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Abstract 

Fuel consumption and emissions of a vehicle are greatly infulenced by driving 

behavior. In particular, signalized intersections, roundabouts, and road-

geometry characteristics, such as, rolling terrains and horizontal curves are the 

major sources of bottlenecks. This brings the necessity of the development of 

intelligent vehicle control strategy for cooperative ecological (eco) driving at 

road networks. Infrastructure-to-vehicle (I2V) and vehicle-to-vehicle (V2V) 

communications along with automated vehicle (AV) technologies can play an 

important role to improve traffic flow performance through control algorithms. 

However, full autonomy of vehicles and proper infrastructure development for 

V2V and I2V communications are currently not widespread. The work in this 

thesis proposes novel intelligent vehicle control strategies for cooperative eco-

driving at road networks that generate the optimal velocity trajectory for the 

vehicle. The strategies are based on learning efficient driving from driving data, 

efficient driving based on model predictive control (MPC) and fuzzy-tuned 

MPC, and intelligent vehicle coordination using a cloud-based system or a 

centrlized controller. We develop machine learning approach to predict traffic 

flow behavior better at signalized intersections, non-linear MPC to improve 

traffic flow at rolling terrains and horizontal curved roads, fuzzy interence 

techniques to tune MPC for smooth variation of speeds on sloples, and 

receding horizon control approach for vehicle coordination at roundabouts. To 

evaluate the performance of the proposed scheme, microscopic traffic 

simulations are conducted and benchedmarked with the existing traditional 

systems. The results show significant performance improvement in fuel 

economy, CO2 emission, and travel time, while ensuring driving safety.  

  

 

 

 

 



iii 

 

Declaration  

This thesis is an original work of my research and contains no material which 

has been accepted for the award of any other degree or diploma at any 

university or equivalent institution and that, to the best of my knowledge and 

belief, this thesis contains no material previously published or written by 

another person, except where due reference is made in the text of the thesis. 

 

 

 

 

 

 

 

 

 

 

Signature:   
 
 
Print Name: A. S. M. Bakibillah 
 
 
Date: 20/11/2020 
 
 
 
 
 
 
 
 
 

 
 



iv 

 

Publications during enrolment  

Journals: 

 
1. A. S. M. Bakibillah, M. A. S. Kamal, Chee Pin Tan, Tomohisa Hayakawa, and Jun-
Ichi Imura, “Event-driven Stochastic Eco-driving Strategy at Signalized Intersections 
from Self-driving Data,” IEEE Transactions on Vehicular Technology, vol. 68, no. 9, 
pp. 8557-8569, 2019. [Q1, IF 5.37] 
 
2. A. S. M. Bakibillah, M. A. S. Kamal, Chee Pin Tan, Tomohisa Hayakawa, and Jun-
Ichi Imura, “Fuzzy-tuned Model Predictive Control for Dynamic Eco-driving on Hilly 
Roads,” Applied Soft Computing, pp. 106875, 2020. [Q1, IF 5.47] 
 
3. A. S. M. Bakibillah, M. A. S. Kamal, Chee Pin Tan, Susilawati, Tomohisa 
Hayakawa, and Jun-Ichi Imura, “Coordinated Merging of Connected-Automated 
Vehicles at Roundabouts for Smooth Traffic Flow,” IEEE Transactions on Intelligent 
Transportation Systems, Under Review. [Q1, IF 6.31]  
 
4. A. S. M. Bakibillah, M. A. S. Kamal, Chee Pin Tan, Tomohisa Hayakawa, and Jun-
Ichi Imura, “Dynamic Eco-driving on Horizontal Curves using MPC Under Various 
Road-surface Conditions,” IEEE Transactions on Control Systems Technology, 
Submission Stage. [Q1, IF 5.31] 

 
Conference Proceedings: 

 
1. A. S. M. Bakibillah, M. A. S. Kamal, and Chee Pin Tan, “Sustainable Eco-driving 
Strategy at Signalized Intersections from Driving Data,” in Proc. Annual Conference 
of the Society of Instrument and Control Engineers of Japan (SICE), Accepted, 2020.  
 
2. A. S. M. Bakibillah, M. A. S. Kamal, Susilawati, and Chee Pin Tan, “The Optimal 
Coordination of Connected and Automated Vehicles at Roundabouts,” in Proc. 58th 
Annual Conference of the Society of Instrument and Control Engineers of Japan 
(SICE), pp. 1392-1397, 2019. [Top 3 out of 400 papers]    

 
3. A. S. M. Bakibillah, M. A. S. Kamal, Chee Pin Tan, Tomohisa Hayakawa, and Jun-
Ichi Imura, “Eco-driving on Hilly Roads Using Model Predictive Control,” in Proc. IEEE 
Joint 7th International Conference on Informatics, Electronics & Vision and 2nd 
International Conference on Imaging, Vision & Pattern Recognition, pp. 476-480, 
2018. 

 
 
 
 
 
 
 
 
 



v 

 

Acknowledgements 

First of all, I would like to express my deepest gratitude to my supervisor 

A/Prof. M. A. S. Kamal for his supervision and continuous support of my Ph.D. 

work. His profound knowledge and guidance helped me to better understand 

my field of research. It was really enlightening to discuss with him my thoughts 

for finding answers to the problems. I couldn't have imagined a better advisor 

for my Ph.D. work. 

Next, my deepest appreciation to my supervisor A/Prof. Tan Chee Pin for his 

advice and motivation throughout my Ph.D. candidature. His constructive 

criticism and feedback helped to boost my research and writing of my Ph.D. 

thesis. His patience and generosity have encouraged an incredibly friendly 

research environment and therefore, obtain the best possible outcome.        

Besides my supervisors, my sincere gratitude goes to A/Prof. Tomohisa 

Hayakawa and Prof. Jun-ichi Imura for their insightful comments and hard 

questions, which inspired me to extend my work from different perspectives.  

I would like to acknowledge Japan Society of the Promotion of Science (JSPS) 

Grant-in-Aid for Scientific Research (A) 18H03774 and (C) 20K04531 for 

supporting my Ph.D. research and publications.            

Last but not least, I would like to thank my family members for supporting me 

spiritually throughout my Ph.D. study.          

 

 

 

 

 

 

 



vi 

 

Contents 
 

Abstract .................................................................................................................................... ii 

Declaration .............................................................................................................................. iii 

Publications during enrolment .................................................................................................iv 

Acknowledgements .................................................................................................................. v 

List of Figures ......................................................................................................................... viii 

List of Tables ............................................................................................................................. xi 

List of Abbreviations ............................................................................................................... xii 

Chapter 1 .................................................................................................................................. 1 

1 Introduction ..................................................................................................................... 1 

1.1 Research Background ............................................................................................... 1 

1.2 Research Scope ........................................................................................................ 7 

1.3 Research Objectives ................................................................................................. 8 

1.4 Research Methodology ............................................................................................ 9 

1.5 Main Contributions ................................................................................................ 10 

Chapter 2 ................................................................................................................................ 12 

2 Literature Review ........................................................................................................... 12 

2.1 Vehicle Control Strategies at Signalized Intersections ........................................... 13 

2.2 Vehicle Control Strategies on Hilly Roads .............................................................. 16 

2.3 Vehicle Control Strategies on Horizontal Curved Roads ........................................ 18 

2.4 Vehicle Control Strategies at Roundabouts ........................................................... 20 

Chapter 3 ................................................................................................................................ 22 

3 Eco-driving Strategy for Signalized Intersections ........................................................... 22 

3.1 Background and Motivation ................................................................................... 23 

3.1.1 Traffic Flow Modeling .................................................................................... 25 

3.1.2 Investigation of the Signal Events .................................................................. 26 

3.2 Driving Data Modeling ........................................................................................... 28 

3.3 Bayesian Gaussian Process Model ......................................................................... 29 

3.4 Eco-Driving Decision System .................................................................................. 31 

3.5 Formulation of Optimization Problem ................................................................... 33 

3.6 Simulation Results and Discussion ......................................................................... 38 

3.6.1 Learning Outcome .......................................................................................... 39 

3.6.2 Performance Evaluation ................................................................................. 41 

3.7 Summary ................................................................................................................ 44 



vii 

 

Chapter 4 ................................................................................................................................ 46 

4 Eco-driving Strategy for Hilly Roads ............................................................................... 46 

4.1 Fundamental Concept ............................................................................................ 47 

4.2 Vehicle Dynamics on Hilly Roads............................................................................ 49 

4.3 Model Predictive Control ....................................................................................... 50 

4.4 Tuning of Objective Function using Fuzzy Inference ............................................. 52 

4.4.1 Fuzzification ................................................................................................... 53 

4.4.2 Fuzzy Inference .............................................................................................. 53 

4.4.3 Defuzzification ................................................................................................ 55 

4.5 Simulation Results and Discussion ......................................................................... 56 

4.5.1 Performance Evaluation on Representative Hilly Road ................................. 57 

4.5.2 Performance Evaluation on Real Hilly Road ................................................... 58 

4.6 Summary ................................................................................................................ 64 

Chapter 5 ................................................................................................................................ 66 

5 Eco-driving Strategy for Horizontal Curved Roads ......................................................... 66 

5.1 Fundamental Concept ............................................................................................ 67 

5.2 Vehicle Dynamics on Curved Roads ....................................................................... 68 

5.3 Curvature Calculation Method ............................................................................... 71 

5.4 Model Predictive Control ....................................................................................... 74 

5.5 Simulation Results and Discussion ......................................................................... 75 

5.6 Summary ................................................................................................................ 84 

Chapter 6 ................................................................................................................................ 85 

6 Eco-driving Strategy for Roundabouts ........................................................................... 85 

6.1 Fundamental Concept ............................................................................................ 86 

6.2 Traffic Flow Modeling ............................................................................................ 87 

6.3 Formulation of Optimization Problem ................................................................... 89 

6.3.1 Higher Level Coordination .............................................................................. 90 

6.3.2 Lower Level Coordination .............................................................................. 92 

6.4 Simulation Results and Discussion ......................................................................... 96 

6.5 Summary .............................................................................................................. 100 

7 Conclusion and Future Works ...................................................................................... 102 

8 References .................................................................................................................... 104 

 

 



viii 

 

List of Figures 

Figure 1: Total cost due to traffic congestion in the U.S. (1990-2014). .......... 1 

Figure 2: Effect of driving action on fuel consumption. ................................... 3 

Figure 3: Fuel consumption variation with speed regulation in the complex 

driving cycle. .................................................................................................. 3 

Figure 4: Eco-driving steps showing fuel efficient way of driving. ................... 5 

Figure 5: Various vehicular communication technologies (Hamida et al., 2015).

 ....................................................................................................................... 7 

Figure 6: Eco-driving research scope. ............................................................ 8 

Figure 7: Levels of driving automation for on-road vehicles (SAE, 2014). ...... 8 

Figure 8: The first vehicle (grey) is equipped with ACC system. .................. 14 

Figure 9: The first vehicle (grey) is equipped with CACC system. ................ 14 

Figure 10: The study area which is a single lane road section consisting of one 

signalized intersection in Subang Jaya, Malaysia. ....................................... 24 

Figure 11: Traffic flow scenario in the test road located in an industrial area in 

Subang Jaya, Malaysia. ............................................................................... 24 

Figure 12: Vehicle under the TDS when approaching the green signal. ...... 27 

Figure 13: Vehicle under the TDS when approaching the red signal. .......... 27 

Figure 14: Bayesian network representation of Conditional Gaussian model.

 ..................................................................................................................... 31 

Figure 15: Vehicle under the EDS when approaching the green signal. ...... 32 

Figure 16: Vehicle under the EDS when approaching the red signal. .......... 32 

Figure 17: Recommended velocity trajectories of a vehicle when approaching 

the signalized intersection. ........................................................................... 36 

Figure 18: The normalized crossing time of the host vehicle when Event A 

occurs (a) 1-D plot and (b) 2-D contour plot. ................................................ 40 

Figure 19: Comparison of driving performance between the eco-driving system 

(EDS) and the traditional driving system (TDS) for (a) Event A and (b) Event 

B. ................................................................................................................. 42 

Figure 20: Histogram of driving performance of the EDS and the TDS. (a) Total 

fuel consumption and (b) total travel time. ................................................... 43 



ix 

 

Figure 21: Fundamental concept of the proposed EDS on a hilly profile with 

up-down slopes using fuzzy-tuned MPC. ..................................................... 48 

Figure 22: Forces acting on the vehicle while running on a hilly road. ......... 49 

Figure 23: Fuzzy inference technique (a) trapezoidal shaped membership 

functions, (b) fuzzy control rules. .................................................................. 54 

Figure 24: Fuzzy inference of the weight 𝑤1(𝑣ℎ, 𝜃) when both the speed 𝑣ℎ of 

the host vehicle and the road slope angle 𝜃 vary. ........................................ 55 

Figure 25: Drive along the hilly road sections (a) an up-down slope and (b) a 

down-up slope. ............................................................................................. 59 

Figure 26: The experimental route in Fukuoka City, Japan, taken from Google 

maps. ........................................................................................................... 60 

Figure 27: The road elevation of the experimental route obtained from digital 

road maps of Fukuoka City, Japan. .............................................................. 61 

Figure 28: Drive along the experimental route (a) from the north end to the 

south end and (b) from the south end to the north end. ............................... 62 

Figure 29: Evaluation of traffic flow performance when driving (a) from the 

north end to the south end and (b) from the south end to the north end. ..... 63 

Figure 30: Fundamental concept of the proposed EDS on a horizontal curved 

road using MPC. .......................................................................................... 68 

Figure 31: (a) The horizontal curved road profile in the XY coordinate system 

and (b) the curve angle. ............................................................................... 77 

Figure 32: Drive under dry surface condition. (a) Speed trajectories, (b) 

acceleration profiles, (c) instantaneous fuel consumption, and (d) 

instantaneous CO2 emission for the EDS and the TDS. ............................... 78 

Figure 33: Drive under wet surface condition. (a) Speed trajectories, (b) 

acceleration profiles, (c) instantaneous fuel consumption, and (d) 

instantaneous CO2 emission for the EDS and the TDS. .............................. 79 

Figure 34: Drive under snow surface condition. (a) Speed trajectories, (b) 

acceleration profiles, (c) instantaneous fuel consumption and (d) 

instantaneous CO2 emission for the EDS and the TDS. .............................. 81 



x 

 

Figure 35: Drive under snow surface condition. (a) Speed trajectories, (b) 

acceleration profiles, (c) instantaneous fuel consumption, and (d) 

instantaneous CO2 emission for the EDS and the TDS. .............................. 82 

Figure 36: Comparison of (a) total fuel consumption and (b) total CO2 emission 

between the EDS and the TDS. ................................................................... 83 

Figure 37: Fundamental concept of the proposed roundabout coordination 

system (RCS). .............................................................................................. 87 

Figure 38: Single-line flow diagram (SLFD) of a single lane four-legged 

roundabout with four merging junctions. ...................................................... 89 

Figure 39: Roundabout entry flow and circulating flow rates with respect to the 

number of lanes. .......................................................................................... 89 

Figure 40: Clustering principle in the higher level coordination. ................... 92 

Figure 41: Successive optimization of vehicles in a receding horizon approach 

in the lower level coordination. ..................................................................... 95 

Figure 42: Case 1 performance comparison of roundabout control system 

(RCS) and traditional roundabout system (TRS). ......................................... 98 

Figure 43: Case 2 performance comparison of roundabout control system 

(RCS) and traditional roundabout system (TRS). ......................................... 99 

Figure 44: Average fuel consumption of vehicles, (a) Case 1 with balanced 

traffic flow, and (b) Case 2 with unbalanced traffic flow. ............................ 100 

 

 

 

 

 

 

 

 

 

 



xi 

 

List of Tables 

Table 1:  Performance Comparison in Fuel Consumption and Travel Time . 44 

Table 2:  Performance comparison between FSD and Fuzzy-MPC for driving 

along up-down and down-up slopes ............................................................. 60 

Table 3:  Performance comparison between FSD and Fuzzy-MPC  for driving 

along the experimental route ........................................................................ 63 

Table 4: Traffic flow performance between the TDS and the EDS ............... 64 

Table 5: Friction coefficient for various road-surface conditions................... 74 

Table 6: Performance comparison between the TDS and the EDS for various 

road-surface conditions ................................................................................ 83 

Table 7:  Performance comparison between RCS and TRS ...................... 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 

 

List of Abbreviations  

ACC Adaptive Cruise Control 
  

ADAS  Advanced Driver Assistance Systems 
  

AHS Automated Highway System  
  

AIM Autonomous Intersection Management 
  

API Advanced Programming Interface 
  

AHS Automated Highway Systems 
  

BN Bayesian Network 
  

BBI Ball Bank Indicator 
  

CACC Cooperative Adaptive Cruise Control 
  

CAV Connected and Automated Vehicle 
  

CMEM Comprehensive Modal Emissions Model 
  

COG Center of Gravity 
  

CV Connected Vehicle 
  

CVIC Cooperative Vehicle Intersection Control 
  

DP Dynamic Programming 
  

ECO Ecological 
  

EDS Eco-driving System/Strategy 
  

EV Electric Vehicle 
  

GHG Greenhouse Gas 
  

GIS Geographic Information Systems 
  

GDP Gross Domestic Product 
  

GPS Global Positioning System 
  

GPR Gaussian Process Regression 
  

IDM Intelligent Driver Model 
  

I2V Infrastructure to Vehicle 
  

ITS Intelligent Transportation Systems 
  

MPC Model Predictive Control 
  

MTC Multi-level Traffic control 
  

MOBIL Minimizing Overall Braking Induced by Lane Change 
  

OBU On-board Unit 
  

ORNL Oak Ridge National Laboratory 
  

PHEV Plug-in Hybrid Electric Vehicle 
  

RCU Roundabout Coordination Unit 
  

RCS Roundabout Coordination System  
  



xiii 

 

RLS Recursive Least Square 
  

RHC Receding Horizon Control  
  

SAE Society of Automotive Engineers 
  

SPAT Signal Phase and Timing 
  

SQP Sequential Quadratic Programming 
  

SAS Speed Advisory System 
  

SLFD Single-line Flow Diagram 
  

TDS Traditional Driving System 
  

TRS Traditional Roundabout System 
  

V2V Vehicle to Vehicle 
  

VICS Vehicle Intersection Coordination Scheme 

 
 



1 

 

Chapter 1 

 

1 Introduction 

1.1 Research Background  

In recent decades, despite growing development of vehicular 

technologies and mobility systems, traffic congestion, fuel consumption, and 

greenhouse gas (GHG) emissions remain an issue due to increase in the 

demand for transportation on the road network. A report on urban road mobility 

shows that traffic congestion resulted in a total cost of 160 billion USD per year 

to American drivers to travel extra 6.9 billion hours and purchase extra 3.1 

billion gallons of fuel (Schrank et al., 2015) and this cost is increasing every 

year as shown in Figure 1.   

 

 

 

 

 

 

 

Figure 1: Total cost due to traffic congestion in the U.S. (1990-2014). 

According to European Commission, the external costs of road traffic 

congestion alone amount to 0.5% of Community GDP and by 2050, the 

congestion cost will increase by about 50% (European Commission, 2011). In 

the U.S., road transportation accounts for about 28% of energy use (U.S. EIA, 

2019), and is the second largest source of GHG emissions, which accounts for 

about 29% of the total U.S. GHG emissions (Desai & Harvey, 2017). Similarly, 

road transportation causes about 23% of the total GHG emissions in the 

European Union (EU), and is the largest source of NOx emissions (Guerreiro 
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et al., 2014). Specifically, emissions from gasoline-fuelled vehicles contribute 

55%, 36%, and 28% of carbon monoxide (CO), nitrogen oxides (NOx), and 

hydrocarbons (HC), respectively (Zhang & Frey, 2006). Such large amount of 

emissions from transportation is the primary source of air pollution and global 

warming. Thus, automotive researchers and policymakers have been focusing 

on various sustainable road transportation technologies that can reduce both 

fuel consumption and GHG emissions.  

A vehicle's fuel consumption and emissions are affected by several 

physical factors, such as its engine characteristics, power train system, 

structure against aerodynamic drag, and fuel type (Barth et al., 2006; Bishop 

et al., 2007). The development of advanced engine technology, hybrid power 

train, lightweight automobiles, eco-fuel, and electric vehicle (EV) helped to 

realize energy-efficient transportation systems (Mendez & Thirouard, 2009; 

Ngo et al., 2012). However, recent studies have revealed that driving 

behaviour has a potential influence on vehicle fuel consumption and 

emissions, because it is very hard for a human driver to apply intimate 

knowledge of the engine dynamics (for fuel-efficient driving) by perfectly 

anticipating surrounding road traffic situations (Berry, 2010; Knowles et al., 

2012). For example, frequent acceleration and braking due to aggressive 

driving behaviour can increase fuel consumption up to 33% on highways and 

5% on urban ways (Saboohi & Farzaneh, 2009). Specifically, signalized 

intersections and roundabouts are the main sources of bottleneck, where 

human drivers frequently perform idling, acceleration, and braking (Margiotta 

& Snyder, 2011; Tang et al., 2017).  

A report on “Smart drive” by the energy conservation centre, Japan 

studied the impact of driving action on fuel consumption and found that 

consumption during start/acceleration and slowing down makes up about 50% 

of the whole fuel consumption as illustrated in Figure 2 (Toyota, 2006). Field 

studies revealed that stop-and-go vehicles cause 14% more fuel consumption 

and emissions than vehicles drive at constant speed (Xia et al., 2012). Thus, 
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speed regulation considerably affects fuel consumption and emissions of a 

vehicle as shown in Figure 3 (Liu et al., 2015).  

 

 

 

  

 

         

Figure 2: Effect of driving action on fuel consumption. 

 

Figure 3: Fuel consumption variation with speed regulation in the complex driving cycle. 

Moreover, road-geometry characteristics, such as roadway grades in a 

hilly road profile and horizontal curved roads seriously impact human driving 

behaviour as well as real-world fuel consumption and emissions of a vehicle. 

For example, fuel consumption of vehicles is approximately 5% to 20% more 

on uphill sections of a hilly road compared to a flat road because high power 

is required to overcome the gravitational force (Boriboonsomsin & Barth, 2009; 

Carrese et al., 2013). Some researchers found an average increase of 2–64% 

in fuel consumption and CO2 emission, 3–47% in HC, 4–73% in CO, and 24–

380% in NOx by varying the road grade from 0% to 8% in steps of +1% for a 
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5 km road with an average vehicle speed of 70 km/h (Silva et al., 2006). 

Likewise, Ko et al. (2015) found that a vehicle driving on horizontal curved 

roads at a speed of 70 km/h consumes 34% extra fuel and produces up to 91% 

more emissions when the radius is 50% lower than the minimum standard.  

In contrast, a series of driving tests show that it is possible to reduce 

fuel consumption by approximately 5-25% through driving in an economical 

style (Mierlo et al., 2004; Cheng et al., 2013). Among various efficient driving 

strategies, ecological driving (eco-driving) is one such strategy that gives 

various solutions and techniques for improving fuel efficiency, reducing traffic 

congestion, and emissions (Barth et al., 2011; Hu et al., 2016). The main 

concept of eco-driving is to control acceleration, deceleration, and idling by 

optimizing velocity profile, and facilitate anticipatory and cooperative driving.  

In the literature eco-driving has been evaluated in two major scenarios; 

on the freeways (Kamal et al., 2011; Wang et al., 2014; Hu et al., 2016) and 

on the signalized intersections and merging roadways (Barth et al., 2011, Xia 

et al., 2013a; Rakha & Kamalanathsharma, 2011). Xia et al. (2012) carried out 

both simulation and field testing using a cloud based server to demonstrate 

the potential of an eco-approach application and obtained 13.6% fuel saving 

at a signalized intersection. An experimental study using the vehicle’s on-

board logging device and GPS tracking system showed long-term impact of an 

eco-driving training course with 5.8% fuel improvement (Beusen et al., 2009). 

A dynamic eco-driving strategy based on real-time traffic sensing and 

telematics along with a traffic management system achieved approximately 

10-20% fuel savings without a significant increase in travel time (Barth & 

Boriboonsomsin, 2009). Another research implemented eco-driving using the 

hardware-in-the-loop method to test optimal velocity trajectories on an engine 

test bench, and reduced fuel consumption by 17-25% on urban roads 

(Mensing et al., 2013). In Europe, eco-driving programs showed substantial 

improvement in fuel economy in the range of 5-15%. The eco-driving flow-chart 

is shown in Figure 4.    
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Figure 4: Eco-driving steps showing fuel efficient way of driving. 

Several fuel consumption models have been developed to estimate fuel 

consumption of vehicles for eco-driving. Post et al. (1985) proposed a power-

based fuel consumption model, which estimates total fuel consumption for 

vehicles within 2% of real-world fuel usage. The model was developed from 

177 in-use vehicles chassis dynamo-meter experiments. Later, the accuracy 

of the model was enhanced by Akcelik (1989) considering various vehicle 

speed and road geometry data. Barth et al. (2000) developed another 

energy/emissions model called Comprehensive Modal Emissions Model 

(CMEM) that predicts the instantaneous fuel consumption rate of a vehicle 

based on its engine size, engine speed, engine friction, and engine power. The 

CMEM is capable of estimating fuel consumption of 30 different vehicle 

categories from small light-duty vehicles to class-8 heavy duty trucks and the 

estimation accuracy of the model is within 5% of actual fuel consumption. The 

researchers of Linkőpings University developed a fuel consumption model 

using vehicle gear shifting and topographic information (Hellinga et al., 2000; 

Fröberg et al., 2006).   

Start / 
Acceleration

• Set off just after starting the engine. 

• Depress accelerator softly for eco-driving. 

Drive at 
constant 
speed

• Drive at a constant speed as much as possible.

• Keep pace with traffic conditions so that speed 
fluctuations can be minimized.  

Free-
wheeling

• As soon as a red signal is seen ahead, release 
the accelerator.  

• Slow down using stop of fuel injection insted of 
braking hard before stopping.  

Stop idling 

• Stop the engine when loading or unloading or 
when waiting for someone.  
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Simpson (2005) developed a fuel consumption model called PAMVEC 

based on parametric analysis of road-load equations that uses simple on-

vehicle feature inputs for estimating fuel consumption with an error below 20%. 

Rakha et al. (2004) another fuel consumption model called VT-Micro model 

was developed experimentally with nine normal emitting light-duty vehicles in 

a laboratory at Oak Ridge National Laboratory (ORNL). Under this model, 

various polynomial combinations of velocity and acceleration were tested 

using chassis dynamo-meter data collected at the ORNL. Kamal et al. (2012) 

developed a fuel consumption model based on the torque–speed 

characteristic map of the engine of a typical vehicle. The model estimates fuel 

consumption rates of a vehicle using its instantaneous velocity and 

acceleration. 

With recent advancements of intelligent transportation systems (ITS), 

connected and automated vehicle (CAV) technologies, geographic information 

systems (GIS), global positioning systems (GPS), and databases such as 

Google Maps Elevation advanced programming interface (API), it is possible 

to obtain relevant information of upcoming road segments in advance and 

control the trajectory and movement of individual vehicle for eco-driving (Li et 

al., 2014, Gáspár & Németh, 2014). The connected vehicle (CV) environment 

facilitates two-way wireless communications; namely, vehicle-to-vehicle (V2V) 

and/or vehicle-to-infrastructure or infrastructure-to-vehicle (V2I or I2V) 

communications as shown in Figure 5 (Azizi, 2015; Hamida et al., 2015). 

Moreover, it is possible to coordinate between vehicles and infrastructure with 

either a centralized or decentralized controller to improve traffic flow 

performance and safety by cooperative driving in specific traffic scenarios, 

such as signalized intersections and roundabouts (Yang et al., 2016; Rios-

Torres & Malikopoulos, 2017). The idea of coordinated and cooperative traffic 

system has attracted great attention in traffic flow control as it solves multiple 

issues posed by traditional human driving, such as stop-and-go driving and 

traffic accidents. The vehicles are expected to follow the command given by 

the controller to ensure maximum efficiency of traffic flow. Moreover, 
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coordination can be repeated frequently to include state feedback for smooth 

operation, even if a vehicle does not follow the command or if unexpected 

disturbances occur. Thus, it is possible to arrange the whole system in the 

exact required way, which is very difficult for a human driver. Though with the 

advances in V2V and I2V communication technologies, cooperative control 

incorporating under a fully Connected Vehicle (CV) environment enables 

cooperation between vehicles and infrastructure to improve the traffic 

management but unfortunately, CAV technologies are not widespread. Hence, 

more practical and adoptable driving methods need to be developed to deal 

with current road-traffic situations.   

 

 

 

 

 

  

 

Figure 5: Various vehicular communication technologies (Hamida et al., 2015). 

1.2 Research Scope 

The scope of eco-driving at different scenarios of road networks is 

illustrated in Figure 6. The work in this thesis is mainly focused on developing 

intelligent and advanced vehicle control systems for cooperative eco-driving at 

signalized intersections, free roads with explicit road-geometry characteristics, 

such as rolling terrains (with various up and down slopes) and horizontal 

curves (with various curvature and road-surface conditions), and four-leg 

roundabouts. The work in this thesis target to achieve vehicle autonomy levels 

2 and 3 as shown in Figure 7 (SAE, 2014). In recent years most new vehicles 

have some built-in safety features or driver assisting technologies, which meet 
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SAE Level 1, such as adaptive cruise control, lane alignment, and crash 

avoidance, making Level 0 almost obsolete.    

 

 

 

 

 

Figure 6: Eco-driving research scope. 

 

 

 

 

 

 

 

 

 

Figure 7: Levels of driving automation for on-road vehicles (SAE, 2014). 

1.3 Research Objectives  

The main objective of this thesis is to develop intelligent vehicle control 

strategies for cooperative eco-driving in different road-traffic scenarios based 

on the research gap. The overall objectives of this thesis are as follows: 

1. To study energy and environmental impacts from traditional traffic 

flow behaviour on road networks in various context and traffic 

scenarios. 

2. To develop vehicle control strategy using advanced and intelligent 

control methods for fuel-efficient driving.   

Eco-Driving Scope 

Free Roads Signalized Intersections Roundabouts 

Rolling Terrains 

Horizontal Curves 
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3. To develop machine learning techniques to predict traffic flow 

behaviour better. 

4. To develop cooperative eco-driving system for better coordination 

of vehicles. 

5. To evaluate the performance of the proposed system and its impact 

on overall traffic flow behaviour and environment. 

1.4 Research Methodology 

The work plan of this thesis consists of several interrelated tasks as 

given below: 

 Task 1: Develop traffic simulator 

After studying the traditional traffic flow behaviour on road 

networks in various context and traffic scenarios, a traffic simulator is 

developed using MATLAB. The MATLAB platform facilities modeling of 

microscopic and macroscopic traffic flow behaviour, implementation of 

advanced vehicle control systems, and machine learning algorithms.  

 Task 2: Develop intelligent vehicle control strategies  

Advanced and intelligent vehicle control methods, such as non-

linear model predictive control (MPC), fuzzy-tuned MPC and receding 

horizon control systems are developed by computing real-time trajectory 

for fuel-efficient driving on road networks for different driving contexts.   

 Task 3: Develop machine learning techniques for better prediction 

As traffic flow is susceptible to various disturbances /uncertainties 

and road-traffic conditions, hence, machine learning techniques, such as 

Bayesian Gaussian process and fuzzy inference algorithms are 

developed to predict stochastic nature of traffic flow behaviour for better 

control of vehicles.  

 Task 4: Develop cooperative eco-driving systems  

In various scenarios of traffic flow on road networks, such as 

signalized intersections, hilly roads, curved roads, and roundabouts the 



10 

 

 

cooperative eco-driving systems are developed for better coordination of 

vehicles, which outperformed the existing eco-driving systems.   

 Task 5: Evaluate the performance of the proposed systems 

The effectiveness of the proposed eco-driving systems are 

evaluated in various context and traffic scenarios on road networks using 

microscopic traffic simulation and compared with the existing driving 

systems. Also, the impact of overall traffic flow behaviour, fuel 

consumption, and environment are analysed.   

1.5 Main Contributions 

The main contributions of this thesis are as follows:   

1. We have developed a traffic simulator that replicates real traffic 

scenarios and measures driving information, such as change of traffic 

signal, vehicle’s position, velocity, and acceleration. This simulator can 

be used by others to evaluate various microscopic and macroscopic 

traffic flow behaviour in various context and traffic scenarios.    

2. We have developed an event-driven eco-driving strategy (EDS) at 

signalized intersections by learning driving patterns, i.e., velocity 

profiles from vehicles self-driving data. Specifically, the main 

contribution of the EDS is the incorporation of machine learning 

technique with stochastic optimization. The developed method is very 

suitable for real-world traffic scenarios as the developed model is not 

deterministic; but rather it considers disturbances and uncertainties 

during the learning process.   

3. We have developed a dynamic EDS based on fuzzy-tuned MPC that 

fully utilizes gravitational energy on a slopping road and significantly 

reduces fuel consumption and CO2 emission, while ensuring a collision 

free traffic flow. Also, we have investigated the traffic flow performance 

in a dense traffic.  
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4. We have developed a dynamic EDS using MPC that substantially 

reduces fuel consumption and CO2 emission of the vehicle on horizontal 

curves, while ensuring driving safety. We derived a method to 

accurately calculate road-curvature from the digital road map data.    

5. We have developed an intelligent roundabout coordination system for 

eco-driving using receding horizon control approach. The system 

ensures safe and smooth traffic flow for various traffic demands.  
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Chapter 2 

 

2 Literature Review 

Technological advancements in sensors, electronics, control systems, 

artificial intelligence, and vehicular technologies have rapidly increased the 

capabilities of modern vehicles. In 1970, the automatic guidance and control 

of vehicles emphasized its importance for both traffic-related problems and 

accidents (Fenton, 1970). After few years later, the communication 

requirements in the longitudinal control of vehicles were investigated for 

allocation of control computation and associated trade-offs for maintaining an 

acceptable level of vehicle performance in automated transit systems (Pue, 

1979). In the same year, the hierarchical controller functions in vehicle 

management for automated vehicle system and automated highway system 

(AHS) were proposed (Caudill et al., 1979). The goal of the AHS was to reduce 

traffic congestion, reduce energy consumption and emissions, and improve 

safety. In the 1980s, the concept of platooning of vehicles became a popular 

system-level approach to address traffic congestion, where vehicles in a 

platoon could accelerate, decelerate, and maintain high speed simultaneously. 

Later in 1991, the research on lateral and longitudinal control of vehicles was 

summarized (Shladover et al., 1991). The longitudinal control for a platoon of 

vehicles was proposed in 1993 without requiring the lead vehicle to 

communication with the following vehicles (Sheikholeslam & Desoer, 1993). 

The main features of automated intelligent vehicle-highway systems were 

extensively discussed by Varaiya (1993). The implementation of a platoon 

based integrated control system consisting of eight fully automated vehicles 

was reported in (Rajamani et al., 2000). Over the last decade several 

advanced driver assistance systems (ADAS) have been developed by 

researchers and manufacturers for eco-driving that provided significant 

improvement in vehicle control systems and adopted efficient driving 
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behaviour.  The following subsections give literature review on vehicle control 

strategies for eco-driving at signalized intersections, hilly roads, horizontal 

curved roads, and roundabouts.                     

2.1 Vehicle Control Strategies at Signalized Intersections 

When approaching a signalized intersection, the knowledge of traffic 

signal timing remains unavailable to the driver. Therefore, a sudden change in 

traffic signal forces the driver to perform aggressive braking to stop and remain 

idle for the entire red signal period; this causes a significant amount of fuel 

consumption and emissions (Li et al., 2009).  

A number of studies on vehicle control systems at signalized 

intersections have been proposed in the literature. Early research focused on 

the development of dynamic and adaptive traffic signal controllers and control 

algorithms based on the information of vehicle queue lengths (Li et al., 2004; 

Nishuichi & Yoshii 2005; Cools et al., 2013) or the position and velocity 

information of connected vehicles (Priemer & Friedrich, 2009; Kamal et al., 

2012). Nair and Cai (2007) developed a fuzzy logic controller for an isolated 

signalized intersection to control signal timings and phase sequence under 

both normal and exceptional traffic conditions. Some similar works developed 

fuzzy logic controller for signalized intersections (Shen et al., 2002; Murat & 

Gedizlioglu, 2005). But, it is very expensive to upgrade the design of traffic 

signal infrastructure (Maccubbin et al., 2008).  

Some researchers developed adaptive cruise control (ACC) system 

with autonomous driving features, which could adapt to various traffic 

environments by accelerating or braking to control the velocity whilst 

maintaining proper gap between ACC vehicle and preceding vehicle 

(VanderWerf et al., 2002; Ioannou & Stefanovic, 2005; Kesting et al., 2008; 

Pananurak et al., 2009). The ACC system is an improved version of 

conventional cruise control systems, which were designed to maintain a 

certain desired speed, which were not flexible nor adaptive. The ACC vehicle 
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is equipped with a radar or infrared sensors to detect the velocity of the 

immediate preceding vehicle and adjust its velocity accordingly. If there is no 

preceding vehicle the ACC vehicle travels at its desired velocity. The concept 

of ACC system is shown in Figure 8, where prediction of the velocity trajectory 

of the preceding vehicle (blue) is in demand to obtain optimal velocity profile.  

An investigation showed that implementation of fuel optimal ACC system leads 

to fuel saving of about 15% in case of a FTP-like cycle. The main disadvantage 

of the ACC vehicle is that it can only predict the velocity trajectory of the 

preceding vehicle. The technological advancement in wireless communication 

further improved ACC systems with the integration of vehicle-to-vehicle (V2V) 

communication where the position, velocity, and acceleration information of 

any vehicle can be transmitted to other vehicles within the transmission range 

and called cooperative adaptive cruise control (CACC) systems (van Arem et 

al., 2006; Shaldover et al., 2009; Naus et al., 2010; Öncü et al., 2014). The 

schematic of CACC is shown in Figure 9, where it is necessary to determine 

the optimal velocity trajectory of the predecessor (orange vehicle). The precise 

traffic information is available via I2V communication.   

 

 

 

 

 

Figure 8: The first vehicle (grey) is equipped with ACC system. 

 

 

 

 

 

Figure 9: The first vehicle (grey) is equipped with CACC system. 
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Some researchers have proposed speed advisory systems (SAS) to 

reduce waiting time at the red signal, fuel consumption, and CO2 emissions by 

utilizing traffic signal phase and timing (SPAT) information in advance 

(Mandava et al., 2009; Asadi & Vahidi, 2011; Kamal et al., 2015; Jiang et al., 

2017). While these works have assumed that the signal phase and timing 

information is known accurately, it is difficult to obtain accurate SPAT 

information in practice because of timing drift in fixed time traffic lights. A 

probabilistic SPAT prediction approach has been proposed by combining 

historically averaged timing data with real-time traffic signal phase data 

(Mahler & Vahidi, 2014), where a deterministic dynamic programming (DDP) 

method was used to solve an optimal control problem; however, this is costly 

in terms of memory and CPU usage, and often is not feasible for real-time 

implementation. Some similar works on optimal velocity advisory algorithms 

for signalized intersections have been reported in (Morsink et al., 2008; 

Spyropoulou & Karlaftis, 2008), where the main focus was to develop in-car 

speed assistance systems to improve speed management for driving safety by 

helping drivers select a suitable speed.  

Some approaches developed a cooperative vehicle intersection control 

(CVIC) system (Lee & Park, 2012), and a vehicle-intersection coordination 

scheme (VICS) (Kamal et al., 2015) for futuristic autonomous vehicles without 

using traffic lights under connected vehicles environment. As an alternative to 

traditional traffic control systems, some work proposed an approach of 

autonomous intersection management (AIM) based on reservation algorithms 

(Dresner & Stone 2008; Fortelle, 2010; Huang et al., 2012; Li et al., 2013). 

Zohdy and Rakha (2016) developed an intersection management system 

through vehicle connectivity that optimizes the movement of CACC vehicles.  

Some other studies proposed cooperative vehicle intersection schemes for the 

coordination of automated vehicles in an intersection based on optimization of 

the travel time (Li & Wang, 2006; Yan et al., 2009; Jin et al., 2012). Mirheli et 

al. (2018) proposed a signal-head-free intersection control system for 

connected and autonomous vehicles using dynamic programming to optimize 
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the intersection throughput. Other studies have utilized Model Predictive 

Control (MPC) for efficient vehicle control systems and manoeuvres to obtain 

sub-optimal trajectories with preceding vehicle information and changing traffic 

signals at intersections (Kamal et al., 2013; Makarem et al., 2013; Cao et al., 

2015). A similar MPC approach is developed for the application in a hybrid 

vehicle (Yu et al., 2015). Nunzio et al. (2013) proposed a graph discretising 

method along with optimal velocity pruning algorithm for an electric vehicle, 

where the complete knowledge of SPAT in the network is considered in 

advance. Another research proposed an eco-driving strategy for connected 

electric vehicles at signalized intersection with queue movement prediction 

(Dong et al., 2000).         

2.2 Vehicle Control Strategies on Hilly Roads  

Various up and down slopes in a hilly road profile have significant 

impact on vehicle fuel consumption and GHG emissions. A study showed that 

emissions from three light-duty gasoline vehicles increased by 40–90% for 

CO2, 60–110% for HC, 60–140% for CO, and 180–450% for NOx when road 

grades are higher than 5% compared to 0% grades (Zhang & Frey, 2006). 

Another study demonstrated that the vehicle fuel consumption and emission 

rates increase in excess of 9% for a 1% increase in road grade (Park & Rakha, 

2006). Cicero-Fernández et al. (1997) reported an average increase of 3 g 

CO/mi and 0.04 g HC/mi with 1% increase in road grade.  

Several studies have explored vehicle control strategies for eco-driving 

on hilly roads. Early research mainly suggested that fuel consumption is 

substantially minimized by running at constant velocity on constant road 

slopes. Specifically, the first attempt to minimize fuel consumption on hilly 

roads was to adjust the velocity on different road slopes using a feedback 

control system (Schwarzkopf & Leipnik, 1977). The optimal velocity was 

derived by combining the Pontryagin’s maximum principle with a nonlinear 

vehicle model and a constant velocity turns out to be optimal for certain 

constant slopes. A similar study found the optimal velocity for conserving fuel, 
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when vehicles are traveling at a constant velocity within certain bounds on a 

constant road slope (Chang & Morlok, 2005). Saerens and Bulck (2013) 

developed an eco-driving control method for a point-mass vehicle using 

Pontryagin’s maximum principle for a constant road slope. These methods are 

developed on the premise of constant road slopes and not applicable to real-

world scenarios for hilly roads with varying slopes.  

Another promising approach for hilly roads is dynamic programming 

(DP), provided that the information of entire driving cycle is available in 

advance. Hellstörm et al. (2009) proposed a look-ahead controller on-board to 

optimize the velocity trajectory of a diesel truck using future road topography 

information. They used dynamic programming (DP) method to solve an optimal 

control problem and showed a reduction of fuel consumption by approximately 

3.5% without an increase in travel time. Kirschbaum et al. (2002) derived the 

fuel optimal control strategy using DP for the entire driving cycle when the 

vehicle speed is fixed. Luu et al. (2010) solved a DP-based optimal control 

problem considering variations in speed and road gradient to reduce fuel 

consumption of a light-duty vehicle. Likewise, another study proposed a fuel-

optimized control problem for up and down slopes using local and global 

optimization, and showed fuel savings of about 5.5% (Wang et al., 2014). 

These DP-based approaches are useful to find the global optimum, but are not 

convenient for real-time implementation because requiring the information on 

the entire driving cycle before the trip is not feasible. Hu et al. (2016) proposed 

an optimal controller for a plug-in hybrid electric vehicle (PHEV) to minimize 

fuel consumption when traveling on rolling terrain or up-down slopes, whereas 

Li et al. (2016) experimentally developed a braking downshift controller to 

increase the energy efficiency of an EV during regenerative braking.   

On the other hand, several implementable MPC-based frameworks are 

proposed for sloping roads. Kamal et al. (2011) developed an MPC framework 

for eco-driving considering road slope information, vehicle dynamics, and 

engine fuel consumption characteristics, whereas Kaku et al. (2013) 
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developed MPC for ecological vehicle synchronized driving with different 

aerodynamic drags and road shape information. Another work (Yu et al., 2015) 

developed MPC for hybrid vehicle eco-driving using traffic signal and road 

slope information. Although MPC is found effective to derive the optimal 

vehicle control input for eco-driving, it always tries to keep the speed of a 

vehicle close to the desired speed because the weights in the cost function are 

fixed. This fact typically implies that the controller tends to brake on the 

downslope to suppress increasing velocity due to gravity, and this braking 

action permits energy dissipation. Hence, these MPC-based methods may not 

be suitable for maximizing fuel economy on hilly roads. 

2.3 Vehicle Control Strategies on Horizontal Curved Roads 

When entering a horizontal curve, a driver usually slows down due to 

safety reasons, puts more effort to control the vehicle, and accelerates back to 

the initial velocity after crossing the middle of the curve. Such motions of the 

vehicle, deceleration, and then acceleration affect fuel consumption and 

emissions on a curved road. In particular, small radius of curvature seriously 

affects speed and acceleration of a vehicle, which results additional fuel 

consumption.  

Existing research on horizontal curves mainly evaluated the impact of 

different curve features, such as curve length, degree of curvature, shoulder 

width, sight distance, superelevation rate, side-friction coefficient, and traffic 

volume on design speed and operating speed of vehicles using regression 

techniques to determine highway design standards for improving traffic safety 

(Fitzpatrick et al., 2000; Schurr et al., 2002; Misaghi & Hassan, 2005; Gong & 

Stamatiadis, 2008; Shallama & Ahmed, 2016; Wang et al., 2018; Cvitanić & 

Maljković, 2019). Other studies investigated driving behaviour in horizontal 

curves using naturalistic driving data to analyse traffic safety and the risk of 

crashes (Hamzeie, 2016; Machiani et al., 2016; Dhahir & Hassan, 2018). This 

is due to the fact that fatal crashes occur more frequently on horizontal curves 

than other types of road segments (Schneider et al., 2009; Chen et al., 2010; 
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Khan et al., 2013). Some other studies explored the effect of horizontal 

alignments on vehicle’s fuel consumption and emissions (Kang et al., 2013; 

You, 2017; Llopis-Castelló et al., 2018).  

On the other hand, very little research developed optimal control 

systems for eco-driving in horizontal curves. Zhang et al. (2013) developed a 

driver speed model for an adaptive cruise control (ACC) system for curved 

roads using recursive least-square (RLS) method. The speed control algorithm 

was based on individual driver’s curve speed behaviour rather than ecological 

driving. Also, the model was only applicable when there was no preceding 

vehicle. Nissan launched an adaptive speed control system that warned a 

driver to reduce vehicle speed when approaching a curve using information of 

path radius ahead (Matsumoto et al., 2008). The target speed was determined 

based on the deviation of estimated total driver load and a reference total driver 

load, without considering ecological driving. Chang and Morlok (2005) used 

Lagrangian method to calculate the optimal velocity profile of a vehicle 

traveling on tangent or curved road. They concluded that fuel consumption will 

be minimum for a constant speed despite variations in road curvature and 

other conditions, which is not applicable in real-world scenarios. Similarly, 

Fröberg et al. (2006) showed that the fuel optimal approach is to drive at 

constant speed.  

Gruppelaar et al. (2018) proposed a perceptually inspired driver model 

for speed control in curves. They used a binary classification method to capture 

speed adaptation of individual drivers for analysis of road geometry and for the 

development of driver support assistance devices. In (Ding & Jin, 2018), a 

dynamic programming (DP) algorithm is used to obtain the optimal speed 

profile for eco-driving in circular curves, and showed fuel savings of about 

5.34% to 17.64%. While the DP-based solver yielded a global minimum, it is 

not suitable for real-time implementation because the information of entire 

driving cycle is required before the trip. Moreover, the studies above did not 

consider road-surface conditions for eco-driving on horizontal curves.     
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2.4 Vehicle Control Strategies at Roundabouts 

A roundabout is a specific case of merging intersections or unsignalized 

roadways, where vehicles merge at low speed for safe interaction with other 

circulating vehicles, traverse the roundabout, and eventually exit to their 

desired directions. In general, the speed of approaching vehicles is dependent 

on the entry lane width, roundabout curvature, as well as the volume of both 

incoming and circulating traffic. Since an approaching vehicle requires an extra 

gap to enter the roundabout, increased traffic volume at the merging point can 

have a severe impact on the roundabout capacity. Consequently, the fuel 

consumption and the delay entering the roundabout can increase substantially. 

In the literature, a number studies on vehicle control strategies at 

roundabouts have been reported. Early research mainly focused on the 

improvement of roundabout mobility and safety during rush hours using ramp 

metering with traffic signal control. In line with this expectation, a traffic signal 

control method was proposed to solve safety problems by eliminating conflict 

points and weaving sections at a multi-lane roundabout with different traffic 

flow rates (Yang et al., 2004). The authors introduced a second stop line for 

the left turn traffic on the circulating lanes. Zohdy and Rakha (2013) proposed 

a cooperative adaptive cruise control system to optimize velocity trajectories 

of vehicles when approaching a single lane roundabout using vehicle to 

infrastructure communication. The idea suggested was somewhat close to the 

design of single-lane entry ramps.  

Hummer et al. (2014) developed a single-lane and a two-lane 

microscopic roundabout models to observe the effectiveness of metering 

signal with different traffic demand. The objective was to guide U.S. traffic 

signal designers on the use of metering signal. Gasulla et al. (2016) discussed 

the benefits of metering signals to mitigate operational problem at roundabouts 

with unbalanced flow, where the authors studied gap acceptance behaviour 

when the traffic demand reaches near the capacity. Another approach 

developed a multi-level traffic control (MTC) system that combines hybrid yield 
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control and fully actuated control at the large four-leg roundabouts to facilitate 

time varying vehicular demands automatically (Xu et al., 2016). Some other 

works reported environmental impacts at the roundabouts (Ahn et al., 2009; 

Gastaldi et al., 2014). A recent work proposed optimal coordination of 

Connected and Automated Vehicles at a two-lane roundabout (Zhao et al., 

2017). The authors investigated the benefits on fuel consumption and travel 

time at different market penetration levels of CAVs, however they did not 

investigate different traffic demands on the roundabout capacity.      

The work in the next few chapters will improve on these works and 

address the afore-mentioned gaps. Particularly, in the following chapters, we 

develop novel eco-driving strategies for signalized intersections, hilly roads, 

horizontal curved roads, and roundabouts, respectively.   
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Chapter 3 

 

3 Eco-driving Strategy for Signalized Intersections  

In a signalized intersection, injudicious driving reacting to sudden 

changes in traffic signal can lead to additional fuel consumption and increase 

of travel time. Existing eco-driving strategies for signalized intersections 

(Section 2.1) depend on connected and automated vehicle (CAV) technologies 

(at least partially), which provide cooperation between vehicles and 

infrastructure to improve intersection traffic flow. However, full autonomy of 

vehicles and proper infrastructure development for vehicle-to-vehicle (V2V) 

and infrastructure-to-vehicle (I2V) communications are not widespread 

currently. It is anticipated that full market penetration of CAV technologies are 

not feasible until 2060s (Alessandrini, 2015). Therefore, to improve driving 

scenarios in the existing signalized traffic environment, here we have 

developed a novel event-driven eco-driving strategy at the vicinity of a 

signalized intersection, by learning driving patterns, such as velocity profiles 

from vehicles self-driving data. Specifically, the main feature of our proposed 

eco-driving strategy is the incorporation of a machine learning technique with 

stochastic optimization of vehicle speed.  

We use a traffic simulator that replicates real traffic scenarios, and 

measures driving information, such as signal events, vehicle’s velocity, 

acceleration, and distance from the intersection. The driving data collected 

from the simulator are used to train a learning model known as a Bayesian 

Gaussian process, which is then used to predict the intersection crossing time 

and probability of crossing. From the crossing probability, and using a 

stochastic optimization algorithm, the optimal driving strategy for semi-

autonomous mobility is developed without CAV technologies. The probabilistic 

Gaussian process modeling with Bayesian network allows flexibility as the 

parameters of the prediction nodes are not linked. The performance of the 
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proposed system is verified through microscopic traffic simulation to evaluate 

the improvement in fuel economy and travel time of vehicles compared to 

traditional driving. This work in this chapter has been published in the IEEE 

Transactions of Vehicular Technology, in (Bakibillah et al., 2019).   

The rest of the chapter is organized as follows. In Section 3.1, at first 

we describe our real study area, the traffic flow modeling of conventional 

vehicles, and the effect of signal events on different trajectories of a vehicle. 

Then in Section 3.2, we discuss the driving data modeling by investigating the 

traffic flow behaviour at the signalized intersection. Secondly based on our 

findings, we develop a probabilistic Bayesian Gaussian process model in 

Section 3.3 and an eco-driving decision system in Section 3.4, and formulate 

an optimization framework in Section 3.5, which gives the minimum fuel. In 

Section 3.6 we illustrate the simulation results, and finally, Section 3.7 provides 

the summary of the chapter.   

3.1 Background and Motivation  

In this work, we use a typical model of moderate and non-congested 

traffic flow to mimic the driving behaviour of vehicles on an urban road when 

the vehicles are approaching the signalized intersection. We consider single 

lane traffic for simplicity, and therefore, lane changing and overtaking 

manoeuvres are not considered. However, we consider disturbances caused 

by merging, turning and crossing of vehicles from/to the link roads connected 

along the road. The durations of green (and yellow) and red signals are 

harmonized according to a real traffic scenario such that vehicles are able to 

cross the intersection from a certain distance within one traffic cycle. The 

vehicle environment is conventional, i.e., no V2V or I2V communication is 

considered in the vicinity of the signalized intersection.  

To assess the performance of the proposed eco-driving system (EDS), 

a real road section (Jalan Subang 3 in Subang Jaya, Malaysia, which fits well 

into our chosen traffic flow model) connected to a T-intersection is chosen for 
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study as shown in Figure 10. The road section is a single-lane road located in 

an industrial area with moderate non-congested traffic flow at most times of a 

day. The traffic lights are visible to vehicles from a distance of 500 m. From 

multiple observations, it is found that the traffic flow is susceptible to sudden 

interventions by trucks/cars on both sides of the road and from the opposite 

directions (as shown in Figure 11); these random events sometimes force the 

vehicle to slow down, i.e., the velocity of the vehicle is affected. As a result, 

there is always some uncertainty in the projected arrival time at the 

intersection. Several other intersections in this area (e.g., Jalan Subang 5) also 

show similar traffic flow patterns. In these intersections, the duration of green 

signals and a short yellow signal for different approaches is between 20 sec to 

30 sec. 

 

 

 

 

 

 

 

Figure 10: The study area which is a single lane road section consisting of one signalized 

intersection in Subang Jaya, Malaysia. 

 

 

 

 

 

 

 

Figure 11: Traffic flow scenario in the test road located in an industrial area in Subang Jaya, 

Malaysia. 
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Our past self-driving experience in this route is utilized to realize similar 

traffic simulations (using a microscopic traffic simulator) and to develop a 

Bayesian learning model from simulated self-driving data. The model can 

dynamically suggest optimum speed profiles to drivers considering the current 

driving status, e.g., position, velocity, and the changing condition of the signal 

from visible distances.  

3.1.1 Traffic Flow Modeling    

This section presents the mathematical formulation of traffic flow 

modeling for traditional vehicles. A microscopic traffic model (Treiber et al., 

2000) with discrete-time framework is considered for our traffic simulator, 

which includes the vehicles, the traffic lights, and the road section at which the 

vehicles travel. Generally, microscopic traffic models express acceleration and 

deceleration of each vehicle as a function of velocity of the preceding vehicle, 

speed difference, and safe headway (or distance) between vehicles (Nagel et 

al., 2003). Car-following models are used to infer driving behaviour at 

signalized intersections (Liebner et al., 2012). In the car-following process, 

only the longitudinal motion dynamics of vehicles are considered on an urban 

road segment with one signalized intersection and are expressed in a discrete-

time framework indexed by t as 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡)∆𝑡 + 0.5𝑢𝑖(𝑡)∆𝑡
2,        

(3.1)
𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑢𝑖(𝑡)∆𝑡, 

 

where 𝑥𝑖 , 𝑣𝑖 , and 𝑢𝑖  are the position, velocity, and acceleration of vehicle 𝑖, 

respectively, and ∆𝑡  is the step size. The dynamic behaviour of vehicles 

depends on input acceleration 𝑢𝑖 in (3.1), which is calculated according to a 

microscopic car-following model called the Intelligent Driver Model (IDM) that 

mimics human driving behaviour (Treiber et al., 2000) and it is a well-accepted 

model for single-lane traffic flow. The instantaneous acceleration 𝑢𝑖(𝑡)  of 

vehicle 𝑖 with its preceding vehicle 𝑖-1 is calculated as     
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𝑢𝑖(𝑡) =  𝑎 [1 − (
𝑣𝑖(𝑡)

𝑣𝑑
)

4

− (
𝑠∗(𝑣𝑖(𝑡), ∆𝑣𝑖(𝑡))

∆𝑥𝑖(𝑡)
)

2

],

(3.2)

𝑠∗(𝑣𝑖(𝑡), ∆𝑣𝑖(𝑡)) = 𝑠0 + 𝑣𝑖(𝑡)𝑡ℎ𝑑
∗ +

𝑣𝑖 ∆𝑣𝑖

2√𝑎𝑏
,

 

where the model parameters 𝑣𝑑 , 𝑠0, 𝑡ℎ𝑑
∗ , 𝛼 and 𝑏 denote the desired velocity, 

minimum spacing from the preceding vehicle, safe headway time, maximum 

acceleration, and comfortable deceleration, respectively, and ∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1 

and ∆𝑣𝑖 = 𝑣𝑖 − 𝑣𝑖−1 are the space gap and velocity difference, respectively. In 

the case when the signal is red, it is assumed that a virtual vehicle is idling at 

the intersection, i.e., 𝑣𝑖−1 = 0 and 𝑥𝑖−1 = 𝑥J , where 𝑥J  is the position of the 

intersection stop bar in absolute coordinate system. The driving behaviour 

described above is termed as the Traditional Driving System (TDS).  

3.1.2 Investigation of the Signal Events    

Next, we investigate two possible scenarios of a vehicle, termed as the 

host vehicle, during the green and red signal events. In the first scenario, 

Event A, the host vehicle under the TDS enters the “visible signal zone” at a 

velocity 𝑣1  and observes a change in traffic signal from red to green at a 

distance 𝑑1 = 𝑥J − 𝑥1, from the intersection, where 𝑥J and 𝑥1 are the positions 

of the intersection and the host vehicle, respectively. In this case, two 

trajectories of the vehicle are possible (Figure 12); firstly the signal stays green 

and the host vehicle crosses the intersection smoothly at cruising speed, and 

secondly the signal turns from green to yellow and if the host vehicle is very 

close to the intersection, it accelerates harshly to attempt crossing the 

intersection before the end of yellow but the signal turns red instead. 

Therefore, the vehicle performs aggressive braking to stop and remains idle 

for the entire duration of the red signal.  

In the second scenario, Event B, the host vehicle under the TDS enters 

the “visible signal zone” and observes the signal changing from green to yellow 

and then red. It then decelerates to stop at the intersection, since it cannot 
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pass the intersection within the green-yellow signal (Figure 13). It is not 

possible to cross the intersection smoothly due to the long red signal period. 

In both events, when driving under the TDS, fuel consumption and travel time 

may increase as the information of signal timing and surrounding traffic are 

unknown (Li et al., 2009; Sivak, 2013). However, it is possible to improve 

driving performance under this situation if signal patterns and its influence can 

be learned or estimated, and share the information to the cloud/centralized 

controller for cooperation with other vehicles. Specifically, if a model is 

developed and trained using past driving data of the vehicle, it is possible to 

predict future driving patterns well in advance to improve fuel economy and 

travel time of the host vehicle as well as other traditional connected vehicles 

ensuring cooperative eco-driving within the analysis boundary.          

 

 

 

 

 

 

Figure 12: Vehicle under the TDS when approaching the green signal. 

 

 

 

 

 

 

Figure 13: Vehicle under the TDS when approaching the red signal. 
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3.2 Driving Data Modeling  

Firstly we investigate the traffic flow behaviour and identify the important 

factors influencing the crossing time (time takes to cross the intersection) of a 

vehicle from multiple observations of each event. In particular, at observation 

𝑛 the following information is recorded: 

 Time at occurrence of an event, 𝑡𝑒𝑛  and time at crossing of the 

intersection, 𝑡𝑐𝑛 

 Types of Event, 𝛿𝑛(𝑡𝑒𝑛) = {0, 1} , where 𝛿𝑛(𝑡𝑒𝑛) = 1  denotes signal 

switching from red to green and 𝛿𝑛(𝑡𝑒𝑛) = 0 denotes signal switching 

from green (to yellow and then) to red  

 Velocity, 𝑣𝑛(𝑡𝑒𝑛) ∈ ℝ
+(real number space) 

 Distance to the intersection, 𝑑𝑛(𝑡𝑒𝑛) ∈ ℝ
+   

 

It is noticed that when 𝛿𝑛(𝑡𝑒𝑛) = 1 , a fast-moving vehicle near the 

intersection is more likely to cross without stopping. However, if the vehicle is 

far from the intersection, then in the most cases it fails to cross and brakes 

aggressively to stop for the red signal. On the contrary, when 𝛿𝑛(𝑡𝑒𝑛) = 0, a 

vehicle may or may not cross the intersection depending on the velocity and 

distance from the intersection; however, the possibility of crossing is very low 

and the vehicle will most likely have to decelerate to stop and wait until the red 

signal period ends. Therefore, 𝛿𝑛(𝑡𝑒𝑛), 𝑣𝑛(𝑡𝑒𝑛), and 𝑑𝑛(𝑡𝑒𝑛) are the predictor 

variables that influence the crossing time of each vehicle, i.e., 𝜏𝑛 = 𝑡𝑐𝑛 − 𝑡𝑒𝑛. 

Furthermore, as explained in Section 3.2, it is found that due to disturbances 

and different traffic flow patterns, the crossing time is subject to some 

uncertainty. Due to such stochastic nature of the crossing time, we consider a 

probabilistic model (instead of a deterministic model) to capture the 

uncertainty. Although we utilize past driving data of a vehicle on a single 

intersection only, in the near future, this method can be used for multiple 

intersections easily by retrieving traffic data of multiple intersections from 

cloud-based systems. 
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3.3 Bayesian Gaussian Process Model  

The Bayesian Network (BN) is a method to solve inference problems 

with probability theory and has been widely used in modelling uncertain 

knowledge and building the probabilistic model from a set of data (Koller & 

Friedman, 2009). BN gives a graphical model representation of probabilistic 

relation between a set of variables and their conditional dependencies. We 

seek to predict the crossing time 𝑡𝑐𝑟𝑜𝑠𝑠  of an intersection based on signal 

event, vehicle velocity, and distance from the intersection. Hence, the 

Bayesian treatment of linear Conditional Gaussian models (CG) is used to 

determine conditional distribution of the response variable given the inputs. To 

do that, the host vehicle is selected and a simulation is performed to obtain the 

training dataset 𝐷 = {(𝑓𝑛, 𝜏𝑛) | 𝑛 = 1,2, ………𝑁}, where 𝑓𝑛 = {𝑑𝑛, 𝑣𝑛, 𝛿𝑛(𝑡𝑒𝑛)} ∈

 ℝ3 denotes an input vector and 𝜏𝑛 ∈ ℝ denotes an output vector, which is the 

response variable, i.e., the crossing time of the intersection considering the 

effects of disturbances and uncertainties in traffic flow. It is important to note 

that 𝜏𝑛 is the intersection crossing time of the host vehicle obtained during data 

collection and is used to train the Bayesian learning model, whereas 𝑡𝑐𝑟𝑜𝑠𝑠 is 

the predicted crossing time of the intersection when the trained model receives 

new inputs. Next, a kernel-based probabilistic model called Gaussian Process 

Regression (GPR) model 𝑓𝐺𝑃𝑅  is defined to fit the training dataset into the 

model. The GPR model is chosen because it predicts better than the 

parametric models and overcomes the problems of overfitting and underfitting. 

The output of 𝑓𝐺𝑃𝑅  is a multivariate Gaussian with mean 𝜇𝑛 and covariance 

matrix Σ𝑛  such as [
𝑓𝑛
𝜏𝑛
] ~ 𝑁 ([

𝜇𝑓𝑛
𝜇𝜏𝑛

] , [
Σ𝑓𝑛𝑓𝑛 Σ𝑓𝑛𝜏𝑛
Σ𝜏𝑛𝑓𝑛 Σ𝜏𝑛𝜏𝑛

]) , where 𝜇𝑛 = [𝜇𝑓𝑛, 𝜇𝜏𝑛]
T ∈

ℝ4  denote the mean of input variables and response variable, and the 

covariance matrix Σ𝑛 = Σ(𝑓𝑛, 𝜏𝑛) indicates a measure of the similarity of 𝑓𝑛 and 

𝜏𝑛 . The elements of the covariance matrix is determined using squared-

exponential kernel function. Then, the conditional probability distribution is 

given as 
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𝑃(𝜏𝑛| 𝑓𝑛, 𝛿𝑛(𝑡𝑒𝑛) = 𝑗) = |2𝜋Σ𝑛𝑗|
−
1

2𝑒
{(−

1

2
)(𝜏𝑛−𝜇𝜏𝑛𝑗)

𝑇
Σ𝑛𝑗

−1(𝜏𝑛−𝜇𝜏𝑛𝑗)},         (3.3)    
 

where 𝑃(𝜏𝑛)  is continuous-valued distribution conditioned on continuous-

valued input variables 𝑑𝑛,  𝑣𝑛,  and discrete-valued variable  𝛿𝑛(𝑡𝑒𝑛). |Σ𝑛𝑗| 

denotes the determinant of Σ𝑛𝑗. Then, the trained model 𝑓𝐺𝑃𝑅 uses the new 

input vector 𝑓𝑛𝑒𝑤 = (𝑑𝑛𝑒𝑤, 𝑣𝑛𝑒𝑤, 𝛿𝑛𝑒𝑤)  to predict the value of response 

variable 𝑡𝑐𝑟𝑜𝑠𝑠, as shown in Figure 14, where the circles and the rectangle are 

used to differentiate inputs in continuous and binary values. The conditional 

probability of 𝑡𝑐𝑟𝑜𝑠𝑠 is given by  

𝑃(𝑡𝑐𝑟𝑜𝑠𝑠|𝜏𝑛, 𝑓𝑛, 𝑓𝑛𝑒𝑤) =
𝑃(𝑡𝑐𝑟𝑜𝑠𝑠, 𝜏𝑛|𝑓𝑛, 𝑓𝑛𝑒𝑤)

𝑃(𝜏𝑛|𝑓𝑛, 𝑓𝑛𝑒𝑤)
.                          (3.4) 

 

where the term in the numerator is called joint probability distribution and the 

term in the denominator is called normalizing constant or marginal likelihood. 

Once the crossing time distribution 𝑡𝑐𝑟𝑜𝑠𝑠  is predicted from the model 

𝑓𝐺𝑃𝑅(𝑑𝑛𝑒𝑤, 𝑣𝑛𝑒𝑤, 𝛿𝑛𝑒𝑤), we obtain the mean 𝜇𝑐𝑟𝑜𝑠𝑠 and covariance matrix Σ𝑐𝑟𝑜𝑠𝑠, 

i.e., 𝑡𝑐𝑟𝑜𝑠𝑠 ~ 𝑁(𝜇𝑐𝑟𝑜𝑠𝑠, Σ𝑐𝑟𝑜𝑠𝑠) . Then, the standard deviation 𝜎𝑐𝑟𝑜𝑠𝑠  is obtained 

from the covariance matrix and the probability 𝑃𝑐𝑟𝑜𝑠𝑠 of a vehicle crossing the 

intersection for any arbitrary time is calculated using the Gaussian cumulative 

distribution function given as 

𝑃𝑐𝑟𝑜𝑠𝑠 = 𝑃(𝑡𝑐𝑟𝑜𝑠𝑠 ≤ 𝑡𝑟), 
(3.5) 

⇒ 𝑃𝑐𝑟𝑜𝑠𝑠 = 𝑃 (𝑍𝑟 ≤
𝑡𝑟 − 𝜇𝑐𝑟𝑜𝑠𝑠
𝜎𝑐𝑟𝑜𝑠𝑠

), 

 

where 𝑡𝑟  is the red signal timing and 𝑍𝑟  follows the standard normal 

distribution. The failure probability of crossing 𝑃𝑓𝑎𝑖𝑙 is the complement of 𝑃𝑐𝑟𝑜𝑠𝑠.    
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Figure 14: Bayesian network representation of Conditional Gaussian model. 

3.4 Eco-Driving Decision System  

Based on 𝑃𝑐𝑟𝑜𝑠𝑠, which is the probability of the host vehicle crossing the 

intersection, we develop an EDS that provides a dynamic decision for optimal 

velocity to the vehicle when it is in the “decision zone” from where it can 

observe a change in the signal event and adjust its speed accordingly. We 

investigate both events A and B using the proposed EDS.  

In Event A, there are three possible optimal trajectories as shown in 

Figure 15. Depending on 𝑃𝑐𝑟𝑜𝑠𝑠 , the EDS can suggest either to maintain 

constant cruising speed through the intersection or to increase acceleration 

appropriately in order to have higher probability of crossing the intersection 

without stopping. However, in both cases, there is still the probability of failing 

(to cross) and aggressive braking may occur if sudden disturbance occurs. 

Moreover, a vehicle fails to cross the intersection when the movement of the 

preceding vehicle prevents the host vehicle from reaching its recommended 

speed at some time instant. We estimate the crossing time distribution and the 

mean crossing time 𝑡𝑝 of the preceding vehicle from the model. It is assumed 

that if the preceding vehicle is able to cross the intersection then it will continue 

at the current speed until 𝑥J + 𝑑 . Otherwise, the vehicle will stop at the 

intersection at a constant braking, idle, and manoeuvre again at a constant 

acceleration until 𝑥J + 𝑑. Thus, the crossing time of the host vehicle will then 

𝑑𝑛𝑒𝑤 

𝑣𝑛𝑒𝑤 

𝑡𝑐𝑟𝑜𝑠𝑠 𝑓𝐺𝑃𝑅 

𝛿𝑛𝑒𝑤 



32 

 

 

increase and is given by 𝑡ℎ = (𝑥J − 𝑥𝑝)/(𝑣𝑝 + 𝑡s), where 𝑥𝑝 and 𝑣𝑝  are the 

position and velocity of the preceding vehicle, respectively, and the factor 𝑡s is 

the saturation flow time gap at the intersection. The saturation flow time gap 

implies the safe car-following headway in seconds between vehicles in a 

dense flow of traffic for a specific intersection lane group and it is a direct 

function of vehicle speed and separation distance. The vehicle can increase 

its velocity up to 𝑣max = (𝑥J − 𝑥ℎ)/𝑡ℎ , where 𝑥ℎ  is the position of the host 

vehicle. In exceptional cases, a vehicle can cruise at a lower velocity if the 

probability of crossing the intersection (at lower velocity) is still relatively high. 

In contrast, if the probability of crossing the intersection is very low, a vehicle 

can slow down smoothly to reduce idling time at the intersection.  

 

 

 

 

 

 

 

Figure 15: Vehicle under the EDS when approaching the green signal. 

 

 

 

 

 

 

 

Figure 16: Vehicle under the EDS when approaching the red signal. 
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In Event B, when the vehicle is approaching the intersection, the EDS 

suggests the vehicle to slow down early to the minimum desired velocity and 

approach the intersection. The optimal trajectory profile is shown in Figure 16.  

3.5 Formulation of Optimization Problem 

Recall that the car-following model described in (3.2) where the 

parameter 𝑣𝑑  denotes the desired speed of vehicle 𝑖. The EDS of the host 

vehicle can be implemented using the same car-following model (3.2) by 

tuning the desired speed 𝑣𝑑 termed as the set speed. In the EDS, 𝑣𝑑 needs to 

be optimized subject to the occurrence of the event by minimizing a 

performance index. This simplifies the optimization, as only one control 

variable needs to be determined. However, instead of changing 𝑣𝑑 directly, we 

choose it to be a function of another variable 𝑣δ and time, and the actual 𝑣𝑑 is 

tuned gradually with time.   

For a better explanation, let the actual set speed be represented by 

𝑣𝑑  (𝑡, 𝑣δ). At first we define a deterministic performance index 𝐽 to optimize the 

set speed 𝑣δ of the host vehicle at any event as 

𝐽(𝑣δ) = ∑ [𝑓𝑣(𝑣𝑖(𝑣δ), 𝑢𝑖(𝑣𝛿))𝑤1 + (𝑣𝑑 (𝑡, 𝑣δ) − 𝑣R)
2𝑤2],                   (3.6)

𝑇𝑓

𝑡−𝑡𝑒𝑛

 

where 𝑡 is the discrete time with step size ∆𝑡, 𝑡𝑒𝑛 is the time when a change in 

signal is observed, 𝑇𝑓  is the time to travel up to a distance 𝑑  after the 

intersection located at  𝑥J, 𝑓𝑣 denotes the fuel consumption rate, whilst 𝑣δ and 

𝑣R represent the desired velocity and reference velocity, respectively, and 𝑤1 

and 𝑤2 denote weighting factors. The first term of the performance index 𝐽 

represents cost due to fuel consumption per second (ml/sec) and the second 

term is the cost due to deviation from a reference speed. The weighting factors 

𝑤1  and 𝑤2  are tuned manually, such that the host vehicle can drive at 

reasonably high speed without affecting other traffic when it is far from the 

intersection. At the same time fuel consumption is also optimized. 
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Instantaneous speed and acceleration are two major dynamic factors that 

contribute to the fuel consumption rate of a vehicle. Using the instantaneous 

acceleration and velocity, fuel consumption rate 𝑓𝑣 (in ml/s) is estimated as 

(Kamal et al., 2011)  

𝑓𝑣(𝑣𝑖, 𝑢𝑖) = 𝑏0 + 𝑏1𝑣𝑖 + 𝑏2𝑣𝑖
2 + 𝑏3𝑣𝑖

3 + �̅�𝑖(𝑐0 + 𝑐1𝑣𝑖 + 𝑐2𝑣𝑖
2),             (3.7) 

 

where 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑐0, 𝑐1,  and 𝑐2  are the consumption parameters, which are 

known for a particular vehicle, whilst �̅�𝑖 is the positive acceleration and given 

by  

�̅�𝑖 = {
𝑢𝑖 + 𝑔 sin 𝜃,            𝑖𝑓 𝑢𝑖 + 𝑔 sin 𝜃 ≥ 0,
0,                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                          (3.8) 

 

where 𝑔 denotes the gravitational force and 𝜃 is the road slope angle, which 

can be obtained from the digital road-map. In our case, the experimental test-

bed is a flat road (𝜃 = 0) and therefore, 𝑔 sin 𝜃 = 0. 

The goal is to optimize the performance index 𝐽 (at the occurrence of 

an event) by choosing the optimal value of 𝑣δ, which is constrained by 𝑣min ≤

𝑣δ ≤ 𝑣ma𝑥 , where 𝑣min = 30  km/h and 𝑣ma𝑥 = 60  km/h. To simplify the 

optimization process we choose the optimal set 𝑣δ
∗ from a pre-specified set of 

possible solutions such that 𝑣δ
∗(𝑡) ∈ {𝑣𝑘} = {𝑣min + 𝑘∆𝑣} where 𝑘 = 0,1,2, … , 𝐾 

with 𝐾 = (𝑣ma𝑥 − 𝑣min) ∆𝑣⁄  and ∆𝑣 = 0.1 km/h increment step. For each set 

velocity 𝑣𝑘 the trajectory of the host vehicle is calculated using (3.1) and (3.2) 

in the horizon 𝑡𝑒𝑛 to 𝑇𝑓 considering small time step and assuming a preceding 

vehicle, if any, running at a steady speed. The corresponding 𝑣𝑖 and 𝑢𝑖 of each 

time step in the entire horizon is obtained, which are used to determine the 

performance index (3.6). Therefore, 𝐾 + 1 possible values of the performance 

index 𝐽𝑘 are obtained from the given set of possible solution. The value of 𝑣𝑘 

that yields the minimum 𝐽𝑘 is taken as the optimal solution.  

In the event of change in signal, the optimal speed is decided through 

optimization. Based on that speed, the host vehicle decides its acceleration 
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using IDM, which includes acceptable limits of acceleration. If a speed-up 

recommendation is given, the vehicle will not produce acceleration higher than 

the parameter 𝑎  in (3.2). On the other hand, sudden drops in the desired 

velocity 𝑣𝑑 in (3.2) can cause very large deceleration. Therefore, the slowdown 

recommendation is gradually implemented in the simulation by tuning 𝑣𝑑 for 

any given 𝑣δ in the horizon as  

𝑣𝑑  (𝑡, 𝑣δ) = {
𝑣δ,                                                   𝑖𝑓 𝑣δ ≥ 𝑣𝑑(𝑡 − 1),

𝜆𝑣𝑑(𝑡 − 1) + (1 − 𝜆)𝑣δ,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
           (3.9) 

 

where 𝜆 < 1  is the multiplication factor. Once the vehicle crosses the 

intersection, its desired velocity is reset to 𝑣R. In the prediction horizon, once 

the vehicle is near the intersection, the possible signal status, e.g., red or 

green-yellow signal, is considered based on the learned behaviour. In the case 

of the red signal, the vehicle stops at the line (or behind the preceding vehicle), 

and once the signal becomes green it speeds up again. 

Recall that there is always some uncertainty in the intersection crossing 

time due to disturbances and different traffic flow patterns. For each possible 

value of 𝑣𝑘 , a vehicle may cross the intersection before the red signal, or fail to 

cross with some probability as obtained by the Gaussian regression model. 

Two possible trajectories of the vehicle obviously provide different values of 

the performance index 𝐽𝑘,  namely, 𝐽𝑘
𝑐𝑟𝑜𝑠𝑠and 𝐽𝑘

𝑓𝑎𝑖𝑙
,  considering crossing and 

failing probabilities, respectively. An illustration of some velocity trajectories 

with crossing and failing probabilities is shown in Figure 17, where the “critical 

zone” is the distance that the vehicle may travel to cross the intersection during 

the yellow signal period. Therefore, we propose that the optimal solution 

should be decided based on the expected value of the performance index 

𝐸(𝐽𝑘)  considering the probability of crossing the intersection. Hence, the 

expected value 𝐽�̅� of performance index 𝐽𝑘 in a stochastic manner is given as  

𝐽�̅� = 𝐸(𝐽𝑘) = (𝑃𝑐𝑟𝑜𝑠𝑠(𝑣𝑘). 𝐽𝑘
𝑐𝑟𝑜𝑠𝑠 + 𝑃𝑓𝑎𝑖𝑙(𝑣𝑘). 𝐽𝑘

𝑓𝑎𝑖𝑙
).                   (3.10) 
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Figure 17: Recommended velocity trajectories of a vehicle when approaching the signalized 

intersection. 

Note that the consideration of the crossing time of the preceding vehicle 

still remains an important factor, which is determined from the Bayesian 

learning model described earlier. In some cases or events, the probability of 

crossing, or failing before the red signal remains zero and the performance 

index (3.10) becomes the same as (3.6). In this way, we solve the optimization 

problem in a bi-level framework, i.e., the optimal decision is calculated in two-

steps. In the first step, we consider all possible recommended velocities and 

obtain the corresponding performance index values and crossing probability. 

In the next step, we calculate the expected value of the performance index 

considering the probability of crossing the intersection using (3.10). Thus, at 

the occurrence of an event the optimal set speed of the host vehicle is obtained 

stochastically and used in the EDS to execute it as a speed advisory system 

(SAS). We summarize the overall procedure of the proposed EDS in Algorithm 

1. Note that 𝐹𝑘
𝑐𝑟𝑜𝑠𝑠 and 𝐹𝑘

𝑓𝑎𝑖𝑙
 gives the performance index related to the fuel 

consumption.  

 

Algorithm 1: Proposed Eco-driving System (EDS) 

1) Initialize 𝑣δ0
∗ = 𝑣min, 𝑣ma𝑥, ∆𝑣, and 𝐾 ≔ 0  

2) Set event 𝛿𝑛 at 𝑡𝑒𝑛 = 𝑡 

3) Measure 𝑥𝑖(𝑡𝑒𝑛), 𝑣𝑖(𝑡𝑒𝑛), and 𝛿𝑛(𝑡𝑒𝑛)  
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4) Estimate 𝑡𝑝 from 𝑓𝐺𝑃𝑅 having 𝑥𝑝 and 𝑣𝑝  

5) Predict 𝑡𝑐𝑟𝑜𝑠𝑠 ~ 𝑁(𝜇𝑐𝑟𝑜𝑠𝑠, Σ𝑐𝑟𝑜𝑠𝑠) from 𝑓𝐺𝑃𝑅  

6) Calculate 𝐾 = (𝑣ma𝑥 − 𝑣min) ∆𝑣⁄  

7) Loop 1: 

𝑘 = 1 ∶ 𝐾 

Set 𝐹𝑘
𝑐𝑟𝑜𝑠𝑠 ∶= 0, 𝐹𝑘

𝑓𝑎𝑖𝑙
≔ 0, and 𝑡 ≔ 0    

8) Loop 2: 

Calculate 𝑢𝑖(𝑡) using (3.2) and  

Update states 𝑥𝑖(𝑡 + 1) and 𝑣𝑖(𝑡 + 1) using (3.1) 

If 𝑥𝑖(𝑡 − 1) > 𝑥J and 𝑥𝑖(𝑡) > 𝑥J then 𝑡𝑐𝑟𝑜𝑠𝑠,𝜅 = 𝑡  

Compute 𝐹𝑘
𝑐𝑟𝑜𝑠𝑠 = 𝐹𝑘

𝑐𝑟𝑜𝑠𝑠 + 𝑓𝑣(𝑣𝑖(𝑡, 𝑣δ), 𝑢𝑖(𝑡, 𝑣𝛿)) ∆𝑡 

Set 𝑡 ≔ 𝑡 + 1 

If 𝑥𝑖(𝑡) ≤ (𝑥J + 𝑑) continue loop 2  

End loop 2 

9) 𝑡 ≔ 0    

10) Loop 3: 

 Calculate estimated green-yellow and red signal time  

(𝑡𝑔 &  𝑡𝑟) 

Calculate 𝑢𝑖(𝑡) and update states 𝑥𝑖(𝑡 + 1) and 𝑣𝑖(𝑡 + 1)  

using (3.1) 

Compute 𝐹𝑘
𝑓𝑎𝑖𝑙

= 𝐹𝑘
𝑓𝑎𝑖𝑙

+ 𝑓𝑣(𝑣𝑖(𝑡, 𝑣δ), 𝑢𝑖(𝑡, 𝑣𝛿)) ∆𝑡 

Set 𝑡 ≔ 𝑡 + 1 

End loop 3 if 𝑥𝑖(𝑡) > (𝑥J + 𝑑)  

11) Compute 𝐽�̅�(𝑣δ
∗) 

Calculate 𝑣𝑘+1 = 𝑣min + 𝑘∆𝑣 

End loop 1 

12) Find 𝑘 for minimum 𝐽�̅� and set desired speed 𝑣δ
∗  

End 
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3.6 Simulation Results and Discussion 

To implement the proposed EDS on a real-world traffic scenario with a 

signalized intersection, we have used a traffic simulator built in MATLAB. In 

order to obtain realistic traffic flows, the arrival of cars in the simulator is 

determined randomly using a probability distribution. The parameters of the 

car-following models are also randomly chosen from a pre-specified 

distribution. The traffic light is implemented with a fixed cycle and splits, where 

the last 3 sec of the green period is replaced by the yellow signal, i.e., actual 

durations of green and yellow signal are 27 sec and 3 sec, respectively, and a 

2 sec all-red period is introduced before starting a green signal on the other 

approach. In the simulator, each vehicle follows the signal, and if necessary, 

brakes at yellow signal or passes through the intersection when the vehicle is 

already close to it. However, in taking the decision in advance, the yellow 

signal is simply treated as part of the green signal (since vehicles are allowed 

to cross during yellow signal). Then, the driving performance of the EDS is 

evaluated using microscopic traffic simulations. 

The selected road (Jalan Subang 3) has a single lane with total length 

of 1.5 km and the intersection is located at 1.0 km. In order to evaluate fuel 

consumption and travel time, the analysis boundary of the road section is set 

to 500 m before and 100 m after the intersection. The EDS of the host vehicle 

gives the optimal driving decision when the host vehicle observes the event at 

a distance between 100 m and 500 m and velocity of 20 km/h to 65 km/h. The 

lower bound of distance from the intersection is set to 100 m so that the vehicle 

can adjust its driving strategy. In the simulation, all vehicles are assumed to be 

of the same size and length. The green-yellow and red traffic signal durations 

are set as 𝛽1 = 30 sec (i.e., 27 sec green and 3 sec yellow), 𝛽2 = 60 sec, 

respectively, and the traffic flow rate is considered to be moderate and non-

congested. The parameters of the IDM are set as 𝑣𝑑 = 40 − 60 km/h, 𝑠0 = 2 

m, 𝑇 = 1.0 − 2.2 sec, 𝑎 = 1.5 m/sec2, and  𝑏 = 2.5 m/sec2. The acceleration 

and braking of the preceding vehicle are considered as 2 m/sec2 and -2 m/sec2, 
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respectively. The saturation flow gap time is considered 2 sec. The simulation 

is run in a discrete time framework with step size of Δ𝑡 = 0.5. To predict all 

possible cases of traffic flow, the range of input variables 𝑥𝑛𝑒𝑤 and 𝑣𝑛𝑒𝑤 are 

taken as 0 m to 550 m and 25 km/h to 65 km/h, respectively. The fuel 

consumption parameters are  𝑏0 = 0.1569 , 𝑏1 = 2.450 × 10
−2 , 𝑏2 = −7.415 ×

10−4 , 𝑏3 = 5.975 × 10
−5 , 𝑐0 = 0.07224 , 𝑐1 = 9.681 × 10−2  and 𝑐3 = 1.075 ×

10−3 as calibrated for a typical car. 

3.6.1 Learning Outcome      

Firstly, we collect the data from driving on the test road. Then the 

Bayesian network is formed off-line using data samples for estimating the 

probability of a vehicle crossing the intersection when an event occurs. The 

intersection crossing time 𝜏𝑛 of the host vehicle is normalized with respect to 

green-yellow and red signal durations for simplicity, i.e., if 𝛿𝑛(𝑡𝑒𝑛) = 1, then  

𝜏�̅� = (𝜏𝑛 − 𝛽1)/𝛽1  and if 𝛿𝑛(𝑡𝑒𝑛) = 0,  then 𝜏�̅� = (𝜏𝑛 − 𝛽2)/𝛽2 . The model is 

tuned each time with new data. During data collection we find that in the most 

cases the host vehicle has a moderate speed, e.g., around 40 km/h when an 

event is observed. In such cases, we train the model in 1-D using 30 data 

samples to estimate the crossing time of the intersection. However, such 1-D 

approximation is not sufficient when the speed variation of the host vehicle is 

large because the crossing time significantly varies with respect to both speed 

and distance. In this case, we train the model in 2-D using 170 data samples 

to attain better approximation of the crossing time. Note that the performance 

of the model remains consistent when we train it with increased data samples. 

After training the network, we tested the results (the mean crossing time in a 

normalized value) in both 1-D (with 95% confidence interval) and 2-D input 

spaces as shown in Figure 18(a) and (b), respectively. Here we show the 

learning outcomes of Bayesian optimization for Event A only due to some 
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uncertainty of crossing the intersection. In Event B the vehicle always has to 

stop at the intersection.  

 

 

 

 

 

 

 

(a) 

            

 

 

 

 

 

 

 

(b) 

Figure 18: The normalized crossing time of the host vehicle when Event A occurs (a) 1-D 

plot and (b) 2-D contour plot. 

When 𝜏�̅� = 0, it means the crossing time is 30 sec (i.e., critical to cross 

the intersection), which is equal to the duration of green-yellow signal. When 

𝜏�̅� = 1, the crossing time is 60 sec. The normalized output (crossing time) of 

Bayesian network is transformed into the original scale after the learning 

process. The model is then used on-line to obtain the recommended velocity 

for the host vehicle. 
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3.6.2 Performance Evaluation       

Secondly, the performance of the proposed EDS based on the 

Bayesian model is evaluated and compared with the TDS in a free flow traffic 

scenario. The distance-velocity, distance-fuel, and distance-time plots for 

green and red traffic events are shown in Figure 19. In Figure 19(a), the vehicle 

observes a change from red to green signal at about 450 m away from the 

intersection. In TDS, the vehicle maintains constant cruising speed at its initial 

velocity of 50 km/h and has to perform aggressive braking near the intersection 

due to a change to the red signal and idles for the entire red period before 

crossing the intersection. In the proposed EDS, the vehicle is recommended 

to increase its velocity to about 60 km/h; this maximizes the expected value of 

performance index (to have higher probability of crossing the intersection); it 

then speeds up and manages to cross the intersection before the red signal 

starts. This manoeuvre significantly reduces the cumulative fuel consumption 

and travel time. On the other hand, if the vehicle currently has a maximum 

speed meeting the speed limit and the probability of crossing the intersection 

is low, then it will be recommended to slow down early to the optimum velocity. 

In Figure 19(b), the vehicle comprehends a switch to red signal at about 450 

m away from the intersection. In the TDS, the vehicle decelerates following the 

IDM and stops at the intersection; it reaches the intersection early and waits 

for the rest of the period before crossing the intersection again. However, for 

the proposed EDS, the vehicle is recommended to decelerate early to 

minimum velocity of 30 km/h to avoid lengthy idling period at the intersection. 

Thus, the cumulative fuel savings of the EDS vehicle outperforms the TDS 

vehicle though travel time of both vehicles is similar due to long red signal 

period. 

Finally, the performance of the EDS and the TDS are compared in 

dense but under saturated traffic flow. A total of 200 trials are conducted to 

observe traffic flow behaviour with the aforementioned parameters and traffic 
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characteristics with and without the EDS. In each trial, a fixed sample of 35 

vehicles is selected for analysis and the simulation is run for 10 minutes.  

Figure 19: Comparison of driving performance between the eco-driving system (EDS) and 

the traditional driving system (TDS) for (a) Event A and (b) Event B.  
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The histograms of fuel economy and travel time for 200 trails are shown 

in Figure 20(a) and (b), respectively. The percentage improvement in fuel 

economy and total travel time are given in Table 1. It is observed that the 

proposed EDS has improved the fuel consumption and travel time by +3.9% 

and +7.8%, respectively, in the context of traffic conditions considered in this 

study. The histograms show that after optimization the distributions for both 

fuel economy and travel time have shifted to the left. In the most cases, the 

vehicle has sufficient distance or headway from its preceding vehicle to adjust 

its driving manoeuvres to the recommended velocity due to moderate and non-

congested traffic flow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Histogram of driving performance of the EDS and the TDS. (a) Total fuel 

consumption and (b) total travel time.   
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When the traffic signal switches to green, vehicles under the EDS 

accelerates to have higher probability of crossing the intersection. On the other 

hand, vehicles with high failing probability (of crossing) slows down earlier and 

cruises at minimum speed towards the intersection. When the EDS vehicle 

perceives a red signal, it slows down earlier and the vehicles behind are also 

restricted to follow. The host vehicle under the EDS will only start to adjust its 

driving behaviour when an event is detected. Although the improvement in 

travel time is significantly high, the improvement of the fuel consumption 

remains at a moderate level. This is because the acceleration behaviour 

depends on the parameter of the car-following model. Since the red period of 

60 sec and the green-yellow period of 30 sec are used, if a vehicle can escape 

the red signal by speeding up in a non-congested traffic, its travel time 

improves significantly. On the other hand, even if the vehicle slows down to 

avoid idling at the red signal, it does not increase its crossing time or average 

speed. However, such escaping of red signal is associated with aggressive 

acceleration, which compromises fuel efficiency. Such behaviour is reflected 

in the collective performance of fuel and travel time improvement. 

3.7 Summary  

In this chapter, we have developed an event-driven eco-driving strategy 

from self-driving data for a signalized intersection with moderate and non-

congested traffic flow. The proposed driving system takes into consideration 

the presence of disturbances and preceding vehicles, and the EDS suggests 

Table 1:  Performance Comparison in Fuel Consumption and Travel 

Time 

 Fuel Consumption Travel Time 

Mean Value 
TDS: 2402.9 ml 
EDS: 2309.5 ml 

TDS: 2754.0 sec 
EDS: 2539.2 sec 

Percentage 
Improvement 

+3.9% +7.8% 
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the recommended optimal velocity through stochastic optimization. The 

vehicle either maintains constant cruising speed or an appropriate acceleration 

level to avoid the red signal when it observes a switch to green signal. When 

there is a shift to the red signal, the vehicle slows down to its minimum velocity 

and slowly travel across the intersection. The simulation results show that the 

proposed EDS has better efficiency in fuel and travel time than the TDS. 

Though the proposed system performs eco-driving without using V2V or I2V 

technologies, it can be a very promising technology for semi-autonomous 

vehicles in the near future. Also, our method will be able to handle unknown 

characteristics of multiple intersections in the near future because traffic data 

of multiple intersections could be retrieved easily using cloud-based systems.  

The extension of the existing eco-driving using stochastic model 

predictive control, by incorporating such probabilistic models, logical decisions 

at the signal change, safety constraints and a long prediction horizon, is not 

feasible due to huge computational complexity and requirement of repeated 

optimization. However, our proposed framework opens an opportunity to 

incorporate model predictive control to optimize the acceleration of the vehicle 

further based on the optimal set speed in a bi-level framework. Such 

implementation will obviously improve the fuel efficiency of the vehicle beyond 

what is achieved by the proposed method. Such extension of the proposed 

EDS along with experimental observation and analysis of real driving at 

intersections will be our next research. 

Also, in the future, this system can be extended to multiple intersections 

and double lane roads with the implementation of lane change model called 

MOBIL. The system can be extended to analyse traffic flow with mixed 

vehicles. 
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Chapter 4 

 

4 Eco-driving Strategy for Hilly Roads  

When a vehicle drives on hilly terrain, road grades impact fuel 

consumption and emissions considerably. In this chapter, we develop a 

dynamic eco-driving system (EDS) based on fuzzy-tuned model predictive 

control (MPC) for a host vehicle that fully utilizes the gravitational energy on 

various sloping roads. Previous vehicle control strategies for hilly roads 

(Section 2.2) using MPC used fixed-weight cost functions regardless of the 

driving context, such as road slopes. This fact typically implies that the 

controller tends to brake on the downslope to suppress increasing velocity due 

to gravity, and this braking action permits energy dissipation. Our proposed 

EDS adjusts a weight of the cost function (depending on the states of the road, 

and both host and preceding vehicles) to better utilize the host vehicle's 

gravitational potential energy, and consequently, further improve the fuel 

consumption behaviour with the same travel time. Compared to the previous 

DP-based methods, our proposed method does not require information of 

entire driving cycle before the trip. Thus, our method is suitable for real-time 

implementation.  

In the proposed EDS, we formulate a nonlinear optimization problem 

with an appropriate prediction horizon, and an objective function based on the 

factors affecting vehicle fuel consumption. The velocity related weight of the 

objective function is tuned through fuzzy inference techniques. By considering 

the longitudinal motion dynamics of the host vehicle, state of the preceding 

vehicle, and road slope information (obtained from the digital road map), the 

optimization generates velocity trajectories for the host vehicle that minimizes 

fuel consumption and CO2 emission, whilst ensuring a collision free traffic. We 

also investigate the driving performance of following vehicles (behind the host 

vehicle) that are driven by the traditional driving (human-based) system (TDS) 
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in synchronous and dense traffic on real hilly roads located in Fukuoka City, 

Japan. This was not considered in existing works on hilly roads.   

It is found that the fuzzy-tuned MPC EDS significantly reduces fuel 

consumption and CO2 emission of the host vehicle compared to the TDS, for 

the same travel time. In dense traffic, the fuel consumption and CO2 emission 

of following vehicles are noticeably reduced. Hence, this work also contributes 

towards the development of eco-driving methods that can improve the driving 

strategy of a group of vehicles on various road grades in the dense traffic 

environment. This work in this chapter has been published in the Applied Soft 

Computing, in (Bakibillah et al., 2020).    

The rest of the chapter is organized as follows. In Section 4.1, we 

describe the fundamental concept of our proposed EDS and in Section 4.2, we 

formulate the model of vehicle motion dynamics on hilly roads. Then we 

develop the model predictive control algorithm in Section 4.3 and tuning of the 

objective function using fuzzy inference in Section 4.4. Section 4.5 presents 

key simulation results on typical and real hilly road scenarios, and finally, 

Section 4.6 gives the summary of the chapter.   

4.1 Fundamental Concept 

It is well known that driving behaviour and road conditions significantly 

affect fuel consumption and emissions of a vehicle. For example, aggressive 

acceleration, braking, and speeding waste considerable amount of fuel, 

whereas uphill slopes consume more fuel and downhill slopes have the 

potential to save fuel. Forecasting future road traffic situations and driving 

states (including road grade information) is very useful for driving in an 

ecological manner, but such anticipations are hardly possible for human 

driving. Therefore, an eco-driving system can be a promising solution to assist 

a driver improve fuel-efficiency.  

The fundamental concept of our proposed fuzzy-tuned MPC EDS on a 

hilly road is illustrated in Figure 21. The EDS uses the host vehicle’s 
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longitudinal motion dynamics (while following a preceding vehicle) and 

information of road grades ahead to calculate the optimal velocity over the 

traveling interval. The preceding vehicle and following vehicles are assumed 

be TDS vehicles. The dynamic behaviour of those vehicles is modelled based 

on a microscopic car-following model known as the Intelligent Driver Model 

(IDM), which imitates human driving behaviour (Treiber et al., 2000).  The IDM 

is defined by the acceleration function in terms of the dynamics of position and 

velocity of each vehicle, and it captures the impact of road grades on the 

acceleration of a vehicle and generates the control input to ensure steady 

speed on the slope. We also assume that the vehicles are traveling in a group, 

in synchronous traffic flow. The EDS knows the road grade information of the 

trajectory, which is obtained from the three-dimensional (3D) digital road map 

data, whereas the vehicle’s location is acquired from the GPS. To evaluate the 

effectiveness of the proposed EDS, a suitable objective (cost) function is 

formulated and one of its weights is tuned using fuzzy inference techniques to 

obtain smooth variation of speed on road slopes. The fuzzy inference is based 

on the instantaneous speed and the road slope angle. The following sections 

describe the problem formulation and the fuzzy based control method in detail.  

Figure 21: Fundamental concept of the proposed EDS on a hilly profile with up-down slopes 

using fuzzy-tuned MPC.  
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4.2 Vehicle Dynamics on Hilly Roads     

Fuel consumption and CO2 emission of a vehicle are directly related to 

the longitudinal motion dynamics (Mihaly & Gáspár, 2013). Hence, we 

consider only the longitudinal motion dynamics of the host vehicle in the 

optimization, and controlling the lateral dynamics (for lane keeping and lane 

changing) is the responsibility of the driver. Since the host vehicle must 

maintain a safe gap with its preceding vehicle, the states of the preceding 

vehicle are considered as a dynamic reference. The nonlinear state equation 

of the vehicle in the longitudinal direction at time 𝑡 can be expressed as  

�̇�(𝑡) = 𝑓(𝑦(𝑡), 𝑢ℎ(𝑡), 𝑧(𝑡)),                                             (4.1)  

where 𝑦(𝑡) = [𝑥ℎ(𝑡), 𝑣ℎ(𝑡), 𝑥𝑝(𝑡), 𝑣𝑝(𝑡)]
T
∈ ℝ4 denotes the state vector 

representing position 𝑥ℎ  and velocity 𝑣ℎ  of the host vehicle, position 𝑥𝑝  and 

velocity 𝑣𝑝  of the preceding vehicle, respectively, 𝑢ℎ  is the control input 

relating to the traction force, and 𝑧(𝑡) is a time varying external parameter 

representing acceleration 𝑢𝑝  of the preceding vehicle, whose value can be 

approximated by the measured speeds. 

The motion of the host vehicle is determined by the total forces acting 

on it as shown in Figure 22 and is given as 

𝑀ℎ

𝑑𝑣ℎ(𝑡)

𝑑𝑡
= 𝐹𝑇(𝑡) − 𝐹𝑅(𝑡),                                              (4.2) 

where 𝑀ℎ, 𝐹𝑇(𝑡), and 𝐹𝑅(𝑡) represent the equivalent mass of the host vehicle, 

the traction force, and the sum of all motion resistance forces, respectively.  

 

 

 

 

Figure 22: Forces acting on the vehicle while running on a hilly road. 

𝜃 
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Note that 𝐹𝑅(𝑡)  consists of aerodynamic drag, rolling resistance, and 

gravitational force due to the slope and is given by     

𝐹𝑅 =
1

2
𝐶𝐷𝜌𝑎𝐴𝑣𝑣ℎ

2(𝑡) + 𝜇𝑀ℎ𝑔 cos 𝜃 (𝑥ℎ) + 𝑀ℎ𝑔 sin 𝜃 (𝑥ℎ),                      (4.3) 

where 𝐶𝐷 ,  𝜌𝑎 , 𝐴𝑣 , 𝜇, and 𝜃(𝑥ℎ) respectively are the drag coefficient, the air 

density, the vehicle frontal area, the rolling friction coefficient, the gravitational 

acceleration, and the road slope angle associated with the host vehicle 

position 𝑥ℎ. The traction force is given by the product of the mass of the vehicle 

and the equivalent acceleration as 𝐹𝑇(𝑡) = 𝑀ℎ𝑢ℎ(𝑡).  Thus, the function in 

(4.1) is written as  

𝑓(𝑦, 𝑢ℎ(𝑡), 𝑧(𝑡)) = 

[
 
 
 
 

𝑣ℎ

−
1

2𝑀ℎ
𝐶𝐷𝜌𝑎𝐴𝑣𝑣ℎ

2 − 𝜇𝑔 cos 𝜃 (𝑥ℎ) − 𝑔 sin 𝜃 (𝑥ℎ) + 𝑢ℎ(𝑡)

𝑣𝑝
𝑢𝑝(𝑡) ]

 
 
 
 

,         (4.4) 

where the term −
1

2𝑀ℎ
𝐶𝐷𝜌𝑎𝐴𝑣𝑣ℎ

2 − 𝜇𝑔 cos 𝜃 (𝑥ℎ) − 𝑔 sin 𝜃 (𝑥ℎ) + 𝑢ℎ(𝑡)  is the 

apparent acceleration. The control input 𝑢ℎ  of the host vehicle is applied 

through its throttle or brake. The road altitude information is available from the 

digital road map, which is used to calculate 𝜃 (road slope angle at position 𝑥ℎ) 

as 

𝜃(𝑥ℎ) = 𝑡𝑎𝑛−1 (
𝑅𝑎𝑙𝑡(𝑥ℎ + ∆𝑥ℎ) − 𝑅𝑎𝑙𝑡(𝑥ℎ)

∆𝑥ℎ
),                       (4.5) 

where 𝑅𝑎𝑙𝑡(𝑥ℎ) is the road elevation at position 𝑥ℎ  and ∆𝑥ℎ  is the horizontal 

span. For simplicity, 𝜃(𝑥ℎ) can be written as 𝜃. 

4.3 Model Predictive Control 

It is known that a vehicle’s acceleration and braking rates are directly 

associated with the input force and variation of engine torque. A high level of 

acceleration or braking is not beneficial for energy efficiency as well as driving 
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comfort. We propose a fuzzy-tuned MPC based dynamic EDS that measures 

the states of the host vehicle at any time 𝑡 and derives the optimal velocity 

trajectory required for an efficient and safe manoeuvring in the prediction 

horizon. Specifically, we formulate an optimization algorithm to calculate the 

optimal velocity. The constraints of the optimization problem include the 

constraints for velocity, acceleration, and safe headway. A suitable value of 

the prediction horizon (analogous with anticipation of human drivers) is 

considered; since traffic flow experiences significant variation, a long horizon 

would not be beneficial. The safe headway (distance) 𝑠𝑑 of the host vehicle 

from the preceding vehicle is given as  

𝑠𝑑(𝑡) = 𝑠0 + 𝑡ℎ𝑑
∗ 𝑣ℎ(𝑡),                                            (4.6) 

where 𝑠0  is the minimum spacing between vehicles and 𝑡ℎ𝑑
∗  is the safe 

(reference) headway time while following the preceding vehicle.  

To implement the MPC with state dynamics (4.1) and (4.4), an optimal 

control problem is solved, where an objective function is minimized at each 

time 𝑡 and expressed as  

𝐽(𝑦(𝑡), 𝑢ℎ(𝑡)) = ∫ [𝑤1(𝑣ℎ(𝑡), 𝜃(𝑡))(𝑣ℎ(𝜏|𝑡) − 𝑣𝑑)
2 +

𝑡+𝑇

𝑡

𝑤2𝑢ℎ
2(𝜏|𝑡) 

+ 𝑤3(1 + 𝑒
−𝜎(𝑡ℎ𝑑

∗ −𝑡ℎ𝑑(𝜏|𝑡)))−1] 𝑑𝜏,                                  (4.7) 

Subject to 

𝑣min ≤ 𝑣ℎ(𝜏|𝑡) ≤ 𝑣max 

𝑢min ≤ 𝑣ℎ(𝜏|𝑡) ≤ 𝑢max 

𝑥𝑝(𝜏|𝑡) − 𝑥ℎ(𝜏|𝑡) ≥ 𝑆𝑑(𝜏|𝑡) 

where 𝑇  denotes the prediction horizon from current time 𝑡  on which the 

optimum trajectories are computed, 𝑣𝑑 is the constant desired velocity, 𝜎 is a 

positive constant, 𝑡ℎ𝑑(𝜏|𝑡) = (𝑥𝑝(𝑡) − 𝑥ℎ(𝑡) − 𝑠0)/(𝑣ℎ(𝑡)  +  𝜉)  is the instant 

time headway that includes a positive threshold 𝜉  to evade singularity at 

𝑣ℎ(𝑡) = 0 , 𝑤1(𝑣ℎ, 𝜃), 𝑤2,  and 𝑤3  are the weighting factors related to the 
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velocity, acceleration, and safe distance terms, respectively. The first term of 

the objective function is the cost due to deviation of the current velocity from 𝑣d. 

The second term is the cost of the vehicle’s acceleration force considering the 

effect of gravitational force on the slope. The third term implies a penalty due 

to deviation from the reference headway, which is calculated dynamically to 

provide a large value when the host vehicle is approaching to the preceding 

vehicle and a negligible small value when the preceding vehicle is sufficiently 

faraway. Note that here we choose a sigmoid function instead of a quadratic 

function so that this cost only appears when the instant time headway 

𝑡ℎ𝑑  reduces significantly from the safe time headway 𝑡ℎ𝑑
∗ . The value of weight 

𝑤1(𝑣ℎ, 𝜃) is tuned depending on the driving context, whereas high values are 

chosen for weights 𝑤2  and 𝑤3 . Specifically, weight 𝑤1(𝑣ℎ, 𝜃)  is tuned by 

means of fuzzy inference described in the next section so that the variation of 

speed on the slopes can provide better utilization of the kinetic energy, and 

consequently, the fuel efficiency and CO2 emission of the host vehicle are 

improved.  

4.4 Tuning of Objective Function using Fuzzy Inference   

The fuzzy inference technique is a powerful tool, which presents objects 

in an abstruse way similar to the concepts and thought process of a human. 

Fuzzy logic control allows range-to-range or range-to-point control unlike point-

to-point control in classical control strategy. The concept of fuzzy logic was 

invented by L. A. Zadeh in 1965 as a mathematical tool to deal with uncertainty 

(Zadeh, 1965). However, this invention received attention almost after ten 

years when E. H. Mamdani applied in a real application for controlling a steam 

engine by incorporating a set of linguistic control rules (Mamdani & Assilian, 

1975). Since the 1980s, works on fuzzy implementations have been developed 

rapidly including its applications in automatic control, automobile production, 

industrial manufacturing, academic education, hospitals, and so on. Moreover, 

different fuzzy technologies have been proposed using classical control 

methods, e.g., PID-fuzzy control (Er & Sun, 2001), phase-plan mapping fuzzy 
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control (Li & Gatland, 1995), adaptive fuzzy control (Hsu & Fu, 2000), neuro-

fuzzy control (Jang & Sun, 1995), and switched fuzzy sampled-data control 

(Shi et al., 2019). The most popular fuzzy inference methods are Mamdani, 

Sugeno, and Tsukamoto methods that work with crisp data as inputs (Iancu, 

2012). Among these methods, the fuzzy inference technique of Mamdani is 

the most widely used. In this work, we develop a new concept called fuzzy-

tuned MPC or fuzzy-MPC and utilize the fuzzy inference method of Mamdani. 

We apply three consecutive steps to implement fuzzy logic, which are 

fuzzification, fuzzy inference, and defuzzification. 

4.4.1 Fuzzification    

In the fuzzification process we consider the instantaneous velocity 𝑣ℎ(𝑡) 

of the host vehicle and the road slope angle 𝜃(𝑡)  as crisp inputs to tune 

𝑤1(𝑣ℎ, 𝜃), and represent them with linguistic variables. i.e., ‘Low’ (L) and ‘High’ 

(H) for velocities and ‘Negative’ (N) and ‘Positive’ (P) for slopes. Then, we 

derive the membership functions to obtain the proportion of these inputs 

corresponding to the appropriate fuzzy sets. The members of a fuzzy set have 

smooth boundaries compared to the classical set. Generally, there are 

different types of membership functions, such as the Gaussian waveform, bell-

shaped waveform, triangular waveform, trapezoidal waveform, S-curve 

waveform, and sigmoidal waveform. Because of the dynamic nature and 

variation of traffic flow in a short period of time, we choose and define 

trapezoidal shaped membership functions for velocity 𝑣ℎ(𝑡) and road slope 

angle 𝜃(𝑡) as shown in Figure 23(a). The centre of velocity and road slope 

angle membership functions are located at 𝑣𝑑 and 0, respectively. Then, we 

determine the corresponding membership values for velocity {𝜇𝐿(𝑣ℎ), 𝜇𝐻(𝑣ℎ)} 

and road slope angle {𝜇𝑁(𝜃), 𝜇𝑃(𝜃)}. 

4.4.2 Fuzzy Inference    

In the next step, we define the fuzzy control rule as shown in Figure 

23(b), which is the kernel of the fuzzy inference process. In fuzzy inference, 



54 

 

 

expert knowledge is required to design the control rules; in this case, a 

vehicle’s fuel consumption characteristics on slopes can be improved in the 

following ways  

 At the down slope and low speed, 𝑤1(𝑣ℎ, 𝜃) should be low because the 

speed will increase automatically due to the down slope. 

 At the down slope and high speed, 𝑤1(𝑣ℎ, 𝜃) should be moderate to 

avoid braking, which will wasting kinetic/potential energy and cause ride 

discomfort.  

 At the up slope and at normal or low speed, 𝑤1(𝑣ℎ, 𝜃) should be high to 

let the vehicle speed be close to its desired speed. 

 At the up slope and high speed, 𝑤1(𝑣ℎ, 𝜃) should be moderate to avoid 

braking as the vehicle will slow down naturally (due to gravity and drag).   

 

 

 

 

 

 

 

 

Figure 23: Fuzzy inference technique (a) trapezoidal shaped membership functions, (b) 

fuzzy control rules. 

In our case, we use the above expert knowledge to design the fuzzy 

rules. Then, we apply the fuzzified inputs to the predecessors of the fuzzy 

rules. In this implementation, there are two predecessors of fuzzy rules, and 

hence, the fuzzy operator AND is used to get a single value, which gives the 

result of predecessor evaluation. The conjunction of rule predecessors is 

evaluated as 
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𝜇𝑖𝑗(𝑡) = 𝜇𝑖∈{𝐿,𝐻}(𝑡) ∩ 𝜇𝑗∈{𝑁,𝑃}(𝑡) = min{𝜇𝑖(𝑣ℎ), 𝜇𝑗(𝜃)}.                  (4.8) 

Then, we associate the membership functions with the fuzzy rules to determine 

the control output as 

𝐹𝑧(𝑣ℎ, 𝜃) =∑𝜇𝑖𝑗(𝑣ℎ, 𝜃)𝑊𝑖𝑗,                                           (4.9) 

where 𝑊𝑖𝑗, 𝑖𝑗 ∈ {𝑁𝐿,𝑁𝐻, 𝑃𝐿, 𝑃𝐻}, are the constant fuzzy weights. Since the 

speed 𝑣ℎ(𝑡) and the road slope angle 𝜃(𝑡) vary with time, 𝜇𝑖𝑗(𝑣ℎ(𝑡), 𝜃(𝑡)) is 

also time varying.   

4.4.3 Defuzzification     

Finally, we transform the fuzzy output back to the crisp output using 

defuzzification (D) method called Center of Gravity (COG), which is widely 

used in real applications. The COG output is calculated as 

𝑤1(𝑣ℎ, 𝜃) = 𝐷𝐹𝑧(𝑣ℎ, 𝜃) =
𝐹𝑧(𝑣ℎ, 𝜃)

∑ 𝜇𝑖𝑗(𝑣ℎ, 𝜃)𝑖𝑗∈{𝑁𝐿,𝑁𝐻,𝑃𝐿,𝑃𝐻}
.                        (4.10) 

Figure 24 shows smooth variation in 𝑤1(𝑣ℎ, 𝜃) when both the speed 

𝑣ℎ(𝑡)  of the host vehicle and the road slope angle 𝜃(𝑡)  vary. A smooth 

variation in 𝑤1(𝑣ℎ, 𝜃) yields significant improvement in fuel consumption as 

well as CO2 emission for the same travel time.   

 

 

 

 

 

 

 

 

Figure 24: Fuzzy inference of the weight 𝑤1(𝑣ℎ, 𝜃) when both the speed 𝑣ℎ of the host 

vehicle and the road slope angle 𝜃 vary.   
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4.5 Simulation Results and Discussion  

To implement and validate the proposed EDS for real hilly road traffic 

scenarios, we developed a simulation framework in MATLAB (which has been 

proven to be mathematically reliable and used to simulate many real world 

scenarios) and solved a nonlinear optimization problem (described in (4.7)) in 

discrete time using a nonlinear programming solver in the optimization toolbox. 

For real-time implementation the sequential quadratic programming (SQP) 

algorithm is used inside the solver, which is standard and widely used 

algorithm for nonlinear optimization. In this method, the function solves a 

quadratic programming (QP) sub-problem at each iteration. The computation 

time of the algorithm is in 100-200 millisecond range, which is within the 

expected range for real-time implementation. 

 The parameters of the host vehicle are chosen as 𝑀ℎ = 1000 kg, 𝐶𝐷 = 

0.32, 𝜌𝑎 = 1.184 kg/m3, 𝐴ℎ = 2.5 m2, 𝑔 = 9.8 m/s2, and 𝜇 = 0.015. The safe 

time headway 𝑡ℎ𝑑
∗  and the minimum spacing 𝑠0 parameters are set as 1.5 s 

and 7 m, respectively. The desired velocity 𝑣𝑑 of the MPC is set as 22.23 m/s 

(80 km/h), and the velocity and acceleration constraints are set as 𝑣ℎ ∈ [0, 26] 

m/s and 𝑢ℎ ∈ [-5, 2] m/s2, respectively. A suitable prediction horizon 𝑇 = 10 s 

with 20 steps and the step size of 𝑑𝑡 = 0.5 s is chosen. The initial position 𝑥ℎ 

and velocity 𝑣ℎ of the host vehicle are set at 𝑥ℎ(0) = 0 m and 𝑣ℎ(0) = 22.23 

m/s (80 km/h). The parameters of the IDM are set as 𝑣𝑑 = 80 km/h, 𝑠0 = 2 m, 

and 𝑡ℎ𝑑
∗ = 1.5 s with maximum acceleration and comfortable deceleration of 

1.5 m/s2 and -2.5 m/s2, respectively.  

We evaluate the performance of the EDS using microscopic traffic 

simulations and conduct all simulations in four parts as follows  

 At first, we run the simulation on a typical artificial road section of about 

1.5 km with different altitude and shape of slopes to tune the fuzzy 

weights. The purpose is to obtain the optimum weight 𝑤1 of the first term 

(velocity related) of the objective function (4.7), which gives the 
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minimum fuel consumption and CO2 emission for the same travel time. 

From the simulation, the optimum 𝑤1 of the MPC is obtained as 0.15. 

The fuzzy weights are inferred based on the road slope angle and the 

current speed at any location of the host vehicle on the slope. The 

optimum fuzzy weights are obtained as 0.060, 0.120, 0.172, and 0.105, 

respectively, through tuning.   

 Secondly, we evaluate the effectiveness of the proposed EDS on typical 

common road scenarios, such as up-down and down-up slopes.  

 Then, we validate the EDS for the host vehicle on a real road section 

(with complex up-down slopes of various degrees) located in Fukuoka 

City, Japan, using the GPS data and road slope information obtained 

from the digital road map.  

 Finally, we evaluate the effectiveness of the proposed EDS to improve 

the overall driving performance for a group of following traditional 

vehicles considering the presence of the preceding vehicle.  

For comparison purposes, three types of driving control systems are 

simulated, i.e., the IDM, which is considered as a fixed speed drive (FSD), the 

EDS using conventional (fixed-weight) MPC and the proposed fuzzy-tuned 

MPC EDS. The FSD system maintains constant velocity of vehicles by 

accurately generating the appropriate control action on road slopes. For an 

unbiased comparison among the methods, we maintain the average velocity 

of vehicles to be almost equal, in order to demonstrate the improvement in fuel 

consumption and CO2 emission of the proposed EDS without compromising 

the travel time. To investigate vehicle fuel consumption and CO2 emission 

rates, the VT-Micro model is used (Rakha et al., 2004). This model is well 

accepted for calculating fuel consumption and emissions of vehicles.  

4.5.1 Performance Evaluation on Representative Hilly Road     

Figure 25 shows the simulation results of driving on typical hilly road 

sections with an up-down slope (left) and a down-up slope (right). The first two 
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graphs from the top show the road altitude and percentage of road slop, the 

next two graphs illustrate comparative velocity trajectories and equivalent 

acceleration (“equiv accel” for short) profiles. The last three graphs show 

instantaneous fuel consumption, CO2 emission, and total fuel consumption for 

traveling a distance from 200 m to 800 m (because the peak of up-down and 

down-up slopes are located at 500 m). The Fuzzy-MPC EDS vehicle increases 

its velocity in advance before entering the up-slope to avoid high acceleration 

when going up.  

On the other hand, at the down-slope, the EDS vehicle utilizes the 

advantage of gravitational force to increase the velocity to be increased to 

some extent, so that it can travel further without accelerating and also avoid 

unnecessary braking. It can also be seen that the EDS vehicle smoothly varies 

its velocity on the slope. The performance of FSD, conventional MPC, and 

Fuzzy-MPC EDS is illustrated in Table 2, where it is found that for an up-down 

slope and a down-up slope, the proposed Fuzzy-MPC EDS outperforms the 

traditional human driving by 7.8% and 13.2% respectively in fuel economy, and 

6.4% and 10.8% respectively in CO2 emission reduction. 

4.5.2 Performance Evaluation on Real Hilly Road     

Next, the strength of our proposed fuzzy-MPC EDS is further 

demonstrated and validated using data of a real road called Yuniba Dori and 

its extended part located in Fukuoka City, Japan, as shown in Figure 26. The 

length of the route is approximately 2.5 km. The route altitude information is 

acquired from Fukuoka City’s digital road maps at every 5 m interval and the 

slope angle is calculated using (4.5). The altitude of the route is 6 m at the 

north end and 25 m at the south end. The route is situated in a hilly area and 

there are varying shapes of up and down slopes in the route. Figure 27 shows 

the road elevation of the route, where is complicated with multiple up and down 

slopes of varying shapes.  
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                             (a)                                                                       (b) 

Figure 25: Drive along the hilly road sections (a) an up-down slope and (b) a down-up slope. 
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Figure 26: The experimental route in Fukuoka City, Japan, taken from Google maps. 

Table 2:  Performance comparison between FSD and Fuzzy-MPC for driving 

along up-down and down-up slopes  

 FSD MPC Fuzzy-MPC EDS 

Up-down slope:    

Velocity [km/h] 80.07 80.08 80.10 

Fuel economy [m/ml] 11.15 11.96 12.02 

CO2 emission [g/m] 0.2059 0.1937 0.1928 

Down-up slope:    

Velocity [km/h] 80.07 80.20 80.23 

Fuel economy [m/ml] 11.16 12.52 12.64 

CO2 emission [g/m] 0.2055 0.1853 0.1832 
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Figure 27: The road elevation of the experimental route obtained from digital road maps of 

Fukuoka City, Japan. 

Figure 28 shows the simulation results of driving on the experimental 

route from the north end to the south end (N-S) and from the south end to the 

north end (S-N). The performance of FSD, conventional MPC, and Fuzzy-MPC 

EDS is given in Table 3. It is found that the proposed Fuzzy-MPC EDS saves 

more fuel than the traditional human driving by 8.4% (for N-S) and 11.2% (for 

S-N). The EDS also reduces CO2 emission 6.8% and 9.4% compared to the 

traditional human driving for N-S and S-N, respectively. These results 

demonstrate the ability of the superiority of the proposed EDS over traditional 

human driving, in reducing fuel consumption and CO2 emission. 

Finally, we investigate impact of the Fuzzy-MPC EDS of the host vehicle 

on the driving performance for a number of following TDS vehicles running on 

a real hilly road. Specifically, a group of twelve vehicles is considered including 

the preceding vehicle, while they are traveling in synchronous flow traffic, i.e., 

the speed of traffic is lower than the free flow speed due to high traffic density. 

The initial velocity and the desired velocity of vehicles are set at 65 km/h. In 

this case we run two types of simulation, firstly we observe the traffic flow 

behaviour when all vehicles are traditional and human driven, and secondly, 

we consider the host vehicle as the EDS vehicle whereas the preceding and 

the following vehicles are the TDS vehicles. 
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                 (a)                                                                       (b) 

Figure 28: Drive along the experimental route (a) from the north end to the south end and (b) 

from the south end to the north end.  
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                               (a)                                                                        (b) 

Figure 29: Evaluation of traffic flow performance when driving (a) from the north end to the 

south end and (b) from the south end to the north end. 

Table 3:  Performance comparison between FSD and Fuzzy-MPC  for driving 

along the experimental route 

 FSD MPC Fuzzy-MPC EDS 

North to South:    

Velocity [km/h] 80.08 80.12 80.20 

Fuel economy [m/ml] 9.90 10.68 10.76 

CO2 emission [g/m] 0.2302 0.2162 0.2145 

South to North:    

Velocity [km/h] 80.08 80.26 80.32 

Fuel economy [m/ml] 11.92 13.15 13.26 

CO2 emission [g/m] 0.1894 0.1751 0.1716 
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Figure 29 illustrates the simulation results of traffic flow performance 

when the vehicles are traveling from the north end to the south end and from 

the south end to the north end, respectively. It is found that the traffic using the 

TDS consumes total 2,971 ml of fuel and emits 6,860 g of CO2, while the traffic 

using the EDS consumes total 2,932 ml of fuel and emits 6,786 g of CO2 when 

traveling from the north end to the south end. On the other hand, when the 

vehicles are traveling from the south end to the north end, the total fuel 

consumption of the TDS and the EDS are 2,510 ml and 2,476 ml, whereas the 

CO2 emissions are 5,815 g and 5,742 g, respectively. Table 4 summarizes the 

comparison between the TDS and the EDS of the host vehicle H and the 

following vehicles F1 to F4 in synchronous driving mode for traveling from the 

north end to the south end and from the south end to the north end. The 

average fuel consumption of the TDS is obtained as 272.16 ml from the north 

end to the south end and 226.25 ml from the south end to the north end. 

Specifically, we observe that the proposed EDS has the highest impact on fuel 

consumption of the first following vehicle and gradually decreases until the fifth 

following vehicle. This improvement is achieved because the EDS vehicle 

forces the following vehicles to drive in the optimal ecological way.  

  

4.6 Summary  

In this chapter, we have developed a novel dynamic ecological driving 

system (EDS) based on Fuzzy-MPC that reduces fuel consumption and CO2 

emission of a vehicle when moving on dense roads with uphill and downhill 

Table 4: Traffic flow performance between the TDS and the EDS 

      H    F1    F2     F3    F4 

N-S 260.01 262.95 265.03 267.38 269.55 

% Imp 4.6 3.8 2.6 1.8 1.1 

S-N 216.07 219.10 221.10 223.57 225.44 

% Imp 4.6 3.1 2.5 1.7 1.2 
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sections. A nonlinear optimization problem is formulated considering 

longitudinal motion dynamics of the host vehicle, state of the preceding 

vehicle, and information of the road slope ahead, which is obtained from the 

digital road map. The objective function is minimized using MPC to generate 

the optimal velocity trajectory for ecological driving. To further improve the 

performance of the EDS, a weight of the objective function is dynamically 

varied using fuzzy inference techniques, based on the instantaneous velocity 

of the host vehicle and the road grade angle. The fuzzy weights are tuned 

based on a typical hilly road, whilst the proposed EDS is evaluated and 

validated on real hilly road scenarios. It is found that that fuzzy-MPC EDS has 

performed much better than the traditional human driving system. The 

proposed EDS fully utilizes gravitational potential energy by smoothly varying 

the velocity of a vehicle on the slope, which ensures the minimum energy 

waste due to braking. Thus, the EDS maintains the fuel consumption in the 

optimum level. 

Based on different scenarios the fuel-saving potential of the proposed 

EDS ranges from 7.8−13.2%. Also, the proposed EDS reduces the CO2 

emission by 6.4−10.8%. Finally, we evaluate the potential of the proposed 

EDS to improve the overall traffic performance in a real hilly road scenario. It 

is found that the proposed EDS ensures the optimal driving strategy for a group 

of vehicles in synchronous driving mode. 

For future research, we will consider the effect of curvature on hilly 

roads and investigate the traffic flow performance with different 

penetration rates of the EDS vehicles. Moreover, the proposed method will be 

extended for multi-lane traffic flow.  
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Chapter 5 

 

5 Eco-driving Strategy for Horizontal Curved Roads  

On horizontal curved roads, fuel consumption and emissions of a 

vehicle are also highly influenced by driving behaviour. In this chapter, we 

develop a novel dynamic eco-driving system (EDS) based on model predictive 

control (MPC) for a host vehicle traveling on horizontal curved roads. Previous 

works on vehicle control strategies for horizontal curves (Section 2.3) mainly 

developed different speed control algorithms for driving safety rather than eco- 

driving. Some existing eco-driving strategies on horizontal curves found that 

the fuel consumption should be minimum for a constant speed despite 

variations in road curvature, which is not feasible in real-world scenarios. Also, 

they did not consider the effect of various road-surface conditions. Our 

proposed method overcomes the limitations of those works by calculating the 

optimal speed based on both curvatures and road-surface conditions, while 

ensuring driving safety. Our proposed method does not require information of 

entire driving cycle before the trip compared with the previous DP-based 

approach. Thus, our method is suitable for real-time implementation.    

In the proposed EDS, we formulate a nonlinear optimization problem 

considering a suitable prediction horizon and an objective function based on 

the factors affecting vehicle fuel consumption and safety. We derive a method 

to precisely calculate road-curvatures (with various radii) using high-accuracy 

digital road map data. The EDS dynamically computes the optimal velocity 

trajectory for the host vehicle considering its dynamical model, the state of the 

preceding vehicle, information of road-curvature, and road-surface conditions, 

such as dry, wet, snow, and ice. We evaluate the effectiveness of the EDS 

using microscopic traffic simulations on typical horizontal curved roads with 

different curvatures and road-surface conditions. It is found that the EDS 
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substantially reduces fuel consumption and CO2 emission of the host vehicle 

compared to the traditional driving system (TDS), while ensuring safe driving.   

The rest of this chapter is organized as follows. The fundamental 

concept of our proposed EDS is described in Section 5.1 and the model of 

vehicle motion dynamics on horizontal curved roads is discussed in Section 

5.2. In Section 5.3, we derive a method to accurately calculate the road 

curvature and then in Section 5.4, we formulate the model predictive control 

algorithm. In Section 5.5, we present the simulation results and finally, Section 

5.6 provides the summary of this chapter.     

5.1 Fundamental Concept  

It is well known that driving behaviour and road-geometry features have 

significant impact on fuel consumption and emissions of a vehicle. To drive a 

vehicle on horizontal curves in an optimal ecological and safe manner, it is 

important to anticipate future road traffic situations and driving states including 

information of road-curvatures and road-surface conditions. But, such 

anticipations are hardly possible for a human driver. Hence, an eco-driving 

system can be developed using advanced control algorithms to assist drivers 

for fuel-efficient and safe manoeuvring on curved roads.  

The fundamental concept of our proposed MPC-based EDS on a horizontal 

curve is illustrated in Figure 30. We consider a single lane road for simplicity 

without lane changing and overtaking manoeuvres. The EDS uses the host 

vehicle’s longitudinal motion dynamic model in the presence of a preceding 

vehicle, information of curvatures, and road-surface conditions (dry, wet, snow, 

and ice) to calculate the optimal velocity to minimize fuel consumption and CO2 

emission over the traveling interval. The vehicle’s location is obtained from the 

global positioning system (GPS) and the road-surface condition is known from 

the vehicle mounted sensors. The coordinates of the whole trajectory is 

obtained from the digital road map, which is then used to calculate the 

curvature (radii) of the road with high accuracy. The preceding vehicle is 
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considered to be traditionally driven (human-driven) and called the TDS 

vehicle hereafter, whose dynamic behaviour is modelled according to a 

microscopic car-following model called the Intelligent Driver Model (IDM) 

(Treiber et al., 2000). The IDM captures the effect of road-curvatures in the 

input acceleration of a vehicle. To evaluate the effectiveness of the EDS, a 

suitable objective function is formulated and optimized in a receding horizon 

control approach. The following sections describe vehicle dynamical model, 

road-curvature calculation method, the performance index, and the control 

method in detail. 

 

 

 

 

 

 

 

 

 

Figure 30: Fundamental concept of the proposed EDS on a horizontal curved road using 

MPC. 

5.2 Vehicle Dynamics on Curved Roads     

In this section, we present the vehicle dynamics, its technological 

settings, and operational hypotheses to design an MPC controller and make 

the system realistic. Since fuel consumption and CO2 emission are directly 

related to the longitudinal movement, we only consider the host vehicle’s 

longitudinal motion control (integrating lateral dynamics) for eco-driving on the 

horizontal curved road. We made some assumptions before modeling as: 
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1. The front wheel angle is equal to the angle of the steering wheel 

2. The attributes of the tire cornering properties are in a linear range 

due to small slip angle and small variation of the tire load. 

The nonlinear state equation of the vehicle is given as  

�̇�(𝑡) = 𝑓(𝑦(𝑡), 𝑢ℎ(𝑡), 𝑧(𝑡)),                                               (5.1)  

where 𝑦(𝑡) = [𝑥ℎ(𝑡), 𝑣ℎ(𝑡), 𝑥𝑝(𝑡), 𝑣𝑝(𝑡)]
T
∈ ℝ4 denotes the state vector 

representing position 𝑥ℎ  and velocity 𝑣ℎ  of the host vehicle, position 𝑥𝑝  and 

velocity 𝑣𝑝  of the preceding vehicle, respectively, 𝑢ℎ  is the control input 

relating to the traction force, and 𝑧(𝑡) is a time varying external parameter 

representing acceleration 𝑢𝑝  of the preceding vehicle, whose value can be 

approximated by the measured speeds. 

In traction mode, the motion of the vehicle on a curved road can be 

given by  

𝑀ℎ (
𝑑𝑣ℎ𝑥(𝑡)

𝑑𝑡
− 𝑣ℎ𝑦(𝑡)𝑤�̇�(𝑡))                                                                          

= 𝐹𝑇(𝑡) −
1

2
𝐶𝐷𝜌𝑎𝐴𝑣𝑣ℎ𝑥

2 (𝑡) − 𝜇𝑀ℎ𝑔 cos 𝜃 − 𝐹𝑦𝑓 sin 𝛿𝑓 ,                (5.2) 

where 𝑣ℎ𝑥, 𝑣ℎ𝑦, and 𝑤�̇� are the longitudinal velocity, the lateral velocity, and the 

yaw rate of the host vehicle, 𝐹𝑦𝑓 is the tire lateral force of the front wheel, and 

𝛿𝑓 is the front wheel steering angle, which is used to control the vehicle lateral 

dynamics on the curve. The traction force is given by the product of the mass 

of the vehicle and the equivalent acceleration as 𝐹𝑇(𝑡) = 𝑀ℎ𝑢ℎ(𝑡). We assume 

that the road slope angle 𝜃 is very small and thus, cos 𝜃 ≈ 1 is considered for 

computational simplicity. On horizontal curves, the relation between vehicles 

longitudinal velocity and lateral velocity can be expressed as 𝑣ℎ𝑦 = 𝛽𝑣ℎ𝑥 

where 𝛽 is the host vehicles sideslip angle.          

Next, we analyse the tyre-slip stiffness characteristics on a curved road. 

The front tires slip angle 𝛼𝑓 and the rear tires slip angle 𝛼𝑟 are given as   
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𝛼𝑓 = 𝛿𝑓 − 𝜑𝑣𝑓 ,                                                               

     𝛼𝑟 = −𝜑𝑣𝑟 ,                                                       (5.3)     

where 𝜑𝑣𝑓 and 𝜑𝑣𝑟 are the front and rear tires velocity angle given as        

𝜑𝑣𝑓 =
𝑣ℎ𝑦 + 𝑙𝑓𝑤𝑧̇

𝑣ℎ𝑥
,  

𝜑𝑣𝑟 =
𝑣ℎ𝑦 − 𝑙𝑟𝑤𝑧̇

𝑣ℎ𝑥
,                                                  (5.4) 

where 𝑙𝑓 and 𝑙𝑟 respectively are the front tyre and the rear tyre distances from 

the centre of gravity of the host vehicle. Then, the lateral tyre forces for the 

front wheels and the rear wheels of the vehicle can be expressed as 

            𝐹𝑦𝑓 = 2𝐶𝛼𝑓(𝛿𝑓 − 𝜑𝑣𝑓), 

𝐹𝑦𝑟 = 2𝐶𝛼𝑟(−𝜑𝑣𝑟),                                                 (5.5) 

where 𝐶𝛼𝑓 and 𝐶𝛼𝑟 are cornering stiffness of the front tyre and the rear tyre, 

respectively. Thus, (5.4) becomes   

            𝐹𝑦𝑓 = 2𝐶𝛼𝑓 (𝛿𝑓 − 𝛽 −
𝑙𝑓𝑤𝑧̇

𝑣ℎ𝑥
), 

𝐹𝑦𝑟 = 2𝐶𝛼𝑟 (−𝛽 +
𝑙𝑟𝑤𝑧̇

𝑣ℎ𝑥
),                                        (5.6) 

Finally, the nonlinear state equation of the host vehicle on a curved road can 

be written as  

𝑓(𝑦, 𝑢ℎ(𝑡), 𝑧(𝑡)) = 

[
 
 
 
 

𝑣ℎ

−
1

2𝑀ℎ
𝐶𝐷𝜌𝑎𝐴𝑣𝑣ℎ𝑥

2 − 𝜇𝑔 −
1

𝑀ℎ
𝐹𝑦𝑓 sin 𝛿𝑓 + 𝑢ℎ(𝑡)

𝑣𝑝
𝑢𝑝(𝑡) ]

 
 
 
 

,                     (5.7) 
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Where the term −
1

2𝑀ℎ
𝐶𝐷𝜌𝑎𝐴𝑣𝑣ℎ𝑥

2 − 𝜇𝑔 −
1

𝑀ℎ
𝐹𝑦𝑓 sin 𝛿𝑓 + 𝑢ℎ(𝑡) is the apparent 

acceleration. The control input 𝑢ℎ  of the host vehicle is applied through its 

throttle or brake. The curved road coordinate information is available from the 

digital road map, which is used to calculate the curvature described in the next 

section.    

5.3 Curvature Calculation Method  

Horizontal curves provide transitions between two tangent lengths of a 

roadway, which are required in order to progressively change direction where 

a direct point of intersection is not feasible, e.g., highways, high speed routes 

with a steady stream of traffic etc. The radius of horizontal curves can be 

categorized as small, medium, and large radius curves. The small radius 

curves with a radius of less than 150 m are characteristic of low-speed 

roadways, usually below 70 km/h. On high-speed rural roads, such small 

curves are uncommon and require guideline speed limits, warning signs, or 

other driver alerts. The medium radius curves with a radius between 150 and 

850 m refer to typical curve radii present on rural highways. The design speeds 

in the medium radius curves ranges between 70 and 120 km/h, which is the 

normal speed range for high-speed highways. The large radius curves 

correspond to radii greater than 850 m and the speed is usually above 120 

km/h.  

There are several methods to accurately calculate the curvature/radius 

of horizontal curves (Carlson, 2005; Cvitanić & Maljković; 2019). For the 

following purposes, it is important to calculate the radius of a curved road.    

 Set advisory speeds for curve 

 Predict operating speeds of vehicles  

 Delimit curve spacing measures, such as markers created for 

retroreflective paving and chevrons 

 Carry out traffic safety assessments 
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 Evaluate road accidents  

The most probable way to measure the radius of a curve is usually to 

look at a sequence of plan sheets stored in the local transport department. 

Although this is definitely a viable approach for evaluating curve radii, it can 

also be time-consuming. Also, accessibility to such data is often quite 

challenging for researchers. Therefore, many scholars, crash investigators, 

and transport field crew department use a range of radius-estimating 

techniques, such as field survey, chord length, lateral acceleration, ball bank 

indicator (BBI), plan sheet, GPS, operating speed, and vehicle yaw rate. In 

functional terms, the plan sheet method and the GPS approach have the 

lowest mean relative errors to estimate radii as -0.9% and 1.2%, respectively.  

Here we develop a method to calculate varying curvature/radius of a 

road using (𝑋,𝑌) coordinate data obtained from the high accuracy digital road 

map. In particular, we fit circular curves considering three consecutive 

coordinate points to calculate road curvature. We presume that the curvature 

is uniform between these points; this assumption is not restrictive if the 

measurement interval is small (which is easy to achieve). Suppose (𝑋1, 𝑌1), 

(𝑋2, 𝑌2), and (𝑋3, 𝑌3) be the coordinates of a road and using these coordinates, 

a circular curve of radius 𝑅𝑐 can be formed. The general equation of a circle 

can be expressed as 

𝒜𝑋2 +𝒜𝑌2 + ℬ𝑋 + 𝒫𝑌 + 𝒬 = 0                                        (5.8) 

After substituting the points in (5.8), the set of equations of the circular 

curve can be represented by the determinant as  

||

𝑋2 + 𝑌2

𝑋1
2 + 𝑌1

2

𝑋2
2 + 𝑌2

2

𝑋3
2 + 𝑌3

2

𝑋
𝑋1
𝑋2
𝑋3

𝑌
𝑌1
𝑌2
𝑌3

1
1
1
1

|| = 0                                         (5.9) 

The coefficients 𝒜 , ℬ , 𝒫 , and 𝒬  are obtained by solving the following 

determinants  
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𝒜 = |
𝑋1 𝑌1 1
𝑋2 𝑌2 1
𝑋3 𝑌3 1

|,         ℬ = − |

𝑋1
2 + 𝑌1

2 𝑌1 1

𝑋2
2 + 𝑌2

2 𝑌2 1

𝑋3
2 + 𝑌3

2 𝑌3 1

|,         𝒫 = |

𝑋1
2 + 𝑌1

2 𝑋1 1

𝑋2
2 + 𝑌2

2 𝑋2 1

𝑋3
2 + 𝑌3

2 𝑋3 1

|, 

𝒬 = − |

𝑋1
2 + 𝑌1

2 𝑋1 𝑌1
𝑋2
2 + 𝑌2

2 𝑋2 𝑌2
𝑋3
2 + 𝑌3

2 𝑋3 𝑌3

| 

Then, the radius 𝑅𝑐 and the curvature 𝒞 of the circular curve can be calculated 

as  

𝑅𝑐 = √
ℬ2 + 𝒫2 − 4𝒜𝒬

4𝒜2
                                            (5.10) 

𝒦 =
1

𝑅𝑐
                                                       (5.11) 

A large value of 𝒞 indicates sharp turning and vice-versa. Then the critical 

velocity 𝑣c,𝜅 as a function of the radius can be given as  

𝑣c,𝜅 = 𝑓(𝑅𝑐(𝑥ℎ)) ≈ 𝜁𝑓(𝑥ℎ)                          (5.12) 

where 𝜁 < 1 is a positive threshold. For different road-surface conditions (dry, 

wet, snow, and ice) 𝑣c,𝜅 is calculates as  

𝑣c,𝜅(𝑥ℎ) = √𝜇𝑠𝑔𝑅𝑐                                         (5.13) 

where 𝜇𝑠 is the road-surface friction coefficient (lateral friction coefficient with 

which a vehicle skids on a road) and 𝑔 is the gravitational acceleration. Note 

that, 𝑣c,𝜅  significantly varies with the variation of 𝑅𝑐  along the curve. 

Furthermore, 𝑣c,𝜅  is highly influenced by 𝜇𝑠  due to considerable change in 

friction supply to tires. Table 5 shows the friction coefficient 𝜇𝑠  for different 

road-surface conditions (Zhao et al., 2017). The computational cost of our 

curvature estimation method above is almost negligible and hence, not difficult 

to implement. 
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5.4 Model Predictive Control  

We recall that the acceleration and braking rates of a vehicle are directly 

associated with the input force and variation of engine torque. A high level of 

acceleration or braking is not beneficial for fuel efficiency as well as driving 

comfort. The proposed MPC-based EDS measures the states of the host 

vehicle at any time 𝑡 and derives the optimal velocity trajectory required for an 

efficient and safe travel in the prediction horizon. Specifically, we formulate an 

optimization algorithm to calculate the optimal velocity where the constraints 

of the optimization problem include the constraints for velocity, acceleration, 

and safe headway. A suitable value of the prediction horizon (analogous with 

anticipation of human driver) is considered. Since traffic flow experiences 

significant variation, a long horizon would not be beneficial. The safe headway 

(distance) 𝑠𝑑 of the host vehicle from the preceding vehicle is given as  

𝑠𝑑(𝑡) = 𝑠0 + 𝑡ℎ𝑑
∗ 𝑣ℎ𝑥(𝑡),                                            (4.6) 

where 𝑠0  is the minimum spacing between vehicles and 𝑡ℎ𝑑
∗  is the safe 

(reference) headway time while following the preceding vehicle.  

To implement the MPC with state dynamics (5.1) and (5.7), an optimal 

control problem is solved, where an objective function is minimized at each 

time 𝑡 and expressed as  

 

Table 5: Friction coefficient for various road-surface conditions   

Road-surface conditions Friction coefficient 𝝁
𝒔
 

Dry 1.20 

Wet 0.60 

Snow 0.20 

Ice 0.05 
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𝐽(𝑦(𝑡), 𝑢ℎ(𝑡)) = ∫ [𝑤1(𝑣ℎ𝑥(𝑡) − 𝑣𝑑)
2 +

𝑡+𝑇

𝑡

𝑤2𝑢ℎ
2(𝑡) + 

+ 𝑤3(1 + 𝑒
−𝜎(𝑡hd

∗ −𝑡hd(𝑡)))−1] 𝑑𝑡,                       (5.13) 

 

Subject to 

𝑣min ≤ 𝑣ℎ𝑥(𝑡) ≤ 𝑣max, 

umin ≤ 𝑢ℎ(𝑡) ≤ 𝑢max, 

     𝑣ℎ𝑥(𝑡) − 𝑣max,r(𝑥ℎ) < 0, 

𝑥𝑝(𝑡) − 𝑥ℎ(𝑡) ≥ 𝑆𝑑(𝑡), 

where 𝑇  is the prediction horizon from current time 𝑡 , 𝑣𝑑  is the constant 

desired velocity, 𝜎 is a positive constant, and 𝑤1, 𝑤2, and 𝑤3 are the weighting 

factors related to the velocity, acceleration, and safe distance terms, 

respectively. The first term of the objective function implies a penalty when the 

host vehicle’s current speed deviates from 𝑣𝑑. The second term reflects the 

cost of the vehicle’s acceleration force on the horizontal curve.   The third term 

represents a penalty because of the deviation from the reference headway, 

which gives a high value if the host vehicle is near the preceding vehicle and 

a negligible value when the preceding vehicle is far. The maximum velocity at 

various locations of the horizontal curve is calculated as 𝑣max,r(𝑥ℎ) =

min (𝑣c,𝜅, 𝑣max,ι) , where 𝑣max,ι  is the speed limit of the road. Thus, the 

optimization considers both 𝑅𝑐  and 𝜇𝑠  to control the trajectory of the host 

vehicle dynamically. The smooth variations of speed with respect to the 

curvature and road-surface can significantly improve fuel economy and CO2 

emission of the host vehicle.         

5.5 Simulation Results and Discussion  

To implement the proposed EDS for horizontal curved roads we 

developed a simulation framework in MATLAB and solved a nonlinear 

constrained optimization problem (described in (5.12)) in discrete time using a 
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nonlinear programming solver in the optimization toolbox. For real-time 

implementation the sequential quadratic programming (SQP) algorithm is used 

inside the solver, which is standard and widely used algorithm for nonlinear 

optimization. In this method, the function solves a quadratic programming (QP) 

sub-problem at each iteration. The computation time of the algorithm is in 100-

200 millisecond range, which is within the expected range for real-time 

implementation. 

The parameters of the host vehicle are chosen as 𝑀ℎ = 1000 kg, 𝐶𝐷 = 

0.32, 𝜌𝑎 = 1.184 kg/m3, 𝐴ℎ = 2.5 m2, 𝑔 = 9.8 m/s2, 𝜇 = 0.015, 𝑙𝑓 = 1.4 m, 𝑙𝑟 = 

1.4 m,  𝐶𝛼𝑓 = 59000 N/rad, and 𝐶𝛼𝑟 = 59000 N/rad. The safe time headway 

𝑡hd
∗  and the minimum spacing 𝑠0  parameters are set as 1.5 s and 7 m, 

respectively. The desired velocity 𝑣𝑑 of the MPC is set as 22.23 m/s (80 km/h), 

and the velocity and acceleration constraints are set as 𝑣ℎ ∈ [0, 26] m/s and 

𝑢ℎ ∈ [-5, 2] m/s2, respectively. The speed limit 𝑣max,r of the road is set as 25 

m/s (90 km/h). The simulation step is set at 𝑑𝑡 = 0.5 and the prediction horizon 

is chosen as 𝑇 = 10 s, which is divided into 20 steps. The initial position 𝑥ℎ 

and velocity 𝑣ℎ𝑥 of the host vehicle are set at 𝑥ℎ(0) = 0 m and 𝑣ℎ𝑥(0) = 22.23 

m/s (80 km/h). The parameters of the IDM are set as 𝑣𝑑 = 80 km/h, 𝑠0 = 2 m, 

and 𝑡hd
∗ = 1.5 s with maximum acceleration and comfortable deceleration of 

1.5 m/s2 and -2.5 m/s2, respectively.  

We evaluate the effectiveness of the proposed EDS using microscopic 

traffic simulations for different curvatures and road-surface conditions, and 

benchmarked with the TDS. To investigate vehicle fuel consumption and CO2 

emission rates, a well-known fuel consumption and emissions model called 

the VT-Micro model is used (Rakha et al., 2004). A single lane representative 

horizontal curved road with various curvatures (radii) is considered for the 

simulation.  The curved road profile (in the XY coordinate) and the curve angle 

are shown in Figure 31(a) and (b), respectively. The sequencing of curves is 

set according to the design guidelines for the Asian highway network, where 

the greater radius curve is followed by the smaller radius horizontal curve at a 



77 

 

 

ratio of not more than 1.5 and consecutive curves is separated by a straight 

section in addition to transition curves. The centre of the curves are located at 

550 m, 980 m, and 1540 m along the route with the maximum radius of 175 m, 

215 m, and 250 m, respectively. Figure 32 and 33 show the simulation results 

of speed trajectories, acceleration profiles, instantaneous fuel consumption, 

and CO2 emission and for dry and wet (rainy) road-surface conditions, 

respectively. 

 

 

 

Figure 31: (a) The horizontal curved road profile in the XY coordinate system and (b) 

the curve angle. 

When approaching the curve, the TDS rapidly slows down by 

generating appropriate control actions, travels up to the middle of the curve, 

and then quickly accelerates back to the initial velocity. Such rapid variations 

in motion, deceleration, and acceleration affect fuel consumption and CO2 

emission of vehicles on a curved road. In addition to the curvature effect, road-

surface conditions affect human driving behaviour and drivers tend to perform 

unnecessary acceleration and braking, while delivering extra effort to control 

the vehicle when the road-surface condition is wet. These actions cause 

additional fuel consumption and CO2 emission.  
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Figure 32: Drive under dry surface condition. (a) Speed trajectories, (b) acceleration profiles, 

(c) instantaneous fuel consumption, and (d) instantaneous CO2 emission for the EDS and 

the TDS.   
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Figure 33: Drive under wet surface condition. (a) Speed trajectories, (b) acceleration 

profiles, (c) instantaneous fuel consumption, and (d) instantaneous CO2 emission for the 

EDS and the TDS.   



80 

 

 

On the other hand, during winter season, the road-surface is usually 

covered with snow in many countries. Driving on snow surface becomes 

difficult as the road friction 𝜇𝑠  (to tires) decreases considerably and drivers 

cannot realize that fact to adjust their speed sufficiently. Sometimes, there is a 

thin coating of glaze ice (formed about the freezing point) on the road-surface, 

which is even more challenging because it is invisible and is called the black 

ice. Figure 34 and 35 show the simulation results for snow and ice road-surface 

conditions, respectively.   
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Figure 34: Drive under snow surface condition. (a) Speed trajectories, (b) acceleration 

profiles, (c) instantaneous fuel consumption and (d) instantaneous CO2 emission for the 

EDS and the TDS.   

 

It is found that for various road-surface conditions the EDS performs much 

better than the TDS. This is due to the fact that when traversing the horizontal 

curve the EDS vehicle smoothly varies its velocity and keeps the acceleration 

(control input) in the optimal level considering road-curvatures and road-

surface conditions. Figure 36(a) and (b) show the simulation results of total 

fuel consumption and total CO2 emission. Table 6 summarizes the comparison 

between the TDS and the EDS of the host vehicle for different road-surface 

conditions when driving along the horizontal curves. It is found that the 

proposed EDS saves fuel by 4.5–10.2% and reduces CO2 emission by 3.4–

8.2% compared to the traditional human driving. These findings illustrate the 

potential of the proposed EDS to be superior to conventional human driving in 

reducing fuel consumption and CO2 emission.  
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Figure 35: Drive under snow surface condition. (a) Speed trajectories, (b) acceleration 

profiles, (c) instantaneous fuel consumption, and (d) instantaneous CO2 emission for the 

EDS and the TDS.   
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Figure 36: Comparison of (a) total fuel consumption and (b) total CO2 emission between the 

EDS and the TDS.  

 

Table 6: Performance comparison between the TDS and the EDS for 
various road-surface conditions     

  Total Fuel 
Consumption [ml] 

Total CO2 
Emission [g] 

% Fuel 
Savings 

 TDS EDS TDS EDS  

Dry Surface 292.04 279.41 669.98 646.96 4.5 

Wet Surface 336.69 308.65 761.87 710.22 8.4 

Snow Surface 414.99 372.54 932.49 855.65 10.2 

Ice Surface 441.14 406.84 1015.32 940.39 7.9 
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5.6 Summary   

In this chapter, we have developed a novel dynamic EDS using MPC 

that reduces fuel consumption and CO2 emission of a host vehicle on 

horizontal curves with various curvatures and road-surface conditions. We 

derived a method to precisely calculate the curvature and formulate a 

nonlinear optimization problem considering the host vehicle’s longitudinal 

motion dynamics, state of the preceding vehicle, information of curvature, and 

road-surface conditions. The proposed EDS maintains proper deceleration 

when approaching a tangent to curve and then accelerates with an appropriate 

acceleration level after passing the middle of the curve, which ensures the 

minimum energy waste due to acceleration/braking. Hence, the EDS keeps 

the fuel consumption in the optimum level and performs much better than the 

traditional human driving system. Based on the scenario and various road-

surface conditions, the fuel-saving capability of the proposed EDS ranges from 

4.5-10.2%, while ensuring driving safety.  

In future research, we will investigate traffic flow performance for 

different penetration rates of the EDS vehicle under mixed-automated vehicle 

environment. Also, we will extend the model for multi-lane traffic flow. 

 

 

 

 

 

 

 

 

 



85 

 

 

Chapter 6 

 

6 Eco-driving Strategy for Roundabouts 

Uncoordinated merging of vehicles is one of the main causes of traffic 

congestion in roundabouts, which directly affects travel time, fuel consumption, 

and emissions of individual vehicles. Connected vehicle technologies along 

with the cooperative control of automated vehicles (AVs) can play an important 

role to improve traffic flow performance in a roundabout. Therefore, to improve 

driving scenarios in the existing roundabout environment, here we have 

developed a novel roundabout coordination system (RCS) for AVs to achieve 

eco-driving (fuel-efficient driving) as well as safe and smooth traffic flows under 

a connected vehicle environment. Previous research on vehicle control 

strategies for roundabouts (Section 2.4) mainly developed ramp metering 

signal control systems to improve mobility and safety during peak hours. But it 

is expensive to upgrade traffic signal infrastructures and also, modern 

roundabouts do not encourage the use of ramp metering because it has been 

proven that a roundabout is more efficient than a signalized intersection. Our 

proposed method does not require ramp metering to improve traffic 

performance at roundabouts. Existing roundabout coordination systems for 

CAVs did not investigate different traffic demands on the roundabout capacity. 

Our proposed method can deal with different traffic demands up to the capacity 

of the roundabout.            

The coordination of vehicles is implemented in a bi-level framework 

using a roundabout coordination unit (RCU), where in the higher level, vehicles 

in the entry lane approaching the roundabout are coordinated to form clusters 

based on traffic flow volume, whereas in the lower level, the vehicles’ optimal 

sequences and roundabout merging times are calculated by solving a 

combinatorial optimization problem using a receding horizon control (RHC) 

approach. The proposed RCS aims to minimize the total time taken for all 
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approaching vehicles to enter the roundabout, whilst minimally affecting 

movement of circulating vehicles. Using microscopic simulations, we 

demonstrate the effectiveness of the RCS, comparing against the current 

traditional roundabout system (TRS) for various traffic flow scenarios. The 

results show that the proposed RCS produces significant improvement in 

traffic flow performance, e.g., average velocity, average fuel consumption, and 

average travel time in the roundabout. The work in this chapter is being 

reviewed by the IEEE Transactions on Intelligent Transportation Systems.  

The rest of this chapter is organized as follows. In Section 6.1, we 

describe the fundamental concept of the proposed roundabout coordination 

system (RCS). In Section 6.2, we develop traffic flow modeling in a four-leg 

roundabout. In Section 6.3, we formulate the optimization problem including 

higher level coordination and lower level coordination. We present simulation 

results in Section 6.4 and finally, Section 6.5 gives the summary of the chapter.      

6.1 Fundamental Concept   

The concept of the proposed bi-level roundabout coordination system 

in a connected vehicle environment is illustrated in Figure 37. We consider an 

unsignalized four-legged single-lane roundabout; the legs are equally spaced 

at 90˚, and each leg has an entry and an exit lane. We consider a roundabout 

coordination unit that can communicate in two-ways (I2V and V2I) with 

negligible delay to globally coordinate the vehicles. The full signal coverage 

range of the RCU is about 200 meters. The vehicles frequently transmit their 

information, such as the current position and velocity to the RCU within the 

coverage range. For simplicity, all vehicles are assumed to be automated; such 

an assumption is reasonable, as traditional connected vehicles can be 

considered to comply with speed advice generated by the RCU. 

Specifically, we define two zones for the implementation of the bi-level 

coordination, namely the clustering zone and the merging-execution zone. As 

shown in Figure 37, we define the clustering zone as the road segment 
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between 60 m to 200 m from the roundabout merging point, and the merging 

execution zone is from the merging point to 60 m away (between the merging 

point and the clustering zone). The RCU then determines if it is necessary to 

form a cluster; if necessary, then vehicles in the clustering zone will be directed 

to form clusters. In the merging-execution zone, the RCU computes the optimal 

sequence of merging and merging time at each of the four merging points 

simultaneously. Based on that information, the vehicles locally decide their 

required acceleration for smooth and safe merging at the roundabout. 

Figure 37: Fundamental concept of the proposed roundabout coordination system (RCS). 

6.2 Traffic Flow Modeling  

The position and velocity of vehicle 𝑖 at time 𝑡 are calculated using the 

kinematic equation given by  

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡)∆𝑡 + 0.5𝑢𝑖(𝑡)∆𝑡
2,        

(6.1)
𝑣𝑖(𝑡 + 1) = 𝑣𝑖(𝑡) + 𝑢𝑖(𝑡)∆𝑡, 

 

where 𝑥𝑖, 𝑣𝑖 , and 𝑢𝑖  are the position, velocity, and input acceleration of vehicle 

𝑖, respectively, and ∆𝑡 is the step size. The controller of vehicle 𝑖 uses the 
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information of its preceding vehicle 𝑖-1 to decide a safe control acceleration 𝑢𝑖 

as 

𝑢𝑖(𝑡) = 𝑓(𝑥𝑖(𝑡), 𝑣𝑖(𝑡), 𝑥𝑖−1(𝑡), 𝑣𝑖−1(𝑡), 𝜈𝑖(𝑡) ),                          (6.2)  

 where 𝑓(∙)  is the driving decision function (which could possibly be an 

adaptive cruise control (ACC) or a car-following model), and 𝜈𝑖 is the target 

speed, which is generated by the automated vehicle according to the 

instruction given by the RCU.  

The traffic flow volumes in veh/min of the four-legged roundabout can 

be given by the entry flows 𝑞𝜅, circulating flows 𝜌𝜅, merged flows 𝜎𝜅, and exit 

flows 𝑝𝜅 with respect to each merging junction J𝜅∈{1,2,3,4} as shown graphically 

using a single-line flow diagram (SLFD) in Figure 38. A guidance on 

permissible entry flow and circulating flow rates with respect to the number of 

lanes within a roundabout can be found in (Rodegerdts, 2010) and is shown in 

Figure 39. Traffic flow at each junction J𝜅  can be given by the following 

relationship 

J𝜅 ∶ [
𝜎𝜅 = 𝑞𝜅 + 𝜌𝜅 ,

  𝜌𝜅 = 𝜎𝜅−1 − 𝑝𝜅 ,
  𝜅 ∈ {1,2,3,4},                                (6.3) 

where 𝜎0  is understood as 𝜎4 . Using (6.3) the flows 𝜌𝜅  of traffic in the 

roundabout can be obtained using the measured entry flows 𝑞𝜅 and exit flows 

𝑝𝜅. As all vehicles are connected, these flows over a certain time interval, e.g., 

1 min, can be directly obtained. Such information of the entry flows and 

circulating flows is required to determine the necessity of vehicle clustering 

before entering the merging zone. Vehicle clustering is important because it 

requires a minimum time to merge in the roundabout than individual vehicles. 

As there is limited space within the roundabout, the coordination which can be 

achieved is also limited. A coordination performed before the vehicles are 

approaching the roundabout merging point will also help more efficient 

coordination.  
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Figure 38: Single-line flow diagram (SLFD) of a single lane four-legged roundabout with four 

merging junctions. 

 

 

 

 

 

 

 

 

 

 

Figure 39: Roundabout entry flow and circulating flow rates with respect to the number of 

lanes. 

6.3 Formulation of Optimization Problem    

In this section we formulate the optimization problem including higher 

level coordination and lower level coordination. 
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6.3.1 Higher Level Coordination    

A vehicle can simply follow another vehicle on the same lane with a 

minimum following gap of 𝑓𝑔 sec, and both vehicles can pass over the merging 

point if there is no vehicle approaching from the other (circulating) lane. 

However, when a vehicle passes the merging point after or before a vehicle 

from the other lane, it requires additional safety merging gap 𝑚𝑔 sec, i.e., two 

vehicles from different lanes at the merging point requires at least a time gap 

of 𝑚𝑔  sec. Therefore, a pattern involving only a single vehicle merging 

between two circulating vehicles may slow down the overall traffic flows and 

reduce the capacity of the roundabout. Considering that fact, a higher level 

coordination is incorporated into the RCS to direct adjacent vehicles in the 

clustering zone to form clusters (or platoons) for smooth merging prior to 

entering the merging-execution zone. The function of the higher level 

coordination is described in this sub-section. 

Initially, the necessity of forming clusters is determined using the information 

of traffic flow rates. At any junction, J𝜅, using the entry flow rate 𝑞𝜅 (veh/min) 

and the circulating flow rate 𝜌𝜅 (veh/min), the number of vehicles (per minute) 

that leads a cluster, which corresponds to the required number of clusters (per 

minute) is determined by 

𝑛𝜅 =
60 − 𝑓𝑔(𝑞𝜅 + 𝜌𝜅)

𝑚𝑔
.                                              (6.4) 

When the total traffic flow (𝑞𝜅 + 𝜌𝜅) at merging point J𝜅 exceeds its capacity, 

the number of clusters becomes 𝑛𝜅 < 1.0, means all vehicle should form a 

single cluster. Such an over-saturated traffic condition may create evolving 

queues and congestion at the roundabout. From the number of clusters 𝑛𝜅, the 

recommended cluster size (the average number of vehicles in the cluster) 𝑠𝜅 

in the entry flow is calculated as 

𝑠𝜅 =
𝑞𝜅

max (1, 𝑛𝜅)
.                                                    (6.5) 



91 

 

 

When 𝑠𝜅 > 1, some vehicles will need to form clusters, so that the lower level 

coordination can facilitate smooth merging and avoid a long queue.  

Specifically, as illustrated in Figure 40, the RCU coordinates the 

clustering by calculating recommended speeds for the vehicles in the entry 

lane. When vehicle 𝑖 enters the clustering zone, the required possible set of 

speed of vehicle 𝑖 to reach the end of the clustering zone (at a distance 𝑑𝑖) are 

obtained, based on the recommended arrival time of (preceding) vehicle 𝑖 − 1. 

Then, the RCU calculates the required speed 𝑣𝑗𝑐𝑖 for vehicle 𝑖 to join a cluster 

(jc) with vehicle 𝑖 − 1 , whilst maintaining a projected time gap 𝑓𝑔  as  

𝑣𝑗𝑐𝑖 =
𝑑𝑖

𝜏𝑖−1 + 𝑓𝑔
,                                                       (6.6) 

where 𝜏𝑖−1 = 𝑑𝑖−1/𝑣𝑖−1 is the estimated arrival time of the preceding vehicle at 

the end of clustering zone. If it is not possible to form a cluster with the 

preceding vehicle, then vehicle 𝑖 will start a (new) cluster (sc) with its following 

vehicle (if any), by maintaining a gap   𝑐𝑔 = 𝑓𝑔 +𝑚𝑔 with vehicle 𝑖 − 1 (such 

that a circulating vehicle can pass through), then the corresponding required 

speed 𝑣𝑠𝑐𝑖 is calculated as 

𝑣𝑠𝑐𝑖 =
𝑑𝑖

𝜏𝑖−1 + 𝑐𝑔
.                                                       (6.7) 

 If there is no following vehicle, then vehicle 𝑖 will drive at its desired speed 𝑣𝑑. 

Using the actual speeds 𝑣𝑗𝑐𝑖 and 𝑣𝑠𝑐𝑖, as well as the desired speed 𝑣𝑑, we can 

calculate 𝑣𝑟𝑒𝑐𝑖, which is the recommended speed for the automated vehicle as 

𝑣𝑟𝑒𝑐𝑖 = {

𝑣𝑗𝑐𝑖 ,                𝑖𝑓 𝑣𝑠𝑐𝑖 ≤ 𝑣𝑗𝑐𝑖 ≤ 𝑣𝑚𝑎𝑥 ,

𝑣𝑠𝑐𝑖 ,    𝑖𝑓 𝑣𝑗𝑐𝑖 ≥ 𝑣𝑚𝑎𝑥 , 𝑣𝑠𝑐𝑖 ≤ 𝑣𝑚𝑎𝑥,

𝑣𝑑 ,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

                             (6.8)  

where 𝑣𝑚𝑎𝑥 is the maximum allowable cluster speed that can be adjusted 

according to the desired cluster size 𝑠𝜅 . The local controller of each 

automated vehicle utilizes this 𝜈𝑖 = 𝑣𝑟𝑒𝑐𝑖 to compute the acceleration using 
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(6.2) and safely drive. In this way, the difficulty in merging is reduced, by 

flexibly coordinating the arrival patterns of automated vehicles.  

 

 

 

 

 

 

 

Figure 40: Clustering principle in the higher level coordination. 

6.3.2 Lower Level Coordination    

The main problem that causes vehicles to stop prior to entering a 

roundabout is that they arrive at the merging point almost at the same time of 

a circulating vehicle. When this happens, the entering vehicles decelerate or 

stop, increasing fuel consumption and travel time, whilst decreasing average 

velocity and overall roundabout capacity. Hence, to prevent collision or 

aggressive braking and minimize idling time, the lower level coordination 

calculates the optimal time for each vehicle to arrive at the merging point. To 

mitigate for any abrupt and unforeseen changes in traffic flow, the optimal 

merging algorithm is implemented successively using a receding horizon 

control approach. Note that if a group of vehicles comes as a cluster (from the 

clustering zone), then very likely the merging algorithm will allow them to 

merge as a cluster, which will minimize the waiting time at the merging point.  

A lower level controller for each junction J𝜅 is used to obtain the optimal 

merging sequence and timings for the vehicles in both the entry and circulating 

lanes approaching the merging point. The controller considers the vehicles in 

both the roundabout circulating lane segment (r) and entry lane (e) of the 

merging-execution zone as shown in Figure 41. Let Ɛ and ℛ be the tuples of 
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vehicles in a sequence on the entry lane (𝑛 vehicles) and circulating lane (𝑚 

vehicles), respectively, given by  

Ɛ = {𝑒1, 𝑒2, …… , 𝑒𝑛},                 ℛ = {𝑟1, 𝑟2, …… , 𝑟𝑚},     

where 𝑒1 and 𝑟1 are the vehicles closest to the merging point on the respective 

lanes. For simplicity, junction index 𝜅 is omitted in this description.  

Let 𝑣𝛼 be the speed and 𝑑𝛼  the distance to the immediate merging point 

of vehicle 𝛼 ∈ Ɛ ∪ ℛ. We assume that vehicle 𝛼 decreases its speed linearly to 

merge in the roundabout. Thus, the unrestrained time a vehicle takes to arrive 

at the merging point is given by 

𝜏𝛼 = 𝑓𝑚𝑒𝑟𝑔𝑒(𝑣𝛼, 𝑑𝛼 , 𝜓𝛼) =
𝑑𝛼 

1
2 (𝑣𝛼 + 𝜓𝛼)

,                       (6.9) 

where 𝜓𝛼 is the recommended merging-speed. The optimal merging sequence 

of the set of vehicles Ɛ ∪ ℛ is obtained considering the constraint that a vehicle 

is not allowed to overtake on the same lane. Therefore, the search space or 

the feasible solutionsΩof the merging sequences can be given by a tuple as  

Ω =

{
 

 
𝑊 = (𝑤1, 𝑤2, …… ,𝑤𝑛+𝑚)|∀𝑤𝑖 ∈ Ɛ ∪ ℛ

𝑠. 𝑡. [

𝑤𝑖 ≠  𝑤𝑗 ,   𝑓𝑜𝑟 ∀𝑖 ≠ 𝑗,

 𝜏𝑤𝑖 <  𝜏𝑤𝑖+1,   𝑓𝑜𝑟  𝑤𝑖,  𝑤𝑖+1 ∈  Ɛ
 𝜏𝑤𝑖 <  𝜏𝑤𝑖+1,   𝑓𝑜𝑟  𝑤𝑖,  𝑤𝑖+1 ∈  ℛ

                      (6.10) 

where, for brevity, the first vehicle in 𝑊 (i.e., 𝑤1) passes the merging point first, 

and the rest follows sequentially. According to (6.10), a vehicle can only be 

picked one time in 𝑊 from Ɛ ∪ ℛ and a following vehicle on the same lane 

cannot appear before its preceding vehicle.  

The objective of the lower level coordination is to obtain the optimal 

sequence 𝑊∗ of merging by solving 

 min
𝑊∈Ω

𝐽(𝑊) = ∑ 𝛽𝑤𝑖

𝑛+𝑚

𝑖=1

𝜏𝑤𝑖
∗ ,                                           (6.11) 
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where 𝜷𝒘𝒊  denotes the weight of individual vehicle and 𝝉𝒘𝒊
∗  is the optimal 

passing time of a vehicle  𝒘𝒊  for a given feasible sequence  𝑾 , which is 

obtained successively for 𝑖 = 1,2, …… , 𝑛 + 𝑚, as    

𝜏𝑤𝑖
∗ = max(𝜏𝑤𝑖, 𝜏𝑤𝑖

∗ + γ( 𝑤𝑖−1,  𝑤𝑖)),                            (6.12) 

where 𝜏𝑤𝑖 is the unrestrained arrival time obtained from (6.9), and γ( 𝑤𝑖−1,  𝑤𝑖) 

denotes the minimum time gap between two vehicles at the merging point 

given by   

γ( 𝑤𝑖−1,  𝑤𝑖) = {

𝛿𝑒 ,   𝑖𝑓  𝑤𝑖−1,  𝑤𝑖 ∈ Ɛ,
𝛿𝑟 ,   𝑖𝑓  𝑤𝑖−1,  𝑤𝑖 ∈ ℛ,
𝛿𝑚,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

                         (6.13) 

𝛿𝑒 , 𝛿𝑟 ,  and 𝛿𝑚  denote the minimum time gaps between two successive 

vehicles at the merging point according to their originating lanes.  

The above problem falls into the class of combinatorial optimization, 

and computation time rises drastically with the number of instants or vehicles. 

Therefore, we optimize only four vehicles at a time, i.e., two from each lane 

(𝑛 = 2,𝑚 = 2) in a successive optimization technique as shown in Figure 41. 

Such an approach is reasonable, because in a short distance between two 

merging points, there will usually be no more than two vehicles in a steady flow 

condition. Even when three or more vehicles are present in a lane, the motion 

of the 3rd vehicle onwards are optimized successively after the leading vehicle 

has merged, i.e., multiple optimization problems are solved successively. 

As there are four elements (vehicles) in Ɛ ∪ ℛ , there are 6 feasible 

combinations of vehicle sequences considering the vehicle order constraints 

in the same lane as (6.10). Hence, the optimization (6.10) is simplified as to 

pick one of the six possible combinations given in Ω  using a brute-force 

algorithm that systematically computes all possible candidates for the solution. 

Even if multiple optimization problems need to be resolved successively, the 

total computation time will remain relatively short. 
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Once the optimal sequence 𝑊∗  of vehicles is determined, each vehicle 

receives the corresponding recommended merging time 𝜏𝑤𝑖
∗ , and determines 

the desired speed by considering the distance to the merging point. However, 

the final merging into the roundabout s only executed if there is sufficient safety 

gap, according to the lane change model called minimizing overall braking 

induced by lane change (MOBIL) (Kesting et al., 2007). Specifically, according 

to MOBIL, a merging manoeuvre is only executed if estimated acceleration of 

the merging entering vehicle on the roundabout is higher than -4.0 m/s2. When 

a vehicle or a cluster of vehicles enters the roundabout, the controller will 

optimize movements of the next set of vehicles, by repeating the movements 

of remaining vehicles optimized previously. Thus, the controller successively 

uses the receding horizon approach to mitigate for inaccurate estimation and 

prediction, or any changes in vehicle states. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Successive optimization of vehicles in a receding horizon approach in the lower 

level coordination. 
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6.4 Simulation Results and Discussion 

To demonstrate the effectiveness of the proposed RCS, we have 

developed a simulation environment in MATLAB. The roundabout has 4 legs, 

each with an entry and exit lane, and equally spaced at the roundabout and 

named North, South, East, and West lanes. Referring to Figure 27, the 

circumference of the roundabout is set at 240 m long, while the distance 

between two merging points is 60 m. Each entry (approaching) lane is 

considered 300 m long. The control zones, i.e., the clustering zone and the 

merging execution zone are 140 m and 60 m, respectively. The RCU coverage 

radius is considered as 250 m (according to IEEE 802.11p). The arrival of 

vehicles in the entry lanes is given randomly in the simulation using Poisson 

distribution for different traffic flow rates. The intelligent driver model is used 

as the vehicle controlled function (6.2), with different values of parameters for 

human driven vehicles and automated (or ACC) vehicles (Kesting et al., 2008). 

Each vehicle is 5 m long, with a flow gap of 𝑓𝑔 = 1 sec and a merge gap of  

𝑚𝑔 = 2.5 sec for AVs. These time gaps are set for the traditional roundabout 

system (TRS) as 𝑓𝑔 = 2  sec and 𝑚𝑔 = 4  sec. The vehicles approach the 

roundabout, circulate in it, and exit independently, and are coordinated only 

when entering the clustering zone and the merging execution zone. All 

simulations are run in discrete-time with step size of ∆𝑡 = 0.5 sec. 

We set the arrival (free-flow) velocity when exiting the clustering zone 

to be no more than 13.89 m/s (50 km/h) and no less than 10 m/s (36 km/h) in 

order not to affect the flow of following traffic. It should be noted that though 

the desired velocity is high, the vehicle may move much slower (as the local 

controller may determine), depending on the preceding vehicle. The maximum 

allowable merging velocity of vehicles is set at 𝜓𝛼 = 30 km/h. To achieve the 

maximum traffic flow, the circulating vehicles are assigned with higher priority 

than entry lane vehicles because delaying the circulating flow will equally affect 

all lanes, and cause traffic congestion. We set the maximum and minimum 
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velocities of circulating vehicles to be 9.72 m/s (35 km/h) and 5.56 m/s (20 

km/h), respectively. 

We simulate two traffic flow cases to demonstrate the effectiveness of 

the proposed RCS for various traffic flow rates (free flow to congested flow 

near the capacity). In Case 1, all entry lanes have the same traffic flow rates 

(balanced flow) beginning with 200 veh/h and increased in intervals of 200 

veh/h to 1000 veh/h (which is close to the capacity of a single lane 

roundabout). The flow rates circulating in the roundabout are assumed to be 

the same as the entry lane flow rates, i.e., vehicles exit from the roundabout 

with equal probability. In Case 2, the traffic flow rates in the perpendicular lanes 

are twice the flow rates of the other two lanes. The purpose is to create traffic 

congestion in specific areas, which is a common phenomenon during peak 

hours. To this end, the traffic flow rate at East and West lanes are initially set 

at 200 veh/h and the flow rate at North and South lanes are 400 veh/h. Then 

East and West lane flow rates are increased to 600 veh/h in increments of 100 

veh/h, while the North and South lane flow rates are increased by double. 

Firstly the simulations are run to observe the performance of TRS, where all 

vehicles are driven by humans, with dynamics represented by the intelligent 

driver model representing function (6.2) to decide acceleration, and the lane 

change model MOBIL is used to execute safe merging. Then, simulations are 

conducted using the RCS proposed in work.  

The comparison of simulation results between RCS and TRS are 

assessed via five performance matrices of traffic flow, namely (i) average 

traveling time, (ii) average idling time, (iii) average velocity, (iv) minimum 

average velocity, and (v) average fuel consumption. The traveling time is the 

total time taken by vehicles to traverse the roundabout and the idling time is 

the total time spent by vehicles to stop and wait at the roundabout junctions. 

The average velocity is the sum of velocities of all vehicles divided by the 

number of vehicles throughout the simulation and the minimum average 

velocity is the lowest average velocity of vehicles. The average fuel 
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consumption is the total fuel consumption divided by the number of vehicles in 

the network. The fuel consumption of each vehicle is estimated by the method 

proposed in (Kamal et al., 2011).  

Figure 42: Case 1 performance comparison of roundabout control system (RCS) and 

traditional roundabout system (TRS).  

Figures 42 and 43 show the simulation results for Cases 1 and 2, respectively, 

which demonstrate that the proposed RCS causes average traveling and idling 

times to be significantly lower, compared to the TRS. This is because 

coordinated vehicles require minimum waiting time before entering the 

roundabout. However, there may be trivial increase of traveling time and idling 

time, where the coordination of vehicles is not possible due to high density of 

circulating flow. Moreover, the proposed RCS significantly improves average 

velocity and minimum average velocity because coordinated vehicles do not 

need to slow down or stop in most of the cases before entering the roundabout, 

which ensures smooth flow. Figure 44 shows the average fuel consumption of 

both cases and it is clear that the proposed RCS outperforms the TRS for 

different traffic demands particularly, when traffic flow is near capacity. The 
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percentage improvement in average travel time, average velocity, and average 

fuel consumption for Cases 1 and 2 are summarized in Table 7.  

Figure 43: Case 2 performance comparison of roundabout control system (RCS) and 

traditional roundabout system (TRS). 
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Figure 44: Average fuel consumption of vehicles, (a) Case 1 with balanced traffic flow, and 

(b) Case 2 with unbalanced traffic flow. 

 

 

 

 

 

 

 

 

 

6.5 Summary  

In this chapter, we have developed a novel roundabout control system 

(RCS) for AVs at a four-leg roundabout. The vehicles are coordinated in a bi-

level framework using a roundabout coordination unit (RCU). The higher level 

coordination forms clusters of vehicles based on traffic flow information before 

preparing for merging. In the lower level coordination, a combinatorial 

Table 7:  Performance comparison between RCS and TRS   

 TRS RCS Improvement 

Case 1:    

Avg. Velocity [km/h] 24.76 35.45 42.73% 

Avg. Travel Time [sec] 92.20 58.52 36.52% 

Avg. Fuel Cons  [ml] 392 344 12.24% 

Case 2:    

Avg. Velocity [km/h] 23.08 35.36 53.20% 

Avg. Travel Time [sec] 98.20 59.13 39.78% 

Avg. Fuel Cons  [ml] 432 376 12.96% 
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optimization problem is solved to calculate the target times for individual 

vehicles to enter the roundabout. Following that, local controller determines 

the acceleration of automated vehicles for smooth merging and avoiding 

collision with circulating vehicles. The roundabout coordination is not affected 

if any vehicle fails to follow the sequence. The proposed RCS is evaluated 

using a four-leg roundabout considering various traffic demands, i.e., both 

balanced and unbalanced traffic flow rates and the performance is compared 

to the traditional roundabout system (TRS). From the results, it is evident that 

the proposed RCS yields significant improvement in fuel consumption, travel 

time, and average velocity of vehicles for different traffic scenarios. The 

proposed system can be implemented online as the computational burden is 

negligible.  

The current simulation is considered for a single lane roundabout that 

can be extended for multi-lane roundabouts in the future. The proposed 

scheme can be used to cluster and optimize more vehicles for coordination 

with additional computational cost. Moreover, the scheme can be extended 

further using distributed model predictive control (MPC) for individual vehicles. 
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7 Conclusion and Future Works  

In this thesis, we have developed intelligent vehicle control strategies 

for eco-driving at signalized intersections, hilly roads, horizontal curved roads, 

and four-legged roundabouts. The eco-driving strategy at the intersection is 

based on naturalistic learning from driving data and traffic signal conditions, 

the strategy on hilly roads and curved roads are based on fuzzy-tuned MPC 

and MPC, respectively, and the strategy at the roundabout is based on 

intelligent coordination of CAVs using successive receding horizon control 

approach.  

The proposed EDS for signalized intersections takes into account the 

presence of disturbances and preceding vehicles, and the speed advisory 

system recommends the optimal velocity to the vehicle. The vehicle either 

retains a steady cruising speed or performs an appropriate level of 

acceleration to avoid red signal when it observes a switch to the green signal. 

When there is a shift to the red signal, the vehicle slows down to its minimum 

velocity and slowly approaches the intersection to minimize idling time. The 

EDS for hilly roads generates the optimal velocity for the host vehicle based 

on the fuzzy-tuned MPC that helps efficiently utilize the gravitational potential 

energy and avoids braking (which wastes energy) at down-slopes. The 

proposed EDS also ensures the optimal driving strategy for a group of TDS 

vehicles in synchronous driving mode. The EDS for curved roads computes 

the optimal velocity trajectory for the host vehicle using MPC considering its 

dynamical model, the state of the preceding vehicle, information of road-

curvatures, and various road-surface conditions. On the other hand, the 

proposed eco-driving strategy for roundabouts coordinates vehicles centrally 

in a bi-level framework using a roundabout coordination unit.  

To evaluate the performance of the proposed scheme, microscopic 

traffic simulations are conducted and compared with the traditional driving 

systems. It is found that for various scenarios the proposed eco-driving 

strategies outperform the traditional human driving system in fuel economy, 



103 

 

 

CO2 emission, and travel time, while ensuring driving safety. The proposed 

EDS maintains fuel consumption in the optimum level. In particular, the eco-

driving strategies have improved fuel consumption for an isolated signalized 

intersection by 3.9%, for hilly roads (with various up and down slopes) by 7.8-

13.2%, for a horizontal curved road (with different road-surface conditions) by 

4.5-10.2%, and for a four-legged roundabout by about 13%. The proposed 

eco-driving strategies are fast enough to be implemented in real-time.       

The eco-driving strategies developed in this study apply to different 

road-traffic scenarios with single lane. In the future, multi-lane traffic flow will 

be considered including lane change model. Also, the traffic flow performance 

will be investigated for different market penetration rates of the EDS vehicle.        
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