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Emplacement of magma fingers is more complex than a single end-member 
model
• Host rock fluidisation, folding, brittle deformation, and wedging observed in the 
 same outcrop at meter scale and in some cases even associated with a single 
 finger
• Host rock uplift accommodates up to 20% of the magma finger thickness

Magma emplacement mechanism(s) can change over time 
• Mechanism(s) that initiates magma fingers might be different to their propagation 
 mechanism(s)
• Host rock fluidisation potentially more likely to occur during the early stage of 
 magma emplacement due to availability of pore-fluids
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1)  Finger initiation
• Potentially due to thermal host rock fluidisation at the propagating sill tip 
• Contact between magma and fluidisved host rock breaks down into elongate
 magma fingers;         ηmagma < ηhost rock → viscous fingering

2)  Finger propagation
• Growth in length accommodated by:   
  → Host rock fluidisation
  → Viscous indentation
  → Elastic splitting (LEFM)

3)  Finger inflation
• Folding and shear failure in the compressional regime between 
 adjacent magma fingers → host rock shortening and thickening 
• Presented host rock uplift data should be considered minimums, since 
 we cannot quantify the exact pre-intrusion host rock thickness between 
 adjacent fingers

Figure 9. Schematic diagrams (map view) showing the growth of finger-like geometries due to viscous 
fingering (redrawn from Pollard et al., 1975). White arrows indicate the magma flow direction.

Figure 11. Schematic cross-sectional diagrams perpendicular to the magma flow direction highlighting the 
host rock deformation in the compressional regime between adjacent fingers. White arrows indicate 
magma finger growth in width.

Figure 10. Schematic cross-sectional diagrams parallel to the magma flow direction of magma fingers 
indicating the propagation mechanisms observed at the outer margin of the Shonkin Sag laccolith. White 
arrows indicate the magma flow direction. Diagrams modified after Spacapan et al., 2017.
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Figure 6. Microphotograph of (A) undeformed and (B) deformed host rock. Arrows indicate open 
porespace. Samples were collected ~1 m below the intrusion (A) and in the compressional regime 
between adjacent magma fingers (B).
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Figure 4. Field photographs and 
interpreted sketches indicating host rock 
fluidisation. (A) Oblique section through a 
magma finger showing solidified, frothy 
magma ahead of the lateral finger tip. (B-D) 
Irregular-shaped fluidal clasts of igneous material 
indicate intrusion-host-rock-mingling and host rock 
fluidisation. (D) Irregular-shaped margins of fluidal clasts 
of igneous material (B, C), as well as irregular-shaped 
contacts between the coherent intrusion and the host rock (D) 
indicate host rock-magma mingling and host rock fluidisation.

(4) Folding and brittle deformation

(1) Host rock fluidisation (2) Wedging

(5) Host rock uplift

Figure 7. Field photograph and interpreted sketches of (A) folded and faulted host rock strata, and 
(B) thrusted and stacked sandstone beds between two magma fingers.

Figure 8. Orthorectified photomosaic made from drone footage with (A) host rock deformation 
indicated and (B) host rock uplift color-coded. (C) Amount of host rock uplift plotted in relation with the 
magma finger thickness.

• Indicating magma propagation via LEFM

• Predominantly in the compressional regime between adjacent magma fingers

• Caused by elastic deformation during magma finger inflation
• ~20% of finger thickness accommodated by host rock uplift

• Mainly observed at the cross-sectional finger tips
• Less commonly at the top and bottom of magma fingers

Figure 5. Field photograph and interpreted sketch 
showing host rock deflection at a cross-sectional 

magma finger tip due to finger inflation when 
magma propagates through a 

linear-elastic fracture.
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Fig. 3

The Shonking Sag laccolith contains the archetypal example of magma 
fingers.

Pollard et al., (1975) studied the outcrop shown in Figure 3 and described 
host rock deformation associated with magma finger emplacement as: (i) 
folding; (ii) shear failure; (iii) wedging. Pollard et al., (1975) suggested 
viscous fingering as a potential mechanism to initiate magma fingers, 
however, which deformation mechanism(s) could have led to an unstable 
contact between the propagating magma and the host rock was unclear.

Previous studies

• The Shonkin Sag laccolith is of Tertiary age
• Mafic composition (Shonkinite)
• Emplaced into Cretaceous Eagle Formation
  (sandstones with thin shale interlayers) at an estimated
  emplacement depth of 1.4 km (Barksdale, 1937)

Figure 3. Schematic cross-section (A) of the cliff face, studied at the margin of the Shonkin 
Sag laccolith, and drone photographs (B-D) to visualise sill geometries observed in the 
outcrop. Schematic cross-section is not to scale. Please see Fig. 2B for cross-section 
location.

Figure 2. Study location. A) Overview of intrusive and volcanic rocks in Montana highlighted 
in red and grey, respectively, and B) Satellite image showing the Shonkin Sag laccolith with its 
boundary indicated. White line at the SE margin of the Shonkin Sag laccolith highlights the 
studied outcrop location. Satellite image obtained from GoogleEarth. A) is based on the 
Montana State Geological Map (1:1,000,000 scale) available from MBMG.
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Magma transport in large volcanic plumbing systems is often described to 
occur via networks of channel-like sheet intrusions (i.e., dykes and sills). In 
many cases, elongate, finger-like geometries emerge from the outer margin 
of these planar sheet intrusions during magma migration through the Earth’s 
crust. In this study, we aim to:
1) Map and quantify how host rocks deform to accommodate the
 emplacement of magma fingers
2) Test, whether or not magma finger emplacement can be described 
 with a single end-member emplacement model

Figure 1. Schematic cross-sectional diagrams of magma emplacement models (modified 
after Spacapan et al., 2017; Pm indicates magma overpressure). The emplacement of 
magma fingers is often linked to brittle faulting, folding, cataclastic flow, and non-brittle 
processes and therefore is not dominated by LEFM. In case of host rock fluidisation, the 
contact between a relatively low viscous magma and a more viscous fluidised host rock might 
break-down into elongate magma fingers due to the Saffman-Taylor instability (Pollard et al., 
1975; Schofield et al., 2010).
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