
Parallel Star Join Query Processing in
Column-Oriented Data Storage

Prajwol Sangat

MIT, BE

Candidate’s ORCID

A thesis submitted for the degree of Doctor of Philosophy

(0190) at

Monash University in 2020

Information Technology

https://orcid.org/0000-0002-2263-5598

Copyright Notice

c© Prajwol Sangat (2020)

I would like to dedicate this thesis to my parents Mr. and Mrs. Purna Sangat. I hope that

this achievement will fulfill the dream that you had for me all those many years ago when

you chose to give me the best education you could.

Abstract

Today, an ever-increasing number of researchers and businesses collect and analyse massive

amounts of data in database systems. This big data has posed two connected challenges to

data management solutions - processing unprecedented volumes of data, and providing

ad-hoc real-time analysis without compromising performance. At the same time, computer

hardware systems are scaling out elastically, scaling up in the number of processors

and cores, and increasing extensively the main memory capacity. The data processing

challenges, combined with the rapid advancement of hardware systems, have entailed the

evolution of a new breed of parallel star algorithms optimised for column-oriented data

storage. In this thesis, we design, implement, and evaluate two new parallel algorithms:

Nimble Join and ATrie Group Join (ATGJ), and answer the star join queries that include

join, group-by and aggregation operation. In addition, we formulate the cost models for

these algorithms, and instantiate and evaluate them.

Nimble Join is a progressive parallel star join algorithm that avoids multiple-pass

scans in column processing using Multi-Attribute Array Table (MAAT). MAAT includes a

reduced list of signed integer positions that serves as a dynamic filter to probe the indexed

array, drastically reducing the number of array lookups.

ATrie Group Join (ATGJ) integrates join, grouping and aggregation operations, per-

forms a single scan of the fact columns, and uses hybrid parallelism for the optimal use

of computing resources. It employs a novel grouping and aggregation technique using

Aggregate Trie or ATrie, and facilitates the processing of data in tight loops, thereby

significantly improving the performance of the algorithm on modern hardware.

ATGJ is extended so that it can be applied in a distributed environment and is

known as Distributed ATire Group Join (DATGJ). DATGJ uses the divide and broadcast-

based approach to perform a single scan of fact columns and join data, avoiding cross-

communication between workers. It uses Fast Hash Table (FHT) to perform join and ATrie

to perform group-by and aggregation. DATGJ uses multiple workers, and the distributed

processing improves scalability, fault tolerance, resource sharing and efficient computation

of tasks.

The algorithms have been evaluated using the Star Schema Benchmark (SSBM) to

demonstrate their superiority over the current, most popular approaches. The cost model

accuracy has been verified by comparing it with the results of detailed experiments using

different hardware parameters.

iv

Declaration

This thesis is composed of my original work, and contains no material previously published

or written by another person except where due reference has been made in the text. I have

clearly stated the contribution by others to jointly-authored works that I have included in

my thesis.

I have clearly stated the contribution of others to my thesis, including statistical assistance,

survey design, data analysis, significant technical procedures, professional editorial advice,

financial support and any other original research work used or reported in my thesis. The

content of my thesis is the result of work I have carried out since the commencement of

my higher degree by research candidature and does not include a substantial part of work

that has been submitted to qualify for the award of any other degree or diploma in any

university or other tertiary institution. I have clearly stated which parts of my thesis, if any,

have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University

Library and, subject to the policy and procedures of Monash University, the thesis be made

available for research and study in accordance with the Copyright Act 1968 unless a period

of embargo has been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copy-

right holder(s) of that material. Where appropriate I have obtained copyright permission

from the copyright holder to reproduce material in this thesis and have sought permission

from co-authors for any jointly authored works included in the thesis.

Prajwol Sangat

Information Technology

Monash University

October 23, 2020

v

Publications

Some of the material in this thesis has previously appeared in the following publications:

• P. Sangat, M. Indrawan-Santiago, D. Taniar, Sensor data management in the cloud:

Data storage, data ingestion, and data retrieval, Concurrency and Computation:

Practice and Experience 30 (1) (2018) e4354.

• P. Sangat, D. Taniar, M. Indrawan-Santiago, C. Messom, Nimble Join: A parallel

star join for main memory column-stores, Concurrency and Computation: Practice

and Experience (2019) e5616. doi: https://doi.org/10.1002/cpe.5616

• P. Sangat, D. Taniar, C. Messom, ATrie Group Join: A Parallel Group Join and

Aggregation for In-Memory Column-Stores, IEEE Transactions on Big Data.

doi: https://doi.org/10.1109/tbdata.2020.3004520

• P. Sangat, D. Taniar and C. Messom, Distributed ATrie Group Join: Towards Zero

Network Cost, IEEE Access 8 (2020) pp. 111598-111613.

The following paper has been published, but not included as it is not directly related to

the research topic of this thesis:

• P. Sangat, M. Indrawan-Santiago, D. Taniar, B. Oh, P. Reichl, Processing high-

volume geospatial data: A case of monitoring heavy haul railway operations, Proce-

dia Computer Science (80) (2016) pp.2221-2225.

• L. Liang , P. Sangat, D. Taniar, Parallel Left Outer Joins in Distributed Environment:

Does size and side of the table matter?, IEEE Access.

Submitted on: 16 June 2020

Status: Under Review

vi

https://doi.org/10.1002/cpe.5616
https://doi.org/10.1109/TBDATA.2020.3004520

Acknowledgments

This research was supported by an Australian Government Research Training Program

(RTP) Scholarship.

I am exceedingly grateful to my supervisors Assoc. Prof. David Taniar, Dr. Maria

Indrawan-Santiago, and Dr. Christopher Messom for their supervision, friendship, support

and advice during my PhD candidature. David, thank you for believing in me and giving

me the opportunity to work under your supervision. I am grateful for your insights and

immense knowledge that shed light on my path and enabled me to complete this PhD

thesis. Working with you truly helped me to grow as a researcher. I would also like

to thank you for providing me with the opportunity to join your teaching team which

helped my academic career. Maria, I want to thank you for all your support and help

during my candidature. You have been more than a supervisor to me. Your continuous

academic support and incredible encouragement accompanied me throughout the years of

my candidature. Chris, I want to thank you for all your invaluable advice and constructive

comments. Your advice during every meeting helped me broaden my research scope.

Overall, words are not enough to express my gratitude to my supervisors. They not only

advised me on research methodology but also are role models for me, being a researcher

like them will be my life credo.

I am greatly indebted to the graduate research student community in the Faculty of

Information Technology, on both Caulfield and Clayton campuses. The community has

been a great source of support for me during this journey. I would like to thank Ariesta,

Dharshini, Ethan, Liang, Megan, Paras, Tennyson, Tian and Yuri for all the tips, jokes,

laughter, lunch-times, help and moral support that you have given me. I would like to

thank Allison, Helen, Julie, and all the other faculty administration staff: a huge thank you

for the help and advice given, as well as support from the Faculty. I would like to express

my gratitude to Bruna Pomella for helping me to proofread my thesis.

Finally, I would like to thank my family, especially my beloved wife, and my parents

for their endless support, patience, encouragement, and love. Every week, calling my

parents have always been the happiest moment, especially whenever I told them that my

papers had been accepted. I also hope that happiness, harmony, and health remain forever

in my family.

vii

Contents

Abstract . iv

1 Introduction 1
1.1 Motivation . 1

1.2 Scope of Research . 2

1.2.1 Star Join Queries . 3

1.2.2 Star Group-By Join Queries . 4

1.3 Research Aim and Questions . 5

1.4 Research Contribution and Impact . 6

1.5 Thesis Organisation . 8

2 Literature Review 9
2.1 Column-Store . 9

2.1.1 Data Layout and Access Pattern 10

2.1.2 Materialisation Strategies . 11

2.1.3 Features of Column-Stores . 12

2.1.4 Research Gaps . 14

2.2 Parallel Processing . 14

2.2.1 Parallel Hash Joins . 18

2.2.2 Parallel Star Joins . 19

2.2.3 Research Gaps . 24

2.3 Distributed Processing . 24

2.3.1 Distributed Star Joins . 26

2.3.2 Research Gaps . 28

2.4 Summary . 29

3 Research Methodology 31
3.1 Research Method . 31

viii

CONTENTS ix

3.2 Experimental Evaluation . 33

3.2.1 Star Schema Benchmark (SSBM) 33

3.3 Analytical Evaluation . 35

3.3.1 Motivation . 36

3.3.2 Model Methodology . 36

3.4 Summary . 38

4 Parallel Star Joins 41
4.1 Overview: Challenges and Solution . 41

4.1.1 Star Joins . 41

4.1.2 Memory and Initial Response . 42

4.1.3 Technical Contributions . 42

4.2 Multi-Attribute Array Table (MAAT) . 43

4.2.1 Avoiding Collisions . 44

4.2.2 Memory Consumption . 44

4.2.3 Parallelism in MAAT . 45

4.2.4 Evaluation . 46

4.3 Progressive Materialisation . 47

4.3.1 Operation . 47

4.3.2 Advantages . 47

4.4 Nimble Join . 48

4.4.1 Join Processing Method . 48

4.4.2 Parallelizing Nimble Join . 50

4.5 Experiment Evaluation . 54

4.5.1 Experiment Setup . 54

4.5.2 Algorithms Tested . 54

4.5.3 Experiment Results . 54

4.6 Analytical Evaluation . 58

4.6.1 Cost Models . 58

4.6.2 Model Evaluation . 60

4.7 Summary . 62

5 Parallel Star Group-By Join 63
5.1 Overview: Challenges and Solution . 63

5.1.1 Big Data, Big Problems . 63

5.1.2 Star Group-By Join . 64

5.1.3 Technical Contributions . 65

x CONTENTS

5.2 Aggregate Trie (ATrie) . 66

5.2.1 Terminologies . 66

5.2.2 Formal Definition . 66

5.2.3 Physical Data Structure . 67

5.2.4 ATrie Operations . 67

5.3 ATrie Group Join (ATGJ) . 71

5.3.1 Join Processing Method . 71

5.3.2 Parallelizing ATGJ . 73

5.4 Experiment Evaluation . 75

5.4.1 Experiment Setup . 76

5.4.2 Algorithms Tested . 76

5.4.3 Experiment Results . 77

5.5 Analytical Evaluation . 86

5.5.1 Cost Models . 86

5.5.2 Model Evaluation . 88

5.6 Summary . 90

6 Distributed Star Group-By Join 91
6.1 Overview: Challenges and Solution . 91

6.1.1 Excessive Network Communication and Disk Spill 92

6.1.2 Technical Contributions . 93

6.2 Fast Hash Table (FHT) . 94

6.2.1 An upper limit on the number of probes 94

6.2.2 Evaluation . 96

6.3 Distributed ATrie Group Join (DATGJ) 98

6.3.1 Join Processing Method . 98

6.4 Experimental Evaluation . 101

6.4.1 Experimental Setup . 101

6.4.2 Algorithms Tested . 102

6.4.3 Experimental Results . 102

6.5 Analytical Evaluation . 107

6.5.1 Cost Models . 108

6.5.2 Model Evaluation . 110

6.5.3 Analysis . 111

6.6 Summary . 112

7 Conclusion 113

CONTENTS xi

7.1 Summary of Contributions . 113

7.1.1 Nimble Join . 113

7.1.2 ATrie Group Join (ATGJ) . 114

7.1.3 Distributed ATrie Group Join (DATGJ) 115

7.2 Future Research . 116

7.2.1 Online Aggregation . 116

7.2.2 Column-Store Specific Features 116

Bibliography 119

A SSBM Query Definitions 131

B Setting up the Standalone Cluster 139

List of Figures

1.1 Physical layout of column-store . 2

2.1 Physical layout of column-store versus row-store 10

2.2 A parallel system: each processor has a direct access to a shared memory. . . 15

2.3 Data Parallelism vs Task Parallelism . 17

2.4 Simple column-oriented join . 21

2.5 A distributed system: each computer has its own local memory, and informa-

tion is exchanged by passing messages from one computer to another by using

local area network (LAN). 25

3.1 DSRM Process Model [1, p. 54] . 32

3.2 Schema of SSBM benchmark . 34

4.1 Multi-Attribute Array Table . 44

4.2 (a) Memory usages comparison of various data structures (b) Performance

comparison of various data structures to insert a new key-value pair and

retrieve or delete the value associated with a key. 46

4.3 Phases of Nimble Join to execute Query 3.1 from SSBM on some sample data. 49

4.4 Data Parallelism versus Task Parallelism . 50

4.5 Nimble Join parallel processing model . 50

4.6 (a) Initial response time of all algorithms by SSBM query flights (N= 10 & SF

= 10) (b) Average initial response time across all queries 55

4.7 (a) Total execution time of all algorithms by SSBM query flights (N= 10 & SF

=10). (b) Average total execution time across all queries. 56

4.8 (a) Average time for disk I/O for all the algorithms (SF = 10). (b) Performance

comparison between nimble and Invisible Join (Query 3.1, SF = 10) 57

4.9 (a) Memory consumption of all algorithms by SSBM query flights (N= 10 &

SF =10). (b) Average memory consumption across all queries. 58
xii

LIST OF FIGURES xiii

4.10 Evaluation result with varying number of processors (SF = 10) 61

5.1 A step-wise insertion of GAOs in the ATrie. The new insertion of grouping at-

tribute or update of aggregation value has been highlighted after each insertion

of a GAO. 68

5.2 A step-wise merging of two ATries. The new insertion of the group attribute

or update of an aggregate value has been highlighted after each insertion of a

GAO. 70

5.3 Stages of ATGJ to execute Query 3.1 from SSBM on some sample data . . . 71

5.4 ATrie Group Join Parallel Model . 73

5.5 Total execution time of all algorithms by SSBM query flights (N = 14 and SF

= 100) and the average execution time of all the queries. 78

5.6 A comparison of join algorithms while varying number of cores and the speed

up of each algorithm (SF = 100). 79

5.7 A comparison of join algorithms while varying number of cores and the

performance improvement with the increased workload. 79

5.8 A comparison of join algorithms for the scalability with an increasing number

of grouping attributes. 81

5.9 Average execution time of ATGJ for varying order of grouping attributes (SF

= 100, N = 14). 82

5.10 Average execution time across all SSBM Queries for all algorithms (N = 14)

and scale-up of the algorithms for varying data sizes. The processing resources

are doubled when the data size is doubled. 83

5.11 Total execution time for all algorithms with different selectivity ratio (N = 14

and SF = 100) . 84

5.12 Comparison between experiment result and cost model result for a varying

number of threads (SF = 100). 88

6.1 Average disk access and network transfers communication for SparkRDD,

SparkDF and SparkSQL based joins for SSBM Queries [SF=200, Nodes=5,

Number of Cores=35 (7 per node) and Total Memory=150GB (30GB per node)] 92

6.2 (a) Memory usages comparison of various data structures (b) Performance

comparison of various data structures to insert a new key-value pair and

search or delete the value associated with a key (Search 100% = 100%

Successful and Search 0% = 100% Unsuccessful). 96

6.3 Applying the predicate filter and broadcasting the hash table 99

6.4 Join using a broadcast hash table and group-by using ATrie 100

xiv LIST OF FIGURES

6.5 Apache Spark Standalone Cluster with one master and five worker nodes. . . 101

6.6 Elapsed time of all algorithms by SSBM query flights (# Worker Nodes = 5

and SF = 200). 103

6.7 Average elapsed time of all algorithms (# Worker Nodes = 5 and SF = 200). . 103

6.8 (a) Impact of Scale Factor (SF) on the performance of the algorithms (# Worker

Nodes = 5). (b) Impact of the number of worker nodes on the scalability of

the algorithms (SF = 200). 105

6.9 (a) Performance of Algorithms under different memory conditions (# Worker

Nodes = 5 and SF = 200). (b) Disk spill for 512 MB memory. 106

6.10 (a) Comparison of experiment result and cost model result for varying data

sizes (N = 5). (b) Comparison of experiment result and cost model result for a

varying number of worker nodes (SF = 200). 110

List of Tables

1.1 Taxonomy of design features that define modern column-stores. The high-

lighted areas indicate the scope of this research. The features are discussed in

Section 2.1.3. 3

2.1 A summary of most relevant research work. ? represents star join,∓ represents

column join,→ represents single join mode,⇒ represents parallel join mode

and� represents distributed join mode. 29

3.1 Research Activities and Outputs . 32

3.2 General cost model parameters and notations 37

3.3 Summary of major operations and Filter Factor (FF) analysis of SSBM queries.

L represents the LINEORDER fact table and D, S, C and P represent the DATE,

SUPPLIER, CUSTOMER and PART dimension tables. 39

4.1 The cost model parameters and notations . 59

4.2 Evaluation result for SSBM queries and error rate of estimated performance

(N = 10, SF = 10) . 62

5.1 Data characteristics used in the experiments showing for each scale factor (SF)

the number of tuples in the fact table (#Tuples) and its disk size. 76

5.2 Different order of the grouping attributes (Modified Query 4.1, # Grouping

Attributes = 10) . 82

5.3 Memory used by the algorithms for internal data structures (Modified Query

4.1, # Grouping Attributes = 10, N = 14 and SF = 100) 85

5.4 The cost model parameters and notations . 87

5.5 Comparison between experiment result and cost model result for SSBM

queries and error rate of estimated performance (N = 14, SF = 100) 89
xv

xvi LIST OF TABLES

6.1 Data characteristics used in the experiments showing for each scale factor (SF)

the number of tuples in the fact table (#Tuples) and its disk size. 102

6.2 Actual and shuffled sizes of data in GB and # Tuples for all the algorithms. (#

Worker Nodes = 5 and SF = 200) . 104

6.3 Total size of the broadcasted hash tables and ATrie size in MB in each worker

for SF = 200 and executor memory = 512 MB. 107

6.4 The cost model parameters and notations . 108

6.5 Comparison of experiment results and cost model results for SSBM queries

and error rate of estimated performance (N = 5, SF = 200) 111

List of Abbreviations

ATGJ ATrie Group Join

ATrie Aggregate Trie
BI Business Intelligence

CAT Concise Array Table

CHT Concise Hash Table

CPU Central Processing Unit

DATGJ Distributed ATrie Group Join

DFS Depth- First Search

DGK Dense Grouping Key

DIRA Data- Independent Random Access

DSM Decomposition Storage Model

DSRM Design Science Research Methodology

EM Early Materialisation

FHT Fast Hash Table
FK Foreign Key

GAO Group Aggregation Object

GPU Graphical Processing Unit

I/O Input Output

ICCS International Conference on Computational Science

ICDE International Conference on Data Engineering

IEEE Institute of Electrical and Electronics Engineers

IGDC International Journal of Grid and Distributed Computing

IMA In- Memory Accumulator

IRT Initial Response Time

IS Information Systems

JIT Just In Time

xvii

xviii LIST OF ABBREVIATIONS

JPDC Journal of Parallel and Distributed Computing

LAN Local Area Network

LM Late Materialisation

MAAT Multi- Attribute Array Table

MFRJ Multi- Fragment- Replication Join

MRJ MapReduce- Invisible Join

MSIL Microsoft Intermediate Language

NSM N-ary Storage Model

RDD Resilient Distributed Dataset

RLE Run Length Encoding

SBFCJ Spark Bloom Filtered Cascade Join

SBJ Spark Broadcast Join

SCHT Standard- Chain Hash Table

SEM Standard Error of Mean

SF Scale Factor

SIGMOD Special Interest Group on Management of Data

SIMD Single Instruction, Multiple Data

SIMT Single Instruction, Multiple Threads

SQL Structured Query Language

SSBM Star Schema Benchmark

TET Total Execution Time

TLB Transaction Lookaside Buffer

TPC Transaction Processing Performance Council

VLDB Very Large Data Base

WAN Wide Area Network

List of Symbols

F Size of the table

| F | Cardinality of the table

Fi Size of the i-th table column, i = 1 . . . n

| Fi | Cardinality of the i-th table column

N Number of processors

P Page size

H Hash Table size

πi Projectivity ratio of the i-th table

σi Selectivity ratio of the i-th table

IO Time to read a page from the disk

tw Time to write the record to the main memory

tr Time to read a record in the main memory

td Time to compute destination

mp Message protocol cost per page

ml Message latency for one-page

de Ceiling function

bc Floor function

∧ Minimum value

∨ Maximum value

./ Inner Join

? Star Join

∓ Column Join

→ Single Join Mode

⇒ Parallel Join Mode

� Distributed Join Mode

xix

Chapter 1

Introduction

1.1 Motivation

An increasing number of companies rely on the results of big data analytics to improve

their operations, planning, customer service and risk management, and increase their

revenue. For example, in a survey of 476 executives around the world, more than half

confirmed that their data has made existing services and products more profitable [2].

However, the large volume of data generated by companies have posed two connected

challenges to data management solutions - processing unprecedented volumes of data,

and providing ad-hoc real-time analysis in mainstream production data stores without

compromising the performance.

The unprecedented volume of data generated by companies results in the failure of

traditional relational database management systems (a.k.a. row-stores) as they can no

longer process the data efficiently [3]. An alternative to row-stores are column-stores that

have a novel layout tailored for analytical query processing. In a column-store, information

about a logical entity is stored as separate columns in multiple locations in memory or

disk [4]. For example, information about a customer such as name, address, city can

be stored as a separate column in main memory or disk as shown in Figure 1.1. This

data storage model is known as a Decomposed Storage Model (DSM) [5]. DSM makes

column-stores more I/O efficient for read-only queries as they can read only those columns

from the memory or disk that is accessed by the query [4, 6, 7].

In addition, computer hardware systems are scaling out elastically, scaling up in the

number of processors and cores, and substantially increasing main memory capacity [8].

The use of multi-core parallelism can be beneficial in the context of query optimisation and

execution for reasons such as increased system throughput and decreased response time [9].
1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Physical layout of column-store

Also, most column-stores such as Hyper [10], SAP HANA [11], IBM DB2 with BLU

Acceleration [12], Microsoft SQL Server [13,14] and Oracle In-Memory Database [15,16]

are being tailored to run as main memory database systems which avoids the latency

associated with secondary storage [10, 17–19]. Therefore, the data processing challenges

combined with the rapid development of hardware systems have necessitated and motivated

the evolution of a new breed of parallel star algorithms optimised for column-oriented data

storage.

1.2 Scope of Research

The star queries or analytical queries spend most of the time on performing scans, predicate

evaluation, joins, grouping and aggregation. In-Memory databases have vastly improved

the scan and predicate evaluation cost by using single instruction, multiple data (SIMD)

instructions to process columnar data by orders of magnitude [16]. A study of customer

queries in DB2 [12, 20] and other surveys [21] have found that the group-by constructs

occur in a large proportion of the analytical queries [22]. The queries in the benchmarks

such as TPC-H 1 and the Star Schema Benchmark (SSBM) [23] spend more than 50% CPU

time on joins, group-by and aggregation [16]. These queries often aggregate large portions

of the data, which can lead to performance issues with very large data sets. Therefore,

the scope of this research is the efficient processing and optimisation of star queries with

join, group-by and aggregation using parallel and distributed processing to improve and

maintain the performance as shown in Table 1.1.

There are two broader categories of star queries: 1) Star Join Queries - queries involving

join operation, and 2) Star Group-By Join Queries - queries involving join, group-by and

1http://www.tpc.org/tpch/

http://www.tpc.org/tpch/

1.2. SCOPE OF RESEARCH 3

Column-Stores Design Feature
Minimise Bits Read Research Areas

Skip loading of not-selected attributes Column-oriented data storage [5]
Skip non-qualified values Projections Cracking [24]

Skip redundant bits Per-column compression [25, 26]
Adaptive / partial indexing Database Cracking [27]

Work on selected attributes only (per-operator) Materialisation strategies [28, 29]
Minimise CPU Time

Minimise processing for each bit read Joins [30]
Group-by and Aggregation operations [31]

Operating on compressed columns [28]
Minimise instructions and data misses Vectorised execution [25]

Tailored operators RISC style algebra [31]

Table 1.1: Taxonomy of design features that define modern column-stores. The highlighted
areas indicate the scope of this research. The features are discussed in Section 2.1.3.

aggregation operation. Next, we provide a brief research overview of the two kinds of

analytical queries (a comprehensive literature review is presented in Chapter 2).

1.2.1 Star Join Queries

Star Joins: Since the columns are stored separately, even the tuple reconstruction requires

a join between the columns. So, the joining of two or more tables will involve additional

operations such as tuple reconstruction, projection, grouping and sorting in addition to

joining columns specified in query join condition. Existing join algorithms such as [32–37]

provide only a partial solution to processing star join queries in column-stores. They

include steps on how to join two columns specified in the query join condition, but do not

include steps to re-construct the tuples required for the query output, filter conditions and

operations such as group-by and sort. Invisible Join [30] performs star-join in column-

stores that include operations such as tuple reconstruction and grouping; however, we have

identified three shortcomings of the algorithm:

1. It has a performance bottleneck of multi-pass scan for column processing and

increased memory consumption with the increasing number of tables in the join

query.

2. It incurs a significant memory overhead cost because it creates multiple intermediate

position lists.

3. It follows a task-parallel approach resulting in sub-optimal use of resources.

4 CHAPTER 1. INTRODUCTION

Memory and Initial Response: Mainstream data warehouses today hold several terabytes

of data with table sizes over the one billion row threshold [38]. Therefore, the analytical

queries need to be processed in parallel to gain performance improvements. The recent

works on efficient parallel join algorithms show that carefully-tuned join implementation

can perform well regardless of the data size [35, 39–43]. However, they assume an

unlimited reserve of main memory and focus on minimising the total execution. The main

memory is finite and will eventually be exhausted when the input tables or intermediate

results exceed the available memory because of the increase in data. In addition, from a

user’s perspective, it is ideal to generate the first few results quickly with minimal response

time so that the data processing can begin immediately. Therefore, an optimal solution is a

star join algorithm for column-stores that has a fast response time, a fast query execution

time, consumes less memory, and operates in parallel.

1.2.2 Star Group-By Join Queries

Star Group-By Join: Performing group-by aggregation when a join over two or more

tables is involved in the query is the cornerstone of almost all star join queries. However,

Invisible Join is not designed for grouping and aggregation operations. It uses a traditional

approach, Hash Join/ Hash Group-By, where column-oriented hash join (using bloom

filters, hash table build and probe) is followed by row-oriented hash group-by (using serial

aggregation).

The unconventional approach is In-Memory Aggregation where group-by expressions

are pushed down into the scans of dimension tables [16]. They create a unique key per

distinct group called a Dense Grouping Key (DGK) and map the join keys to DGKs using

a Key Vector. The key vector is used to filter non-matching rows during fact table scans

where the aggregation result is stored in a multidimensional array known as In-memory

Accumulator (IMA).

Although the unconventional approach reduced the execution time substantially more

than did the traditional approach, we have identified three shortcomings of the algorithm:

1. The algorithm reads the value of a single row, one column after another, computes

the aggregates, and stores them in their respective position in IMA. The disadvantage

of this approach is that the data is not processed in tight loops [36], which results in

considerable performance deterioration on modern hardware.

2. This algorithm is efficient only if the IMA does not become too large [16].

1.3. RESEARCH AIM AND QUESTIONS 5

3. With the increasing number of dimensions and grouping attributes, this algorithm

creates additional key vectors and temporary tables to process the join, grouping and

aggregation which results in a significant increase in the execution time.

Excessive Network Communication and Disk Spill: Although parallel star joins im-

prove the performance of the system, they are limited by the hardware as the join operation

is performed using a single computer [44, 45]. On the other hand, distributed star joins in-

volve multiple worker computers and the distributed computing improves scalability, fault

tolerance and resource sharing, and helps perform computation tasks efficiently [46, 47].

However, large-scale data shuffling is inevitable in analytical queries such as distributed

join between two large tables which are less popular as research topics or are left for

data-centric generic distributed systems such as Apache Spark [48] for batch process-

ing [49, 50]. Although Spark facilitates joins and group-by using Resilient Distributed

Datasets (RDDs) [51], Spark SQL [52] and Spark DataFrame [52] operations, we have

identified three shortcomings:

1. It can process only two tables at a time, inducing multiple scans of data for star joins,

and requires one or two map-reduce iterations per join [53]. This means that the

analytical queries will need n−1 or 2∗ (n−1) map-reduce iteration where n is the

number of tables used by the query.

2. It incurs excessive disk access and network communication because of cross-

communication between the worker nodes. Unnecessary disk access is often the

result of disk spill; i.e. the data is spilled into disk due to an overflowing memory

buffer.

3. Excessive shuffling of records not only significantly increases the network commu-

nication cost, but also prevents further processing of the algorithm [46]. Therefore,

naive Spark implementation fails to handle the issues such as multiple scans of data,

excessive network communication and disk spill.

1.3 Research Aim and Questions

The aim of this research is to investigate, propose, design, implement and validate column-

oriented parallel and distributed join algorithms. We have formulated the following

research questions to address the problems described in the previous section:

In Chapter 4, we focus on the following research question (RQ):

RQ 1 - How to develop and optimise parallel joins for main memory column-stores?

6 CHAPTER 1. INTRODUCTION

In Chapter 5, we focus on the following research question (RQ):

RQ 2 - How to develop and optimise parallel group-by joins for main memory column-

stores?

In Chapter 6, we focus on the following research question (RQ):

RQ 3 - How to extend and optimise the parallel group-by joins to distributed main-

memory column stores?

1.4 Research Contribution and Impact

In answering RQ1, our main contributions presented in Chapter 4 are as follows:

• We extend the concise array table [54] known as Multi-Attribute Array Table
(MAAT) that handles multiple attributes and facilitates probing required by the join

algorithm.

• We propose a novel materialisation strategy based on MAAT known as Progressive
Materialisation.

• We propose a new progressive parallel star join algorithm for the main memory

column-stores known as Nimble Join that is significantly better than its competing

column-store join algorithm. It uses a multi-attribute array table to hold attributes

required by join query processing that facilitates progressive materialisation.

• We develop an analytical model to understand and predict the query performance of

Nimble Join.

These contributions were published as a full research paper in CCPE 2019 [44].

In answering RQ2, our main contributions presented in Chapter 5 are as follows:

• We propose a novel approach to perform group-by and aggregation operations

influenced by the concept of trie or prefix tree [55] using a data structure called

Aggregate Trie or ATrie. The grouping and aggregation can be seen as a tree-shaped

deterministic finite automation.

• We propose a new parallel star group join and aggregation for in-memory column-

stores known as ATrie Group Join (ATGJ) that is a variation of Hash Join/Hash

Group-By and uses both techniques but solves the problem of grouping and aggre-

gating data using a rather novel approach with the help of ATrie.

1.4. RESEARCH CONTRIBUTION AND IMPACT 7

• We propose an analytical model to understand and predict the query performance of

ATGJ.

These contributions were published as a full research paper in ICCS TBD 2020 [45].

In answering RQ3, our main contributions presented in Chapter 6 are as follows:

• We present a new optimisation technique for efficient search in the hash table. The

key idea is to use Robin Hood hashing [56] with an upper limit on the number of

probes which are implemented in the Fast Hash Table (FHT).

• We propose a new star group join and aggregation algorithm for distributed column-

stores known as Distributed ATrie Group Join (DATGJ). DATGJ requires only

one map-reduce iteration regardless of the number of tables used in the query. It

uses hash-based broadcast technique, performs a single scan join and leverages

progressive materialisation to solve the problem of grouping and aggregating data

using ATrie.

• We propose an analytical model to understand and predict the query performance of

DATGJ.

These contributions were published as a full research paper for publication in ICCS

ACCESS 2020 [57].

In general, the main contributions of this PhD study to the current body of knowledge

are:

• The design of a series of new column-oriented serial and parallel join algorithms

that draws on the parallel processor architecture and develop cost models for them

that are significantly better than the state-of-the-art algorithms.

• The design of a new column-oriented distributed join algorithm that draws on the

distributed computing architecture and has improved performance than the current

most popular approaches.

• The instantiation of column-oriented parallel and distributed join algorithms as a

proof of concept or development.

• The extension and empirical validation of the column-oriented join algorithms by

considering standard benchmarks such as SSBM.

8 CHAPTER 1. INTRODUCTION

1.5 Thesis Organisation

In this chapter, we discussed the research background, explained the research problem,

stated the research aims and questions and the contributions made to tackle the problem.

The rest of the thesis is organised as follows: Chapter 2 presents an overview of the

related work on joins and aggregations. Chapter 3 describes the research methodology and

evaluation methods. In Chapter 4, we explore the parallel star join for column-store. In

Chapter 5, we investigate the parallel star group join and aggregation for column-stores.

In Chapter 6, we explain the working of star group join and aggregation in distributed

environment. Finally, Chapter 7 summarises the thesis contributions and suggests future

research directions.

Chapter 2

Literature Review

Parallel star joins use parallel processing and execute join tasks simultaneously using

multiple processors, whereas distributed star joins use distributed processing to divide a

single join task among multiple worker computers in order to complete the join operation.

Although parallel star joins improve the performance of column-stores, they are limited

by the hardware as the join operation is performed using a single computer [44, 45].

On the other hand, distributed star joins involve multiple worker computers and the

distributed computing improves scalability, fault tolerance, resource sharing and helps

perform computation tasks efficiently [46,47]. In this chapter, we review the latest research

on column-stores, parallel hash joins, parallel star joins and distributed star joins.

2.1 Column-Store

Column-stores vertically partition the data into a collection of individual columns and

store them separately in memory or disk. This architecture enables queries to read just the

attributes that are required to produce results, rather than having to read the entire record

from disk, improving the utilisation of I/O and memory bandwidth [5–7, 17, 58].

The roots of column-stores can be traced back to the 1970s when transposed files

first appeared [59]. One of the earliest systems that resembled modern column-stores

was Cantor [60, 61] that included data compression features such as delta encoding and

run-length encoding (RLE).

In 1985, the Decomposition Storage Model (DSM) [5], a predecessor of the column-

store was proposed. It was the first comprehensive comparison for row versus column-

oriented storage structure. At that time, row-store was popular as N-ary Storage Model

(NSM) and was the standard architecture used in relational database systems. In DSM,
9

10 CHAPTER 2. LITERATURE REVIEW

each column of a table was stored separately, and for each attribute value within a column,

it stored a copy of the corresponding surrogate key (or record id).

DSM could speed up the data scan time compared to NSM when only a few columns

were projected at the expense of extra storage space as it stored each column with sur-

rogate keys [5]. However, this research did not examine the compression techniques;

nor did it evaluate any benefits of column orientation for relational operators other than

scans. In addition, inter-operation (or task) parallelism (discussed in Section 2.2) can

be enhanced leveraging the DSM format [62]; moreover, join and projection indices can

further strengthen the advantages of DSM over NSM [63].

Although DSM research demostrated several advantages of the column over the row

storage model, it was not until much later, in the 2000s, that the column-oriented storage

structure became a popular storage format for data warehousing and business intelligence

(BI) applications. The following sections discuss the data layout, access pattern and

features of column-stores.

Figure 2.1: Physical layout of column-store versus row-store

2.1.1 Data Layout and Access Pattern

Figure 2.1 illustrates the basic differences between the physical layout of column-stores

and that of row-stores. It shows three different ways to store a CUSTOMER table which

contains several attributes.

In the column-oriented approach (Figure 2.1 (b) and Figure 2.1 (c)), each column

is stored independently as a separate data object. Since the data is typically read from

storage and written to storage in blocks, in this approach, each block that holds data for

the CUSTOMER table holds data for only one of the columns. In this case, a query such as

find the number of customers from a particular city would need to access the city column,

and only the data blocks corresponding to that column would be accessed.

In the row-oriented approach (Figure 2.1 (a)), the entire table is stored as a single

data object holding data from all the columns. Hence, it is impossible to read just the

2.1. COLUMN-STORE 11

attributes required for the query without transferring all the attributes. Therefore, for

the aforementioned query, this approach will be forced to read a significant amount of

redundant data as the required attributes are stored together with all other attributes in the

same block. The disadvantage of this approach is that the data transfer cost is often the

major bottleneck. Therefore, with fat tables (i.e. tables with hundreds of attributes) being

common, the column-oriented data layout is likely to be more efficient when executing

queries that require only a subset of the table’s attributes [30].

2.1.2 Materialisation Strategies

As mentioned earlier, column-stores vertically partition the database tables and store each

column separately on the disk. Although this is a physical modification of storage layout,

logically it is still the same as row-stores. The application involved with the database,

column-oriented or row-oriented, treats the interface as row-oriented. At some point in

time, column-stores must stitch multiple attributes together to generate tuples and execute

the rest of the query plan using row-store operators. This process of adding attributes to

generate the result is called materialisation [28]. There are two different materialisation

strategies for column-stores: early materialisation and late materialisation.

Consider a simple example: Suppose a query has three selection operators σ1, σ2 and

σ3, over columns R.a, R.b and R.c respectively, where all the columns are sorted in the

same order and stored in separate files. Let σ1 be the most selective and σ3 be the least

selective predicate.

• Early materialisation: This is the technique of stitching columns into partial tuples

as early as possible, i.e. during column scan in query processing [28, 29]. The early

materialisation strategy would process the query above as follows:

– Read R.a, R.b and R.c from disk and stitch them together to create a row-store

style tuple < R.a, R.b, R.c >.

– Apply σ1, σ2 and σ3 to get the final results.

In some cases, columns must be accessed more than once in a query plan. For

example, the case where a column is accessed once to get positions of the column

that match a predicate and again downstream in the query plan for its values. In cases

where the positions that match the predicate cannot be answered directly from an

index, the column values must be accessed twice. If the query is properly pipelined,

the re-access will not have a disk cost component (the disk block will still be in the

buffer cache); however, a CPU cost is incurred when scanning through the block to

12 CHAPTER 2. LITERATURE REVIEW

find the set of values corresponding to a given set of positions. This cost will be even

higher if the positions are not in sorted order. However, for the early materialization

strategy, as soon as a column is accessed, its values are added to the tuple being

constructed and the column will not need to be re-accessed.

• Late materialisation: This is the technique of fetching columns on demand for

each operator in the query plan [28, 29]. For example, in a query with multiple

joins, when evaluating any join, only the columns needed for that join are fetched.

The output from each join is only the set of matching row ids, which are used to

fetch other columns as needed for the remaining operators in the query. The late

materialisation strategy would process the query above as follows:

– Access R.a and output the list of positions satisfying σ1. Similarly, access R.b

and R.c and output the list of positions satisfying σ2 and σ3 respectively.

– Use position-wise AND operations to intersect the position lists.

– Re-access R.a, R.b, and R.c and extract the values of the records that satisfy

all predicates and stitch them together to create a row-store style tuple <

R.a, R.b, R.c >.

The late materialisation approach can potentially be more CPU-efficient because

it requires fewer intermediate tuples to be stitched together (which is an expensive

operation as it can be considered as a join on position) and position lists are a small,

very compressible data structure that can be operated on directly with very little

overhead. However, it requires re-scanning the base columns to form tuples, which

can be a slow process.

2.1.3 Features of Column-Stores

The features and concepts of column-store are similar to those of early research on

vertical partitioning [5,59,60]; however, column-stores include many architectural features

beyond those proposed in previous studies. In addition, they are designed to maximise the

performance on analytical workloads on modern hardware. Below, we briefly describe

seven of the most important features.

1. Virtual IDs: The easiest way to identify every value in a column in a column-store is

to attach an identifier (e.g. surrogate key [5], object-identifier [36] or recordIDs [4]).

The explicit inclusion of this key (as in Figure 2.1 (c)) increases the size of data on

the disk, and reduces I/O efficiency; therefore, using the position offset as a virtual

2.1. COLUMN-STORE 13

identifier (as in Figure 2.1 (b)) can avoid the problem [7]. The idea is to store each

attribute as an array, and each record can be stored in the same (array) position

across all columns of a table.

2. Late Materialisation: This refers to the postponement of the construction of tuples

into wider tuples unless required [28]. This means that columns are not only stored

individually; they are also processed individually whenever possible which helps to

improve memory bandwidth efficiency [24, 28].

3. Block-oriented and vectorised processing: Rather than using a conventional tuple-

at-a-time iterator, column-stores use cache-sized blocks of tuples and operate on

multiple values simultaneously which improves the cache utilisation and CPU

efficiency [17]. Also, the use of vectorised CPU instructions on these blocks helps

improve the throughput [25].

4. Column-specific compression: Column-stores use a suitable compression method

on each of the columns to reduce the total size of the data on the disk. By storing

data from the same attribute which has the same data type, column-stores can obtain

good compression ratios even with simple compression techniques [25, 26].

5. Direct operation on compressed data: Many column-stores delay decompressing

the data until it is required (which usually is at the time of producing the result).

Late materialisation along with direct operation on compressed data can significantly

improve memory bandwidth utilisation which is often the primary bottleneck [28].

6. Database cracking and adaptive indexing: The column-store is designed to store

multiple copies of each column sorted by attributes heavily used in an application’s

query workload such that the tuples are already appropriately organised in multiple

different orders across the various columns [7]. Database cracking avoids this prior

sorting of columns; instead, it adaptively and incrementally sorts (index) columns

as a by-product of query processing. Each query partially reorganises the columns

it accessed to allow future queries to access data faster [27]. Also, the overhead

of tuple reconstruction for multi-attribute queries can be dealt with using partial

sideways cracking [24] that minimises the tuple reconstruction in a self-organising

way.

7. Efficient loading architectures: One of the main concerns with column-stores

is that they may be slower to load and update than row-stores because data is

compressed and each column must be written separately [7]. To curtail the length

14 CHAPTER 2. LITERATURE REVIEW

of time required for loading and updating, many column-stores write data into an

uncompressed and write-optimised buffer and then flush data periodically in large

and compressed batches to the “write-store” [64].

2.1.4 Research Gaps

A common approach to analytic queries is to use joins for filtering [28]. Late materialisation

provides significant performance advantages for such queries since, after each join, there

are fewer row ids to fetch from memory or disk. For large tables, this results in less random

memory access or significant disk I/O savings. However, this benefit is gained at the cost

of complexity. The research gaps in materialisation strategies are threefold:

• Tracking which columns to materialise at what point involves a lot of bookkeeping

in the optimiser and execution engine, and has to be accounted for in the cost model

during query optimization.

• It is difficult to implement partial aggregation before joins [29], because the optimiser

needs to weigh the benefit of cardinality reduction (provided by the pushed-down

aggregation operation) against the cost of fetching extra columns needed for aggre-

gation.

• It is difficult to accurately estimate the number of distinct values of a number of

columns, especially in the presence of predicates, which makes it difficult for the

optimiser to make the correct choice.

2.2 Parallel Processing

Parallel processing is the process of taking a large task that may take a long time to

complete and dividing it into smaller sub-tasks, each of which can be worked on separately

but simultaneously by different processors in a parallel system as shown in Figure 2.2 [9].

This section outlines the motivation behind parallel processing, together with its advantages

and the strategies used.

Motivation: Digital sources of data have seen an immense growth in the past decade

[65]. For instance, in 2008 - 2009, the digital universe grew by 62% or 0.8 zettabytes.

At the time of writing, the digital universe was expected to grow 44 times more than

in 2009, reaching approximately 35 zettabytes. Although there has been some debate

regarding the accuracy of these figures, the point is that this growth strains the ability of a

single-processor system to handle all the processing required by the workload.

2.2. PARALLEL PROCESSING 15

Figure 2.2: A parallel system: each processor has a direct access to a shared memory.

The performance of processors with a calculating engine was anticipated to double

every two years in accordance with Moore’s law [66]. But, they are achieving only a low

percentage increase [9, 67]. Also, it is expected that mechanical delays will restrict the

advancement of disk access time or disk throughput. Therefore, it is becoming increasingly

difficult to use the disk capacity to its full potential because disk input/output (I/O) has

become a bottleneck as a result of skewed processing speed and disk throughput. This

inevitable I/O bottleneck is the motivation for the research on parallel processing.

Objective: It is crucial for a variety of applications, for instance, that traditional data

warehouse applications be able to query a large set of data in an efficient manner [68]. The

main reason for parallel processing is to improve performance, which can be measured in

two ways:

i. Throughput: This is the number of tasks that can be completed within a given time

interval.

ii. Response Time: This is the amount of time taken to complete a single task from the

time it was submitted.

A system that processes many small transactions can improve throughput by processing

many transactions in parallel, or a system that processes large transactions can improve

response time as well as throughput by performing sub-tasks of each transaction in parallel.

Parallel processing improves query processing and I/O speed by using multiple processors

and disks in parallel. Multiple processors work simultaneously on several parts of a task to

complete it quickly [9]. So, parallel processing enables the processing of a huge amount of

data within a short period of time, and also performs complex computations in real time.

Obstacles: Single-threaded query execution cannot handle all the processing load

because of the massive increase in data size for processing [40]. An alternative is to use

multiple processors in parallel as data can be processed more quickly than with a single

processor. However, the parallelizing of sequential algorithms and queries for processing

are not easy. The obstacles in parallel processing are as follows:

16 CHAPTER 2. LITERATURE REVIEW

1. Start up: In parallel processing, the start-up time may overshadow the actual

processing time, especially if thousands of processes must be initiated [43, 68].

Even when there is a small number of parallel processes to be started, if the actual

processing time is very short, the start-up cost may dominate the overall processing

time [43].

2. Consolidation cost: Parallel processing normally starts with breaking up the main

task into multiple sub-tasks, each of which is carried out by a different processor [9].

After these sub-tasks have been completed, it is necessary to consolidate the results

produced by each sub-task for presentation to the user. Since the consolidation

process is usually carried out by a single processor, normally by the host processor,

no parallelism is applied, and consequently this affects the speed-up of the overall

process [9, 43, 45, 68].

3. Interference Cost: Since processes executing in a parallel system often access

shared resources, a slowdown may result from the interference of each new process

as it competes with existing processes for commonly-held resources [9, 44, 45].

4. Communication Cost: Very often, one process may have to communicate with

other processes. In a synchronised environment, the process wanting to communicate

with others may be forced to wait for other processes to be ready for communication

[44, 45, 57]. This waiting time may affect the whole process, as some tasks are idle

waiting for other tasks [9].

5. Complexity: Parallel processing requires totally new algorithms and parallelisation

strategies for efficient query processing [43]. In addition, troubleshooting and

diagnostic issues are more complex and challenging in parallel processing.

Strategies: Parallel processing of algorithms and queries can be achieved by using

an appropriate partitioning technique. Partitioning refers to the distribution of either

workload or data to all available processors such that all processors can execute tasks

simultaneously [9]. An algorithm or a query can be executed in parallel using two partition

strategies: 1. data parallelism and 2. task parallelism.

1. Data parallelism refers to the strategy of partitioning and distributing data to

available processors such that all processors can execute tasks simultaneously [9].

The same operation is applied to a different dataset. The processing of a query is

boosted by parallelizing the execution of each individual operation (such as parallel

sorting and searching).

2.2. PARALLEL PROCESSING 17

Figure 2.3: Data Parallelism vs Task Parallelism

Let us consider an example. We want to sum the contents of an array of size N.

For a single-core system, one thread would sum the elements [0] . . . [N-1]. For a

dual-core system, however, thread A, running on core 0, could sum the elements [0]

. . . [N/2-1] and thread B, running on core 1, could sum the elements [N/2] . . . [N-1].

Therefore, the two threads would be running in parallel on separate computing cores.

In Figure 2.3, the same task, Task 1 is performed on different chunks of data by

multiple processors.

2. Task parallelism refers to the strategy of distributing independent task to all avail-

able processors such that each processor can execute a task simultaneously with

other processors [9]. Each task operates on the same data. The processing of a query

is boosted by executing in parallel different operations in a query expression (such

as simultaneous sorting and searching).

Again, consider the example above. An example of task parallelism might involve

two threads, each performing a unique statistical operation (e.g. sum and multipli-

cation) on the array of elements. The threads are operating in parallel on separate

computing cores, but each of them is performing a unique operation. In Figure 2.3,

the multiple tasks are performed on the same data by multiple processors.

Parallel join algorithms follow task parallelism or data parallelism or a combination of

both to achieve more parallelism.

18 CHAPTER 2. LITERATURE REVIEW

2.2.1 Parallel Hash Joins

Main memory hash joins have been the focus of recent research, particularly in the domain

of column-stores. The ground-breaking work of MonetDB led to a Radix Hash Join [34,69]

that aimed at overcoming the bottleneck of cache and Translation Lookaside Buffer (TLB)

misses. Based on the principles of radix hash join, Partitioning Join [35] pushed the

boundaries of hash join performance by introducing parallel processing of hash joins based

on repeatedly partitioning the input relations. They optimised hash join and sort-merge

join for modern multi-core systems and showed that sort-merge joins would become faster

with wider single instruction, multiple data (SIMD) instructions and limited per-core

bandwidth.

The no-partitioning Hash Join [39] was superior in performance to Partitioning Join

[35]. No-partitioning hash join was compared with the partitioning hash join and the

experiment results show that a no-partitioning hash join outperforms all partition-based

hash joins for almost all data distributions and is only slightly slower than parallel radix

hash joins with uniform datasets.

Albutiu et al. [40] advocated a sort-merge algorithm for the main memory parallel

joins, while others such as Balkesen et al. [41, 42] directly compared heavily optimised

versions of the sort-merge and hash join algorithms and concluded that hash joins still held

a competitive advantage in the main memory scenario. Balkesen et al. [41, 42] achieved

further improvements on partitioning hash join [35] and no-partitioning hash join [39] by

improving the cache efficiency of the hash table implementation and adopting a better

skew-handling mechanism for parallel partitioning hash join [35]. They showed that tuned

parallel radix hash joins exhibits better performance than the no-partitioning hash joins on

their experimental hardware which contradicts [39].

Traditional partitioned joins [34, 35, 41], as well as non-partitioned joins [39], have

serious limitations in terms of I/Os and parallelism, respectively [54]. A memory-efficient

Concise Hash Table (CHT) [54] and Concise Array Table (CAT) [54] was used to develop

an equijoin algorithm that significantly reduces memory consumption compared to leading

in-memory join algorithms such as [39, 41]. The experimental result showed that it could

reduce the memory consumption by one to three orders of magnitude with competitive

performance. This equijoin scanned the outer table in a pipelined fashion and benefited

from the build-side partitioning even when the probe side was non-partitioned.

MCJoin [70] was designed to perform efficiently under tight memory constraints. It

utilised a block nested loop approach, performing hash join between blocks that uses a

compact hash table to reduce the memory footprint. They improved the algorithm and

2.2. PARALLEL PROCESSING 19

implemented the parallel version as PaMeCo Join [37] while being mindful of operating

under a tight memory constraint. In scenarios without memory constraints, the algorithm

offered performaned competitively against other contemporary non-hardware tuned hash

joins, whereas in memory-constrained scenarios, it was three times faster than state-of-the-

art memory-constrained hash joins.

Jha et al. [71] compared the modified variants of no-partitioning hash join [39] and

parallel partitioning hash join [35] on the Intel Xeon Phi co-processors. They demonstrated

that under a wider range of parameters, no-partitioning hash joins can match and even

outperform parallel radix hash joins and suggested that the main memory hash joins need

to be revisited as processor technology changes.

Summary: Joins are an enduring performance challenge for query processors. A

significant number of research studies on column joins conclude that the hash join is more

efficient than the sort-merge join. Given the overall high-performance of hash joins, and

our ability to utilise the nature of hash tables when storing grouping attribute values, we

have based our algorithms on the hash join algorithm.

2.2.2 Parallel Star Joins

Star-join consists of one fact table F referencing several dimension tables D1,D2, ...,Dn. A

fact table is the central table in a star schema that typically has two types of columns: those

that are the foreign keys to dimension tables and those that store quantitative information

for analysis. Dimension tables are companion tables to a fact table that contains descriptive

attributes, and serve two critical purposes: query filtering and query result set labelling.

Throughout this thesis, we will use the following definitions:

Definition 2.2.1. Di has the primary key PKi that is associated with the foreign key FKi

of F where i is the dimension identification number of Di.

Definition 2.2.2. Fact table has format: F(f k1, f k2, ..., f kn,m1,m2, ...,mn) where f ki is

the value of the foreign key FKi and mi is a measure value.

Definition 2.2.3. The star-join query might have restrictions CDi on Di and CFi on F.

20 CHAPTER 2. LITERATURE REVIEW

Generally, a star join has the following form:

SELECT D1.value, D2.value, F.value

FROM D1, D2, F

WHERE D1.pk1 = F.fk1,

AND D2.pk2 = F.fk2

AND CD1

AND CF1;

In this section, we outline the works related to Row-Oriented Joins, Materialisation

Strategies in Column-Stores and Column-Oriented Joins.

Row-Oriented Joins: Bitmap star join [72] used bitmap indices to perform join and

showed that an index lookup in the dimension table could be faster than hash join, whereas,

hierarchical physical clustering [73] was proposed as an alternative to the use of indices

and aimed at limiting the number of I/O access to the fact table.

Many other techniques such as index union and semi-join reduction plans [74] with

bitmap filters have been proposed for efficient execution of star schema joins. Aguilar

et al. [23] revisited the star join techniques to analyse the most up-to-date strategy for

ad-hoc star join query processing. They proposed the hybrid solution that improved the

features of the bitmap star join [72] and the hierarchical physical clustering [73], and

showed near-optimal results in multiple use-cases. Novel execution strategies for star join

queries such as index intersections, dimension cross-product with fact table lookup, and

semi-join reduction using bitmap filters [38] have also been proposed, demonstrating that

the optimisation strategies improved the star join performance. Zhuhe et al. [75] vertically

or horizontally vectorised the probing phase using SIMD instruction and sped up the probe

by prefetching. They showed that the vertical vectorised integrated probe is faster than the

scalar version.

Several of the approaches are based on the row-oriented storage architecture and

mainly focus on joins rather than grouping and aggregation. All these works have been

motivational attempts to developing star join algorithms for column-stores. Our algorithms

are inspired by [38, 72, 76], although they have been designed to address queries with join,

group and aggregation operations for column-stores.

Column-Oriented Joins: In column-stores, the columns are stored separately. There-

fore, even tuple re-construction requires a join between the columns. The easiest way to

implement a column-oriented join is to include only those columns in the join predicate

as the input. The output of join is a set of pairs of positions in the two input relations for

2.2. PARALLEL PROCESSING 21

which the predicate succeeded. For instance, Figure 2.4 depicts the result of a join between

ColA (size 5) and ColB (size 4).

Figure 2.4: Simple column-oriented join

The output positions (virtual ids) may be sorted (virtual id of A) or may not be sorted

(virtual id of B). Unsorted output positions are problematic because the extraction of values

from a column (e.g. ColB) in this unordered fashion requires multiple random reads of

data for each position, causing significant slow-down since random access is much slower

than sequential access for most storage devices. Several improvements have been proposed

to solve the problem of multiple random reads. One of the solutions is the Jive Join [32,77].

This algorithm allows sequential access to columns at the cost of adding two sorts of join

output data. Most of the database systems have implemented fast external sort algorithm;

therefore, this join can achieve remarkable performance relative to random access of data.

Additional research in the field has shown that complete sort is not necessary to

mitigate random reads during value extraction of join output. Since most storage media are

divided into contiguous blocks of storage, and random reads within a block are significantly

cheaper than across the blocks, the idea is to partition the data into blocks of storage in

which the positions can be found. This idea has been implemented in Radix Join [33] which

provides a fast mechanism for performing the partition of column positions into the blocks

before the column extraction. It also reorders the intermediate data back to the original

join order after the extraction has been completed. However, the joins discussed consider

only two columns, whereas the star join queries involve joining more than two columns

(in fact we need to join two or more tables) along with operations such as group-by and

sort. Therefore, limited research exists in the field of parallel star joins for column-stores

and the available works have several limitations. Next, we discuss two main algorithms

that are the foundation of this research, and their limitations.

1. Invisible Join [30] is an extended work on improving the performance for star

joins [72, 74] by taking advantage of the column-oriented layout and rewriting the

22 CHAPTER 2. LITERATURE REVIEW

predicates to avoid the hash lookups. Next, we briefly describe the Invisible Join

phases.

Phase 1: Predicates are applied on dimension tables to build the respective interme-

diate hash tables.

Phase 2: Fact table columns are joined with their respective dimension table using

an intermediate hash table. The result of the join operation is the lists of positions

that passed the join predicates. At the end of this phase, we have multiple lists of

positions one for each dimension table. These lists are intersected to generate the

final list of positions satisfying all the predicates.

Phase 3: According to the final list of positions, the required fact table columns are

re-scanned to construct the final result.

We have identified three problems with this algorithm:

i. It has the performance bottleneck of multi-pass scan for column processing and

increases memory consumption with the increasing number of tables in the join

query.

ii. It incurs a significant memory overhead cost because it creates multiple inter-

mediate position lists.

iii. It follows a task parallel approach resulting in sub-optimal use of resources.

Yuan et al. [78] comprehensively evaluated the performance of graphical processing

unit (GPU) query execution, conducting a detailed analysis and comparison of

GPU and CPU. They conclude that GPUs significantly outperform CPU only when

processing certain kinds of queries when data are available in the pinned memory

and the performance of analytical queries does not increase correspondingly with

the rapid advancement of GPU hardware. However, Zhou et al. [79] proposed a

massively parallel and highly scalable star join algorithm based on GPU. To facilitate

and improve the execution of hash joins in GPUs, they used a bloom filter instead of

hash lookup and integrated late materialisation such that the fact table is accessed

only once. This algorithm is based on Invisible Join [30] and modified to work on

GPU which is outside of the scope of this research.

Performing group-by aggregation when a join of two or more tables is involved in

the query is the cornerstone of almost all star join queries. However, Invisible Join is

not designed for grouping and aggregation operations. It uses a traditional approach,

Hash Join/ Hash Group-By, where a column-oriented hash join (using bloom filters,

2.2. PARALLEL PROCESSING 23

hash table build and probe) is followed by row-oriented hash group-by (using serial

aggregation). There are two traditional approaches that can be used to improve the

performance of group-by aggregation queries.

a. Materialised View: Materialised view can be used to serve the aggregation

query [80]. However, this incurs the overhead of maintaining the materialised

view [81]. In addition, it cannot support the queries that are not able to leverage

the materialised view.

b. De-normalising the schema: In traditional join processing, the group-by and

aggregation is performed after join [9]. Thus, another common approach involves

the de-normalisation of the schema so that the join can be converted to a scan.

However, this approach incurs additional storage cost as the data is nested and

has repeated fields. Nested and repeated fields can maintain relationships without

the performance impact of preserving a relational (normalised) schema. The

storage savings from normalised data are less of a concern in modern systems.

Increases in storage costs are worth the performance gains from denormalising

data. [81].

2. In-Memory Aggregation [16] is optimised for aggregation over joins for star join

queries by pushing group-by expressions down to the scan of dimension tables.

Their solution replaces traditional join and group-by operators with fast in-lined

scan operators. Next, we briefly describe the In-Memory Aggregation phases.

Phase 1: Dimension tables are scanned and a new data structure called a Key Vector

is created. A key vector maps a qualifying dimension key to a dense grouping key

(DGK).

Phase 2: The key vectors are used to create an additional multi-dimensional array

known as In-Memory Accumulator (IMA). Each dimension of IMA will have as many

entries as the number of non-zero grouping keys corresponding to that dimension.

Phase 3: For each entry in the fact table that matches join condition based on the key

vector entries for the dimension values, a corresponding aggregate value is added to

an appropriate cell in IMA. In the end, IMA receives the results of the aggregation.

In this phase, the processing is done row-by-row which is a disadvantage as the data

is not processed in tight loops. This results in considerable performance deterioration

on modern hardware [36].

We have identified three problems with this algorithm:

i. This algorithm is efficient only if the IMA does not become too large.

24 CHAPTER 2. LITERATURE REVIEW

ii. With the increasing number of dimensions and grouping attributes, this algo-

rithm creates additional key vectors and temporary tables to process the group

join, which significantly increases the execution time.

iii. The design of this algorithm is not ideal for parallel implementation.

2.2.3 Research Gaps

The research gaps in parallel star joins are three-folds:

• Much of the research on efficient column-oriented joins assumes an unlimited reserve

of main memory and focuses on minimising the total execution time [7,33,35–37,70].

However, the main memory will eventually be exhausted when the input tables or

intermediate results exceed the available memory because of the increase in the

amount of data. In addition, from a user’s perspective, the ideal is to generate the

first few results quickly with minimal response time so that the data processing can

begin immediately.

• Mainstream data warehouses today hold several terabytes of data with table sizes

passing the one billion row threshold [38]. The recent works on efficient parallel

join algorithms show that carefully-tuned join implementations demonstrate good

performance [35, 39–43]. However, not all star join algorithms have been designed

for parallel implementation.

• Performing group-by aggregation with join over two or more tables is the cornerstone

of almost all star join queries [16]. However, most research [30,38,72,76,78] focuses

on join rather than on grouping and aggregation, and the current technique optimised

for aggregation than joins has a number of limitations.

2.3 Distributed Processing

Distributed processing is a loosely-coupled form of parallel processing where several

computers are used, instead of just one main computer, to process data [9]. The computers

in a distributed processing system can be physically located at the same place or close

together, connected via a Local Area Network (LAN) or a Wide Area Network (WAN) as

shown in Figure 2.5. Most distributed processing systems contain sophisticated software

that detects idle CPUs on the network and parcels out programs to utilise them [43, 52].

Advantages: Parallel processing helps to process large amounts of data in a short

period of time, and can perform complex computation in real time. In addition to these

2.3. DISTRIBUTED PROCESSING 25

Figure 2.5: A distributed system: each computer has its own local memory, and information
is exchanged by passing messages from one computer to another by using local area
network (LAN).

benefits of parallel processing, further benefits are achieved using distributed processing

as below:

1. Cost Effectiveness: Previously, companies invested in expensive mainframe and

super computers to function as a centralised server. These super computers are

very expensive compared to commodity computers. In addition, there are cases

where the use of a single computer would be possible in principle, but the use of

distributed processing is beneficial for practical reasons. For instance, it may be

more cost-efficient to obtain the desired level of performance by using a cluster of

several commodity computers rather than a single super computer.

2. Fault Tolerance: Hardware glitches and software anomalies can cause a super com-

puter to malfunction and fail, resulting in a complete system breakdown. Distributed

processing is more fault-tolerant as there is no single point of failure [52]. A glitch

in any one computer does not impact the network since another computer takes over

its processing capability. Faulty computers can be quickly isolated and repaired [82].

3. Scalability: A distributed system may be easier to expand and manage than a

monolithic super computer [52, 83]. For example, adding more nodes or computers

to the network increases processing power and overall system capability, while

removing computers from the network decreases processing power [82].

26 CHAPTER 2. LITERATURE REVIEW

4. Efficiency: Distributed processing works on the principle that a job gets done

faster if multiple machines are handling it in parallel, or synchronously [52]. For

instance, complicated statistical problems are broken into modules and allocated

to different machines where they are processed simultaneously. This significantly

reduces processing time and improves performance [82].

Disadvantages: Some of the disadvantages of distributed processing are:

1. Complexity: There is an added complexity to ensure proper co-ordination among

the sites involved in distributed processing. This increased complexity takes various

forms:

a) Software Development Cost: Distributed processing systems are difficult to

deploy, maintain and troubleshoot/debug than the centralised servers. The

increased complexity is not only limited to the hardware; distributed systems

also need software capable of handling the security and communications.

b) Increased Processing Overhead: The exchange of information and additional

computation required to achieve inter site co-ordination are overheads that are

not incurred in centralised systems.

2. Security Concerns: Data access can be controlled easily in centralised servers, but it

is difficult to manage security of distributed processing systems. The communication

between the computers take place via the network. However, not only does the

network have to be secured; we also need to control the replication of data in multiple

locations.

Summary: Distributed processing improves processing and analysis of big data

by combining the power of multiple machines. It is much more scalable and allows

other computers to be added easily to cope with the demands of an increasing workload.

Although distributed computing has its own disadvantages, it offers unmatched scalability,

better overall performance and greater reliability, which makes it a better solution for

dealing with high workloads and big data.

2.3.1 Distributed Star Joins

With on-demand hardware and the advent of convenient parallel frameworks, distributed

processing has been extensively applied to implement decision support systems [84, 85].

Several algorithms have been proposed to solve star joins in a distributed environment. In

2.3. DISTRIBUTED PROCESSING 27

this section, we outline the works related to Row-Oriented Joins and Column-Oriented

Joins.

Row-Oriented Joins: Datta et al. [86] proposed a parallel star join algorithm based on

the vertical partitioning of data in a distributed environment. Aguilar et al. [76] proposed

a star hash join based on the use of bloom filters in cluster architectures to reduce both

I/O and data traffic communication. Also, several other researchers such as [87, 88] have

proposed the use of bloom filters [89] for map-side joins. The use of a bloom filter is

based on an allowable error. It is known that an m bits filter has a false positive rate of

p = (1− e−kn/m)k, where n is the number of tuples, and k is the number of hash functions.

An error rate of p = 0.001 (0.1% false positives) requires k = 10 hash functions to be

executed against every tuple from the fact table to decide whether or not it should be

filtered out [89]. This process becomes computationally expensive with a large amount of

data.

Purdilua et al. [53] proposed a fast and efficient star-join query execution algorithm built

on top of the map-reduce framework using dynamic filters against dimension tables, which

reduced I/O operations and computational complexity. Ramdane et al. [90] combined

a data-driven and a workload-driven model to create a new scheme for distributed big

data warehouses using Hadoop. They performed a one-stage star join operation and

skipped the loading of unnecessary HDFS blocks. All of these algorithms present high

network communication and several sequential jobs that produce challenging bottlenecks

in distributed systems.

Many other algorithms such as [46, 91] applied predicate on the dimensions, broadcast

the results to all nodes, and applied joins locally which minimised the disk spills and

network communication. However, these algorithms are designed for row-oriented data,

not column-oriented data.

Column-Oriented Joins: In order to effectively deal with star join, Concurrent

Join [92] and Scatter-Gather Merge [87] were proposed. In concurrent join, a query is

split into sub-queries over multiple data-sets. These sub-queries are executed concurrently

by distinct map-reduce phases. In the reduce phase, the temporary results are joined.

Scatter-Gather Merge join partitions the fact table according to the dimension table, join

for each partition, and then the intermediate results are joined. The by-product of these

algorithms is a large intermediate result and high I/O cost. In addition, the intermediate

result needs to be redistributed which produces a great deal of data replication.

HdBmp Join [93] is a star join method used for column-oriented data stores in MapRe-

duce environments. This join used the HdBmp Index which can filter out most of the

unnecessary tuples in tables, thereby greatly reducing the network overload. Multi-

28 CHAPTER 2. LITERATURE REVIEW

Fragment-Replication Join (MFRJ) and MapReduce-Invisible Join (MRJ) [94] are two

cache-conscious algorithms in the MapReduce environment that avoids fact table data

movement. The fact table is partitioned into several column groups for cache optimization.

As discussed previously, in column-stores, each column is stored separately. MFRJ is not

appropriate as it has frequent cache misses from one column to another [94]. Also, it has a

critical memory requirement that not all nodes can meet. Hence, these researchers [94]

acknowledged that MRJ works well on column-oriented architecture and a small memory

node. However, it is based on Invisible Join [30] and therefore, the problems discussed in

Section 2.2.2 remain. In addition, these algorithms deal with join operations only, and not

group-by and aggregation operations.

2.3.2 Research Gaps

Large-scale data shuffling is inevitable in analytical queries such as distributed join between

two large tables. This is still a less popular research topic or is left for data-centric generic

distributed systems such as Apache Spark [48] for batch processing [49, 50]. The research

gaps regarding distributed star joins are threefold:

• Although Spark facilitates joins and group-by using Resilient Distributed Datasets

(RDDs) [51], Spark SQL [52] and Spark DataFrame [52] operations, it can process

only two tables at a time, inducing multiple scans of data for star joins and requiring

one or two map-reduce iterations per join [53]. This means that the analytical queries

will need n−1 or 2∗ (n−1) map-reduce iterations where n is the number of tables

used by the query.

• Apache Spark produces excessive disk access and network communication because

of cross-commutation between the worker nodes. Unnecessary disk access is often

the result of disk spill where the data is spilled into the disk due to an overflowing

memory buffer.

• Excessive shuffling of records not only significantly increases the network commu-

nication cost, but also prevents further processing of the algorithm [46]. Therefore,

naive Spark implementation fails to handle the issues such as multiple scans of data,

excessive network communication and disk spill.

2.4. SUMMARY 29

2.4 Summary

We reviewed previous studies on or related to parallel hash join, parallel star joins and

distributed star joins. A summary of the most relevant research is presented in Table 2.1.

The fields of parallel and distributed star joins are active areas of research and both areas

Table 2.1: A summary of most relevant research work. ? represents star join, ∓ represents
column join, → represents single join mode, ⇒ represents parallel join mode and �
represents distributed join mode.

Join Type Join Mode
Work Year Publication ? ∓ → ⇒ �

Weininger [74] 2002 SIGMOD X X
Zukowski et al. [69] 2005 IEEE X X

Abadi et al. [30] 2008 VLDB X X X
Tsirogiannis et al. [77] 2009 VLDB X X

Kim et al. [35] 2009 VLDB X X
Balnas et al. [39] 2011 SIGMOD X X
Begley et al. [70] 2011 SIGMOD X X
Albutiu et al. [40] 2012 VLDB X X

Balkensen et al. [41] 2013 ICDE X X
Zhang et al. [88] 2013 IGDC X X X
Begley et al. [37] 2016 IS X X X
Brito et al. [46] 2016 ICCS X X X

Cheng et al. [95] 2017 JPDC X X
Chavan et al. [16] 2018 ICDE X X X

have been investigated in this research project. Compared to the state-of-the art approaches,

we conclude that this thesis is distinctive from them as it offers the following innovations:

• For parallel star joins: 1) We extend the concise array table [54] and name it multi-

attribute array table (MAAT). It handles multiple attributes and facilitates probing

required in the join algorithm. 2) We propose a novel materialisation strategy based

on MAAT known as Progressive Materialisation. To the best of our knowledge, there

is no such strategy proposed for the column-stores. 3) We propose a new progressive

parallel star join algorithm for the main memory column-stores named Nimble Join

that is significantly better than its competing column-store join algorithm. It uses a

multi-attribute array table to hold the attributes required in join query processing

that facilitates progressive materialisation. 4) We propose an analytical model to

understand and predict the query performance of the Nimble Join. The accuracy of

the model has been verified by comprehensive experiments with different hardware

parameters.

30 CHAPTER 2. LITERATURE REVIEW

• For parallel star joins with group-by and aggregation: 1) We propose a novel

approach to perform group-by and aggregation operations influenced by the concept

of trie or prefix tree [55] using a data structure called Aggregate Trie or ATrie.

The grouping and aggregation can be seen as a tree-shaped deterministic finite

automation. To the best of our knowledge, to date, no such technique has been

proposed for column-stores. 2) We propose a new parallel star group join and

aggregation for in-memory column-stores named ATrie Group Join (ATGJ) that

is significantly faster than its competing column-store join algorithm. ATGJ is a

variation of Hash Join/Hash Group-By that uses both techniques but solves the

problem of grouping and aggregating data using a rather novel approach with the

help of the ATrie. 3) We propose an analytical model to understand and predict

the query performance of ATGJ. The model accuracy is verified by comprehensive

experiments with different hardware parameters.

• For distributed star joins: 1) We present a new optimisation technique for efficient

search in the hash table. The key idea is to use Robin Hood hashing with the upper

limit on the number of probes which is implemented in Fast Hash Table (FHT).

2) We propose a new star group join and aggregation algorithm for distributed

column-stores known as Distributed ATrie Group Join (DATGJ). DATGJ requires

only one map-reduce iteration regardless of the number of tables used in the query.

It uses hash-based broadcast technique, performs a single-scan join and leverages

progressive materialisation to solve the problem of grouping and aggregating data

using the ATrie. 3) We perform extensive experiments using the SSBM benchmark

and compare the performance with some of the most prominent approaches. The

results show that our strategy has zero data shuffle and zero disk spill, and avoids

multiple scans of data while being competitive and better than the prominent ap-

proaches. 4) We propose an analytical model to understand and predict the query

performance of DATGJ. The model accuracy has been verified by comprehensive

experiments with different hardware parameters.

Chapter 3

Research Methodology

In this chapter, we discuss the research methodology adopted for the project, and provide

an overview of the research method and evaluation.

3.1 Research Method

The objective of this PhD project was to design, develop and implement new parallel join

algorithms for column-stores, and to develop cost models for them. Therefore, Design

Science Methodology [1, 96] was considered the most appropriate for this project.

Design science is an outcome-based information technology research methodology

that is concerned with producing an artifact to achieve the desired goal. The research

development process follows DSRM Process Model [1], which is an iterative process

shown in Figure 3.1. This model involves (in order) identifying the problem and motivation,

defining objectives of a solution, designing and developing an artifact, demonstrating a

suitable context to solve a problem, and evaluating the artifact from which it can iterate

back to design and development or proceed to communicating the research.

Based on the research framework in information technology [97, p. 255-258], there

are four main research outputs:

• Constructs or concepts form the vocabulary of the problem domain used to describe

problems and their solutions.

• A model is a set of propositions, statements or models that expresses the relationships

between the constructs.

• A method is a set of steps (an algorithm or guideline) that are used to perform a task,

and is based on a set of underlying constructs and a model of the solution.
31

32 CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.1: DSRM Process Model [1, p. 54]

• An instantiation is the realisation of an artifact in its environment.

In this thesis, three research outputs have been built (i.e. model, method, and instantia-

tion) and the instantiation has been evaluated, theorised and justified.

The details of each of the research output are as below:

• Model: The models take the form of cost models delivered with the algorithms.

• Methods: The methods take the form of proposed column-oriented join and group-by

algorithms.

• Instantiation: The instantiation is the implementation of column-oriented join and

group-by algorithms, and is evaluated using controlled experiments.

Given an artifact whose performance has been evaluated, it is important to determine

why and how the artifact worked and did not work. Therefore, we theorised and justified

assumptions about those artifacts. The summary of research activities and outputs are

demonstrated in Table 3.1.

Table 3.1: Research Activities and Outputs

Build Evaluate Theorize Justify
Constructs

Model X
Method X

Instantiation X X X X

3.2. EXPERIMENTAL EVALUATION 33

3.2 Experimental Evaluation

The research used Controlled Experiment evaluation method as described in the Design

Evaluation Methods [96, p. 86] to evaluate the artifacts. The experiments were performed

using Star Schema Benchmark (SSBM) [98] which is described next.

3.2.1 Star Schema Benchmark (SSBM)

The Star Schema Benchmark (SSBM) [98] is used widely in various data warehousing

research studies [16, 30, 75, 78, 79, 94]. It is derived from TPC-H1 but consists of fewer

queries and has less stringent requirements on what forms of tuning are and are not allowed.

Sanchez [99] reviewed SSBM and concluded that SSBM is a better benchmark than TPC-H

that offers much simpler schema and query execution set. The data set generated using

SSBM is uniformly distributed [98]. This uniform distribution is facilitated by a tool

called SSB-DBGEN that makes populating the benchmark data easier and enables quick

transitions between transaction tests. However, SSB-DBGEN is not easy to adapt to

different data distributions as its metadata and actual data generation implementations are

not separated [99]. To generate all SSBM tables we used:

dbgen -s <n> -T a -v

where -s <n> -- set Scale Factor (SF) to <n>

- T a -- generate all SSBM tables

-v -- enable VERBOSE mode

Schema: The benchmark consists of a single fact table, the LINEORDER table, that

combines the LINEITEM and ORDERS table of TPC-H. This is a 17-column table with

information about individual orders, with a composite primary key consisting of the

ORDERKEY and LINENUMBER attributes. Other attributes in the LINEORDER table include

foreign key references to the CUSTOMER, PART, SUPPLIER, and DATE tables as well as

attributes of each order, including its priority, quantity, price and discount. The dimension

table contains information about their expected respective entities. Figure 3.2 shows the

schema of the tables.

Queries: The SSBM consists of thirteen queries divided into four categories, or

“flights”:

1http://www.tpc.org/tpch

http://www.tpc.org/tpch

34 CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.2: Schema of SSBM benchmark

• Flight 1 contains three queries. Queries have a restriction on one dimension attribute,

as well as the DISCOUNT and QUANTITY columns of the LINEORDER table. Queries

measure the gain in revenue (the product of EXTENDEDPRICE and DISCOUNT) that

would be achieved if various levels of discount were eliminated for various order

quantities in a given year. The LINEORDER selectivity for the three queries are

1.9×10−2, 6.5×10−4, and 7.5×10−5 respectively.

• Flight 2 contains three queries. Queries have a restriction on two of the dimension

attributes and compute the revenue for particular product classes in particular regions,

grouped by product class and year. The LINEORDER selectivity for the three queries

are 8.0×10−3, 1.6×10−3, and 2.0×10−4 respectively.

• Flight 3 consists of four queries, with a restriction on three dimensions. Queries

compute the revenue in a particular region over a time period, grouped by customer

nation, supplier nation, and year. The LINEORDER selectivity for the four queries are

3.4×10−2, 1.4×10−3, 5.5×10−5, and 7.6×10−7 respectively.

• Flight 4 consists of three queries. Queries restrict on three of the dimension columns

and compute profit (REVENUE - SUPPLYCOST) grouped by year, nation, and cate-

gory for query 1; and for queries 2 and 3, region and category. The LINEORDER

selectivity for the three queries is 1.6× 10−2, 4.5× 10−3, and 9.1× 10−5 respec-

tively.

3.3. ANALYTICAL EVALUATION 35

As with TPC-H, this benchmark provides a base “Scale Factor (SF)” to scale the size

of the data. The size of each of the tables is defined according to this scale factor. SF

determines the amount of information initially loaded into the benchmark tables. As

the SF increases, the number of rows added to the tables increases. Data is generated

proportionally to SF. All other tables are scaled linearly except for the PARTS table, where

the data is scaled logarithmically [98]. Table 3.3 summarises the major characteristics

of the SSBM queries. SSBM query definitions are available in the Appendix A. Let us

consider the Query 3.1 (shown below) from SSBM.

SELECT c.nation, s.nation, d.year, sum(lo.revenue) AS revenue

FROM customer AS c, lineorder AS lo, supplier AS s, [Date] AS d

WHERE lo.custkey = c.custkey

AND lo.suppkey = s.suppkey

AND lo.orderdate = d.orderdate

AND c.region = ‘ASIA’

AND s.region = ‘ASIA’

AND d.year BETWEEN 1992 and 1997

GROUP BY c.nation, s.nation, d.year

ORDER BY d.year asc, revenue desc;

This query finds the revenue volume for the line order transactions by customer nation,

supplier nation and year within a region ‘Asia’ in 1992 and 1997. We will use this query

as a running example to discuss the phases of the algorithms proposed in this thesis.

3.3 Analytical Evaluation

Analytical models or cost models are sets of parametric cost equations or formulas that

are used to calculate the elapsed time of a query using a specific parallel algorithm for

processing. A cost equation comprises variables, which are substituted with specific values

at runtime of the query. These variables denote the cost components of the parallel query

processing. In this section, we discuss the motivation to create cost models and introduce

our modelling methodology used to create the cost models and predict the cost of a join

operation.

36 CHAPTER 3. RESEARCH METHODOLOGY

3.3.1 Motivation

New algorithms are being developed to offer novel methods and approaches for efficient

big data processing. To apply these algorithms in real life, it is very important to know

their behaviour under specific conditions depending on factors such as the characteristics

of hardware, the number of processors, quantities and features of processing data. It is

very expensive, time-consuming and infeasible to analyse behaviour of algorithms by

constructing systems with all possible characteristics encountered in real life. Cost models

are cheap and time-saving solutions to this problem, allowing the analysis of an algorithm

without the need to physically build the system. Although the model cannot fully reflect the

real-life situation, it can give some idea of the trends and patterns in algorithm behaviour

under different conditions.

Estimating the elapsed time of an algorithm is an important, but not the only way to

use cost models. Cost models permit the analysis of the algorithms at different levels of

abstraction. This makes it possible to understand the examined algorithm in terms of its

individual components in order to find potential problems and bottlenecks. This provides

an opportunity to compare the performance of different algorithms conducting the same

task under an equivalent set of conditions that can improve our understanding of which

algorithm is best suited to a particular condition.

3.3.2 Model Methodology

To construct the cost model, the algorithms have been divided into logical steps, and each

step is described by a formula based on the parameters that determine the execution time

for this step. Before building the model, all parameters necessary for its construction

are specified as shown in Table 3.2. We have followed the approach for constructing the

cost model described in [9]. The cost model includes the following components: System

Parameters and Data Parameters, Query Parameters, Time Unit Cost and Communication

Cost.

• Data Parameters includes the number of records in the table (|F |) and table size in

bytes (F). The number of records is used to describe in-memory processing, which

is a record-based procedure. The size of the table in bytes is intended to determine

the process of loading and writing data to/from the disk.

In a parallel processing, the table is fragmented into multiple processors. Therefore,

the number of records and actual table size for each table are divided (evenly or

skewed) among as many processors as there are in the system. To indicate fragment

3.3. ANALYTICAL EVALUATION 37

Table 3.2: General cost model parameters and notations

Symbol Description
System and data parameters

F Size of the table
| F | Cardinality of the table
Fi Size of the i-th table column, i = 1 . . . n
| Fi | Cardinality of the i-th table column

N Number of processors
P Page size
H Hash Table size

Query Parameters
πi Projectivity ratio of the i-th table
σi Selectivity ratio of the i-th table

Time Unit Cost
IO Time to read a page from the disk
tw Time to write the record to the main memory
tr Time to read a record in the main memory
td Time to compute destination

Communication Cost
mp Message protocol cost per page
ml Message latency for one page

table size in a particular processor, a subscript is used. For example, Fi indicates the

size of the table fragment on processor i . Subsequently, the number of records in

table F on processor i is indicated by |Fi|. The same notation is applied to both the

fact and dimension tables used in a query.

• System Parameters include the number of processors (N) used to process the query,

data page size (P) and maximum hash table size (H) which fits into the memory.

The number of processors determines the amount of information processed by each

processor. Since the data is loaded and written to/from disk by pages, the data page

size is required to calculate the number of pages of information being processed.

The maximum size of the hash table, represented in a number of records, is used to

estimate the time required to scan a complete hash table.

• Query Parameters define the selectivity ratio (σi) and projectivity ratio (πi). The

selectivity ratio is the number of rows in the query output divided by the total number

of rows in the table. The projectivity ratio is the number of attributes selected by the

query divided by the total number of attributes in the table.

• Time Unit Cost are the parameters related to technical characteristics of the system,

such as time to read and write page to/from disk (IO), time to read to/from main

38 CHAPTER 3. RESEARCH METHODOLOGY

memory (tr), time to write to main memory (tw) and time to send, receive and

calculate a destination for the record that is to be sent from one processor to another

(td).

• Communication Cost works at a page level and includes costs such as message

protocol cost (mp) and message latency cost (ml). The message protocol cost is the

cost associated with the initiation for a message transfer; whereas, message latency

is associated with the actual message transfer time.

In addition to the general approach mentioned above, to construct a cost model for

the algorithms in column-stores, it is necessary to consider the specific features unique to

column-stores such as the search for specific column on the disk or forming a set of rows

from individual columns.

There are many factors such as the cost of start-up, interference and communication

(refer Section 2.2) that account for the difference between the estimated time of the model

and the time taken by the experiment. When evaluating our model, we define the error rate

as

error rate =
∣∣∣∣experiment time−model time

experiment time

∣∣∣∣ (3.1)

3.4 Summary

We stated that Design Science Methodology [1] is the research method used for this

project. We described the star schema benchmark (SSBM) used to perform experimental

evaluation using controlled experiment evaluation method explained in Design Evaluation

Methods [96, p. 86]. We also discussed the motivation behind analytical models and

described the model methodology used in this thesis.

3.4. SUMMARY 39

Ta
bl

e
3.

3:
Su

m
m

ar
y

of
m

aj
or

op
er

at
io

ns
an

d
Fi

lte
rF

ac
to

r(
FF

)a
na

ly
si

s
of

SS
B

M
qu

er
ie

s.
L

re
pr

es
en

ts
th

e
L
I
N
E
O
R
D
E
R

fa
ct

ta
bl

e
an

d
D

,S
,C

an
d

P
re

pr
es

en
tt

he
D
A
T
E

,S
U
P
P
L
I
E
R

,C
U
S
T
O
M
E
R

an
d
P
A
R
T

di
m

en
si

on
ta

bl
es

.

Q
ue

ry
O

pe
ra

tio
n

FF
C

us
to

m
er

FF
Su

pp
lie

r
FF

Pa
rt

FF
D

at
e

FF
L

in
eO

rd
er

Se
le

ct
iv

ity
(S

F
=

1)
1.

1
L
./

D
-

-
-

1/
7

0.
47

*3
/1

1
0.

01
9

1.
2

L
./

D
-

-
-

1/
84

0.
2*

3/
11

0.
00

00
65

1.
3

L
./

D
-

-
-

1/
36

4
0.

1*
3/

11
0.

00
00

75
2.

1
L
./

P
./

S
./

D
-

1/
5

1/
25

-
-

0.
00

8
2.

2
L
./

P
./

S
./

D
-

1/
5

1/
25

-
-

0.
00

16
2.

3
L
./

P
./

S
./

D
-

1/
5

1/
10

00
-

-
0.

00
02

3.
1

L
./

C
./

S
./

D
1/

5
1/

5
-

6/
7

-
0.

03
4

3.
2

L
./

C
./

S
./

D
1/

25
1/

25
-

6/
7

-
0.

00
14

3.
3

L
./

C
./

S
./

D
1/

12
5

1/
12

5
-

6/
7

-
0.

00
00

55
3.

4
L
./

C
./

S
./

D
1/

12
5

1/
12

5
-

1/
84

-
0.

00
00

00
76

4.
1

L
./

C
./

P
./

S
./

D
1/

5
1/

5
2/

5
-

-
0.

01
6

4.
2

L
./

C
./

P
./

S
./

D
1/

5
1/

5
2/

5
2/

7
-

0.
00

46
4.

3
L
./

C
./

P
./

S
./

D
1/

5
1/

12
5

1/
25

2/
7

-
0.

00
00

91

Chapter 4

Parallel Star Joins

In this chapter, we focus on the parallel star join for column-stores. First, we introduce the

technical challenges of answering star join queries for column-oriented data. Then, we

discuss multi-attribute array table (MAAT) and propose a novel materialisation strategy

known as Progressive Materialisation. We use MAAT and progressive materialisation

technique to develop a new parallel star join algorithm known as Nimble Join. Experiments

on SSBM dataset is conducted to verify the efficiency of our proposed solution.

4.1 Overview: Challenges and Solution

Column-stores have gained popularity as a promising physical design alternative to improve

query performance in analytical workloads such as those found in data warehouses,

decision support and business intelligence applications. In a column-store, information

about a logical entity is stored as separate columns in multiple locations on disk [4].

For example, information about a customer such as name, address, phone is stored as

separate columns on disk. This data storage model is known as Decomposed Storage

Model (DSM) [5]. DSM makes column-stores more I/O efficient for read-only queries as

they can read only those columns from the disk that is accessed by the query [4,6,7]. With

the column-oriented storage architecture, the main challenge is how to execute star join

queries that includes two or more tables.

4.1.1 Star Joins

Since the columns are stored separately, even the tuple reconstruction requires a join

between the columns. Therefore, the joining of two or more tables will involve additional
41

42 CHAPTER 4. PARALLEL STAR JOINS

operations such as tuple reconstruction, projection, grouping and sorting in addition to

joining columns specified in query join condition. Existing join algorithms such as [32–37]

provide only a partial solution to process star join queries in column-stores. They include

steps on how to join two columns specified in the query join condition but do not include

steps to re-construct the tuples required in the query output, filter conditions and operations

such as group-by and sort. Invisible Join [30] performs star-join in column-stores that

include operations such as tuple reconstruction and grouping. However, the algorithm has

the performance bottleneck of multi-pass scan for column processing increasing disk I/O

and increased memory consumption with increasing number of tables in the join query as

discussed in Section 2.2.2.

4.1.2 Memory and Initial Response

Mainstream data warehouses today hold several terabytes of data with table sizes passing

the one billion row threshold [38]. Therefore, the decision support queries need to be

processed in parallel to achieve performance improvements. The recent works on efficient

parallel join algorithms show that carefully-tuned join implementation demonstrate good

performance regardless of the data size [35, 39–43]. However, they assume an unlimited

reserve of main memory and focus on minimising the total execution. The main memory

is finite and will eventually be exhausted when the input tables or intermediate results

exceed the available memory because of the increase in data. In addition, from a user’s

perspective, it is ideal to generate the first few results quickly with minimal response time

so that data processing can begin immediately.

Therefore, an optimal solution is a star join algorithm for column-stores that: 1) has a

fast response time, 2) has a fast query execution time, 3) consumes less memory, and 4)

operate in parallel.

4.1.3 Technical Contributions

To address the challenges mentioned above, we developed a progressive parallel star

join algorithm known as Nimble Join. We equipped Nimble Join with an extended

version of the concise array table [54] known as multi-attribute array table (MAAT),

which facilitates progressive materialisation and offers three main improvements in the

algorithm. First, it eliminates the memory consumed to hold intermediate data structures in

Invisible Join [30]. It is much thinner than the hash table and packs better into cache lines.

Further, it stores only those positions that satisfy the join conditions, which remarkably

reduces the memory consumption. Second, it holds the intermediate attributes required

4.2. MULTI-ATTRIBUTE ARRAY TABLE (MAAT) 43

for the join query processing that eliminates multi-pass scans for column processing and

significantly lowers the query processing time in our join algorithm. Third, it facilitates

the design of Nimble Join such that the join results can be produced faster with the help

of progressive materialisation. Experiments show that Nimble Join has 2X faster initial

response time, 10% - 25% better execution time, 40% - 50% reduced memory consumption

and approximately 50% reduced disk I/O time compared to competing Invisible Join.

In summary, we make the following technical contributions:

1. We extend the concise array table and name it multi-attribute array table (MAAT). It

handles multiple attributes and facilitates probing required in the join algorithm.

2. We propose a novel materialisation strategy based on MAAT known as Progressive

Materialisation. To the best of our knowledge, to date, no such strategy has been

proposed for the column-stores.

3. We propose a new progressive parallel star join algorithm for the main memory

column-stores known as Nimble Join that is significantly better than its competing

column-store join algorithm. It uses a multi-attribute array table to hold attributes

required in join query processing that facilitates progressive materialisation.

4. We propose an analytical model to understand and predict the query performance

of the Nimble Join. The model accuracy has been verified by detailed experiments

with different hardware parameters.

4.2 Multi-Attribute Array Table (MAAT)

A join operation uses a widely-known data structure such as hash table or its variants to

store intermediate results [37,54,100]. Hash tables typically stores both keys and payloads

(referred to as attributes). Often during the implementation, the size of the hash tables

is doubled to handle collisions. For linear probing, this overhead arises from the fill

factor whereas, for chaining, the overhead comes from memory fragmentation and pointer

storage. In addition, most of the hash tables also round up the number of slots to a power

of two, making it unappealing for memory efficient joins [54].

Concise Hash Tables (CHT) and Concise Array Tables (CAT) [54] consume less

memory and are used to develop memory-efficient hash joins faster than leading in-

memory hash joins such as in [41]. Multi-Attribute Array Table (MAAT) is a variant of

CAT that consists of two pieces as shown in Figure 4.1:

44 CHAPTER 4. PARALLEL STAR JOINS

Figure 4.1: Multi-Attribute Array Table

• A list of signed integer positions that also serves as a dynamic filter in our join

algorithm.

• An indexed array storing multiple attributes.

The key advantage offered by an indexed array is the elimination of nodes and pointers

that are used in Standard-Chain Hash Table (SCHT) [101]. This configuration permits the

efficient use of the CPU cache and hardware data pre-fetch while simultaneously saving

memory space.

4.2.1 Avoiding Collisions

Collision avoidance is based on the observation that the database administrators (DBAs)

usually design join keys to produce a dense domain. In fact, it is common practice in

the physical modelling of the database to assign primary keys as a serially increasing

counter so that we can map these keys directly to the positions of an array. Based on

this assumption, in the process of creating tuples progressively, we use key positions

instead of primary keys. MAAT embeds a list of successful key positions to speed up final

look-ups, which directly maps to the positions in an indexed array. These look-ups have

pure data-independent random access (DIRA) pattern - each look-up can be issued before

the previous one finishes. N look-ups in MAAT involve only a single DIRA round of N

access in an indexed array. Finally, the indexed array has entries only for positions in the

position list.

4.2.2 Memory Consumption

Bitmaps have been used to store the position values in order to reduce memory consumption

[37, 54, 70]. If maxi is the maximum value of keyi in the set Skey, we need NB bits to store

4.2. MULTI-ATTRIBUTE ARRAY TABLE (MAAT) 45

all keyi values within the filter:

NB = 2log2(maxi)+1 (4.1)

The bits are usually stored as an array of long data type, and setting/getting individual bit

values are performed using bit operations. Let us consider a simple example. Assume that

Skey has the following values: Skey = {1, 5, 6, 7, 9, 14}. Then, maxi = 14 so NB = 16 from

equation 4.1. Adding six keyi values to the filter means setting six bits within the bit set as

follows: 0100001011100010. To check whether a keyi is stored within the filter, we check

a single bit value within the bit set. This is very fast and performed in four-bit operations.

However, if the numerical values are big with large gaps between them, the bit set will

be very sparse and many bits will be wasted. For instance, assume Skey has the following

values: Skey = {1, 68, 11, 45, 12, 442, 110, 4, 11110, 352, 111109, 15, 1234}. Then, maxi

= 111,109 and NB = 217 i.e. we need 131,072 bits or 16,384 bytes. This is very inefficient

as only 13 distinct values are to be encoded within the bit set.

Therefore, instead of using a bitmap, MAAT uses a list of signed integer positions

that satisfy the predicate. If the output position list is small, we can achieve significant

savings in memory consumption using the regular list of signed integers. For instance, the

real-world queries have a selectivity of less than 1% (87% of SSBM queries have < 1%

selectivity) [12, 22, 98]. If we have 6000 records, and the selectivity of the query is 1%,

i.e. 60 records. So, 1 bit to save 6000 positions equals 6000 bits or 750 bytes (in case of

bitmaps the position values could either be true or false depending on the predicate). We

do not need all those 6000 bits, as a false value in bitmap means the predicate was not

satisfied. For the same scenario, assuming a position list of signed integers, i.e. 4 bytes

each, this would need only 240 bytes. Therefore, significant amount of memory is saved

using a list of signed integer positions in MAAT.

4.2.3 Parallelism in MAAT

To facilitate the parallel processing of algorithms, MAAT implements the spinlock mecha-

nism that is used to ensure the atomic insertion and updates of the data items in the indexed

array, making it a thread-safe collection. As opposed to other locking mechanisms (such

as mutex), spinlock is an excellent choice because the critical section in our algorithm

such as the insertion or updating of items in MAAT requires a minimal amount of work

and spinlock works best in such scenarios (for comparison, on average, spinlock was 50

ns faster than POSIX mutex). However, locking the entire MAAT for at the addition or

updating of an item is not a good idea. Therefore, we employ item-level locking like the

46 CHAPTER 4. PARALLEL STAR JOINS

concept of row-level locking in the database. This approach allows different threads to

work on different items in MAAT simultaneously, thereby providing true parallelism.

4.2.4 Evaluation

We conducted an experiment to identify any differences in the performance and memory

consumption of Standard-Chain Hash Table (SCHT), Concise Hash Table (CHT), Concise

Array Table (CAT) and Multi-attribute Array Table (MAAT). A total of 300,000 records

were inserted, and the same amount of data were retrieved and deleted. Each dataset was

composed of < key,value > where key is hash key and value is its associated value. We

recorded the memory usages using System.Diagnostic class that provided us with the

garbage collector’s total memory used by the program. The numbers reported are the

averages of ten iterations.

Figure 4.2: (a) Memory usages comparison of various data structures (b) Performance
comparison of various data structures to insert a new key-value pair and retrieve or
delete the value associated with a key.

Figure 4.2 shows that hash tables are not always the best choice for storing intermediate

results regarding memory usages and performance. MAAT offers three main benefits:

1. Small Memory Footprint: It uses memory space that is thinner than other data

structures (refer Figure 4.2), so they pack better into cache lines.

2. Faster Look-ups: It includes a reduced list of positions used to probe against the

indexed array that drastically minimises the number of array lookups depending on

the join selectivity.

3. It completely obviates the need for slow hash functions.

4.3. PROGRESSIVE MATERIALISATION 47

4.3 Progressive Materialisation

Column-stores vertically partition the database tables and store each column separately on

the disk. Although this is a physical modification of storage layout, logically it is still the

same as row-stores. The application involving the database, whether column-oriented or

row-oriented, treats the interface as row-oriented. At some point in time, column-stores

must stitch multiple attributes together to generate tuples and execute the rest of the query

plan using row-store operators [28]. This process of adding attributes to generate the

result is called materialisation. In Section 2.1.2, we discussed two different materialisation

strategies for column-stores: early materialisation (EM) and late materialisation (LM) [28].

Here, we introduce a novel materialisation strategy called Progressive Materialisation.

The operation and advantages of progressive materialisation is described next.

4.3.1 Operation

Progressive materialisation adopts the notion of late materialisation to push the tuple

construction as late as possible, but reduces memory usages, disk access and avoids

multiple intermediate data structures by carrying the attribute values required for join

processing throughout the query plan. This is made possible by an in-house data structure,

MAAT, discussed in Section 4.2.

Consider a simple example: Suppose a query has three selection operators σ1, σ2 and

σ3, in columns R.a, R.b and R.c respectively, where all columns are sorted in the same

order and stored in separate files. Let σ1 be the most selective and σ3 be the least selective

predicate. Progressive materialisation strategy would process the query as follows:

• Access R.a and output attribute values satisfying σ1 to MAAT.

• Access R.b and R.c and output attribute values satisfying σ2 and σ3 respectively to

MAAT only if MAAT has attributes stored from the previous step.

4.3.2 Advantages

MAAT holds the join output with records stitched together and the position list of records

that satisfy all predicates in the query. The use of MAAT in progressive materialisation

offers two benefits over late materialisation:

1. Avoids multiple access: For the progressive materialisation strategy, as soon as a

column is accessed, the attribute value satisfying the predicate is added to MAAT and

the column will not need to be re-accessed. Thus, the fundamental trade-off between

48 CHAPTER 4. PARALLEL STAR JOINS

progressive materialisation and late materialisation is the following: while late

materialisation enables several performance optimisations such as direct operation

on column-oriented compressed data and high value iteration speeds, if the column

re-access cost at tuple reconstruction time is high, a performance penalty is incurred.

2. Saves memory space: For the late materialisation strategy, the process of tuple

construction becomes interesting as soon as predicates are applied to different

columns. The result of predicate application are the different subsets of positions

for different columns. In many cases, these position representations can be operated

on directly without using column values. For example, an AND operation of three

single column predicates in the WHERE clause of an SQL query can be performed

by applying each predicate separately on its respective column to produce three

sets of positions for which the predicate matched. These three position lists can

be intersected to create a new position list that contains a list of all positions of

tuples that passed every predicate. However, as discussed in Section 4.2.2, we

save significant memory space by using progressive materialisation. Instead of

maintaining intermediate position lists, the progressive materialisation technique

helps MAAT to maintain a single list of signed integers that include positions that

satisfy the predicate.

4.4 Nimble Join

Nimble Join is a progressive parallel star join algorithm for column-stores equipped with a

multi-attribute array table that facilitates progressive materialisation. In this section, we

discuss the details of the join and its implementation in parallel.

4.4.1 Join Processing Method

Nimble Join performs join in three phases: 1. Key Hashing, 2. Probing, and 3. Value

Extraction.

1. Key Hashing: The predicates are applied to the appropriate dimension table, and

the dimension keys and values required by the query are extracted. Using the keys,

we create a hash table to test whether a particular key from the fact columns satisfy

the predicate. An example of this phase for Query 3.1 is shown in Figure 4.3 (a).

2. Probing: The hash tables created in the key hashing phase are used to match keys in

the fact table that satisfy the predicate. Each value in the foreign key (FK) column of

4.4. NIMBLE JOIN 49

Figure 4.3: Phases of Nimble Join to execute Query 3.1 from SSBM on some sample data.

the fact table is probed against the respective hash table and inserted into MAAT that

satisfies the predicate. The probing process continues for all FK columns of the fact

table involved in the query. A probe sequence for all FK columns is determined by

sorting the join selectivity and performing the least selective join first. As probes are

performed in MAAT, the size of MAAT decreases as we remove the items that do

not satisfy the predicate. Then, we save the position of items satisfying the predicate

in the position list of MAAT. During this process, we output the records satisfying

all join conditions producing results much earlier than Invisible Join. The probing

phase terminates when we have probed all the FK columns in the query. An example

of this phase for Query 3.1 is shown in Figure 4.3 (b).

3. Value Extraction: The position can be used to look up the remaining required

columns in the query (e.g. revenue). The position is used as an index of an array to

perform the position look-up and direct value extraction from those columns.

MAAT holds intermediate attributes required for the join query processing, thereby

eliminating the re-scanning of fact table columns performed by Invisible Join in

phase 3 to reconstruct output tuple. For Query 3.1, in phase 3 of Invisible Join, it

requires scanning of column lorevenue and re-scanning of columns locustkey,

losuppkey and loorderdate. If each scanning takes t time, then the total time

spend in disk I/O for Invisible Join is 4t whereas t for Nimble Join (scanning

lorevenue). Finally, arithmetic operations can be performed on the join results to

obtain the required aggregation. An example of this phase for Query 3.1 is shown in

Figure 4.3 (c).

50 CHAPTER 4. PARALLEL STAR JOINS

4.4.2 Parallelizing Nimble Join

In row-stores, the records used to join contain redundant information and the use of proper

data partitioning technique can significantly improve the parallelism of join queries [9].

Initially, we attempted to create an algorithm based on a single instruction, multiple threads

(SIMT) (i.e. an algorithm using an execution model where single instruction, multiple data

(SIMD) is combined with multi-threading), that distributed data equally amongst all the

threads.

Figure 4.4: Data Parallelism versus Task Parallelism

However, we realised that data parallelism using SIMT is not cost-free. In profiling the

code, we noticed that the overhead cost of partitioning data amongst different threads (e.g.

setup cost) exceeded the amount of work done in each thread, especially when partitioning

dimension table columns because they are significantly smaller than fact columns.

The difference in performance between data parallelism and task parallelism is shown

in Figure 4.4. The result presented in the figure is for Query 3.1 in SSBM with SF =

1. The task performed by the algorithm was not sophisticated enough compared to the

management of parallelism, thus slowing down the entire process. Therefore, our algorithm

favours task parallelism over data parallelism (although this does not mean that it never

uses data parallelism).

Figure 4.5: Nimble Join parallel processing model

Implementation: Let N be the number of processors (P) that will be used in the

join query execution (i.e. P1,P2, ...,PN). The maximum number of processors that are

activated depends on the number of processors available in the system (max number of

4.4. NIMBLE JOIN 51

processes = processor count - 2), or if the number of tasks (n) is less than the

maximum number of processors, the algorithm will activate only the required number

of processors. For instance, if N = 4 and n = 4 then, each task will be handled by four

different processors; whereas, if N = 4 and n = 2, only two processors will be activated.

If n = 6, the 5th and 6th task will be handled as soon as a processor completes its job.

In other words, the algorithm specifies the actions that are to be run concurrently, and

the run-time handles all processors scheduling details, including automatic scaling to the

number of processors (processor count) on the host computer if required. Figure 4.5 gives

an overview of the parallel processing model employed by Nimble Join which will be used

to discuss each phase in the algorithm.

1. Key Hashing: The predicates are applied to the appropriate dimension table, and the

dimension keys and values required by the query are extracted. For each predicate

on the dimension table, we create an individual hash table. The size of the hash

table is calculated (whenever possible) to precisely fit the tuples from smaller tables,

leading to the hash table having a 100% fill factor. Each process Pi reads one of the

dimension tables included in the query and creates the hash table.

Algorithm 1: Key Hash
Data: Column[] C, Predicate p

Result: Intermediate Hash Table

/* operates columns <= N in parallel */

1 for column c ∈ C do
2 for block b ∈ c do
3 READ b from disk by pages

4 for tuple t ∈ b do
5 READ from page and WRITE to memory

6 APPLY p to t

7 SAVE intermediate result to hash table

8 end

9 end

10 end

Since the dimension tables are significantly smaller than the fact table, we do not

employ data parallelism because, for a smaller set of data, if the operations are

not substantial, partitioning of the data can incur a significant overhead. If the

dimension table(s) is large, Nimble Join chooses to mix data and task parallelism

while processing that dimension table(s). In the case of Query 3.1, three processors

52 CHAPTER 4. PARALLEL STAR JOINS

are activated as we need to hash three of the dimension tables. The pseudocode

for this phase is shown in Algorithm 1. Once all the processes P1,P2, and P3 have

completed the hashing task of, we move to the Probing Phase.

2. Probing: The hash tables created in the key hashing phase are used to match keys

in the fact table that satisfy the predicate. For each column Ci that is used in the

query, we activate process Pi. Each Ci in Pi is further partitioned using a static

partitioner to break up the data into equal sized blocks B j where j = 1 . . . N. Each

block B j is processed using a separate thread (i.e. SIMT parallelism) which probes

respective hash tables to update and synchronise MAAT concurrently. As probes are

performed in MAAT, the size of MAAT decreases as we remove items that do not

satisfy the predicate, and retain the position of items satisfying the predicate in the

position list of MAAT. Probing on a hash table is a thread-safe operation because

even though hash table allows only single writer thread, it supports multiple reader

threads concurrently. During this process, we output the records satisfying all join

conditions, thereby producing results much earlier than Invisible Join [30]. The

pseudocode for this phase is shown in Algorithm 2.

Algorithm 2: Probe
Data: Column[] C

Result: MAAT maat

/* operates columns <= N in parallel */

1 for column c ∈ C do
2 for block b ∈ c do
3 READ b from disk by pages

/* operates in parallel */

4 for tuple t ∈ b do
5 READ from page and WRITE to memory

6 GET key

7 if probe(key) is successful then
8 ADD to maat and pos. list

9 else
10 REMOVE from maat

11 end

12 end

13 end

14 end

4.4. NIMBLE JOIN 53

Since the blocks are of equal size, there is less chance of skew. Nevertheless,

theoretically, the skew might still occur even when the blocks are partitioned equally.

This problem arises from an imbalance in the number of results produced, such

as the cost of join with the hash table. Some processors that produce more results

than others might require more time to complete join processing. However, this

problem is significantly minor compared to the case where a table has not been

partitioned equally [9]. In addition, if the data parallel probing approach produces

an unbalanced workload, it can be handled using techniques such as Morsel-driven

parallelism [102] or Index Vector Partitioning (IVP) [83].

3. Value Extraction: Once all the processes P1,P2, ...,PN have completed the task of

synchronising MAAT, each column required to answer the query is accessed by the

threads to retrieve values based on a position list in MAAT. The position is used as

an index of an array to perform the position look-up and direct value extraction from

those columns. There is no need for a locking mechanism because reading from

MAAT is a thread-safe operation as we guarantee that there is a no-write operation

after the Probing phase.

MAAT holds the intermediate attributes required for the join query processing,

thereby eliminating the need to re-scan the fact table columns performed by Invisible

Join [30] to reconstruct the output tuple. If the query requires other attributes to be

added to MAAT, this can be done easily via the AddorUpdate operation in MAAT.

Finally, arithmetic operations are performed on the join results to obtain the required

aggregation. The pseudocode for this phase is shown in Algorithm 3.

Algorithm 3: Extract Value
Data: Column[] C, POSLIST pl

Result: MAAT maat

/* operates columns <= N in parallel */

1 for column c ∈ C do
2 for block b ∈ c do
3 READ b from disk by pages

4 for pos. ∈ pl do
5 JUMP to pos. in b, OUTPUT value(s)

6 ADD or UPDATE maat

7 end

8 end

9 end

54 CHAPTER 4. PARALLEL STAR JOINS

4.5 Experiment Evaluation

In this section, we briefly describe the environment used in the experiment. Then, we

present detailed analysis of the results obtained from the experiment.

4.5.1 Experiment Setup

We conducted the experiment on NeCTAR 1 server equipped with 12 Intel Xeon E3-12xx

(Ivy Bridge) processors clocked at 2.6 GHz, 48 GB memory and 1 TB RedHat VirtIO SCSI

Disk Device. The operating system is Windows Server 2012 Standard Build 9200. The

algorithms were implemented using C# .NET framework 4.5.1 supporting X64 architecture.

In our experiment, we used a scale factor (SF) = 10 yielding the fact table with 60 million

tuples unless stated otherwise.

4.5.2 Algorithms Tested

The following column-oriented join algorithms are evaluated.

• Invisible Join [30]: A late materialised join that minimises the value that needs to be

extracted out-of-order by rewriting the joins into the predicates on the foreign key

columns in the fact table.

• Nimble Join: A progressive parallel star join algorithm for column-stores equipped

with a multi-attribute array table that facilitates the progressive materialisation

presented in this chapter.

We implemented Invisible Join and Nimble Join in serial and parallel fashion. The

implementation of the algorithms was focused purely on join technique without application

of column-store optimisation such as column-specific compression [25] and database

cracking and adaptive indexing [27]. We believe that with these optimisation, Nimble Join

will perform more efficiently.

4.5.3 Experiment Results

The numbers reported here are the average of 20 iterations. Before Microsoft Intermediate

language (MSIL) can be executed, it must be converted by .net Framework Just in time

(JIT) compiler to native code. So, a first run was executed to prime the .Net Framework

JIT Compiler, and the result was discarded. We forced the garbage collector to run after
1https://www.nectar.org.au/about/

https://www.nectar.org.au/about/

4.5. EXPERIMENT EVALUATION 55

each iteration so that it would not distort the results. For all the join algorithms, standard

deviation was less than 10% of the average time. Below, we discuss in detail the analysis

results.

1. Initial Response Time (IRT) is the time it takes to yield the first join result to the

standard output. Let ts be the starting time, and ti be the time at which the first join

result was yielded to standard output, then the initial response time is ∆ti = ti− ts.

Figure 4.6: (a) Initial response time of all algorithms by SSBM query flights (N= 10 & SF
= 10) (b) Average initial response time across all queries

The results of the initial response time broken down by query flight is shown in

Figure 4.6 (a), with average results in Figure 4.6 (b). The average response time

of Nimble Join is approximately 1.5x faster than its competing join algorithm in

both serial and parallel versions. This difference in performance can be attributed to

the design of Nimble Join and its use of MAAT in the probing phase as discussed

in Section 4.4. In some of the queries in SSBM such as 3.1, 3.2, 3.3, 3.4, 4.1, 4.2

and 4.3, it is even 2x faster than Invisible Join. This improved response time can be

beneficial for real-time analytics of the results instead of having to wait for the join

query processing to be completed.

2. Total Execution Time (TET) is the time spent by the system executing the algo-

rithm until all the output has been yielded to the standard output. Let ts be the

starting time, and te be the time at which the last join result was yielded to standard

output, then the total execution time is ∆te = te− ts.

56 CHAPTER 4. PARALLEL STAR JOINS

Figure 4.7: (a) Total execution time of all algorithms by SSBM query flights (N= 10 & SF
=10). (b) Average total execution time across all queries.

The results of the total execution time broken down by query flight are shown in

Figure 4.7 (a), with average results across all queries in Figure 4.7 (b). In addition

to better response time, Nimble Join improves the performance by 10% - 25%. This

overall performance does not come at the sacrifice of producing results quickly or

consuming less memory (discussed in Section 4.5.3).

i. Effect of MAAT on Disk I/O time: Disk I/O time is the time spent by the system

to transfer the data between secondary storage and the main memory. Let tds be

the starting time, and tde be the time at which all disk I/O is completed, then the

time taken for disk I/O is ∆tde = tde− tds.

Figure 4.8 (a) shows the average time taken for disk I/O by all the algorithms

for all SSBM queries drilled down according to the phases of the algorithm.

We have achieved significant reduction (≈ 50%) in disk I/O time because of

MAAT. MAAT holds the intermediate attributes required for the join query

processing, thereby eliminating the bottleneck produced by multi-pass scans

(additional disk I/O) performed by Invisible Join and significantly lowering the

total execution time in the Nimble Join.

ii. Effect of varying number of processors: In this experiment, both the algorithms

were granted unrestricted memory access and the processor access in an in-

creasing order of two. We stop at the maximum of 10 processors. Figure 4.8

(b) shows the performance comparison between Nimble Join and Invisible Join

4.5. EXPERIMENT EVALUATION 57

Figure 4.8: (a) Average time for disk I/O for all the algorithms (SF = 10). (b) Performance
comparison between nimble and Invisible Join (Query 3.1, SF = 10)

with a varying number of processors for Query 3.1. It is immediately apparent

that Nimble Join performs better than Invisible Join in terms of both initial

response and total execution time.

We can see a significant improvement in performance from two processors to

four processors. At N = 4, the cost of work done in each process by multiple

threads was significantly lower than if the work were split amongst different

threads, yielding remarkable improvement in the performance. However, with

an increasing number of processors, the task scheduler does not necessarily

activate all the processors. The primary purpose of the task scheduler is to keep

all processors occupied as much as possible with some useful work. At runtime,

the system observes whether increasing the number of processors improves

or degrades overall throughput, and adjusts the number of worker processors

accordingly. Therefore, there is only slight improvement in the performance of

both algorithms.

3. Memory Consumption is the amount of memory used by the algorithm when

executing the join query. Let ms be the amount of memory available at the start and

me be the amount of memory available at the end of the execution of the algorithm;

then the total amount of memory consumed during the execution of the algorithm is

∆me = me−ms.

The detail results of memory consumption broken down by query flight are shown

in Figure 4.9 (a); the average results for all queries are shown in Figure 4.9 (b). On

average, MAAT can decrease the memory consumption by a factor of 40%. For

certain queries in SSBM such as 2.1, 2.2, 2.3, 3.1, 3.2, 3.3 and 4.1, the reduction is

58 CHAPTER 4. PARALLEL STAR JOINS

Figure 4.9: (a) Memory consumption of all algorithms by SSBM query flights (N= 10 &
SF =10). (b) Average memory consumption across all queries.

even greater than 50%. There are two main reasons for this reduction in memory

consumption:

i. Nimble Join avoids the need for additional data structures to hold multiple lists

of positions.

ii. It does significantly reduce the disk I/O (discussed in Section 4.5.2i) required

to re-access the columns; hence, there is no need to store those columns in

memory for query processing.

4.6 Analytical Evaluation

In this section, we describe the cost model to predict the cost of the join operation. Then,

we present our model evaluation and statistical analysis to determine the difference between

the results of the model and those of the experiment.

4.6.1 Cost Models

To be able to describe the components of an algorithm using mathematical formulas, it is

necessary to determine the parameters that define the system and affect the efficiency of

the algorithm. The parameters used to create the cost model are listed in Table 4.1. The

4.6. ANALYTICAL EVALUATION 59

symbols used in the formula are: de is a ceiling function, ∧ means minimum and ∨ means

maximum.

Table 4.1: The cost model parameters and notations

Symbol Description
System and data parameters

Di Size of i-th dimension table, i = 1 . . . n
| Di | Cardinality of i-th dimension table

Fi Size of the i-th fact table column
| Fi | Cardinality of the i-th fact table column
nd Number of dimension tables
n f Number of fact table column involved in the query
N Number of processors
P Page size

Query Parameters
πi Projectivity ratio of the i-th dimension table
π f Projectivity ratio of the fact table
σi Selectivity ratio of the i-th dimension table
σ f i Selectivity ratio of the i-th column in the Fact table

Time Unit Cost
IO Time to read a page from the disk
tw Time to write the record to the main memory
tr Time to read a record in the main memory
t j Time to join records
tp Time to probe
th Time to hash
tc Time to perform computation in the main memory
td Time to access the record directly

tdel Time to delete the record

When building the hash table, a read operation is performed three times. We read the

required dimension table column from disk page by page, read from the page and write to

the memory and, finally, read and hash. We apply the predicate to the data and save the

intermediate results into the memory. The approximate cost of Key Hashing is:

Key Hashing Cost =
⌈nd

N

⌉
× (nd ∧N)×

(
∨nd

i=1 Di×πi/P× IO

+∨nd
i=1 | Di | ×(tr + tw + tc)

+∨nd
i=1 | Di | ×σi× (tr + th + tw)

) (4.2)

When probing the hash table, the read operation is performed three times. We read

the required fact table column from disk page by page. We read from the page and write

to the memory, and read and probe to the corresponding hash table. We create MAAT to

store the intermediate tuples or remove the tuples that do not meet the join conditions. The

60 CHAPTER 4. PARALLEL STAR JOINS

approximate cost of probing is:

Probing Cost =
⌈n f

N

⌉
×
(
n f ∧N

)
×
(
∨n f

i=1 Fi×π f /P× IO

+∨n f
i=1 | Fi | ×(2tr + tw + tp)

+∨n f
i=1 | Fi | ×σ f i×

(
tr + t j + tp

)
+∨n f

i=1 | Fi | ×σ fi×
(
1−σ fi

)
× tw× tdel

)
(4.3)

When extracting the value and projecting the join results, the read operation is per-

formed three times. We read the required fact table column from disk by pages, read

from the page and write to the memory, and look up and read the value from the column

with the key value position. We then add the value to the final result and project it. The

approximate cost of Value Extraction is:

Value Extraction Cost =
⌈n f

N

⌉
×
(
n f ∧N

)
×
((
∨n f

i=1Fi×π f /P× IO
)

+∨n f
i=1 | Fi | ×(tr + tw)

+∨n f
i=1 | Fi | ×σ f i×

(
td + tr + t j

)) (4.4)

4.6.2 Model Evaluation

To evaluate the cost model and determine its time prediction accuracy, we compare the

model with benchmark experiment result.

1. Effect of number of processors: Figure 4.10 shows the comparison between the

execution time predicted by the model and actual execution time from the experiment

for varying number of processors for Query 3.1 in SSBM. As shown in the figure,

the estimated execution time from the cost model is close to the actual execution

time from the experiment in all the cases, which demonstrates the effectiveness of

our cost model. Two factors account for the difference between the estimated and

the actual execution time:

i. The processors executing in parallel often access shared resources and the slow-

down results from the interference between the processors to access the shared

resources.

ii. Usually, processes communicate with each other and the process wanting to

communicate with others may be forced to wait for other processes to be ready

for communication. These two factors are extremely difficult to account for in

the cost model.

4.6. ANALYTICAL EVALUATION 61

Figure 4.10: Evaluation result with varying number of processors (SF = 10)

Similar to the experiment, we have varied the number of processors by the power of

two. In the experiments, we stopped at ten processors due to hardware restrictions.

However, we do not have that restriction in the cost model. Therefore, we can

verify the results from the experiments and affirm that there will be no significant

improvement with the increasing number of processors for the join algorithm based

on our cost model.

2. SSBM queries: When evaluating our model for SSBM queries, we define the error

rate as

error rate =
∣∣∣∣experiment time−model time

experiment time

∣∣∣∣ (4.5)

Table 4.2 shows the comparison between the execution time predicted by the model

and the actual execution time from the experiment for all SSBM queries. In all cases,

the estimated execution time of the cost model is close to the actual execution time

of the experiment, which again demonstrates the effectiveness of our cost model.

The differences between the estimated and the actual cost can be attributed to the

Start-up cost associated with initiating multiple processors. The start-up time of

the processes varies, making it difficult to estimate and include it in the cost model

accurately.

To check whether there is a significant difference between the model and the exper-

iment, we conducted a two-tailed t-test. In this t-test, a sample size of 13 model

values was compared with corresponding experimental values. The p-value obtained

for the test was 0.8664 which is much larger than the significance level of 0.05.

62 CHAPTER 4. PARALLEL STAR JOINS

Table 4.2: Evaluation result for SSBM queries and error rate of estimated performance (N
= 10, SF = 10)

Query Model (Sec) Experiment (Sec) Error Rate (%)
1.1 35.769 36.712 2.568
1.2 35.011 35.592 1.632
1.3 34.321 35.325 2.842
2.1 66.890 67.369 0.711
2.2 67.000 67.181 0.269
2.3 67.259 67.781 0.770
3.1 62.125 64.414 3.553
3.2 55.128 58.265 5.384
3.3 55.411 56.475 1.884
3.4 52.132 53.415 2.401
4.1 99.985 104.138 3.985
4.2 98.110 98.937 0.835
4.3 83.298 85.864 2.988

Therefore, we accept the null hypothesis, and we conclude that there is no significant

difference between the values of the model and those of the experiment.

4.7 Summary

In this chapter, we proposed a new progressive parallel star join algorithm for column-

stores know as Nimble Join. It used a multi-attribute array table to hold attributes required

in join query processing that facilitated progressive materialisation. We showed that our

algorithm produces results faster, has comparatively better execution time, and dramatically

reduces the memory consumption more so than the competing column-stores join. This

improvement is mainly due to the design of the Nimble Join and its use of MAAT and

progressive materialisation. We also proposed an analytical model to understand and

predict the query performance of the Nimble Join. Our evaluation shows that the model

can predict the performance with 95% confidence.

Chapter 5

Parallel Star Group-By Join

In this chapter, we focus on the parallel star group-by join for column-stores. First, we

introduce the technical challenges associated with answering star group-by join queries

for column-oriented data. Then, we discuss Aggregate Trie (ATrie): our novel grouping

technique. We use ATrie and progressive materialisation technique to develop a new

parallel star group-join algorithm known as ATrie Group Join (ATGJ). Experiments on an

SSBM dataset is conducted to verify the efficiency of our proposed solution.

5.1 Overview: Challenges and Solution

Big Data and its analysis are the decision-making drivers of business and company success.

In this section, we discuss the challenges posed by big data and how to address them. We

focus on addressing this issue: When and how should the aggregate columns be processed

to join and group big data in star join queries?

5.1.1 Big Data, Big Problems

Business analytics queries routinely perform scans, predicate evaluation, joins, grouping

and aggregation. A study of customer queries in DB2 has found that the group-by

constructs occur in a large fraction of the analytical queries [12, 22]. The queries in

the benchmarks such as TPC-H and the Star Schema Benchmark (SSBM) [23] spend

more than 50% CPU time on joins, group-by and aggregation [16]. These queries often

aggregate large portions of the data, which can lead to performance issues with very large

data sets.
63

64 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

Column-stores are efficient for business analytics queries as they can read only those

columns from the disk or main memory that are accessed by the query [6, 7, 30, 31].

However, three important questions arise. Firstly: Can we analyse structured big data using

column-stores? Researches conducted on the use of modern column-stores for big data

processing [84, 85] have concluded that parallel column-stores and fine-tuned algorithms

can successfully analyse structured big data and solve big data analytics problems.

Secondly: How can we achieve fast processing for big data in column-stores? The

need to increase the capacity of main memory has fuelled the development of in-memory

big data management and processing [103, 104]. Most column-stores are being tailored to

run as main memory database systems which avoid the latency associated with secondary

storage such as Hyper [10], SAP HANA [11], IBM DB2 with BLU Acceleration [12],

Microsoft SQL Server [13, 14] and Oracle In-Memory Database [15, 16]. Therefore,

with in-memory column stores, faster processing of big data is possible. In addition,

our algorithm targets those in-memory databases to help them process star queries more

efficiently.

5.1.2 Star Group-By Join

The third and most important question is: Given a novel storage layout of column-

stores, when and how should the aggregate columns be processed with respect to the

join and grouping columns in star group-by join queries? The traditional approach is

Hash Join/Hash Group-By where we perform column-oriented hash join (using bloom

filters, hash table build and probe) and row-oriented hash group-by (using serial aggrega-

tion) [30, 44]. An unconventional approach is In-Memory Aggregation where group-by

expressions are pushed down into the scans of dimension tables [16]. They create a unique

key for each distinct group called Dense Grouping Key (DGK) and map the join keys to

DGKs using a Key Vector. Key vector is used to filter non-matching rows when performing

fact table scans where the aggregation result is stored in a multidimensional array known

as In-memory Accumulator (IMA).

Although the unconventional approach drastically reduced execution time more so than

the traditional approach, we found three main problems in this approach: 1) In-Memory

Aggregation reads the value of a single row, one column after another, computes the

aggregates, and stores them in their respective position in IMA. This approach is known

to have a disadvantage in that the data is not processed in tight loops, which results in

considerable performance deterioration on modern hardware [36]. 2) It is efficient only

provided that the IMA does not become too large [16]. 3) The increasing number of

5.1. OVERVIEW: CHALLENGES AND SOLUTION 65

dimensions and grouping attributes produces additional key vectors and temporary tables

to process join, group and aggregation resulting in a significant increase in the execution

time.

5.1.3 Technical Contributions

To address the abovementioned challenges, we developed ATrie Group Join (ATGJ), a

variant of Hash Join/Hash Group-By algorithm with a novel grouping technique and

parallel processing design that fully integrates join, grouping and aggregation to accelerate

big data analytical workloads. We propose a novel tree-based data structure known as

the aggregate trie or ATrie influenced by a trie or prefix tree [55] that facilitates the

grouping of attributes and processing of data in tight loops. ATGJ performs a single scan

of the fact columns and uses a mixture of data and task parallelism for optimal use of

computing resources. It avoids the creation of multiple data structures with the increase in

the number of dimension tables and grouping attributes. It performs efficiently even when

the ATrie becomes bushy, as shown in Figure 5.8, unlike In-Memory Aggregation where

the performance degrades if IMA grows too large [16]. Experiment results show that our

approach can reduce the total execution time by 2X to 6X. Furthermore, our approach

scales better than other algorithms for the number of concurrent threads, the number of

group-by attributes, the data set size and the query complexity.

In summary, we make the following technical contributions:

1) We propose a novel approach to perform group-by and aggregation operations using

a data structure called Aggregate Trie or ATrie. The grouping and aggregation can be seen

as a tree-shaped deterministic finite automation. To the best of our knowledge, to date, no

such technique has been proposed for column-stores.

2) We propose a new parallel star group join and aggregation for in-memory column-

stores known as ATrie Group Join (ATGJ) that is significantly faster than its competing

column-stores join algorithm. ATGJ is a variation of Hash Join/Hash Group-By that uses

both techniques but solves the problem of grouping and aggregating data using a rather

novel approach with the help of the ATrie.

3) We propose an analytical model to understand and predict the query performance

of ATGJ. The model accuracy has been verified by detailed experiments with different

hardware parameters.

66 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

5.2 Aggregate Trie (ATrie)

An Aggregate Trie is a highly efficient data structure for grouping and aggregation opera-

tion. The idea of the aggregate trie is based on a trie or prefix tree [55] and it facilitates

faster grouping and aggregation of the attributes than do other current techniques such

as vector group-by [16, 105]. In this section, we focus on the terminologies used, formal

definition of the aggregate trie and the core operational concepts.

5.2.1 Terminologies

An Aggregate Trie (a.k.a. ATrie) is a collection of grouping attributes called nodes. Node

is the main component of the ATrie. It stores the actual data along with links to other

nodes. The topmost node in the ATrie is called root node. The root node is non-empty and

does not have a parent. Each node in a tree can have zero or more child nodes. A node that

has a child is a parent node. An internal node is any node in ATrie that has both parent

and child nodes. Similarly, the bottom most node in the ATrie that does not have child

node is called leaf node. The height of the ATrie is the height of the root node.

5.2.2 Formal Definition

As the foundation of this work, we define group aggregation object and aggregate trie as

follows:

Definition 5.2.1. Group Aggregation Object (GAO): Group Aggregation Object (GAO) is

a list data structure that represents a set of grouping attributes. It includes an aggregation

attribute at the end. Formally, the semantics of GAO is:

GAO = {[x1,x2, ...,xn−1,xn] | xn ∈ Z∧ (x1,x2, ...,xn−1) ∈ grouping attributes} (5.1)

Let us consider a record where the customer is from Nepal, the supplier is from China,

the item was order in 2019 and the revenue collected was 10421. The GAO for this record

is GAO = [“Nepal”, “China”, “2019”, 10421].

Definition 5.2.2. Aggregate Trie: The aggregate trie (a.k.a ATrie) is a deterministic tree

of GAOs with height h = sizeOfGAO(). The root node in ATrie describes level h, while

nodes at level 1 are leaf nodes and hold aggregated value. Each node of ATrie includes a

hash table that has a variable size depending on the distinct group of attributes. All the

descendants of a node have a common attribute associated with that node, and the root

node is associated with the empty node.

5.2. AGGREGATE TRIE (ATRIE) 67

ATrie has the following three important properties:

• Deterministic Property: Each distinct GAO has only one path within the ATrie. Due

to these deterministic paths, only a single key comparison at each level is required

and there is no dynamic reorganisation of attributes for any operation.

• Data Compression: TheATrie can represent GAO in a compact form. When many

GAOs share the same grouping attribute, these shared grouping attributes can be

represented by a shared part of the ATrie, allowing the representation to use less

space than it would take to list out all the distinct GAOs separately. For example, any

GAO can be represented as paths in the ATrie by forming a vertex for every grouping

attribute and making the parent of one of these vertices represent the attribute with

one fewer element.

• Progressive Materialization: Recall from Section 4.3, Progressive Materialization

adopts the notion of late materialization to push the tuple construction as late as

possible but carries attribute values required in query processing throughout the

query plan. ATGJ maneuver the idea of progressive materialization by using the

ATrie as a means of performing materialisation and aggregation on the fly when

scanning the fact columns and inserting GAOs into the ATrie.

5.2.3 Physical Data Structure

The basic form of implementing ATrie is by using the hash table, where each node contains

a hash table with child node(s), one for each unique value of grouping attributes in GAO.

Note that using a hash table for children would not allow lexicographic sorting because the

ordinary hash table would not preserve the order of keys. That said, sorting the attributes

is not the focus in this chapter.

5.2.4 ATrie Operations

Figure 5.1 shows an example of the step-wise insertion of GAOs into the ATrie which will

be used to describe the operations relating to the ATrie. For simplicity, assume that K =

the maximum number of distinct attributes at all levels of the ATrie.

1. Reading or Searching the ATrie: To read or search the ATrie, we follow the path

designated by addresses advancing to indicated height of ATrie each time we move to

a new grouping attribute. At each height, we search for a new grouping attribute. If

the new grouping attribute exists, we move to that address. If we come to a height that

68 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

Figure 5.1: A step-wise insertion of GAOs in the ATrie. The new insertion of grouping
attribute or update of aggregation value has been highlighted after each insertion of a GAO.

contains no address, then we have reached the leaf node that holds the aggregated value.

The worst-case time complexity of this operation is O(h∗K).

Let us try to read or search attributes in a GAO = [“Nepal”, “China”, “2019”, 11000]

in a complete ATrie (refer Figure 5.1 (d)). At height = 4 (root node), we check for

the existence of customer nation = “Nepal”. Since it exists, we move to height = 3

and check for the existence of supplier nation = “China” in the hash table that was

pointed by customer nation = “Nepal”. We find the match; therefore, we move to

height = 2 and check for the existence of order year = 2019 in the hash table pointed

by supplier nation = “China”. At height = 1, there are no pointers to the hash table,

therefore, we read the aggregated value revenue = 11000.

2. Insert a GAO into the ATrie: To insert a GAO into the ATrie, we first read the ATrie.

If the grouping attribute present in GAO is found, it is not inserted, otherwise, it is

inserted into the ATrie. This setup enables shorter access time, makes it easier to add

nodes or update the values, and offers greater convenience in handling a varying number

of grouping attributes. The main disadvantage is storage space inefficiency, which

is not problematic when the storage is large. The worst-case time complexity of this

operation is O(h+h∗K) ≈ O(h∗K).

Figure 5.1 shows an example of the step-wise insertion of GAOs into the ATrie. We

discuss two examples of insertion shown in Figure 5.1 (b) and (c). Let us insert a GAO

= [“Nepal”, “India”, “2018”, 4196] (Figure 5.1 (b)). At height = 4 (root node), we

check for the existence of customer nation = “Nepal”. Since it exists, we move to

height = 3 and check for the existence of supplier nation = “India” in the hash table

that was pointed by customer nation = “Nepal”. We do not find the match; therefore,

we create a new entry in the hash table as supplier nation = “India”. As this is a

5.2. AGGREGATE TRIE (ATRIE) 69

new attribute that was added, rest of the attributes will not exist. We move to height = 2

and create a new entry in the hash table as order year = 2018. At height = 1, we have

reached the leaf node and we insert the aggregation value revenue = 4196.

Let us try to insert another GAO = [“Nepal”, “China”, “2019”, 579] (Figure 5.1 (c)).

At height = 4 (root node), we check for the existence of customer nation = “Nepal”.

Since it exists, we move to height = 3 and check for the existence of supplier nation

= “India”. In this example, all the grouping attributes already exist because of first

insertion procedure (Figure 5.1 (a)). Therefore, we update the aggregation value in leaf

node revenue = 10421 + 579 = 11000. The pseudocode for the insertion of data into

an ATrie is given in Algorithm 4.

Algorithm 4: Inserting into an ATrie
Data: ATrie root, GAO gao

Result: complete ATrie

1 node <− root

2 height <− sizeofGAO()

3 value <− gao.pop(-1) /* last item in gao is value */

4 for attribute ∈ gao do
5 if attribute NOT IN node.children then
6 node.children.Add(attribute)

7 end
8 node.height = −−height

9 node = node.children[attribute]

10 end
11 node.height = −−height

12 node.value += value

3. Merging ATries: To merge two ATries, we read the right ATrie, create a GAO and insert

into the left ATrie. The worst-case time complexity of this operation is O((h∗K)2).

Figure 5.2 shows an example of the step-wise merging of GAOs into left ATrie. Firstly,

we read right ATrie (Figure 5.2 (b)) to create two GAOs: [“Nepal”, “Russia”, “2019”,

15437] and [“Nepal”, “India”, “2018”, 804]. Then, we insert these GAOs one-by-one

into left ATrie as shown in Figure 5.2 (d) and Figure 5.2 (e) respectively.

When we insert GAO = [“Nepal”, “India”, “2018”, 804] into the left ATrie (refer Figure

5.2 (e)), at height = 4 (root node), we check for the existence of customer nation =

“Nepal”. Since it exists, we move to height = 3 and check for the existence of supplier

nation = “India”. In this example, all the grouping attributes already exist (refer Figure

70 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

Figure 5.2: A step-wise merging of two ATries. The new insertion of the group attribute or
update of an aggregate value has been highlighted after each insertion of a GAO.

5.2 (a)). Therefore, we update the aggregation value in the leaf node revenue = 4196 +

804 = 5000.

The pseudocode for merging two ATries is shown in Algorithm 5.

Algorithm 5: MergeATries
Data: ATrie atrie1, ATrie atrie2

Result: Atrie atrie1

/* atrie2 gets merged to atrie1 */

1 for Key k in atrie2.children.Keys do
2 attributes <− k /* attributes is a global GAO */

3 tempAtrie <− atrie2.childern[k]

4 if tempAtrie.children is NOT NULL then
5 Insert (atrie1, attributes)

6 attibutes.Clear()

7 break

8 end
9 MergeATries(atrie1, tempATrie)

10 end
11 return atrie1

4. Deleting an attribute from the ATrie: To delete an attribute from the ATrie, we first

read the ATrie. Through reading, we establish that the attribute to be deleted is present

in ATrie. The attribute to be deleted is passed to the ATrie as a GAO. As we read our

way up through the corresponding K heights of the ATrie, we not only examine the

attribute that is in our entry, but also ensure that there are no other attributes at that

level. If we find that there are other entries, this means that the edges are being shared

by multiple attributes and we must not delete these shared paths. Note that the deletion

5.3. ATRIE GROUP JOIN (ATGJ) 71

of an attribute from the ATrie is not required for ATGJ.

5.3 ATrie Group Join (ATGJ)

ATrie Group Join (ATGJ) is a variation of Hash Join/Hash Group-By that efficiently groups

and aggregates the data by realising the grouping attributes as a tree shaped deterministic

finite automation. This unique approach is inspired by the concept of the trie or prefix

tree [55]. In this section, we describe in detail the main stages of the algorithm. The

description of ATGJ presented in this section is for a single-threaded implementation. We

extend ATGJ to the multi-threaded group join algorithm in Section 5.3.2.

5.3.1 Join Processing Method

We explain in detail the working of ATGJ using Query 3.1 from SSBM. ATGJ has 3 phases:

1. Scan and Predicate Evaluation, 2. Join, Group and Aggregate and 3. Output Results.

Figure 5.3: Stages of ATGJ to execute Query 3.1 from SSBM on some sample data

1. Scan and Predicate Evaluation
Hash - Predicates are applied on the appropriate dimension tables (i.e. CUSTOMER,

SUPPLIER and DATE) to create the respective hash tables. The primary key of the

dimension tables acts as key in the hash table (i.e. dkey) and the grouping attributes

in the query from the same dimension table act as value. The output of this phase is

the hash tables that help to efficiently prune out non-qualifying rows. An example

of the execution of this phase on a sample data is displayed in Figure 5.3 (a).

2. Join, Group and Aggregate
Probe and Create ATrie - Foreign key columns of the fact table (i.e. LINEORDER) are

72 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

accessed row-by-row and the keys are probed into the corresponding hash table to

create GAOs. For simplicity, when creating a GAO, the order of grouping attributes

is decided based on the query grouping requirement (for instance, in Query 3.1, we

group-by based on customer nation then by supplier nation and finally by

order year). Changing the order of attributes does not affect the performance of

ATrie as shown in Figure 5.9. The GAOs are then inserted into the ATrie. Insertion

proceeds by walking the ATrie according to the attributes in GAO, then appending a

new node for an attribute that is not contained in ATrie. We start with the root node

and insert each GAO into the ATrie to build up the required branches as we move

through the internal nodes of the ATrie. The leaf node holds the aggregated values.

Figure 5.3 (b) shows the creation of ATrie. For the first row in LINEORDER table,

customer key = 3, supplier key = 2 and order date = 01011997. These keys are

probed into the respective hash tables to get a GAO = [“India”, “China”, “1997”,

10000]. These attributes will act as edges to guide the grouping. In the root node,

we search for attribute “India”. Since it does not exist, we add the attribute to the

node. As this is a new attribute added to the node, the remaining attributes will no

longer exist. We create a new node that has a pointer to attribute “India” and add the

attribute “China” to the node. After that, we create another node that has a pointer

to attribute “China”, and add the attribute “1997”. Finally, we add the lo.revenue

= 10000 in the leaf node that has a pointer from attribute “1997”.

Following the same procedure as above, ATGJ accesses row-by-row, probes the

keys into the corresponding hash table to create GAO that are inserted into ATrie for

grouping and aggregation. Now let us look at the last row. We have customer key =

3, supplier key = 2 and order date = 01031997. When these keys are probed into the

respective hash table, we obtain a GAO = [“India”, “China”, “1997”, 30325]. Since

all the attributes already exist in each level of the ATrie, we simply traverse those

nodes to update the aggregated value of lo.revenue = 10000 + 30325 = 40325.

The output of this phase is a complete ATrie with grouping attributes on its edges to

guide the grouping process and the aggregation of values on the leaf node.

3. Output Results
ATrie Traversal - Depth-first search (DFS) algorithm is used to produce the final

result shown in Figure 5.3 (c). We perform a minor change to the DFS algorithm

and include a global hash table that tracks the grouped items at a particular height to

facilitate the display of outputs. The algorithm starts at the root node and explores

5.3. ATRIE GROUP JOIN (ATGJ) 73

as far as possible along each branch before backtracking. The recursive algorithm

for ATrie Traversal is shown in Algorithm 6.

Algorithm 6: Recursive algorithm to get final result.
Data: ATrie root

1 if root.children is NULL then
2 if root.height IN attributes then
3 attributes[root.height] = root.value

4 else
5 attributes.Add(root.height, root.value)

6 end
7 PRINT (attributes)

8 return

9 end
10 for child c ∈ root.Children do
11 if root.height IN attributes then
12 attributes[root.height] = c.Key

13 else
14 attributes.Add(root.height, c.Key)

15 end
16 GetResult(root.Children[c.Key])

17 end

5.3.2 Parallelizing ATGJ

So far, we have discussed the serial version of ATGJ. In this section, we present the

solution to parallelizing ATGJ as shown in Figure 5.4.

Figure 5.4: ATrie Group Join Parallel Model

Implementation: Let N be the number of threads (T) that will be used for the query

execution (i.e. T1,T2, ...,TN). The number of threads that are activated depends on the

number of processors available in the system (max number of threads = processor

74 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

count - 2), or if the number of tasks (n) is less than the maximum number of threads, the

algorithm will activate only the required number of threads. The algorithm specifies actions

to run concurrently, and the run-time handles all process scheduling details, including

scaling automatically to the number of processors or processor count on the host if required.

Figure 5.4 gives a basic overview of the parallel processing model employed by ATGJ

which will be used to explain each phase in the algorithm.

1. Scan and Predicate Evaluation
Hash - Each thread Ti reads one of the dimension tables included in the query and

creates the hash table. Since the dimension tables are significantly smaller than the

fact table, we do not employ data parallelism because, for a smaller set of data, if

the operations are not substantial, the partitioning of the data can incur a significant

overhead [44]. If the dimension table(s) is large, ATGJ chooses to mix data and

task parallelism while processing that dimension table(s). In the example Query 3.1,

three threads are activated as we need to hash three of the dimension tables. Once

all the threads T1, T2, and T3 have completed the task of hashing, we move on to the

Join, Group and Aggregate Phase.

Algorithm 7: Get Partitioning Indexes
Data: int totalNumberOfRecords, int processorCount

Result: List of partition indexes

1 boundaries <− null

2 min <− 0

3 max <− totalNumberOfRecords/ processorCount

4 for i <− 0 to processorCount do
5 if i equals processorCount - 1 then
6 max <− totalNumberOfRecords - 1

7 end
8 boundaries <− min, max

9 min <− max + 1

10 max <−max + totalNumberOfRecords/processorCount

11 end
12 return boundaries

2. Join, Group and Aggregate
The size of the fact table is significantly large compared to that of dimension tables.

However, since we assume in-memory column-stores, the fact table columns reside

in memory and we can access those columns using the indexes the same as with the

5.4. EXPERIMENT EVALUATION 75

array lookups. ATGJ uses getPartitionIndexes (refer Algorithm 7) to retrieve

the logical partitioning indexes instead of physically partitioning the columns.

Algorithm 7 returns the index boundaries of the sub-range that includes all indexes

within the range. This gives us an equal number of items in each logical partition so

that there is no load imbalance in the join and group-by processing. For example,

if we have a total of 100 records and we use three threads to perform Join, Group

and Aggregate operation, getPartitionIndexes returns (0, 33), (34, 66), (67, 99)

inclusive ranges.

Probe - Each thread Ti works on the logically-partitioned data based on indexes.

These indexes serve as a starting and ending point in the algorithm where the foreign

key columns of the fact table (i.e. LINEORDER) are accessed row-by-row based on

index values. The foreign keys in those positions are probed into the corresponding

hash table to create a GAO. Probing on a hash table is a thread-safe operation

because even though the hash table allows only a single writer thread, it supports

multiple reader threads concurrently.

Create ATrie - During Probe each thread Ti works on the logically partitioned data

based on indexes. We create a thread local ATrie and the GAO is inserted into these

ATries. Therefore, the data is processed in a tight loop. Then, we merge all thread

local ATries in the global merge phase to get final result.

3. Merge ATries
Merging ATries can be serial or parallel depending on the number of ATries or the

number of threads. For example, let us say that we have three ATries A1, A2 and A3.

Merging these ATries will require two serial merging of (A1, A2) and then (A1, A3).

If we have four ATries A1, A2, A3 and A4, we can merge (A1, A2) and (A3, A4)

in parallel and then merge (A1, A3). However, we found that the number of nodes

in ATrie is much less compared to the number of records in the fact and dimension

tables. Therefore, the cost of merge ATries is significantly less than the probe and

create ATrie operations.

5.4 Experiment Evaluation

In this section, we briefly describe the environment used in the experiment. Then, we

present a detailed analysis of results obtained from the experiment.

76 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

5.4.1 Experiment Setup

We conducted all our experiments on the high-performance NeCTAR 1 server equipped

with 16 Intel Xeon E3-12xx v2 (Ivy Bridge, IBRS) processors clocked at 2.6 GHz, 64 GB

memory and 1 TB RedHat VirtIO SCSI Disk Device. The operating system is Windows

Server 2016 Standard. The algorithms were implemented using C# .NET framework 4.5.1

supporting X64 architecture.

Benchmark Dataset: We used SSBM [98] for the experiment. Query Flight 1 in

SSBM does not contain queries with the group-by. Therefore, we excluded Query Flight

1. This benchmark provides a base scale factor (SF) to scale the size of the data. Similar

to [16, 30, 75, 78], we use scale factors of 1, 25, 50, 75 and 100 for the experiment. The

details of the number of tuples in the fact table (i.e. LINEORDER table) and its disk size can

be found in Table 5.1.

Table 5.1: Data characteristics used in the experiments showing for each scale factor (SF)
the number of tuples in the fact table (#Tuples) and its disk size.

SF #Tuples Size(GB)
25 152 Million 14.2 GB
50 302 Million 28.5 GB
75 451 Million 43.1 GB

100 603 Million 57.7 GB

5.4.2 Algorithms Tested

The following column-oriented join algorithms are evaluated in this section.

• Invisible Join [30]: A late materialized join that minimises the value that needs to be

extracted out-of-order by rewriting joins into predicates on the foreign key columns

in the fact table.

• Nimble Join: A progressive parallel star join algorithm for column-stores equipped

with a multi-attribute array table that facilitates progressive materialization. The

details can be found in Section 4.4.

• In-Memory Aggregation [16]: A novel technique used to perform traditional group-

by and aggregation operations across joins using dense grouping keys and key

vectors.

1https://www.nectar.org.au/about/

https://www.nectar.org.au/about/

5.4. EXPERIMENT EVALUATION 77

• ATrie Group Join: A highly efficient group join based on ATrie presented in this

chapter.

We implemented Invisible Join, Nimble Join, In-Memory Aggregation and ATGJ in

parallel. The implementation of the algorithms were focused purely on join technique

without the application of column-store optimisations such as column-specific compression

[25], database cracking [25] and adaptive indexing [27]. We believe that with these

optimisations, ATGJ will perform more efficiently.

5.4.3 Experiment Results

The numbers reported here are the average of 20 iterations. Before Microsoft Intermediate

language (MSIL) can be executed, it must be converted by the .NET Framework Just

in Time (JIT) compiler to native code. So, a first run was executed to prime the .NET

Framework JIT Compiler and the result was discarded. We forced the garbage collector to

run after each iteration so that it would not distort the results. For all the algorithms, the

standard deviation was less than 10% of the average time. Next, we discuss in detail the

results of the analysis.

1. Total Execution Time (TET)
TET is the time spent by the system executing the algorithm until all the output has

been yielded to the standard output. Let ts be the starting time, and te be the time

at which the last join result was yielded to standard output, then the total execution

time is ∆te = te− ts.

Figure 5.5 shows the results of the total execution time broken down by query flight

with the standard error of mean (SEM) and the average result for all queries. For

all the group-by queries in SSBM, ATGJ is 100% faster than the rest of competing

algorithms. For all the queries evaluated, on average, ATGJ is 6X faster than Invisible

Join, 4X faster than In-Memory Aggregation and 2X faster than Nimble Join.

The performance of ATGJ can be attributed to the fact that ATGJ coalesces the joins

and applies all the joins to the fact table in a single operation rather than constructing

the rows to be grouped by processing the fact data through a successive series of

joins. After the probing phase in Join, Group and Aggregate stage, the original

join-keys are replaced with the actual attribute values from the dimension table that

are used both to perform group-by efficiently, and aggregate rows using the proposed

novel grouping technique and progressive materialisation.

78 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

Figure 5.5: Total execution time of all algorithms by SSBM query flights (N = 14 and SF
= 100) and the average execution time of all the queries.

The size of data set, query complexity and number of concurrent processors as well

as other factors such as hardware and software configuration, all affect the query

performance. With all others being equal, ATGJ scales better than other algorithms

for the number of concurrent processors, the number of group-by attributes, the data

set size and the query complexity which is shown by the following experiments.

i. Effect of Number of Threads: In this experiment, all the algorithms were granted

unrestricted memory access and processor access in an increasing order by two.

We stop at a maximum of 14 processors. Figure 5.6 shows the average execution

time for all queries and the speed-up of all the algorithms.

Figure 5.6 shows a significant improvement in performance of ATGJ until N =

6 where the cost of work done by multiple threads was significantly higher than

when splitting the work amongst different threads. However, when increasing

the number of threads, the task scheduler does not necessarily activate all the

processors. It observes whether increasing the number of threads improves

or degrades the overall throughput and adjusts the number of worker threads

5.4. EXPERIMENT EVALUATION 79

accordingly. Therefore, we created a synthetic dataset with 14 dimensional

tables, with predicate constraints on each dimensional table, and increased the

workload.

Figure 5.6: A comparison of join algorithms while varying number of cores and the speed
up of each algorithm (SF = 100).

Figure 5.7: A comparison of join algorithms while varying number of cores and the
performance improvement with the increased workload.

Figure 5.7 shows no significant performance improvement with the increase

in the dimensional tables and predicate constraints for SF = 100. However,

we see performance improvement when the number of threads is increased to

deal with an increased data size (i.e. SF = 200). Although data partitioning

is the key to parallel processing [9], we follow task parallelism for Scan and

Predicate Evaluation phase in ATGJ which is similar to the parallel processing

technique applied by Invisible Join [30] and Nimble Join [44]. The dimension

tables are significantly smaller than the fact table. For a smaller set of data,

if the operations are not substantial, the partitioning of the data can incur a

80 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

significant overhead [44]. Therefore, we do not employ data parallelism. If the

dimension table(s) is large, ATGJ chooses to mix data and task parallelism when

processing that dimension table(s). We employ data parallelism for Join, Group

and Aggregate phase in ATGJ similar to in-memory aggregation [16]. The

logical partitioning of data using getPartitionIndexes on the in-memory

fact columns allows the optimal use of available resources in ATGJ; therefore,

we can see a better speed-up than with the rest of the competing algorithms.

ii. Effect of Number of Group-by Attributes: SSBM has approximately 25 categor-

ical dimensional attributes that can be used in a grouping. In SSBM queries,

the maximum number of grouping attributes used is four. However, we assume

that ten is the average number of attributes that could be used in a query. The

experiment result shown in Figure 5.8 uses a modified Query 4.3 in SSBM to

include more grouping attributes. For each point in the graph, the number of

group-by attributes is increased starting from one and continuing to ten grouping

attributes. The modified Query 4.3 with ten grouping attributes is shown below.

SELECT d.year, d.month, s.nation, s.region, s.city,

c.nation, c.region, c.city, p.brand, p.MFGR,

sum(lo.revenue - lo.supplycost)

FROM date AS d, customer AS c, part AS p, supplier AS s,

lineorder AS lo

WHERE lo.custkey = c.custkey

AND lo.suppkey = s.suppkey

AND lo.partkey = p.partkey

AND lo.orderdate = d.datekey

AND c.region = ‘AMERICA’

AND s.nation = ‘UNITED STATES’

AND (d.year = 1997 OR d.year = 1998)

AND p.category = ‘MFGR#14’

GROUP BY d.year, d.month, s.nation, s.region, s.city,

c.nation, c.region, c.city, p.brand, p.type;

Figure 5.8 shows that the performance of ATGJ is consistent with the increasing

number of grouping attributes. This is mainly because of the deterministic

property of ATrie where there is no dynamic reorganisation of attributes for the

insertion operation in ATrie, in addition to the constant complexity in terms

5.4. EXPERIMENT EVALUATION 81

Figure 5.8: A comparison of join algorithms for the scalability with an increasing number
of grouping attributes.

of the fill factor of ATrie. The primary concern with ATrie was the increased

height of the tree with increasing number of grouping attributes. Although,

creating additional internal nodes has incremental computational cost with the

increasing number of grouping attributes, this is only a small portion of the

total execution time and the performance of ATGJ decreases minimally with

the addition of grouping attributes.

Instead, we found that In-Memory Aggregation has atrocious performance with

the increasing number of grouping attributes. We can see two different kinds of

impact on the In-Memory Aggregation algorithm. First, the increasing number

of dimensions creates additional key vectors and temporary tables for each added

dimension to process the grouping and aggregation. The cost of adding new key

vectors and temporary tables and carrying them through the join execution plan

grew linearly with the increase in the number of dimension tables. Second, when

the grouping attribute has a large number of distinct values (such as c.city.

For comparison, s.city had ten distinct values whereas c.city had 50 distinct

82 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

values), this algorithm creates an equivalent number of dense grouping keys and

the number of records in temporary tables increases significantly. Therefore,

the algorithm suffers most in the final stage which cannot be parallelized due to

its algorithmic design.

iii. Effect of Order of Group-by Attributes: In ATGJ, the order of the grouping

attributes depends on the query grouping requirement. One might argue that

if the number of dimension tables is large and the cardinality is very large, the

ordering is very critical for the query performance. In general, the ordering of

query-tree is the critical part in query optimization and the ordering is NP-hard

problem. However, it is important to note that the benchmark queries are chosen

to span the tasks performed by an important set of star schema queries, so that

prospective users can derive performance ratings from the weighted subset that

is expected to use in practice. It is difficult to provide true functional coverage

with a small number of queries, but SSBM at least provides functional and

selectivity coverage. To understand the effect of the order of grouping attributes,

we created five different groups of attributes for the query with ten grouping

attributes shown in Table 5.2.

Table 5.2: Different order of the grouping attributes (Modified Query 4.1, # Grouping
Attributes = 10)

Group Grouping Attributes
#1 d.year, d.month, s.nation, s.region, s.city, c.nation, c.region, c.city, p.brand, p.type;
#2 s.nation, s.region, s.city, c.nation, c.region, c.city, p.brand, p.type, d.year, d.month;
#3 c.nation, c.region, c.city, p.brand, p.type, d.year, d.month, s.nation, s.region, s.city;
#4 p.brand, p.type, d.year, d.month, s.nation, s.region, s.city, c.nation, c.region, c.city;
#5 d.year, s.nation, d.month, s.region, c.nation, s.city, c.region, p.brand, c.city, p.type;

Figure 5.9: Average execution time of ATGJ for varying order of grouping attributes (SF =
100, N = 14).

5.4. EXPERIMENT EVALUATION 83

Figure 5.9 shows that changing the order of attributes does not affect the

performance of ATrie. This is mainly due to the nature of insertion of attributes

in ATire (i.e. insert if not present) which allows shorter access time, greater ease

of addition of nodes or updating values, and greater convenience in handling a

varying group of attributes.

iv. Effect of Data Size: For each point in graph, the scale factor is increased starting

from 1 and continuing to 100 with a step of 25. The number of records in the

fact table for different scale factors for SSBM dataset are shown in Table 5.1.

Figure 5.10: Average execution time across all SSBM Queries for all algorithms (N =
14) and scale-up of the algorithms for varying data sizes. The processing resources are
doubled when the data size is doubled.

Figure 5.10 shows the average execution time of all queries and the scale-up

of algorithms for varying data sizes. ATGJ performs significantly better than

competing algorithms for varying data sizes. We can see that the execution time

for ATGJ is significantly lower than that of competing algorithms for the larger

data set. The number of records in the dimension tables is significantly less

than that in the fact table. When the predicate filters are applied, only a small

percentage of these dimension table attributes are selected for grouping [9].

ATGJ uses ATrie to group attributes and a hash table to track the edges and

navigate through ATrie to update the aggregation value. Hashing is relatively

faster than other operations in ATGJ. When creating ATrie, our only concern

was the increase in the height of the tree with the increase in the number of

grouping attributes. However, in Section 5.4.3.1ii, we showed that the height

of the tree does not significantly impact the performance of ATGJ. Therefore,

increasing the data size will not have a significant effect on the performance of

ATGJ as long as the computing resources are not exhausted. In addition, from

84 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

the scale-up graph, we see that ATGJ has a better scale-up than the competing

algorithms.

v. Effect of Selectivity Ratio: For each point in the graph, the selectivity ratio

is decreased by 10% starting from 0.016 (high selectivity) and continuing to

0.0000016 (low selectivity).

Figure 5.11: Total execution time for all algorithms with different selectivity ratio (N = 14
and SF = 100)

Figure 5.11 shows that for varying selectivity ratio, ATGJ is only 2X to 3X times

faster than Nimble Join but 6X to 8X faster than Invisible Join. The creation of

ATrie is the second most expensive step after probing in ATGJ. As the selectivity

ratio decreases, the number of internal nodes in ATrie significantly decreases.

Therefore, it takes significantly less time to complete the Create ATrie phase.

The previously discussed algorithms include complex steps in the group and

join processing and therefore cannot take advantage of the decreasing selectivity

ratio as much as ATGJ.

2. Memory Consumption
Table 5.3 shows the memory used by algorithms to create and store data in internal

data structures such as key vectors and IMA in In-Memory Aggregation, ATrie in

ATrie Group Join, intermediate hash tables and multiple position lists in Invisible

Join and MAAT in Nimble Join.

In-Memory Aggregation uses vector transformation to minimise the amount of data

that must flow during the query execution, and uses array structures to accumulate

aggregate data. This strategy uses significantly less memory compared to other

algorithms. Although ATGJ has higher memory consumption than In-Memory

Aggregation, it consumes comparatively less memory than Invisible Join and Nimble

Join because of ATrie. ATrie features data compression by sharing the same grouping

5.4. EXPERIMENT EVALUATION 85

Table 5.3: Memory used by the algorithms for internal data structures (Modified Query
4.1, # Grouping Attributes = 10, N = 14 and SF = 100)

Algorithms Size(MB) Memory Consumed (%)
In-Memory Aggregation 0.02 0.00003

ATrie Group Join 133.28 0.20291
Invisible Join 359.29 0.54772
Nimble Join 4869.69 7.42956

attributes, thereby allowing it to use less space than it would require to list all the

distinct results separately as done by Invisible Join and Nimble Join.

3. Analysing ATrie
We analyse ATire based on a number of different factors.

• Tree Height: A potential problem when creating ATrie is the height of the

tree (number of levels). The height of the ATrie is directly proportional to

the sizeOfGAO(). For example, if the sizeOfGAO() is 15, the tree height h

= 15. If the sizeOfGAO() is 100, the tree height h = 100 i.e. the number of

nodes to be accessed is high (we need to access 100 nodes). This problem has

two facets, namely the number of accessed nodes in ATrie and the number of

created nodes. However, the experiment results (Figure 5.8) show that the cost

to create and access additional nodes in ATrie is only a small portion of the

total execution cost, and therefore, can be safely overlooked in ATGJ.

• Branching Factor: Another potential problem when creating ATrie is the

branching factor or the number of branches. The branching factor is highly

dependent on the number of distinct values of grouping attributes which can

make ATrie bushy. For example, if the supplier nation attribute (refer Figure

5.1) has 100 distinct values, the maximum number of branches in each internal

node at height h = 3 is 100. However, the experiment results (refer Figure 5.8)

show that the branching factor has no significant impact on the performance

of ATGJ. The performance of ATGJ is stable throughout the experiment even

though the grouping attribute with a large number of distinct values was

introduced such as c.city (for comparison, s.city had ten distinct values

whereas c.city had 50 distinct values).

• Order of Grouping Attributes: Another potential problem when inserting

a GAO into ATrie is the order of grouping attributes in a GAO. We need

to understand whether the ordering of group-by attributes has any impact

on the performance of ATGJ. For example, “Does grouping-by customer

86 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

nation, supplier nation, and order date show the same performance as

grouping-by order date, customer nation, and supplier nation?” We

have found that changing the order of grouping attributes has no significant

impact in the creation of ATrie as shown in Figure 5.9.

• Differences with B+ Tree: Although, ATrie and B+ Tree look similar, there

are significant differences between them. In B+ Tree, the root node must

have at least two pointers to other nodes when it is not the leaf node [106].

However, in ATire, the root node can have one to many pointers to other

nodes depending on the data item in the root node. In B+ Tree, the entries

in the internal node point to the data classified as greater than or equal to the

corresponding reference value, and its extra pointer references data classified

as less than the node’s smallest reference value [106]. However, in ATrie, each

height represents a different category of data. The internal nodes at the same

height can have same keys, but an internal node will not have duplicate keys.

In B+ Tree, the leaf node contains an extra pointer reference to the next leaf

node in the tree ordering; the leaves are linked and known as neighbours [106].

However, in ATrie, the leaf node contains an aggregation value and there is no

relationship between two leaf nodes.

5.5 Analytical Evaluation

In this section, we describe the cost model to predict the cost of group join. We also

present our model evaluation and statistical analysis to understand the difference between

model and experiment results.

5.5.1 Cost Models

The parameters used to create the cost model are listed in Table 5.4. The symbols used

in the formula: de is a ceiling function, bc is a floor function, ∧ means minimum and ∨
means maximum.

During the Hash phase, we read the dimension table columns from main memory and

create the hash table. Therefore, we encounter two different types of cost: Scan Cost and

Hash Cost obtained by the following equations.

M =
⌈nd

N

⌉
(5.2)

5.5. ANALYTICAL EVALUATION 87

Table 5.4: The cost model parameters and notations

Symbol Description
System and data parameters

Di Size of i-th dimension table, i = 1 . . . n
| Di | Cardinality of i-th dimension table

Fi Size of the i-th fact table column chunk
| Fi | Cardinality of the i-th fact table column chunk
nd Number of dimension tables
ng Number of attributes involved in the grouping
N Number of processors

Query Parameters
σi Selectivity ratio of the i-th dimension table
σ f Selectivity ratio of the Fact table

Time Unit Cost
tw Time to write the record to the main memory
tr Time to read a record in the main memory
th Time to hash a record
tp Time to probe a record
ta Time to aggregate
t f Time to filter a record

Scan Cost =
M−1

∑
j=0
∨(j×N+N)∧nd

i= j×N+1 | Di | × (tr + t f) (5.3)

Hash Cost =
M−1

∑
j=0
∨(j×N+N)∧nd

i= j×N+1 | Di | × σi× (th + tw) (5.4)

During the Probe phase, we divide the entire fact columns into the same number of

partitions as the number of processors. Each processor reads the required fact column

partitions from the main memory and probes the hash table. The cost for this phase is

obtained by the following equation.

Probe Cost = ∨N
i=1(| Fi | × nd× tr)+(log2 | Fi | × nd× tp) (5.5)

During the Create ATrie phase, we hash grouping attributes to find the path in ATrie

and perform on the fly aggregation. The cost for this phase is obtained by the following

equation.

Create ATrie Cost = ∨N
i=1 | Fi | × σ f × (ng× (th + tp + tw)+ ta) (5.6)

During the Merge ATries phase, we navigate right ATrie and insert/append attributes or

aggregate value to left ATrie. The cost for this phase is obtained by the following equation.

88 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

Z = dlog2(N)e (5.7)

tm = (ng× (tr + th + tp)+ ta)+ Q log(Q) (5.8)

Merge ATries Cost = ∨bN/2c
i=1 tm1i +

Z

∑
j=2
∨bN j/2c

i=1 tm ji (5.9)

where N j =
⌈
N j−1/2

⌉
and Q is the number of keys in the ATrie.

5.5.2 Model Evaluation

To evaluate the cost model and determine its time prediction accuracy, we compare the

model with the benchmark results of an experiment.

1. Effect of Number of Threads: Figure 5.12 shows the comparison between execution

time predicted by the model and actual execution time from the experiment for a

varying number of processors. As shown in the figure, the estimated execution time

from the cost model is close to the actual execution time from the experiment in all

cases, which demonstrates the effectiveness of our cost model.

Figure 5.12: Comparison between experiment result and cost model result for a varying
number of threads (SF = 100).

Two factors account for the difference between the estimated and actual execution

time:

5.5. ANALYTICAL EVALUATION 89

i. The threads executing in parallel often access shared resources and the slowing

down is caused by the interference between the threads trying to access the

shared resources.

ii. Usually, threads communicate with each other and the thread wanting to com-

municate with others may be forced to wait for other threads to be ready for

communication. These two factors are extremely difficult to account for in the

cost model.

2. SSBM Queries: When evaluating our model for SSBM queries, we define the error

rate as

error rate =
∣∣∣∣experiment time−model time

experiment time

∣∣∣∣ (5.10)

Table 5.5: Comparison between experiment result and cost model result for SSBM queries
and error rate of estimated performance (N = 14, SF = 100)

Query Model (Sec) Experiment (Sec) Error Rate (%)
2.1 10.42 10.5 4.4
2.2 5.56 6.3 5.41
2.3 3.7 4.5 3.67
3.1 16.55 17.38 4.77
3.2 6.46 6.97 7.3
3.3 4.91 5.09 3.53
3.4 4.87 5.04 3.36
4.1 17.46 16.97 2.88
4.2 14.63 15.12 3.24
4.3 5.8 7.107 18.3

Table 5.5 shows the comparison between execution time predicted by the model and

execution time of the experiment for three query flights in SSBM. In all the cases,

the estimated execution time of the cost model is close to the actual execution time

obtained by the experiment, which again demonstrates the effectiveness of our cost

model. The differences between the estimated and the actual cost can be attributed

to Start-up cost associated with initiating multiple threads. The start-up time of

the threads varies, making it difficult to estimate and include it in the cost model

accurately.

To check whether there is a significant difference between the model and the exper-

iment, we conducted a two-tailed t-test. In this t-test, a sample size of 10 model

values was compared with corresponding experimental values. The p-value obtained

for the test was 0.8453 which is much larger than the significance level of 0.05.

90 CHAPTER 5. PARALLEL STAR GROUP-BY JOIN

Therefore, we accept the null hypothesis, and we conclude that there is no significant

difference between the values of the model and the experiment.

5.6 Summary

In this chapter, we proposed a parallel star group join algorithm for in-memory column-

stores called ATrie Group Join (ATGJ). This algorithm utilises a novel technique to perform

traditional group-by and aggregation operations across joins by using the aggregate trie

(a.k.a ATrie). We leveraged the technique of progressive materialization to represent

grouping attributes on the edges and accumulated aggregates on the leaf node of the ATrie.

This enabled us to perform join, grouping and aggregation operations on the fly.

Experimental results show that ATGJ outperforms all the competing algorithms. For

all the queries evaluated, on average, ATGJ is 6X faster than Invisible Join, 4X faster than

In-Memory Aggregation and 2X faster than Nimble Join. Furthermore, we demonstrated

that ATGJ scales better than other algorithms for the number of concurrent threads, the

number of group-by attributes, data set size, and query complexity. We also proposed an

analytical model to understand and predict the query performance of ATGJ. Our evaluation

shows that the model can predict the performance with 95% confidence.

Chapter 6

Distributed Star Group-By Joins

In this chapter, we focus on the distributed star group-by join for column-stores. First, we

first introduce the technical challenges of answering distributed star group-by join queries

for column-oriented data. Then, we discuss a new distributed star group-by join algorithm

know as Distributed ATrie Group Join (DATGJ) that uses ATrie (refer Section 5.2) and

progressive materialisation technique (refer Section 4.3) to perform group-by after join.

An experiment on a SSBM dataset is conducted to verify the efficiency of our proposed

solution.

6.1 Overview: Challenges and Solution

An increasing number of companies rely on the results of massive data analytics for

critical business decisions. Such analysis is crucial to improve service quality, support

novel features, and detect changes in patterns over time. Usually, the volume of data

to be stored and processed is so large that traditional relational database management

systems (a.k.a. row-stores) are no longer practical [85]. An alternative to row-stores

are column-stores which store information about a logical entity as separate columns in

multiple locations on the disk [31]. This novel layout improves the query performance on

analytical workloads [30, 31]. Subsequently, several companies have developed column-

oriented distributed data storage and processing systems on large clusters of thousands of

shared-nothing commodity computers [10, 48, 52].

Over the years, the underlying distributed engines have benefited from retrofitting

well-known techniques from row-stores. For instance, query optimisation and several

execution alternatives in distributed scenarios have been adapted and generalised from

those in row-stores. One of the most common operations over data sources is the joining
91

92 CHAPTER 6. DISTRIBUTED STAR GROUP-BY JOIN

on a set of attributes. Fortunately, many of the lessons learned over the years regarding

the optimisation and execution of join queries can be translated directly to distributed pro-

cessing. At the same time, some of the unique characteristics of distributed scenarios have

produced new challenges and opportunities for efficient and reliable join processing. In

this section, we discuss the challenges posed by big data in distributed join processing and

how to address them by focusing on the specific issue of how to improve the performance

of star join queries.

6.1.1 Excessive Network Communication and Disk Spill

Large-scale data shuffling is inevitable in analytical queries such as distributed join between

two large tables. This is still a less popular research topic or is left for data-centric generic

distributed systems such as Apache Spark [48] for batch processing [49, 50]. While

joins are the fundamental building block of any analytics pipeline, they are expensive to

perform. In particular, the shuffling of data raises the concern of network communication

cost in a distributed setting. Distributed transaction performance is mostly dominated

by network latency rather than the throughput [50]. Although Spark facilitates joins and

group-by using Resilient Distributed Datasets (RDDs) [51], Spark SQL [52] and Spark

DataFrame [52] operations, it can only process two tables at a time inducing multiple

scans of data for star joins and requires one or two map-reduce iterations per join [53].

This means that the analytical queries will need n−1 or 2∗ (n−1) map-reduce iteration

where n is the number of tables used by the query. In addition, it requires excessive disk

access and network communication because of cross-communication between the worker

nodes as shown in Figure 6.1.

Figure 6.1: Average disk access and network transfers communication for SparkRDD,
SparkDF and SparkSQL based joins for SSBM Queries [SF=200, Nodes=5, Number of
Cores=35 (7 per node) and Total Memory=150GB (30GB per node)]

Unnecessary disk access is often the result of disk spill: the data is spilled into the

6.1. OVERVIEW: CHALLENGES AND SOLUTION 93

disk when the memory buffer overflows. Furthermore, the excessive shuffling of records

not only significantly increases the network communication cost, but also prevents further

processing of the algorithm [46]. Therefore, naive Spark implementation fails to handle

the issues such as multiple scans of data, excessive network communication and disk spill.

6.1.2 Technical Contributions

This chapter extends the work described in Chapter 5 where we presented ATrie Group Join

(ATGJ) and compared its performance against parallel star join algorithms, Invisible Join

[30], Nimble Join [44] and In-Memory Aggregation [16], in a multi-threaded environment.

To solve the aforementioned challenges, we developed Distributed ATrie Group Join

(DATGJ), a fast-distributed star join and group-by algorithm for column-stores. DATGJ

has only one map-reduce iteration regardless of the number of tables used in the query.

In the map phase, DATGJ builds a fast hash table (FHT) for each dimension table

and broadcasts each one to separate worker nodes. FHT implementation uses open

addressing [107], linear probing [108], Robin hood hashing [56], and a prime number

of slots with an upper limit on the number of probes. These four methods are common

in hash table implementation, although our new contribution and the primary source of

speed-up is the setting of an upper limit on the number of probes.

In the reduce phase, DATGJ performs a single scan of the partitioned fact table columns.

Each record is checked against corresponding FHT based on the foreign key/primary key

relationship between the fact and dimension table, and the matching records are grouped

and aggregated using Aggregate Trie or ATrie. The divide and broadcast-based joining

technique helps DATGJ avoid cross-communication between worker nodes and the disk

spills. Experiment results show that our approach is 1.5X to 6X faster than the most

popular current approaches while having zero data shuffle. Moreover, it consistently

performs well with the addition of resources and in constrained memory scenarios. In

summary, we make the following technical contributions:

1. We present a new optimisation technique for efficient search in the hash table. The

key idea is to use Robin Hood hashing [56] with an upper limit imposed on the

number of probes which is implemented in Fast Hash Table (FHT).

2. We propose a new star group join and aggregation algorithm for distributed column-

stores known as Distributed ATrie Group Join (DATGJ). DATGJ requires only

one map-reduce iteration regardless of the number of tables used in the query. It

uses hash-based broadcast technique, performs a single scan join and leverages

94 CHAPTER 6. DISTRIBUTED STAR GROUP-BY JOIN

progressive materialisation to solve the problem of grouping and aggregating data

using ATrie.

3. We perform extensive experiments using the SSBM benchmark and compare the

performance with some of the most prominent approaches. The results show that

our strategy has zero data shuffle and zero disk spill, and avoids multiple scans of

data while being competitive and better than the current approaches.

4. We propose an analytical model to understand and predict the query performance

of DATGJ. The model accuracy has been verified by detailed experiments with

different hardware parameters.

6.2 Fast Hash Table (FHT)

Hash tables provide an efficient way to maintain a set of keys or map keys to values. The

theoretical run time to search, insert, and delete an item in the hash table is amortized O(1).

By ‘amortized’ we mean that, on average, an operation (e.g. an insertion) takes O(1), but

occasionally it may take more time. We cannot improve on the theory of hash tables, but

we can improve on the practice. We have improved the hash table for the fastest lookup,

while having fast inserts and deletes. The key idea is to use Robin Hood hashing [56]

with an upper limit imposed on the number of probes. If an element must be more than X

positions away from its ideal position, we increase the table because, with a bigger table,

every element can be close to its desired position. X can be relatively small which allows

optimisations for the inner loop of a hash table lookup. The FHT implementation involves

open addressing [107], linear probing [108], Robin hood hashing [56], and a prime number

of slots with an upper limit set for the number of probes. These four methods are common

in hash table implementation; however, our new contribution and the primary source of

speed-up is based on setting an upper limit for the number of probes.

6.2.1 An upper limit on the number of probes

We try to limit the number of slots the table would consider before increasing the underlying

array. Initially, the number of probes is set to a low number, such as five. This works well

for small tables, but if there are random inserts into a large table, it is easy to reach five

probes and increase the table even though it is mostly empty.

During random inserts, using log2(n) as the limit, where n is the number of slots in the

table, we can reallocate only when the table is approximately 65% full. However, when

inserting sequential values, we have a 100% fill factor before reallocation.

6.2. FAST HASH TABLE (FHT) 95

1. Why use upper limits?
Let us say we rehash the table so that it has 1000 slots. The hash table will then

increase to 1009 slots (i.e. the closest prime number). log2(1009)≈ 10, so the probe

count limit is set to 10. Therefore, the key idea is to allocate an array of 1019 slots

instead of 1009 slots. Now, if two elements hash to index 1008, we can go over the

end and insert at index 1009. This avoids any checking of bounds because the probe

count limit ensures that we will never go beyond index 1018. If we have eleven

elements that go into the last slot, the table will increase and all those elements will

hash to different slots.

Algorithm 8: Search Fast Hash Table
Data: FindKey key

Result: EntryPointer ep

1 index <− hashPolicy.indexForHash(hashObject(key))

2 ep <− entries + index

3 distance <− 0

4 while true do
5 if ep.distanceFromDesired < distance then
6 return end

7 else if comparesEqual(key, ep.value) then
8 return ep

9 distance++

10 ep++

11 end

Algorithm 8 is basically a linear search and is better than simple linear probing in

two ways:

• No bounds checking: Empty slots have -1 in their distanceFromDesired

value so the empty case is the same case as finding a different element.

• Better performance: This algorithm performs at most log2(n) iterations.

Normally, the worst-case time complexity for search in a hash table is O(n).

However, in our case, it is O(log2(n)). This is significant because, with linear

probing, it is highly likely that we will hit the worst case since linear probing

usually groups elements together.

2. Memory Overhead
The memory overhead of the search operation is one byte per item. One byte is

padded out to the alignment of the data type that is inserted. For instance, if we insert

96 CHAPTER 6. DISTRIBUTED STAR GROUP-BY JOIN

int, the one byte will obtain three bytes of padding. Hence, we have four bytes of

overhead per item. If we insert pointers, there will be seven bytes of padding so

that we have eight bytes of overhead per item. We can change the memory layout to

solve this, but it would incur two cache misses for each lookup instead of one cache

miss. Therefore, the memory overhead is one byte per item plus padding.

6.2.2 Evaluation

We experimented to identify the differences in the performance and memory consumption

of Standard-Chain Hash Table (SCHT), Concise Hash Table (CHT) [54], Concise Array

Table (CAT) [54], Multi-attribute Array Table (MAAT) [44] and Fast Hash Table (FHT).

A total of 50 million records were inserted, and the same amount of data were searched

and deleted. We measured both the 100% successful searches and 100% unsuccessful

searches. Each dataset consisted of < key,value > where key is the hash key, and value

is its associated value. We recorded the memory usages using Pympler that measures,

monitors and analyses memory behaviour and returns the size of an object in bytes. The

numbers reported are the averages of ten iterations.

Figure 6.2: (a) Memory usages comparison of various data structures (b) Performance
comparison of various data structures to insert a new key-value pair and search or
delete the value associated with a key (Search 100% = 100% Successful and Search 0%
= 100% Unsuccessful).

1. Search Performance
Case 1: 100% Successful - In this test, all the search keys are guaranteed to be found

in the table.

Case 2: 100% Unsuccessful - In this test, none of the search keys is found in the

table.

6.2. FAST HASH TABLE (FHT) 97

Figure 6.2 (b) shows that FHT performs better than the other data structures in both

cases. All the data structures have different performances depending on the current

load factor. For example, when a table is 25% full, the search will be more faster

than when it is 50% full because there are more hash collisions when the table has a

high fill factor. For Case 2, the load factor is of paramount importance. The higher

the fill factor, the more elements there are to search before concluding that an item

is not in the table. Therefore, better performance can be achieved by limiting the

probe count. With the maximum load factor set to log2(n), the hash can be mapped

to a slot just by looking at the lower bits. The only significant difference is that FHT

requires one byte extra storage (plus padding) per slot; therefore, it uses slightly

more memory than CAT and MAAT as shown in Figure 6.2 (a).

2. Insert Performance
Figure 6.2 (b) shows that FHT has a comparable performance with CAT and MAT.

FHT is slightly slower compared to CAT and MAAT because they do not move

elements around when inserting. FHT uses Robin Hood hashing that requires moving

elements around when inserting so that every node is as close as possible to its ideal

position. It is a trade-off where insertion becomes more expensive, but the search

becomes faster.

3. Delete Performance
Figure 6.2 (b) shows that CHT, CAT, MAAT and FHT all have similar performance.

However, one only significant difference between FHT and CHT is that when CHT

deletes an element, it leaves behind a tombstone. That tombstone will be removed if

we insert a new element in that slot. A tombstone is a requirement of the quadratic

probing that CHT does on search: When an element is deleted, it is very difficult

to find another element to take its slot. In Robin Hood hashing with linear probing

it is trivial to find an element that should go into the recent empty slot: just move

the next element one forward if it is not in its ideal slot. In quadratic probing, it

might have an element that is four slots over. When that one gets moved, we need to

find a node to insert into the newly vacated slot. Instead, it inserts a tombstone and

then the table knows to ignore tombstones on search which will be replaced on the

next insert i.e. the table will be slightly slower once it has tombstones in the table.

Therefore, CHT has a fast delete at the cost of slow search after a delete.

98 CHAPTER 6. DISTRIBUTED STAR GROUP-BY JOIN

6.3 Distributed ATrie Group Join (DATGJ)

The Distributed ATrie Group Join (DATGJ) is a distributed single-scan join algorithm based

on ATrie. In this section, we discuss the details of group-by join and its implementation in

a distributed environment.

6.3.1 Join Processing Method

The Distributed ATrie Group Join (DATGJ) has four different phases: 1. Broadcast Phase,

2. Single Scan Hash Join, 3. Group-By using ATrie and 4. Merge ATries.

1. Broadcast Phase: In this phase, predicates are applied to the appropriate dimension

tables to create the respective filtered dimension tables (FDims). All FDims are

collected as the hash table (FHDims). The primary key of the dimension tables acts

as the key in the hash table and the grouping attributes act as the value. These hash

tables are broadcast to all workers that help to efficiently prune out non-qualifying

rows. The size of the FHDims are smaller than the dimension tables, which makes it

a suitable candidate for broadcasting. The broadcasting of FHDims saves significant

network communication cost by avoiding the re-transmission of FHDims when many

join tasks execute in parallel on each worker [51, 52]. This phase helps to reduce the

network communication cost of tasks, which is one of the important features of the

algorithm. An example of the execution of this phase in one worker node on some

sample data is shown in Figure 6.3 (a).

In Figure 6.3 (b), the dimensions are already partitioned and stored in each worker

node which is represented as Dimi j where i = 1 . . . M workers and j = 1 . . . N

dimensions. The predicate filters PFi where i = 1 . . . N is applied to appropriate

dimension tables to create FDimi j where i = 1 . . . M workers and j = 1 . . . N

dimensions. All FDimi j are collected to create FHDimi where i = 1 . . . N that are

broadcast to all workers.

This phase can be easily adapted to other schema such as the snowflake schema.

Predicates can be applied to the appropriate dimension tables to create the respective

filtered dimension tables with the primary key of the main dimension table and

the foreign key of the child look-up tables. Using the foreign key of the look-up

tables, we can obtain the associated value, which is the grouping attribute in the

query. The main idea is to generate a hash table with dkey: the primary key from the

respective dimension table and value: the grouping attribute in the query from the

same dimension table.

6.3. DISTRIBUTED ATRIE GROUP JOIN (DATGJ) 99

Figure 6.3: Applying the predicate filter and broadcasting the hash table

2. Single Scan Hash Join: The size of the fact table is significantly larger than

the dimension tables. The data is partitioned using a random-equal partitioning

technique where each worker works on an equal amount of data. Since each task

has an equal number of records to work on, there is no load imbalance in the join

and group-by processing. The single scan is performed on the fact table columns

and broadcast FHTs are used to perform the join. Each task works on its respective

data partition to retrieve the foreign key and probe it into the corresponding FHTs to

create a group aggregation object (GAO) (refer Definition 5.2.1).

From the load balancing perspective, the load of each processor in terms of the

number of records processed is the same; i.e., in each processor there will be an equal

fragment of the fact table and the entire hash table for the corresponding dimension

tables; hence, there is no load imbalance problem. However, the load balancing

problem theoretically might still occur even when fact table is partitioned equally.

This problem arises from the imbalance of result production such as the cost of join

with hash table and the cost of group-by operation using ATrie. Some processors

that produce more results than others might require more time to complete join

processing. However, this problem is significantly minor compared to the situation

when the fact table is not being partitioned equally [9]. In addition, if parallel

100 CHAPTER 6. DISTRIBUTED STAR GROUP-BY JOIN

probing results in an unbalanced workload, it can be handled using techniques such

as Morsel-driven parallelism [102] or Index Vector Partitioning (IVP) [83].

Figure 6.4: Join using a broadcast hash table and group-by using ATrie

In Figure 6.4, each Task t = 1 . . . K works on the independent partition of data from

the fact table columns and performs join with all broadcast hash dimension tables

FHDimi where i = 1 . . . N. Each record in the fact table columns is scanned only

once during the join process, unlike other algorithms such as Invisible Join [30]

which reduces the disk access time in the algorithm.

3. Group-By Using ATrie: We create a task local ATrie and the GAO is inserted into

these ATries. Insertion proceeds by walking the ATrie according to attributes in

GAO, then appending the new node for an attribute that is not present in ATrie. We

start with the empty node (root node). Then, we insert each GAO into ATrie and

build up the required branches as we move through the internal nodes in ATrie. Leaf

node holds the aggregated value. The output of this phase is a complete local ATrie

with grouping attributes on its edges to guide the grouping process and aggregate

values on the leaf node.

In Figure 6.4, each Task t = 1 . . . K work on a task local ATrie, ATrie1, ATrie2,

. . . ,ATrieK. The GAOs created during Single Scan Hash Join are inserted into these

ATries to group attributes on the fly.

4. Merge ATries: All the ATries are collected back to the master before merging them.

Once collected, merging of these ATries can be done in serial or parallel depending

6.4. EXPERIMENTAL EVALUATION 101

on the number of ATries. For example, let us say we have three ATries A1, A2 and

A3. Merging these ATries will require two serial mergings of (A1, A2) and then (A1,

A3). If we have four ATries A1, A2, A3 and A4, we can merge (A1, A2) and (A3,

A4) in parallel and then merge (A1, A3). However, we have found that the number

of nodes in ATrie is fewer than the number of records in the fact or the dimension

tables. Therefore, the cost of the Merge ATries phase is significantly less than the

Single Scan Hash Join and Group-by using ATrie phases.

6.4 Experimental Evaluation

In this section, we give a brief description of the environment used and present a detailed

analysis of the results.

6.4.1 Experimental Setup

We conducted all our experiments on the standalone NeCTAR 1 cluster with one master

and five worker nodes running Ubuntu 18.04 LTS. Each node in the cluster is equipped

with 8-core Intel Haswell (no TSX) CPUs clocked at 2.99 GHz and 32 GB of RAM.

The algorithms are implemented in python with Apache Spark 2.4.0. The Apache Spark

Standalone Cluster is shown in Figure 6.5. The detailed instruction to set up the standalone

cluster is available in Appendix B.

Figure 6.5: Apache Spark Standalone Cluster with one master and five worker nodes.

1https://www.nectar.org.au/about/

https://www.nectar.org.au/about/

102 CHAPTER 6. DISTRIBUTED STAR GROUP-BY JOIN

Benchmark Dataset: We used SSBM for the experiment. Query Flight 1 in SSBM

does not contain queries with the group-by. Therefore, we have excluded Query Flight 1.

This benchmark provides a base “Scale Factor (SF)” to scale the size of the data. Similar

to other works [16, 30, 44, 46, 78], we use scale factors of 50, 100, 150 and 200 for the

experiment. The details of the number of tuples in the fact table (i.e. LINEORDER table)

and its disk size can be found in Table 6.1.

Table 6.1: Data characteristics used in the experiments showing for each scale factor (SF)
the number of tuples in the fact table (#Tuples) and its disk size.

SF #Tuples Size (GB)
50 300 Million 30 GB
100 600 Million 60 GB
150 900 Million 90 GB
200 1.2 Billion 120 GB

6.4.2 Algorithms Tested

The following distributed group-by join algorithms are evaluated in this section.

• SparkRDD (Naive): A direct Spark implementation of a sequence of joins and group

by.

• Spark Bloom Filtered Cascade Join (SBFCJ) [46]:A join that processes star join

queries using bloom filters, and is resilient when there is scant memory.

• Spark Broadcast Join (SBJ) [46]: A join that reduces excessive data spill and network

communication and delivers better results when memory resources are abundant.

• Distributed ATrie Group Join (DATGJ): A fast distributed star join and group-by

algorithm that is presented in this chapter.

6.4.3 Experimental Results

The numbers reported here are the average of five iterations empirically determined to

guarantee the mean confidence interval of ± 100s.

1. Runtime Efficiency: We consider the elapsed time of the four aforementioned

algorithms. The test was performed using 35 cores (5 nodes) of the cluster on the

SSBM dataset SF = 200.

6.4. EXPERIMENTAL EVALUATION 103

Figure 6.6: Elapsed time of all algorithms by SSBM query flights (# Worker Nodes = 5
and SF = 200).

Figure 6.7: Average elapsed time of all algorithms (# Worker Nodes = 5 and SF = 200).

Figure 6.6 shows the results of total elapsed time broken down by the query flight;

Figure 6.7 shows the average result for all SSBM queries. The definition of metrics

in Figure 6.7 can be found in Apache Spark documentation 2. For all group-by

queries in SSBM, DATGJ is 100% faster than all the competing algorithms. For

all queries evaluated, on average, DATGJ is 1.5X faster than SBJ, 2X faster than

SBFCJ and 6X faster than SparkRDD (Naive) algorithm.

The performance of DATGJ can be attributed to the fact that rather than constructing

rows to be grouped by processing the fact data through successive series of join,

DATGJ coalesces joins and applies all joins to the fact table in a single operation.

After the probing phase in the single scan hash join stage, original join-keys are

replaced with actual attribute values from the dimension table that are used both to

perform group-by efficiently and aggregate rows using the proposed novel grouping

technique and progressive materialisation.

In Figure 6.7 (a), it is interesting to note that executorRunTime accounts for a signifi-

cant portion of elapsed time in all the algorithms, while other metrics are insignificant

in the SBJ and the DATGJ. Upon further inspection, after removing executorRun-

Time (refer Figure 6.7 (b)), we observe the significant time taken for jvmGCTime
2https://spark.apache.org/docs/latest/monitoring.html

https://spark.apache.org/docs/latest/monitoring.html

104 CHAPTER 6. DISTRIBUTED STAR GROUP-BY JOIN

and shuffleFetchWaitTime in SBFCJ and SparkRDD which is relatively insignificant

in SBJ and DATGJ, while DATGJ completely avoids the shuffleWriteTime.

2. Network Communication: Communication costs are determined by measuring

the number of received tuples at each worker node, and the size of data shuffled.

The actual and shuffled sizes of data in GB and the number of tuples for all the

algorithms are shown in Table 6.2. executorRunTime includes time to fetch shuffle

data [82]. Therefore, we are unable to include time to fetch shuffle data in Table 6.2.

Table 6.2: Actual and shuffled sizes of data in GB and # Tuples for all the algorithms. (#
Worker Nodes = 5 and SF = 200)

Data Size (GB) # Tuples
Algorithm Total Shuffled Total Shuffled
SparkRDD 116 68.94 1.2 Billion 389 Million

SBFCJ 116 2.09 1.2 Billion 60 Million
SBJ 116 0.13 1.2 Billion 1.2 Million

DATGJ 116 0.00 1.2 Billion 0

Excessive shuffling of records for join and group-by operations significantly in-

creases the cost of network communication and blocks the further processing of

the algorithm [46]. Table 6.2 demonstrates one of the main advantages of DATGJ:

although SBFCJ and SBJ had significantly low data shuffle compared to SparkRDD,

DATGJ show no data shuffle at all. DATGJ follows the divide and broadcast-based

data partitioning method [9]. The fact table is divided into multiple disjoint partitions

using random-equal partitioning technique, where each partition is allocated to a

worker node, and the FHDims are broadcast all worker nodes. Each worker has

one partition of fact table and a complete FHDim of the required dimension tables.

Therefore, DATGJ completely avoids the shuffling of data during the group join

processing.

3. Varying Dataset Size: We investigated the effect of dataset volume on the perfor-

mance of all the algorithms. In general, the algorithms must be resilient and scale

well with the dataset size.

Figure 6.8 (a) shows the linear increase of elapsed time for SparkRDD whereas

sub-linear (slow) increase of elapsed time for SBJ, SBFCJ and DATGJ while DATGJ

has the least elapsed time of all the competing algorithms. We observe that SBJ and

DATGJ have a similar performance when SF = 50. However, the dataset is small

and does not reflect the applications in which the distributed approaches excel.

6.4. EXPERIMENTAL EVALUATION 105

Figure 6.8: (a) Impact of Scale Factor (SF) on the performance of the algorithms (# Worker
Nodes = 5). (b) Impact of the number of worker nodes on the scalability of the algorithms
(SF = 200).

We can see the improved elapsed time between SBJ and DATGJ as data set size

increases from SF 50 to 200. This is mainly due to the nature of attribute’s insertion

in ATrie (i.e. insert if not present) which enables a shorter access time, greater ease

of addition of node or updating the value and greater convenience when handling a

varying group of attributes. In addition, the deterministic property of ATrie avoids

the dynamic reorganisation of attributes for insertion operations in ATrie, and the

constant complexity in terms of the fill factor of ATrie improves elapsed time even

when the dataset size increases.

4. Varying Number of Nodes: We investigated the effect of a varying number of

nodes to evaluate the scalability of our DATGJ implementation by varying the

number of processing cores from 14 cores (2 nodes) up to 35 cores (5 nodes).

Figure 6.8 (b) shows the execution time for DATGJ compared to competing algo-

rithms for a varying number of nodes. The number of records in dimension tables is

significantly less compared to the fact table. When predicate filters are applied, only

a small percentage of these dimension table attributes are selected for grouping [9].

DATGJ uses ATrie to group attributes: a hash table (FHT) to track the edges and

navigate through ATrie to update the aggregation value. Hashing is relatively faster

in comparison to other DATGJ operations. Increasing the number of nodes involves

creating more ATries in parallel which would require more steps during Merging

ATries. However, Merging ATries take significantly less time than other stages in

the algorithm [44]. Therefore, DATGJ still has a competitive advantage over other

algorithms with additional resources.

5. Constrained Memory: While DATGJ has outperformed other solutions, scenarios

106 CHAPTER 6. DISTRIBUTED STAR GROUP-BY JOIN

with low memory per executor might compromise its performance. Next, we study

how the memory available to each executor impacts all the algorithms for # Worker

Nodes = 5 and SF = 200.

Figure 6.9: (a) Performance of Algorithms under different memory conditions (# Worker
Nodes = 5 and SF = 200). (b) Disk spill for 512 MB memory.

Figure 6.9 (a) shows that while SparkRDD and SBFCJ are affected by the constrained

memory (i.e. 512 MB), the performance of SBJ and DATGJ remains unaffected. If

enough memory is provided, the performance of all the algorithms remains consistent

(1024 MB and above for SF = 200).

In the 512 MB scenario, SBFCJ and SparkRDD algorithms cause disk spills as shown

in Figure 6.9 (b). Spilling occurs when the data-storage memory is insufficient.

Generally, there are three occasions when data spilling occurs:

a) Hash Table Broadcast: Broadcast methods usually demand more memory to

allocate dimension tables [46]. If the memory is insufficient, hash tables are

spilled into the disk [9].

b) Data Shuffling: When the data is shuffled, the records are stored first in memory,

and when memory hits some pre-defined throttle, this memory buffer is then

flushed into disk [52].

c) Internal Data Structure: The internal data structures used in the algorithm

might require a big memory chunk. When the memory is insufficient, data

might be spilled to the disk and the current memory is cleaned for a new round

of insertions [9, 109].

As discussed in Section 6.4.3.2, DATGJ completely avoids the shuffling of data.

Therefore, we do not have disk spill due to data shuffling.

Hash Table Broadcast - Except for SparkRDD, all other competing algorithms

broadcast the hash tables. The broadcast size of the hash tables for some of the

6.5. ANALYTICAL EVALUATION 107

Table 6.3: Total size of the broadcasted hash tables and ATrie size in MB in each worker
for SF = 200 and executor memory = 512 MB.

Query Total Broadcast Size (MB) ATrie Size / Worker (MB)
2.1 74.047 73.135
2.2 39.757 15.766
2.3 32.048 3.438
3.1 484.884 42.791
3.2 101.507 100.546
3.3 21.544 4.513
3.4 20.721 0.354
4.1 904.772 10.015
4.2 904.101 26.947
4.3 504.890 9.965

queries such as 4.1 and 4.2 are above the threshold of 512 MB as shown in Table

6.3. Therefore, the assumption is that we will incur some disk spill. However, in

Spark, the driver program creates a local directory to store the data to be broadcast

and launches a HttpBroadcast or TorrentBroadcast with access to the directory.

The data is actually written into the directory when the broadcast is called. At the

same time, the data is also written into driver’s blockManager with a StorageLevel

MEMORY AND DISK SER3. Therefore, we do not encounter disk spill intrinsically.

Internal Data Structure - The disk spill could still occur because of the internal

data structures such as ATrie. However, Table 6.3 shows that for SF = 200, the

maximum size of ATrie is 100 MB for Query 3.2 whereas the minimum size is 0.354

MB for Query 3.4. ATrie features data compression by sharing the same grouping

attributes, allowing it to use less space than it would take to list all the distinct results

separately. The size of ATrie partially depends on the selectivity of the query (refer

Table 3.3, Query 3.2 has high selectivity than 3.4) and the data type of the grouping

attribute. Therefore, the observation is more likely to change depending on the query

selectivity and the data type.

6.5 Analytical Evaluation

In this section, we describe the cost model used to predict the cost of the distributed group

join. We also present our model evaluation and statistical analysis in order to demonstrate

the difference between the model and the experiment.

3https://spark.apache.org/docs/latest/rdd-programming-guide.html

https://spark.apache.org/docs/latest/rdd-programming-guide.html

108 CHAPTER 6. DISTRIBUTED STAR GROUP-BY JOIN

6.5.1 Cost Models

The parameters used to create the cost model are listed in Table 6.4. The symbols used in

the formula: de is a ceiling function, bc is a floor function and ∨ means maximum.

Table 6.4: The cost model parameters and notations

Symbol Description
System and data parameters

Di Size of i-th dimension table column, i = 1 . . . n
| Di | Cardinality of i-th dimension table column

Fi Size of the i-th fact table column chunk
| Fi | Cardinality of the i-th fact table column chunk
H Size of hash table
A Size of aggregate trie
N Number of worker nodes
P Page size
nd Number of dimension tables
ng Number of attributes involved in the grouping
np Number of processors in each worker node

Query Parameters
σdi Selectivity ratio of the i-th dimension table column
σ fi Selectivity ratio of the i-th fact table column

Time Unit Cost
tw Time to write the record to the main memory
tr Time to read a record in the main memory
th Time to hash a record
tp Time to probe a record
ta Time to aggregate
t f Time to filter a record

Communication Cost
mp Message protocol cost per page
ml Message latency for one page

During the Broadcast phase, we read the dimension table columns from main memory

and create the hash table in each worker node. Therefore, we encounter two different costs:

Scan Cost and Hash Cost obtained with the following equations.

SC = ∨nd
i=1
| Di |

N
× (tr + t f) (6.1)

Scan Cost = ∨N
j=1SC j (6.2)

HC = ∨nd
i=1
| Di |

N
× σdi× (th + tw) (6.3)

6.5. ANALYTICAL EVALUATION 109

Hash Cost = ∨N
j=1HC j (6.4)

The hash tables are broadcast to all workers. Therefore, we encounter two different

cost: Hash Table Transfer Cost and Hash Table Receive Cost obtained with the following

equations.

Hash Table Trans f er Cost =
nd

∑
i=1

| Hi |
P
× (mp + ml) (6.5)

Hash Table Receive Cost =
nd

∑
i=1

| Hi |
P
× mp (6.6)

During the Single Scan Hash Join phase, we divide all the fact columns into the same

number of chunks as the number of worker nodes. Each processor reads the required fact

column chunks from the main memory and probes the hash table. The cost for this phase

is obtained with the following equation.

PC = ∨np
i=1

(
| Fi |

N
× nd× tr

)
+

(
log2

(
| Fi |

N

)
× nd× tp

)
(6.7)

Probe Cost = ∨N
j=1PC j (6.8)

During the Group-By using ATrie phase, we hash grouping attributes to find the path

in ATrie and perform on-the-fly aggregation. The cost for this phase is obtained with the

following equation.

CA = ∨np
i=1
| Fi |

N
× σ fi× (ng× (th + tp + tw)+ ta) (6.9)

Create ATrie Cost = ∨N
j=1CA j (6.10)

The ATries are sent back to the master for merging. Therefore, we encounter two different

costs: ATrie Transfer Cost and ATrie Receive Cost given by the following equations.

ATrie Trans f er Cost =
np

∑
i=1

| Ai |
P
× (mp + ml) (6.11)

ATrie Receive Cost =
np

∑
i=1

| Ai |
P
× mp (6.12)

110 CHAPTER 6. DISTRIBUTED STAR GROUP-BY JOIN

During the Merge ATries phase, we navigate the right ATrie and insert/append attributes

or aggregate value to the left ATrie. The cost for this phase is obtained with the following

equation.

Z =
⌈
log2(np)

⌉
(6.13)

tm = (ng× (tr + th + tp)+ ta)+ log3Q(Q) (6.14)

Merge ATries Cost = ∨bnp/2c
i=1 tm1i +

Z

∑
j=2
∨bnp j/2c

i=1 tm ji (6.15)

where np j =
⌈
np j−1/2

⌉
and Q is the number of keys in the ATrie.

6.5.2 Model Evaluation

To evaluate the cost model and determine its time prediction accuracy, we compare the

model with benchmark experiment results.

1. Effect of Data size and Number of Nodes: Figure 6.10 (a) and (b) shows the

comparison between the elapsed time predicted by the model and the actual time

required by the experiment using varying data sizes and number of worker nodes.

As shown in both figures, the estimated elapsed time from the cost model is close to

the actual elapsed time from the experiment, which demonstrates the effectiveness

of our cost model.

Figure 6.10: (a) Comparison of experiment result and cost model result for varying data
sizes (N = 5). (b) Comparison of experiment result and cost model result for a varying
number of worker nodes (SF = 200).

6.5. ANALYTICAL EVALUATION 111

2. SSBM Queries: When evaluating our model for SSBM queries, we define the error

rate as

error rate =
∣∣∣∣experiment time−model time

experiment time

∣∣∣∣ (6.16)

Table 6.5: Comparison of experiment results and cost model results for SSBM queries and
error rate of estimated performance (N = 5, SF = 200)

Query Model (Minutes) Experiment (Minutes) Error Rate (%)
2.1 2.276 2.433 6.421
2.2 2.216 2.323 4.565
2.3 2.171 2.281 4.812
3.1 1.870 2.027 7.713
3.2 2.123 2.25 5.618
3.3 2.047 2.117 3.298
3.4 1.990 2.093 4.915
4.1 2.874 3.13 8.172
4.2 2.840 2.996 5.206
4.3 2.611 2.743 4.804

Table 6.5 shows the comparison between the execution time predicted by the model

and execution time from the experiment for three query flights in SSBM. The esti-

mated execution time for the cost model is close to the actual execution time obtained

by the experiment in all the cases, which again demonstrates the effectiveness of our

cost model.

To check whether there is a significant difference between the model’s results and

those obtained by the experiment, we conducted a two-tailed t-test. In this t-test,

a sample size of 10 model values was compared with corresponding experimental

values. The p-value obtained for the test was 0.4182, which is much larger than the

significance level of 0.05. Therefore, we accept the null hypothesis, and conclude

that there is no significant difference between the values of the model and those

obtained by the experiment.

6.5.3 Analysis

Three factors account for the difference between the estimated and the actual elapsed time:

i. The processors executing the task in parallel need to be initiated at each worker node.

The initiation time of the processors varies, making it difficult to estimate the ime

accurately and include it in the cost model. In addition, if the actual processing time

is very short, the start-up time may dominate the overall processing time.

112 CHAPTER 6. DISTRIBUTED STAR GROUP-BY JOIN

ii. Worker nodes use the local area network or internet to communicate with each other

to send and receive the message. Communication efficiency is directly dependent on

the network latency in real time and is very difficult to account for in the cost model.

iii. Distributed processing normally starts with the breaking up of the main task into

multiple sub-tasks, where each sub-task is carried out by different processors in a

worker node. After these sub-tasks have been completed, it is necessary to consolidate

the results produced by each sub-task. Therefore, we encounter the consolidation cost

associated with the master node collecting results obtained from each worker node.

6.6 Summary

In this chapter, we proposed a fast-distributed star group join algorithm for in-memory

column-stores called Distributed ATrie Group Join (DATGJ). We improved the hash table

for fastest lookup, while having fast inserts and deletes. The key idea is to use Robin

Hood hashing with an upper limit for the number of probes which were implemented

in the Fast Hash Table (FHT). DATGJ utilises FHT for fast single scan join and a novel

technique to perform the group-by and aggregation operations using ATrie. We leveraged

the technique of progressive materialization to represent grouping attributes on the edges

and accumulated aggregates on the leaf nodes of ATrie. This enabled us to perform join,

grouping and aggregation operations on the fly.

Experimental results show that DATGJ outperforms all the competing algorithms. For

all the queries evaluated, on average, DATGJ is 1.5X to 6X faster than the competing

algorithms. Furthermore, we also demonstrated that DATGJ has zero disk spills, zero data

shuffle and minimal network transfer, and performs well with the addition of resources

and under memory-constrained conditions. We also proposed an analytical model to

understand and predict the query performance of DATGJ. Our evaluation shows that the

model can predict performance with 95% confidence.

Chapter 7

Conclusion

We have explored parallel and distributed join and group-by algorithms for column-oriented

data storage. This chapter concludes the thesis by summarising the research contributions

and offering suggestions for future research directions.

7.1 Summary of Contributions

In this section, we summarise the contributions made by this research, with an emphasis

on the strengths of the developed algorithms and all associated new components that have

been introduced to achieve the research goal.

7.1.1 Nimble Join

In Chapter 4, we presented Nimble Join: a new progressive join algorithm for column-

stores. Nimble Join uses multi-attribute array table (MAAT) to hold attributes required to

process join query and facilitates progressive materialisation. Some of the advantages that

MAAT and progressive materialisation offer are:

1. Small Memory Footprint: MAAT used memory space that is thinner than that of

other data structures, so they packed better into cache lines.

2. Faster Look-ups: MAAT included a reduced list of positions used to probe the

indexed array, thereby drastically minimising the number of array lookups depending

on the join selectivity.

3. No Multiple Access: For the progressive materialisation strategy, as soon as a

column is accessed, the attribute value satisfying the predicate is added to MAAT
113

114 CHAPTER 7. CONCLUSION

and the column will not need to be re-accessed, thereby avoiding the performance

penalty incurred by having to re-access the column for tuple reconstruction.

Experiment results showed that Nimble Join has 2X faster initial response time, 10% -

25% better execution time, 40% - 50% reduced memory consumption and approximately

50% reduced disk I/O time compared to the competing column-store join algorithm. We

also formulated the cost models for Nimble Join, and instantiated and evaluated these

models.

7.1.2 ATrie Group Join (ATGJ)

In Chapter 5, we presented the ATrie Group Join (ATGJ): a parallel star group join

algorithm for in-memory column-stores. ATGJ utilised a novel technique to perform

traditional group-by and aggregation operations across joins by using the aggregate trie

(a.k.a ATrie). We leveraged the technique of progressive materialization to represented

grouping attributes on the edges and accumulated aggregates on the leaf node of ATrie.

This helped us perform join, grouping and aggregation operation on the fly.

ATrie has three important properties that improved the performance of ATGJ:

1. Deterministic Property: Each distinct grouping attribute object (GAO) has only

one path within the ATrie. Due to these deterministic paths, only a single key

comparison at each level is required, and there is no dynamic reorganisation of

attributes for any operation resulting in good insertion performance while grouping

the attributes.

2. Data Compression: ATrie can represent GAO in a compact form. When many

GAOs share the same grouping attribute, these shared grouping attributes can be

represented by a shared part of ATrie, allowing the representation to use less space

than it would take to list all the distinct GAOs separately.

3. Progressive Materialisation: ATGJ maneuver the idea of progressive materiali-

sation by using ATrie as a vessel to perform materialisation and aggregation on

the fly while scanning the fact columns and inserting GAOs into ATrie, avoiding

re-scanning and multiple access of data.

Experimental results showed that ATGJ outperformed all the competing algorithms.

For all the queries evaluated, on average, ATGJ is 6X faster than Invisible Join, 4X faster

than In-Memory Aggregation and 2X faster than Nimble Join. Also, we demonstrated that

ATGJ scales better than other algorithms for the number of concurrent threads, number

7.1. SUMMARY OF CONTRIBUTIONS 115

of group-by attributes, data set size and query complexity. We also formulated the cost

models for ATGJ, and instantiated and evaluated these models.

7.1.3 Distributed ATrie Group Join (DATGJ)

In Chapter 6, we extended ATGJ to work in a distributed environment known as Distributed

ATrie Group Join (DATGJ). DATGJ used the divide and broadcast-based approach which

enabled it to perform a single scan of the fact columns, joined the data using fast hash table

(FHT), and completely avoided the shuffling of data during the group join processing.

FHT implementation uses open addressing [107], linear probing [108], Robin Hood

hashing [56], and the prime number amount of slots with the upper limit on the number of

probes. These four methods are common in hash table implementation; however, our new

contribution and the primary source of speed-up in a single scan hash join was the setting

of an upper limit for the number of probes.

The main advantage of FHT was that it enabled faster search. The FHT search

algorithm performed at most log2(n) iterations. Normally, the worst-case time complexity

for search in a hash table is O(n). However, in FHT, it was O(log2(n)). This was significant

because, with linear probing, it is highly likely that we encounter the worst-case scenario

since linear probing usually groups elements together.

The search performance was achieved at the expense of additional memory. The

memory overhead of the search operation was one byte per item. One byte was padded

out to the alignment of the data type that was inserted. For instance, if we inserted int,

the one byte received three bytes of padding. Hence, we had four bytes of overhead per

item. If we inserted pointers, there were seven bytes of padding such that we had eight

bytes of overhead per item. We could change the memory layout to solve this problem,

but it would incur two cache misses for each lookup instead of one cache miss. Therefore,

the memory overhead was one byte per item plus padding, as the performance advantages

provided by additional memory usages made it worthwhile for us to implement it as such

in FHT.

DATGJ used ATrie to perform group-by and aggregation, and process the data in tight

loops. Although ATGJ improved performance, it was limited by the hardware as the join

operation is performed using a single computer. DATGJ used a multiple worker computer

and the distributed computing improved scalability, fault tolerance and resource sharing,

and helped perform computation tasks efficiently.

Experimental results showed that DATGJ outperformed all the competing algorithms.

For all the queries evaluated, on average, DATGJ was 1.5X to 5X faster than the competing

116 CHAPTER 7. CONCLUSION

algorithms. Furthermore, we demonstrated that DATGJ has zero disk spills, zero data

shuffle and minimal network transfer, and performs well in memory-constrained conditions.

We also formulated the cost models for DATGJ, and instantiated and evaluated these

models.

7.2 Future Research

We hope that this PhD research will lead to more research into column-store joins as we

have shown the potential for possible improvements, and anticipate that more is achievable.

Below, we suggest two interesting areas of research deserving future investigation.

7.2.1 Online Aggregation

Aggregation is an increasingly important operation in today’s database management

systems [110]. As data sets grow larger and both users and user interfaces become

more sophisticated, there is an increasing emphasis on extracting not just specific data

items, but also general characterisations of large subsets of the data. Users want this

aggregate information right away, even though producing it may involve accessing and

condensing enormous amounts of information. Unfortunately, aggregation processing

closely resembles batch processing where users submit an aggregation query and are forced

to wait without feedback while the system churns through billions of records [110, 111].

Only after a significant period of time does the system respond with the (usually small)

final answer. A particularly frustrating aspect of this problem is that aggregation queries

are typically used to obtain a “rough picture” of a large body of information; yet, they

are computed with painstaking precision, even in situations where an acceptably precise

approximation might be available very quickly. In Chapter 4, we touched briefly upon the

aspect of online aggregation; however, there is the possibility of changing the interface to

aggregation processing and, by extension, changing the aggregation processing itself. The

idea is to perform aggregation online to allow users both to observe the progress of their

queries and to control execution on the fly.

7.2.2 Column-Store Specific Features

Future work could extend the algorithms so as to include more features of column-stores

such as column-specific compression and direct operations on compressed data.

7.2. FUTURE RESEARCH 117

Column-specific compression: The data stored in columns is more compressible than

the data stored in rows. Compression algorithms perform better on data with low entropy

(i.e. with high data value locality), and values from the same column tend to have more

value locality than values from different columns [31]. By compressing each column using

the compression method that is most effective for it, a substantial reduction in the total

size of the data on disk or in memory can be achieved. By storing data from the same at-

tribute (column) together, we can obtain good compression ratios using simple compression

schemes such as Run-length Encoding, Bit-Vector Encoding and Dictionary Encoding [25].

Direct operation on compressed data: The column-oriented compression schemes men-

tioned above can be operated directly without decompression. We can delay decompression

of the data until it is absolutely necessary, ideally until results need to be presented to the

user. Working over compressed data can significantly improve the utilisation of memory

bandwidth which is one of the major causes of bottlenecks [31]. It also gives the maximum

boost to performance, since the system saves I/O by reading in less data without incurring

the decompression cost [28].

Bibliography

[1] K. Peffers, T. Tuunanen, M. A. Rothenberger, S. Chatterjee, A design science

research methodology for information systems research, Journal of Management

Information Systems 24 (3) (2007) 45–77.

[2] B. Marr, Big data facts: How many companies are really making money from their

data? (Apr 2016).

[3] N. Marz, J. Warren, Big Data: Principles and best practices of scalable real-time

data systems, New York; Manning Publications Co., 2015.

[4] D. J. Abadi, P. A. Boncz, S. Harizopoulos, Column-oriented database systems,

Proceedings of the VLDB Endowment 2 (2) (2009) 1664–1665.

[5] G. P. Copeland, S. N. Khoshafian, A decomposition storage model, in: ACM

SIGMOD Record, Vol. 14, ACM, 1985, pp. 268–279.

[6] R. MacNicol, B. French, Sybase iq multiplex-designed for analytics, in: Proceedings

of the Thirtieth international conference on Very large data bases-Volume 30, VLDB

Endowment, 2004, pp. 1227–1230.

[7] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,

E. Lau, A. Lin, S. Madden, E. O’Neil, et al., C-store: a column-oriented dbms, in:

Proceedings of the 31st International Conference on Very Large Data Bases, VLDB

Endowment, 2005, pp. 553–564.

[8] N. Mukherjee, S. Chavan, M. Colgan, D. Das, M. Gleeson, S. Hase, A. Holloway,

H. Jin, J. Kamp, K. Kulkarni, et al., Distributed architecture of oracle database

in-memory, Proceedings of the VLDB Endowment 8 (12) (2015) 1630–1641.

[9] D. Taniar, C. H. Leung, W. Rahayu, S. Goel, High performance parallel database

processing and grid databases, Vol. 67, John Wiley & Sons, 2008.
119

120 BIBLIOGRAPHY

[10] A. Kemper, T. Neumann, Hyper: A hybrid OLTP & OLAP main memory database

system based on virtual memory snapshots, in: Data Engineering (ICDE), 2011

IEEE 27th International Conference on, IEEE, 2011, pp. 195–206.

[11] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, W. Lehner, Sap hana

database: data management for modern business applications, ACM Sigmod Record

40 (4) (2012) 45–51.

[12] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy,

J. Leenstra, S. Lightstone, S. Liu, G. M. Lohman, et al., Db2 with blu acceleration:

So much more than just a column store, Proceedings of the VLDB Endowment

6 (11) (2013) 1080–1091.

[13] P.-Å. Larson, A. Birka, E. N. Hanson, W. Huang, M. Nowakiewicz, V. Papadi-

mos, Real-time analytical processing with SQL server, Proceedings of the VLDB

Endowment 8 (12) (2015) 1740–1751.

[14] P.-A. Larson, E. N. Hanson, M. Zwilling, Evolving the architecture of SQL server

for modern hardware trends, in: 2015 IEEE 31st International Conference on Data

Engineering, IEEE, 2015, pp. 1239–1245.

[15] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson, S. Hase, A. Hol-

loway, J. Kamp, T.-H. Lee, et al., Oracle database in-memory: A dual format

in-memory database, in: 2015 IEEE 31st International Conference on Data Engi-

neering, IEEE, 2015, pp. 1253–1258.

[16] S. Chavan, A. Hopeman, S. Lee, D. Lui, A. Mylavarapu, E. Soylemez, Accelerating

joins and aggregations on the oracle in-memory database, in: 2018 IEEE 34th

International Conference on Data Engineering (ICDE), IEEE, 2018, pp. 1441–1452.

[17] P. A. Boncz, M. Zukowski, N. Nes, Monetdb/x100: Hyper-pipelining query execu-

tion., in: CIDR, Vol. 5, 2005, pp. 225–237.

[18] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, S. Madden, Hyrise:

a main memory hybrid storage engine, Proceedings of the VLDB Endowment 4 (2)

(2010) 105–116.

[19] M. Heimel, M. Saecker, H. Pirk, S. Manegold, V. Markl, Hardware-oblivious

parallelism for in-memory column-stores, Proceedings of the VLDB Endowment

6 (9) (2013) 709–720.

BIBLIOGRAPHY 121

[20] A. Tsang, M. Olschanowsky, A study of database 2 customer queries, IBM Santa

Teresa Laboratory, San Jose, CA, Technical Report TR-03-413 (1991).

[21] S. Chaudhuri, K. Shim, Including group-by in query optimization, in: VLDB,

Vol. 94, 1994, pp. 354–366.

[22] M. Eich, P. Fender, G. Moerkotte, Efficient generation of query plans containing

group-by, join, and groupjoin, The VLDB Journal—The International Journal on

Very Large Data Bases 27 (5) (2018) 617–641.

[23] J. Aguilar-Saborit, V. Muntés-Mulero, C. Zuzarte, J.-L. Larriba-Pey, Star join

revisited: Performance internals for cluster architectures, Data & Knowledge Engi-

neering 63 (3) (2007) 997–1015.

[24] S. Idreos, M. L. Kersten, S. Manegold, Self-organizing tuple reconstruction in

column-stores, in: Proceedings of the 2009 ACM SIGMOD International Confer-

ence on Management of Data, ACM, 2009, pp. 297–308.

[25] D. Abadi, S. Madden, M. Ferreira, Integrating compression and execution in column-

oriented database systems, in: Proceedings of the 2006 ACM SIGMOD International

Conference on Management of Data, ACM, 2006, pp. 671–682.

[26] M. Zukowski, S. Heman, N. Nes, P. Boncz, Super-scalar ram-cpu cache compres-

sion, in: 22nd International Conference on Data Engineering (ICDE’06), IEEE,

2006, pp. 59–59.

[27] S. Idreos, M. L. Kersten, S. Manegold, et al., Database Cracking., in: CIDR, Vol. 3,

2007, pp. 1–8.

[28] D. J. Abadi, D. S. Myers, D. J. DeWitt, S. R. Madden, Materialization strategies

in a column-oriented dbms, in: 2007 IEEE 23rd International Conference on Data

Engineering, IEEE, 2007, pp. 466–475.

[29] L. Shrinivas, S. Bodagala, R. Varadarajan, A. Cary, V. Bharathan, C. Bear, Mate-

rialization strategies in the vertica analytic database: Lessons learned, in: 2013

IEEE 29th International Conference on Data Engineering (ICDE), IEEE, 2013, pp.

1196–1207.

[30] D. J. Abadi, S. R. Madden, N. Hachem, Column-stores vs. row-stores: How dif-

ferent are they really?, in: Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, ACM, 2008, pp. 967–980.

122 BIBLIOGRAPHY

[31] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, S. Madden, et al., The design and

implementation of modern column-oriented database systems, Foundations and

Trends in Databases 5 (3) (2013) 197–280.

URL http://dx.doi.org/10.1561/1900000024

[32] Z. Li, K. A. Ross, Fast joins using join indices, The VLDB Journal—The Interna-

tional Journal on Very Large Data Bases 8 (1) (1999) 1–24.

[33] P. A. Boncz, S. Manegold, M. L. Kersten, et al., Database architecture optimized

for the new bottleneck: Memory access, in: VLDB, Vol. 99, 1999, pp. 54–65.

[34] S. Manegold, P. Boncz, M. Kersten, Optimizing main-memory join on modern

hardware, IEEE Transactions on Knowledge and Data Engineering 14 (4) (2002)

709–730.

[35] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani,

A. Di Blas, P. Dubey, Sort vs. hash revisited: fast join implementation on modern

multi-core cpus, Proceedings of the VLDB Endowment 2 (2) (2009) 1378–1389.

[36] S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, M. Kersten, et al.,

Monetdb: Two decades of research in column-oriented database architectures,

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

35 (1) (2012) 40–45.

[37] S. Begley, Z. He, Y.-P. P. Chen, Pameco join: A parallel main memory compact

hash join, Information Systems 58 (2016) 105–125.

[38] C. A. Galindo-Legaria, T. Grabs, S. Gukal, S. Herbert, A. Surna, S. Wang, W. Yu,

P. Zabback, S. Zhang, Optimizing star join queries for data warehousing in mi-

crosoft sql server, in: Data Engineering, 2008. ICDE 2008. IEEE 24th International

Conference on, IEEE, 2008, pp. 1190–1199.

[39] S. Blanas, Y. Li, J. M. Patel, Design and evaluation of main memory hash join

algorithms for multi-core cpus, in: Proceedings of the 2011 ACM SIGMOD Inter-

national Conference on Management of data, ACM, 2011, pp. 37–48.

[40] M.-C. Albutiu, A. Kemper, T. Neumann, Massively parallel sort-merge joins in

main memory multi-core database systems, Proceedings of the VLDB Endowment

5 (10) (2012) 1064–1075.

[41] C. Balkesen, G. Alonso, J. Teubner, M. T. Özsu, Multi-core, main-memory joins:

Sort vs. hash revisited, Proceedings of the VLDB Endowment 7 (1) (2013) 85–96.

http://dx.doi.org/10.1561/1900000024
http://dx.doi.org/10.1561/1900000024
http://dx.doi.org/10.1561/1900000024

BIBLIOGRAPHY 123

[42] Ç. Balkesen, J. Teubner, G. Alonso, M. T. Özsu, Main-memory hash joins on modern

processor architectures, IEEE Transactions on Knowledge and Data Engineering

27 (7) (2015) 1754–1766.

[43] P. Sangat, M. Indrawan-Santiago, D. Taniar, Sensor data management in the cloud:

Data storage, data ingestion, and data retrieval, Concurrency and Computation:

Practice and Experience 30 (1) (2018) e4354.

[44] P. Sangat, D. Taniar, M. Indrawan-Santiago, C. Messom, Nimble join: A parallel

star join for main memory column-stores, Concurrency and Computation: Practice

and Experience (2019) e5616.

[45] P. Sangat, D. Taniar, C. Messom, ATrie Group Join: A Parallel Star Group Join and

Aggregation for In-Memory Column-Stores, IEEE Transactions on Big Data 30 (1)

(2020) 1253–1258.

[46] J. J. Brito, T. Mosqueiro, R. R. Ciferri, C. D. de Aguiar Ciferri, Faster cloud star

joins with reduced disk spill and network communication, Procedia Computer

Science 80 (2016) 74–85.

[47] K. Sridhar, Big data analytics using sql: Quo vadis?, in: International Conference

on Research and Practical Issues of Enterprise Information Systems, Springer, 2017,

pp. 143–156.

[48] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,

S. Venkataraman, M. J. Franklin, et al., Apache spark: a unified engine for big data

processing, Communications of the ACM 59 (11) (2016) 56–65.

[49] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, M. Stone-

braker, A comparison of approaches to large-scale data analysis, in: Proceedings of

the 2009 ACM SIGMOD International Conference on Management of data, ACM,

2009, pp. 165–178.

[50] O. Polychroniou, W. Zhang, K. A. Ross, Distributed joins and data placement for

minimal network traffic, ACM Transactions on Database Systems (TODS) 43 (3)

(2018) 14.

[51] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, I. Stoica, Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing, in: Proceedings of the 9th USENIX Conference on

124 BIBLIOGRAPHY

Networked Systems Design and Implementation, USENIX Association, 2012, pp.

2–2.

[52] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, et al., Spark sql: Relational data processing in spark, in:

Proceedings of the 2015 ACM SIGMOD international conference on management

of data, ACM, 2015, pp. 1383–1394.

[53] V. Purdilă, Ş.-G. Pentiuc, Single-scan: a fast star-join query processing algorithm,

Software: Practice and Experience 46 (3) (2016) 319–339.

[54] R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri, N. Chainani,

S. Lightstone, D. Sharpe, Memory-efficient hash joins, Proceedings of the VLDB

Endowment 8 (4) (2014) 353–364.

[55] E. Fredkin, Trie memory, Commun. ACM 3 (9) (1960) 490–499. doi:10.1145/

367390.367400.

[56] P. Celis, P.-A. Larson, J. I. Munro, Robin hood hashing, in: 26th Annual Symposium

on Foundations of Computer Science (sfcs 1985), IEEE, 1985, pp. 281–288.

[57] P. Sangat, D. Taniar, C. Messom, Distributed ATrie Group Join: Towards Zero

Network Cost, IEEE Access 8 (2020) 111598–111613.

[58] S. Watanabe, K. Fujimoto, Y. Saeki, Y. Fujikawa, H. Yoshino, Column-oriented

database acceleration using fpgas, in: 2019 IEEE 35th International Conference on

Data Engineering (ICDE), IEEE, 2019, pp. 686–697.

[59] D. S. Batory, On searching transposed files, ACM Transactions on Database Systems

(TODS) 4 (4) (1979) 531–544.

[60] I. Karasalo, P. Svensson, An overview of cantor-a new system for data analysis., in:

SSDBM, Vol. 83, 1983, pp. 315–324.

[61] I. Karasalo, P. Svensson, The design of cantor-a new system for data analysis., in:

SSDBM, Vol. 86, 1986, pp. 224–244.

[62] S. Khoshafian, G. Copeland, T. Jagodits, H. Boral, P. Valduriez, A query processing

strategy for the decomposed storage model, in: Data Engineering, 1987 IEEE Third

International Conference on, IEEE, 1987, pp. 636–643.

https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/367390.367400

BIBLIOGRAPHY 125

[63] S. Khoshafian, P. Valduriez, Parallel execution strategies for declustered databases,

in: Database Machines and Knowledge Base Machines, Springer, 1988, pp. 458–

471.

[64] S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos, P. Boncz, Positional update

handling in column stores, in: Proceedings of the 2010 ACM SIGMOD International

Conference on Management of Data, ACM, 2010, pp. 543–554.

[65] A. McAfee, E. Brynjolfsson, T. H. Davenport, D. Patil, D. Barton, Big data, The

management revolution. Harvard Bus Rev 90 (10) (2012) 61–67.

[66] R. R. Schaller, Moore’s law: past, present and future, IEEE spectrum 34 (6) (1997)

52–59.

[67] L. G. Roberts, Beyond Moore’s law: Internet growth trends, Computer 33 (1) (2000)

117–119.

[68] A. Kumar, J. Naughton, J. M. Patel, X. Zhu, To join or not to join? Thinking twice

about joins before feature selection, in: Proceedings of the 2016 ACM SIGMOD

International Conference on Management of Data, SIGMOD, Vol. 16, 2016, pp.

54–65.

[69] M. Zukowski, P. A. Boncz, N. Nes, S. Héman, Monetdb/x100-a dbms in the cpu

cache., IEEE Data Eng. Bull. 28 (2) (2005) 17–22.

[70] S. K. Begley, Z. He, Y.-P. P. Chen, Mcjoin: a memory-constrained join for column-

store main-memory databases, in: Proceedings of the 2012 ACM SIGMOD Interna-

tional Conference on Management of Data, ACM, 2012, pp. 121–132.

[71] S. Jha, B. He, M. Lu, X. Cheng, H. P. Huynh, Improving main memory hash joins

on intel xeon phi processors: An experimental approach, Proceedings of the VLDB

Endowment 8 (6) (2015) 642–653.

[72] P. O’Neil, G. Graefe, Multi-table joins through bitmapped join indices, ACM

SIGMOD Record 24 (3) (1995) 8–11.

[73] V. Markl, F. Ramsak, R. Bayer, Improving olap performance by multidimensional hi-

erarchical clustering, in: Database Engineering and Applications, 1999. IDEAS’99.

International Symposium Proceedings, IEEE, 1999, pp. 165–177.

126 BIBLIOGRAPHY

[74] A. Weininger, Efficient execution of joins in a star schema, in: Proceedings of

the 2002 ACM SIGMOD international conference on Management of Data, ACM,

2002, pp. 542–545.

[75] Z. Fang, Z. He, J. Chu, C. Weng, Simd accelerates the probe phase of star joins

in main memory databases, in: International Conference on Database Systems for

Advanced Applications, Springer, 2019, pp. 476–480.

[76] J. Aguilar-Saborit, V. Muntés-Mulero, C. Zuzarte, J.-L. Larriba-Pey, Ad hoc star

join query processing in cluster architectures, in: International Conference on Data

Warehousing and Knowledge Discovery, Springer, 2005, pp. 200–209.

[77] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener, G. Graefe, Query

processing techniques for solid state drives, in: Proceedings of the 2009 ACM

SIGMOD International Conference on Management of data, ACM, 2009, pp. 59–

72.

[78] Y. Yuan, R. Lee, X. Zhang, The yin and yang of processing data warehousing queries

on gpu devices, Proceedings of the VLDB Endowment 6 (10) (2013) 817–828.

[79] Z. Guoliang, W. Guilan, GBFSJ: Bloom filter star join algorithms on gpus, in:

2015 12th International Conference on Fuzzy Systems and Knowledge Discovery

(FSKD), IEEE, 2015, pp. 2427–2431.

[80] J. Goldstein, P.-Å. Larson, Optimizing queries using materialized views: a practical,

scalable solution, ACM SIGMOD Record 30 (2) (2001) 331–342.

[81] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi, C. Bear,

The vertica analytic database: C-store 7 years later, Proceedings of the VLDB

Endowment 5 (12) (2012).

[82] Monitoring and instrumentation (2019).

URL https://spark.apache.org/docs/latest/monitoring.html

[83] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, A. Ailamaki, Scaling up concurrent

main-memory column-store scans: towards adaptive numa-aware data and task

placement, Proceedings of the VLDB Endowment 8 (12) (2015) 1442–1453.

[84] C. Ordonez, Can we analyze big data inside a dbms?, in: Proceedings of the

Sixteenth International Workshop on Data Warehousing and OLAP, ACM, 2013,

pp. 85–92.

https://spark.apache.org/docs/latest/monitoring.html
https://spark.apache.org/docs/latest/monitoring.html

BIBLIOGRAPHY 127

[85] K. Sridhar, Modern column stores for big data processing, in: International Confer-

ence on Big Data Analytics, Springer, 2017, pp. 113–125.

[86] A. Datta, D. VanderMeer, K. Ramamritham, Parallel star join+ dataindexes: Effi-

cient query processing in data warehouses and olap, IEEE Transactions on Knowl-

edge and Data Engineering 14 (6) (2002) 1299–1316.

[87] H. Han, H. Jung, H. Eom, H. Y. Yeom, Scatter-gather-merge: An efficient star-join

query processing algorithm for data-parallel frameworks, Cluster Computing 14 (2)

(2011) 183–197.

[88] C. Zhang, L. Wu, J. Li, Efficient processing distributed joins with bloom filter using

MapReduce, International Journal of Grid and Distributed Computing 6 (3) (2013)

43–58.

[89] B. H. Bloom, Space/time trade-offs in hash coding with allowable errors, Commu-

nications of the ACM 13 (7) (1970) 422–426.

[90] Y. Ramdane, N. Kabachi, O. Boussaid, F. Bentayeb, SkipSJoin: A New Physical De-

sign for Distributed Big Data Warehouses in Hadoop, in: International Conference

on Conceptual Modeling, Springer, 2019, pp. 255–263.

[91] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, Y. Tian, A comparison

of join algorithms for log processing in MapReduce, in: Proceedings of the 2010

ACM SIGMOD International Conference on Management of data, ACM, 2010, pp.

975–986.

[92] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, S. Wu, Llama: leveraging columnar storage

for scalable join processing in the MapReduce framework, in: Proceedings of the

2011 ACM SIGMOD International Conference on Management of Data, 2011, pp.

961–972.

[93] H. Zhu, M. Zhou, F. Xia, A. Zhou, Efficient star join for column-oriented data store

in the MapReduce environment, in: 2011 Eighth Web Information Systems and

Applications Conference, IEEE, 2011, pp. 13–18.

[94] G. Zhou, Y. Zhu, G. Wang, Cache conscious star-join in MapReduce environments,

in: Proceedings of the 2nd International Workshop on Cloud Intelligence, ACM,

2013, p. 1.

128 BIBLIOGRAPHY

[95] L. Cheng, S. Kotoulas, T. E. Ward, G. Theodoropoulos, Improving the robustness

and performance of parallel joins over distributed systems, Journal of Parallel and

Distributed Computing 109 (2017) 310–323.

[96] R. H. Von Alan, S. T. March, J. Park, S. Ram, Design science in information systems

research, MIS Quarterly 28 (1) (2004) 75–105.

[97] S. T. March, G. F. Smith, Design and natural science research on information

technology, Decision support systems 15 (4) (1995) 251–266.

[98] P. O’Neil, E. O’Neil, X. Chen, S. Revilak, The star schema benchmark and aug-

mented fact table indexing, in: Technology Conference on Performance Evaluation

and Benchmarking, Springer, 2009, pp. 237–252.

[99] J. Sanchez, A review of star schema benchmark, arXiv preprint arXiv:1606.00295

(2016).

[100] G. Graefe, R. Bunker, S. Cooper, Hash joins and hash teams in Microsoft SQL

Server, in: VLDB, Vol. 98, Citeseer, 1998, pp. 86–97.

[101] N. Askitis, Fast and compact hash tables for integer keys, in: Proceedings of the

Thirty-Second Australasian Conference on Computer Science-Volume 91, Aus-

tralian Computer Society, Inc., 2009, pp. 113–122.

[102] V. Leis, P. Boncz, A. Kemper, T. Neumann, Morsel-driven parallelism: a numa-

aware query evaluation framework for the many-core age, in: Proceedings of the

2014 ACM SIGMOD International Conference on Management of Data, ACM,

2014, pp. 743–754.

[103] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, M. Zhang, In-memory big data man-

agement and processing: A survey, IEEE Transactions on Knowledge and Data

Engineering 27 (7) (2015) 1920–1948.

[104] Q. Cai, H. Zhang, W. Guo, G. Chen, B. C. Ooi, K.-L. Tan, W.-F. Wong, Memepic:

Towards a unified in-memory big data management system, IEEE Transactions on

Big Data 5 (1) (2018) 4–17.

[105] O. Polychroniou, K. A. Ross, Vectorized bloom filters for advanced simd processors,

in: Proceedings of the Tenth International Workshop on Data Management on New

Hardware, ACM, 2014, p. 6.

BIBLIOGRAPHY 129

[106] J. Jannink, Implementing deletion in b+-trees, ACM Sigmod Record 24 (1) (1995)

33–38.

[107] J. I. Munro, P. Celis, Techniques for collision resolution in hash tables with open

addressing, in: Proceedings of 1986 ACM Fall joint computer conference, IEEE

Computer Society Press, 1986, pp. 601–610.

[108] P. Flajolet, P. Poblete, A. Viola, On the analysis of linear probing hashing, Algorith-

mica 22 (4) (1998) 490–515.

[109] F. Kastrati, G. Moerkotte, Optimization of conjunctive predicates for main memory

column stores, Proceedings of the VLDB Endowment 9 (12) (2016) 1125–1136.

[110] J. F. Naughton, Technical perspective: Optimized wandering for online aggregation,

ACM SIGMOD Record 46 (1) (2017) 32–32.

[111] F. Li, B. Wu, K. Yi, Z. Zhao, Wander join: Online aggregation via random walks, in:

Proceedings of the 2016 International Conference on Management of Data, 2016,

pp. 615–629.

Appendix A

SSBM Query Definitions

Query Flight (QF) 1: SSBM starts with a query flight having restrictions on only one

dimension. The query quantifies the amount of revenue increase that would have resulted

from eliminating certain company-wide discounts in a given percentage range for products

shipped in a given year. This is a “what if” query to find possible revenue increases.

select sum(lo_extendedprice * lo_discount) as revenue

from lineorder, date

where lo_orderdate = d_datekey

and d_year = [YEAR] -- Specific values below

and lo_discount between [DISCOUNT] - 1 and [DISCOUNT] + 1

and lo_quantity < [QUANTITY];

In QF 1, lo quantity is restricted, not just to the lower half of the range, but to different

ranges with different filter factors. QF 1 has three queries.

Q 1.1 YEAR = 1993, DISCOUNT = 2, QUANTITY = 25, so predicates are d year =

1993, lo quantity < 25, lo discount between 1 and 3.

select sum(lo_extendedprice*lo_discount) as revenue

from lineorder, date

where lo_orderdate = d_datekey

and d_year = 1993

and lo_discount between1 and 3

and lo_quantity < 25;

131

132 APPENDIX A. SSBM QUERY DEFINITIONS

Filter Factor (FF) = (1/7)*0.5*(3/11) = 0.0194805. Number of lineorder rows selected,

for SF = 1, is 0.0194805*6,000,000 ≈ 116,883.

Q 1.2 d yearmonthnum = 199401, lo quantity between 26 and 35, lo discount between

4 and 6.

select sum(lo_extendedprice * lo_discount) as revenue

from lineorder, date

where lo_orderdate = d_datekey

and d_yearmonthnum = 199401

and lo_discount between4 and 6

and lo_quantity between 26 and 35;

FF = (1/84)*(3/11)*0.2 = 0.00064935. Number of lineorder rows selected, for SF = 1:

0.00064935*6,000,000 ≈ 3896.

Q 1.3 d weeknuminyear = 6 and d year = 1994, lo quantity between 36 and 40,

lo discount between 5 and 7.

select sum(lo_extendedprice * lo_discount) as revenue

from lineorder, date

where lo_orderdate = d_datekey

and d_weeknuminyear = 6

and d_year = 1994

and lo_discount between 5 and 7

and lo_quantity between 26 and 35;

FF = (1/364)*(3/11)*0.1 = .000075. Number of lineorder rows selected, for SF = 1, is

.000075*6,000,000 ≈ 450.

QF 2: For a second query flight, the queries have restrictions on two dimensions.

The queries compares revenue for some product classes, for suppliers in a certain region,

grouped by more restrictive product classes and all years of orders. QF 2 has three queries.

Q 2.1 p category = ‘MFGR#12’, s region = ‘AMERICA’

select sum(lo_revenue), d_year, p_brand1

from lineorder, date, part, supplier

where lo_orderdate = d_datekey

and lo_partkey = p_partkey

and lo_suppkey = s_suppkey

133

and p_category = ‘MFGR#12’

and s_region = ‘AMERICA’

group by d_year, p_brand1

order by d_year, p_brand1;

p category = ‘MFGR#12’, FF = 1/25; s region, FF=1/5. So LINEORDER FF =

(1/25)*(1/5) = 1/125. Number of lineorder rows selected, for SF = 1, is (1/125)*6,000,000

≈ 48,000

Q 2.2 p category = ‘MFGR#12’ changed to p brand1 between ‘MFGR#2221’ and

‘MFGR#2228’ and s region to ‘ASIA’.

select sum(lo_revenue), d_year, p_brand1

from lineorder, date, part, supplier

where lo_orderdate = d_datekey

and lo_partkey = p_partkey

and lo_suppkey = s_suppkey

and p_brand1 between ‘MFGR#2221’ and ‘MFGR#2228’

and s_region = ‘ASIA’

group by d_year, p_brand1

order by d_year, p_brand1;

So lineorder FF = (1/125)*(1/5) = 1/625. Number of lineorder rows selected, for SF =

1, is (1/625)*6,000,000 ≈ 9600.

Q 2.3 p category = ‘MFGR#12’ changed to p brand1 = ‘MFGR#2339’ and s region =

‘EUROPE’.

select sum(lo_revenue), d_year, p_brand1

from lineorder, date, part, supplier

where lo_orderdate = d_datekey

and lo_partkey = p_partkey

and lo_suppkey = s_suppkey

and p_brand1 = ‘MFGR#2221’

and s_region = ‘EUROPE’

group by d_year, p_brand1

order by d_year, p_brand1;

134 APPENDIX A. SSBM QUERY DEFINITIONS

So lineorder FF = (1/1000)*(1/5) = 1/5000. Number of lineorder rows selected, for SF

= 1, is (1/5000)*6,000,000 ≈ 1200.

QF 3: In the third query flight, restrictions are placed on three dimensions, including

the remaining dimension, customer. The query provides revenue volume for lineorder

transactions by customer nation and supplier nation and year within a given region, within

a certain time period. QF 3 has four queries.

select c_nation, s_nation, d_year, sum(lo_revenue) as revenue

from customer, lineorder, supplier, date

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_orderdate = d_datekey

and c_region = ‘ASIA’

and s_region = ‘ASIA’

and d_year >= 1992 and d_year <= 1997

group by c_nation, s_nation, d_year

order by d_year asc, revenue desc;

Q 3.1 Q3 as written: c region = ‘ASIA’ so FF = 1/5 for customer, FF = 1/5 for supplier,

and 6-year period FF = 6/7 for d year; Thus, LINEORDER FF = (1/5)*(1/5)*(6/7) = 6/175

and the number of lineorder rows selected, for SF = 1, is (6/175)*6,000,000 ≈ 205,714.

Q 3.2 Restriction is changed to a certain nation, and within that nation, revenue by

customer city and supplier city, and year.

select c_city, s_city, d_year, sum(lo_revenue) as revenue

from customer, lineorder, supplier, date

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_orderdate = d_datekey

and c_nation = ‘UNITED STATES’

and s_nation = ‘UNITED STATES’

and d_year >= 1992 and d_year <= 1997

group by c_city, s_city, d_year

order by d_year asc, revenue desc;

The c nation and s nation restriction has FF = 1/25; so lineorder FF is (1/25)*(1/25)*(6/7)

= 6/4375. The number of lineorder rows selected, for SF = 1, is (6/4375)*6,000,000 ≈

135

8,228.

Q 3.3 Restriction is changed to two cities in ’UNITED KINGDOM’; retrieve c city

and group by c city.

select c_city, s_city, d_year, sum(lo_revenue) as revenue

from customer, lineorder, supplier, date

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_orderdate = d_datekey

and (c_city=‘UNITED KI1’or c_city=‘UNITED KI5’)

and (s_city=‘UNITED KI1’ or s_city=‘UNITED KI5’)

and d_year >= 1992 and d_year <= 1997

group by c_city, s_city, d_year

order by d_year asc, revenue desc;

The c nation and s nation restriction has FF = (2/10)*(1/25)= 1/125; so lineorder FF is

(1/125)*(1/125)*(6/7) = 6/109375. The number of lineorder rows selected, for SF = 1, is

(6/109375)*6,000,000 ≈ 329.

Q 3.4 Query drills down in time to just one month, to create a “needle-in-haystack”

query.

select c_city, s_city, d_year, sum(lo_revenue) as revenue

from customer, lineorder, supplier, date

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_orderdate = d_datekey

and (c_city=‘UNITED KI1’ or c_city=‘UNITED KI5’)

and (s_city=‘UNITED KI1’ or s_city=‘UNITED KI5’)

and d_yearmonth = ‘Dec1997’

group by c_city, s_city, d_year

order by d_year asc, revenue desc;

So lineorder FF is (1/125)*(1/125)*(1/84) = 1/1,312,500. The number of lineorder

rows selected, for SF = 1, is (1/1,312,500)*6,000,000 ≈ 5.

QF 4: This query flight represents a “What-If” sequence, of the OLAP type. It starts

with a group by on two dimensions and rather weak constraints on three dimensions, and

measure the aggregate profit, measured as (lo revenue - lo supplycost).

136 APPENDIX A. SSBM QUERY DEFINITIONS

select d_year, c_nation, sum(lo_revenue - lo_supplycost) as profit

from date, customer, supplier, part, lineorder

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_partkey = p_partkey

and lo_orderdate = d_datekey

and c_region = ‘AMERICA’

and s_region = ‘AMERICA’

and (p_mfgr = ‘MFGR#1’ or p_mfgr = ‘MFGR#2’)

group by d_year, c_nation

order by d_year, c_nation;

Q 4.1 Query QF 4 written as restriction on region FFs 1/5 each, p mfgr restriction 2/5.

FF on lineorder = (1/5)(1/5)*(2/5) = 2/125. So the number of lineorder rows selected for

SF = 1 is (2/125)*6,000,000 ≈ 96000.

Q 4.2 Assume that in Q 4.1 output, we find a surprising growth of 40% in profit from

year 1997 to year 1998, uniform across c nation. (This need not be true for the data we

actually examine.) We would probably want to pivot to group by year, s nation and a

further breakdown by p category to see where the change arises.

select d_year, s_nation, p_category,

sum(lo_revenue - lo_supplycost) as profit

from date, customer, supplier, part, lineorder

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_partkey = p_partkey

and lo_orderdate = d_datekey

and c_region = ‘AMERICA’

and s_region = ‘AMERICA’

and (d_year = 1997 or d_year = 1998)

and (p_mfgr = ‘MFGR#1’ or p_mfgr = ‘MFGR#2’)

group by d_year, s_nation, p_category

order by d_year, s_nation, p_category;

This has the same FF as Q4.1 except in time and accesses 2/7 of the same lineorder data;

for that data it simply has a different group by dimension breakout. Its FF = (2/7)*(2/125)

137

= 4/875. So the number of lineorder rows selected for SF = 1 is (4/875)*6,000,000 ≈
27,428.

Q 4.3 Assume that as a result of Q 4.2, a great percentage of the profit increase

from year 1997 to 1998 comes from s nation = ‘UNITED STATES’ and p category =

‘MFGR1#4’. Now we might want to drill down to cities in the United States and into

p brand1 (within p category).

select d_year, s_city, p_brand1,

sum(lo_revenue - lo_supplycost) as profit

from date, customer, supplier, part, lineorder

where lo_custkey = c_custkey

and lo_suppkey = s_suppkey

and lo_partkey = p_partkey

and lo_orderdate = d_datekey

and c_region = ‘AMERICA’

and s_nation = ‘UNITED STATES’

and (d_year = 1997 or d_year = 1998)

and p_category = ‘MFGR#14’

group by d_year, s_city, p_brand1

order by d_year, s_city, p_brand1;

The FF for c region is 1/5 and for s nation is 1/25; the FF for d year remains at 2/7, and

the restriction on p category is now 1/25. Thus the lineorder FF is: (1/5)*(1/25)*(2/7)*(1/25)

= 2/21875. The number of lineorder rows retrieved for SF = 1 is (2/21875)*6,000,000 ≈
549.

Appendix B

Setting up the Standalone Cluster

We used Ubuntu 18.04.02 LTS (Bionic Beaver) as the operating system and installed the

following tools and technologies for the experiment.

1. Python as a programming language

2. Jupyter Notebook as an IDE for python development

3. Apache Spark as a big data processing tool

We will go through one by one the installation of required software for the experiment.

Install JAVA

We updated the local apt package index and then downloaded and installed the packages:

$ sudo apt update

Apache Spark needs JAVA to run. We installed JAVA by typing:

$ sudo apt install openjdk-8-jdk

Install Spark

We installed Apache Spark using the following commands:

139

140 APPENDIX B. SETTING UP THE STANDALONE CLUSTER

$ wget http://.../spark-2.4.0-bin-hadoop2.7.tgz

$ tar zxvf spark-2.4.0-bin-hadoop2.7.tgz

$ sudo nano .bashrc

Spark

export SPARK_HOME="/home/ubuntu/spark-2.4.0-bin-hadoop2.7/"

$ source .bashrc

Setting up the Spark Cluster (Key-less entry)

We set up password-less SSH access from the master machine to the others. This required

having the same user account on all the machines, creating a private SSH key for it on

the master via ssh-keygen, and adding this key to the .ssh/authorized keys file of all the

workers. We followed the commands below to setup the key-less entry:

On master: run ssh-keygen accepting default options

$ ssh-keygen -t rsa

Enter file in which to save the key (/home/you/.ssh/id_rsa): [ENTER]

Enter passphrase (empty for no passphrase): [EMPTY]

Enter same passphrase again: [EMPTY]

On workers:

copy ~/.ssh/id_rsa.pub from your master to the worker, then use:

$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys (on the workers)

$ chmod 644 ~/.ssh/authorized_keys

On Master, we edited the conf/slaves file on the master and fill in the workers’ host

names (ip address). Then we copied “conf/slaves.template” to create “conf/slaves”. On

Master and Slaves, we edited the conf/spark-env.sh.template to create conf/spark-env.sh

and included the following lines:

export SPARK_MASTER_IP=<IP ADDRESS OF MASTER>

export SPARK_MASTER_HOST=<IP ADDRESS OF MASTER>

export SPARK_MASTER_PORT=7077

export SPARK_LOCAL_DIRS=/mnt/spark_tmp_dir

We need to create the directory and

change ownership to user ubuntu

141

export PYSPARK_PYTHON=/usr/bin/python3

export PYSPARK_DRIVER_PYTHON=/usr/bin/ipython

To start the cluster, we ran the following command on the master node. It is important

to run it there rather than on a worker.

$ spark-2.4.0-bin-hadoop2.7/sbin/start-all.sh

If everything started, the cluster manager’s web UI should appear

at http://<masternode i.e ipaddress of master>:8080 and show all

your workers.

To stop the cluster, we ran the following command on the master node.

$ spark-2.4.0-bin-hadoop2.7/sbin/stop-all.sh

Install Jypyter Notebook

Anaconda is an open-source package manager, environment manager, and distribution of

the Python and R programming languages that can be used to install jypter notebook. Note:

Installation is required in every node to avoid error 13: Permission denied.

Download Anaconda bash script:

$ wget https://repo.anaconda.com/archive/

Anaconda3-5.2.0-Linux-x86_64.sh

Verify Data integrity of the installer

$ sha256sum Anaconda3-5.2.0-Linux-x86_64.sh

Run the anaconda script

$ bash Anaconda3-5.2.0-Linux-x86_64.sh

Activate installation

$ source ~/.bashrc

Once conda is installed, we created a conda virtual environment called jupyter:

$ conda create -n jupyter

$ source activate jupyter

(jupyter) ubuntu@mu-master:~$ conda install jupyter

142 APPENDIX B. SETTING UP THE STANDALONE CLUSTER

We edited the config to make notebook accessible from outside. This needs to be done

only on master node.

(jupyter) ubuntu@mu-master:~$ jupyter notebook --generate-config

(jupyter) ubuntu@mu-master:~$ sudo nano .jupyter/

jupyter_notebook_config.py

Find #c.NotebookApp.ip = ‘localhost’ and replace with

c.NotebookApp.ip = ‘*’

Running the cluster

In Master, we ran the code below:

$ spark-2.4.0-bin-hadoop2.7/sbin/start-all.sh

This starts all the master and the slaves.

Tmux is a good option available to run Jupyter Notebook in the background. We

executed the code below to start the jupyter notebook.

~$ source activate jupyter

(jupyter).....~$ jupyter notebook

PhD made me poorer, without money, but richer in thoughts.

- Lailah Gifty Akita

	Abstract
	Introduction
	Motivation
	Scope of Research
	Star Join Queries
	Star Group-By Join Queries

	Research Aim and Questions
	Research Contribution and Impact
	Thesis Organisation

	Literature Review
	Column-Store
	Data Layout and Access Pattern
	Materialisation Strategies
	Features of Column-Stores
	Research Gaps

	Parallel Processing
	Parallel Hash Joins
	Parallel Star Joins
	Research Gaps

	Distributed Processing
	Distributed Star Joins
	Research Gaps

	Summary

	Research Methodology
	Research Method
	Experimental Evaluation
	Star Schema Benchmark (SSBM)

	Analytical Evaluation
	Motivation
	Model Methodology

	Summary

	Parallel Star Joins
	Overview: Challenges and Solution
	Star Joins
	Memory and Initial Response
	Technical Contributions

	Multi-Attribute Array Table (MAAT)
	Avoiding Collisions
	Memory Consumption
	Parallelism in MAAT
	Evaluation

	Progressive Materialisation
	Operation
	Advantages

	Nimble Join
	Join Processing Method
	Parallelizing Nimble Join

	Experiment Evaluation
	Experiment Setup
	Algorithms Tested
	Experiment Results

	Analytical Evaluation
	Cost Models
	Model Evaluation

	Summary

	Parallel Star Group-By Join
	Overview: Challenges and Solution
	Big Data, Big Problems
	Star Group-By Join
	Technical Contributions

	Aggregate Trie (ATrie)
	Terminologies
	Formal Definition
	Physical Data Structure
	ATrie Operations

	ATrie Group Join (ATGJ)
	Join Processing Method
	Parallelizing ATGJ

	Experiment Evaluation
	Experiment Setup
	Algorithms Tested
	Experiment Results

	Analytical Evaluation
	Cost Models
	Model Evaluation

	Summary

	Distributed Star Group-By Join
	Overview: Challenges and Solution
	Excessive Network Communication and Disk Spill
	Technical Contributions

	Fast Hash Table (FHT)
	An upper limit on the number of probes
	Evaluation

	Distributed ATrie Group Join (DATGJ)
	Join Processing Method

	Experimental Evaluation
	Experimental Setup
	Algorithms Tested
	Experimental Results

	Analytical Evaluation
	Cost Models
	Model Evaluation
	Analysis

	Summary

	Conclusion
	Summary of Contributions
	Nimble Join
	ATrie Group Join (ATGJ)
	Distributed ATrie Group Join (DATGJ)

	Future Research
	Online Aggregation
	Column-Store Specific Features

	Bibliography
	SSBM Query Definitions
	Setting up the Standalone Cluster

