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SUMMARY

Cesium dihydrogen phosphate CsH^PO^ (CDP) is a ferroelectric with 

ordering temperature T£ = 154 K. In many respects CDP is a unique 

material, displaying a chain and layer-like structure and a 

pseudo-one-dimensional ordering of the hydrogen ions at T^, making it an 

attractive candidate for the application of a pseudo-one-dimensiona1 

Ising model.

The elastic constants of a material completely describe its 

elastic behaviour. As a first step in the understanding of the lattice 

dynamics of CDP, the room temperature elastic constants have been 

determined using ultrasonic velocity measurements. The constants have 

been used to calculate a number of elastic properties: the phase and 

group velocities, Young's modulus, the bulk modulus, linear 

compressibilities, and the elastic Debye temperature. The calculations 

showed a marked elastic anisotropy which has been correlated with the 

chain and layer-like structure of this material.

The one-dimensional nature of the ordering of the hydrogen ions 

can be expected to be evident in a wide range of critical phenomena. In 

an attempt to elucidate further the transition mechanism of CDP, the 

temperature dependences of the velocity and attenuation, thermal 

expansion, and dielectric constant were measured in the critical region. 

The critical point analyses of the dielectric and ultrasonic anomalies 

showed evidence of a temperature region above T^ in which 

one-dimensional, short-range forces were dominant. However, very close 

to T^, the usual 3-D, long-range, dipole-dipole interaction was found to 

be dominant.

Calculations of the Grilneisen parameters based on the expansion 

measurements have revealed that, from the thermodynamic point of view,
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the degree of "one-dimensionality" of CDP increases as the transition is 

approached. However, despite the one-dimensional nature of the 

transition, a significant anomaly was observed in the dielectric 

constant measured orthogonal to the ferroelectric axis.

Whilst most of the analysis of this study was for T > T^, a very 

long term relaxation effect in the dielectric constant was observed 

below T , which suggested that CDP has a very "soft" domain structure in 

the ferroelectric state. Several suggestions are made as to possible 

further investigations into these domain effects.

The findings of this study constitute one more step in the overall 

understanding of the lattice dynamics of CDP. Directions for future 

research based on these findings are also presented.
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This thesis contains no work which has been presented for any 
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CHAPTER 1 

INTRODUCTION

1.1 BACKGROUND

The family of ferroelectric hydrogen-bonded phosphates and 

arsenates, of which KH^PO^ (KDP) is the well known prototype, has 

attracted considerable interest over the past 30 years (see for example 

Scott 1974, Jona and Shirane 1962). From the large effect deuteration 

has on the Curie temperature of these materials, it is clear that the 

occurrence of ferroelectricity is, to a large degree, associated with 

the hydrogen bonding. At T^, the hydrogen ions undergo an order-disorder 

transition, whilst the metal ions undergo a displacive transition 

associated with the transformation from the paraelectric tetragonal 

state to the ferroelectric orthorhombic state.

Prior to 1975, almost no interest was shown in CsH^PO^ (CDP) or 

its isomorphic deuterate CsD^PO^ (CDDP) despite the fact that 

ferroelectricity in CDP had been reported as early as 1950 (Seidl 1950). 

The ferroelectric transition was confirmed by the dielectric 

measurements of Levstik et al. (1975) (T = 154 K for CDP and 267 K for 

CDDP), who concluded that the ferroelectric transition mechanism was 

"not very different" from that in tetragonal KDP.

Unlike most of the members of the KDP family, which are tetragonal 

in the paraelectric phase, CDP was initially reported to be orthorhombic 

in the room temperature paraelectric state (Fellner-Feldegg, 1952). 

However, in a further X-ray study, Uesu and Kobayashi (1976) re-examined 

the crystal structure of CDP and unambiguously determined that the room 

temperature paraelectric phase was monoclinic (P2j/m). They also 

determined the positions of the P, Cs, and 0 atoms and found that the 

structure was very different from that of KDP with regard to the
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configuration of the hydrogen bonds, the coordination number of the 0 

atoms, and the sequence of the Cs and P atoms along the polar axis. 

Their dielectric measurements showed that the anomaly in the dielectric 

constant was only present for measurements taken along the ferroelectric 

b axis, and that the Curie constant for CDP was ten times as large as 

that for KDP. On the basis of these findings, they concluded that 

ferroelectricity in CDP takes place through a different mechanism from 

that in KDP.

The neutron diffraction studies of Frazer et al. (1979), Nelmes 

and Choudhary (1978) and Iwata et al. (1980), and the detailed X-ray 

study of Matsunaga et al. (1980) showed that the sites for the two 

hydrogens in the unit cell are inequivalent. The hydrogen ions 

associated with the hydrogen bonding along the c axis are ordered at 

room temperature, whereas the ions along the a axis are disordered (see 

next section below and Figure 1.1). Since one hydrogen is already 

ordered in the paraelectric state, the ferroelectric transition has been 

described as pseudo-one-dimensional, in marked contrast to the 

three-dimensional behaviour noted in the case of KDP (Frazer et^ al. 

1979). Thus, at the commencement of this study in 1980, it was known 

that the ferroelectric ordering in CDP was substantially different from 

that in KDP, although little was understood about the mechanism of this 

ordering.

Following the discovery of the 1-D nature of the ferroelectric 

ordering, there was a marked increase in the interest shown in CDP. 

Since the neutron studies had also suggested that the bonding is much 

stronger in the direction of the polar axis than orthogonal to it, many 

authors were prompted to attempt to explain a wide range of critical 

point phenomena in terms of the pseudo-one-dimensional Ising model. For 

example, the model has had some success in explaining (a) the deviations
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from Curie-Weiss behaviour of the dielectric constant (Blinc et_ al« 

1979), (b) the short spin-relaxation time found by deuteron magnetic 

resonance (Topic et al. 1980), (c) the long relaxation time of the 

polarization found by dynamic dielectric measurements (Kanda et^ al. 

1982(a)), (d) the anomalous behaviour of the specific heat (Kanda et al. 

1982(b)), (e) the anomalies in the ultrasonic velocity and attenuation 

(Kanda et al. 1983) and (f) the anomalous behaviour of the b axis 

expansion coefficient (Nakamura £t^ al. 1984). The antiferroelectric 

state induced by a pressure of 3.3 kbar (Yasuda et al. 1979) was also 
reasonably understood in terms of this model (Youngblood et al. 1980).

During the course of this study many other papers appeared in 

which the authors attempted to elucidate further the transition 

mechanism. Some of the most significant were: an investigation of 

anomalies in the dielectric constant and hysteresis curves (Baranov et 

al. 1980); a study of the ultrasonic velocity and attenuation anomalies 

(Yakushkin et al. 1981), the findings of which differ considerably from 

those of Kanda et al. (1983); an investigation of the dependence of the 

ultrasonic velocity anomalies on the applied electric field (Baranov et 

al. 1983); a specific heat study by Imai (1983), which reported results 

considerably different from those reported by Kanda et^ al. (1982(b)); 

and a measurement of the thermal conductivity close to the transition 

(SpOrl et al. 1984).

1.2 CRYSTAL STRUCTURE OF CDP

Figures 1.1 and 1.2 show the structure of CDP based on the X-ray 

and neutron studies discussed above. The hydrogen bonds along the a axis 

link the PO^ groups into chains running along the ferroelectric b axis. 

These chains are cross-linked by the hydrogen bonds along the c axis to
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Figure 1.1. Crystal Structure of CDP. Disorder in the hydrogen bonds 
along the a axis involved in chain formation is indicated by the 

neighbouring solid and dotted circles used to represent the proton 

positions. Note that adjacent PO^ groups in the b axis chain are not in 

the same cell. (From Frazer et al_. 1979).



16 -

Figure 1.2. A Scale Model of CDP. The model was constructed using the 

lattice parameters and atomic positions of Desu and Kobayashi (1976) and 

Matsunaga et al. (1980) with a *= 7.90 A, b = 6.37 A, c = 4.87 A, and 

6 - 107.7°. The colour code is: black—cesium, red—phosphorous, 

white-oxygen and blue-hydrogen. Note the "zig-zag" chains of PO^ groups 

running up the ferroelectric b axis.
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form (100) layers which are bonded to each other by ionic forces 
involving the Cs+ ion. The relative weakness of the interlayer forces is 

evident from the perfect cleavage which occurs along the (100) plane. 

Above the transition, the disordered hydrogen ions (H^j ^6ure 1*0 

occupy one of two off-centre equivalent sites in a double well 

potential, but at these hydrogen ions move co-operatively to one side 

of the double well giving rise to a permanent dipole moment along the b 

axis. Iwata et al. (1980) have found that this process is accompanied by 

a 3° rotation of the P0^ tetrahedron, a 0.06 A displacement of the P 

atom in the b direction, and a 0.04 A displacement of the Cs atom in the 
c direction. In the ordering process the centre of inversion is lost and 

the P2^/m space group transforms to P2j.

1.3 THE PRESENT STUDY

1.3.1 Room Temperature Studies

As the elastic constants are given by the second derivative with 

respect to strain of the free energy, the nature of the chain and 

layer-like bonding in GDP can be expected to be reflected in the elastic 

properties of the crystal. Hence, as a first step in the understanding 

of the lattice dynamics of GDP, a determination of the room temperature 

elastic constants was undertaken using measurements of the ultrasonic 

sound velocities in different crystallographic directions. The elastic 

constants completely describe the elastic behaviour of the crystal so 

that having determined the elastic constant matrix it was possible 

calculate a range of properties such as linear compressibility, Young’s 

modulus, bulk modulus and the elastic Debye temperature and to relate 

these to the crystal structure.

There are 13 independent non-zero elastic constants for a 

monoclinic system (Nye 1967). Direct, simple relationships between the
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measured velocities and the elastic constants are only possible for 

C^, and C^. All the other constants occur coupled together in much 

more complicated relationships. Also, only measurements along the b axis 

yield pure waves (i.e. pure transverse or pure longitudinal particle 

motion). Hence, the determination of all 13 elastic constants of 

monoclinic CDP was demanding both experimentally and computationally.

1.3.2 Studies Closer to the Transition

The one-dimensional type ordering should be reflected in the 

critical point phenomena. In ' an attempt to elucidate further the 

ferroelectric transition mechanism, ultrasonic velocity and attenuation 

measurements were undertaken close to T^. Of particular interest were 

(a) a comparison of the ultrasonic anomalies in different directions as 

an indication of which modes are dominant in the transition mechanism, 

and (b) the application of a critical point analysis to the velocity and 

attenuation anomalies in an attempt to gain information about the nature 

of the dominant interaction forces in the system close to T^.

Thermal expansion and dielectric measurements were also undertaken 

in conjunction with the ultrasonic measurements. The expansion 

measurements were directed at providing important thermodynamic 

information about the nature of the transition via a calculation of the 

directional GrCfneisen parameters. The focus of the dielectric 

measurements was a study of deviations from Curie-Weiss behaviour of the 

dielectric constant, and an investigation as to whether any dielectric 

anomaly exists orthogonal to the ferroelectric b axis.

1.3.3 Structure of the Thesis

This thesis is set out as follows. Chapter 2 reviews the theory of 

elastic wave propagation in crystals of general symmetry and provides
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the necessary framework for the calculation of the elastic constants 

from the measured velocities. The techniques used in growing, 

characterizing, polishing and orienting the CDP and CDDP crystals used 

in this study are described in Chapter 3. The next chapter describes the 

pulse-echo-overlap technique for ultrasonic measurements and the 

equipment used in the experiments. The velocity measurements and the 

calculations leading to the determination of the room temperature 

elastic constants of CDP are presented in Chapter 5. In Chapter 6, the 

investigation of the critical point region using ultrasonic, dielectric, 

and expansion measurements is presented, and in the final chapter the 

current work is reviewed and suggestions are made as to possible future 

directions for investigations into CDP and CDDP.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 THEORY OF ELASTIC WAVE PROPAGATION IN CRYSTALS OF GENERAL SYMMETRY

A force applied to a small cubic volume element of a crystal is 

specified by the stress tensor o, where o„ is the component of force in 

the x^ direction transmitted across that face of the volume element 

which is perpendicular to x^ (Nye 1967). As this tensor is symmetric, it 

has only six independent elements. Strain is the response, in terms of 

the fractional change of lattice dimensions, of a crystal to an applied 

or internal stress. If the displacements of particles from their mean 

positions are given by u^, then the strain is given by

Eij
1
2 (

au.
*1 ) (2.1).

This definition ensures that the strain tensor is symmetric and that 

rotations of the crystal as a whole are not included.

For small strains, for which the displacements are reversible, a 

linear relationship exists between stress and strain. This is often 

referred to as Hooke's Law and in the repeated suffix notation (which is 

used throughout this work) is given by

ij Cijk£ ^k£ (2.2)

where i,j,k, and l take the values 1, 2, or 3 and where C^^ are the 

components of the elastic constant tensor. The subscripts i and j, k and 

l may be interchanged so that = C^lk£ and

it can be shown that (Nye 1967)

Further
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Cijk£ »eij9ek£ (2*3)

where U is the elastic strain energy of the crystal. Since the order of 

differentiation is immaterial, it follows that = Sclij’ ^ese 

relationships reduce the 81 possible components of the elastic constant 

tensor to a maximum of 21 independent components.

The symmetry properties of the elastic constant tensor may be used 

to contract the tensor to a six by six matrix by using the Voigt 

notation (Nye 1967). The scheme is :

Tensor notation i,j 11 22 33 23,32 13,31 12,21 

Voigt matrix notation i 123 4 5 6

Hence the tensor is reduced to the elastic constant matrix C^. In

this notation Hooke's law becomes

ck = Ej for j=l to 6 (2.4).

Equation (2.3) implies that , and therefore there is a maximum 

of 21 independent elements of the matrix. The elements of this 

matrix, which are referred to as the elastic constants of the crystal, 

are sufficient to describe completely the elastic behaviour of the 

material.

2.1.1 Wave Velocity and Polarization

If a small element of crystal of density p is subjected to a 

stress wave, the particles in such a volume will respond according to 

the equation of motion (Brown 1967)
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P
8°n
3x,

(2.5).

Substituting for from equation (2.1) and (2.2) yields

8Sp77
32u,

ljk£ 9xj 3x£
(2.6).

The material is assumed to be homogeneous so that the elastic constants 

are independent of position.

A travelling wave solution to equation (2.6)

ui = A^sin(wt-kjXj) (2.7)

is assumed. Here k_ is the wave vector and u is the radial frequency. A 

is the polarization or particle displacement vector.

Substituting this solution into the equation of motion (2.6)

yields

‘>“2 Ai ■ cijkt kj \ kt

or (cijkt kj kt - p“2 «ik> \ ' 0 <2-8)-

The continuum approximation is now made which states that in the

long wavelength limit, where the wavelength is much longer than the

interatomic spacings, dispersion is negligible. Typical ultrasonic waves
3 -1have frequencies of 1—100 MHz and velocities of about 10 ms.

-3 -5Therefore wavelengths are typically of the order of 10 - 10 metres.
-9

Interatomic spacings are usually less than 10 A = 10 metres. Hence the 

continuum approximation is justified. In terms of the dispersion curves 

ultrasonic measurements lie very close to the zone centre (k_= 0) where 

u) versus k is generally linear. Under these conditions the wave
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velocity, V, is given by

V = u)|kj 1 where |kj ^ + k^ +

Then on dividing equation (2.8) by |kj ^ we obtain

(2.9).

or X A = PV2 A (2.10).

where X^ = C.jk£ n. n£ and n. = k. |k| are the direction cosines of

the wave vector k.. The notation £,m,n will also be used to denote these 

direction cosines.
2Equation (2.10) indicates that pV are the eigenvalues of the

matrix X^ whilst A (the polarizations) are the corresponding 

eigenvectors. Since ^ is real and symmetric, it possesses three mutually 

orthogonal eigenvectors. Hence waves with different phase velocities 

will have mutually orthogonal polarization directions.

In general the eigenvectors do not constitute purely transverse or 

purely longitudinal particle motion. In the special cases that the 

longitudinal mode is pure, the two transverse modes must also be pure. 

However, if only one transverse mode is pure, the remaining transverse 

and longitudinal modes are not pure, but their eigenvectors are 

constrained to lie in a plane perpendicular to the eigenvector of the 

pure transverse mode, and are therefore referred to as semi-pure modes 

of vibration.

Using the contracted Voigt notation it is possible to obtain 

explicit expressions for the elements of the X^ matrix.
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Specifically, if

C

C,
C

C

c

c

and

11 C66 C55 C56 C15 C16

66 C22 C44 C24 C46 C26

'55 C44 C33 C34 C35 C45

56 C24 C34 2(C44+ C23) 2(C36+ C45) 2(C46+ C25

15 C46 C35 1(^36+ C45> -(c55+ C13) |(Cl4+ =56

16 C26 C45 1(^25+ C46> 2(C14+ C56) 2(C66+ C12

L =

m
n

2mn 

2n£ 

2 £m

then the components of X become

X11 Qlj Lj X22 Q2j Lj

X23 Q4j Lj X13 Q5j Lj

X33 ~ Q3j Lj

X12 Q6j Lj

(2.11)

where j = 1 to 6.

For a given propagation vector [£,m,n] in a crystal the components 

of the X matrix may be calculated via equation (2.11) if the elastic 

constants of the material are known. The velocities and directions for 

the polarizations of the three possible modes for this propagation
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direction will be given by the eigenvalues and eigenvectors of For

computational purposes the eigenvalues of may be calculated via the 

characteristic (sometimes referred to as secular) equation

I A.k - pV2 6lk | = 0 (2.12)

and the corresponding eigenvectors, jfc , by solving equation (2.10) for 

each eigenvalue.

2.1.2 The Energy Flow Vector

In the above section it was shown that the phase velocity depends 

on the direction of propagation in the crystal. Therefore the velocity

surface will not be spherical, and hence the ray or energy flux vector

is expected to deviate from the wave normal. The situation is similar to 

the optical case of birefringence and extraordinary refraction.

Whilst the electromagnetic energy flow vector (the Poynting 

vector) is well studied, the energy carried by ultrasonic waves has 

received little attention. Neighbours (1973) has given expressions for 

calculating the deviation angle between the energy flow vector and 

propagation vector for crystals of general symmetry. However, he

accomplishes this by a complicated transformation of the elastic 

constant matrix to a reference frame such that the direction of

propagation is always along the x axis. Below, the theory is reviewed 

and expressions for the deviation angle are presented without the aid of 

the transformations used by Neighbours (1973). This approach is more 

direct, and computationally simpler. The reader is referred to the texts 

by Musgrave (1970) and Federov (1968) for a more complete treatment of 

the general theory of ultrasonic wave propagation in crystals.

It is reasonable to assume that the total energy density in a 

small volume of material is the sum of the elastic potential and kinetic
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energies. This total energy is given by

tot = 7 /v ( p “i Gi
3u. 3u,

+ cijk£ 77777^ ) dv (2.13).

The total outward energy flow per unit time is given by the integral of 

the energy flow vector, 2 > over the surface bounded by the wave fronts. 

Thus, this energy flow is given by

But the outward energy flow per unit time must also be equal to the rate 

change of energy density within the volume contained by the wave front. 

Hence,

L < p ijk£ 3x. 3u 
3 %

) dv }*

Using the divergence theorem J P.ds = (2*2^v ft follows that

V.P =
1 3 r • • + r 3Ui 9Uk 1
2 "n i p uiui + cijk£ 3^7 3^ J

7 [ P Vi + P Vi + ciik£ { Sir 3iT
3u± 9u^ 3Uj_ 3uk

ijk£ 1 3x. 3x 3x. 3x
J * J ^

} ]

9u± 3ufc
P “iUi + S.jk£ 3Xj Bx^ (2.14).

When the equation of motion (2.6) is substituted into (2.14) we obtain

V.P = u. C,. + C,
3^ 3Uk

i ijk£ 3Xj 3x^ ijk£ 9x^ 3x^

"ijk£ 77 S \ 37" ) (2.15)
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9Pand since V.P = -r-^- it follows that 
---  j

p - r H .
j ijk£ dx^ Ui

= (2.16).

This elegant and simple result, also derived by Musgrave (1970), states 

that the energy flow vector is given by the tensor product of the 

particle velocity and the stress tensor.
Assuming the same travelling wave solution as before (equation 

(2.7)) and substituting into equation (2.16) we obtain

Pj = cijit£ Ak k£ sin(wt-kjXj) Ai0) sin(wt-kjXj)

=Cijk£ Ai Ak k£ “Sin

The time average over one period (2x/w) of P^ is

" 7 cijkt Ai \ kt - (2'17)-

As only the direction of P^ is of interest, equation (2.17) may be 

divided on both sides by u)|k_|/2 so that (2.17) becomes

Pj - 25, lif1 - Cljkt \ V ", (2.18)

where n^ are once again the direction cosines of the wave vector k_ and £ 

is now the scaled energy flux vector, whose direction is of interest.

Returning to equation (2.13), and using the wave solution (2.7) 

the energy density may be written as

5 = y ( PO)2 |A|2 sin2(mt-kjXj) + cijk£ \ \ k£ sin2(a)t-k^x^.) )
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and using equation (2.8) this becomes

£ = P ^ lA|2 sin^(a)t-kjXj) (2.19).

The time average over one period is then

— 1 2 | 12 ( = 2 p “ IAI •

The vector representing the velocity of the propagation of energy, 

s_ , will be given by dividing the energy flux vector ( P_ ) by the energy 

density, i.e.

sj ' pj c"‘' a,"‘ * cijkt Ai \ kt “1 p “2W2 1 1

cijkt P"1 Ai \ nt ( Iti >

:ijk£= C... . p 1 A. Ak n£ V 1 (2.20)

i I -1where A^ = A^ |A| are the components of the normalized polarization

vector, and V is the phase velocity. If a normalized polarization vector 

has been used in the calculation of p^ then is simply given by

Sj = Pj
-1 (2.21).

A different approach (Federov 1968) is to view as the group 

velocity, which is the velocity of the wave packet consisting of a 

superposition of numerous waves with similar frequencies, and is in 

general given by V^m , or

sj
9m (2.22).

This expression reduces to equation (2.20) as can be seen from the 

following argument.

Starting from equation (2.8) and multiplying both sides by A^ we
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obtain

i.e.

p “ Ai Ai Cijk£ kj k£ \ Ai 

“2 = P_1 Cijk£ kj k£ \ Ai

By taking of both sides we obtain

or

s j

2 “ 9k p Cijk£ \ Ai k£ kj )
m m

- o'1 cijkt \ \ < kt 6j- + kj >

* 2 p Cimkl *k A1 kt

= Cijk£ n£ \ Ai (pV)-1 "sing V- w |k| 1 (2.23)

which is identical to equation (2.20).

A further relationship between phase and group velocities may be 

obtained by taking the component of s_ along the direction of 

propagation, i.e.

=j nj ■ cijki Ai \ nt nj (pV)

- < cijkt -t "j *k > W"1 Ai <pV>"1-

The expression in brackets may be simplified by dividing both sides of 
equation (2.8) by |k_|2 to give

p y2 At - cijkt nj \ nt
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so that

Sj iij = p V2 A± A± |Aj 1 (pV) 

= V (2.24).

This simple result states that the component of the group velocity 

in the direction of the wave normal is equal to the wave velocity. It 

follows, then, that the ray velocity is always greater than or equal to 

the wave velocity for any given propagation direction. Figure 2.1 shows 

the relationship between phase and group velocity. In the figure, the 

wave velocity is proportional to ON which is the normal to the tangent 

of the wave surface at P. By contrast the ray velocity is proportional 

to OP. It should be noted, however, that it is unlikely that the wave 

surface in a real crystal will be a simple ellipsoid of revolution.

The right hand sides of equations (2.8) and (2.18) are similar in 

form, and thus the matrix previously defined may be used to write down 

the components of p explicitly. However it must be noted that equation 

(2.8) is an eigenvalue equation and thus fundamentally different from 

equation (2.18).

Defining

R =

2A2&3

2A3Aj

2AjA2

and using the Voigt notation as before, the components of the scaled energ;

flux vector are given by
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Ray direction 

Wave normal

N

Figure 2.1. Successive portions of a wave surface showing the 

relationship between the propagation direction (i.e. the wave normal) n, 

and the ray direction £. If the fronts are separated in time by At, 

HN* - VAt, where V is the phase velocity and PP* - sAt where s is the 

group or ray velocity. Clearly the projection of the group velocity 

along the wave normal is equal to the wave velocity (equation 2.24). 

Note the strong analogy to extraordinary refraction in birefringent 

crystals.
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Pj - t Qjj Rj + m Q6j Rj + " 95j Rj

P2 * 1 % Rj + rn q2j Rj + Rj (2.25)

p3 - t Q5j Rj + m Q4j Rj + ” 93j Rj

where j =1 to 6.

The matrix Q can be formed from the known elastic constants, and 

the components of ^ calculated for a given propagation direction. The 

eigenvalue equation (2.10) may then be solved for the velocities and 

polarization vectors of the three modes propagating in this direction. 

Once the components of the polarization vectors are known, the 

components of the column matrix may be calculated and the scaled 

energy flux vector j> evaluated. It is then a simple matter to calculate 

the angle <j> between the energy flow vector and the propagation direction 

by using

2 . n
cos 4> = ------- (2.26).

IbI Ini

Provided that the components of A have been normalized equation 

(2.21) may be used to calculate the components of the group velocity by 

dividing each component of _p by pV where V is the phase velocity for 

that mode. The magnitude of the group velocity is then given by

| sj2 = ( s,2 + s22 + s32 ) = |j>J2 (pV) 2 (2.27).

The above method of computation, which is simpler than that of 

Neighbours, (1973) has been successfully used to calculate the deviation 

of the ray from the wave normal for a number of different crystals which 

have included representatives of the monoclinic, orthorhombic and 

tetragonal systems. In particular, calculations for orthorhombic calcium
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sulphate are in complete agreement with those of Neighbours (1973).

2.2 DETERMINATION OF THE ELASTIC CONSTANTS OF A MONOCLINIC SYSTEM

In section 2.1 it was shown that if the elastic constant matrix is 

known, it is possible to calculate the wave and group velocities, 

polarizations, and ray directions of the three wave modes for any given 

propagation direction. In this section, a method is presented for 

determining an unknown elastic constant matrix via measurements of the 

phase velocity for certain judiciously chosen directions.

2.2.1 Form of the Elastic Constant Matrix for Monoclinic Symmetry

The elastic constant matrix is specified with respect to a 

Cartesian set of axes xyz, which have a standard orientation with 

respect to the crystallographic axes a,b,c. For a monoclinic system the 

convention is (Standards on Piezoelectric Crystals 1949) to set y 

parallel to the diad b axis and z parallel to the c axis as shown in 

Figure 2.2. In order to avoid confusion the normal notation [a,b,c] will 

refer to directions with respect to the monoclinic axes and the primed 

notation [x,y,z ]' will refer to directions with respect to the Cartesian 

axes.

The two-fold rotation axis in a monoclinic crystal reduces the 

number of independent components from 21 (for a triclinic system) to 13 

(Nye 1967). With respect to the Cartesian axes the matrix takes the form
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Figure 2.2. Axes of a nonoclinic crystal, a and c are perpendicular to 

b, but not to each other, xyz form the Cartesian axes to which the

elastic constants are referred.
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"Cll C12 C13 0 C15 0 '

C12 C22 C23 0 C25 0

C13 C23 C33 0 C35 0
cij

0 0 0 C44 0 C46

C15 C25 C35 0 C55 0

0 0 0 C46 0 C66

and thus the matrix Q (equation (2.11)) reduces to

"Cll C66 C55 0 C15 0

C66 C22 C44 0 C46 0

C55 C44 C33 0 C35 0
Q = l 1,0 0 0 2(C44+ C23 ) 0 2(C46+ C25>

c c c 0 i(C + C ) 015 46 35 r 13 55
C16 C26 C45 I<C25+ C46) 0 I<C66+ C12)

2.2.2 Determination of the Elastic Constant Matrix via Velocity

Measurements

Aleksandrov (1958) has shown that it is possible to calculate all 

13 elastic constants of a monoclinic system by measuring the velocities 

of all three modes in six different directions, viz. [100]', [010]', 

[001]', [1,0,n]', [110]', and [Oil]'. As an example of the calculation 

consider a wave propagating along [100]'. The column matrix (equation 

(2.11)) reduces to

1
0
0
0
0
0

L



— 36 —

and the X matrix is given by (equation (2.11))

X =
C11 ° C15

0 G** 0
Gl5 ° =5,

Using the secular equation (2.12) we obtain the cubic equation

Cii- PV

'15

0
C66- ^

"15
0

C55- pV

0 (2.28).

It is immediately obvious that one solution to (2.28) is given by 
o

= pV and the corresponding eigenvector (obtained via equation 

(2.10)) is [010]', which means that this is a pure transverse mode. The 

remaining two waves have velocities satisfying

<11- ^ <15
2 = °

C15 C55 pV

and using the properties of the roots of quadratic equations it follows 

that

P V,2 P v22 . <11 <55 C15

and P V12 + P v22 = =11 + <55

so that there are two equations relating three unknowns. The

eigenvectors for these two waves are semi-pure and are of the form

[fc,0,n]' and t-n,,0,£]' so that the polarization directions lie in the xz

plane and are perpendicular to each other. The values of & and n are 

functions of the elastic constant matrix yet to be determined.

Similar calculations are performed for the remaining five
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directions. For the off-axis directions the equations are much more 

complicated because the secular equation does not contain any zero 

terms. A total of 18 equations relating the 13 unknown elastic constants 

may be obtained in this way. Some of the relationships are redundant and 

may be used as cross checks on the data. However, even though there are 

more equations than unknowns, it was found (see Chapter 5) that the 

equations did not yield a unique solution for the elastic constant 

matrix. Physical arguments had to be employed to choose between the 

possible solutions. The procedure adopted, and a full list of all the 

necessary relationships is presented together with the velocity 

measurements in Chapter 5.
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CHAPTER 3

MATERIALS PREPARATION

3.1 CRYSTAL PREPARATION

The CsH2P04 (CDP) samples used in this investigation were 

prepared using the solvent evaporation technique. Equal molar 

quantities of HgP04 and CsOH* were added to produce a solution of 

CsH2P04 (CDP) according to the reaction

CsOH + H3P04 + CsH2P04 + H20 (3.1).

In the first attempt to grow crystals, excess ethanol was then 

added and the precipitated CsH2P04 powder was filtered and dried. The 

powder was then dissolved in just enough water to provide a saturated 

solution. The pH of the saturated solution was determined to be 

4.4 ± 0.1 using a Corning pH meter. The solution was then placed in 

crystallizing dishes and held at a constant temperature of 21 ± 0.5°C. 

After a few days the solutions were seeded with small near perfect 

crystals of CsH2P04 which were produced by an initial evaporation of a 

small quantity of the saturated solution, and the crystals left to grow 

for about 12 weeks. The resulting specimens were parallelepipeds of 

approximate dimensions 5 x 13 x 15 mm3. The crystals obtained had the 

orthorhombic (100) platelet type habit reported by Rashkovich et al. 

(1977). However, the crystals had many visible growth defects which 

could act as scattering centres for ultrasonic waves. Also, for some 

off-diagonal measurements crystals larger than those obtained in this 

first attempt were required, since the orientation and polishing 

procedure for these off-diagonal measurements left only a small usable

* The starting materials were 99.9% CsOH obtained from Cerac Chemicals 
and 85% w/w UNIVAR Phosphoric Acid from Ajax Chemicals.



-39 -

path length betweeen the parallel faces. Small path lengths lead to 

larger uncertainties in the measured velocity. Therefore, a second 

attempt at crystal growing was undertaken to produce larger defect-free 

samples.

In this second attempt, the step of adding the ethanol to 

produce a powder, which is then dissolved to give a saturated solution, 

was omitted. Instead, the saturated solution was produced by heating 

the solution synthesised according to reaction (3.1) to drive off excess 

water by evaporation. Various crystal growing strategies were adopted 

in this second attempt, some of which were more successful than 

others. In general, it was found that slowing the rate of growth, 

improving the temperature stability, triple filtering the saturated 

solution and reducing the pH to 2-2.5 by addition of excess H3P04 all 

led to improved crystal quality. The effect of the pH of the saturated 

solution on the growth of the crystals is discussed in section 3.3.

The revised procedure was as follows. More CsH2P0lt was added 

to an already saturated solution and the mixture heated whilst being 

continuously stirred to produce a supersaturated solution. It was found 

that gentle heating (up to approximately 35°C) gave the best results. 

The solution was allowed to cool and if any spontaneous crystallization 

occurred the solution was carefully filtered until no crystallites 

remained. This often required four or five consecutive filtrations. A 

great deal of care was taken to prevent dust or other possible 

nucleation centres from contaminating the solution. The prepared 

solutions were then covered, with a small opening remaining to allow 

evaporation, and placed in an air-conditioned environment of 19±2°C.

Three seeding/growing techniques were then employed. In the 

first, the solution was allowed to stand and any spontaneously formed 

crystallites were allowed to continue to grow. This technique was
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successful on the rare occasions that only one or two nucleation centres 

appeared. Otherwise no useful crystals could be harvested from the 

solution.

The second method involved placing a small near-perfect seed 

into the solution at the bottom of the container after the solution had 

been left standing undisturbed for a few days. While this proved 

effective, the resultant crystals showed defects around the seed since 

the growth was asymmetric and slow, particularly in the vertical 

direction. Also spontaneous crystallization often ruined the growing 

crystals by depositing layers of polycrystalline material onto the 

crystal surface.

The third technique used was to drill a hole in a small seed 

(more precisely to dissolve a hole using a fine drill moistened with 

water) and suspend the seed in the middle of the saturated solution on a 

nylon thread. This proved to be very successful. Growth was rapid and 

usable crystals were obtained within about four weeks. The crystals 

obtained had very few visible defects apart from the growth around the 

seed; hence the need to use as small a seed as possible. Very large 

crystals of approximate dimensions 4x2x1 cm^ were obtained in this 

way. Such crystals could be cut in two to eliminate the defects due to 

the seed and supporting thread.

The success of all the above methods depended on the degree of 

supersaturation of the starting solution. If it was too supersaturated 

spontaneous crystallization ruined any productive crystal growth. If 

undersaturated, the seed simply dissolved. The best situation was one 

in which the seed neither grew nor dissolved appreciably in the first 

few days. This indicated the correct degree of supersaturation which 

was usually obtained only by trial and error.
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Crystal growth times varied between six weeks and six months 

depending on the rate of evaporation. It was found that the appearance 

of spontaneous crystallization heralded the end of the useful growth 

period and when such crystallization occurred any useful crystals were 

harvested from the solution and the remaining material was redissolved 

in water and the whole saturating, seeding and growing process 

restarted. The expertise to grow large defect-free crystals was only 

developed towards the end of this study after many months of effort. It 

was therefore necessary to use the crystals that were available at the 

time when the measurements were taken, even though in retrospect the 

quality of these crystals was much poorer than that attained 

subsequently. The best samples from both the first and second crystal 

growing attempts were used, although these often contained growth 

defects.

3.2 MATERIALS VERIFICATION 

3.2.1 Electron Microprobe

A sample of CsHgPO^ powder produced as explained in

section 3.1, and a single crystal of CsH2P04 were examined in an

electron microprobe (Applied Research Laboratory SEMQ2) in the

Department of Earth Sciences, Monash University. X-ray emission lines 

corresponding to cesium and phosphorous were clearly detected but no 

other peaks were visible. The probe is not capable of detecting the 

presence of elements with atomic numbers less than that of sodium. 

Hence, the oxygen and hydrogen contents were not measurable. It was 

estimated that impurity levels of elements with atomic numbers greater 

than that of sodium were less than 0.5%.
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3.2.2 Powder X-ray Diffraction

The microprobe results confirmed that no heavy elements other 

than cesium were present. However, the possibility still existed that 

the crystals may not have been CsH2P04 but rather some other more 

complex mixture of hydrogen phosphate salts. To verify that the 

crystals were indeed CsH2P04 X-ray powder patterns were taken using a 

standard Philips vertical diffractometer with Cu KQ radiation and a Ni 

filter at 40 kV. The use of a rotating specimen stage was necessary as 

no Bragg peaks were detected in the diffractometer scan when the sample 

was not spun on its axis. In view of the cleavage properties of 

CsH2P04 the difficulty in producing a random powder is not unexpected.

Two samples for measurement were produced. The first was 

CsH2P04 powder precipitated by addition of ethanol to the saturated 

solution. This powder was crushed slightly and packed into the sample 

holder. The second sample was produced by crushing a single crystal of 

CsH2P04 that had grown from the saturated solution. The Bragg peak 

positions of the two samples agreed to within experimental error. The 

intensities differed slightly for some Bragg peaks. The results are 

shown in the Table 3.1.

Although there is no entry for CsH2P04 in the powder 

diffraction file (J.C.P.D.S. 1983, up to and including set 33), the 

known structure may be used to calculate peak positions and intensities. 

The calculation was performed on the crystal data of Uesu and Kobayashi 

(1976) using a computer program kindly provided by Mr G. Tate of 

Aeronautical Research Laboratories, Melbourne. The experimental results 

and the predicted diffraction pattern agreed reasonably well except for 

the (100) peaks which were much more intense than predicted. This is 

almost certainly due to preferred orientation of (100) platelets which 

have preferentially formed by cleavage in the pressing and grinding
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Table 3.1

Powder Diffraction Peaks of CDP

Computer Prediction CDP Powder Precipitated
From Solution

CDP Ground 
Crystal

(h.k.l) Interplanar Relative Interplanar Relative Interplanar Relative
Spacing(A) Intensity Spacing Intensity Spacing Intensity

110 4.861 36.8 4.872(8) 48(2) 4.880(8) 56(3)

200 3.762 88.0 3.772(5) 952 3.773(5) 1078

111 3.745 181 not resolved

101 3.502 14.3 3.497(4) 42 3.497(4) 53
*201 3.489 27.4

020 3.185 63.0 3.194(3) 44 3.197(3) 92

111 3.069 100.0 3.076(3) 100 3.078(3) 100

021 2.626 39.0 2.633(2) 27 2.635(2) 51

201 2.565 16.2 2.571(2) 38 2.566(2) 44
*301 2.556 4.6

220 2.431 58.3 2.438(2) 55 2.438(2) 65

311 2.372 41.4 2.377(2) 60 2.378(2) 70

310 2.334 24.3 2.338(2) 60 2.340(2) 52

002 2.320 23.4 2.322(2) 31 2.321(2) 59
*202 2.315 18.7

400 1.881 4.4 1.885(1) 76 1.884(1) 94

222 1.534 12.3 1.536(1) 33 1.536(1) 39
*511 1.533 11.2
*422 1.530 9.6

The observed peak widths were such that the planes indicated by a * may

have also contributed to the observed reflection. The (111) reflection 

was unresolved from the very large (200) reflection.
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process. This preferred orientation is also observed in the case of the 

CsH2P04 powder precipitated from solution. Hence, it is likely that 

the crystal orientations and habits discussed in the following section 

which favour (100) platelet type formation also occur in microscopic 

crystal formation resulting from rapid crystallization from solution. 

The results are summarized for the 13 most intense observed peaks out of 

a total of 36 in Table 3.1.

These investigations confirmed that the starting material was 

CsH2P04 and that impurities, if present, were at concentrations less 

than 0.5%.

3.3 CRYSTAL PROPERTIES

3.3.1 Crystal Habit and Multiple Growth Planes

The techniques outlined in section 3.1 produced some quite 

large defect-free crystals. However, on closer examination in the 

polarising microscope these crystals were found to consist of two growth 

habits. A view through the polarising microscope of one such crystal is 

given in Figure 3.1. The two growth planes are crystallographically 

related although a thorough enough investigation was not undertaken to 

determine if they are twins. Examination of the faces of a number of 

such crystals did reveal that the (100) cleavage planes of the two 

respective crystallites make an angle of 75 ± 1° to each other. Optical 

two-circle goniometric measurements of the large crystal shown in 

Figure 3.2 showed that it consists of two crystals with the (100) face 

of one crystal parallel to the (111) plane of the second one. It was 

also determined that the b axes of the two crystals are inclined at an 

angle of approximately 129° to each other. Unfortunately, the other 

crystals in this mixed growth habit batch did not have enough visible 

faces to check these latter observations. However, the angle of 75 ± 1°
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Figure 3.1. A view of a mixed growth plane sample of CDP seen through 

crossed polarizers. The dark region is nearly in the extinction 

position. The light region does not extinguish on rotation of the 

crystal, indicating that for this path through the crystal at least two 

different crystallographic orientations are present. Note also the 

interference fringes at the interface.
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Figure 3.2. Mixed growth habits of CDP. The two (100) faces of the 

respective crystallites are shown together with the approximate 

direction of the b axis in each face. The (100) faces are inclined at 

75 ± 1° to each other, whilst the b axes are at an angle of 

approximately 129° to each other.
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between (100) faces of the related crystals was reliably confirmed by 

repeated measurements on different samples, since this measurement 

required only two visible (100) cleavage faces.

Although the plane that forms the interface between the two 

crystals was not indexed it was noticed that this plane lies roughly at 

right angles to the (100) faces of each crystal. The bonding across 

this plane is extremely strong. Attempts to separate the two crystals 

always resulted in the crystal shattering or cleaving along the (100) 

face rather than separating along the common plane. This type of mixed 

growth was eliminated entirely by lowering the pH of the saturated 

solution to 2-2.5 by addition of excess HgPO^. Frazer et al. (1979) 

have also reported that in order to obtain good crystal growth, it was 

necessary to add a slight excess of HgPO^ to produce a starting solution 

with a pH of about 2.5. The crystals which then grew had the habit 

shown in Figure 3.3 of orthorhombic platelets with the largest face 

being the (100) plane. The angular bisectors of the acute and obtuse 

angles of the parallelogram formed by the edges of the (100) face are 

parallel to the b and c axes respectively.

These observations are consistent with those of Rashkovich et 

al. (1977) who determined the crystal habit as a function of temperature 

and pH, as shown in Figure 3.4. As the figure shows for conditions of 

temperature and pH close to the curve, holohedral crystals grow. As the 

growth continues, however, small changes may occur in the pH of the 

solution on account of variation in the degree of supersaturation. 

These changes may be sufficient to change the preferred habit from 

holohedral to the (100) platelet type. The optical goniometric 

measurements on the crystal shown in Figure 3.2, whilst not conclusive, 

did suggest that there was no simple symmetry relationship between the
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Figure 3.3. A crystal of CDP displaying the orthorhombic platelet habit 

reported by Rashkovich et al. (1977) (see also Figure 3.4). The angular 

bisectors of the acute and obtuse angles of the parallelogram formed by 

the edges of the (100) face are parallel to the b and c axes 

respectively.
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\ ooT

(i)

pH

(ii)

Figure 3.4. (i) Different crystal habits of CDP: (a) prisms, (b) 

orthorhombic platelets and (c) hclohedral type.

(ii) The effect of crystallization conditions on the habit 

of CDP crystals. Below the curve (A) orthorhombic, close to the curve 

(o) holohedral type, and above the curve (x) prisms (after Rashkovich et 

al. (1977)).
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orientation of the two crystallitest. This left epitaxial growth of one 

crystal on an exposed face of the other as a possibility. Using the fact 

that the (111) plane of one crystallite is parallel to the (100) face of 

the other, and that the two b axes make an angle of 129° to each other, 

it was calculated that the (111) face of one crystal would make an angle 

of only 10° to the (111) face of the second crystal. Since (111) and 

(111) would be expected to have similar bonding to each other both in 

and out of the plane, epitaxial growth is a distinct possibility. It 

should also be pointed out that the interface between the crystals is 

not a well defined plane, but is rather curved, so that an angle of 10° 

seems reasonable.

Figure 3.4 predicts that if the starting pH is lowered to 

2.5-3.0 at about 20°C, the crystals formed will have the orthorhombic 

platelet habit. Since this combination of pH and temperature lies well 

below the curve, the small differences in pH due to varying degrees of 

supersaturation are not expected to give rise to conditions close to the 

curve which favour the production of the holohedral habit. Hence the 

mixed growth habit can be eliminated as was observed.

In practice, whilst this mixed habit crystal growth is 

interesting especially owing to the very strong bonding across the 

interface, it renders these crystals useless for ultrasonic measurements 

unless one crystallite is removed either by polishing or cutting with a 

thread moistened with water to remove the offending section. In this 

study, where these types of crystals have been used as source materials 

in the production of samples suitable for ultrasonic measurements, 

observations in a polarizing microscope were made to ensure that only 

one single crystal remained after the cutting or polishing.

t If the two crystallites are related by symmetry, as in twinning, there 
must be a plane which is common to both crystals. A low index plane 
for which this was true could not be found hence the comment that a 
twinned relationship is unlikely.
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3.3.2 Other Physical Properties

CsH2P04 possesses a combination of properties that makes 

grinding and polishing difficult and prevents standard techniques from 

being used. These properties are:

(i) CDP is very water soluble (approximately 150 grams of CDP per 100 

grams of water) and hence many common solvents such as methanol 

and acetone contain too much dissolved water to be suitable 

cleaning or lubricating agents. The samples once prepared must be 

kept in a desiccator if the surface finish is to be preserved from 

deterioration from water vapour in the air.

(11) CDP is brittle and will shatter if sawed or otherwise mechanically 

cut. Araldites and other epoxy resins were found to be unsuitable 

agents for holding the crystal during polishing because the 

setting of the resin stressed the crystal causing it to shatter. 

(HI) The crystals are heat sensitive and will crack along (100) 

cleavage planes or along an imperfect (010) cleavage plane if 

subjected to even moderate thermal shock. Effectively this 

eliminates the use of waxes as agents for holding the crystal 

during polishing as the thermal shock of applying and removing the 

wax cleaves the crystal.

3.4 SAMPLE PREPARATION FOR ULTRASONIC VELOCITY MEASUREMENTS 

3.4.1 Requirements

To make ultrasonic velocity measurements on a single crystal 

sample requires the crystal to be polished to provide two flat parallel 

surfaces, the planar normal of which is the direction of propagation of 

the wave under study. The ultimate purpose of sample orientation and 

polishing is the production of a distortion-free, exponentially decaying 

echo train. The factors that affect the quality of the echo train and
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the accuracy of the velocity and attenuation measurements, such as the 

degree of parallelism, surface flatness, surface scratches, and 

misorientation, are discussed in the literature (see for example True11 

et al. 1969). However, it was found that in many cases the effort 

required to polish samples to the tolerances quoted in the literature 

was not worthwhile because the poor sample quality (i.e. in terms of 

macroscopic defect concentration) was the limiting factor in the 

production of high quality echo trains.

The working tolerances adopted for this study in view of 

sample quality limitations and sample preparation difficulties are now 

discussed.

(a) Parallelism

In order to achieve an exponentially decaying echo train and 

to minimise side wall reflections non-parallelism must be kept to a 

minimum. In general the higher the frequency and the lower the value of 

attenuation the more severe are the requirements on parallelism (True11 

et £l. 1969). Truell et_ _al_. indicate that polycrystalline steel, for 

example, measured at 20-30 MHz should have surfaces parallel to about 

one minute of arc. As a general rule the tolerance is inversely 

proportional to the frequency and therefore the tolerance for 

measurements undertaken in this study at 10 MHz should be about 2 

minutes of arc. In practice, however, it was found that exponentially 

decaying echo trains could be obtained provided the surfaces were 

parallel to better than 10 minutes of arc, a tolerance which was readily 

achieved by the polishing technique employed. Parallelism was measured 

using an auto-collimator.

(b) Flatness

Surface flatness is important in the production of a thin bond 

between the transducer and specimen as well as in attaining the required
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degree of parallelism. Flatness was measured by placing an optical flat 

on the prepared surface and counting the number of interference fringes 

per centimeter across the surface. Sensible readings of parallelism 

may be obtained if each surface is flat to within 10 fringes per 

centimetre.

(c) Surface scratches

Commonly the bond between the transducer and specimen is of 

the order of a few microns thick and therefore surface scratches should 

be less than 1 micron deep. In practice, a compromise must be reached 

between flatness which is achieved by polishing with metal plates and 

removal of surface scratches using a cloth lap (which often degrades the 

flatness). It was found that the effort required to reduce surface 

scratches to less than 1 micron deep was not worthwhile in terms of the 

quality of the resultant echo train as bonding the transducer to the 

specimen caused surface defects much deeper than one micron. A 

criterion of requiring scratches to be less than 10 microns deep proved 

to be satisfactory.

(d) Orientation

In the computation of elastic constants from the velocity 

data, the direction of propagation must be accurately known. Fractional 

velocity changes as a function of misorientation will depend on the 

elastic constants. In CDP such changes will be crucially dependent on 

the elastic anisotropy close to the direction of interest. For example, 

for a 1° misorientation may vary between 0.9% and less than 0.03% 

depending on the direction of propagation and the direction of the 1° 

misalignment. Obviously, it is desirable to orient the samples as 

closely as possible to the required direction. Since the minimum errors 

in velocity measurements are of the order of 0.4% it seemed reasonable 

to align the samples to better than ± 0.5* and to obtain an estimate of

the misorientation.
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In summary samples used in this study were polished and 

oriented to provide two parallel surfaces to within the following 

tolerances:

(i) The misorientalion is less than ± 0.5*.

(ii) Non parallelism of the surface is less than 10 minutes of arc.

(ill) Surface scratches are less than 10 microns deep.

(iv) Surfaces are flat to better than 10 interference fringes per 

centimetre.

3.4.2 Polishing Technique

The requirements listed in the previous section would normally 

pose no problems for metallic samples but standard polishing and cutting 

techniques proved unsatisfactory for GDP in view of the properties 

listed in section 3.3.2. The following method developed over a long 

period of trial and error has proved successful not only for GDP but 

also for other molecular crystals such as CsD2P04, CsSCN, KSCN, KgSe04 

and KH2P04.

The crystal was mounted onto a brass plate using ’Tarzan's 

Grip' glue. This glue was suitable because it did not stress the 

crystal during the drying process and because it was easily removed 

using n-butyl acetate as a solvent which appeared to have no ill effect 

on the crystal. The mounted crystal was then placed on a goniometer and 

oriented with the aid of X-ray Laue photographs such that the required 

crystallographic plane was perpendicular to the X-ray beam (see next 

section). The goniometer was then removed from the X-ray machine and 

mounted in the grinding rig shown in Figure 3.5. In the first stage of 

the preparation of a face perpendicular to the required crystallographic 

direction 1200 "wet and dry" grinding paper lubricated with "Engis 

Hyprez type OS" fluid was found to be suitable. Coarser papers tended



Figure 3.5. Crystal grinding rig.
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to produce a pitted surface. Large misoriented or defected sections of 

crystal were removed using a thread saw with water as the etchant prior 

to the grinding.

After the rough preparation of the first oriented face the 

crystal was removed from the brass plate, turned over, remounted and the 

second oriented face was prepared.

The surface obtained by cutting and grinding was not flat and 

had scratches in it of the order of 25-50 microns deep. These were 

removed by polishing on a Kent automatic polishing machine with a "Siro 

Lap" tin plate!, using 1 micron diamond paste and "Hyprez type OS" 

lubricating fluid. Other standard commercial plates tended to pit the 

surface and gave an unsatisfactory finish.

The even pressure provided by a plunger chase arrangement (see 

Figure 3.6) ensured flatness and a surface parallel to the brass 

mounting plate. Once the required surface finish had been obtained 

(which usually required 10 to 15 minutes polishing) the crystal was 

again removed, turned over, and remounted to polish the second face. By 

this method surfaces parallel to within 4 minutes of arc and flat to 

about 5 fringes per centimetre over the surface have been obtained. 

With careful attention to cleanliness, surface scratches can be kept 

down to less than 5 microns in depth. Often, after polishing on the

Siro Lap plate, one or two large scratches remained on the surface which

were probably due to small pieces of crystal which had broken away and 

run across the lap. For a better surface finish, finer diamond pastes 

could be used or, alternatively, a final polish could be obtained using

t The "Siro Lap" tin plate (Engis Australia Pty. Ltd.) consists of a tin
lap surface bonded onto an aluminium base plate. The lap is machined 
and a spiral V shaped groove is cut into the lapping surface. This 
enables the waste material to collect in the groove preventing it from 
passing between the lap and the material being machined. The surface 
of the lap is treated by a glass bead blasting process.



Plunger

Chase

Brass plate

Sample

Figure 3.6. Lapping arrangement to provide uniform plunger pressure 

during polishing to ensure flatness.
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a cloth lap, although cloth tended to round the edges of the specimen. 

However, as previously mentioned, the effort and time required to 

prepare the samples to these tolerances was not justified in terms of 

improved echo train quality and the polishing requirements were relaxed 

to those given in section 3.4.1.

3.4.3 Orientation

The task of orienting a monoclinic crystal with the aid of 

Laue photographs is difficult and time consuming especially if low- 

symmetry directions are of interest. An invaluable aid to the 

orientation procedure was a computer simulation program (Cornelius 1981) 

that allowed rapid identification of crystal orientation even for these 

low-symmetry directions.

(a) The Laue simulation program.

The program requires as input the X-ray tube voltage, specimen 

to film separation, maximum spot to centre distance, lattice parameters 

for the unit cell, the required scan range for each Miller index, the 

crystal orientation for which a simulation is required, and the atomic 

number and position of all atoms in the unit cell. The program then 

calculates the predicted position and intensity of each possible Laue 

spot that will lie on the film. If the intensity is greater than a 

minimum intensity discriminator, the spot will be plotted on the 

simulation. The final result is a predicted Laue pattern for that 

orientation.

Using a catalogue of such predictions, the one closest to the 

actual crystal orientation was used to index at least three Laue 

spots. The Miller indices and film co-ordinates of these spots were fed 

back into the program which calculated the most likely specimen to film 

separation and the direction anti-parallel to the X-ray beam in terms of
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both real and reciprocal lattice vectors. An estimate of the error in 

the determined orientation was also obtained.

(b) The procedure and an example.

The orientation of a single crystal of monoclinic CsH2P04 

along [110]' where the primed direction is with respect to a Cartesian 

set of axes xyz (see Figure 2.2) is used here as an example. The 

corresponding crystallographic direction is [2.053, 2.426, 1.000]. The 

sample was mounted on a goniometer and a Laue photograph taken. 

Comparison to a catalogue of Laue patterns generated by the simulation 

program indicated that the x axis was parallel to the incident X-ray 

beam and allowed the c axis in the plane of the photograph to be 

identified. The crystal was then rotated through 45° about the c axis 

and another Laue photograph taken. This photograph was compared to the 

simulation for the [2.053, 2.426, 1.000] crystallographic direction 

(Figure 3.7(1)) and it was found using a Greniger chart that a further 

1° rotation correction was needed in order to align the Laue photograph 

with the simulation. A further Laue photograph was taken following this 

rotation and this is shown in Figure 3.7(11). Using the simulation, six 

spots were indexed and their x-y film coordinates measured. The 

agreement between the spot positions on the photograph and on the 

simulation is excellent. The indexed spots and co-ordinates were input 

to the program and the real space direction anti-parallel to the X-ray 

beam was determined to be [1.994 ± 0.014, 2.391 ± 0.025, 1.000 ± 0.034]. 

This implies that the direction cosines with respect to the xyz 

orthogonal axes are a = .704 ± .005, 6 = .713 ± .005 and

y = .003 ± .007. Therefore the crystal has been successfully aligned 

along the [110]' direction with a tolerance of ± 0.4°. The information 

provided by the program could be used to refine the orientation further. 

Accuracies of ± 0.2° were possible.



o

Figure 3.7. (i) Laue simulation for the [2.053,2.426,1.000]

crystallographic direction anti-parallel to the X-ray beam in GDP.

(11) Contact print of the Laue reflection photograph of

GDP aligned parallel to the above direction.
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3.5 PREPARATION OF DEUTERATED SAMPLES

The CsD2P04 (CDDP) samples used in this study were prepared by 

the solvent evaporation technique. The saturated solution was 

synthesized according to the reaction
CsC03 + 2D3P04 + 2CsD2P04 + D2C03 (3.2)*.

The production of crystals followed the method outlined in section 3.1 

except that at all times the solution was kept out of contact with water 

vapour in the air which can exchange with the D20 in solution thus 

reducing the level of deuteration. In practice, this required growing 

the crystals in a desiccator over silica gel. Despite attempts to 

employ the same growing and seeding techniques that had proved so 

successful in the case of CsH2P04, the CsD2P04 crystal quality was 

poorer than for comparable crystals of CDP. The mixed growth habit 

phenomenon was not observed and lowering the pH by addition of excess 

D3P04 did not seem to have much effect on crystal growth. These 

differences between CDP and CDDP growth may be due to the difference in 

evaporation rates (since the CDDP must be grown in a desiccator) or to 

the presence of dissolved deuterated carbonic acid which is a by-product 

of the synthesis.

An alternative synthesis technique, which may avoid the latter 

problem, would be to produce CDDP by successive recrystallizations from 

D20 of CsH2P04. Frazer al. (1979) have reported producing crystals 

of 'good quality' with a deuterium content of 94% by this method. 

Unfortunately, limitations on time and the expense and unavailability of 

the relatively large quantities of D20 required, prevented this from 

being attempted.

t Starting materials were 99.9% CsCOg obtained from Cerac Chemicals and 
85% w/w D3P04 in D20 from Aldrich Chemicals. The 1^0 was provided by 
the Australian Atomic Energy Commission, Lucas Heights, Sydney.
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The CDDP samples were oriented and polished to the same 

tolerances and by the same techniques as for CDP. An unsuccessful 

attempt was made to measure the level of deuteration using infrared 

spectroscopy (Rumble 1983). A sample of CDDP was finely ground, mixed 

with a cesium bromide matrix and pressed into a disc. However, the 

resulant spectra were identical to those obtained from CDP and failed to 

show any peaks attributable to deuterium. This was probably due to 

exchange of water for D20 in the fine grinding or pressing process. 

Unfortunately, other facilities for measuring the deuterium content, 

such as a single crystal infrared spectrometer, or neutron diffraction 

facilities, were not available.

Dielectric measurements (see Chapter 6) yielded a 

ferroelectric transition at a temperature of 246 ± 1 K which is well 

below the value of 267.5 K reported for the fully deuterated crystal 

(Levstik et al. 1975). In contrast to the dielectric measurements, the 

Raman spectra of CDDP samples synthesized in a similar manner but 

polished differently from the above, showed a transition temperature of 

263 ± 1 K (Rumble 1983). Therefore, it is likely that despite the 

precautions taken, hydrogen contamination occurred either during the 

production of the crystals or during the subsequent grinding and

polishing.
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CHAPTER 4

EXPERIMENTAL DETAILS

4.1 THE MEASUREMENT OF ULTRASONIC PHASE VELOCITY

4.1.1 Introduction

The ultrasonic velocity has already been defined in Chapter 2 by 

the solution to the wave equation given by

u^ = A^sinCoit-kjXj ) (2.7)

where V = ai |kj *.

In principle the experimental arrangement for measuring this 

velocity was straightforward (Figure 4.1). A 10 MHz quartz transducer 

was bonded to one end of the specimen and excited by a short (1.5-5.0 

microsecond) burst of radio frequency (r.f.) waves. The echoes were 

detected by either the exciting transducer or by a second transducer 

bonded to the opposite face. The signal from the detecting transducer 

was amplified and displayed on an oscilloscope (see Figure 4.2). The 

round trip travel time, x, is measured by the time delay T between 

successive echoes (the relationship between x and T is discussed in 

section 4.1.2) and, if the length between the opposite faces of the 

specimen is L, the ultrasonic velocity is given by

V = 2L/x (4.1).

The measurement of phase velocity, then, depends on accurately 

measuring the delay time between echoes.

There were two distinct objectives associated with the velocity 

measurement. On the one hand, for the determination of the elastic 

constants of CDP, absolute accuracy was required. Because the 

relationships between the elastic constants and the measured velocities 

are, in general, very complex (see Chapter 5), relatively small errors
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Figure 4.1. The Essential Features of a Pulsed System for the 

Determination of the Phase Velocity. T is a measure of the round trip 

delay time in the specimen, and hence the phase velocity is given by 

2L/T, where L is the path length between the opposite faces of the

specimen.



Figure 4.2. A Typical Echo Train for Longitudinal Propagation in CDP.

(a) The amplified echo train showing the r.f. cycles in each echo. The 

distorted pulse on the left of the trace is due to receiver saturation 

following receipt of the incident high power pulse.

Horizontal scale: 5 ps/division, Vertical scale: 5 V/division.

(b) The detected and filtered echo train together with a superimposed 

exponential decay curve (see section 4.2.2(a)).

Horizontal scale: 5 ps/division, Vertical scale: 1 V/division.

(c) Overlapped echoes showing the correct r.f. cycle-for-cycle match. 

Horizontal scale: 0.2 ps/division, Vertical scale: 5 V/division.
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in the velocity measurement lead to large errors in the determined 

elastic constants.

In practice it was found that the calculation of the elastic 

constant matrix could proceed successfully if the velocities were 

measured to an accuracy of about 1%. However, even this small error in 

velocity measurement led to errors of the order of 50% in some of the 

off-diagonal constants. Thus it was important to measure the velocities 

as accurately as possible. Absolute accuracies of 0.2% were obtained for 

some modes, whereas in the worst case the errors amounted to 1.3%.

On the other hand, the examination of the ferroelectric transition 

required very small changes in the velocity (< 1%) to be measured as a 

function of temperature. For these velocity measurements, the 

sensitivity of the technique was much more important than the absolute 

accuracy. In order to monitor the velocity dependence close to T , 

precision in the measurement of better than 0.05% was required.

The delay time, T, may be crudely measured from the time base of 

the oscilloscope to a precision of 2% at best. Even using pulses from a 

time mark generator the maximum precision achievable is 0.1%. Therefore, 

these methods were unsuitable for the requirements of this study, 

particularly for the temperature dependence measurements.

Various methods have been described for accurate and precise 

determination of delay times (Papadakis 1973, 1976). Of these, the Pulse 

Echo Overlap (P.E.O.) method used in this study is reported to be 

capable of achieving precision of 0.025% or better and accuracies of 

0.4% in the determination of a delay time of 4 microseconds at 10 MHz 

(Papadakis 1976).
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4.1.2 The Pulse Echo Overlap Method

(a) Principle of operation

The principle of measurement of delay times using the Pulse Echo 

Overlap (P.E.O.) method is to arrange the two signals of interest 

(usually individual r.f. cycles of the echoes under study) so that they 

overlap on the oscilloscope by triggering the time base with a signal, 

the period of which is equal to the delay time between the echoes. In 

this way the measurement of T was accomplished to within a small 

fraction of the period of one r.f. cycle. Although the determination of 

the correct position for overlap was somewhat operator dependent, 

precision of 1/100 of the period of the ultrasonic frequency was 

attainable. This represented a precision of 1 nsec for 10 MHz waves, or, 

typically, an error of 250 ppm for a 4 microsecond delay time. An 

example of cyclic overlap is shown in Figure 4.2(c).

(b) Implementation and circuitry

The essential elements of the P.E.O. system employed are shown in 

Figures 4.3 and 4.4. The continuous sine wave (csw) generator phase 

synchronized all the elements of the system and allowed for jitter-free 

overlap. The output from this generator was divided by an integer 

(20,50,200,500,2000,5000) to provide a square wave trigger (output B in 

Figures 4.3 and 4.4) for the pulsed r.f. oscillator. The integer divisor 

was chosen to be large enough to ensure that all echoes from one pulse 

died out before the next pulse was applied. The pulsed oscillator 

produced a burst of r.f. that maintained a constant phase relationship 

with the trigger pulse. This property was essential for jitter-free 

operation. (By comparison, a gated amplifier with a csw source was found 

to be unsatisfactory because the constant phase relationship was not 

maintained.) Before being applied to the exciting transducer, the r.f.
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Figure 4.3. Block Diagram for the P.E.O. Method of Velocity Measurement. 

The sample assembly (shown enclosed by a broken line) may be situated in 

a cryostat, furnace, or room temperature rig. The outputs A, B, and C 

from the delayed pulse generator are detailed in Figure 4.4.
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Figure 4.4. The Relationship between the Outputs A, B and C from the 

Delayed Pulse Generator shown in Figure 4.3. Outputs A, B, and C are 

synchronized by the continuous sine wave generator. Output C serves to 

intensity modulate the oscilloscope, t^', t^"', t^> and t^ are all 

continuously variable to enable any echo to be chosen for study. Output 

B triggers the pulsed r.f. oscillator and output A is used to trigger 

the oscilloscope to produce the cycle-for-cycle overlap.

vo
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pulse passed through a diode limiter that allowed the large incident 

pulse through, but blocked the echoes from feeding back into the pulsed 

oscillator. The pulses used were 10 MHz, 50-100 volts peak to peak, and 

1-5 microseconds in duration.

In order to eliminate the problem of receiver saturation and dead 

time following the large pulse, other authors (see Papadakis 1976) have 

found it necessary to use pulse limiters that prevented the large 

incident pulse, but not the echoes, from reaching the amplifier. 

Unfortunately, due to cost, such devices were not available for use in 

this study. An alternative option was to use a separate receiving 

transducer, bonded to the second parallel face of the specimen. This 

eliminated the recovery problem, but, in most cases, it was found that 

the disadvantages of the introduction of a second bond/transducer 

interface to the system (see below section (e) and Chapter 6) outweighed 

the problems due to receiver recovery following saturation by the 

incident pulse. The receiver network, which consisted of a high 

impedance broadband preamplifier, r.f. filter, and broadband receiver, 

generally had a fast enough recovery time (1-2 microseconds) to allow 

the echoes to be observed.

The broadband receiver was capable of displaying either the 

detected echoes or the individual r.f. cycles on the oscilloscope.

Corresponding to each trigger pulse to the pulsed r.f. oscillator, 

the delayed pulse generator provided two pulses (output C in Figures 4.3 

and 4.4) that were used to intensity modulate the two echoes chosen for 

study. The lengths of these two pulses, their delay times with respect 

to each other and with respect to the trigger pulse to the pulsed r.f. 

oscillator were continuously variable so that any two echoes in the 

trace could be selected for study. The delayed pulse generator also 

provided a square wave of 1/10 the frequency of the csw input (output A
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in Figures 4.3 and 4.4). This signal was used to trigger the 

oscilloscope to produce the overlap pattern.

(c) Procedure

To use the P.E.O. method, the echo train was first displayed on 

the oscilloscope. The frequency of the csw source was adjusted so that 

the period of the trigger pulse (output A in Figures 4.3 and 4.4) was 

approximately equal to the delay time between the echoes of interest. 

Any integer dividend of this period could be used, up to the maximum 

frequency range of the csw oscillator and pulse delay box. The intensity 

modulation was then adjusted so that the intensity of the two echoes of 

interest was increased. The overall intensity was then decreased so that 

only two echoes remained visible on the trace. The oscilloscope was 

switched to trigger from output A (Figures 4.3 and 4.4). Thus, the 

oscilloscope triggered for the first echo of interest and again for the 

corresponding following echo under study, which resulted in an overlap 

of the two echoes in oscilloscope time. In this mode the oscilloscope 

triggered many times between echo trains but the overlap pattern was 

undisturbed by the other echoes since the trace of an echo only appeared 

on the oscilloscope if its intensity had been modulated.

The csw frequency was adjusted until the two echoes overlapped 

r.f. cycle for r.f. cycle. The reciprocal of this frequency, multiplied 

by the appropriate integer scaling factors, was the delay time between 

the echoes of interest.

In many instances the overlap pattern was not centred on the 

oscilloscope screen. In such cases an additional pulse delay (shown in 

Figure 4.3) was used to alter the delay time between the trigger pulse 

to the oscilloscope and the emission of the r.f. pulse. This extra 

adjustment was sufficient to enable examination of any section of the
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overlap pattern.

(d) Correct overlap condition

The P.E.O. technique does not produce one unique overlap condition 

but several, displaced from one another by an integral number of r.f. 

cycles. Incorrect matching of the r.f. cycles can lead to substantial 

errors, because the measured delay time between echoes, T, is related to 

the true round trip travel time, t, by the equation (McSkimin 1961)

T = pt - py/360f + n/f (4.2)

where p is the number of round trips between the echoes chosen for 

study, y is the phase shift in degrees of the r.f. pulse on reflection 

from the specimen-bond-transducer interface, f is the radio frequency 

and n is the number of cycles of mismatch. For example, for 10 MHz waves 

a mismatch of one r.f. cycle would lead to an error of 0.1 microseconds, 

or 2.5% for a typical round trip travel time of 4 microseconds. Mismatch 

was the predominant factor which determined the accuracy of the P.E.O. 

method. The correction due to the bond (corresponding to the second term 

on the right hand side of equation (4.2)) and diffraction corrections 

were much smaller than the mismatch error. The precision of the P.E.O. 

method is not affected by cyclic mismatch, provided that the same 

overlap condition is maintained throughout a series of measurements.

McSkimin and Andreatch (1962) and later Papadakis (1967) have 

developed a criterion for determining the correct cycle-for-cycle match 

(i.e. n=0) and hence eliminating this major source of error. A brief 

summary of the method is presented below but for further details the 

reader is referred to the review article by Papadakis (1976).
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It can be shown that the shift in the phase of the r.f. pulse 

introduced on reflection at the interface between the sample and bond is 

given by y where

tan y
"2 Ze

(4.3)

and where Zg is the acoustic impedance (density x velocity) of the 

sample, and Zg is given by

Z = zi [(z1/z2)tanB1L1 + tanB^] (4.4)
6 [(Z1/Z2) - tanB^tanB^]

where the subscripts 1 and 2 refer to the bond and transducer 

respectively, L is the thickness, and B = 2irf/V is the propagation 

constant.

For the resonant frequency, fR, of the transducer, Lg is equal to 

one half a wavelength, and B^L^ = it rad. If the acoustic impedance of 

the bond, sample, and transducer are known, the only remaining variable 

is the bond thickness. Thus the phase shift, y, may be calculated and 

plotted versus B^L^ for various frequencies and various values of sample 

impedance. For example, Figure 4.5 shows a calculation of y versus 

equivalent thickness of the bonding layer expressed in terms of degrees 

of phase (B^L^) for a bond of Dow Corning 276-V9 resin. The calculation 

was also made for materials of different acoustic impedance (zg) at the 

resonant frequency of the X-cut quartz transducer and at a frequency 10%

lower.
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Figure 4.5. Phase Shift as a function 'of B^Lj. The calculations have
5 -2 -1 xbeen made for q, X-cut quartz transducer (Z^ = 15.3 x 10 g cm s ) and

5 -2 -I.a bond of Dow Corning 276-V9 resin (Z^ - 2.25 x 10 g cm s ). The
5 -2 -1sample impedances (Z^) are in units of 10 g cm s . The broken lines 

refer to operation at the resonant frequency of the transducer, whilst 

the solid lines refer to operation at a frequency 10% lower.
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If T is measured at the resonant frequency, TR, and at a frequency 

10% lower, Tl, then from equation (4.2), the difference between these 

two measured travel times is given by,

AT = - TR = J_ (n - py^/360) - _1 (n - pyR/360) (4.5).
fL fR

AT values may be calculated as a function of using equations

(4.3)—(4.5). Typically, longitudinal wave velocities in GDP are of the 
order of 3 x 10^ ms1, and the density is known to be 3.22 g cm 

(section 5.1.2), so that the impedance of GDP is about
10 x 10"* g cm ^ s 1 for longitudinal waves. Figure 4.6 shows a plot of 

AT versus for various overlap conditions (including the correct one

at n=0) for this value of sample impedance.

Equation (4.5) provided the basis for determining the correct 

overlap condition. The procedure was first to produce a plausible 

overlap condition on the oscilloscope screen (with each cycle of the 

second echo smaller than the first due to attenuation) and to measure 

the delay time, TR, with the transducer being excited at the resonant 

frequency. The frequency was then reduced to 90% of the resonant value. 

The csw oscillator frequency was readjusted so as to realign the cycles 

in order to measure the delay time, T^, and calculate AT. The whole 

procedure was repeated for several possible adjacent overlaps. The value 

of AT for each overlap was compared to the theoretical values calculated 

using equation (4.5). Although the actual bond thickness was unknown, 

thin film thicknesses typically lie in the range 3-25 microns. The 

wavelength of sound in the bond was of the order of 200 microns so that 

the bond thickness, expressed in terms of , lay in the range 5°-45°. 

Thus, as can be seen from Figure 4.6, the usual range for AT for the 

correct cyclic match (i.e. n=0) lies in the range -0.014 < AT < -0.0095 

microseconds. The overlap condition for which the measured AT value lay
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Figure 4.6. The Difference, AT, in the Delay Times Measured at 10 MHz 

and 9 MHz as a Function of B lj. The transducer and bond details are as 

in Figure 4.5. The calculation has been performed for a sample impedance 
of 10 x 10^ g cm 2 s \ which is a typical value for CDP.
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in this range was therefore taken as the correct cycle-for-cycle match. 

Ignoring the very small corrections due to the bond and to the 

diffraction of the beam, the true round trip travel time is given by 

t = Tq/p where Tq is the delay time for the n=0 condition.

It is important to note that the correct overlap condition (i.e. 

the cyclic match for which AT lies in the correct range as explained 

above) does not correspond to an alignment of the leading edges of the 

echoes (see Figure 4.7). The phase advance on reflection due to the bond 

shifts the centre of gravity of the echoes towards later arrival times. 

It is for this reason that the McSkimin AT technique is necessary to 

determine the correct cyclic overlap condition. Aligning the leading 

edges would have been an incorrect procedure for P.E.O. as it would have 

been equivalent to choosing AT=0 instead of n=0 in equation (4.5). The 

error which would have resulted from aligning the leading edges, instead 

of using the correct procedure of examining the AT values, could have 

amounted to many cycles of overlap, because CDP has a small value of 

acoustic impedance leading to quite large phase shifts on reflection at 

the bond.

The application of the McSkimin technique to measurements on CDP 

was only partially successful in achieving the correct cyclic matching 

condition. Whereas the authors of the technique applied it to 

homogeneous samples such as fused silica, which gave excellent echo 

trains, not only did the CDP samples contain defects which resulted in 

poor echo train quality, but the inherent monoclinic symmetry of the 

system also gave rise to mixed modes which produced an echo train 

composed of a superposition of separate modes, each with a different 

velocity. In these cases the determination of the correct overlap 

condition was difficult and an ambiguity of one r.f. cycle could not be 

avoided. The true round trip travel time was then taken to be the
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Figure 4.7. Oscilloscope Traces Showing the Proper Overlap Condition for 
Different Pairs of Echoes. The centre of gravity of the echoes shifts 

towards later arrival times due to the phase shift on reflection at the 

sample-bond-transducer interface. Note that aligning the leading edges 

would have resulted in a large error of many cycles of mismatch in the

measurement of the delay time.
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average of the delay times measured by the two possible overlap 

conditions. The resultant error was of the order of 1%. However, even in 

these cases the McSkimin technique was valuable because it reduced the 

number of possible overlap conditions from 3 or 4 to only 2, thus 

reducing the error from 3 or 4% to 1%.

(e) Bonding considerations

For the room temperature measurements Dow Coming 276-V9 resin (a 

thick, very viscous alpha methyl styrene fluid) was a satisfactory 

bonding agent, which provided sufficient acoustic coupling for both 

longitudinal and transverse waves. Less viscous bonding agents, such as 

silicon greases, whilst satisfactory for longitudinal waves, lacked 

sufficient acoustic coupling for the transverse waves. The 276-V9 resin 

has the important advantage over solid bonds (such as salol) that the 

crystal may be rotated in situ with respect to the transverse transducer 

to allow the excitation of each of the two transverse modes separately. 

This is essential in the case of a monoclinic system, because for some 

propagation directions, the polarization of the transverse mode, with 

respect to the crystal axes, is a function of the elastic constants 

which are yet to be determined.

The echo train quality, and hence the ability to determine the 

correct echo for overlap, was also very dependent on bond quality. In 

general, the thinner the bond the better the quality of the echo train. 

Other authors (e.g. McSkimin and Andreatch 1962) have reported that a 

thin bond may be produced by heating the bonding material to about 60°C 

and allowing it to set under slight pressure so as to squeeze out excess 

material. Unfortunately, in the case of CDP the heating process cleaved 

or otherwise damaged the crystal. The procedure adopted was to warm the 

resin slightly, up to about 35°C, in order to allow it to flow more
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freely before applying it to the transducer. The sample-bond-transducer 

system was then subjected to moderate spring pressure. The echo train 

quality improved dramatically as a function of time and the best quality 

was achieved after 6-24 hours. Apparently, the application of pressure 

for relatively long periods of time replaced heating the resin as a 

means of squeezing out excess material and producing a thin bond.

The introduction of a second receiving transducer bonded to the 

opposite face degraded the echo train quality, increased the attenuation 

and made the determination of the correct echo for overlap less certain 

because it was not possible to ensure the same thickness for both bonds. 

However, in some special cases, for excellent defect-free samples which 

gave very good quality echo trains with one transducer, it was possible 

to observe a doubling of the measured value of AT for the correct 

overlap when a second transducer was bonded to the opposite face. The 

introduction of two, instead of one, phase advances on reflection 

resulted in a doubling of AT only for the correct overlap condition 

because for all other (mismatched) overlaps AT is also a function of n/f 

(see equation (4.5)). This result, whilst confined to some special 

cases, confirmed that the McSkimin criterion was effective in 

determining the correct echo for overlap and hence avoiding (or at least 

minimizing) mismatch error. To the best of the author's knowledge, this 

observation has not been previously reported.

The bonding requirements for velocity measurements as a function 

of temperature are quite different from those discussed above, and their 

discussion is left until Chapter 6.

4.1.3 Sample Limitations On Accuracy

In some instances, especially for off-diagonal measurements, the 

available samples had short path lengths (3-4mm), which reduced the
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accuracy in two ways. Firstly, with a shorter path length, the travel

time is shorter and hence the error in the determined velocity is

larger. Secondly, the small delay time required a reduction in the

incident pulse length in order to avoid the echoes interfering with one

another. In this case fewer r.f cycles were available in each echo to

form the overlap pattern on the oscilloscope. For example, for a mode
3 -lwith a velocity of 3 x 10 ms , the round trip travel time in a 

3.0 mm sample is 2.0 microseconds. Since some broadening of the pulse 

always occurs as the echoes travel back and forth through the specimen, 

the longest pulse that can be used without the echoes interfering with 

one another is about 1.5 microseconds. For 10 MHz waves, this pulse 

contains 15 r.f. cycles, but since the rise and fall times are both a 

minimum of 3 cycles, only 9 cycles at best are available for overlap. 

However, in the correct overlap condition the leading edges are not 

aligned, so that even fewer cycles can be overlapped. Whilst this small 

number of cycles was often just sufficient for overlap at the resonant 

frequency, the extra distortion introduced when the frequency was 

reduced to 90% of the resonant frequency of the transducer made the 

determination of AT difficult.

The macroscopic growth defects, as well as degrading echo train 

quality, also introduced differences in the measured velocity between 

specimens and even between different portions of the same sample. For 

optical quality fused quartz the variability due to inhomogeneity has 

been reported (Papadakis 1967) to be as high as 0.036% for path lengths 

of about 2.5 cms. This error would be 0.18% for the typical path lengths 

of 5 mm of GDP samples used in this study. Thus, for those modes for 

which it is possible to determine the correct echo for overlap, it is 

unlikely that the absolute accuracy of the measurement is better than 

0.2%. This error may be reduced by averaging over a large number of
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samples, but in view of the other factors affecting the accuracy, and in 

view of the difficulty of sample preparation, this was not considered 

feasible.

Finally, it is worth noting that despite the bonding problems, 

small path lengths, growth defects, mixed modes due to monoclinic 

symmetry, and small values of acoustic impedance, the McSkimin technique 

is surprisingly successful in at least reducing the ambiguity in the 

overlap to one r.f. cycle.
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4.2 ATTENUATION MEASUREMENTS
4.2.1 Introduction

Attenuation measurements provide information about the absorption 

and scattering processes occurring in the specimen. For a plane wave and 
an exponentially decaying echo train, the attenuation coefficient is 
given by (Truell et al. 1969)

a = 201og10(Al/A2) (4.6).
(X2 - Xj)

in dB per unit length for amplitudes Aj and A^ sensed at positions x^ 

and x2» If absolute accuracy is required, corrections due to beam 
spreading, non-parallelism of the opposite faces, and losses in the bond 
must be applied to equation (4.6) (Truell et al. 1969, Papadakis 1973). 
However, in this study, the attenuation was measured mainly as a 
function of temperature in the region of T^, and hence sensitivity, 
rather than absolute accuracy, was required.

Three schemes, which are described below, were used to find the 
amplitude of the echoes, and hence determine the attenuation 
coefficient.

4.2.2 Methods Of Measurement 
(a) Exponential delay generator

In this scheme (Chick et al. 1960) an electronically generated 

exponential decay curve was displayed together with the echo train on 
the oscilloscope trace (see Figure 4.2(b)). The exponential wave form 

was generated by rapidly charging a capacitor with the gating pulse of 
the r.f. burst which is synchronous with the trigger pulse to the pulsed 
oscillator (output B in Figure 4.3). The time constant was varied by 
adjusting R of the RC circuit. The resolution of this technique (1-2 dB)
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was poor compared to the direct reading method described below, but it 

had the important advantage that any deviations of the echo train from 

exponential decay were immediately obvious. Thus the method allowed a 

visual indication of parallelism of the faces, sample homogeneity and 

especially bond quality, all of which can cause such deviations (Truell 

et al. 1969).

(b) Pulse comparator method

In this scheme (Roderick and Truell 1952) a pulse of the same 

frequency as that of the r.f. burst applied to the sample was fed into a 

calibrated attenuation box before being passed into the receiver and 

detector circuit. The comparator pulse was attenuated until its height 

matched the echo of interest on the oscilloscope screen. In order to 

avoid the comparator pulse interfering with the echoes a switching 

circuit was used which alternately triggered the pulsed r.f. oscillator 

and the pulse comparator, and thus the echoes and the comparison pulse 

were displayed on alternate sweeps of the oscilloscope. In this way a 

direct reading in decibels of the amplitude of each echo was obtained. 

Because both the echoes and comparator pulse were passed through the 

receiver system, errors due to non-linearity of the receiver-detector 

system were eliminated. However, measurements using this method were 

slow, and the precision of the measurement was limited to the smallest 

division of the calibrated attenuation box (ldB). Another disadvantage 

was that the method required committing a second pulsed oscillator to 

the measurement system.

(c) Direct reading

If the electronic components amplify and display the signals in a 

linear way, the heights of the echoes on the oscilloscope trace may be
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measured and equation (4.6) applied directly to determine the 

attenuation. The Matec 625 receiver used in this study is claimed by the 

manufacturer to be linear to better than 0.2 dB for detector output 

levels from 4 volts to 100 millivolts (i.e. a 32 dB range). If this 

specification is true, the sensitivity of the measurement will only 

depend on the precision to which the height of a given echo can be 

measured on the oscilloscope screen. Using the graticule of the C.R.O. 

the best precision that could be obtained in the measurement of the echo 

amplitude was about 2%, which typically gave the attenuation to 1 dB. 

This was not sensitive enough to monitor some of the attenuation 

anomalies in the region of T^ and hence it was necessary to employ the 

following technique to improve the sensitivity of the measurement.

A square wave of period much longer than the time for the entire 

echo train to decay was input to the second channel of the C.R.O. and 

the oscilloscope switched so that the two inputs were added. This 

resulted in a "copy" of the original echo train being displayed on the 

trace, together with the "original" but displaced from it in the 

vertical direction by an amount proportional to the amplitude of the 

square wave. An example of the resultant pattern is shown in Figure 4.8. 

The amplitude of the square wave, which was monitored by a digital AC 

voltmeter, was varied until the top and bottom of the echo being 

measured just touch on the trace (see Figure 4.8), in which case the 

voltage read from the AC voltmeter was taken to be the amplitude of the 

echo. Precision of better than 0.1 dB has been obtained using this 

method for the measurement of the attenuation a between any two echoes.

It was found in all cases that the value of a determined by the 

pulse comparator method was consistent with the direct reading method to 

within the precision of the former. This confirmed that the receiver 

does indeed meet the manufacturer's specifications with regard to



Figure 4.8. Oscilloscope Trace Showing the Direct Reading Method of 

Attenuation Measurement. The amplitude of the square wave has been 

adjusted until the top and bottom of the third echo from the right just 

touch. The amplitude of the square wave is then equal to the amplitude 

of this echo.
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linearity. Since the direct reading method was found to be both more 

sensitive and faster than the pulse comparator method, the former was 

adopted for the measurement of attenuation as a function of temperature.

Since o was measured to a precision of 0.1 dB it was possible to 

detect small deviations of the echo train from exponential decay by 

repeating the measurement for different pairs of echoes. Even for echo 

trains that appeared to closely fit the electronically generated 

exponential decay curve (section (a) above) differences of up to 0.5 dB 

in the attenuation between different pairs of echoes were measured by 

the direct reading technique. In practice, especially for temperature 

dependent measurements, in which the quality of the bond was often a 

problem (see Chapter 6) and the echo train was not exponential, the 

procedure adopted was to monitor a for the same pair of echoes over the 

whole temperature range.

It was also observed that the amplitudes of the first few echoes 

were smaller than expected for exponential decay. This was associated 

with the dead time of the receiver following the large incident pulse. 

It was therefore desirable to avoid choosing the first few echoes to 

monitor a as a function of temperature. Unfortunately, due to the high 

attenuation at this was not always possible and in these cases care 

had to be taken to optimize the circuit in order to minimize the

recovery time.
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4.3 EQUIPMENT 

4.3.1 Overview

The circuitry necessary for velocity and attenuation measurements 

has been described above. The experimental layout is shown in Figure 

4.9. The delayed pulse generator, exponential decay generator, 

thermometer power supply and temperature controller were all built in 

the Electronics Workshop of the Department of Physics at Monash 

University.

In the early part of this study a Tektronix 585A oscilloscope was 

used but this was later replaced by the Hewlett-Packard 100 MHz 

oscilloscope shown in Figure 4.9. The oscilloscope must have very stable 

external triggering in order to achieve jitter-free overlap in the 

P.E.O. technique. In this regard the Hewlett-Packard oscilloscope was 

found to be superior to comparable 100 MHz oscilloscopes manufactured by 

Tektronix and Philips.

4.3.2 Transducers

The transducers used to introduce the plane wave into the sample 

were fine ground discs of quartz 3.175mm (0.125") in diameter, with a 

nominal resonant frequency of 10 MHz, supplied by Valpey-Fisher 

Corporation, Hopkinton, Massachusetts. X-cut transducers were used to 

generate longitudinal waves, whilst Y—cut were used for transverse 

waves. The latter had a small portion of the edge removed which 

indicated the polarization direction.

For electrically conducting samples, the sample itself serves as 

the ground electrode for the transducer and it is only necessary to 

evaporate a gold electrode onto one side of the transducer. However for 

non-conducting samples, such as CDP, co-axially gold plated electrodes 

are necessary. In order to make firm electrical contact with both



Figure 4.9. Overview of Equipment used to Measure Ultrasonic Velocity and Attenuation. (1) 

Airmec type 201 continuous sine wave generator, (2) Hewlett-Packard 1746A oscilloscope 

(100 MHz), (3) Hewlett-Packard 5245L electronic counter, (4) Arulab PG-650C pulsed r.f, 

oscillator, (5) Delayed pulse generator, (6) Matec 625 broadband receiver, (7) Probe for low 

temperature ultrasonic measurements, (^) Cryostat, (9) Rig for room temperature ultrasonic 

measurements, (10) Temperature controller, (11) Thermometer power supply, (12) Pulse delay 

box and exponential decay generator.
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electrodes of the transducer, the transducers were glued into the 

transducer holders shown in Figure 4.10 with a silver-loaded, two-part 

epoxy resin. These holders were then screwed into either the room 

temperature rig or low temperature probe (see below). In this way the 

sample could be rotated with respect to the fixed transducer, which was 

particularly useful when (a) a search was made for the most defect free 

path in the specimen to produce the best echo train, and (b) when 

rotating the specimen with respect to the Y-cut transducer in order to 

excite each one of the two possible transverse modes separately. The 

holders also protected the fragile transducers from breakage during 

handling and bonding to the specimen.

4.3.3 Room Temperature Measurements

The apparatus used to measure velocity at room temperature is 

shown in Figure 4.11. The transducer holder was screwed into the bottom 

plate (which formed the earth electrode) whilst the wire carrying the 

r.f. pulse was soldered to the central contact of the transducer holder. 

Pressure was applied to the bond via the weight of the top plate and the 

springs. A second transducer could be screwed into the top plate if two 

transducer measurements were required.

Unfortunately the laboratory in which this work was carried out 

was not air-conditioned and measurements were taken over an ambient 

temperature range of 16-26°C, although most of the measurements were 

performed in the range 18-24°C. The temperature dependence of the 

ultrasonic velocity in GDP at room temperature has been measured to be
-las large as 0.04% K for some modes (see Chapter 6), so that an error 

of up to 0.4% in the velocity due to temperature fluctuations was 

possible. Because of the limitations on accuracy discussed in section 

4.1, the size of the error due to fluctuations in the ambient
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Figure 4.10. (a) Plan View of a Transverse (Y-cut) Co-axial Quartz 

Transducer. The polarization direction is orthogonal to the flat portion 

of the edge of the transducer. The diameter is 3.175 mm.

(b) Schematic Diagram of the Transducer Holder Designed to Make Firm 

Electrical Contact with the Electrodes of the Transducer.



Figure 4.11. Apparatus for Room Temperature 

Ultrasonic Velocity Measurements.

Figure 4.12. Sample Holding Assembly for Low 

Temperature Ultrasonic Measurements.
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temperature did not justify the additional complexity involved in 

controlling the temperature of the sample. Temperature control of the 

laboratory environment to ±1 °C could reduce this error to 0.08%, but if 

better accuracy than this is required an accurately 

temperature-controlled environment for the sample would be necessary.

4.3.4 Low Temperature Measurements

(a) Low Temperature Probe

The sample holding assembly of the low temperature probe is 

illustrated in Figure 4.12 together with the copper heat shield used to 

reduce temperature gradients in the sample. The transducer holder was 

screwed into the bottom of the copper block which also contained the 

thermometers and heater. If two transducer measurements were required 

the second transducer could be screwed into the bottom plate. The 

springs kept the bond under pressure. Transmission lines consisting of 

two co-axial stainless steel tubes 9mm and 2mm in diameter were used to 

carry the r.f. pulse from the BNC connectors at the top of the probe to 

the sample assembly, and to carry the echoes back to the receiver. A 

schematic of the probe is shown in Figure 4.13.

(b) Temperature control

The probe was inserted into a double-walled, vacuum-jacketed 

cryostat, using liquid nitrogen as the refrigerant. A schematic of the 

cryostat is shown in Figure 4.14. The sample space was filled with about 

1 Torr of helium exchange gas. However, it was found that this pressure 

rose to about 10 Torr over the period of a run, presumably due to 

out-gassing of the material used to bond the transducer to the specimen. 

The cooling rate was slowed by maintaining a vacuum between the sample 

space and liquid nitrogen bath. In order to minimize temperature
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Figure 4.13. Schematic Diagram of Probe Used for Low Temperature
Ultrasonic Measurements
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gradients along the length of the sample, a copper heat shield (shown in 

Figure 4.12) was used to enclose the sample holding arrangement.

The current to a 150 ohm heating wire wound around the copper 

block was controlled by a temperature controller designed by Pickup and 

Kemp (1969), using a platinum resistor embedded in the copper block as 

the temperature sensor. The set-point temperature could be increased in 

steps as small as 10-20 mK, and the temperature stability once the 

system had come to equilibrium was 5-10 mK.

(c) Thermometry

The temperature of the copper block was measured by a four 

terminal Rosemount platinum resistance thermometer, calibrated using a 

Z-function of the type described by Yet-Chong and Forrest (1968). A 

Au-0.07%Fe versus chromel thermocouple with reference to the ice point 

was used to measure the temperature of the bottom of the sample in order 

to check for temperature gradients and to monitor temperature stability. 

A two-point calibration procedure described by Cornelius (1982) was 

used.

In order to check the thermocouple calibration, measurements were 

taken with the thermocouple embedded in the copper block next to the 

platinum thermometer over the temperature range 90-300 K. Differences of 

up to 0.5 K were noted between the two temperature measuring devices. 

The discrepancy is probably caused by an inadequacy of the calibration 

procedure to take into account variation in the composition of 

commercially supplied Au-0.07%Fe thermocouple wire. As the Z-function 

calibration is accurate to within 0.1 K (Yet-Chong and Forrest 1968) the 

absolute accuracy of the thermocouple may be assumed to be 0.5 K.

The anomalies in velocity and attenuation at T^ are very sharp 

(see Chapter 6) and since it was desired to attempt to fit an analytical
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function to these dependences it was necessary to measure temperature as

precisely as possible. For the thermocouple, a 1 microvolt change in

voltage (which was the typical limit of resolution of the

Hewlett-Packard D.V.M. used in this study) corresponded to a 0. 05 K

change in temperature at about 120 K. In order to improve the resolution 

a variable voltage from a mercury battery was used to offset most of the 

thermocouple voltage and the remaining microvolts were amplified using a 

Keithley 140 Precision Nanovolt DC Amplifier and displayed on a chart 

recorder. Resolution of 0.2 microvolts (corresponding to 0.01 K) was 

then possible. This was particularly useful in ascertaining when the 

sample had come to thermal equilibrium following a small change in the 

set-point temperature close to T^. A similar technique was applied to 

the platinum thermometer voltage output and resolution of the order of 

1 mK was obtained.

The temperature gradient across the sample was monitored by the 

difference in the temperature reading between the thermocouple (attached 

to the bottom of the sample) and the platinum resistance thermometer 

(embedded in the copper block near the top of the sample). Temperature 

gradients of up to 0.9 K were recorded, although by carefully adjusting 

the exchange gas pressure and the cooling rate this could be reduced to 

0.1 K. The measured difference proved to be remarkably constant over a 

wide temperature range, and hence the chief value in continuously 

monitoring the gradient was as an indication of the achievement of 

thermal equilibrium following a change in the set-point temperature.

(d) Experimental difficulties 

Long thermal time constants:

Thirty to fifty minutes were required to achieve thermal 

equilibrium following a change in the set-point temperature. Hence many
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weeks were required to complete a temperature run. The time consuming 

nature of the data collection severely limited the number of runs which 

could be attempted during the course of this study. As an illustration 

of the limitations that this long thermal time constant imposes, 

consider the measurement of the temperature dependence of all thirteen 

elastic constants of CDP. At least eighteen separate temperature runs 

must be performed (see Chapter 5) and if the current apparatus is 

employed this will require approximately two years of data collection! 

This unsatisfactory situation could be alleviated by either redesigning 

the sample holding assembly to reach thermal equilibrium much more 

rapidly, or by automating the measurement system to continuously monitor 

the velocity and attenuation.

Ambient temperature fluctuations:

Difficulties were encountered in ascertaining whether observed 

drifts in the monitored thermocouple and platinum thermometer voltages 

were due to genuine drifts in the sample temperature or to fluctuations 

in the ambient temperature of the laboratory environment. Fortunately, 

the resistance of platinum increases with increasing temperature whereas 

the thermocouple voltage decreases. Hence genuine sample temperature 

drift was characterized by the platinum thermometer and thermocouple 

voltages drifting in opposite directions. By contrast, drifts in the 

offset voltage of the mercury battery (which could be monitored 

independently using an appropriate DVM ) caused drifts in the platinum 

thermometer and thermocouple voltages in the same direction. However, 

ambient temperature fluctuations also caused drifts in the constant 

current supply to the platinum thermometer, and, to a lesser extent, in 

the DC amplifiers. The effect of these drifts on the monitored platinum 

thermometer and thermocouple voltages was much more difficult to trace
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than the effect of the drifting offset voltage. Therefore, on days of 

high ambient temperature fluctuations in the laboratory it was difficult 

to monitor temperature equilibrium. It is clear that an air-conditioned 

laboratory environment is necessary if future work is to be carried out 

on velocity and attenuation measurements close to T^.
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CHAPTER 5

THE ROOM TEMPERATURE ELASTIC BEHAVIOUR OF CDP

5.1 DETERMINATION OF THE ELASTIC CONSTANT MATRIX

The measurements of the ultrasonic phase velocities leading to 

a determination of the elastic constant matrix are presented in this 

chapter. As previously pointed out the elastic constants fully describe 

the elastic behaviour of a material so that once the matrix is 

determined it is possible to calculate a wide range of elastic 

properties such as the linear compressibility, Young's modulus, and the 

bulk modulus as well as constant phase and group velocity surfaces. It 

was found that these elastic properties reflect the chain and layer-like 

structure of CDP.

5.1.1 Velocity Measurements

The measured velocities are shown in Table 5.1. The wave 

displacement directions are approximate only, as in most instances the 

waves are not pure and their true displacement vectors can only be 

determined by calculation from the determined elastic constants. 

Nevertheless, experience has shown that most waves are predominantly 

either longitudinal or transverse in character and hence one may assume 

that the polarization of the exciting transducer (which is the basis for 

the approximate wave displacement directions given in Table 5.1) is a 

reasonable first approximation to the actual eigenvector.

The measurement of the velocity was repeated at least twice 

for each mode using different specimens. An exception to this was for 

propagation along [Oil]' for which the measurement was repeated by 

repolishing the sample to reduce its path length and examining a
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Table 5.1

Ultrasonic Sound Velocities in CsH2P04

No. Direction Approximate Velocity Type
of Wave Wave (103m s 1)

Propagation Displacement
with respect to xyz axes Direction

Vl 100 100 3.047±.005 Semi-Pure Longitudinal

V2 100 010 1.688±.02 Pure Transverse

V3 100 001 1.1331.01 Semi-Pure Transverse

\ 010 010 2.8781.02 Pure Longitudinal

V5 010 100 1.7881.02 Pure Transverse

V6 010 001 1.4161.002 Pure Transverse

V7 001 001 4.5401.01 Semi-Pure Longitudinal

V8 001 010 1.5861.015 Pure Transverse

V9 001 100 1.1531.003 Semi-Pure Transverse

V10 0.520,0,-0.854 0.520,0,-0.854 3.8471.006 Semi-Pure Longitudinal

V11 0.520,0,-0.854 010 1.7961.004 Pure Transverse

V12 0.520,0,-0.854 0.854,0,0.520 0.76051.006 Semi-Pure Transverse

V13 110 110 2.9821.006 Quasi-Longitudinal

V14 110 001 1.6831.003 Quasi-Transverse

V15 110 IlO 1.3071.013 Quasi-Transverse

Vl6 Oil 011 3.6221.08 Quasi-Longitudinal

V17 Oil Oil 1.9801.008 Quasi-Transverse

V18 011 100 1.4091.007 Quasi-Transverse

V19 0.252,0.588,-0.769 0.252,0.588,-0.769 3.6861.08 Quasi-Longitudinal

OCN
> 0.252,0.588,-0.769 Trans 1 2.0141.01 Quasi-Transverse

V21 0.252,0.588,-0.769 Trans 2 1.2191.009 Quasi-Transverse

CM 0.698,0,-0.716 0.698,0,-0.716 3.2171.13 Semi-Pure Longitudinal

V23 0.698,0,-0.716 010 1.7961.004 Pure Transverse

v2. 0.698,0,-0.716 0.716,0,0.698 unknown Semi-Pure Transverse

in
>* 0.925,0,0.395 0.925,0,0.395 3.1511.004 Semi-Pure Longitudinal

V26 0.925,0,0.395 010 1.5201.004 Pure Transverse

V27 0.925,0,0.395 0.395,0,-0.925 0.831.03 Semi-Pure Transverse



The quoted errors in Table 5.1 reflect variations between measurements 

of the same mode on different specimens.
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different section of the crystal. In general the consistency in the 

velocity between the different measurements was within ±1 r.f. cycle 

(~ 1-2%). However, in some cases, particularly for semi-pure modes, the 

velocity data from different measurements of the same mode were 

consistent to between 0.2-0.6%. INSERT

5.1.2 Density Determination

The density used in the calculations was obtained by hydrostatic 

weighing in chloroform at 20°C and found to be p = 3.22 ± 0.04 g cm 

which corresponds well to the value given by Rashkovich et al. (1977) of 

3.24 ± 0.01 g cm-3. The X-ray density, computed from the unit cell

data given by Uesu and Kobayashi (1976) is 3.27 g cm-3 which also agrees 

well with the value of 3.22 g cm-3.

5.1.3 Method of Calculation 

(a) Pure modes

Direct, simple relationships between measured velocities and

elastic constants are only possible for C22» C66 and . These 

constants are related to the velocities of the pure modes propagating 

along each of the Cartesian axes by the equations,

C22 "O
 < 

-T
 N
3

II 26.67 ± 0.37 GPa (5.1)

C66 = pvf = 9.17 ± 0.22 GPa (5.2)

C44 " PV8 = 8.10 ± 0.15 GPa (5.3).

The quoted uncertainties include the errors in the velocity

determination, but not the error in the density. This is because all

the calculations could be performed in terms of C^j/p, so that the 

density is, computationally speaking, merely a scaling factor for the 

elastic constant matrix.
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For waves propagating along a direction in the xz plane, say 

[£,o,n]', one mode is pure transverse. Its velocity is related to C45 

by
pVll ' £2C66 " n2C44

-2.25 ± 0.31 GPa (5.4).
*t6 2n£

The two pure transverse waves propagating along the b axis 

provide cross checks on the elastic constants thus far determined. The 

relationships are:

pV| + pV§ - C„ + C66 (5.5)

and C26 - C66 - pV| pV| (5.6).

On substituting the numerical values the left and right hand 

sides of (5.5) agree to within 3%, which is well within experimental 

error. The numerical agreement of the left and right hand sides of 

(5.6) is 24%, which, although much larger than for that (5.5), is still 

within experimental error. The latter error is large because the small 

value of corresponds to subtracting nearly equal terms on the right

hand side of (5.6).

(b) Semi-pure modes

The semi-pure

directions provide four

cll» C55, C33, C15 and C

modes propagating along the [100]' and [001]'

equations relating the five unknown constants

35. For the [100]' direction the equations are:

cn + C55 - p(V2 + V2) = 34.03 ± 0.19 GPa (5.7)

and C11 C55 “ C15 pV2 pV2 = 123.6 ± 2.7 (GPa)2 (5.8)

and for the [001]' direction:

C33 + C55 P(V2 + V|) = 70.65 ± 0.29 GPa (5.9)

and C33 C55 “ C35 PVy V| = 284.1 ± 2.8 (GPa)2 (5.10).
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The semi-pure modes for propagation along [£,o,n]' provide the 

necessary fifth equation given by 

*2 C11 + C55 + n2C33 + 2*n(C15 + C35) = PVio + PV12

= 49.51 ± 0.18 GPa (5.11)

where £2 + n2 = 1.

Whilst it is possible (but tedious) to solve (5.7)—(5.11) 

analytically, it is more convenient to solve these equations numerically 

using a generalized Newton—Raphson algorithm (Carnahan et al. 1969). 

The system was found to converge to two separate solutions, depending on 

the starting values of the variables. One solution has been rejected as 

unphysical, as, on substituting this set of elastic constants back into 

the eigenvalue equation XA = pV2A it was found that the eigenvector 

corresponding to the fastest mode (i.e. the quasi-longitudinal wave) is 

polarized close to 90" to the propagation direction.

The errors in Cn, C55, C33, C15 and C35 were calculated by 

varying the right hand side of (5.7)—(5.11) by plus or minus the quoted 

error for all possible permutations and noting the maximum and minimum 

values of the constants which emerge when the equations are solved. 

This is considered to be a more realistic estimate of the error than 

would be obtained by solving (5.7)—(5.11) analytically and summing all 

possible maximum errors. In the latter case the errors calculated are 

unreasonably large, as no account is taken of the self-consistency 

requirements which do not allow worst case errors to occur independently 

of one another.

The value of C13 may be calculated from the constants 

calculated above and the velocities of the semi-pure modes propagating 

along [£,o,n]' by the equation



105 -

[ C1 5 + n^Cgg + £tl(C^g + Cgg)]2

- [i.2Cu + n2C55 + 2n£C15][£2C55 + n2C33 + 2n£C35]

- p V20 p V22 = 88.75 ± 0.84 (GPa)2 (5.12).

There will be two solutions for C13 depending on whether the

positive or negative square root is taken in (5.12). Once again one

solution has been rejected as unphysical on the criterion that the

quasi-longitudinal wave travels faster than the quasi-transverse wave 

and is polarized closer to the propagation direction.

(c) Non-pure modes

To obtain C12, C25 and C23, the velocities in the [110] ' and 

[Oil]* directions were measured. None of the waves in these directions 

are pure. The solution to the secular equation (2.12) requires, for the 

[110]' direction:

C11 + c66 ” 2PV2 C12 + C66

C12 + C66 C22 + C66 ~ 2pv2

C15 + C46 C25 + C46

C15 + C46

C25 + C46

C55 + C44 2pV2

= 0 (5.13)

and for the [Oil] ' direction:

C66 + C55 - 2pv2 C46 + C 25

C46 + C25

C46 + C35 C44 + c23

C46 + C35

C22 + C44 - 2pV2 C44 + C23

C44 + C33 - 2pV2

= 0 (5.14)

The properties of the roots (Spiegel 1968) of the cubic 

equations (5.13) and (5.14) respectively provide relations that may be 

used as internal consistency checks. These relations are for the [110]'

direction
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2P<vf3 + V15> " ■'ll + C,„ + 2Ccc + C55 + C'22 '66 '44 (5.15)

and for the [Oil]1 direction

2p(Vj6 + Vf7 + V2„) - C66 + C55 . 2C„ + C22 + C33 (5.16).

On substituting the values of the constants so far determined 

the left hand side and right hand side of (5.15) and (5.16) agree to 

within 0.7% and 0.2% respectively which is well within experimental 

error. The properties of the roots of the cubic equations (5.13) and 

(5.14) provide four equations relating the three remaining unknowns 

(c12+C66)» (C25+C46^ and (C23+C44^* The equations are for the [110]*

direction
(Ci2+C66)2 + (C25+C46)2

= (C11+C66)(C22+C66) + (C1i+C66)(C55+C44) + (C22+C66)(C55+C44) 

-(Cis+C4g)2 - (2P)2 (V2,V2, + + V^V^) (5.17)
and
^C55+C44^C12+C66^2 + ^C11+C66^C25+C46^2

- 2(C12+C66)(C15+C46)(C25+C46)
- (Cn+C66><C22+C66><C55+C»V " <2» ’LX2" V15>

- (^22*l"^66^^15+^46^2 (5.18).
For the [Oil]* direction the corresponding relationships are

(C23+C44)2 + <c25+c46)2

= (C66+C55)(C22+C44) + (C66+C55)(C41|+C33) +(C22+C44)(C44+C33)

-<C,6+C35)Z - <2p>2 <v26V2, 4. V27V2, + V26»2e>

and
(C66+Cg3)(C23+C44)2 + (C44+C33)(C46+C25)2

~ 2(C46+C25)(C46+C35)(C44+C23)
■ <C66+C55)(C22+C»4)<C44+C33) " <2» v2,6)<2p V217><2|> V?3>

- (C22+C44X('35+ci|6)2 (5.20).
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The right hand sides of (5.17)-(5.20) are functions of the 

elastic constants already determined, so that it is possible to plot 

(ci2+c66) versus (C25+C46) using equations (5.17) and (5.18) and 

(C23+C44) versus (C25+C46) using equations (5.19) and (5.20). The 

plots, shown in Figure 5.1, indicate that there are two sets of distinct 

solutions for the unknowns for each pair of equations. The variable 

(C25+C46) is common to all four equations and appears on the y axis of 

both graphs in Figure 5.1. Figure 5.2 shows a region of intersection of 

the curves in more detail, and from this plot the solutions were 

estimated to be

Equations (5.17) and (5.18) Equations (5.19) and (5.20)

Set 1 Set 2 Set 1 Set 2

(GPa) (GPa) (GPa) (GPa)

C12 + C66 = ± 20.5 ± 21.4

C25 + C46 = ± 6.2 + 1.3 ± 5.8 + 1.7

C23 + °44 = ± 22.7 ± 23.4

The graphic mode of solution has two drawbacks. Firstly it

was impractical to estimate the uncertainties in C12, C25 and C23 by 

using the permutation technique of the errors that had proved successful 

previously for equations (5.7)-(5.11), and secondly only two equations 

at a time could be considered so that a different value for (C25+C46) 

emerged depending on which pair of equations was used.

These drawbacks were avoided by solving equations (5.17), 

(5.18) and (5.19) simultaneously by a Newton-Raphson algorithm. As 

expected the system converged to two sets of solutions depending on the 

starting values of the variables. The solutions were checked by 

substitution into equation (5.20) which yielded consistency of right and 

left hand sides of better than 0.7%. The two pairs of solutions were
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-30 -20 -10 0 10 20 30

c12 + c66 (GPa)

<-> -10

-30 -20 -10 0 10 20 30

^23 * G/,/, (GPa)

Figure 5.1. (a) Plot of (C25 +C46) versus (CJ2 +C66> according to 

equations (5.17) (solid line) and (5.18) (broken line).

(b) Plot of (C25 +C46) versus (C23 according to equations (5.19)

(solid line) and (5.20) (broken line'
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C12+C66(broken l,ne) C23*'C44 (solid line)
(GPa)

Figure 5.2. The Intersection Region of Figure 5.1 Shown in More Detail.
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Set 1 Set 2

(GPa) (GPa)

C12 + c66 ± 20.6 ± 21.4

C25 + C46 ± 6.1 + 1.3

C2 3 + c44 ± 22.6 ± 23.4

which are in good agreement with the graphical results.

An attempt to calculate the errors in C12, C25 and C23 by 

solving the equations for all the possible permutations of plus or minus 

the quoted errors in Cjj, C22, C33, C44, C55, C66, C13, C15, C35, C46

and the measured velocities V13...... V18 was unsuccessful. For most

permutations of the errors the system of equations (5.17)—(5.20) no 

longer converged, as the internal consistency requirements of (5.15) and 

(5.16) were no longer satisfied. The uncertainties in C12, C25 and C23 

quoted above were calculated by restricting the errors in the velocities 

so that the left and right hand sides of (5.15) and (5.16) agreed to 

within 1% for all permutations of the errors in the velocities. In

this case the system of equations (5.17)-(5.20) converged for most error 

permutations except those extreme cases for which all the errors were 

either added or subtracted. After substituting the previously 

determined constants C66, C46 and C44 the results were

Set 1 Set 2

(GPa) (GPa)

iiCM

U ± 11.4 ± 3.6 ± 12.2

IIinCM
O ± 8.4 ± 4.3 ± 0.95

c2 3 _ ± 14.5 ± 4.4 ± 15.3

Two of the above solutions (the negative

rejected as unphysical by a consideration of the eigenvectors as 

described above. This still leaves two distinct solutions, and although 

the eigenvectors corresponding to each solution are different, both are
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physically quite reasonable. Clearly, the choice of solution has little 

effect on the value of C^g and Cgg, but the value of Cg5 is radically 

changed. In order to differentiate between these solutions the velocity 

in a further general direction [0.252, 0.588, -0.769]' was measured.

The criterion
21 (Vcalc1 * V2

*19-21 ‘

where V are the velocities calculated for the [0.252, 0.588, -0.769]'
calci

direction from the elastic constants, was used as a measure of the 

goodness of fit of the data. The first solution gives an R value three 

times smaller than for the second solution and has therefore been 

adopted. The criterion

18 t’calcj ‘ V2

*1-18 ‘

has been calculated and a value of 1.8 x 10~3 obtained. This compares 

very favourably with the value of R obtained by Krupnyi et al. (1972) in 

their calculations for some monoclinic organic crystals. However, they 

found it necessary to employ a least squares error function to refine 

the elastic constants in order to reduce their value of R to less than 

10-2. This procedure resulted in their final value for C22 being lower 

than the directly measured value. No physical justification was offered 

by them for modifying a directly measured quantity as a result of 

numerical calculation.

The complete elastic constant matrix is given in 

Table 5.2. The inverse of the elastic constant matrix was calculated to 

give the elastic compliance matrix S which is also listed in 

Table 5.2. Quantities discussed in the following section, such as bulk 

modulus and linear compressibility, are calculated in terms of these
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Table 5.2

Elastic Constants of CsH2POlt at 21 ± 5°C

ij C (GPa) S±j (GPa)

11 28.83 ± 0.43 1.82

22 26.67 ± 0.37 0.103

33 65.45 + 0.48 0.772

44 8.10 ± 0.15 0.133

55 5.20 ± 0.24 0.450

66 9.17 ± 0.22 0.117

12 11.4 ± 3.6 -0.219

13 42.87 ± 1.58 -1.17

15 5.13 ± 0.67 0.249

23 14.5 ± 4.4 0.138

25 8.4 ± 4.3 -0.150

35 7.50 ± 0.81 -0.181

46 -2.25 ± 0.31 0.033

The C . were calculated using a density of 3.22 g cm 3 at 20°C.
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5.2 CALCULATION OF THE ELASTIC PROPERTIES

5.2.1 Wave Velocity Surfaces

Using the values of the C^ matrix in Table 5.2, the wave 

velocity for any propagation direction can be calculated using equations 

(2.10) and (2.11). Figures 5.3(a), (b) and (c) are polar plots of 

velocity versus propagation direction for propagation vectors in the xy, 

xz, and yz planes.

It is immediately obvious that, for propagation directions in 

the xy and yz planes, the wave velocity is quite isotropic. This stands 

in very marked contrast to the plot for the xz plane (Figure 5.3(b)), 

which displays very marked anisotropy, particularly for the semi-pure 

transverse (SPT) mode with the smallest velocity. The calculations 

predict a minimum in the velocity of this mode of 0.290 x 10 ms for 

propagation directions making angles of 38° and 140° to the x axis. 

This is a remarkably low value. For comparison, Sil'vestrova et_ al. 
(1975) have reported a value of 0.347 * 103 m s-1 for the velocity of a 

transverse wave propagating in the yz plane in Calomel, which they 

claimed to be the "lowest value" measured for crystals at that time. It 

should be pointed out, however, that Sil'vestrova et_ al. actually 

determined this value experimentally whilst the value of 

0.290 x 103 m s-1 is calculated from the determined elastic constants.

In an effort to check the unusual predictions arrived at from 

the calculations, an attempt was made measure the velocity of each of 

the three modes for other propagation directions in the xz plane. For 

all propagation directions in this plane, one mode is pure transverse 

(FT), having a polarization vector parallel to [010]'. The other two 

modes are semi-pure, having polarization vectors of the form [n 0 -£]' 

and [ Z 0 n] '. For propagation at 134° to the x axis the measured pure



Figure 5.3. Polar Plots of the Calculated Phase Velocity for the (a) xy, (b) xz and (c) yz 

Planes, together with the Absolute Value <£ of the Deviation Angle between the Ray and 

Propagation Vectors (d)—(f), (where 0 is measured in the same sense given in the 

corresponding polar plot), and the Corresponding Polar Plots of the Ray Velocity (g)—(i). The 

solid circles show the measured velocities actually used in the calculations. The triangles 

represent the measured velocities for the two pure transverse (PT) waves propagating parallel

to the b axis and are used as a cross check. The open circles show other measured velocities 

in the xz plane.
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transverse velocity agrees very well with the predicted value. The 

semi-pure transverse mode (SPT), with a predicted velocity of 

0.363 x 103 m s , could not be generated at all. It was found on 

rotating the crystal with respect to the transverse exciting transducer 

that the pure mode decreased in amplitude as expected, but that no other 

mode could be detected. Similar difficulties were encountered for the 

measurements of V12 (Table 5.1), although in that case a weak mode could 

be detected. It was also noted that this semi-pure transverse mode 

could be generated by a longitudinal transducer.

The failure to observe the very low velocity mode is not 

unexpected as such a mode would be expected to be heavily damped 

compared to the faster modes. However, as can be seen from 

Figure 5.3(b), the measured velocity of the semi-pure longitudinal mode 

(SPL), which is strongly propagated, is significantly smaller than the 

predicted value in this direction. Similar results were obtained for 

propagation at 23° to the x axis, in that the measured pure mode 

velocity is very close to the predicted value and the semi-pure 

longitudinal wave velocity is significantly less than the predicted 

value. In this case, the semi-pure transverse wave could be detected, 

but it was very weakly propagated and only a rough estimate of its 

velocity could be obtained (V = 0.83 x 10 ms ).

The discrepancy between the measured and calculated values of 

this semi-pure longitudinal mode suggests that the severe damping of the 

semi-pure transverse mode influences the longitudinal mode as well. The 

formulation of the equation of motion assumes an infinite lossless 

medium and therefore does not include any damping term. Normally, the 

introduction of such a term should have little or no influence on the 

velocities. However,if the damping is sufficiently severe so as to 

almost stop one mode from propagating at all, the nature of the
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eigenvalue equation can be expected to change, since the dimensionality 

of the problem would effectively be reduced from 3 to 2. There is a 

need for further investigation of the effect that a severe damping term 

for one mode will have on the other measured velocities.

5.2.2 Ray Directions

For each direction of propagation there are three associated 

wave modes, each with a different velocity, polarization and ray energy 

propagation direction. Figures 5.3(d), (e) and (f), show plots of the 

magnitude of the absolute angle between the ray direction and the 

propagation direction, calculated using equation (2.25), for the xy, xz 

and yz planes.

Deviation angles of up to 70° are not unusual (see for example 

Neighbours 1973). The plots for the xy and yz planes show that there 

are no accidental pure modes of propagation, since the deviation angle 

only goes to zero for propagation along the b axis, which is demanded by 

symmetry. Once again the plot for the xz plane is very peculiar. The 

deviation angle for the semi-pure transverse mode increases rapidly for 

propagation off the x axis, reaching a value of 73° at 30° from the 

x axis. With further displacement, the deviation angle decreases 

abruptly to a value of 14° at 38° from the x axis and then abruptly 

increases. Similar behaviour occurs for propagation directions about 

140° to the x axist. Note that the minima in the calculated velocities 

of this mode occur for the same propagation directions. The sharpness 

of the dip is striking. In the region of the anomalies the deviation 

angle changes by about 38° for a 1° change in propagation direction. 

Calomel (Sil'vestrova ^ _al_. 1975) displays similar behaviour for the

t The eignevectors in the xz plane are well behaved and do not deviate 
from pure mode behaviour by more than 17°.
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transverse mode, the velocity of which has a minimum value of 

0.347 x 103 ms1 for propagation at 45° to the x axis in the xy plane.

The deviation angles for the measured velocities (V22 ~ V27) 

in the xz plane can be read from Figure 5.3(e). It can be seen that the 

mode propagating at 134* to the x axis has a deviation angle of 76°. It 

is therefore not unexpected that this ray was unobserved since it must 

reflect off the sides of the crystal many times during its round trip. 

The mode at 23* has a smaller deviation angle, viz., 69° and was weakly 

observed. The mode at 121.3° (V12) has a deviation angle of 64° and

was clearly observed.t

In order to test these conclusions, measurements of the 

velocity for propagation at the angles in the xz plane at which the 

minima in velocity and deviation angle occur (viz. 38° and 140°) would 

be desirable. However, such measurements would require the crystal to 

be aligned very precisely as even small errors in alignment will lead to 

large changes in the deviation angle. The crystal would also have to be 

of excellent quality as a mosaic spread of even 1° will lead to a gross 

divergence of the beam. Finally, even if the beam were propagated 

without a large divergence, the very low value of velocity for this mode 

will probably be accompanied by a high value of attenuation, making the 

mode difficult or impossible to observe experimentally.

Using equation (2.20), the group (or ray) velocity may be 

calculated as a function of propagation direction. Polar plots of the 

ray velocity versus propagation direction for propagation vectors in the 

xy, xz and yz planes are shown in Figure 5.3(g), (h), (i). The plots 

may also be deduced by dividing the phase velocity for a given

t It should be recalled that the number of reflections off the side 
walls of the crystal will depend on the tangent of the deviation 
angle. Thus a deviation angle of 76° (tan 76° = 4.01) will result in 
about twice as many side wall reflections as a deviation of 
64° (tan 64° = 2.05).
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propagation direction (Figure 5.3(a), (b), (c)) by the cosine of the 

deviation angle for that direction (Figure 5.3(d), (e), (f)). (see 

equation (2.24)) As expected the ray velocity is greater than or equal 

to the wave velocity for any propagation direction. The plot for the xz 

plane once again displays marked anisotropy. The minimum in the ray 

velocity of 0.299 x 103 m s_1 occurs, not surprisingly, for propagation 

at 38° to the x axis in the xz plane. Thus for this propagation 

direction energy associated with the SPT mode travels very slowly 

through the crystal. The slow energy transfer would tend to be 

associated with large values of absorption. This is consistent with 

previous comments as to why this mode is not easily observed 

experimentally.

5.2.3 Bulk Modulus, Linear Compressibility and Young's Modulus

The bulk modulus of CsH2P04 was calculated using the 

relationship B = (S^ + S22 + S33 + 2(S12 + S23 + S13)) (Nye 1967). 

A value of 5.28 GPa was obtained using the matrix calculated by 

taking the inverse of the C matrix in Table 5.2. An attempt was made 

to calculate the error in the bulk modulus by adding all possible 

permutations of the errors to the values of C before inverting the 

matrix. However, for most permutations of the errors, especially those 

involving extreme cases where all the errors were either added or 

subtracted, the C matrix ceased to be positive definite. Positive 

definiteness is the mathematical consequence of demanding a positive 

strain energy for lattice stability. Thus a C matrix which is not 

positive definite cannot describe the elastic properties of any real 

material. Hence those error permutations for which the C matrix is 

not positive definite may be rejected as unphysical.



119 -

When the calculation was performed using only those error 

combinations for which the matrix was positive definite, the bulk 

modulus was found to lie in the range 0.9 - 16.5 GPa. This large 

uncertainty is due to ignoring the fact that constants are coupled in 

such complicated ways that the quoted errors cannot occur independently. 

A more sophisticated error calculation system is required - possibly a 

Monte-Carlo method of assigning the value of to be used as a 

normally distributed variable with mean and standard deviation equal 

respectively to the values and errors given in Table 5.2.

The value of B is remarkably small. For comparison, the bulk 

moduli for some other materials are shown in Table 5.3. These values 

have been calculated using the elastic constants given in the listed 

references. Note that Calomel, whilst displaying some similar 

anisotropic features to CDP in the behaviour of the velocity and ray 

directions, nevertheless has a value of bulk modulus comparable to the 

other crystals listed.

Since CDP displays a chain-like structure it is of interest to

calculate the linear compressibility K , which is the strain response£mn
of the crystal along a given direction [£,m,n]', to the application of 

hydrostatic pressure. For a monoclinic system the expression is (Nye 

1967)

^ = (S 11 + Sj2 S ^ g) C S ^2 $22 3

+ (S13 + S23 + S33)n2 + (S15 + S25 + S35)in.

A plot of linear compressibility versus direction in the xy, 

xz and yz planes is given in Figure 5.4. Note how the compressibility 

along the x axis is twenty times larger than that along the y axis, and 

that the compressibility along the z axis is negative. Thus when 

hydrostatic pressure is applied to CsH2P04 the crystal responds by 

contracting along the x axis and expanding along the z axis. By
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Table 5.3

Bulk moduli for selected crystals

Crystal Class Bulk Modulus Reference

(GPa)

CsH2P04 Monoclinic 5.28 This paper

kh2po4 Tetragonal 27.3 Fritz (1976)

Potassium Tartrate Monoclinic 16.8 Aleksandrov (1958)

nh4h2po4 Tetragonal 20.1 Fritz (1976)

CsSCN Orthorhombic 13.2 Irving et al. (1983)

Calomel Tetragonal 18.0 Sil'vestrova et al. (1975)
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planes, with 6 measured as in Figure 5.3.



122 -

comparison the length change along the y axis is small. This further 

demonstrates the marked elastic anisotropy of CDP.

Finally, the central sections of the Young’s modulus surface 

on the xy, xz and yz planes were calculated and are shown in 

Figures 5.5(a), (b) and (c). In Figure 5.5 the radius vector is

proportional to the value of Young's modulus for that direction. The 

curves were calculated from the expression (Nye 1967)

Y = £4Sn + 2£2m2S12 + 212n2S13 + 2£3nS15 

+ m4S22 + 2m2n2S23 + 2£m2nS23 

+ n4S33 + 2£n3S33 + m2n2Sltit + 2£m2nSltg 

+ £2n2S33 + £2m2Sgg .

Young's modulus gives a measure of the 'stiffness' of the 

crystal to a uniaxial stress applied along the direction of interest. 

Once again the elastic behaviour is clearly very anisotropic.

5.2.4 Debye Temperature

The Debye temperature was estimated using the elastic 

constants of Table 5.2 to be 134.5 K for Avogadro's number of ions. The 

calculation was kindly carried out by Dr J.G. Collins of National 

Measurement Laboratory, C.S.I.R.O. Division of Applied Physics. The 

value is consistent with an estimate given by Sporl et al. (1984) of 

(140±10) K from thermal conductivity data.

5.3 RELATIONSHIP TO CRYSTAL STRUCTURE

Much of the elastic anisotropy in CDP originates from the 

extremely low velocity predicted for the semi-pure transverse mode for 

propagation in the xz plane at 38° and 140° to the x axis. This anomaly 

results in the sharp dip for the deviation angle between ray and wave 

normals for these propagation directions. It also results in the very
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Figure 5.5. Central Sections of the Young’s Modulus Surface for the 

(a) xy, (b) xz, and (c) yz planes in CDP. The magnitude of the radius 

vector is proportional to the value of Young’s modulus.
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low value for the bulk modulus, and the large anisotropies in Young’s 

modulus and the linear compressibility. The following qualitative 

explanation is suggested, in terms of the known crystal structure of 

CDP, as to why this mode should behave anomalously.

As previously noted, CDP consists of (100) layers of hydrogen 

bonded PO^ groups, the layers being held together by electrostatic 
attraction to the Cs+ ions. A projection of the structure onto the 

(010) plane is given in Figure 5.6(a) based on the atomic positions 

given by Uesu and Kobayashi (1976) and Matsunaga et al. (1980). The 

H2 hydrogen links 03-03 and 04-04 groups to form the PO^ chains along 

the b axis. The HI hydrogen cross links the chains to form the (100) 

layers.

Uesu and Kobayashi (1976) point out that nearly linear chains 

of Cs and P ions are formed along the [101] direction with an 

interatomic distance of 4.03A. However, it is evident from Figure 

5.6(a) that this is an error and that the chains with close to this 

interatomic distance lie along the [101] direction. It is also seen in 
Figure 5.6(a) that there are nearly linear chains of P-01, Cs+, P-01 

groups along the [101] direction where the Csj- Pj separation is 5.46A 

(with an oxygen intervening) and the Csj- P2 separation is 5.01A (with 

no intervening atoms). Uesu and Kobayashi (1976) point out that these 

distances are considerably longer than the K-P distance of 3.49A in KDP.

If we consider a wave propagating in the xz plane at 38° to 

the x axis, the eigenvectors for this direction can be calculated by 

solving the eigenvalue equation (2.10). The eigenvectors lie in the 

xz plane and make angles of 39.9* (semi-pure transverse) and 50.1* 

(semi-pure longitudinal) to the x axis as shown in Figure 5.6(b). The 

third mode is pure transverse and has polarization parallel to [010]. 

The semi-pure transverse polarization is approximately parallel to the
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Longditudinal polarization

Transverse polarization

Figure 5.6. (a) Projection of the Structure of CDP onto the ac Plane. 

The disordered hydrogen H2 forms the chains of PO^ tetrahedra up the b 

axis, whilst the ordered HI cross-links the chains. The nearly linear 

chains of Cs and P atoms can be seen along the [101] and [101] 

directions, (b) Direction of Transverse and Longitudinal Polarization 

for a Mode Propagating at 38° to the x axis in the ac Plane.
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[lOl] direction and makes an angle of only 1.4* with the direction 

joining Csj and P2 .

Since there are no intervening atoms between Cs1 and P2 and 

since the eigenvectors are constrained to lie in the xz plane, the force 

constants associated with this mode may be expected to be small due to 

the comparatively very large nearest neighbour separation. It is also 

noteworthy that the particle vibration direction shown in Figure 5.6(b) 

is roughly (to within 5°) parallel to the projection of the 03-H2-03 

hydrogen bond onto the xz plane. This bond is expected to be quite 

compliant as this hydrogen is disordered in the room temperature phase. 

As a consequence of both these factors the velocity may be expected to 

be correspondingly small for this mode.

Irrespective of the above explanation, the correspondence of 

the transverse polarization for the mode propagating at 38* to the 

x axis to the linear Cs-P arrays and the 03-H2-03 hydrogen bond 

direction seems unlikely to be coincidental. It is unfortunate that 

this mode is not more easily observed experimentally, for the response 

of the velocity of this mode to temperature through the ferroelectric 

ordering would be very interesting.

It has also been observed by Uesu and Kobayashi (1976) that 

nearly linear arrays of Cs and P atoms also occur along the [0, ±1, 1] 

directions with a comparatively large Cs-P separation. However, in this 

study, it was observed that in the yz plane the velocity of all modes is 

very isotropic, showing none of the peculiar effects of the xz plane. 

This difference may be accounted for by recalling that, for propagation 

in the xz plane, the eigenvectors are constrained by symmetry to lie in 

that plane, whereas for propagation in the yz plane no such restriction 

applies and, in fact, the eigenvectors lie considerably out of the 

plane. Thus the force constants for this mode will not necessarily be
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determined by the comparatively large Cs-P interatomic distance within 

the yz plane.

The anisotropy of the linear compressibility and of Young's 

modulus is related to the layer and chain structure of CDP. The maximum 

in the value of the linear compressibility and the corresponding minimum 

in the value of Young's modulus for the x axis direction correspond to 

the weak bonding between the (100) layers. Under hydrostatic pressure 

these layers are forced closer together. The corresponding expansion 

along the c axis may be explained by a small rotation of the PO^ 

tetrahedron, (possibly caused by repulsion between the 01 and 02 atoms 

of adjacent layers) which results in an elongation of the hydrogen 

bonded c axis chain. Selenium and Tellurium are examples of other 

chain-like materials which have negative linear compressibility parallel 

to the chain axis (Munn 1972). Under uniaxial stress, however, the 

bonding in the c axis chain is only about as strong as the interlayer 

bonding (Figure 5.5(b)).

It is surprising that the b axis bonding is so much stronger 

than that for the c axis (Figure 5.5(c)), especially in view of the 

disordered state of the hydrogen bonds linking this chain. This may be 

explained by noting that these hydrogen bonds lie nearly parallel to the 

a axis, so that compression of the b axis chain would involve a bending 

of the bond, rather than a compression of the double well potential 

along its axis. The strength of the b axis bonding is consistent with 

the findings of Frazer £t_ £l. (1979) that the correlation length along 

the b axis is much longer than those along the a and c axes.

The very strong anisotropy for Young's modulus in the xz plane 

(Figure 5.5(b)) is correlated to the anomalous semi-pure transverse mode 

discussed above. The maxima in Young's modulus (at 54° and 131* to the 

x axis) occur for directions which are almost parallel to the semi-pure
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longitudinal polarization for wave propagation directions for which the 

semi-pure transverse mode has its minimum velocity. Thus the crystal is 

stiffest at right angles to the [101] Cs-P chains (see Figure 5.6).

Finally, as mentioned in the introduction, most of the studies 

on CDP to date have focussed on the comparison between the transition 

mechanism in pseudo-one-dimensional CDP, and the more familiar 

3-dimensional KH2P0lt. The plots of Young's modulus for KHg P0i+ 

(calculated from the elastic constants quoted by Fritz (1976)) for the 

xy and yz ( = xz) planes (Figure 5.7) indicate clearly that the very 

anisotropic elastic behaviour in CDP is absent in the case of KH2P(\. 

In particular it is obvious that the elastic behaviour for the 

ferroelectric z axis in KH^PO^ is not very different from that for the 

other axes, in contrast to CDP for which the ferroelectric b axis is 

much stiffer than the a and c axes.

5.4 SUMMARY

The elastic constant matrix of CsH2P04 has been determined via 

ultrasonic velocity measurements. Significant anisotropy in the elastic 

constants was found. In particular, calculations using the determined 
matrix predict a very low velocity of sound (0.290 x 103 ms1) for the 

semi-pure transverse mode propagating in the xz plane at 38° to the 

x axis. This could not be confirmed experimentally due to the failure 

to propagate the mode. As the polarization direction for this mode is 

almost parallel to the linear Cs-P chains with a large (5.01A) nearest 

neighbour separation and to the direction of the disordered hydrogen 

bond, its low velocity is attributed to the relatively weak forces 

acting in this direction.
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SOGPa

Figure 5.7. Central Sections of the Young's Modulus surfaces for the 

(a) xy and (b) yz planes in KHgPO*. The magnitude of the radius vector

is proportional to the value of Young's modulus.
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The significant anisotropy found in Young's modulus and the 

linear compressibility reflect the weak forces between the (100) layers 

and show clearly that even in the paraelectrlc state the bonding along 

the b axis chain is different from that along the c axis. Hence, the 

one-dimensional chain-like structure of GDP reveals itself, not only in 

the critical phenomena, but also in the static elastic behaviour at room 

temperature.
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CHAPTER 6

INVESTIGATION OF THE FERROELECTRIC TRANSITION 

6.1 INTRODUCTION

This chapter reports investigations into the temperature 

dependences of the ultrasonic velocity and attenuation, thermal 

expansion coefficient and the dielectric constant near the ferroelectric 

phase transition.

Ultrasonic studies in the critical region can provide valuable 

information regarding the nature and mechanism of the phase transition 
(see for example Lttthi and Rehwald, 1981 and Garland, 1970). In 

particular, the nature of the dominant interactions in the system may be 

deduced from the functional form of temperature dependences of the 

ultrasonic velocity and attenuation anomalies. In this regard two papers 

appeared during the course of this study which both reported studies of 

the transition in CDP using ultrasonic measurements, but with 

conflicting conclusions. Yakushkin et al. (1981) (hereinafter cited as 

Y81) found that the ultrasonic velocity and attenuation anomalies for 
the ferroelectric b axis could be described by (T-T^) ® type dependences 

for which the critical indices were found to be unusually large. They 

also found that the velocity anomalies along the x and z axes could be 

represented by the usual critical exponent of 0.5 but that the 

transition region extended over a much broader temperature range than 

they expected for normal ferroelectrics. On the basis of their analysis 

they concluded that the normal long-range, 3-D, dipole-dipole 

interaction is absent in CDP and that the behaviour of the system is 

similar to one in which short-range interaction forces are dominant.

By contrast, Kanda et al. (1983) (hereinafter cited as K83) found 

that the critical anomalies are described by a log (T-Tq) type 

dependence (where Tq was determined from a Curie-Weiss fit to the
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simultaneously measured dielectric constant). On the basis of their 

measurements they concluded that the usual dipole-dipole interaction is 

dominant. In this chapter, the results of this work are compared to the 

findings of the above-mentioned papers, and suggestions are made to 

account for the differences in the observed behaviour. Although the 

quality of the data collected was not sufficient to allow a complete 

analysis to be carried out, there is evidence to suggest that as T -► T 

there is a cross-over between regions dominated by different types of 

interaction forces.

Dielectric measurements, undertaken as an adjunct to the 

ultrasonic measurements on CDDP, convincingly showed such a cross-over 

between a region close to dominated by 3-D dipole-dipole interactions 

and a region further away from T^ dominated by 1-D type interactions.

The thermal expansion measurements also helped to elucidate the 

transition mechanism via a calculation of the Grimeisen parameters. It 

was found that close to T^, GDP behaves as a "uniaxial" crystal whose 

the rmo dynamic properties are dominated by the b axis Gruneisen 

parameter. This is consistent with the known 1-D nature of the ordering 

in GDP.

6.2 VELOCITY AND ATTENUATION MEASUREMENTS AS A FUNCTION OF TEMPERATURE

6.2.1 Introduction

Small changes in velocity and attenuation as a function of 

temperature were monitored using the pulse-echo-overlap technique 

described in Chapter 4. The absolute velocities at room temperature 

extracted from the plots in this chapter may differ by one r.f. cycle of 

overlap from the values given in Table 5.1. The discrepancy is due to 

the fact that the accurate room temperature determination of velocity 

for a particular mode was not always completed before the temperature
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dependent measurements were undertaken. However, since relative 

precision, rather than absolute accuracy, was required for the latter, 

the determination of the correct cycle for cycle match was not 

important, provided that the same overlap condition was maintained 

throughout a series of measurements.

Since corrections due to losses in the bond have not been applied 

to the measured value of attenuation, the attenuation coefficient has 

been plotted as dB/echo rather than dB/cm, so as to indicate clearly 

that no comparison of absolute values of attenuation is possible between 

different specimens. However, since only changes in attenuation are 

important in the context of the critical phenomena, this will not affect 

the analysis.

The measured quantity for the velocity measurements was the delay 

time in the specimen, which was converted to a velocity using equation 

(4.1). The length used in the calculation was measured at room 

temperature. Corrections to take into account the change in the length 

due to thermal expansion were found to be negligible in the context of 

the investigation of the ultrasonic behaviour close to the transition.

6.2.2 Experimental Details

A description of the apparatus used to perform measurements of 

velocity and attenuation as a function of temperature has been given in 

section 4.3.4. The problems encountered in making these measurements on 

CDP are now discussed.

6.2.2.1 Bonding considerations

The most important single factor governing the relative precision 

to which velocity and attenuation changes as a function of temperature 

could be monitored, was the quality of the bond between the quartz 

transducer and the specimen. The reason for this is that if the bond
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(and as a result the echo train quality) was poor, the error in the 

determination of the overlap position was much larger than the figure of 

1/100 of one r.f. period mentioned in section 4.1.2(a).

Changes in the bonding properties as a function of temperature 

often caused difficulty in ascertaining which changes in the velocity 

and attenuation were due to the bond and which were genuine crystal 

properties. The attenuation was found to be particularly sensitive to 

these bond changes because the measured value of attenuation depended 

not only on the attenuation loss in the crystal, but also on the 

acoustic coupling in the bond. By comparison, the effect of bond changes 

on the velocity was small, and was due to the increased attenuation 

changing the shape of the echo envelope and thus subtly changing the 

overlap position. However, in some cases, in which the background 

attenuation due to a poor bond was high, the increased absorption in CDP 

close to Tc resulted in the echo train being so attenuated that it was 

impossible to achieve a sensible overlap condition. Thus, for ultrasonic 

measurements as a function of temperature, it was most important to use 

a bond which maintained good acoustic coupling between the transducer 

and the sample over the temperature range of interest.

Finding a suitable bonding material proved to be a very 

time-consuming task. Initial, unsuccessful attempts were made using a 

variety of bonding agents commonly employed for ultrasonics at low 

temperatures such as Dow Corning series 200 fluids (of viscosities 

ranging from 1000-50000 centistokes), Apiezon grease, Nonaq stopcock 

grease (Fisher Scientific Company), and Dow Coming 276-V9 resin, as 

well as solid bonds such as salol, benzophenone, Taman's Grip glue, and 

a range of araldites. All failed on cooling at temperatures between 180 

and 240 K. The echo train obtained using the solid bonds deteriorated 

sharply on cooling as the bond broke. For the bonds which are liquid at
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room temperature the usual pattern was that the echo train would begin 

to deteriorate at temperatures below 200-240 K, and continue to 

deteriorate on cooling until no echo train at all was detectable below 

about 180K.

Two of the bonding agents listed above, viz. Apiezon grease and DC 

200 fluid (1200 centistokes), were used in measurements on a quartz 

block and gave excellent echo trains over the range 90-300 K. The DC 200 

fluid has been used successfully at liquid helium temperatures (J.A. 

Rayne 1981, private communication) during measurements on V^Si. Hence, 

the deterioration of the echo train cannot be attributed solely to the 

intrinsic properties of the bond. In view of the large anomalous and 

anisotropic expansion behaviour in CDP (see section 6.3), it was likely 

that differential thermal expansion between the quartz transducer and 

the CDP sample gave rise to a stress on the bond, which, upon further 

cooling, exceeded the yield stress of the bond, causing it to crack.

During measurements on KDP, Garland and Novotny (1969) also found 

DC 200 fluids and Nonaq stopcock grease to be unsuitable bonding agents 

which failed on cooling at 190 K. However, they found that n-propyl 

alcohol was a suitable bonding agent for shear waves in KDP below 146 K 

(the freezing point of the alcohol). The use of alcohols was found to be 

unsuitable for measurements on CDP because the slow cooling rate 

required to prevent the crystal shattering or cleaving allowed the 

alcohol to evaporate before it froze. Also, the alcohols did not seem to 

provide sufficient acoustic coupling to produce good echo trains while 

still in the liquid state.

Some success was finally obtained using ethylene glycol 

(1,2-ethane diol, HOCHgCHgOH), which is a clear viscous liquid with a 

freezing point of 261 K, and which gave good echo trains at room 

temperature. The echo train still deteriorated on cooling, but the bond



136 -

did not break entirely so that it was possible, although difficult, to 

monitor attenuation and velocity changes in the vicinity of T^.

Much better results were obtained using a 50/50 mixture (by 

volume) of ethylene glycol and methanol. A detailed study of this 

mixture was not performed, but it is reasonable to assume, by comparison 

with the properties of aqueous solutions of ethylene glycol (Miller 

1969), that the methanol depresses the freezing point of the ethylene 

glycol considerably, and that the mixture does not form a solid 

crystalline structure on freezing but rather a glassy layer which is 

capable of accommodating the thermal stresses discussed above.

Nevertheless, on some temperature runs, this bond also broke. 

Adjusting the sample holding assembly (Figure 4.12) to provide more even 

central pressure on the sample resulted in improved echo trains at low 

temperatures. Hence the bond failure may be due in part to stresses 

induced on the bond by uneven expansion of the copper sample-holding 

assembly.

Since 30-50 minutes were required to reach thermal equilibrium 

following a change in the set-point temperature (see section 4.3.4(d)), 

temperature runs took many weeks. In general, it was found that if the 

temperature was kept constant overnight the velocity drift was usually 

negligible, even close to where the velocity changes sharply as a 

function of temperature. However, the attenuation drift was often 

significant. This was assumed to be due to an ageing effect in the bond, 

the acoustic properties of which change with time due to either the 

continued stress on the bond, or, possibly, the constant bombardment 

with the ultrasonic pulses. This effect was displayed as discontinuous 

jumps in the attenuation versus temperature curves after an overnight 

break in data collection. Fortunately, however, changes in attenuation 

in CDP close to T^ are so sharp that in general there was no confusion
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between these genuine crystal-dependent effects and the discontinuous 

jumps in attenuation due to long term ageing effects in the bond 

properties. Nevertheless, in order to obtain a smooth set of data 

suitable for fitting to an analytical function, it was desirable to scan 

as much of the transition region as possible without an overnight break. 

These considerations strongly indicate the need to automate the 

measurement system.

6.2.3 Results 

6.2.3.1 CDP

The temperature dependence of the velocity and attenuation of 

longitudinal waves propagating along the y, x, and z axes in CDP are 

shown in Figures 6.1 - 6.4. The results are presented in the order in 

which they were taken and hence reflect improvements that were made in 

the data collection technique during the course of this study. A 

different specimen was used for each measurement. Part (a) of each 

figure shows the measurements over the whole temperature range, whilst 

part (b) shows the transition region in more detail. The z axis 

measurements (Figure 6.3) showed a very peculiar double anomaly and so 

the measurements were repeated on a second specimen (Figure 6.4). The 

data in Figure 6.1 were taken on a cooling run, whilst the data in 

Figures 6.2, 6.3, and 6.4 were taken on heating runs.

(a) Y axis propagation

The longitudinal mode propagating along the y axis is pure and its 

velocity is related directly to C^g by equation (5.1).

The measurements in Figure 6.1 represent one of the earliest 

successful attempts of this study to measure the velocity and 

attenuation close to T^. The bonding material used was pure ethylene
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Figure 6.1(a). Temperature Dependences of the Velocity and Attenuation

of Longitudinal Waves Propagating along the Ferroelectric y axis in GDP
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of Longitudinal Waves Propagating along the z axis in CDP.
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Also, due to bonding problems, the data corresponding to the Y axis 

heating run (not shown in the thesis) were not of sufficient quality 

to ascertain if any hysteresis effects were present.
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glycol which gave poor echo trains compared those achieved with the 

ethylene glycol-methanol mixture used in later runs for propagation

along the x and z axes. Also, at this early stage of the work, the

temperature controlling and measurement systems had not yet been

developed to the extent that it was possible to monitor the velocity and

attenuation close to T . Because of these limitations it was notc
possible to perform a critical point analysis on this data. INSERT

Nevertheless, it is clear that the velocity deviates from a

reasonably linear background at about 160 K and decreases sharply at

155 K, reaching a minimum at 153.5 ±0.5 K. The corresponding

attenuation anomaly is sharper than this, with the attenuation rising

from a background of about 6.5 dB/echo at 154.5 K to a maximum of 16

db/echo at 153.5 ± 0.5 K (Figure 6.1(b)).

At about 180 K there is a noticeable change of slope in the

velocity dependence, and an associated change in attenuation. This

corresponded to a weakening of the bond which was observed as a

deterioration of the echo train as the sample was cooled below 180 K.

The anomaly for T < T is much broader than that for T > T . It J c c
appears that the velocity slowly "recovers" its linear temperature 

dependence following the transition. Sincd this velocity is directly 

related to Cgg, this implies that the elastic behaviour of the

ferroelectric state well below T£ is not very different from the 

behaviour of the paraelectric state reported in Chapter 5.

(b) X axis propagation

The temperature dependence of velocity and attenuation for x axis 

propagation (Figure 6.2) displays the same general features as for the y 

axis. The data of Figure 6.2 show less scatter than those in Figure 6.1 

because the ethylene glycol-methanol bond gave better echo trains over



Unfortunately, the data corresponding to the cooling run for this mode 

(not shown in thesis) were not of sufficient quality to ascertain if 

any hysteresis effects were present.
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the whole temperature range than were obtained for the y axis 

measurements. Also, in this run it was possible to monitor velocity and 

attenuation changes much closer to T^. However, the discontinuities in 

attenuation discussed above in section 6.2.2.1 are clearly visible in 

Figure 6.2(a).

The velocity decreases sharply at 154 K, reaching a minimum at 

153.54 ± 0.05 K. The attenuation anomaly is very sharp, with a maximum 

at 153.71 ± 0.05 K. The background to the attenuation anomaly is 

reasonably described by a linear function of temperature in the range 

145-160 K. The decreasing attenuation in this region as the sample was 

warmed was due to an improvement in the properties of the bond as 

evidenced by an observed improvement in the echo train quality. INSERT

As in Figure 6.1, there is a change of slope in the temperature 

dependence of the velocity in Figure 6.2 at about 180 K, associated with 

changes in the bond properties as evidenced by observed changes in the 

echo train quality. However, unlike the y axis measurements, Figure 

6.2(a) shows a decrease, rather than an increase in attenuation below 

180 K. Unfortunately, the change of slope in the velocity caused 

difficulties in fitting a linear temperature dependent background to the 

velocity anomaly at 154 K. This change of slope at 180 K for x and y 

axis propagation may be due to changes in the z axis thermal expansion 

coefficient. This possibility is discussed further in section 6.3.

(c) Z axis propagation

Figure 6.3 shows the temperature dependence of the velocity and 

attenuation for the semi-pure mode propagating along the z axis. The 

bond of ethylene glycol-methanol gave very good echo trains over the 

temperature range of interest and hence the small degree of scatter in 

the data compared to Figures 6.1 and 6.2. As in Figure 6.2, there are



Similarly, to within the experimental precision of 0.IK, no hysteresis 

was observed in the temperature at which the velocity reaches its

minimum value.



- 148 -

discontinuous jumps in the attenuation.

The velocity is once again reasonably described by a linear 

function of temperature in the region 180-250 K. The velocity deviates 

from the linear background at about 180 K, and, as for the y and x axis 

measurements, shows a sharp decrease at 154 K, reaching a minimum at 

153.5 ±0.1 K. However, as is clear from Figure 6.3(b), there is an 

unexpected second anomaly in the velocity with a minimum at 

152.28 ± 0.08 K. Also unexpectedly, there are two peaks in the 

attenuation at 153.73 ± 0.03 K and 152.45 ± 0.03 K. This "double" 

anomaly was observed on both heating and cooling the specimen, and 

within the experimental precision of 30 mK, no hysteresis in the peak 

positions of the attenuation anomalies was observed. INSERT

Because of the unexpected nature of the double anomaly, it was 

necessary to repeat the measurements on a different sample (Figure 6.4). 

The second sample showed only one anomaly, with the maximum in 

attenuation occurring at 153.71 ± 0.03 K and the minimum in the velocity 

at 153.5 ±0.1 K. The sharp decrease in attenuation at 152.5 K was 

accompanied by a sudden change in the echo train quality after leaving 

the sample overnight at the same set-point temperature. The small 

discontinuity in the velocity just below 250 K was due to an electrical 

mishap which allowed the specimen to warm up to room temperature before 

measurements were resumed after re cooling the specimen to 247 K.

Since the measured temperature gradient across the sample was less 

than 0.2 K, the second anomaly 1.28 K below T^ cannot be attributed to 

temperature inhomogeneities in the specimen. The "double" anomaly 

effect, whilst clearly not found in both specimens investigated, is 

worthy of further investigation because the sample which gave the 

"double" anomaly gave reasonably sharp extinction between crossed 

polarizers, indicating good single crystallinity, and the room
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temperature value of velocity in the specimen agreed within experimental 

error (i.e. one r.f. cycle of overlap) to the one quoted in Table 5.2 

for the same mode. Hence, there was nothing to suggest that the sample 

should not have been used for ultrasonic measurements.

It is possible that this second anomaly is connected with the 

structural reconstruction of the domain walls in CDP as reported by 

Kamysheva et_ al^. (1981). They found that (i) CDP has a very "soft" 

domain structure (i.e. a domain structure very sensitive to external 

influences such as radiation), (ii) the domain walls have very high 

mobility, as evidenced by very high dielectric loss in the ferroelectric 

state, (ill) the coercive field is close to zero at temperatures 3-5 K 

below the transition, and (iv) for samples that had been irradiated (so 

as to introduce defects) there were large fluctuations in the 

pyroelectric coefficient in the region between T^ and T^ , where T^ is 

the "freezing" point of the domain structure. These observations all 

suggest that it is not difficult (from the energetic point of view) to 

rearrange the domains in the ferroelectric state of CDP. The second 

anomaly may then be attributed to a rearrangement of the domain 

structure leading to changes in the macroscopic surface charge, which 

may either occur spontaneously on cooling the system, or may be induced 

by the stress wave used for the measurement.

The work of Kamysheva £t^ al. (1981) also suggests that the 

behaviour of the domains is very dependent on the defect concentration, 

and, therefore, it is reasonable to assume that defects introduced 

randomly into the specimens during the growing or polishing processes 

may account for the appearance of the second anomaly in only one of the 

specimens studied. This hypothesis could be tested by annealing the 

specimen and remeasuring the temperature dependence of the velocity and 

attenuation. However, before attempting this, it would be very
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interesting to measure the temperature dependence of the dielectric 

behaviour of this specimen to see if there is evidence of the soft 

domain structure similar to that reported by Kamysheva et al. (1981).

Finally, it would be very interesting to measure the velocity of 

waves propagating along the x and y axes in the specimen which displayed 

the "double" anomaly (although the specimen used is probably too small 

to carry out both these measurements). The absence of a double anomaly 

for the x and y directions would show that there is considerable texture 

associated with the domain formation. The investigation could be 

extended by attempting to deliberately produce "double" anomaly 

specimens by introducing defects using y-ray irradiation in a manner 

similar to that described by Kamysheva et al. (1981).

6.2.3.2 CDDP

Limitations on time did not permit the measurement of all three 

longitudinal waves in CDDP. Measurements for propagation along the x 

axis were chosen because the specimen could be easily and quickly 

prepared using the (100) cleavage faces.

The room temperature value of the velocity of the semi-pure 

longitudinal wave propagating along the x axis was measured to be 
3.049 ± 0.006 x 10^ m s \ which is in excellent agreement with the 

velocity of this mode in GDP. This is not surprising, since CDP and CDDP 

are isomorphic and are expected to be described by the same elastic 

constants.

Figure 6.5 shows the temperature dependence of the velocity and 

attenuation of this mode. As expected, the anomaly occurs at a much

higher temperature than for CDP. If it is assumed that a linear

relationship exists between the transition temperature for the
deuterated crystal, T^, and the degree of deuteration, then the
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approximate transition temperature of 247 K implies a deuterium 

concentration of about 80%. However, Baranov et al. (1980) report that 

= 240 K for a deuterium concentration of 57%, although the authors 

do not explain how they determined the deuterium concentration. In any 

case it is clear that considerable hydrogen contamination has occurred 

either during the growing process or during the subsequent cutting and 

polishing (see section 3.5).

The anomaly is much smaller and broader than the comparable 

anomaly in CDP (see Figure 6.2). The maximum in the attenuation occurs 

at 246.8 ± 0.2 K, and the minimum in the velocity at 246.1 ± 0.4 K. 

However, the measured transition temperature differed by up to 3 K 

between different runs on this sample. In particular, measurements taken 

on cooling displayed attenuation peaks of about twice the width of that 

shown in Figure 6.5, which is from a heating run. It is not clear why 

the attenuation peak should be sharper on heating runs than on cooling 

runs, and why these effects should be observed in CDDP and not in CDP. 

However, in view of the very long-term relaxation effects discussed in 

section 6.4, it is possible that these irregularities are in some way 

connected with the very soft domain structure of CDDP (see also Baranov 

et al. 1983).

The discontinuity in the attenuation at 249 K (Figure 6.5(b)) was 

associated with a large change in the bond properties after a break in 

data collection over the 48 hour period of the weekend. The shoulder in 

the attenuation at 244 K was not associated with any bond changes. 

However it must be regarded as spurious because it was not reproducible 

on cooling the sample and because there was no accompanying velocity 

change.

Finally, the smooth temperature dependences of velocity and 

attenuation in the region 130-200 K in Figure 6.5 confirm that the
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anomalies in Figures 6.1-6.4 are due to changes in the properties of the 

CDP crystal, rather than any intrinsic changes in the ethylene 

glycol-methanol bond. However, it must be stressed that this does not 

imply that every observed anomaly is automatically attributable to 

changes in the elastic properties of the sample, because, as seen above, 

changes in the acoustic properties of the bond caused by the expansion 

behaviour of the specimen will also appear as anomalies in the velocity 

and attenuation. For example, the change in slope in the velocity at 

about 180 K in Figures 6.1 and 6.2 is accompanied by a change in the 

quality of the observed echo train, indicating a change in the 

properties of the bond. This change in the bond quality has been 

correlated to a decrease in the z axis expansion coefficient at this 

temperature (see section 6.3).

6.2.4 Discussion

6.2.4.1 General features of the critical region

The major parameters relating to the transition region shown in 

Figures 6.1-6.5 are summarized in Table 6.1. From the table it is clear 

that T^, as measured by the peak in the attenuation anomaly, is 

153.72 ± 0.03 K. The attenuation peak width in the table refers to the 

approximate temperature range of anomalous behaviour for T > T^, because 

in most cases the wing of the attenuation peak is not well defined for 

T < T^. With regard to the velocity anomaly in CDP, the quoted width in 

the table refers to the region of the very sharp dip in the velocity 

from about 154 K to the temperature at which the velocity reaches its 

minimum value, and not to the broad region in which the velocity slowly 

deviates from its linear background. Because the temperature control and 

measurement systems had not been perfected at the time of the y axis 

measurements to the extent that it was possible to measure the velocity
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PROPAGATION
DIRECTION

CDP

Y

X

Z

Sample 1: 

Anomaly 1: 

Anomaly 2:

Sample 2:

CDDP

X

Table 6.1

Parameters Relating to the Transition Region.

ATTENUATION VELOCITY

ANOMALY ANOMALY

PEAK
POSITION

(K)

PEAK
WIDTH
T>T
(K)C

PEAK
HEIGHT

%

POSITION
OF VELOCITY 
MINIMUM 

(K)

WIDTH
OF ANOMALY

(K)

SIZE OF
ANOMALY

%

153.5 ±0.5 ~1 146 153.5 ±0.5 ~1.5 2.7

153.71±0.05 0.3 139 153.54±0.05 0.5 0.8

153.73±0.03 0.4 530 153.5 ±0.1 0.5 0.6

152.45+0.03 0.35 104 152.28±0.08 0.4 0.3

153.71±0.03 0.5 139 153.5 ±0.1 0.6 1.3

246.8 ±0.2 1.2 64 246.1 ±0.4 1.8 0.13
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and attenuation close to T^ (see section 6.2.3.1(a)), the widths of the 

anomalies in Table 6.1 for this propagation direction are only rough 

estimates, and are probably considerably greater than the true widths of 

the anomalies.

(a) Size of anomalies and corresponding atomic displacements

If the z axis specimen displaying the "double” anomaly is 

disregarded for purposes of comparison, Table 6.1 indicates that the 

major difference in the ultrasonic measurements for propagation along 

the different axes in CDP is the size of the velocity anomaly, with the 

largest anomaly occurring for the ferroelectric y axis. This result may 

be correlated to the results of Iwata et al. (1980) who measured the 

atomic displacements occurring during the transition. As mentioned in 

Chapter 1, they found that, apart from the ordering of the hydrogens at 

Tc and a 3° rotation of the PO^ tetrahedra, the transition is 

accompanied by a 0.06 A displacement of the P atom along the y axis and 

a 0.04 A displacement of the Cs atom along the z axis. In view of the 

long wavelengths of the ultrasonic waves, it seems reasonable to assume 

that the velocity and attenuation will be much more sensitive to 

microscopic translations of the atoms than to the ordering of the 

hydrogens. Hence, one might expect the largest anomaly for propagation 

along the y axis (corresponding to the P atom displacement), with the 

second largest anomaly occurring for z axis propagation (corresponding 

to the Cs atom displacement). The last column of Table 6.1 shows that 

this is actually the case. The ratio of the size of the y axis anomaly 

to that for the z axis is about 2. Considering the non-rigorous nature 

of this line of reasoning, this seems to be in reasonable agreement with 

the ratio of the size of the P atom displacement to that of the Cs atom 

of 0.06/0.04 = 1.5. The smallest anomaly occurs along the x axis, and in
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the present context this is understood to be due to the small 

displacements of the atoms in this direction which are associated with 

the 3° rotation of the PO^ tetrahedra.

(b) Comparison of the anomalies in CDDP and CDP

It is clear from the table that the anomaly in CDDP is much 

broader and shallower than that for the corresponding mode in CDP. Such 

a broad, shallow anomaly has also been reported by Kasahara and 

Tatsuzaki (1982) for a CDDP crystal with = 260 K. Also, their 

results show, as does Figure 6.5, that in contrast to the velocity 

measurements on CDP, there is no broad temperature region in which the 

velocity slowly deviates from a linear background. Whilst it is 

reasonable to expect that, due to its greater mass, the deuterium in 

CDDP will order at a higher temperature than the hydrogen in CDP, it is 

not clear why deuteration should "wash out" the anomaly. The basic 

question here, which is still unresolved in the literature, is whether 

or not the essential nature of the transition mechanism is changed by 

partial or complete deuteration. As an example of the conflicting 

evidence appearing in the literature, the dielectric measurements of 

Deguchi et al. (1982(a),1982(b)) on CDP and CDDP suggest that there is 

no essential change in the transition mechanism, although they do point 

out (Deguchi et al. 1982(b)) that the one-dimensional Ising model used 

to describe the transition in CDP needs modification if it is to account 

completely for the effects of deuteration on the behaviour of the 

dielectric constant. By contrast, Baranov et al. (1980) found that the 

shape of the temperature dependence of the dielectric constant changes 

significantly with deuteration. They suggest that increasing the 

deuterium concentration results in an enhancement of the interchain

coupling.
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The analysis of the critical region of the ultrasonic measurements 

in CDP and CDDP has the potential to shed light on this question of the 

possible effects of deuteration on the transition mechanism. If the 

ultrasonic anomalies for CDP and CDDP are found to share a common 

functional form, it would be very reasonable to conclude that the two 

salts share essentially the same transition mechanism. The converse is 

also true, although any differences in the measured critical exponents 

would have to be interpreted cautiously. Unfortunately, due to the lack 

of data of sufficient quality, the critical point analysis of this study 

(see following section) failed to determine conclusively the functional 

form of the anomalies in CDP and CDDP for x axis propagation. There is a 

need to extend the measurements to other propagation directions and to 

samples of different degrees of deuteration.

If, in fact, the transition mechanisms in CDP and CDDP are the 

same, and, as suggested above, the size of the anomaly is related to the 

size of the atomic displacements occurring during the transition, then 

one may expect that the displacements of the P and Cs atoms will be much 

smaller in CDDP than in CDP. Unfortunately, this hypothesis cannot at 

present be compared to experiment, as, to the best of the author’s 

knowledge, work similar to that of Iwata et al. (1980) in determining 

the atomic displacements in CDP at T^ has not been reported for CDDP.

(c) Relationship between velocity and attenuation anomalies

It is clear from Figures 6.1-6.5 and Table 6.1 that the 

attenuation peak occurs at a higher temperature than the minimum in the 

velocity. This observation prompted a closer look at the transition 

region, which revealed that the attenuation appears to be proportional 

to the temperature derivative of the velocity in the region of the very 

sharp anomaly of the latter from 153.5-154.2 K. As an illustration,
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Figure 6.6 shows this region for the z axis specimen of Figure 6.4. A 

similar relationship exists for the other propagation directions, 

although the poor temperature resolution of the y axis measurements 

(Figure 6.1) obscures the effect. In fact this view of the attenuation 

as being proportional to the slope of the very sharp velocity anomaly, 

seems even to extend to each of the two anomalies of Figure 6.3, and 

also to the CDDP specimen (Figure 6.5).

This relationship between velocity and attenuation is not 

surprising if they are viewed as being measures of the real and 

imaginary parts respectively of a generalized complex elastic constant. 

Thus viewed, any softening of the elastic behaviour must be accompanied 

by both velocity and attenuation anomalies. This linkage of the elastic 

response function (i.e. the velocity) to the loss mechanism (i.e. the 

attenuation) may be analogous to the well-known Kramers-Kronig 

relationships which link the real and imaginary part of the complex 

dielectric constant (see for example Kittel 1976), although it must be 

pointed out that the Kramers-Kronig relationships usually describe the 

response of the system as a function of frequency rather than 

temperature.

K83 measured the ultrasonic velocity and attenuation for both 

monodomain and polydomain specimens of CDP. The monodomain state was 

achieved at each temperature by applying an electric field to the 

specimen along the b axis, and then reducing it to zero before taking 

the elastic or dielectric measurement. They assumed that if such a field 

is not applied, the specimen is in a polydomain state. (According to 

K83, then, the present study was carried out using polydomain 

specimens.) They observed that, for the polydomain specimen, the peak in 

the attenuation occurred at a higher temperature than the minimum in the 

velocity and at a lower temperature than the maximum in the
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simultaneously measured dielectric constant. By contrast, for the 

monodomain specimen, the peak in the attenuation and the dielectric 

constant and the minimum in the velocity all occurred at the same 

temperature. The anomalies for the monodomain specimen were found by 

them to be considerably smaller than those for the polydomain specimen, 

and also of a considerably different shape.

These observations may be understood in terms of the "soft" domain 

structure of CDP. In the polydomain state, since the peak in the 

attenuation occurs below the ferroelectric transition (as measured by 

the peak in the dielectric constant), it is reasonable to assume that 

the energy of the ultrasonic wave is being absorbed by the crystal in 

domain formation, growth, reconstruction or alignment. Normally one 

might not expect there to be enough energy in the ultrasonic wave to 

effect such changes in the domain structure but, as pointed out above, 

the coercive field is known to be close to zero near T^ (Kamysheva et 

al. 1981). For the monodomain state, the field applied to produce the 

monodomain state presumably supplies most of the energy to effect these 

changes in the domain structure. Hence, the ultrasonic anomalies for the 

monodomain specimen are smaller than those for the polydomain specimen 

and, in the absence of domain effects, the peak in the attenuation 

coincides with the maximum in the dielectric constant and the minimum in 

the velocity.

Hence, in summary, it may be said that the non-coincidence of the 

maximum in the dielectric constant with the minimum in the velocity is 

evidence of a domain wall effect in the ferroelectric state. This lends 

further support to the hypothesis (section 6.2.3.1(c)) that the second 

anomaly for z axis propagation (Figure 6.3) is indeed due to a 

reconstruction of the domain walls.

Finally, it is interesting to note that K83 could not stabilize
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the monodomain state after reducing the field to zero. This seems to be 

consistent with the very "soft" domain structure mentioned above, and 

furthermore is consistent with the observed non-stability of the 
dielectric constant close to T ^ in CDDP due to a very long-term 

relaxation effect (see below section 6.4).

6.2.4.2 Critical point analysis 

(a) The present study

The anomalous part of the velocity, AV, in the critical region was 

defined to be the difference between the measured velocity and the 

linear background extrapolated from a region far above the transition 

(185-250 K for CDP). Figure 6.7 shows log AV and AV plotted as functions 

of log (T-T ) for the critical region of Figure 6.4 (z axis). In the 

absence of simultaneously measured dielectric data, T^ was taken to be 

the temperature of the maximum in the attenuation. It is clear from the 
figure that AV does not obey the power law (T-T ) ®, nor does it satisfy 

a log (T-T^) type dependence over the whole temperature range. There is 

a clear change in the functional dependence at AT = T-T^ = 0.40 K, which 

corresponds to the temperature at which the abrupt change in the 

temperature dependence of the velocity anomaly occurs (at about 154 K 

for CDP). However, there is a log AT type dependence in the range 

0.40 < AT < 15 K (Figure 6.7(b)). Figure 6.7(a) does suggest that in the 
range 0.08 < AT < 0.40 K, the data may be described by a AT ® dependence 

where 6 = 0.5 ±0.1, although it must be pointed out that this 

dependence should be considered unconfirmed, since the linear portion of 

the fit in Figure 6.7(a) only extends over half a decade.

The anomalous part of the attenuation, Ao, was defined (in a 

manner similar to that for AV) to be the difference between the measured 

attenuation and the (nearly constant) background extrapolated into the
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critical region. Figure 6.8 shows a plot of log Aa versus log AT and 

Aa versus log AT for the attenuation data of Figure 6.4. (K83 found 

that the latter relationship well described their anomalous attenuation

data.) It is clear from Figure 6.8(b) that Aa is not well described by a
2 -$ log AT type dependence. Figure 6.8(a) suggests that a AT type

dependence is a possibility for the range 0.19 < AT < 0.47 K where $ =

3.3 ± 0.5. This is a very large value for a critical exponent. As for

the velocity measurements, it should again be noted that the linear

region in Figure 6.4(a) only extends over about half a decade and hence

the power law dependence must be considered unconfirmed. However, in

this case, the narrowness of the linear region and the large value of

the critical exponent are to be expected in view of the very sharp and

narrow nature of the attenuation anomaly, which only begins to deviate

from the background at 0.4 K above T^. Some rounding of the attenuation

peak is inevitable due to sample defects and inhomogeneities. It is

possible that with improved precision in temperature control and

measurement the linear region of the fit may extend closer to T^, but it

is likely that the limitations imposed by sample quality will prevent

the observation of the power law dependence for AT less than about

10 mK.

Very similar results were obtained for the analysis of the anomaly

occurring at the higher temperature in Figure 6.3. For the velocity
— 0

anomaly the results were AV ~ AT , 6 = 0.35 ± 0.1 in the range

0.05 < AT < 0.40 K and AV ~ log AT in the range 0.40 < AT < 10 K, and,
-9for the attenuation anomaly, Aa ~ AT , $ = 4.3 ± 0.5 in the range

0.20 AT < 0.50 K. Once again the power law dependences must be 

considered to be unconfirmed since they only extend over half a decade. 

Nevertheless, the consistency between the two measurements on different 

samples lends some support to justify accepting the regions of power law
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The critical point analyses were repeated using a range of values for

Tc. It was found that the derived functional forms were not sensitive 

to the choice of TQ. However the exact value of the derived critical 

exponents did vary with Tc. This variation is included in the above 

quoted errors for the critical exponents.
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dependences as genuine. INSERT

Although bonding problems obscure the true behaviour of the 

attenuation over a wide temperature range in Figures 6.3 and 6.4, it 

appears that the slow deviation of the velocity from its linear 

background (described by the log AT type dependence) is unaccompanied by 

any genuine attenuation anomaly. (The measurements of K83 and Y81 

confirm this observation.)

In summary, then, and keeping in mind the reservations expressed

above as to the narrowness of the regions of apparent power law

dependences, it may be said that the measurements along the z axis

display two distinct regions in which the functional forms of the

anomalies are quite different. In the region further away from T , AV is 

described by a log AT dependence and is unaccompanied by any significant 

attenuation anomaly. In the region closer to T^, AV seems to be 

described by a power law with the critical exponent having the classical 

value of 0.5, accompanied by a very sharp attenuation anomaly described 

by an unusually large value of the critical exponent. These observations 

suggest that different interaction forces are dominant in each of the 

two regions of the velocity anomaly.

A similar analysis was attempted for the x axis data of Figure 

6.2, and is shown in Figure 6.9 and 6.10. It is clear from the plots 

that the data were not of sufficient quality for the analysis to be 

meaningful. The major difficulty encountered here, apart from the 

obvious poor temperature resolution compared to that obtained for the z 

axis measurements of Figures 6.3 and 6.4, was the change of slope in the 

velocity at 180 K which made it impossible to carry out the analysis of 

the region in which there is a slow deviation of the velocity from its 

linear background. The best that can be said of the analysis is that if 
a AT * dependence does exist for the attenuation anomaly (and this is
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far from clear in Figure 6.10) then the exponent must be of the order of 

3 ± 1, which would be consistent with the large value of the exponent 

obtained for the z axis measurements.

The critical point analysis for the CDDP sample (Figure 6.5) was 

also inconclusive. Unlike GDP, there is no broad region in which the 

velocity slowly deviates from a linear background, and not enough data 

were collected in the critical region for the analysis to be meaningful. 

This was unfortunate, since in retrospect the measurements could have 

been taken using smaller temperature increments, although a limiting 

factor is that because the anomaly is so small (~0.13Z), the changes in 

velocity and attenuation associated with temperature increments of less 

than about 50 mK would be difficult to observe since they would be of 

about the same magnitude as the precision of the ultrasonic measurement. 

The other factor preventing a successful critical point analysis was the 

rounding of the attenuation peak which was much greater than that for 

GDP.

(b) Comparison of the ultrasonic work of other authors to each other and 

to this work

Table 6.2 shows a comparison of the critical point analysis 

carried out by K83, Y81, and the present study. Y81 used a partially 

deuterated sample with T^ = 175 K and hence it was necessary to make the 

comparison in terms of the ’’normalized" quantity n = (T-T^)/T^. In the 

table some functional relationships have been labelled as "no plot 

provided". In these cases the authors have stated the functional form in 

the text of their papers, but have not plotted their data to support 

their claim. This is particularly disturbing in the case of the paper by 

Y81, because they claim a much broader range of validity for a power law 

dependence of AV along the x and z axes (for which they do not plot
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Table 6.2
Comparison of the Analysis of the 

Critical Region by Different Authors. AT = T-T

log n = log t(T-Tc)/Tc] Comments

-4

This study
T =153.72 K c
z axis AV

Act

y axis 
x axis

-3

AT ® — |----log AT—

-2 -1

AT i

Analysis
unsuccessful

6 = 0.43±0.1 The values of 
0 and $ are 
averages of 
two z axis 
measurements

$ = 3.8 ±0.5

Kanda et_ al.
(1983)

T =154.3 K c
z axis AV

Aa

y axis AV

Aa

x axis AV

Aa

—log AT-

|---log AT--- 1

----- log AT------

-log' AT---1

—log AT-

|---log AT--- 1

No plot provided

No plot provided

Yakushkin et^ al
(1981)

T =175 K c
z axis AV 

Aa

y axis AV 

Aa

x axis AV 
Aa

AT-6

----AT

I-AT"*-1

not given
-0 I ,

---AT—0
not given

0 = 0.50±0.05 no plot 
provided

6 = 1.0 ±0.05

* = 2.3 ±0.05

0 = 0.50±0.05 no plot 
provided
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their data) than they found for AV along the y axis for which they do 

plot their data.

It is clear that results of K83 and Y81 are in disagreement as to

the functional form of the anomalies for the same critical region. The

results of this study for z axis propagation share a log AT dependence

in common with K83 for n > -2.6, but Figure 6.8(b) would seem to rule 
2out a log AT dependence for the attenuation anomaly. As pointed out in 

section 6.1, using their respective analyses, K83 and Y81 are led to 

conflicting conclusions as to the nature of the dominant forces in CDP 

close to T£. The arguments of K83 and Y81 are summarized and evaluated 

below, and suggestions are made as to how the findings of this study 

might be interpreted. Finally, some possible causes for the 

discrepancies between the observations of Y81 and K83 are given below in 

section (c).

K83 point out that the anomaly in the specific heat in CDP has

also been found to be logarithmic (Kanda et al. 1982(b)). The

combination of logarithmic singularities in both the ultrasonic and

specific heat anomalies has also been observed in other uniaxial

ferroelectrics, such as TGSe and TGS, which are not piezoelectric above 

Tc (Todo 1975), and has in these cases been attributed to the dominance 

of a strong dipole-dipole interaction (see also Nattermann 1978). TGSe, 

TGS and CDP all undergo a phase transition from the space group P2^/m in 

the paraelectric phase to P2^ in the ferroelectric phase, and all have a 

unique polar axis parallel to the y direction. Hence, by analogy with 

TGS and TGSe, K83 attribute the logarithmic singularities in CDP to the 

dipole-dipole interaction. Their conclusion is supported by the 

dielectric measurements of Deguchi et_ al_. (1982(b)) who found that in 

the framework of the 1-D Ising model, 3-D dipole-dipole interactions are 

dominant in the region 0 < AT < 20 K. (However, Blinc et al. (1979)
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found that this region only extends to 0 < AT < 3 K (see also section

6.4).) Perhaps the most striking difficulty with the interpretation of

K83 is that within the framework of 3-D, dipole-dipole interactions, the

anomaly along the ferroelectric y axis is expected to be suppressed by

what has been termed the "depolarization effect" (Yagi et al. 1976). In

fact, in TGSe and TGS, the y axis anomaly is very much smaller than

those for the x and z axes. This is in marked contrast with the findings

of this study, as well as the studies of Y81 and K83, that the largest

anomaly of all occurs for propagation along the the y axis.

Y81 use the fact that the velocity anomaly is largest for the y

axis, together with their observations of power law dependences with

large critical exponents, to support their conclusion that the 3-D,

dipole-dipole interaction is absent. They argue that the critical region
-4in systems with dipole-dipole interactions is very small ( p ~ 10 ) and

that the large values of the critical exponent and the validity of the 

power law dependences over a wide temperature range are evidence of a 

system dominated by 1-D interactions. To support this claim they used a 

dynamical scaling relationship between the critical exponents for the y 

axis (Schwabl 1973), viz.

$ - 6 = K

where 6 and $ have been defined in Table 6.2 and k is the critical 

exponent for the dielectric constant (see section 6.4). Then, according 

to the results of Y81 shown in Table 6.2, k should be 1.3. In fact Y81 

point out that just this value of k was found by Blinc et al. (1979) in 

a wide temperature range in which 1-D interactions are dominant. 

However, the difficulty with this line of reasoning is that Blinc et al. 

(1979) found this value of k only in the range 3 < AT < 90 K (i.e. 

-1.7 < log n < -0.23) whereas they found that k has the classical value
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of unity in the range 0 < AT < 3 K. Hence in the region of the power law 

dependences of Y81 (Table 6.2), < = 1, not 1.3. It is therefore 

difficult to see how the measurements of Blinc et al. (1979) support the 

conclusions of Y81 as to the 1-D nature of the transition, unless it is 

assumed that some theoretical basis exists (and has been used by Y81) to 

scale the critical region by a factor dependent on the physical quantity 

being measured, so that the region dominated by 1-D interactions found 

by Blinc et al. (1979) would coincide with the power law dependences 

found by Y81.

Despite the strength of the short-range, 1-D, intrachain 

interactions, the long-range, 3-D, dipole-dipole interaction must grow 

larger as T + and eventually dominate the behaviour of the crystal. 

In this context, the disagreement between Y81 and K83 lies in 

ascertaining how close to this occurs. Y81 believe that this region 

occurs much too close to T^ (log q < -4) to be observed in the 

ultrasonic measurement, whereas K83 conclude that 3-D correlations are 

dominant in the whole region of the ultrasonic measurements with the 

cross-over to 1-D behaviour presumably at AT > 20 K (as suggested by the 

results of Deguchi et al. 1982(b)).

However, there seems to be no reason to preclude the possibility 

that the ultrasonic measurements, like the dielectric measurements (see 

section 6.4), may show a cross-over between regions dominated by 1-D and 

3-D interactions. The results of this study (Figure 6.7), whilst 

admittedly incomplete, do present preliminary evidence of such a 

cross-over. A possible interpretation is as follows.

Far away from T^, 1-D type forces dominate the ultrasonic 

behaviour. In this region the order of the hydrogen ions is gradually 

increasing as T + T^. This is reflected by a gradual change in the force 

constants between the atoms which is displayed as a softening of the
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elastic behaviour and hence a gradual change in the velocity. In this 

region the attenuation is not expected to show anomalous behaviour 

because the frequency of the ultrasonic wave is very much smaller than 

the tunnelling frequency of the hydrogen between its two possible sites 

in the double potential well. Hence the hydrogens cannot absorb much 

energy from the ultrasonic wave. Close to T^, however, 3-D, long-range 

forces, including those which give rise to the microscopic translations 

of the Cs and P atoms, dominate the behaviour. This region (as explained 

in section 6.2.4.1(a)) is characterized by very sharp changes in the 

velocity and attenuation.

In order to be consistent with the underlying theoretical bases of 

the work of Y81 and K83, the region close to T^ in Figure 6.7 would have 

to be described by a log type dependence (3-D interactions) and the 

region further away from by a power law dependence (1-D, short range 

interactions). In fact, as is clear in Figure 6.7, the reverse is the 

case, and hence the results of this study are not only different from 

those of Y81 and K83 in that a cross-over region was observed, but also 

the interpretation presented is inconsistent with their theoretical 

assumptions. At present, these inconsistencies remain unresolved.

(c) Possible causes for the discrepancies in the observed behaviour 

between different studies

Table 6.3 lists some of the factors which may account for the 

discrepancies in the reported ultrasonic behaviour between this study, 

Y81 and K83. It will be noted that none of the three studies have used 

exactly the same experimental arrangement or analysis technique.
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Table 6.3

Possible Origins of the Discrepancies in the Observed

Ultrasonic Behaviour between Different Studies.

Experimental
or Analytical
Details

This Study Y81 K83

Bias Field No bias field
applied and there
fore the samples
used were in the
polydomain state

As for this
study

Bias field applied
along the b axis and
reduced to zero prior
to taking measure
ments in order to
produce monodomain
specimens

Crystal CsH2P04 Cs(H1-A)2P04 CsH2P04
Used T = 154 K c with x = 0.1

and T = 175 K c

T - 154 K c

Analysis Used T where c
T is the c
temperature of
the peak in the
attenuation

As for this
study

Used Tq where T^ 
was determined from
the Curie-Weiss fit 
C/(T-Tq) to the 
dielectric constant
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Although one gains the impression from their paper that the data 

analysed to give logarithmic dependences were for a monodomain specimen, 

K83 do not state this explicitly. Figure 2 of K83 shows that the anomaly 

for the monodomain specimen is a more slowly varying function of 

temperature than that for the polydomain specimen, so that it is perhaps 

not surprising that the analysis for the monodomain specimen shows a 

logarithmic type dependence which is a more slowly varying function of 

temperature than a power law dependence. One cannot help conjecture that 

the analysis of K83 may well have not shown a log dependence if the 

polydomain specimen had been used, and may even have shown evidence of 

the cross-over region found in the present study. In any case, in view 

of the importance of domain effects in CDP, there is a need to compare 

the functional form of the anomalies for the polydomain and monodomain 

specimens.

Y81 do not state why they have used a partially (~10%) deuterated 

sample, but perhaps the motivation was to increase so as to make it 

more convenient to measure the velocity and attenuation. The work 

described in section 6.2.4.1(b) shows that deuteration significantly 

"washes out" the anomaly, although the question of whether or not the 

deuteration changes the functional form remains unresolved. It is 

possible, then, that the discrepancy between the power law dependence of 

Y81 and the logarithmic dependence of K83 reflects a genuine change in 

the nature of the transition with deuteration. In any case, the 

underlying assumption of Y81 that the dynamics of CDP may be inferred 

from measurements on a 10% deuterated sample is questionable.

K83 do not explain their choice of Tq (which was determined from 

the C/(T-Tq) fit of the simultaneously measured dielectric constant) 

rather than (i.e. the maximum in the dielectric constant) to analyse 

their data, but they claim that this may be one reason for the
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differences between their data and those of Y81. However, K83 found that

the maximum difference between and was 0.10 K, and in the analysis

of this study it was found that varying T^ by this amount had no effect

on the derived functional form. Hence, it is difficult to see how the

choice of T_ or T could account for the different functional forms u c
found by Y81 and K83.

The measurements of this study are in agreement with those of K83 

for temperatures which are sufficiently high so that domain effects will 

not be important. Closer to T , where domain effects are expected to be 

important, the results of this study are closer to those of Y81. 

Deuteration may have the effect of "washing out" the precursor effect to 

the transition of the log type dependence, so that Y81 observe a power 

law dependence over the whole temperature range. Hence, the findings of 

this study may be viewed as possessing elements of the features reported 

by both Y81 and K83. This is perhaps not surprising in view of the 

significant differences between the conditions for the three sets of

measurements.
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6.3 THERMAL EXPANSION MEASUREMENTS ON CDP

6.3.1 Introduction

Thermal expansion measurements on CDP revealed significant 

anomalies in the expansion coefficients at T^, as well as very 

anisotropic behaviour including a negative expansion coefficient along 

the z axis. By making use of an approximation, it was possible to 

calculate the linear GrCfneisen parameters, and using the elastic 

constants, determine the role of the cross-compliances in the production 

of a negative expansion coefficient for the z axis. The investigation 

also provided some insight into the one-dimensional nature of the 

transition in CDP.

The thermal expansion measurements were also used to (a) ascertain 

whether the failure of the bond between the transducer and the specimen 

in the ultrasonic measurements could be attributed to stresses set up in 

the bond due to differential thermal expansion and (b) to determine the 

changes in the length of the specimen due to thermal expansion and to 

decide whether these changes were large enough to warrant the inclusion 

of a correction term to the length used in equation (4.1) to calculate 

the ultrasonic velocity. In particular, it was important to check if 

there were any discontinuities in the length of the specimen at the 

transition which might have accounted for the anomalies in the measured 

delay times at T^«

6.3.2 Theory

The coefficient of linear expansion is defined as the temperature 

derivative of the strain at constant pressure, i.e.

9e
°j ( 9T )p (6.1)
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where the Voigt notation has been used and j=l to 6 (Barron et_ al. 

1980). The thermal expansion conforms to the crystal symmetry and in the 

case of a monoclinic system there are four independent components of the 

expansion tensor (Nye 1967). With respect to the Cartesian axes of 

Figure 2.2, and using the Voigt notation, these components are , 

a^, and cty

Directional Gruneisen parameters may be defined by the strain 

derivatives of the entropy S, i.e.

'j F ( as
3e )

j P
(6.2)

where C£ is the heat capacity at constant strain and j=l to 6. The 

Gruneisen parameters are related to the expansion coefficients by 

(Barron et al. 1980)

°j = (
mol 1 su ^ (6.3)

where is the heat capacity at constant stress, is the molar

volume and the compliances are understood to be adiabatic. Equation

(6.3) may be inverted to give

Yj ' ( ^ ) -j

Equation (6.3) suggests that the thermal expansion in solids is a 

combination of two effects. A "thermal pressure", produced by the strain 

dependent entropy (as measured by the Grflneisen parameters), coupled 

with the elastic behaviour of the crystal (as measured by the 

matrix) determines the actual strain response of the crystal (Munn 1972, 

Gruneisen and Coens 1924).
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6.3.3 Experimental Details

The thermal expansion was measured using a three-terminal 

capacitance dilatometer identical in design to the one described by 

White and Collins (1972). Further details of the cell and experimental 

arrangement may be found elsewhere (Gibbs 1983, Simpson 1979). The cell 

was designed with very low temperature measurements in mind, and hence 

was not particularly suited for measurements in the range 100-300 K. In 

particular, it took up to two hours for the cell to come to thermal 

equilibrium between measurements which made the task of measuring the 

expansion coefficient in this range very time-consuming. Some 

improvement in the speed of attaining thermal equilibrium was achieved 

by amplifying the heater current output from the available temperature 

controller (which was the one used in the thermal expansion measurements 

of Gibbs (1983)).

6.3.4 Results

The thermal expansion coefficients along the x and z axes are 

shown in Figures 6.11 and 6.12 respectively. The solid line in each case 

represents a satisfactory fit to the data using a knotted, least-squares 

cubic spline function (I.M.S.L. routine ICSCCU). On account of the 

problems with thermal equilibrium of the cell, it was impractical to 

take measurements at intervals of less than 0.5 K. Figure 6.11 shows a 

minimum in the x axis expansion (hereinafter referred to as a^) at 

151 ± 2 K, corresponding to the ferroelectric transition. There is, 

however, a second, smaller anomaly at 235 ± 3 K, which was reproducible 

on both heating and cooling the specimen. At first it was thought that 

this anomaly might be associated with the freezing of pockets of 

supersaturated solution caught in the GDP crystal. However, preliminary
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DTA measurements (W. Flagge, private communication) showed that the 

freezing temperature of a saturated solution of CDP was 264 ± 1 K, and 

no anomaly was detected near 235 K. Unfortunately, time was not 

available to repeat the thermal expansion measurement on a different 

specimen.

As Figure 6.12 shows, the z axis expansion (hereinafter referred 

to as az) is negative even at very low temperatures. There is a dip in 

the expansion coefficient at 150 ± 2 K, but apart from this is

remarkably constant over quite a broad temperature range. The plot also 

demonstrates that the scatter in the data is greater at higher 

temperatures, due to the increased difficulty of attaining good thermal 

equilibrium.

It is of interest to note that at T , a and a are equal inc x z
magnitude, but opposite in sign. The significance of this observation 

will be discussed below in section 6.3.6.

Time was not available to measure the expansion along the y axis 

(hereinafter referred to as )• However this expansion has been 

measured by Deguchi et al. (1981). Figure 6.13 is a plot of which was 

digitized from Figure 2 in the above reference. The data have been 

fitted in a manner similar to that for the x and z axes using a knotted 

least-squares cubic spline function.

6.3.5 Calculation of the Gruneisen parameters

Since data are only available for the x and z axes (from this 

study) and for the y axis (from the work of Deguchi et_ al. 1981), 

remains unknown, and therefore the Gruneisen parameters of the 

monoclinic system ( > ^3* aru* T5 ) could not be calculated.

In an attempt to proceed with the calculation, the simplification 

had to be made that CDP could be adequately described by the elastic,
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thermal, and Gru'neisen parameters appropriate to orthorhombic symmetry. 

This was equivalent to setting = 0 in the elastic 

constant matrix of Table 5.2, so that the "orthorhombic" elastic 

constant matrix, (C^)° is given by

<V
28.83
11.4
42.87

0
0
0

11.4 
26.67
14.5 

0 
0 
0

42.87
14.5
65.45

0
0
0

0
0
0

8.10
0
0

0
0
0
0

5.20
0

0
0
0
0
0

9.17.

GPa

The Gruneisen parameters can then be calculated by (Barron et al. 1980)

28.83 11.4 42.87
11.4 26.67 14.5
42.87 14.5 65.45

mol (6.5)

It is reasonable to make this "orthorhombic" approximation for two 

reasons. Firstly, the three pairs of velocities, Vg and , V,. and V^, 

Vg and Vg, in Table 5.1, which would be required by symmetry to be equal 

for a crystal of the orthorhombic class, differ, in the case of GDP, by 

2, 6, and 12% respectively, so that, in terms of the velocity 

measurements, GDP does not behave very differently from an orthorhombic 

system. Secondly, and more convincingly, the calculations of the elastic 

properties such as velocity surfaces, bulk modulus, and linear 

compressibilities using (C)° in place of C^. of Table 5.2 showed that, 

despite the assumption of orthorhombic symmetry, all the important 

features discussed in Chapter 5 remained basically unchanged. Table 6.4 

presents a comparison between the calculations using C and (C )°. In
ij ij

particular, the results using the (C^)° matrix still show a very 

anomalous semi-pure transverse (SPT) mode propagating in the xz plane 

and reasonably isotropic behaviour for propagation in the xy and yz
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planes. The bulk modulus is very small, and the compressibilities

indicate that under hydrostatic pressure there is a contraction in

length along the x axis, an expansion along the z axis and that by

comparison the length change along the y axis is small.

Table 6.4

Comparison of some calculated

Elastic Properties for C^. and <v°
Calculations using Calculations using

cu <V°
Minimum in 
velocity of
SPT mode in
xz plane
(see Figure 5.3)

0.290 x 103 m s-1 
for propagation at
38° to the x axis

0.291 x 103 m s * 
for propagation at 
39° to the x axis

Bulk modulus 
(GPa)

5.28 5.73

Linear X: 0.428 0.473
compressibilities Y: 0.022 -0.005
(GPa)"1 Z: -0.260 -0.293

The heat capacity data, shown in Figure 6.14, were digitized from 

Figure 1 of Kanda et_ al. (1982(b)). The molar volume, V was
3

calculated to be 71.40 cm , taking the density as 3.22 g cm as in
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section 5.1.2.

At every temperature at which a specific heat point is plotted in 

Figure 6.14, the expansion coefficients were interpolated using the 

knotted least-squares cubic spline fits, and the Grtineisen parameters 

were calculated using equation (6.5). The results are shown in Figure 

6.15.

The coefficient of volume expansion 8 is given by 

8 = ax + «y + =z

and the volume Gruneisen parameter is given by

B Vmol Bs 
^vol C

a

where Bg is the adiabatic bulk modulus. The temperature dependence of 

Yvol is also shown in Figure 6.15, where Bg has been calculated using 

the (C „ )° matrix.

From the figure it is clear that Y < T < Y over the wholex z y
temperature range and that as T + T^, Yx ♦ Tz- By comparison with the 

directional Grtineisen parameters, Yvoj is reasonably constant over the 

whole temperature range. In order to check that these features were not 

artifacts of the fitting procedure for the expansion data, the 

calculations were repeated using fewer knots which significantly reduced 

the quality of the fits to the expansion data, particularly close to T^. 

Despite this, all the general trends in the temperature dependence of 

the Grtineisen parameters discussed above were still observed. This 

confirmed that these trends are not sensitive to the details of the 

fitting procedure.
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6.3.6 Discussion

(a) Grimeisen parameters

Munn (1972) has attempted to explain the expansion behaviour of 

axial solids (such as arsenic, graphite, selenium, tellurium, and 

indium) by a consideration of the interplay between the Gruneisen 

functions and the elastic properties. In Munn * s analysis, the expansion 

is written as the sum of a quasi-cubic term and a cross-linking term. 

The analysis can be extended to symmetries lower than axial, although 

the identification of the dominant terms becomes more difficult.

Following Munn, the expansion coefficients in the orthorhombic 

system are

ax

°y

and az

Co
Vmol

C a
Vmol

Vmol

1 T, 

[ Xy ry 

1

+ <S12>°< V’,) + <S13>°< - r ,) 1

- <si2>°< ry - r , ) + (s23)°( t, - t y) 1

- (S23)°( rz - Y y ) - (S13)°( T,-I,n

where ^ « Xy » Xz are the linear compressibilities along the x, y and

z axes respectively, and the (S^)° are the elastic compliances in the 

orthorhombic system.

Table 6.5 shows the individual contributions to the expansion

coefficients at different temperatures. The values of the elastic 

compliances ^S13^°’ ^S23^°’ and t*ie linear compressibilities 

have been calculated from the (C )° matrix.
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Table 6.5

Contributions to the Expansion Behaviour

T Heat Yx Ty °y °z

Capacity (calculated) (measured)

00 -1 —1 (J K mol ) (10"4 K™1)

264.0 130.23 0.697 1.44 0.893 0.351 0.933 -0.188

160.6 100.70 0.558 1.50 0.670 0.231 0.791 -0.182

152.3 101.78 0.270 1.10 0.271 0.206 0.602 -0.212

0.473 (GPa)_1 (=12)° - -0.136 (GPa)™1

-0.005 (GPa)™1 Cl3>° " -1.07 (GPa)™1

-0.293 (GPa)™1 <=23>° ' 0.077 (GPa)™1

T (K) XyTy (Sl2)°(Ty™V

( GPa )™1

(:13>°<7:™V (S23>°(7z™Ty)

264.0 0.33 -0.007 -0.26

oo
i

-0.21 -0.042

160.6 0.26 -0.008 -0.20 -0.13 -0.12 —0.064

152.3 0.13 -0.006 -0.08 -0.11 -0.001 -0.064
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It is immediately clear that the negative sign of is 

attributable to the large negative value of xz» At room temperature the 

cross-linking term (S^)0 (?z ~ Y ) adds a positive contribution to what 

would otherwise be a very large negative coefficient. From the table, 

and from Figure 6.15, it is clear that as T T^, (y^ - y^) 0. Hence 

it is the near-vanishing of the cross-linking term (S^)0 (Yz ~ Yx) 

which is responsible for the decrease in the z axis expansion. Thus, 

increasing isotropy of the Gruneisen parameters in the xz plane governs 

the anomaly of a^ at T^.

It might be expected that the sharp decrease in y^ is directly 

responsible for the sharp anomaly in a^ at T^. In fact this is not the 

case because Xy is so small that the y axis expansion is dominated by 

the cross-linking terms rather than the quasi-cubic term, and it is the 

decrease in (y^ - y%) which causes the decrease in a^ at T^. Thus, once 

again, it is the relative anisotropy of the Gruneisen parameters rather 

than their absolute values which dominates the expansion behaviour.

However, in the case of the x axis expansion, the quasi-cubic and 

cross-linking terms are of comparable magnitude and it is not possible 

to identify a dominant contribution to the broad anomaly for this 

direction.

As has been pointed out previously, close to T^, az ~ -°x* Hence 

thermally induced strains along the x and z axes will be nearly equal in 

magnitude but opposite in direction. Equation (6.2) defined the 

directional Gruneisen parameters as the strain derivatives of the 

entropy, and since y% = in this temperature region, it follows that 

the changes in entropy due to strains along the x and z directions will 

tend to cancel each other. This leaves the y axis expansion and 

Grflneisen parameter as the dominant factor governing changes in disorder 

(E entropy) in the system close to T^. Hence, close to T^, CDF behaves
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as a "uniaxial” system from the thermodynamic point of view. This is 

consistent with the known one-dimensional nature of the ordering of the 

hydrogen ions at the transition.

Finally, it is worthwhile to note that despite the quite strong 

temperature dependences of the directional Gruneisen parameters, Yvo^ is 

nearly temperature independent except for a small decrease at T^. This 

further supports the conclusion that anisotropy in CDP, rather than any 

instability of the crystal as a whole, is responsible for the expansion 

behaviour.

(b) Bond failure in the ultrasonic measurements
Typical expansions of copper (0.16 x 10 * K * at 298 K) and of

}
X-cut quartz (0.14 x 10 K at room temperature) are considerably 

smaller than the expansion coefficients of CDP along the x and y axes. 

Also, since is negative, a decrease in temperature results in an 

expansion, rather than a contraction, along the z axis. These two 

factors both contribute to cause a differential thermal expansion 

between the sample and the quartz transducer, which gives rise to a 

stress in the bond.

Small changes in the slope of the velocity versus temperature 

curves occur at about 180 K for propagation along the x and y axes (see 

Figures 6.1 and 6.2), but appear to be absent for propagation along the 

z axis (Figures 6.3 and 6.4). This may simply reflect the improvement in 

the data collection techniques in the course of this study. However, it 

is interesting to note that begins to decrease at about 175 K, 

reaching a minimum at 150 K. Since is negative, this decrease will 

serve to increase the differential thermal expansion between the sample 

and transducer. For measurements of waves propagating along the x and y 

axes, this increase will appear as an increase in the shear strain in
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the bond. By contrast, for ultrasonic measurements along the z axis, the 

decrease in would appear as an increased compressional stress in the 

bond. The latter is unlikely to affect the echo train adversely, as the 

effective result is an increased pressure of the transducer on the 

specimen. Hence small anomalies caused by bond changes may be expected 

to occur for propagation along the x and y axes, but not along the z 

axis.

In order to confirm the above conclusion, it will be necessary to 

repeat the ultrasonic measurements along the x and y axes with the same 

echo train quality, temperature resolution, and thermal equilibrium, 

that were attained for the measurements along the z axis. Nevertheless, 

it is clear that differential thermal expansion is a plausible 

explanation for the failure of a wide variety of bonding agents to 

maintain good acoustic coupling over the temperature range of interest.

(c) Thermal expansion corrections to the ultrasonic velocities

A close examination of the length changes associated with the 

expansion behaviour along the x and the z axes showed that there was no 

discontinuous length change at the transition. Figure 2 of Deguchi et 

al. (1981) shows that, despite the sharp dip in at T^, the length 

changes are continuous. Therefore the changes in the measured delay time 

in the specimen close to T^ are certainly not due to thermal expansion 

effects. (The absence of any discontinuous length change also suggests 

that the transition is not first-order.)

Corrections to the velocities shown in Figures (6.1)-(6.4) due to 

thermal expansion could be applied by multiplying the velocity at every 

temperature T by a correction term
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i ~It a± dTi
where is the temperature at which the length of the specimen was 

measured, and is the expansion coefficient for the propagation 

direction for that velocity measurement. The largest correction will 

apply for the y axis since is the largest of the three measured 

coefficients, but even in this case the correction will only amount to 

0.008% / K. Since the velocity changes close to are of the order of 

2%, thermal expansion corrections are negligible.

However, if the absolute slopes of the velocity versus temperature 

curves well above are of interest, thermal expansion corrections 

should be applied. The effect of the correction will be to decrease the 

magnitude of the slope for the x and y axes, but to increase the 

magnitude of the slope for the z axis. These corrections are unnecessary 

in the context of the present study because the linear temperature 

region well above T^ is only used to determine a suitable background 

term for the ultrasonic anomaly, and hence the correction term will have 

no effect on the analysis of the critical region.

Note in Proof: Very recently Nakamura £t^ al. (1984) have applied a 

quasi-one-dimensional Ising model to the y axis expansion data of 

Deguchi et al. (1981). They found reasonable agreement between the 

experimental values and those calculated from the model. Their 

interpretation is consistent with the findings of this study.
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6.4 DIELECTRIC MEASUREMENTS ON CDDP

6.4.1 Introduction

Measurements of the temperature dependence of the dielectric 

behaviour of CDDP were originally undertaken in an attempt (a) to 

confirm that the small, broad ultrasonic anomaly in CDDP (Figure 6.5) 

was indeed associated with the ferroelectric transition, as evidenced by 

a peak in the dielectric constant, and (b) to measure the transition 
temperature T ^ accurately for fitting the ultrasonic data to a 

(T-T^d ) ® type dependence.

Whilst the results confirmed that the ferroelectric transition 

takes place at about 247 K, very peculiar relaxation effects prevented 
an accurate determination of T^. However, somewhat unexpectedly, the 

results provided very significant information that helped to elucidate 

the mechanism of the transition itself. Evidence was collected which 

convincingly shows the presence of both one-dimensional, short-range 

interactions, and the more usual three-dimensional, long-range, 

dipole-dipole interactions. It was also shown, contrary to previous 

reports, that, despite the one-dimensional nature of the transition, a 

significant anomaly exists in the dielectric behavior orthogonal to the 

ferroelectric y axis. It is suggested that the long term relaxation 
effects are related to peculiarities in the domain structure below T^^.

6.4.2 Experimental Method

The measurements were performed using a General Radio capacitance

bridge (GR 1621) operating at 1kHz. The maximum measuring field was 
-1

2 V cm . Electrodes of gold approximately 800 A thick were evaporated 

onto opposite parallel faces of the specimen. The same cell was used for 

these dielectric measurements as for the thermal expansion measurements. 

Only a small modification was required in order to monitor the
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capacitance across the sample Instead of across the air gap as in the 

thermal expansion measurements.

The temperature was stabilized for every reading, unlike the work 

of other authors (e.g. Uesu and Kobayashi (1976), Kamysheva et_ al. 

(1981), Yasuda et al. (1979)) who measured the dielectric behaviour 

using slow (0.01-0.25 K/min), but continuous, heating or cooling runs. 

Up to an hour was required for the probe to come to thermal equilibrium 

between measurements so that the runs took many days. Because of the 

inability to collect data over the whole temperature range without 

overnight interruptions, the very long term relaxation effects (see 

below) could not be thoroughly investigated.

6.4.3 Results

(a) Dielectric constant along the ferroelectric y axis

The temperature dependences of the capacitance and conductance

measured along the ferroelectric y axis, taken on a heating run, are

shown in Figure 6.16. The sample used was the same one that had been

used for the ultrasonic measurements (Figure 6.5).

The capacitance is directly proportional to the dielectric

constant, whilst the conductance is a direct measure of the loss factor

(i.e. the imaginary part of the complex permitivity). Since the sample

was not of a regular rectangular-prism shape, it was not possible to

calculate the dielectric constant accurately from the capacitance.

However, using the sample thickness of 0.966 cm and the approximate area
2of the parallel faces of 0.51 cm , and assuming the formula for a 

parallel plate capacitor, an estimate of the dielectric constant may be 

obtained by multiplying the capacitance (in pF) in Figure 6.16 by a 

factor of 21.4.

Outside the range 215-245 K, following a change in the set-point
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Figure 6.16. Temperature Dependences of the Capacitance and Conductance 

of CDDP Measured along the Ferroelectric y axis.
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temperature, it took 20-30 minutes for the cell to reach the new 

temperature (as judged by the cell thermometer), and a further 20-30 

minutes for the sample to reach thermal equilibrium (as judged by the 

stabilization of the sample capacitance and conductance). Typical 

examples of the normal behaviour of the capacitance following a change 

in the set-point temperature are shown in Figure 6.17 by curves (a) and 

(r). As can be seen from these curves, an increase in temperature well 

below resulted in an increase in capacitance (curve (a)), whilst 
above T ^ an increase in temperature resulted in a decrease in the 

capacitance. In both cases the capacitance had levelled off and adopted 

steady values after about one hour, indicating that this interval of 

time is sufficient for the cell and sample to come to thermal 

equilibrium.

However, in the range 215-245 K this pattern changed. Following a 

rise in the set-point temperature, the capacitance and conductance rose 

during the 20-30 minutes that the probe was warming up, but then, 

instead of levelling out to steady values, the capacitance and 

conductance relaxed back to lower values. The variation of this 
relaxation effect as T + T^ is shown schematically in Figure 6.17 

(curves (b)-(o)). At 221 K, the rate of relaxation of the capacitance 

immediately following the stabilization of the cell was about 3.6 

pF/hour (or about 2% of the total capacitance per hour). In an attempt 

to monitor this effect further, the temperature was kept steady at 221 K 

for the next six days. In the first 15 hours the capacitance relaxed 

back to the value it held at about 211 K, so that the magnitude of these 

effects is very large indeed. By the end of this time the rate of 

relaxation had slowed to about 0.8 pF/hour. A further six days were 

required before the rate dropped to 0.4 pF/hour. The time constant for 

the relaxation effect was estimated to be about 26 hours.



Figure 6.17. Schematic Diagram Showing the Variation of Capacitance Following a Change in the 

Set-point Temperature.

Curve Temperature prior to Increase in Gain setting
increase in the set- the set-point
point temperature 

(K)
temperature

(K) (dB)

a 206.0 2.5 60
b 218.5 2.5 60
c 232.6 1.0 60
d 233.6 1.0 60
e 234.5 1.0 50
f 235.5 1.0 50
g 236.5 1.0 50
h 237.5 1.0 50
i 238.5 1.0 40
j 239.5 1.0 40
k 240.4 1.0 40
1 241.4 1.0 40
m 242.4 1.0 40
n 243.4 1.0 40
o 244.4 1.0 40
P 245.3 1.0 40
q 246.3 1.0 40
r 248.3 0.5 30

Note that since the changes in capacitance were much larger closer to the transition, it was 
necessary to decrease the gain settings as T + T ^ so that the curves in the figure are 

plotted using different vertical scales as listed above. The peak in curve (q) corresponds to 

the maximum in the capacitance at T^d
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The rate of relaxation to lower values increased as T Tc
reaching a maximum of about 3 pF/min (or about 18% of the total 

capacitance per hour) at 241 K. At this temperature the time constant 

was estimated to be about 3-4 hours. The rate decreased until, at about 

243 K, the capacitance and conductance adopted fairly steady values 

following changes in the set-point temperature (see Figure 6.17). The 

relaxation effects made it difficult to monitor the dielectric behaviour 

in the temperature region close to the transition, so that it was not 

possible to determine the transition temperature as accurately as was 
originally desired. An estimate of T ^ (as measured by the peak in the 

capacitance) was 246.8 ± 0.7 K, which coincides with the temperature of 

the peak of the attenuation for the longitudinal wave propagating along 

the x axis (see Figure 6.5).

Because of the length of the time-dependence of the values of 

capacitance and conductance resulting from the relaxation phenomenon, it 

was necessary to adopt a fixed time interval between the change of the 

set-point temperature and taking a reading. As the measurements in the 

absence of the relaxation phenomenon (i.e. outside the range 215-245 K) 

indicated a period of one hour to reach thermal equilibrium, this time 

interval was adopted for all measurements. Overnight breaks in data 

collection appear as large discontinuous jumps in the values of 

capacitance and conductance plotted in Figure 6.16, particularly visible 

in the range 220-245 K.

A similar relaxation effect was observed below 245 K whilst 

cooling the specimen. The relaxation effect appeared suddenly as the 

specimen was cooled into the transition region. The rate of relaxation 

was a maximum of 8.5 pF/min just below T . (The capacitance was about 
3000 pF at this temperature.) T ** for the cooling run was estimated to 

be 245 ± 1 K. The rate decreased steadily as the temperature was lowered
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until, at about 210 K, relaxation, if present at all, was too small to 

be observed.

In summary, then, it may be said that in the sample studied there 

is a very long term (hours-days) relaxation of the dielectric constant 

to lower values in the range 215-243 K. These relaxation effects are 

largest just below , but appear to be absent above , although the 

presence of these effects leads to some uncertainty in ascertaining the 

exact transition temperature.

The relaxation effect deserves further investigation. Of 

particular interest are: an accurate measure of the time constant, the 

dependence of the effects on applied electric field strength, and the 

extension of the observations to samples of varying degrees of 

deuteration. The current experimental arrangement is not suitable for 

exploring these effects further because of (a) the long thermal time 

constant of the cell and (b) the lack of automation of the experimental 

arrangement which renders impossible the continuous scanning of the 

relaxation effects over long periods of time.

(b) Measurements along the x axis

Uesu and Kobayashi (1976) have reported that the dielectric 

constants measured along the x and z axes in CDP are independent of 

temperature over the range 110-300 K. However the temperature dependence 

of the capacitance and conductance along the x axis for CDDP measured 

during a heating run, shown in Figure 6.18, does indeed show a 

significant anomaly, albeit much smaller than the y axis anomaly. The 

same sample and experimental arrangement were used for the x and y axis 

measurements.

Relaxation effects similar to those occurring for the y axis were 
observed in the range 235-242 K. T^ was estimated to be 246.3 ± 1 K.
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Figure 6.18. Temperature Dependences of the Capacitance and Conductance 

of CDDP measured along the x axis.
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The discontinuity at 260 K is spurious, and was not reproducible. It was

associated with an observed instability in the bridge readings. The

probable cause was that the sample, as a result of handling during the

ultrasonic and y axis dielectric measurements, was slightly damaged and

some small (100) pieces had cleaved from the prepared surface before the

sample was inserted into the cell for the x axis measurements. This

slight damage caused some mechanical instability in the sample holding

arrangement, so that the probable cause of the spurious effect at 260 K

was a small physical change in the position of the sample.

The sample thickness was 0.560 mm and the approximate surface area
2of the parallel faces was 1.05 cm , so that an estimate of the 

dielectric constant may be obtained by multiplying the capacitance (in 

pF) in Figure 6.18 by a factor of 6.2.

6.4.4 Discussion
6.4.4.1 T > T ^: Deviations from Curie-Weiss Behaviour 

----- c -----------------------------------------
(a) Y axis measurements

Figure 6.19 shows a plot of the inverse capacitance versus 

temperature for the y axis measurement of dielectric constant (i.e. the 

data of Figure 6.16). A smoothed spline function (IMSL routine ICSSCU) 

has been fitted to the data. The fit shows a linear temperature 

dependence of inverse capacitance over the range 248-262 K. In order to 

gain a better estimate of the upper temperature limit of this linear 

region, the temperature derivative of the fit was calculated, and is 

also plotted in Figure 6.19. The derivative is reasonably constant over 

the range 250-260 K, but above 260 K shows a steady increase. Hence, in 

the region 248-260 K, the dielectric behaviour is well described by the

usual Curie-Weiss law
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Figure 6.19. The Temperature Dependence of the Inverse Capacitance for 

the y axis Data of Figure 6.16. Note the Increase in slope at about 

260 K corresponding to the deviation of the dielectric constant from the 

Curle-Weiss law in this temperature region.
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Figure 6.20. The Temperature Dependence of Inverse Capacitance Raised to 

the Power of 1/1.27 for the Data of Figure 6.16. In the temperature 

range 250-300 K the plot is linear, which indicates that, in this 

region, the capacitance is well described by the power law dependence 

(T-Tq) k, where k - 1.27 t 0.02.
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Capacitance = k (T-Tq) *

3where was determined to be 245.9 ± 0.2 K and k = 3.03 x 10 pF K. If 

the conversion factor of 21.4 between dielectric constant and 

capacitance (section 6.4.3(a)) is assumed, this value of k gives a value
4for the Curie constant of 6.5 x 10 K.

Above 260 K, the dielectric behaviour deviates from the usual 

Curie-Weiss law, and in fact may be fitted to the expression

Capacitance = k' (T-Tq') K

where k = 1.27 ± 0.02 and Tq* = 242.9 ± 0.2 K (Figure 6.20). This value

of k was obtained by plotting (capacitance) versus temperature for
2different values of < and choosing that value of k which minimized x 

for a straight line fit in the region 250-300 K. Although difficult to 

see in Figure 6.20, there is a small curvature in the temperature 

dependence of (capacitance) in the range 250-260 K, but above

260 K the linear fit is excellent.
Thus, it may be stated that above T ^ there is a definite 

cross-over between a region close to T^ ((T-T^) < 13 K ) described by 

the Curie-Weiss law, and a region further from T^ (13 < (T-T^) < 52 K) 

described by a non-classical value of the critical exponent of 

1.27 ± 0.02.

Blinc £t^ al. (1979) have reported similar behaviour in the 

dielectric constant. Their measurements on CDDP showed Curie-Weiss 
behaviour in the region 0 < (T-T **) < 4 K and a non-classical value of 

the critical exponent of 1.28 ± 0.03 in the region 4 < (T-T ^) < 35 K. 

They associated the classical Curie-Weiss behaviour with the usual 

long-range, dipole-dipole interactions which are adequately described by
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a mean field theory, whilst the region described by a non-classical 

critical exponent was associated with short-range, one-dimensional type 

interactions. They quantified this model by proposing that the 

short-range intrachain coupling be described by a one-dimensional Ising 

model and the long-range interchain interactions be approximated by a 

mean field. This model yielded the following expression for the 

dielectric constant, g, above T

5 A/T_______
exp(-a/T) - B/T (6.6)

where B/a measures the ratio between the strengths of the interchain and

intrachain interactions, and A is a term proportional to the square of

the dipole moment generated by the disordered hydrogen occupying one of

its two possible equilibrium sites in the short 0-H....0 bond. They
found that the data for a sample of CDDP (with T ^ = 257.44 K) could be

quantitatively described by equation (6.6) with the value of
, -4B/a = 6 x 10 . This small value indicates that CDDP is very

"one-dimensional".

Blinc et al. (1979) found the cross-over between the regions of 

1-D and 3-D correlations in both CDDP and CDP at about 3 K above T^, 

with the value of the non-classical exponent being 1.31 ±0.1 for CDP. 

However, Deguchi et al. (1982(b)) have found significant deviations from 
the one-dimensional model in the region 0 < (T-T ^) < 20 K. Whilst they

assume that these deviations are due to the development of long-range,

3-D correlations close to the transition, they also found that the 

critical exponent in this region is different from unity (i.e. the

dielectric behaviour does not follow a Curie-Weiss law or a

one-dimensional Ising model in the range 0 < (T - T ) <20 K). Hence, 

whilst the two above authors concur as to the existence of a temperature
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range dominated by 1-D correlations, they differ as to the width of this 

region, and as to the nature of the dielectric behaviour in the region 

dominated by 3-D correlations. The findings of this study support the 

findings of Blinc et al. (1979), although the region of Curie-Weiss 

behaviour is considerably wider than that reported by them. At present 

these differences in the reported dielectric behaviour remain 

unresolved. It is possible that variations in the defect concentrations 

of the samples used may account for some of these differences. It is 

clear that more care will have to be taken in future to standardize the 

sample preparation procedure.

(b) X axis measurements

Since the dielectric constant along the x axis has been previously 

reported to be independent of temperature (Uesu and Kobayashi 1976), it 

is important to examine the possibility that the observed anomaly in 

Figure 6.18 was not due solely to a possible small misalignment of the 

sample from the x direction resulting in the observation of a component 

of the large y axis anomaly. From the Laue photographs taken of the 

specimen (see Chapter 3) the maximum possible degree of misalignment was 

± 1°. This misalignment would result in an observed x axis anomaly of 

about sin 1° = 1.8% of the size of the y axis anomaly. In fact the 

magnitude of the x axis anomaly in Figure 6.18 is about 4.2% of the 

magnitude of the y axis anomaly, which suggests that there is a genuine 

anomaly in the x axis dielectric behaviour.

The existence of such a genuine anomaly was confirmed by the 

critical point analysis. Figure 6.21 shows a plot of inverse capacitance 

versus temperature for the x axis measurements of Figure 6.18. It is 

clear that the dielectric behaviour does not follow a Curie-Weiss law. 

Note that the slope of the curve decreases with increasing temperature,
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Figure 6.21. The Temperature Dependence of the Inverse Capacitance for

the x axis data of Figure 6.18.
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Figure 6.22. The x axis Capacitance plotted as a function of log (T-Tq). 

The squares and solid line fit refer to the data of Figure 6.18 (which 

was taken on a heating run). Data taken on a cooling run (shown by the 

inverted triangles and fitted by the broken line) confirm that there is 

a genuine log type dependence of the dielectric constant orthogonal to 

the ferroelectric axis.
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in contrast to Figure 6.19 where the slope slowly increases. This 

suggests that a critical point exponent of less than unity is 

appropriate. Plots of (capacitance) versus temperature for varying 

values of k showed that the fit improved as k + 0, suggesting the 

possibility of a log type dependence (see Fisher (1967) wherein it is 
shown that (T-Tq) K * log (T-Tq) as K + 0).

Figure 6.22 shows a plot of capacitance versus log (T-Tq) where
2Tq = 244.9 ± 1 K has been chosen so as to minimize x for the straight 

line fit to the data. The source of the kink at log (T-Tq) - 1.1 is the 

spurious anomaly at 260 K (see Figure 6.18). Due to this anomaly the 

slope of the straight line fit is different by about 14% below and above 

260 K, but it is nevertheless reasonable to describe the data by a 

straight line over a decade. The log dependence was confirmed by data 

taken on a cooling run with Tq = 247.5 ± 1 K. This data is also shown 

in Figure 6.22.

Since the x axis dielectric behaviour follows a different 

functional form from the y axis dielectric constant, it is clear that 

the x axis anomaly cannot be simply due to a component of the y axis 

anomaly appearing in the x direction. Hence these measurements confirm 

the presence of a genuine dielectric anomaly in the x axis dielectric 

constant with a log (T-Tq) type dependence.

It would be very interesting to see if this non-classical log-type 

dependence could be described in the framework of the one-dimensional 

Ising model, which was successful in the case of the y axis behaviour. 

However, it is important to note that the x axis measurements do not 

display a region which may be thought of as dominated by 3-D, 
dipole-dipole interactions (as evidenced by a (T-Tq) * dependence). In 

this regard an obvious extension to the present work would be a 

measurement of the dielectric behaviour along the z axis and an
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examination of the dielectric properties at right angles to the 

ferroelectric axis as a function of deuterium content.

6.4.4.2 T < T d: Relaxation Effects 
----- c ---------------------

As has already been discussed in section 6.2.4.1, Kamysheva et al.

(1981) have found evidence of a very high mobility of the domain walls

in GDP in the temperature region between and (where is the

freezing point of the domain structure). The width of this region of

about 30 K is of the same order as the width of the temperature region

in which relaxation effects were observed in CDDP in this study. Thus,

the relaxation effects may be due to a rearrangement of the domain

structure driven by the small measuring field (which was continuously

applied to the specimen even during the overnight breaks in data

collection). It is reasonable to attribute such a rearrangement to such

a small field in view of the very low value of coercive field 
-1

(100-200 V cm ) at temperatures about 20 K below T^, and the observed 

S-shaped type hysteresis curve with the coercive field close to zero at 

3-5 K below T^ (Kamysheva et al. (1981)). Hence, as the sample is warmed 

towards T^, the increasing rate of relaxation may be attributed to the 

increasing mobility of the domain walls (as evidenced by the increase in 

the dielectric loss seen in Figure 6.18, and as observed by Kamysheva et 

al. (1981)), and the reduction in the field necessary to bring about a 

rearrangement of the domains. With the disappearance of a permanent 

dipole moment above T^, the domains may be thought of as having 

"dissolved”, and hence no relaxation is observed above the transition 

temperature. An obvious necessary extension to this work is an 

examination of the dependence of the relaxation phenomenon on the 

applied electric field strength. Initial investigations showed that, as 

might be expected, the rate of relaxation increased markedly as the
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-1 -1measuring field strength was increased from 1 V cm to 100 V cm .

To the best of the author’s knowledge, similar relaxation effects 

have not been reported elsewhere in the literature. This may simply be 

due to the fact that most authors have used continuous temperature scans 

rather than stabilizing the temperature for each measurement. However, 

Levstik et al. (1975), who used a measurement system very similar to the 

one used in this study in their measurements on GDP and CDDP, have also 

not reported any relaxation phenomena.

This non-observance by other authors of relaxation effects in GDP 

or CDDP may be due to differences in the defect concentration of the 

samples used in the measurements. The situation may be analogous to the 

observation of the "double" anomaly for the z-axis measurements which 

was only observed in one of the specimens studied. In that case the 

differences between specimens were attributed to the dependence of the 

domain structure on the defect concentration (Kamysheva et al. (1981)). 

As in the ultrasonic measurements this hypothesis could be tested by 

annealing the specimen and remeasuring its dielectric behaviour.
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6.5 SUMMARY

Measurements of the ultrasonic velocity and attenuation of the 

longitudinal waves propagating along the x, y, and z axes in CDP 

revealed anomalies for all three directions, with the largest anomaly 

occurring for the ferroelectric y axis. The anomaly along the x axis in 

CDDP was found to be much smaller and broader than that for the 

corresponding mode in CDP. The question of whether deuteration changes 

the nature of the transition mechanism remains unresolved.

Only the data collected for the z axis were of sufficient quality 

to carry out a critical point analysis. This analysis provided evidence 

to suggest a cross-over between a temperature region close to T^ in 

which the anomaly displays a power law dependence, and a region further 

away from T^ in which the anomaly displays a log type dependence. The 

interpretation offered to explain these observations is that far away 

from T^, 1-D, short-range interactions dominate the ultrasonic 

behaviour, whilst close to T^ the usual 3-D, long-range, dipole-dipole 

interactions are dominant.

These findings were compared and contrasted with the conflicting 

log type dependences of the anomalies found by Kanda et_ al. (1983) 

(K83), and the power law dependences with large critical exponents found 

by Yakushkin et al. (1981) (Y81). The above interpretation is not 

consistent with the theoretical basis apparently underlying the work of 

both K83 and Y81 that a log type dependence is evidence of 3-D 

interactions, whilst a power law dependence with large critical 

exponents is evidence of 1-D interactions.

Some of the discrepancies between the results reported by Y81, 

K83, and this study may be due to the different conditions under which 

the measurements of each study were performed. (For example, the degree 

of deuteration, and the application of a bias field to produce a
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monodomain specimen were found to have a marked influence on the size 

and shape of the anomalies.) In this context the findings of this study 

could be viewed as possessing elements of the features reported by both 

Y81 and K83.

Measurements of the dielectric constant of CDDP showed that the 

dielectric constant is described by the usual Curie-Weiss law close to 

Tc, whereas, further away from , the dielectric constant is described 

by a non-classical critical exponent of 1.27. Other studies have found 

that, in the region described by this non-classical critical exponent, 

the dielectric constant is well described by the 1-D Ising model. Hence, 

the results of this study constitute convincing evidence (consistent 

with the findings of this study for the ultrasonic measurements) of a 

cross-over between a temperature region close to the transition 

dominated by 3-D interactions, and a region further away from T^ 

dominated by 1-D interactions.

In contrast with the findings of previous studies, a significant 

anomaly was found for the dielectric constant measured orthogonal to the 

ferroelectric axis. This anomaly was found to have a log type 

dependence, and although the interpretation of this finding remains 

unclear, it is interesting to speculate that this may be due to 3-D 

deviations from the 1-D Ising model which become evident when the 

dielectric constant is measured orthogonal to the ferroelectric axis

The directional GrGneisen parameters (calculated from x and z axis 

thermal expansion coefficients measured by this study and the y axis 

data reported by Deguchi et_ al. (1981)) show that, from the 

thermodynamic point of view, the "one-dimensionality" of CDP increases 

as T + Tc» The expansion measurements show no evidence of a "cross-over" 

as discussed above, but this may well be due to the poor temperature 

resolution of these measurements. (Note, however, that Nakamura et al.
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(1984) have found that a systematic deviation exists between their 

measured y axis expansion data and the values calculated on the basis of 

the 1-D Ising model. They attributed these deviations to the growth of 

3-D interactions close to transition.)

Finally, the observation of an unexpected second anomaly below 

in the z axis ultrasonic measurements, and the observation of very long 

term relaxation effects in the dielectric constant below T^, both 

suggest that CDP has a very "soft" domain structure in the ferroelectric 

phase.
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CHAPTER 7

CONCLUSION

7.1 THE PRESENT STUDY

The elastic constant matrix of CsH^PO^ (CDP) has been determined 

using ultrasonic velocity measurements at 10 MHz. The elastic constants 

have been used to calculate phase and group velocity surfaces, the bulk 

modulus, linear compressibilities, Young's modulus surfaces and the 

Debye temperature. The calculations showed that CDP is a very soft 

material with a bulk modulus of only 5.3 GPa. Significant anisotropy was 

found in Young's modulus and linear compressibility, which has been 

successfully correlated with the known chain and layer-like structure of 

CDP. Despite the disordered nature of the hydrogen linking the 

ferroelectric y axis chain, Young's modulus for this direction was found 

to be much larger than that for the x or z axes. On the basis of the 

elastic measurements it has been concluded that, even at room 

temperature, CDP shows evidence of being a "one-dimensional" material.

In an attempt to elucidate the mechanism of the ferroelectric 

transition, measurements have been made of the temperature dependences 

of (a) the ultrasonic velocity and attenuation for the longitudinal 

modes propagating along the x, y, and z axes, (b) the expansion 

coefficient along the x and z directions, and (c) the dielectric 

constant of CDDP. The critical point analyses of both the ultrasonic and 

dielectric anomalies showed evidence of a cross-over between temperature 

regions in which the anomalies are described by different functional 

forms, which suggests that the transition in CDP takes place in two 

stages. Far away from T , 1-D, intrachain forces are dominant. In this 

region, the dielectric behaviour is well described by a 1-D Ising model.
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(These observations are consistent with the room temperature elastic 

measurements which also suggest the dominance of 1-D type forces.) 

However, as T > T^, the 3-D, interchain, dipole-dipole interaction grows 

until it dominates the behaviour. This 3-D interaction is presumably 

responsible for the small displacements of the Cs and P atoms at the 

transition which contribute to the development of a permanent dipole 

moment in the ferroelectric state.

Calculations of the Gruneisen parameters based on the expansion 

measurements have revealed that, from the thermodynamic point of view, 

the degree of "one-dimensionality" increases as the transition is 

approached. This is consistent with the reported increase in the 

intrachain correlation for the hydrogen-bonded y axis chain as T -» T^.

7.2 FUTURE WORK

Most of the analysis in this study has concentrated on the 

transition region for T > T^. However, the observation of (a) a second, 

unexpected ultrasonic anomaly below T^ for propagation along the z axis 

and (b) a very long term relaxation in the dielectric constant, also 

below T^, suggested that CDP has a very "soft" domain structure in the 

ferroelectric state. It was also noted that the size and shape of the 

ultrasonic anomalies are different for polydomain and monodomain 

specimens. Several suggestions have been made in the text as to how 

these domain effects could be investigated further, including the 

quantitative examination of the dielectric relaxation effects, a 

comparative analysis of the critical region of the ultrasonic anomalies 

for monodomain and polydomain specimens, and the use of ^-irradiation to 

study the effects of defects on the domain structure.

The effect of deuteration on the mechanism of the ferroelectric 

transition mechanism remains unclear. In order to clarify this, it will
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be necessary to compare careful critical point analyses of the 

ultrasonic anomalies of a series of samples with varying levels of 

deuteration.

Looking further into the future, with automation of the ultrasonic 

measurement system, it may become practicable to measure the temperature 

dependence of the velocities of a sufficient number of modes to enable 

the determination of the temperature dependences of all thirteen elastic 

constants of CDP, It would then be possible to see if the increased 

correlation length along the y axis as T -» T^ is reflected by changes in 

the anisotropy in Young’s modulus and the linear compressibility. Even 

if it is not possible to make sufficient measurements to enable the 

calculation of all the elastic constants, it would still be very 

interesting to study the temperature dependences of some of the 

transverse modes, especially for propagation in the xz plane, since this 

plane has shown such a large degree of anisotropy in the room 

temperature elastic measurements.

In conclusion, it may be said that the results presented in this 

study constitute only one more step in the overall understanding of the 

lattice dynamics of CDP. The next major important step in this 

understanding would be a determination of the room temperature phonon 

dispersion curves, with special emphasis to be placed on the very damped 

transverse acoustic mode which propagates at 38° to the x axis in the xz 

plane. The initial slopes of the acoustic branches of the dispersion 

curves are easily calculated from the elastic constants and this should 

aid in the search for these branches. Nevertheless the determination of 

the phonon dispersion curves is likely to very demanding due to the 

monoclinic symmetry of CDP.
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The ultrasonic measurement techniques described in this thesis 

have also been successfully applied to the measurement of the room 

temperature elastic constants of Cesium Thiocyanate. This work is 

described in

Irving, M.A., Prawer, S., Smith, T.F., and Finlayson, T.R.,

"The Room Temperature Elastic Constants of Caesium Thiocyanate" , 

Aust. J. Phys. , ^6, 85-92, (1983)

The work on the room temperature elastic constants of CDP is 
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Prawer, S., Smith, T.F., and Finlayson, T.R., "The Room Temperature 

Elastic Constants of CsH^PO^", Aust. J. Phys., 38, 63-83, (1985)
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The Room Temperature Elastic Constants 
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Department of Physics, Monash University, Clayton, Vic. 3168.

I

Abstract
The velocities of propagation of elastic waves in caesium thiocyanate have been measured along 
the three orthorhombic axes and normal to the (110), (011) and (101) planes using a double-transducer 
technique at 10 MHz. The velocities are found to be consistent with the orthorhombic crystal 
symmetry, and in favourable agreement with a recently published rigid-ion model calculation. 
The calculated elastic stiffness constants have values c,, = 18-9±0-7, c22 = 20-6± 1 0, 
C33 = 28-1 ±1-6, C44 = 1 -96±0 05, c55 = 7-30 + 0-2, c66 = 3 04±0-07, c12 = 7-8±4-3,
Ci3 = 14 8±4 and c23 = 6-3±4 GPa. The calculated values for the adiabatic bulk modulus 
and the low temperature limiting value of the Debye temperature are 13 2+3 5 GPa and 132 K 
respectively.

1. Introduction
The alkali metal thiocyanates have crystal structures consisting of spherical 

cations and rod-shaped anions. These substances are of interest because of order- 
disorder type phase transitions involving the orientation of the anions which occur 
just below their melting points.

Potassium thiocyanate has been extensively studied by X-ray diffraction (Klug 
1933; Yamada and Watanabe 1963; Akers et al. 1968), thermal expansion 
(Sakiyama et al. 1963), heat capacity (Vanderzee and Westrum 1970; Kinsho et al. 
1979), differential thermal analysis (Sakiyama et al. 1963; Braghetti et al. 1969) 
and spectroscopic investigations (Jones 1958; Iqbal et al. 1972; Dao and Wilkinson 
1973; Ti et al. 1976; Owens 1979).

By comparison caesium thiocyanate has received little attention, as only the 
crystal structure for the room temperature phase (Manolatos et at. 1973) and a 
differential thermal analysis investigation of the transition under pressure (Klement 
1976) have been reported.

Recently, lattice dynamical calculations based upon a rigid-ion model have been 
made for both potassium and caesium thiocyanate (Ti et al. 1978; Ti and Ra 1980a, 
19806). The model potential parameters were determined from lattice stability and 
static equilibrium conditions. The calculated zone centre energies for the optic 
modes agreed favourably with the available Raman data (Ti et al. 1977).

In the present paper measurements of the elastic constants for caesium thio
cyanate using ultrasonic techniques are reported. These are the initial results in a 
more extensive study to determine the dispersion relations for this crystal using

0004-9506/83/010085$02.00
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inelastic neutron scattering. The results so far compare favourably with the initial 
slopes of the dispersion curves derived from the model calculations of Ti and Ra.

2. Experiment
The room temperature phase of caesium thiocyanate is orthorhombic with space 

group Pnma. Plate-like single crystals were grown from water solution by evaporation. 
Growth was predominantly in the plane normal to [001]. The crystals were aligned 
from Laue back-reflection X-ray photographs with a maximum error in orientation 
of one degree. Faces on opposite sides of the crystals, normal to the required 
propagation directions, were ground and polished using grinding papers down to 
1200 grade and then 6 /jtn diamond grit. The final samples had thicknesses between 
5 and 10 mm.

Ultrasonic velocities were measured using a double-transducer technique as 
described by Papadakis (1967). One transducer was excited by a 50-100 V peak-to-peak 
10 MHz r.f. pulse train, and the resulting echo train was detected by a similar trans
ducer bonded to the opposite face. The received signal was displayed on an oscillo
scope which was triggered by an external oscillator with a period comparable with 
the round-trip travel time of the pulse in the crystal. Additional electronics made it 
possible to intensity-modulate the display and to trigger the transmitter coherently. 
The frequency of the external oscillator was then adjusted to overlap the r.f. cycles 
of two successive echoes displayed on the oscilloscope, and from the measured 
frequency the round-trip travel time was determined.

There is not one unique overlap condition, but several displaced from each other 
by whole r.f. cycles. The choice of the correct overlap corresponding to the true 
round-trip travel time was determined using McSkimin’s criterion (Papadakis 1967). 
We believe that the cyclic mismatch of these results could be up to one r.f. cycle, 
because of the small acoustic impedance of the crystal and unknown bond thicknesses, 
which could introduce large phase delays on reflection from the transducer interface.

The transducers used were fine-ground X- and T-cut quartz, 0 -125 in (3 17 mm) 
in diameter and coaxially gold plated. The nominal resonance frequency of each 
transducer was 10 MHz. The bonding materials used were a commercially available 
epoxy-resin glue, ‘5 minute Araldite’, and ‘Apiezon’ vacuum grease. It was found 
that in the case of the transverse vibrating T-cut transducers only the solid bond 
obtained with Araldite provided enough mechanical coupling to generate a pulse 
of sufficient amplitude for the velocity to be measured. However, in the case of the 
longitudinal vibrating %-cut transducers, the Apiezon grease could be used.

The alignment of the transducers for the transverse measurements was done by 
eye relative to the appropriate crystallographic directions. Consequently, the 
polarization for the transverse measurements could have been in error by up to 5° 
from the desired direction. Such an error should only affect the amplitude of the 
echo signal and should not alter the measured velocity. Furthermore, this type of 
misalignment should result in the appearance of an echo train corresponding to the 
transverse mode at right angles to that being measured. This was not observed and 
so it was assumed that any misalignment was not significant. For all modes measured, 
echo trains consisting of two or more echoes were observed.

In an orthorhombic system there are nine nonzero elastic constants (Nye 1967). 
The six diagonal terms cu can most easily be measured along the principal crystallo
graphic directions while the off-diagonal terms can only be measured along non-
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Table 1. Ultrasonic velocities and associated elastic stiffness constants for CsSCN at 293 K 
p is the density; /, m and it are the direction cosines for the appropriate direction; (av.) denotes 

that the average velocity was used in determining ru

V (kms-1) Elastic constant (GPa)

vxx 2-52 + 0-04 Cn = 18-9±0-7.. pV1
Vyy 2-63 + 0-06 c22 = 20-6 + 1-0
v„ 3-07 + 0-08 c33 - 28 T ± 1 ■ 6

K* 0-81 ±001 C44 = 1-96 + 0-05
v„ 0-81 ±001

Vxz 1-56 + 0-02 c„ = 7-30 + 0-21 (av.)
V,x 1-57 + 0-02

V„ 1 00 + 0 01 c66 = 3-04 + 0-07 (av.)
V„ 1-02 + 0 01

110)1 2-40 + 0-04 cl2 - 7-9±4-1
= [(/ 2Ci 1 + m2c6 6 - pV2)(l 2c6 6 + m2c22 - pV2)/l 2m2]1/2 — c66

^(110)t 1-39+0-02 ct2 = 7- 6± 3 • 5
= [(/2 Ci i + m2c66-p K2)(Z 2c66 + m2c12 - p V2)/l 2m2]'12 - c66

^<011)1 2-38+0 06 c23 = 6-4 + 48
= l(m2C22 + «2C44 - pV2)(m2c4i + n2c33 - p V2)/n2m2]112 — c44

^(OllH 1-70 + 0-03 c2 3 = 6-1 +2-7
— [(m2c22 + n2ciX - p V2)(m2cxx + n2c33-pV2)/n2m2],,2-cxi

t'uoni 2-96 + 0-09 Cj 3 = 14-3 + 7-3
= [(l2Cii + n2c5i-pV2)(l2cS3 + n2c33-pV2)/l2n2]ll2-c35

^(101)1 1-14 + 0 02 C|3 = 15-2 + 3-9
= [(/ 2Ci 1 + n2css — p V2)(l 2cSs + n2c33- pV2)/l 2n2]'12 - c35

principal directions. The velocities of a longitudinal and two transverse modes were 
measured along each of the orthorhombic axes. These are denoted by Vu where /' 
and j indicate the directions of propagation and displacement vectors respectively 
(Manolatos et al. 1973). The velocities and the six directly derivable stiffness constants 
(McSkimin 1964) are listed in Table 1.

The off-diagonal constants were derived from quasi-longitudinal and quasi- 
transverse modes along crystal directions chosen for ease of alignment and for the 
partial diagonalization of the secular equation (Neighbours and Schacher 1967). 
These directions were normal to the crystal planes (110), (Oil) and (101). The 
velocities are labelled by these planes and a suffix, either 1 (longitudinal) or t (trans
verse), to indicate the nature of the transducer employed. The polarization of the trans
verse measurements was aligned parallel to the [110], [Oil] and [101] crystal directions 
respectively. Two of the modes along any off-diagonal direction are not pure, in 
that the displacements are neither parallel nor perpendicular to the propagation 
direction. These are denoted as being ‘quasi-longitudinal’ or ‘quasi-transverse’ 
because the deviation from pure mode behaviour was subsequently calculated to be 
small. The remaining mode is pure transverse with displacements perpendicular to 
the plane of interest. It was not measured because the velocity is only dependent 
on previously measured diagonal constants. The off-diagonal velocities and their 
functional dependence on the elastic constants (McSkimin 1964) are listed in Table 1.

To calculate the elastic constants the density of the material was measured to be 
2-98±0-01 gcm-3 at 293 K by the displacement method using chloroform. This 
may be compared with the X-ray value of 3-025 gem-3 calculated from the lattice 
parameters (Manolatos et al. 1973).
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3. Results

The ultrasonic velocities and associated elastic constants at 293 K are summarized 
in Table 1. The errors in the velocities are predominantly due to the one r.f. cycle 
uncertainty in the correct overlap condition. More velocities than needed for 
determining the elastic constants were measured to check the consistency of the 
velocity measurements. The transverse velocities Kiy and VJt must be identical by 
symmetry and experimentally are equal within the quoted errors. The quasi
longitudinal and quasi-transverse velocities for the off-diagonal measurements 
represent the two roots of the quadratic secular equation. The off-diagonal elastic 
constants derived from the measurement of both roots agree, which again indicates 
the consistency of the data.

The quoted errors in the off-diagonal elastic constants are large, firstly because 
of the dependence of these constants on other moduli, and secondly on account of a 
significant uncertainty in the alignment of the propagation direction. It should be 
noted that the quoted error represents the worst possible error, and the concordance 
of the longitudinal and transverse off-diagonal measurements indicates a greater 
accuracy than shown by the quoted errors.

k. / k,

Fig. 1. Dispersion curves for the acoustic modes of CsSCN calculated by Ti and Ra (1980a).
The broken line indicates the initial slopes as determined from the measured velocities.

For comparison, the ultrasonic velocities along the orthorhombic axes, together with 
the dispersion curves by Ti and Ra (1980a) for the acoustic modes, are presented in 
Fig. 1. The labelling, Lm, of the curves follows the notation adopted by Ti and Ra.

The elastic constants fully describe the elastic behaviour of the crystal. The 
eigenvalue problem for propagating an elastic wave can be solved using the measured 
constants for any arbitrary direction. Figs 2a-c show the dependence of the calculated 
velocities of the three modes of propagation for directions in the xz, xy and yz planes 
respectively. The measured velocities are also shown. These plots readily illustrate
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Fig. 2. Calculated velocities of propagation for acoustic modes in the xz, xy and yz planes 
(a-c); projections of the unit cell on the respective planes with atomic radii not drawn to 
scale (</-/). The actual measured velocities are shown by the open circles and the sense of 0 
in each plane is indicated.
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the anisotropy of the elastic behaviour. The velocity for the longitudinal mode, 
which is relatively isotropic, has a maximum value along the [001] direction. The 
minimum longitudinal and the maximum transverse velocity both occur close to 
the [Oil] direction.

Only for propagation along the principal crystallographic directions do all three 
elastic waves have pure modes of vibration. In any arbitrary direction within a 
principal plane, only the transverse wave, with polarization out of the plane, is a 
mode of pure vibration. The velocity for this wave is denoted by a broken curve 
in Figs 2a-c. The other two modes may be excited to be predominantly longitudinal 
or transverse in character, but the displacement vectors for such quasi-longitudinal 
and quasi-transverse modes will be directed at angles of </> and 90° + 4> to the 
propagation direction respectively.

It is possible, for suitable combinations of direction cosines and elastic constants, 
that directions can occur for which <p = 0, resulting in ‘accidental’ pure modes. The 
dependence of (j> on the propagation direction, described by 6 (see Fig. 2) in the 
principal planes is shown in Fig. 3, from which it is seen that ‘accidental’ pure modes 
occur in all three planes. However, whereas these pure modes occur close to the 
[Oil] and [110] directions for the xy and yz planes, the pure mode in the xz plane 
lies close to the z-axis.

The adiabatic bulk modulus 5, was determined from the expression

B„ = 1/(^1! +^22 + ^33 + ^13+2^23 + 2^2),
where su are the elastic compliances which were determined by inverting the c,j 
matrix. An estimate of the worst error in Bs was determined by inverting all per
mutations of the various extreme values of cu, obtained by adding or subtracting 
the error from the value. The calculated value is 13-2 + 3-5 GPa.

Finally, an estimate for the value of the elastic Debye temperature &%' was 
determined from the elastic constants by integrating over 5868 directions in one- 
quarter of the unit sphere. The result is 132 K.

4. Discussion
From Fig. 1, it can be seen that there is generally good agreement between the 

initial slopes of the calculated dispersion curves and the experimental velocities. 
These measurements represent the first experimental test of the wave-vector dependence 
of the calculated acoustic phonon dispersion curves for caesium thiocyanate. While 
the agreement lends support to the rigid-ion model and the stability criteria adopted, 
the acoustic modes close to the zone centre do not provide a severe test of the model. 
For such modes the relative changes in the positions of the atoms within the unit 
cell are small and therefore the effects of electronic polarization, which are not catered 
for in the model, will not be significant. A more rigorous test of the model requires a 
wider exploration of both the acoustic and optic mode branches away from the zone 
centre.

Major discrepancies do occur for those modes corresponding to the velocities 
Vxx and Vzy. In the latter case the calculated mode has negative energies. In view 
of the relatively low energies for this mode, the failure of the model may be due to 
numerical rounding errors in the eigenvalue problem for that particular symmetry 
group and propagation direction or, alternatively, the residual forces acting on the 
atoms may not be small enough to produce a valid prediction for this mode.
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We note also that the mode denoted by L28 corresponding to Vyi has a pronounced 
dip at k = 0-5kmax. Since the elastic constant appropriate to this mode is identical 
to the mode for which the model gave negative energies, it is probable that the dip 
merely reflects the numerical limitations of the model. However, it is interesting to 
speculate that such a softening of the L28 mode may be responsible for the phase 
transition which occurs at 197°C. This transition in the related potassium compound 
is associated with the librational fluctuation of the NCS™ anion (Owens 1979). 
The calculated librational component for the L28 mode at k = 0 • 5 Armax is only 3% 
for caesium thiocyanate at room temperature. However, it is possible that this may 
increase as the temperature increases.

The values for the bulk modulus and Debye temperature fall within the range 
of values for the same parameters for other caesium ionic crystals, i.e. the caesium 
halides have bulk moduli which range from 14 to 26 GPa and elastic Debye temper
atures from 130 to 175 K. Specific heat data for CsSCN have not been reported, 
however, measurements have been made by Vanderzee and Westrum (1970) for 
K.SCN and NH4SCN. Their values for 6>o are 210 and 238 K respectively where 
these correspond to Avogadro’s number of molecular units per mole. As the value 
of 0o corresponds to Avogadro’s number of atoms it is necessary to divide the values 
of 0o by the cube root of 4 and 8 respectively for comparison with 0q. This gives 
values of 132 K (KSCN) and 119 K (NH4SCN) which are close to the elastic value 
for CsSCN.

While there is marked anisotropy in the stiffness of the crystal for the propagation 
of transverse vibrations, the similarity of the elastic behaviour for the xy and yz 
planes is striking. Ultimately, the anisotropy of the elastic properties of the crystal 
must be related to the symmetry of the bonding within the crystal. Projections of the 
unit cell onto the three principal planes are shown in Figs 2c/-/. From these, the 
planar-like stacking of the atoms along the [010] direction and the similarity of the 
xy and yz planes are clearly seen. A detailed theoretical description of the connection 
between the crystal structure and the elastic properties is currently being investigated.
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The Room Temperature Elastic Behaviour of CSH2PO4
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Department of Physics, Monash University, Clayton, Vic. 3168.

Abstract

The components of the elastic constant matrix of monodinic caesium dihydrogen phosphate 
(CDP) have been determined using ultrasonic velocity measurements to be Cn - 28-83 + 0-43, 
C22 = 26-67±0-37, C33 = 65-45±0-48, C44 = 8-10±0-15,C„ = 5-20±0-24, C66 = 917±0-22, 
Cu = 11 4±3 6, C13 = 42 87±l-58, C13 = 513+0-67, C„ = 14 5±4 4, C25 = 8-4 + 4 3, 
C23 = 7 50 + 0 81 and C46 = —2 25 + 0-31 GPa. Calculations of the velocity surfaces, ray 
directions, Young’s modulus surfaces and linear compressibility show marked elastic anisotropy, 
which has been correlated with the chain and layer-like structure of CDP.

1. Introduction

The crystal structure of ferroelectric CsH2P04 (7, = 154 K) was unambiguously 
determined to be monoclinic P2Jm by Uesu and Kobayashi (1976) rather than the 
orthorhombic structure earlier reported by Fellner-Feldegg (1952). On the basis 
of the oxygen-oxygen bond distances they suggested that the structure consists of 
P04 groups, hydrogen bonded approximately along the a and c axes as shown in 
Fig. 1. The hydrogen bonds along the a axis link the P04 groups into chains running 
along the b axis. These chains are cross linked by the hydrogen bond along the c 
axis. Thus (100) layers are formed which are bonded to each other by ionic forces 
involving the Cs+ ion (see also Fig. 6a). The relative weakness of the interlayer 
forces is evident from the perfect cleavage that occurs along the (100) plane.

The structure was further refined by Matsunaga et al. (1980) who also determined 
the position of the hydrogen atoms. They found that the sites for the two hydrogen 
ions were inequivalent. The hydrogen ions associated with hydrogen bonding along 
the c axis were ordered at room temperature, whereas the ions along the a axis were 
disordered at room temperature. At 7C the ordering of this hydrogen linked the chains 
of P04 tetrahedra together along the ferroelectric b axis. Since one hydrogen is 
already ordered in the paraelectric state, the ferroelectric transition has been described 
as pseudo-one-dimensional, unlike the three-dimensional behaviour observed in the 
case of KH2P04 (KDP) (Frazer et al. 1979). This one-dimensionality has been the 
focus to date of many of the studies on CsH2P04 (CDP) (see e.g. Youngblood et al. 
1980; Iwata et al. 1980; Yakushkin et al. 1981; Kanda et al. 1982, 1983).

0004-9506/85/010063S02.00
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Fig. 1. Crystal structure of 
CsH3P04. Disorder in the 
hydrogen bonds along the a axis 
involved in chain formation is 
indicated by the neighbouring 
solid and dotted circles used to 
represent the proton positions. 
Note that adjacent P04 groups 
in the 6-axis chain are not in 
the same cdl. [From Frazer et 
al. (1979).]

The present paper does not specifically address the problem of the elastic behaviour 
in the vicinity of the transition but is restricted to a report of the room temperature 
elastic behaviour and its relationship to the crystal structure. As such, this work 
represents a first step in the overall understanding of the lattice dynamics of CDP.

The nature of the chain and layer like bonding can be expected to be reflected in 
the elastic properties of the crystal, as the elastic constants are given by the second 
derivative with respect to strain of the free energy. Here we report a complete deter
mination of the elastic constant matrix of CDP, via measurements of the ultrasonic 
phase velocities along different crystallographic directions. There are 13 independent 
nonzero elastic constants Cn, C22, C33, C44, C55, C66, C12, C13, CI5, C23, C25, C35 
and C46 (Nye 1967) for monoclinic symmetry. Direct and simple relationships 
between measured velocities and elastic constants are only possible for C22, C66 and 
C44. All the other constants occur coupled together in more complicated relation
ships. Also, only measurements along the b axis yield pure elastic waves (i.e. purely 
transverse or purely longitudinal particle motion). Hence, the determination of all 
13 elastic constants of a monoclinic system is demanding both experimentally and 
computationally.

The elastic constants are usually referred to an orthonormal set of axes x,y, z which 
have a standard orientation with respect to the crystallographic axes a, b, c (see 
‘Standards on Piezoelectric Crystals’ 1949). The conventional arrangement is shown 
in Fig. 2. In order to avoid confusion, the normal notation [a, /?, y] will refer to direc
tions with respect to the monoclinic axes a,b,c, and the primed notation [/, m, n]' 
will refer to directions with respect to the orthonormal set.
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Once the Cfj matrix is known it is possible to calculate the Debye temperature, 
bulk modulus, linear compressibility and Young’s modulus, as well as constant 
phase and group velocity surfaces. The dependence of the last four quantities on 
crystal orientation must be related to the crystal structure, although this relationship 
is very complex.

z

Fig. 2. Axes of monoclinic CsH2P04 
(0 = 107-742°): a and c are perpen
dicular to b, but not to each other, 
while xyz form the cartesian axes to 
which the elastic constants are 
referred.

Finally, as previously mentioned, the ferroelectric ordering in CDP is essentially 
of a one-dimensional nature. The elastic constants, particularly the off-diagonal 
elements, provide information about the cross compliance between the principal 
ferroelectric axis and directions at right angles to it. A knowledge of the cross com
pliance is essential for the description of anomalies which appear in these off-principal- 
axis directions.

2. Theory: Elastic Waves in Crystals
The equation of motion for particles in a crystal with displacements ut from their 

mean positions is given in the index-summation convention used throughout this 
paper by (Brown 1967)

d2u( ^ d2uk
pl? =Cijk'e^d7,’ (1)

where p is the density and CiJk, is the elastic constant tensor.
Representing a travelling wave in a crystal by the form

w, «= y4|Sin(cof -kjXj), (2)

where to is the frequency, k is the wave vector and A is the polarization vector, and 
substituting this into equation (1) yields

pwi2 A i = Ctjklk,kjAk. (3)
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As dispersion effects are negligible in the long wavelength region of the ultrasonic 
measurements, the ultrasonic velocity V is col*!-1, where |*| = (kl+kl+kl)*. 
Equation (3) may then be written as

XA = pV2A, (4)

where X is a real symmetric matrix whose components are quadratic functions of 
the direction cosines /, m, n of the propagation vector k. Specifically, if

c„ C66 C55 c56 C,5 C16 - ,2 -

C66 C22 c** c24 C46 c26 m2

C55 C44 C33 C34 C35 C45
, L =

n2

C56 C24 C34 i(C23 + C44) i(C36 + C45) i(C46 + C25) 2mn

Cl 5 C46 c35 KC36 + C45) i(Ci3 + C5S) i(C,4+C56) 2 In

C,6 c26 C45 KC46+c25) i(C,4+C56) MC12+c66)„ 2/m.

11 — 61 j A;, A22 = QijLj, ^■33 = Qi]Lj

23 = Q 4j Lj, 2i 3 — QijLj, zi2 — QejLj,

where the Voigt notation has been used (Nye 1967) and j = 1-6.
Equation (4) indicates that pV2 are the eigenvalues of the matrix X, whilst A 

(the polarizations) are the corresponding eigenvectors. For (4) to have non-trivial 
solutions it is required that

I ^ik~ pV2&ik I —0. (5)

Hence, measurements of the three velocities (two transverse and one longitudinal) 
for a given propagation direction /, m, n were used to establish relationships between 
the elastic constants. To obtain sufficient relationships to determine all 13 elastic 
constants for a monoclinic material, measurements of all three velocities were 
required in at least six different directions (i.e. [100]', [010]', [001]', [/On]', [110] and 
[011]'). Some of the relationships were redundant and were used as internal consistency 
checks on the data. The procedure adopted is outlined in Section 4.

The direction of energy flow R in a crystal is, in general, not parallel to the 
propagation vector. Often called the ray vector, R is given by the tensor product of 
stress and particle velocity (Musgrave 1970) and, by assuming Hooke’s law that 
strain is linearly proportional to stress (Nye 1967), it has been shown that its com
ponents are given by

Rj = C|y||Mf duJdXi. (fi)

By assuming a wave solution of the form (2) exists, equation (6) can be written as

Rj = ^CijiiAiAtkiW, ("/)
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where Rj is the time average over one period (2ir/ro) of the energy vector. As only 
the direction of Rj is of interest, (7) may be rewritten as

rj = 2Rj | k I"1©"1 = CwAiAtP,, (8)

where p, = A-,1*]"1 are the direction cosines of the propagation vector. Then, 
expanding (8) and using the Voigt notation we get

r\ = IQijSj+mQ6jSj+nQSJSj,

r2 — IQt j Sj + mQij Sj +nQ*j Sj >

r 3 = IQajSj +mQ4jSj+nQ3jSj, 

where j = 1-6, and S is the column matrix

' A\

A\

S = A* . (9)

2A2A3

2 A3At

2AX A2_

Hence for a given propagation direction [Imn]' the i. matrix was calculated and equa
tion (4) was solved to obtain the eigenvalues (i.e. the values of pV2) and the eigen
vectors (i.e. the polarization vector A).

Since 3i is real and symmetric it has three real positive eigenvalues and three 
independent eigenvectors which are mutually perpendicular. In general the eigen
vectors do not constitute purely transverse or purely longitudinal particle motion. 
In the special case that the longitudinal mode is pure, the two transverse modes are 
also pure. However, if only one transverse mode is pure, the remaining transverse 
and the longitudinal eigenvectors are not pure but are constrained to lie in a plane 
perpendicular to the pure transverse mode and are therefore referred to as semi-pure 
modes of vibration.

Once the polarization vector A was determined the matrix S could be calculated 
and using equation (9) the components of the ray direction r calculated.

3. Experimental

Sample Preparation
The CD? crystals used in this investigation were produced by the solvent evapora

tion method. The saturated solution was produced by reacting stoichiometric quan
tities of CsOH and H3P04 which gave a saturated solution with a pH of approxi
mately 4. The resulting crystals sometimes showed evidence of mixed growth habits 
which were revealed by examining the samples between crossed polarizers. In these 
cases, the offending section of crystal was removed before measurements were per
formed. It was found that lowering the pH to 2-2 -5 by addition of excess H3P04
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eliminated this problem and gave crystals of excellent quality. Frazer et al. (1979) 
have also reported that in order to obtain good crystal growth, it was necessary to 
add a slight excess of H3P04 to produce a starting solution with a pH of about 2 5. 
The crystals used for the elastic measurements varied in size and quality, but in all 
cases were at least 3 mm thick and the faces to which the transducers were bonded 
had diameters of at least 3 2 mm.

The crystals were aligned using Laue back reflection photographs with the aid of 
a computer program that produced simulations of Laue patterns for any given 
orientation (Cornelius 1981). These simulations enabled the Laue spots to be indexed, 
and using the actual indexed spot positions from the photograph, an estimate of the 
error in alignment could be calculated. This was found to be a maximum of one 
degree, but along the main symmetry directions the error was closer to ±0-5°.

The ultrasonic measurements require two opposite faces to be polished flat and 
parallel to each other and perpendicular to a given crystallographic direction. CDP 
is brittle, heat sensitive and extremely water soluble making polishing a difficult 
task. However, samples were polished with faces parallel to within a tolerance of 
10' of arc, with each surface flat to within 10 interference fringes per cm, and surface 
scratches less than 5 /im deep.

Velocity Measurements
The ultrasonic velocity was measured by the pulse echo overlap technique 

described by Papadakis (1967). A 3 -18 mm (0-125 in.) diameter quartz trans
ducer was bonded to one face of the specimen, and was excited by a 50-100 V 
peak-to-peak 10 MHz r.f. pulse. The returning echoes were picked up by this same 
transducer and displayed on a CRO. The pulse echo overlap technique involves 
triggering the CRO with a signal, the period of which is equal to the round trip travel 
time between the echoes of interest and hence overlapping the two echoes r.f. cycle 
for r.f. cycle on the oscilloscope screen. This enables the round trip travel time T 
to be determined accurately from the triggering frequency and hence, from the path- 
length of the specimen between the parallel faces, the velocity V of the particular 
mode may be calculated.

The major source of error in this technique is the choice of the correct r.f. cycle 
for overlap. We have used, with some success, the criterion suggested by McSkimin 
(1961) for the determination of the correct overlap condition. However, whereas he 
applied the technique to homogeneous samples such as fused silica, which gave 
excellent quality echo trains, not only did the present samples contain defects which 
resulted in poor echo train quality, but the inherent monoclinic symmetry of the 
system also gave rise to mixed modes which produced an echo train composed of a 
superposition of separate modes, each with a different velocity. In these cases deter
mination of the correct echo for overlap was difficult and in some cases there was an 
ambiguity of ± 1 r.f. cycle in the overlap which gave rise to errors of the order of 
± 1 % in the determined velocity.

The echo train quality, and hence the ability to determine the correct echo for 
overlap, is also very dependent on the quality of the bond between transducer and 
sample. In general, the thinner the bond the better the echo train quality. We found 
that Dow Corning 276-V9 resin (a thick and very viscous alpha methyl styrene fluid) 
was a satisfactory bonding agent for both longitudinal and transverse waves. Less



69Elastic Behaviour of CsH2P04

viscous bonding agents, such as silicone greases, whilst satisfactory for longitudinal 
waves, lacked sufficient acoustic coupling for the transverse waves. The Dow Coming 
276-V9 resin has the important advantage over solid bonds (such as salol) that the 
crystal may be rotated in situ with respect to the transverse transducer to excite each 
one of the two transverse modes separately. This is essential in the case of a mono
clinic system, because for some propagation directions the polarization of the trans
verse mode with respect to the crystal axes is a function of the elastic constants which 
are yet to be determined.

Table 1. Ultrasonic sound velocities in CsH2PQ4
PT, pure transverse; PL, pure longitudinal; SPT, semi-pure transverse; 

SPL, semi-pure longitudinal; QT, quasi-transverse; QL, quasi-longitudinal

No. Direction of 
wave propagation*

Approximate wave 
displacement direction

Velocity
(103ms-')

Type

V, 100 100 3 047±0-005 SPL
v2 100 010 1 688±0 02 PT
v3 100 001 1 133±0 01 SPT
V* 010 010 2-878±0-02 PL
V5 010 100 1 -788 + 0-02 PT
v6 010 001 1-416±0 002 PT
V7 001 001 4 540 + 0 01 SPL
v» 001 010 1 586+0 015 PT
K, 001 100 1 153± 0 003 SPT
v,0 0-520,0, -0-854 0-520, 0, -0-854 3-847+0-006 SPL
V„ 0-520,0, -0-854 010 l -796 ± 0 004 PT
Vi 2 0-520,0, -0-854 0 -854, 0,0 -520 0-7605 ±0 006 SPT
Vi 3 110 110 2 982± 0 006 QL
V,4 110 001 1 683±0-003 QT
V,s no no 1 307±0 013 QT
V,6 Oil Oil 3-622 + 0-08 QL
V,2 Oil Oil 1 980+0 008 QT
V,s Oil 100 1 409 ±0 007 QT
V,0 0-252,0-588, -0-769 0 252,0 588, -0-769 3 686±0 08 QL
V20 0 252,0-588, -0-769 Trans 1 2-014 + 0-01 QT
V2, 0-252,0 588, -0-769 Trans 2 1 219±0 009 QT
V22 0-698, 0, -0 716 0-698, 0, -0-716 3 217±0 13 SPL
V22 0-698,0, -0-716 010 1 -796±0-004 PT
V24 0-698,0, -0-716 0-716, 0,0-698 Unknown SPT

0-925,0,0-395 0 925, 0,0-395 3-151 ±0-004 SPL
V2t 0 -925, 0,0 -395 010 1 520 + 0 004 PT
V21 0 -925, 0,0 -395 0-395,0, -0-925 0 83±0 03 SPT

* Direction is with respect to xyz axes.

4. Results
The measured velocities are shown in Table 1. The wave displacement directions 

are approximate only, because in most instances the waves are not pure and their 
true displacement vectors can only be determined by calculation from the determined 
elastic constants. Nevertheless, experience has shown that most waves are either 
predominantly longitudinal or transverse in character and hence one may assume 
that the polarization of the exciting transducer (which is the basis for the approximate
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wave displacement directions given in Table 1) is a reasonable first approximation 
to the actual eigenvector.

The measurement of the velocity was repeated at least twice for each mode using 
different specimens. An exception to this was for propagation along [Oil]' for which 
the measurement was repeated by repolishing the sample to reduce its pathlength and 
examining a different section of the crystal. In general the consistency in the velocity 
between the different measurements was within ±1 r.f. cycle (~l-2%). However, 
in some cases, particularly for semi-pure modes, the velocity data between measure
ments were consistent to between 0 2-0 6%.

The density used in the calculation was obtained by hydrostatic weighing in 
chloroform at 20°C and found to be p = 3-22 + 0 04 gem"3, which corresponds well 
to the value given by Rashkovich et al. (1977) of 3-24+0-01 gem"3. The X-ray 
density, computed from the unit cell data given by Uesu and Kobayashi (1976), is 
3-27 gem"3 which also agrees well with our results.

It is possible to find C22, C66 and C44 directly using pure modes. The necessary 
relationships are

C22 = pVl = 26-67±0-37 GPa, (10)

C66 = pKf = 9-17±0-22 GPa, (11)

C44 = pVl = 8-10+0-15 GPa. (12)

The velocities corresponding to the remaining pure modes with propagation vector
along the b axis are related to the above constants by the relationship

pV\ + pV\ — C"44 + C*66. (13)

On substituting the numerical values the left- and right-hand sides of (13) agree to 
3 %, which is well within experimental error.

The value of C46 may be determined from the velocity of the last remaining pure 
mode propagating along the [/On]' direction in the xz plane. Here, the relationship is

C46 = (pF?,-/2C66-n2C44)/2n/ = -2-25+0 31 GPa. (14)

A consistency check may be obtained by using the relationship

Cl6 = C„C66-pV\pVl. (15)

Here, the numerical agreement of the left- and right-hand sides is within 24%, which 
is still within experimental error. The error is large because the small value of C46 
corresponds to subtracting nearly equal terms on the right-hand side of (15).

The relationships necessary for the determination of the remaining diagonal 
elastic constants and C15 and C35 are

Cn + C5S = p(V\ + V22) = 34-03±0-19 GPa,

C„C55-C\s = pV\pV\ = 123-6±2-7 (GPa)2,

C33 + C55 = p(F? + F|) = 70 65+0-29 GPa,

(16)

(17)

(18)
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C33C55-C|5 = pV2 Vg = 284-1 ±2-8 (GPa)2, (19)

/2Cjj+ C55+w2C33 + 2/«(Cls + C3S) = pV io+P^i2

= 49-51 ±0-18 GPa, (20)

where l2+n2 = 1.
Whilst it is possible (but tedious) to solve (16)—(20) analytically it is more conven

ient to solve these equations numerically using a generalized Newton-Raphson 
algorithm (Carnahan el al. 1969). The system converges to two separate solutions, 
depending on the starting values of the variables. One solution may be rejected as 
unphysical as, on substituting this set of elastic constants back into equation (4), it 
is found that the eigenvector corresponding to the fastest mode (i.e. the quasi
longitudinal wave) is polarized close to 90° to the propagation direction.

The errors in Cn, CJ5, C33, C15 and C3$ were calculated by varying the right-hand 
sides of (16)—(20) by plus or minus the quoted error for all possible permutations and 
noting the maximum and minimum values of the constants which emerge when the 
equations are solved. This is considered to be a more realistic estimate of the error 
than would be obtained by solving (16)—(20) analytically and summing all possible 
maximum errors. In the latter case the errors calculated are unreasonably large, as 
no account is taken of the self-consistency requirements which do not allow worst 
case errors to occur independently of one another.

The value of C13 may then be obtained from the calculated constants above by the 
equation

{/2C1 5 +772C35 + /7!(C13+C55)}2

— (/2Cj j +n2CS5 + 2nlCi s)(l2C33 + n2C33 + 2nIC35)

-pV\0pV\2 = 88-75±0-84(GPa)2. (21)

There will be two solutions for C13 depending on whether the positive or negative 
square root is taken in (21). Once again one solution has been rejected as unphysical 
on the criterion that the quasi-longitudinal wave travels faster than the quasi-transverse 
wave and is polarized closer to the propagation direction.

To obtain C12, C25 and C23, the velocities in the [110]' and [011]' directions were 
measured. The solution to the eigenvalue equation requires for the [110]' direction

Cll + C66-2pV2 Ci2 + C66 Ci 5 4- C46

Cl2 + C66 C22 + C66 — 2pV2 C25 + C46

C25 + C46 CS5 + C4A — 2pV

e [Oil]' direction

Cs* + C„-2pK2 C46 + Q5 C46 + C35

C*6 + C25 C22 + CAA—2pV2 C44 + C23

G46 + C35 C44 + C23 C44+C33—2pV

= 0, (22)

= 0. (23)
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The properties of the roots of the cubic equations (22) and (23) give us relations 
that may be used as consistency checks on the measured velocities. These relations 
are for the [110]' direction

2p(F?3+F?4+F2$) = Cn+C22+2C66 + CS5 + C44, (24)

and for the [Oil]' direction

2p(F i6+ V17+ V is) = C66 + C$5+2C44+C22 + C33. (25)

On substituting the values of the constants so far determined the left- and right-hand 
sides of (24) and (25) agree to within 0 7% and 0 2% respectively, which is well 
within experimental error. The properties of the cube roots of (22) and (23) also 
yield, for the [110]' direction,

(Qi + C66)2 + (C25 + C4e)2

= (Qi + Ce6)(C22 + C66)+(C\ i + C66XC55+C44)+(C22 + C66)(C55 + C44)

-(C,5 + C46)2-(2p)2(F23 V\A + V\A V\s + V\3 V\s), (26)

(C55 + C44)(C,2 + C66)2 + (Ci i + C66)(C25 + C46)2

— 2 (Cj 2 + C66)(C15 + C46XC2S + C46)

= (Ci, + C66)(C22 + C66)(C55 + C44)-(2pK23)(2pf'24)(2pK25)

-(C22 + C66)(C,5 + C46)2. (27)

For the [Oil]' direction the corresponding relationships are 

(C23 + C44)2 + (C2 5 + C46)2

— (C66 + C55XC22 + C44) + (C66 + C55)(C44+C33)+(C22 + C44)(C44 + C33)

-(C46 + C35)2-(2p)2(F?6 F27 + F27 K2, + K26 K28), (28)

(Qe + Q5XQ3 + C44)2 + (C44 + C33)(C46 + C2$)2

— 2(C46 + C2 5)(C46 + C35XC44+C23)

= (c66 + C33XC22 + C44XC44 + C33)- (2pK26)(2p K27)(2p F28)

-(C22 + C44)(C35 + C46)2. (29)

Equations (26), (27) and (28) were solved for the unknowns Ci2 +C66, C25 + C46 
and C23 + C44 simultaneously by a generalized Newton-Raphson algorithm. The 
solutions were checked by substitution into equation (29) which yielded consistency 
between right- and left-hand sides of better than 0 7%. The solution to (26)—(28) 
involves the intersection between two circles (26) and (28), and an ellipse or hyperbola 
(27). As such there are two sets of distinct solutions:

(C,2,C25,C23) = ±(11-4+3-6, 8 4+4-3, 14 5+4 4) GPa 

= ±(12-2±2-9, 0-95+4 2, 15-3±4-0) GPa.

An attempt to calculate the errors in Ci2, C25 and C23 by solving the equations for 
all the possible permutations of plus or minus the quoted errors in Cn, C22, C33, C44,
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CS5, C66, Q3, Ci3, C35, C46 and the measured velocities K13,.„, Vie was unsuccess 
ful. For most permutations of the errors the system of equations (26H28) no longer 
converged, as the internal consistency requirements of (24) and (25) were no longer 
satisfied. The uncertainties in C12, C25 and C23 quoted above were calculated by 
restricting the errors in the velocities so that the left- and right-hand sides of (24) and 
(25) agreed to within 1 % for all permutations of the errors in the velocities. In this case 
the system of equations (26)—(28) converged for most error permutations, except 
those extreme cases for which all the errors were either added or subtracted.

Two of the above solutions (the negative of each pair) may be rejected as unphysical 
by a consideration of the eigenvectors as described above. This still leaves two distinct 
solutions, and although the eigenvectors corresponding to each solution are different, 
both are physically quite reasonable. Clearly, the choice of solution has little effect 
on the value of C12 and C23, but the value of C25 is radically changed. In order to 
differentiate between these solutions the velocity in a further general direction 
[0-252, 0-588, -0-769]' was measured. The criterion

^19-21 = Z (Vcmic,-Vi)2/Vi2 ’ 
i— 19

where Fcalcj are the velocities calculated for the [0-252, 0-588, —0-769]' direction 
from the elastic constants, was used as a measure of the goodness of fit of the data. 
The first solution gives an R value three times smaller than for the second solution 
and has therefore been adopted.

The criterion

&-18 = Z (VcMic,-Vi)2lvi2
i= 1

has been calculated and a value of 1 • 8 x10“3 obtained. This compares very favourably 
with the value of R obtained by Krupnyi et al. (1972) in their calculations for some 
monoclinic organic crystals. However, they found it necessary to employ a least 
squares error function to refine the elastic constants in order to reduce their value of R 
to less than 10-2. This procedure resulted in their final value for C22 being lower 
than the directly measured value. No physical justification was offered by them for 
modifying a directly measured quantity as a result of numerical calculation.

Table 2. Elastic constants of CsH2P04 
The C,j were calculated using a density of 3-22 g cm"3 at 20°C

ij CtJ (GPa) S,j (GPa)"1 ij C„ (GPa) S,j (GPa)"1

11 28-833:0-43 182 12 11-4 3:3-6 -0-219
22 26-67±0-37 0 103 13 42-873:1-58 — 1-17

33 65-453:048 0-772 15 5133:067 0-249
44 8-10±0-15 0-133 23 14-53:4-4 0-138

55 5 20±024 0-450 25 8-4 3:4-3 -0-150

66 9 173:0 22 0-117 35 7-503:0 81 -0-181
46 -2 253:0 31 0-033

The complete elastic constant matrix Cy is given in Table 2. The inverse of the 
elastic constant matrix was calculated to give the elastic compliance matrix Su 
which is also listed in Table 2. Quantities discussed in the following section, such as 
bulk modulus and linear compressibility are calculated in terms of these Sy.
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5. Discussion
Velocity Surfaces

Using the values of the Cu matrix in Table 2, the wave velocity for any propagation 
direction can be calculated via equations (4) and (5). Figs 3a, 3b and 3c are polar 
plots of velocity versus propagation direction for propagation vectors in the xy, xz 
and yz planes respectively.

'■A n /

e (dcg.)

1 if \
\ / />

Fig. 3. Polar plots of the calculated phase velocity for the (a) xy, (b) xz and (c) yz planes, together 
with the absolute value (p of the deviation angle between the ray and propagation vectors (d)-(f), 
where 8 is measured in the sense given in the corresponding polar plot. The solid circles show the 
measured velocities actually used in the calculations. The triangles represent the measured velocities 
for the two pure transverse (PT) waves travelling parallel to the b axis and are used as a cross-check. 
The open circles show other measured velocities in the xz plane.
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It is immediately obvious that, for propagation directions in the xy and yz planes, 
the wave velocity is quite isotropic. This stands in very marked contrast to the 
plot for the xz plane (Fig. 36), which displays very marked anisotropy, particularly 
for the semi-pure transverse (SPT) mode with the smallest velocity. The calculations 
predict a minimum in the velocity of this mode of 0 290 x 103 ms-1 for propagation 
directions making angles of 38° and 140° to the x axis. This is a remarkably low 
value. For comparison, Sil’vestrova et al. (1975) have reported a value of 0-347 x 103 
ms-1 for the velocity of a transverse wave propagating in the yz plane in Calomel, 
which they claimed to be the ‘lowest value’ measured for crystals at that time. It 
should be pointed out, however, that Sil’vestrova et al. actually determined this value 
experimentally whilst our value is calculated from the determined elastic constants.

In an effort to check the unusual predictions arrived at from the calculations we 
attempted to measure the velocity of each of the three modes for other propagation 
directions in the xz plane. For all propagation directions in this plane, one mode is 
pure transverse (PT) having a polarization vector parallel to [010]'. The other two 
modes are semi-pure having polarization vectors of the form [n0—/]' and [/On]'. 
For propagation at 134° to the x axis the measured PT velocity agrees very well with 
the predicted value. The SPT mode, with a predicted velocity of 0-363x 103 ms-1, 
could not be generated at all. It was found that, on rotating the crystal with respect 
to the transverse exciting transducer, the pure mode decreased in amplitude as ex
pected, but that no other mode could be detected. Similar difficulties were encountered 
for the measurements of V12 (see Table 1), although in that case a weak mode could 
be detected. It was also noted that this SPT mode could be generated by a longitudinal 
transducer.

The failure to observe the very low velocity mode is not unexpected as such a 
mode would be expected to be heavily damped compared with the faster modes. 
However, as can be seen from Fig. 36, the measured velocity of the semi-pure longi
tudinal (SPL) mode, which is strongly propagated, is significantly smaller than the 
predicted value in this direction. Similar results were obtained for propagation at 
23° to the x axis, in that the measured pure mode velocity is very close to the predicted 
value and that the SPL wave velocity was significantly less than the predicted value. 
In this case, the SPT wave could be detected, but it was very weakly propagated and 
only a rough estimate of its velocity could be obtained (V = 0-83 x 103 ms'1).

The discrepancy between the measured and calculated values of this SPL mode 
suggests that the severe damping of the SPT mode influences the longitudinal mode 
as well. The formulation of the equation of motion assumes an infinite lossless 
medium and therefore does not include any damping term. Normally, the introduction 
of such a term should have little or no influence on the velocities. However, if the 
damping is sufficiently severe so as to almost stop one mode from propagating at 
all, the nature of the eigenvalue equation can be expected to change, since the dimen- 
sonality of the problem would effectively be reduced from 3 to 2. We are currently 
investigating the effect that a severe damping term for one mode will have on the 
other measured velocities.

Ray Directions
For each direction of propagation there are three associated wave modes, each 

with a different velocity, polarization and ray energy propagation direction. Figs 3d,
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3e and 3/show plots of the magnitude of the absolute angle between the ray direction 
and the propagation direction, calculated via equation (9), for the xy, xz and yz 
planes respectively.

Deviation angles of up to 70° are not unusual (see e.g. Neighbours 1973). The 
plots for the xy and yz planes show that there are no accidental pure modes of 
propagation, since the deviation angle only goes to zero for propagation along the b 
axis, which is demanded by symmetry. Once again the plot for the xz plane is very 
peculiar. The deviation angle for the SPT mode increases rapidly for propagation 
off the x axis, reaching a value of 73° at 30° from the x axis. With further displacement, 
the deviation angle decreases abruptly to a value of 14° at 38° from the x axis and 
then abruptly increases. Similar behaviour occurs for propagation directions about 
140° to the x axis.* Note that the minima in the calculated velocities of this mode 
occur for the same propagation directions. The sharpness of the dip is striking. 
In the region of the anomalies the deviation angle changes by about 38° for a 1° 
change in propagation direction. Calomel (Sil’vestrova et al. 1975) displays similar 
behaviour for the transverse mode, the velocity of which has a minimum value of 
0-347 x 103 ms-1 for propagation at 45° to the x axis in the xy plane.

The deviation angles for the measured velocities (F22-F27) in the xz plane can 
be read from Fig. 3e. It can be seen that the mode propagating at 134° to the x axis 
has a deviation angle of 76°. It is therefore not unexpected that this ray was unob
served since it must reflect off the sides of the crystal many times during its round 
trip. The mode at 23° has a smaller deviation angle, namely 69°, and was weakly 
observed. The mode at 121 •3° (F12) has a deviation angle of 64° and was clearly 
observed.f

In order to test these conclusions, measurements of the velocity for propagation 
at the angles in the xz plane at which the minima in velocity and deviation angle 
occur (namely 38° and 140°) would be desirable. However, such measurements 
would require the crystal to be aligned very precisely as even small errors in alignment 
will lead to large changes in the deviation angle. The crystal would also have to be 
of excellent quality as a mosaic spread of even 1° will lead to a gross divergence of 
the beam. Finally, even if the beam were propagated without a large divergence, 
the very low value of velocity for this mode will probably be accompanied by a high 
value of attenuation, making the mode difficult or impossible to observe experi
mentally.

Bulk Modulus, Linear Compressibility and Young's Modulus
The bulk modulus of CsH2P04 was calculated via the relationship (Nye 1967) 

B= {-S,11+522 + 533-|-2(512 + 523 + 513)}~1. A value of 5-28 GPa was obtained 
using the StJ matrix calculated by taking the inverse of the CtJ matrix in Table 2. 
An attempt was made to calculate the error in the bulk modulus by adding all possible 
permutations of the errors to the values of Cu before inverting the matrix. However, 
for most permutations of the errors, especially those involving extreme cases where

* The eigenvectors in the xz plane are well behaved and do not deviate from pure mode behaviour 
by more than 17°.

t It should be recalled that the number of reflections off the side walls of the crystal will depend 
on the tangent of the deviation angle. Thus a deviation angle of 76° (tan 76° = 4 01) will result 
in about twice as many side wall reflections as a deviation of 64° (tan 64° = 2-05).
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all the errors were either added or subtracted, the Cy matrix ceased to be positive 
definite. Positive definiteness is the mathematical consequence of demanding a positive 
strain energy for lattice stability. Thus a Cy matrix which is not positive definite 
cannot describe the elastic properties of any real material. Hence we may reject 
those error permutations for which the Cy matrix is not positive definite as unphysical.

When the calculation was performed using only those error combinations for 
which the Cy matrix was positive definite, the bulk modulus was found to lie in the 
range 0-9—165 GPa. This large uncertainty is due to ignoring the fact that constants 
are coupled in such complicated ways that the quoted errors cannot occur indepen
dently. A more sophisticated error calculation system is required—possibly a Monte 
Carlo method of assigning the value of Cy to be used as a normally distributed 
variable with mean and standard deviation equal to the values and errors respectively 
given in Table 2.

Table 3. Bulk moduli for selected crystals

Crystal Class B (GPa) Reference

CsH2P04 Monoclinic 5-28 This paper
kh2po4 Tetragonal 27 3 Fritz (1976)
Potassium tartrate Monoclinic 16 8 Aleksandrov (1958)
nh4h2po4 Tetragonal 20 1 Fritz (1976)
CsSCN Orthorhombic 13-2 Irving et al. (1983)
Calomel Tetragonal 18 0 Sil’vestrova et al. (1975)

The value of B is remarkably small. For comparison, B for some other materials 
is shown in Table 3. These values have been calculated via the elastic constants given 
in the references listed. Note that Calomel, whilst displaying some similar anisotropic 
features to CDP in the behaviour of the velocity and ray directions, nevertheless 
has a value of bulk modulus comparable with the other crystals listed.

■ xy plane

••• yz plane

-050

6 (degrees)

Fig. 4. Linear compressibility for directions in the xy, xz and yz 
planes, with 6 measured as in Fig. 3.
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Since CDP displays a chain-like structure it is of interest to calculate the linear 
compressibility Klmn, which is the strain response of the crystal along a given 
direction [l,m,n]' to the application of hydrostatic pressure. For a monoclinic 
system the expression is (Nye 1967)

K-lmn = (‘^ll + *S'l2 + ‘5'l3V2+(‘S,12 + ^22+‘^23),wJ

+ 0$i3 + $23 + Si3)n2 + (5j 5 + S2s + S35)ln.

A plot of linear compressibility versus direction in the xy, xz and yz planes is 
given in Fig. 4. Note how the compressibility along the x axis is twenty times larger 
than that along the y axis, and that the compressibility along the z axis is negative. 
Thus when hydrostatic pressure is applied to CsH2P04 the crystal responds by con
tracting along the x axis and expanding along the z axis. By comparison the length 
change along the y axis is small. This further demonstrates the marked elastic 
anisotropy of CDP.

5GP*

5GPa

lOGPa

lOGPa

5GPa

Fig. 5. Central sections of 
the Young’s modulus surface 
for the (a) xy, (b) xz and 
(c) yz planes in CDP.
The magnitude of the radius 
vector is proportional to the 
value of Young’s modulus.

Finally, the central sections of the Young’s modulus surface on the xy, xz and yz 
planes were calculated and are shown in Figs 5a, 5b and 5c respectively. In Fig. 5
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the radius vector is proportional to the value of Young’s modulus Y for that direction. 
The curves were calculated from the expression (Nye 1967)

Y-1 = /4S11+2/WS12+21VSi3+2/jiiS15 
+ m4S22 + 2 m2n2S 23 + 21m2nS2s 

+ n4S33 + 2ln3S35+m2n2SiA+2Jm2nSth 

+ l2n2S55 + l2m2S66.

Young’s modulus gives a measure of the ‘stiffness’ of the crystal to a uniaxial stress 
applied along the direction of interest. Once again the elastic behaviour is clearly 
very anisotropic.

Using the elastic constants in Table 2, J. G. Collins (personal communication) 
has calculated the elastic Debye temperature to be 134-5 K for Avogadro’s number 
of ions. This value is consistent with an estimate from thermal conductivity data 
of 140± 10 K (Sporl et al. 1984).

Relationship to Crystal Structure
Much of the elastic anisotropy in CDP originates from the extremely low velocity 

predicted for the SPT mode for propagation in the xz plane at 38° and 140° to the 
x axis. This anomaly results in the sharp dip for the deviation angle between ray 
and wave normals for these propagation directions. It also results in the very low 
value for the bulk modulus, and the large anisotropies in Young’s modulus and the 
linear compressibility. We suggest the following qualitative explanation, in terms of 
the known crystal structure of CDP, as to why this mode should behave anomalously.

As previously noted, CDP consists of (100) layers of hydrogen bonded P04 
groups, the layers being held together by electrostatic attraction to the Cs+ ions. 
A projection of the structure onto the (010) plane is given in Fig. 6a based on the 
atomic positions given by Uesu and Kobayashi (1976) and Matsunaga et al. (1980). 
The H 2 hydrogen links 03-03 and 04-04 groups to form the P04 chains along the 
b axis. The H 1 hydrogen cross links the chains to form the (100) layers.

Uesu and Kobayashi (1976) pointed out that nearly linear chains of Cs and P ions 
are formed along the [101] direction with an interatomic distance of 4 -03 A (= 4 - 03 x 
10-10 m). However, it is evident from Fig. 6a that this is an error and that the chains 
with close to this interatomic distance lie along the [101] direction. It is also seen 
in Fig. 6a that there are nearly linear chains of P-01, Cs+, P-01 groups along the 
[101] direction where the Cs,-P, separation is 5 46 A (with an oxygen intervening) 
and the Cs,-P2 separation is 5 01 A (with no intervening atoms). Uesu and 
Kobayashi (1976) also pointed out that these distances are considerably longer than 
the K-P distance of 3 - 49 A in KDP.

If we consider a wave propagating in the xz plane at 38° to the x axis, the eigen
vectors for this direction can be calculated by solving the eigenvalue equation (4). 
The eigenvectors lie in the xz plane and make angles of 39-9° (SFT) and 50-1° (SPL) 
to the x axis as shown in Fig. 6b. The third mode is PT and has polarization parallel 
to [010]. The SPT polarization is approximately parallel to the [10T] direction and 
makes an angle of only 1 -4° with the direction joining Cs, and P2.

Since there are no intervening atoms between Cs, and P2 and since the eigenvectors 
are constrained to lie in the xz plane, the force constants associated with this mode
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Longitudinal polarization

Transverse polarization

39-9°

121°

the x axis

Fig. 6. (a) Projection of the structure of CDP onto the ac plane. The disordered hydrogen H 2 
forms the chains of P04 tetrahedra up the b axis, whilst the ordered H 1 cross links the chains. The 
nearly linear chains of Cs and P atoms can be seen along the [101] and [1011 directions. (6) Direction 
of transverse and longitudinal polarization for a mode propagating at 38° to the x axis in the ac 
plane.

may be expected to be small due to the comparatively very large nearest neighbour 
separation. We also note that the particle vibration direction shown in Fig. 6b is 
roughly (to within 5°) parallel to the projection of the 03-H2-03 hydrogen bond 
onto the xz plane. This bond is expected to be quite compliant as this hydrogen is
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disordered in the room temperature phase. As a consequence of both these factors 
we may expect the velocity to be correspondingly small for this mode.

Irrespective of the above explanation, the correspondence of the transverse 
polarization for the mode propagating at 38° to the x axis to the linear Cs-P arrays 
and the 03-H2-03 hydrogen bond direction seems unlikely to be coincidental. It is 
unfortunate that this mode is not more easily observed experimentally, for the 
response of the velocity of this mode to temperature through the ferroelectric ordering 
would be very interesting.

It has also been observed by Uesu and Kobayashi (1976) that nearly linear arrays 
of Cs and P atoms also occur along the [0, ±1, 1] directions with a comparatively 
large Cs-P separation. However, we observed that in the yz plane the velocity of 
all modes is very isotropic, showing none of the peculiar effects of the xz plane. 
We may account for this difference by recalling that for propagation in the xz plane 
the eigenvectors are constrained by symmetry to lie in that plane, whereas for prop
agation in the yz plane no such restriction applies and in fact the eigenvectors lie 
considerably out of the plane. Thus the force constants for this mode will not neces
sarily be determined by the comparatively large Cs-P interatomic distance within 
the yz plane.

The anisotropy of the linear compressibility and of Young’s modulus is related 
to the layer and chain structure of CDP. The maximum in the value of the linear 
compressibility and the corresponding minimum in the value of Young’s modulus 
for the x-axis direction correspond to the weak bonding between the (100) layers. 
Under hydrostatic pressure these layers are forced closer together. The corresponding 
expansion along the c axis may be explained by a small rotation of the P04 tetra
hedron (possibly caused by repulsion between the 01 and 02 atoms of adjacent 
layers), which results in an elongation of the hydrogen bonded c-axis chain. Selenium 
and tellurium are examples of other chain-like materials which have negative linear 
compressibility parallel to the chain axis (Munn 1972). Under uniaxial stress, how
ever, the bonding in the c-axis chain is only about as strong as the interlayer bonding 
(see Fig. 56).

It is surprising that the 6-axis bonding is so much stronger than for the c axis (see 
Fig. 5c), especially in view of the disordered state of the hydrogen bonds linking this 
chain. This may be explained by noting that these hydrogen bonds lie nearly parallel 
to the a axis, so that compression of the 6-axis chain would involve a bending of the 
bond, rather than a compression of the double well potential along its axis. The 
strength of the 6-axis bonding is consistent with the findings of Frazer et al. (1979) 
that the correlation length along the 6 axis is much longer than those along the a and 
c axes.

The very strong anisotropy for Young’s modulus in the xz plane (Fig. 56) is 
correlated to the anomalous SPT mode discussed above. The maxima in Young’s 
modulus (at 54° and 131° to the x axis) occur for directions which are almost parallel 
to the SPL polarization for wave propagation directions for which the SPT mode 
has its minimum velocity. Thus the crystal is stiffest at right angles to the [10T] 
Cs-P chains (see Fig. 6).

Finally, as mentioned in the Introduction, most of the studies on CDP to date 
have focussed on the comparison between the transition mechanism in pseudo-one
dimensional CDP, and the more familiar three-dimensional KH2P04. The plots
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of Young’s modulus for KH2P04 (calculated from the elastic constants quoted by 
Fritz 1976) for the xy and yz (=xz) planes (see Fig. 7) indicate clearly that the very 
anisotropic elastic behaviour in CDP is absent in the case of KH2P04. In particular, 
it is obvious that the elastic behaviour for the ferroelectric z axis in KH2P04 is not 
very different from that for the other axes, in contrast to CDP for which the ferro
electric b axis is much stiffer than the a or c axes.

SOGPa

50GPa

SOGPa (6)

SOGPa

Fig. 7. Central sections of the Young’s modulus surface for the (a) xy and (6) yz 
planes in KH2P04. The magnitude of the radius vector is proportional to the 
value of Young’s modulus.

6. Conclusions

The elastic constant matrix of CsH2P04 has been determined via ultrasonic 
velocity measurements. Significant anisotropy in the elastic constants was found. 
In particular, calculations using the matrix determined predict a very low velocity of 
sound (0-290x 103 ms-1) for the semi-pure transverse mode propagating in the 
xz plane at 38° to the x axis. This could not be confirmed experimentally due to the 
failure to propagate the mode. As the polarization direction for this mode is almost 
parallel to the linear Cs-P chains with a large (5 ■ 01 A) nearest neighbour separation 
and to the direction of the disordered hydrogen bond, its low velocity is attributed 
to the relatively weak forces acting in this direction.

The significant anisotropy found in Young’s modulus and the linear compressi
bility reflect the weak forces between the (100) layers and show clearly that even in 
the paraelectric state the bonding along the 6-axis chain is different to that along the 
c axis. Hence, the one-dimensional chain-like structure of CDP reveals itself, not 
only in the critical phenomena, but also in the static elastic behaviour at room 
temperature. These observations of the elastic anisotropy must be added to the 
differences in the nature of the ferroelectric transition mechanism in setting CDP 
apart from other members of the KH2P04 family.
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