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Abstract

This thesis uses the experimental methodology to understand three important topics in

economics and finance. In the first chapter, we explore the trading of assets without

positive fundamental values and find that these assets are prone to larger bubbles than

assets with positive fundamental values. In the second chapter, we study a complementary

safeguard which guarantees a higher minimum wage. Contrary to our conjecture, such a

safeguard does not decrease the gender gap in wages but increases it. In the final chapter,

we develop a novel mechanism to utilize insider information to apprehend the most guilty

criminal in the crime network and enhance deterrence. The experimental data confirm

that the new mechanism is more effective compared to the random audit mechanism, but

is less effective than the Nash equilibrium predicts.
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Chapter 1

Introduction

This thesis uses novel laboratory experiments to explore new mechanisms to understand

the trading of assets with no fundamental values, decrease the gender-wage gap in the

labour markets, and deter criminal activities.

Chapter 1 investigates the trading of assets that lack positive fundamental values. Groups

of traders are randomized into asset markets where fundamental values are either positive,

zero, or negative. Our findings provide first evidence for the presence of much larger

bubbles in asset markets that lack positive fundamental values than in asset markets

with positive fundamental values. Further, we show that our findings are consistent with

trader expectations but not with loss aversion and theories of complexity. This study

provides experimental evidence that supports the need for particular scrutiny of markets

with assets that have no positive fundamental value.

Chapter 2 explores a new mechanism that might be useful to generate gender neutral

outcomes in workplace tournaments. Workplace tournaments are one likely contributor

to gender differences in labor market outcomes. Relative to men, women are often less

eager to compete and thrive less under competitive pressure. We investigate a competitive

workplace environment that may produce more gender-neutral outcomes: tournaments

with safeguards. In our experiment, participants take part in a tournament with a

real-effort task and choose whether they want to have a complementary safeguard that

1



2 CHAPTER 1. INTRODUCTION

guarantees higher wages for the low ranked. As expected, we find that women are more

likely than men to choose such a safeguard. However, obtaining a safeguard comes at a

cost. On average, the safeguard causes lower performance, creates a gender wage gap, and

over-proportionally disadvantages women. Thus, we provide novel evidence that easing

women into tournaments can backfire.

In chapter 3, we study a mechanism for crime deterrence that utilizes insider information

contained in social networks. After a crime is committed the regulator randomly identifies

one criminal in the network and this person is audited and punished for the crime, unless

she can incriminate another person from the network who is deemed to be more responsible.

The regulator audits the criminal activities of both and obtains two noisy signals about

their actions. The one with the higher signal is punished and the other goes free. We

show theoretically that, for a given probability and magnitude of the penalty, crime levels

are lower with this mechanism than with a traditional random audit-punishment scheme.

In equilibrium, crime levels depend on the given criminal’s position in the network and on

the network structure. Our experiment confirms that this mechanism effectively deters

crime, but the magnitude is above the Nash equilibrium predictions and is less sensitive to

changes in the network structure than theory predicts. Level-k reasoning helps to explain

these patterns.

Economic experiments are a methodology that facilitates the identification of causal

relationships and thus complements existing empirical data. Lab experiments provide

insights regarding human behaviors, especially when real-world data are difficult to obtain

or confounded with many other factors. However, making decisions in the lab can be very

different from making decisions in the real world, and sometimes, the results from lab

experiments may not apply outside. Cautions should be exerted when making inferences

from results based on lab experiments.



Chapter 2

Experimental Evidence on Bubbles

in Markets for Assets that lack

positive Fundamental Value

1

2.1. Introduction

Assets that do not deliver any positive cash flow and even sometimes occur holding costs

have significantly gained in popularity. For example, old cars and buildings can incur

more maintenance costs than the value they generate. The storage and shipping costs of

crude oil were likely to exceed the corresponding value during the outbreak of the COVID

pandemic as the price of oil dropped below zero in many markets. In addition, some

government bonds were offered at negative (real) interest rates.2

However, whether assets that lack a positive fundamental value induce more speculation
1This chapter reports research conducted jointly with Andreas Leibbrandt.
2For example, the interest rate of the 10-year Germany Government Bonds had a yield of -0.53%, and

Switzerland, Denmark and Japan witnessed negative deposit interest rates in the year 2019.

3



4 CHAPTER 2. ASSETS THAT LACK POSITIVE FV

than other traditional assets and, thus, should be treated differently remains an open

question. In this experimental study, we provide a first glimpse into the extent and nature

of mispricing of assets that have zero and negative fundamental value (FV, henceforth).3

The data shows clear evidence of high levels of overpricing in the presence of assets that

lack positive FV. The data show that zero FV shares are traded at a price that is much

higher than zero, and the size of overpricing is larger for negative FV shares. Compared

to markets with positive FV shares, we observe that the overpricing is approximately 3–4

times larger when shares have zero or negative FV, respectively. We also find that the

variation in the cashflow increases the size of overpricing rather than decreases it.

A potential explanation for the observed bubble patterns is based on price expectations.

More precisely, some traders might believe that other traders are willing to pay a premium

above the FV and that this premium is systematically linked to the FV and dividend

variance. We test this explanation in a guessing game where we incentivize inexperienced

subjects to accurately predict the pricing patterns in some of the proposed treatments. We

find that guessers successfully anticipate the existence of bubbles in zero FV markets and

correctly guess relative bubble sizes in markets with different FVs. These findings suggest

that markets with zero and negative FV assets have a natural tendency toward larger

bubbles. This study substantially expands the literature on asset market bubbles. Since

Smith et al. (1988), ample evidence shows considerable mispricing in traditional asset

markets with positive FV (Ball & Holt 1998; Bostian, Goeree & Holt 2005; Dufwenberg,

Lindqvist, & Moore 2005; Eckel & Fullbrunn 2015; Haruvy, Lahav, & Noussair 2007;

Hussam, Porter, & Smith 2008; Lei, Noussair, & Plott 2001; Noussair & Powell 2010;

Smith, Suchanek, & Williams 1988; Sutter et al. 2012; Kirchler 2008; Cason & Samek

2015; Cheung, Hedegaard, & Palan 2014; Breaban & Noussair 2015; Bao, Hommes, &

Makarewicz 2017). In contrast to the existing literature, we investigate markets with

non-positive FV assets.

Importantly, we find that applying the insights from existing studies on assets with

positive FV to assets with non-positive FVs may be misleading. For example, the

evidence from positive FV asset markets shows that bubbles are smaller in less complex

3An asset’s fundamental value at time “t” is defined as the sum of discounted expected cash flows
(those paid in the future). Throughout this manuscript, and due to the short horizon nature of our
experiment setup, the discount rate is assumed to be zero.
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Negative FV Zero FV Positive FV
Risk-free dividends No literature No literaturea Literature availableb
Risky dividends No literature No literature Literature availablec

Notes: This table summarizes the proposed 2×3 experimental design and related papers.
Two treatment dimensions are considered: the type of FV and the type of dividend. We
allow FV to be positive, zero, or negative and dividends to be fixed or variable.
a To our best knowledge, there is no SSW-type asset market literature fits in this cell.
The “A1” markets in Smith et al. (2000) are related, as there is no dividend payment at
the end each period, but the FV in their markets are still positive because the cumulative
dividends are paid after the terminal period. There is also a strand of literature in fiat
money flowing McCabe (1989), but the currency is always served as a medium of exchange.
b e.g., Porter & Smith (1995); Ball & Holt (1998).
c e.g., Bostian, Goeree, & Holt (2005); Dufwenberg, Lindqvist, & Moore (2005); Eckel &
Fullbrunn (2015); Haruvy, Lahav, & Noussair (2007); Hussam, Porter, & Smith (2008);
Lei, Noussair, & Plott (2001); Noussair & Powell (2010); Smith, Suchanek, & Williams
(1988); Cason & Samek (2015).

Table 2.1: Experimental design in the context of existing literature

market environments (e.g., Huber & Kirchler 2012; Kirchler, Huber, & Stockl 2012), thus

suggesting that bubbles are small in simple environments (such as in markets where FVs

are always zero), which we do not observe. Further evidence shows the importance of loss

aversion (Kahneman & Tversky 1979; Tversky & Kahneman 1991; Burgstahler & Dichev

1997; Haigh & List 2005; DellaVigna 2009, among the others) suggesting that bubbles are

smaller when traders can make losses, which is at odds with our findings. In addition,

contrary to Porter & Smith (1995) and Childs & Mestelman (2004), who find that an

increase in the variance of the dividends has limited impact on the size of bubbles, we

find that bubbles are larger when variations in the dividends are observed, and they can

be negative.

2.2. Experimental Design

Table 2.1 summarizes how the proposed 3×2 experimental design expands the experimental

asset market literature. Two treatment dimensions are considered: the type of FV and

the type of dividend. More precisely, we allow the FV to be positive, zero, or negative

and dividends to be fixed or variable.

Experimental asset markets with zero and negative FV
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A total of 288 subjects (six groups of eight traders in each of the six treatments),

inexperienced in asset market experiments, participated in the study. The experiment was

programmed in z-Tree (Fischbacher 2007), and the subjects were recruited from SONA.

Participants earned, on average, AUD 35, and the experiment lasted for approximately two

hours. Before the beginning of the experiment, we asked traders to read an information

sheet and sign a consent form. We then read the instructions out loud. Afterward,

traders were given sufficient time to read the instructions on their own and ask questions.

We then implemented two practice rounds and asked traders to answer a set of quiz

questions.4 After everyone correctly answered these questions, the asset market experiment

started. When all traders completed the asset market experiment, we administered a short

demographic questionnaire. When all traders completed the asset market experiment, we

administered a short demographic questionnaire.

2.2.1. Market Environment

In the proposed asset market environment, eight traders form a trading group to trade

shares with each other for 15 trading periods.5 At the beginning of the first trading

period, all traders have an initial endowment of tokens and shares to trade.6 Traders have

100 seconds of trading time during which they can buy and sell shares in each of the 15

trading periods. At the end of each trading period, each share pays a dividend (and/or

incurs a holding cost as a negative dividend, depending on the treatments). Individual

inventories of shares and tokens owned by a trader carry over from one period to the next.

After period 15, we convert tokens to Australian Dollar at the rate of 50 tokens=$1.

The double auction mechanism is similar to Smith, Suchanek, & Williams (1988), where

traders can buy and sell as many times as they wish in each trading period, as long as

4Each practice round corresponds to a real trading period, except that we hide the realization of the
dividend and earnings at the end of the practice round. We also inform the participants that the
practice rounds are for them to get familiar with the experimental software, and they are not paid
for these rounds.

5A trading group of eight traders is common in the experimental asset market literature. Many recent
studies use trading groups with seven to ten individuals (e.g., Haruvy, Lahav, & Noussair 2007;
Haruvy & Noussair 2006; Kirchler, Huber, & Stockl 2012; Lei, Noussair, & Plott 2001; Stockl, Huber,
& Kirchler 2015; Bao et al. 2020).

6Providing participants with heterogeneous endowments and different cash/asset ratios is common (Palan
2013). We describe the endowment for each trader in Appendix A2.
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they have enough tokens or shares. Shares are only traded in whole units, while the prices

are quoted to two decimal places. To buy a share in the experiment, a trader can accept

the ask offer at the minimum ask price. Alternatively, the trader can make a bid offer to

buy cheaper than the minimum ask price; if the bid is accepted, then the trader buys the

corresponding shares, and receives nothing otherwise. Analogously, to sell a share in the

experiment, a trader can accept the bid offer with the highest bid price. Alternatively,

the trader can make an ask offer that is higher than the maximum bid price; if this bid is

accepted, then the trader sells the corresponding shares and sells nothing otherwise. It is

important to note that ask and bid prices can take negative values. Outgoing tokens and

shares in outstanding offers are frozen during the trading period in which the offers are

made. All offers are canceled at the end of the trading period, and the corresponding

frozen shares and tokens are released. The program is set up such that purchases occur

at the minimum ask price and sales at the maximum bid price. Only one type of share

exists, and no tax, brokerage, short-selling, or margin buying is considered. We report

the experiment instructions and describe the treatments in Appendix A1.

The proposed experiment also involved a repetition (List 2003; Hussam, Porter, & Smith

2008; King et al. 1993; Van Boening, Williams, & LaMaster 1993): each group of traders

took part in a second trading block of this experiment, identical to the first trading

block. Importantly, traders were unaware of the second trading block before it took place.

However, they were aware that another task was scheduled after the first trading block.

They also knew that at the end of the experiment, the outcomes of one of the two tasks

(the first or second trading block) were to be randomly paid out. For brevity and because

they are qualitatively similar, we mainly focus on the first trading block and report the

complete findings from both blocks in Appendix A3.

2.2.2. Treatments

Table 2.2 provides further detail of the comprehensive 3 × 2 experimental design. As

mentioned above, we allow variations in two dimensions: three risk-free fundamental

values (negative, zero, and positive FVs) and the dividend process (fixed vs. variable).

The first dimension explores assets with zero and negative FV generating fixed (risk-free)
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cash flows. The zero and negative FV assets mimic the case where the benefit is smaller

than the costs. The second treatment dimension allows us to investigate the trading

behavior of assets that generate variable (risky) dividends and incur holding costs (which

are larger, equal to, or smaller than the expected dividends in the negative, zero, and

positive FV treatments). The comparison across the two treatment dimensions, holding

the FV constant, allows us to test the proposed models, which predict opposite pricing

patterns, as elaborated in Section 3.

Positive FV Zero FV
Fixed dividends (2.5,2.5) (0,0)

Variable dividends (-5,10) (-10,10)
Notes: This table provides details on the proposed 3×2 experimental design. The first
treatment dimension varies the level of FV, and the second dimension varies the dividend
processes. The numbers in the brackets are the net cash flows generated by a share in the
high and low states, respectively. Each treatment is assigned six independent groups of
eight traders.

Table 2.2: Experimental design

To investigate the behavior of assets with zero and negative fundamental values, share

prices are allowed to take negative values in our experiment. To render subject bankruptcy

unlikely, each participant receives a starting endowment of 1000 tokens (the equivalent of

$20) in addition to a $15 show-up fee.7 Further, to minimize the likelihood of bankruptcy,

participants with insufficient funds are not allowed to sell shares at negative prices or buy

shares at positive prices.

We follow the convention to frame negative dividends as holding costs (e.g., Noussair,

Robin, & Ruffieux 2001; Noussair & Powell 2010; Stockl, Huber, & Kirchler 2015) and

take additional measures to make losses (and gains) clear and salient. In particular, we

include in the instructions a neutral sentence informing traders of the net loss (or profit)

of holding one share in each period. Further, we deliberately use an example with a loss in

the quiz (administered before the first trading period) for treatments that the shares may

incur losses and reinforce that each share can incur a net loss (or benefit) in each period.
7To completely rule out bankruptcy in all the proposed treatments, a $108 show-up fee would be required.

However, paying such a large show-up fee is problematic for various reasons, including the potential
to distort incentives (Azrieli, Chambers, & Healy 2018), and causes a large house money effect in
multi-period financial settings (Ackert et al. 2006). The proposed measures proved successful in
reducing the risk of bankruptcy. Only three participants’ payoffs were below $10, the minimum
payment of a typical experiment conducted in the laboratory, in the first trading block.
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Besides, we label the price axis in the price chat symmetric around zero, implying that

negative prices are possible. Last, we inform each trader of the net cash flow per share

and the net cash flow from all shares he/she holds at the end of each period and display

the net benefit/loss added/subtracted from the account. These measures proved to be

successful to imply the possibility of negative prices. For example, 5 out of 6 markets in

the (-2.5,-2.5) treatment show non-positive prices in the first trading block. We also find

the (-2.5,-2.5) treatment has a significantly lower price than (0,0) and (2.5,2.5) treatments.

If participants are confused with the instructions, we would not expect such changes.

Treatments with shares that pay fixed dividends

In treatments (-2.5,-2.5), (0,0), and (2.5,2.5), the dividend in trading period t∈{1,2,3,. . . ,15}

is fixed. The shares in the zero FV treatment (0,0) do not generate any cash flow in

any trading period. We denote this treatment as (0,0) because shares pay 0 tokens as a

dividend in both high and low states.8 We investigate the price patterns of shares with

negative FVs by addressing treatment (-2.5,-2.5), where shares always charge 2.5 tokens as

holding costs. We compare trading in these two markets to the standard assets addressed

by the literature, which generate a positive FV. In treatment (2.5,2.5), the shares always

pay 2.5 tokens, regardless of whether the state is high or low. Table 2.3 describes the FVs

for each asset in each period under different treatments.

8The literature typically uses a two-point uniform distribution (e.g., Lei et al. 2001; Lei & Vesely 2009;
Childs 2009) to capture randomness in the dividends. Lei et al. (2001) and van Boening et al. (1993)
also suggest that using either a two-, four-, or a five-point symmetric dividend does not have a
significant impact on the pricing patterns.
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Trading Period
Treatments 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Positive 37.5 35 32.5 30 27.5 25 22.5 20 17.5 15 12.5 10 7.5 5 2.5
Zero 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Negative -37.5 -35 -32.5 -30 -27.5 -25 -22.5 -20 -17.5 -15 -12.5 -10 -7.5 -5 -2.5
Notes: This table lists the risk-free FV for all treatments in each period. The value in period t (FVt) is calculated as FVt = Σ15

i=tE (dt),
where dt is the (expected) dividend in period t.

Table 2.3: Risk-free fundamental values for positive, zero, and negative treatments
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Treatments with shares that pay variable dividends

In treatments (-5,10), (-10,10), and (-15,10), we allow variations in the dividend process

and implement a holding cost but keep the FV constant to the corresponding treatments

with fixed dividends. The positive, zero, and negative FVs mimic the cases where the

expected dividends are more than, equal to, and less than the holding costs. The dividends

in this set of treatments always follow two-point uniform distributions depending on the

dividend state at the end of each trading period. The states are pre-drawn with the

help of a fair coin, and they are fixed across all treatments in this set. We describe the

realizations of the state in Appendix A2. In the treatment with positive FV, the shares

generate 10 tokens when the state is high and charge five tokens when the state is low.

We denote this treatment as (-5,10). In the treatment with zero FV, the shares generate

10 tokens when the state is high and charge 10 tokens when the state is low. We denote

this treatment as (-10,10). In the treatment with negative FV, the shares generate 10

tokens in the high state and charge 15 tokens in the low state. We denote this treatment

as (-15,10). The risk-free FV of each treatment is the same as its counterpart with a fixed

dividend. We describe the dividend for each asset in each period in Appendix A2.

2.3. Hypotheses

While standard theories (e.g., Samuelson 1965; Fama 1970) predict no systematic

mispricing in the studied asset markets, a rich body of experimental evidence suggests

otherwise. The two primary insights from previous asset market experiments are that

(i) bubbles are common (most previous asset market experiments find price bubbles),

and (ii) the bubble size increases with the complexity (i.e., number of mathematical

manipulations required to calculate the FV) of the cash flow process (Huber & Kirchler

2012; Kirchler, Huber, & Stockl 2012; Galanis 2018). In the proposed experimental

design, we systematically vary complexity across treatments. First, the zero fundamental

value treatment (0,0) arguably presents the least complex environment as there is no

cash flow—no mathematical manipulation is required to calculate the FV; analogously,

(-10,10) is less complex than the other treatments with variable dividends as the only
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mathematical step required is to take the expectation. Second, the cash flow is less

complex in the treatments with constant FV (-2.5,-2.5), (0,0), (2.5,2.5) as compared to

the treatments with variable FV (-10,5), (-10,10), (-10,15) since the latter involves taking

an extra step— taking the expectation. Thus, we derive the following prediction based

on the complexity argument:

Hypothesis (complexity): (i) Bubbles occur in (0,0); (ii) among the fixed dividend

treatments, (0,0) is characterized by the smallest bubbles, and among the variable dividend

treatments, (-10,10) is characterized by the smallest bubbles; (iii) for each level of FV, the

treatment with fixed dividend is characterized by smaller bubbles than its variable dividend

counterpart.

However, substantial evidence indicates that people are loss averse (Kahneman & Tversky

1979). In the context of the proposed experiment, the theory suggests that a cash outflow

generates a more significant impact than a cash inflow of the same amount.9 A novel

feature of the proposed experimental design is that we can test the role of loss aversion

in asset markets as traders can have gains and losses in each trading period in the

treatments with variable dividends.10 While our research hypothesis based on the previous

experimental asset market literature predicts that bubbles are larger when dividends are

variable, loss aversion generates the opposite prediction.

Hypothesis (loss aversion): (i) Among fixed dividend treatments, (-2.5,-2.5) has the

smallest bubbles; (ii) for each level of non-negative FV, the treatment with fixed dividend

is characterized by larger bubbles than its variable dividend counterpart.

9Loss aversion depends on the assumption of the reference point. We follow Kahneman & Tversky (1979);
Benartzi & Thaler (1995); Odean (1998) and assume that zero net cash flow (the status quo) serves
as the neutral reference point. To make the gain and losses salient, we inform participants of the net
cash flow generated by the dividends and holding costs after each trading period.

10Breaban and Noussair (2015) find that a greater loss aversion measure of the trader cohort correlates to
with a lower volume transacted, but they did not provide a clear interpretation of how loss aversion
affects prices.



2.4. EXPERIMENTAL FINDINGS 13

2.4. Experimental Findings

In this section, we present the data obtained from the six treatments that took place in

the Monash Laboratory of Experimental Economics (MonLEE) between July 2018 and

March 2019.11 We first report mispricing in the markets with zero and negative FVs (4.1)

and then compare the results to mispricing in markets with positive FVs (4.2). Finally,

this section compares mispricing in markets with fixed and variable dividends (4.3).

2.4.1. Bubbles in markets with zero and negative fundamental

values

Figure 2.1 provides a first overview of the trading patterns for the three assets (0,0),

(-2.5,-2.5), and (2.5,2.5) by illustrating average prices over trading periods across all

groups.12 We observe that price trends are similar across the three assets. As in the

standard asset with positive fundamental value, prices slowly decline over trading periods

in (0,0) and (-2.5,-2.5). More importantly, we observe that average prices are positive in

all the 15 trading periods for the asset with zero FV and in the first 10 periods for the

asset with negative FV. The market with zero FV has an average price of 18.6 (tokens),

significantly higher than zero, thus providing evidence of the presence of significant bubbles

(p<.001).13 The average price in market (2.5,2.5) is 26 (the average FV is 20), which is

not statistically higher than in (0,0) (p=.2). The average price in (-2.5,-2.5) is 4.9, smaller

than in the other two asset markets (p<.05 in both cases) but still significantly larger

than zero (p<.01).

Finding 1: Bubbles occur in asset markets with zero and negative FVs.

1198% of the participants are students from Monash University studying different majors. 43% of the
participants are females and their average age is 22 years old. The demographics are balanced across
all treatments.

12We report trading volumes in Appendix A4. There are no significant differences in trading volumes
across the different treatments.

13Without further specification, all p-values reported in this paper are from two-tail Mann-Whitney tests
on variables aggregated at the group level (so that all observations are independent).
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Notes: This graph shows the average price of six markets for each treatment with fixed
dividend over the 15 trading periods in trading block 1.

Figure 2.1: Prices for treatments with fixed dividends (trading block 1)

2.4.2. Relative bubble size

Figure 2.2 corresponds to Figure 2.1 but illustrates the average bubble size or mispricing

(i.e., price – fundamental value).14 Bubbles are common in asset markets with zero and

negative FV. More precisely, we observe that bubbles occur in all trading periods of

(0, 0) and (-2.5, -2.5). In (2.5,2.5), bubbles occur in 13 out of the 15 trading periods.

Importantly, we observe much larger bubbles in (0,0) and (-2.5, -2.5) than in (2.5, 2.5) in

the first 10 trading periods. The average bubble size is 18.6 (p=.03) in (0,0) and 24.9

(p<.01) in (-2.5, -2.5), significantly larger than in (2.5, 2.5), where the average bubble

size is 6.0.

Table 2.4 corroborates the previous result using four Ordinary Least Squares (OLS) models

of the following regression specification:

pdg,t = c+ δ1I
zero
g,t + δ2I

negative
g,t +

15∑
τ=2

ατI
τ
g,t + γ1femaleg,t + γ2knowledgeg,t + εg,t, (2.1)

14Haruvy & Noussair (2006) introduced “price dispersion,” which we call “mispricing” in this study.
Powell (2016) provides a comprehensive survey on the measurements of price bubbles. However, most
of these measures are not well-defined in the zero FV treatments addressed by this study. Mispricing
allows us to compare different treatments in the proposed experiment.
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Notes: This graph shows the bubble size of six markets for each treatment over the 15
trading periods in trading block 1.

Figure 2.2: Bubble size of treatments with fixed dividends (trading block 1)

where pdg,t is the mispricing of group g in trading period t; Izerog,t , Inegativeg,t , and Iτg,t are

indicator variables that take value 1 when the corresponding logic statement is true,

and 0 otherwise. For example, Izerog,t and Inegativeg,t take value 1 when the FV is zero and

negative, respectively; and Iτg,t takes value 1 when t = τ ; femaleg,t documents the number

of female traders in the group, and knowledgeg,t records the number of traders who have

taken courses in asset pricing. Izerog,t and Inegativeg,t capture the differences in mispricing

caused by changes in FV; Iτg,t controls for the heterogeneity across periods; femaleg,t
and knowledgeg,t control for some potentially important variations across groups.15 We

cluster the standard errors at the group level and control the variables reported in Table

2.4 to verify the robustness of our second finding.

In Model 1, we exclude the control variables for time fixed effects (∑15
τ=2 ατI

τ
g,t), number of

females in the group (femaleg,t), and participants’ knowledge on asset pricing (knowledgeg,t)

and sequentially add these controls in Models 2–4. The point estimates of the treatment

effect (δ1 and δ2) are economically large and significantly higher than zero in all regression
15Eckel & Fullbrunn (2015) and Wang et al. (2018) find that gender may play a role in the mispricing

behvaior. Despite the main purpose of the paper is not about the economics of genders, we include
the control variable female to capture how the gender composition of the group can affect the
mispricing size. As the group size is fixed across sessions, the number of females in each group is
perfectly collinear with the female proportion.
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Model 1 Model 2 Model 3 Model 4
Zero FV (δ1) 12.60** 12.67** 14.86** 14.11**

0.019 0.021 0.011 0.011
Negative FV (δ2) 20.46*** 20.01*** 19.66*** 20.94***

0.000 0.000 0.000 0.000
Constant (c) 5.96* 15.05** 20.50*** 21.92***

0.063 0.017 0.010 0.006
Time fixed effects (ΣατI t) No Yes Yes Yes

# of females (female) No No Yes Yes
# have taken asset pricing No No No Yesclasses (knowledge)

Notes: This table shows the estimation results for whether FVs have a significant impact
on the bubble size. We use 262 observations for each regression, and all standard errors are
clustered at the group level (we exclude eight trading periods where no trade takes place).
We report the p-value under each point estimate. *, **, and *** indicate significance at
the 10%, 5%, and 1% levels, respectively.

Table 2.4: Comparison of the bubble sizes in treatments with positive, zero, and negative
FVs

specifications. We observe, for example, that the coefficient for negative (zero) FV in

Model 1 is approximately four (two) times as large as the constant for the positive FV.

Finding 2: Bubbles in asset markets with zero and negative FVs are larger than in

markets with positive FVs.

2.4.3. Bubbles and variances in the dividends

Figure 2.3 illustrates the trading patterns in the treatments with variable dividends (-5,

10), (-10, 10), and (-15, 20). We observe that prices are positive in all trading periods

of treatments (-10, 10) and (-5,10), and in 14 out of 15 periods in (-15, 10). In line

with the asset markets with fixed dividends, prices start very high and then decline over

trading periods. The average price in (-10, 10) is 28 (tokens), which is not statistically

different from 27.4 in (-15, 10) (p=1). The average price in (-5, 10) is 39.9, larger than in

(-10, 10) and (-5,10) but statistically insignificant (p=.34 and p=.15, respectively). The

average price in (-10, 10) and (-15, 10) is significantly higher than 0 (p<.01), and the

price is insensitive to the drop of the FV from positive to zero and then negative when

the dividend is variable. This result provided further evidence of the existence of large

bubbles in zero and negative FV asset markets.
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Notes: This graph shows the average price of six markets for each treatment with variable
dividend over the 15 trading periods in trading block 1.

Figure 2.3: Prices for treatments with variable dividends (trading block 1)

Figure 2.4 corresponds to Figure 2.3 but plots the average bubble size. Bubbles are

prevalent in all three treatments. We observe that bubbles occur in all trading periods in

all treatments except the last period of (-15,10). In addition, (-15,10) is characterized by

the largest bubbles in the first 14 periods, while (-5,10) is characterized by the smallest

bubbles in the first seven periods and behaves similarly to (-10,10) afterward. The average

bubble size of (-15,10) is 47.4, which is larger than 28 (p=.15) in (-10,10) and 19.9 (p=.055)

in (-5,10).

Next, we investigate whether bubbles increase (complexity hypothesis) or decrease (loss

aversion hypothesis) when we introduce the variance of dividends. Figure 2.5 provides a

first illustration by pooling the three fixed and three variable dividend treatments and

illustrates the average bubble size throughout the experiment. A clear pattern emerges.

Bubbles are larger when dividends are variable, which is consistent with our complexity

hypothesis. The average bubble size is 31.8, with variable dividends compared to only

16.5 when dividends are fixed (p<.05).

Figures 2.6-2.8 correspond to Figure 2.5 but compares bubbles across the different

treatments holding FV constant. We observe that the bubble size is larger in most periods
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Notes: This graph shows the average bubble size of six markets for each treatment over
the 15 trading periods in trading block 1.

Figure 2.4: Bubble size of treatments with variable dividends (trading block 1)

Notes: This graph shows the average bubble size of three treatments where dividends are
variable and the average mispricing of three treatments where dividends are fixed over
the 15 trading periods in trading block 1.

Figure 2.5: The average bubble size of three variable dividend treatments and three fixed
dividend treatments
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Notes: This graph shows the average bubble size of six markets for the (2.5,2.5) and
(-5,10) treatments over the 15 trading periods in trading block 1.

Figure 2.6: The average bubble size of (2.5,2.5) and (-5,10)

Positive FV Zero FV Negative FV
Fixed dividends 6.05 18.56 24.92

Variable dividends with loss possible 19.91 28.00 47.42
p-value 0.037 0.63 0.055

Notes: This table reports the bubble size (mispricing) for each treatment. The p-value
in the bottom row compares the bubble size of the fixed dividend treatment with the
variable one at the corresponding level of FV.

Table 2.5: Actual bubble size in different treatments

when the dividend is variable, regardless of the FV (negative, zero, or positive). In

addition, (-10,10) has a larger bubble than (0,0) in all 15 periods, (-15,10) has a larger

bubble than (-2.5,-2.5) in 13 out of 15 periods, and (-5,10) has a larger bubble than

(2.5,2.5) in 14 out of 15 periods. In Table 2.5, we report the average bubble size for each

treatment. The bubble size for (-10,10) is 28, 18.6 for (0,0) (p=.63), 19.9 for (-5,10), and

6.0 for (2.5,2.5) (p=.037). The bubble size is 47.4 for (-15,10) and 24.9 for (-2.5,-2.5)

(p=.055).

We also run different OLS regressions to include all dependent observations across trading

periods. As a result, we obtain a comprehensive view on the bubble pattern across
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This graph shows the average bubble size of six markets for the (0,0) and (-10,10)
treatments over the 15 trading periods in trading block 1.

Figure 2.7: The average bubble size of (0,0) and (-10,10)

Notes: This graph shows the average bubble size of six markets for the (-2.5,-2.5) and
(-15,10) treatments over the 15 trading periods in trading block 1.

Figure 2.8: The average bubble size of (-2.5,-2.5) and (-15,10)
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Model 1 Model 2 Model 3 Model 4
Positive Variable (β1) 20.61* 20.69* 20.56* 21.54

0.094 0.097 0.093 0.131
Zero fixed (β2) 12.60** 12.68** 13.59** 13.24**

0.012 0.013 0.020 0.020
Zero variable (β3) 22.05** 22.13** 22.58** 21.87**

0.022 0.024 0.025 0.040
Negative fixed (β4) 20.46*** 19.72*** 19.58*** 20.13***

0.000 0.000 0.000 0.000
Negative variable (β5) 41.47*** 41.55*** 41.42*** 41.00***

0.000 0.000 0.000 0.000
Constant (c) 5.96* 23.67*** 25.91*** 26.45***

0.051 0.000 0.006 0.007
Time fixed effects (Σαττ t) No Yes Yes Yes
# of females (female) No No Yes Yes

# have taken asset pricing No No No Yesclasses (knowledge)
Notes: This table shows the estimation results for whether the nature of the dividends
has a significant impact on the bubble size. We use 532 observations for each regression,
and all standard errors are clustered at the group level (we exclude eight trading periods
where no trade takes place). The data refer to the first trading block. We report the
p-value under each point estimate. *, **, and *** indicate significance at the 10%, 5%,
and 1% levels, respectively.

Table 2.6: Comparison of the bubble sizes in treatments with fixed and variable dividends

treatments. We estimate the following model:

pdg,t = c+ β1I
(−5,10)
g,t + β2I

(0,0)
g,t + β3I

(−10,10)
g,t + β4I

(−2.5,−2.5)
g,t (2.2)

+ β5I
(−15,10)
g,t +

15∑
τ=2

ατT
τ
g,t + γ1femaleg,t + γ2knowledgeg,t + εg,t,

where I is an indicator variable, which takes value 1 if group g participates in the treatment

indicated by the superscript, and 0 otherwise. The set of indicator variables I compares

the bubble size across treatments. Table 2.6 plots the estimation of the regression model

with variations in the control variables.

We estimate Equation 2.2 and report the results in Table 2.6. In Model 1, we exclude

the control variables for the time fixed effects (ατT τg,t), number of females in the group

(femaleg,t), and participants’ knowledge on asset pricing (knowledgeg,t) and subsequentially

include these controls in Models 2–4. The relative bubble size (point estimates of βs) is

robust to the inclusion of different control variables. In Model 4, which includes most
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controls, the previous results hold: (i) holding the nature of the dividend (fixed or variable)

constant, the treatment with the lower FV is always characterized by the larger bubble

size, (ii) fixing the level of the FV, the price is always higher in the variable dividend

treatment. With respect to bubbles sizes, we find the following ordering:

(2.5,2.5)<(0,0)<(-2.5,-2.5)<(-5,-10)<(-10,10)<(-15,10).

The point estimates from the four models also show that the treatment effects are

meaningful and large. For example, in Model 4, the point estimate for the positive

variable dividend treatment (I(−5,10)
g,t ) is 21.54, which implies that the bubble size of (-5,10)

is more than 84% bigger than that of (2.5,2.5) in the first trading period.

Finding 3: Bubbles are larger in asset markets with variable dividends than in the

presence of fixed dividends. Bubbles are the largest in asset markets with negative FV and

variable dividends and the smallest in asset markets with positive FV and fixed dividends.

Bubbles occur in all treatments, but their size is hard to reconcile with loss aversion

predictions based on Prospect Theory. For example, (-2.5,-2.5) markets are characterized

by larger bubbles than (2.5,2.5) and (0,0) markets, and in treatments with variable

dividends and potential losses, bubbles are larger than in their fixed dividend counterparts,

in contrast with the predictions of loss aversion. A model based on complexity correctly

predicts that variations in the dividends inflate the bubble, but it neither explains the

large bubbles in the markets with zero FV nor predicts the relative bubble size within

each set (fixed dividend or variable dividend) of treatments. One explanation of these

patterns is that there are systematic differences in terms of understanding of the tasks

across treatments, but this does not seem to be the case. First, from the post-experiment

questionnaire, only 6% of participants find the instructions difficult to understand and

there is no significant difference across treatments. Second, there is no significant difference

in the speed of finishing quiz questions, nor in the demographic variables we collected

across treatments (p>0.1 using F-tests). More importantly, five out of six groups in

(-2.5,-2.5) treatment have negative price records, but this is not observed in (0,0) or

(2.5,2.5) treatments. This implies that there is a treatment effect caused by the change

in the FV and participants are able to understand and bid in negative prices. The next

section provides and tests an alternative explanation based on trader expectations.
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2.5. An Explanation Based on Price Expectations

Bubbles may be driven by trader expectations about the behavior of other traders in

the different treatment scenarios (e.g., Cheung, Hedegaard, & Palan 2014; Holt, Porzio,

& Song 2017). In particular, traders may believe that other traders are willing to pay

high prices for assets with zero FV and higher prices for assets with variable dividends

compared to fixed dividends. In this case, an optimal strategy is to pay high prices for

these assets to then sell them for even higher prices. To test this alternative explanation,

we conduct a second experimental study.

2.5.1. Study 2: The guessing game

We invited 83 participants, inexperienced in asset market experiments, to analyze how

expectations help explain the observed price patterns. The proposed guessing game

was programmed in z-Tree (Fischbacher 2007), and the participants were recruited from

SONA. Participants earned, on average, AUD 17, and sessions lasted for approximately

45 minutes. Before the experiment, participants read an information sheet and signed

a consent form. Participants read the instructions and were then asked to guess prices

in different asset markets. The instructions and a short demographic questionnaire are

reported in Appendix A5. The set-up of the guessing game is as follows. Each participant

guesses the average price of each of the 15 periods in the first trading block of one asset

market and then the average price for 15 periods in another asset market. We randomize

the two sets of instructions. We do not provide participants with any information about

their performance throughout the experiment. Guessers are monetarily incentivized using

the binary scoring rule (Hossain & Okui 2013): each guess within five tokens of the

actual price is awarded $2. To examine (i) whether guessers expect large bubbles in zero

FV treatments, and (ii) whether they expect different bubble sizes among markets with

different FV, the analysis considers the following two treatments.
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2.5.2. Treatments (guessing game)

(0,0) vs. (-10,10)

We ask the first set of participants (n=54) to guess the average price across the studied six

markets (to moderate some extreme values) in all the 15 trading periods of asset markets

(0,0) and (-10,10). We denote this treatment as “(0,0) vs. (-10,10)”. This approach allows

us to investigate trader expectations about the bubbles in zero FV treatments.

(-15,10) vs. (-10,10)

We let the second set of participants (n=29) guess the average prices (across the six

markets of all the 15 trading periods) of (-15,10) and (-10,10). We denote this treatment

as “(-15,10) vs. (-10,10)”. This treatment explores guessers’ expectation about the relative

bubble sizes between (-15,10) and (-10,10).

2.5.3. Results (guessing game)

Figure 2.9 plots the median bubble size based on all the prices guessed. Among the 83

guessers, only four guessed at least one zero price, and none of them guessed a single

negative price. Participants predicted large bubbles and anticipated the relative bubble

size between these three treatments. The average predicted bubble size is 41 (tokens)

for (0,0), 51 for (-10,10), and 99 for (-15,10), which are all larger than the actual values

(p<.05 for all three cases).

To compare these bubble sizes rigorously, we estimate the following model:

p̄dt = c+ β1I
(−15,10)
i + β2I

(−10,10)
i + γ1I

male
i + γ2I

knowledge
i + εi,

where p̄dt is the average bubble size guessed by guesser i, I is an indicator variable that

takes value 1 when the logic condition in its superscript is true. For example, I(−15,10)
i
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Notes: This graph shows the median guessed price of all 15 trading periods in (-15,10),
(-10,10), and (0,0).

Figure 2.9: Prices predicted for (-15,10), (-10,10), and (0,0)

takes value 1 when the treatment guessed by i is (-15,10); Imalei takes value 1 when i is a

male; Iknowledgei takes value 1 when i had taken courses related to asset pricing.

Table 2.7 plots the estimation of the regression results considering variations in the control

variables and estimation methods. Model 1 only includes treatment dummies and is

estimated by OLS. Model 2 includes the same set of variables as Model 1 but is estimated

using the quantile regression (QR) method to moderate the impact of outliers in the

sample. Model 3 includes all the control variables and is estimated by OLS to check the

robustness of this specification. Model 4 corresponds to Model 3 but uses QR. We cluster

the errors at the individual level in all regressions. These models show that the relative

bubble sizes observed in Figure 2.9 are robust to different model specifications. In Model

4, after controlling for individual characteristics and moderating the impact of outliers,

we find that guessers predict a large bubble of 58 (tokens) in (0,0), which is significantly

higher than zero (p<.01). Guessers also correctly predict that (-15,10) has the largest

bubble, which is 77.56 higher than (0,0) and 56.36 higher than (-10,10) (p<.05 in both

cases).

Finding 4: Individuals predict (i) the positive price in the treatments with zero FV, (ii)
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Model 1 Model 2 Model 3 Model 4
Negative variable (β1) 99.36* 67.33** 98.23* 77.56**

0.064 0.014 0.082 0.017
Zero variable (β2) 20.13 17.86 19.73 21.2

0.398 0.247 0.429 0.160
Gender (γ1) - - -70.79* -11.33

0.091 0.634
Knowledge (γ2) - - -8.14 -24.87

0.884 0.296
Constant (c) 125.47*** 50.00*** 158.13*** 58.00***

0.000 0.000 0.000 0.007
Estimation method OLS QR OLS QR

Notes: This table shows the estimation results for whether the nature of the dividends has
a significant impact on the bubble size. We use 166 observations for each regression, and
all standard errors are clustered at the individual level. Quantile regressions are estimated
for the median response (quantile=0.5). We report the p-value under each point estimate.
*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The
reason why OLS regressions have much larger constants is that some guessers indicated
large numbers, and OLS estimation is sensitive to outliers.

Table 2.7: Comparison of the guessed bubble sizes in different treatments

that variations in the dividends increase the bubble size, and (iii) that the bubble size

increases when the FV drops from zero to negative values. Expectations motivate the price

patterns that complexity theory cannot explain.

2.6. Conclusion

Assets that lack any positive fundamental value are commonplace in modern financial

markets. In this study, we provide a first glance into the price patterns in markets

with zero and negative FV assets and their mechanisms using a controlled laboratory

experiment.

We manipulate the risk-free FV of shares (positive, zero, or negative) and allow the nature

of the dividends to vary in two sets of treatments. In the first set of treatments, the

shares generate risk-free (fixed) cash-flows. In the second set of treatments, the shares pay

risky (variable) cash flows. This represents a more realistic scenario where the value/costs

have some variances like crude oil, old cars, or companies from sunset industries. We find

several interesting patterns. First, overpricing occurs in all treatments, even in the simple
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zero FV case. Second, the overpricing inflates when the FV drops to zero and negative

values, ceteris paribus. These findings suggest that zero and negative FV per se foster

price overpricing.

Beyond exploring the relative bubble sizes across treatments, we also investigate the

relationship between trader expectations and bubbles. We find that expectations match

the actual relative bubble size. Our findings suggest that traders have a natural tendency

toward trading assets with non-positive FV at positive prices, even without considering

other features that may lead to price surges. This result also implies that the existing

literature may underestimate the severity of price bubbles for these types of assets.

To what extent can we learn from lab experiments has been debated. In our experiment, the

participants are mainly university students who are inexperienced with asset markets. In

addition, the endowment they receive to trade with each other is given by the experimenters

rather than their own money. However, ample evidence find lab experiments capture the

essence in the real-word and can provide informative predictions (see, e.g., Levitt & List

2007; Fehr & Leibbrandt 2011; Alm et al. 2015). There is also a large literature showing

that using student subjects pool (Smith et al. 1988; King et al. 1993) and house money

(Ang et al. 2010; Corgnet et al. 2013) does not change the results from professional

participants and earned money in the asset market experiment context.
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2.8. Appendix

2.8.1. Instructions and quiz questions for the main study treatment

(-10,10)

Here, we provide the instructions and quiz questions for the treatments with zero FV and

variable dividends. The materials for the other treatments only differ in the value of the

dividends and holding costs and available upon request.

Instructions

Thanks for your participation! There are 2 tasks in this experiment, and you will be paid

for only 1 randomly chosen task in private and in cash at the end of the experiment. The

instructions below describe task 1. The instructions of task 2 will be announced after

task 1.

1. General Instructions (Task 1)

Please read this instruction carefully. The amount you will earn depends on the decisions

you make, thus a good understanding of the instructions is crucial to your earnings. After

reading the instructions, there will be a 2-period practice round to help you familiarize

with the experimental software. The earnings in the practice round do not enter your final

payment. After the practice round, there will be some questions to ensure that everyone

understands the task. The main part will start after everyone has answered the questions

correctly.

The game money in this task is called Token and the game commodity that can be traded

is called Goods. Prices quoted in the task have two decimal places and Goods must be

traded in whole units.

If you have any questions during the task please raise your hand and the experimenter will
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come to you. Please do not ask your questions out loud, or attempt to communicate with

other participants, or look at other participants’ computer screens at any time during the

task. Please turn your phone to silent mode and place it on the floor.

2. Market Environment

Market setup

In this task, 8 participants (including you) form a market. Each participant can appear

as a buyer and a seller at the same time to buy and sell Goods. This market will be open

for 15 trading periods. At the beginning of the first period, participants are endowed with

Tokens and Goods for trading. Tokens and Goods you hold at the end of each trading

period will carry over to the subsequent period. In each trading period, the market will

be open for 100 seconds, during which you may buy and sell Goods.

Dividends and holding costs

After each trading period, each Good pays a dividend and incurs a holding cost. The

dividend can either be 20 Tokens or 0 Token with equal probability, while the holding

cost is always 10 Tokens per Good.

At the end of period 15, each Good pays a dividend and incurs a holding cost (as in

previous periods) and then become useless.

To sum up

Each Good earns a dividend minus a holding cost after each trading period ends. The

dividend in each period can either be 20 or 0 Tokens per Good, but the holding cost is

always 10 Tokens per Goods. So the net benefit of holding a Good is either 10 Tokens or

-10 Tokens per period with equal probability. Goods become useless after the payment of

the dividend and the charge of the holding cost in period 15.
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3. Earnings

The amount of Tokens you will earn in task 1 is equal to:

Tokens you receive at the beginning of the task

+ Dividends you receive throughout the task

- Holding costs you paid throughout the task

+ Tokens received from sales of Goods

− Tokens spent on purchases of Goods

The Tokens will be converted to Australian Dollars with the exchange rate of 50 Tokens=$1.

If task 1 is chosen for the payment, then your will receive the amount converted from the

Tokens plus a $15 show-up fee.

4. How to Use the Software

There are two ways to buy Goods. Firstly, you can buy from an existing seller by accepting

the ask offer made by the seller. To do this, you need to enter the quantity you want

to buy and then click the “Buy” button. The quantity you get is the minimum of the

quantity offered by the seller and the quantity you entered, and the amount of Token you

pay is the ask price times the quantity. You must buy from the lowest (cheapest) ask

price.

Secondly, you can make a bid offer to be accepted by potential seller(s). To do this, you

need to enter the price and quantity you want to buy and then click the “Bid to buy”

button. The quantity you get is the amount accepted by the potential seller(s). If no one

accepts your bid offer, then you buy nothing. You must submit a bid price lower than

the lowest ask price, otherwise, you should use the “Buy” button.

Similarly, there are two ways to sell Goods. Firstly, you can sell to an existing buyer by

accepting the bid offer made by the buyer. To do this, you need to enter the quantity
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you want to sell and then click the “Sell” button. The quantity you sell is the minimum

of the quantity offered by the buyer and the quantity you entered, and the amount of

Tokens you receive is the bid price times the quantity. You must sell to the highest (most

lucrative) bid price.

Secondly, you can make an ask offer to be accepted by potential buyer(s). To do this,

you need to enter the price and quantity you want to sell and then click the “Ask to sell”

button. The quantity you sell is the amount accepted by the potential buyer(s). If no one

accepts your ask offer, then you sell nothing. You must submit an ask price higher than

the highest bid price, otherwise, you should use the “Sell” button.

Bid or ask offers cannot be withdrawn once made and the corresponding Tokens and

Goods are frozen. This means that if you have non-transacted ask/bid offers outstanding,

then the amount of Goods/Token you may further use to sell/buy is less than the balance

that appears on your screen. Non-transacted offers will be cancelled at the end of each

trading period and the frozen Tokens and Goods will defreeze. You cannot buy from or

sell to yourself. Please turn to the next page to see the window you will see during the

trading time.
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Quiz questions

Q1: If the dividend was 20 Tokens in the previous period, what is the

probability that the dividend is 20 Tokens in the current period? Answer:

50%.

If the participant provides a wrong answer, then a message “Your answer is incorrect!

Please refer to "Dividends" section in the instruction to find the right answer. Hint:

Dividend state in the current period is independent of the dividend in the previous period.”

pops up.
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If the participant enters a correct answer, then the software displays “Your answer is

correct! As mentioned in the "Dividend" section of the instructions, the dividend per

Good in each period will be either 0 or 20 tokens with equal chance.”

Q2: If the dividend is 0 in period 15, what is the total amount of Tokens you

can get from holding a Good at the end of this period? Answer: -10.

If the participant provides a wrong answer, then a message “Your answer is incorrect!

Please refer to "To sum up" part of the instruction to find the right answer. Hint: the

number of Tokens you get from holding one Good at the end of period 15 is the dividend

at the period minus the holding cost.” pops up.

If the participant enters a correct answer, then the software displays “Your answer is

correct! As mentioned in "To sum up" part of the instruction, one Good pays a dividend

(0 Token) and incurs a holding cost (10 Tokens) and then becomes useless. So it costs

you 10 Tokens from holding a Good at the end of this period.”

Q3: If you entered 3 units and click "Buy" to buy from an ask offer with price

10 Tokens per Good and quantity 1 unit, how much money will you pay for

this action? Answer: 10.

If the participant provides a wrong answer, then a message “Your answer is incorrect! As

mentioned in "How to use the software" section, if you enter a higher amount than offered,

you buy the offered quantity at most. So you only buy 1 unit at the price 10 Tokens per

Good.” pops up. If the participant enters a correct answer, then the software displays

“Your answer is correct! As mentioned in "How to use the software" section, if you enter

a higher amount than offered, you buy the offered quantity at most. So you only buy 1

unit at the price 10 Tokens per Good.”

Q4: Can you make a bid offer with a price higher than the current lowest ask

offer? Answer: No.

If the participant provides a wrong answer, then a message “Your answer is incorrect!”
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Endowment groups Assets Tokens Number of traders
1 5 1000 4
2 10 1000 4

Notes: This table lists the exact endowment of all 8 participants at the beginning of each
trading block.

Table 2.8: Endowments at the beginning of the first trading period

Trading Period
Trading block 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 H L L H H L H L H H H L L H L
2 L L H H L L L H L L L L H H H

Notes: This table lists our dividend states when the dividends are variable. All traders in
markets with variable dividends treatments observe the same dividend realization. H and
L indicate high and low dividend states, respectively.

Table 2.9: Realized dividend series for variable FV treatments

pops up.

If the participant enters a correct answer, then the software displays “Your answer is

correct! You can simply accept the lowest ask offer to earn more!”

2.8.2. Details about endowments and dividends in the main

study

In this section, we provide more details about endowments, and realization of the dividends

in each trading periods.

2.8.3. Combined analysis for both trading blocks

In this section, we replicate the analysis presented in the main paper but include data

from both trading blocks. Results using both trading blocks are qualitatively similar as

compared to using only the first block.

Bubbles in markets with zero and negative fundamental values Relative price

levels between (2.5,2.5), (0,0), and (-2.5,-2.5) do not change when including the second
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trading block. The market with zero fundamental value has an average price of 10.1

(Tokens), which is significantly higher than zero providing evidence for significant mispricing

(p<.01). The average price in market (2.5,2.5) is 23.1 (the average fundamental value is

20), which is statistically higher than in (0,0) (p=.016). The average price in (-2.5,-2.5) is

-2.89 (the average fundamental value is -20), which is smaller than in the other two asset

markets (p<0.05 in both cases) but significantly bigger than its FV -20 (p<.01).

Finding A1: There are bubbles in asset markets with zero and negative fundamental

values.

Relative bubble size Bubbles are omnipresent in asset markets with zero and negative

fundamental value. More precisely, we observe that there are bubbles in all trading

periods of (0, 0) and (-2.5, -2.5). In (2.5,2.5), there are bubbles in 14 out of the 15 trading

periods. Importantly, we observe larger bubbles in (0,0) and (-2.5, -2.5) than in (2.5, 2.5)

in the first 11 trading periods. The average bubble size is 10.1 in (0,0) and 17.1 in (-2.5,

-2.5), which is significantly larger in than in (2.5, 2.5) where it is 3.1 (p=.1 for (0, 0) and

p=.078 for (-2.5, -2.5)).

Table 2.10 correspond to Table 2.4 and compares bubbles in zero and negative FV markets

using OLS models of the following regression specification:

pdg,t = c+ δ1I
zero
g,t + δ2I

negative
g,t +

15∑
τ=2

ατI
τ
g,t + γ1femaleg,t + γ2knowledgeg,t + εg,t, (2.3)

We cluster the standard errors at the group level in our analyses and vary control variables

in Table 2.10 to check for the robustness of our second finding.

We exclude the control terms for time fixed effects (Σ15
τ=2I

τ
g,t), number of females in

the group (femaleg,t) and participants’ knowledge on the asset pricing (knowledgeg,t)

in Model 1 and sequentially add these controls from Model 2 to Model 4. The point

estimates of treatment effects (δ1 and δ2) are all positive and economically large and δ1 is

significantly bigger than zero in all regression specifications. We observe, for example,

that in model 1 bubbles are almost two (more than two and half) times as large in the

negative (zero) FV markets as in markets with positive FV. In model 4, where time fixed
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Model 1 Model 2 Model 3 Model 4
Zero FV (δ1) 6.33 6.07 7.05 5.77

0.133 0.154 0.154 0.183
Negative FV (δ2) 9.71* 9.64* 9.53* 11.59***

0.059 0.059 0.061 0.005
Constant (c) 6.15* 16.61*** 18.89** 21.79***

0.069 0.005 0.011 0.003
Time fixed effects (ΣατI t) No Yes Yes Yes
# of females (female) No No Yes Yes

# have taken asset pricing No No No Yesclasses (knowledge)
Notes: This table shows the estimation results for whether FVs have any impact on the
bubble size. There are 509 observations for each regression and all standard errors are
clustered at the group level (we exclude 31 trading periods where no trade took place in
either trading block). We report the p-value under each point estimate. *, **, and ***
indicate significance at the 10%, 5%, and 1% levels, respectively.

Table 2.10: Compare the bubble size between treatments with positive, zero, and negative
FVs

effects and group heterogeneities are controlled for, the bubble size in zero and negative

FV markets are still 26-53% higher than in the positive FV control, in the first trading

period.

Finding A2: Bubbles in asset markets with zero and negative fundamental values are

larger than in markets with positive fundamental values.

Bubbles and variances in the dividends As in the asset markets with fixed dividends,

prices start very high and then decline over trading periods. The average price in (-10,

10) is 17.36 (Tokens), which is not statistically different from 26.42 in (-5, 10) (p=.2).

The average price in (-15, 10) is 15.8 which is very similar to (-10, 10), but statistically

smaller than (-5, 10) (p=.025). The average price in (-10, 10) and (-15, 10) is significantly

bigger than 0 (p<.01) and the price is insensitive to the drop of the FV from 0 to -2.5

when the dividend is variable, providing further evidence for bubbles in zero and negative

FV asset markets.

When we convert the price level to mispricing, we find bubbles are prevalent in all three

treatments. We observe that there are bubbles in all trading periods among all three

treatments but in the second period of (-5,10). (-15,10) has the biggest bubbles, followed
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Positive FV Zero FV Negative FV
Fixed dividends 3.06 10.12 17.11

Variable dividends with loss possible 6.42 17.36 35.80
p-value 0.1 0.34 0.01

Notes: This table reports the bubble size (price dispersion) of each treatment. The p-value
in the bottom row compares the bubble size of the fixed dividend treatment with the
variable one at the corresponding level of FV.

Table 2.11: Actual bubble size

by (-10,10) and (-5,10) the smallest bubbles. The average bubble size of (-15,10) is 35.8,

which is larger than 17.36 in (-10,10) and 6.42 in (-5,10) (p=.1 for (-10,10) and p=.037

for (-5,10)).

Next, we study whether bubbles increase (hypothesis on complexity) or decrease (loss

aversion) when we introduce variances in dividends. We pool the three fixed and three

variable dividend treatments and find bubbles are larger when dividends are variable,

which is consistent with our complexity hypothesis. The average bubble size is 19.86 with

variable dividends compared to only 10.10 when dividends are fixed (p=.018). Table 2.11

show the pattern is qualitatively true regardless of fundamental value (negative, zero, and

positive). The price dispersion for (-10,10) is 17.36 while it is 10.12 for (0,0) (p=.34); it is

6.42 for (-5,10) and 3.06 for (2.5,2.5) (p=.1); and it is 35.80 for (-15,10) and 17.11 for

(-2.5,-2.5) (p=.01).

We also run OLS regressions to include all dependent observations across trading periods

to have a panoramic view on the bubble pattern across treatments. In concrete, we

estimate the following model:

pdg,t = c+ β1I
(−5,10)
g,t + β2I

(0,0)
g,t + β3I

(−10,10)
g,t + β4I

(−2.5,−2.5)
g,t + β5I

(−15,10)
g,t (2.4)

+
15∑
τ=2

ατT
τ
g,t + γ1femaleg,t + γ2knowledgeg,t + εg,t.

Table 2.12 correspond to table 2.6 and plots the estimation of the regression model with

variations on the control variable.

We exclude the control terms for time fixed effects (ατT τg,t), number of females in the

group (femaleg,t) and participants’ knowledge on the asset pricing (knowledgeg,t) in

Model 1 and include these controls from Model 2 to Model 4. The relative bubble



46 CHAPTER 2. ASSETS THAT LACK POSITIVE FV

Model 1 Model 2 Model 3 Model 4
Positive Variable 9.17 9.08 8.92 11.82

0.209 0.218 0.218 0.119
Zero fixed 6.33 5.91 6.92 5.85

0.119 0.150 0.132 0.163
Zero variable 14.85** 14.88** 15.06** 13.31**

0.016 0.017 0.017 0.037
Negative fixed 9.71** 9.58** 9.47* 11.05***

0.048 0.049 0.053 0.007
Negative variable 33.40*** 33.32*** 33.49*** 31.73***

0.000 0.000 0.000 0.000
Constant (c) 6.15* 21.41*** 23.79*** 25.78***

0.057 0.000 0.000 0.000
Time fixed effects (Σαττ t) No Yes Yes Yes
# of females (female) No No Yes Yes

# have taken asset pricing No No No Yesclasses (knowledge)
Notes: This table shows the estimation results for whether the nature of the dividends
have any impact on the bubble size. There are 1042 observations for each regression and
all standard errors are clustered at the group level (we exclude 38 trading periods where
no trade took place). We report the p-value under each point estimate. *, **, and ***
indicate significance at the 10%, 5%, and 1% levels, respectively.

Table 2.12: Compare the bubble size between treatments with fixed and variable dividends

size (point estimates of βs) are robust to the different control variables. In Model 4,

with the most comprehensive controls, our previous results hold: (i) holding the nature

of dividend (fixed or variable) constant, the treatment with the lower FV always has

the larger bubble size, (ii) fixing the level of FV, the price is always higher in the

variable dividend treatment. In concrete, for bubbles sizes we find the following ordering:

(2.5,2.5)<(0,0)<(-2.5,-2.5)<(-5,-10)<(-10,10)<(-15,10).

The point estimates from the four models also show that the treatment effects are

meaningful and large. For example, in Model 4, the point estimate for positive variable

dividend treatment (I(−5,10)
g,t ) is 11.82, implying that the bubble size of (-5,10) is more

than 46% bigger than that of (2.5,2.5) in the first trading period.

Finding A3: Bubbles are larger in asset markets with variable dividends than in

asset markets with fixed dividends. Bubbles are largest in asset markets with negative

fundamental value and variable dividends and smallest in asset markets positive fundamental

value and fixed dividends.
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Positive Zero Negative
Fixed 38.62 55.02 41.88

Variable 40.42 42.22 45.08
Notes: This table shows the average period trading volume in each treatment in trading
block 1.

Table 2.13: Compare the trading volume across treatments (block 1)

Positive Zero Negative
Fixed 33.2 42.63 37.55

Variable 35.87 36.39 38.1
Notes: This table shows the average period trading volume in each treatment in trading
block 1 and 2.

Table 2.14: Compare the trading volume across treatments (block 1 & 2)

2.8.4. Transaction volume

Table 2.13 shows the average trading volume per period in all 6 treatments in trading

block 1. On average, 43.87 shares were bought and sold in each trading period. There

is no clear pattern across treatments and Mann-Whitney tests indicate that there is no

treatment effect between any of these two treatments (p>.1 for all pairwise comparison).

Table 2.14 shows the average trading volume per period in all 6 treatments for the two

trading blocks pooled. On average, 37.29 shares were bought and sold in each trading

period. Same as the data from only block 1, there is no clear pattern across treatments

and Mann-Whitney tests confirm this (p>.1 for all pairwise comparisons).
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2.8.5. Instructions of the guessing game



Chapter 3

Tournaments with Safeguards: A

Blessing or a Curse for Women?

1

3.1. Introduction

There is little disagreement that gender equality is desirable in labor markets, yet there are

still significant gender differences in key labor outcomes. For example, of the CEOs who

lead the companies that compose the 2018 Fortune 500 list, less than 5% are women. Such

low representation of women at the CEO level may be partly attributed to tournaments,

because females tend to shy away from competitions (Niederle & Vesterlund 2007) and

thrive less when they compete (Gneezy, Niederle, & Rustichini 2003; Gneezy & Rustichini

2004). A few mechanisms that are studied in the literature encourage women to join

tournaments ranging from team competitions to individual competitions (Dargnies 2012;

Flory, Leibbrandt, & List 2015; Healy & Pate 2011) to gender quotas (Leibbrandt, Wang,

& Foo 2018; Niederle, Segal, & Vesterlund 2013) and making tournaments the default

choice (Erkal, Gangadharan, & Xiao 2019). However, luring women into tournaments may

1This chapter reports research conducted jointly with Andreas Leibbrandt.
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not be sufficient to narrow gender gaps. Once they have participated in a tournament,

women need a competitive environment where they can thrive.

Many organizations employ tournaments, but they vary the risk exposure for low-ranked

employees. At one extreme, some use up or out schemes while others use different types

of safeguards to protect low-ranked employees. For example, organizations can provide

tenure and significant base salaries so that the consequences for even the lowest-ranked

workers are moderate.2 However, it is difficult to identify whether such safeguards are

useful in tackling gender gaps in labor outcomes as their implementation is typically

highly correlated with organizational and industry characteristics.

In this experimental study, we explore a tournament environment that may help women

without hurting men. We design a real-effort rank-order tournament with an elective

safeguard, a device that mitigates the consequences of being low ranked (defined by

wage rank). More precisely, workers are informed of the availability of this safeguard

and decide whether to obtain it before the start of the tournament. The safeguard is

complementary and increases the user’s minimum wage if their relative performance falls

into the lowest ranking category. Our conjecture is that the safeguard is particularly

popular among women, improves women’s outcomes relative to men’s outcomes, and

alleviates psychological competitive pressure to perform.

Our findings show that women are indeed more likely than men to select a complementary

safeguard and that risk-aversion is an important predictor for the choice of safeguard.

However, we also find that this safeguard increases the gender wage gap compared to more

standard tournaments. Further, we observe that the safeguard reduces the performance

of both women and men regardless of whether it was voluntarily selected or automatically

implemented. Our survey findings suggest that a safeguard does not alleviate pressure

more for women than for men, and the safeguard encourages genders to slack off.

Our study is closely related to the literature on gender differences in the selection of

incentive schemes (Dohmen & Falk 2011; Eckel & Grossman 2008; Flory, Leibbrandt,

& List 2015; Gneezy, Leonard, & List 2009). This literature provides evidence that

2For example, in many countries, government jobs are more secure than jobs that require similar skills in
the private sector because the government sector usually has a lower dismissal rate.
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women are more likely than men to be disadvantaged by competitive environments such as

workplace tournaments (Gneezy, Niederle, & Rustichini 2003; Gneezy & Rustichini 2004;

Niederle & Vesterlund 2007). We depart from this literature by studying an environment

where competition cannot be avoided altogether. Such environments are common in

hierarchical organizations where promotion to higher levels is often based on competition.

We also contribute to the literature on gender quotas and other policies aimed at improving

female labor outcomes (Dargnies 2012; Healy & Pate 2011; Niederle, Segal, & Vesterlund

2013). While there is some evidence that gender quota and policies can address gender

gaps (Erkal, Gangadharan, & Xiao 2019), there is also evidence that they might backfire

(Gangadharan, Jain, Maitra & Vecci 2016; Leibbrandt, Wang, & Foo 2018; Leibbrandt

& List 2018). Our intervention deviates from most affirmative action policies because it

does not treat women differently than men but only provides an additional choice that is

accessible to either gender. Nevertheless, we find that our instrument can also backfire

because the difference in the selection process distorts the incentives disproportionately

across genders. The results provide evidence that supports the need for caution when

designing seemingly harmless policies that may attract one gender more than the other.

In addition, we contribute to the tournament literature.3 A key subject in this literature

is how individuals react to exogenously imposed variations in the prize structure (see e.g.,

Harbring & Irlenbusch 2003; Moldovanu & Sela 2001; Orrison, Schotter, & Weigelt 2004;

Sheremeta 2011) and how this relates to behavioral aspects (e.g., Delfgaauw, Dur, Sol,

& Verbeke 2013; Hong, Hossain, & List 2015; Sheremeta 2015). We complement this

literature by investigating reactions to safeguards that allow for endogenous selection of

the lowest prize and how this relates to gender differences in tournament outcomes. Finally,

our work is related to the literature studying the link between incentive schemes and labor

productivity (see e.g., Anderhub, Gachter & Konigstein 2002; Corgnet & Hernan-Gonzalez

2019; Corgneta, Fehr & Goette 2007; Gomez-Minambresbc & Hernan-Gonzalezd 2018). In

a typical setup in this literature, workers cannot change or choose their incentive schemes.

We fill this gap by giving workers the freedom to choose between two incentive schemes.

3For a survey on the tournament literature, the reader is referred to Dechenaux, Kovenock, & Sheremeta
(2015).
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Notes: the figure provides a screenshot of an example puzzle that workers have to solve
during the experiment. They first need to decipher the code in the lower box using the
upper table and then sum up all the values.

Figure 3.1: Illustration of task

3.2. Experimental Design

3.2.1. The real-effort task

In this experiment, we used a real-effort task, which mimics tedious work assignments that

require focus as well as mathematical and verbal skills (see, e.g., Carpenter, Matthews, &

Schirm 2010; Erkal, Gangadharan, & Nikiforakis 2011; Gill & Prowse 2012; Leibbrandt,

Wang, & Foo 2018;). In this task, participants were asked to solve as many puzzles

as possible in a time span of 40 minutes. Fig. 3.1 provides one example of such a

puzzle. Participants first deciphered the value of five letters and then summed up the

corresponding values. In this example, letters 1 through 5 have values 61 (g), 30 (c), 52

(h), 30 (c) and 50 (b), respectively, and the correct answer is 223 (61+30+52+30+50).

After typing their answers in the answer box and pressing the Next button, the computer

displayed a different set of numbers until the participants ran out of time.4 Participants

were not allowed to use calculators but could write on scrap paper.

3.2.2. The rank-order tournament

All participants took part in a rank-order tournament and their performance (number

of correctly solved puzzles) relative to other participants determined their monetary

compensation. There were three compensation levels: (i) the top 10% of participants in
4To ensure each quiz had similar difficulty across workers and treatments, all values were two-digit

integers, and all letters in the encode game were randomly drawn between a to j.
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Choice (n=160) Baseline (n=141) Compulsory (n=130)
No safeguard Safeguard

Top 10% $60 $60 $60 $60
Top 10%-50% $30 $30 $30 $30
Bottom 50% $15 $20 $15 $20

Notes: This table shows the tournament payment structure for each of the three treatments.

Table 3.1: Treatment overview

a given session receive $60, (ii) the top 10 to 50% of participants receive $30, and (iii)

the remaining participants (bottom 50%) receive $15 or $20, depending on treatment

and choice. Thus, the tournaments used a multiple-prize payment rule common to many

workplaces (Cason, Masters, & Sheremeta 2010; Kalra & Shi 2001; Vandegrift, Yavas, &

Brown 2007).5

3.2.3. The treatments

This study had three main treatments. The choice treatment allowed participants to

select their own tournament incentives. To properly identify the impact of this choice,

there were two other treatments: compulsory and baseline. All participants took part in

one treatment only. The experiment instructions are in the Appendix.

Choice treatment

In this treatment, workers chose whether to have a complementary safeguard before the

task started. The safeguard guaranteed a higher minimum payment if performance was

in the lower half but did not affect payment if performance was in the upper half. More

precisely, as can be seen in Table 3.1, if a participant chose the safeguard, they received

$20 if their performance was in the bottom 50% instead of only $15 if they did not choose

the safeguard. If their performance was in the top 50%, their payment was not affected.

5When the cut off between prize levels was not an integer, we rounded up the number of workers who
received the better prize in favor of workers. For example, if there were 28 workers in a group, then
the top three performers received $60.
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Compulsory treatment

In this treatment, the safeguard was already embedded in the incentive structure for all

participants. That is, the minimum payment was $20, just as it was in the choice treatment

if participants chose a safeguard. The safeguard guaranteed a minimum payment of $20

for all participants. We tested two versions of this treatment. In one frame, we made

the safeguard explicit (i.e., we told participants that the minimum compensation was

only $15 in some of the other sessions). In the other frame, the safeguard was implicit

and unknown to the participants (i.e., we gave workers no reference concerning the other

group’s prize structures).

Baseline

In this treatment, there was no safeguard available, and the bottom 50% received $15.

Participants were unaware that participants in other sessions had access to a safeguard.

3.2.4. Conjectures

The standard prediction for all three treatments was that all workers would be incentivized

to provide effort and thus increase their likelihood of higher compensation. Thus, the

first conjecture was that there are no treatment differences in effort across treatments.

The second conjecture applied to the choice treatment, for which we conjectured that all

participants chose the safeguard as it weakly dominated not choosing the safeguard.

These standard predictions did not take into account mental effort costs associated with

fatigue and the temptation to rest. While tournaments provide a significant incentive

to work hard (possible tripling to quadrupling compensation), it is possible that the

cost of the mental effort for some participants is sufficiently high that it prevents them

from providing (maximal) effort. Accordingly, the alternative prediction is that effort

is lower for the compulsory treatment than it is for the baseline because the incentive

is less pronounced. Further, it is possible that some participants rejected the safeguard

if they believed that it might undermine their effort and opportunity to increase their
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payments. On the other hand, it is also possible that the safeguard relieves pressure and

stress and thus affects performance. Whether less pressure and less stress increase or

decrease performance is still an open question, although some progress has been made in

this regard (e.g., Allen, Hitt, & Greer 1982; Compte & Postlewaite 2004; Hall & Lawler

1971; Harbring & Irlenbusch 2003; Van Dijk, Sonnemans, & Van Winden 2001).

So far, these predictions do not take gender into account. However, there is evidence that

gender plays a crucial role in tournaments. In particular, there is evidence that women

are more risk averse than men (Charness & Gneezy 2012; Croson & Gneezy 2009), less

likely to enter tournaments (Flory, Leibbrandt, & List 2015; Gneezy, Leonard, & List

2009; Niederle & Vesterlund 2007), and underperform in competitions (Gneezy, Niederle,

& Rustichini 2003; Gneezy & Rustichini 2004). For the choice treatment, we allowed for

endogenous selection in two different payment rules, which permitted workers to limit their

risk exposure to low compensation. Thus, our conjecture is that women are more likely

than men to choose the safeguard. In turn, this may improve or harm their compensation

relative to men depending on whether the safeguard increases the temptation to rest and

has a gender-dependent impact on pressure and stress.

3.2.5. Experimental procedures

The experiment was programmed in z-Tree (Fischbacher 2007), and workers were recruited

with the software SONA. In total, 431 workers (160 in choice, 130 in compulsory, and

141 in baseline) participated in the three treatments, and they earned, on average, $32

for an approximate 70-minute experimental session.6 There was no mentioning of gender

throughout the entire experiment to prevent potential experimenter demand effects.

Before the start of the experiment, workers read an information sheet and signed a consent

form. Thereafter, we read the instructions aloud. After reading the instructions, workers

had time to read the instructions on their own and ask questions. We then implemented a

practice round that included identical questions to the real-effort task and quiz questions

to ensure that workers understood the instructions and payment mechanism. After the

6The participants are mainly university students recruited across different disciplines. The demographic
variables are balanced across treatments and are reported in the Appendix.
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participants answered these questions correctly, they started the real-effort task. When all

workers had completed the task, we administered a short post-experiment questionnaire

to conclude. In the questionnaire, we collected the workers demographics, self-evaluation

of psychological wellbeing during the experiment, and incentivized them to reveal their

beliefs about their own performance, the group average performance.7

In addition, we elicited in this questionnaire risk preferences. We used the risk task

proposed by Eckel & Grossman (2002). Each worker must choose one gamble out of six

gambles with different risk exposure. The realization of the gamble prize is added to the

worker’s final payment. The choice is recorded as an ordinal categorical variable can be

any integers between 1 to 6, where a larger number indicates less risk aversion.

3.3. Findings

3.3.1. Experimental findings

We observe high effort levels in our experiment. Fig. 3.2 illustrates the average number

of attempted questions (effort) and correct questions (performance) across treatments.

On average, 72.6 quizzes were attempted and 65.4 were solved correctly during the course

of 40 minutes, and we observe few cases (7.9%) where participants attempted less than

one quiz per minute. This suggests that the large majority of the participants made a

substantial effort to do well in the experiment.

We found significant treatment differences in effort levels. In particular, we observed that

workers attempted less quizzes in the compulsory treatment8 than in the baseline (78.1

vs 66.7, p<0.001) and that the performance was also significantly lower (70.1 vs 60.7,

p<0.001).9 This finding is consistent with the alternative prediction based on fatigue and

temptation but is inconsistent with the standard prediction of no treatment differences in
7We used the binarized scoring rule proposed by Hossain & Okui (2013) to incentivize participants to

report their best guess about their own performance and the group average performance. Each
answer within 5 quizzes around the true value is awarded with $2.

8For simplicity, we pool in the main analysis the two versions in the compulsory treatment. The findings
in the two versions are qualitatively similar and discussed in Section 3.3.3.

9Without further specification, all p-values reported in this paper are from two-tail Mann-Whitney tests.
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Notes: This figure shows the average attempts and performance depending on treatment.
Participants had 40 minutes to attempt as many quizzes as possible. Error bars indicate
95% confidence intervals.

Figure 3.2: Effort and performance levels depending on treatment

effort levels across treatments. In addition, we observed that participants attempted less

quizzes in the choice treatment than in the baseline (72.5 vs 78.1, p=0.037) and that the

performance was also lower (65 vs. 70.1, p=0.062). Additionally, there were significant

differences between the compulsory and choice treatments for both effort (66.7 vs 72.5,

p=0.03) and performance (60.7 vs 65.0, p=0.095).

Table 3.2 reports the estimation results of an OLS regression with effort and performance as

dependent variables. We observed the following. The compulsory safeguard significantly

reduced the effort and performance by around 14.5% (p<0.01) and 13.2% (p<0.01),

respectively, compared with the baseline. For workers in the choice treatment, those

who chose to opt against the safeguard performed similarly to the baseline (p=0.61

for effort and p=0.37 for performance); those who chose to use the safeguard have a

similar performance to those in the compulsory treatment(p=0.154) but exert more effort

compared with those in the compulsory treatment (p=0.0799), and their performance

was 8.1% to 8.3% worse than the baseline in terms of effort and performance (p<0.05

for both cases). Finally, the female dummy was significant at the 5% level and shows

that men made more effort and had a higher performance (p<0.05 for both effort and

performance).
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Performance Effort
Compulsory -8.985*** -10.962***

(2.628) (2.753)
Choice × -4.374 -2.627

not to use safeguard (4.837) (5.136)
Choice × -5.480** -6.283**

use safeguard (2.626) (2.738)
Female -4.961** -5.259**

(2.077) (2.390)
Constant 72.555*** 80.689***

(2.264) (2.309)
Notes: This table shows the OLS estimation results of the regression comparing the
outcomes across treatments and the safeguard choice. Performance is defined by the
number of correctly solved quizzes. Effort defines the number of attempted quizzes.
The constant corresponds to the outcomes of male workers in the baseline, and all other
independent variables are dummy variables. There are 431 observations for each regression.
We report the estimate result of the regression models and include the robust standard
error in parentheses under each point estimate. *, **, and *** indicate significance at the
10%, 5%, and 1% levels, respectively.

Table 3.2: Effort and performance depending on treatment

Result 1: The safeguard reduced effort regardless of whether it was implemented as a

choice or as a default. Individuals who decided against using a safeguard provided more

effort than those who decided to use a safeguard. Only workers that decided against using

a safeguard performed similarly well as workers who did not have a safeguard.

The safeguard was popular despite the negative impact on effort and performance (87%

choose the safeguard). Importantly, and as conjectured, we found that women were more

likely to choose the safeguard than men (93.1% vs. 81.8%, p=0.0368).

Table 3.3 compares the characteristics of the participants who chose the safeguard with

the characteristics of those who did not choose the safeguard. We can see that the fraction

of women is much lower in the sample of participants who did not choose the safeguard

(23.8%) than in the sample of participants who chose the safeguard (48.2%). In addition,

risk preference is also a significant predictor of safeguard choice. Participants make more

risk averse choices in the risk task are more likely to be in the sample of those who chose

the safeguard (p=0.02). As expected, we also observe gender differences in the willingness

to take risks with females being more risk-averse (3.52 vs. 4.12, p<0.01). Characteristics

other than gender and risk preference play less important roles in the safeguard choice.
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Variable Use safeguard Do not use Difference in p-value
(n=139) safeguard (n=21) absolute terms

Female (dummy) 48.2% 23.8% 24.4% 0.04
Risk 4.01 4.86 -0.85 0.02

Good at math (dummy) 64.7% 66.7% -2.0% 0.86
Confidence 1.20 1.38 -0.18 0.30(

guessed own performance
guessed group average

)
Notes: This table compares key variables between the groups who choose to use the
safeguard against those who opt out within the choice treatment. All these variables
are collected by the post-experiment survey where we asked the participants questions
on their gender, risk preference (Eckel & Grossman 2002), subjective belief about their
mathematical abilities, and their estimate of their own performance relative to the group
average. Female is a dummy variable that takes the value 1 if and only if the participant
is a female; Risk is an ordinal categorical variable that can be any integers between
1 to 6, where a larger number indicates less risk aversion; Good at math is a dummy
variable that takes the value 1 if and only if the participant’s answer to this question
is yes; Confidence is a continuous variable calculated as the ratio of the participant’s
guess about their own performance and their guess about the average performance in
the respective experimental session. The numbers in the second and third columns in
the table are the average values of the variables (Male, Risk > medium, Good at math,
Confidence) of the group that choose to use the safeguard and the group that chooses not
to use the safeguard, respectively. Each p-value reports the Mann-Whitney test result
testing the null hypothesis that there is no difference between the group that uses the
safeguard and the group that does not use the safeguard.

Table 3.3: Determinants of safeguard choice



60 CHAPTER 3. TOURNAMENTS WITH SAFEGUARDS

Choice of safeguard
Model 1 Model 2 Model 3 Model 4

Female (dummy) 0.112** 0.095** 0.097*
(0.051) (0.048) (0.052)

Risk (categorical) -0.035** -0.030** -0.027*
(0.015) (0.015) (0.015)

Good at math (dummy) 0.019
(0.058)

Confidence (guessed own performance -0.104
/ guessed group average) (0.089)

Constant 0.818*** 1.012*** 0.949*** 1.054***
(0.030) (0.059) (0.068) (0.131)

Notes: This table shows the OLS estimation of the linear probability model studying how
individual characteristics affect the safeguard choice. Female is a dummy variable that
takes the value 1 if and only if the participant is a female; Risk is an ordinal categorical
variable that can be any integers between 1 to 6, where a larger number indicates less
risk aversion. ; Good at math is a dummy variable that takes the value 1 if and only
if the participant’s answer to this question is yes; Confidence is a continuous variable
calculated as the ratio of the participant’s guess about their own performance and their
guess about the average performance in the respective experimental session. There are
160 observations for the regression. We include the robust standard error in parentheses
under each point estimate. *, **, and *** indicate significance at the 10%, 5%, and 1%
levels, respectively.

Table 3.4: Individual determinants of the safeguard choice

Task ability (math skills) and confidence (the ratio of guessed own performance and

guessed group performance) are not significant drivers of safeguard choice.

In Table 3.4, we regress the choice of safeguard on these characteristics (gender, risk

preferences, math skills, confidence) sequentially and simultaneously.10 We observe that

both gender and risk preference remain significant predictors in all models even if both

are used simultaneously (p=0.03-0.06 for gender and p=0.03-0.07 for risk preference).

In particular, in Model 1 and 2, we regress the choice of safeguard on gender and risk

preference alone, respectively. We find females are 11.2 percentage points more likely to

use the safeguard compared to males (p=0.03), and those choose the gamble with the

risk level one number higher are 3.5 percentage points less likely to use the safeguard

(p=0.03). These results are robust if add additional control variables, task ability and

confidence, in Model 4 (despite gender and risk are only significant at the 10% level).

10We estimated the equation using a Linear Probability Model (LPM) method because it gives us the
marginal effects directly. However, one drawback of LPM is that there are no probability bounds, so
the estimated probability can be greater than 1 as in model 2 and 4.



3.3. FINDINGS 61

Notes: This figure illustrates the percentage of workers who received a higher minimum
wage due to the materialization of the safeguard.

Figure 3.3: Materialization of safeguard depending on treatment and gender

Result 2: Gender is an important predictor of safeguard choice. Women are more likely

to choose a complementary safeguard in tournaments.

The safeguard benefits women only at first sight. Fig. 3.3 shows how likely the safeguard

is to materialize and increase the compensation in the choice treatment for each gender.

The two bars on the left side show that in this treatment, 56.9% of the female workers

and only 33% of the male workers receive the additional $5 from the materialization of

the safeguard (p<0.01). In contrast, in the two bars on the right side for the compulsory

treatment, we see that gender plays no role as an almost identical percentage of either

gender receiving the safeguard payment of $20.

A closer look at the data reveals that women fare worse than men when there is a

choice for safeguard. Fig. 3.4 compares the compensation for male and female workers

across treatments. Compared to the baseline, we observed that compensation was higher

for both men ($27.0 vs $30.3, p=0.013) and women ($24.9 vs $26.0, p=0.024) in the

choice treatment, however, the treatment impact was gender specific. Men’s average

wages increased by $3.3 (12.2%) while women’s wages only increased by $1.1 (4.4%). In

addition, compared with the compulsory treatment, giving workers the choice of safeguard

slightly increased men’s payoff ($29.6 vs $30.3, p=0.60) but somewhat decreased women’s

payoff ($27.6 vs $26.0, p=0.138). Perhaps most importantly, we observed that the choice

treatment created a significant gender wage gap of $4.2 (wage for women=$26, men=$30,
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Notes: This figure shows the average wage for each gender across treatments. The error
bars indicate 95% confidence intervals.

Figure 3.4: Average wage by gender in each treatment

p=0.02), which was insignificant in the other two treatments (p>0.38).

Fig. 3.5 provides insights as to why the safeguard choice backfires for women. This

figure illustrates the ranking and prizes in the different treatments depending on gender.

The middle panel shows that women were much more likely to score in the bottom 50%

in the choice treatment than men, and that this was not paralleled in the compulsory

and baseline treatment. In fact, such a gender difference was significant for the choice

treatment (p=0.027) but not for the baseline (p=0.28) and compulsory treatment (p=1.0).

Fig. 3.6 provides a more fine-grained illustration of effort levels depending on gender

and treatment. In this figure, we compared the effort level of each quantile in the no

baseline against the same quantile in the choice treatment. While this quantile plot

does not show the change in the effort level caused by our intervention at each quantile

as we use a between subject design, it allows for causal interpretation at the aggregate

level. For men, the choice of safeguard shifted the overall distribution of correct answers

lower than the baseline, except for the quantiles near the two prize cut-offs. Women, in

contrast, appeared to respond differently to the safeguard choice. All quantiles in the

choice treatment were higher in the baseline, except for the few that were between the

cut-offs. Thus, the choice of safeguard appeared to cause most men and women to exert

less effort compared to the baseline, but this reduction was more pronounced for women

whose performance was close and moved them up the ranks.
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Notes: This figure plots the gender composition of each prize level in all treatments. The
first price is awarded to the top 10% performers, the second is awarded to the top 10% to
50% performers, and the third is awarded to the bottom 50%.

Figure 3.5: The gender composition of each prize level for each treatment

Notes: This figure compares the performance in the baseline with the choice treatment for
both genders. Each quantile of the baseline is matched with that of the choice treatment
and is plotted against the 45-degree line. Any point above the line indicates that the
choice treatment has a higher performance for that particular quantile and vice versa.
The two dashed vertical lines indicate the 50% and 10% cut-offs for the different prizes in
the baseline.
Figure 3.6: Performance differences between choice and baseline treatment depending on
gender
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Result 3: The availability of a complementary safeguard disadvantaged women more

than men and created a gender wage gap.

3.3.2. Survey findings

The experimental findings are consistent with our alternative conjecture based on the

assumption that the safeguard increases temptation to rest and decreases stress. To

provide insights on these potential underlying mechanisms and their relationships with

gender, we conducted a survey with the participants after the tournament but before

revealing information on their performance. In this survey, we asked participants to self

report their stress levels and temptation to rest during the real-effort task and how a

removal of the safeguard would change these factors.11 The elicitation of stress level and

temptation to rest was not incentivized. Participants had to choose between five stress

levels ("Not at all", "A bit", "Somewhat", "Stressful", "Very stressful) and three temptation

levels ("Not at all", "Somewhat", "A lot") and indicate how would a removal of safeguard

change these levels from five choices ("Decrease by a lot", "decrease by a bit", "No Change",

"Increase by a bit", "Increase by a lot"). A typical worker experience a bit stress during

the task and somewhat temptation to rest.

Fig. 3.7 illustrates several corresponding survey insights. First, while we found that only

a minority of workers experienced high levels of stress and temptation, many reported

experiencing some stress and the temptation to rest suggesting the presence of mental

costs. Second, we observed that a significant proportion of participants expected to

experience higher stress level (45%) and less temptation to rest (35%) when there was

no safeguard. Third, and perhaps most importantly, the psychological impact of the

safeguard appeared to be gender independent. The reported stress and temptation levels

were similar for men and women in the presence and absence of a safeguard (p=0.91 for

change in stress and p=0.465 for change in temptations), suggesting that mental costs

cannot explain the observed gender differences in safeguard choice, performance, and

wage levels.

11We only asked participants in the compulsory treatment because all of them had experienced the
safeguard. Experiencing the safeguard may facilitate the participants to understand the question
and give more reliable answers.
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Notes: This figure shows the survey response regarding the stress level and temptation to
rest during the tournament and how participants expect a removal of the safeguard to
change these between male and female workers. All survey questions are implemented in
the form of multiple-choice questions, and the possible choices map to the labels in the
subfigures. The first row of subfigures plots the reported stress level and the expected
change in the stress level from using to not using the safeguard. The second row shows
the reported temptation to take a rest during the tournament and the expected change in
the temptation from opting for the safeguard to opting against it. We collect data from
the compulsory treatment to ensure that all participants have experienced the safeguard.

Figure 3.7: Treatment impact on stress and temptation depending on gender
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3.4. Discussion

There is substantial evidence that uncertainty in labor relations is more detrimental to

women than men (e.g., Frederiksen 2008; Garcia 2017; Hirsch & Schnabel 2012). There is

also evidence that giving workers choice over their employment conditions can improve

labor outcomes (e.g., Beckmann, Cornelissen, & Krakel 2017; Bloom, Garicano, Sadun, &

Van Renee 2014; Leslie, Manchester, Park, & Mehng 2012). We investigate a workplace

tournament that reduces uncertainty by providing workers with a safeguard choice that

increases the minimum wage. Our findings suggest that giving workers the autonomy to

select the incentive scheme can disadvantage women. This is because women are more

tempted to choose safeguards, although they weaken the incentive to exert effort. Our

findings provide novel evidence on the limitations of tournaments in creating gender

neutral outcomes.

Our experiment also provides insights for the literature on incentive contracts beyond the

economics of genders. First, providing safeguards to low-performing workers appears to

be costly but also counter-productive as they lower effort and performance. At the same

time, such safeguards can even have a detrimental impact on high-performing workers

and, thus, decrease effort and performance throughout the whole distribution of workers.

More generally, our study contributes to the discussion of optimal incentives for policies

that target low-performing individuals (e.g., Heckman 2006; Mario, Nicole, Ute, Lisa,

& Benjamin 2020; Rosen 1986). For example, poverty alleviation programs are more

likely to affect the wages of low-skilled workers, and it is of key importance to understand

whether and under what circumstances they cause less effort and thus might lead to

larger, not smaller, wage gaps.12

Our study is a novel attempt to study the role of endogenous choice and safeguards in

tournaments. We envision several extensions for future research. First, it seems important

to further investigate in which environments workers benefit from having a choice in

their compensation scheme and whether it is a general property that giving this choice is

less beneficial for women than men. Second, our data suggest that opting against the

12However, Dariel et al. 2020 find that many of the gender gaps in competitiveness and other economic
preferences are predominantly found inside the laboratory but not in real-world organizations.
Cautions should Caution should be exerted to apply the results from the lab to other contexts.
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safeguard serves as a self-control mechanism. It may be interesting to study ways to make

individuals “burn the boat” to achieve greater success.
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3.6. Appendix

3.6.1. Instructions

Here, we provide the instructions for the choice treatment. The instructions for the other

treatments only differ in the availability of the safeguard and are available upon request.

1. General Instructions

Thank you for participating in this experiment. Please read the following instructions

carefully. After reading the instructions, there will be some questions to check that all

participants have understood the experiment. Thereafter, the main experiment will start.

Note that you will be paid in private and in cash at the end of the experiment.

If you have any questions during the experiment please raise your hand, and we will

come to you. Please do not ask your questions out loud, attempt to communicate with

other participants, or look at other participants’ computer screens at any time during the

experiment. Please turn your phone to silent mode and put it in your bag. Please do not

use any calculator during the experiment including the one available with the Windows

system.

2. The Task

You will have 40 minutes (2,400 seconds) to solve puzzles similar to the one in the graph

below.

To solve this puzzle, you first need to decipher the code in the box below. For example,

letter 1 (g) has a value of 61, letter 2 (c) 30, letter 3 (h) 52, letter 4 (c) 30 and letter

5 (b) 50. The correct answer is the summation of all five values: correct answer =
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61+30+52+30+50 = 223. After typing your answer in the answer box, you have to press

the Next button below to access the next puzzle.

3. Payment

Your payment depends on your performance relative to the other participants in this

session and whether you choose to have a safeguard.

If you do not choose the safeguard, only your relative performance determines your wage:

• If your total number of correct answers is among the top 10%, then you will receive

$60.

• If your total number of correct answers is among the top 10% to 50%, then you will

receive $30.

• If your total number of correct answers is among the bottom 50%, then you will receive

$15.

If you choose to have the safeguard, then you earn at least $20:

• If your number of correct answers is among the top 10%, then you will receive $60.

• If your number is among the top 10%-50%, then you will receive $30.

• If your number is among the bottom 50%, then you will receive $20.

3.6.2. Framing of the safeguard

We investigate the role of the framing of the safeguard here. We use two frames in the

compulsory treatment, which vary depending on whether participants are made aware

of the presence of a safeguard. More precisely, in the first frame, we only mention the

payment rule without any mentioning of a safeguard. In contrast, in the second frame,

we present participants with the concept of the safeguard and inform them that their

minimum payment ($20) is higher than in some of the other groups ($15) because of the
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presence of a safeguard. We observe no differences between frames in terms of quizzes

attempted and quizzes answered correctly (p=0.8 for attempt p=0.9 for correct). This also

holds true if we analyze males and females separately. For males, the p-value testing for

no difference caused by the framing is 0.37 for attempted questions and 0.30 for questions

answered correctly; for females, the numbers are 0.62 and 0.38, respectively.

3.6.3. Demographic variables

We report the demographic variables across treatment in Table 3.5. In general, the

demographic variables are balanced across treatments from F-tests.

Gender Age Student Business
(male=1) school

Baseline 0.50 22.70 0.99 0.19
Choice 0.55 23.39 0.99 0.22

Compulsory 0.44 22.65 0.98 0.25
F_stat 2.3 1.2 0.74 0.59
p_value 0.11 0.29 0.49 0.55

Notes: This table presents the average demographic characteristics for each treatment.
We also report the F-statistic and p-value testing the null hypothesis that there is no
difference in the variable across all treatments.

Table 3.5: Balance check



Chapter 4

Deterrence Using Peer Information

1

4.1. Introduction

Drug dealers in neighboring areas usually observe each other’s activities such as the size

of stocks and sales. Sometimes, the police may randomly check car boots or patrol the

area and capture one of them. The regulatory authority is often unaware of such insider

information and lacks tools to invoke and leverage this valuable information upon finding

the suspect. However, such information can be captured by criminal networks (Lindquist

& Zenou 2019). We use this insight to propose a new peer-informed audit mechanism, such

that the suspect is incentivized to reveal information regarding her neighbors’ criminal

activities.

We show the effectiveness of this novel mechanism that leverages individuals’ information

to apprehend the most severe offenders in the network and reduces overall criminal

activities. The mechanism introduces a peer-informed audit stage that provides the

suspect an opportunity to redirect the penalty. Consider a group of criminals linked by

a network who are involved in similar kinds of criminal activities, and linked members
1This chapter reports research conducted jointly with Lata Gangadharan and C. Matthew Leister.
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can observe each others’ criminal activities with some noise. The regulator, possessing no

information regarding the network, happens to capture a criminal in the network. The

criminal can either pay a fine or challenge another linked criminal in the network. If the

audited criminal does challenge another criminal, then the regulator compares the noisy

signals of their crime levels. The regulator fines the criminal with the higher signal (i.e.

with greater evidence of criminality) and lets the other one go free.

As compared to the baseline mechanism in which punishment for the first suspect is certain,

standard theory predicts that our mechanism deters crime more effectively, keeping the

number and the magnitude of the penalties fixed. In equilibrium, an individual’s crime

level depends on the given criminal’s position in the network and on the network structure.

This is because if individuals observe the signals of others’ crimes, then an individual

audited by the authority in the peer-informed audit mechanism will optimally play out

the strategy of challenging the linked criminal with the highest observed crime level. By

backward induction, under this simple peer-challenge strategy, all connected criminals

have the incentive to reduce their crime levels in order to avoid neighbors’ challenges

as well as successfully challenge neighbors when required. The likelihood of a successful

challenge and being the target of another’s challenge depends on the number of links the

criminal has and the overall network structure.

We examine this mechanism using three commonly used network structures (star, circular,

and complete networks), which also summarize many criminal network structures found

in the literature. For example, Venkatesh & Levitt (2000) find that star networks closely

represent many criminal gangs in Chicago, where there is a “manager” responsible for

a syndicate of drug dealers; circular networks resemble neighborhood watches where

observation is constrained by geographical proximity; complete networks resemble cartels

where all members know and observe each other (see, e.g., Belleflamme & Bloch 2004).

Theory predicts that the mechanism is most effective in the complete network, and least

effective in the star network; within the star network, the center player would reduce her

crime level more than the periphery players. Intuitively, the more links a player has, the

more effective the mechanism is in deterring her crime level. This is because each link in

the network represents a piece of insider information and, thus, more links imply that

there is more insider information to be utilized by means of transmitting the information
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to the authority. Consequently, the theory shows that the peer-informed audit mechanism

lowers the crime level in all three network treatments as compared to that in the baseline.

Next, we design an experiment to provide the first test of this mechanism. Experimental

methods enable researchers to observe actions accurately and help identify a causal

relationship between different enforcement mechanisms and actions.2 Our experimental

evidence provides strong support for the deterrence effect of the peer-informed audit

mechanism. However, crime in the treatments with the peer-informed audit mechanism is

above the levels predicted by the subgame perfect Nash equilibrium and is less sensitive

to changes in network structures as compared to theoretical predictions. We also find

that participants with higher cognitive ability commit less crime in more connected

network treatments, thereby approaching optimal behavior given others’ crime levels. In

order to explore this further, we examine participants’ responses in the post-experiment

questionnaire. Certain participant responses are suggestive of a failure to discern that

the level of crime affected their probability of being fined, while others indicate that

they attempted to “produce a bit less than connected players to avoid paying the fine.”

An explanation for our findings, suggested by these responses, is that individuals are

boundedly rational and have differential reasoning abilities. To test this explanation, we

explore a level-k reasoning model where level-0 participants’ decisions are based on the

incorrect belief that punishment is independent of the crime level, level-1 best respond to

level-0 participants, level-2 best respond to level-1 participants, and so forth. We find that

this boundedly rational model of crime predicts that the reasoning capacity of individuals

affects the overall crime level.

This paper is linked to several prominent strands of the economics literature. First, it

is closely related to the literature that studies deterrence mechanisms. Several of these

mechanisms rely on the authority’s knowledge about potential offenders and randomly

inspect a subset of them (e.g., Becker 1968; Polinsky & Shavell 1979; Alm & McKee 2004;

Coricelli et al. 2010; Gilpatric et al. 2011; Friesen 2012; Cason et al. 2016).3 However, it

2Our goal is to provide a clean first test of the mechanism guided by clear theoretical principles. In order
to do this, we abstract from implementational issues—such as distrust of the mechanism, corruption,
targeted retaliation, or other factors—that may complicate the interpretation of treatment differences.
As we describe in Section 6, in future research it would be useful to examine these aspects more
explicitly.

3While the standard economics-of-crime approach focuses on the monetary incentives for reducing criminal
behaviour, a few of the papers listed above (e.g., Coricelli et al. 2010; Cason et al. 2016) also
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is likely that in certain cases the authority does not know the potential offenders but can

only apprehend one of them by chance. Mechanisms that focus on random or targeted

inspections are not suitable in such cases. We fill this gap by introducing a new mechanism

that enables the authority to utilize potential insider information.

Our research also connects to mechanisms that encourage whistleblowing by applying

leniency on the whistleblowers in cases where the authorities are unaware of the illegal

actions in the first place (see e.g., Miller 2009; Bigoni et al. 2012, 2015; Chen & Ray 2013;

Abbink et al. 2014; Feltovich & Hamaguchi 2018). We diverge from the approach suggested

in this literature along several dimensions. First, whistleblower leniency relies only on

an endogenous reporter, while our peer-informed audit mechanism requires identifying

one criminal from the entire network. More importantly, in our mechanism, the penalty

depends purely on the relative crime levels, which solves several potential drawbacks

of the leniency policy. For example, under leniency, firms may “form sacrificial cartels

and apply for leniency in less valuable products to reduce convictions in more valuable

products” (Marx et al. 2015). Our mechanism successfully eliminates this incentive, as the

member with the higher observed crime level is always liable for the fine. Moroever, the

whistleblower tends to be discriminated against (Carr & Lewis 2010), which weakens the

incentive to report other criminals. Our mechanism preserves the anonymity of the peer

informant in several important ways. Instead of punishing all members, our mechanism

only punishes one, which reduces the potential for retribution. We also relax the implicit

assumption in leniency schemes that every member of the cartel is aware of the other

members involved (i.e., the complete network) by incorporating incomplete and irregular

network structures, such as the circular and the star networks.

Second, this project is related to the nascent literature on social networks (Ballester et

al. 2006), which finds that networks are crucial for education (Calvo-Armengol et al.

2009; Hahn et al. 2019), detection of crime (Calvo-Armengol & Zenou 2004; Lindquist &

Zenou 2019), and other economic activities (Kaiser 2007; Nakajima et al. 2010; Charness

et al. 2014; Helsley & Zenou 2014; Leibbrandt et al. 2015; van Leeuwen et al. 2015,

2019; Jackson et al. 2017; Bloch & Olckers 2019; Konig et al. 2019). Building on this

literature, we focus on how regulators can use the information in networks to reduce

introduce additional considerations, such as emotional response or social stigma caused by engaging
in illegal activities.
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criminal activity and improve social welfare. In particular, we create incentives for the

suspect to reveal information regarding the criminal activities of others in the network; in

doing so, we bring together the research on leniency programs and social networks. We

show theoretically that crime levels depend on the given criminal’s position in the network

and the network structure. Further, we provide experimental tests of the theory. While

all peer-informed audit networks deter crime as compared to the baseline, in contrast

to theoretical predictions, there are no statistically significant differences across network

treatments. We show that an alternative model based on level-k reasoning explains these

findings. This provides evidence that more sophisticated criminals will internalize the

implications of peer-informed auditing over the network and, thus, reduce their criminal

activity.

Finally, our mechanism is related to the level-k reasoning literature (Nagel 1995; Agranov

et al. 2012; Gill & Prowse 2016; Jin 2018). To the best of our knowledge, we are the first to

build a level-k model of interaction within a network structure. This model predicts that

criminal activity decreases monotonically in k toward the Nash prediction (i.e., level-∞)

for all network types we consider. Interestingly, we find that the complete network is

the least effective network structure to deter crime (compared with star and circular

networks) when the sophistication level is very low, but becomes the most effective one

when the level is high. In other words, reasoning abilities can interact with the network

structure and influence the incentives to reduce crime. Consistent with this theory, we

find that experimental participants with higher cognitive abilities engage in crime in a

manner that is consistent with the best response to prevailing criminal levels. We also find

most participants range from level-0 to level-2, which matches the findings from level-k

games without network structures. Our findings indicate the importance of studying

such boundedly rational models of crime to understand the effectiveness of enforcement

mechanisms.

The remainder of this paper is organized in the following manner. We present the

theoretical framework and experiment in sections 2 and 3, respectively. We report our

results in sections 4 and put forward a boundedly rational model in section 5 that further

explains our findings. Section 6 discusses the implications of our findings and offers some

ideas for future research.
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4.2. Theoretical model

4.2.1. Model setup

We illustrate the peer-informed audit mechanism with an example of sales of illicit

substances like drugs. The mechanism can be extended to other types of crimes (such as

tax evation, financial misreporting, smuggling etc.) provided that the severity of criminal

activities can be measured and compared.

Prior to the beginning of the game, n ≥ 2 drug dealers are connected by an exogenously

determined undirected graph represented by adjacency matrix g. In other words, if drug

dealers i and j are connected, then gij = gji = 1, and gij = gji = 0 otherwise. The

crime network structure defined by g is common knowledge among all drug dealers but is

unknown to the regulator. We denote i’s neighborhood N(i) = {j ∈ N : gij = 1}, which

is assumed to be non-empty for each i.

The game has two stages. In the first stage, each drug dealer i ∈ {1, 2, ..., n} selects a

crime level ei. This action can be interpreted as choosing how much drug to stock and sell.

Higher ei increases i’s profit π(ei). We assume that the profit function π (·) is concave

and assumes the form π (ei) = ebi for 0 < b < 1.4 After all drug dealers choose their

crime levels, each drug dealer observes noisy signals informing them of the crime levels of

connected drug dealers. Precisely, drug dealer i observes a noisy signal of ej if and only if

gij = 1. The signal observed by drug dealer i is given by êj = ej + εj, where εj follows

cumulative distribution F .5 We assume εj and ε` are independent for all j 6= `. Each

drug dealer knows its own crime level by construction, but does not observe the signal

informing others of its crime level.

In the second stage, with probability θ the regulator detects the crime. The regulator

then audits one randomly-drawn drug dealer j (i.e., each drug dealer is audited by the

regulator with probability θ/n) and observes the noisy signal of that drug dealer’s crime

4The condition π(0) = 0 is without loss, as each drug dealer’s realized profit may involve an additional
constant capturing “legal” profit with π (·) yielding “excess” profit.

5The noise in the signal (ε) is required to define a well-behaved Nash equilibrium. Otherwise, players
always have an incentive to undercut each other.
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êj.6 The payoff function for drug dealer i is

ui(ei, e−i) = π (ei)− f(êi) · Ii (firm i is fined) ,

where I is an indicator function that takes value 1 if and only if the logical statement in

its argument is true, and 0 otherwise. The non-negative payment f(êi) ≥ 0 defines the

size of the fine when drug dealer i is liable and the regulator observes signal êi.7 In the

next section, we introduce the mechanisms that determine which drug dealer is liable for

the fine.

4.2.2. Enforcement mechanisms

We consider two enforcement mechanisms. In the baseline audit mechanism, the randomly

audited drug dealer j pays the fine. In the peer-informed audit mechanism, the randomly

audited drug dealer j can challenge one of her peers k such that gjk = 1. The regulator

compares the results of the audit of drug dealer j (êj) and drug dealer k (êk), and fines

the one that has a higher observed crime (i.e., êj > êk implies Ij (liable for the fine) = 1).

The peer-informed audit mechanism can be applied to all network structures. For

simplicity, we focus on the following network structures: 1) a star network, in which drug

dealer i is only connected to a unique center drug dealer if she is a periphery drug dealer,

and is connected to all other (periphery) drug dealers if she is the center drug dealer; 2) a

circular network in which each drug dealer i is only connected to two neighbors; and 3) a

complete network in which each drug dealer i is connected to all other drug dealers in the

group.

6We use this simple information structure where the drug dealers and the regulator observe the same signal
for each drug dealer to reduce the complexity faced by experimental participants. The assumption
that only one signal is generated for each drug dealer is inconsequential; this simplification yields
qualitatively equivalent equilibrium challenge strategies and crime levels as the model in which
players observe private signals with i.i.d. noise.

7In the event that the player liable for the fine has a negative signal, the fine imposed on this player
is set to zero. However, it is possible for a player who selects zero crime level to be liable for the
fine if the player obtains a positive signal. In the experiment, very few participants selected zero
crime level. For example, only 4 out of 100 players in the one-shot game treatments selected the
zero crime level and none of them were liable for the fine.
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4.2.3. Equilibrium crime and profit-fine trade-offs

Given the model’s assumptions, a Nash equilibrium in crime levels in the first stage solves

the following system of equations:

∂E
[
ui
(
e∗i , e

∗
−i

)]
∂ei

= 0, (4.1)

for all i ∈ {1, 2, ..., n}. The expectation E[·] is taken over all noise variables and whether

the regulator detects crime. In the baseline audit mechanism, (4.1) becomes:

∂π (e∗i )
∂ei

= θ

n

∂E [f(êi)|e∗i ]
∂ei

(4.2)

In the peer-informed audit mechanism, it is a weakly dominant strategy for any audited

drug dealer to challenge the neighbor with the highest signal. When the drug dealers

follow this strategy in the second stage, (4.1) becomes:

∂π (e∗i )
∂ei

=
∂E

[
f(êi) · Ii (firm i is fined)

∣∣∣e∗i , e∗−i ]
∂ei

(4.3)

Appendix A1 provides closed-form calculations for the marginal expected fine. Here,

we describe the basic trade-offs faced by drug dealers under this mechanism. Provided

any audited drug dealer i always challenges their neighbor j with the highest êij, (4.1)

becomes:

∂π (e∗i )
∂ei

=



θ
n
· ∂
∂ei

E
[
f (êi)

∣∣∣L→i , e∗i , e∗−i ] · P (L→i ∣∣∣ei, e∗−i)︸ ︷︷ ︸
Expected fine from being audited

+ θ|N(i)|
n
· ∂
∂ei

E
[
f (êi)

∣∣∣L←i , e∗i , e∗−i ] · P (L←i ∣∣∣e∗i , e∗−i)︸ ︷︷ ︸
Expected fine from being challenged by a neighbor

 (4.4)

where L→i denotes the event {êi > êj, êij = maxk∈N(i){êik}} that i is audited and loses

her challenge of a neighbor j, and L←i denotes the event {êi > êk, êjk = maxk∈N(j){êjk}}

that i is challenged by a neighbor j and loses that challenge. Note that drug dealer i is



84 CHAPTER 4. DETERRENCE USING PEER INFORMATION

liable for the fine under both events L→i and L←i .

Under either mechanism, drug dealer i equates the marginal profit from additional crime

with the marginal expected fine. In the baseline audit mechanism, the probability of

being fined is fixed at θ/n, while in the peer-informed audit mechanism player i further

accounts for the marginal effect of ei on the probability of being fined. We see that,

when calculating this probability, drug dealer i considers the possibility of being fined to

originate from one of two channels: (1) i is audited and i’s challenge of a neighbor j fails

in avoiding the fine and (2) one of i’s neighbors j is audited and successfully challenges i.

Given that each drug dealer’s noisy signal is an estimate of the drug dealer’s crime level,

the network structure and the drug dealer’s position in the network affect the likelihood

of the drug dealer being liable for a fine. Generally speaking, the fewer the neighbors

the drug dealer has, the fewer opportunities for L→i to occur, as drug dealer i has few

accomplices to pass the blame to. Conversely, the more neighbors the drug dealer has, or

the fewer the neighbors the drug dealer’s neighbors have, the more opportunities for L←i
to occur, as more neighbors are more likely to challenge drug dealer i.

Given the experimental parameters in Table 4.1, the benefits from adding a link (having

more accomplices to pass the blame to) outweigh the corresponding costs (being more

likely to be targeted by accomplices). Consequently, theory predicts that the mechanism

is most effective in the complete network and least effective in the star network. In

Appendix A1, we elaborate on these basic trade-offs in equilibrium within the star, circle,

and complete network structures.

4.3. Experimental design

The experiment follows theory closely. We chose a simple parametrization that is consistent

with the model. The parameters we use in the experiment are presented in Table 4.1.

Participants are randomly and anonymously assigned into groups of five and play a

two-stage game. In the first stage, each participant decides on their crime levels.8 We set
8We framed the explanation of the experiment in neutral language in order to ensure maximum control.

We refer to the penalty as a fine to introduce context and subtly indicate that production is illegal,
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the range of ei for each subject i to be between 0 and 40 units.5 The upper threshold of

40 units is selected such that all decisions are incentive-compatible and the fine for the

maximum crime is still covered by the endowment, thereby ensuring that participants

bear the full consequence of their actions. Indeed, the more a participant produces, the

more profit (in experimental currency— Tokens) they receive; we assume π (ei) = e0.7
i (i.e.

b = 0.7).

Notation/Functional form Definition Parameters
n Number of participants n = 5
ei Crime level selected by participant i ei ∈ [0, 40]

π(ei) Benefit from crime level ei π(ei) = e0.7
i

θ Probability of detection θ = 1
εj ∼ F The noise associated with observation F = Unif[−10, 10]
êi The signal of player i observed by others êi = ei + εi

f(êi) = f · êi Magnitude of the fine f = 1.2
Notes: This table presents the parametric setup of our experiment.

Table 4.1: Experiment parameters

In the second stage, the computer randomly draws a number from the uniform distribution

with support [−10, 10] for each participant and computes a signal that is equal to the

actual crime level plus the random number drawn for the player.9 As described earlier,

each participant can observe the crime level selected by other connected participants with

some noise. The signal mimics this noisy observation. Participants are informed that

the random number has an equal likelihood of being any number between and including

-10 and 10, with a mean of zero. This implies that, in expectation, the signal is equal to

the actual crime level. For simplicity, we make the observational noise associated with

each participant the same for the remaining participants in the same group. For example,

participants 2–5 see the same signal for participant 1.10

without explicitly introducing a framing that leads to a potential demand effect (Alm 1991; Coricelli
et al. 2010).

9In our experiment, the production level (ei) has two decimal places and each random number (εi) has
fourteen decimal places to closely proxy the continuity in the production and noise space, as assumed
in the theoretical model. The discontinuity in the values does not change the predictions from the
theory.

10To keep this feature of observability constant across all treatments, we allow participants to see the
signals associated with the remainder of the group in all treatments rather than only observe the
connected players. Standard theory predicts that the observations of signals of distant participants
do not affect the equilibrium, as crime levels are selected before signals are observed. However,
there are at least two reasons to keep this feature constant across treatments in the experiment.
First, recent evidence suggests that varying such features could change the complexity perceived by
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Further, participants do not fully observe the criminal activities of others in their group,

only the signals associated with those choices. This mirrors the fact that drug dealers

may not have perfect information regarding the illegal production levels of other drug

dealers but rather possess rough estimates. Each participant also knows her own decision

by construction, but is not aware of the random number (and thus the signal) that others

receive that informs them of her selected crime level. Thus, an audited participant can

construct an estimate of the likelihood that the regulator will render any challenged

neighbor more criminally responsible.

After everyone observes the signals of others in the group, the process of determining

which player is liable for a fine begins. First, the computer randomly identifies one

participant to audit.11 Depending on the treatment, the audited participant is either

fined (in the baseline audit treatment) or is given the opportunity to challenge one

neighbor (in the peer-informed audit treatments). In the peer-informed audit treatment,

the computer compares the signals of the two participants, if the one initially audited

decides to challenge another. The one with the higher signal is fined. The calculation of

the size of the fine (in Tokens) is the same across treatments: the fine is 1.2×the signal of

the liable participant (i.e. the payoff of the liable participant is reduced by 1.2×his/her

signal). Tokens are converted to Australian Dollars at the exchange rate of 50 Tokens=$1.

Table 4.1 summarizes the parameters used in the experiment.

4.3.1. Treatments

We implement a between-subjects design where subjects participate in only one treatment.

Our treatments include the baseline audit mechanism, peer-informed audit mechanism

with the star network, peer-informed audit mechanism with the circular network, and

peer-informed audit mechanism with the complete network. These are described below.

participants and, thus, impact their decisions (e.g., Oprea 2020). Second, this may change group
norm formation (e.g., Andreoni & Bernheim 2009) and would be important to control for in cases
where the game is played more than once.

11Our theoretical model allows the possibility that the crime is not discovered and none of the participants
is identified and punished. However, this does not change the predictions of the relative crime
level across treatments because it affects all treatments equally. In the experiment, we set this
probability to zero for simplicity and also to collect more observations on the challenging behavior of
participants.
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Baseline audit mechanism: Participants are informed that the participant randomly

audited by the computer is fined for her observed crime level. This serves as a natural

benchmark in our experiment. If not audited by the computer, the participant does not

know who is audited and, thus, who is liable for the fine. If audited, the participant knows

for certain she is liable for the fine and sees the amount deducted from her earnings.

Peer-informed audit mechanism: The mechanism allows the participant randomly

audited by the computer to challenge another participant connected to her in the group

in order to avoid paying the fine herself. If she chooses to challenge another, then the

computer compares the noisy signals from the two participants and fines the one with

the higher signal; otherwise, she is liable for the fine. Those not audited or challenged

are not provided with information regarding who is audited or who is challenged. The

one who challenges another knows the participant ID of the challenged by design, but

the one being challenged does not know which participant challenged her, except for a

challenged periphery player in the star treatment who infers that the challenge came from

the center player. As in the baseline audit mechanism, the participant liable for the fine

has the amount subtracted from her earnings. We test this mechanism in the following

three network structures.

Peer-informed audit mechanism in the star network: In the star network, if the

participant randomly audited by the computer is in the center of the network (i.e.,

participant 3), then she can challenge any of the other four participants in the group; if

she is a periphery participant (i.e., participant 1, 2, 4, or 5), then she can only challenge

the center participant. If the initially audited participant decides to challenge another

participant, then the computer compares the noisy signals from the two participants and

the one with the larger signal is liable for the fine. If the initially audited participant

chooses to not challenge, then she remains liable for the fine.

Peer-informed audit mechanism in the circular network: The participant audited

by the computer must decide whether to challenge one of the two participants whose IDs

are adjacent to hers or pay the fine herself. For example, participant 5 can only challenge

participants 1 or 4. If she chooses to challenge another participant, then the one who

has the larger signal is liable for the fine. If she chooses not to challenge, then as in the
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treatment above, she is liable for the fine.

Peer-informed audit mechanism in the complete network: The participant audited

by the computer must decide whether to challenge one of the other four participants in

their group. If she chooses to challenge another participant, then the one who gets the

larger signal is liable for the fine. If she chooses to not challenge, then, similar to the

other treatments, she is liable for the fine.

In these treatments, our main focus is on the results using a one-shot game. We also

conducted four treatments to examine the robustness of our peer-informed audit mechanism

in a setting where participants interact with each other repeatedly for multiple rounds.

We briefly describe the results from these repeated interaction treatments in the paper,

with more details discussed in Appendix A3.

4.3.2. Equilibrium predictions and hypotheses

Figure 4.1 plots the equilibrium crime levels for each treatment using the Nash solution

concept described in Section 2.3 and the parameters employed in the experiment.

In the baseline audit mechanism, the optimum crime level produced by each drug dealer

is 35.5 experimental units. The average crime levels drop to 5.6, 3.4, and 1.2 units for our

mechanism in the star, circular, and complete network structures, respectively. Thus, the

peer-information audit mechanism leads to a striking reduction in the equilibrium crime

level. In addition, we also observe that the network structure is crucial for the effectiveness

of the mechanism. The circular and complete networks further reduce the crime level by

approximately 40% and 80% in equilibrium as compared to the star network. Similarly,

the complete network is able to reduce crime by approximately 65% compared to the

circular network.12

12The effectiveness of the mechanism is partially driven by insider information to identify a second suspect
who can be compared with the first one. If the authority can randomly find two suspects and punish
the one with the higher signal, we show (in the Appendix) that the crime level drops to 6.58 units in
Nash equilibriuim.
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Figure 4.1: Prediction based on the Nash equilibrium

Comparing across network structures for the peer-information audit mechanism, we see

that more neighbors imply lower levels of crime. This is observed both across networks

and within the star network.13 Thus, facing the additional risk of being challenged carries

a stronger negative impact on crime than having additional opportunities to challenge

and pass the blame to neighbors.

Overall, the mechanism leads to lower crime due to the following reasons. First, note

that for a given level of crime under the peer-informed audit mechanism, the possibility

of either challenging or being challenged increases the conditional expectation of the

fine amount when deemed liable. More precisely, being liable for the fine implies that

the drug dealer’s signal is greater than that of some other drug dealers and, thus, the

posterior expected fine is above that under the baseline audit mechanism. This channel

unambiguously works toward decreasing overall crime.

Second, and also yielding an unambiguous decrease in crime, peer challenges increase the

13Note that the average number of connections in the star network is 1.6, which is below the average of 2
in the circular network.
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marginal probability of being liable as the crime level of the drug dealer increases. In

other words, an increase in one criminal’s drug dealer’s level deems challenges to others

less effective and challenges from others more effective. Opportunities for peer-informed

auditing are plentiful in the complete network, where all players can challenge any one of

the other players. Peer-informed auditing opportunities are fewer in the circular network,

as each player is constrained from challenging all but two players. In the star network,

peer-informed auditing opportunities are fewest for the periphery players, who can only

challenge and be challenged by the center player. The periphery players should always

challenge the center, which provides the only option to these drug dealers to avoid a fine

when audited. Thus, the center player is the one to always be challenged by any other

player selected by the computer in this treatment. Consequently, the center player faces

strong incentives to reduce her criminal activity.14

Based on the theoretical predictions of the model, we can construct the following three

testable hypotheses.

Hypothesis 1: The peer-informed audit mechanism deters crime in all network structures

as compared to the baseline audit mechanism.

Hypothesis 2: Of the three treatments with the peer-informed audit mechanism, the

crime level is higher in the star network as compared to the circular network, which in

turn has higher crime than the complete network.

Hypothesis 3: Within the star network, the center player has a lower crime level than

the corresponding periphery players.

14As depicted in Figure 4.1, the lack of challenging opportunities faced by the periphery dominates the
overall equilibrium incentives to lower crime levels, thereby resulting in high average crime levels in
the star network. In addition, with the periphery selecting high levels of crime, the center partakes
in more crime than members of the complete network in equilibrium.
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4.3.3. Procedures

The experiment was conducted at the Monash Laboratory for Experimental Economics

(MonLEE), with a total of 300 participants. In the first set of treatments, we recruited

100 participants to examine the effectiveness of the peer-informed audit mechanism using

a one-shot game. In the second set of treatments, we recruited another 200 subjects

to stress-test the peer-informed audit mechanism in a setting where there is repeated

interaction. The procedures followed for the repeated interaction treatments are identical

to the one-shot treatments, except that the same group of participants interact repeatedly

for 20 rounds and they are paid for only one randomly selected round.

For the one-shot treatments, each subject constitutes an independent observation. We

created 5 groups with 5 subjects in each group, and we obtained a total of 25 independent

observations for each treatment. In the repeated game treatments, each subject observes

others’ decisions after the first round; therefore, each group is considered as an independent

observation. We collected data from 10 groups with 5 subjects in each group, and we

obtained 10 independent observations for each treatment.

For both one-shot and repeated sessions, we conducted only one treatment in each session,

and the instructions explicitly state the different stages of the game and the rule for

determining who is liable for the fine. These were read aloud and were, thus, common

information in the session. Participants were also provided sufficient time to read the

instructions on their own and ask questions. In order to ensure comprehension, we asked

them to complete a set of incentivized quiz questions. Participants received AUD $2 for

each correct answer. Incorrect responses were explained to subjects. At the end of the

experiment, we administered a short demographic questionnaire. Instructions and quiz

questions for the complete network treatment are provided in Appendix A2.

Subjects were university students recruited across different disciplines and had not

previously participated in experiments involving audits and penalties.15 The experiment

was programmed in z-Tree (Fischbacher 2007), and the subjects were recruited using

SONA. On average, each participant earned $24.9 with a minimum of $12 and a maximum

of $34, and sessions lasted approximately 35 minutes (one-shot game) to one hour (repeated
15We provide more information regarding participants’ demographic variables in the Appendix.
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interaction game).

4.4. Results

We begin by discussing the results from the one-shot game treatments. Our main focus is

on the crime levels selected by participants. In terms of whether participants challenge

others in treatments where they had an opportunity to do so, our main finding is that,

consistent with predictions, all randomly selected participants chose the dominant strategy

to challenge the connected players who provided them the best opportunity to avoid the

fine.

4.4.1. Crime levels

Figure 4.2 plots the average crime levels for the baseline and treatments with the peer-

informed audit mechanism. Each participant selects their crime level before observing

the activities of group members and, thus, each decision is treated as an independent

observation. We find that the mechanism successfully reduces the crime level from 29.70

units in the baseline to 19.88 units in the peer-informed audit treatments— a 33% drop

(p<0.001).16

16Without further specification, all p-values reported in the paper were obtained from two-sided non-
parametric Mann-Whitney tests.
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Notes: This figure plots the average crime levels for the baseline and three peer-informed
audit treatments combined. The error bars indicate 95% confidence intervals.

Figure 4.2: Overview of crime levels

Figure 4.3 provides a comprehensive view of the crime levels in all treatments, allowing

us to compare them against the corresponding predictions based on Nash. The new

mechanism significantly decreases the crime level under all network structures we consider.

Compared to the baseline, where the average crime level is 29.70 units, the mechanism

reduces the levels to 21.68 (p = 0.013), 19.05 (p = 0.001), and 18.91 (p < 0.001) units

under star, circular, and complete networks, respectively.17 Consistent with theoretical

predictions, the magnitude of crime in the star network is higher than the level in the

circular network and similarly the circular network has higher crime levels than the

complete network. However, there are no significant treatment differences between peer-

informed audit treatments with different networks (p > 0.1 in all pairwise comparisons).

In addition, there is also no significant difference between the center and periphery players

in the star network. The average crime level of the center player is 23.6 units and the level

of the periphery player is 21.2 units. This is in the opposite direction as predicted by Nash

17We also performed Kolmogorov–Smirnov tests to examine if the distribution of crime is different
across treatments. Consistent with the Mann-Whitney test statistics on the crime levels,
Kolmogorov–Smirnov tests show that the baseline has a different distribution than either treatment
with the peer-informed audit mechanism (p = 0.037, 0.006 and 0.001 for comparisons with the Star,
Circular and Complete treatment, respectively). There is, however, no significant difference between
the treatments with peer-informed audit mechanism (p = 0.699, 0.281, 0.906 for comparisons between
star v.s circular, star v.s. complete and circular v.s. complete).
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but not statistically significant (p > 0.1).18 The crime levels in all three peer-informed

audit treatments are also significantly larger than that predicted by the Nash equilibrium

(p < 0.001 in all three networks).

Notes: this figure plots the average crime levels for all treatments. The error bars indicare
95% confidence intervals. Star-C represents the numbers for the center players in the
star treatment while Star-P stands for the periphery players in the treatment. Star is the
aggregated measure for the group average.

Figure 4.3: Crime levels in all treatments

Table 4.2 corroborates the previous result using four ordinary least squares (OLS) models

with the following regression specification:

Crimei = c+ α1I{treatment=star center}
i + α2I{treatment=star periphery}

i + α3I{treatment=circular}
i

+ α4I{treatment=complete}
i + β1I{gender=male}

i + β2Understandi

+ β3GPA-RAi + β4GPA-PIAi + εi,

where Ii is an indicator variable which takes the value of 1 if and only if the logical
18One difference between the repeated treatments and one-shot treatments comes from the comparison

between the center and periphery players in the star network. In the star network with repeated
interaction treatment, center players started at a higher crime level than the periphery players as in
the one-shot treatment. But these center players reduced the level as they gain experience and the
overall level for the center players in repeated treatment is lower than the periphery players, which
is as predicted by Nash.
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statement in the superscript is true for player i, and 0 otherwise. Understandi is a

categorical variable that reveals player i’s self-reported understanding of the experiment.

It can have five possible values: 1 being very clear about the experiment, while 5 implying

that the participant does not understand the experiment at all.

GPA-RAi captures player i’s deviation from the average grade point average (GPA) at

the university if i participated in the baseline, and 0 otherwise; similarly, GPA-PIAi

measures participant i’s deviation from the average GPA if i participated in one of the

three peer-informed audit treatments, and 0 otherwise. GPA takes a value from 1 to 5:

the higher the number, the better the academic performance. More specifically, 1 indicates

that the participant’s average GPA is between 50%–60%, 2 indicates that the GPA is

between 61%–70%, and so on. In previous research, college GPA has been observed to be

highly correlated with cognitive ability (see e.g., Thomson & Oppenheimer 2016). Based

on this finding, we expect that participants with higher cognitive ability would make

decisions closer to the equilibrium level. As our initial analysis suggests that the crime

level is less than that predicted by Nash in the baseline but higher than the equilibrium

level in the network treatments (see, Figure 4.3), we allow the GPA measure to have a

differential effect on the peer-informed mechanism versus the baseline mechanism. To

do this, we introduce interaction terms (GPA measure interacted with the enforcement

mechanisms).19

19There are 14 participants who are either in their first year or do not study at the university; thus, the
GPA measure is missing for them. We assign these participants the average score. As a robustness
check, we re-estimate Model 4 without these observations and find that the results remain the same.
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Model 1 Model 2 Model 3 Model 4
Star center (α1) -6.10 -5.84 -5.51 -8.80

(5.23) (5.27) (5.29) (5.56)
Star periphery (α2) -8.50*** -8.69*** -8.76*** -9.33***

(3.20) (3.23) (3.24) (3.27)
Circular (α3) -10.65*** -10.86*** -11.26*** -12.17***

(3.02) (3.05) (3.09) (3.15)
Complete (α4) -10.79*** -10.79*** -11.08*** -10.98***

(3.02) (3.03) (3.06) (3.06)
Gender (β1) -1.28 -1.54 -1.72

(2.19) (2.22) (2.19)
Understand (β2) -0.90 -0.97

(1.09) (1.07)
GPA-RA (β3) -1.24

(1.98)
GPA-PIA (β4) -3.72**

(1.88)
Constant (c) 29.70*** 30.47*** 32.67*** 32.62***

(2.14) (2.51) (3.67) (3.65)
H0 : 1

4α1 + 3
4α2 = α3 p=0.21 p=0.28 p=0.20 p=0.19

H0 : 1
4α1 + 3

4α2 = α4 p=0.22 p=0.29 p=0.23 p=0.24
H0 : α3 = α4 p=0.98 p=0.97 p=0.94 p=0.62
H0 : α1 = α2 p=0.39 p=0.46 p=0.38 p=0.50

Notes: This table reports OLS estimates of crime levels under different network structures.
There are 100 observations for each regression. The standard errors are reported in
parentheses below each coefficient. *, **, and *** indicate significance at the 10%, 5%,
and 1% levels, respectively. Pairwise t-tests of treatment differences caused by network
structures and different positions in the star network are reported in the bottom panel.

Table 4.2: Regressions comparing crime levels

In Model 1, we exclude all control variables and sequentially add them in Models 2–4.

Consistent with Figure 4.3, our mechanism significantly decreases the crime level in both

a statistical sense and an economic sense. For example, the coefficient for the complete

network (α4) in Model 1 (-10.79 (p<0.001)) indicates that this network reduces by over

36% of the crime level compared to the baseline where the crime level is 29.70 units.20

However, there is no discernible treatment effect between network treatments and all

pairwise t-tests fail to reject the null hypothesis of equality of coefficients across treatments.

(i.e., there is no significant difference in pairwise comparison of αs :=
(

1
4α1 + 3

4α2
)
, α3

20The coefficient for the star center is negative as predicted but is estimated with much less precision,
which is partially due to the specific star network structure that would have a smaller number of
observations for the center.
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and α4). In addition, the coefficients attached to all peer-informed audit treatments

(α1-α4) indicate that the effectiveness of the mechanism in deterring crime is significantly

less than that predicted by the Nash equilibrium (p<0.001 in all cases using two-tailed

t-tests). Therefore, our results provide strong support for Hypothesis 1, but do not

support Hypotheses 2 and 3.

Turning briefly towards the data from the repeated game, the results are qualitatively the

same as those from the one-shot game. We find that the peer-informed audit mechanism

successfully reduces crime from 26.66 units in the baseline to 18.73 units in the network

treatments, which is a reduction of 30% (p < 0.001). There are also no significant

differences in the crime level between the network structures (p > 0.1) in all the three

pairwise comparisons). In addition, the center player selects a higher level of crime

than the peripheral players in the star network in the first round, even though it is not

statistically significant. In Appendix A3, we replicate the analysis of the one-shot game

to the repeated game data and discuss the evolution of crime level in all treatments.

While the peer-informed audit mechanism deters crime overall, there are two patterns in

the data that we wish to explore more in order to improve our understanding of how this

mechanism works. The first pattern concerns the divergence of the data from the Nash

equilibrium and the second relates to lack of treatment differences among the networks.21

One likely explanation for these patterns is bounded rationality and belief-driven behavior,

which is brought to our attention by two pieces of evidence in our data. First, those

with higher cognitive ability (GPA) select significantly lower crime levels in our peer-

informed audit treatments (i.e., β4 is significantly smaller than 0 in Table 4.2). Second,

the responses from the post-experiment questionnaire reveal differential strategies, which

are perhaps based on the reasoning abilities of subjects. For example, we find that a

few (approximately 5%) participants in the peer-informed audit treatments believed that

the probability of being fined is purely random— and, thus, they failed to perform the

peer-audit induction at all; on the other hand, approximately 35% of the participants

21These patterns are unlikely to be driven by participants not understanding the experiment. Evidence
from the incentivized pre-experiment quiz reveals that in the peer-informed audit treatments, over
80% of the participants correctly solved at least 5 out of 7 or 8 questions (depending on the
treatment). Responses from the post-experiment questionnaire indicate that only a small proportion
(approximately 10%) of participants found the experiment to be not fully clear. Moreover, importantly,
all the participants audited by the computer correctly challenged the player that gave them the best
opportunity to avoid the fine in the peer-informed audit treatments.
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reported that they chose to produce less than what they believed the other players chose

in order to avoid the fine. We elaborate on this explanation in the next section using a

level-k reasoning model.

4.5. Level-k model with network structures

We consider a simple model of bounded rationality to help explain the difference in

crime levels predicted in Nash equilibrium with those observed in the data. Rather than

assuming that all players have the same level of sophistication, we apply a level-k thinking

model which assumes that any given player believes that all other players have lower

reasoning ability than her own and best responds to such beliefs. As is convention, we

assume that each player believes that all of her peers have reasoning levels that one-less

than her own. We also assume that the criminal decisions made by any level-0 subject is

equivalent to the Nash crime prediction in the baseline treatment (i.e., level-0 subjects

fail to see the relationship between their crime level and the probability of being liable for

a fine).22

If we assume that everyone plays the weakly dominant strategy in the second stage (which

is supported by the data) and behaves as a level-k player in the first stage, then the

equilibrium condition that predicts player i with reasoning level k to play eki against

everyone else playing ek−i is expressed in the following manner:

∂E
[
ui
(
eki , e

k−1
−i

)]
∂eki

= 0

for all i ∈ {1, 2, ..., n}, where the superscripts of eki and ek−1
−i denotes the sophistication

22We use the Nash prediction in the baseline as the level-0 crime level for several reasons. First, it is
documented in the post-experiment questionnaire that a few participants in peer-informed audit
treatments consider the fine to be random and independent of the crime levels. Second, it is
independent of the choice of the action space. The action space (i.e., participants must choose a
crime level between 0 and 40 units) is arbitrarily determined. If we were to assume that people
make random choices along the action space, as assumed in the beauty contest literature, then the
level-0 benchmark depends on the choice of action space. This is problematic in our case, as the
reasoning level of the participants can be shifted by using different action spaces. Third, the choice
of the level-0 benchmark does not affect the conclusion that the effectiveness of the mechanism is
positively related to the sophistication levels of the participants, as long as this choice is larger than
the corresponding Nash equilibrium.
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level of the players.

Notes: This figure plots the average crime level at different levels of sophistication for
each treatment. We assume that level-0 drug dealers do not take our mechanism into
account and produce the Nash equilibrium of the baseline audit scheme.

Figure 4.4: Theoretical prediction based on level-k reasoning

Figure 4.4 presents the predicted decisions of players with level-k sophistication.23 The

predicted crime level is lower for level-3 players as compared to level-2 players, and

similarly level-2 players would engage in less crime as compared to level-1 players, and

so on. It must be noted that the crime levels in all networks and network positions

decrease monotonically toward the Nash prediction (denoted by k =∞) under the peer-

informed audit mechanism. Under the predictions of the level-k model, our mechanism

still reduces the crime level; however, importantly, the magnitude depends on the beliefs

and sophistication levels of participants.

Interestingly, the level-k model predicts that the complete network has a higher crime
23The derivation of the numerical solutions involves deriving and applying the drug dealer’s best response

functions, as done in the Nash equilibrium. However, rather than requiring that all drug dealers
best respond to each other, the level-k model calculates best responses to all peers, taking into
consideration strategies that are one level below one’s own in terms of sophistication.
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level than the circular network and the star network when the level of sophistication is

close to zero. This is the reverse of the corresponding Nash prediction because there is an

extra incentive to “exploit” the less sophisticated players in one’s neighborhood in the

level-k model and such an incentive is stronger when there are more connected players to

be exploited. This exploitation opportunity weakens with an increase in the sophistication

level (i.e., the predicted action gap between level-k and level-k+1 converges to zero as

k increases in all networks and the exploitation opportunity vanishes) and the level-k

predictions approach the Nash predictions. This observation may explain why there are

no significant differences between treatments with the peer-informed audit mechanism if

participants have a spectrum of sophistication from high to low levels.

We plot the histogram from all four treatments against the level-k predictions in Figure

4.5. In the baseline, more than half of the participants selected crime levels that are

within 5 units of the Nash equilibrium, and the highest bar indicates that crime levels

between 35 to 40 units were the most popular strategies among participants. However,

the patterns for peer-informed audit treatments are different from that of the baseline.

Less than 30% of the participants in the star, circular, and complete treatments selected

crime levels within five units of the Nash prediction. In addition, the graph for each

of the peer-informed audit treatments indicates that participants are clustered between

sophistication levels 1 and 2.24 This coincides with much of the experimental literature on

level-k reasoning, which reports that most individuals hold levels of sophistication 3 and

below (see, e.g., Ho et al. 1998; Arad & Rubinstein 2012). These patterns also suggest

that the level-k model complements the Nash predictions and provides additional insights

for understanding criminal behavior.

24The aggregated patterns from the repeated game sessions are similar to the one-shot games (Figure 4.5)
and most players are also categorized between level-0 and level-3. Following the convention in the
level-k literature, we focus on the one-shot treatments in order to provide the cleanest test of level-k
reasoning and to exclude complications caused by reputation, learning, cooperation etc., which may
confound the interpretation of the sophistication level.
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Notes: This figure plots the histogram of the crime levels in the one-shot treatments
against the prediction from the level-k model. The title of each panel specifies the
treatment and the position in the network.

Figure 4.5: Crime level and level-k reasoning
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4.6. Conclusion

In this paper, we proposed a novel peer-informed audit stage added to the traditional

baseline audit scheme to utilize the insider information in networks to further deter crime.

This would be particularly important in cases in which it is important to apprehend

the most severe offender or the key criminal in the group. Consistent with the Nash

equilibrium, our experiment reveals that the new mechanism successfully lowers the crime

levels for all the network structures we consider.

Interstingly, we find that crime levels are above what is predicted based on the Nash

equilibrium and that there are no significant differences across different network treatments.

We also find that participants with higher cognitive skills (GPA) perform closer to the

Nash play and that certain participants report using strategies similar to those captured

by level-k reasoning. With a level-k model adapted to our network setting, we investigate

bounded rationality as a potential explanation for observed criminal activities. We find

that the level-k model fits the patterns observed in the experiment, implying that naive or

bounded-rational participants may impede the full effectiveness of the peer-informed audit

mechanism to deter crimes through social networks. Nash predictions may, therefore, not

be a good benchmark for mechanisms where one player’s best response depends on others’

choices as well. Policymakers could consider behavioral models in such cases, particularly

when behavioral models yield quantitatively opposite predictions from Nash.

This paper is a first attempt to utilize insider information contained in social networks to

deter crime. We highlight the peer-informed audit mechanism in a simple and stylized

environment. Although ample evidence shows that laboratory experiments capture the

essence of behavior in naturally occurring environments (see e.g., Benz & Meier 2008; Fehr

& Leibbrandt 2011; Alm et al. 2015), more research needs to be conducted to understand

deterrence using social networks.

We envision several avenues for future research. First, in the field, many social networks

are endogenous and dynamic. The introduction of the mechanism may change the network

structure (for example., some people may tend to hide their actions from peers). Second,

while in theory, we assume no disutility in challenging peers, this may not always be
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the case. Some members in a crime group may be close friends or even come from the

same family who may collude by not challenging at all. Moreover, potential retaliation

from those who can infer the source of the challenge may also weaken the incentive to

challenge others. It would be interesting to examine the effectiveness of the mechanism

in such cases and how it could be modified. Hence, testing the mechanism in a field

setup may provide further insights regarding the effectiveness of this mechanism and the

development of new deterrence mechanisms. Third, it is interesting to extend the chain

of the peer-informed audit process to take further advantage of insider information in

networks. For example, the peer-informed audit process could continue as long as the peer

informant can nominate another group member responsible for higher criminal activity.

Finally, we foresee merit in additional research into level-k reasoning patterns within

social network environments.
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4.8. Appendix

4.8.1. Derivation of Nash predictions

The baseline audit mechanism

The authority randomly audits a drug dealer j and fines the drug dealer by f (êj). Drug

dealer i’s expected payoff is

E [ui (ei, e−i)] = π (ei)− θ ·
1
n
· E [f (ei + εi)] .

In equilibrium, the marginal profit from committing an extra unit of crime is counterbalanced

by the potential fine; thus, we have

∂E [ui (ei, e−i)]
∂ei

= π′ (ei)−
θ

n
· E′ [f (ei + εi)] = 0

⇔ e∗ =
(
θf

abn

) 1
b−1

≈ 35.45.

If the authority can identify two drug dealers without insider information

The authority randomly audits two drug dealers and fines the drug dealer with the higher

signal. The expected payoff of player i playing ei against everyone else playing e−i is

E [ui(ei, e−i)] = π (ei)
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− θ
C1
n−1
C2
n

· E [f (ei + εi) · P (êi > êj| εi)]︸ ︷︷ ︸
Expected fine

= π (ei)−
2θ
n
E [f (ei + εi) · P (êi > êj| εi)] .

In Nash equilibrium, drug dealer i needs to maximize her payoff against other drug dealers’

crime e∗. The expected payoff function becomes

E [ui(ei, e−i)] = π (ei)−
2θ
n
E [f (ei + εi) · P (ei + εi − e∗ > εj| εi)] .

We denote the gap between i’s crime and other drug dealers’ crime δ := ei − e∗.

When 2q ≥ δ ≥ 0, drug dealer i’s crime level is no less than the other drug dealers, but

the noise in the signal makes it still possible for i to avoid the fine. The expected fine

from being audited or being challenged is

fθ

2q2n

(
2eiq2 − 1

2eiδ
2
)

+ fθ

2q2n

(1
3 (q − δ)3 + 1

2 (δ + q) (q − δ)2 + 1
3q

3 − 1
2
(
δq2 + q3

))
+ 2fθ

2qn

(
δei + qδ − 1

2δ
2
)
.

The marginal expected fine is

fθ

2q2n

(
2q2 − 1

2
(
δ2 + ei2δ

))
+ fθ

2q2n

(
− (q − δ)2 + 1

2
(
(q − δ)2 − 2 (δ + q) (q − δ)

)
− 1

2
(
q2
))

+ 2fθ
2qn (δ + ei + q − δ) .

When −2q ≤ δ ≤ 0, drug dealer i’s crime level is no more than other drug dealers, but

the noise in the signal still makes it possible for i to pay the fine. The expected fine from

being audited or being challenged is

fθ

2q2n

(1
3q

3 + 1
2 (δ + q + ei) q2 + (eiq + eiδ) q

)
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+ fθ

2q2n

(1
3 (q + δ)3 − 1

2 (δ + q + ei) (q + δ)2 + (eiq + eiδ) (q + δ)
)
.

The marginal expected fine is

fθ

2q2n

(
q2 + q (q + ei + δ) + (eiq + eiδ)

)
.

In Nash equilibrium, when each player expects that othersemploy the same strategy

(i.e., ei = e∗), the marginal benefit from committing an extra unit crime is equal to the

marginal costs; thus, we have

ab (e∗i )
b−1 − 2fθ

2qn (e∗ + q) = 0

⇔ e∗ ≈ 6.58.

Peer-informed audit mechanism with a circular network

The authority randomly audits one drug dealer and the drug dealer can challenge one of

the neighbors. In the second stage, the weakly dominant strategy for the audited drug

dealer is to challenge the neighbor with the bigger signal. If we assume that everyone

plays the weakly dominated strategy in the second stage, then the expected payoff of

player i playing ei against everyone else playing e−i is

E [ui(ei, e−i)] = π (ei)

− θ

n
· E [f (ei + εi) · P (êi > max { ˆei−1, ˆei+1}| εi)]︸ ︷︷ ︸

Expected fine from being audited

− 2θ
n
· E [f (ei + εi) · P ( êi > max{ ˆei−1, ˆei−2}| εi)]︸ ︷︷ ︸

Expected fine from being challenged

= π (ei)−
3θ
n
E [f (ei + εi) · P ( êi > max{ ˆei−1, ˆei−2}| εi)] .
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In Nash equilibrium, drug dealer i must maximize her payoff against the crime of other

drug dealers e∗. The expected payoff function becomes

E
[
ui(ei, e∗−i)

]
= π (ei)−

3θ
n
· E

[
f (ei + εi) · P

(
êi > max{ ˆe∗i−1, ˆe∗i−2}

∣∣∣ εi)] .
We denote the gap between i’s crime and the crime of other drug dealers as δ := ei − e∗.

When 2q ≥ δ ≥ 0, drug dealer i’s crime level is no less than the other drug dealers, but

the noise in the signal still makes it possible for i to avoid the fine. Then, the expected

fine from being audited or being challenged is

3θ
n

1
2q

(
fq2 + 2qf

3 (ei − δ − q)
)
− f

(2q)3

(1
4δ

4 + 1
3 (ei − δ − q) δ3

)
+ 1

2q

(
fδei + qfδ − 1

2fδ
2
)
.

The marginal expected fine from being audited or being challenged is

3θ
n

[
f

(2q)3

(
δ3 + (ei − δ − q) δ2

)
+ 1

2q (fδ + fei + qf − fδ)
]
.

When −2q ≤ δ ≤ 0, drug dealer i’s crime level is no more than other drug dealers, but

the noise in the signal still makes it possible for i to pay the fine. Then, the expected fine

from being audited or being challenged is

3θ
n

f

(2q)3

(1
4 (2q + δ)4 + 1

3 (ei − δ − q) (2q + δ)3
)
.

The marginal expected fine from being audited or being challenged is

3θ
n

[
f

(2q)3

(
(2q + δ)3 + (ei − δ − q) (2q + δ)2

)]
.

When δ ≥ 2q, drug dealer i’s crime level is so much higher than other drug dealers’

crime levels such that it cannot escape the fine whenever she is challeged through an

audit; when δ ≤ −2q, drug dealer i’s crime level is so much less than other drug dealers’

crime levels, such that it never pays the fine. These two cases clearly cannot be an

equilibrium solution as i can reduce/increase crime level to increase her expected payoff.
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In Nash equilibrium, when each player expects that others use the same strategy (i.e.,

ei = e∗), the net marginal benefit from committing an extra unit crime is zero; thus,
∂E[ui(e∗

i ,e
∗
−i)]

∂e∗
i

= π′ (e∗i )− 3θ
n

1
2q (fe∗i + qf) = 0. The Nash equilibrium is the solution to

ab (e∗i )
b−1 − 3θ

2qn (fe∗i + qf) = 0,

where the unique numerical solution is

e∗ ≈ 3.43.

Peer-informed audit mechanism within the star network

The authority randomly audits one drug dealer. If the center drug dealer is audited, then

she can challenge all her peers; if a periphery drug dealer is audited, then he can only

challenge the center drug dealer. In the second stage, the weakly dominant strategy for a

periphery drug dealer, if audited, is to challenge the center drug dealer; while the strategy

for the center drug dealer is to challenge the periphery drug dealer with the largest signal.

Due to such asymmetry in the challenge possibility, we need to study the conditions for

both center and periphery players.

The center player

For the center player, if we assume all periphery drug dealers play the weakly dominated

strategy in the second stage, then the expected payoff of the center drug dealer i playing

ei against everyone else playing e−i is

E [ui(ei, e−i)] = π (ei)

− θ

n
· E [f (ei + εi) · P ( êi > max { ˆe−i}| εi)]︸ ︷︷ ︸

Expected fine from being audited

− θ (n− 1)
n

· E [f (ei + εi) · P ( êi > êj| εi)]︸ ︷︷ ︸
Expected fine from being challenged

.
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In the Nash equilibrium, drug dealer i must maximize her payoff against the crime level

of periphery drug dealers e∗p. We denote the gap between center drug dealer i’s crime and

any periphery drug dealer j’s crime δc := ei − e∗p. When 2q ≥ δc ≥ 0, the center drug

dealer i commits no less than the periphery drug dealers, but the noise makes it possible

for i to nevertheless avoid the fine. The expected fine from the directly audited by the

authority is

θ

n
· E

[
f (ei + εi) · P

(
ei + εi > e∗p + max {ε−i}

∣∣∣ εi) I (−q < εi < q − δc) + f (ei + εi) I (q − δc < εi < q)
]

= fθ

n
·
[

1
n

(ei − q − δc) + 2q
n+ 1 −

1
(2q)n

(
(ei − q − δc)

1
n
δnc + 1

n+ 1δ
n+1
c

)
+ δc

2q

(
ei + 1

2 (2q − δc)
)]
.

The marginal expected fine from being directly audited by the authority is

θ

n

[
− f

(2q)n (ei − q) δn−1
c + f

2q (ei + q)
]
.

The expected fine from being challenged by a periphery player is

θ (n− 1)
n

E
[
f (ei + εi) · P

(
êi > ê∗p

∣∣∣ εi) I (−q < εi < q − δc) + f (ei + εi) I (q − δc < εi < q)
]

= (n− 1)
n

fθ

4q2

(1
3 (2q)3 + (ei − q − δc) 2q2 − 1

3δ
3
c −

1
2 (ei − q − δc) δ2

c

)
+ (n− 1)

n

fθ

2q

(
eiδc + 1

2
(
2qδc − δ2

c

))
.

The marginal expected fine from being challenged is

(n− 1) θ
n

[
− f

4q2 δc (ei − q) + f

2q (ei + q)
]
.

When −2q ≤ δc < 0, drug dealer i commits no more crime than the periphery drug dealers,

but the noise in the signal makes it still possible for i to pay the fine. The expected fine

from being directly audited by the authority is

θ

n
E
[
f (ei + εi) · P

(
ei + εi > e∗p + max {ε−i}

∣∣∣ εi) I (−q − δc < εi < q)
]

= θ

n

f

(2q)n
( 1
n+ 1 (2q + δc)n+1 + (ei − q − δc)

1
n

(2q + δc)n
)
.
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The marginal expected fine from being directly audited by the authority is

θ

n

f

(2q)n (ei + q) (2q + δc)n−1 .

The expected fine from being challenged by another player is

θ (n− 1)
n

E
[
f (ei + εi) · P

(
êi > ê∗p

∣∣∣ εi) I (−q − δc < εi < q)
]

= θ (n− 1)
n

f

(2q)2

(1
3 (2q + δc)3 + (ei − q − δc)

1
2 (2q + δc)2

)
.

The marginal expected fine from being challenged is

θ (n− 1)
n

f

(2q)2 (ei + q) (2q + δc) .

When δc ≥ 2q, the center drug dealer commits a lot more crime than periphery drug

dealers that she is always liable for the fine; thus, the marginal benefit of committing an

extra unit of crime is π′ (ei)− f < 0. When δc < −2q, the center drug dealer commits a

lot less crime than periphery drug dealers that she is never liable for the fine; thus, the

marginal expected benefit of committing an extra unit of crime is π′ (ei) > 0.

In Nash equilibrium, the marginal expected benefit from committing an extra unit of

crime is zero:

∂E
[
ui(ei, e∗−i)

]
∂ei

=



π′ (ei)− f = 0 (impossible) if δc > 2q

π′ (ei) + θ
n

[
f

(2q)n (ei − q) δn−1
c − f

2q (ei + q)
]

+ (n−1)θ
n

(
f

4q2 δc (ei − q)− f
2q (ei + q)

)
= 0 if 2q ≥ δc ≥ 0

π′ (ei)− θ
n

f
(2q)n (ei + q) (2q + δc)n−1

− (n−1)θ
n

f

(2q)2 (ei + q) (2q + δc) = 0 if − 2q ≤ δc < 0

π′ (ei) = 0 (impossible) if δc < −2q.

A periphery player
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Similarly, for a periphery drug dealer, if we assume that the center drug dealer plays the

weakly dominated strategy in the second stage, then the expected payoff of the periphery

drug dealer j playing ej against the center drug dealer playing ei and other periphery

drug dealers playing e−j\i is

E [uj(ej, e−j)] = π (ej)

− θ

n
· E [f (ej + εj) · P ( êj > êi| εj)]︸ ︷︷ ︸

Expected fine if being audited

− θ

n
· E [f (ej + εj) · P ( êj > max { ˆe−j}| εj)]︸ ︷︷ ︸

Expected fine if being challenged

.

In Nash equilibrium, drug dealer j must maximize her payoff against the center player’s

crime e∗c and the crime of each of the other periphery drug dealers e∗p. We denote the gap

between the crime of the periphery drug dealer j and the crime of the center drug dealer

i by δp = ej − e∗c and the gap between drug dealer j and the crime of any of the other

periphery drug dealer as δ := ej − e∗p.

Expected fine from being directly audited

If a periphery drug dealer is audited, then challenging the center drug dealer is the only

option and, thus, the crime levels of other periphery drug dealers are of no consequence.

When 2q ≥ δp ≥ 0 (regardless of δ), periphery drug dealer j commits more crime than

the center, but the noise made it possible for j to still pass the fine to the center drug

dealer. The expected fine for j from being directly audited by the authority is

θ

n

[
f

(2q)2

(1
3 (2q)3 + 1

2 (ej − q − δp) (2q)2
)
− f

(2q)2

(1
3δ

3
p + 1

2 (ej − q − δp) δ2
p

)
+ f

2q

(
ejδp + qδp −

1
2δ

2
p

)]
.

The marginal expected fine from being directly audited by the authority is

− θ
n

f

4q2 (ej − q) δp + θ

n

f

2q (ej + q) .

When −2q ≤ δp ≤ 0 (regardless of δ), periphery drug dealer j commit less crime than

the center, but the noise made it possible for j to still pay the fine when audited. The
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expected fine from being directly audited by the authority is

θ

n

f

(2q)2

(1
3 (2q + δp)3 + (ej − q − δp)

1
2 (2q + δp)2

)
.

The marginal fine from being directly audited by the authority is

θ

n

f

(2q)2

(
(2q + δp)2 + (ej − q − δp) (2q + δp)

)
.

When δp ≥ 2q (regardless of δ), drug dealer j is always liable for the fine if directly audited

by the authority. In this case, the marginal expected fine is

fθ

n
.

When δp ≤ −2q (regardless of δ), drug dealer j is never liable for the fine if directly

audited by the authority. In this case, the marginal expected fine is

0.

Expected fine from being challenged

The only possibility that a periphery drug dealer j is challenged is that the center drug

dealer i is audited and j has the largest signal among all her peers.

When δp ≥ 2q:

When δp ≥ 2q and δ ≥ 2q, drug dealer j commits so much more crime than other periphery

and the center drug dealers that j’s signal is always the largest. The center drug dealer

always tends to challenge j and j is always liable for the fine. The marginal fine from

being challenged by the center player is

fθ

n
.

When δp ≥ 2q and 0 ≤ δ ≤ 2q, drug dealer j commits so much more crime than the
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center drug dealers that j’s signal is always larger than the center drug dealer; thus, once

challenged, j is liable for the fine. However, the center drug dealer may not choose to

challenge drug dealer j because it is possible for other periphery drug dealers to have a

larger signal than j due to the draw of the noise. Then, the expected fine from being

challenged by the center player is

θ

n

f

(2q)n−1

( 1
n

(2q)n + (ej − q − δ)
1

n− 1 (2q)n−1
)

− θ

n

f

(2q)n−1

( 1
n
δn + (ej − q − δ)

1
n− 1δ

n−1
)

+ θ

n

f

2q

(
ejδ + 1

2
(
2qδ − δ2

))
.

The marginal expected fine from being challenged by the center player is

− θ
n

f

(2q)n−1 (ej − q) δn−2 + θ

n

f

2q (ej + q) .

When δp ≥ 2q and −2q ≤ δ ≤ 0, drug dealer j commits so much more crime than the

center drug dealers that j’s signal is always larger than that of the center drug dealer;

thus, once challenged, j is liable for the fine. However, the center drug dealer probably

chooses to not challenge drug dealer j because it is likely that one of the other periphery

drug dealers has a larger signal than that of j due to the draw of the noises. The expected

fine from being challenged by the center player is

θ

n

f

(2q)n−1

( 1
n

(2q + δ)n + (ej − q − δ)
1

n− 1 (2q + δ)n−1
)
.

The marginal fine from being challenged by the center player is

θ

n

f

(2q)n−1

(
(2q + δ)n−1 + (ej − q − δ) (2q + δ)n−2

)
.

When δp ≥ 2q and δ ≤ −2q, drug dealer j is never challenged although j’s signal is always

higher than that of the center. This is because the other periphery drug dealers definitely

have larger signals. In this case, the marginal fine from being challenged by the center

player is

0.
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When 0 ≤ δp ≤ 2q:

When 0 ≤ δp ≤ 2q and 2q ≤ δ, drug dealer j is always challenged if the center drug dealer

is audited, but who is liable for the fine depends on the draw of noises. The expected fine

from being challenged by the center player is

θ

n

f

(2q)2

(1
3 (q − δp)3 + (ej + q + δp)

1
2 (q − δp)2 + (ejq + ejδp) (q − δp)

)

− θ

n

f

(2q)2

(
−1

3q
3 + (ej + q + δp)

1
2q

2 − (ejq + ejδp) q
)

+ θ

n

f

2q

(
ej + 1

2q
2
)

− θ

n

f

2q

(
ej (q − δp) + 1

2 (q − δp)2
)
.

The marginal expected fine from being challenged by the center player is

θ

n

f

(2q)2 (δpq − ejδp) + θ

n

f

2q (1 + ej) .

When 0 ≤ δp ≤ 2q and δp ≤ δ ≤ 2q, drug dealer j commits more crime than all other

drug dealers, but the drug dealer that must be challenged by the center drug dealer and

the one that is liable for the fine are uncertain. The expected fine from being challenged

by the center player is

θ

n

f

(2q)n
( 1
n+ 1 (2q)n+1 + (ej + δp − 2δ − q) 1

n
(2q)n + (δp − δ) (ej − δ − q)

1
n− 1 (2q)n−1

)
− θ

n

f

(2q)n
( 1
n+ 1δ

n+1 + (ej + δp − 2δ − q) 1
n
δn + (δp − δ) (ej − δ − q)

1
n− 1δ

n−1
)

+ θ

n

f

(2q)2

(1
3 (q − δp)3 + (ej + q + δp)

1
2 (q − δp)2 + (ejq + ejδp) (q − δp)

)

− θ

n

f

(2q)2

(1
3 (q − δ)3 + (ej + q + δp)

1
2 (q − δ)2 + (ejq + ejδp) (q − δ)

)

+ θ

n

f

2q

(
ejq + 1

2q
2
)

− θ

n

f

2q

(
ej (q − δp) + 1

2 (q − δp)2
)
.



118 CHAPTER 4. DETERRENCE USING PEER INFORMATION

The marginal expected fine from being challenged by the center player is

− θ
n

f

(2q)n
(
δn + (ej + δp − 2δ − q) δn−1 + (δp − δ) (ej − δ − q) δn−2

)
+ θ

n

f

2q (q + ej) .

When 0 ≤ δp ≤ 2q and δp ≥ δ ≥ 0, drug dealer j commits more crime than all the other

drug dealers, but the drug dealer that the center drug dealer must challenge and the

drug dealer that is liable for the fine are uncertain. Then, the expected fine from being

challenged by the center player is

θ

n

f

(2q)n
(

(2q + δ − δq)n+1

n+ 1 + (ej + δp − 2δ − q) (2q + δ − δq)n

n
+ (δp − δ) (ej − δ − q)

(2q + δ − δq)n−1

n− 1

)

− θ

n

f

(2q)n
( 1
n+ 1δ

n+1 + (ej + δp − 2δ − q) 1
n
δn + (δp − δ) (ej − δ − q)

1
n− 1δ

n−1
)

+ θ

n

f

(2q)n−1

( 1
n

(2q)n + (ej − q − δ)
1

n− 1 (2q)n−1
)

− θ

n

f

(2q)n−1

( 1
n

(2q + δ − δp)n + (ej − q − δ)
1

n− 1 (2q + δ − δp)n−1
)

+ θ

n

f

2q

(
ejq + 1

2q
2
)

− θ

n

f

2q

(
ej (q − δ) + 1

2 (q − δ)2
)
.

The marginal fine from being challenged by the center player is

− θ
n

f

(2q)n
(
δn + (ej + δp − 2δ − q) δn−1 + (δp − δ) (ej − δ − q) δn−2

)
+ θ

n

f

2q (q + ej) .

When 0 ≤ δp ≤ 2q and −2q ≤ δ ≤ 0, drug dealer j commits more crime than the center

drug dealer but less than other periphery drug dealers, but the drug dealer that the center

drug dealer must challenge and the one that is liable for the fine are uncertain. The

expected fine from being challenged by the center player is

θ

n

f

(2q)n
(

(2q + δ − δq)n+1

n+ 1 + (ej + δp − 2δ − q) (2q + δ − δq)n

n
+ (δp − δ) (ej − δ − q)

(2q + δ − δq)n−1

n− 1

)

+ θ

n

f

(2q)n−1

( 1
n

(2q + δ)n + (ej − q − δ)
1

n− 1 (2q + δ)n−1
)

− θ

n

f

(2q)n−1

( 1
n

(2q + δ − δp)n + (ej − q − δ)
1

n− 1 (2q + δ − δp)n−1
)
.
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The marginal fine from being challenged by the center player is

θ

n

f

(2q)n−1

(
(2q + δ)n−1 + (ej − q − δ) (2q + δ)n−2

)
.

When 0 ≤ δp ≤ 2q and δ ≤ −2q, other periphery drug dealers always have larger signals

and, thus, drug dealer j will never be challenged. The marginal fine from being challenged

by the center player is

0.

When −2q ≤ δp ≤ 0,

When −2q ≤ δp ≤ 0 and δ ≥ 2q, drug dealer j commits so much more crime than other

periphery drug dealers; thus, j is always challenged by the center drug dealer. However, j

is not very likely to be liable for the fine as j commits less crime than the center drug

dealer. The expected fine from being challenged by the center player is

θ

n

f

(2q)2

[1
3q

3 + (ej + q + δp)
1
2q

2 + (ejq + ejδp) q
]

− θ

n

f

(2q)2

[1
3 (−q − δp)3 + (ej + q + δp)

1
2 (−q − δp)2 + (ejq + ejδp) (−q − δp)

]
.

The marginal expected fine from being challenged by the center player is

θ

n

f

(2q)2

[
q2 + (q + ej + δp) q

]
+ θ

n

f

(2q)2 [(ejq + ejδp)] .

When −2q ≤ δp ≤ 0 and 0 ≤ δ ≤ 2q, drug dealer j commits less crime than the center

drug dealer but more than other periphery drug dealers; however, which drug dealer must

be challenged by the center drug dealer and who is liable for the fine are uncertain. Then,

the expected fine from being challenged by the center player is

θ

n

f

(2q)n
[ 1
n+ 1 (2q)n+1 + (ej − 2δ + δp − q)

1
n

(2q)n + (δp − δ) (ej − q − δ)
1

n− 1 (2q)n−1
]

− θ

n

f

(2q)n
[ 1
n+ 1 (δ − δp)n+1 + (ej − 2δ + δp − q)

1
n

(δ − δp)n + (δp − δ) (ej − q − δ)
1

n− 1 (δ − δp)n−1
]

+ θ

n

f

(2q)2

(1
3q

3 + (ej + q + δp)
1
2q

2 + (ejq + ejδp) q
)

− θ

n

f

(2q)2

(1
3 (q − δ)3 + (ej + q + δp)

1
2 (q − δ)2 + (ejq + ejδp) (q − δ)

)
.
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The marginal fine from being challenged by the center player is

θ

n

f

(2q)2

(
q2 + (q + ej + δp) q

)
+ θ

n

f

(2q)2 (ejq + ejδp) .

When −2q ≤ δp ≤ 0 and 0 ≥ δ ≥ δp, drug dealer j commits less crime than all other

drug dealers, but the drug dealer that the center drug dealer must challenge and the drug

dealer that is liable for the fine are uncertain. The expected fine from being challenged

by the center player is

= θ

n

f

(2q)n
[

(2q + δ)n+1

n+ 1 + (ej − q + δp − 2δ) (2q + δ)n

n
+ (δp − δ) (ej − q − δ)

(2q + δ)n−1

n− 1

]

− θ

n

f

(2q)n
[ 1
n+ 1 (δ − δp)n+1 + (ej − q + δp − 2δ) 1

n
(δ − δp)n − (ej − q − δ)

1
n− 1 (δ − δp)n

]
.

The marginal fine from being challenged by the center player is

θ

n

f

(2q)n
[
(2q + δ)n + (ej + δp − 2δ − q) (2q + δ)n−1 + (δp − δ) (ej − q − δ) (2q + δ)n−2

]
.

When −2q ≤ δp ≤ 0 and −2q ≤ δ ≤ δp, drug dealer j commits less crime than all other

drug dealers, but the drug dealer that must be challenged by the center drug dealer

and the one that is liable for the fine are uncertain. Then, the expected fine from being

challenged by the center player is

θ

n

f

(2q)n
[

(2q + δ)n+1

n+ 1 + (ej − 2δ + δp − q)
(2q + δ)n

n
+ (δp − δ) (ej − q − δ)

(2q + δ)n−1

n− 1

]
.

The marginal fine from being challenged by the center player is

f

(2q)n
[
(2q + δ)n + (ej − 2δ + δp − q) (2q + δ)n−1 + (δp − δ) (ej − q − δ) (2q + δ)n−2

]
.

When −2q ≤ δp ≤ 0 and δ ≤ −2q, drug dealer j commits so much less crime than other

periphery drug dealers that j is never challenged. Then, the marginal expected fine from

being challenged by the center player is

0.
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When δp ≤ −2q, drug dealer j commits so much less crime than the center drug dealer

that j is never liable for the fine regardless of other periphery players’ strategy. Then,

the marginal fine from being challenged by the center player is

0.

In Nash equilibrium, the center player maximizes her payoff with the expectation that all

the peripheral players play e∗p and all peripheral players maximized her payoff expecting

that the center player plays e∗c and her peer peripheral players play the same strategy as

she plays (i.e., ej = e∗p), the marginal benefit from committing an extra unit of crime is

zero, so ∂E[ui(e∗
k,e

∗
−k)]

∂e∗
k

= 0 for all k ∈ {1, 2, ..., n}. The Nash equilibrium is the solution to

the system of equations for both center and periphery players where the unique numerical

solution is 
e∗c ≈ 2.40

e∗p ≈ 6.37.

Peer-informed audit mechanism with complete network

The authority randomly audits one drug dealer and the drug dealer can challenge the

remaining drug dealers. In the second stage, the weakly dominant strategy for the audited

drug dealer is to challenge the drug dealer with the largest signal. If we assume that

everyone plays the weakly dominated strategy in the second stage, then expected payoff

of player i playing ei against everyone else playing e−i is

E
[
ui(ei, e∗−i)

]
= π (ei)

− θ · 1
n
· E [f (ei + εi) · P ( êi > max { ˆe−i}| εi)]︸ ︷︷ ︸

Expected fine from being audited

− θ · n− 1
n
· E [f (ei + εi) · P ( êi > max { ˆe−i}| εi)]︸ ︷︷ ︸

Expected fine from being challenged

= π (ei)− θE [f (ei + εi) · P ( êi > max { ˆe−i}| εi)] .
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In Nash equilibrium, drug dealer i must maximize her payoff against the crime of other

drug dealers e∗. We denote the gap between i’s crime and other drug dealers’ crime

δ := ei − e∗.

When 2q ≥ δ ≥ 0, drug dealer i commits no less crime than other drug dealers, but the

noise in the signal still makes it possible for i to avoid the fine. The expected fine from

being directly audited by the authority is

fθ
(

(ei − q − δ)
1
n

+ 2q
n+ 1

)
− fθ

(2q)n
(

(ei − q − δ)
1
n
δn + 1

n+ 1δ
n+1

)
+ fθ

2q

(
eiδ + 1

2
(
2qδ − δ2

))
.

The marginal expected fine from being audited or being challenged is

− fθ

(2q)n
(
(ei − q − δ) δn−1 + δn

)
+ fθ

2q (ei + q − δ) .

When −2q ≤ δ ≤ 0, drug dealer i commits no more crime than other drug dealers, but

the noise in the signal still makes it possible for i to pay the fine. Then, the expected fine

from being challenged by another player is

fθ

(2q)n
[ 1
n+ 1 (2q + δ)n+1 +

(
eki − q − δ

) 1
n

(2q + δ)n
]
.

The marginal expected fine from being audited or being challenged is

fθ

(2q)n
(
(2q + δ)n + (ei − q − δ) (2q + δ)n−1

)
.

In Nash equilibrium, when each player expects that others employ the same strategy

(i.e., ei = e∗), the marginal benefit from committing an extra unit of crime is zero, so
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∂E[ui(e∗
i ,e

∗
−i)]

∂e∗
i

= π′ (e∗i )− fθ
2q (e∗i + q) = 0. The Nash equilibrium is the solution to

ab (e∗i )
b−1 − fθ

2q (e∗i + q) = 0,

where the unique numerical solution is

e∗ ≈ 1.16.

4.8.2. Instructions and quiz questions

Here, we provide the instructions for the treatment with complete network and one-shot

interactions. The instructions for the other treatments differ in terms of the rule to

determine the payer of the fine and the nature of repetition (one-shot v.s. repeated) and

is available upon request.

Instructions

Introduction

Thanks for your participation! Please put away your cell phones and other distracting

devices during the experiment. It is important that you make all your decisions on your

own without any distraction. If you have a question at any time during the experiment,

please raise your hand and an experimenter will come by to answer it.

In the experiment, you will be part of a group consisting of five people-- you and four

others. The other people in your group are sitting in this room. Your identity and the

identities of the other group members will remain anonymous throughout the experiment.

You and your group members will make some decisions and you will be paid based on

these decisions. After making the decisions, you will be asked to fill a short questionnaire,

which concludes the experiment. Your earnings are denominated in Tokens, which will be

exchanged at a rate of 4 Tokens = 1 dollar. The money you earn will be paid privately

to you, in cash, at the end of the experiment. The amount of money you earn depends

partially on the decisions that you make and, thus, you should read the instructions
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carefully. In order to improve the understanding of the instructions, you will take a

computerized quiz and earn four Tokens for each correct answer you provide. The task

will begin after the quiz.

What are the decisions you will make?

You are given an initial endowment of 60 Tokens and you will be asked to make decisions

in two stages.

Stage one (select the production level)

Your decision (and those of others in the group) is to select an amount of output to

produce and to enter it into the computer. The output you select must be between 0 and

40. Your decision will be entered on a screen like the one below.

The output generates a profit for you. The relationship between the output and the profit

is listed in the graph below. More output always generates more profit for you, but at a

decreasing rate.

We also provide a calculator like the one below to help you calculate the profit. You need

to type the output level in the blue box and then click “Calculate”. The calculator will
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calculate the corresponding profit for you. For example, if you produce 10 units, then the

profit is 5.01 Tokens.

However, the more you produce the more likely that you need to pay a fine in stage two.

You can consider the fine to be a penalty on your production.

Stage two (determine who must pay the fine)

In stage two, you (and the other participants in your group) see four signals informing

you of the output levels of the other members of your group. Each signal is the sum of

the true output level of that player plus a random number between [-10,10]. Each number

between [-10,10] has the same chance to be chosen. For example, if player 4 produces 10

units in stage one and the random number chosen for player 4 is -5.5, then the signal for

player 4 is 10+(-5.5) =4.5. Everyone except player 4 can see this number. Player 4 sees

her output instead.

The computer then randomly audits 1 member in your group. Everyone is equally likely

to be audited. If you are audited, then you will see the left panel of the picture on the

next page. You can either pay the fine by selecting the top button or choose to challenge

another player in your group to avoid paying the fine yourself by selecting one of the 4

buttons below the top button. If you click “I want to pay the fine”, then you are liable

for the fine. If you challenge another player, then whoever has the higher signal is liable

for the fine. The fine amount is:

Fine = 1.2× (the signal of the player liable for the fine).

If you are not audited, then you see the right panel of the picture below and make no

decision.
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Payment

You will have an earning of:

Tokens earned from answering the quiz questions

+ Your endowment

+ Profit from production

- The fine you have to pay (if any)

Tokens will be converted to Australian dollars at an exchange rate of 4 Tokens=$1.

Quiz questions

Below, we list the quiz questions for the treatment with complete network (one-shot

game). The quiz questions for the other treatments only differ in terms of the description

of the rule of challenge and the number of repetitions and are available upon request.

Participants are informed whether the answer is correct immediately after submitting the

answer. If the participant provides a wrong answer, we display the correct answer and

explain the reasoning behind it.

Q1: If you produce 22 units, how much profit (in Tokens) do you earn? You need to use

the calculator below to solve this question.
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Answer: 8.70.

Q2: Can you see your own signal in stage 2? Yes/No/Depends

Answer: No.

Q3: If you produced 5 units and the computer picks 5 as the random number for you,

then what is your signal visible to the rest of your group?

Answer: 10.

Q4: If your production level is 40, what is the lowest signal that you can possibly get? A:

30/ B: 40/ C: 25/ D: 45

Answer: A.

Q5: Suppose you are player 5. You produced 8 units of output in stage 1 and were audited

by the computer in stage 2. Suppose the signals of player 1 through 4 are -1, 5, 12, and

16, respectively. Which player should you challenge if you want to avoid paying the fine?

Answer: Player 4.

Q6: Suppose player 3 produces 0.5 units of output, player 2 produces 7.5 units; and player

3’s signal is 5 and player 2’s signal is -0.5. If player 3 is audited by the computer and

challenges player 2, who should pay the fine?

Answer: Player 3.

Q7: Suppose player 1 is liable for the fine and her signal is 20. What is the amount she

will pay as the fine (in Tokens)?

Answer: 24.
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4.8.3. Repeated interaction treatments

The repeated game treatments inform our understanding of how the peer-informed audit

mechanism influences criminal activity under repeated interaction among players, a feature

that is relevant in numerous practical settings that motivate our study. For example,

a group of criminals (in a mafia) may commit a series of crimes together over years.

In order to capture this realistic feature and test the robustness of the peer-informed

audit mechanism, we invite another 200 participants to play the repeated version of the

production game. In the repeated game, the treatments and the rule of the game remains

the same as the one-shot game, except that the same group of participants play the game

20 times and one randomly chosen round is selected for payment. In each of repeated

interaction treatments, we conducted 10 groups with 5 subjects in each group. As each

group is regarded as an independent observation in these treatments, we have a total of

10 independent observations for each treatment.

Since the stage game Nash equilibrium is unique and the finite number of rounds (20)

is announced to the subjects, the repeated play of the game is likely not to change the

predictions of the model. Our main goal with the repeated game treatments is to examine

the robustness of the treatment effects rather than test the distinctive features of the

repeated game theory.

Results for the repeated game

Figure 4.6 reports the crime level over 20 rounds for the baseline and the network

treatments combined. Our mechanism successfully reduces crime even when the game is

repeated for 20 rounds. The level reduced from 26.66 units in the baseline to 18.73 units

in the network treatments – a 30% drop (p < 0.001). Figure 4.7 provides a comprehensive

view on the evolution of crime levels in all treatments. The new mechanism significantly

decreases the crime level under all networks we consider. Compared to the baseline, where

the average crime is 26.66 units, the mechanism reduces the levels to 17.71 (p = 0.007),

20.34 (p = 0.013), and 18.14 (p = 0.003) units under star, circular, and complete networks,

respectively. The crime level of the center player is less than the periphery players in
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Notes: This figure plots the average crime levels (over 20 rounds) for the baseline and
network treatments combined. The error bars indicate 95% confidence intervals.

Figure 4.6: Overview for the repeated games

the star network, which is qualitatively in line with the theory for the one-shot game,

despite being marginally insignificant at the 10% level (p = 0.15). The average crime of

the center player is 14.8 units, which is not significantly different from 18.0 units of the

periphery players (p > 0.1). However, similar to the results described in the previous

section, there are no treatment differences across the different network structures (p >

0.1 in all of the three pairwise comparisons). The crime levels in different peer-informed

audit treatments are also significantly larger than theoretically predicted in Section 2

(p<0.001 in all three cases).

In order to examine the robustness of the results, we perform a regression analysis similar

to that of the one-shot treatments. In addition to the independent variables discussed in

the previous section, we also include a variable, referred to as round, to control for time

effects in the model:

Crimei,t = c+ α1I{treatment=star center}
i + α2I{treatment=star periphery}

i + α3I{treatment=circular}
i

+ α4I{treatment=complete}
i + β1I{gender=male}

i + β2Understandi

+ β3GPA-RAi + β4GPA-PIAi +
20∑
t=2

γtI{round=t}
i,t + εi,t.
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Notes: The left panel of the figure plots the average crime levels in each of the 20 rounds
for the all four treatments. The right panel depicts the average crime level in each of the
20 rounds for the center and periphery players in the star treatment.

Figure 4.7: Crime levels in repeated game treatments

Table 4.3 reports the estimation results. The results for repeated games are robust to all

the control variables we consider. The peer-informed audit mechanism successfully deters

crime under all network structures we consider and the magnitude is both economically

and statistically meaningful. There is also a significant difference (p<0.1 in all model

specifications) between the center and periphery players in the star network in all four

specification we consider. However, there are no significant differences between treatments

across the star, circular, or complete networks (more specifically, there is no significant

difference in any of the three pairwise comparisons of αs :=
(

1
4α1 + 3

4α2
)
, α3 and α4).25

Overall, these set of results are similar to those based on one-shot interaction treatments

reported in Section 4 of the paper.

4.8.4. Demographic variables

We report the demographic variables across treatment in Table 4.4. In general, the

demographic variables are balanced across treatments from F-tests.

25We also performed a similar regression where we include a time trend for each treatment. We find that
the crime levels move towards the corresponding Nash predictions, but the effect is weak. Even in
the last round, crime levels remain significantly different from the corresponding prediction (p <
0.01). Importantly, the main findings are robust to controlling for the treatment specific time trends.
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Gender Asian GPA>70%
(male=1) (Asian=1) (GPA>70%=1)

Baseline (one-shot) 0.4 0.76 0.68
Star (one-shot) 0.48 0.92 0.76

Circular (one-shot) 0.56 0.8 0.56
Complete (one-shot) 0.4 0.8 0.84
Baseline (repeated) 0.66 0.78 0.72
Star (repeated) 0.54 0.78 0.66

Circular (repeated) 0.48 0.86 0.72
Complete (repeated) 0.54 0.84 0.72

F_stat 1.08 0.58 0.83
p_value 0.37 0.77 0.57

Notes: This table presents the average demographic variables for each treatment. We also
report the F-statistic and p-value testing the null hypothesis that there is no difference in
the variable across all treatments.

Table 4.4: Balance check
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Model 1 Model 2 Model 3 Model 4
Star center (α1) -11.87*** -11.23*** -12.02*** -12.18***

(2.47) (2.49) (2.58) (2.60)
Star periphery(α2) -8.23*** -8.02*** -8.03*** -7.90***

(2.54) (2.56) (2.58) (2.59)
Circular (α3) -6.32*** -5.87*** -6.01*** -5.96**

(2.17) (2.27) (2.33) (2.35)
Complete (α4) -8.52*** -8.22*** -8.44*** -8.43***

(2.02) (2.11) (2.14) (2.17)
Gender (β1) 2.46** 2.47** 2.58**

(1.10) (1.10) (1.15)
Understand (β2) 0.84 0.85

(0.53) (0.52)
GPA-RA (β3) -0.06

(1.18)
GPA-PIA (β4) -0.97

(0.73)
Constant (c) 25.59*** 21.50*** 19.84*** 19.64***

(1.84) (2.70) (2.80) (2.82)

Control for time effects (∑20
t=2 γtI

{round=t}
i,t ) YES YES YES YES

H0 : 1
4α1 + 3

4α2 = α3 p=0.19 p=0.17 p=0.16 p=0.16
H0 : 1

4α1 + 3
4α2 = α4 p=0.76 p=0.75 p=0.76 p=0.78

H0 : α3 = α4 p=0.19 p=0.17 p=0.15 p=0.15
H0 : α1 = α2 p=0.02 p=0.07 p=0.04 p=0.02

Notes: This table presents the estimation results for whether our mechanism reduces
the crime level under different network structures. There are 4000 observations (200
participants×20 rounds) for each regression. We report the standard errors under each
point estimate. *, **, and *** indicate significance at the 10%, 5%, and 1% levels,
respectively. All standard errors are clustered at the group level. As reported in the
table, we also performed t-tests to study the treatment effect caused by different network
structures and by different positions in the star network.

Table 4.3: Regressions for repeated game treatments
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