].

A key aspect of BUGS is the flexibility it provides as a consequence of graphical mod-

elling. BUGS uses a directed acyclic graph (DAG) to represent a model, with every

vertex in the DAG corresponding to a variable in the model and each directed link

representing the relation of direct dependence.
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As an example, the code below denotes a linear regression example in BUGS. Note that

the ∼ symbol denotes sampling from a distribution. The corresponding DAG is given

in Figure 3.1.

model {

for (i in 1:N) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- alpha + beta * x[i]

}

alpha ~ dnorm(m.alpha, p.alpha)

beta ~ dnorm(m.beta, p.beta)

log.sigma ~ dunif(a, b)

sigma <- exp(log.sigma)

sigma.sq <- pow(sigma, 2)

tau <- 1 / sigma.sq

p.alpha <- 1 / v.alpha

p.beta <- 1 / v.beta

}

Figure 3.1: BUGS Linear Regression example

The joint probability distribution for all vertices in a DAG can be given by:

p(V ) =
∏
v∈V

p(v | Pv)



Literature Review 30

where Pv denotes the parents of vertex v.

In the context of Gibbs sampling, we require the full conditional distribution of each

vertex conditional on the values of all other vertices. Let u be any node in the graph.

then:

p(u | V \ u) ∝ p(u | Pu)×
∏
v∈Cu

p(v | Pv)

where Pv and Cv denote the parents and children of vertex v respectively. This follows

from the Markov blanket property for a Bayesian network, which states that the Markov

blanket for a node A in a Bayesian network is the set of nodes composed of A’s parents,

its children, and its children’s other parents (Figure 3.2).

Figure 3.2: Markov Blanket

This factorization has 2 implications:

1. Computation of the joint posterior for a DAG requires only the relationship be-

tween each node and its parents.

2. The full conditional distribution for any vertex or set of vertices depends only on

its Markov blanket and is thereby a local property of the graph.

In combination, this means that each vertex only needs to store information about how

it is related to its Markov blanket and any computations involving a node are also local

computations which do not require knowledge of the structure of the rest of the graph.

The BUGS Language

BUGS is a declarative language for representing graphical models using code. This

means that the user simply defines the relationships between nodes and provides the

structure and properties of the graph, but does not have as much control (compared to

a regular programming language) over the actual execution of the generated code. This

is highlighted by the language’s lack of an (if,then,else) construct which is a standard

structure in most traditional programming languages.
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While the declarative nature of BUGS allows for rapid prototyping of complex statistical

models, it is important to note the limitations of doing so. The design philosophy of

BUGS is based on the software engineering concepts of abstraction and encapsulation.

When considering the operation of the generated graphical structure from the perspec-

tive of Gibbs sampling, it is sufficient to abstract out the key details. As each vertex

is visited, its relevant contribution to the full conditional is updated, and the process

continues by navigating to its child vertices. This allows for decoupling of the distri-

butions which the nodes represent. BUGS uses this property to allow for a component

oriented approach. Statistical distributions, functions and even updating algorithms can

be added or removed with very high flexibility, allowing for an easy-to-use interface users

to generate models.

A major disadvantage of this approach of abstraction becomes apparent when debugging

and error-reporting is considered. Because of the modular way in which BUGS is set up,

it is possible for a very large range of models to be defined within it. This allows for the

possibility of many different vertex-vertex context-dependent interactions. Additionally,

modelling components with no direct dependence might conflict with each other. While

each component performs basic testing on itself and its Markov blanket, these checks

are necessarily localized and are also context independent.

As models get more complex, this increases the likelihood that a very complex error will

occur. Additionally, due to the complexity of the interactions, debugging information

cannot generally be derived about the situation, leading to ambiguous error statements

[16]. Especially when these occur during situations such as Markov Chain Monte Carlo

simulations, it can be very difficult to pinpoint the source of the error. The BUGS

user manual lists several work-arounds for such scenarios, including selecting different

priors, changing initial values and re-parameterizing the model. However, this trial and

approach system becomes inapplicable when the model is very complex and the number

of parameters is high [56].

The design methodology behind BUGS should allow for a high degree of parallelism to

be incorporated into its system. Multi-chain Gibbs sampling uses independent chains,

with each chain requiring no communication with other chains and represents an easily

parallelizable component. Additionally, performing updates may also be done in parallel

to some extent, but would require proper handling of locks on nodes and race conditions.

However, BUGS does not appear to exploit much of this parallelism [39].
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3.1.2 AutoBayes

AutoBayes [22] is a framework for generating automated data analysis programs from

statistical models. AutoBayes uses a schema-based system to perform program syn-

thesis. Schema encode generic code in the form of a template and additionally specify

applicability constraints on them. These are checked against the model using theorem

proving techniques. AutoBayes supports symbolic and algebraic computations and at-

tempts to derive closed-form solutions for most of its applications. The entire system

has been developed in SWI-Prolog [60] but generates C/C++ code.

A crucial aspect of AutoBayes is that it incorporates symbolic reasoning into its au-

tomated workflow [49]. The choice of Prolog has been motivated by the system’s re-

quirement of symbolic reasoning along with reasoning over graphs and general purpose

programming operations such as input/output. AutoBayes maintains information re-

garding all assumptions (for example, an expression being non-zero) and either dis-

charges them during synthesis or generates code-level assertions which then have to be

checked during run-time. A symbolic algebra system has not been used due to the lack

of transparency, as operations done by such engines are not always visible in terms of

the assumptions they use. During symbolic calculations, such simplifications can lead

to possible unsoundness and hence incorrect programs since all assumptions may not be

explicitly made available. This arises from the fact that a symbolic algebra system will

have many different methods for simplifying symbolic expressions and may represent

the same expression in different ways. For example, a probabilistic language built on a

symbolic algebra system may always expect (a + b + c) to be represented as ((a + b)

+ c), but if the system represents it as (a + (b + c)), it may cause issues which can be

considerably difficult to debug.

The architecture of AutoBayes is composed of several key components.

The Synthesis kernel is tasked with generating the initial Bayesian network based

on the input model specification. The DAG is generated in a manner very similar to

BUGS except for how loops and nested variables are handled. AutoBayes uses the

technique of flattening, which removes nested variables and introduces new variables as

replacements. This has the added implication of enlargening the DAG by adding more

edges and vertices. For example, the declaration

x(i) ~ gauss(a(c(i)), b(c(i)))

introduces the three edges:

a(j) -> x(i)
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b(j) -> x(i)

c(i) -> x(i)

In this situation note that although x and c indexed by i, each x(i) now depends on

all a(:) and b(:), which portrays the unknown nature of the values of the indices c(i)

at model construction time and additionally requires a new indexing variable j to be

introduced.

Once the initial network is constructed, synthesis proceeds by applying schemas in an

exhaustive manner using depth-first search with backtracking. This allows variants of

programs to be generated - any search that terminates by correctly matching all required

criteria is a valid program, and DFS with backtracking is guaranteed to find all such

variants.

The schemas used predominantly fall into one of four categories:

Network decomposition schemas are composed of suitable encodings of indepen-

dence theorems for Bayesian networks. These schema define the decomposition of a

probabilistic inference task over a complex network into simpler tasks over less complex

networks. This additionally informs the decomposition of the data analysis program into

simpler components as well. The preconditions for these schema are generally checked

by using graphical reasoning.

Formula decomposition schemas work on complex formulae in a similar manner to

Network decomposition schemas but work on formulae instead.

Statistical algorithm schemas are graph schemas which are more complex than Net-

work decomposition schemas. They tend to involve more moving parts, for example,

storing the results of certain intermediate calculations. These require considerable sym-

bolic reasoning during the initialization process.

Numerical algorithm schemas take over once graph based schema have been ex-

hausted of conditional probabilities, and these schemas provide the means of setting

up the appropriate distributions to be converted into an optimization problem. Auto-

Bayes then attempts to solve this optimization problem by initially attempting to find a

closed-form solution (using partial differentiation followed by solving simultaneous equa-

tions using gaussian variable elemination), followed by the alternative of using numerical

techniques (such as Newton-Raphson) to obtain solutions.
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3.1.3 JAGS

JAGS [48] stands for Just Another Gibbs Sampler. JAGS is a probabilistic language

which uses Gibbs Sampling as its primary sampling technique. An R port of JAGS

(R2JAGS [52]) is also available. JAGS was developed with 2 primary aims in mind.

• Creating a BUGS clone which could be modified.

• Developing a platform for exploring tools for criticizing statistical models.

The architecture of JAGS contains several key components. Graphs are characterized

by different types of nodes.

1. Stochastic nodes - characterized by a distribution with parameters defined by its

parents.

2. Logical nodes - directly calculated as a deterministic function of its parents.

3. Constant nodes - constant valued nodes.

4. Array Nodes - containers for a set of nodes.

5. Subset Nodes - generated using subscripting from other nodes. The size is fixed,

but the subscripts may be stochastic.

Samplers define techniques for updating graphs. For example, Gibbs sampling acts on

a single node. Monitors track sampled values and summarize them. Models are used

to associate a particular graph with relevant samplers and monitors.

JAGS removes the concept of “for loops” used in BUGS, replacing it with named

dimensions instead. As BUGS is a declarative language, using for loops does not lead

to actual iteration but rather denotes to the parser that tiling (repetitive structure) is

present for a certain model block. JAGS uses array nodes and requires users to define

the size of an array node in terms of a previously defined dimension.

3.1.4 Stan

Stan [10] is another probabilistic programming language for the specification of statistical

models. Stan programs define a log probability function over parameters conditioned

on the provided data. Stan supports Bayesian inference for continuous-variable models

using Markov chain Monte Carlo methods. Sampling is primarily done by the No-U-Turn

sampler [32], which is a variant of Hamiltonian Monte Carlo (HMC) [20].
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Stan was primarily developed to overcome run-time issues present in JAGS and BUGS,

due to the slow convergence performance of Gibbs sampling in situations such as time-

series modelling and hierarchical modelling with interacted predictors, which contain

parameters with high correlation in the posterior.

Stan programs comprise of several specialized blocks:

• The data block is used for declaring the data for fitting the model. These dec-

larations are used to compile the Stan program more efficiently, which is different

from the approach taken by BUGS and JAGS, which use the technique of assigning

variables as data or parameters at run-time.

• The transformed data block contains new variables which are defined based

on transforming variables from the data block. The execution of this block is

scheduled immediately after data input occurs, with constraint validation and

associated error reporting.

• The parameter block similarly defines the parameters and types used in the

model, but do not denote information about priors. This block will be executed

each time the log probability is updated. The transformed parameter block

defines new variables indicating transformations on defined parameters, and these

variables are updated with each execution of the parameter block.

• The model block defines the log probability function by setting priors for the

previously declared variables. Priors may also be defined over vectors, allowing

values to be drawn independently of each other based on the distribution. The

model block is run with each evaluation of the log probability function, immediately

following the transformed parameters block.

The basic statements supported by Stan are equivalent to those supported by BUGS,

but while BUGS defines a directed acyclic graph, Stan defines a log probability function,

and computation of this is all that is required to the HMC algorithm. This is critical to

understanding how Stan differs from BUGS. This log probability function is contained

in an implicitly defined log probability accumulator, and a sampling step simply corre-

sponds to an increment in this accumulator. This distinction from BUGS explains why

variables need to be defined prior to use of sampling statements in Stan.

The use of the log probability representation has several key advantages:

• Speed - Multiplication is a more expensive operation than addition. Therefore,

when multiplying many probabilities together (as is required in many cases where
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independence is present), it is less computationally expensive to when the proba-

bilities are represented in logarithmic format. While the initial conversion to log

form requires some computation, this cost is only incurred once.

• Representation - Many probabilities are derived from distributions taking on ex-

ponential form. Passing these through a log function removes the exponential

function and provides a simpler representation.

• Accuracy - The floating point representations used in computers are inexact by na-

ture. Taking the log transform helps to improve numberical stability and improves

the overall precision of the representation.

Stan is imperative in that it allows for sequencing of statements, unlike BUGS. This

creates the possibility for the user to define an order for the statements to be executed

and crucially allows for control structures such as “if-then-else” and “while”.

3.1.5 Edward

Edward [57, 58] is a probabilistic programming language based in Python. The aim of

the Edward library is to be enable rapid experimentation and the use of probabilistic

models ranging over a variety of model complexities including hierarchical models and

deep probabilistic models.

Edward supports the following types of models:

• Neural networks

• Generative models

• Directed graphical models

Edward aims to combine three fields: Bayesian machine learning, deep learning, and

probabilistic programming. It provides support for a wide variety of inference techniques

including:

• Variational Inference: including Black box variational inference, Stochastic varia-

tional inference and generative adversarial networks;

• black box MCMC methods running off the log probability (like Stan) including

Hamiltonian Monte Carlo and Stochastic gradient Langevin dynamics;

• Gibbs sampling;

• compositional inference such as the message passing algorithm.
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Edward is currently available as Edward2 [59] with support for TensorFlow or Numpy

as the backend. Edward2 is also available through TensorFlow Probability1.

3.1.6 Greta

Greta2 is a probabilistic programming language aiming to achieve scalable statistical

modelling in R. Greta models are written in R itself which makes it more accessible

to users who are already familiar with R syntax. Greta uses TensorFlow Probability

allowing models to scale using CPU clusters and GPU.

3.1.7 TensorFlow Probability

TensorFlow Probability3 is a Python library aiming to provide the capability of easily

combining machine learning models on GPUs. This library features:

• Support for a wide variety of probability distributions

• support for deep probabilistic models

• inference using variational methods and Markov chain Monte Carlo techniques.

3.1.8 Gen

Gen [17] is a probabilistic programming language that focuses on incorporating pro-

grammable inference. Gen’s architecture incorporates a generative function interface

which attempts to create decoupling between probabilistic languages’ domain specific

languages (DSLs) and their corresponding inference algorithm implementations. Here,

DSLs refer to the language definitions used by probabilistic languages in order to ab-

stract functionality provided by their system. Generally, probabilistic languages will also

provide inference DSLs, allowing users to define the inference process using syntactical

structures from these DSLs which will usually be more restrictive than a general purpose

programming langauge.

Gen provides support for:

• Combining different domain specific languages within the same model

• Custom inference algorithm implementation by the user, while optionally relying

on a provided standard inference library.

1https://blog.tensorflow.org/2018/04/introducing-tensorflow-probability.html
2https://cran.r-project.org/web/packages/greta/
3https://www.tensorflow.org/probability/
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• The ability for users to extend the language (for example: by defining new domain

specific language to plug-in).

• Support for the definition of specialized proposal distributions, which can incor-

porate problem specific knowledge into the inference process. These proposals can

be processed automatically by the system with minimal user interaction.

Gen provides support for a number of inference techniques via its standard inference

library, including Hamiltonian Monte Carlo and Metropolis-Hastings MCMC with sup-

port for custom proposals as well.

3.1.9 Shuffle

Shuffle [1] is a language for generating robust inference schemes. While many proba-

bilistic programming languages support either automatic inference or manual inference

algorithm creation (by providing a standard library, or other such abstractions), most

do not validate the final outcome to ensure the correctness of the final algorithm or

scheme.

Shuffle attempts to address this by creating a language for manual inference algorithm

creation based on several key rules:

• The basic rules of probability must be respected.

• The statistical dependencies of the defined probabilistic model must be maintained

in the inference process.

• The generated scheme must be optimized.

Shuffle provides support for inference by allowing users to specify models, where the

underlying encapsulated implementation is one of the following:

• A probability density function

• A Monte Carlo sampler

• a Monte-Carlo Markov Chain Transition Kernel

Underlying support is present for developers to incorporate inference using Gibbs sam-

pling and Metropolis-Hastings, among others.
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3.1.10 AugurV2

AugurV2 is a compiler that operates on probabilistic models defined using a restricted

language. It can support Bayesian networks where the graphical structure is fixed. This

includes models such as topic models, mixture models and deep generative models, but

does not support non-parametric distributions and models with undirected edges (e.g.

Markov random fields). A key aspect of AugurV2 is the use of intermediate languages,

which operates on the declarative specification and updates it with the aim of generating

an executable inference algorithm for use on CPU or GPU.

3.1.11 Summary of probabilistic programming

BUGS uses a directed acyclic graph representation which we have adopted in our system

along with a similar notation system for model specification. It uses Gibbs sampling as

the statistical engine.

AutoBayes is a framework which incorporated symbolic reasoning into its workflow and

used a schema based system for performing modifications of the model. A similar strat-

egy was adopted in this system with some schema being explicitly available as operations

and others being processed symbolically through modification of the likelihood or related

representations therein. AutoBayes analyses the model DAG for simplifications and then

matches on general schema like the EM algorithm of simple MAP computation.

JAGS, a BUGS extension, introduces a special system for “tiling” or “named dimen-

sions” which incorporates the possibility of symbolically denoting the dimensions of a

variable. We have adopted a similar approach and have extended the possibility for array

indices to be sampled as well and have provided support for the corresponding complex

updates which need to propagate throughout the model graph (see section 5.4.2.5).

Where BUGS defines a directed acyclic graph, Stan defines a log probability function

which is contained in an implicit log probability accumulator, with a sampling step, using

HMC, simply corresponding to an increment in this accumulator. Stan makes use of

blocking within the model specification including separate data blocks, parameter blocks

and model blocks, a design which has inspired our use of a similar system, although we

have not used a seperate block for defining transformations of data, instead opting to

identify the necessity of such transformations via symbolic reasoning (refer to section

5.3.3) and automatically computing and memoizing(caching) such quantities as needed

(refer to section 5.4.2.7).

Edward and Greta use some schema approaches-based, like AutoBayes, but also better

integrate with modern GPU computations. They have inspired further exploration into

some of the future directions of our system such as parallelization and the possibility of
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generating GPU-friendly versions of code. Gen, another recent addition, has introduced

the concept of programmable inference, giving users more flexibility in term of the

inference process. Shuffle introduces the concept of embedding probabilistic semantics

into the algorithm generation context, while AugurV2 uses intermediate “languages” to

refine declarative specifications.

Other recent approaches are similar, providing more appropriate programming language

capability to the general probabilistic programming agenda, as well as supporting a

broader variety of black-box inference readily supported from log probability and simple

DAG/network computation and manipulation.

3.2 Symbolic Processing

Symbolic processing or symbolic computation is the discipline related to the develop-

ment of algorithms enabling the manipulation of symbolic mathematical expressions and

other symbolic structures. In general, Symbolic processing systems are used in software

dealing with numerical programs and scientific computing. In order to support the more

sophisticated operations (augmenting and collapsing) required for our system, Symbolic

processing is a necessary capability and therefore a review of it is done here. However,

note, we need open source code to properly interface with our system.

A general symbolic processing system requires the definition of two main capabilities:

Representation: The symbolic representation of quantities in the system determines

the state space of expressions that can be represented in the system.

Simplification: A symbolic processing system contains symbolic operations that can

be used to convert expressions into other expressions.

A number of symbolic processing systems are available at present, varying widely based

on the representations they support as well as in the operations they allow. While

some systems such as Mathematica [61] and Maple[11] are proprietary with proprietary

libraries, others such as SymPy [42] and Sage [21] are freely available.

3.2.1 SymPy

SymPy [42] is a Python library for symbolic processing. It provides symbolic capabilities

and can be used either in a standalone fashion, or in other applications as a library.

SymPy supports numerous symbolic capabilities including the following:

• Basic arithmetic: *, /, +, -, ** (exponentation)
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• Simplification

• Expansion

• Matrix arithmetic

• Pretty printing

• Discrete summations and products

3.2.2 Sage

Sage (System for Algebra and Geometry Experimentation) is a system developed as an

open source alternative to Magma, Maple, Mathematica, and MATLAB [51].

Sage supports the following operations (among others):

• Support for parallel processing using multi-core processors, multiple processors, or

distributed computing.

• 2D and 3D graphs of symbolic functions and numerical data.

• Matrix manipulation

Both SymPy and Sage were considered for providing symbolic support for the system,

SymPy was picked ahead of Sage due to having pattern matching operations which

were a better match for the symbolic representations used in our system. The pattern

matching systems in these was not found to be sufficient for the capabilities required by

the system being developed. For example, support for symbolic pattern matching with

commutativity, associativity and matching with multiple multiplicative terms was quite

limited.

3.2.3 Pattern Matching

Pattern Matching is a powerful tool in symbolic systems as it provides a means for

term rewriting and simplification. Pattern matching attempts to find matches within

a given symbolic representation for a formula for “wildcards” or placeholder terms to

be matched [2]. The generated substitution or the matches can then be used to replace

the wildcard terms in the original pattern. For example, the substitution z=a is a valid

match to the pattern f(z) when run on the symbolic representation for “f(a)”.

An issue present with pattern matching is that pattern matching with either associativity

or commutativity of terms has been shown to be NP-complete [3]. However, for a
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likelihood which is the product of many different terms, it is not viable to exhaustively

search through different combinations in order to find a match to a complex pattern.

3.3 Summary and Discussion

This chapter presents the literature review conducted in relation to the design of this

work. A brief summary covering the key points is presented below.

Probabilistic programming is a paradigm related to using simple syntax to define

model specifications followed by automated complex operations carried out to enable

processing based on model properties. The general benefit of this is that it simplifies

things for the user and enables users with less expertise access to a wider variety of oper-

ations to conduct experiments with. This was apparent from the onset of BUGS which

enabled scientists from various disciplines to experiment with BUGS in order to generate

meaningful results. This is confirmed by the publications made using BUGS in fields

such as pharmacometrics, ecology, health-economics, genetics, archaeology, psychomet-

rics, coastal engineering, educational performance, behavioural studies, econometrics,

automated music transcription, sports modelling, fisheries stock assessment, and actu-

arial science [40].

Symbolic processing is the process of enabling the manipulation of mathematical ex-

pressions. Systems providing symbolic capabilities are mainly limited by their represen-

tations and simplification of the expressions they support. Systems chosen for evaluation

were based on their support for a variety of simplification operations primarily matrix

arithmetic and pattern matching capabilities. SymPy was picked for integration into

the system due to the innate synergies present between its internal representations and

the representations used in our system.
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System Design

This chapter presents an overview of the overall system design. Particular attention

is paid to the design decisions undertaken while building the system, and how these

decisions deliver in terms of robustness, efficiency and other preferable attributes of the

system. An introduction to the schema based system is also provided in this chapter,

along with the overall philosophy behind it. A brief discussion of the system workflow is

also provided in order to link the design of the system with the desired outcomes of the

system. Finally, the chapter concludes with a worked example, presented to illustrate

the key components and behaviours of the system.

4.1 System Design

4.1.1 Design Factors

As the system was built with Gibbs sampling in mind, BUGS and JAGS provided an

initial baseline in terms of language development, due to the fact that they both rely

heavily on Gibbs sampling. However, some inspiration was also drawn from Stan in

this regard. Based on the literature review, several key desirable aspects of probabilistic

languages were discovered:

• Language Simplicity: is an important feature as it determines the ease with

which a user will be able to use the system. As such, the syntax for model specifi-

cation was derived to closely follow existing languages and design concepts. This

is discussed in more detail in sections 3.3 and 5.2.1.

• Robustness: is an important quality as being able to debug the probabilistic

language is of the utmost importance. This is discussed in more detail in section

3.1.1.

43
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• Efficiency: of the final generated code is crucial because it determines how effec-

tive the overall system is.

• Ease of debugging: This is an important quality for development, as users

will rely on the feedback from the system to correct any mistakes. Providing

details of the generated variants, and performing simulation before conducting

code generation are useful in this regard.

4.1.2 Further Design Factors

In addition to the factors in Section 4.1.1, due to the innate nature of this work, several

other design aspects were considered:

• Variant coverage: As one of the novelties of this system arises from the sup-

port provided for statistical operations, it is imperative that a variety of different

variants be generated for testing.

• Component Generality: As the modules developed need to perform similar

operations on different models, it is important that the components implemented

should be as generalized as possible. In order to achieve this, a schema-based

system inspired by AutoBayes [22] was implemented. Schema are discussed in

more detail in section 3.1.2.

• Flexibility: The code generation process was designed so that it would be flexible

enough to export code in any major programming language.

• Value Addition: Due to the system holding considerable information about the

code being generated, it is possible to create additional value by enabling tasks

like generating LaTeX for equations, and parallelizing the final code by reasoning

about the dependencies in the abstract code structure.

• Code Simplicity: The major operations used in the generated languages were

constricted to simple operations such as - for loops, arrays, vectors, simple arith-

metic and simple function calls. This has the added benefit of ensuring the final

code can be understood by most users, regardless of coding proficiency.

4.1.3 Schema-based Design

Candidate Gibbs samplers that the system works with are represented using a pair

consisting of a graph (the model structure) and a likelihood (the component model dis-

tributions). A graph and likelihood pair are referred to as a variant. Also introduced

into the system are schema which generalize symbolic operations like collapsing and
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augmenting into a common flexible form. Variants then are a way of maintaining alter-

native intermediate and final candidates for Gibbs sampling. It was found schema could

be extended to a general framework for supporting several other operations that can

be applied to a given intermediate variant. Candidates are called variants because the

system might generate several functioning variants from a single initial model. Unlike

BUGS and Stan, where a single global sampler and model is used, once collapsing and

auugmenting are introduced into probabilistic programming environment, the generation

of variants is unavoidable.

Thus schemas are used as a means of providing a blueprint for operations in the variant

generation process. The four types of schemas used are:

Collapsing schema: corresponding to collapsing operations and containing applicabil-

ity constraints and information regarding nodes to remove.

Augmenting schema: corresponding to augmentation operations and containing ap-

plicability constraints and information regarding nodes to introduce into the graph.

Simplification schema: corresponding to symbolic or graphical simplifications.

Custom schema: for providing users with flexibility in making changes to the model

generation process.

4.2 System Overview

Figure 4.1 shows the overall workflow of the system with an emphasis on variant gener-

ation. The numbers in the figure correspond to the 8 steps below.

1. Initially, the parser reads in a model specification and generates a graph based on

the dependencies created by the sampling statements.

2. The graph generated in step 1 is annotated with the relevant distributional infor-

mation, such as probability density functions, based on the distributions supported

by the statistical system.

3. Symbolic processing is carried out on the graph to generate the symbolic likelihood

of each individual node, as well as other symbolic quantities such as the indicator

functions relevant to the statistics of each node.

4. The graph is passed onto the variant generator, which generates possible statistical

operations which may be carried out on the graph in the future.
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Figure 4.1: Simplified workflow diagram

5. The applicability criteria of statistical/graphical operations is computed by the

symbolic processor based on symbolic pattern matching and simplification. These

execute collapsing or augmentation steps. The symbolic likelihood, distributional

information regarding the nodes and connectivity information is processed in order

to extract applicable statistical operations. Identified operations are applied in a

depth-first manner on the generated graph. This step is repeated until all possible

graph variants have been explored (recursive depth first search with backtracking).

6. For each explored model variant, a sampler is generated for each parameter that

is still present in the graph. The sampler generation process is not directly bound

to the variant generation process and therefore can be adapted to accommodate

many sampling strategies. Currently, Gibbs sampling is used.

7. In order to generate a sampler for the current variant, during this generation

process, symbolic processing is used to extract only terms relevant to the parameter

under consideration and to convert the likelihood terms into formats conducive to

sampling. Additionally, analysis is conducted to identify statistics or terms that

should be computed and maintained or recomputed at each iteration of the Markov

chain. This corresponds to the use of caching for statistics and their relevant

marginals, and is necessary for efficient code.

8. The code generation process is carried out for each variant and for each parame-

ter. The code is initially generated as an abstract code structure, categorized as

initiation or Markov chain code. Once abstract code generation is complete, the

code is specialized into the target programming language. It can also be converted

into other formats, such as an algorithm in LaTex suitable for embedding into a

document.
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4.3 Extended Example

This section provides a detailed explanation of the behaviour of the system when run

on the MetaLDA model [63], which provides opportunities to demonstrate many of the

different aspects of the system (collapsing, augmentation and pattern matching) in a

single example. The likelihoods were generated using the LaTeX syntax generated by

the system (after slight modifications to allow multiline printing). Details of the user

input specification can be found in section 5.2.1. The model specification provided by

the user as input into the system is as follows:

parameters {lambda[LxK],a[DxK],b[KxV],phi[KxV],theta[DxK],delta[TxK],z[DxI]}

data {

b[k,v] = "Product(delta[t,k]**g[v,t],(t,1,T))";

a[d,k] = "Product(lambda[l,k]**f[d,l],(l,1,L))";

w[Dx?] = file(W.txt,int);

g[VxT] = file(g.txt,boolean,sparse);

f[DxL] = file(f.txt,boolean,sparse);

}

model {

for (l in 1:L){

for (k in 1:K) {

lambda[l,k] ~ dgamma(mu,mu);

}

}

for (k in 1:K) {

for (t in 1:T){

delta[t,k] ~ dgamma(nu,nu);

}

phi[k,1:V] ~ ddirich(b[k]);

}

for (d in 1:D){

theta[d,1:K] ~ ddirich(a[d]);

for (i in 1:len(w[d,:])) {

z[d,i] ~ dcat(theta[d]);

w[d,i] ~ dcat(phi[z[d,i]]);

}
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}

}

Note the undefined hyperparameters mu and nu in the specification. These are assigned

default values (usually 1.0) during code generation and the user is free to change them

as they wish. The diagram corresponding to this model specification is given in 4.2.

Figure 4.2: MetaLDA diagram

After parsing the specification and performing the necessary symbolic processing, the

intermediate graphical structure denoted by figure 4.3 is generated. Note that there are

some slight differences between the diagram and the formulae (This is because the for-

mulae in this section have been automatically generated by printing the latex generated

by the system, and thus corresponds to the initial model specification at the start of

section 4.3).

The corresponding likelihood for this graph is given by equation 4.1. In this state, the

graph processor identifies that nodes θ is conjugate to node α as indicated in figure 4.4.

This conjugacy is confirmed by checking the corresponding terms in the likelihood.
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Figure 4.3: MetaLDA generated graph

(∏D
d=1 Γ

(∑K
k=1 a(d, k)

))(∏K
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(∑V
v=1 b(k, v)

))(∏
1≤v≤V
1≤k≤K

φc1(k, v)

)
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1≤v≤V
1≤k≤K

φb(k,v)−1(k, v)

)(∏
1≤k≤K
1≤d≤D

θc0(d, k)

)∏
1≤k≤K
1≤d≤D

θa(d,k)−1(d, k)(∏
1≤k≤K
1≤d≤D

Γ(a(d, k))

)∏
1≤v≤V
1≤k≤K

Γ(b(k, v))

(4.1)

Note that z and w do not appear in equation 4.1 as they are accounted for in the counts

c0, c1 which correspond to topic and term counts respectively. Further explanation of

this step is present in section 1.2.2. For example, c0 is a count of the form c(d, k) which

tracks how many topics(k) coincide with term v. It is denoted simply by c0 as the system

represents internal counts specifically in this form and maintains additional information

about them separately. Accordingly, node θ is collapsed out by performing a collapse

operation. The node theta is deactivated, and a new conjugate node is introduced to

provide the likelihood introduced by the collapsing operation. The resultant graph is

given in figure 4.5.

The new likelihood is given by equation 4.2. Note that the deactivated node θ no

longer contributes to the likelihood. However, the presence of this node in the graph is

significant, as it provides a simple way of undoing the collapse operation (important for

maintaining state during the depth-first-search). This is indicated in figure 4.5 by the

dotted lines.
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Figure 4.4: MetaLDA generated graph 2

Figure 4.5: MetaLDA generated graph 3
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At this stage, the symbolic system identifies a match for the augmenting pattern of the

form Γ(W1 +W2)/Γ(W1), where W1 and W2 indicate wildcards for pattern matching.

The matching terms are given in equation 4.3. Here c1 is a count of the form c(k, v)

which tracks how many topics(k) coincide with term v.

(
∏

1≤k≤K
1≤d≤D

Γ(c0 + a(d, k)))

(
∏

1≤k≤K
1≤d≤D

Γ(a(d, k)))
(4.3)

The terms in equation 4.3 form a rising factorial, which can be augmented with an

auxiliary variable td,k as shown in equation 4.4, where S indicates an unsigned Sterling

number of the first kind.

(Γ(c0 + a(d, k)))

(Γ(a(d, k)))
∝

c0∑
td,k=0

Sc0td,ka(d, k)td,k (4.4)

Here td,k can be sampled as shown in section 2.3.3 for the CRT sampler. Performing the

augmentation operation leads to the graph shown in figure 4.6.

Figure 4.6: MetaLDA generated graph 4

This graph has the likelihood shown in equation 4.5.
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At this stage, the symbolic system identifies a match for the augmenting pattern of the

form Γ(W1)/Γ(W1 +W2). The matching terms are given in equation 4.6.

(
∏D
d=1 Γ(

∑K
k=1 a(d, k)))

(
∏D
d=1 Γ(

∑K
k=1(c0 + a(d, k))))

(4.6)

The terms in equation 4.6 can be augmented by a set of Beta random variables q1:D as

shown in equation 4.7. Here qd ∼ Beta
(∑K

k=1 a(d, k),
∑K

k=1 c0

)
(Γ(
∑K

k=1 a(d, k)))

(Γ(
∑K

k=1(c0 + a(d, k))))
∝
∫
qd

qd
(
∑K
k=1 a(d,k))−1(1− qd)(

∑K
k=1(c0))−1 (4.7)

Performing the augmentation operation leads to the graph shown in figure 4.7. The

corresponding likelihood is given in equation 4.8. Simplification details can be found in

section 2.3.2.

Figure 4.7: MetaLDA generated graph 5
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Isolating the terms relevant to a(d, k) gives equation 4.9.
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∏
1≤k≤K
1≤d≤D

at (d,k)(d, k)
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qa(d,k) (d) (4.9)

Substituting for a(d, k) with λ(l, k)a(d,k) and simplifying to isolate only relevant terms

gives the contributions to the marginal posterior for λ(l, k) from equation 4.9 as shown

in equation 4.10.

e−λ(l,k)
∑D
d=1;f(d,l)=1 a(d,k)log(1/q(d))/λ(l,k)λ(l, k)

∑D
d=1;f(d,l)=1 t(d,k) (4.10)

Which allows λ(l, k) to be sampled according to equation 4.11.

λ(l, k) ∼ Ga

µ+
D∑

d=1;f(d,l)=1

t(d, k), 1/µ−
D∑

d=1;f(d,l)=1

a(d, k)log(q(d))/λ(l, k)


(4.11)

Since the model is symmetric, a similar strategy can be adopted for sampling δ(t, k) and

a similar set of states will occur involving only the nodes in the bottom of the figure (βk ,

φk, gv,t). With this, all the nodes can be sampled/computed and code can be generated

for the model. The generated code has been added as Appendix A.1.



Chapter 5

System Architecture

While Chapter 4 gives a high-level overview of the system, a more detailed presentation

is required to fully understand the workings of the final system. This chapter presents

the detailed design and covers all of the components at a more granular level.

5.1 System Architecture

A more detailed version of the system architecture is presented in Figure 5.1 with some

modules of lower priority omitted for the sake of brevity. Again, numbers in the figure

correspond to numbers listed below.

1. The parser relays the processed model specification as an adjacency list to generate

an annotated graph.

2. The graphical processor updates the annotated graph and processes initial infor-

mation such as potential candidates for collapsing.

Symbolic processing for variant generation

3. The symbolic processor processes the annotations of the graph to derive density

functions for parameter nodes.

4. The derived functions are generated as symbolic representations (indicator func-

tions as well as standard symbolic representations).

5. Symbolic reasoning is applied on these functions to identify which may lead to

potentially complex updates and the results are encoded in the graph.

Variant generation operation identification

54
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Figure 5.1: Architectural diagram

6. The initial model is passed to the variant generator to derive variants.

7. The variant generator generates a list of operations for the current state of the

graph based on graphical patterns.

8. The variant generator generates possible symbolic operations based on the current

state of the likelihood.

9. Any collapsing/augmentation operations are applied.

10. Depending on the operation the required change is generated processed using Sym-

bolic reasoning and the Symbolic processor to generate the required update.

11. The representation is updated along with the graph based on the operation con-

ducted.

12. Possible Symbolic operations are identified.

13. Symbolic operations are carried out causing changes to the representation.
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14. Steps 7 to 13 are repeated until all model variants have been explored. For each

model variant the following steps are carried out.

Symbolic processing for Sampler Generation

15. Symbolic reasoning is carried out to identify the structure of the likelihood and

this is processed symbolically to generate the overall model likelihood.

16. The corresponding symbolic representation is generated.

17. For each parameter remaining in the model, the steps 18-24 are carried out.

18. Symbolic reasoning is carried out to identify the terms in the likelihood relevant

to the parameter.

19. The relevant terms are extracted from the overall likelihood. The resultant ex-

pression is represented as an Expression Tree.

20. Symbolic reasoning is carried out to identify the form of the full conditional prob-

ability for the parameter. This is then generated in standard form.

21. The result is logged/visualized using SymPy.

Sampler Generation

22. Based on the full conditional, the corresponding Gibbs Sampler is generated.

23. The full conditional is converted to a cacheable tree format. Using this with pattern

matching and symbolic reasoning, relevant sufficient statistics are identified.

24. Data Structures relevant to the parameter are generated, if already available sym-

bolic links are created to the existing structure instead.

Code Generation/Execution

25. The Gibbs sampler full conditional is updated to a computable tree representation

to prepare it for the sampling process.

26. Execution is initiated. Initialization is carried out with the Cache updater per-

forming message passing duties to ensure all parameters and statistics remain

consistent. Code Generation is carried out in a similar manner.
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A rough estimate of the lines of code of each of the major modules is given below to

provide an overview of the scope of each system. As the representation of distributions

is decoupled from the other systems, the lines of code is an accurate representation of

that individual system. The size of the systems corresponds primarily to functionality

focused around that system and modularity is maintained in an object oriented fashion.

Lines of code estimate

Module Lines of Code

Symbolic Reasoning 2000

Symbolic Representation 1500

Sampling Manager 2500

Statistical Operations 2000

Execution 1500

SymPy Wrapper 1000

Parser 1000

Graph 500

Variant Generator 1000

Graph Processor 500

Symbolic Processor 3000

5.2 Graph Generation

The model analysis process starts off with the generation of an initial annotated graph.

This section details the modules involved in this process.

5.2.1 Parser

The language used for defining models was inspired by several existing systems. The

sampling statements were inspired by BUGS. The presence of iteration or tiling was

inspired by JAGS. Explicitly denoting useful properties such as parameter nodes was

inspired by Stan. The language currently consists of the following components:

• The model keyword specifies the model block, which is used to define the model.

The model can contain tiling and sampling statements.

• The data keyword is used for declaring the data for fitting the model. Data can

be in a sparse format, and could be located in a separate file. The data keyword

can also be used to define constants.

• The parameter keyword similarly defines parameters and types used in the model

and also specifies the dimensions of parameters used in the model.
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• Distributions are prefixed by the letter ‘d’ and must only appear in a sampling

statement. For example, (phi ∼ ddirich(a)) denotes that φ is distributed according

to the Dirichlet distribution.

• Formulae are supported using the assignment operator. Additionally, operators

such as Sum and Prod (short for product) are supported, allowing for further

flexibility.

• The for keyword is used to indicate tiling, and additionally specifies the dimensions

of the tiling as well. For example “for (k in 1:K)” denotes tiling for all variables

containing k, with a dimension of 1 to K.

• Annotations are defined using square brackets, and can be used to provide ad-

ditional information to the compiler.

• Line comments are enabled using the # symbol #.

A sample model specifications for LDA is provided below.

#LDA

parameters {z[MxN],phi[KxV],theta[MxK]}

data{

w[MxN] = file(W.txt);

a[K] = file(a.txt);

b[V] = file(b.txt);

}

model {

for (k in 1:K) {

phi[k,1:V] ~ ddirich(b);

}

for (m in 1:M) {

theta[m,1:K] ~ ddirich(a);

for (n in 1:N) {

z[m,n] ~ dcat(theta[m]);

w[m,n] ~ dcat(phi[z[m,n]]);

}

}

}

The parser processes the provided model and creates the corresponding graph for further

processing.
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5.2.2 Graph

All information regarding the model is encapsulated into a directed acyclic graph (DAG),

with the following structure.

• The nodes correspond to parameters or data variables within the model.

• The edges indicate direct dependence between nodes.

Nodes contain information regarding the sufficient statistics for a particular parameter.

These are generated by the Symbolic Processor (discussed in detail under 5.3.3).

5.3 Variant Generation

Once the graph has been generated by the parser, and the necessary annotations have

been completed by the symbolic processor, the variant generation process can take place.

This section describes this process in detail.

5.3.1 Variant generation workflow

A variant can be characterised by a graph G and a likelihood L. Each variant of the

model V (G,L) is derived in a reversible manner from the original model V0(G0, L0). In

general, given a sequence of statistical operations (S1, S2...Sn). V (G,L) = SnSn−1...S1V0(G0, L0)

can be reversed by the sequence of inverse statistical operations (S−1
n , S−1

n−1...S
−1
1 ). A

more thorough definition, along with relevant proofs can be found in Chapter 6.

Variants are generated using a depth-first search algorithm, with state being maintained

by an intermediate graphical structure which encapsulates information about the model

necessary for the sampling process.

5.3.2 Statistical Operations

The main technique used in the system for changing the underlying algorithm is the

operations of collapsing and augmentation, covered in Section 2.4.2. As will be made

clear by example in sections 5.3.5.1 and 4.3, pattern matching is required in order to

identify the applicability of augmentation and collapsing to an intermediate graphical

state. In collapsing, this is in the form of an initial graphical pattern matching operation

followed by an arithmetic simplification operation on the likelihood. In augmentation,

an initial pattern matching operation on the likelihood followed by an update of the
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intermediate graphical structure is carried out. This is then followed by an update of

the likelihood of the model.

5.3.2.1 Statistical operation generation

The statistical operations of collapsing and augmentation are the primary means by

which the variant generation process introduces changes into the graph. Statistical

operations are embedded within schemas and their applicability is queried using symbolic

processing. The statistical operations encoded in our system are the augmentations given

in Table 2.2 and the collapsing is enabled using the conjugate forms of the exponential

family distributions we allow. A simple overview of these is provided in Algorithms 4

and 5. As the collapsing depends on conjugacy of exponential family distributions, the

schema provides the symbolic format of the normalizer for the conjugate distribution as

a baseline for the likelihood to be matched against. conjugate(N, N.prior, prior, node)

simply checks that the distributions of N and N.prior match those of prior and node.

CollapseIdentify(Graph G, CollapseSchema S):
prior, node = S.getNodeTypes()
for all nodes N ∈ G do

if conjugate(N, N.prior, prior, node) then
jointLH = N.likelihood*N.prior.likelihood
G.addOperation(Collapser(N,N.prior))

end

end
Algorithm 4: Collapse operation generation

AugmentIdentify(Graph G, AugmentSchema S):
pattern = S.getPattern()
likelihood = G.GenerateLikelihood()
if likelihood.matches(pattern) then

matches = MatchPattern(likelihood, pattern)
for MatchedPattern M ∈ matches do

aug = pattern
for Wildcard W ∈ pattern do

aug.substitute(W , M.getMatch(W))
end
N = S.generateNode(aug)
N.updateConnectivity(G)
G.addOperation(Augmentor(N , aug))

end

end
Algorithm 5: Augment operation generation

In the case of augmentation, because the operation arises as a result of the state of

the likelihood, it is possible to have the same augmentation triggered multiple times.
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In order to avoid duplicating the same augmented variable under a different name, a

signature (hash) is used: the pattern used in the augmentation and concatenated with

the substitutions from the pattern matching operation.

5.3.3 Symbolic Processor

This section provides details on the symbolic reasoning functionality of the system. An

overarching example is provided at the end of the section.

5.3.3.1 Graph Annotation

While the parser provides context information regarding the connectivity of the graph,

in order to proceed with the analysis of the model, it is necessary to annotate each node

with formulae corresponding to its sufficient statistics. This involves symbolic reasoning

over indicator variables, which are derived based on the node and its distribution type

as well as the dimensions of the parameter represented by the node.

5.3.4 Constraint Resolution

Some models have inherent constraints applicable to them, such as the identifiability

constraint in GaP [9] which is denoted by equation 5.1 and explained in more detail

in section 5.3.5.1. Generally, such constraints lead to considerable simplification of the

model. The symbolic processor manages the symbolic representation of the constraint as

well as decides on the context and result of its application in the simplification process.

5.3.4.1 Index manipulation

Due to the system providing support for models with multiple dimensions, the compu-

tation of the model likelihood requires index manipulation in order to identify potential

opportunities for further simplification. This is especially relevant to constraint resolu-

tion as in general, the context in question will only apply to a single index (or single

dimension) of a particular parameter. This is explained with examples in section 5.3.5.1.

5.3.4.2 Algebraic simplification

As the graph undergoes graphical operations such as collapsing and augmentation, the

format of the likelihood changes depending on the operation performed. However, in

order to apply these operations, the likelihood must match a particular format. Hence,
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arithmetic simplification is required to bridge the gap between a single graph operation

and the graph operation immediately following it, on the computation path to generating

a likelihood which is conducive to having a full conditional likelihood extracted for the

sampling process. An example is found in section 5.3.5.1.

5.3.4.3 Equivalent Symbolic Likelihoods

In some situations, the likelihood generation process can create mathematically equiva-

lent, yet symbolically different likelihoods that have implications on how the sampling

and model analysis process is carried out. Consider LDA as an example. The fully

collapsed variant of LDA relies on the symbolic form of θ(d, k)c1(d,k) where c1(d, k) indi-

cates the number of times topic k appears in document d. However, the base version (no

collapsing) of LDA relies on the symbolic form
∏
d,i θ(d, k(i)) (where i corresponds to the

word index) to represent the probability of θ and relies on isolating the probability for

a particular θ(d, k). Support for this form of switching can be supported in 3 different

ways:

1. Heuristic based switching - Decide between any such forms based on a heuristic,

given the current state of the graph and/or likelihood.

2. Evaluation based switching - Decide between any such forms based on introducing

each term into the likelihood followed by performing a sampler generation step to

verify which of the forms fits the likelihood currently.

3. Explore all possibilities in the variant generation process (introduce as a level into

the depth first search)

Of these methods the first method was used during initial stages of the system where

collapsing was the only operation supported, however evaluation based switching pro-

vides a more stable process for deciding which form the likelihood should take and is

currently used. Introducing this issue into the variant generation process is the most

effective in terms of overall model coverage as it guarantees that all possibilities are

explored, however the issue arises in the fact that introduces another level to the search,

causing a lengthier search process. Incorporating into the variant search process would

also involve introducing a new type of schema corresponding to this issue.

5.3.4.4 Pattern Matching

Pattern matching is a key operation required throughout the work-flow of the system

and is used in multiple stages of the model evaluation process. The following operations

rely heavily on pattern matching:
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• Constraint resolution: checking for the applicability of a constraint

• Cacheability analysis of full conditional formulae

• Index manipulation: identifying the form of an index and relation to parameters

being sampled

• Arithmetic simplification: checking for applicability of simplification rules

Pattern matching is primarily carried out in 2 main forms. Regular expressions are used

to resolve simple pattern matching. While complex pattern matching uses a custom im-

plementation of a tree based representation of the likelihood function. This is discussed

in further detail under the section on symbolic representations 5.4.1. Simple tree based

matching is carried out on such representations by performing a simple modified depth

first search over the labels on such a tree, by first converting both query and string into

tree representation.

Pattern matching is also used extensively in the statistical operations of collapsing and

augmenting nodes. This is discussed with examples under section 5.3.2.

Complex pattern matching

Complex pattern matching builds on the simple tree based matching explained previ-

ously.

The overall steps are as follows:

• First a transform is applied on both likelihood and pattern to split it up into terms

that are more conducive to matching.

• A round of matching is conducted between the terms in the pattern and the terms

in the likelihood

• All matches are aggregated according to the terms in the pattern

• The matches are filtered for coherence and the resultant set is returned in the form

of substitutions (eg:- W1 = α(k, v))

While simple pattern matching only used information in the form of strings and string

matching, complex pattern matching uses additional information available in the stan-

dard tree representation used in the system. This involves adding auxiliary information

to nodes in a strategic manner to obtain more information about likelihood components.

The following additional information is added to nodes:

• parameter information - indicates if a node is a parameter
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• statistic information - indicates if a node is a statistic

• dimensionality information - where a node corresponds to an entity that has mul-

tiple dimensions (arrays etc.), the corresponding dimensions are recorded as well.

• commutativity and associativity information - for operations such as + and -,

where these properties need to be handled explicitly.

Schema (section 6.1) allow users to exploit many properties in the likelihood and graph-

ical elements in the variant generation process. The symbolic support for schema is

provided primarily through complex pattern matching and this is where parameter and

statistic information are especially useful.

For the purpose of clarity we will discuss the pattern matching algorithm as applying

on strings, which is a valid form of the standard representation. However, it should be

noted that internally the algorithm operates on tree based representations as mentioned

in 5.4.1.1.

A high level view of the complex pattern matching algorithm is given in Algorithm 6.

Details of subroutines are found in Algorithms 7 and 8.

MatchPattern(Likelihood L, Pattern P):
L = Transform(L)
P = Transform(P)
for all termTypes t ∈ P do

for all components C ∈ P [t] do
for all terms T ∈ L[t] do

if T.matches(C) then
componentMatches[C].add(T)

end

end

end

end
return coherentMatches(componentMatches)

Algorithm 6: Pattern Matching

The algorithm proceeds as follows: initially, a transform is applied to split both pattern

and likelihood into terms in an identical fashion.

The result of the transform has 2 different types of components, and matching is done on

the different types in a mutually exclusive fashion (multiplicative pattern components

are matched with multiplicative likelihood terms and divisive pattern components with

divisive likelihood terms).

The applyLog function applies the logarithm function to all parts of the expression, in-

cluding propagating it over multiplication, division and products using the rules log(a ∗
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Transform(Expression E):
LogE = applyLog(E)
PositiveTerms = empty
NegativeTerms = empty
for all terms t delimited by +log or −log ∈ LogE do

if delimiter is ’+ log’ then
PositiveTerms.add(t)

end
if delimiter is ’- log’ then

NegativeTerms.add(t)
end

end
return PositiveTerms,NegativeTerms

Algorithm 7: Pattern Matching

b) = log(a) + log(b) and log(a/b) = log(a)− log(b). The result of this function is also an

expression. Note that since this is applied on a string/tree based representation, con-

siderable symbolic processing is required to propagate the function over the expression.

Once the transform is applied, simple pattern matching can be carried out to check

which terms match a particular pattern. This is done by matching all likelihood terms

of a particular type against the pattern components of the same type.

for all termTypes t do
for all components C ∈ P [t] do

for all terms T ∈ L[t] do
//Simple pattern matching used to check match
if T.matches(C) then

componentMatches[C].add(T)
end

end

end

end
Algorithm 8: Part of the Pattern Matching algorithm

The result of these lines is a complete set of matches indicating which terms are potential

candidates for being part of an overall match corresponding to the overall pattern.

For example consider matching W1
W2

against a∗b
c∗d . The pattern components would corre-

spond to W1 and W2 and the likelihood terms would correspond to a, b, c, d. Then for

this example, the component matches would be W1 ∈ {a, b} and W2 ∈ {c, d}.

Once the component matches are generated, it is necessary to consolidate them into over-

all pattern matches. Consider the following observations regarding component matches:

• The higher the number of wildcards a pattern component has, the more restrictive

it will be in terms of being able to add other matches into the overall pattern. For
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example if a component has as many wildcards as the entire pattern, that single

component will decide all possible wildcard matches for the entire pattern and will

play a crucial role in either validating or invalidating other matches. Consider the

pattern W1+W2+W3+W4
W1

. Then, pattern component W1 +W2 +W3 +W4 would have

a considerably higher level of restrictivity than 1
W1

.

• Every component needs to have at least one match. This is obvious because other-

wise the pattern has no matches in the likelihood. Consider matching W1+W2+W3+W4
W1

against a + b + c + d. Clearly, the component 1
W1

does not have a match in this

case, and therefore there is no valid match for the pattern as a whole.

Since every component needs to have at least a single match, and more restrictive pattern

components are harder to match. By ordering all matching based on the number of

wildcards, it is possible to filter out potential likelihood terms faster. This applies on

two separate levels: at the component-term match level, if a single pattern component

does not have any term matches, it is indicative that the entire pattern does not have

any matches. In this situation, the matching can be terminated early and return with

no matches. During the consolidation of the overall match for the pattern, we can treat

the wildcards as variables that need solving. Thus, each unmatched wildcard would

contribute to the degrees of freedom available in the pattern “equation”. Thus, picking

pattern components with more wild cards initially will fix those wildcards in place, and

remove more degrees of freedom from the pattern, potentially causing failure due to not

having a coherent match earlier, rather than later.

With this in mind, components matches are sorted by decreasing order of restrictivity

of the pattern. The primary contributor in this sense is the number of wildcards in

the component, however there are some additional considerations regarding the types

of wildcards used as well. For example, the “any match” criteria is less restrictive than
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the “any parameter” criteria.

coherentmatches(componentMatches,i,solutionSet):

//componentMatches is sorted by decreasing restrictivity

//components with higher restrictivity are handled first.

if i ≥ allMatches.length then
//At least one match has been added for each pattern component

//This is then a valid match for the overall pattern

RegisterMatch(solutionSet)

return;

end

for each match M ∈ componentMatches[i] do
component c = M.component

for each wildcard w ∈ c do
coherent = true

if w ∈ solutionSet.components then
//This wildcard is already in the solution

//See if they match

if M [w] != SolutionSet[w] then
//Mismatch! This match is not suitable

coherent = false

break
end

end

end

if coherent = true then
//This match is coherent when combined with the solution so far

//The two sets are combined

solutionset = solutionset + M

coherentMatches(componentMatches,i+1,solutionset)

solutionset = solutionset - M
end

end

return coherentMatches(componentMatches)
Algorithm 9: Pattern Matching - coherent matches

At each stage of this algorithm, the following invariant is maintained: solutionSet con-

tains a valid match for the overall pattern using all wildcards available in components in

the first i − 1 components with the highest restrictivity. This arises from the fact that

the components in componentMatches are ordered by decreasing restrictivity. Here, i is

a counter indicating the number of components processed, in other words, i points to the

next component to be processed. The iteration in the algorithm serves to ensure that

the match M current being checked, can be incorporated into the solutionSet without

causing a contradiction. Consider the following example:
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a ∗ b ∗ (b+ c);match(W1 +W2) ∗W1

Clearly W1 + W2 is the component with higher restrictivity and matches with b + c as

{W1 : b,W2 : c}. Now this has 2 potential matches to combine with {W1 : b} and {W1 :

a}. Of these, the former will be coherent, as there is no contradiction, but the latter

will not be coherent as {W1 : b} and {W1 : a} will contradict each other, thus rendering

them incompatible. This is because {W1 : b,W2 : c} ∩ {W1 : b} = {W1 : b,W2 : c}
whereas {W1 : b,W2 : c} ∩ {W1 : a} results in a set with no valid element for W1. Note

that where a particular element is missing (for example W2 in {W1 : b}, it is assumed to

be equal to the universal set, as it being absent is indicative of no constraints on that

wildcard.

By extending this invariant with i (parameter in Algorithm 9) set to the number of com-

ponents, we see that only completely coherent matches which contain non-contradicting

matches for all wildcards will actually reach the RegisterMatch function. At this stage,

the match is added to a set of matches, and this stores the overall result of the algorithm.

Additionally, during matching, the original position of each term in the initial likelihood

is tracked, and used to indicate potentially multiple components matching the same term.

Once detected, such matches are skipped over, thus preventing any two components to

match to the same term. An example would be:

a ∗ b ∗ (b+ c); match(W1 +W2) ∗ (W1 +W3)

Clearly, we would not want both components of the pattern to match b + c in such a

scenario to give a result of {W1 : b,W2 : c,W3 : c}.

Simple Pattern Matching

Simple pattern matching is used to provide basic pattern matching functionality, includ-

ing matching with wildcards. The distinction between simple and complex arises from

the fact that simple pattern matching is unable to operate on likelihoods in order to

support schema applicability constraint matching in any meaningful way primarily due

to the inability to handle commutativity and associativity. Simple pattern matching

is provided using tree-based search on the expression tree. SymPy’s pattern matching

functionality provides additional support in this regard, as well.

It should be noted that simple pattern matching does not handle commutativity and

associativity implicitly. Therefore, since complex pattern matching leverages simple

pattern matching to an extent, it needs to account for these possibilities. This is done

at 2 levels. At the likelihood level, multiplication and division are handled by the
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algorithm implicitly. At the term level (or at the operation level), this is done explicitly

and combined with the other type of auxiliary information to provide more powerful

matching functionality.

As an example consider the simple terms a + b + c with a being a statistic, b being

a parameter, and c being a constant. Then let us consider an example where a user

wishes to match (W1 + W2) with the restrictions of W1 being a statistic and W2 being

any non-zero (no restrictions). Simple pattern matching would need to consider all

6 permutations of a + b + c and possible bracketing combinations (used to indicate

associativity in terms of which goes first) to finally settle on the matches of (a) + (b+ c)

and (a) + (c + b). With the additional auxiliary information available in the modified

standard tree representation, however, it is possible to greatly simplify this process.

5.3.5 Symbolic Reasoning

Symbolic reasoning encapsulates the processes which allow the system to reason about

data structures and formulae in order to conduct analysis on a model. This is distinct

from pattern matching, as pattern matching only resolves the issue of identifying the

presence of a symbolic pattern. While symbolic reasoning builds on different forms of

pattern matching, it also uses other available information to reason out a course of action

and is crucial for the overall graphical and symbolic processing workflows.

Symbolic reasoning is mainly used in the following functions:

• Update reasoning: due to the complex interactions present between parameters

and the need for automatic updates during the sampling process, it is necessary to

provide symbolic reasoning for performing cache updates at run-time, particularly

for cases involving cascading cache updates. This is discussed in more detail under

the section on symbolic updates.

• Dependency identification: In creating the Gibbs sampler for a parameter, it is

helpful to first isolate the terms in the overall model likelihood that are impacted

by the sampling of the parameter. This requires symbolic reasoning over all terms

in the likelihood. It is important to note that indirect dependencies also have to be

considered. For example a statistic may have the form c1[m][k] where k = Z[m][n].

So clearly, when Z is sampled, c1 needs to be updated as well. This requires an

additional symbolic substitution on top of the standard check which is done for

direct dependencies.

• Full conditional derivation: during the derivation of the full conditional likelihood

for a parameter, symbolic reasoning is used in identifying the behaviour of functions

over iterations of the Markov chain. There is also an additional requirement that
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this be set up in a dynamic manner as certain quantities (for example sufficient

statistics) present in the likelihood formula might differ in value from one iteration

of the chain to the next.

• Likelihood format determination: the same parameter/distribution pair can have

different formats for the likelihood representation. This is especially obvious in

collapsed versus uncollapsed model variants, where the likelihood for the collapsed

variant generally relies on the sufficient statistics whereas the likelihood for the

uncollapsed version relies on the naive likelihood for the model.

5.3.5.1 Example of symbolic processing functions

The effect of these operations can be seen in the following derivation of the sampler for

the GaP [9] model:

φk,v ∼ Gamma(cv, dv)

θd,k ∼ Gamma(ak, bk)

nd,v ∼ Poisson((θΦ)d,v)

The following identifiability [15] constraint also applies.∑
v

Φkv = 1 (5.1)

We also apply the following augmentation to break nd,v into parts:

nd,v =
∑
k

nd,v,k

nd,v,k ∼ Poisson(θd,kφk,v)

p(nd,v,k|θ, φ) =
(θd,kφk,v)

nd,v,ke−θd,kφk,v

nd,v,k!

Simplification proceeds as follows:
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Index simplification (as per section 5.3.4.1)

∏
d,v,k

(θd,kφk,v)
nd,v,ke−θd,kφk,v

nd,v,k!

=
∏

d,v,k

θ
nd,v,k
d,k φ

nd,v,k
k,v e−θd,kφk,v

nd,v,k!

= (
∏

d,v,k θ
nd,v,k
d,k )(

∏
d,v,k

φ
nd,v,k
k,v )(

∏
d,v,k

e−θd,kφk,v

nd,v,k!
)

= (
∏

d,k θ
∑

v nd,v,k
d,k )(

∏
v,k

φ
∑

d nd,v,k
k,v )(

∏
d,v,k

e−θd,kφk,v

nd,v,k!
)

= (
∏

d,k θ
nd,(·),k
d,k )(

∏
v,k

φ
n(·),v,k
k,v )(

∏
d,v,k

e−θd,kφk,v

nd,v,k!)

Simplification using the identifiability constraint (as per section 5.3.4.2)∑
v Φk,v = 1∏

d,v,k e−θd,kφk,v

=
∏

d,k

∏
v

e−θd,kφk,v

=
∏

d,k e
∑

v −θd,kφk,v

=
∏

d,k e−θd,k(
∑

v φk,v)

=
∏

d,k e−θd,k

Finally,

p(n, θ, φ) =
∏
d,k

θ
nd,(·),k
d,k

∏
v,k

φ
n(·),v,k
k,v

∏
d,k

e−θd,k
∏

d,v,k
1

nd,v,k!p(θ)p(φ)

p(θ) =
∏
d,k

abkk
τ(ak)

θak−1
d,k e−θ

bk
d,k
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The prior for φ is similar to that of θ. Therefore, the analysis simplification are similar

as well (upto the identifiability simplification).

p(n, θ, φ) =
∏
d,k

θ
nd,(·),k+ak−1

d,k

∏
v,k

φ
n(·),v,k+cv−1

k,v

∏
d,k

e−(bk+1)θd,k
∏
d,v,k

1

nd,v,k!

=
∏
d,k

θ
nd,(·),k+ak−1

d,k e−(bk+1)θd,k
∏
v,k

φ
n(·),v,k+cv−1

k,v

∏
d,v,k

1

nd,v,k!

Collapsing using Dirichlet and Gamma normalizers (applied as symbolic modifiers based

on pattern matching during the variant generation process).

Γ(n(·),k,v + cv)

Γ(n(·),k,(·) + cv)

(bk + 1)(nd,(·),k+ak)

τ(nd,(·),k + ak)

which gives the update equation for nd,v,k

n(·),k,v + cv

n(·),(·),k + cv

bk + 1

nd,(·),k + ak

5.3.6 Variant Generator

This section provides a brief overview of the variant generator as part of the architec-

ture. Chapter 6 contains a detailed overview of this system. The variant generator is

responsible for providing different variants for the same initial model specification. This

allows for the creation of different sampling strategies for the parameters of the model.

The general workflow followed by the variant generator is to run a depth first search

(DFS) over the graph with changes at each level of recursion occurring based on the

operation carried out at that level.

At a very high level, the algorithm for this generation process is as follows:

VariantDFS(Graph G):

AttemptSamplerGeneration(G)

G.generateOperations()

for all operations o ∈ G do
G.performOperation(o)

VariantDFS(G)

G.undoOperation(o)

end

Algorithm 10: Variant Generation Search Algorithm
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5.3.7 SymPy wrapper

A wrapper has been implemented to enable some functionality of SymPy within the

system. The main functionality exposed from SymPy is as follows:

• Pretty printer: The SymPy prettyprinter is used for visualization of formulae

• Expression Multiplier: The multiply function from SymPy is used for symbolic

processing of likelihoods in rare situations. Note the clash arising here in terms

of the type of standard representations used, which is discussed further in section

5.4.1.

• Latex printer: The SymPy latex printer is used to enable the extraction of latex

formulae from the model.

5.3.8 Graph Processor

The graph processor is primarily used in updating graphical structures during the variant

search process. In addition to carrying out the obvious operations of removing a node

for collapsing and adding a node for augmentation, this module also updates the corre-

sponding connectivity in the graph and maintains references to previously removed (or

added) nodes which may need to be removed (added) in future operations (for situations

such as performing undo operations during variant search).

5.4 Sampler Generation

Once variant generation is complete. The results are analyzed in order to generate

relevant samplers for the parameters present in the graph. This section provides more

details on the different components involved in the sampler generation process.

5.4.1 Symbolic Representation

Due to the need to support complex symbolic operations, several types of symbolic

representations are used within the workflow of the model analysis process. These are

explained in more detail below with examples of the different representations of the same

formula. An example is given in figure 5.2. .

Standard Representation

This representation is used for the initial generation of the likelihood and also for simple

pattern matching operations.
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(Product(Gamma(Sum(c0+a(k),(k,1,K)))/Product(Gamma(c0+a(k)),(k,1,K)),(m,1,M))

*Product(Gamma(Sum(c1+b(v),(v,1,V)))/Product(Gamma(c1+b(v)),(v,1,V)),(k,1,K)))

Here, Product(F(k),(k,1,K)) =
∏K
k=1 F (k) and Sum(F(k),(k,1,K)) =

∑K
k=1 F (k) and

these two constructs are used to build the overall expression in string format.

Formula Representation

This is a format used for visualization of the standard format and is more reader-friendly.

Latex Representation

Conversion to Latex is supported to enable easier integration of model formulae into

papers and reports. The example denotes first the Latex code, followed by its compiled

version.

\left(\prod_{m=1}^{M} \frac{\Gamma{\left (\sum_{k=1}^{K} \left(c_{0} + a{\left

(k \right )}\right) \right )}}{\prod_{k=1}^{K} \Gamma{\left (c_{0} + a{\left

(k \right )} \right )}}\right) \prod_{k=1}^{K} \frac{\Gamma{\left (

\sum_{v=1}^{V} \left(c_{1} + b{\left (v \right )}\right) \right )}}{

\prod_{v=1}^{V} \Gamma{\left (c_{1} + b{\left (v \right )} \right )}}

 M∏
m=1

Γ
(∑K

k=1 (c0 + a(k))
)

∏K
k=1 Γ(c0 + a(k))

 K∏
k=1

Γ
(∑V

v=1 (c1 + b(v))
)

∏V
v=1 Γ(c1 + b(v))

Dot Representation

The Dot representation enables expression trees to be converted into a graphical form

which is easier to print. GraphViz is used to render the resulting representation for

visualization.

Expression Tree Representation

The expression tree representation is a tree based representation which is more con-

ducive for complex pattern matching operations. An example is provided in 5.4.1. The
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Cacheable Tree structure and the Computable Tree representations structure are ex-

tended from this representation and are discussed in detail under the relevant sections

5.4.2.6 and 5.4.2.7.

5.4.1.1 Implications on pattern matching

While the developed pattern matching schemes can be applied on any of the above

representations, it was primarily developed with the Standard Representation in mind.

This is because this representation is:

• easier to debug,

• can be converted to and from all other representations, and

• offers the possibility for incorporation into other probabilistic programming lan-

guages due to the fact that it is easily generated from a given model.

As such, complex pattern matching was implemented as a string matching algorithm

applicable to the standard representation. There are two forms of the standard repre-

sentation that need to be considered.

The simplified normal form contains the likelihood that is most commonly used for

visualization, with similar terms aggregated together. However, this increases the dif-

ficulty of matching terms during the symbolic pattern matching process. To simplify

the pattern matching process, likelihood representations in the standard form are main-

tained in an expanded normal form with no major simplification being performed on

it prior to visualization. This has the added benefit of saving computation time required

to perform symbolic multiplication in the likelihood computation stage, as this is only

necessary during the final stages of model reporting when human readable output is

generated.

While at its most basic, the expression tree only contains symbolic information, exten-

sions were done in order to simplify many different computational aspects of the system.

Since the expression tree contains nodes, these were strategically extended with more

information about the symbols they contained. This is especially true in parameter or

counter (sufficient statistic) nodes in symbolic format. Additional information such as

node type, dimensions, symbolic reasoning constraints, distributional information were

all added into the tree in order to simplify several processes such as pattern matching,

code generation, exection and symbolic simplification.
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5.4.2 Sampling Manager

The sampling manager is responsible for the overall sampling strategy for the inference

process, including deciding on which sampler to use for sampling a particular variable.

When the system is operating in simulation mode, it also maintains the sampling data

structures between iterations of the Markov chain and contains mechanisms to ensure

that the state of the chain is consistent and that caches are updated automatically.

5.4.2.1 Gibbs Sampler

The Gibbs sampler implements a sampler for the model based on Gibbs sampling. Gibbs

sampling is a Markov chain Monte Carlo (MCMC) algorithm for generating a sequence

of samples which are drawn approximately from a specified probability distribution,

when direct sampling from the distribution in question is difficult.

Gibbs sampling constructs a Markov chain of samples, with nearby samples displaying

a high degree of correlation. Samples generated by the initial parts of the chain do not

generally represent the desired distribution, and a burn-in period is introduced during

which samples are discarded. Gibbs sampling is a special case of the Metropolis Hastings

algorithm. The statistical operations mentioned above (marginalizing and augmenting)

can be used to simplify the model in order to improve Gibbs sampling.

Gibbs sampler

Initialize from prior x(0) ∼ q(x)

for i = 1,2,. . . do

x
(i)
1 ∼ p(X1 = x1|X2 = x

(i−1)
2 , X3 = x

(i−1)
3 , . . . , XD = x

(i−1)
D

x
(i)
2 ∼ p(X2 = x2|X1 = x

(i)
1 , X3 = x

(i−1)
3 , . . . , XD = x

(i−1)
D

...

x
(i)
D ∼ p(XD = xD|X1 = x

(i)
1 , X2 = x

(i)
2 , . . . , XD−1 = x

(i)
D−1

end

The construction of the Gibbs sampler relies heavily on the symbolic processor in order

to generate the full conditional likelihood.

5.4.2.2 Sampled Parameter

This data structure maintains the state of parameter variables in the Markov chain. As

sampling for a particular parameter is carried out, statistics which rely on that parameter

are updated automatically by the Cache Updater.

The sampled parameter provides two main types of sampling functionality:
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• Carrying out the initialization of the parameter state during the instantiation of

the Markov chain.

• Performing sampling updates and propogating those updates throughtout the

network via the cache updater.

5.4.2.3 Cached Statistic

This data structure maintains the state of sufficient statistics in the Markov chain. These

cached structures allow the efficient look-up of quantities crucial to the computation of

the full conditional probability in O(1) time and provide considerable savings in run-time

for the sampling process.

There are two main types:

• Primary statistics are derived directly from the model graph and depend on the

distributions and parameters they relate to. These are updated when the relevant

parameters are sampled.

• Secondary statistics are derived from primary statistics and require further sym-

bolic reasoning to set up. These are updated whenever the relevant primary statis-

tic is updated.

5.4.2.4 Data Block

This data structure maintains the data variables and arrays required for the computation

of the full conditional probability of a parameter. In the case where transformed versions

of the data is required for this computation (for example, a sum over a particular row

of a data array), this is identified ahead of time through symbolic reasoning and is also

stored as a separate Data Block. This ensures that all data lookup required by the

model can be performed in O(1) time.

5.4.2.5 Cache Updater

Automatic updates of statistic caches is a complex process and is handled by the cache

updater. The system uses encapsulation to ensure each component of the update process

only has access to the information directly relevant to it. A message passing system is

used to facilitate the cascading of updates. The software engineering design pattern of

Observer-Observable [23] is used to achieve this.
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Each primary cached statistic is an observer of the parameters it is related to, while each

secondary cached statistic is an observer of the primary cached statistic it is derived from.

This means that a sampled parameter can only ever be an observable, while a cached

statistic may be an observer,an observable or both. Accordingly the parameter class

inherits from the observable class, while the statistic class inherits from the observable

class and implements the observer interface (multiple inheritance).

When a sampling step is carried out, the sampled value and other contextual information

regarding the sampled parameter are passed on to the Cache Updater, which proceeds to

forward that information to the relevant observers of that parameters. These observers

use symbolic reasoning to identify the structure of the update they need to carry out to

maintain their integrity, followed by launching another update to their observers leading

to a cascade of updates. Memoization is used to enable saving symbolic links to any

required look-up terms so that future updates of the same type result in considerably

reduced symbolic reasoning overhead.

In situations where a cache update is triggered with potentially one or more dimensions

of the update being unknown, this is indicative of the need to perform an update for all

elements of that dimension. This usually arises in situations where a parameter being

sampled is also an index for another parameter. Consider a clustering model where a

cluster is drawn using a categorical distribution. This cluster indicator is then used to

index the probabilities unique to that cluster. Therefore, when the cluster is sampled,

any statistics arising related to that cluster would need to be updated along with the new

assignment for the cluster. If there are multiple items associated with the cluster (for

example, multiple documents), it would be necessary to update the relevant statistics

for all of these items. This situation is automatically identified and handled by the

cache updater by performing a lookup on the missing indices’ range, and performing the

planned update for all values of the index in that range.

5.4.2.6 Computable Tree

The sampling step for a parameter involves the computation of the full conditional

probability for that parameter based on the data structures discussed. As this step is

repeated continuously throughout the Markov chain, it is essential that this step be

carried out as efficiently as possible. The computable tree is a tree-based representation

of the full conditional probability that achieves this. It is extended from the expression

tree representation, but additionally provides symbolic links to the requisite elements.

During the first call of the sampling step for a particular parameter, the computable

tree contains a symbolic representation of the full conditional probability formula which

is used in order to symbolically reason about the terms that the formula requires. Once

this is done, the result is memoized in the corresponding node of the computable tree
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as a direct symbolic link to the term in question. This allows future traversals of the

computable tree the capability of looking up relevant terms in O(1) time. If this was

not memoized, the symbolic steps associated with computing the entity would create an

overhead every time it was invoked.

5.4.2.7 Cacheable Tree

The Cacheable Tree representation is used in order to generate the secondary cached

statistics required for a particular sampler. This tree based representation extends the

expression tree format but additionally isolates computational terms related to primary

statistics. This allows for the replacement of this computation with a new variable in

the symbolic representation of the full conditional probability. This same process is also

carried out for transformed data variables which allows for efficient look-ups of all data

terms in constant time. This is also a strategy for trading memory space for running

time as the result would now need to be stored, but it removes the need to run, for

example, addition over all values in a cache, in order to compute it’s sum.

5.5 Simulation and code generation

Once all samplers have been processed, it is possible to use them in order to generate

code or to execute the model. This section describes the modules involved in this process.

5.5.1 Simulator

The simulator is responsible for executing the model variant developed during the analy-

sis phase. The final result of the analysis phase is a collection of samplers corresponding

to the different parameters of the initial model. The code simulator has jurisdiction over

deciding which parameters are sampled and in which order. The simulator provides a

sandbox environment for the model analysis and code generation process as more con-

textual information is available at each stage of the model. This allows for more robust

error reporting and more dynamic sampling strategies compared to the code generated

version of the model.

The simulation process proceeds as follows:

1. Variant is checked to see if each active parameter has a viable sampler. The pa-

rameters are also checked for lexicographical ordering, to ensure code is generated

in the correct order.
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2. Each sampler is prepared for sampling. This involves performing symbolic rea-

soning to identify the form of the update equation, determine the range of each

sampling loop and identify all cached statistics that would be updated based on

the parameter under consideration.

3. Based on update equations, distributions types and other sampler information, the

initialization for the parameter is carried out.

4. When all parameters have been initialized, training is intitated.

5. Based on sampler information, the equation for updating this parameter in each

epoch is determined and memoized for future reuse. It is converted into a format

that can have values substituted in quickly, and computed quickly as well. This is

important because this computation is repeated many times.

6. Execution is repeated until convergence/maximum limit of iterations is reached.

7. Results are visualized and any metrics are computed and saved.

During simulation, any parameter updates will trigger automatic updates of all related

formulae and statistics. This is explained in more detail under section 5.4.2.5.

5.5.2 Code Generator

The code generator handles the code generation functions of the system. In general,

generated code will be simple and easy to understand, allowing for the possibility of

relatively straightforward empirical analysis compared to simulated models.

Code generation proceeds as follows:

1. Variant is checked to see if each active parameter has a viable sampler. The pa-

rameters are also checked for lexicographical ordering, to ensure code is generated

in the correct order.

2. Each sampler undergoes initial setup. This involves preparing the necessary data

structures on a per-sampler basis.

3. Update equations are generated for each sampler.

4. Based on update equations, distributions types and other sampler information, the

initialization for the parameter is determined.

5. Code for initialization is generated. This is added to the abstract code for this

variant, under initialization code.
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6. Where the sampler is the result of an operation (e.g. augmentation), any addi-

tional simplifications, initializations and routines are determined and added to the

abstract code for this variant, under the relevant sections.

7. Based on sampler information, the code for updating this parameter in each epoch

is determined. This is added to the abstract code for this variant, under update

code.

8. Internal validation is carried out on the generated abstract code using a dummy

dataset. If verification fails, any errors are reported and execution is halted.

9. Boilerplate code is generated for the intialization process, in the desired target

language.

10. Code for the initialization process is generated based off the initialization section

from the abstract code structure.

11. Boilerplate code is generated for the training iteration.

12. Code for the updating process is generated based on the abstract code structure.

13. Code for visualizing results/intermediate metrics is generated by linking with ex-

isting helper functions in the system standard library.

14. A final compilation test is carried out to check if the code compiles correctly with

no errors. This is done with a compiler/interpreter for the target language.

It should be noted that many of the symbolic steps required for simulation are also car-

ried out during code generation, but are not explicitly mentioned for the sake of brevity.

Code generation is carried out on a variant once all samplers have been generated. In

order to validate the robustness of the generated code, the generated abstract code struc-

ture is used to simulate the model on an internally generated dummy dataset. Internal

validation helps to identify any potential issues with the generated code such as statistic

updates, semantic errors in the model specification or the schema. This step makes use

of the existing support for simulation present in the system. Since the behaviour of the

model is predictable in any given epoch (notwithstanding issues in convergence), it is

possible to use a much smaller automatically generated data-set to identify any potential

crashes caused by semantic errors such as incorrect index usage in the model, incorrect

placement of statements in the schema and any other semantic error that would cause

crashes in the system.

Once validation is complete, the abstract code structure can be compiled into the target

programming language. Support for different languages is provided by means of a lan-

guage configuration file, which maps between the abstract code language and the target

language.
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An excerpt of the generated code for MetaLDA is shown below. Comments have been

added manually to provide further clarity.

for (int d = 0; d < D; d++) {

int I = w[d].length;

for (int i = 0; i < I; i++) {

\\ c0[][] is document-topic stats

c0[d][z[d][i]]--;

c0_1[d]--; \\ row totals of c0[][]

\\ c1[][] is topic-word stats

c1[z[d][i]][w[d][i]]--;

c1_1[z[d][i]]--; \\ row totals of c1[][]

double[] p = new double[K];

for (int k = 0; k < K; k++) {

p[k] = Math.pow(c0_1[d]+a_1[d],-1)*

Math.pow(c1_1[k]+b_1[k],-1)*

(c0[d][k]+a[d][k]) *

(c1[k][w[d][i]]+b[k][w[d][i]]);

}

for (int k = 1; k < K; k++)

p[k] += p[k - 1];

int k;

double val=Math.random()*p[K-1];

for (k = 0; k < K; k++) {

if (p[k] > val) break;

}

z[d][i] = k;

c0_1[d]++;

c0[d][z[d][i]]++;

c1_1[z[d][i]]++;

c1[z[d][i]][w[d][i]]++;

}

}

Someone experienced in implementing the collapsed Gibbs sampler for LDA [30] would

be familiar with the incrementing and decrementing of totals done here. Many steps

have been taken to simplify the form of the representation. For example, subtraction and

division are not treated as individual operations, but as inverse operations of addition

and multiplication (addition with negative value, and multiplication by 1/value). These

can be checked and updated during the code generation stage if necessary, for example

matching with regular expressions for “Math.pow(X, -1)” would be sufficient to find all

instances where division would appear.

There are several key advantages of generating simple code as in the example above:

• Easy to understand and debug.
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• Easy to derive complexity (both time and space).

• Ability to extend using custom code in the generated language.

5.5.2.1 Multiple Language Support

Due to the design considerations mentioned in section 4.1.1, primarily language simplic-

ity, the code generated by the system is straightforward and not reliant on any classes,

interfaces or high level abstractions in the code. It is generated at a level where a begin-

ner programmer would be able understand the mechanics of the algorithm, but perhaps

not the underlying statistical reasoning. However, to someone accomplished in statisti-

cal analysis, the simple code provides an easy means of interacting with the generated

algorithm.

In initial versions of the system, the code was generated in a single language, however,

due to the limited set of operations supported due to the need for simplicity, the possibil-

ity for further abstraction became apparent. The design of the system incorporates the

generation of Abstract Code Structures, which can be used to represent a generalized

version of the code that would otherwise be used to run the algorithm.

The support for programming language constructs in the system is as follows:

• Support for basic types (Integer, Floating point, etc).

• Support for array-like structures (static and dynamic).

• Simple iteration - of the form for i = 1:N, and not of the form for (s in container)

which would be more language dependent.

• simple function calls (primarily to support sampling calls corresponding to basic

distributions - the code for these calls is encapsulated in separate functions to

avoid needless bloating of the generated code, and to also simplify it for more

readability). The function code is available in a helper file which is generated

alongside the main algorithm code for inspection by users.

These are the abstract constructs currently supported by the system. Multiple lan-

guage support is provided by specializing the abstract code for different languages using

templates. Currently templates exist for Java and C++.

5.5.2.2 Data

Data can be provided to the system in many different forms. While CSV (Comma

seperated value) is the expected format for data, within this format many different

styles are supported.
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Data can contain string tokens, variable sized lists and sparse data. Where a variable in-

dicated as data is provided in a sparse format, the sparse format is maintained internally

as well. Mappings and inverse mappings (for example feature document mapping and

its inverse in MetaLDA, discussed in section 4.3) are supported by the system, allowing

for straight-forward use both within code and schema.

Additionally, results can be logged seperately during:

• initialization,

• over the burn-in period

• over other training epochs, and

• over user-defined ranges of training epochs.

5.5.3 Comparison of Simulation vs Code generation.

As simulation and code generation are the main workflows in the system, this section

contains a comparison between them.

Symbolic reasoning

All symbolic reasoning must be done during the code generation phase for generated

code, whereas in the simulated models, some of this can be done at run-time with

memoization of reasoned results leading to overall better performance as compared to

simulation without memoization.

Cache updates

During the simulation phase cache updates are handled implicitly by the system through

the message passing system, while during code generation additional symbolic reasoning

is carried out to ensure the code contains simpler explicit cache updates.

Data structures

Structures used in simulation are encapsulated and provide more flexibility in terms of

implementation, as only the end result of the sampling process is shown to users. During

code generation, structures are restricted to standard language data structures such as

arrays, which limits the options in terms of what data structures can be used.

Performance

The overall performance of simulation will be lower due to containing more complex data

structures and performing more reasoning during execution, while the simpler structure

of generated code and the possibility of further compiler optimization leads to generated

code being faster in terms of execution. This is somewhat similar to the comparison
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between compiled vs interpreted langauges, since during simulation each step must be

“interpreted” individually.
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Figure 5.2: Expression Tree for LDA model likelihood



Chapter 6

Properties of Variant Generation

This chapter provides details regarding the variant generation process employed by the

system. While Chapters 4.1.1 and 5 respectively approach this topic from a design

and architectural perspective, this chapter provides a more detailed look at the inner

workings of variant generation and schema. In particular, proofs are provided of some

interesting properties of the operations generated by the schema-based system, and we

also show that the variant search process used by the system is able to generate all

possible variants for that model specification.

Schema were introduced into the system as a way of generalizing symbolic operations

into a more flexible form, but was extended as a general framework for supporting

all operations that can be applied to a given intermediate variant (graph and likelihood

pair). Schemas are used as a means of providing a blueprint for operations in the variant

generation process like collapsing, augmenting and simplification.

6.1 Schema Templates

This section describes the general template used for schemas.

87
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Schema Template

Schema field Explanation

Name Used as an identifier for the schema. Useful in debugging.

Description A description of what the schema does. Useful for inclusion in the

logs generated during the model analysis process.

Type Type of schema. Possibilities include collapsing, augmentation,

simplification or custom.

Applicability Constraint Indicates the conditions needed for the schema to be applied.

Can include wildcards for pattern matching, simple patterns and

graphical patterns.

Handling multiple matches Indicates the method of handling the presence of multiple matches

of the applicability constraint. Options include generating all op-

erations or generating a single operation (based on first match).

Action Actions to be performed on graph/likelihood on confirmed pres-

ence of the applicability constraint.

Unique action? A flag for indicating if the action taken is unique for the generated

match. If true, when the same match occurs elsewhere in the

variant generation process, the first instance of this action will be

duplicated rather than generating a new instance of the action.

Unique signature If Unique action? is set to true, a signature for identifying the

particular instance of the action must be provided in the form of a

string. The string may use identified terms from the applicability

constraints (wildcards etc).

Match schema action In the case the current variant matches the applicability criteria,

the action taken on the part of this schema. Options include RE-

MOVE - remove from the queue of schema, REQUEUE - remove

from the current position and add to the end of the schema queue

or NONE - leave schema is same position

No match schema action In the case the current variant does not match the applicability

criteria, the action taken on the part of this schema. Options

include REMOVE - remove from the queue of schema, REQUEUE

- add to the end of the schema queue or NONE - do nothing.

pre-simplify? Indicates whether the likelihood should be simplified into the sim-

plified normal form prior to applying the pattern matching

operation. This form is discussed in more details under section

5.4.1.1. When set to false, pattern matching is conducted on the

expanded normal form representation.

While many of these fields are self-explanatory, several could benefit from further dis-

cussion, as presented below. Further, an example schema is given in Table 6.1 and more

are presented in Appendix B.

Applicability Constraint is primarily intended as a string matching operation, where

a likelihood constraint is applied. The matching of this constraint or “pattern” using

the complex pattern matching algorithm described under symbolic processing forms the
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trigger for the activation of the schema. Additionally, it is possible to define constraints

on the graph itself, using properties of the nodes themselves. This is especially useful

where the nodes are parameters, and have properties that need to be exploited for the

variant generation process. An example of this is in collapsing, where conjugacy between

a node and its prior is a prerequisite. In this case, several checks may be conducted:

1. the type of a pair of nodes suspected of being conjugate to each other;

2. adjacency (direct connectivity) between the two nodes, including directionality,

since clearly, the prior needs to be a parent of the node being checked for collapsing;

and

3. pattern matching based on conjugacy pattern: this includes defining the general

form of the conjugate likelihood using wildcards. The corresponding string repre-

sentation is used in complex pattern matching to identify the presence of such a

pattern, thus validating the presence of this conjugacy.

Table 6.1: Example Schema for Dirichlet Multinomial Collapsing

Schema field Value

Name CollapserDirMult

Description Performs collapsing according to the Dirichlet multinomial
Conjugacy.

Type Collapsing Schema

Applicability Constraint b: parameter, type is categorical or multinomial
a: parameter, type is Dirichlet, prior of b

Handling multiple
matches

Generate all matches as operations.

Action Remove b:
introduce a new constant node a b with the terms from
collapsing operation (based on the normalizer for Dirichlet
multinomial)

The syntax used in the system is more code-like in nature, whereas the schema here

has been provided with the intention of explaining the operations for clarity. Note

that when certain fields from the initial schema template are missing, they are assigned

default values by the system. This is to simplify the process of schema creation, but still

provide flexibility as needed.

A benefit of the modularity of the system should become apparent from the above,

as any given conjugacy only needs to be defined once, using a minimalistic way of

representing the key properties relating to the statistical behavior displayed by the

collapsing operation.

Handling multiple matches is also a very important consideration for a schema. For

example, the proof of correctness of the variant generation process, discussed in section
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6.3, assumes the generation of all matches pertaining to a particular schema applicable

to the variant under consideration at that time. This is also discussed in more detail

under section 6.4, where the proof relies on all operations that can be generated from a

schema for a particular variant instance, being generated in a single pass of the schema,

rather than relying on recursion to generate multiple different operations from the same

schema being examined multiple times. This also has the added benefit of improving

the run-time of the algorithm, as the number of recursive calls and duplicated work (in

terms of setting up data structures to do pattern matching etc.) is reduced considerably.

It also provides the opportunity for considerable object reuse at the code level, leading

to better software design as well.

This shows the design principle behind schema being a forward-looking mechanism,

intended to support usage that users might come up with, and having the support for

such usage ready ahead of time or attainable with a relatively low amount of future

work.

Unique action? is a flag used for understanding schema behavior in relation to mul-

tiple occurrences of the exact same operation arising multiple times due to the back-

tracking/recursion process. By default this is set to true, however the option to set it to

false is also provided to users, in case it is needed. Setting this to true, is an example of

memoization where computing time is traded for memory. The idea is that if the same

function is called with the same arguments, the result will be the same. Therefore, by

saving the result the first time around, running time can be reduced in consequent calls,

at the cost of the memory used to store those results, and the information required to

identify that instance.

6.1.1 Operation Memoization

There is a unique benefit for augmentation which arises from the fact that a new pa-

rameter needs to be generated. Generally, the system generates these with an arbitrary

character (“q”) and by keeping track of the count of currently conducted augmentations.

So augmented parameters will follow a series like q1, q2, ..., qcount. Clearly, these need

to be named uniquely as there may be overlap between when these parameters exist in

the same variant, and even across multiple variants, it is better to have different names

rather than reused names to provide better readability - if two algorithm variants both

have a q1 where one is different to the other, it serves to confuse users. The exception

to this is when there are two parameters qm and qn which both actually correspond

to the same parameter, but have been named differently. However, this situation can

be avoided by the mechanism mentioned above, where the inputs used to generate the

operation of the schema are used as the “signature” to memoize the resultant operation.
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The next time the same input, schema combination (i.e. the “signature”) is seen the

result is simply returned without any additional computations.

Clearly, this situation does not require the exact same variant which was processed along-

side the schema to be present in both situations (leading to qm and qn), but rather, the

component which caused the identical match in both cases. For example, if component

B causes the match, then both A*B*C and E*B*F could be valid likelihoods for two

different variants that trigger the match. Thus, the uniquesignature needs to be al-

lowed access to the matches of the pattern matching operations in order to ensure the

uniqueness of the match and to avoid potential false positives when checking the schema

on a different, yet similar component of the likelihood/graph.

6.1.2 Benefits of Modularity

There are some key advantages to using a modular schema based system for managing

the variant generation process.

• Ability to provide customizability

• Reusability of schema

• Ability to maintain a schema library for users (plug and play)

• Approachability for users with lower programming expertise

• Flexibility and optimizability for advanced users

The support for custom schema provides a large degree of customizability as users can

implement their own schema and change how the overall algorithm generation process

is instigated. The fact that schema are self-contained and are not strictly dependent

on the system but are rather decoupled from the system means that there is modular

reusability over multiple models. In fact, it is possible to maintain a library of schema

for users to select from. This means it is much easier for newer programmers to use the

schema to conduct algorithm generation on a given model. They can simply use all the

available schema to see if a suitable algorithm is generated. This provides an almost

black-box approach for users who do not wish to be mired down with low level detail.

For more expert users who would like to work in more detail, there is the possibility of

fine-tuning the selection of schema, and potentially adding their own. Notably, expert

users (with sound knowledge of statistical modelling) will be able to improve the running

time of the variant generation process by manually removing schema that they deem to

be unnecessary.
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6.2 Expanded Variant Generation Process

This section provides an overview of how the variant generation process occurs in more

depth with a focus on the interplay between schema, operations and variant generation.

For the purpose of detailed technical discussion, a variant V is defined by V (G,L,O, S)

Where G is a graph, L a likelihood, O a set of pending operations and S a set of

schema that would be applicable to at least one variant but whose applicability to any

particular variant would first be checked before an operation is generated. The seed

variant V0(G0, L0, O0, S0) is generated by the initial parsing of the model specification

and by generating likelihoods for each node in the model specification. The set of schema

S0 is generated based on the schema provided to the system (users may add or remove

schema before running the system as they please). The initial set of operations O0 is

empty.

The following algorithm 11 is a conceptual overview of how schema and operations are

used in variant generation. Note that the depth(d) of the recursive tree is also tracked

alongside the list of operations already performed on a variant in order to provide a more

complete overview once the variant generation process is complete. Note that while S is

present in the formal definition of a variant, it is absent in the recursive algorithm due

to the fact that it is not modified by the algorithm in any way and thus is not part of

the managed state of the variant, and is thus referenced as a global data structure.

For the purpose of algorithm clarity we have split up the queue of operations as Op

- the container for pending operations, and Od the container for completed or ”done”

operations. Notice that the underlying algorithm does not depend on the container used

(list, queue, stack etc. are all fine). For understanding this algorithm considering it as a

stack will be more intuitive.

With the given algorithm 11, processing of a variant for sampler generation only happens

in a recursive call if no operations are applied in that call, and if no schema are triggered

in that call as well. In terms of the recursive call tree, this node would then not have

any children (due to to not triggering any recursive calls) and would thus be a leaf node.

6.2.1 Ordering Operations

The ordering of schema and recursive calls is intentionally set up so that all possible

orderings of schema are supported. This is to allow for any permutation of schema to

be generated, thus making the variant generation process independent of the order in

which schema are specified in the configuration of the system. This is important as it

allows users to define schema without worrying about potential implications of having
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VariantGeneration(G,L,Opn,Od):
if Opn is not empty then

//recurse without performing operation
o = Opn.pop()
VariantGeneration(G,L,Opn,Od)
//perform operation o on G and L
G′, L′ = performOperation(o,G,L)
//o is now done and no longer pending
Od.push(o)
G′ and L′ are new instances
VariantGeneration(G′, L′, Opn,Odn)
//reset current state for maintaining proper DFS
Od.pop()

end
if there are schema applicable to (G, L) then

//generate new operatons, recurse
for all applicable schema s ∈ S do

//Multiple operations are possible from a single schema
O = s.generateOperations(G,L)
for all operations o ∈ O do

Opn.push(o)
end
VariantGeneration(G,L,Opn,Odn)
//Maintain DFS state
for all operations o ∈ O do

Opn.pop()
end

end

end
//Check if any operations were performed or generated at this level(depth)
If not, this is a leaf node in the recursive tree
if this is a leaf node then

registerAlgorithmCandidate(G, L)
end

Algorithm 11: Variant Generation Search Algorithm

them in the incorrect order. There are also options available for advanced users to take

advantage of with ordering schema in a particular ordering (for example by imposing

S1 > S2 > S3 > ... > Sn in terms of schema priority for execution, and additionally

enforcing that this ordering is maintained in the variant generation). This would also

provide faster execution of the variant generation process, since all permutations of the

schema do not need to be considered.

In ensuring that any ordering of schema is possible, it is possible that schema that do

not overlap with each other, i.e. operate on different parts of the graph, can be applied

to the same graph in different orderings. This would lead to multiple occurrences of the

same variant at different stages of the variant generation process. The handling of this

is primarily done by identifying duplicate variants by hashing the likelihood function.
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Note that the hashing in this case can be handled by first splitting over multiplication

and sorting by alphabetical order to remove a large degree of the issues surrounding

commutativity and associativity. Thus, entire branches of the recursive call tree can

be pruned to optimize efficiency. Note that, since the set of schema does not change

for the variant generation process, it is safe to prune such a branch. This is because

all the schema available to the original occurrence of the branch will be available here

as well, leading to identical variant generation for both branches. This is discussed in

more detail in section 6.4 along with other important properties and implications of

non-intersecting operations.

Additionally, it should be clear that the same operation may be generated multiple

times during the variant generation process, by the same schema. In this situation, only

a part of the likelihood and graph will be involved in the operation generation, alongside

a single schema. Therefore, operations are memoized/cached upon first generation and

subsequent invocations of the same operation are done by a simple look-up based on

a combination of schema,likelihood terms and nodes involved (operation signature). A

more detailed discussion of this is handled in sections 6.1 and 6.4.

6.2.2 Algorithm Candidates

An algorithm candidate is defined as a variant which has a working sampler for all

parameters present in the graph. A leaf variant, is a variant that is at a leaf node of

the recursive tree generated by the depth-first search variant generation process. All

leaf node algorithm candidate are considered by the variant generation scheme for the

generation of samplers.

In particular, for graph G of variant V (G,L,O, S). G = (N,E) where N is the set

of all nodes, and E is the set of all edges. Then let P be the set of all parameters of

the graph, with P ⊆ N . Then, in order for a particular variant to be viable for use

for inference, each parameter p ∈ P would need to have a sampler associated with it,

otherwise that parameter would form a missing link in the overall training process. At

intermediate stages of the variant generation process, this will generally not be true.

Intermediate variants can achieve this property by removing parameter nodes (through

collapsing) or by introducing new nodes that allow other nodes to be sampled (through

augmentation/simplification). While it is possible for a variant to be an algorithm

candidate without reaching a leaf node, it is necessarily the case that any such variant

will be represented by some leaf node. The proof of this is as follows:

Let V (G,L,O, S) be a variant with the following conditions, all parameters of V have

a sampler available for it. Then what needs to be proven is the fact that there exists

a leaf node variant V ′(G,L,O′, S′) with the exact same configuration as V, with the



Properties of Variant Generation 95

same graph, set of parameters, graph and likelihood as V. Now consider the lines o =

Op.pop() and VariantGeneration(G,L,Opn,Od) in the algorithm above. These lines

essentially “skip” the current operation pointed to by the top of the pending operations

container and traverses to a deeper level of the depth first search recursive tree. At

a later stage, it is possible that more operations are assigned by schema that finds a

match on this variant. However, in such a case, the same process can be repeated and

the operations created by such schema can be “skipped” again. Inductively, this means

that the current variant can be “maintained” in terms of properties right down to a leaf

node. Therefore, for any variant V (G,L,O, S), there exists a variant V ′(G,L,O′, S′)

with the exact same configuration as V, with the same graph, set of parameters, graph

and likelihood as V present as a leaf node in the recursive tree of the depth first search

process. In fact, provided the identity operation I, which performs no change to a variant

V, such that IV (G,L,O, S) = V (G,L,O, S) is disallowed by definition (since there is

no logical reason for allowing the existence of an identity schema), we can guarantee

that there exists a unique variant V’ that matches the properties discussed previously.

Note that the parameters in a graph are a part of its set of nodes, and therefore cannot

be changed without changing the graph itself (and probably the likelihood as well).

Therefore, for any algorithm variant present at a non-leaf node in the recursive tree,

there exists a unique algorithm variant identical to it taking up a leaf node position.

This follows from the fact that the multiple identical non-leaf variants all converge to

the same leaf node variant (identical to all of them in all respects other than recursive

depth) in the absence of an identity schema.

This directly supports the fact that potential algorithm variants only need to be pro-

cessed at leaf-node positions, greatly reducing the overall run-time complexity of the

overall variant generation process.

6.3 Proof of Variant Coverage

A key contribution of our system is the fact that it can generate multiple variants from

the provided model specification. Considering the fact that schema are meant to be

reusable with minimum required configuration, the variant generation process needs to

be robust enough to handle a variety of schema and still ensure that all variants of

interest are generated. In this context, variant coverage is defined as follows:

Variant coverage is the percentage of algorithm candidate leaf variants (as defined

previously), that can be generated by the system as compared to the set of algorithm

candidates that can be generated. It is important to consider leaf variants as these are

the variants that are actually processed, since algorithm generation is only carried out

on leaf variants as per the algorithm definition above.
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The set of algorithm candidates that can be generated is assumed to be the set of differ-

ent variants that might be generated by an oracle with unlimited statistical, symbolic

and computational capabilities, applying the operations exactly as they are defined by

the system, but always applying them in an optimal fashion in order to generate the

highest number of algorithm candidates possible. Clearly, the set of operations are lim-

ited to those generated by the schema provided alongside the model specification, as

this limitation determines the algorithm candidates generated for a particular model

specification.

Our claim about variant coverage is given in the theorem.

Theorem: The variant generation process achieves a variant coverage of 100% or total

coverage of all variants.

Proof: We have previously proven that for any algorithm candidate, there exists a

unique leaf variant algorithm candidate, provided the identity operation/schema is not

supported. A generalization of this proof is also possible, where we can show that for

any given variant, there exists a unique leaf variant with the same properties. This

arises from the fact that we did not use any special property of algorithm candidates in

the proof above and thus all statements could be generalized for general nodes and leaf

nodes.

Therefore to ensure coverage for any algorithm candidate leaf node, it is sufficient to

show there exists an algorithm candidate with the same properties in some node of the

recursive depth-first tree for the variant generation process. Coverage for an algorithm

candidate leaf node is required as it is only at the leaf level that variants are processed

for sampler generation.

Now let us consider how the oracle would perform generation of a particular algorithm

candidate. Since the oracle has perfect knowledge of the steps needed to generate the

algorithm candidate, it can generate the steps needed to reach it using the provided

schema, and as soon as it reaches it, stop. Let us consider such an algorithm vari-

ant Vt(Gt, Lt, Ot, St). Let the initial variant derived from the model specification be

V0(G0, L0, O0, S0). Since Vt has been generated from V0 using operations generated from

schema, we can say without loss of generality, Vt = OnOn−1...O1V0 where the operations

O1, O2, ..., On are the 1st,2nd,...,n-th operation applied, in order and have been derived

based on schema S1, S2, ..., Sn. Note that the numbering indicates the order of the

operation performed, and not the order of items stored in any data-structure/container.

Since the oracle has decided on this set of steps, there are two key aspects that need to

be covered in this proof.

1. The system can identify the applicability of these schema
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2. This sequence of operations can be generated by the system in that order.

The first statement relates to pattern matching.

Now let us consider the 2nd statement. Since the oracle has managed to generate Vt =

OnOn−1...O1V0, it would have also managed to generate Vt′ = On−1...O1V0 at some stage.

In going from Vt′ to Vt, the oracle has performed operation On. As the oracle is bound to

using the schema specified by the system, there exists a schema s such that s ∈ S and s is

applicable on Vt′(G
′′, L′′, O′′, S′′). In fact, On ∈ s.generateOperation(G′′, L′′), in other

words On is one of the operations that can be generated by s on the variant Vt′ . Now, let

us assume our system can generate Vt′ from V0 using some sequence of operations and

schema activations. We know that s ∈ S, that the schema that generates On is present

in the current set of schema and that s is applicable to Vt′ . Then, let O′ be the set of

pending operations at this stage for Vt′ in our system. If any of these operations are

performed, the variant traverses down a different path as Vt′′ = On′On−1...O1V0 where

On′ ∈ O′. However, consider the following lines in the algorithm:

if Opn is not empty then
//recurse without performing operation

o = Op.pop()

VariantGeneration(G,L,Opn,Od)

//perform operation o on G and L

G′, L′ = performOperation(o,G,L)

//o is now done and no longer pending

Od.push(o)

G′ and L′ are new instances

VariantGeneration(G′, L′, Opn,Odn)

//reset current state for maintaining proper DFS

Od.pop()

end

Algorithm 12: part of Variant Generation Search Algorithm

The lines o = Op.pop() and VariantGeneration(G,L,Opn,Od) allows us to skip the first

of these operations by ignoring the current operation at the top of the pending container

and applying to a deeper recursive level while not actually applying the operation in the

graph. As this is a recursive call, this process can be repeated indefinitely, effectively

“skipping” the entire container of operations.



Properties of Variant Generation 98

Now consider the following lines:

if there are applicable schema then
//generate new operatons, recurse

for all applicable schema s ∈ S do
//Multiple operations are possible from a single schema

O = s.generateOperations(G,L)

for all operations o ∈ O do
Op.push(o)

end

VariantGeneration(G,L,O, S, d+ 1, op)

//Maintain DFS state

for all operations o ∈ O do
Op.pop()

end

end

end

Algorithm 13: part of Variant Generation Search Algorithm

Since the operations in the container were “skipped”, the next lines are executed. We

have already established that s ∈ S and that s is applicable to the current variant.

Therefore, consider any other schema that may be check before s and are found to be

applicable. Let s′ be such a schema. Let Os′ be the set of operations generated by this

schema. Then the queue O is updated by adding all elements of Os′ to it, and then

VariantGeneration(G,L,Opn,Odn) is called, leading to deeper recursion. Now there

would be more pending operations in the pending operations container, but we can

simply ”skip” these once more, as before. This process can be repeated for all schema

found to be applicable before processing of s is conducted. Now, since s ∈ S and s

is applicable, s is guaranteed to be processed, creating operation On. On is added to

the list of pending operations and a recursive call is made. This time, we consider the

following lines:

//perform operation o on G and L

G′, L′ = performOperation(o,G,L)

//o is now done and no longer pending

Od.push(o)

G′ and L′ are new instances

VariantGeneration(G′, L′, Opn,Odn)

//reset current state for maintaining proper DFS

Od.pop()

Since On is applied on the variant, Vt = OnOn−1...O1V0 is generated, and since Vt is an

algorithm candidate, by our proof that any algorithm candidate has a unique algorithm

candidate leaf variant, provided the identity operation is not supported. We can impose
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the restriction of the identity operation to ensure a unique leaf node that contains the

information required for processing this variant.

We have proven that if Vt′ = On−1...O1V0 is present as a variant in our system, then

Vt = OnOn−1...O1V0 can be generated. In doing so, we have not assumed any particular

properties of the graph, likelihood or operations. We have based our argument on the

fact that the schema corresponding to this “bridging” operation is present in the set

of schema, which is required to be true because otherwise such a variant cannot be

generated. Since this reasoning does not depend on anything but the set of schema

themselves, this logic can be further generalized to show that Vtk = Ok...O1V0 can be

generated in our system provided Vtk−1
= Ok−1...O1V0 can be generated. We also know

by definition, that V0(G0, L0, O0, S0) can be generated by the system. Thus, we can

conclude using the principle of mathematical induction that Vt = OnOn−1...O1V0 can

be generated by our system. This concludes the proof of the fact that the sequence of

operations selected by the oracle can be generated by the system in that order.

6.4 Bounded Runtime

The implication of section 6.3 is that any possible variant supported by the schema can

be generated by the variant search process. This requires some further explanation,

especially with regards to the recursive steps taken by the algorithm.

Consider the following scenario: A schema is activated and generates an operation o. A

recursive call to o is triggered and o is then “skipped” along with other operations and

execution proceeds until operation generation (by schema) once more. If at this stage,

the same schema is triggered (and we know that it can be triggered, since its triggering is

what led us to this scenario), then an infinite loop is created. This is avoided in practice

due to two main reasons:

1. Schema are set up so that all possible matches are generated and the corresponding

operations are queued. This means that there is no logical reason for the same

schema to be activated more than once on any given call of the recursive function.

Note that even if an operation is skipped, it is removed from the queue by calling

Op.pop().

2. Thereby, reaching the end of the iteration over schema can be considered as the

endpoint for the variant generation in that level of the recursive call. When this

stage is reached, it is possible to check for necessary conditions to decide whether

the current variant is a potential algorithm candidate leaf variant or not.
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In particular; if any operations or schema have been activated in the current recursive

call (easily checked by setting Boolean flags), then it is not a leaf node of the recursive

call tree and thereby it cannot be an algorithm candidate leaf variant. So the current

recursive call can be ended and control of execution can be passed to the previous

recursive level.

It is important to note that no schema is run while there are operations pending (as

previously discussed in section 6.3. This is not the same as saying all operations are

executed before schema are generated (some or all of the operations may have been

skipped).

Let us define a few properties of variants. The inverse Om of operation On is such

that OmOnV = IV = V . While the system implicitly performs the inversion process

(because of the recursive calls), thereby ensuring the impossibility of this happening due

to reversing operations on the part of the system, it is still possible for users to create

schema that lead to the generation of such operations. The issue with such a situation

is the fact that it may create infinite loops or repeats of the same operations being

generated over and over in the recursive call tree.

However, it is insufficient to merely handle simple situations like this. Let us define non-

intersecting operations as follows: operations On and Om are called non-intersecting

if OnOmV = OmOnV . This would generally indicate that they operate on separate

parts of the graph with no overlapping modifications of nodes or likelihood terms. Now

consider a sequence of operations Om, On, O
−1
m , O−1

n with On and Om non-intersecting.

The overall resultant would be: O−1
n O−1

m OnOm = O−1
n O−1

m OmOn = O−1
n IOm = I

The mechanism for handling this is straightforward: Note that such a sequence of oper-

ations would start at a particular variant V (G,L,O, S) and cause it to appear again at

a later stage in the recursion tree. The easiest way to check for this is by maintaining

pointers from each unique likelihood to all its occurrences in the recursion tree (as a

hash for example). Whenever a new recursive call is made (by an operation), the like-

lihood for before that operation is saved into the hash, and when recursion returns to

that point, the likelihood is removed. This means, if a clash ever occurs, it is in the

same branch of the recursive call tree, indicating the possibility of an infinite loop. At

this stage, that branch is pruned from the recursive call tree while also warning the user

about the list of operations used in generating the infinite loop, for debugging purposes.

Define the applicability of an operation O on a variant V as follows: Applicable(O,V )

= true if O is applicable on V (ie O originated from a schema that had its applicability

constraint matched against V) and false if it is not applicable on V. Then a crucial rule of

the system must be that Applicable(O,OV ) = false, to prevent another class of infinite

loops. In other words, operations should be self-invalidating. If an operation that is not

self invalidating is introduced via a schema, it is easily found by the repeated occurrence
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of that same operation over and over again in a particular branch, and can be used to

identify branch pruning conditions and debug information for users. In particular, it is

possible to identify operations uniquely using their signature. Due to the self invalidating

restriction, the same operation shouldn’t occur twice in the same chain of operations,

and definitely not 5 or 6 times, so this can be used as a criteria for identifying such

operations and the offending schema corresponding to them.

A key outcome of these properties is that they also allow a way for handling pruning

strategies on the recursive tree. For example, a variant generated entirely by pairwise

non-intersecting operations will be the same no matter the order of operations applied,

thereby allowing pruning when such a variant is found.



Chapter 7

Experimental Results

This chapter provides details on some of the results generated by the system.

The first section provides a detailed evaluation of two models for which the inference

algorithms are not easily generated by current probabilistic programming languages due

to either symbolic complexity, model complexity, or both.

Next, a discussion of the results of variant generation is provided, using an example to

indicate the differences in the model structure and the final generated code based off a

single initial model specification.

7.1 Comprehensive Evaluation of Generated Code

In this section we discuss the evaluation process used to test our system. Testing was

carried out on MetaLDA [65] and MIGA [69] and we compared the original Matlab im-

plementations of the models downloaded from the authors’ Github1 with our generated

models. These two models selected primarily for the following reasons:

Use of collapsing and augmentation: Both the models made considerable use of

these operations.

Symbolic complexity: The analysis process for the models was considerably compli-

cated, requiring many simplification steps.

The primary evaluation criteria used were result similarity and code similarity. Testing

was performed on the Web Snippets data-set, a widely used text dataset [14, 36, 69],

which contains 12,237 web search snippets and each snippet belongs to one of 8 cate-

gories. The vocabulary contains 10,052 tokens, and there are 15 words in one snippet

1https://github.com/ethanhezhao
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on average. Result similarity was tested using likelihood evaluation, topic-term prob-

ability comparison and visualization. Testing was performed with 2000 iterations and

100 topics. All parameter and prior settings were mimicked from the original papers.

Likelihood Evaluation: In this set of experiments, we studied how closely the models

generated by our system can “reproduce” the training log-likelihood of the original

models. We plotted the training log-likelihood of each model as a function of training

iterations with a gap of 10, as shown in Figure 7.1. Moreover, we also computed simple

statistics, i.e., mean and standard deviation of each curve in Table 7.1.

Both the plots and the statistics show that the generated models behave very similarly

to their original models.

The log likelihood of each model was plotted against the iteration number, and the

resulting graph was checked for convergence and similarity. Table 7.1 and Figure 7.1

illustrate these results. Table 7.1 contains the results corresponding to the log likelihoods

of each model from iteration 10 to 2000 with an interval of 10. Convergence is implied

by figure 7.1 and the final values are indicated under convergence of models in table 7.1,

while the means and standard deviations of the curves are indicated in the same table

as well.

Table 7.1: Results - Log Likelihood

Convergence of Models

MetaLDA MIGA

Original −1.0642× 106 −1.1500× 106

Generated −1.0636× 106 −1.1290× 106

Stats of convergence curve - MetaLDA

Mean Std. Dev.

Original −1.0745× 106 2.6819× 104

Generated −1.0709× 106 2.1258× 104

Stats of convergence curve - MIGA

Mean Std. Dev.

Original −1.1828× 106 6.1528× 104

Generated −1.1632× 106 5.9313× 104

Topic-term probability comparison: was used to provide a comparison of the topics

assigned by the generated code vs the original model. The idea is that there are strong

topics in the data-set that should be picked up by both types of code. These will

be assigned to random indices in the topic-term probability matrix φk,v. By running

the Hungarian algorithm on a distance metric between the rows of two φk,v matrices, it

should be possible to match these similar topics together. By picking the lowest distanced

probability vectors first, the most similar topics represented via proxy by the rows of φk,v

are matched across the models. A record of the distances of each of these 100 matching
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Figure 7.1: log likelihood vs iteration - higher is better

steps (one for each topic) is kept and plotted. The comparison is conducted for 5 seperate

runs of each algorithm. Comparisons are intra-model (Original vs Original, Generated

vs Generated giving
(

5
2

)
= 10 plots each) and inter-model (Original vs Generated giving

5 × 5 = 25 plots each). Results are shown in figure 7.2. The distance metric used to

compare the two topics’ word probabilities is Hellinger distance. This shows conclusively

that the two algorithms are generating similar kinds of φ matrices.

Visualization: incorporated the visualization techniques used by the original authors in

order to compare the results of the generated code against those reported by the authors.

An excerpt from the result for MetaLDA is given in Table 7.2. This demonstrates that

the generated code is resulting in good output topics. Here λl,k indicates the weight
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Figure 7.2: MIGA O-O,O-G,G-G Hellinger distance (y) vs topic iteration (x)

assigned for topic k with respect to label l.

Code similarity: refers to the structural similarity of the code generated by our system,

compared to the original authors’ code/algorithm presented in the original papers. Code

similarity provides a heuristic means of checking model equivalence without needing to

run the model.

In each case, the code used for testing was from the model variant which most closely

resembled the model presented in the authors’ original paper (all possible collapsing

operations performed, and all augmentations performed as well). In general, a single

variant will be similar to the existing model for comparison purposes. This is because

the original model will always use a sampling strategy similar to one of the variants

(assuming the techniques used by the authors have been represented by schema in the

system). This then becomes a baseline for comparison against and can help to criticize

the other variants.

In checking for code similarity, we found satisfactory similarity, especially when compar-

ing with the published algorithms for the models. In the case of MetaLDA, the published
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Table 7.2: Top 3 topics per label and words per topic

Label λl,k Top 3 words (ordered)
Business 10.10 marketing sales advertising

5.65 bank currency cruise
4.88 estate buying selling

Computers 11.96 intel apple chip
10.41 computer architecture computers
8.74 linux system operating

Culture, arts 10.45 oscar awards academy
and entert- 8.82 music lyrics beatles
-ainment 6.48 movie movies imdb
Education 12.80 physics quantum mechanics
and 10.65 science computer psychology
Science 10.14 theorem newton proof
Engineering 16.26 electrical motor electric

8.45 engine diesel fuel
5.67 engineering invention science

Health 9.58 cancer physical therapy
8.02 disease diagnosis health
6.70 health diet healthy

Politics 11.83 republic president freedom
and 9.39 nuclear weapons bombs
Society 7.54 system government presidential
Sports 10.86 football league soccer

8.04 goalkeeper maradona diego
7.86 sports news espn

code was somewhat dissimilar to the generated code mainly due to the fact that Met-

aLDA’s authors had used the MALLET library which uses its own complex structures

incorporating sophisticated “fast” LDA operations. MIGA’s authors had used MATLAB

code, which led to a high degree of similarity, although there were noticeable differences

due to the efforts taken in order to vectorize the MATLAB code. Unfortunately, we

were unable to find a reasonable metric to quantify the similarity between the original

code and our generated code at the syntax level. Using plagiarism detection algorithms

seemed like a promising option, but did not yield any conclusive results.

This is illustrated in figures 7.3, 7.4 and 7.5. Here, snippets of the sampling process

from the initial paper are overlaid on generated code for the same model for the purpose

of comparison.

Speed: while direct speed comparisons between the implementations are not meaning-

ful, due to the code being in 2 different languages and the original code being manually

optimized in both cases to improve run-time, they are nonetheless listed in Table 7.3. It is

instructive to compare the complexity of the different systems. Our system achieves the

same computational complexity as the original algorithms, albeit with higher constants
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Figure 7.3: Code comparison

Figure 7.4: Code comparison, Augmentation variables are assigned names by the
system and not externally

due to being not having been scrutinized for manual optimizations such as vectorization

as the original code has been.

Table 7.3: Speed comparison - runtime in hours

MetaLDA MIGA

Original 0.41 0.47

Generated 0.94 2.95
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Figure 7.5: Code comparison

7.2 Code for Variants

This section provides an overview of the code generated for different variants of the LDA

model (refer to section 1.2.2 for derivation). For each parameter being sampled, the

initialization code and MCMC code have been provided with comments delimiting the

relevant sections for ease of inspection. The dotted lines in images indicated parameters

and edges that have been collapsed out, and are thus inactive in the model.

No Collapsing performed

In this variant, all parameters are present, and need to be sampled explicitly. Alpha

and Beta are priors for Theta and Phi respectively, and are constant vectors. Figure 7.6

indicates this variant.

//==== NEW SAMPLER FOR theta ====

//Initialization

for (int d = 0; d < D; d++){

for (int k = 0; k < K; k++){

theta[d][k]=1.0/K;

}

}

//For each iteration of the Markov Chain run the following:
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Figure 7.6: An LDA variant with no parameters collapsed

for (int d = 0; d < D; d++){

//Sample from full conditional

theta[d]= DirichletSample(c0[d] + a);

}

//==== NEW SAMPLER FOR phi ====

//Initialization

for (int k = 0; k < K; k++){

for (int v = 0; v < V; v++){

phi[k][v]=1.0/V;

}

}

//For each iteration of the Markov Chain run the following:

for (int k = 0; k < K; k++){

phi[k]= DirichletSample(c1[k] + b);

}

//==== NEW SAMPLER FOR z ====

//Initialization

for (int d = 0; d < D; d++){

for (int i = 0; i < I; i++){

z[d][i]=(int)Math.random()*K;

c0_1[d]++;

c0[d][z[d][i]]++;

c1_1[z[d][i]]++;

c1[z[d][i]][w[d][i]]++;

}

}
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//For each iteration of the Markov Chain run the following:

for (int d = 0; d < D; d++){

for (int i = 0; i < I; i++){

c0_1[d]--;

c0[d][z[d][i]]--;

c1_1[z[d][i]]--;

c1[z[d][i]][w[d][i]]--;

//Sample from full conditional

double[] p = new double[K];

for (int k = 0; k < K; k++){

p[k]=(Math.pow(phi[k][w[d][i]],1))*(Math.pow(theta[d][k],1));

}

//cumulate values

for (int k = 1; k < K; k++){

p[k]+=p[k-1];

}

int k;

double val = Math.random()*p[K-1];

for (k = 0; k < K; k++){

if (p[k]>val)break;

}

z[d][i]=k;

c0_1[d]++;

c0[d][z[d][i]]++;

c1_1[z[d][i]]++;

c1[z[d][i]][w[d][i]]++;

}

}

Theta collapsed

In this variant Theta is collapsed out, while Phi remains. This means that Theta does

not need to be sampled in the Markov Chain. Figure 7.7 indicates this variant.

//==== NEW SAMPLER FOR phi ====

//Initialization

for (int k = 0; k < K; k++){

for (int v = 0; v < V; v++){
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Figure 7.7: An LDA variant with θ collapsed

phi[k][v]=1.0/V;

}

}

//For each iteration of the Markov Chain run the following:

for (int k = 0; k < K; k++){

//Sample from full conditional

phi[k]= DirichletSample(c1[k] + b);

}

//==== NEW SAMPLER FOR z ====

//Initialization

for (int d = 0; d < D; d++){

for (int i = 0; i < I; i++){

z[d][i]=(int)Math.random()*K;

c0_1[d]++;

c0[d][z[d][i]]++;

c1_1[z[d][i]]++;

c1[z[d][i]][w[d][i]]++;

}

}

//For each iteration of the Markov Chain run the following:

for (int d = 0; d < D; d++){

for (int i = 0; i < I; i++){

c0_1[d]--;

c0[d][z[d][i]]--;
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c1_1[z[d][i]]--;

c1[z[d][i]][w[d][i]]--;

//Sample from full conditional

double[] p = new double[K];

for (int k = 0; k < K; k++){

p[k]=(c0[d][k]+a[d][k])*(Math.pow(phi[k][w[d][i]],1));

}

//cumulate values

for (int k = 1; k < K; k++){

p[k]+=p[k-1];

}

int k;

double val = Math.random()*p[K-1];

for (k = 0; k < K; k++){

if (p[k]>val)break;

}

z[d][i]=k;

c0_1[d]++;

c0[d][z[d][i]]++;

c1_1[z[d][i]]++;

c1[z[d][i]][w[d][i]]++;

}

}

Phi collapsed

Similar to the previous variant, now Phi is collapsed. Figure 7.8 indicates this variant.

Figure 7.8: An LDA variant with ϕ collapsed
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//==== NEW SAMPLER FOR z ====

//Initialization

for (int d = 0; d < D; d++){

for (int i = 0; i < I; i++){

z[d][i]=(int)Math.random()*K;

c0_1[d]++;

c0[d][z[d][i]]++;

c1_1[z[d][i]]++;

c1[z[d][i]][w[d][i]]++;

}

}

//For each iteration of the Markov Chain run the following:

for (int d = 0; d < D; d++){

for (int i = 0; i < I; i++){

c0_1[d]--;

c0[d][z[d][i]]--;

c1_1[z[d][i]]--;

c1[z[d][i]][w[d][i]]--;

//Sample from full conditional

double[] p = new double[K];

for (int k = 0; k < K; k++){

p[k]=(c1[k][w[d][i]]+b[k][w[d][i]])*(Math.pow(theta[d][k],1));

}

//cumulate values

for (int k = 1; k < K; k++){

p[k]+=p[k-1];

}

int k;

double val = Math.random()*p[K-1];

for (k = 0; k < K; k++){

if (p[k]>val)break;

}

z[d][i]=k;

c0_1[d]++;

c0[d][z[d][i]]++;

c1_1[z[d][i]]++;

c1[z[d][i]][w[d][i]]++;

}

}

//==== NEW SAMPLER FOR theta ====
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//Initialization

for (int d = 0; d < D; d++){

for (int k = 0; k < K; k++){

theta[d][k]=1.0/K;

}

}

//For each iteration of the Markov Chain run the following:

for (int d = 0; d < D; d++){

//Sample from full conditional

theta[d]= DirichletSample(c0[d] + a);

}

Both Phi and Theta collapsed

In this variant, both Theta and Phi have been collapsed, leaving only Z to be sampled.

Figure 7.9 indicates this variant.

Figure 7.9: An LDA variant with θ and ϕ collapsed

//==== NEW SAMPLER FOR z ====

//Initialization

for (int d = 0; d < D; d++){

for (int i = 0; i < I; i++){

z[d][i]=(int)Math.random()*K;

c0_1[d]++;
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c0[d][z[d][i]]++;

c1_1[z[d][i]]++;

c1[z[d][i]][w[d][i]]++;

}

}

//For each iteration of the Markov Chain run the following:

for (int d = 0; d < D; d++){

for (int i = 0; i < I; i++){

c0_1[d]--;

c0[d][z[d][i]]--;

c1_1[z[d][i]]--;

c1[z[d][i]][w[d][i]]--;

//Sample from full conditional

double[] p = new double[K];

for (int k = 0; k < K; k++){

p[k]=1*(c0[d][k]+a[d][k])*(c1[k][w[d][i]]+b[k][w[d][i]]);

}

//cumulate values

for (int k = 1; k < K; k++){

p[k]+=p[k-1];

}

int k;

double val = Math.random()*p[K-1];

for (k = 0; k < K; k++){

if (p[k]>val)break;

}

z[d][i]=k;

c0_1[d]++;

c0[d][z[d][i]]++;

c1_1[z[d][i]]++;

c1[z[d][i]][w[d][i]]++;

}

}

Extending LDA with a document cluster

Consider the model specification below. This is a simplification of MIGA [69], but the

handling of meta-information has been removed. Note the generated code for full MIGA

is given in Appendix A.2.

for (k in 1:K) {
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phi[k,1:V] ~ ddirich(b);

}

for (t in 1:T){

theta[t,1:K] ~ ddirich(a);

}

mu[1:T] ~ ddirich(g);

for (m in 1:M) {

y[m] ~ dcat(mu);

for (n in 1:N) {

z[m,n] ~ dcat(theta[y[m]]);

w[m,n] ~ dcat(phi[z[m,n]]);

}

}

This is an extension of LDA with a cluster y drawn for each document m. When the

cluster for a particular document is sampled, it is necessary to consider the allocation

of topics within that topic, which leads to a complicated update. This is broken down

into several parts and computed as individual products, due to the higher readability

provided by doing so.

//==== NEW SAMPLER FOR y ====

//==== FORMAT M ====

//Initialization

for (int m = 0; m < M; m++){

y[m]=Math.Random()*T;

c0[y[m]]++;

c1_1[y[m]]++;

}

//For each iteration of the Markov Chain run the following:

for (int m = 0; m < M; m++){

c0[y[m]]--;

c1_1[y[m]]--;

//Sample from full conditional

double[] p = new double[T];

for (int t = 0; t < T; t++){

int counter = 0;

for (int n = 0; n < N[m]; n++){

counter++;

}

float prod0 = 1.0;
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for (int k = 0; k < K; k++){

prod0 = prod0 *

(Math.pow(RisingFactorial(a_1+c1_1[t] , counter ),-1));

}

int counter_T[] = new int[K];

for (int n = 0; n < N[m]; n++){

counter_T[z[m][n]]++;

}

float prod1 = 1.0;

for (int k = 0; k < K; k++){

prod1 = prod1 * (RisingFactorial(c1[t][k]+a[k] , counter_T[k] ));

}

p[t]=prod0*prod1*(Math.pow(mu[t],1));

}

//cumulate values

for (int t = 1; t < T; t++){

p[t]+=p[t-1];

}

int t;

double val = Math.random()*p[T-1];

for (t = 0; t < T; t++){

if (p[t]>val)break;

}

y[m]=t;

c0[y[m]]++;

c1_1[y[m]]++;

}



Chapter 8

Conclusion

This thesis has mainly focused on automatic code generation for statistical models that

rely on augmentation and collapsing. A schema based system for performing automated

collapsing and augmentation has been presented. Additionally, a symbolic system that

is able to perform necessary symbolic manipulations to perform key steps such as sim-

plification and pattern matching has also been presented in this thesis.

8.1 Summary of Thesis Contents

The main content of the thesis can be summarized as follows:

• As the focus of the thesis is on probabilstic programming languages and proba-

bilistic compilers, Chapter 1 provides an introduction to probabilistic programming

languages and provides several examples of automatic and manual inference algo-

rithm/model training algorithm generation using current systems in this space.

It also provides an overview of the research outcomes that this PhD set out to

achieve.

• Chapter 2 provides an overview of Bayesian analysis including key concepts such

as conjugacy, statistical operations such as augmentation and collapsing, and sam-

pling schemes such as Gibbs sampling which form the backbone of the designed

system.

• Chapter 3 provides a comprehensive review of the related works in the areas of

probabilistic programming languages and symbolic processing. Particular atten-

tion is paid to systems which motivated the design of the system portrayed in this

thesis.
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• Chapter 4 provides a high-level overview of the entire system, with a particular

focus on the design principles and how these have been accounted for in terms

of the system architecture. Additionally, an overarching example covering the

behaviour of the system is also provided.

• Chapter 5 focuses on providing a more granular discussion of the overall system,

with a particular focus on implementation details. Schema-based operation au-

tomation and symbolic support systems are discussed at length.

• Chapter 6 provides details on variant generation, one of the key contributions of

this research. This chapter delves into the inner workings of variant generation

and schema and how their interaction provides support for automated statistical

and symbolic operations. This chapter also contains proofs regarding the overall

variant coverage provided by the system.

• Chapter 7 provides details regarding some of the experiments run on the system.

Details regarding a comprehensive evaluation using models which require consid-

erable simplification and statistical operations has been provided. Additionally,

details regarding code produced as a result of the variant generation process is

provided and discussed.

8.2 Summary of Major Contributions

The major contributions of this thesis are as follows:

• A system for automatic support of collapsing and augmentation in statis-

tical models and supporting code generation into multiple languages.

• A symbolic system which provides support for the above, including support

for simplification and pattern matching steps required for performing statistical

operations.

• A schema based system for managing statistical operations in a modular fash-

ion, promoting the reuse of components in a plug and play fashion.

• The caching and differential operations on sufficient statististic allow the gen-

eration of remarkably efficient algorithms reflecting some of the optimised code

generated by programmers. This is seen mostly simply in the generated code for

LDA shown after Algorithm alg-lda-intro.

It is not claimed, however, that the system developed is a complete or appropriate

probabilistic programming language. This is because most of the development work for
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this work has been directed towards the functionality and rigour of the symbolic system

and the schema system. The probabilistic language functionality was built up in order

to experiment and showcase the focus of the research work. In this regard, thesis shows

how some existing languages could be extended with these capabilities.

8.2.1 Automatic support of collapsing and augmentation

To the best of our knowledge, this is the first instance of a statistical system capable

of automatically supporting augmentation and collapsing. Additionally, the system

provides an architecture for code generation into multiple programming languages. This

is achieved by the generation of abstract code structures which can be later specialized

based on a language specification. Therefore, in order to generate code in a new language,

all that needs to be done is to create a language specification in that programming

language. Interestingly, this opens up possibilities for the system to be integrated into

probabilistic programming languages as a helper tool, where the model specification is

first entered into our system, to generate code in a supported language (for example:

Julia for Gen), and then the resulting code is used in Gen for the purposes of inference.

An interesting feature of the system is that the algorithms are targeted to be as general

as possible. Most pattern matching occurs on string likelihoods, and as such, this can

be incorporated into existing probabilistic languages by first converting their likelihood

into a standard expression format (as discussed in section 5.4.1). Then, once pattern

matching and any other operations are done, all that is required is to interface with

the probabilistic programming language to modify the model structure with the changes

suggested by our system. As seen in section 6.1, these would not require a lot of work on

the part of the probabilistic programming language, as the operations are fairly simple

(for example adding a new node, removing a node etc).

8.2.2 Symbolic System

The symbolic system enables statistical operations by providing support by way of sym-

bolic processing and pattern matching. While existing pattern matching algorithms,

particularly in the string domain, perform well on general queries, they are not opti-

mized for working on likelihoods. In particular, Bayesian Likelihoods offer a nice format

in the string representation that lends itself to further optimization in the area of string-

based pattern matching. With this in mind, we have presented a string-based pattern

matching algorithm that accounts for associativity and commutativity and is optimized

for operating on Bayesian likelihood functions.

We have described this algorithm along with a proof in section 5.3.4.4, along with a

detailed discussion of how it is optimized for handling likelihoods.
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8.2.3 Schema System

At its core, the schema system is a way to encapsulate considerable low-level implemen-

tation details from end-users. This allows relatively newer users to still have a lot of

flexibility in what they can try with the system, merely by merit of adding or removing

the set of schema that operate on their model specification. Additionally, schema enforce

modular reuse, by ensuring that concepts relevant to a particular statistical operation is

contained within the schema template. Schema are set up so that the different schema

belonging to a particular type (for example, collapsing schema) are largely similar to

each other. Refer Appendix B for examples. This makes the process of defining new

schema relatively straightforward. In terms of positioning this work with regards to

existing literature, it is an almost hybrid approach between programmatic inference (by

Gen, for example) and the standard black-box approach (by Stan, for example) with

regards to the flexibility of modifying the inference process. The attractiveness of the

former is in its ability to provide a large degree of freedom to the end user, at the cost

of requiring to learn how to code in that system. The latter, on the other hand, offers a

much simpler interface to end users to create a model specification and then the system

does most of the work. Our system is in between: plug and play schema allow a user to

simply run their model specification to see what happens, advanced users can add their

own schema and exploit the flexibility of the system in this way.

8.3 Concluding Remarks

Current machine learning researchers routinely use collapsing and augmentation in their

development of algorithms because it can be necessary to generate an effective sampler.

This thesis has presented a system that allows collapsing and augmentation to be applied

to exponential family probability models (represented as DAGS) in order to generate

different variants of the model. The current system automatically generates Java code,

but due to the templates and configuration, Javascript or Python could equally well be

generated. Our experimental work indicated we could faithfully duplicate sophisticated

Gibbs samplers including models requiring considerable simplifications such as MetaLDA

and MIGA.

This thesis presents a general architecture which can generate mutliple variants from a

given model specification. Combined with simple code generation, and an evaluation of

alternatives, the design philosophy is to provide the user with a sandbox environment

where the user has the possibility to modify either initial model or final generated code

in order to eventuate changes in the model training process. In addition to allowing the

user to generate code in the language they are familiar with, code generation has the

added benefit of providing access to desirable language features. MATLAB for example,
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has in-built vectorization which can significantly speed up computation while Javascript

can be embedded into a webpage with ease for visualization.

The collapsing and augmentation scheme and the code generation scheme detailed here

are both general and can be integrated into existing probabilistic languages, as they

are both independent of our probabilistic programming language and sampling scheme.

The former would require symbolic support, which most probabilistic languages should

already have built-in, while the latter would require code level access to all modules

where sampling takes place (which is part of the reason we have not relied on an external

library to do anything except the most basic sampling). The alternative to this is to

embed any library calls within the generated code - a hybrid code generation approach

which would still make the process more interactive for the user.

An interesting side-effect of generating variants is the possibility to do automated vari-

ant testing. Given data in the format the model expects, the system can automatically

generate variants, and then run the variants on the given data to identify issues such

as speed, accuracy, effective samples per second and other metrics about the variants.

Simply on an empirical level, combining all the possibilities provided by variants, par-

allelization, vectorization and other language features together with automated testing

for model selection provides considerable testing coverage for any single model.
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Generated Code for Models

A.1 MetaLDA

package mu;

import java.util.ArrayList;

import java.util.Arrays;

public class TestCode {

public void test(ArrayList[] f, ArrayList[] g, int[][] w,

Tester tester, TestHelper helper int L, int T) {

int samplingInvterval = 1;

int K = 20;

int V = g.length;

int D = f.length;

double mu = 1.0;

double nu = 1.0;

int burnin = 10;

//inversef[l][d] == 1 iff f[d][k] == 1 (inverse index of f)

ArrayList<Integer>[] inversef = helper.invert(f, L);

ArrayList<Integer>[] inverseg = helper.invert(g, T);

//Stat c1 = count of times k and v appear together

int c1[][] = new int[K][V];

//Stat c1_1 = count of times k appears

int c1_1[] = new int[K];
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//Stat c0 = count of times d and k appear together

int c0[][] = new int[D][K];

//Stat c0_1 = count of times d appears

int c0_1[] = new int[D];

int z[][] = new int[D][];

double theta[][] = new double[D][K];

double phi[][] = new double[K][V];

double lambda[][] = new double[L][K];

//number of tables in CRP

int q0[][] = new int[D][K];

//beta augmentation variable

double q1[] = new double[D];

double delta[][] = new double[T][K];

//number of tables in CRP

int q3[][] = new int[K][V];

//beta augmentation variable

double q4[] = new double[K];

//alpha argument in dirichlet prior of theta

double a[][] = new double[D][K];

//beta argument in dirichlet prior of theta

double b[][] = new double[K][V];

//initialize alpha

helper.arrayFill(a, 0.1);

//initialize alpha

helper.arrayFill(b, 0.01);

helper.arrayFill(delta, 1.0);

helper.arrayFill(lambda, 1.0);
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/*

Overall Joint = Product(Product(phi(k,v)**c1,(v,1,V)),(k,1,K))*

Product(Product(phi(k,v)**(b(k,v)-1),(v,1,V)),(k,1,K))*

Product(Gamma(Sum(b(k,v),(v,1,V))),(k,1,K))/

Product(Product(Gamma(b(k,v)),(v,1,V)),(k,1,K))*

Product(Product(theta(d,k)**c0,(k,1,K)),(d,1,D))*

Product(Product(theta(d,k)**(a(d,k)-1),(k,1,K)),(d,1,D))*

Product(Gamma(Sum(a(d,k),(k,1,K))),(d,1,D))/

Product(Product(Gamma(a(d,k)),(k,1,K)),(d,1,D))

*/

//==== NEW VARIANT ====

//==== NEW SAMPLER FOR z ====

//==== FORMAT DxI ====

//Initialization of z[d][i] - topics

for (int d = 0; d < D; d++) {

int I = w[d].length;

z[d] = new int[I];

for (int i = 0; i < I; i++) {

z[d][i] = (int) (Math.random() * K);

c0_1[d]++;

c0[d][z[d][i]]++;

c1_1[z[d][i]]++;

c1[z[d][i]][w[d][i]]++;

}

}

//For each iteration of the Markov Chain run the following:

double[] a_1 = new double[D];

double[] b_1 = new double[K];

for (int epoch = 0; epoch < 500000; epoch++) {

System.err.println("EPOCH : " + epoch);

//compute sum of alpha and beta and cache it

for (int d = 0; d < D; d++) {

a_1[d] = helper.sum(a[d]);

}

for (int k = 0; k < K; k++) {

b_1[k] = helper.sum(b[k]);

}

//sampling loop for z[d][i]



Conclusion 126

for (int d = 0; d < D; d++) {

int I = w[d].length;

for (int i = 0; i < I; i++) {

c0_1[d]--;

c0[d][z[d][i]]--;

c1_1[z[d][i]]--;

c1[z[d][i]][w[d][i]]--;

//Sample from full conditional

double[] p = new double[K];

for (int k = 0; k < K; k++) {

p[k] = (((c0[d][k] + a[d][k]) / (c0_1[d] +

a_1[d])) * ((c1[k][w[d][i]] + b[k][w[d][i]])

/ (c1_1[k] + b_1[k])));

}

//cumulate values

for (int k = 1; k < K; k++) {

p[k] += p[k - 1];

}

int k;

double val = Math.log(Math.random()) + Math.log(p[K - 1]);

for (k = 0; k < K; k++) {

if (Math.log(p[k]) > val) {

break;

}

}

z[d][i] = k;

c0_1[d]++;

c0[d][z[d][i]]++;

c1_1[z[d][i]]++;

c1[z[d][i]][w[d][i]]++;

}

}

if (epoch > burnin) {

if (epoch % samplingInvterval == 0) {

//sampler for q0

for (int d = 0; d < D; d++) {

for (int k = 0; k < K; k++) {

if (c0[d][k] > 0) {

q0[d][k] = 1;



Conclusion 127

for (int iter = 1; iter < c0[d][k]; iter++) {

q0[d][k] += helper.BernoulliSample(a[d][k] /

(a[d][k] + iter));

}

}

}

}

//sampler for q1

for (int d = 0; d < D; d++) {

q1[d] = helper.BetaSample(a_1[d], (c0_1[d]));

}

//Sampler for lambda[l][k]

int[][] sum1 = new int[L][K];

for (int d = 0; d < D; d++) {

for (int k = 0; k < K; k++) {

for (int iter : (ArrayList<Integer>) f[d]) {

sum1[iter][k] += q0[d][k];

}

}

}

double[][] sum2 = new double[L][K];

for (int l = 0; l < L; l++) {

for (int k = 0; k < K; k++) {

for (int d : inversef[l]) {

sum2[l][k] += (a[d][k] / lambda[l][k]) *

Math.log(q1[d]);

a[d][k] /= lambda[l][k];

}

lambda[l][k] = helper.GammaSample((mu +

sum1[l][k]), 1) / (1 / mu - sum2[l][k]);

for (int d : inversef[l]) {

a[d][k] *= lambda[l][k];

}

}

}

//sampler for q3
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for (int k = 0; k < K; k++) {

for (int v = 0; v < V; v++) {

if (c1[k][v] > 0) {

q3[k][v] = 1;

for (int iter = 1; iter <= c1[k][v]; iter++) {

q3[k][v] += helper.BernoulliSample(b[k][v] /

(b[k][v] + iter));

}

}

}

}

//sampler for q4

for (int k = 0; k < K; k++) {

q4[k] = helper.BetaSample(b_1[k], (c1_1[k]));

}

//Sampler for delta[t][k]

int[][] sum3 = new int[T][K];

for (int k = 0; k < K; k++) {

for (int v = 0; v < V; v++) {

for (int iter : (ArrayList<Integer>) g[v]) {

sum3[iter][k] += q3[k][v];

}

}

}

double[][] sum4 = new double[T][K];

for (int t = 0; t < T; t++) {

for (int k = 0; k < K; k++) {

for (int v : inverseg[t]) {

sum4[t][k] += (b[k][v] /

delta[t][k]) * Math.log(q4[k]);

b[k][v] /= delta[t][k];

}

delta[t][k] = helper.GammaSample((nu +

sum3[t][k]), 1) / (1 / nu - sum4[t][k]);

for (int v : inverseg[t]) {

b[k][v] *= delta[t][k];

}

}

}



Conclusion 129

}

}

}

}

}

A.2 MIGA

package mu;

import java.util.ArrayList;

import java.util.Arrays;

public class TestCode {

public void test(ArrayList[] f, int[][] w, Tester tester, int L,

int M, int K, int V, double[] a, double[] b) {

TestHelper helper = new TestHelper();

int samplingInvterval = 1;

int D = f.length;

int T = 100;

double mu = 1.0;

int burnin = 10;

//inversef[l][d] == 1 iff f[d][k] == 1 (inverse index of f)

ArrayList<Integer>[] inversef = helper.invert(f, L);

int c3[][] = new int[D][K];

int c3_1[] = new int[D];

int c0[][] = new int[D][M];

int c0_1[] = new int[D];

int c2[][] = new int[K][V];

int c2_1[] = new int[K];

int c1[][] = new int[M][K];

int c1_1[] = new int[M];

int y[] = new int[D];
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double psi[][] = new double[D][M];

double theta[][] = new double[M][K];

double phi[][] = new double[K][V];

int z[][] = new int[D][];

double lambda[][] = new double[L][M];

//initialize alpha

Arrays.fill(a, 0.1);

//initialize beta

Arrays.fill(b, 0.01);

//initialize psi

helper.arrayFill(psi, 0.1);

//initialize lambda

helper.arrayFill(lambda, 1.0);

double a_1 = 0.0;

double b_1 = 0.0;

double[] psi_1 = new double[D];

for (int d = 0; d < D; d++) {

y[d] = (int) (Math.random() * M);

c0_1[d]++;

c0[d][y[d]]++;

}

//c0 - d,m ; c2 - k,v ; c1 - m,k

for (int d = 0; d < D; d++) {

int I = w[d].length;

z[d] = new int[I];

for (int i = 0; i < I; i++) {

z[d][i] = (int) (Math.random() * K);

c1_1[y[d]]++;

c1[y[d]][z[d][i]]++;

c2_1[z[d][i]]++;

c2[z[d][i]][w[d][i]]++;

c3[d][z[d][i]]++;

}

}
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for (int epoch = 0; epoch < 2001; epoch++) {

System.err.println("EPOCH : " + epoch);

a_1 = helper.sum(a);

b_1 = helper.sum(b);

for (int d = 0; d < D; d++) {

psi_1[d] = helper.sum(psi[d]);

}

for (int d = 0; d < D; d++) {

int I = w[d].length;

for (int i = 0; i < I; i++) {

c1[y[d]][z[d][i]]--;

c1_1[y[d]]--;

c2[z[d][i]][w[d][i]]--;

c2_1[z[d][i]]--;

c3[d][z[d][i]]--;

//Sample from full conditional

double[] p = new double[K];

for (int k = 0; k < K; k++) {

p[k] = (Math.pow(a_1 + c1_1[y[d]], -1)) *

(Math.pow(b_1 + c2_1[k], -1)) *

(c1[y[d]][k] + a[k]) *

(c2[k][w[d][i]] + b[w[d][i]]);

}

for (int k = 1; k < K; k++) {

p[k] += p[k - 1];

}

int k;

double val = Math.random() * p[K - 1];

for (k = 0; k < K; k++) {

if (p[k] > val) {

break;

}

}

z[d][i] = k;

c1[y[d]][z[d][i]]++;

c1_1[y[d]]++;

c2[z[d][i]][w[d][i]]++;

c2_1[z[d][i]]++;
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c3[d][z[d][i]]++;

}

}

if (epoch >= burnin) {

if (epoch % samplingInvterval == 0) {

//For each iteration of the Markov Chain run the following:

for (int d = 0; d < D; d++) {

int I = w[d].length;

c0_1[d]--;

c0[d][y[d]]--;

for (int i = 0; i < I; i++) {

c1[y[d]][z[d][i]]--;

c1_1[y[d]]--;

}

double[] p = new double[M];

for (int m = 0; m < M; m++) {

int counter = I;

double prod2 = 1.0;

prod2 = prod2 * (Math.pow(

helper.RisingFactorial(a_1 + c1_1[m], counter),-1));

int counter_M[] = new int[K];

for (int i = 0; i < I; i++) {

counter_M[z[d][i]]++;

}

double prod3 = 1.0;

for (int k = 0; k < K; k++) {

prod3 = prod3 *

(helper.RisingFactorial(

c1[m][k] + a[k], counter_M[k]));

}

p[m] = psi[d][m] *

Math.pow(psi_1[d], -1) *

prod2 * prod3;

}

for (int m = 1; m < M; m++) {

p[m] += p[m - 1];

}
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int m;

double val = Math.random() * p[M - 1];

for (m = 0; m < M; m++) {

if (p[m] > val) {

break;

}

}

y[d] = m;

for (int i = 0; i < I; i++) {

c1[y[d]][z[d][i]]++;

c1_1[y[d]]++;

}

c0_1[d]++;

c0[d][y[d]]++;

}

int[][] sum1 = new int[L][M];

for (int d = 0; d < D; d++) {

for (int iter : (ArrayList<Integer>) f[d]) {

sum1[iter][y[d]] += 1;

}

}

//beta augmentation variable

double q1[] = new double[D];

//sampler for q1

for (int d = 0; d < D; d++) {

q1[d] = helper.BetaSample(psi_1[d], 1);

}

double[][] sum2 = new double[L][M];

for (int l = 0; l < L; l++) {

for (int m = 0; m < M; m++) {

for (int d : inversef[l]) {

sum2[l][m] += (psi[d][m]/ lambda[l][m])

* Math.log(q1[d]);

psi[d][m] /= lambda[l][m];

}

lambda[l][m] =
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helper.GammaSample((mu + sum1[l][m]), 1)

/ (1 / mu - sum2[l][m]);

for (int d : inversef[l]) {

psi[d][m] *= lambda[l][m];

}

}

}

}

}

}

}

}



Appendix B

Example Schema Templates

Dirichlet Multinomial Collapsing Schema

Schema field Value

Name CollapserDirMult

Description Performs collapsing according to the Dirichlet multinomial

Conjugacy.

Type Collapsing Schema

Applicability Constraint b: parameter, type is categorical or multinomial

a: parameter, type is Dirichlet, prior of b

Handling multiple

matches

Generate all matches as operations.

Action Remove b:

introduce a new constant node a b with the terms from

collapsing operation (based on the normalizer for Dirichlet

multinomial)
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Gamma Poisson Collapsing Schema

Schema field Value

Name CollapserGaPois

Description Performs collapsing according to the Gamma Poisson Con-

jugacy.

Type Collapsing Schema

Applicability Constraint b: parameter, type is Poisson

a: parameter, type is Gamma, prior of b

Handling multiple

matches

Generate all matches as operations.

Action Remove b:

introduce a new constant node a b with the terms from col-

lapsing operation (based on the normalizer for Gamma Pois-

son conjugacy)

As shown above, the schema relevant to a particular type (for example, collapsing)

are fairly similar to each other, with the main differences occurring due to symbolic

differences depending on the particular schema in question. For example, the main

difference in the above arises from the difference in normalizers between the Dirichlet

and Gamma distributions.

Beta Variable Augmenting Schema

Schema field Value

Name AugmentorBetaVar

Description Performs augmenting with a set of beta variables.

Type Augmenting Schema

Applicability Constraint Presence of Γ(W1)/Γ(W1 +W2) in the likelihood

b: match for W1, parameter

a: match for W2, statistic

Handling multiple

matches

Generate all matches as operations.

Action The matched terms are augmented by a set

of Beta random variables q1:M . Here qm ∼
Beta

(∑T
t=1 b(m, t),

∑T
t=1 a(m, t)

)
. t and m are in-

dices that are bound during the pattern matching process.

Remove matched terms from the graph:

introduce a new parameter node qm as above, and connect

it to the appropriate neighbours

An example augmentation would be qd ∼ Beta
(∑K

k=1 a(d, k),
∑K

k=1 c0(d, k)
)

as derived

in section 4.3.



References

[1] Eric Atkinson, Cambridge Yang, and Michael Carbin. Verifying handcoded proba-

bilistic inference procedures. arXiv preprint arXiv:1805.01863, 2018.

[2] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge Univer-

sity Press, 1999.

[3] Dan Benanav, Deepak Kapur, and Paliath Narendran. Complexity of matching

problems. Journal of symbolic computation, 3(1-2):203–216, 1987.

[4] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan Pas-

canu, Olivier Delalleau, Guillaume Desjardins, David Warde-Farley, Ian Goodfel-

low, Arnaud Bergeron, et al. Theano: Deep learning on gpus with python. In

NIPS 2011, BigLearning Workshop, Granada, Spain, volume 3, pages 1–48. Cite-

seer, 2011.

[5] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet allocation.

Journal of machine Learning research, 3(Jan):993–1022, 2003.

[6] W.L. Buntine and S. Mishra. Experiments with non-parametric topic models. In

20th ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, pages 881–

890. ACM, 2014.

[7] Wray Buntine. Variational extensions to EM and multinomial PCA. In European

Conference on Machine Learning, pages 23–34. Springer, 2002.

[8] Wray L Buntine and Swapnil Mishra. Experiments with non-parametric topic mod-

els. In Proceedings of the 20th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, pages 881–890, 2014.

[9] John Canny. GaP: a factor model for discrete data. In Proceedings of the 27th annual

international ACM SIGIR conference on Research and development in information

retrieval, pages 122–129. ACM, 2004.

[10] Bob Carpenter, Andrew Gelman, Matt Hoffman, Daniel Lee, Ben Goodrich,

Michael Betancourt, Michael A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.

137



Bibliography 138

Stan: A probabilistic programming language. Journal of Statistical Software, 20:

1–37, 2016.

[11] Bruce Char, Keith Geddes, and Gaston Gonnet. The Maple symbolic computation

system. ACM SIGSAM Bulletin, 17(3–4):31–42, 1983.

[12] C. Chen, W. Buntine, N. Ding, L. Xie, and L. Du. Differential topic models.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 37(2):230–242, Febru-

ary 2015.

[13] Changyou Chen, Lan Du, and Wray Buntine. Sampling table configurations for

the hierarchical Poisson-Dirichlet process. In Proceedings of the 2011 European

conference on Machine learning and knowledge discovery in databases, pages 296–

311, 2011.

[14] Mengen Chen, Xiaoming Jin, and Dou Shen. Short text classification improved by

learning multi-granularity topics. In 22nd IJCAI, 2011.

[15] Diana J Cole, Byron JT Morgan, and DM Titterington. Determining the parametric

structure of models. Mathematical biosciences, 228(1):16–30, 2010.

[16] Mary Kathryn Cowles. Comments on ‘The BUGS project: Evolution, critique and

future directions’. Statistics in Medicine, 28(25):3068–3069, 2009. ISSN 1097-0258.

doi: 10.1002/sim.3671. URL http://dx.doi.org/10.1002/sim.3671.

[17] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K

Mansinghka. Gen: a general-purpose probabilistic programming system with pro-

grammable inference. In Proceedings of the 40th ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 221–236, 2019.

[18] Lan Du, Wray Buntine, and Huidong Jin. A segmented topic model based on the

two-parameter Poisson-Dirichlet process. Machine Learning, 81(1):5–19, 2010.

[19] Lan Du, Wray Buntine, and Mark Johnson. Topic segmentation with a structured

topic model. In Proceedings of NAACL-HLT, pages 190–200, 2013.

[20] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hy-

brid monte carlo. Physics letters B, 195(2):216–222, 1987.
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