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Abstract

Traffic simulation models have become an increasingly important
tool for investigating vehicular dynamics in arterial networks. In this
thesis, we study three distinct, but related, topics in the field of traffic
simulation. Specifically, we study calibration of traffic models via
Approximate Bayesian Computation (ABC); the form of link travel time
distributions, particularly in the presence of traffic lights; and the form
of dwell time distributions for on-road public transport, in particular,
for trams.

The ability of a simulation model to accurately predict real-world be-
haviour is significantly impacted by the values of the model parameters.
We propose and study the use of Approximate Bayesian Computation
(ABC) to calibrate traffic flow simulations. A key challenge in imple-
menting ABC in practice is to identify summary statistics which are
low-dimensional, to allow efficient computation, but also sufficiently
informative, to allow accurate identification of appropriate parameters.
We consider in some detail the problem of estimating the input and
output rates of traffic on a single link, and show that the mean density
at the upstream and downstream ends of the link provide accurate
summary statistics. We also consider the estimation of turning proba-
bilities in a grid network. Moreover, we show that ABC with regression
adjustments provides a more accurate calibration method than simple
rejection ABC.

Understanding the statistical distribution of link travel times is
important for meso- and macro-scale modelling of vehicular dynamics in
arterial road networks. Most studies related to travel time distributions
have previously focussed on empirical estimations, and the results have
tended to be somewhat inconclusive. To provide some physical intuition,
we consider the travel time distribution of a simple stochastic transport
model, the Nagel–Schreckenberg model (NaSch), paying particular at-
tention to the special case of the Asymmetric Simple Exclusion Process
(ASEP). We find that the simulated travel-time of the NaSch model is
well approximated by a normal distribution as the link length becomes
large, suggesting a central limit theorem holds. In the particular case
of ASEP, we conjecture explicit forms for the mean and variance of
this normal distribution, in terms of the input and output probabilities,
and provide strong numerical evidence in their favour. Moreover, we
also consider in detail the impact on the link travel time distribution
of having traffic lights present at both the upstream and downstream
intersections. In particular, we investigated the effects of varying signal
parameters such as offset and splits. Our numerical results suggest that
travel time distributions can be well described by a Gaussian mixture
model, where the components in the mixture correspond roughly to
the (random) number of cycles a vehicle must wait at the downstream
intersection.
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Accurately modelling the dwell time at bus or tram stops is an
important challenge in simulations of on-road public transport. Via a
combination of simulation and direct statistical survey, we study the
distribution of the dwell time at selected tram stops in inner Melbourne.
The empirical study strongly suggests that the dwell time at a given stop
is well-described by a log normal distribution, with parameters that vary
only weakly with congestion levels etc. Moreover, we also considered the
question of possible correlations of the dwell times between consecutive
trams and/or stops. We find, perhaps surprisingly, that the correlations
in fact appear rather weak. As a practical consequence, we conclude
that modelling each tram’s dwell time, at each stop, as an independent
log-normal random variable should provide an accurate method for
generating random dwell times in simulation-based studies. We also
provide estimates of the relevant log-normal parameters.
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Introduction 1

Significant population growth poses serious challenges related to transportation
in arterial networks across major cities worldwide. Simulation provides a
relatively fast and cost-effective method to analyse and explore proposed
modifications of transport systems, since it eliminates the costly constructions
demanded by real time experimentation, and also minimises potential risks to
travellers. However, the design and application of simulation models must be
handled very carefully, in order to have confidence that the model outputs give
reliable predictions. The objectives of this thesis are threefold: firstly, to identify
a robust model calibration and validation procedure for traffic simulators;
secondly, to accurately approximate the link travel time distribution, and
assess the impact of traffic lights on it; thirdly, to simulate stopping behaviour
of on-road public transport vehicles, incorporating dwell time dynamics at
stops.

There exist a significant number of commercially available transport simu-
lation models. These facilitate fundamental decision making on the layout of
traffic infrastructure, such as evaluation of public transport priority schemes.
Of the commercially available packages, CUBE, TransCAD and TRANSIM
are commonly used for transportation planning, while other packages such
as CORSIM, VISSIM, Paramics and DynaMIT are used for simulating trans-
portation operations [1]. Traditional microscopic traffic simulation models are
complex, and explore transit behaviours in great detail, while models such as
cellular automata [2] reproduce the correct macroscopic behaviour based on a
minimal description of microscopic interactions. These kinds of mesoscopic
traffic simulation models are computationally efficient for large scale traffic
flow simulations.
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Traffic simulation models can simulate complex arterial networks, with
different driving behaviours, and various traffic management strategies. Due
to the complexity of arterial networks, these traffic simulators depend on a
large number of free parameters. To have confidence in a model’s predictions,
such parameters need to be calibrated so that the simulated outputs reproduce
relevant features of empirical data from actual transport networks. However,
the simulated outputs may depend sensitively on the values chosen for the
parameters. Moreover, for complex models, there are typically many choices
of parameters which will reproduce the specified features of a given data set.

Although much effort has been put into the development and refinement of
traffic simulation models, rather less attention has been given to developing
statistically rigorous methodologies for their calibration and validation. It
is generally considered the user’s responsibility to identify and quantify the
differences between observed and simulated measurements [3]. Many published
traffic simulator validation studies are based on visual comparisons or com-
parisons of simple descriptive statistics [4, 5]. In visual validation, outputs
of the simulated and the real systems are compared to determine whether
or not they can be differentiated. The visualisation may be based on the
animation modules available in most traffic simulation models or based on the
plots of different outputs such as flows, speeds and queue lengths [6]. Popular
statistical validation techniques among transport planners are Goodness of Fit
measures, confidence intervals and statistical tests for mean comparisons [7, 8]
such as two sample t–test, F -test, Mann-Whitney test, Kolmogrov-Smirnow
and Wilcoxon Rank Sum tests.

Moreover, the traditional approach of calibrating parameters is to modify
parameter values until the simulated output approximates the actual data. This
can result in poor parameter choices and ignores the uncertainties remaining
in the parameters [9]. Moreover, many standard statistical techniques are not
easily applied due to non-stationarity [10]. Wanger et al claim that stochasticity
is the reason many parameter estimation problems in traffic simulations fail
[11]. Furthermore, the optimisation algorithms used in typical calibration
processes are often computationally expensive.

Approximate Bayesian Computation (ABC) has gained much attention in
recent years as an alternative to traditional parameter estimation techniques.
ABC is a flexible and robust technique for model calibration. Instead of
searching for “true” parameter values, ABC takes a Bayesian perspective,
whereby one computes a (posterior) probability distribution on the space of
possible parameter values, describing how likely the parameters are to reproduce
outputs in agreement with empirical data. However, unlike classical Bayesian
methods, ABC does not require explicit calculation of the likelihood function,
and is therefore quite widely applicable, even to the calibration of complex
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simulation models. As a proof of concept, in this thesis, we study in some detail
the application of ABC methods to the calibration of some simple stochastic
cellular automata traffic models. A key task in the application of ABC in
practice is the identification of appropriate summary statistics. The study
of simple cellular automata models, such as the asymmetric simple exclusion
process (ASEP), for which many quantities are understood analytically, proves
to be a very useful setting for considering appropriate summary statistics.

A fundamental question concerning traffic flow, with widespread practical
applications in meso- and macro-scale traffic simulation, is to understand the
statistical distribution of the travel time of individual vehicles on a single link.
A wide variety of approaches have been taken to estimating link travel times,
such as time series forecasting methods [12, 13], Kalman filtering [14, 15],
Neural Networks [16–18] and empirical distribution estimations methods [19–
22]. Most previous studies have tended to model travel time using uni-modal
symmetric, continuous distributions, such as the normal distribution [23]. More
recently, however, researchers have argued that travel time distributions are
positively skewed [19–22], and possibly multi-modal. The existing literature
on empirical studies therefore presents a variety of inconsistent conclusions,
and tends not to provide clear physical intuition behind the proposed forms of
travel time distributions. In order to develop physical intuition concerning the
distribution of the link travel time, we again turn to simple cellular automata
models, where explicit conjectures can be made, and compared with simulation.
Based on a study of these simple models, we conclude that the travel time
on links without traffic signals should generically exhibit Gaussian behaviour,
at least when the size of the link is sufficiently large. In addition to being of
practical interest, these conjectures concerning the cellular automata models
are likely of theoretical interest to mathematical physicists in the field of
statistical mechanics. Moreover, using an appropriate generalisation of these
cellular automata to include traffic signals, we systematically study the effect
of traffic signal parameters, such as offsets and splits, on the travel time
distributions. We conclude that, in all cases, the travel time distribution is
well-described by a Gaussian mixture model. In the case of low density, we
also provide domain wall arguments which allow us to accurately predict, on
simple physical grounds, the values of many of the parameter appearing in the
mixture model.

Finally, we also study a very practical question related to the simulation
of on-road public transport: what is the distribution of the amount of time
a tram/bus dwells at a given stop? Many researchers have studied aspects
of the dwell time of public transport vehicles, using various methods such as
multivariate regression models [24–37], time series models [38] and decision
trees [39]. The statistical distribution of the dwell time has also been studied,
however the results are rather inconsistent, variously concluding the distribution
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1.1. Thesis outline

is best approximated by the: Pearson type 6 distribution [26]; Log-normal
distribution [31, 40, 41]; and Wakeby distribution [41]. In an effort to resolve
these discrepancies, we performed an empirical statistical survey of tram
dwell times along two separate tram routes in inner Melbourne. Our data
strongly suggest that the dwell time distribution of an individual tram is
well-described by a log-normal distribution. To use a dwell time distribution in
a simulation model however, it is a priori not sufficient merely to understand
the marginal distribution of dwell time of an isolated tram, since the dwell
times of consecutive trams could potentially be quite strongly dependent. We
therefore also studied the correlations between consecutive trams and stops.
Perhaps surprisingly, we find that the correlations are in fact typically quite
weak. To a good approximation therefore, this justifies modelling dwell times
as independent log-normal random variables in simulations. To our knowledge,
the correlations in dwell times have not previously been studied. In order to
better understand the physical mechanisms behind these observations, we also
performed systematic simulations of a tram route in Melbourne, and studied
both the marginal dwell time distributions and the dwell time correlations.

1.1 Thesis outline

In Chapter 2, we discuss existing traffic models, and give a detailed description
of the models we employ throughout the thesis. In Chapter 3 we study the
applicability of ABC in traffic simulation model calibration. In Chapter 4 we
study the distribution of the link travel time, both in the absence and presence
of traffic signals. Chapter 5 contains our study of the dwell time distribution,
and related questions such as the headway distribution. Finally, Chapter 6
contains a discussion.
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Traffic simulation models 2

2.1 Overview

Simulation is an essential tool employed by transport planers [42]. Traffic
simulators can represent complex traffic networks, and mimic different driving
and travel behaviours, such as the operation of different traffic management
strategies.

Traffic simulation models can be classified into several categories based on
different characteristics. We can categorise them into Microscopic, Macroscopic
or Mesoscopic traffic simulators, depending on the level of detail each simulation
model considers. Macroscopic simulation models view the traffic flow as
a continuum, while Microscopic models focus on individual movements of
vehicles and their interactions. Mesoscopic models have characteristics of
both the macroscopic and microscopic behaviours. They deliberately ignore
individual interactions by specifying the individual behaviour in terms of
probability distributions [43]. Traditional microscopic traffic simulation models
are complex and explore transit behaviour in great detail. Therefore, the usage
of such simulation models for large networks is generally beyond reach. In
contrast, Mesesocopic models are computationally efficient for large scale traffic
simulations. These models can reproduce the correct macroscopic behaviour
based on the minimal description of microscopic interactions.

Furthermore, traffic simulation models can be classified into two main
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2.1. Overview

categories, whether the three main measurable: state; space; and time are
discrete or continuous. It is possible to have any combination of discrete or
continuous variables measured in the simulations, even though the discrete
variables are often approximations [43]. Moreover, the dynamics of a traffic
simulation can be either deterministic or stochastic.

These traffic models range from simple analytical models such as, Car-
following [44–46], Gas-Kinetic [47, 48], Fluid dynamic [49–51], Coupled-map
models [52, 53] and Cellular Automata [54–57] to detailed complex simulation
software. There exist a significant number of commercially available transport
simulation models. These facilitate fundamental decision making on the layout
of traffic infrastructures, such as evaluation of public transport priority schemes.
Of the commercially available packages, CUBE, TransCAD and TRANSIM are
commonly used for transportation planning, while other packages such as COR-
SIM, VISSIM, Paramics and DynaMIT are used for simulating transportation
operations [1].

Cellular Automata (CA) are models of physical systems in which both space
and time are assumed to be discrete. They consist of a regular arrangement of
cells. Each of the interacting units can have only a finite number of discrete
states. A typical CA model has rule-based dynamics, and is well-suited for
modelling traffic systems [43]. A fundamental stochastic CA model, capable
of reproducing the main features of vehicular motion along a single lane, is
the NaSch model, first introduced by Nagel and Schreckenberg in 1992 [54]. A
special case of the NaSch model is the asymmetric simple exclusion process
(ASEP), which is well-studied in both mathematical physics and probability
theory.

In this chapter we recall the definition of the NaSch model which we use as
our standard simulation model in this thesis. In particular, we also summarise
relevant known analytical results concerning the ASEP. In addition, we also
recall the definition of a network generalisation of NaSch, known as CEASAR,
which provides a mesoscopic simulator for traffic flow on arterial roads.
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2.1. Overview

2.1.1 NaSch

0 2 3 3 2 3α β

Figure 2.1: Configuration of NaSch with vmax = 3. The number in the upper right corner
is the speed of the vehicle.

In NaSch model we consider a road segment divided into L cells. See Figure 2.1.
A vehicle is inserted to the system with an inflow probability, α ∈ (0, 1) at
the in-boundary (left-boundary) and removed from the out-boundary (right-
boundary) with an outflow probability, β ∈ (0, 1). A vehicle occupies one
cell, takes vmax + 1 values of speed v = 0, 1, 2, ..., vmax with a deceleration
probability p. Each vehicle moves forward according to its velocity obeying
NaSch dynamics (i.e. ln → ln+vn). Suppose ln and vn denote the position and
the speed of the nth vehicle, then hn = ln+1−ln−1 is the spatial headway of the
nth vehicle at time, t. At each time step t→ t+ 1, the speed of the nth vehicle
is increased by one if it is not already in vmax (i.e. vn → min(vn + 1, vmax)),
reduced to hn if vn > hn (i.e. vn → min(vn, dn)) or reduced by one, which
happens randomly with probability p if vn > 0 (i.e. vn → max(vn − 1, 0) with
probability p) [54].

For vmax = 1, NaSch model has a special case called ASEP. ASEP can
also be viewed as a road segment divided into L cells. A vehicle is inserted
to the system with an inflow probability, α ∈ (0, 1) at the in-boundary (left-
boundary) and removed from the out-boundary (right-boundary) with an
outflow probability. β ∈ (0, 1). A vehicle occupies one cell and moves forward
a cell, with a probability of p, if the consecutive cell is unoccupied by a vehicle.
See [58] for detailed explanation about ASEP.
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2.1. Overview

2.1.2 ASEP

α β

p

.........

L

Figure 2.2: Configuration of an ASEP with one dimensional lattice consists of L sites.
Parameters α, β and p represent the traffic inflow probability, outflow probability and
hopping probability respectively.

ASEP is a stochastic traffic model defined on a one-dimensional lattice (see
Figure 2.2). The lattice consists with L number of cells where, only one
vehicle can occupy a cell. Vehicles can only hop into empty cells with a speed
of vmax = 1. Vehicles are inserted from the left-boundary with probability
α ∈ (0, 1) onto the first cell if the first cell is not occupied by a vehicle. Vehicles
in the bulk move forward one cell with probability p ∈ (0, 1) and exit from the
right-boundary with probability β ∈ (0, 1). The model is known for showing
phase transitions among low-density, high-density and maximum-current phases
with respect to the α, and β. When the vehicles are inserted with a lower
probability α < 1/2 and removed with a much higher probability β > α, the
system will result a low-density state with a fewer vehicles in the system. The
vehicles will move forward with a free flow speed. Contrarily, when the vehicles
are removed slowly β < 1/2 and inserted with a much higher probability α > β,
the system is in the high-density region with a higher number of vehicles in
the system. The speed of the vehicles will be reduced. When the vehicles are
inserted and removed sufficiently rapidly, α > 1/2 and β > 1/2, the system is
in the maximum-current region where the system has its maximum flow.

ASEP can have different update rules, random sequential, sublattice-
parallel, ordered sequential and parallel [43]. In this study we only focused on
ASEP with random sequential updates and parallel updates.
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2.1. Overview

2.1.2.1 Random sequential updates
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Figure 2.3: Exact phase diagram of Asymmetric Simple Exclusion Process (ASEP) with
random sequential dynamics for p = 1. The density profile becomes flat on the dotted line
α+ β = 1.

When the system has random sequential updates, in every iteration a vehicles
will be picked randomly from a cell i, where 2 ≤ i ≤ L − 1 and move one
cell forward with probability p, if the (i + 1)th cell is not occupied. If i = 1
and the cell is occupied, then the vehicle will move to the cell i = 2. If i = 1
and the cell is not occupied, then a vehicle will be inserted to the first cell
with probability α. If i = L and the cell is occupied by a vehicle, then the
vehicle will be removed from the system with probability β. p < 1 simply
result in a re-scaling of time. Therefore, the phase diagram of the ASEP with
random sequential updates does not significantly depend on p [59]. Therefore,
throughout the thesis, when we use ASEP with random sequential updates,
we consider p = 1. Figure 2.3 illustrates the exact phase diagram for p = 1.
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2.1. Overview

Table 2.1: Exact solutions of an ASEP with random sequential updates with p = 1 [43].
α and β are the inflow probability and outflow probability respectively. ρ1, ρL/2, and ρL

represents the average density at left-boundary, bulk and right-boundary respectively.

Phase Condition ρ1 ρL/2 ρL

Low-density α < β, α <
1
2 α α

α(1− α)
β

High-density β < α, β <
1
2 1− β(1− β)

α
(1− β) (1− β)

Maximum-current α >
1
2 , β >

1
2 1− 1

4α
1
2

1
4β

With random sequential updates, the system has a simple structure shows
no correlation between cells. Hence the simple mean-field solutions are exact,
and the Table 2.1 summarises the exact mean-field solutions for bulk density
ρL/2 and boundary densities, ρ1 and ρL of an ASEP with random sequential
updates and p = 1 [43]. On the dotted line α+β = 1, the density profile is flat.
Therefore, the density profile fails to be injective in [0, 1]2, if α+ β = 1 [60].
More information on the exact stationary state of an ASEP with sequential
updates can be found in [43].

2.1.2.2 Parallel updates

When the system has fully parallel updates, the rules for hopping, insertion, and
removal are applied simultaneously to all sites of the whole link. The parallel
update usually produces the strongest correlations between the occupations of
neighbouring cells.

Figure 2.4 illustrates the exact phase diagram for the ASEP with parallel
dynamics for p = 0.5. Phase boundaries are at the critical probability, αc, βc =
1−
√

1− p, where the transition is discontinuous in the density. The broken line
given by, (1−α)(1−β) = 1−p, the mean field solution is exact and the density
profile is flat. For different combination of α and β ASEP has five different
density regimes; LD1 (α < β < 1−

√
1− p), LD2 (α < 1−

√
1− p < β), HD1

(β < α < 1−
√

1− p), HD2 (β < 1−
√

1− p < α) and MC (α, β > 1−
√

1− p).
In LD1 regime, the density profile shows a purely exponential decay at the
right boundary and in the LD2 regime, exponential decay is modulated by
a power law. In HD1 regime, the density profile shows a purely exponential
decay at the left boundary and in the HD2 regime, again the exponential decay
is modulated by a power law. See [58, 61] for more details about an ASEP
with parallel dynamics.

10



2.1. Overview

Figure 2.4: Exact phase diagram of Asymmetric Simple Exclusion Process (ASEP) with
stochastic parallel dynamics for p = 0.5. The broken line is corresponds to (1− α)(1− β) =
1− p, where the density profile is flat [58].

Exact asymptotic for the density profile of an ASEP with parallel updates
and open boundary conditions can be found in [61]. The boundary densities
were determined by the current JL as Equation 4.24 in [61]:

ρ1(α, β, p) = 1− 1
α
JL(α, β, p)

ρL(α, β, p) = 1
β
JL(α, β, p)

where,

JL(α, β, p) ∼
L→∞



1−
√

1−p
2 , Maximum-current

α(p−α)
p−α2 , Low-density

β(p−β)
p−β2 , High-density

as defined in Equation 8.21, 8.23 and 8.24, [61]. Therefore, exact solutions for
bulk density ρL/2 and boundary densities, ρ1 and ρL of an ASEP with parallel
updates can be derived as follows.
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2.1. Overview

ρ1(α, β, p) ∼
L→∞



1− 1−
√

1−p
2α , Maximum-current

α(1−α)
p−α2 , Low-density

1− β(p−β)
α(p−β2) , High-density

ρL(α, β, p) ∼
L→∞



1−
√

1−p
2β , Maximum-current

α(p−α)
β(p−α2) , Low-density

p−β
p−β2 , High-density

ρL/2(α, β, p) ∼
L→∞



1
2 , Maximum-current

α(1−α)
p−α2 , Low-density

p−β
p−β2 , High-density

2.1.3 CEASAR

CEASAR was jointly developed by VicRoads, Monash University and the
University of Melbourne. CEASAR is a mesoscopic network model which
simulates individual movements of vehicles, while deliberately ignoring detailed
geometry of roads and intersections. The model is agent-based, with individual
vehicles moving according to behavioural rules which are influenced by the
state of the surrounding traffic and randomness. CEASAR incorporates various
traffic signal systems such as fixed cycle, self-organising signals, and realistic
adaptive traffic signal including Sydney Coordinated Adaptive Traffic System
(SCATS). Moreover, importantly CEASAR incorporates tram and bus priority
processes, pedestrian signals and train level crossings.

CEASAR demands each vehicle makes a random decision about which
link it wants to turn into at the approaching intersection with some turning
probability. Such probabilities can be obtained from SCATS detector loop data
or turning movement surveys if applied on a realistic network. Alternatively,
CEASAR can be used to compute the fastest route according to real-time
network traffic conditions, given the destination of a vehicle.
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2.1. Overview

CEASAR has been used to model several practical scenarios, with the
collaboration of VicRoads, and a number of theoretical studies. de Gier et
al investigate how adaptive signal strategies can improve urban traffic flow
using CEASAR [2]. Furthermore, Zhang et al studied the different types of
adaptive traffic signal systems on Macroscopic Fundamental Diagrams (MFDs)
of arterial road networks using CEASAR as the simulation tool [62]. CEASAR
has also been used to identify the impact of disruptions on road networks, and
the recovery process after the disruption is removed from the system [63]. A
comprehensive description of the model can be found in [2, 62].
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Calibration of traffic flow simulation models 3

3.1 Overview

Traffic simulation is an effective approach for modelling a collection of complex
traffic scenarios relatively quickly and inexpensively. These simulation results
can be utilised to identify the most promising scenarios, which can then be
studied in greater detail with real-world trials. Due to the complexity of
transport systems, refining a simulation model to accurately represent the real
network is challenging. This refining process consists of three main phases:
model verification, calibration and validation. The verification phase involves
with the initial stage of investigation whether the conceptual framework of
the model correctly determined the desired simulation model. The calibration
phase involves with the estimation of input parameters. The empirical data
can be used to refine the simulation model to adjust these input parameters,
elaborating the behaviour of the real transport system. Finally, in the validation
phase, simulation results are compared against the observed data to confirm
whether the model accurately resembles the real transport system.

Traffic simulators require a large number of input parameters which should
be defined explicitly. The classical approach to model calibration is to estimate
the true parameters which explain the natural description of the transport sys-
tem. Generally, the true parameters are estimated when the target discrepancy
of performance measures are minimal. Standard measures of the performance
used in the calibration of traffic models are the number of vehicles on a road

14



3.1. Overview

section [64–66], turning flows at intersections [7], link flows [64], maximum
queue length [5, 64], speed [6, 67], travel time [64, 68] and origin-destination
data [5]. However, with the recent development of computational methods
established in Bayesian statistics: ABC, we do not have to rely on estimating
the true parameters any more. Instead, we can approximate the likelihood
of parameters and choose the parameters which are consistence with the real-
world data. One can sensibly choose the correct parameters based on prior
knowledge, not depending on any particular choice of parameters. ABC has
identified as a flexible and comprehensible alternative to traditional model
calibration methods which avoids the exact likelihood estimation by comparing
summary statistics with the observed summary statistics.

The notion of efficient calibration techniques for complex traffic simulator
models have been extensively studied over the past years and are focused
on both analytical and simulation-based calibration techniques [66]. The
common practice of calibration procedure is trial and error approaches due
to the complexity associated with large scale traffic simulations and large
amounts of unknown parameters. Generally, the process is to estimate the
optimal values for sensitive parameters. Three main estimation techniques
have been used for traffic simulator model calibration: least square estimation,
maximum likelihood estimation and Bayesian methods [7]. Arguably the
most extensively applied technique in calibration studies is the least-squares
estimation technique.

Discrepancy measures like mean relative error [5, 6, 69], root mean square
error [6, 64, 67, 70] and mean normalised error [64], correlation coefficient and
Theil’s inequality coefficient [6, 67] can be found in past researches related
to calibrating traffic simulation models. Theil’s inequality coefficient is one
of the popular discrepancy measures, and it measures the relative error of
the simulated output and is bounded 0 ≤ U ≤ 1. U = 0 implies a perfect
fit between the observed and simulated measurements and U = 1 implies the
worst possible fit. The GEH statistic is another widely accepted experimental
measure which accounts for the difference between simulated data and observed
data [71]. Even though its mathematical structure is similar to a chi-squared
test, GEH statistic is not a genuine statistical test. Instead, it is an empirical
measurement that incorporates both relative and absolute deviations of the
simulated value. Another model validation technique in parameter estimation
is visual validation where the observed and simulated data were plotted to
investigate any deviations from the real traffic network [4, 5].

Another method to evaluate the statistical significance of the simulated val-
ues is by using classical hypothesis testing for mean comparisons [65, 72]. Para-
metric tests such as two-sample t–test, F -test. Furthermore, non-parametric
tests like Kolmogorov-Smirnov [65, 72] and Mann-Whitney Wilcoxon Rank
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3.1. Overview

Sum test [65] were also used to test the goodness-of-fit of the simulated data
with the real data. These two-sample tests assume the two sets of simulated
and observed data are independent and identically distributed (iid). Therefore,
these tests should be performed separately for each time-space measurement
point, where the iid assumption holds, at least approximately. However, the
measures of traffic networks depend strongly on time and are auto correlated.
Rao et al. [72] have suggested a two-dimensional testing procedure involving a
two-sample Kolmogorov–Smirnov (K-S) test and one-sample t-test for every
observed and simulated measurement.

Rao and Owen [3] argued that a proper validation procedure should account
for the auto correlated nature and the non-stationary property of simulated and
empirical data accurately. However, due to an inability to find methods that
can accurately represent the non-stationarity of a process, the authors claimed
that a thorough consideration of non-stationary behaviour is not feasible. They
suggested that employing a particular form of non-stationarity would yield
reasonable estimates about the process. Therefore, by assuming the variance
of simulated and empirical series are time-independent and are differenced
stationary, they proposed an error analysis approach using univariate non-
seasonal Autoregressive Integrated Moving Average (ARIMA) modelling, to
validate traffic simulation models. They modelled the relative error component
of the simulated and the empirical data using ARIMA process and checked the
adequacy of the traffic simulator by considering the adequacy of the estimated
model.

The maximum likelihood estimation methods which maximise the log-
likelihood had also been applied in transport model calibration problems [42].
However, error terms in traffic data are not independent and are auto correlated.
Therefore, the significant assumptions in maximum likelihood estimations are
violated in traffic data. Hoogendoorn and Hoogendoorn suggested an approach
to dealing with auto correlation; if the residual auto correlation coefficient of
the maximum likelihood estimator significantly differs from zero, it is necessary
to transform the model by eliminating the auto correlation [42]. Bayesian
approaches, where estimating posterior probabilities of parameters based on
the prior beliefs have been applied to calibrate traffic simulations such as
CORSIM in a simple to moderate complex networks [9, 73].

Once the sensitivity parameters, reliable measures of performance and dis-
crepancy measures have been identified, the traditional approach to calibration
involves choosing an optimisation algorithm capable of solving the calibration
problem. The majority of the simulated based optimisation algorithms are
general-purpose algorithms which are not customised for a specific simulation
scenario. These optimisation algorithms treat the simulator as a black box
[10]. Widely accepted algorithms applied for traffic simulator calibrations
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3.2. ABC for model calibration

are, Simultaneous Perturbation Stochastic Approximation (SPSA)[66, 74, 75],
Genetic Algorithm (GA) [65, 76, 77], Particle Filters and Kalman Filters [10].

3.2 ABC for model calibration

The problem of calibrating parameters for complex models has a long history,
and there are a wide variety of tools available. As an alternative to classical
parameter estimation techniques, ABC has gained attention in recent years as
a flexible and comprehensible way of solving model calibration problems. The
ABC technique initially became popular within population genetics, developed
by Pritchard, Seielstad, Perez-Lezuan and Feldman in 1999 [78]. The ABC
approach simulates data from a given model for different parameter values, and
compares the output with the observed data. Parameter values which produce
data closer to the observed data are retained to form an approximate posterior
sample. In Bayesian inference, the posterior distribution contains the prior
knowledge about the model parameters obtained by fitting the desired data
generating process. More specifically, the prior knowledge about the model
parameters, expressed through the prior distribution, are updated by empirical
data through the model and estimate the posterior distribution which can be
considered as the likelihood of the parameters given empirical data.

ABC were developed to estimate posterior distributions when likelihood
functions are computationally intractable. ABC avoids exact likelihood estima-
tion by comparing simulated data sets with the observed data. More specifically,
a set of parameter points is first sampled from the prior distribution (i.e. based
on the prior knowledge). Then, data is simulated from a data generating
process for a given set of parameters. If the generated data is too different
from the observed data, the sampled parameter values discarded. In precise
terms, the parameters are accepted with a tolerance rather than demanding
them to be unique. In order to compromise the curse of high dimensionality,
ABC algorithms generally reduce the dimension using summary statistics. The
parameters are accepted when simulated summaries are close to the observed
summaries [79].

There are many forms of ABC algorithms with different level of complexity.
The simplest among these is the ABC rejection sampling algorithm [78]. The
ABC accept/reject algorithm was first introduced by Tavaré et al. [80] and
extended by Pritchard et al. [81]. Beaumont et al. [82] introduced the
first improvement of the ABC rejection sampling algorithm to correct the
discrepancy between the simulated and the observed statistics by using local
regression techniques.
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3.2. ABC for model calibration

Simple simulation-based rejection ABC algorithms are inefficient when
the data and the summary statistic are of high dimension, which leads to
a high rejection rate. In order to avoid the high rejection rate, Markov
Chain Monte Carlo ABC (MCMC-ABC) has been introduced where more
simulations are generated in the regions of high posterior probability [83].
Even though MCMC-ABC improves the acceptance rate significantly, it is still
inefficient when the sampling and target distributions are mismatched. In
order to alleviate the inefficiency of existing MCMC-ABC method, Sisson et
al. introduced a novel approach, adapting the Sequential Monte Carlo (SMC)
methods to the standard ABC algorithm [84]. Drovandi and Pettit extended the
approach discussed in [84] to develop a robust algorithm, where the sequence
of discrepancies is selected adaptively by the algorithm [85]. They named this
method the SMC-ABC replenishment (RABC) algorithm.

Nott et al. [86] further improved the ABC algorithm by introducing
a marginal adjustment method, which improves the estimate of the ABC
joint posterior distribution obtained using regression-adjustment ABC method.
They suggested that the proposed strategy allows applications with moderate
to high dimensionality problems. More recently, Li et al. introduced a new
approach, considering the marginal adjustment strategy proposed in [86] and
the asymptotic normality of the Bayesian posterior. They estimate each
bivariate distribution separately and then combine them to obtain the joint
posterior distribution [87]. They argued that the new approach could be
effectively implemented in high-dimension problems.

3.2.1 ABC methods

In Bayesian inference, we obtain the posterior distribution of input parame-
ters declared through the prior distribution, according to the prior belief, are
updated with the new evidence from observed data through the likelihood func-
tion of the model. Using Bayes’ Theorem, the resulting posterior distribution,
p(θ | yobs) can be defined by Equation 3.1 [88].

p(θ | yobs) = p(yobs | θ)p(θ)
p(yobs)

≈ p(yobs | θ)p(θ) (3.1)

where θ is the input parameter, yobs is the observed data, p(θ) is the prior
distribution for unknown parameter, p(yobs | θ) is a likelihood function, p(yobs)
is the marginal likelihood. However, with the complex models, the closed-
form of the p(θ | yobs) is not available. With the exact Bayesian inference, a
common approach is to use simulations methods such as Markov Chain Monte
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3.2. ABC for model calibration

Carlo (MCMC) and SMC to calculate the necessary integrals [88]. However,
if the exact likelihood function, p(yobs | θ) is intractable, as in most of the
traffic simulation models, implementation of standard Bayesian simulations
are impossible. Among many likelihood-free Bayesian posterior approximation
methods, ABC is identified as an effective and easily accessible method for large
scale model calibration methods. The following sections describes the basic
ABC methods that can be incorporate in traffic simulator model calibrations.

3.2.1.1 Standard rejection ABC

If we simulate from the joint prior distribution of parameters and data
p(θ)p(yobs | θ), an exact match is possible between simulated data ysim and
observed data yobs, when the simulated data is discrete. If the set of simulated
parameter values θ∗ gives the exact match of simulated and observed data
(ysim = yobs), then θ∗ is a sample from the posterior distribution.

p(θ∗ | yobs) ∝ p(yobs | θ∗)p(θ∗) (3.2)

However, in most applications, obtaining an exact match is impossible. There-
fore, in standard rejection ABC the exact match is weakened to allow agreement
to within a small distance ε > 0 to the observed data. Hence the standard
ABC rejection sampling algorithm is as follows:

(1) Sample (θi), i=1,2,...,n, from prior p(θ);

(2) Simulate psuedo-data yisim, , i=1,2,...,n, from p(y | θi);

(3) Select (θi) such that: d{yobs, yisim} ≤ ε

Where, d{·} is a metric and the tolerance ε is arbitrarily small.

Therefore the approximate posterior is proportional to,

∫
p(yisim | θi)p(θi)I(d{yobs − yisim} ≤ ε)dysim (3.3)

Where I(·) is the indicator function. Generally, the observed data yobs is of
high-dimension, and hence the rejection rate can be very high for small ε.
Therefore, in order to improve the efficiency of the algorithm, yobs can be
replaced by some lower-dimensional summary statistic S(yobs). If the summary
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statistic is sufficient, then p(θ | yobs) = p(θ | S(yobs). However, for intractable
likelihood functions, it is not typically possible to find low-dimensional sufficient
statistics. Moreover, the choice of summary statistics is highly problem-specific
and have to rely on low dimensional insufficient summaries [87]. There are
several methods to select low-dimensional insufficient summaries as discussed
in [89]. In this chapter we will discuss some summaries for traffic model
calibration in Section 3.3. When we replace the observed data with some
lower-dimensional summary statistic S(yobs), the third step in the standard
reject ABC algorithm becomes:

(3) Select (θi) such that: d{S(yobs), S(yisim)} ≤ ε

Where, S(·) is a summary statistic d{·} is a metric and the tolerance ε
is arbitrarily small.

The approximate posterior then becomes,

∫
p(S(yisim) | θi)p(θi)I(d{S(yobs), S(yisim)} ≤ ε)dysim (3.4)

Beaumont et al [82] improved the standard rejection ABC algorithm in two
ways. For the first innovation, indicator is generalised toKh(d{S(yobs), S(yisim)}),
where Kε(·) is a standard smoothing kernel. Then the approximate posterior
distribution given summary statistics, S(yobs) is:

p(θ | S(yobs)) ∝
∫
p(S(yisim) | θi)p(θi)Kh(d{S(yobs), S(yisim)})ysim (3.5)

For the second innovation, regression adjustments were used to weaken the
effect of the discrepancy between S(ysim) and S(yobs) as summarised in the
following section.

3.2.1.2 Rejection ABC with regression adjustments

For a parameter θi = (θ1, . . . , θm)T of dimension m and the corresponding
summary statistic s = S(ysim) = (s1, . . . , sd)T of dimension d, the weighted
linear regression model is:

θi = α + βT (S(yobs − S(yisim))) + νi (3.6)
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Where νi’s are the errors which are considered to be iid, β is a d×m matrix of
regression coefficients and α is a m× 1 vector of constants. Instead of fitting
the model globally, a local linear regression model is fitted surrounding the
S(yobs). The posterior distribution can be constructed from the model 3.6
when S(yisim) = S(yobs). That means (α + ν1, . . . , α + νn) is a sample from
the posterior distribution p(θi | S(yobs)). The weighted least-squares estimates
(α, β) minimises the model 3.6,

n∑
i=1

(d{θi − (α + βT (S(yobs)− S(yisim)))})2Kh(d{S(yobs)− S(yisim)}) (3.7)

The linear regression adjusted vector denoting the resulting empirical
residuals (νi), then the regression-adjusted vector becomes,

θia = θi − β̂T (S(yobs − S(yisim)) ≈ α̂ + νi (3.8)

3.2.1.3 Asymptotic properties of ABC

The practical implication of standard ABC algorithms highly depends on
the initial adjustments of the algorithm. It requires to correctly specify the
metric d·, summary statistics S(·) and the tolerance ε. Depending on the
choices of these quantities, we can observe significant changes in the posterior
approximation.

The comparison between simulated data and the empirical data is compu-
tationally feasible only when the dimension is reduced using a set of summary
statistics. The dimension reduction by summary statistics, is crucial in ensuring
better performances of the ABC algorithm. Ideally, the posterior approxima-
tion is better if when the summary statistics are sufficient. However, in practice
for complex intractable likelihood functions, it is not achievable to obtain low-
dimensional sufficient statistics. Moreover, the choice of summary statistics
is highly problem-specific and have to rely on low dimensional insufficient
summaries which capture enough information from the observed and simulated
data. Several methods to select low-dimensional insufficient summaries are
discussed in [89]. Furthermore, Fernhead suggested that choosing the number
of summary statistics to be close to, or equal to, the number of parameters is
required to achieve a good approximation of the posterior [90].

The choice of the metric also affects the performances of the ABC algorithm
as it affects the spread as well as correlations of the accepted parameters. A
scaling weights should be used in order to minimises the variability in the
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distance calculation. When the Euclidean distance is used, the common
practice is to standardised each summary statistic with a robust estimate of
the standard deviation [91].

The specification of the tolerance also highly affects the approximation of
the posterior and it depends on the considered ABC approach. The tolerance
rate of a good ABC algorithm will increase as n increases. Furthermore, Scaling
of the bandwidth, εn = O(1/

√
n) is optimal when the regression adjustments

not being used. However, the asymptotic results for ABC with regression
adjustment are stronger. The ABC posterior and its mean can have the same
asymptotic as the true ABC posterior and mean given the summaries, as n
decreasing more slowly than 1/

√
n. Fernhead argued that these strong results

suggest that regression adjustment should be generally applied [90].

Frazier et al. studied the large sample properties of both posterior distribu-
tions and posterior means obtained from approximate Bayesian computation
algorithms [92]. They characterise the rate of posterior concentration under
mild regularity conditions on the underlying summary statistics. They argued
that the limiting shape of the posterior distribution depends on both the rates
which summary statistics converge to observed summary statistics and the
tolerance rate used to accept parameter draws approaching zero. Tolerance
declining to zero is not a rigid requirement for Bayesian consistency. However,
the asymptotic normality of the resulting posterior does require the tolerance
rate to decline to zero.

The most crucial finding of their study is that the existence of a bind-
ing function which holds identifiable conditions for summary statistics, to
have the posterior concentration around the true parameter. If the summary
statistics hold the law of large number and the existence of a binding func-
tion, s(ysim)n,θ → b(θ), then the ABC posterior concentrates around the true
parameter providing the bandwidth tends to zero, ε→ 0 as n→∞.

They argued that the choice of the tolerance rate decides the desired limiting
shape of the posterior. Assuming the summary statistics satisfy the Central
Limit Theorem (CLT) at rate of 1√

n
,

- If
√
nεn → 0, then the ABC posterior will be approximately normal.

- If
√
nεn → c > 0, then it is hard to predict the limiting shape of the

posterior.

- If
√
nεn →∞, then the limiting shape will be determined by the ABC

kernel.
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The choice of kernel asymptotically has little impact as it only affects the
shape of the ABC posterior [90]. For a detailed review on asymptotic and
theoretical properties of ABC, see [90].

3.3 Applying ABC for traffic model

calibration

With the recent development of Intelligent Transportation System (ITS) which
provide more coordinated, and smarter transport network, we could get access
to a massive amount of information related traffic volumes and densities of each
link where a loop detector is installed. In reality, we could easily incorporate
this information in traffic simulation model calibration processes. For traffic
simulator model calibration using ABC, the only requirement is the availability
of some informative summary statistics of the observed data from the desired
network. Then the ABC algorithms will compare these observed summary
statistics with the simulated summary statistics to approximate the likelihood
of the model parameters.

The empirical data actually available to calibrate a traffic simulation
model would typically take the form of a collection of distinct time series
(y1
t )Tt=1, ..., (ynt )Tt=1, where Sit is a vector of observed quantities at time t on day

i.

The t index would typically iterate over a short time scale, e.g. seconds on
minutes, and so yit & yit+1 could potentially be strongly correlated. By contrast
(yit)Tt=1 & (yjt )Tt=1 can reasonably be assumed to be independent. Moreover, if
each time series (yit)Tt=1 is observed during the same period of the day (e.g.
morning peak hour) and on comparable day, e.g. typical weekday, then it is
also reasonable to assure the (yit)Tt=1 are identically distributed. In this context,
T corresponds to the duration of a fixed time window (e.g. 2 hours for morning
peak hour), and we are not interested in T taking arbitrarily large values. By
contrast, n is the number of days on which samples are taken and we would
choose it to be as large as possible, subject practical constraints such as cost
etc.

To model this empirical data collection process via simulation, one generates
n independent runs of some stochastic simulation model, (Z1

t )Tt=1, ..., (Zn
t )Tt=1.

The time series generated by the simulation model typically forms a Markov
chain.
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To study the feasibility of using ABC to calibrate a traffic simulation
model, we therefore generate synthetic empirical data in the format described
above. Specifically, the “observed" data we use in our implementations of ABC
correspond to the realization (y1

t )Tt=1, ..., (ynt )Tt=1 of n independent runs of a
Markov chain with fixed parameters Θ = θ∗. E.g. in the ASEP simulations
below Θ = (α, β), where α is the input probability at the left boundary and β
is the output probability at the right boundary.

In our implementations of ABC, to sample from the likelihood in step two
we again generate data in the same format as above, using the same Markov
chain simulator as used to generate the “observed" data, but with θ chosen
randomly from a suitable prior distribution, rather than with θ fixed to its
“true" value θ∗.

When actually implementing ABC, of course, we must summarise the data
appropriately. In all cases below, our summary statistics are vectors of sample
means, so that each coordinate of the summary is of the form

f̂n(Z) := 1
n

n∑
i=1

1
T

T∑
t=1

f(Zi
t) (3.9)

where Z :=
(
(Z1

t )Tt=1, ...,
(
(Zn

t )Tt=1

)
. From the independence of the set of time

series (Z1
t )Tt=1, ..., (Zn

t )Tt=1, it follows that the law of large numbers and central
limit theorem hold for f̂n(Z) as n→∞, provided f has finite variance; this
will be the case for all examples considered below. In particular, in the case
that (Zi

t)Tt=1 is stationary, we have f̂n(Z) −−−→
n→∞

Ef(Zi
1). If Zi

t is an ergodic
finite Markov chain, which is the case for all the examples we consider below,
we can always ensure Zi

t is as close to stationarity as desired by imposing
a suitable burn in. We evaluate the feasibility of ABC in the traffic model
calibration against two basic traffic models, ASEP and NaSch. Furthermore,
we use ABC to estimate turning rates at a signalised intersection for 4 × 5
network. See Section 2.1.3.

3.3.1 Informative summary statistics for ABC

The macroscopic behaviour of the models we defined in Section 2.1.2 can
be easily described by the different combinations of inflow probability α and
outflow probability β when p = 1. That is, the densities at each cell ρi can be
approximate by different values of α and β as summarised in Section 2.1.2.1
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and 2.1.2.2. Additionally, we can easily reproduce the values of α and β based
on the information related to cell densities ρi.

For ASEP with random sequential updates, it is known [43] that as L→∞:

ρ1(α, β) ∼ ρu(α, β) :=


α, α ≤ 1/2, α ≤ β

1− β(1− β)
α

, β ≤ 1/2, β ≤ α

1− 1
4α α, β ≥ 1/2

(3.10)

ρL/2(α, β) ∼ ρm(α, β) :=


α, α < 1/2, α < β

1− β, β < 1/2, β < α
1
2 α, β ≥ 1/2

(3.11)

ρL(α, β) ∼ ρd(α, β) :=



α(1− α)
β

, α ≤ 1/2, α ≤ β

1− β, β ≤ 1/2, β ≤ α
1

4β α, β ≥ 1/2

(3.12)

Here, the subscripts “u “, “m“,“d“ refer to “upstream“, “mid-block“, and
“downstream“. We note that ρu(α, β) and ρd(α, β) are continuous functions on
[0, 1]2, whereas ρm(α, β) has a jump discontinuity along the (coexistence) line
α = β with 0 ≤ α, β < 1/2.

Furthermore, we note that the map S(α, β) :=
(
ρu(α, β), ρd(α, β)

)
is injec-

tive on [0, 1]2 \
{

(α, α) ∈ [0, 1]2 : 0 ≤ α < 1/2
}
, but is two-to-one along the

line α + β = 1, where the density profile is known to be flat [43].

Therefore, for generic values of (α, β) ∈ [0, 1]2, knowledge of S(α, β) suffices
to recover (α, β). Moreover, if one can distinguish whether the system is in
the high density or low density regime, then knowledge of S(α, β) uniquely
identifies (α, β) for any (α, β) ∈ [0, 1]2. This should be contrasted with the
information available from knowledge of (ρu, ρm) or (ρm, ρd). For either of
these choices, it is impossible to recover (α, β) for any point in the maximum
current phase .

Simple asymptotic expressions (as L→∞) for the density profile are also
known for ASEP with parallel updates, when p = 1:
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ρ1(α, β) ∼ ρu(α, β) :=


α− β + αβ

α(1 + β) , α ≥ β

α

1 + α
, α ≤ β

(3.13)

ρL/2(α, β) ∼ ρm(α, β) :=


1

1 + β
, α > β

α

1 + α
, α < β

(3.14)

ρL(α, β) ∼ ρd(α, β) :=


1

1 + β
, α ≥ β

α

β(1 + α) , α ≤ β
(3.15)

Again note that ρu(α, β) and ρd(α, β) are continuous on [0, 1]2 whereas
ρm(α, β) has discontinuity across the (coexistence) line α = β. Note also that
when p = 1 for parallel updates, the maximum current phase is the single point
(α, β) = (1, 1).

Therefore, we can consider the average densities at the left-boundary ρ1, at
the bulk ρL/2 and at the right-boundary ρL are sufficient statistics for ASEP
when p = 1 irrespective to the update rule. These quantities are not explicitly
defined for the models we described in Section 2.1.1, 2.1.3 and ASEP with
parallel update and p 6= 1. However, we assume the average densities at the
left-boundary ρ1, at the bulk ρL and at the right-boundary ρL are sufficient
statistics for ASEP with parallel update and p 6= 1 and NaSch as well. For the
model we described in Section 2.1.3, we assume that the average speed Vl and
average flow fl at each link are informative statistics.

3.3.2 Synthetic observed data for ABC

In order to calibrate the models we described in Sections 2.1.2 and 2.1.1,
we produced some synthetic observed data: yobs = (ρ1,obs, ρL/2,obs, ρL,obs),
fixing θ = (α, β) in all three density regions: High-density, Low-density and
Maximum-current. For the ASEP with random sequential updates and ASEP
with parallel updates and p = 1 we easily derived the synthetic observed data
from the quantities defined in Section 2.1.2.1 and 2.1.2.2.
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However, for the ASEP with parallel updates and p 6= 1 and NaSch, we
simulate the synthetic observed data: yobs = (E[ρ1],E[ρL/2],E[ρL]) from the
model again fixing θ = (α, β) in all three density regions: High-density, Low-
density and Maximum-current. For calibrate 4× 5 lattice network, we simulate
synthetic observed data, yobs = (E[Vl],E[fl]), fixing θ = (TR20,r, TR20,l). TR20,r
and TR20,l are the right turning rate and the left turning rate at node 20. For
the detailed description refer to the Section 3.3.3.5.

3.3.3 Parameter estimation using ABC

We calibrated all the models defined in Chapter 2, with the observed data
mentioned in Section 3.3.2 utilising the Standard Rejection ABC algorithm
with and without regression adjustments. The pseudo-data ysim were simulated
from each model described in Chapter 2. We approximate the joint posterior
distribution of inflow probability α and outflow probability β in each model
defined in Sections 2.1.2 and 2.1.1. Furthermore, We approximate the joint
posterior distribution of the TR20,r and TR20,l at the signalised intersection (i.e.
at the node 20) for 4× 5 network using the model described in Section 2.1.3.
We consider the informative summary statistics defined in Section 3.3.1. The
systems always start with an empty state.

3.3.3.1 ASEP: Random sequential updates

Particularly, we first consider the most basic transportation model, ASEP
with random sequential updates. We only consider the average density at left-
boundary and right-boundary S(ysim) = (E[ρ1],E[ρL]) as summary statistics
in order to keep the dimension equal to the number of parameters. We
fixed the true parameter vector generating the synthetic observed data at
all three density regimes: low-density (αobs, βobs) = (0.2, 0.8), high-density
(αobs, βobs) = (0.8, 0.2) and maximum-current (αobs, βobs) = (0.8, 0.8). The
synthetic observed data for the all three density regimes: Low-density regime
yobs = (0.2, 0.2); High-density regime yobs = (0.8, 0.8); Maximum-current
regime yobs = (0.69, 0.31) derived from Table 2.1.

We consider a one-dimensional lattice of length L = 500. We take N =
10, 000 iid draws from uniform priors where α ∼ U(0, 1) and β ∼ U(0, 1)
representing all three density regimes. We simulate the system for fixed
samples of size T ∈ {100, 200, 300} and for 1× 108 time steps ensuring that the
stationarity was always reached. We choose the tolerance rates to be 1/T 0.7.
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Figure 3.1: Joint posterior distribution of boundary parameters of an ASEP with random
sequential updates when the observed parameters are in the low-density regime. Sub-figures
(a), (c) and (e) represent the joint posterior distribution of boundary parameters without
regression adjustments for sample sizes 100, 200 and 300 respectively. Sub-figures (b), (d)
and (f) represent the join posterior distribution of boundary parameters with regression
adjustments for sample sizes 100, 200 and 300 respectively. The red dot represents the
observed parameters, α = 0.2, β = 0.8.
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Figure 3.2: Joint posterior distribution of boundary parameters of an ASEP with random
sequential updates when the observed parameters are in the high-density regime. Sub-figures
(a), (c) and (e) represent the joint posterior distribution of boundary parameters without
regression adjustments for sample sizes 100, 200 and 300 respectively. Sub-figures (b), (d)
and (f) represent the join posterior distribution of boundary parameters with regression
adjustments for sample sizes 100, 200 and 300 respectively. The red dot represents the
observed parameters, α = 0.8, β = 0.2.
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Figure 3.3: Joint posterior distribution of boundary parameters of an ASEP with random
sequential updates when the observed parameters are in the maximum-current regime.
Sub-figures (a), (c) and (e) represent the joint posterior distribution of boundary parameters
without regression adjustments for sample sizes 100, 200 and 300 respectively. Sub-figures (b),
(d) and (f) represent the join posterior distribution of boundary parameters with regression
adjustments for sample sizes 100, 200 and 300 respectively. The red dot represents the
observed parameters, α = 0.8, β = 0.8.
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Figures 3.1, 3.2 and 3.3 summarise the joint posterior distribution of
boundary parameters of an ASEP with random sequential updates when
the observed parameters are in the low-density regime, high-density regime
and maximum-current regime for different sample sizes respectively. The
concentration of the joint posterior distribution is increased with the sample
size increases. Moreover, the regression adjustments incredibly increase the
posterior mass around the true parameter vector. For larger sample sizes, the
estimated joint posterior distribution with regression adjustments is identical to
the observed parameters. Both the inflow probability α, and outflow probability
β, can be estimated quite accurately with regression adjustments when the
observed boundary parameters are in all three density regimes. However, when
the true boundary parameters are in the high-density regime, the posterior
distribution converges slowly.

3.3.3.2 ASEP: Parallel updates with p = 1

We consider the system described in Section 2.1.2 with a one-dimensional lat-
tice of length L = 200 with parallel updates and p = 1. We only consider the
average density at left-boundary and right-boundary S(ysim) = (E[ρ1],E[ρL])
as summary statistics in order to keep the dimension equal to the number of pa-
rameters. We fixed the true parameter vector generating the synthetic observed
data at all three density regimes: low-density (αobs, βobs) = (0.2, 0.8), high-
density (αobs, βobs) = (0.8, 0.2) and maximum-current (αobs, βobs) = (1, 1). The
synthetic observed data for the all three density regimes: Low-density regime
yobs = (0.167, 0.21); High-density regime yobs = (0.792, 0.833); Maximum-
current regime yobs = (0.5, 0.5) derived from the quantities defined in Sec-
tion 2.1.2.2.

We take N = 1000 iid draws from uniform priors where α ∼ U(0, 1) and
β ∼ U(0, 1) representing all three density regimes. We simulate the system for
fixed samples of size T ∈ {30, 50} and for 1× 105 time steps ensuring that the
stationarity was always reached. We choose the tolerance rates to be 1/T 0.7.

Figures 3.4, 3.5 and 3.6 summarise the joint posterior distribution of α and β
of the ASEP with parallel update and p = 1 when the observed parameters are
in the low-density regime, high-density regime and maximum-current regime
for different sample sizes respectively.
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Figure 3.4: Joint posterior distribution of boundary parameters of an ASEP with parallel
updates and p = 1 when the observed parameters are in the low-density regime. Sub-
figures (a) and (c) represent the joint posterior distribution of boundary parameters without
regression adjustments for sample sizes 30 and 50 respectively. Sub-figures (b) and (d)
represent the join posterior distribution of boundary parameters with regression adjustments
for sample sizes 30 and 50 respectively. The red dot represents the observed parameters,
α = 0.2, β = 0.8.
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Figure 3.5: Joint posterior distribution of boundary parameters of an ASEP with parallel
updates and p = 1 when the observed parameters are in the high-density regime. Sub-
figures (a) and (c) represent the joint posterior distribution of boundary parameters without
regression adjustment for sample sizes 30 and 50 respectively. Sub-figures (b) and (d)
represents the join posterior distribution of boundary parameters with regression adjustments
for sample sizes 30 and 50 respectively. The red dot represents the observed parameters,
α = 0.8, β = 0.2.
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Figure 3.6: Joint posterior distribution of boundary parameters of an ASEP with parallel
updates and p = 1 when the observed parameters are in the maximum-current regime.
Sub-figures (a) and (c) represents the joint posterior distribution of boundary parameters
without regression adjustments for sample sizes 30 and 50 respectively. Sub-figures (b)
and (d) represents the join posterior distribution of boundary parameters with regression
adjustments for sample sizes 30 and 50 respectively. The red dot represents the observed
parameters, α = 1, β = 1.

When the observed boundary parameters are in the low-density regime, the
estimated inflow probability, α is more accurate than the outflow probability, β.
When the observed boundary parameters are in the high-density regime, the
estimated outflow probability, β is more accurate than the inflow probability, α.
This may be due to the boundary densities are more sensitive to the α when the
system is in low-density regime and more sensitive to the β when the system is in
the high-density regime. Compared to the low-density and high-density regime,
when the observed boundary parameters are in the maximum-current regime of
the ASEP with the parallel update and p = 1, the joint posterior distribution
is significantly less accurate. However, the posterior mass around the true
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parameter vector increases with the regression adjustments. Furthermore, the
posterior concentration improves with the sample size increase. 3.6b and 3.6d.

3.3.3.3 ASEP: Parallel updates with p = 0.5
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Figure 3.7: Joint posterior distribution of boundary parameters of an ASEP with parallel
updates and p = 0.5 when the observed parameters are in the low-density regime. Sub-
figures (a) and (c) represent the joint posterior distribution of boundary parameters without
regression adjustments for sample sizes 30 and 50 respectively. Sub-figures (b) and (d)
represent the join posterior distribution of boundary parameters with regression adjustments
for sample sizes 30 and 50 respectively. The red dot represents the observed parameters,
α = 0.2, β = 0.8.

We consider the system described in Section 2.1.2 with a one-dimensional
lattice of length L = 200 with parallel updates and p = 0.5. We only con-
sider the average density at left-boundary and right-boundary S(ysim) =
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(E[ρ1],E[ρL]) as summary statistics in order to keep the dimension equal
to the number of parameters. We fixed the true parameter vector gener-
ating the synthetic observed data at all three density regimes: low-density
(αobs, βobs) = (0.2, 0.8), high-density (αobs, βobs) = (0.8, 0.2) and maximum-
current (αobs, βobs) = (0.7, 0.7). The synthetic observed data for the all three
density regimes: Low-density regime yobs = (0.348, 0.163); High-density regime
yobs = (0.837, 0.652); Maximum-current regime yobs = (0.789, 0.211) simulated
from the model described in Section 2.1.2 with parallel update and p = 0.5.
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Figure 3.8: Joint posterior distribution of boundary parameters of an ASEP with parallel
updates and p = 0.5 when the observed parameters are in the high-density regime. Sub-
figures (a) and (c) represent the joint posterior distribution of boundary parameters without
regression adjustment for sample sizes 30 and 50 respectively. Sub-figures (b) and (d)
represents the join posterior distribution of boundary parameters with regression adjustments
for sample sizes 30 and 50 respectively. The red dot represents the observed parameters,
α = 0.8, β = 0.2.
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We take N = 1000 iid draws from uniform priors where α ∼ U(0, 1) and
β ∼ U(0, 1) representing all three density regimes. We simulate the system for
fixed samples of size T ∈ {30, 50} and for 1× 105 time steps ensuring that the
stationarity was always reached. We choose the tolerance rates to be 1/T 0.7.

Figures 3.7, 3.8 and 3.9 summarise the joint posterior distribution of α
and β of the ASEP with parallel updates and p = 0.5 when the observed
parameters are in the low-density regime, high-density regime and maximum-
current regime for different sample sizes respectively. Even for smaller sample
sizes, estimated joint posterior distribution is much closer to the observed
boundary parameters.
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Figure 3.9: Joint posterior distribution of boundary parameters of an ASEP with parallel
updates and p = 0.5 when the observed parameters are in the maximum-current regime.
Sub-figures (a) and (c) represent the joint posterior distribution of boundary parameters
without regression adjustment for sample sizes 30 and 50 respectively. Sub-figures (b)
and (d) represents the join posterior distribution of boundary parameters with regression
adjustments for sample sizes 30 and 50 respectively. The red dot represents the observed
parameters, α = 0.7, β = 0.7.
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Like in the ASEP with parallel updates and p = 1, the inflow probability α
is accurately estimated in the low-density regime, and the outflow probability
β is accurately estimated in the high-density regime. The maximum-current
regime in the ASEP with p = 1 is just a single point where α = 1 and
β = 1. The system is close enough to the maximum-current regime if the
inflow probability is large enough. Therefore, the density at the right-boundary
is less sensitive to α. However, the maximum-current regime in the ASEP
with p < 1 represent a range of α and β. Consequently, the density at the
right-boundary is more sensitive to α. Correspondingly, the convergence rate of
the posterior approximation given summary statistics is slower in the p = 1 case
with respect to the p < 1 case. Therefore, compared to the maximum-current
regime in the ASEP with parallel updates and p = 1, when the the observed
boundary parameters are in the maximum-current regime of the ASEP with
parallel updates and p = 0.5, the joint posterior distribution is accurately
approximated.

The posterior mass around the true parameter vector is also increases with
the regression adjustments. Furthermore, the posterior concentration is slightly
improved with the sample size increase.

3.3.3.4 NaSch

Furthermore, we consider the system described in Section 2.1.1 with a one-
dimensional lattice of length L = 200 cells. We consider the parameters, the
maximum speed vmax = 3 and the random deceleration probability d = 0.5.
When the observed parameters represent a low-density regime of NaSch model,
we consider the average density at the middle and at the right-boundary
S(ysim) = (E[ρL/2],E[ρL]) as summary statistics. Otherwise, we consider the
average density at left-boundary and right-boundary S(ysim) = (E[ρ1],E[ρL])
as summary statistics. The reason for not choosing ρ1 as a summary statistic
in low density is because when vmax > 1, vehicles may enter the system without
occupying cell 1, making ρ1 harder to estimate at low density. Two potential
remedies exist for this: replace ρ1 with an average of the occupation of the
first vmax cells; or replace ρ1 with the bulk density ρL/2. We choose the latter
for simplicity.

We fixed the true parameter vector generating the synthetic observed data
at three different density regimes: low-density regime(αobs, βobs) = (0.2, 0.8),
maximum-current regime(αobs, βobs) = (0.4, 0.7) and high-density regime (αobs, βobs) =
(0.8, 0.2). The synthetic observed data for these three density regimes: low-
density regime yobs = (0.0813, 0.158); maximum-current regime yobs = (0.34, 0.31);
high-density regime yobs = (0.886, 0.794) simulated from the model described
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in Section 2.1.1 with vmax = 3 and d = 0.5. We take N = 1000 iid draws from
uniform priors, where α ∼ U(0, 1) and β ∼ U(0, 1). We simulate the system
for fixed samples of size T ∈ {30, 50} for 1× 105 time steps ensuring that the
stationarity was always reached. We choose the tolerance rates to be 1/T 0.7.
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Figure 3.10: Joint posterior distribution of boundary parameters of NaSch when the
observed parameters are in a low-density regime. Sub-figures (a) and (c) represent the joint
posterior distribution of boundary parameters without regression adjustments for sample
sizes 30 and 50 respectively. Sub-figures (b) and (d) represent the join posterior distribution
of boundary parameters with regression adjustments for sample sizes 30 and 50 respectively.
The red dot represents the observed parameters, α = 0.2, β = 0.8.
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Figure 3.11: Joint posterior distribution of boundary parameters of NaSch when the
observed parameters are in a maximum-current regime. Sub-figures (a) and (c) represent
the joint posterior distribution of boundary parameters without regression adjustments for
sample sizes 30 and 50 respectively. Sub-figures (b) and (d) represent the join posterior
distribution of boundary parameters with regression adjustments for sample sizes 30 and 50
respectively. The red dot represents the observed parameters, α = 0.4, β = 0.7.
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Figure 3.12: Joint posterior distribution of boundary parameters of NaSch when the
observed parameters are in a high-density regime. Sub figures (a) and (c) represents the join
posterior distribution of boundary parameters without regression adjustments for sample
sizes 30 and 50 respectively. Sub figures (b) and (d) represents the join posterior distribution
of boundary parameters with regression adjustments for sample sizes 30 and 50 respectively.
The red dot represents the observed parameters, α = 0.8, β = 0.2.

According to Figure 3.10, the ABC algorithm gives a more accurate es-
timate of the inflow probability α than the outflow probability β when the
observed parameters are in a low-density regime. Regression adjustments
greatly improves the accuracy of the posterior approximation. Figure 3.11
summarises the estimated joint posterior distribution of the inflow probability
α and outflow probability β when the observed boundary parameters are
in a maximum-current region. The basic ABC accept/reject algorithm with
regression adjustment estimates both the boundary parameters accurately.
When the observed boundary parameters are in a high-density regime, ABC
algorithm estimates the outflow probability β more accurately than the inflow
probability α as illustrated in Figure 3.12. Regression adjustments and the
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larger samples improve the posterior concentration around the true parameter
vector the same as before.

3.3.3.5 4× 5 lattice network: turning rates

We consider a 4×5 network as illustrated in Figure 3.13 where We fixed all the
turning movements at every intersection excluding node 20. We consider fixed
cycle signals and independent, uniform boundary conditions. The true param-
eter vector generating the synthetic observed data is (TR20,r,obs, TR20,l,obs) =
(0.095, 0.142).

0605 07 08 09 10

3433323129 30

1615141311 12

2221201917 18

2827262523 24

01 02 03 04

38373635

20

Figure 3.13: 4× 5 lattice network

We simulated the network using the model defined in Section 2.1.3. We
take N = 10, 000 Monte Carlo draws from uniform priors where TR20,r ∼
U(0.05, 0.15) and TR20,l ∼ U(0.05, 0.15). We simulated the system for fixed
sample size T = 10. We choose the tolerance rate to be 1/T 0.7. We simulated
the system for two hours ensuring that the stationarity was reached.
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Figure 3.14: Correlation between the average flow, and turning probabilities at Node 20
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Figure 3.15: Correlation between the average speed, and turning probabilities at Node 20
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Figure 3.16: Joint posterior distribution of east-bound right turning probability and left
turning probability at the Node 20

We considered the average speed and average flow of neighbouring links as
summary statistics, S(ysim) = (E[Vl],E[fl]).

Figures 3.14 and 3.15 summarise the relationship between summary statis-
tics and turning probabilities. These plots provide a clear initiative to identify
the most informative summary statistics for calibration. Traffic flow and speed
of west-bound in-link, east north and west-bound out-links are informative to
the turning probabilities. However, since the average flow on north-bound and
south-bound out-links shows the strongest correlation with the turning rates, we
chose the average flow on link 2026 and link 2014, S(ysim) = (E[f2026],E[f2014])
as summary statistics.

Figure 3.16 summarises the estimated joint posterior distribution of the right
turning rate and left turning rate. The regression adjustments approximate the
joint posterior distribution of turning rates accurately even with a small sample
size. To estimate the turning rates at a signalised intersection with ABC, traffic
flow on left-bound and right-bound out links are much informative.
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3.4 Discussion

There are many challenges inherited in validating and calibrating a large-scale
traffic simulation model. One of the critical challenges in model calibration
is constructing the network based on the geographical information and traffic
signal information. Furthermore, we need to define traffic demands such as
origin-destination matrix, turning rates at each intersection and frequency of
pedestrian signals. Moreover, if the network consists of any public transport
mode such as buses or trams, then we need to define the stopping behaviour of
such transit vehicles as well. Likewise, there are many input parameters that
we have to estimate in order to conduct an accurate simulation close to the
actual network. The most challenging factor in the model calibration is, the
high dimension of parameter vector of a typical traffic scenario. The existing
classical calibration techniques fail to handle this curse of high-dimension.

ABC is a computational tool for parameter estimation in situations where
the underlying likelihood functions are intractable which is applicable to
many traffic simulation models. Instead of using likelihood function, the
ABC methods quantify the similarities between observed data summaries and
repeated simulations from the model. The only requirement to conduct a
calibration utilising ABC is to have a data generating process and observed
summary statistics to compare.

Nowadays, most of the busy traffic networks in the world are incorporating
coordinated or adaptive traffic signal systems such as SCATS, Main Traffic Sig-
nal System (MTSS), Split Cycle and Offset Optimization Technique (SCOOT)
and Adelaide Coordinated Traffic Signal System (ACTS). These types of traffic
control systems can record traffic volumes for binned time intervals for each
lane at each signalised intersection. Generally, there is a considerable amount
of information regarding traffic volumes recorded in these types of systems
which is useful in model calibration using ABC.

In this chapter, we studied the versatility of ABC in estimating the pa-
rameter space of numerical models simulating simple traffic flow updates. We
consider ASEP with a few different update rules and NaSch in our study. We
consider the basic ABC algorithm, accept/reject ABC with and without regres-
sion adjustments for the calibration. The results evident that the boundary
parameters can be estimated accurately even with the most primitive ABC
algorithm accept/reject with regression adjustments. Moreover, the summary
statistics we consider, average density at the start and the end of the link that
are easily measurable in practice with the loop detectors accurately calibrated
the simple stochastic traffic models. Furthermore, with the average flow on
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right-bound and left bound links, the turning rates also can be accurately
approximated.

Complex traffic networks depend on high-dimension parameter space and
the computational burden associated with calibration process are significant.
However, ABC can be applied to more complex traffic simulations models,
systematically, without relying on inefficient classical calibration techniques.
More extensive networks can be calibrated as a combination of several ABC
chunks which makes the process more efficient. Besides, the ABC approach
estimates a distribution of parameters given observed summary statistics disre-
garding the classical perspective of having only one realisation for a particular
traffic simulator calibration problem. ABC approximates the likelihood of the
parameter where we can sensibly choose the correct parameters not depending
on any particular choice of parameters.

Fortunately, there are recent works on much efficient ABC algorithms
such as MCMC-ABC, Sequential Monte Carlo ABC (SMC-ABC), RABC and
marginal adjusted ABC, which can be useful in calibrating much complex
traffic simulation model. Incorporating some of these approaches into traffic
simulator model calibration is a promising direction for future research in this
area.
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Link travel time distributions 4

4.1 Overview

One of the most important characteristics in modelling vehicular dynamics
is link travel time distributions. It is evident that many researchers had
different approaches to estimate link travel times such as time series forecasting
methods [12, 13, 93, 94], Kalman filtering [14, 15], Neural Network [16–18, 95]
non-parametric methods [96] and empirical distribution estimations methods
[19–22]. Majority of these findings are subject to empirical data and cannot be
generalised. A systematic framework which estimates link level travel time is
essential for modelling vehicular dynamics in urban road networks. Researchers
model travel time using a uni-modal symmetrical continuous distribution, such
as normal distribution [23]. Many researchers argue that the travel time
distributions are asymmetric and considerably positively skewed [19–22, 97]
unlike normal distribution. In recent years researchers start to argue that the
uni-modal distributions might not be sufficient to represent link travel time
distributions [22, 98–105] as the travel time is highly sensitive to the traffic
light at intersections as well.
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4.1.1 Literature Review: link travel time distributions

Mazloumi et al. [106] showed that in narrower departure time windows, bus
travel time distributions are best characterised by a normal distribution and
for wider departure time windows, peak-hour travel time follows a normal
distribution, while off-peak travel time follow a log-normal distribution using
a Global Positioning System (GPS) data set for a bus route in Melbourne,
Australia. Kieu et al. [20] analysed bus travel time data and recommended
that the bus travel time on urban corridors can be well approximated by a
log-normal distribution. Rahaman et al. [21] showed that the log-normal
distribution performed significantly better up to about 7km length of links
based on the bus travel time data collected in Calgary Transit System, Canada.
Links longer than 7km, the normal distribution outperformed the log-normal
distribution. The shape of the travel time distribution is significantly influenced
by the congested level of the link. van Lint et al. [107] have identified four
phases, free flow, congestion onset, congestion, and congestion dissolve with
distinctively different shapes of travel time distributions.

However, it is evident that the travel time data consists of a reasonably
longer upper tail which cannot be fully characterised by skewed distributions
such as log-normal, Weibull or gamma distributions [22]. Susilawati et al. [22]
argued that the travel time distributions can be characterised by very long
upper tail and the Burr distribution can be considered as a leading candidate
for capturing travel time variability. They studied two separate routes and
estimated the travel time distributions for every link. Lengths of these links
varied in between 135m-4008m. Their findings confirm that the travel time
can be well approximated by two-parameter Burr distribution except for a few
links in the inner city. However, Burr distribution is not a good candidate for
travel time data as it is a power-law distribution which is first introduced to
model income distributions. The distribution has a significantly longer upper
tail which cannot be explicitly explained for travel time data.

Guo et al. [98] proposed a multi-state model utilising a Gaussian mixture
distribution to model travel times on a link at San Antonio, Texas. They
considered two states of travel times: trips having significantly shorter travel
times and trips having significantly longer travel times. They argued that the
longer travel times could be the delay caused by traffic incidents. Kazagli
and Koutsopoulos [99] proposed a mixture of two log-normal distributions to
represent travel time based on the Automatic vehicle identification (AVI) data
collected from several corridors in central Stockholm, Sweden. They argued
that one population represents the vehicles that travel through the network
without any disturbances, and the other one represents the vehicles that are
delayed for various reasons. Susilawati et al. [22] noticed some of the links they
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studied have bi-modal travel time distributions and suspected the first cluster
might represent the vehicles that travel with a free flow speed while the second
cluster represents the vehicles with very long travel times. They argued that
shorter links with queue accumulation at intersections due to traffic lights could
be the reason for having two peaks in travel time. Ji et al. [101] also claimed
that the link travel time is bi-modal with one mode corresponding to travels
without delays and the other for travels with delays. Ma et al. [100] estimated
the bus travel time distribution using Automatic Vehicle Location (AVL) data
collected on two different bus routes over 6 months in Brisbane. They argued
that the uni-modal distributions such as normal, log-normal, logistic, log-
logistic and gamma models have relatively similar performance considering
bus travel times on a route level. However, the link level bus travel time is
multi-modal and can be well approximated by the use of mixture distributions
such as Gaussian mixture models. They used up to three modes, which can
be related to free flow, recurrent and non-recurrent traffic states, to describe
the probability distributions of bus travel time. Chen et al [104] also fitted
a mixture of Gaussian models to bus travel time distribution for different
traffic states. Their results indicate that the travel time during peak hours
can be well approximated by a mixture model with four components and the
travel time during off-peak hours can be well approximated by two components.
Chen, Yin and Sun [105] proposed a finite mixture of regression model with
varying mixing proportions to estimate route travel time distributions based
on AVI data. They incorporated the effect of signal timing in their study and
concluded that the multi-state distributions provide a superior fit over the
alternative uni-modal distributions. Qin and Yun [108] proposed a Bayesian
approach based on particle filter framework to estimate link travel times based
on Floating Car Data in Nanjing, China. They considered four different traffic
states, non-stopped, stopped, stopped with delays and stopped twice or more,
to exhibit travel times on a link experienced by vehicles.

Many researchers tend to incorporate link level travel time distributions
to estimate the path level travel time distribution considering the correlation
structure of link level travel time distributions [109–113]. Chen et al. [109,
110] introduced a copula-based method to model the dependent structure
of travel times between links in a corridor. They first divided the desired
arterial into two connected road segments; each consists of more than one
link and applied a standard two-dimensional copula function selected from the
family of bi-variate copulas to fit the travel time observations between two
connected segments. They claimed that the link level travel time distributions
are more complex and there exists a multi-modality phenomenon than the
path level travel time distributions. They argued that the reason for this
may be link travel times are more sensitive to intersections and to stop delays
in shorter distances. However, they failed to explain the behaviour of the
model parameters according to the observed travel times. Yu et al. [111]
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also introduced a copula-based approach to estimate link-level and path-level
travel time distributions by considering the phenomenon called Channelisation
Section Spillover and the correlation of links. The model was assessed with
travel time data on an arterial road in Hangzhou, China. They also failed to
make any assumptions regarding input variables. Recently Qin et al. [112]
proposed a pair copula construction approach to estimate travel time along
a route using a more general and flexible structure of depicting dependence
between consecutive link travel times. They introduced bi-variate copulas in
each pair-copula to deal with the complex correlations between link travel
times. However, they did not incorporate the effect on signal timing and offset
setting at each intersection into the travel time estimation. Sen et al. [113]
utilised the estimated link level travel time distributions to estimate the joint
distribution of path travel time distribution. They considered the travel time
volatility to quantify the dependent structure of the link travel times. They
claimed that the Generalised hyperbolic distribution can be considered as
the candidature distribution for the link level travel time based on the log
likelihood values. None of these studies can be generalised as these results are
subject to the route level characteristics and operating environments.

Recently, Wang et al. [114] analytically derived the travel time distribution
through an intersection using the well-established LWR shock wave model. In
this study they considered the stochasticity of free flow and assumed that the
free flow pace follows a normal distribution. Consequently, they approximated
the distribution of travel time to pass a signalised intersection from a certain
location in the upstream link by incorporating the length of the road segment.
They argued that the travel time distribution without delay, that is the vehicles
not delayed at the intersection, should follow a normal distribution with some
mean and standard deviation while the travel time distribution with delays
also follows normal distribution with a slightly higher mean incorporating the
delay imposed at the intersection and with the same standard deviation as
travel times without delays. They only considered the signal time dynamics
at the downstream junction rather than both upstream and downstream
intersections. Hence, the results cannot be generalised to estimate the link
travel time distribution explicitly. Luo et al. [102] proposed an adaptive
clustering technique to estimate mean travel time in signalised road segments
and they studied the multi-state properties of link travel times with the data
collected from point-to-point detectors. However, they haven’t stated any
arguments regarding the underlying probabilistic distribution of the link travel
time.

It is evident that these studies do not present consistent results. None
of the results provide a clear initiative to the link travel time distributions.
Furthermore, the link travel time distributions are highly sensitive to the traffic
light dynamics at signalised intersections. Longer red time may cause vehicle
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4.2. Non-signalised links

queue accumulation at the intersection and higher congestion on the upstream.
Longer green time allows more vehicles to pass through the intersection and
less congestion on the upstream. Moreover, the linking pattern of the traffic
signals at consecutive intersections also has a significant impact on the delay
imposed at the intersections. With the optimal offset many vehicles can join
the green wave and hence shorter travel time can be expected.

In this chapter we propose a model to approximate link travel time1
distribution for simple stochastic car following models based on Negative
Binomial Distribution. We evaluate the proposed model against NaSch. In
addition to that, we investigate the effect of traffic light dynamics at signalised
intersections on link travel time distribution utilising NaSch model as well.

4.2 Non-signalised links

4.2.1 Mean-field approximation

α β

pi

.........

L

Figure 4.1: Link Configuration: Parameters α, β and pi represent the traffic inflow proba-
bility, outflow probability and cell dependent hopping probability respectively.

To gain some physical intuition for the form of the travel time distribution, we
begin by describing a simple mean-field type approximation for ASEP (with
parallel updates), which explicitly neglects correlations between cells. The cen-
tral, but simple, observation is that conditioned on cell i+ 1 being unoccupied,
the number of steps that a vehicle will spend in cell i is a geometric random
variable with success parameter p. Therefore, removing the conditioning, but
neglecting correlations, we expect that to a good approximation the number
of time steps a vehicle on cell i waits before moving to cell i+ 1 is geometric
with (effective) parameter p(1− ρi+1), where ρi+1 is the average density of cell
i+ 1. Further approximating ρi+1 by the bulk density ρ, it follows that, under

1The link travel time is the amount of time that elapses between when a vehicle first
enters and link and when it leaves. In our discrete models, this is simply the number of
iterations a vehicle spends on a link.
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the above approximation, the travel time on a link of length L will be a sum
of iid geometric random variables, each with parameter peff := p(1 − ρ). It
is well-known that the sum of iid geometric random variables has a negative
binomial distribution. Therefore, the above mean-field argument suggests that
the travel time for ASEP should be well-approximated by random variable TL
which has negative binomial distribution with parameters (L, peff), i.e.

P (TL = t) =
(
t− 1
L− 1

)
(1− peff)t−LpLeff, t = L,L+ 1, . . . (4.1)

In particular, it is elementary to show that TL has mean L/peff and variance
L(1− peff)/p2

eff. Moreover, since TL is sum of iid random variables with finite
variance, the central limit theorem implies that for large L, the distribution of
TL will be well approximated by a normal distribution, N(L/peff, L(1−peff)/p2

eff).
Thus, the above simple physical picture strongly suggests that the travel time
on a single link of length L should have mean and variance proportional to L,
and should be approximately normally distributed, at least when L is relatively
large.

α β.........

L− q

.........

q

β

Figure 4.2: Link Configuration: Parameters α, β and q represent the traffic inflow proba-
bility, outflow probability and queue length respectively.

We now consider a refinement of the above picture for p = 1 at low-density.
In this case, the system consists of a queued domain, of length Q, connected
to the right boundary, and a free-flow domain, of length L−Q, connected to
the left boundary; see Figure 4.2. Conditioned on a queue length of Q = q, the
travel time of a vehicle through the free-flow domain is simply L− q. Since
vehicles leave the queue with probability β, and p = 1, vehicles within the
queue also move forward with probability β. Therefore, conditioned on Q = q,
the number of time steps a vehicle remains in the system after it joins the
queue has a negative binomial distribution with parameters (q, β). Moreover,
the distribution of Q can be modelled by a single server M/M/1 queue in
its steady state, conditioned on Q ≤ L, where inter-arrival times and service
times are exponentially distributed with rates ρ and 1− ρL respectively [115],
yielding

P (Q = q) = (1− γ)
1− γL+1γ

q, 0 ≤ q ≤ L, (4.2)

where
γ := ρL/2

(1− ρL) = αβ

β − α + αβ
.
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It follows that

P (T = t) = (1− γ)
1− γL+1 (1− β)t−L

L∑
q=0

(
t− L+ q − 1

q − 1

)
(βγ)q (4.3)

The Equation 4.1 with effective hopping probability is used to approximate
the travel time of a vehicle throughout this chapter, unless the system is in
the low-density regime with deterministic updates.

4.2.2 Simulations: ASEP

This section tests the accuracy of the approximations discussed in the previous
section, by simulating ASEP with fully parallel dynamics, for both deterministic
(p = 1) and stochastic case (p < 1) bulk updates. While some of these results,
particularly those relating to p = 1, may not be of direct practical interest,
they will likely be of theoretical interest within statistical mechanics. From
that perspective, the approximations discussed in the previous section can
be viewed as mathematical conjectures, and this section provides numerical
evidence in their support. This is particularly the case for the generic Gaussian
behaviour of the travel time, which suggests that a central limit theorem holds.
In addition to being of theoretical interest, such a central limit theorem, if
extended to more realistic models, would also be of practical interest.

4.2.2.1 Deterministic updates

With deterministic updates (p = 1), two sub phases in low-density and high-
density regimes, LD2 and HD2 vanish and the system has only three different
phases: LD (α < β), HD (α > β) and MC(α = β = 1). We consider two
different inflow probability and outflow probability combinations: α = 0.8 and
β = 0.2 corresponding to high-density, and α = 0.1 and β = 0.6 corresponding
to low-density. We simulated systems with various L ≤ 1000 for approximately
5000 iterations, ensuring that stationarity was always reached. We recorded
the number of time steps that a vehicle needs to get through the link.
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Figure 4.3: Travel time distribution of a vehicle in high-density regime (α = 0.8 and
β = 0.2) of an ASEP with deterministic updates. The blue curve represents the approximated
travel time distribution. Empirical distributions are smoothed with non-parametric Gaussian
kernel.

Figure 4.3 shows the simulated travel time distribution in high-density.
Comparing L = 50 with L = 200, it is clear that the distribution is tending
to a Gaussian, as argued in the previous section. Moreover, the simulated
distribution is in excellent agreement with a Gaussian distribution with the
parameters outlined in the previous section, using the analytical value of the
bulk density given in Chapter 2. It would seem likely that this conjectured
central limit theorem, with explicit forms for the shift and scale parameters
used in the standardisation, could actually be proved rigorously in the case
p = 1; this would be an interesting avenue for future work.
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Figure 4.4: Travel time distribution of a vehicle in low-density regime (α = 0.1 and β = 0.6)
of an ASEP with deterministic updates. The blue and the golden curves represent the
approximated travel time distribution based on the empirical queue length and queuing
theory respectively. Empirical distributions are smoothed with non-parametric Gaussian
kernel.

54



4.2. Non-signalised links

Figure 4.4 shows the simulated travel time distribution in low-density. Also
shown is the theoretical prediction (4.3); the agreement is clearly excellent.

4.2.2.2 Stochastic updates

With p < 1, the system can obtain all five regimes illustrated in Figure 2.4.
As argued in Section 4.2.1, neglecting correlations, vehicles in the system with
stochastic updates will move forward with an effective hopping probability
peff = p(1 − ρ), and the travel time distribution should be approximately
N(L/peff, L(1 − peff)/p2

eff) for large L. Moreover, the exact value of the bulk
density ρ is known exactly [58], even when p < 1. We consider six different
inflow and outflow probability combinations with p = 0.5 where the critical
probability is 0.293(= 1−

√
1− p);

- α = 0.1 and β = 0.2 in LD1 regime; α < β < 0.293.

- α = 0.001 and β = 1 in LD2 regime; α < 0.293 < β.

- α = 0.1 and β = 0.6 in LD2 regime; α < 0.293 < β.

- α = 0.2 and β = 0.1 in HD1 regime; β < α < 0.293.

- α = 0.8 and β = 0.2 in HD2 regime; β < 0.293 < α

- α = 0.4 and β = 0.7 in MC regime; α, β > 0.293.

A very low-density regime with α = 0.001 and β = 1 was considered to
understand the travel time distribution of a vehicle when the interaction
among vehicles is minimal. We simulated the system for all six cases for
approximately 5000 time steps, ensuring that stationarity was always reached.

Both the empirical and approximated distributions are bell-shaped following
similar distributions. Therefore, we can simply compare their estimated
and approximated parameters µ and σ. Figures 4.5 and 4.6 summarise the
approximated and empirical mean µ and variance σ2 for the travel time
distribution of an ASEP in all the five density regimes for varying sizes of
links. To test the dependence of µ and σ with L, we fit non-linear weighted
least square (NWLS) estimates for both approximated and observed means
and variances incorporating the Levenberg-Marquardt algorithm [116]. See
Tables 4.1 and 4.2.
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Table 4.1: Non-linear WLS Regression Fit for empirical and approximated µ of travel time
of an ASEP with varying link sizes. Formula: µ = b× Lc

Empirical Approximation

LD1: α = 0.1, β = 0.2 b 2.6284∗∗∗[±0.014094] 2.450∗∗∗[±9.126× 10−15]
c 0.9729∗∗∗[±0.001066] 1∗∗∗[±7.327× 10−16]

LD2: α = 0.001, β = 1 b 2.019∗∗∗[±0.006358] 2.004∗∗∗[±1.208× 10−14]
c 0.999∗∗∗[±0.000534] 1∗∗∗[±1.008× 10−15]

LD2: α = 0.1, β = 0.6 b 2.4349∗∗∗[±0.009347] 2.450∗∗∗[±4.09× 10−15]
c 1.0009∗∗∗[±0.000668] 1∗∗∗[±2.793× 10−16]

HD1: α = 0.2, β = 0.1 b 9.5708∗∗∗[±0.016240] 10.89∗∗∗[±3.521× 10−14]
c 1.00791∗∗∗[±0.000368] 1∗∗∗[±6.362× 10−16]

HD2: α = 0.8, β = 0.2 b 5.7804∗∗∗[±0.056080] 5.75∗∗∗[±9.905× 10−15]
c 0.9988∗∗∗[±0.001663] 1∗∗∗[±2.881× 10−16]

MC: α = 0.4, β = 0.7 b 3.68105∗∗∗[±0.012360] 4∗∗∗[±2× 10−16]
c 1.0126∗∗∗[±0.000594] 1∗∗∗[±2× 10−16]

−−−
*** significance level is ≈ 0

The mean and variance of the travel time are proportional to the system
size L. The approximated means are almost identical to the empirical values in
all density regions except for LD1 and HD1. Even, the fitted NWLS estimates
for approximated and empirical means are mostly similar for all the cases
except for LD1 and HD1 as in Table 4.1. The assumption of the flat density
profile does not well capture the LD1 and HD1 case. Therefore, the local
density profile has a slight increment at the right-boundary when the system
is in LD1 regime, and a slight increment at the left-boundary when the system
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(f) MC: α = 0.4 and β = 0.7

Figure 4.5: Mean comparison of approximated and empirical travel times of an ASEP for
different density regions with varying link sizes. Error bars corresponding to one standard
deviation are shown. Fitted line of NWLS estimates for empirical mean travel time is shown.
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(a) LD1: α = 0.1 and β = 0.2
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(b) LD2: α = 0.001 and β = 1
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(d) HD1: α = 0.2 and β = 0.1
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Figure 4.6: Variance comparison of approximated and empirical travel times of an ASEP
for different density regions with varying link sizes. Error bars corresponding to one standard
deviation are shown. Fitted line of NWLS estimates for empirical mean travel time is shown.
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is in HD1 regime [58]. As a result of this queue accumulation, there exists a
discrepancy between the empirical and theoretical means.

Mean travel time approximation is overestimated in HD1 regime since
vehicles travel faster in the low-density region at the left-boundary than the
assumed scenario. In LD1 regime, neglecting the queued region at the right-
boundary, we expect the approximated means to be underestimated. However,
in Figure 4.5a, approximated means are slightly overestimated. The reason for
this might be the effective hopping probability is slightly lower than what we
assume to be true. When we consider the fitted NWLS parameters in Table 4.1,
the coefficient of L is slightly higher for empirical mean travel times than the
approximated mean travel time while the exponent of L is slightly lower. The
exponent of L should always be one. However, the NWLS fits for the exponent
of L of the empirical travel time is slightly lower. Hence the coefficient of L
gets slightly higher.

The approximated variances are mostly similar in the very low-density
region in the LD2 regime (see Figure 4.6b). Having very low inflow probability
and high outflow probability, the link has a uniform density profile. The
interaction between vehicles is also minimal and the deceleration of vehicles is
strictly due to the deceleration probability p. Therefore, in very low-density
regime, vehicles have uniform hopping probabilities throughout. In the LD1
case, even though the approximated and empirical variances are much closer,
the slope is different. NWLS estimates in Table 4.2 also reveal that the
variances much differ, as the coefficient of L for approximated variances is
lower than the empirical variances. The approximated and empirical variances
are much closer in the HD1 and HD2 regime. However, the fitted NWLS
parameters are much different.

In LD2 regime our model underestimated the variance while overestimated
in the MC regime. See Figures 4.6c and 4.6f. However, the exponent terms of
L in the NWLS estimate for approximated variances are slightly closer for all
the density regimes except for LD1 (see Table 4.2).

We can expect a slightly skewed travel time distribution in the LD1 regime
of the ASEP with stochastic updates due to the slight increase in the local
density at the right boundary as shown in Figure 4.7a. However, as the size
of the link increases, the increment in the density profile becomes negligible.
Therefore, the travel time distribution of a vehicle in the LD1 regime of the
ASEP with stochastic updates converges to a normal distribution as the link
size increases. See Figure 4.7b.
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Figure 4.7: Travel time distribution of ASEP when the system is in the LD1: α = 0.1 and
β = 0.3. Blue curve represents the standard normal distribution. Standardised empirical
distributions are smoothed with non-parametric Gaussian kernel.

Table 4.2: Non-linear WLS Regression Fit for empirical and approximated σ2 of travel time
of an ASEP with varying link sizes. Formula: σ2 = b× Lc

Empirical Approximation

LD1: α = 0.1, β = 0.2 b 8.6041∗∗∗[±0.243662] 3.552∗∗∗[±0.00× 10−15]
c 0.8082∗∗∗[±0.005806] 1∗∗∗[±0.00× 10−16]

LD2: α = 0.001, β = 1 b 1.554∗∗∗[±0.114800] 2.012∗∗∗[±1.391× 10−14]
c 1.058∗∗∗[±0.013330] 1∗∗∗[±1.157× 10−15]

LD2: α = 0.1, β = 0.6 b 3.7204∗∗∗[±0.148277] 3.552∗∗∗[±3.989× 10−15]
c 1.1359∗∗∗[±0.007475] 1∗∗∗[±1.878× 10−16]

HD1: α = 0.2, β = 0.1 b 93.3491∗∗∗[±1.359440] 107.7∗∗∗[±4.036× 10−13]
c 0.9938∗∗∗[±0.003420] 1∗∗∗[±7.373× 10−16]

HD2: α = 0.8, β = 0.2 b 23.1890∗∗∗[±4.530700] 27.31∗∗∗[±7.951× 10−14]
c 1.0014∗∗∗[±0.038300] 1∗∗∗[±4.869× 10−16]

MC: α = 0.4, β = 0.7 b 6.5677∗∗∗[±0.355548] 12∗∗∗[±5.565× 10−14]
c 0.9932∗∗∗[±0.009999] 1∗∗∗[±7.756× 10−16]

−−−
*** significance level is ≈ 0
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Figure 4.8: Standardised travel time distribution of ASEP when the system is in the
LD2 regime of an ASEP (α = 0.001 and β = 1). Blue curve represents the standard
normal distribution. Standardised empirical distributions are smoothed with non-parametric
Gaussian kernel.

Figure 4.8b illustrates the standardised travel time distribution for an
ASEP in the LD2 regime with a very low-density. The travel time distribution
converges to a normal distribution irrespective of the link size since the local
density profile is always flat. However, for smaller link sizes with a slightly
higher density (i.e., α = 0.1 and β = 0.6), the travel time distribution is slightly
skewed, but converges to a normal distribution as the link size increases (see
Figure 4.9).
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Figure 4.9: Standardised travel time distribution of ASEP when the system is in the LD2
regime (α = 0.1 and β = 0.6). Blue curve represents the standard normal distribution.
Standardised empirical distributions are smoothed with non-parametric Gaussian kernel.
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Figure 4.10: Standardised travel time distribution of ASEP when the system is in the
HD1 regime (α = 0.2 and β = 0.1). Blue curve represents the standard normal distribution.
Standardised empirical distributions are smoothed with non-parametric Gaussian kernel.

The local density profile of the ASEP with stochastic updates in the
HD1 regime also has a slight increase at the left-boundary. For shorter
links, the impact of heterogeneous density region significantly affects to the
approximation of travel time distribution since we assume the density profile
to be homogeneous. The empirical travel time distribution is slightly skewed
as illustrated in Figure 4.10a. However, for longer links (i.e. L is large enough),
the impact of the ignoring the heterogeneous region is insignificant and the
travel time distribution converges to a normal distribution. See Figure 4.10b.
Irrespective of the link size, in the HD2 regime where the heterogeneous density
region is much smaller, the travel time distribution approximately follows a
normal distribution as illustrated in Figure 4.11.

When the system is in the MC regime, the density profile has a horizontal
integral shape where the density is slightly deviating from the bulk density
at the boundaries. For longer links, the impacts of the two regions possibly
cancel out due to the density in one side is higher and the other is lower, and
the density profile is symmetrical. Therefore, as illustrated in Figure 4.12, the
link travel time distribution converges to a normal distribution as the link size
increases.
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Figure 4.11: Standardised travel time distribution of an ASEP when the system is in the
HD2 regime (α = 0.2 and β = 0.8). Blue curve represents the standard normal distribution.
Standardised empirical distributions are smoothed with non-parametric Gaussian kernel.
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Figure 4.12: Travel time distribution of an ASEP when the system is in the MC regime
(α = 0.4 and β = 0.7). Blue curve represents the standard normal distribution. Standardised
empirical distributions are smoothed with non parametric Gaussian kernel.

4.2.3 Simulations: NaSch

We evaluate the travel time distribution of NaSch for two different density
regions: LD (α < β) and HD (β < α). We simulate the NaSch model with
vmax = 3 and p = 0.5 for different inflow and outflow probability combinations:
α = 0.001 and β = 1 representing a link with very low-density region, α =
0.1 and β = 0.6 representing a low-density region, α = 0.4 and β = 0.7
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representing a maximum-current region and α = 0.8 and β = 0.2 representing
a high-density region.
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Figure 4.13: Travel time distribution of NaSch when the system is in very low-density
region (α = 0.001 and β = 1). Blue curve represents the standard normal distribution.
Standardised empirical distributions are smoothed with non-parametric Gaussian kernel.

We simulate all four systems for approximately 5000 seconds, ensuring that
stationarity was always reached. We record the number of time steps that
a vehicle remains in the system. Figures 4.13, 4.14, 4.15 and 4.16 illustrate
the standardised travel time distributions for different density regions. When
the links are congested, the travel time distribution converges to a normal
distribution, irrespective of the link size.
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Figure 4.14: Travel time distribution of NaSch when the system is in low-density region
(α = 0.1 and β = 0.6). Blue curve represents the standard normal distribution. Standardised
empirical distributions are smoothed with non-parametric Gaussian kernel.
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Figure 4.15: Travel time distribution of NaSch when the system is in maximum-current
region (α = 0.4 and β = 0.7). Blue curve represents the standard normal distribution.
Standardised empirical distributions are smoothed with non-parametric Gaussian kernel.

When the link is not congested, with link sizes, the link travel time distribu-
tion is skewed. However, as the link size increases, the travel time distribution
converges to a normal distribution as illustrated in Figure 4.14. In the very
low-density regime where the interaction between vehicles is minimal, the
travel time distribution is closer to a symmetric bell shaped distribution and
converges to a normal distribution, as link sizes increase. See Figure 4.13.
When the link is congested, the link travel time distribution converges to a
normal distribution irrespective of the link size as represented in Figures 4.15
and 4.16.

0.0

0.1

0.2

0.3

0.4

-2.5 0.0 2.5 5.0

Standardised Travel Time

D
e

n
s
it
y

(a) L=100 cells

0.0

0.1

0.2

0.3

0.4

-2.5 0.0 2.5 5.0

Standardised Travel Time

D
e

n
s
it
y

(b) L=300 cells

Figure 4.16: Travel time distribution of NaSch when the system is in high-density region
(α = 0.8 and β = 0.2). Blue curve represents the standard normal distribution. Standardised
empirical distributions are smoothed with non-parametric Gaussian kernel.
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4.3 Signalised links

As we discussed in Section 4.2, the travel time distribution on a link can be
well approximated by a normal distribution when the impacts from the other
factors such as signalised intersections, lane changing and road geometry are
minimal. However, in practice, the effect of traffic lights on the link travel time
cannot be neglected as it changes the travel time distribution dramatically. An
extended period of time at a red light may cause vehicle queue accumulation at
the intersection and heavy congestion on the upstream link, whereas prolonged
green time allows more vehicles to pass through the intersection and less
congestion on the upstream link. Moreover, the linking pattern of the traffic
signals at consecutive intersections also has a significant impact on the delay
imposed at the intersections. A less obvious observation is that poor offset
choices lead to multi-modal travel time distributions.

As recent studies suggest, rather than having a uni-modal distribution
to describe travel time, using different components to represent different
traffic phases seems more reliable. In this section we present our findings on
the distribution of link travel time with traffic lights at both upstream and
downstream intersections. We consider two different congestion levels, low
and high-density utilising the NaSch. In addition, we investigate the effect
of varying offsets and green times at the intersections on the link travel time
distribution.

4.3.1 Models

in link bulk link out link
Lu L Ld

α β
traffic light

Figure 4.17: Link Configuration: Parameters α and β represents the traffic inflow and
outflow probabilities respectively.

4.3.1.1 System configuration

We consider a link of total size Lu +L+Ld cells. See Figure 4.17. Intersections
with traffic lights are placed at locations Lu and Lu + L, allowing a bulk link

66



4.3. Signalised links

of length L in the middle of the system. A vehicle is inserted to the system
with some inflow probability, α ∈ (0, 1) at the in-boundary (left-boundary)
and removed from the out-boundary (right-boundary) with some outflow
probability, β ∈ (0, 1). A vehicle occupies one cell, take vmax + 1 values of
speed v = 0, 1, 2, ..., vmax with some deceleration probability p. Each vehicle
is move forward according to its velocity obeying NaSch dynamics. Refer
Section 2.1.1. We consider a fixed cycle length c at both intersections, green
times g1 and g2, at upstream and downstream intersections, respectively, and
offset d (the time delay of the start of the green light at the downstream
intersection). We record the travel time of each vehicle passing through the
bulk link. Furthermore, we record the queue length, that is the number of
vehicles stopped during the red time at the downstream intersection, at the
beginning of every green phase.

We set L = 100 cells, Lu = Ld = 100 cells. Aiming an average free flow
speed of 50 km/h, the speed and the deceleration probability of the model
were fixed at vmax = 2 cells/s and p = 0.1 respectively. We consider two
different inflow probabilities, α = 0.1 and 0.5. Outflow probability is β = 0.9
for both the cases. We consider a fix cycle length, c = 90s and four different
green time combinations at upstream and downstream intersections, case
45s − 45s where g1 = 45s and g2 = 45s, case 45s − 60s where g1 = 45s and
g2 = 60s, case 60s − 45s where g1 = 60s and g2 = 45s and case 60s − 60s
where g1 = 60s and g2 = 60s. We consider different offsets, where d ∈
{5, 10, 15, 20, 25, 30, 35, 40, 45, 50} seconds.

4.3.1.2 Gaussian mixture distribution

A Gaussian mixture distribution is a multivariate distribution that consists of
a weighted sum of Gaussian component densities [117]. Each component is
defined by its mean µ and variance σ2. The mixture is defined by a vector of
mixing proportions. The probability density function of a Gaussian mixture
model is given by

p(x | λ) =
M∑
i=1

λig(x|µi, σi),
M∑
i=1

λi = 1, (4.4)

where x is a continuous data vector, λi, i = 1, 2, ...,M , are the mixture weights,
and g(x|µi, σi), i = 1, 2, ...,M are the components of Gaussian densities.

The Gaussian mixture model (GMM) for modelling the travel time distribu-
tion assumes that vehicle travel times are from a Gaussian mixture distribution
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with unknown parameters and uses the expectation-maximization (EM) algo-
rithm to fit the mixture distribution. It was demonstrated in [100, 104] to well
model travel time distributions in certain traffic conditions. However, none of
the studies investigated the impacts of traffic signals including cycle length,
phase splits and offset. In this section, we systematically study the parameters
µ and λ in regards to cycle time c, splits (g1, g2) and offset d. In addition, we
apply the domain wall model to approximate µ and λ as a function of the
signal parameters. .

4.3.1.3 Domain wall model

The domain wall model is first introduced by [118] and has been successfully
applied in modelling traffic flow behaviours in both stationary and transient
states [63, 119] at a macroscopic level. A domain wall separates two regions
of different densities. We can assume that the width of such a wall is small
compared to the macroscopic system size, so that we can consider the position
of the domain wall to be a single point. In the current study, we consider
a deterministic variant of the domain wall model, instead of a stochastic
version [63]. That means the movement of a domain wall is represented by a
deterministic drift velocity instead of a (biased) random walk. Specifically, a
wall A|B separating domains A and B (A is upstream of B) with density2 and
flow3 (ρA, JA) and (ρB, JB) respectively moves with a collective velocity of

vA|B = JA − JB
ρA − ρB

. (4.5)

Note a negative vA|B implies that the wall moves upstream. A detailed
description of the key properties of the domain wall model tailored for the
traffic-light boundary conditions can be found in [119]. The remaining section
explains how we approximate the GMM parameters using the deterministic
domain wall model.

Now we describe the traffic flow during a couple of traffic cycles using the
deterministic domain wall. We assume that the (bulk) link is initially in an
empty regime, denoted by E with density ρE = 0 and flow JE = 0, before the
start of green phase at the upstream intersection. We will relax this assumption
later. Once the green light starts at the upstream intersection, it creates a
maximum-flow region, denoted by M characterised by maximum-flow Jc and
critical density ρc, in the link due to the residual queue accumulated during
the red time at the upstream intersection. Consequently, a domain wall WM |E

2the number of vehicles occupying a unit length (e.g. meter) of roadway
3the number of vehicles passing a point per second
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forms separating the regions M and E and drifts downstream. And eventually
the wall will reach the downstream intersection, which takes L/vM |E seconds.
Depending on the signal offset, the wall may reach the downstream intersection
during the red or green phase. In Figure 4.18a, where the offset is 25s, and the
green time and red time at both intersections are 45s, the wall WM |E arrives at
the downstream intersection during the green phase. In the rest of the green
time, some vehicles pass through the downstream intersection. Once the light
turns red, it will create a congested region (i.e., a queue) denoted by C with
flow JC = 0 and density ρC = 1. A domain wall WM |C forms separating the
regions M and C and moves upstream.
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Figure 4.18: Domain wall trajectories for c = 90s, g1 = g2 = c/2 and d = 25s. X-axis:
position in the bulk link; Y-axis: time. Green and red vertical lines represent the traffic
lights at upstream and downstream intersections.

In the meantime, when the upstream light turns red, an empty region forms
in the bulk link due to the zero inflow. And the domain wall WE|M , which
separates the regions M and E, drifts towards the downstream intersection.
The two walls, WM |C and WM |E, eventually meet and merge together. As a
result, the queue at the downstream intersection during the red time stops
growing. When the downstream intersection starts a green light again, the
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queue will start to resolve with the movement of a wall WC|M . The start of
green light at the upstream intersection will again create a maximum-flow
region with a domain wall WM |E. Because the green times are exactly the
same, in the deterministic case, the domain walls, WM |E and WC|E will meet
at the end of the queue, leading to a homogeneous traffic state M in the bulk
link. This pattern will repeat in the following cycles. Now we can relax the
assumption of having an initial empty state to having a residual queue at the
downstream intersection which is sufficiently short so that the traverse pattern
of the domain wall WM |E is not affected.

According to the domain wall dynamics discussed above, there are two
possible batches of vehicles traversing the bulk link: without experiencing
delay (i.e., through a green wave4); and delayed by red light once. The vehicles
that travel in the first batch through the maximum-flow has an average travel
time of

Tfree = L

vM |E
, (4.6)

where vM |E is the speed of of WM |E, vM |E = Jc

ρc
. The delayed vehicles have a

higher travel times due to the waiting time at the red light of the downstream
intersection. The travel time of the vehicle waiting a whole red phase is
Tfree + (c− g2) seconds. The last vehicle passing by on the verge of the traffic
light turning red has the minimum waiting time at the downstream intersection.
Therefore, the minimum expected travel time of some vehicle missing a green
phase is max(Tfree, c+ d− g1) seconds. Hence, the average travel time of the
vehicles in the second batch can be approximated by

Tdelay = Tfree + 2c+ d− (g1 + g2)
2 . (4.7)

Furthermore, the proportion of the vehicles joining the green wave is given by

λ̃1 = d+ g2 − Tfree
c

. (4.8)

From the above statement, which is called one-phase domain wall argument,
there are two batches of traffic corresponding to two components of the Gaussian
mixture distribution. The undelayed traffic (or green wave traffic) with the
average travel time µ̃1 = Tfree accounting λ̃1; and the delayed traffic with
λ̃2 = Tdelay accounting λ̃2 = 1− λ̃1.

We remark that the one-phase argument assumed that the residual queue
at the the upstream intersection is sufficiently long to support a maximum-
flow domain throughout the green phase. However, if the traffic demand

4a continuous traffic flow through upstream and downstream intersections without facing
a red light
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represented by the inflow rate α is low, and the accumulated traffic at the
upstream intersection is not sufficient to supply maximum-flow traffic during
the green time, then at some point, the M region will be replaced by a lower
flow region, say F , which is determined by the value of α. This leads to a two-
phase domain wall argument. Figure 4.18b shows the domain wall trajectories
produced by the two-phase argument for the same system as Figure 4.18a.

Let ρ0 and J0, respectively, represent the density and flow of region F given
the inflow rate α. Let q be the queue length immediately before the start of
the green light at the upstream intersection. The queue grows as its upstream
end propagates with wall WF |C . The green light will create wall WC|M , and
the queue region disappears when the two walls meet. In the meantime, wall
WF |M forms, specifically, t0 seconds after the green light starts

t0 = q

vF |C − vC|M
(4.9)

where vC|M = −Jc

1−ρc
and vF |C = J0

ρ0−1 . The wall WF |M reaches the upstream
intersection t1 seconds after the start of the green light at the upstream
intersection and propagates downstream with speed vF |M . To calculate t1, we
know wall WF |M is t0 · |vC|M | upstream of the upstream intersection when it
starts, and so it arrives at the upstream intersection at time

t1 = t0 + t0 · |vC|M |
vF |M

(4.10)

where vF |M = J0−Jc

ρ0−ρc
. Furthermore, it is expected to arrive at the downstream

intersection at time
t2 = t1 + L

vF |M
. (4.11)

Because the queue at the upstream intersection dissolves during the green
phase and builds up during the red phase with a rate J0, its length by the next
green phase is q = J0(c− g1). Depending on whether t1 is before or after the
end of the green light at the downstream intersection, we have two possible
cases to discuss for the undelayed traffic.

1. If t1 ≥ d+ g2, then the amount of traffic that travels through the bulk
link without delay is Jc(d+ g2 − Tfree) = λ̃1J0c. Then, we have

λ̃1 = Jc(d+ g2 − Tfree)
J0c

. (4.12)

2. Otherwise, the undelayed traffic consists of two parts: Jc(t2−Tfree) (from
the maximum-flow domain M) and J0(d+ g2 − Tfree − (t2 − Tfree)) (from
the low-density domain F ). Thus,

λ̃1 = Jc(t1 − Tfree) + J0(d+ g2 − t2)
J0c

. (4.13)
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Both domain wall arguments distinguish the traffic into two batches; unde-
layed and delayed. Therefore, according to the above statements, the travel
time distribution can be approximated by the Gaussian mixture model with
two components: the first one represents the undelayed vehicles, with mean
λ̃1 = Tfree, deviation σ1 and weight λ̃1, while the second one represents the
delayed vehicles with mean µ̃2 = Tdelay, deviation σ2 and weight λ̃2 = 1− λ̃1.
Because the domain wall model is deterministic, it is unable to estimate the
deviations σ1 and σ2. Due to the same reason, it cannot approximate more
than two components for the GMM.

4.3.2 System with a lower inflow: α = 0.1 and β = 0.9

We simulated the system described in Section 4.3.1.1, considering a low inflow
(α = 0.1 and β = 0.9) for each distinct green time combination for different
offsets (i.e., d ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}). Each simulation consists
of ten different independent simulations. We record the travel time of each
vehicle and the queue length at downstream for 5000s, Figure 4.19, plots the
average queue length at the start of green time for all the four green time
combinations at the upstream and downstream intersections against the offset.

Having a longer red time creates a longer queue at the downstream in-
tersection (Case 45s-45s and Case 60s-45s in Figure 4.19) and we can expect
more delays in travel time. It is evident that a longer green time reduced the
queue accumulation at downstream intersection allowing more vehicles to pass
through. The proportion of vehicles pass through the downstream intersection
without delaying at the red is maximum at the optimum offset. Correspond-
ingly it is evident that having an offset closer to the optimum, helps to reduce
the queue accumulation allowing more vehicles to join the green wave. Case
45s-45s and Case 60s-60s having the same green time at both the upstream
and downstream intersections have similar queue accumulation after offset of
30s. In the case 45s-60s, having a longer green time at downstream intersection
has shorter queues and has a range of optimal offsets from 40s to 50s. In other
three cases, we have an optimal offset around 50s.

4.3.2.1 Fitting Gaussian mixture models

We fit a Gaussian mixture model to the travel time data for each case separately.
λi, µi and σi represents the model parameters for each component i = 1, 2, ...M .
Furthermore, we approximated µ1, µ2, λ1 and λ2 utilising the models we defined
in Section 4.3.1.3. Here, the terms App_µ1, App_µ2, App_λ1 and App_λ2 rep-
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resents the approximated parameters for µ1, µ2, λ1 and λ2 respectively. When
the travel time distribution consists of more than two peaks, we did not
approximate the Gaussian mixture parameters. The model we proposed in
Section 4.3.1.3 is reasonable only when we have two components.

In this section, all the figures related to travel time distribution shows
two Gaussian mixtures curves, “Approximation" and “Gaussian Mixture".
In the “Gaussian Mixture", all the parameters were left free while in the
“Approximation", we fixed some of the parameters. We approximated, µ1 by
the Equation 4.6, µ2 by the Equation 4.7, λ1 by the Equation 4.13 and λ2 by
1− λ1.

0.0

2.5

5.0

7.5

10 20 30 40 50

offset

a
ve

ra
g

e
 q

u
e

u
e

 l
e

n
g

th

Case 45s−45s

Case 45s−60s

Case 60s−45s

Case 60s−60s

Figure 4.19: Association between empirical queue length and the offset

In Figure 4.20, we plot the means of each Gaussian mixture component,
µi against the offset, d. When the system is less congested, vehicles will at
most wait for one cycle to pass through the bulk link even with the worst offset
(d = 0). The vehicles that join the green wave have an average travel time
closer the travel time in free flow speed. In Case 60s-60s, having a longer green
time at the downstream intersection, allows majority of the vehicles to pass
the downstream intersection with less delays. Therefore, none of the vehicle
waits for a full cycle at the downstream intersection. The mean travel time of
the green wave is invariant with the offset while the proportion of vehicles join
the green wave getting increases, until the offset closer to the optimal (See
Figure4.21, the mixing proportion of Gaussian mixture, λi against the offset,
d). Although, the mean travel time of the delayed vehicles getting increases
with the offset while proportion getting decreases. At the optimal offset, all
the vehicles join the green wave with having only a very small queue at the
downstream intersection.
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Figure 4.20: Variability of estimated µi’s in Gaussian mixture distribution with the offset.
App_µ1 and App_µ2 represent the approximated mean travel time with free flow and with
waiting for green times at the downstream intersection respectively. The inflow probability
α = 0.1

The mean approximations, App_µ1 and App_µ2 (green and red dashed
line in Figure 4.20) of the two clusters, in particular µ1, are close to the
estimated Gaussian mixture parameters, µ1 and µ2. The approximation of
the mixing proportions, App_λ1 and App_λ2 are reasonably close to the
estimated Gaussian mixture parameters, λ1 and λ2. λ1 is over-estimated
probably because we consider the deterministic domain wall model instead of
the stochastic domain wall model.
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Figure 4.21: Variability of estimated λi’s in Gaussian mixture distribution with the offset.
App_λ1 and App_λ2 represent the approximated mixing proportions of vehicles joins the
green wave and the vehicles misses one cycle respectively. The inflow probability α = 0.1

In Figure 4.22, we plot the approximated standard deviations of the Gaus-
sian mixture components against the offset. In all four cases we can see similar
variances for the free-flow travel times. The standard deviation of the travel
times for vehicles delayed for a whole cycle decreases with the offset.
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Figure 4.22: variability of estimated σi’s in Gaussian mixture distribution with the offset,
The inflow probability α = 0.1

Case 45s-45s

Figure 4.23 illustrates the travel time distribution on the bulk link when
the green time at both upstream and downstream intersections is 45s with
offsets 25s and 50s respectively. The distribution is bi-modal, where the first
cluster represent the vehicles travelling in the green wave while the second
cluster represents the vehicles queued at the downstream intersection. When
the offset getting closer to the optimum (d = 50s, best in {d}), all the vehicles
could possibly pass the intersection without any delay and the second cluster
will disappeared gradually. Table 4.3 summarises the fitted Gaussian mixture
distribution parameters for the travel time for varying offsets in Case 45s-45s.
It is evident that the with the offset getting closer to the optimal, the number
of components in the Gaussian mixture decreases. In the first four offsets,
(d = 5s, 10s, 15s and 20s), a significant number of vehicles have to wait a full
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Figure 4.23: Travel time distribution: Case 45s-45s in low-density. Approximation
represents the Gaussian mixture distribution by replacing µ1, µ2, λ1 and λ2 with the
approximated values. Empirical distributions are smoothed with non-parametric Gaussian
kernel.

Table 4.3: Gaussian mixture distribution parameter estimation in low-density: case 45s-45s

offset parameter component 1 component 2 component 3 K-S test Sig.

5
λ 0 0.361 [±0.002] 0.639 [±0.002]

0.908414µ 80.667 [±0.064] 95.053 [±0.007]
σ 8.745 [±0.035] 1.689 [±0.005]

10
λ 0.114 [±0.001] 0.352 [±0.002] 0.534 [±0.002]

0.960542µ 52.554 [±0.010] 83.285 [±0.066] 98.131 [±0.009]
σ 1.145 [±0.008] 8.761 [±0.043] 1.892 [±0.009]

15
λ 0.319 [±0.001] 0.336 [±0.002] 0.345 [±0.002]

0.990336µ 53.495 [±0.010] 84.109 [±0.068] 99.251 [±0.013]
σ 1.594 [±0.007] 8.428 [±0.052] 2.225 [±0.012]

20
λ 0.504 [±0.001] 0.307 [±0.002] 0.189 [±0.002]

0.947127µ 54.039 [±0.007] 85.065 [±0.068] 99.716 [±0.024]
σ 1.827 [±0.006] 7.682 [±0.049] 2.589 [±0.023]

25
λ 0.637 [±0.002] 0.363 [±0.002] 0

0.290679µ 54.299 [±0.008] 89.911 [±0.047]
σ 1.954 [±0.006] 8.203 [±0.028]

30
λ 0.727 [±0.002] 0.273 [±0.002] 0

0.463401µ 54.359 [±0.009] 90.311 [±0.038]
σ 2.024 [±0.006] 6.476 [±0.030]

35
λ 0.797 [±0.001] 0.203 [±0.001] 0

0.106909µ 54.323 [±0.007] 91.636 [±0.034]
σ 2.035 [±0.006] 4.896 [±0.024]

40
λ 0.858 [±0.001] 0.142 [±0.001] 0

0.102769µ 54.249 [±0.006] 93.504 [±0.028]
σ 1.986 [±0.005] 3.517 [±0.020]

45
λ 0.913 [±0.001] 0.087 [±0.001] 0

0.069246µ 54.190 [±0.006] 95.568 [±0.024]
σ 1.977 [±0.005] 2.338 [±0.016]

50
λ 0.968 [±0.001] 0.032 [±0.001] 0

0.086773µ 54.120 [±0.007] 97.903 [±0.027]
σ 1.909 [±0.004] 1.376 [±0.018]
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cycle for green time at the intersection, because the green time at the down-
stream intersection is shorter. Offset larger than 20s and closer to the optimal,
the third component is getting slowly disappear as more vehicles join the
green wave. With the best offset (d = 50s), most of the vehicles join the
green wave and hence the second cluster of vehicles wait for green time at the
downstream intersection completely disappeared. The non-parametric test,
Kolmogorov–Smirnov test confirms that the fitted parameters of Gaussian
mixture distribution for the travel time in Case 45s-45s are significant.

Case 45s-60s

The Figure 4.24 illustrates the travel time distribution of the link with
longer green time at the downstream intersection (i.e. 60s) than the upstream
intersection when the offset is 25s and 50s respectively. When the green and
red time are similar, optimum offset is a single value. However, when they
are different, optimum offset takes a range of values. Therefore, When the
offset is equal to 40s or larger, all the vehicles join the green wave. However, a
proportion of vehicles have a slightly longer travel time as they have to join the
queue at the downstream junction. When the offsets are closer to the optimum,
these two clusters are almost overlapped and not visible as in Figure 4.24. In
the Case 45s-60s, the domain wall model over-estimated the λ1 = 1. Hence λ2
is under-estimated, which results in the disappearance of the second peak as
in Figure 4.24.

0.00

0.05

0.10

0.15

0.20

50 60 70 80 90

Travel Time

D
e

n
s
it
y

Approximation

(a) offset=25s

0.00

0.05

0.10

0.15

0.20

50 55 60 65

Travel Time

D
e

n
s
it
y

Gaussian Mixture

(b) offset=50s

Figure 4.24: Travel time distribution: Case 45s-60s in low-density. Approximation
represents the Gaussian mixture distribution with replacing µ1, µ2, λ1 and λ2 with the
approximated values. Empirical distributions are smoothed with non-parametric Gaussian
kernel.

However, if we considered the travel time in Case 45s-60s with offset 50s,
actually consists with two clusters where the first cluster represents the vehicles
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travel through with the free flow speed while the second cluster represents the
vehicles delayed at the downstream intersection for green time, we can fit a
Gaussian mixture model with two components as summarised in Table 4.4.
The skewness in the distribution plot is due to these two distinct travel time
clusters. Figure 4.25 represent the travel time distribution estimation with two
components when the offset is 50s. Skewness in the travel time distribution can
be well approximated by Gaussian mixture distribution with two components.
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Figure 4.25: Histogram of travel time with low-density and offset 50s in case 45s-60s.
Gaussian mixture distribution is shown by gold area and the non-parametric Gaussian kernel
density estimation is shown by grey area.

Table 4.4: Gaussian mixture distribution parameter estimation for travel time with low-
density and offset 50s in case 45s-60s

offset parameter component 1 component 2 K-S test Sig.

50
λ 0.541[±0.028] 0.459[±0.028]

0.9981µ 53.055[±0.027] 55.300[±0.112]
σ 1.260[±0.0174] 1.844[±0.037]

Table 4.5 summarises the fitted Gaussian mixture distribution parameters
for the travel time for varying offset in case 45s-60s. The goodness-of-fit
parameters also evident that the travel time can be well approximated by a
Gaussian mixture distribution. Travel time distribution when the offset is 50s,
Gaussian mixture with two components is better than having a one component.
Goodness-of-fit test significance value is closer to 1 in Two component case.
See Table 4.4.
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Table 4.5: Gaussian mixture distribution parameter estimation in low-density: case 45s-60s

offset parameter component 1 component 2 component 3 K-S test Sig.

5
λ 0.502 [±0.002] 0.303 [±0.002] 0.194 [±0.002]

0.946484µ 53.933 [±0.008] 70.157 [±0.080] 84.555 [±0.025]
σ 1.644 [±0.006] 7.773 [±0.058] 2.530 [±0.019]

10
λ 0.627 [±0.002] 0.373 [±0.002] 0

0.663712µ 54.203 [±0.007] 74.452 [±0.055]
σ 1.781 [±0.006] 8.635 [±0.040]

15
λ 0.723 [±0.001] 0.277 [±0.001] 0

0.259413µ 54.277 [±0.007] 74.755 [±0.046]
σ 1.854 [±0.005] 6.975 [±0.027]

20
λ 0.797 [±0.001] 0.203 [±0.001] 0

0.236163µ 54.318 [±0.008] 76.451 [±0.032]
σ 2.026 [±0.004] 4.853 [±0.025]

25
λ 0.857 [±0.001] 0.143 [±0.001] 0

0.138331µ 54.247 [±0.008] 78.331 [±0.030]
σ 1.980 [±0.004] 3.458 [±0.020]

30
λ 0.913 [±0.001] 0.087 [±0.001] 0

0.154814µ 54.181 [±0.007] 80.386 [±0.026]
σ 1.974 [±0.004] 2.335 [±0.019]

35
λ 0.967 [±0.001] 0.033 [±0.001] 0

0.106468µ 54.116 [±0.007] 82.599 [±0.023]
σ 1.951 [±0.005] 1.366 [±0.017]

40
λ 1 0

0.069893µ 54.097 [±0.006]
σ 1.936 [±0.004]

45
λ 1 0

0.199747µ 54.080 [±0.006]
σ 1.914 [±0.004]

50
λ 1 0

0.190069µ 54.086 [±0.006]
σ 1.916 [±0.004]

Case 60s-45s

Figure 4.26 shows the travel time distribution for Case 60s-45s with offsets,
25s and 50s respectively. A longer green time at the upstream junction
allows more vehicles into the bulk link. A shorter green time at downstream
intersection lets fewer vehicles pass through. Hence, we can expect more
queue accumulation at the downstream intersection. Due to the lower inflow
probability, α = 0.1, in this setting the longer green time at the upstream
intersection did not drive the bulk link into congestion regime. The mass of
the second cluster reduces as the offset increases similar to Case 45s-45s. In
contrast, the mass of the second cluster is much larger than Case 45s-45s as
shown in Figure 4.26, which is due to the increased congestion incurred by the
longer green time at upstream intersection.
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Figure 4.26: Travel time distribution: Case 60s-45s in low-density. Approximation
represents the Gaussian mixture distribution with replacing µ1, µ2, λ1 and λ2 with the
approximated values. Empirical distributions are smoothed with non-parametric Gaussian
kernel.

Table 4.6: Gaussian mixture distribution parameter estimation in low-density: case 60s-45s

offset parameter component 1 component 2 component 3 K-S test Sig.

5
λ 0 0.558 [±0.002] 0.442 [±0.002]

0.318616µ 73.019 [±0.061] 95.050 [±0.008]
σ 12.280 [±0.042] 1.566 [±0.006]

10
λ 0.124 [±0.001] 0.526 [±0.002] 0.350 [±0.002]

0.437613µ 52.833 [±0.015] 75.999 [±0.068] 97.939 [±0.013]
σ 1.347 [±0.012] 11.931 [±0.047] 1.978 [±0.011]

15
λ 0.293 [±0.002] 0.520 [±0.002] 0.187 [±0.002]

0.602758µ 53.521 [±0.010] 77.061 [±0.068] 98.788 [±0.021]
σ 1.587 [±0.008] 11.772 [±0.053] 2.398 [±0.016]

20
λ 0.415 [±0.002] 0.585 [±0.002] 0

0.245190µ 53.845 [±0.010] 80.841 [±0.064]
σ 1.733 [±0.007] 13.044 [±0.045]

25
λ 0.496 [±0.002] 0.504 [±0.002] 0

0.495892µ 53.867 [±0.008] 81.038 [±0.055]
σ 1.771 [±0.007] 11.616 [±0.044]

30
λ 0.573 [±0.002] 0.427 [±0.002] 0

0.651904µ 53.862 [±0.007] 82.825 [±0.055]
σ 1.830 [±0.006] 9.925 [±0.045]

35
λ 0.633 [±0.001] 0.367 [±0.001] 0

0.304312µ 53.822 [±0.008] 85.110 [±0.050]
σ 1.867 [±0.005] 8.355 [±0.034]

40
λ 0.689 [±0.002] 0.311 [±0.002] 0

0.166204µ 53.785 [±0.009] 87.261 [±0.040]
σ 1.881 [±0.005] 7.039 [±0.028]

45
λ 0.745 [±0.001] 0.255 [±0.001] 0

0.100458µ 53.789 [±0.007] 89.336 [±0.037]
σ 1.904 [±0.005] 5.847 [±0.028]

50
λ 0.801 [±0.001] 0.199 [±0.001] 0

0.218025µ 54.105 [±0.007] 91.495 [±0.038]
σ 2.114 [±0.005] 4.726 [±0.025]
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Table 4.6 summarises the fitted Gaussian mixture distribution parameters
of the travel time for varying offset in Case 60s-45s. Due to the increased
congestion in the link with the longer green time at upstream intersection,
none of the vehicles join the green wave when the offset is 5s. With the offset
increases, the proportion of vehicles joining the green wave increases. The
proportion of vehicles waiting for the next green time at the downstream
intersection decreases with the offset and disappear beyond the offset 20s.

Case 60s-60s
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Figure 4.27: Travel time distribution: Case 60s-60s in low-density. Approximation
represents the Gaussian mixture distribution with replacing µ1, µ2, λ1 and λ2 with the
approximated values. Empirical distributions are smoothed with non-parametric Gaussian
kernel.

Figure 4.27 shows the travel time distribution of the link with equal but
longer green times at both upstream and downstream intersection for offsets,
25s and 50s respectively. A longer green time at both upstream and downstream
junction allows more vehicles to pass through the bulk link. Compared to
the case 45s-45s, majority of the vehicles join the green wave. The second
cluster of vehicles, the proportion of vehicles waiting for the green time at the
downstream intersection get reduces.

Table 4.7 summarises the fitted Gaussian mixture distribution parameters
of the travel time for varying offset in Case 60s-60s. Due to smaller α, the
longer green time at the upstream intersection did not drive the bulk link
into congestion regime. Furthermore, the longer green time at downstream
intersection allows more vehicles to pass through. Therefore, unlike in the
previous cases, none of the vehicle has to wait for a full cycle at the downstream
intersection even with a smaller offset due to the longer green time. The
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proportion of vehicles travelling with minor delays decreases with the offset
increases and almost disappear at the offset 50s like Case 45s-45s.

Table 4.7: Gaussian mixture distribution parameter estimation in low-density: Case 60s-60s

offset parameter component 1 component 2 component 3 K-S test Sig.

5
λ 0.565 [±0.002] 0.435 [±0.002] 0

0.366059µ 53.744 [±0.007] 71.820 [±0.058]
σ 1.667 [±0.007] 9.365 [±0.041]

10
λ 0.612 [±0.002] 0.388 [±0.002] 0

0.415263µ 53.914 [±0.008] 70.433 [±0.063]
σ 1.755 [±0.006] 8.709 [±0.039]

15
λ 0.630 [±0.002] 0.370 [±0.002] 0

0.622529µ 53.910 [±0.007] 69.857 [±0.061]
σ 1.770 [±0.006] 8.343 [±0.036]

20
λ 0.630 [±0.002] 0.370 [±0.002] 0

0.425102µ 53.782 [±0.008] 69.979 [±0.052]
σ 1.721 [±0.006] 8.184 [±0.041]

25
λ 0.669 [±0.002] 0.331 [±0.002] 0

0.214528µ 53.639 [±0.007] 71.338 [±0.047]
σ 1.660 [±0.005] 7.613 [±0.033]

30
λ 0.732 [±0.001] 0.268 [±0.001] 0

0.328552µ 53.654 [±0.006] 73.780 [±0.041]
σ 1.784 [±0.005] 6.274 [±0.033]

35
λ 0.802 [±0.001] 0.198 [±0.001] 0

0.342055µ 53.630 [±0.007] 76.305 [±0.031]
σ 1.757 [±0.004] 4.717 [±0.027]

40
λ 0.859 [±0.001] 0.141 [±0.001] 0

0.432673µ 53.571 [±0.005] 78.351 [±0.029]
σ 1.712 [±0.005] 3.477 [±0.019]

45
λ 0.914 [±0.001] 0.086 [±0.001] 0

0.222793µ 53.544 [±0.006] 80.366 [±0.026]
σ 1.728 [±0.005] 2.341 [±0.016]

50
λ 0.969 [±0.0005] 0.031 [±0.0005] 0

0.199886µ 53.530 [±0.006] 82.519 [±0.023]
σ 1.749 [±0.004] 1.372 [±0.017]
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4.3.3 System with a higher inflow: α = 0.5 and β = 0.9

We simulated the system described in Section 4.3.1.1, considering a high inflow
probability (α = 0.5 and β = 0.9) for each distinct green time combinations for
different offsets (i.e., d ∈ {10, 20, 25, 30, 35, 40, 45, 50, 55}). Each case consists
of ten different independent simulations. We record the travel time of each
vehicle. Travel time distributions for all the four cases and different offsets are
summarised in Appendix 6.
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Figure 4.28: Histogram of travel time in Case 45s-45s. Gaussian mixture distribution is
shown in gold area. Non parametric Gaussian kernel density estimation is shown in grey
area.

Figure 4.28 illustrates the estimated Gaussian mixture travel time distribu-
tions of the link for Case 45s-45s for selected offsets. Table 4.8 summarises the
fitted parameters. Due to the large inflow probability, and both the upstream
and downstream intersections having smaller green time, nearly all of the
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vehicles delayed by at least one red light except for the optimal offset (d = 55s).
When the offset is 55s, nearly 36.6% of the vehicles joined the green wave
while there were a few vehicles in the green wave with other offset settings.
Moreover, the off set of 55s has majority of the travel times are less than
to 200s while in other offsets having peak travel time around 200s. We can
consider the 55s is the optimal offset in this signal setting. With the offset 40s,
nearly all the vehicles have a travel time roughly greater than to 350s. The
bad offset settings make a great difference in the travel time as illustrated in
Figures 4.28c and 4.28d. Furthermore, the travel time distributions can be
well approximated by a Gaussian mixture distribution. The goodness-of-fit of
the estimated parameters are also high as summarised in Table 4.8.

Table 4.8: Gaussian mixture distribution parameter estimation in high-density: Case 45s-45s

GMM-Component Offset
10s 25s 40s 55s

Component 1
λ 0.2138[±0.00097] 0.0131[±0.000260] 0.1099[±0.00074] 0.3660[±0.00094]
µ 116.06[±0.07401] 59.899[±0.048684] 427.65[±0.08602] 67.786[±0.03462]
σ 13.364[±0.05286] 3.9991[±0.045533] 9.2357[±0.05843] 8.3835[±0.03089]

Component 2
λ 0.6018[±0.00138] 0.2686[±0.009374] 0.4216[±0.00162] 0.4701[±0.00109]
µ 192.83[±0.03952] 128.27[±0.061989] 507.65[±0.03679] 134.55[±0.06873]
σ 15.862[±0.02481] 15.646[±0.061204] 12.254[±0.03681] 19.411[±0.06385]

Component 3
λ 0.1843[±0.00089] 0.5936[±0.001153] 0.0879[±0.0006] 0.1223[±0.00045]
µ 256.91[±0.04921] 205.21[±0.046909] 673.94[±0.11910] 221.29[±0.09853]
σ 9.1119[±0.02099] 13.737[±0.034872] 12.750[±0.11852] 14.445[±0.04664]

Component 4
λ 0.1246[±0.000874] 0.3454[±0.00154] 0.0415[±0.00040]
µ 270.46[±0.143832] 589.89[±0.04951] 377.86[±1.75560]
σ 17.007[±0.062563] 13.204[±0.05491] 129.52[±1.12323]

Component 5
λ 0.0349[±0.00112]
µ 589.91[±2.30478]
σ 48.60[±2.19968]

K-S test Sig. 0.79315 0.74486 0.78217 0.61536

Case 45s-60s

Figure 4.29 illustrates the travel time distribution of the link when the green
time at the upstream intersection is shorter than the downstream intersection
(i.e. Case 45s-60s). Even though the vehicle inflow probability is quite high, the
shorter green time at the upstream intersection allows fewer vehicles into the
bulk link. Moreover, having a longer green time at the downstream intersection
allows more vehicles to pass through the intersection. Therefore, the bulk
link is still in low-density regime. The travel time distribution of the bulk
link is similar to the travel time distribution of the system when it is in the
low-density with the same signal setting. See Figure 4.24. However, the
proportion of vehicle join the green wave is relatively smaller when the inflow
probability is high. The fitted Gaussian mixture distribution parameters for
the selected offsets are summarised in Table 4.9. It is evident that the travel
time distribution of the bulk link can be well approximated by a Gaussian
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mixture in Case 45s-60s as well.

0.000

0.025

0.050

0.075

0.100

50 60 70 80 90 100

Travel Time

D
e
n
s
it
y

(a) offset=10s

0.00

0.03

0.06

0.09

50 60 70 80 90 100

Travel Time

D
e
n
s
it
y

(b) offset=25s

0.00

0.05

0.10

0.15

50 60 70 80 90 100

Travel Time

D
e
n
s
it
y

(c) offset=40s

0.00

0.05

0.10

0.15

50 60 70 80 90 100

Travel Time

D
e
n
s
it
y

(d) offset=55s

Figure 4.29: Histogram of travel time in Case 45s-60s. Gaussian mixture distribution is
shown in gold area. Non-parametric Gaussian kernel density estimation is shown in grey
area.

Table 4.9: Gaussian mixture distribution parameter estimation in high-density: Case 45s-60s

GMM-Component Offset
10s 25s 40s 55s

Component 1
λ 0.324[±0.00113] 0.622[±0.00109] 0.914[±0.00042] 0.445[±0.00789]
µ 54.66[±0.00595] 55.87[±0.00473] 56.57[±0.00474] 55.48[±0.01056]
σ 1.738[±0.00272] 2.191[±0.00363] 2.526[±0.00363] 1.364[±0.01062]

Component 2
λ 0.676[±0.00113] 0.377[±0.00109] 0.085[±0.00042] 0.555[±0.00789]
µ 86.07[±0.01042] 87.78[±0.00679] 90.56[±0.01884] 58.44[±0.04014]
σ 2.885[±0.00436] 2.790[±0.00471] 2.411[±0.01099] 2.503[±0.01271]

K-S test Sig. 0.77927 0.5031 0.57356 0.57126
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Case 60s-45s
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Figure 4.30: Histogram of travel time in Case 60s-45s. Gaussian mixture distribution is
shown in gold area. Non-parametric Gaussian kernel density estimation is shown in grey
area.

Figure 4.30 illustrates the travel time distribution of the link when the green
time at the upstream intersection is longer than the downstream intersection
(i.e. Case 60s-45s). Given that the vehicle inflow probability is relatively high,
the upstream link is highly congested. Having a longer green time at the
upstream intersection allows more vehicles into the bulk link, and causes more
congestion. Nearly, all the vehicles have to wait for at least two cycles to pass
through the downstream intersection. When the offset is 10s, majority of the
vehicle pass the downstream intersection in less than 400s. However, for all
the other offset settings it is relatively worse. The signal setting of the Case
60s-45s creates a complete gridlock5 resulting longer travel time in the bulk
link. It is quite evident that the distance between different peaks in the travel
time distribution is closer to the cycle length. However, this phenomena is not

5Form of traffic congestion where continuous queues of vehicles block the entire link.
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evident in the travel time distribution when the offset is closer to optimal (i.e.
10 s in Case 60s-45s), all these different peaks are trying to form one big peak
mushing together.

Table 4.10: Gaussian mixture distribution parameter estimation in high-density: Case
60s-45s

GMM-Component Offset
10s 25s 40s 55s

Component 1
λ 0.3437[±0.00212] 0.0121[±0.00015] 0.1144[±0.00089] 0.1069[±0.00085]
µ 292.85[±0.10956] 238.52[±0.11617] 426.37[±0.07828] 436.89[±0.11831]
σ 15.762[±0.09059] 5.9033[±0.07067] 14.186[±0.07961] 14.915[±0.07092]

Component 2
λ 0.3044[±0.00449] 0.1956[±0.00096] 0.4281[±0.00082] 0.3972[±0.00185]
µ 352.56[±0.19546] 311.13[±0.09185] 507.64[±0.06001] 515.28[±0.04488]
σ 31.668[±0.24811] 18.345[±0.08742] 12.356[±0.03233] 14.386[±0.05228]

Component 3
λ 0.3369[±0.00257] 0.3362[±0.00142] 0.3536[±0.00116] 0.3599[±0.00178]
µ 390.09[±1.42728] 395.84[±0.10910] 589.91[±0.05700] 595.92[±0.06112]
σ 64.469[±0.78102] 20.446[±0.10129] 13.367[±0.04947] 15.268[±0.05614]

Component 4
λ 0.0151[±0.00275] 0.2694[±0.00092] 0.0940[±0.00061] 0.1167[±0.00139]
µ 544.61[±11.0953] 483.36[±0.11936] 674.11[±0.13924] 678.34[±0.14994]
σ 64.335[±4.18825] 19.821[±0.06555] 13.266[±0.07297] 14.641[±0.13836]

Component 5
λ 0.1329[±0.00077] 0.0099[±0.00017] 0.0193[±0.00033]
µ 571.11[±0.12348] 761.53[±0.42382] 762.59[±0.78090]
σ 19.603[±0.09621] 19.074[±0.38398] 27.509[±0.46399]

Component 6
λ 0.0401[±0.00066]
µ 657.95[±0.42626]
σ 17.784[±0.19503]

Component 7
λ 0.0137[±0.00022]
µ 744.08[±2.26895]
σ 44.588[±1.3278]

K-S test Sig. 0.9999 0.98176 0.89573 0.85448

Case 60s-60s

Figure 4.31 illustrates the travel time distribution of the link when the
green time at both the upstream intersection and the downstream intersection
are 60s. The behaviour of the travel time distribution relatively closer to Case
45s-45s, since in both cases equal green time is implemented at the upstream
and downstream intersection. Because of the longer green time compared to
Case 45s-45s, the traffic flow through the bulk link increases. The means of
the different components are also quite close. Hypothetically, If the red time
reduces to zero, the travel time distribution will have only one peak as the
non-signalised case. As we increase the green time at both intersections, all the
peaks are mushing together form one peak. It is evident that the proportion
of vehicles join the green wave is increases with the offset increases. We can
consider the offset 55s is the optimum among the offsets we consider, even
though there were a few vehicles having longer travel time.
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Figure 4.31: Histogram of travel time in Case 60s-60s. Gaussian mixture distribution is
shown in gold area. Non-parametric Gaussian kernel density estimation is shown in grey
area.

Table 4.11: Gaussian mixture distribution parameter estimation in high-density: Case
60s-60s

GMM-Component Offset
10s 25s 40s 55s

Component 1
λ 0.0279[±0.00041] 0.0748[±0.00061] 0.1446[±0.00162] 0.1238[±0.00261]
µ 59.568[±0.02590] 64.547[±0.04417] 65.076[±0.04217] 61.874[±0.03333]
σ 4.0001[±0.03131] 6.1146[±0.05032] 6.0760[±0.05088] 3.7291[±0.03304]

Component 2
λ 0.2089[±0.00479] 0.5753[±0.01781] 0.3542[±0.00715] 0.1758[±0.00333]
µ 96.635[±0.00479] 113.89[±0.56916] 101.39[±0.29971] 73.749[±0.16045]
σ 7.7466[±0.09608] 16.195[±0.23656] 17.378[±0.34337] 7.8479[±0.13489]

Component 3
λ 0.5127[±0.00642] 0.1979[±0.01711] 0.4044[±0.00591] 0.5603[±0.00129]
µ 121.55[±0.16912] 132.06[±0.16114] 132.28[±0.10553] 120.81[±0.12282]
σ 15.051[±0.19231] 8.5869[±0.25167] 11.547[±0.08543] 27.074[±0.06977]

Component 4
λ 0.2503[±0.00179] 0.1519[±0.00072] 0.0968[±0.00089] 0.0812[±0.00119]
µ 162.37[±0.06806] 166.49[±0.06083] 173.56[±0.21203] 145.70[±0.07237]
σ 9.5911[±0.04148] 9.0972[±0.03587] 17.737[±0.12359] 7.4196[±0.08993]

Component 5
λ 0.0589[±0.00068]
µ 234.18[±1.18359]
σ 99.342[±0.51207]

K-S test Sig. 0.99986 0.99999 0.999788 0.88772
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4.4. Discussion

When the system is highly congested, the behaviour of the travel time
distribution is complex. Approximation of the Gaussian mixture model param-
eters analytically is relatively difficult. However, it can be concluded that a
generally the travel time of a congested link can be well approximated by a
Gaussian mixture as well. Among all cases, equal split in the high-density is
the most complex one as it could lead to low-density, maximum-current and
high-density on the bulk link.

4.4 Discussion

Travel time distributions have been widely used to characterise traffic flow
dynamics. Many researchers argued that the travel time distributions are
asymmetric and considerably positively skewed [19–22, 97] unlike normal dis-
tribution. Contrarily, some argued that the uni-modal distributions might not
be sufficient to represent link travel time distributions [22, 98–105]. However,
most of these studies are relied on empirical travel time data with limited
sample sizes and do not present consistent results. Accurately modelling travel
time distributions is advantageous in simulation-based studies greatly.

Moreover, the travel time on a link is highly sensitive to the signal settings
at intersections like phase splits. The linking pattern of the traffic signals
at consecutive intersections also has a significant impact on the travel time.
Therefore, in this chapter, we studied the link travel time distributions and
the impact of signalised intersection explicitly.

We proposed a model for the system consisting of a single-lane link without
signals based on mean-field approximations to approximate link travel time
distributions. We evaluated our models against the ASEP with both determin-
istic and stochastic updates. When the link is in the low-density regime, with
deterministic updates, the system has two density regions and the travel time
distribution is highly skewed. When the system is in the high-density regime
with deterministic updates, the system has a single density regime with an
effective hopping probability and observed that the approximated travel time
distribution converges to a normal distribution.

For the ASEP with stochastic updates, the travel time distribution could
be modelled by considering a single density region with an effective hopping
probability. The distribution of travel time converges to a normal distribution
irrespective of the link congestion. Our model approximates the centre of
the normal distribution precisely. The travel time distribution on the NaSch
model also suggests that a normal distribution can reasonably approximate
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the link travel time. These approximations suggest that the link travel time
distribution can be well approximated by a normal distribution when the effect
of signalised intersection is absent.

When the signalised intersections are in effect, the general link travel time
distribution is generally multi-modal. Only for a special case, when the link is
not congested, and the linking pattern of the consecutive signalised intersec-
tions are optimal, the travel time distribution is uni-modal. We studied the
travel time distribution for different signal settings and offsets for small and
large inflow probabilities. We use deterministic domain wall to approximate
µ1, µ2, λ1 and λ2. But the approximation is only for smaller inflow probabili-
ties. Generally, the travel time distribution between signalised intersections
can be well approximated by a Gaussian mixture. Furthermore, the skewed
distributions we observed in practice, were also reproducible in the simulation
model. The skewness can also be well approximated by Gaussian mixtures.

Our study on link travel time distributions adds debate on uni-modal
and multi-modal travel time distributions. The results of the impact of the
different offsets provide useful insight to the modelling travel time. We could
incorporate the stochastic domain wall model to understand the proportion of
vehicle joining the green wave more precisely which is a potential direction for
future research.
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Simulating stopping behaviour of on-road

transit vehicles 5

5.1 Overview

To accurately simulate movements of on-road public transport vehicles, such as
buses and trams, it is crucial to accurately model their stopping behaviour at
stops. The stopping behaviour of mass transit modes is significantly affected
by the dwell time: the time spent at each stop for the transfer of passengers,
including the time necessary to open and close doors [37]. Empirical research
[24, 25, 35, 37, 40] that has explored dwell time or passenger flow time 1

has found that the volume of passengers boarding and alighting has a major
impact on the dwell time of a transit vehicle. However, there are many other
factors, such as the location and the type of stop, the type of vehicle and
on-board crowding, which significantly affect the dwell time. The service time
per passenger on average extends between 1.5 to 6.0 seconds per alighting
passenger and 1.5 to 8.0 seconds per boarding passenger [25].

Estimating the dwell time of transit vehicles has been extensively studied
[24–37, 40, 41, 120]. Most studies related to dwell time have been limited to
relating the mean dwell time to influential factors, by deploying multivariate
regression models [24–37]. The results can be utilised to predict the time taken

1Time spent at each stop for the transfer of passengers
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for passengers boarding and alighting when passenger demand data is available.
However, these traditional data-driven regression approaches are unable to
capture the interaction between transit vehicles and passengers precisely [121].
Moreover, regression approaches only capture average behaviour, and cannot
predict anything about fluctuations. In order to understand fluctuations, which
can have significant impacts in practice, one needs an understanding of the
dwell time distribution.

Khoo [26] has estimated the empirical dwell time distributions for buses at
different times of the day (peak hour, off peak hour), different platform crowding
levels, and for different fare collection methods (cash/card system, conductor
system). He argued that the dwell time of buses can be well approximated by
Pearson type VI distribution, except at less crowded bus stops. Li et al. [40]
have studied the dwell time distributions for front door alighting/boarding, rear
door alighting/boarding and combined front and rear door alighting/boarding
distributions separately. They argued that the empirical distributions in all
cases can be well approximated by log-normal distributions. In their study on
modelling dwell time for bus rapid transit stations, Li et al. [31] again argued
that the dwell time at a stop follows log-normal distribution. Furthermore, they
observed that the train dwell time distribution at short stop stations can also
be approximated by a log-normal distribution [120]. Rashidi and Ranjitkar
[41] have assessed three distribution functions for approximate bus dwell
time: normal, log-normal and Wakeby distributions. They claimed that the
Wakeby distribution approximates the dwell time better than the log-normal
distribution, while the normal distribution is not a suitable approximation for
dwell time.

The simulation package CORSIM models bus dwell times by relying on
either average dwell times specified by users or embedded statistical distribu-
tions [122]. The VISSIM simulator has two methods for modelling dwell time
at stops: dwell time distributions and advanced passenger models. Dwell time
distributions are defined according to the normal distribution and empirical
distributions [123]. In order to predict dwell time based on advanced passenger
models, it is required to have access to passenger demand data. Therefore, it
is important in practice to understand the dwell time distributions at each
stop, to accurately simulate the stopping behaviour of on-road transit vehicles.

Another important aspect that we need to consider when modelling the
stopping behaviour of a mass transit vehicle is the time-headway, which is
the time interval between successive transit vehicles. Transport planners have
devoted considerable effort to establish descriptive mathematical models of time-
headway for different types of road networks such as suburban arterials [124],
urban arterials [125] and highways [125–127]. Many theoretical distributions
such as gamma, negative exponential, shifted exponential, Erlang, Johnson SB,
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Johnson SU, Log-normal and Log-logistic have been fitted to time-headway
data [124, 125]. However, to date most of the researchers have only looked at
average behaviour of mass-transit time-headway [128–132] rather than studying
the distributions. Lin and Ruan [133] proposed a time-headway regularity
measure using the distribution of bus dispatching headway. They analysed
AVL data from a selected route in Chicago and suggest that the time-headway
can be well approximated by a Gamma distribution. Bellei and Gkoumas
studied the time-headway distributions and service irregularity utilising a
stochastic simulation model which represents a one-way transit line [129]. They
argued that the time-headway distribution is likely to be uni-modal at the
first stops in the route and bi-modal depicting the concentration of short and
long alternated time-headway at the latter stops. Moreover, they studied the
relationship between consecutive time-headway and argued that the underlying
joint distribution is more likely a bi-variate uni-modal distribution at the first
stops and a bi-variate multi-modal distribution at the latter stops. However,
they did not focus on fitting theoretical distributions to their data.

A group of two or more closely spaced transit vehicles running along the
same route (a phenomenon often called bunching) is highly likely in congested
urban transit networks. If a transit vehicle is running late, its time-headway
increases, causing more passengers to wait at downstream stops. Therefore, the
vehicle will be further delayed due to the longer dwell times. Correspondingly,
one expects, a priori, that the dwell time between consecutive vehicles are likely
to be correlated. Moreover, the dwell time and time-headway of a vehicles
are also likely to be correlated, as are the dwell times between consecutive
stops. If the two stops are close, longer dwell time at the upstream stop might
suggest a shorter dwell time at the next stop. Moreover, if there is similar
passenger demand at consecutive stops, dwell time between stops tend to
be positively correlated. Hence, we need to understand the nature of this
correlation structure explicitly. To our knowledge, no previous studies of dwell
time correlations have been undertaken.

Given the disagreement between previous studies of dwell time distribu-
tions [26, 31, 40, 41, 120], in this chapter we analysed the dwell time (or
more precisely, the passenger flow time) distributions at selected tram stops
in the inner network of Melbourne’s CBD, using a data set gathered in [35].
Unfortunately, this data set did not allow us to study time-headway or correla-
tions in the dwell time data. Therefore, we conducted a statistical survey at
two distinct pairs of consecutive tram stops in Melbourne’s CBD, located in
two different tram routes, one of high frequency, the other of low frequency.
Moreover, to gain intuition into the mechanisms underlying dwell time and
time-headway distributions, we simulated a high frequency tram route utilising
our empirical results, to understand the stopping behaviour of a tram more
explicitly. Furthermore, we studied the correlation structure between trams
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and between stops.

5.2 Survey Data - Impact of Crowding on

Streetcar Dwell Time [35]

In 2013, Currie et al. conducted a survey to measure the passenger flow time
of trams operated in Melbourne, in order to study the impact of crowding on
tram dwell time [35]. The data set consist of 1,147 dwell time events from ten
tram stops in the inner network (black dots in the Figure 5.1).

Figure 5.1: Melbourne tram network: routes and survey locations. Adapted from “Impact
of Crowding on Streetcar Dwell Time” by Currie et al., 2013 [35]

Each stop was surveyed in the peak direction of travel for two hours in
the morning (07:00-09:00) and three hours in the evening (15:00-18:00). For
each passenger flow time measurement, corresponding boarding and alighting
passenger demands were recorded. The authors explored the impact of both
crowding and tram stop design on mean tram dwell time.

The data set is informative as it contains dwell time events from different
tram stops, and it is capable of studying marginal dwell-time distributions.
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The data set already exist, and we analysed it to understand the marginal
passenger flow time distributions at selected tram stops in the inner network
of Melbourne CBD. However, the data set is limited as it does not contain the
events where the passenger demand is zero.

These tram stops include all three types of tram stop designs: curb-side,
platform and safety-zone. Most of the tram stops in Melbourne’s network are
curb-side. Passengers have to wait on the curb and make their way through
unguarded traffic to board trams which stop in the middle of the road. At
safety zone stops, passengers are provided with a safety barrier to separate
them from the traffic. Platform stops provide a waiting bay in the middle of
the road, separating the passengers from general traffic.
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Figure 5.2: Survey: Distribution of Passenger Flow Time at tram stops with a safety-zone.
95% confidence bands (yellow area) are included. Empirical distributions are smoothed with
non-parametric Gaussian kernel.

Figures 5.2, 5.3 and 5.4 illustrate the passenger flow time distributions of
each type of tram stop for both morning and afternoon peak hours along with
the fitted log-normal distribution function and the 95% confidence band of the
passenger flow time data. Table 5.1 summarises the estimated parameters and
the corresponding goodness of fit test results based on the Kolmogorov–Smirnov
test. All the surveyed stops are located in inner tram network. The passenger
demand at these stops are fairly similar. The results show that the passenger
flow time at each type of tram stop can be well approximated by a log-normal
distribution with fairly universal parameters. Moreover, the universality of
fitted parameters is quite remarkable: both µ and σ appear to depend only
very weakly on the details of the stops.
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Figure 5.3: Survey: Distribution of Passenger Flow Time at tram stops with a curb-side.
95% confidence bands (yellow area) are included. Empirical distributions are smoothed with
non-parametric Gaussian kernel.
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Figure 5.4: Survey: Distribution of Passenger Flow Time at tram stops with a Platform.
95% confidence bands (yellow area) are included. Empirical distributions are smoothed with
non-parametric Gaussian kernel.

Table 5.1: Survey: Log-normal distribution parameter estimation of passenger flow time at
each stop type.

Log-normal parameter estimate K-S
test Sig.

Chi-square
test Sig.log(µ) log(σ)

Safety Zone AM Peak 2.23[±0.0453] 0.611[±0.032] 0.8497 0.8448
PM Peak 2.32[±0.034] 0.645[±0.024] 0.562 0.1632

Curb Side AM Peak 2.2[±0.045] 0.36[±0.032] 0.6111 0.5006
PM Peak 2.57[±0.044] 0.439[±0.031] 0.3467 0.1551

Platform AM Peak 2.42[±0.036] 0.546[±0.026] 0.5014 0.0714
PM Peak 2.45[±0.0369] 0.507[±0.027] 0.8558 0.2029
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5.3. Survey: The correlation structure of stopping behaviour of a tram

5.3 Survey: The correlation structure of

stopping behaviour of a tram

The data set we analysed in Section 5.2 was not detailed enough to under-
stand the correlation of passenger flow time between consecutive trams and
consecutive stops. Moreover, the data set does not contain information about
the time-headway of surveyed trams. Therefore, we conducted a survey on two
consecutive tram stops, in two different tram routes in Melbourne CBD. We
considered the Blyth Street stop and the Stewart Street stop on Sydney Road
representing a low frequency tram route, and the Leopold Street stop and
the Arthur Street stop on St Kilda Road representing a high frequency tram
route as illustrated in Figure 5.5. Both the stops on St Kilda Road contain a
safety-zone. At Sydney Road, both the surveyed stops are curb-side.

Stewart Street/ Sydeny Road 

Stop

Blyth Street/ Sydney Road 

Stop

Arthur Street/ St Kilda Road 

Stop

Leopold Street/ St Kilda 

Road Stop

Figure 5.5: Melbourne tram network: routes and survey locations
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5.3. Survey: The correlation structure of stopping behaviour of a tram

5.3.1 Survey method

Both the routes were surveyed in the peak direction of travel, across five
weekdays for 1.5 hours in the morning (08:00-09:30) at Sydney Road and in
the evening (16:00-18:00) at St Kilda Road. Scheduled time-headway between
trams was six minutes on Sydney Road. However, on St Kilda Road scheduled
time-headway between trams was varied between one to five minutes as the
surveyed stops captured multiple tram routes. For each passenger flow time
observation, the following data was recorded:

- Date
- Route No
- Tram No
- Arrival Time
- Passenger flow start time
- Passenger flow end time
- Departure time

5.3.2 Tram bunching

In St Kilda Road we experienced the tram bunching phenomena, where more
than one tram arrived at the same time to serve passengers. We consider tram
with a time-headway less than five seconds as a bunched tram. Figure 5.6
summarises how frequently tram bunching occurred during the St Kilda Road
survey. However, we did not experience the bunching phenomena during the
Sydney Road survey.

If a tram has to slow down for some reason, the time-headway between it
and the preceding tram will be larger than the regular time-headway. More
passengers will be waiting at the next stop, and tram will have a longer dwell
time than usual. The time-headway between the preceding tram will be further
increased. Comparably, the time-headway between the succeeding tram will
be smaller than the expected time-headway. There will be fewer passengers at
the stop and the succeeding tram will be faster than usual. Eventually, the
two trams will meet along the route at some point. We noticed that most of
the time when the tram bunching occurs, the succeeding tram serves for fewer
passengers, and the tram is nearly empty.
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5.3. Survey: The correlation structure of stopping behaviour of a tram

When there are multiple routes operating on the same road segment as is in
St Kilda Road, we could expect an increased number of trams barely following
the scheduled time-headway. It is likely to occur bunching phenomena more
frequently in St Kilda Road as illustrated in Figure 5.6. Therefore, we can
expect a significant correlation between consecutive trams and consecutive
stops in St kilda Road.
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Figure 5.6: Survey: Occurrences of bunching at St Kilda Road. We consider any time-
headway less than five seconds as bunched.
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5.3.3 Marginal distributions of observables

5.3.3.1 Marginal distribution of passenger flow time
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Figure 5.7: Survey: Distribution of Passenger Flow Time. 95% confidence bands (yellow
area) are included. Empirical distributions are smoothed with non-parametric Gaussian
kernel shown in grey area.

We analyse the passenger flow time data we observed in order to compare
approximated marginal distributions in Section 5.2 as a consistency test.
Figure 5.7 illustrates the passenger flow time distributions at each surveyed
stop. As observed in Section 5.2, passenger flow times at all four stops we
surveyed are again well described by a log-normal distribution. Estimated
σ’s for passenger flow times at St Kilda Road stops are quite similar to the
estimated σ’s for passenger flow times at trams stops with a safety zone (see
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5.3. Survey: The correlation structure of stopping behaviour of a tram

Table 5.1). However, µ’s are slightly higher as the St Kilda Road stops are
extremely busy. Passenger flow times at Sydney Road stops show slightly lower
µ’s as the route is not as busy as the St Kilda Road route. Estimated σ’s for
passenger flow times at Sydney Road stops are again similar to the estimated
σ’s for passenger flow times at curb-side trams stops (see Table 5.1).

Table 5.2: Survey: Log-normal distribution parameter estimation of passenger flow time at
each surveyed stop.

Log-normal parameter estimate K-S
test Sig.

Chi-square
test Sig.log(µ) log(σ)

St Kilda Road Leopold Street 2.645[±0.033] 0.613[±0.0234] 0.43 0.6147
Arthur Street 2.604[±0.035] 0.656[±0.025] 0.3468 0.9465

Sydney Road Stewart Street 1.874[±0.0514] 0.479[±0.0363] 0.09238 0.4543
Blyth Street 1.657[±0.0594] 0.545[±0.042] 0.1119 0.3868

One of the main factors we noticed in Section 5.2 was estimated parameters,
µ and σ of log-normal distribution for passenger flow time do not vary much
with the type of the tram stop. However, when we compare the estimated
parameters of passenger flow time distribution at St Kilda Road and Sydney
Road, estimated σ’s are quite similar, but the µ’s are different. The difference
in estimated µ’s at Sydney Road is significant with respect to the St Kilda
Road. This significant difference maybe because all the tram stops we consider
in Section 5.2 are roughly as busier as St Kilda Road and are quite closer to
each other. However, the stops we surveyed in Sydney Road are less busy
and quite far from the rest of the surveyed stops. We can observe that the
estimated µ for passenger flow time distribution does depend on the location
and the passenger demand of the desired stop.

5.3.3.2 Marginal distribution of time-headway

We analyse the surveyed data in order to understand the time-headway distri-
butions of trams on selected routes as well. The time-headway distribution of
trams in St Kilda Road is positively skewed while in Sydney Road it is closer
to symmetrical. Lin and Ruan suggested that the time-headway of selected
routes in Chicago can be well approximated by a gamma distribution [133].
Therefore, we assess the goodness-of-fit of gamma distribution and log-normal
distribution in describing the time-headway data collected in St Kilda Road
stops.
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Figure 5.8: Survey: Four Goodness-of-fit plots for gamma distribution and log normal
distribution for time-headway at Leopold Street stop
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Figure 5.9: Survey: Four Goodness-of-fit plots for gamma distribution and log normal
distribution for time-headway at Arthur Street stop
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5.3. Survey: The correlation structure of stopping behaviour of a tram

Figures 5.8 and 5.9 summarise the goodness-of-fit plots for gamma distri-
bution and log-normal distribution for time-headway at Leopold Street stop
and Arthur Street stop. The Q − Q plot emphasises the lack-of-fit at the
distribution tails while the P − P plot emphasises the lack-of-fit at the centre
of the distribution. In Figures 5.8 and 5.9, it is evident that the gamma
distribution correctly describes both the centre and the right tail of the dis-
tribution. At St Kilda Road, time-headway between trams is highly skewed
and well approximated by a gamma distribution as illustrated in Figures 5.10a
and 5.10b. However, at Sydney Road, the time-headway distribution is more
symmetric and appears to be described by a normal distribution as described
in Figures 5.10c and 5.10d.
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Figure 5.10: Survey: Distribution of time-headway. 95% confidence bands (yellow area)
are included. Empirical distributions are smoothed with non-parametric Gaussian kernel
shown in grey area.

At St Kilda Road trams are operated on dedicated lanes, so there is no
impact from other traffic. In addition, St Kilda Road operates multiple tram
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5.3. Survey: The correlation structure of stopping behaviour of a tram

routes and has an irregular dispatching time-headway. When a route has an
irregular dispatching time-headway, it is highly likely to occur tram bunching
quite frequently (see Figure 5.6). Moreover, during the peak hour, St Kilda
Road is highly crowded. The higher number of passengers will cause more
delays at the stop and will increase the time-headway between preceding tram
while decreasing the time-headway between the tram behind. In this way, we
can expect a skewed time-headway distribution including a significant number
of larger time-headways.

Even though the trams at Sydney Road operate under mixed traffic con-
ditions, the observed time-headway distribution seems to be more symmetric
than at St Kilda Road. In Sydney Road, a single tram route is operated with
a regular time-headway of six minutes and are closely following the time table.
Moreover, the passenger demand at Sydney Road is quite lower and trams
are not likely to spend more time at the stops serving passengers. There-
fore, the observed time-headway distributions at Sydney Road can be closely
approximated by a normal distribution.

Table 5.3: Survey: Estimated parameters for time-headway distribution at surveyed routes
in the Melbourne tram network.

St Kilda Road - Gamma Distribution

Shape Rate K-S
test Sig.

Chi-square
test Sig.

Leopold Street 1.1448[±0.07554] 0.01575[±0.00128] 0.1035 0.2129
Arthur Street 0.9859[±0.06392] 0.0139[±0.0012] 0.7324 0.3083

Sydney Road - Normal Distribution

Mean SD K-S
test Sig.

Chi-square
test Sig.

Stewart Street 283.83[±10.893] 102.18[±7.7023] 0.6202 0.5012
Blyth Street 280.5[±10.916] 102.39[±7.719] 0.6841 0.4928

5.3.3.3 Marginal distribution of link travel time

We analysed the observed travel time distributions at both St Kilda Road
and Sydney Road. The empirical distribution at St Kilda Road is skewed
with a long upper tail. The empirical distribution at Sydney Road is multi-
modal. This may be due to the traffic signals which operate between these
consecutive stops. According to our findings in Chapter 3, we fitted the travel
time distribution for trams between these two consecutive stops with Gaussian
mixture models as illustrated in Figure 5.11.
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Figure 5.11: Survey: Travel time distribution of trams between stops. Gaussian Mixture
Model curve and 95% confidence bands are included. Empirical distributions are smoothed
with non-parametric Gaussian kernel shown in grey area.

Table 5.4: Survey: Estimated Gaussian Mixture Model parameters for travel time distribution
at surveyed routes in the Melbourne tram network

St Kilda Road

µ σ λ K-S
test Sig.

Chi-square
test Sig.

Component 1 34.04[±0.47812] 4.48[±0.46566] 0.50[±0.062492] 0.604 0.8343
Component 2 48.35[±2.32012] 10.69[±1.43796] 0.41[±0.072338]
Component 3 77.90[±10.15521] 23.66[±5.26319] 0.09[±0.039852]

Sydney Road

µ σ λ K-S
test Sig.

Chi-square
test Sig.

Component 1 36.03[±0.37610] 3.34[±0.20805] 0.84[±0.07993] 0.4919 0.5212
Component 2 43.88[±1.31467] 2.87[±0.50320] 0.15[±0.07997]
Component 3 59.80[±0.27746] 0.88[±0.15309] 0.02[±0.00375]

Table 5.4 summarises the estimated Gaussian Mixture Model parameters.
The non-parametric test, Kolmogorov–Smirnov test and the Chi-squared test
confirms that the fitted parameters of Gaussian Mixture Distribution for the
travel times at both St kilda Road and Sydney Road are reasonably good fits.
The majority of trams on Sydney Road could pass the intersection without
any delay. However, on St kilda Road, half of the trams were delayed at the
signalised intersection. In Sydney Road, estimated variances are very small
compared to the estimated variances in St Kilda Road. When the route is
less busy, the behaviour of trams are mostly similar. However, when the route
becomes busier with a higher number of trams and higher passenger demand,
travel behaviour will be changed drastically.
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5.3.4 Correlation analysis

5.3.4.1 Correlation between two stops
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Figure 5.12: Survey: Correlation of time-headway between consecutive stops.
HWt, stop name represents the time-headway of tram t at a given stop.

We denote PFTt, stop name as the passenger flow time of tram t at a given
stop and HWt, stop name as the time-headway of tram t at a given stop. The
Figure 5.12a illustrates the correlation of a tram’s time-headway between
Leopold Street stop HWt, Leopold Street and Arthur Street stop at St Kilda Road
HWt, Arthur Street. The Figure 5.12b illustrates the correlation of a tram’s time-
headway between Stewart Street stop HWt, Stewart Street and Blyth Street stop
at Sydney Road HWt, Blyth Street.

Time-headway between consecutive stops seems to be highly correlated
(see Table 5.5). We can see the scheduled time table is maintained better on
Sydney Road than on St Kilda Road. Sydney road is less busy and has a
regular dispatching time-headways compared to St Kilda Road which operates
multiple routes with irregular dispatching time-headways.

Table 5.5: Survey: Correlation coefficient of time-headway of a tram between stops.

Correlation coefficient

St Kilda Road: Corr(HWt, Leopold Street, HWt, Arthur Street) 0.9237[±0.0196]

Sydney Road: Corr(HWt, Stewart Street, HWt, Blyth Street) 0.988[±0.0166]
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The Figure 5.13a illustrates the correlation of a tram’s passenger flow time
between Leopold Street stop PFTt, Leopold Street and Arthur Street stop at St
Kilda Road PFTt, Arthur Street. The Figure 5.13b illustrates the correlation of a
tram’s passenger flow time between Stewart Street stop PFTt, Stewart Street and
Blyth Street stop at Sydney Road PFTt, Blyth Street.
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Figure 5.13: Survey: Correlation of Passenger Flow Time between consecutive stops.
PFTt, stop name represents the passenger flow time of tram t at a given stop

Table 5.6: Survey: Correlation coefficient of passenger flow time of a tram between stops.

Correlation coefficient

St Kilda Road: Corr(PFTt, Leopold Street, PFTt, Arthur Street) 0.0594[±0.051]

Sydney Road: Corr(PFTt, Stewart Street, PFTt, Blyth Street) 0.0528[±0.108]

We can assume that the passenger demand at both surveyed stops in each
route are quite similar as the stops are very closer to each other (Stewart
Street stop and Blyth street stop are only 210m apart and Leopold Street stop
and Arthur Street Stop are only 280m apart). Therefore, when a tram got
delayed and closely followed the preceding tram, the first tram tends to serve
more passengers at both the stops and have a higher passenger flow time while
the second tram tends to serve fewer passengers and have a lower passenger
flow time at both the stop. If t− 1th tram and tth tram are closely operating,
then PFTt−1,s1 > PFTt,s1 and PFTt−1,s2 > PFTt,s2 , where t represents the tth
tram and si represents the ith stop in the route. Therefore, we could expect a
positive correlation in passenger flow time of a tram between two consecutive
stops.
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However, the Figure 5.13 and the Table 5.6 illustrates that the passenger
flow time of a tram between two consecutive stops does not show a significant
association. At St Kilda Road we noticed that, when the tram becomes
overcrowded as well as there’s a tram closely behind, the tram operator chosen
to bypass the following stop. This might be the reason we could not observe a
significant spatial correlation in passenger flow time of a tram.

5.3.4.2 Correlation between two consecutive trams
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(d) Sydney Road: Blyth Street stop

Figure 5.14: Survey: Correlation of time-headway between consecutive trams at each stop.
HWt, stop name represents the time-headway of tram t at a given stop.

If a tram got delayed and gets the time-headway bigger causing more passengers
waiting at the stop, it will have a longer passenger flow time. Consequently,
the tram closely following the delayed tram tend to have lower passenger
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flow time due to the few number of passengers waiting at the stop. When
we consider the nature of correlation between two consecutive trams, we can
expect a negative correlation between passenger flow time of consecutive trams
and time-headway of two consecutive trams. That is the correlation between
PFTt−1,si

and PFTt,si
is negative. Moreover, the correlation between HWt−1,si

and HWt,si
is also negative.

Table 5.7: Survey: Correlation coefficient of time-headway between consecutive trams at
each stop.

Correlation Coefficient

St Kilda Road
Corr(HWt−1, Leopold Street, HWt, Leopold Street) −0.0399[±0.0511]

Corr(HWt−1, Arthur Street, HWt, Arthur Street) −0.0757[±0.0509]

Sydney Road
Corr(HWt−1, Stewart Street, HWt, Stewart Street) −0.308[±0.1032]

Corr(HWt−1, Blyth Street, HWt, Blyth Street) −0.323[±0.1027]

The negative correlation is quite evident at Sydney Road as illustrated in
Tables 5.7 and 5.8. See Figures 5.14 and 5.15. However, passenger flow time has
a very week correlation. At St Kilda Road, it is evident that the correlation of
time-headway between two consecutive trams is slightly negative as summarised
in Table 5.7. However, there is no evidence of significant negative correlation of
passenger flow time between consecutive trams at St Kilda Road. This might
be due to the tram operators at St Kilda Road deliberately bypass some stops
whenever there are no passengers to get off and when there is another tram
closely behind.

Table 5.8: Survey: Correlation coefficient of passenger flow time between consecutive trams.

Correlation Coefficient

St Kilda Road
Corr(PFTt−1, Leopold Street, PFTt, Leopold Street) 0.0685[±0.0509]

Corr(PFTt−1, Arthur Street, PFTt, Arthur Street) 0.0825[±0.0509]

Sydney Road
Corr(PFTt−1, Blyth Street, PFTt, Blyth Street) −0.085[±0.1081]

Corr(PFTt−1, Stewart Street, PFTt, Stewart Street) −0.128[±0.1076]
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(d) Sydney Road: Blyth Street stop

Figure 5.15: Survey: Correlation of passenger flow time between consecutive trams at each
stop. PFTt, stop name represents the passenger flow time of tram t at a given stop.

5.3.4.3 Passenger flow time and time-headway correlation

If a tram has a shorter time-headway, there has been less time for passengers
to arrive at the stop. Consequently, a tram tends to have a shorter passenger
flow time when it’s time-headway is shorter. Contrarily a tram tends to have a
longer passenger flow time when it’s time-headway is longer. Hence, we expect
a positive correlation between time-headway and passenger flow time at each
stop. As illustrated in Figure 5.16 and Table 5.9, the passenger flow time tends
to have a week positive association with the time-headway at each of the four
stops we surveyed.
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5.3. Survey: The correlation structure of stopping behaviour of a tram
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(d) Sydney Road: Blyth Street Stop

Figure 5.16: Survey: Correlation between time-headway and passenger flow time of a
tram at each stop. HWt, stop name and PFTt, stop name represents the time-headway and
passenger flow time of tram t at a given stop.

Table 5.9: Survey: Correlation coefficient between time-headway and passenger flow time of
a tram at each stop.

Correlation Coefficient

St Kilda Road
Corr(HWt, Leopold Street, PFTt, Leopold Street) 0.2244[±0.0497]

Corr(HWt, Arthur Street, PFTt, Arthur Street) 0.1072[±0.0507]

Sydney Road
Corr(HWt, Blyth Street, PFTt, Blyth Street) 0.2248[±0.1051]

Corr(HWt, Stewart Street, PFTt, Stewart Street) 0.1959[±0.1057]
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5.4. Simulation

5.4 Simulation

We develop a simple stochastic simulation model describing a one-way tram
line, which accounts dwell time at stops, time-headway between trams and
passenger demand at each stop. We utilise this simulation model to understand
the correlation structure and stopping behaviour of a tram operating in a high
frequency, busy route with irregular dispatching time-headways. We utilise
the information obtained from the survey at st Kilda Road, such as link travel
time and passenger demand as inputs to the simulation model.

5.4.1 Model

Read in network
settings

Update network
state

Insert trams according to timetable
Inflow passengers

Update state of
each tram

No Terminate? End SimulationYes

Figure 5.17: Simplified flowchart of the simulation model.

A stochastic model was constructed to study the stopping behaviour of trams
on a dedicated lane. Figure 5.17 shows a flowchart of the proposed model. In
the initialisation process, the model loads the input parameters that describe
the route and the stop information such as the passenger demand. Each tram
is dispatched from the depot according to a fixed time table. Passengers arrive
randomly at each stop at a time dependent rate of rt, where each passenger
has a different destination. When a tram first arrives at a link l, its travel time
on the link is randomly drawn from the empirical travel time distribution. At
each stop O, trams dwell to serve passengers and the dwell time at each stop
is determined by the number of boarding and alighting passengers at time t at
stop O. The model records the time-headway and passenger flow time for each
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5.4. Simulation

tram at each stop. The simulation terminates when all the trams have been
dispatched and have left the system.

5.4.2 System configuration

Union Street/ St Kilda Stop

Melbourne University/ 

Swanston Street Stop

Figure 5.18: Simulated route and stop locations on St Kilda Road

We considered 96 trams, matching up with the scheduled timetable at Leopold
street stop in St Kilda Road during the evening peak 4:00PM-6:00PM. 19
stops, numbered from 01 to 19, were considered where stop 01 represents the
Union Street Stop, stop 12 represents the Flinders Street Station stop and
stop 19 represents the Melbourne University/Swanston St Stop as described in
Figure 5.18. We considered the stop 12 (Flinders Street stop) as the Major
stop on the simulated route, where majority of the passengers alight. Stop 05
and 06 were considered as the two distinct stops we surveyed, Leopold Street
stop and Arthur Street Stop. Random travel times between stops were sampled
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5.4. Simulation

from the empirical travel times between Leopold Street stop and Arthur Street
stop assuming all the other links were functioning similar to the observed link.
The maximum capacity of a tram was fixed at 300 passengers.

The passenger data is not measured in our survey. In principle, we could
estimate passenger demand utilising the multivariate regression model from
[24]. However, we did not have data for parameters c, d, e, f . Therefore, we
performed a regression analysis for the passenger flow time depending only on
the number of boarding and alighting passengers using the data from [24].

PFT = 5.98 + 0.69×Boarding + 0.55× Alighting (5.1)

Table 5.10: Multivariate Regression: Passenger Flow Time

Multivariate Regression: Passenger Flow Time
Multiple R-Squared 0.6623
Adjusted R-Squared 0.6618
Coefficients Estimate P-Value
Intercept 5.97717 ≈ 0
Boarding 0.68692 ≈ 0
Alighting 0.55240 ≈ 0

During the survey, we noticed that the number of alighting passengers was
comparatively low at Leopold Street stop and Arthur Street Stop on St Kilda
Road. Therefore, we assumed that the passenger flow time in these two stops
were determined largely by the number of boarding passengers. Assuming no
alighting passengers at these two stops, we then approximated the passenger
demand at each stop for fifteen-minute time windows using Equation (5.1). We
estimated the passenger arrival rates for Leopold Street stop, rLt and Arthur
Street stop, rAt in St Kilda Road separately assuming the passenger arrival
rates are consistent within these time windows. We then estimated the time
dependent passenger arrival rate, rt, averaging over two surveyed stops (i.e.
rt = (rLt + rAt )/2) as summarised in Table 5.11.

Table 5.11: Time dependent passenger arrival rates. Averaging over two surveyed stops (i.e.
rt = (rL

t + rA
t )/2)

Time window rt pass/s Time window rt pass/s
4:00-4:15PM 0.164 5:15-5:30PM 0.275
4:15-4:30PM 0.145 5:30-5:45PM 0.112
4:30-4:45PM 0.181 5:45-6:00PM 0.112
4:45-5:00PM 0.242 6:00-6:15PM 0.112
5:00-5:15PM 0.320 6:15-6:30PM 0.112
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5.5. Numerical results

There were a no passenger flow time observations after 5:45PM as we did
not conduct the survey after 5:45PM. Therefore, we assume the passenger
arrival rate remains constant at the rate observed from 5:30PM-5:45PM until
6:30PM.

Union Street stop in St Kilda Road (Stop 01 in our simulation) is surrounded
by many offices and therefore we consider it a busy stop with a higher demand.
We assume a lower passenger demand at the High Street stop and Maubray
Street stop (Stop 02 and 03 in our simulation) as they are located quite close
together, dividing the passenger flow between them. Again, from Commercial
Street stop to Arthur Street stop (Stop 04 to Stop 06 in our simulation), we
considered high passenger demand as these stops are surrounded by many
offices. All the stops after Toorak Road stop up to Flinders Street stop (Stop
12 in our simulation) were considered as less busy due to them being closer to
the Flinders Street stop. Flinders Street stop is the main destinations of the
passengers, as a majority of them get off at Flinders Street stop to catch trains
during the evening peak time. Therefore, in the simulation, we consider stop 12
as the main stop for the majority of the passengers to get off. We considered a
lower passenger demand after Flinders Street stop as these stops are less busy
during the evening peak time. As a summary, we fixed the time-dependent
passenger arrival rates, 0.5 × rt, at stops 02, 03, 07-18 and, rt, at stops 01,
04-06.

We determined the destinations for passengers from each stop according
to a typical evening peak scenario. We considered most of the passengers
who board before stop 12 have their destination set to stop 12: 60% of the
passengers boarding before stop 12 alight at stop 12, and 40% of them alight
uniformly at the other stops. Passengers who board after Stop 12 will alight
uniformly at all the following stops. We simulated the system described in
Section 5.4.1 for 2.5 hours in evening peak 4:00PM to 6:30PM for five days.
We recorded the time-headway and dwell time for each tram at each stop.

5.5 Numerical results

We chose the parameters we described earlier in order to represents the
tram route in St Kilda road from Union Street stop to Melbourne Universi-
ty/Swanston Street Stop. The passenger arrival rates we consider at stops 05
and 06 were mostly similar to the Leopold Street stop and Arthur Street stop
respectively. Therefore, we compared the marginal distributions of passenger
flow time and time-headway at both the simulated tram stops 05 and 06 with
the two surveyed stops at St kilda Road: Leopold street stop and Arthur
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5.5. Numerical results

street stop. According to the fitted regression model, in Equation5.1, time
taken to open or close the tram doors is 2.99s. However, this value is slightly
higher than the value estimated in [24]. Our model does not incorporate all
the factors affect to the constant term in dwell time. Therefore, we derived
passenger flow times from the dwell time data by considering the time taken
to open or close the tram doors as 2.1s.
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Figure 5.19: Comparison: Distribution of Passenger Flow Time. 95% confidence bands
(yellow area) are included. Simulated and empirical distributions are smoothed with non-
parametric Gaussian kernel which is shown in grey area.

We analysed the marginal distributions of passenger flow time at the simu-
lated stops as summarised in Figure 5.19. We fitted log-normal distributions
to the passenger flow times.
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5.5. Numerical results

Table 5.12: Comparison: Log-normal distribution parameter estimation of passenger flow
time at stop 05 and 06

Stop ID log(µ) log(σ) Chi-Square Sig.

Simulation: Stop 05 2.495[±0.0304] 0.649[±0.0215] 0.0005
Simulation: Stop 06 2.4911[±0.0312] 0.6572[±0.0220] 0.0005

Survey: Leopold Street 2.645[±0.033] 0.613[±0.0234] 0.6147
Survey: Arthur Street 2.604[±0.035] 0.656[±0.025] 0.9465
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Figure 5.20: Simulation: Distribution of time-headways. 95% confidence bands (yellow
area) are included. Simulated and empirical distributions are smoothed with non-parametric
Gaussian kernel which is shown in grey area.

Log-normal distribution parameter estimations for stops 05 and 06 are
summarised in Table 5.12. Even though the goodness-of-fit is poor, the
estimated log-normal distribution parameters of the marginal passenger flow
times distributions at stops 05 and 06 are mostly similar to the estimated log-
normal distribution parameters of marginal distribution of passenger flow time
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5.5. Numerical results

at the Leopold street stop and the Arthur street stop respectively. See Table 5.2.
The marginal passenger flow time distributions of these two simulated stops are
similar to what we observed in the survey at St Kilda Road. It appears that
the dwell times we obtained from the simulations agrees with the empirical
results.

Furthermore, we compared the marginal distributions of the simulated tram
time-headways at stops 05 and 06 with the two surveyed stops at St Kilda Road.
Figure 5.20 summarises the marginal time-headway distributions of trams at
stops 05 and 06. We fitted gamma distribution to the time-headways at Stops
05 and 06. Estimated parameters for gamma distribution are summarised
in Table 5.12. For both stops, the goodness-of-fit is high. The estimated
parameters of the gamma distributions of marginal time-headway distribution
at the simulated stops are also similar to the estimated gamma distribution
parameters of marginal time-headway distributions at Leopold street stop and
Arthur street stop. See Table 5.13.

Table 5.13: Simulation: Gamma distribution parameter estimation of passenger flow time at
stops 05 and 06

Stop ID Shape Rate Chi-Square Sig.

Stop 05 1.09008[±0.0841] 0.012868[±0.0012] 0.82059
Stop 06 0.957596[±0.07392] 0.010935[±0.0011] 0.384808

Stop 05 1.1448[±0.07554] 0.01575[±0.00128] 0.2129
Stop 06 0.9859[±0.06392] 0.0139[±0.0012] 0.3083

5.5.1 Correlation analysis

5.5.1.1 Correlation between two stops

Figure 5.21 summarises the correlation matrix of the dwell times of trams
between stops along the route (i.e., Corr(DT(t,i), DT(t,j)), where DT(t,i) is the
dwell time of tram t at stop i. Dwell times at stops before stop 12 are positively
correlated with the dwell time at the previous stop. We noticed the correlation
decreases as the distance between stops increases. Dwell times at each pair of
stops after stop 12 display a high positive correlation.

Figure 5.22 summarises the correlation matrix of the tram time-headways
between stops along the route i.e., Corr(HW(t,i), HW(t,j)), where HW(t,i) is
the time-headway of tram t at stop i. The time-headways at each pair of
stops display positive correlation and the strength of these correlations is
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5.5. Numerical results

the strongest between consecutive stops. We observed that the correlation is
monotonically decreases as the distance between stops increases.
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Figure 5.21: Simulation: Correlation matrix of dwell times of trams between stops. Colour
scheme representing the direction of the association is shown.
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Figure 5.22: Simulation: Correlation matrix of time-headways of trams between stops.
Colour scheme representing the direction of the association is shown.
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5.5.1.2 Correlation between two consecutive trams

In this subsection we discussed the correlation of dwell times and time-headways
between consecutive trams.
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Figure 5.23: Simulation: Correlation of dwell times between tram t− 1 and t. Colour scale:
dark blue to light blue represents the high positive correlation to slight positive correlation.

Figure 5.23 summarises the correlation of dwell times between tram t− 1
and t. Table 5.14 summarises the estimated correlation coefficients based on
the Pearson’s correlation coefficient. When the preceding tram has a longer
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dwell time, the following one tends to have a shorter dwell time i.e. the dwell
time between tram t− 1 and tram t is negatively correlated.

Table 5.14: Simulation: Correlation between dwell time of consecutive trams.
Corr(DT(t−1,i), DT(t,i)), for i = 01, 02, ..., 19. DT(t,i) represents the dwell time of tram
t at stop i.

Correlation Coefficient

Corr(DT(t−1,01), DT(t,01)) 0.175 [±0.04527]
Corr(DT(t−1,02), DT(t,02)) 0.151 [±0.04545]
Corr(DT(t−1,03), DT(t,03)) 0.164 [±0.04536]
Corr(DT(t−1,04), DT(t,04)) 0.112 [±0.04569]
Corr(DT(t−1,05), DT(t,05)) 0.194 [±0.04510]
Corr(DT(t−1,06), DT(t,06)) 0.231 [±0.04474]
Corr(DT(t−1,07), DT(t,07)) 0.225 [±0.04480]
Corr(DT(t−1,08), DT(t,08)) 0.152 [±0.04480]
Corr(DT(t−1,09), DT(t,09)) 0.133 [±0.04557]
Corr(DT(t−1,10), DT(t,10)) 0.123 [±0.04563]
Corr(DT(t−1,11), DT(t,11)) 0.134 [±0.04557]
Corr(DT(t−1,12), DT(t,13)) 0.576 [±0.03759]
Corr(DT(t−1,13), DT(t,13)) 0.521 [±0.03926]
Corr(DT(t−1,14), DT(t,14)) 0.497 [±0.03989]
Corr(DT(t−1,15), DT(t,15)) 0.456 [±0.04093]
Corr(DT(t−1,16), DT(t,16)) 0.417 [±0.04180]
Corr(DT(t−1,17), DT(t,17)) 0.358 [±0.04294]
Corr(DT(t−1,18), DT(t,18)) 0.327 [±0.04345]
Corr(DT(t−1,19), DT(t,19)) 0.344 [±0.04318]

Table 5.15: Simulation: Correlation between time-headway of consecutive trams.
Corr(HW(t−1,i), HW(t,i)), for i = 01, 02, ..., 19. HW(t,i) represents the time-headway of
tram t at stop i.

Correlation Coefficient

Corr(HW(t−1,01), HW(t,01)) -0.079 [±0.04609]
Corr(HW(t−1,02), HW(t,02)) -0.109 [±0.04596]
Corr(HW(t−1,03), HW(t,03)) -0.117 [±0.04591]
Corr(HW(t−1,04), HW(t,04)) -0.114 [±0.04593]
Corr(HW(t−1,05), HW(t,05)) -0.105 [±0.04597]
Corr(HW(t−1,06), HW(t,06)) -0.077 [±0.04609]
Corr(HW(t−1,07), HW(t,07)) 0.023 [±0.04621]
Corr(HW(t−1,08), HW(t,08)) 0.134 [±0.04580]
Corr(HW(t−1,09), HW(t,09)) 0.154 [±0.04567]
Corr(HW(t−1,10), HW(t,10)) 0.182 [±0.04545]
Corr(HW(t−1,11), HW(t,11)) 0.203 [±0.04526]
Corr(HW(t−1,12), HW(t,12)) 0.137 [±0.04579]
Corr(HW(t−1,13), HW(t,13)) 0.208 [±0.04522]
Corr(HW(t−1,14), HW(t,14)) 0.170 [±0.04555]
Corr(HW(t−1,15), HW(t,15)) 0.119 [±0.04589]
Corr(HW(t−1,16), HW(t,16)) 0.069 [±0.04611]
Corr(HW(t−1,17), HW(t,17)) 0.041 [±0.04619]
Corr(HW(t−1,18), HW(t,18)) 0.013 [±0.04622]
Corr(HW(t−1,19), HW(t,19)) 0.006 [±0.04622]

When the route is busy with frequent trams and a large passenger demand,
the negative correlation is weaker. During the st Kilda road survey we noticed
that, when the trams are crowded and reached the capacity, there were many
passengers failing to board. Therefore, the tram behind will have a similar
number of passengers to board. Hence have a quite similar dwell time.
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5.5. Numerical results
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Figure 5.24: Simulation: Correlation of time-headways between tram t− 1 and t. Colour
scale: yellow to light blue represents the week negative correlation to week positive correlation.

Figure 5.24 summarises the correlation of time-headways between con-
secutive trams i.e. correlation of time-headways between tram t − 1 and t.
Table 5.15 summarises the estimated correlation coefficients based on the Pear-
son’s correlation coefficient. As we expect, the negative correlation between
time-headways of two consecutive trams is quite evident at the first six stops
along the route. After stop 07, the time-headway of the preceding tram is
weakly positively correlated to that of the succeeding tram.
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5.5. Numerical results

5.5.1.3 Dwell time and time-headway correlation
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Figure 5.25: Simulation: Correlation between dwell time and time-headway of a tram t at
each stop. Colour scale: dark blue to light blue represents the high positive correlation to
slight positive correlation.
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5.5. Numerical results

Table 5.16: Simulation: Correlation between the dwell time and time-headway of a tram at
each stop. Corr(HW(t,i), DT(t,i)), for i = 01, 02, ..., 19. DT(t,i) represents the dwell time of
tram t at stop i and HW(t,i) represents the time-headway of tram t at stop i.

Correlation Coefficient

Corr(HW(t,01), DT(t,01)) 0.752 [±0.03029]
Corr(HW(t,02), DT(t,02)) 0.751 [±0.03035]
Corr(HW(t,03), DT(t,03)) 0.774 [±0.02913]
Corr(HW(t,04), DT(t,04)) 0.807 [±0.02716]
Corr(HW(t,05), DT(t,05)) 0.814 [±0.02670]
Corr(HW(t,06), DT(t,06)) 0.519 [±0.03931]
Corr(HW(t,07), DT(t,07)) 0.348 [±0.04311]
Corr(HW(t,08), DT(t,08)) 0.348 [±0.04311]
Corr(HW(t,09), DT(t,09)) 0.369 [±0.04272]
Corr(HW(t,10), DT(t,10)) 0.311 [±0.04370]
Corr(HW(t,11), DT(t,11)) 0.322 [±0.04353]
Corr(HW(t,12), DT(t,12)) 0.529 [±0.03903]
Corr(HW(t,13), DT(t,13)) 0.791 [±0.02815]
Corr(HW(t,14), DT(t,14)) 0.784 [±0.02856]
Corr(HW(t,15), DT(t,15)) 0.813 [±0.02678]
Corr(HW(t,16), DT(t,16)) 0.817 [±0.02649]
Corr(HW(t,17), DT(t,17)) 0.819 [±0.02637]
Corr(HW(t,18), DT(t,18)) 0.833 [±0.02542]
Corr(HW(t,19), DT(t,19)) 0.836 [±0.02525]

Figure 5.25 summarises the correlation between dwell time and time-headway
of a tram for all the stops along the route i.e. Corr(HW(t,i), DT(t,i)), DT(t,i)
represents the dwell time of tram t at stop i and HW(t,i) represents the time-
headway of tram t at stop i. Time-headway and dwell time are positively
correlated at each stop. At all the stops up to 12, dwell time and time-headway
are positively correlated, as a longer time-headway between trams results
in more passengers waiting at the stop expecting a tram. At stop 12, the
correlation between dwell time and time-headway is weaker. This is probably
because Stop 12 only has a fewer passengers getting on while an exceptionally
high number of passengers getting off. Therefore, the dwell time at stop 12 is
largely due to the alighting passengers. The number of passengers getting off
at the stop is not largely affected by the time-headway of a tram during the
peak hour.

After stop 13, the strength of the correlation between dwell time and
time-headway gradually decreases. This is because lower demand of passengers
getting on and off were considered after stop 12. Most of the trams spend less
dwell time at these stops due to the lower passenger demand. Most of the
trams have shorter time-headways with a fewer passengers to serve. Therefore,
the correlation between dwell time and time-headway becomes weaker except
for a few numbers of cases with longer time-headways.
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5.6. Discussion

5.6 Discussion

To facilitate simulation-based studies, understanding of the stopping behaviour
of mass transit vehicles is vital. The stopping behaviour is greatly affected by
the time spent at each stop for serving passengers. The passenger demand at
a particular stop might also be affected by the time-headway of the transit
vehicle. Therefore, it is crucial to fully understand the stopping behaviour
of mass transit vehicles by just looking at isolated transit vehicles and stops.
Therefore, in this chapter, we study the correlation structure of the passenger
flow time and time-headway between consecutive trams and consecutive stops.

We analysed a data set in [35] which contains passenger flow time events
from ten different tram stops in the inner network of Melbourne CBD. These
tram stops include all three types of tram stop designs: curb-side, platform and
safety zone. The already existing data set is not detailed enough to understand
the correlation structure between stops and between trams. Therefore, we
surveyed two distinct pairs of consecutive tram stops in Melbourne’s CBD,
located on two different tram routes, one of high frequency and the other of low
frequency. The results show that the marginal distribution of passenger flow
time can be well approximated by a log-normal distribution with a reasonably
universal σ. However, the µ appears to depend on the location of the stop.
The marginal distribution of time-headway is symmetric when the route is less
busy with a fewer number of trams. However, the marginal distribution is
skewed and can be well approximated by gamma distribution when the route
is busy with a high frequency of trams.

If a tram dwells for long at a stop, serving many passengers, then the
next tram at that stop will have fewer passengers to pick up, implying a
shorter dwell time. This would suggest a negative correlation between dwell
time of consecutive trams at a given stop. Correspondingly, understanding
of the marginal distribution of dwell time would be insufficient to simulate
the movements of trams accurately. Therefore, understanding the conditional
distribution of a tram’s dwell time, conditional on the dwell time of the previous
tram is also necessary.

The survey data we collected at two distinct pairs of consecutive tram stops
and the data obtained from the simulation study were analysed to understand
the correlation structure of passenger flow time/dwell time and time-headway
between consecutive trams and between consecutive stops. The passenger flow
time between consecutive stops appeared to be a weak positive correlation at
both Sydney Road and St Kilda Road. In the simulation, the correlation of
dwell time between stops is quite notable. The negative correlation of passenger
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5.6. Discussion

flow time between consecutive stops is quite evident at Sydney road while it
is weaker at St Kilda Road. The negative correlation of dwell time between
consecutive stops is also weaker in the simulation. The time-headway of a
tram at two consecutive stops is positively correlated when the scheduled time
table is maintained. The time-headway of two consecutive trams at any given
stop is negatively correlated and is quite evident at Sydney road. However, the
negative correlation is weaker at the St Kilda Road stops and at the simulated
stops.

Even though we observed the correlation of dwell time between consecutive
stops to be positive and between consecutive trams to be negative, the strength
of these correlations is rather weak. The correlation of time-headway between
two consecutive trams is also weak. Since the correlation structure appeared
to be weaker than we expected empirically, modelling each tram’s dwell time
at each stop as an independent log-normal distribution should provide an
accurate method for generating random dwell times at least in simulation-
based studies similar to Melbourne CBD. Furthermore, the time-headway of a
tram at any given stop can also be modelled using a gamma distribution when
the route is busy with a high frequency of trams and with irregular dispatching
of time-headways. We can model the time-headway of a tram at any given
stop when the route is less busy with a fewer number of trams and with a
regular dispatching time-headway using a normal distribution. This provides a
clear initiative to practical implication of simulation studies on mass transit
vehicles.

Future work includes studying the correlation structure of dwell time and
time-headway between consecutive vehicles and consecutive stops along a route,
which would provide more precise results. The simulation model can also be
extended to model multiple routes rather than assuming a single route with
irregular dispatching time-headways. Furthermore, the model can be extended
to study the tram bunching phenomenon precisely.
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Discussion 6

We conclude this thesis with a brief discussion of some theoretical and practical
consequences of our work, and also outline some interesting possible avenues
for future research.

Our study of ABC methods should be considered a proof of concept. By
considering calibration of a simple stochastic model, ASEP, for which many
exact results are known, we were able to identify appropriate summary statistics,
and compare the effectiveness of simple rejection ABC vs regression adjusted
ABC. This is only the tip of the ice-berg however. There are at least two
directions in which this could be extended. Firstly, based on the success
of the small examples studied here, it would be practically useful to apply
regression-adjusted ABC to larger models. Secondly, there are many other
variations and refinements of the ABC methodology, such as SMC-ABC, RABC,
MCMC-ABC, and marginally adjusted ABC, which are potentially more
computationally efficient than the regression-adjusted ABC implementation
studied here. It would be of interest to again study such extensions in the
setting of ASEP and NaSch.

Our study of travel times suggests extensions both on the very theoretical
and very practical ends of the spectrum. On the theoretical end, we provide
concrete conjectures for the form of a posited central limit theorem for the
travel time of a parallel ASEP with open boundary conditions, with explicit
expressions (in terms of the system size, and input and output probabilities)
for the constants in the standardisation. Proving such results rigorously
would be an interesting contribution to the field of non-equilibrium statistical
mechanics. Moreover, a number of analogous variations of ASEP are also likely
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to have central limit theorems for the travel time, e.g. random sequential
instead of parallel updates, or periodic instead of open boundaries. Perhaps
more ambitiously, it may be possible to prove the existence of a central limit
theorem for the travel time of NaSch, albeit without explicit expressions for
the standardisation constants.

On the practical end of the spectrum, our simulations of NaSch systems
with traffic signals provides strong evidence that the travel time is generically
given by a Gaussian mixture model. Moreover, in low density, our physical
predictions for a number of the parameters characterising the mixture appear
to agree well with the numerical results. However, it would be of great
practical interest to perform a detailed empirical study of travel time in a real
arterial road network. Such a study would shed further light on the observed
dependencies of the travel time on the signal parameters, such as splits and
offsets. It would also allow an empirical test of our physical predictions of
the mixture parameters. Having a robust understanding of how to accurately
model travel times in an arterial network using a Gaussian mixture model with
physically interpretable parameters has the potential to be a very useful tool
for traffic simulation.

Finally, perhaps the most practical outcome of the current work concerns
the distribution of dwell times for trams. Based on both our empirical survey,
and simulations, it seems justified to conclude that the dwell time of trams in
a traffic simulator can safely be modelled as independent log-normal random
variables at least in tram networks operated with priority processes similar
to Melbourne CBD. The nature of the correlations between the dwell time
of consecutive trams/stops has not previously been addressed. While the
weakness of these correlations was perhaps somewhat unexpected, it is a very
welcome observation from the perspective of accurately modelling dwell times
in simulations. Moreover, the parameters in these log-normal distributions
depend only weakly on the specifics of the network.
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Travel time distribution: signalised links
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Travel time distribution: signalised links

Lower inflow: α = 0.1 and β = 0.9
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Figure 1: Travel time distribution: Case 45s-45s and α = 0.1. Fitted Gaussian mixture
model is shown in gold area.
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Case 45s-60s
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Figure 2: Travel time distribution: Case 45s-60s and α = 0.1. Fitted Gaussian mixture
model is shown in gold area.
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Case 60s-45s
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Figure 3: Travel time distribution: Case 60s-45s and α = 0.1. Fitted Gaussian mixture
model is shown in gold area.
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Case 60s-60s

0.00

0.05

0.10

50 60 70 80 90

offset = 5s

0.00

0.05

0.10

50 60 70 80 90

offset = 10s

0.00

0.05

0.10

0.15

50 60 70 80 90

offset = 15s

0.00

0.05

0.10

0.15

50 60 70 80 90

offset = 20s

0.00

0.05

0.10

0.15

50 60 70 80 90

offset = 25s

0.00

0.05

0.10

0.15

50 60 70 80 90

offset = 30s

0.00

0.05

0.10

0.15

50 60 70 80 90

offset = 35s

0.00

0.05

0.10

0.15

0.20

50 60 70 80 90

offset = 40s

0.00

0.05

0.10

0.15

0.20

50 60 70 80 90

offset = 45s

0.00

0.05

0.10

0.15

0.20

50 60 70 80 90

offset = 50s

Gaussian Mixture Kernel Density Estimation

Travel Time

D
e
n
s
it
y

Figure 4: Travel time distribution: Case 60s-60s and α = 0.1. Fitted Gaussian mixture
model is shown in gold area.
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Higher inflow, α = 0.5
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Figure 5: Travel time distribution: Case 45s-45s and α = 0.5
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Figure 6: Travel time distribution: Case 45s-60s and α = 0.5
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Case 60s-45s
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Figure 7: Travel time distribution: Case 60s-45s and α = 0.5
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Figure 8: Travel time distribution: Case 60s-60s and α = 0.5
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