
Enhanced Security for Searchable Symmetric Encryption Supporting Rich
Queries
Cong Zuo

Doctor of Philosophy

A thesis submitted for the degree of Doctor of Philosophy at
Monash University in 2020

Clayton School of Information Technology

Copyright notice

c© Cong Zuo (2020)

I certify that I have made all reasonable efforts to secure copyright permissions for third-
party content included in this thesis and have not knowingly added copyright content to
my work without the owner’s permission.

I

Abstract

Searchable symmetric encryption (SSE) allows a user to search on an encrypted database
that is stored on the untrusted cloud while protecting the privacy of both the data and the
queries. To enable updates on the encrypted database, dynamic SSE (DSSE) was proposed.
It enables a client to perform updates and searches on encrypted data, which makes it very
useful in practice. To protect DSSE from the leakage of updates (leading to break query
or data privacy), two new security notions, forward and backward privacy, have been pro-
posed recently. Although extensive attention has been paid to forward privacy, this is not
the case for backward privacy. Backward privacy, first formally introduced by Bost et al.,
is classified into three types from weak to strong, exactly Type-III to Type-I. To the best of
our knowledge, however, no practical DSSE schemes without trusted hardware (e.g., SGX)
have been proposed so far, in terms of the strong backward privacy and constant roundtrips
between the client and the server. Besides, the existing forward and backward private DSSE
schemes either only support single keyword queries or require more interactions between
the client and the server.

This research focuses on how to achieve forward and stronger backward private DSSE
without trusted hardware and make it support rich queries. In this thesis, we propose some
concrete forward/backward private DSSE schemes for range queries by using a binary tree
data structure and give a new leakage function for range queries. Moreover, we present a
new DSSE scheme by leveraging simple symmetric encryption with homomorphic addition
and bitmap index. The new scheme can achieve both forward and backward privacy with
one roundtrip. In particular, the backward privacy we achieve in our scheme (denoted by
Type-I−) is somewhat stronger than Type-I. In addition, our scheme is very practical as it
involves only lightweight cryptographic operations. To make it scalable for supporting bil-
lions of files, we further extend it to a multi-block setting. Finally, we give the corresponding
security proofs and experimental evaluation, which demonstrate both the security and prac-
ticality of our schemes, respectively.

II

Declaration

This thesis is an original work of my research and contains no material which has been
accepted for the award of any other degree or diploma at any university or equivalent in-
stitution and that, to the best of my knowledge and belief, this thesis contains no material
previously published or written by another person, except where due reference is made in
the text of the thesis.

Signature:

Print Name: Cong Zuo

Date: 18/09/2020

III

Publications during enrollment

Publications included in this thesis:

1. Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, Josef Pieprzyk: Dynamic Searchable
Symmetric Encryption Schemes Supporting Range Queries with Forward (and Back-
ward) Security. In European Symposium on Research in Computer Security, pages 228-
246, 2018. (Core Rank A)

2. Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, Josef Pieprzyk: Dynamic Search-
able Symmetric Encryption with Forward and Stronger Backward Privacy. In Euro-
pean Symposium on Research in Computer Security, pages 283-303, 2019. (Core Rank
A)

3. Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, Josef Pieprzyk, Lei Xu: Forward and
Backward Private DSSE for Range Queries. In IEEE Transactions on Dependable and
Secure Computing, 2020. (Early Access, IF=6.404)

Other publications not included in this thesis:

1. Shi-Feng Sun, Cong Zuo, Joseph K. Liu, Amin Sakzad, Ron Steinfeld, Tsz Hon Yuen,
Xingliang Yuan, Dawu Gu : Non-Interactive Multi-Client Searchable Encryption: Re-
alization and Implementation. In IEEE Transactions on Dependable and Secure Com-
puting, 2019. (Early Access, IF=6.404)

2. Shabnam Kasra Kermanshahi, Joseph K. Liu, Ron Steinfeld, Surya Nepal, Shangqi Lai,
Randolph Loh, and Cong Zuo: Multi-client Cloud-based symmetric searchable en-
cryption. In IEEE Transactions on Dependable and Secure Computing, 2019. (Early
Access, IF=6.404)

3. Lei Xu, Shi-Feng Sun, Xingliang Yuan, Joseph K. Liu, Cong Zuo, Chungen Xu: En-
abling Authorized Encrypted Search for Multi-Authority Medical Databases. In IEEE
Transactions on Emerging Topics in Computing, 2019. (Early Access, IF=4.989)

4. Lei Xu, Chungen Xu, Joseph K. Liu, Cong Zuo, Peng Zhang: Building a Dynamic
Searchable Encrypted Medical Database for Multi-client. In Information Sciences, 2019.
(Early Access, IF=5.524)

5. Qingqing Gan, Cong Zuo, Jianfeng Wang, Shi-Feng Sun, Xiaoming Wang: Dynamic
Searchable Symmetric Encryption with Forward and Backward Privacy: A Survey. In
International Conference on Network and System Security, pages 37-52, 2019. (Core
Rank B)

IV

6. Shangqi Lai, Sikhar Patranabis, Amin Sakzad, Joseph K. Liu, Debdeep Mukhopad-
hyay, Ron Steinfeld, Shi-Feng Sun, Dongxi Liu, Cong Zuo: Result Pattern Hiding
Searchable Encryption for Conjunctive Queries. In ACM SIGSAC Conference on Com-
puter and Communications Security, pages 745-762, 2018. (Core Rank A*)

7. Randolph Loh, Cong Zuo, Joseph K. Liu, Shi-Feng Sun: A Multi-client DSSE Scheme
Supporting Range Queries. In International Conference on Information Security and
Cryptology, pages 289-307, 2018. (Core Rank B)

8. Zhimei Sui, Shangqi Lai, Cong Zuo, Xingliang Yuan, Joseph K. Liu, Haifeng Qian: An
Encrypted Database with Enforced Access Control and Blockchain Validation. In In-
ternational Conference on Information Security and Cryptology, pages 260-273, 2018.
(Core Rank B)

9. Lei Xu, Chungen Xu, Joseph K. Liu, Cong Zuo, Peng Zhang: A Multi-client Dynamic
Searchable Symmetric Encryption System with Physical Deletion. In International
Conference on Information and Communications Security, pages 516-528, 2017. (Core
Rank B)

10. Xinxin Ma, Jun Shao, Cong Zuo, Ru Meng: Efficient Certificate-Based Signature and
Its Aggregation. In International Conference on Information Security Practice and Ex-
perience, pages 391-408, 2017. (Core Rank B)

V

Acknowledgements

Firstly, I would like to express my gratitude to my supervisors, Assoc. Prof. Joseph K. Liu,
Dr. Shi-Feng Sun, Prof. Josef Pieprzyk, for their support and guidance. I learned a lot from
them, including cryptographic knowledge and academic writing.

I also want to express my special thanks to Prof. Jun Shao, who led me to the palace of
cryptography and recommended me to Joseph K. Liu to pursue a Ph.D. degree at Monash
University. Moreover, he continued to give me help during the past few years. In addition,
I want to thank Prof. Guiyi Wei and Prof. Yun Ling for helping me get the funding, which
gives me financial support to visit Monash University before starting my Ph.D. journey.
Without them, this would not have been possible.

My panel members Ron Steinfeld, Carsten Rudolph, and Xingliang Yuan, have given me
their insightful comments about my research project, which help me to finish my research
project and this thesis. So I would like to thank them for their valuable help.

Furthermore, I would like to acknowledge Data61, CSIRO, for the generous financial and
resource support in the past three years.

I appreciate Ms. Danette Deriane for the help and the wish that she gave me when I was
applying for the Ph.D. scholarship. Also, she continued to help me after I started my Ph.D.
study. I also appreciate Ms. Kerry Mcmanus for the help that she gave me before and after
my Ph.D. journey. Moreover, I want to thank Ms. Julie Holden for helping me with my
milestones and improving my academic writing skills.

Finally, I am equally thankful to all the other teachers and staff for their generous assis-
tance before and after my Ph.D. study.

VI

Contents

Abstract II

Declaration III

Publication during enrollment IV

Acknowledgements VI

List of Figures X

List of Tables XI

List of Algorithms XII

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 2

1.3 Contributions . 3

1.3.1 Dynamic Searchable Symmetric Encryption Schemes Supporting
Range Queries with Forward/Backward Privacy 3

1.3.2 Dynamic Searchable Symmetric Encryption with Forward and
Stronger Backward Privacy . 3

1.3.3 Forward and Backward Private DSSE for Range Queries 4

1.4 Organization . 4

2 Related Work 5

2.1 Searchable Encryption . 5

2.1.1 Searchable Symmetric Encryption . 5

3 Dynamic Searchable Symmetric Encryption Schemes Supporting Range Queries
with Forward/Backward Privacy 8

3.1 Introduction . 8

3.1.1 Related Work . 10

VII

3.1.2 Organization . 11

3.2 Preliminaries . 11

3.2.1 Trapdoor Permutations . 11

3.2.2 Paillier Cryptosystem . 12

3.2.3 Notations . 12

3.3 Dynamic Searchable Symmetric Encryption (DSSE) 12

3.3.1 Security Definition . 14

3.4 Constructions . 14

3.4.1 Binary Tree for Range Queries . 14

3.4.2 Binary Database . 15

3.4.3 DSSE Range Queries - Construction A 19

3.4.4 DSSE Range Queries - Construction B 21

3.5 Security Analysis . 23

3.5.1 Forward Privacy . 23

3.5.2 Construction A . 24

3.5.3 Backward Privacy . 26

3.5.4 Construction B . 27

3.6 Conclusion . 29

4 Dynamic Searchable Symmetric Encryption with Forward and Stronger Backward
Privacy 30

4.1 Introduction . 30

4.1.1 Related Work . 34

4.1.2 Organization . 34

4.2 Preliminaries . 35

4.2.1 Simple Symmetric Encryption with Homomorphic Addition 35

4.2.2 Notations . 36

4.3 DSSE Definition and Security Model . 36

4.3.1 DSSE Definition . 37

4.3.2 Security Model . 38

4.3.3 Forward Privacy . 39

4.3.4 Backward Privacy . 39

VIII

4.4 Our Construction . 40

4.4.1 Overview . 40

4.4.2 DSSE with Forward and Stronger Backward Privacy 41

4.4.3 Multi-block Extension for Large Number of Files 42

4.5 Security Analysis . 43

4.6 Experimental Analysis . 47

4.7 Conclusion . 48

5 Forward and Backward Private DSSE for Range Queries 49

5.1 Introduction . 49

5.1.1 Related Work . 51

5.1.2 Organization . 53

5.2 Preliminaries . 53

5.2.1 Simple Symmetric Encryption with Homomorphic Addition 54

5.2.2 Binary Tree . 56

5.2.3 Notations . 56

5.3 DSSE definition and Security Model . 56

5.3.1 DSSE Definition . 58

5.3.2 Security Model . 58

5.4 Forward and Backward Privacy for Our Range Queries 59

5.4.1 Forward Privacy . 59

5.4.2 Backward Privacy . 60

5.5 Forward and Backward Private DSSE for Range Queries 61

5.6 Security Analysis . 62

5.7 Experimental Analysis . 66

5.8 Conclusion . 67

6 Future Directions 69

7 Conclusion 70

References 71

IX

List of Figures

3.1 Architecture of Our Binary Tree for Range Queries 16

3.2 Example of Update Operation . 18

4.1 An example of our bitmap index . 35

4.2 The running time of our schemes . 48

5.1 Illustration of bitmap index operations . 53

5.2 Binary Tree . 55

5.3 The update time of FBDSSE-RQ for different bit lengths and the parameter d . 66

5.4 The search time of FBDSSE-RQ for different ranges (d = 256, bit length is 107) 67

X

List of Tables

3.1 Comparison with existing DSSE schemes . 9

3.2 Notations (used in our constructions) . 13

4.1 Comparison with previous works . 33

4.2 Notations (used in our schemes) . 37

4.3 Comparison of computing overhead . 47

5.1 Comparison to previous works . 51

5.2 Notations . 57

XI

List of Algorithms

1 Our Binary Tree . 17
2 Construction A . 20
3 Construction B . 22
4 Game G1,2 and single box for G′1,2 . 25
5 Simulator S1 . 27
6 Simulator S2 . 28
7 FB-DSSE . 42
8 Multi-block extension MB-FB-DSSE (Differences in boxes) 43
9 G2 for FB-DSSE . 45
10 Simulator S for FB-DSSE . 46
11 Binary Tree . 55
12 FBDSSE-RQ . 61
13 G2 for FBDSSE-RQ . 64
14 Simulator S for FBDSSE-RQ . 65

XII

Chapter 1

Introduction

1.1 Motivation

Driven by the attractive on-demand features and advantages, the development and de-
ployment of cloud-based applications have gained substantial attention in both the industry
and research community. Cloud storage is one of the most successful cloud-based applica-
tions [1–4], since it provides users with efficient and effective storage services. However,
once the user’s data is uploaded to the cloud, the privacy of the data cannot be guaranteed
since the cloud provider (or the hacker) could learn the data that the user stored on the cloud
[5].

To protect the privacy of user’s data, a naı̈ve solution is to encrypt the data before out-
sourcing, which at the same time jeopardizes the usefulness of these data, such as search-
ability. To solve this dilemma between the usefulness and the confidentiality of the data,
many research efforts have been proposed, e.g. Oblivious RAM (ORAM) [6, 7], Private
Information Retrieval (PIR) [8, 9] and Searchable Symmetric Encryption (SSE) [10, 11]. Un-
fortunately, Oblivious RAM incurs large computation and client storage overhead, which
makes it impractical in the large database, and Private Information Retrieval only protects
the privacy of the queries, which allows a user to secretly retrieve the data without reveal-
ing the queries. Then searchable symmetric encryption (SSE), which enables searchability
on the ciphertexts, is the most promising technique. Later, many works have been done in
this area toward the scalability [12], the expressiveness [13, 14], the dynamism [15] or the
verifiability of the searchable symmetric encryption.

Early SSE works in the static setting only, which means it does not support the update
of the encrypted database. To circumvent this obstacle, dynamic searchable symmetric en-
cryption (DSSE) has been proposed to enable updates on the encrypted database. It not
only pertains the searchability over the encrypted data but also allows a user to update the
encrypted database, which is very useful since the user’s data is changing over time. How-
ever, during the update, it introduces more leakages that can be abused by the attackers
[16]. For example, many DSSE schemes [15, 17] suffer from file injection attack [16, 18]. This
attack can compromise the privacy of a client’s query by injecting a small portion of new
documents into the encrypted database.

To mitigate the above mentioned problem, two new security notions called forward and
backward privacy were proposed. They were informally introduced by Stefanov et al. in
2014 [19]. Roughly speaking, for any adversary who may continuously observe the inter-
actions between the server and the client, forward privacy is satisfied if the addition of

1

new files does not leak any information about previously queried keywords. In a simi-
lar vein, backward privacy holds if files that previously added and later deleted do not
leak “too much” information within any period that two search queries on the same key-
word happened1. Bost [20] formally defined forward privacy and designed a forward-
private DSSE scheme, which is resistant against file-injection attacks [18]. Recently, Bost
et al. [21] first gave formal backward privacy definitions with three different levels (Type-I
to Type-III, from most secure to least secure) for dynamic searchable symmetric encryption
scheme, and they also gave several concrete backward-private constructions with different
privacy/efficiency trade-offs. Besides, a majority of published forward and backward pri-
vate DSSE schemes support single keyword queries only. This greatly reduces their useabil-
ity. In many applications, we need more expressive search queries, such as range queries,
for instance.

Consider range queries. In a naı̈ve solution, one could query all possible values in a
range. This solution is not efficient if the range is large, as it requires a large communication
overhead. To process range queries more efficiently and reduce communication cost, Faber
et al. [13] applied a binary tree to the OXT scheme of Cash et al. [12]. Their solution works
for static databases only and does support updates. To the best of our knowledge, none of
the state-of-the-art searchable symmetric encryption schemes achieve all the aforementioned
properties simultaneously.

1.2 Research Questions

To address the above problems, this research is going to solve the following question:

How to design the enhanced security for searchable symmetric encryption
supporting rich queries?

In particular, we focuses on the following questions regarding the searchable symmetric
encryption:

• Forward/Backward private dynamic searchable symmetric encryption (DSSE) sup-
porting rich queries. Most existing dynamic searchable symmetric encryption schemes
[15, 17] suffer from file-injection attacks. To mitigate these attacks, two new security
notions, forward and backward privacy, have been proposed. However, most exist-
ing forward/backward private DSSE schemes only support single-keyword queries,
which greatly impedes its prevalence in the real world. Q1. How to design forward
and/or backward private DSSE supporting more rich queries?

1The files are leaked if the second search query is issued after the files are added but before they are deleted.
This is unavoidable since the adversary can easily tell the difference of the search results before and after the
same search query.

2

• Efficient dynamic searchable symmetric encryption (DSSE) with forward and stronger
backward privacy. Recently, Bost et al. [21] introduced several DSSE schemes with
different level of backward privacy. In particular, the scheme with Type-I backward
privacy (most secure) is based on the ORAM technique, which is not efficient. Q2.
How to design efficient forward and stronger backward private DSSE (without us-
ing ORAM)?

The above research questions comprise two requirements that need to be fulfilled in this
research. The first one is that we need to design efficient forward/backward private DSSE
supporting rich queries (e.g., range queries). The second one is to propose efficient DSSE
with forward and stronger backward privacy.

1.3 Contributions

This thesis makes three major contributions. Specifically, it includes 2 original papers
published in a conference and 1 original paper submitted in a peer-reviewed journal, and
they are detailed in Chapter 3, 4 and 5, respectively. In particular, it presents efficient DSSE
schemes supporting range queries with forward/backward privacy. Moreover, it introduces
efficient DSSE schemes with forward and stronger backward privacy. Finally, it gives a more
efficient forward and backward private DSSE for range queries. The following sections list
all the DSSE schemes.

1.3.1 Dynamic Searchable Symmetric Encryption Schemes Supporting

Range Queries with Forward/Backward Privacy

Chapter 3 introduces two efficient DSSE schemes supporting range queries with for-
ward/backward privacy, which addresses the research question Q1.

The first DSSE scheme achieves forward privacy. Moreover, it supports range queries.
To achieve this, we introduce a new binary tree and apply it to the framework of the scheme
from [20]. The second one achieves backward privacy and supports range queries. To
achieve backward privacy, we introduce the bit string representation and combine it with
the Paillier cryptosystem [22]. See Chapter 3 for details.

1.3.2 Dynamic Searchable Symmetric Encryption with Forward and

Stronger Backward Privacy

To address research question Q2, Chapter 4 introduces two efficient DSSE schemes with
forward and stronger backward privacy. Specifically, the backward privacy (named Type-
I−) we achieve is somewhat stronger than Type-I.

3

In Chapter 4, we first present the DSSE scheme with forward and stronger backward pri-
vacy. In this scheme, we use the bitmap index, where the addition and deletion of files can
be achieved by module addition. To securely add the files, we introduce the simple symmet-
ric encryption with homomorphic addition, which supports the addition of the encrypted
files.

Theoretically, the bitmap can be of an arbitrary length, but a longer bitmap will signifi-
cantly slow down modular operations. To address this problem, we divide the long bitmap
into several shorter blocks. Then we extend the first scheme to the multi-block setting. See
Chapter 4 for details.

1.3.3 Forward and Backward Private DSSE for Range Queries

The schemes in Chapter 4 supports single keyword queries only, which impedes its
prevalence in practice. To make it support range queries, in Chapter 5, we refine the bi-
nary tree that is introduced in Chapter 3. Moreover, we introduce the backward privacy
for our range queries named Type-R. Then we introduce a forward and Type-R backward
private DSSE for range queries by applying the binary tree to the framework of the scheme
from Chapter 4. See Chapter 5 for details.

1.4 Organization

The remaining chapters of this thesis are organized as follows. In Chapter 2, we give
the related work for this thesis. In Chapter 3, we introduce the DSSE schemes supporting
range queries with forward/backward privacy. Chapter 4 presents the DSSE schemes with
forward and stronger backward privacy. Chapter 5 introduces the forward and backward
private DSSE for range queries. Chapter 6 discuss some possible future directions. Finally,
Chapter 7 concludes this thesis.

4

Chapter 2

Related Work

In this chapter, we will introduce the related works to this thesis. Note that, to keep
consistency, we will introduce some of them in Chapter 3, 4 and 5, respectively.

2.1 Searchable Encryption

Generally speaking, there are two kinds of searchable encryption, one is searchable sym-
metric encryption, the other is public-key searchable encryption. Since the main focus of
this research is on searchable symmetric encryption, we will give a detailed literature re-
view about searchable symmetric encryption.

2.1.1 Searchable Symmetric Encryption

In 2000, Song et al. [10] were the first using symmetric key encryption to facilitate key-
word search over the encrypted data. In their scheme, they encrypt each keyword in every
document. For the search, they encrypt a keyword as the search token and send it to the
server. Then the server compares each ciphertext in every document with the search token.
In this case, the search time is linear with the number of keyword/file pairs, which is not
efficient. To improve the efficiency, Goh [23] maps each keyword in a file to a bloom filter.
Then the search time is linear with the number of files. Chang et al. [24] introduced a scheme
with similar search complexity. To further improve the efficiency of SSE, Curtmola et al. [11]
introduce the inverted index which can achieve sublinear search time. Moreover, they gave
a formal definition for SSE and the corresponding security model in the static setting. Later,
many SSE schemes with different properties have been introduced.

Searchable symmetric encryption supporting rich queries. Rich queries allow the client
to query multiple keywords. In other words, the returned documents in the search results
contain all these queried keywords, which can greatly facilitate the application of SSE in the
real world. To achieve this, a natı̈ve solution is to invoke single keyword queries for each
queried keyword separately and calculate the intersections over the search results of each
keyword. However, this method is not efficient, and it will introduce more leakages. In 2013,
Cash et al. [12] introduced a sublinear SSE scheme (named Oblivious Cross-Tags (OXT)),
which supports boolean queries. Their solution finds out a tradeoff between efficiency and
security by carefully defining the leakage functions. Later, Zuo et al. [14] proposed a trusted
boolean search on cloud using searchable symmetric encryption scheme which extends the
scheme of Cash et al. [12] to support more general boolean formulas, while also significantly
improving the efficiency over the scheme of Cash et al. [12] for many of the queries that

5

they do support. In 2015, Faber et al. [13] proposed a rich queries scheme beyond exact
matches by extending the scheme of Cash et al. [12]. Lai et al. [25] constructed a new SSE
protocol with support for conjunctive queries, named Hidden Cross-tags (HXT), enhancing
the privacy-preserving while maintaining the search efficiency. By employing hidden vector
encryption and bloom filter, their protocol prevents the keyword pair result pattern leakage
during the conjunctive search procedure. Later, many SSE schemes with conjunctive queries
were proposed, such as the schemes from [26–28].

Faber et al. [13] introduces an SSE scheme with range queries by extending the scheme
from [12]. An SSE scheme with range queries can return all the documents or records within
the requested range, which is quite useful in practical cloud storage. For example, a teacher
wants to get all the students whose age is in the range (10,15). There is also another line
of research to attack the range queries [29–31]. Note that, these attacks are based on the
access pattern which is assumed to be leaked in most SSE schemes. In the future, we will
investigate the SSE scheme without access pattern to mitigate these attacks.

Dynamic Searchable Symmetric Encryption. Dynamic searchable symmetric encryp-
tion (DSSE) has been proposed to protect the privacy of user’s data that stored in the cloud
(e.g. Google Drive [1]). It not only pertains the searchability over the encrypted data, but
also allows the client to update the encrypted database after the setup which is very useful
since user’s data is changing over the time. However, many dynamic searchable symmetric
encryption schemes [15, 17] suffer from file injection attack [16, 18]. This attack can com-
promise the privacy of a client’s query by injecting a small portion of new documents to
the encrypted database. To resist such an attack, Zhang et al. [18] highlighted the need of
forward privacy which was first informally introduced by Stefanov et al. [19]. Forward pri-
vacy means an update does not leak the updated document matching a query we previously
issued. In 2016, Bost [20] gave a formal forward privacy definition for dynamic searchable
symmetric encryption schemes which slightly extended the informal definition of Stefanov
et al. [19]. Bost also gave a concrete forward private dynamic searchable symmetric encryp-
tion scheme in [20]. In [19], Stefanov et al. also introduced the notion of backward privacy
which means that a search query does not leak the file indices that previously added and
later deleted. Until 2017, Bost et al. [21] first gave the formal backward privacy definition
for dynamic searchable symmetric encryption scheme and they also gave several concrete
backward private DSSE schemes. Nevertheless, the existing forward/backward private
searchable symmetric encryption schemes only support single-keyword queries, which is
not expressive enough in many application scenarios.

Security against malicious server model. Due to software/hardware failure or in or-
der to save the computation and bandwidth, the server could return false results. Hence,
there is a need of the verifiability over the results that returned from the server. To tackle
this problem, Chai et al. [32] proposed a verifiable searchable encryption which provides
the verifiability over the returned encrypted data. However, this scheme is not dynamic.
Later, Bost et al. [33] proposed a verifiable dynamic searchable symmetric encryption which

6

offers not only the verifiability over the returned results from the server but also the for-
ward privacy. They also gave the lower bounds on the computational complexity of search
and update queries. The time complexity of efficient verifiable scheme is proportional to the
number of operations corresponding to the search queries and the number of operations cor-
responding to the update queries. Nevertheless, this scheme only supports single keyword
queries.

Efficiency and scalability of searchable symmetric encryption. Curtmola et al. [11]
were the first using inverted index to achieve sub-linear search time. Some previous schemes,
such as the seminar work of Song et al. [10], the search time was linear with the number of
documents that stored on the cloud. However, these schemes only address the single key-
word queries. Later, Cash et al. [12] proposed a highly scalable searchable symmetric en-
cryption with boolean queries which is efficient. They also gave a detailed experimentation
analysis on a real large dataset platforms. However, these schemes are not dynamic.

Multi-Client Searchable Symmetric Encryption. In the line of research of searchable
symmetric encryption, the most basic setting is where the data owner is the one who per-
forming the search on the encrypted database which is stored in a third party (e.g. the google
drive [1]). The work of Curtmola et al. [11] was the first scheme to extend the two-party
model (the data owner and the server) of searchable symmetric encryption to the multi-
client setting. However, this scheme does not allow the interaction between the data owner
and the client in each query which led to the inefficient implementation. To circumvent
this obstacle, in 2010, Chase et al. [34] introduced a searchable symmetric encryption with
controlled disclosure which allowed such interaction. Later, in 2011, to protect the privacy
of a query, De Cristofaro et al. [35] proposed a privacy-preserving sharing of sensitive in-
formation scheme which extended the multi-client searchable symmetric encryption to the
outsourced symmetric private information retrieval setting. Later, Jarecki et al. [36] intro-
duced a more expressive and scalable searchable symmetric encryption with outsourced
symmetric private information retrieval by using the technique of Cash et al. [12]. Sun
et al. [37] proposed a non-interactive multi-client SSE scheme supporting boolean queries
based on the framework of OXT [12]. Moreover, to avoid the interaction between the client
and the server, they used the RSA function [38] to realize a non-interactive multi-client SSE
scheme. Furthermore, the technique of attribute-based encryption [39–41] is embedded into
their scheme to achieve fine-grained access control on the cloud data.

7

Chapter 3

Dynamic Searchable Symmetric Encryption Schemes Support-

ing Range Queries with Forward/Backward Privacy

Dynamic searchable symmetric encryption (DSSE) is a useful cryptographic tool in en-
crypted cloud storage. However, it has been reported that DSSE usually suffers from file-
injection attacks and content leak of deleted documents. To mitigate these attacks, for-
ward privacy and backward privacy have been proposed. Nevertheless, most existing for-
ward/backward private DSSE schemes can only support single keyword queries.

In this chapter, we propose two DSSE schemes supporting range queries. One is forward-
private and supports a large number of documents. The other can achieve backward privacy,
while it can only support a limited number of documents. Finally, we also give the security
proofs of the proposed DSSE schemes in the random oracle model.

3.1 Introduction

Searchable symmetric encryption (SSE) is a useful cryptographic primitive that can en-
crypt the data to protect its confidentiality while keeping its searchability. Dynamic SSE
(DSSE) further provides data dynamics that allow the client to update data over time with-
out losing data confidentiality and searchability. Due to this property, DSSE is highly de-
manded in an encrypted cloud. However, many existing DSSE schemes [15, 17] suffer from
file-injection attacks [16, 18], where the adversary can compromise the privacy of a client
query by injecting a small portion of new documents into the encrypted database. To resist
this attack, Zhang et al. [18] highlighted the need for forward privacy that was informally
introduced by Stefanov et al. [19]. The formal definition of forward privacy for DSSE was
given by Bost [20], who also proposed a concrete forward-private DSSE scheme. Further-
more, Bost et al. [21] demonstrated the damage of content leak of deleted documents and
proposed the corresponding security notion—backward privacy. Several backward-private
DSSE schemes were also presented in [21].

Nevertheless, the existing forward/backward private DSSE schemes only support single
keyword queries, which are not expressive enough in data search service [13, 42]. To solve
this problem, we aim to design forward/backward private DSSE schemes supporting range
queries. Our design starts from the regular binary tree in [13] to support range queries.
However, the binary tree in [13] cannot be applied directly to the dynamic setting. It is
mainly because that the keywords in [13] are labeled according to the corresponding tree
levels that will change significantly in the dynamic setting. A naı̈ve solution is to replace all

8

old keywords with the associated new keywords. This is, however, not efficient. To address
this problem, we have to explore new approaches to our goal.

Our Contributions. To achieve the above goal, we propose two new DSSE constructions
supporting range queries in this chapter. The first one is forward private but with a larger
client overhead in contrast to [13]. The second one is backward private DSSE, which greatly
reduces the client and the server storage at the cost of losing forward privacy. In more
details, our main contributions are as follows:

• To make the binary tree suitable for range queries in the dynamic setting, we introduce
a new binary tree data structure, and then present the first forward private DSSE sup-
porting range queries by applying it to Bost’s scheme [20]. However, forward privacy
is achieved at the expense of suffering from a large storage overhead on the client side.
In particular, client storage is two times larger than the client storage of Bost’s scheme.

• To achieve backward privacy, we apply the Paillier cryptosystem and the bit string
representation to Bost’s framework. To reduce the storage at both the client and server
side, we used a fixed update token for each keyword. Note that this scheme is not
forward private since, for every update, the server knows which keyword has been
updated. We refer readers to Section 3.4 for more details. Notably, due to the limitation
of the Paillier cryptosystem, it cannot support a large-scale database consisting of a
large number of documents. Nevertheless, it suits well for certain scenarios where
the number of documents is moderate. The new approach may give new lights on
designing more efficient and secure DSSE schemes.

• Also, the comparison with related works in Table 3.1 and detailed security analyses are
provided, which demonstrate that our constructions are not only forward/backward
private but also with comparable efficiency.

Table 3.1: Comparison with existing DSSE schemes

Scheme Client Computation Client Range Forward Backward Document
Search Update Storage Queries Privacy Privacy number

[13] wR - O(1) 3 7 7 large
[20] - O(1) O(W) 7 3 7 large

Ours A wR dlog(W)e+ 1 O(W) 3 3 7 large
Ours B wR dlog(W)e+ 1 O(1) 3 7 3 small
W is the number of keywords in a database. wR is the number of keywords for a range
query(we map a range query to a few different keywords).

Remark: In this chapter, we correct the wrong theorem (cf. Theorem 2) in the conference
version [43], where we claimed that the second construction could achieve forward privacy.
In fact, forward privacy cannot be achieved because the update can be linked to previous

9

searches by the fixed token. In particular, we focus on achieving backward privacy by ap-
plying the Paillier cryptosystem and the bit string representation to Bost [20]’s framework,
which can also achieve forward privacy due to Bost’s technique. For every update on key-
word n, however, the server needs to store a ciphertext (of Paillier encryption) correspond-
ing to n. In addition, the number of keywords is nearly doubled compared to the scheme
of [20], as mentioned in our first construction. Then this construction incurs large storage
on both the server and the client side. In the conference version, we used a fixed update
token for each keyword to further reduce the storage overhead. In this way, the server can
homomorphically add the ciphertext to the previous ones corresponding to the same key-
word, and the client does not need to store the current search token yet. Therefore, both
the client and the server storage are reduced a lot, but at the cost of losing forward privacy.
Nevertheless, we made some mistakes when preparing the conference version and so we
correct it here.

3.1.1 Related Work

For the completeness and consistency of this Chapter, we list some related works that
already appeared in Section 2.1.1. Song et al. [10] were the first using symmetric encryption
to facilitate keyword search over the encrypted data. Later, Curtmola et al. [11] gave a
formal definition for SSE and the corresponding security model in the static setting. To make
SSE more scalable and expressive, Cash et al. [12] proposed a new scalable SSE supporting
Boolean queries. Following this construction, many extensions have been proposed. Faber
et al. [13] extended it to process a much richer collection of queries. For instance, they used
a binary tree with keywords labeled according to the tree levels to support range queries.
Zuo et al. [14] made another extension to support general Boolean queries. Cash et al.’s
construction has also been extended into a multi-user setting [37, 44, 45]. However, the
above schemes cannot support data updates. To solve this problem, some DSSE schemes
have been proposed [15, 17].

However, designing a secure DSSE scheme is not an easy job. Cash et al. [16] pointed
out that only a small leakage leveraged by the adversary would be enough to compromise
the privacy of clients’ queries. A concrete attack named file-injection attack was proposed
by Zhang et al. [18]. In this attack, the adversary can infer the concept of client queries by
injecting a small portion of new documents into an encrypted database. This attack also
highlights the need for forward privacy, which protects the security of new added parts.
Accordingly, we have backward privacy that protects the security of new added parts and
later deleted. These two security notions were first introduced by Stefanov et al. [19]. The
formal definitions of forward/backward privacy for DSSE were given by Bost [20] and Bost
et al. [21], respectively. In [20], Bost also proposed a concrete forward private DSSE scheme;
it does not support physical deletion. Later on, Kim et al. [46] proposed a forward pri-
vate DSSE scheme supporting physical deletion. Meanwhile, Bost et al. [21] proposed a

10

forward/backward-private DSSE to reduce leakage during deletion. Unfortunately, all the
existing forward/backward-private DSSE schemes only support single keyword queries.
Hence, forward/backward-private DSSE supporting more expressive queries, such as range
queries, are quite desired.

Apart from the binary tree technique, order preserving encryption (OPE) can also be used
to support range queries. The concept of OPE was proposed by Agrawal et al. [47], and it
allows the order of the plaintexts to be preserved in the ciphertexts. It is easy to see that this
kind of encryption would lead to leakage in [48, 49]. To reduce this leakage, Boneh et al.
[50] proposed another concept named order revealing encryption (ORE), where the order
of the ciphertexts are revealed by using an algorithm rather than comparing the ciphertexts
(in OPE) directly. More efficient ORE schemes were proposed later [51]. However, ORE-
based SSE still leaks much information about the underlying plaintexts. To avoid this, in
this Chapter, we focus on how to use the binary tree structure to achieve range queries.

3.1.2 Organization

The remaining sections of this Chapter are organized as follows. In Sect. 3.2, we give
the background information and building blocks that are used in this Chapter. In Sect. 3.3,
we give the definition of DSSE and its security definition. After that in Sect. 3.4, we present
a new binary tree and our DSSE schemes. Their security analyses are given in Sect. 3.5.
Finally, Sect. 3.6 concludes this chapter.

3.2 Preliminaries

In this section, we describe cryptographic primitives (building blocks) that are used in
this chapter.

3.2.1 Trapdoor Permutations

A trapdoor permutation (TDP) Π is a one-way permutation over a domain D such that
(1) it is “easy” to compute Π for any value of the domain with the public key, and (2) it is
“easy” to calculate the inverse Π−1 for any value of a co-domainM only if a matching secret
key is known. More formally, Π consists of the following algorithms:

• TKeyGen(1λ)→ (TPK,TSK): For a security parameter 1λ, the algorithm returns a pair
of cryptographic keys: a public key TPK and a secret key TSK.

• Π(TPK, x)→ y: For a pair: public key TPK and x ∈ D, the algorithm outputs y ∈M.

• Π−1(TSK, y)→ x: For a pair: a secret key TSK and y ∈M, the algorithm returns x ∈ D.

11

One-wayness. We say Π is one-way if for any probabilistic polynomial time (PPT) adversary
A, an advantage

AdvOWΠ,A(1λ) = Pr[x← A(TPK, y)]

is negligible, where (TSK,TPK)← TKeyGen(1λ), y ← Π(TPK, x), x ∈ D.

3.2.2 Paillier Cryptosystem

A Paillier cryptosystem Σ = (KeyGen,Enc,Dec) is defined by following three algo-
rithms:

• KeyGen(1λ) → (PK,SK): It chooses at random two primes p and q of similar lengths
and computes n = pq and φ(n) = (p − 1)(q − 1). Next it sets g = n + 1, β = φ(n) and
µ = φ(n)−1 mod n. It returns PK = (n, g) and SK = (β, µ).

• Enc(PK,m) → c: Let m be the message, where 0 ≤ m < n, the algorithm selects an
integer r at random from Zn and computes a ciphertext c = gm · rn mod n2.

• Dec(SK, c)→ m: The algorithm calculates m = L(cβ mod n2) · µ mod n, where L(x) =
x−1
n

.

Semantic Security. We say Σ is semantically secure if for any probabilistic polynomial time
(PPT) adversary A, an advantage

AdvIND-CPAΣ,A (1λ) = |Pr[A(Enc(PK,m0)) = 1]− Pr[A(Enc(PK,m1)) = 1]|

is negligible, where (SK, PK)← KeyGen(1λ), A chooses m0, m1 and |m0| = |m1|.

Homomorphic Addition. Paillier cryptosystem is homomorphic, i.e.

Dec(Enc(m1) · Enc(m2)) mod n2 = m1 +m2 mod n.

In our second construction, we need this property to achieve backward privacy.

3.2.3 Notations

The list of notations used is given in Table 3.2.

3.3 Dynamic Searchable Symmetric Encryption (DSSE)

We follow the database model given in the paper [20]. A database is a collection of
(index, keyword set) pairs denoted as DB= (indi,Wi)

d
i=1, where indi ∈ {0, 1}` and Wi ⊆

{0, 1}∗. The set of all keywords of the database DB is W = ∪di=1Wi, where d is the number of
documents in DB. We identify W = |W| as the total number of keywords and N = Σd

i=1|Wi|

12

Table 3.2: Notations (used in our constructions)

W The number of keywords in a database DB
BDB The binary database which is constructed from a database

DB by using our binary tree BT
m The number of values in the range [0,m − 1] for our range

queries
v A value in the range [0,m− 1] where 0 ≤ v < m
ni The i-th node in our binary tree which is considered as the

keyword
rooto The root node of the binary tree before update
rootn The root node of the binary tree after update
STc The current search token for a node n
M A random value for ST0 which is the first search token for a

node n
UTc The current update token for a node n

T A map which is used to store the encrypted database EDB
N A map which is used to store the current search token for ni

NSet The node set which contains the nodes
TPK The public key of trapdoor permutation
TSK The secret key of trapdoor permutation
PK The public key of Paillier cryptosystem
SK The secret key of Paillier cryptosystem
fi The i-th file
PBT Perfect binary tree
CBT Complete binary tree
VBT Virtual perfect binary tree
ABT Assigned complete binary tree

as the number of document/keyword pairs. We denote DB(w) as the set of documents that
contain a keyword w. To achieve a sublinear search time, we encrypt the file indices of DB(w)
corresponding to the same keyword w (a.k.a. inverted index1).

A DSSE scheme Γ consists of an algorithm Setup and two protocols Search and Update
as described below.

• (EDB, σ)← Setup(DB, 1λ): For a security parameter 1λ and a database DB. The algorithm
outputs an encrypted database EDB for the server and a secret state σ for the client.

• (I, ⊥)← Search(q, σ, EDB): The protocol is executed between a client (with her query
q and state σ) and a server (with its EDB). At the end of the protocol, the client outputs
a set of file indices I and the server outputs nothing.

• (σ′, EDB′) ← Update(σ, op, in, EDB): The protocol runs between a client and a server.
The client input is a state σ, an operation op = (add, del) she wants to perform and a
collection of in = (ind,w) pairs that are going to be modified, where add, del mean the

1It is an index data structure where a word is mapped to a set of documents which contain this word.

13

addition and deletion of a document/keyword pair, respectively, ind is the file index
and w is a set of keywords. The server input is EDB. Update returns an updated state
σ′ to the client and an updated encrypted database EDB′ to the server.

3.3.1 Security Definition

The security definition of DSSE is formulated using the following two games:
DSSEREALΓ

A(1λ) and DSSEIDEALΓ
A,S(1λ). The DSSEREALΓ

A(1λ) is executed using DSSE. The
DSSEIDEALΓ

A,S(1λ) is simulated using the leakage of DSSE. The leakage is parameterized
by a function L = (LStp,LSrch,LUpdt), which describes what information is leaked to the
adversary A. If the adversary A cannot distinguish these two games, then we can say there
is no other information leaked except the information that can be inferred from the leakage
function L. More formally,

• DSSEREALΓ
A(1λ): On input a database DB, which is chosen by the adversary A, it out-

puts EDB by using Setup(1λ, DB) to the adversary A. A can repeatedly perform a
search query q (or an update query (op, in)). The game outputs the results generated
by running Search(q) (or Update(op, in)) to the adversary A. Eventually, A outputs a
bit.

• DSSEIDEALΓ
A,S(1λ): On input a database DB which is chosen by the adversary A, it

outputs EDB to the adversaryA by using a simulator S(LStp(1λ, DB)). Then, it simulates
the results for the search query q by using the leakage function S(LSrch(q)) and uses
S(LUpdt(op, in)) to simulate the results for update query (op, in). Eventually, A outputs
a bit.

Definition 1. A DSSE scheme Γ is L-adaptively-secure if for every PPT adversary A, there exists
an efficient simulator S such that

|Pr[DSSEREALΓ
A(1λ) = 1]− Pr[DSSEIDEALΓ

A,S(1λ) = 1]| ≤ negl(1λ).

3.4 Constructions

In this section, we give two DSSE constructions. In order to process range queries, we
deploy a new binary tree, which is modified from the binary tree in [13]. Now, we first give
our binary tree used in our constructions.

3.4.1 Binary Tree for Range Queries

In a binary tree BT, every node has at most two children named left and right. If a node
has a child, then there is an edge that connects these two nodes. The node is the parent

14

parent of its child. The root root of a binary tree does not have parent and the leaf of a
binary tree does not have any child. In this chapter, the binary tree is stored in thew form of
linked structures. The first node of BT is the root of a binary tree. For example, the root node
of the binary tree BT is BT, the left child of BT is BT.left, and the parent of BT’s left child is
BT.left.parent, where BT = BT.left.parent.

In a complete binary tree CBT, every level, except possibly the last, is completely filled,
and all nodes in the last level are as far left as possible (the leaf level may not full). A perfect
binary tree PBT is a binary tree in which all internal nodes (not the leaves) have two children,
and all leaves have the same depth or same level. Note that, PBT is a special CBT.

3.4.2 Binary Database

In this chapter, we use binary database BDB which is generated from DB. In DB, keywords
(the first row in 3.1.(c)) are used to retrieve the file indices (every column in 3.1.(c)). For
simplicity, we map keywords in DB to the values in the range [0,m − 1] for range queries2,
where m is the maximum number of values. If we want to search the range [0,3], a naı̈ve
solution is to send every value in the range (0, 1, 2, and 3) to the server, which is not efficient.
To reduce the number of keywords sent to the server, we use the binary tree as shown in Fig.
3.1.(a). For the range query [0,3], we simply send the keyword n3 (the minimum nodes to
cover value 0, 1, 2, and 3) to the server. In BDB, every node in the binary tree is the keyword
of the binary database, and every node has all the file indices for its decedents, as illustrated
in Figure 3.1.(d).

As shown in Fig. 3.1.(a), keyword in BDB corresponding to node i (the black integer) is
ni (e.g. the keyword for node 0 is n0.). The blue integers are the keywords in DB and are
mapped to the values in the range [0,3]. These values are associated with the leaves of our
binary tree. The words in red are the file indices in DB. For every node (keyword), it contains
all the file indices in its descendant leaves. Node n1 contains f0, f1, f2, f3 and there is no file
in node n4 (See Fig. 3.1.(d)). For a range query [0, 2], we need to send the keywords n1, n4 (n1

and n4 are the minimum number of keywords to cover the range [0, 2].) to the server, and
the result file indices are f0, f1, f2 and f3.

Bit String Representation.

We parse the file indices for every keyword in BDB (e.g. every column in Figure 3.1.(d))
into a bit string, which we will use later. Suppose there are y − 1 documents in our BDB,
then we need y bits to represent the existence of these documents. The highest bit is the
sign bit (0 means positive and 1 means negative). If fi contains keyword nj , then the i-th bit
of the bit string for nj (every keyword has a bit string) is set to 1. Otherwise, it is set to 0.
For the update, if we want to add a new file index fi (which also contains keyword nj) to

2In different applications, we can choose different kinds of values. For instance, audit documents of web-
sites with particular IP addresses. We can search the whole network domain, particular host, or application
range.

15

keyword nj , we need a positive bit string, where the i-th bit is set to 1, and all other bits are
set to 0. Next, we add this bit string to the existing bit string associated with nj 3. Then, fi is
added to the bit string for nj . If we want to delete file index fi from the bit string for nj , we
need a negative bit string (the most significant bit is set to 1), the i-th bit is set to 1, and the
remaining bits are set to 0. Then, we need to get the complement of the bit string 4. Next, we
add the complement bit string as in the add operation. Finally, the fi is deleted from the bit
string for nj .

For example, in Fig. 3.1.(b), the bit string for n0 is 000001, and the bit string for n4 is
000000. Assume that we want to delete file index f0 from n0 and add it to n4. First, we need
to generate bit string 000001 and add it to the bit string (000000) for n4. Next, we generate
the complement bit string 111111 (the complement of 100001) and add it to 000001 for n0.
Then, the result bit strings for n0 and n4 are 000000 and 000001, respectively. As a result, the
file index f0 has been moved from n0 to n4.

n0 n2

n1

n4 n6

n5

n3

0 1 2 3

(a)
(b)

f0 f1

f2

f3

f4

n0 n2

n1

n4 n6

n5

n3

0 1 2 3

1
0
0
0
0
0

0
1
1
1
0
0

0
0
0
0
0
0

0
0
0
0
1
0

(c)

values (keywords in DB)

nodes (keywords in BDB)

file indexes

values (keywords in DB)

nodes (keywords in BDB)

file indexes

(d)

n0 n1 n2 n3 n4 n5 n6

0 0 1 1 0 1 2 3 2 2 3 3

f0 f0 f0

f1 f1 f1

f2 f2 f2

f3 f3 f3

f4 f4 f4

0 1 2 3

f0

f1

f2

f3

f4

Figure 3.1: Architecture of Our Binary Tree for Range Queries

Binary Tree Assignment and Update.

As we use the binary tree to support the data structure needed in our DSSE, we define
the following operations that are necessary to manipulate the DSSE data structure.

3Note that, in the range queries, the bit strings are bit exclusive since a file corresponds to one value only.
4In a computer, and the subtraction is achieved by adding the complement of the negative bit string.

16

TCon(m): For an integer m, the operation builds a complete binary tree CBT. CBT has
dlog(m)e+ 1 levels, where the root is on the level 0, and the leaves are on the level dlog(m)e.
All leaves are associated with the m consecutive integers from left to right.

TAssign(CBT): The operation takes a CBT as an input and outputs an assigned binary tree
ABT, where nodes are labelled by appropriate integers. The operation applies TAssignSub
recursively. Keywords then are assigned to the node integers.

TAssignSub(c, CBT): For an input pair: a counter c and CBT, the operation outputs an as-
signed binary tree. It is implemented as a recursive function. It starts from 0 and assigns to
nodes incrementally. See Fig. 3.2 for an example.

Algorithm 1 Our Binary Tree

TCon(m)
Input integer m
Output complete binary tree CBT

1: Construct a CBT with dlog(m)e+ 1 levels.
2: Set the number of leaves to m.
3: Associate the leaves with m consecutive

integers [0,m-1] from left to right.
4: return CBT

TAssign(CBT)
Input complete binary tree CBT
Output assigned binary tree ABT

1: Counter c = 0
2: TAssignSub(c, CBT)
3: return ABT

TAssignSub(c, CBT)
Input CBT, counter c
Output Assigned binary tree ABT

1: if CBT.left 6= ⊥ then
2: TAssignSub(c, CBT.left)
3: end if
4: Assign CBT with counter c.
5: c = c+ 1
6: if CBT.right 6= ⊥ then
7: TAssignSub(c, CBT.right)
8: end if
9: Assign CBT with counter c.

10: c = c+ 1
11: return ABT

TGetNodes(n, ABT)
Input node n, ABT
Output NSet

1: NSet← Empty Set
2: while n 6=⊥ do
3: NSet← NSet ∪ n
4: n = n.parent
5: end while
6: return NSet

TUpdate(add, v, CBT)
Input op= add, value v, CBT
Output updated CBT

1: if CBT = ⊥ then
2: Create a node.
3: Associate value v = 0 to this node.
4: Set CBT to this node.
5: else if CBT is PBT or CBT has one node

then
6: Create a new root node rootn.
7: Create a VBT = CBT
8: CBT.parent=VBT.parent=rootn
9: CBT = rootn

10: Associate v to the least virtual leaf
and set this leaf and its parents as real.

11: else
12: Execute line 10.
13: end if
14: return CBT

TGetNodes(n, ABT): For an input pair: a node n and a tree ABT, the operation generates a
collection of nodes in a path from the node n to the root node. This operation is needed for
our update algorithm if a client wants to add a file to a leaf (a value in the range). The file is
added to the leaf and its parent nodes.

17

TUpdate(add, v, CBT): The operation takes a value v and a complete binary tree CBT and
updates CBT so the tree contains the value v. For simplicity, we consider the current com-
plete binary tree contains values in the range [0, v − 1]5. Depending on the value of v, the
operation is executed according to the following cases:

• v = 0: It means that the current complete binary tree is null, we simply create a node
and associate value v = 0 with the node. The operation returns the node as CBT.

• v > 0: If the current complete binary tree is a perfect binary tree PBT or it consists of
a single node only, we need to create a virtual binary tree VBT, which is a copy of the
current binary tree. Next, we merge the virtual perfect binary tree with the original
one getting a large perfect binary tree. Finally, we need to associate the value v with
the least virtual leaf (the leftmost virtual leaf without a value) of the virtual binary tree
and set this leaf and its parents as real. For example, in Fig. 3.2.(a), v = 4, the nodes
with the solid line are real, and the nodes with the dotted line are virtual, which can
be added later. Otherwise, we directly associate the value v to the least virtual leaf and
set this leaf and its parents as real 6. In Fig. 3.2.(b), v = 5.

n0 n2

n1

n4 n6

n5

n3

n8 n10

n9

n12 n14

n13

n11

n7

0 1 2 3 4 5 6 7

(a)

n0 n2

n1

n4 n6

n5

n3

n8 n10

n9

n12 n14

n13

n11

n7

0 1 2 3 4 5 6 7

(b)

Figure 3.2: Example of Update Operation

Note that, in our range queries, we need to parse a normal database DB to its binary form
BDB. First, we need to map keywords of DB to integers in the range [0, |W | − 1], where |W | is
the total number of keywords in DB. Next, we construct a binary tree as described above. The
keywords are assigned to the nodes of the binary tree and are associated with the documents
of their descendants. For example, In Fig. 3.1.(a), the keywords are {n0, n1, · · · , n6} and
BDB(n0) = {f0}, BDB(n1) = {f0, f1, f2, f3}.

5Note that, we can use TUpdate many times if we need to update more values.
6Only if its parents were virtual, then we need to convert them to real.

18

3.4.3 DSSE Range Queries - Construction A

In this section, we apply our new binary tree to the Bost [20] scheme to support range
queries. For performing a ranger query, the client in our scheme first determines a collection
of keywords to cover the requested range. Then, she generates the search token correspond-
ing to each node (in the cover) and sends them to the server, which can be done in a similar
way as [20]. Now we are ready to present the first DSSE scheme that supports range queries
and is forward private. The scheme is described in Algorithm 2, where F is a cryptograph-
ically strong pseudorandom function (PRF), H1 and H2 are keyed hash functions and Π is a
trapdoor permutation.

Setup(1λ): For a security parameter 1λ , the algorithm outputs (TPK,TSK, K,T,N,m), where
TPK and TSK are the public key and secret keys of the trapdoor permutation, respectively, K
is the secret key of function F , T, N are maps and m is the maximum number of the values
in our range queries. The map N is used to store the pair keyword/(STc, c) (current search
token and the counter c, please see Algorithm 2 for more details.) and is kept by the client.
The map T is the encrypted database EDB that used to store the encrypted indices which is
kept by the server.

Search([a, b], σ, m, EDB): The protocol is executed between a client and a server. The client
asks for documents, whose keywords are in the range [a, b], where 0 ≤ a ≤ b < m. The
current state of EDB is σ and the integer m describes the maximum number of values. Note
that knowing m, the client can easily construct the complete binary tree. The server returns
a collection of file indices of requested documents.

Update(add, v, ind, σ, m, EDB): The protocol is performed jointly by a client and server. The
client wishes to add an integer v together with a file index ind to EDB. The state of EDB is σ,
the number of values m. There are following three cases:

• v < m: The client simply adds ind to the leaf, which contains value v and its parents
(See line 9-24 in Algorithm 2). This is a basic update, which is similar to the one from
[20].

• v = m: The client first updates the complete binary tree to which she adds the value v.
If a new root is added to the new complete binary tree, then the server needs to add all
file indices of the old complete binary tree to the new one. Finally, the server needs to
add ind to the leaf, which contains value v and its parents.

• v > m: The client uses Update as many times as needed. For simplicity, we only
present the simple case v = m, i.e., the newly added value v equals the maximum
number of values of the current range [0,m− 1], in the description of Algorithm 2.

The DSSE supports range queries at the cost of large client storage since the number of search
tokens is linear in the number of all nodes of the current tree instead of only leaves. In [20],

19

Algorithm 2 Construction A

Setup(1λ)
Input security parameter 1λ

Output (TPK,TSK, K,T,N,m)

1: K ← {0, 1}λ
2: (TSK,TPK)← TKeyGen(1λ)
3: T, N← empty map
4: m = 0
5: return (TPK,TSK, K,T,N,m)

Search([a, b], σ, m, EDB)
Client:
Input [a, b], σ, m
Output (Kn, STc, c)

1: CBT← TCon(m)
2: ABT← TAssign(CBT)
3: RSet ← Find the minimum nodes to

cover [a, b] in ABT
4: for n ∈ RSet do
5: Kn ← FK(n)
6: (STc, c)← N[n]
7: if (STc, c) 6=⊥ then
8: Send (Kn, STc, c) to the server.
9: end if

10: end for
Server:
Input (Kn, STc, c), EDB
Output (ind)
11: Upon receiving (Kn, STc, c)
12: for i = c to 0 do
13: UTi ← H1(Kn, STi)
14: e← T[UTi]
15: ind← e⊕H2(Kn, STi)
16: Output the ind
17: STi−1 ← Π(TPK, STi)
18: end for
Update(add, v, ind, σ, m, EDB)

Client:
Input add, v, ind, σ, m
Output (UTc+1, e)

1: CBT← TCon(m)
2: if v = m then
3: CBT←TUpdate(add, v, CBT)
4: m← m+ 1
5: if CBT added a new root then
6: (STc, c)← N[rooto]
7: N[rootn]← (STc, c)
8: end if
9: Get the leaf nv of value v.

10: ABT← TAssign(CBT)
11: NSet← TGetNodes(nv, ABT)
12: for every node n ∈ NSet do
13: Kn ← FK(n)
14: (STc, c)← N[n]
15: if (STc, c) =⊥ then
16: ST0 ←M, c← −1
17: else
18: STc+1 ← Π−1(TSK, STc)
19: end if
20: N[n]← (STc+1, c+ 1)
21: UTc+1 ← H1(Kn, STc+1)
22: e← ind⊕H2(Kn, STc+1)
23: Send (UTc+1, e) to the Server.
24: end for
25: else if v < m then
26: Execute line 9-24.
27: end if
Server:
Input (UTc+1, e), EDB
Output EDB
28: Upon receiving (UTc+1, e)
29: Set T[UTc+1]← e

the number of entries at the client is |W |, while it would be roughly 2|W | in this construction.
Moreover, the communication cost is high since the server needs to return all file indices to
the client for every search. To overcome the weakness, we give a new construction with
lower client storage and communication cost in the following section.

20

3.4.4 DSSE Range Queries - Construction B

In this section, we give the second construction by leveraging the Paillier cryptosystem
[22] and bit string representation, which significantly reduce the client storage and commu-
nication cost compared with the first one at the cost of losing forward privacy. With the
homomorphic addition property of the Paillier cryptosystem, we can add and delete the file
indices by parsing them into binary strings, as illustrated in Section 3.4.2. Next, we briefly
describe our second DSSE, which can not only support range queries but also achieve back-
ward privacy. The scheme is described in Algorithm 3.

Setup(1λ): For a security parameter 1λ , the algorithm returns (PK,SK, K, T,m), where PK
and SK are the public and secret keys of the Paillier cryptosystem, respectively, K is the
secret key of a PRF F , m is the maximum number of values which can be used to reconstruct
the binary tree and the encrypted database EDB is stored in a map T which is kept by the
server.

Search([a, b], σ, m, EDB): The protocol is executed between a client and a server. The client
queries for documents, whose keywords are in the range [a, b], where 0 ≤ a ≤ b < m. σ is the
state of EDB, and integer m specifies the maximum values for our range queries. The server
returns encrypted file indices e to the client, who can decrypt e by using the secret key SK of
Pailler Cryptosystem and obtain the file indices of requested documents.

Update(op, v, ind, σ, m, EDB): The protocol runs between a client and a server. A requested
update is named by the parameter op. The integer v and the file index ind specifies the tree
nodes that need to be updated. The current state σ, the integer m and the server with input
EDB. If op = add, the client generates a bit string as prescribed in Section 3.4.2. In case when
op = delete, the client creates the complement bit string as given in Section 3.4.2. The bit
string bs is encrypted using the Paillier cryptosystem. The encrypted string is denoted by e.
There are following three cases:

• v < m: The client sends the encrypted bit string e with the leaf nv containing value v
and its parents to server. Next the server adds e with the existing encrypted bit strings
corresponding to the nodes specified by the client. See line 11-23 in Algorithm 3 which
is similar to the update in Algorithm 2.

• v = m: The client first updates the complete binary tree to which she adds the value
v. If a new root is added to the new complete binary tree, then the client retrieves the
encrypted bit string of the root (before the update). Next, the client adds it to the new
root by sending it with the new root to the server. Finally, the client adds e to the leaf
that contains value v and its parents as in v < m case.

• v > m: The client uses Update as many times as needed. For simplicity, we only
consider v = m, where m is the number of values in the maximum range.

21

Algorithm 3 Construction B

Setup(1λ)
Input security parameter 1λ

Output (PK,SK, K,T,m)

1: K ← {0, 1}λ
2: (SK,PK)← KeyGen(1λ)
3: T← empty map
4: m = 0
5: return (PK,SK, K,T,m)

Search([a, b], σ, m, EDB)
Client:
Input [a, b], σ,m
Output (UTn)

1: CBT← TCon(m)
2: ABT← TAssign(CBT)
3: RSet ← Find the minimum nodes to

cover [a, b] in ABT
4: for n ∈ RSet do
5: UTn ← FK(n)
6: Send UTn to the server.
7: end for

Server:
Input (UTn), EDB
Output (e)

8: Upon receiving UTn
9: e← T[UTn]

10: Send e to the Client.
Update(op, v, ind, σ, m, EDB)
Client:
Input op, v, ind, σ,m
Output (UTn, e)

1: CBT← TCon(m)
2: if v = m then
3: CBT← TUpdate(add, v, CBT)
4: m← m+ 1

5: if CBT added a new root then
6: UTrooto ← FK(rooto)
7: UTrootn ← FK(rootn)
8: e← T[UTrooto]
9: T[UTrootn]← e

10: end if
11: Get the leaf nv of value v.
12: ABT← TAssign(CBT)
13: NSet← TGetNodes(nv,ABT)
14: if op = add then
15: Generate the bit string bs as state

in Bit String Representation of Section
3.4.2.

16: else if op = del then
17: Generate the complement bit

string bs as state in Bit String Representa-
tion of Section 3.4.2.

18: end if
19: for every node n ∈ NSet do
20: UTn ← FK(n)
21: e← Enc(PK, bs)
22: Send (UTn, e) to the server.
23: end for
24: else if v < m then
25: Execute line 11-23.
26: end if
Server:
Input (UTn, e), EDB
Output EDB

1: Upon receiving (UTn, e)
2: e′ ← T[UTn]
3: if e′ 6=⊥ then
4: e← e · e′
5: end if
6: T[UTn]← e

In this construction, it achieves backward privacy. Moreover, the communication overhead
between the client and the server is significantly reduced due to the fact that for each query,
the server returns a single ciphertext to the client at the cost of supporting a small number
of documents. Since, in Paillier cryptosystem, the length of the message is usually small and
fixed (e.g., 1024 bits).

This construction can be applied to applications where the number of documents is
small, and simultaneously the number of keywords can be large. The reason for this is
the fact that for a given keyword, the number of documents that contain it is small. Con-

22

sider a temperature forecast system that uses a database, which stores record from different
sensors (IoT) located in different cities across Australia. In the application, the cities (sen-
sors) can be considered as documents, and temperature measurements can be considered as
the keywords. For example, Sydney and Melbourne have a temperature of 18◦C. Adelaide
and Wollongong have got 17◦C and 15◦C, respectively. If we query for cities whose temper-
ature measurements are in the range from 17 to 18◦C, then the outcome includes Adelaide,
Sydney, and Melbourne. Here, the number of cities (documents) is not large. The number
of different temperature measurements (keywords) can be large, depending on requested
precision.

3.5 Security Analysis

Similar to [13], for a range query q = [a, b], let {nc1 , ..., nct} be the tree cover of interval
[a, b]. We consider nci as a keyword and parse a range query into several keywords. Before
define the leakage functions, we define a search query q = (t, [a, b]) = {(t, nc1), · · · , (t, nct)}.
For an update query, if we want to update a file ind with value v, we may need to update
the corresponding leaf node and its parents in the tree denoted as {nu1 , · · · , nut}. We define
an update query u = (t, op, (v, ind)) = {(t, op, (nu1 , ind)), · · · , (t, op, (nut , ind))}. For a list of
search query Q = {(t, n) : (t, n) ∈ {q}} and a list of update query Q′ = {(t, op, (n, ind)) :

(t, op, (n, ind)) ∈ {u}} Then, following [20], the leakage to the server is summarized as fol-
lows:

• Search pattern sp(n) = {t : (t, n) ∈ Q}, it leaks the timestamp t that the same search
query on n.

• History Hist(n) = {(t, op, ind) : (t, op, (n, ind)) ∈ Q′}, the history of keyword n. It
includes all the updates made to DB(n) and when the update happened.

• contain pattern cp(n) = {t′ : DB(n) ⊆ DB(n′) and t′ < t, (t′, n′), (t, n) ∈ Q}, it leaks
the time t′ of previous search query on keyword n′, where DB(n) ⊆ DB(n′). Note that,
cp(n) is an inherited leakage for range queries when the file indices are revealed to the
server. If a query n is a subrange of query n′, then the file index set for n will also be a
subset of the file index set for n′.

3.5.1 Forward Privacy

Following [20], forward privacy means that an update does not leak any information
about keywords of updated documents matching a query we previously issued. A formal
definition is given below:

Definition 2. ([20]) A L-adaptively-secure DSSE scheme Γ is forward-private if the update leakage

23

function LUpdt can be written as

LUpdt(op, in) = L′(op, (indi, µi))

where (indi, µi) is the set of modified documents paired with number µi of modified keywords for the
updated document indi.

3.5.2 Construction A

Since the first DSSE construction is based on [20], it inherits the security of the original
design. Adaptive security of construction A can be proven in the Random Oracle Model and
is a modification of the security proof of [20].

Theorem 1. (Adaptive forward privacy of A). Let LΓA
= (LSrchΓA

, LUpdtΓA
), where LSrchΓA

(n)

= (sp(n),Hist(n),cp(n)), LUpdtΓA
(add, n, ind) =⊥. The construction A is LΓA

-adaptively forward
private.

Compared with [20], this construction additionally leaks the contain pattern cp as de-
scribed in Section 3.3.1. Other leakages are exactly the same as [20]. Since the server exe-
cutes one keyword search and updates one keyword/file-index pair at a time. Note that the
server does not know the secret key of the trapdoor permutation, so it cannot learn anything
about the pair even if the keyword has been searched by the client previously.

Proof. As mentioned before, we parse a range interval into several keywords. Following
[20], we will set a serial of games from DSSEREALΓA

A (1λ) to DSSEIDEALΓA
A,S1(1

λ).

Game G1,0: G1,0 is exactly same as the real world game DSSEREALΓA
A (1λ).

Pr[DSSEREALΓA
A (1λ) = 1] = Pr[G1,0 = 1].

Game G1,1: Instead of calling F when generating kn, G1,1 picks a new random key when
it inputs a new keyword n, and stores it in a table Key so it can be reused next time. If an
adversary A is able to distinguish between G1,0 and G1,1, we can then build a reduction to
distinguish between F and a truly random function. More formally, there exists an efficient
adversary B1 such that

Pr[G1,0 = 1]− Pr[G1,1 = 1] ≤ AdvprfF,B1(λ).

Game G1,2: In G1,2, we pick random strings in replace of calling hash function H1, where
H1 is modeled as a random oracle. For every search, the output of H1 is programmed where
H1(Kn, STc(n)) = UT[n, c].

24

Algorithm 4 Game G1,2 and single box for G′1,2

Setup(1λ)

1: (TSK,TPK)← TKeyGen(1λ)
2: T, N← empty map
3: m = 0
4: bad← false
5: return (TPK,TSK, K,T,N,m)

Search([a, b], σ; m, EDB)
Client:

1: CBT← TCon(m)
2: ABT← TAssign(CBT)
3: RSet← TGetCover([a, b], ABT)
4: for n ∈ RSet do
5: Kn ← Key(n)
6: (ST0, · · · , STc, c)← N[n]
7: if (STc, c) 6=⊥ then
8: for i = 0 to c do
9: H1(Kn, STi)← UT[n, i]

10: end for
11: Send (Kn, STc, c) to the server.
12: end if
13: end for
Server:
14: Upon receiving (Kn, STc, c)
15: for i = c to 0 do
16: UTi ← H1(Kn, STi)
17: e← T[UTi]
18: ind← e⊕H2(Kn, STi)
19: Output the ind
20: STi−1 ← Π(TPK, STi)
21: end for
Update(add, v, ind, σ; m, EDB)
Client:

1: CBT← TCon(m)
2: if v = m then
3: CBT←TUpdate(add, v, CBT)
4: m← m+ 1
5: if CBT added a new root then
6: (STc, c)← N[rootold]
7: N[rootnew]← (STc, c)

8: end if
9: Get the leaf nv of value v.

10: ABT← TAssign(CBT)
11: NSet← TGetNodes(nv, ABT)
12: for every node n ∈ NSet do
13: Kn ← Key(n)
14: (STc, c)← N[n]
15: if (STc, c) =⊥ then
16: ST0 ←M, c← −1
17: else
18: STc+1 ← Π−1(TSK, STc)
19: end if
20: N[n]← (ST0, · · · , STc+1, c+ 1)
21: UTc+1 ← {0, 1}x
22: if H1(Kn, STc+1 6=⊥) then
23: bad← true, UTc+1 ← H1(Kn, STc+1)

24: end if
25: UT[n, c+ 1]← UTc+1

26: e← ind⊕H2(Kn, STc+1)
27: Send (UTc+1, e) to the Server.
28: end for
29: else if v < m then
30: Execute line 9-24.
31: else
32: We can use Update many times.
33: end if
Server:
34: Upon receiving (UTc+1, e)
35: Set T[UTc+1]← e

H1(k, v)

1: v′ ← H1(k, v)
2: if v′ =⊥ then
3: v′ ← {0, 1}x
4: if ∃n, c s.t v = STc ∈ N[n] then
5: bad← true, v′ ← UT [n, c]

6: end if
7: H1(k, v)← v′

8: end if
9: return v′

Algorithm 4 describes this game and introduce an intermediate game G′1,2. G′1,2 is used
to keep the consistency of H1’s transcript. In Update, we chooses a random value for UTc(n)

and stores it in table UT, and programed it to the output of (Kn, STc) in Search.

25

Since H1’s outputs in G′1,2 and G1,1 are perfectly indistinguishable, so we have

Pr[G1,1 = 1] = Pr[G′1,2 = 1].

G′1,2 and G1,2 are also perfectly identical unless the bad happens (set to true). Pr[G′1,2 =

1]− Pr[G1,2 = 1] ≤ Pr[bad is set to true in G′1,2]

Following [20], the possibility for H1(Kn, STc+1) already exists is the advantage of break-
ing the one-wayness of the trapdoor permutation which is AdvOWΠ,B2(1

λ). Assume the query
make N queries, then we have

Pr[G1,1 = 1]− Pr[G1,2 = 1] = Pr[G′1,2 = 1]− Pr[G1,2 = 1] ≤ N · AdvOWΠ,B2(1
λ).

Game G1,3: Similar to G1,2, G1,3 programs H2. The same steps can be reused, giving that
there is an adversary B3, such that

Pr[G1,2 = 1]− Pr[G1,3 = 1] ≤ N · AdvOWΠ,B3(1
λ).

Note that, we can consider B2 = B3 without loss of generality.

Game G1,4: In G1,4, we keep the records of the random generated encrypted strings of
the H1 and H2. In Update, we choose random values for update tokens and ciphertexts in
Table UT and e, respectively. Then we program them identically to the outputs of the corre-
sponding hash functions in Search. Then G1,4 is exactly same as the G1,3. More formally,

Pr[G1,4 = 1] = Pr[G1,3 = 1]

Simulator S1 With the contain pattern cp, the simulator can reuse the certain update
token UT to simulate the inclusion relationship between the keywords. We can use the
search pattern n̂←min sp(n) and history Hist to simulate the Search and Update. Similar
to [20], we have

Pr[G1,4 = 1] = Pr[DSSEIDEALΓA
A,S1(1

λ) = 1]

Finally,
Pr[DSSEREALΓA

A (1λ) = 1]− Pr[DSSEIDEALΓA
A,S1(1

λ) = 1]

≤ AdvprfF,B1(1
λ) + 2N · AdvOWΠ,B2(1

λ)

which completes the proof.

3.5.3 Backward Privacy

Backward privacy means that a search query on keyword n does not leak the file indices
that previously added and later deleted. More formally, we modify the Type I definition of

26

Algorithm 5 Simulator S1

S.Setup(1λ)

1: (TSK,TPK)← TKeyGen(1λ)
2: N, T← empty map
3: t = 0
4: return (TPK,TSK,T,N)

S.Update()
Client:

1: UT[t]← {0, 1}x
2: e[t]← {0, 1}y
3: Send (UT[t],e[t]) to the server.
4: t← t+ 1

S.Search(sp(n),Hist(n),cp(n))
Client:

1: n̂←min sp(n)
2: Kn̂ ← Key[n̂]
3: Parse cp(n) as t′

4: if t′ 6=⊥ then
5: Get the c-th search token STc of previ-

ously queried keyword at time t′.
6: else
7: Parse Hist(n) as ((t0, add, ind0),
· · · , (tc, add, indc))

8: if Hist(n) =⊥ then
9: return ∅

10: end if
11: for i = 0 to c do
12: Set H1(Kn̂, STi)← UT[ti]
13: Set H2(Kn̂, STi)← e[ti]⊕ indi
14: STi+1 ← Π−1

TSK(STi)
15: end for
16: end if
17: Send (Kn̂, STc) to the server.

[21]. It leaks keyword n has been updated7, the total number of updates on n. More formally,

Definition 3. A L-adaptively-secure DSSE scheme Γ is backward-private if the the search and up-
date leakage functions LSrch, LUpdt can be written as LUpdt(n) = L′(n), LSrch = L′′(sp(n)).

3.5.4 Construction B

The adaptive security of the second DSSE construction relies on the semantic security of
the Paillier cryptosystem. All file indices are encrypted using the public key of the Paillier
cryptosystem. Without the secret key, the server cannot learn anything from the ciphertext.
Note that, during the update, this construction leaks which keyword has been updated.

Theorem 2. (Adaptive backward privacy of B). Let LΓB
= (LSrchΓB

, LUpdtΓB
), where LSrchΓB

(n) =

(sp(n)), LUpdtΓB
(op, n, ind) = (n). Construction B is LΓB

-adaptively backward-private.

During the update, the construction B leaks which keyword has been updated. However,
it does not leak the type of update (either add or del) on encrypted file indices because both
addition and deletion are achieved by homomorphic addition. Moreover, it does not leak
contain pattern cp and the file indices that previously added and later deleted since the file
indices have been encrypted, and the server can learn nothing without the secret key.

Proof. For Theorem 2, we also set a serial of games from DSSEREALΓB
A (1λ) to

DSSEIDEALΓB
A,S2(1

λ).

7Instead of leaking the keyword n in the plaintext form; it may be leaked in the masked form.

27

Game G2,0: G2,0 is exactly same as the real world game DSSEREALΓB
A (1λ).

Pr[DSSEREALΓB
A (1λ) = 1] = Pr[G2,0 = 1]

Game G2,1: Instead of calling F when generating UTn, G2,1 picks a new random key
when it inputs a new keyword n, and stores it in a table Key so it can be reused next time. If
an adversary A is able to distinguish between G2,0 and G2,1, we can then build a reduction
able to distinguish between F and a truly random function. More formally, there exists an
efficient adversary B1 such that

Pr[G2,0 = 1]− Pr[G2,1 = 1] ≤ AdvprfF,B1(1
λ).

Game G2,2: We replace the bit string bs with a all 0 bit string. If an adversary A is able to
distinguish between G2,1 and G2,2, we can then build an adversary B2 to break the semantic
security of Paillier cryptosystem. More formally, there exists an efficient adversary B2 such
that

Pr[G2,1 = 1]− Pr[G2,2 = 1] ≤ AdvIND-CPAΣ,B2 (1λ).

Algorithm 6 Simulator S2

S.Setup(1λ)

1: (SK,PK)← KeyGen(1λ)
2: return (PK,SK, t)

S.Update(n)
Client:

1: UTn ← Key(n)

2: e← Enc(PK, 0 · · · 0)
3: Send (UTn, e) to the server.
S.Search(sp(n))
Client:

1: n̂←min sp(n)
2: UTn̂ ← Key(n̂)
3: Send UTn̂ to the server.

Simulator Now, we can simulator the DSSEIDEAL with the leakage functions defined in
this Theorem. We removed the useless part which will not influence the client’s transcript.
See Algorithm 6 for more details. This two games is indistinguishable. So we have

Pr[G2,2 = 1] = Pr[DSSEIDEALΓB
A,S2(1

λ) = 1]

Finally,
Pr[DSSEREALΓB

A (1λ) = 1]− Pr[DSSEIDEALΓB
A,S2(1

λ) = 1]

≤ AdvprfF,B1(1
λ) + AdvIND-CPAΣ,B2 (1λ)

which completes the proof.

28

3.6 Conclusion

In this chapter, we give two secure DSSE schemes that support range queries. The first
DSSE construction applies our binary tree to Bost [20]’s framework, which achieves forward
privacy. However, it incurs a large storage overhead in the client and a high communication
cost between the client and the server. To achieve backward privacy, we propose the sec-
ond DSSE construction with range queries by applying Paillier cryptosystem and bit string
representation. In this construction, we use the fixed update token to reduce the client and
the server storage at the cost of losing forward privacy. In addition, it can not support a
large number of documents. Although the second DSSE construction cannot support a large
number of documents, it can still be very useful in certain applications.

29

Chapter 4

Dynamic Searchable Symmetric Encryption with Forward and

Stronger Backward Privacy

Dynamic Searchable Symmetric Encryption (DSSE) enables a client to perform updates
and searches on encrypted data, which makes it very useful in practice. To protect DSSE
from the leakage of updates (leading to break query or data privacy), two new security
notions, forward and backward privacy, have been proposed recently. Although extensive
attention has been paid to forward privacy, this is not the case for backward privacy. Back-
ward privacy, first formally introduced by Bost et al., is classified into three types from weak
to strong, exactly Type-III to Type-I. To the best of our knowledge, however, no practical
DSSE schemes without trusted hardware (e.g., SGX) have been proposed so far, in terms of
the strong backward privacy and constant roundtrips between the client and the server.

In this chapter, we present a new DSSE scheme by leveraging simple symmetric en-
cryption with homomorphic addition and bitmap index. The new scheme can achieve both
forward and backward privacy with one roundtrip. In particular, the backward privacy we
achieve in our scheme (denoted by Type-I−) is somewhat stronger than Type-I. Moreover,
our scheme is very practical as it involves only lightweight cryptographic operations. To
make it scalable for supporting billions of files, we further extend it to a multi-block set-
ting. Finally, we give the corresponding security proofs and experimental evaluation, which
demonstrate both the security and practicality of our schemes, respectively.

4.1 Introduction

Cloud storage solutions become increasingly popular and economically attractive for
users who need to handle large volumes of data. To protect the data stored on the cloud,
users normally encrypt the data before sending it to the cloud. Unfortunately, encryption
destroys the natural structure of data, and consequently, data needs to be decrypted before
processing. To solve this dilemma, searchable symmetric encryption (SSE) has been pro-
posed [10–12]. SSE not only protects the confidentiality of data but also permits searching
over encrypted data without a need for decryption. Furthermore, SSE is much more efficient
compared to other cryptographic techniques such as oblivious RAM (ORAM) that attract a
punishing computational overhead [52, 53].

Early SSE solutions were designed for a static setting, i.e., an encrypted database can-
not be updated. This feature of SSE severely restricts their applications. To overcome this
limitation and make SSE practical, dynamic searchable symmetric encryption (DSSE) was

30

proposed (see [15, 17]). DSSE allows both searching and updating. However, security anal-
ysis becomes more complicated as an adversary can observe the behavior of the database
during the updates (addition and deletion of data). For instance, an adversary can find out
if an added/deleted file contains previously searched keywords. Cash et al. [16] argued
that updates could leak information about the contents of the database as well as search
queries and keywords involved. For example, file-injection attacks can reveal user queries
by adding to a database a small number of carefully designed files [18].

Consequently, two new security notions called forward and backward privacy were
proposed to deal with the leakages mentioned above. They were informally introduced by
Stefanov et al. in 2014 [19]. Roughly speaking, for any adversary who may continuously
observe the interactions between the server and the client, forward privacy is satisfied if the
addition of new files does not leak any information about previously queried keywords. In
a similar vein, backward privacy holds if files that previously added and later deleted do
not leak “too much” information within any period that two search queries on the same
keyword happened1. Bost [20] formally defined forward privacy and designed a forward-
private DSSE scheme, which is resistant against file-injection attacks [18]. The scheme has
been extended by Zuo et al. [54], so it supports range queries. In contrast, backward privacy
attracted less attention. Recently, Bost et al. [21] defined three variants of backward privacy
in order from strong to weak. They are:

• Type-I – backward privacy with insertion pattern. Given a keyword w and a time
interval between two search queries on w, then Type-I leaks information about when
new files containing w were inserted and the total number of updates on w.

• Type-II – backward privacy with update pattern. Apart from the leakages of Type-I, it
additionally leaks when all updates (including deletion) related to w occurred.

• Type-III – weak backward privacy. It leaks information of Type-II, and it also leaks
exactly when a previous addition has been canceled by which deletion.

For example, assume that a query has the following form {time, operation, (keyword,
file)}. Given the following queries: {1, search, w}, {2, add, (w, f1)}, {3, add, (w, f2)},
{4, add, (w, f3)}, {5, del, (w, f2)} and {6, search, w}. Then after time 6, Type-I leaks that there
are 4 updates, the files f1 and f3 match the keyword w, and these two files were added at
time 2 and 4, respectively. Type-II additionally leaks time 3 and 5 when the updates related
to keyword w occurred. Type-III also leaks the fact that the addition at time 3 has been
canceled by the deletion at time 52.

1The files are leaked if the second search query is issued after the files are added but before they are deleted.
This is unavoidable since the adversary can easily tell the difference of the search results before and after the
same search query.

2In this example, there is only one addition/deletion pair. For Type-II, the server knows which addition
has been canceled by which deletion easily. However, there may have many addition/deletion pairs; then the
server cannot know which deletion cancels which addition.

31

Bost et al. [21] gave several constructions with different security/efficiency trade-offs.
Their FIDES scheme achieves Type-II backward privacy. Their schemes DIANAdel and Janus
provide better performance at the expense of security (they are Type-III backward-private).
Their scheme MONETA, which is based on the recent TWORAM construction of Garg et al.
[53], achieves Type-I backward privacy. Ghareh Chamani et al. [55], however, argued that
the MONETA scheme is highly impractical due to the fact that it is based on TWORAM, and
it serves mostly as a theoretical result for the feasibility of Type-I schemes. Sun et al. [56]
proposed a new DSSE scheme named Janus++. It is more efficient than Janus as it is based
on symmetric puncturable encryption. Janus++ can only achieve the same security level as
Janus (Type-III).

Very recently, Ghareh Chamani et al. [55] designed three DSSE schemes. The first
scheme MITRA achieves Type-II backward privacy, and it is based on symmetric key en-
cryption getting better performance than FIDES [21]. The second scheme ORION achieves
Type-I backward privacy. It requires O(logN) rounds of interaction and applies ORAM [52],
where N is the total number of keyword/file-identifier pairs. The third design is HORUS.
The number of interactions is reduced to O(dw) at the expense of lower security guarantees
(Type-III backward privacy), where dw is the number of deleted entries for w. Zuo et al. [54]
also constructed two DSSE schemes supporting range queries. Their first scheme achieves
forward privacy. Their second scheme (called SchemeB) uses bit string representation and
the Paillier cryptosystem, which achieves backward privacy. However, they did not provide
any formal analysis for the backward privacy of their scheme. To the best of our knowledge,
no practical DSSE schemes achieve both the high-level backward privacy and constant in-
teractions between the client and the server.

Our Contributions. In this chapter, we propose an efficient DSSE scheme (named FB-DSSE)
with a stronger backward privacy (denoted as Type-I− backward privacy) and one roundtrip
(without considering the retrieval of actual files), which also achieves forward privacy. This
scheme is based on a bitmap index and a simple symmetric encryption with homomorphic
addition. Later, we extend it to a multi-block setting (named MB-FB-DSSE). Table 4.1 com-
pares our schemes (FB-DSSE and MB-FB-DSSE) with other designs supporting backward
privacy. In particular, our contributions are as follows:

• We formally introduce a new type of backward privacy, named Type-I− backward pri-
vacy. It does not leak the insertion time of each matched files which is somewhat
stronger than Type-I. More precisely, for a query with a keyword w, it only leaks the
number of previous updates associated with w, time when these updates happened,
and files that currently match w. Type-I− leaks no information about when each file
was inserted. For our example, Type-I− only leaks that time 2, 3, 4, 5 are updates and
f1, f3 currently matching keywordw3. Although it is not clear the impact of leaking the

3Note that, it does not leak the insertion time of f1 and f3.

32

Table 4.1: Comparison with previous works

Scheme Roundtrips bet. Client Forward Backward Without
Client and Server Storage Privacy Privacy ORAM

FIDES [21] 2 O(|W|log|D|) 3 Type-II 3

DIANAdel [21] 2 O(|W|log|D|) 3 Type-III 3

Janus [21] 1 O(|W|log|D|) 3 Type-III 3

Janus++ [56] 1 O(|W|log|D|) 3 Type-III 3

MITRA [55] 2 O(|W|log|D|) 3 Type-II 3

HORUS [55] O(logdw) O(|W|log|D|) 3 Type-III 7

SchemeB [54] 2 O(|W|log|D|) 7 Unknown 3

MONETA [21] 3 O(1) 3 Type-I 7

ORION [55] O(logN) O(1) 3 Type-I 7

Our schemes 1 O(|W|log|D|) 3 Type-I− 3

N is the number of keyword/file-identifier pairs, dw is the number of deleted entries for
keyword w. |W| is the collection of distinct keywords, |D| is the total number of files.

insertion time in practice, it is believed that the less information the scheme leaks, the
higher security it guarantees, since the leakage might be leveraged by the adversary to
launch some potential attacks.

• We design a Type-I− backward-private DSSE FB-DSSE by leveraging the bitmap in-
dex and the simple symmetric encryption with homomorphic addition. FB-DSSE also
achieves forward privacy, which is based on the framework of [20]. In the scheme, we
achieve forward privacy through a new technique that deploys symmetric primitive
instead of the public primitive [20] (one-way trapdoor permutation), which makes our
scheme more efficient.

• To support an even larger number of files with improved efficiency, we extend our first
scheme to the multi-block setting. We call it MB-FB-DSSE. In our experimental anal-
ysis, for the MB-FB-DSSE scheme with 1 billion files, the search and update time are
5.84s and 46.41ms, respectively, where the number of blocks is 103, and the bit length
of each block is 106. For the same number of files, the FB-DSSE scheme consumes
9.07s for search and 125.23ms for update (note that, bit length is 109). Finally, the secu-
rity analyses are given to show that our schemes are forward and Type-I− backward
private.

Remark: We note that our scheme does not leak the insertion time of each matched file for a
search query w, but leaks the update time for each update. Therefore, it achieves somewhat
stronger security than Type-I, but strictly stronger security than Type-II. In the conference
version [54], we claim that it achieves stronger security than Type-I, named Type-I−. In this
full version, we correct the inaccurate definition for Type-I− in Section 3.4 of the conference
version [54] and the corresponding example given in “Our Contributions”. In general, to
eliminate the update time of each update for a search query w, it is always required to use

33

some sort of ORAM technique [52, 55] to touch every item in a database at the expense of
low efficiency. In this chapter, we focus on achieving stronger backward privacy without
using ORAM.

4.1.1 Related Work

For the completeness and consistency of this Chapter, we enumerate some related works
that already appeared in Section 2.1.1 and 3.1.1. Song et al. [10] showed how to perform a
keyword search over encrypted data using symmetric encryption. To search for a keyword
w, the server compares every encrypted keyword in a file with a token (issued by the client).
The search time is linear with the number of keyword/file-identifier pairs, which is not ef-
ficient. Later, Curtmola et al. [11] designed an efficient SSE based on the inverted index,
which achieves sub-linear search time. The authors also quantified the leakage of an SSE
and gave a formal security definition for SSE. Cash et al. [12] proposed a highly scalable
SSE, which supports large databases. Following this work, many SSE schemes have been
proposed addressing different aspects. For example, Sun et al. [37] focused on the usage of
SSE in a multi-client setting. Zuo et al. [14] proposed an SSE scheme, which supports more
general Boolean queries. To support database updates, dynamic SSE schemes are introduced
in [15, 17, 20, 21].

Early schemes have been designed under the assumption that the encrypted database
is static; i.e., it cannot be updated. Dynamic SSE schemes were introduced in [15, 17]. For
DSSE schemes, it is assumed that an encrypted database can be updated, i.e., new files can be
added, and some existing files can be removed. However, the dynamic nature of databases
brings new security problems. Two security notions, namely, forward and backward pri-
vacy, have been informally introduced in [19]. Further works concentrate on refinements of
the privacy notions for DSSE schemes [20, 21, 55, 56].

There is also a line of investigation that concentrates on the design of SSE schemes that
can handle richer (complex) queries. Cash et al. [12] proposed an SSE scheme that handles
Boolean queries. Faber et al. [13] extended the scheme so it can handle more complex queries
about ranges, substrings, and wild cards. A majority of forward private DSSE schemes
support single keyword queries only. Zuo et al. [54] proposed a forward private DSSE
scheme supporting range queries. Recently, SGX has been used to instantiate hardware-
based SSE. We refer readers to [57, 58] for more details.

4.1.2 Organization

The remaining sections of this chapter are organized as follows. In Section 4.2, we give
the necessary background information and describe building blocks that are used in this
chapter. In Section 4.3, we define DSSE and its security notions. In Section 4.4, we present
our DSSE schemes. Their security and experimental analyses are given in Section 4.5 and

34

Section 4.6, respectively. Finally, Section 4.7 concludes this chapter.

4.2 Preliminaries

In this chapter, λ denotes the security parameter, || stands for the concatenation and |m|
denotes the bit length of m. We use bitmap index4 to represent file identifiers [59]. More
precisely, there is a bit string bs of the length `, where ` is the maximum number of files that
a scheme can support. The i-th bit of bs is set to 1 if there exists file fi, and 0 otherwise. Fig.
4.1 illustrates an instance for 6 files, i.e. ` = 6. Assume that there exists file f2 and f3 (see Fig.
4.1.(a)). If we want to add file f1, we need to generate the bit string 21 = 000010 and add it to
the original bit string (see Fig. 4.1.(b)). Now, if we want to delete file f2, we need to generate
the bit string −22 = −4 = −000100. As our index computation is done modulo 26, we can
convert −4 = 26 − 22 = 60 (mod 26), which is 111100 in binary. The string 111100 is added
to the original bit string (see Fig. 4.1.(c)). Note that manipulation on bitmap indexes for
addition and deletion can be done by modulo addition. In other words, the bitmap index
can be (homomorphically) encrypted and updated (to reflect addition or deletion of files)
using encryption with the homomorphic property.

0	0	1	1	0	0

f4 f2 f0

f1f3f5
(a)	Bitmap	index

0	0	1	1	0	0

0	0	0	0	1	0

0	0	1	1	1	0
mod	26

(b)	Add (c)	Delete

0	0	1	1	0	0

0	0	0	1	0	0

0	0	1	1	0	0

26
22

0	0	1	1	0	0

1	1	1	1	0	0

mod	26 mod	26

mod	26

0	0	1	0	0	0

Figure 4.1: An example of our bitmap index

4.2.1 Simple Symmetric Encryption with Homomorphic Addition

A simple symmetric encryption with homomorphic addition Π [60] consists of the fol-
lowing four algorithms Setup, Enc, Dec and Add as described below:

• n ← Setup(1λ): For the security parameter λ, it outputs a public parameter n, where
n = 2` is the message space and ` is the maximum number of files a scheme can sup-
port.

4A special kind of data structure which has been widely used in the database community.

35

• c ← Enc(sk,m, n): For a message m, the public parameter n and a random secret key
sk (0 ≤ sk < n), it computes a ciphertext c = sk + m mod n, where m is the message
0 ≤ m < n. Note that, for every encryption, the secret key sk needs to be stored, and it
can only be used once.

• m← Dec(sk, c, n): For the ciphertext c, the public parameter n and the secret key sk, it
recovers the message m = c− sk mod n.

• ĉ ← Add(c0, c1, n): For two ciphertexts c0, c1 and the public parameter n, it computes
ĉ = c0 + c1 mod n, where c0 ← Enc(sk0,m0, n), c1 ← Enc(sk1,m1, n), n ← Setup(1λ)

and 0 ≤ sk0, sk1 < n.

Correctness. For the correctness of this scheme, it is required that sum of two ciphertexts
ĉ = c0 + c1 mod n decrypts to m0 + m1 mod n under the ŝk = sk0 + sk1 mod n or in other
words

Dec(ŝk, ĉ, n) = ĉ− ŝk mod n = m0 +m1 mod n.

It is easy to check that this requirement holds.

Remark. For the encryption and decryption algorithms of Π, the secret key sk can only be
used once.

Perfect Security [60]. We say Π is perfectly secure if for any PPT adversary A, their advan-
tage in the perfect-security game is negligible or

AdvPS
Π,A(λ) = |Pr[A(Enc(sk,m0, n)) = 1]− Pr[A(Enc(sk,m1, n)) = 1]| ≤ ε,

where n← Setup(1λ), the secret key sk (0 ≤ sk < n) is kept secret andA chooses m0,m1 s.t.
0 ≤ m0,m1 < n.

4.2.2 Notations

Notations used in the chapter are given in Table 4.2.

4.3 DSSE Definition and Security Model

A database DB is a list of file-identifier/keyword-set pairs, which is denoted as DB=

(fi,Wi)
`
i=1. The file identifier is fi ∈ {0, 1}λ, Wi ⊆ {0, 1}∗ is a set of all keywords contained

in the file fi and ` is the total number of files in DB. We also denote W = ∪`i=1Wi as all
keywords in DB. We identify W as a collection of all distinct keywords that occur in DB.
Note that, |W| is the total number of keywords and N =

∑`
i=1 |Wi| is denoted as the total

36

Table 4.2: Notations (used in our schemes)

DB A database
λ The security parameter
STc The current search token for a keyword w
EDB The encrypted database EDB which is a map
F A secure PRF
W The set of all keywords of the database DB
CT A map stores the current search token STc and counter c for every keyword in W
fi The i-th file
bs The bit string which is used to represent the existence of files
` The length of bs
e The encrypted bit string

Sume The sum of the encrypted bit strings
sk The one time secret key

Sumsk The sum of the one time secret keys
B The number of blocks
bs The bit string array with length B
e The encrypted bit string array with length B

Sume The sum of the encrypted bit string arrays with length B
sk The one time secret key array with length B

Sumsk The sum of the one time secret key arrays with length B

number of file-identifier/keyword pairs. A set of files that satisfy a query q is denoted by
DB(q). Note that, in this chapter, we use bitmap index to represent the file identifiers. For a
search query q, the result is a bit string bs, which represents a list of file identifiers in DB(q).
For an update query u, a bit string bs is used to update a list of file identifiers. Moreover, we
isolate the actual files from the metadata (e.g. file identifiers). We only focus on the search of
the metadata. The ways we can retrieve the encrypted files are not described in this chapter.

4.3.1 DSSE Definition

A DSSE scheme consists of an algorithm Setup and two protocols Search and Update
that are executed between a client and a server. They are described as follows:

• (EDB, σ)← Setup(1λ, DB): For a security parameter λ and a database DB, the algorithm
outputs a pair: an encrypted database EDB and a state σ. EDB is stored by the server
and σ is kept by the client.

• (I, ⊥)← Search(q, σ; EDB): For a state σ, the client issues a query q and interacts with
the server who holds EDB. At the end of the protocol, the client outputs a set of file
identifiers I that match q and the server outputs nothing.

• (σ′, EDB′)← Update(σ, op, in; EDB): For a state σ, the operation op ∈ {add, del} and a
collection of in = (f,w) pairs, the client requests the server (who holds EDB) to update

37

database by adding/deleting files specified by the collection in. Finally, the protocol
returns an updated state σ′ to the client and an updated encrypted database EDB′ to
the server.

Remark. There are two variants of the result model for SSE schemes. In the first one (consid-
ered in the work [12]), the server returns encrypted file identifiers I, so the client needs to
decrypt them. In the second one (studied in the work [20]), the server returns the file iden-
tifiers to the client directly. In our work, we consider the first variant, where the protocol
returns encrypted file identifiers.

4.3.2 Security Model

DSSE security is modeled by interaction between the Real and Ideal worlds called
DSSEREAL and DSSEIDEAL, respectively. The behavior of DSSEREAL is exactly the same
as the original DSSE. However, DSSEIDEAL reflects a behavior of a simulator S, which
takes the leakage of the original DSSE as input. The leakage is defined by a function L =

(LSetup,LSearch,LUpdate), which details what information the adversary A can learn during
execution of the Setup algorithm, Search and Update protocols.

If the adversary A can distinguish DSSEREAL from DSSEIDEAL with a negligible ad-
vantage, the information leakage is limited to L only. More formally, we consider the fol-
lowing security game. The adversary A interacts with one of the two worlds DSSEREAL or
DSSEIDEAL and would like to guess it.

• DSSEREALA(λ): First Setup(λ, DB) is run and the adversary gets EDB. A performs
search queries q (or update queries (op, in)). Eventually, A outputs a bit b, where b ∈
{0, 1}.

• DSSEIDEALA,S(λ): Simulator S with the input LSetup(λ,DB)) is executed. For search
queries q (or update queries (op, in)) generated by the adversary A, the simulator S
replies by using the leakage function LSearch(q) (or LUpdate(op, in)). Eventually, A out-
puts a bit b, where b ∈ {0, 1}.

Definition 4. Given a DSSE scheme and the security game described above. The scheme is L-
adaptively-secure if for every PPT adversary A, there exists an efficient simulator S (with the input
L) such that,

|Pr[DSSEREALA(λ) = 1]− Pr[DSSEIDEALA,S(λ) = 1]| ≤ negl(λ).

Leakage Function. Before define the leakage function, we define a search query q = (t, w)

and an update query u = (t, op, (w, bs)), where t is the timestamp, w is the keyword to be
searched (or updated), op is the update operation and bs denotes a list of file identifiers to be

38

updated. For a list of search queries Q, we define a search pattern sp(w) = {t : (t, w) ∈ Q},
where t is a timestamp. The search pattern leaks the repetition of search queries on w. Result
pattern rp(w) = bs, bs represents all file identifiers that currently matching w. Note that,
after a search query, we implicitly assume that the server knows the final result bs5.

4.3.3 Forward Privacy

Informally, for any adversary who may continuously observe the interactions between
the server and the client, forward privacy guarantees that an update does not leak informa-
tion about the newly added files that match the previously issued queries. The definition
given below is taken from [20]:

Definition 5. A L-adaptively-secure DSSE scheme is forward-private if the update leakage function
LUpdate can be written as

LUpdate(op, in) = L′(op, {(fi, µi)}),

where {(fi, µi)} is the set of modified file-identifier/keywords pairs, µi is the number of keywords
corresponding to the updated file fi.

Remark. In this chapter, the leakage function will be LUpdate(op, w, bs) = L′(op, bs).

4.3.4 Backward Privacy

Similarly, within any period that two search queries on the same keyword happened,
backward privacy ensures that it does not leak information about the files that have been
previously added and later deleted. Note that information about files is leaked if the second
search query is issued after the files are added but before they are deleted. In 2017, Bost
et al. [21] formulated three different levels of backward privacy from Type-I to Type-III
in decreasing the level of privacy. In our construction, we use a new data structure (see
Fig. 4.1), which achieves a stronger level of backward privacy. We call it Type-I−, which is
somewhat stronger than Type-I. We refer readers to [21] for more details. Type-I− and Type-I
definitions are given below.

• Type-I−: Given a time interval between two search queries for a keyword w, then it
leaks the files that currently match w and the total number of updates for w and the
update time for each update.

• Type-I: Given a time interval between two search queries for a keyword w, then it
leaks not only files that currently match w and the total number of updates for w but
additionally when the matched files were inserted.

5The client may retrieve the file identifiers represented by bs which is not described in this chapter.

39

To define Type-I− formally, we need a new leakage functions Time. For a search query on
keyword w, Time(w) lists the timestamp t of all updates corresponding to w. Formally, for
a sequence of update queries Q′:

Time(w) = {t : (t, op, (w, bs)) ∈ Q′}.

Definition 6. A L-adaptively-secure DSSE scheme is Type-I− backward-private iff the search and
update leakage function LSearch,LUpdate can be written as:

LUpdate(op, w, bs) = L′(op),LSearch(w) = L′′(sp(w),rp(w),Time(w)),

where L′ and L′′ are stateless.

4.4 Our Construction

In this section, we give our Type-I− backward private DSSE scheme. To achieve forward
privacy, we follow the framework of the forward-private DSSE from [20]. To improve the
efficiency of the underlying forward-private DSSE, we use a hash function that replaces a
public key primitive (i.e., one-way function in [20]) to achieve forward privacy. See Section
4.4.2 for more details.

4.4.1 Overview

To achieve backward privacy, the DSSE schemes from [21, 56] used puncturable en-
cryption, which can be used to “puncture” the deleted file identifiers. Then the deleted file
identifiers cannot be decrypted (searched). The schemes achieve Type-III backward privacy
only. In our construction, instead of encrypting file identifiers independently, we use a new
data structure, the bitmap index (as illustrated in Fig. 4.1.(a)), where all file identifiers are
represented by a single bit string. To add or delete a file identifier, the bit string is modified
as shown in Fig. 4.1.(b) and Fig. 4.1.(c), respectively. Besides, our scheme does not leak the
update type since both addition and deletion are done by one modulo addition6. To securely
update the encrypted database, our scheme requires additive homomorphic encryption as
the underlying encryption primitive.

The most popular additive homomorphic encryption is the Paillier cryptosystem [22].
Unfortunately, the Paillier cryptosystem attracts a very large computation overhead and can
support a limited number of files (up to the number of bits in a message/ciphertext space,
e.g., 1024 bits). After observing our bitmap index, we notice that we only need the addition
of ciphertexts (the bit strings). Also, we do not need to use one key for all encryption and
decryption. Therefore we can use simple symmetric encryption (the key can be only used

6Deletion is by adding a negative number.

40

once) with homomorphic addition (Section 4.2.1) to add the ciphertexts (and the keys) si-
multaneously. To save the client storage, we can use a hash function with a secret key K to
generate all the one time keys. E.g., H(K, c), where c is a counter. It is worth noting that this
technique has been used in [60] in the context of wireless sensor networks.

4.4.2 DSSE with Forward and Stronger Backward Privacy

Now we are ready to give our forward and stronger backward private DSSE construc-
tion FB-DSSE – see Algorithm 7. Our scheme is based on the framework of the forward
private DSSE from [20], a simple symmetric encryption with homomorphic addition Π =

(Setup,Enc,Dec,Add), and a keyed PRF FK with key K. The scheme is defined by the
following algorithms:

• (EDB, σ = (n,K,CT)) ← Setup(1λ): The algorithm is run by a client. It takes the se-
curity parameter λ as input. Then it chooses a secret key K and an integer n, where
n = 2` and ` is the maximum number of files that this scheme can support. More-
over, it initializes two empty maps EDB and CT, which are used to store the encrypted
database as well as the current search token STc and the current counter c (the num-
ber of updates) for each keyword w ∈ W, respectively. Finally, it outputs encrypted
database EDB and the state σ = (n,K,CT), and the client keeps (K,CT) secret.

• (σ′,EDB′) ← Update(w, bs, σ;EDB): The algorithm runs between a client and a server.
The client inputs a keyword w, a state σ, and a bit string bs7. Next, the client encrypts
the bit string bs by using the simple symmetric encryption with homomorphic addition
to get the encrypted bit string e. To save the client storage, the one time key skc is
generated by a hash function H3(K ′w, c), where c is the counter. Then he/she chooses
a random search token and uses a hash function to get the update token. He/She also
uses another hash function to mask the previous search token. After that, the client
sends the update token, e, and the masked previous search token C to the server and
update CT to get a new state σ′. Finally, the server outputs an updated encrypted
database EDB′.

• bs ← Search(w, σ;EDB): The protocol runs between a client and a server. The client
inputs a keyword w and a state σ, and the server inputs EDB. Firstly, the client gets the
search token corresponding to the keyword w from CT and generates the Kw. Then
he/she sends them to the server. The server retrieves all the encrypted bit strings e
corresponding to w. To reduce the communication overhead, the server adds them to-
gether by using the homomorphic addition (Add) of the simple symmetric encryption
to get the final result Sume and sends it to the client. Finally, the client decrypts it and
outputs the final bit string bs, which can be used to retrieve the matching files. Note

7Note that, we can update many file identifiers through one update query by using bit string representation
bs.

41

Algorithm 7 FB-DSSE

Setup(1λ)

1: K
$←− {0, 1}λ, n← Setup(1λ)

2: CT, EDB← empty map
3: return (EDB, σ = (n,K,CT))

Update(w, bs, σ;EDB)
Client:

1: Kw||K ′w ← FK(w), (STc, c)← CT[w]
2: if (STc, c) =⊥ then
3: c← −1, STc ← {0, 1}λ
4: end if
5: STc+1 ← {0, 1}λ
6: CT[w]← (STc+1, c+ 1)
7: UTc+1 ← H1(Kw, STc+1)
8: CSTc ← H2(Kw, STc+1)⊕ STc
9: skc+1 ← H3(K ′w, c+ 1)

10: ec+1 ← Enc(skc+1, bs, n)
11: Send (UTc+1, (ec+1, CSTc)) to server.
Server:
12: EDB[UTc+1]← (ec+1, CSTc)

Search(w, σ;EDB)
Client:

1: Kw||K ′w ← FK(w), (STc, c)← CT[w]
2: if (STc, c) =⊥ then
3: return ∅

4: end if
5: Send (Kw, STc, c) to server.

Server:
6: Sume ← 0
7: for i = c to 0 do
8: UTi ← H1(Kw, STi)
9: (ei, CSTi−1

)← EDB[UTi]
10: Sume ← Add(Sume, ei, n)
11: Remove EDB[UTi]
12: if CSTi−1

=⊥ then
13: Break
14: end if
15: STi−1 ← H2(Kw, STi)⊕ CSTi−1

16: end for
17: EDB[UTc]← (Sume,⊥)
18: Send Sume to client.
Client:
19: Sumsk ← 0
20: for i = c to 0 do
21: ski ← H3(K ′w, i)
22: Sumsk ← Sumsk + ski mod n
23: end for
24: bs← Dec(Sumsk, Sume, n)
25: return bs

that, in order to save the server storage, for every search, the server can remove all en-
tries corresponding to w and store the final result Sume corresponding to the current
search token STc to the EDB.

4.4.3 Multi-block Extension for Large Number of Files

The number of files supported by FB-DSSE is determined by the length of the public
parameter n = 2`, which is the modulus. Theoretically, it can be of an arbitrary length, but a
larger n (e.g., ` = 223) will significantly slow down modular operations. Efficiency analysis
and experiments will be given in Section 4.6. However, there are many applications that
require a system able to manage up to a billion files. Therefore, we still need to find an
efficient solution for such applications.

In this section, we extend our basic scheme to multi-block setting in order to handle a
larger number of files efficiently. The idea is to split the long bit sequence ` into multiple
smaller blocks and have multiple (e.g. B) blocks bs instead of one block bs. For every
block of bs, the operations are exactly the same as FB-DSSE. We denote the extension of
FB-DSSE as MB-FB-DSSE, which is shown in Algorithm 8. To ease the understanding of this

42

algorithm, we put the differences of MB-FB-DSSE from FB-DSSE into boxes. This scheme
consists of following algorithms:

• (EDB, σ = (n,K,CT)) ← Setup(1λ): The algorithm is exactly same as the one in
FB-DSSE.

Algorithm 8 Multi-block extension MB-FB-DSSE (Differences in boxes)

Setup(1λ)
1: Same as the one in FB-DSSE.

Update(w,bs, σ;EDB)
Client:

1: Same as the one in FB-DSSE.
2: for j = 0 to B do
3: skc+1[j]← H3(K ′w, c+ 1||j)
4: ec+1[j]← Enc(skc+1[j],bs[j], n)

5: end for
6: Send (STc+1, (ec+1 , CSTc)) to the server.

Server:
7: EDB[STc+1]← (ec+1 , CSTc)

Search(w, σ;EDB)
Client:

1: Same as the one in FB-DSSE.
Server:

2: Sume ← 0
3: for i = c to 0 , j = 0 to B do

4: UTi ← H1(K ′w, STi)

5: (ei, CSTi−1
)← EDB[UTi]

6: Sume[j]← Add(Sume[j], ei[j], n)

7: Same as the one in FB-DSSE.
8: end for
9: EDB[STc]← (Sume,⊥)

10: Send Sume to the client.
Client:
11: Sumsk ← 0
12: for i = c to 0 , j = 0 to B do

13: ski[j]← H3(K ′w, i||j)
14: Sumsk[j]← Sumsk[j] + ski[j] mod n

15: end for
16: for j = 0 to B do

17: bs[j]← Dec(Sumsk[j],Sume[j], n)

18: end for
19: return bs

• (σ′,EDB′)← Update(w,bs, σ;EDB) and bs← Search(w, σ;EDB): The two protocols are
similar to the ones in FB-DSSE. The difference is that we use multiple blocks bs rather
than one block bs to support large number of files, where bs is an array with length B
and it stores all the bit strings bs. For each block, the operations are exactly same as the
ones in FB-DSSE. Correspondingly, we have e, sk, Sume and Sumsk which are arrays
with the length of B. Sume and Sumsk are used to store the sum of all encrypted bit
string arrays e and secret keys sk, respectively. The length of the bit string bs will be
reduced and the computation time of these blocks will be shorter.

4.5 Security Analysis

In this section, we give the security analysis of our schemes.

Theorem 3. (Adaptive security of FB-DSSE). LetF be a secure PRF, Π = (Setup, Enc,Dec,Add)

be a perfectly secure simple symmetric encryption with homomorphic addition, andH1, H2 andH3 be
random oracles. We define LFB-DSSE = (LSearchFB-DSSE,L

Update
FB-DSSE), where LSearchFB-DSSE(w) = (sp(w), rp(w),

Time(w)) and LUpdateFB-DSSE(op, w, bs) =⊥. Then FB-DSSE is LFB-DSSE-adaptively secure.

43

Similar to [20], we will set a set of games from DSSEREAL to DSSEIDEAL, and we
will show that every two consecutive games is indistinguishable. Finally, we will simulate
DSSEIDEAL with the leakage functions defined in Theorem 3.

Proof. In this proof, the server is the adversary A who tries to break the security of our
FB-DSSE. The challenger C is responsible for generating the search tokens and ciphertexts,
and the simulator S simulates the transcripts between A and C at the end.

Game G0: G0 is exactly same as the real world game DSSEREALFB-DSSEA (λ), such that

Pr[DSSEREALFB-DSSEA (λ) = 1] = Pr[G0 = 1].

Game G1: In G1, when querying F to generate a key for a keyword w, the challenger C
chooses a new random key if the keyword w is never queried before, and stores it in a table
Key. Otherwise, return the key corresponding to w in the table Key. If an adversary A is
able to distinguish between G0 and G1, we can then build an adversary B1 to distinguish
between F and a truly random function. More formally,

Pr[G0 = 1]− Pr[G1 = 1] ≤ AdvprfF,B1(λ).

Game G2: In G2, as depicted in Algorithm 9, in the Update protocol, we pick random
strings for the update token UT and store it in table UT. Then, in the Search protocol, we
program these random strings to the output of the random oracle H1 where H1(Kw, STc) =

UT[w, c]. When A queries H1 with the input (Kw, STc), C will output UT[w, c] to A and store
this entry in table H1 for future queries. If the entry (Kw, STc+1) already in table H1, UT[w, c+

1] cannot be programed to the output of H1(Kw, STc+1) and this game aborts. Now, we
will show that the possibility of the game aborts is negligible. The search token is chosen
randomly by the challenger C, then the possibility that the adversary guesses the right search
token STc+1 is 1/2λ. Assume A makes polynomial p queries, then the possibility is p/2λ. So
we have

Pr[G1 = 1]− Pr[G2 = 1] ≤ p/2λ

GameG3: InG3, we model the H2 as a random oracle which is similar toH1 inG2. Then
we have

Pr[G2 = 1]− Pr[G3 = 1] ≤ p/2λ

Game G4: In G4, similar to G2, we model the H3 as a random oracle. A does not know
the key K ′w, then the possibility that he guesses the right key is 1/2λ (we set the length of K ′w
to λ). Assume Amakes polynomial p queries, the possibility is p/2λ. So we have

Pr[G3 = 1]− Pr[G4 = 1] ≤ p/2λ

44

Algorithm 9 G2 for FB-DSSE
Setup(1λ)

1: K
$←− {0, 1}λ, n← Setup(1λ)

2: CT, EDB← empty map
3: return (EDB, σ = (n,K,CT))

Update(w, bs, σ;EDB)
Client:

1: Kw||K ′w ← Key(w)
2: (ST0, · · · , STc, c)← CT[w]
3: if (STc, c) =⊥ then
4: c← −1, STc ← {0, 1}λ
5: end if
6: STc+1 ← {0, 1}λ
7: CT[w]← (ST0, · · · , STc+1, c+ 1)
8: UTc+1 ← {0, 1}λ
9: UT[w, c+ 1]← UTc+1

10: CSTc ← H2(Kw, STc+1)⊕ STc
11: skc+1 ← H3(K ′w, c+ 1)
12: ec+1 ← Enc(skc+1, bs, n)
13: Send (UTc+1, (ec+1, CSTc)) to server.
Server:
14: EDB[UTc+1]← (ec+1, CSTc)

Search(w, σ;EDB)
Client:

1: Kw||K ′w ← Key(w)
2: (ST0, · · · , STc, c)← CT[w]
3: if (STc, c) =⊥ then
4: return ∅

5: end if
6: for i = 0 to c do
7: H1(Kw, STi)← UT[w, i]
8: end for
9: Send (Kw, STc, c) to server.

Server:
10: Sume ← 0
11: for i = c to 0 do
12: UTi ← H1(Kw, STi)
13: (ei, CSTi−1

)← EDB[UTi]
14: Sume ← Add(Sume, ei, n)
15: Remove EDB[UTi]
16: if CSTi−1

=⊥ then
17: Break
18: end if
19: STi−1 ← H2(Kw, STi)⊕ CSTi−1

20: end for
21: EDB[UTc]← (Sume,⊥)
22: Send Sume to client.
Client:
23: Sumsk ← 0
24: for i = c to 0 do
25: ski ← H3(K ′w, i)
26: Sumsk ← Sumsk + ski mod n
27: end for
28: bs← Dec(Sumsk, Sume, n)
29: return bs

GameG5: InG5, we replace the bit string bswith an all 0 bit string, and the length of the
all 0 bit string is `. If an adversary A is able to distinguish between G5 and G4, then we can
build a reduction B2 to break the perfect security of the simple symmetric encryption with
homomorphic addition Π. So we have

Pr[G4 = 1]− Pr[G5 = 1] ≤ AdvPSΠ,B2(λ).

Simulator Now we can replace the searched keyword w with sp(w) in G5 to simulate
the simulator S in Algorithm 10, S uses the first timestamp ŵ ← min sp(w) for the keyword
w. We remove the useless part of Algorithm 9 which will not influence the view of A.

Now we are ready to show that G5 and Simulator are indistinguishable. For Update, it
is obvious since we choose new random strings for each update in G5. For Search, S starts
from the current search token STc and choose a random string for previous search token.
Then S embeds it to the ciphertext C through H2. Moreover, S embeds the bs to the STc and

45

all 0s to the remaining search tokens throughH3. Finally, we map the pairs (w, i) to the globe
update count t. Then we can map the values in table UT, C and sk that we chose randomly
in Update to the corresponding values for the pair (w, i) in the Search. Hence,

Pr[G5 = 1] = Pr[DSSEIDEALFB-DSSEA,S (λ) = 1]

Finally,
Pr[DSSEREALFB-DSSEA (λ) = 1]− Pr[DSSEIDEALFB-DSSEA,S (λ) = 1]

≤ AdvprfF,B1(λ) + AdvPSΠ,B2(λ) + 3p/2λ

which completes the proof.

Algorithm 10 Simulator S for FB-DSSE
S.Setup(1λ)

1: n← Setup(1λ)
2: CT, EDB← empty map
3: return (EDB,CT, n)

S.Update()
Client:

1: UT[t]← {0, 1}λ
2: C[t]← {0, 1}λ
3: sk[t]← {0, 1}λ
4: e[t]← Enc(sk[t], 0s, n)
5: Send UT[t], (e[t],C[t])) to the server.
6: t← t+ 1

S.Search(sp(w),rp(w),Time(w))
Client:

1: ŵ ← min sp(w)
2: Kŵ||K ′ŵ ← Key(ŵ)
3: (STc, c)← CT[ŵ]

4: parse rp(w) as bs.
5: Parse Time(w) as (t0, · · · , tc).
6: if (STc, c) =⊥ then
7: return ∅
8: end if
9: for i = c to 0 do

10: STi−1 ← {0, 1}λ
11: Program H1(Kŵ, STi)← UT[ti]
12: Program H2(Kŵ, STi)← C[ti]⊕ STi−1

13: if i = c then
14: Program H3(K ′ŵ, i)← sk[ti]− bs
15: else
16: Program H3(K ′ŵ, i)← sk[ti]
17: end if
18: end for
19: Send (Kŵ, STc, c) to the server.

Corollary 1. (Adaptive forward privacy of FB-DSSE). FB-DSSE is forward-private.

From Theorem 3, we can infer that FB-DSSE achieves forward privacy, since the
leakage function LUpdate of FB-DSSE does not leak the keyword during update as defined in
Definition 5.

Corollary 2. (Adaptive Type-I− backward privacy of FB-DSSE). FB-DSSE is Type-I− backward-
private.

From Theorem 3, we can infer that FB-DSSE achieves Type-I− backward privacy,
since the leakage functions of FB-DSSE leak less information than the leakage functions in
Definition 6.

46

Remark. For the multi-block extension MB-FB-DSSE, the underlying construction is almost
same as FB-DSSE except that it encrypts multi-block bit string bs rather than one bit string
bs. Hence, it inherits the forward privacy and Type-I− backward privacy of FB-DSSE.

4.6 Experimental Analysis

Our schemes deploy simple symmetric primitives to achieve strong backward privacy,
which are more efficient than the schemes from [21, 55] because the authors of [21, 55] deploy
ORAM [52, 53] to achieve strong backward privacy. The scheme Janus++ from [56] is the
most efficient backward-private scheme which is based on the scheme Janus from [21].
However, Janus++ only achieves Type-III backward privacy. Table 4.3 compares the results.

Table 4.3: Comparison of computing overhead

Scheme Search Update
Janus [21] O(nw + dw) · tPE.Dec O(1) · (tPE.Enc or tPE.Punc)
Janus++ [56] O(nw + dw) · tSPE.Dec O(1) · (tSPE.Enc or tSPE.Punc)

MONETA [21] Ô(awlogN + log3N) · tSKE Ô(log2N) · tSKE
ORION [55] O(nwlog

2N) · tSKE O(log2N) · tSKE
FB-DSSE [Sec. 4.4.2] O(aw) · tma O(1) · tma

MB-FB-DSSE [Sec. 4.4.3] O(aw) · tma ·B O(1) · tma ·B
N is the number of keyword/file-identifier pairs, nw is the number of files currently match-
ing keywordw, dw is the number of deleted entries for keywordw, and aw is the total number
of updates corresponding to keyword w. tPE.Enc, tPE.Dec and tPE.Punc are the encryption, de-
cryption and puncture time of a public puncturable encryption. tSPE.Enc, tSPE.Dec and tSPE.Punc
are the encryption, decryption and puncture time of a symmetric puncturable encryption.
tSKE is the encryption and decryption time of a symmetric key encryption. tma is the com-
putational time of a modular addition, and B is the number of blocks. Ô notation hides
polylogarithmic factors.

Now we are ready to give the experimental evaluation. We evaluate the performance of
our schemes in a testbed of one workstation. This machine plays the roles of the client and
server. The hardware and software of this machine are as follows: Mac Book Pro, Intel Core
i7 CPU @ 2.8GHz RAM 16GB, Java Programming Language, and macOS 10.13.2. Note that
we use the bitmap index to denote file identifiers, and we tested the search and update time
for one keyword. We use the “BigInteger” with different bit lengths to denote the bitmap
index with different sizes, which acts as the database with a different number of files. The
relation between the i-th bit and the actual file is out of our scope.

For every keyword, we run the update operation Update for this keyword 20 times. In
other words, every keyword has 20 entries. The update time includes the client token gener-
ation time and server update time, and the search time includes the token generation time,
the server search time, and the client decryption time. Note that the result only depends on
the maximum number of files supported by the system (the bit length), but not the actual
number of files in the server.

47

First, we give the search and update time of FB-DSSE with different bit length in Fig.
4.2a. The bit length refers to `, which is equal to the maximum number of files supported
by the system. From Fig. 4.2a, we can see that the update and search time grow with the
increasing of bit length. We also can observe that the update time with the bit length from 105

to 106 does not increase a lot. This is because the addition and modular have not contributed
too much when the bit length is less than 106.

In Fig. 4.2b, we evaluate the search and update time of MB-FB-DSSE with different
number of blocks, where the total bit length is 109. When we divide one bit string (109) into
different blocks, we can see that the running time is lesser than one block in Fig. 4.2a. For
the number of blocks from 10 to 103, it can be seen that the update and search time decrease.
However, when the number of blocks is 104, the update and search time increase due to the
fact that when the bit string decreases to a certain length, the addition and modular time do
not decrease too much.

To support an extreme large number of files (such as 1 billion), MB-FB-DSSE may be
preferred than FB-DSSE. For example, the search and update time of MB-FB-DSSE are 5.84s
and 46.41ms, respectively, where the number of blocks is 103, and the bit length of each block
is 106. However, the search and update time of FB-DSSE supporting 1 billion files (bit length
= 109) are 9.07s and 125.23ms, respectively.

105 106 107 108 109

Bit length

100

T
im

e
(m

s)

 0.2
 0.4

 1

 12.49

125.23

 7.38
 22.69

 90.36

 1031.4

9065.91

Update
Search

(a) The running time of FB-DSSE with different bit
length

101 102 103 104

Number of blocks

102

T
im

e
(m

s)

66.68 57.52 46.41
92.84

6408.69 5962.06 5839.34 6813.5

Update
Search

(b) The running time of MB-FB-DSSE with
different number of blocks for 109 bits

Figure 4.2: The running time of our schemes

4.7 Conclusion

In this chapter, we gave a DSSE scheme with stronger (named Type-I−) backward pri-
vacy, which also achieves forward privacy efficiently. Moreover, to make it scalable for
supporting billions of files with high efficiency, we extended our first scheme to the multi-
block setting. From the experimental analysis, we can see that the efficiency of the first
scheme with an extremely large bit length can be improved by splitting a long bit string into
multiple short bit strings.

48

Chapter 5

Forward and Backward Private DSSE for Range Queries

Due to its capabilities of searches and updates over the encrypted database, the dy-
namic searchable symmetric encryption (DSSE) has received considerable attention recently.
To resist leakage abuse attacks, a secure DSSE scheme usually requires forward and back-
ward privacy. However, the existing forward and backward private DSSE schemes either
only support single keyword queries or require more interactions between the client and
the server.

In this chapter, we first give a new leakage function for range queries, which is more
complicated than the one for single keyword queries. Furthermore, we propose a concrete
forward and backward private DSSE scheme by using a refined binary tree data structure.
Finally, the detailed security analysis and extensive experiments demonstrate that our pro-
posal is secure and efficient, respectively.

5.1 Introduction

Outsourcing data to the cloud is a cost-effective and reliable way to store large amounts
of data. However, at the same time, it exposes data to a server that is not always trusted.
Hence, the security and privacy of outsourced data should be addressed before using cloud
storage. A simple method to mitigate these problems is to encrypt data before outsourcing.
Unfortunately, encryption reduces the usability, especially the searchability, of the data due
to the nature of encryption. To solve this problem, searchable symmetric encryption (SSE)
has been introduced [10, 11]. It encrypts the data while preserving the searchability of the
data. Compared with other techniques for enabling searchability over ciphertexts [52, 61],
the clear advantages of SSE is its efficiency.

Traditional SSE schemes cannot support updates over an encrypted database. This sub-
stantially limits its applications. To support updates of encrypted databases, dynamic SSE
(DSSE) has been proposed in [15, 17]. However, updates leak information about data (see
[16]). Zhang et al. [18] demonstrated file-injection attacks that break the privacy of client
queries by injecting a small number of files into an encrypted database. To deal with the
attacks, forward and backward privacy notions have been introduced informally in [19].
Later, the notions have been formalized in [20] and [21], respectively. In particular, Bost et
al. [21] defined three different levels of backward privacy, namely, Type-I, Type-II and Type-
III, where Type-I is the most secure and Type-III is the least secure. Many other forward and
backward private DSSE schemes have also been proposed (see [21, 56] for instance). Un-
fortunately, a majority of published forward and backward private DSSE schemes support

49

single keyword queries only. This greatly reduces their useability. In many applications, we
need more expressive search queries, such as range queries, for instance.

Consider range queries. In a naı̈ve solution, one could query all possible values in a
range. This solution is not efficient if the range is large, as it requires a large communica-
tion overhead. To process range queries more efficiently and reduce communication cost,
Faber et al. [13] applied a binary tree to the OXT scheme of Cash et al. [12]. Their solution
works for static databases only and does support updates. Zuo et al. [54] designed two
DSSE schemes using a new binary tree data structure. Their schemes support both range
queries and updates. Their first scheme (SchemeA) based on the framework of [20] achieves
forward privacy. However, it inherits the low efficiency of the scheme from [20] due to the
application of computationally expensive public-key cryptographic operations. For the sec-
ond scheme (SchemeB), the authors combined the bit string representation with the Paillier
encryption [22]. The second scheme achieves backward privacy. The maximum number of
files the scheme can support is equal to the length of the message space for the Paillier en-
cryption. For a typical implementation, the message length is very small (around 1024 bits),
and therefore a scheme can support a limited number of files. To reduce storage require-
ments, the authors homomorphically add the ciphertexts, and consequently, their scheme
loses forward privacy. In addition, they did not provide a detailed backward privacy analy-
sis. Later, Wang et al. [62] suggested a generic forward private DSSE with range queries by
adapting the ShemeA from [54]. To achieve backward privacy, they extended their scheme
by applying the generic backward private construction of [21]. Unfortunately, to support
the backward privacy, their scheme requires another roundtrip between the client and the
server. In other words, the client needs to re-encrypt the matched files and send them back
to the server, which is not efficient.

Recently, Zuo et al. [63] designed an efficient DSSE scheme with forward and stronger
backward privacy by combining the bitmap index with simple symmetric encryption with
homomorphic addition. To support very large databases, they extended their first scheme
to the multiple block setting. However, their schemes support single keyword queries only.

Our Contributions. We develop an efficient forward and backward private DSSE scheme
that supports range queries by extending the scheme from the work [63]. The scheme is
further called FBDSSE-RQ. It requires one roundtrip only. The comparison with previous
works is given in Table 5.1. The list given below details our contributions.

• First, we refine the construction of the binary tree from [54]. For our binary tree, we
label all nodes by keywords. Names of nodes are derived from their leaf nodes rather
than from the order of node insertion (see Section 5.2.2 for more details). We also
modify algorithms for the binary tree.

• We define a new backward privacy for our range queries named Type-R. Compared
with single keyword queries, range queries introduce more leakages. We map a range

50

Table 5.1: Comparison to previous works

Scheme Forward Backward Range Number of
Privacy Privacy Queries Roundtrips

FIDES [21] 3 Type-II 7 2
DIANAdel [21] 3 Type-III 7 2
Janus [21] 3 Type-III 7 1
Janus++ [56] 3 Type-III 7 1
MONETA [21] 3 Type-I 7 3
FB-DSSE [63] 3 Type-I− 7 1
SchemeA [54] 3 7 3 1
SchemeB [54] 7 Unknown 3 1
Generic [62] 3 7 3 1

Extension [62] 3 Type-II 3 2
Our scheme 3 Type-R 3 1

query into several keywords that are assigned to nodes of our binary tree. For a range
search query [a, b], a query leaks the number of keywords, the total number of up-
dates and update time for each keyword, the repetition of these keywords, and the
final results for the range query1, and for the update with value v, it leaks the num-
ber of keywords that have been updated (the number of levels of the binary tree). See
Sections 5.4 and 5.5 for details.

• We describe a forward and Type-R backward private DSSE for range queries. The
scheme called FBDSSE-RQ uses our refined binary tree and is based on the FB-DSSE
from [63]. In addition, it only requires one roundtrip. Our scheme is more efficient
than the extension scheme from [62]. For every search, the scheme from [62] needs
to re-encrypt the search results and send them back to the server, which incurs high
computational and communication costs. See Section 5.5 for details.

• Finally, the security analysis and implementation experiments demonstrate that the
scheme achieves claimed security goals and is practical.

5.1.1 Related Work

For the completeness and consistency of this Chapter, we list some related works that
already appeared in Section 2.1.1, 3.1.1 and 4.1.1. Searchable symmetric encryption (SSE)
was introduced by Song et al. [10]. In their scheme, a client encrypts every keyword of a file.
For a search query, the client first encrypts a keyword and then finds a match by comparing
the (encrypted) keyword to (encrypted) keywords of all the files. As a result, the search time
is linear with the number of file/keyword pairs. To reduce the search time, Curtmola et
al. [11] deployed an inverted index data structure. Consequently, their SSE scheme obtains

1If a = b, the leakage of the search query would be same as Type-I−. Moreover, Type-R does not leak the
insertion time of each file identifier while Type-II does.

51

sublinear search time. In [11], the authors formally defined the SSE security model. There
is a large number of followup papers studying different aspects of SSE. For instance, SSE
with expressive queries is examined in [12, 13, 54], SSE for multi-client setting is explored in
[11, 37], dynamic SSE – in [15, 17] and locality SSE – in [64, 65].

Once a database is encrypted, SSE schemes do not allow for updating the encrypted
database. To support updates of the encrypted database, dynamic SSE (DSSE) schemes have
been introduced in [15, 17]. Early DSSE schemes are, however, vulnerable to file-injection at-
tacks [16, 18]. To deal with the attacks, forward and backward privacy have been informally
introduced in [19]. Bost [20] formalized the forward privacy. Later Bost et al. [21] defined
three levels of backward privacy (Type-I to Type-III, ordered from the most to the least se-
cure). Sun et al. [56] designed a DSSE called Janas++, which achieves Type-III backward
privacy by replacing (public-key) puncturable encryption (PE) with symmetric puncturable
encryption (SPE).

A majority of forward and/or backward private DSSE schemes support single keyword
queries only. Faber et al. [13] constructed an SSE scheme that accepts range queries. The
scheme applies a binary tree data structure to the OXT scheme of Cash et al. [12]. However,
the scheme is static (does not allow updates). To design a DSSE for range queries, Zuo et al.
[54] deployed a new binary tree data structure. They described two solutions. The first one
is based on the scheme by Bost [20]. It achieves forward privacy. The second solution ap-
plies the Paillier cryptosystem [22], and it is backward private. Unfortunately, the solution
can support a limited number of files only. This weakness is due to a limited length of the
message space of the Paillier cryptosystem. Wang et al. [62] designed a generic forward pri-
vate DSSE for range queries. The generic construction applies the framework of SchemeA
from [54]. They also extended their first scheme by integrating the generic backward pri-
vate construction from [21]. The scheme achieves Type-II backward privacy. The scheme,
however, requires two roundtrips between the client and the server, which is not efficient.
Independently, Demertzis et al. [66] developed several SSE schemes for range queries with
different security and efficiency tradeoffs by using the binary tree data structure. To sup-
port updates, they deploy several independent SSE instances and periodically consolidate
them. As far as information leakage is concerned, the schemes leak not only the number of
keywords queried but also the level of each keyword in the binary tree.

Recently, Zuo et al. [63] introduced a forward and stronger backward private DSSE,
which requires one roundtrip only. Moreover, they introduced a new notion of backward
privacy (named Type-I−). Compared to Type-I [21], Type-I− does not leak the insertion time
of matching files. This is achieved by deploying a bitmap index and simple symmetric en-
cryption with homomorphic addition. Experiments show that the DSSE scheme is efficient
and practical. Nevertheless, it can support single keyword queries only. To the best of our
knowledge, there is no forward and backward private DSSE that can process range queries
with one roundtrip only.

52

There is also another line of investigation that explores the usage of trusted hardware
(SGX) in order to obtain secure DSSE (see [57, 67], for example). In this chapter, we focus on
constructing a secure DSSE without a trusted third party. The readers, who are interested in
this aspect of DSSE design, are referred to [57, 67].

5.1.2 Organization

The remaining sections are organized as follows. In Section 5.2, we give the necessary
background information and preliminaries. In Section 5.3, we define our DSSE model. The
forward and backward privacy notions for our range queries are given in Section 5.4. In
Section 5.5, we give our forward and backward private DSSE for range queries. The security
analysis is given in Section 5.6. Section 5.7 discusses implementation of our scheme and its
efficiency. Finally, Section 5.8 concludes the chapter.

5.2 Preliminaries

let λ be the security parameter. We use a bitmap index to represent file identifiers in the
same way as in [63]. For a database with y files, we set a bit string bs of length y. If there
exists file fi, we set the i-th bit of bs to 1. Otherwise, it is set to 0. Fig. 5.1 illustrates setup,
addition and deletion of file identifiers. In particular, Fig. 5.1(a) shows a bitmap index for a
database that can store up to y = 5 files. The index tells us that the database contains a single
file f2. Fig. 4.1(b) illustrates addition of file f1 to the database, i.e. the bit string 00010 (that
corresponds to f1) is added to the index. Fig. 4.1(c) displays operations on the index, when
the file f2 is deleted from the database. This can be done either by subtracting the string
00100 from the index or by adding −(00100)2 = (11100)2 to the index (note that operations
are performed modulo 25).

mod	25

(b)	Addition

(c)	Deletion

0 0 1 0 0

f0f1f2f3f4

(a)	Bitmap	Index

0 0 1 0 0

0 0 0 1 0
0 0 1 1 0

mod	25
0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

1 1 1 0 0

mod	25

0 0 0 0 0

Figure 5.1: Illustration of bitmap index operations

53

5.2.1 Simple Symmetric Encryption with Homomorphic Addition

Following [60], a simple symmetric encryption with homomorphic addition Π =

(Setup, Enc, Dec, Add) is described by following four algorithms:

• n ← Setup(1λ): For a security parameter λ, it outputs a public parameter n, where
n = 2y and y is the maximum number of files a scheme can support.

• c ← Enc(sk,m, n): For a message m (0≤m< n), a public parameter n and a random
secret key sk (0 ≤ sk < n), it computes a ciphertext c = sk + m mod n. For every
encryption, the secret key sk needs to be stored, and it can be used once only.

• m ← Dec(sk, c, n): For a ciphertext c, a public parameter n and a secret key sk, it
recovers the message m = c− sk mod n.

• ĉ ← Add(c0, c1, n): For two ciphertexts c0, c1 and a public parameter n, it computes
ĉ = c0 + c1 mod n, where c0 ← Enc(sk0,m0, n), c1 ← Enc(sk1,m1, n), n← Setup(1λ) and
0 ≤ sk0, sk1 < n.

We claim that the above defined encryption supports homomorphic addition, in the sense
that, knowing two ciphertexts c0 = m0 +sk0 mod n and c1 = m1 +sk1 mod b, anybody can
create ĉ=c0+c1 modn. However, to decrypt ĉ and recover m0+m1 mod n, one needs to know
sk0+sk1 mod n. To prove validity of the claim, it is enough to check that

Dec(ŝk, ĉ, n) = ĉ− ŝk mod n = m0 +m1 mod n,

where ŝk = sk0 + sk1 mod n.

Note that Π enjoys perfect security as long as secret keys are used once only. To see
that this is true is enough to note that our encryption becomes the well-known one-time pad
(OTP) when the secret key is chosen randomly and uniformly for each new message.

Perfect Security [60]. We say Π is perfectly secure if for any adversary A, its advantage is
negligible or

AdvPS
Π,A(λ) = |Pr[A(Enc(sk,m0, n)) = 1]−

Pr[A(Enc(sk,m1, n)) = 1]| ≤ ε,

where n← Setup(1λ), the secret key sk (0 ≤ sk < n) is kept secret and A chooses m0,m1 s.t.
0 ≤ m0,m1 < n.

54

w0

0

w1

1

w2

2

w3

3

(a)

w0

0

w1

1

w2

2

w3

3

w01 w23

w03

(b)

w0

0

w1

1

w2

2

w3

3

w01 w23

w03

w4

4

w5

5

w6

6

w7

7

w45 w67

w47

w07

(c)

Figure 5.2: Binary Tree

Algorithm 11 Binary Tree

TGen(d)

1: if d ≤ 0 then
2: return ⊥
3: else if d = 1 then
4: Generate one node n and set this node

as BT.
5: Associate value 0 to this node and

name it as w0.
6: return BT

7: else
8: Generate 2` leaf nodes . 2`−1 < d ≤ 2`

9: Associate each leaf node with each
value v ∈ 2` and name the correspond-
ing leaf node as wv.

10: for i = `− 1 to 0 do
11: Generate 2i nodes.
12: for each node do
13: Set its left and right child to

two consecutive nodes from the previ-
ous level, where the value of its leftmost
is even and the value of its rightmost is
odd.

14: Name this node as wab, where
a and b are the values associated with its
leftmost and rightmost.

15: end for
16: end for
17: Set the root node as BT
18: return BT

19: end if
TGetCover(q, BT) . q = [a, b], where
0 ≤ a < b < d

1: BRC, Temp, Parent← Empty Set
2: for i = a to b do
3: Temp← Temp ∪ wi . Put all the leaf

nodes to the temp set Temp.
4: end for
5: while Temp 6=⊥ do
6: for two nodes in Temp have the same

parent do
7: Remove these two nodes from

Temp, and put the parent node to the set
Parent.

8: end for
9: Move the remaining nodes from Temp

to BRC.
10: Temp← Parent, Parent←⊥
11: end while
12: return BRC

TPath(v, BT)

1: PT← Empty Set
2: w ← wv
3: while w 6=⊥ do
4: PT← PT ∪ w
5: w ← w · parent
6: end while
7: return PT

55

5.2.2 Binary Tree

We revisit the binary tree BT from [54]. For simplicity, we always use a perfect (a.k.a.
full) binary tree and denote its root root as BT. A perfect binary tree is a binary tree with 2`

leaf nodes, where `+1 is the number of levels. The root exists at the level 0 and leaves belong
to the level `. For range queries on attribute A (e.g. age) with range R = {0, 1, · · · , d − 1},
each leaf of BT is associated with a value v from R. For example, in Fig. 5.2(a), d is 3. To form
a perfect binary tree, we need to add an additional leaf (the dot-line node in Fig. 5.2(a)). For
Fig. 5.2(c), d is 5. Every node in BT has three pointers, which are initially set to null. The three
pointers are parent, left and right. The parent links the node with its parent. The pointers
left and right connect the node with its left and right children, respectively. We also define
the leftmost child and righmost child. The leftmost leaf is a node, which is the left child of
its parent and all parents are left children of their ancestors. The rightmost leaf is defined
similarly but for right child. For example, in Fig. 5.2(b), w0 is the leftmost leaf of w03 and w3

is the rightmost leaf of w03. Now, we are ready to describe a collection of algorithms for BT
(see Algorithm 11 for precise definition).

• BT ← TGen(d): It takes d and outputs a perfect binary tree BT for 2` leaf nodes, where
2`−1<d≤ 2` and ` is the smallest such integer. For example, Fig. 5.2(b) and Fig. 5.2(c)
illustrate a tree constructed for d = 3 and d = 5 leaves, respectively.

• BRC ← TGetCover(q, BT): The algorithm takes a range q = [a, b] and a binary tree BT as
its input and outputs the best range cover BRC that contains all leaves in the range [a, b]

, where 0 ≤ a < b < d2. Note that a BRC has to include the smallest number of parent
nodes of leaves in the range. Consider the tree depicted in Fig. 5.2(c), BRC = {w23, w4}
for range query q = [2, 4].

• PT ← TPath(v, BT): The algorithm takes a value v and a binary tree BT as its input and
outputs a set PT of nodes that belong to the path traversing from the leaf wv to the root,
where 0 ≤ v < d. For instance, consider the tree in Fig. 5.2(c). For v = 1 (or the leaf
w1), the set PT = {w1, w01, w03, w07}.

5.2.3 Notations

Notations used in the chapter are given in Table 5.2.

5.3 DSSE definition and Security Model

For range queries, we assume that each file f is characterised by an attribute A (e.g.
age), whose value v belongs to the range R = {0, 1, · · · , d − 1}. We assign the range values

2If a = b, it becomes a single keyword query for keyword wa.

56

Table 5.2: Notations

v The value in a range query
BT The full binary tree
`+ 1 The number of levels of the binary tree, where the root is in level 0 and

the leaves are in level `
d The boundary of our range query
R The set of values for our range query {0, 1, · · · , d− 1}

[a, b] A range query
BRC The set of least number of nodes to cover range [a, b]
PT The set of nodes in the path from a leaf to the root
DB A database
λ The security parameter
STc The current search token for a keyword w
EDB The encrypted database EDB which is a map
F A secure PRF
W The set of all keywords of the database DB
CT A map stores the current search token STc and counter c for every key-

word in W
fi The i-th file
bs The bit string which is used to represent the existence of files
y The length of bs
e The encrypted bit string

Sume The sum of the encrypted bit strings
sk The one time secret key

Sumsk The sum of the one time secret keys

to the leaves of our binary tree BT, as shown in Fig. 5.2(b). Consequently, each file contains
not only the keyword of its leaf but also the keywords associated with its ancestors.

A database DB stores a list of file-identifier/keyword-set pairs or DB= (fi,Wi)
y
i=1, where

fi ∈ {0, 1}λ is the file identifier, Wi is the keyword set and y is the total number of files in
DB. For example, consider the tree from Fig. 5.2(b), the file f0 is associated with the range
value 0 and contains keywords from the set W0 = {w0, w01, w03}. We denote the collection
of all distinct keywords in DB by W = ∪yi=1Wi. The notation |W| means the total number of
keywords in the set W (or cardinality of the set). The total number of file-identifier/keyword
pairs is denoted by N =

∑y
i=1 |Wi|.

A set of files that satisfy a range query q is denoted by DB(q). Note that we use the
bitmap index to represent the file identifiers. For a search query q, the result is a bit string
bs, which represents a list of file identifiers in DB(q). For an update query u, a bit string
bs is used to update a list of file identifiers. Moreover, we isolate the actual files from the
metadata (e.g., file identifiers). We focus on the search of the metadata only. We ignore the
retrieval process of encrypted files from the database.

57

5.3.1 DSSE Definition

A DSSE scheme consists of an algorithm Setup and two protocols Search and Update
that are executed between a client and a server. They are described as follows:

• (EDB, σ)← Setup(1λ, DB): For a security parameter λ and a database DB, the algorithm
outputs a pair: an encrypted database EDB and a state σ. EDB is stored by the server
and σ is kept by the client.

• (I, ⊥)← Search(q, σ; EDB): For a state σ, the client issues a query q and interacts with
the server who holds EDB. At the end of the protocol, the client outputs a set of file
identifiers I that match q and the server outputs nothing.

• (σ′, EDB′)← Update(σ, op, in; EDB): For a state σ, the operation op ∈ {add, del} and a
collection of in = (f,w) pairs, the client requests the server (who holds EDB) to update
database by adding/deleting files specified by the collection in. Finally, the protocol
returns an updated state σ′ to the client and an updated encrypted database EDB′ to
the server.

Remark. In literature, there are two result models for SSE schemes. In the first one
(considered in the work [12]), the server returns encrypted file identifiers I, so the client
needs to decrypt them. In the second one (studied in the work [20]), the server returns the
file identifiers to the client as plaintext. In our work, we consider the first variant, where the
protocol returns encrypted file identifiers.

5.3.2 Security Model

DSSE security is modeled by the Real and Ideal worlds called DSSEREAL and DSSEIDEAL,
respectively. The behavior of DSSEREAL is exactly the same as the original DSSE. However,
DSSEIDEAL reflects a behavior of a simulator S , which takes the leakages of the original
DSSE as input. The leakages are defined by the function L = (LSetup,LSearch,LUpdate), which
details what information the adversaryA can learn during execution of the Setup algorithm,
Search and Update protocols.

If the adversary A can distinguish DSSEREAL from DSSEIDEAL with a negligible ad-
vantage, we can say that leakage of information is restricted to the leakage L. More formally,
we consider the following security game. The adversary A interacts with one of the two
worlds DSSEREAL or DSSEIDEAL which are described as follows:

• DSSEREALA(λ): On input a database DB, which is chosen by the adversary A, it out-
puts EDB toA by running Setup(λ, DB).A performs search queries q (or update queries
(op, in)). Eventually, A outputs a bit b, where b ∈ {0, 1}.

58

• DSSEIDEALA,S(λ): Simulator S outputs the simulated EDBwith the inputLSetup(λ,DB)).
For search queries q (or update queries (op, in)) generated by the adversaryA, the sim-
ulator S replies by using the leakage function LSearch(q) (or LUpdate(op, in)). Eventually,
A outputs a bit b, where b ∈ {0, 1}.

Definition 7. Given a DSSE scheme and the security game described above. The scheme is L-
adaptively-secure if for every probabilistic polynomial time (PPT) adversary A, there exists an effi-
cient simulator S (with the input L) such that,

|Pr[DSSEREALA(λ) = 1]− Pr[DSSEIDEALA,S(λ) = 1]|

≤ negl(λ).

Leakage Function. Before defining the leakage function, we define a range query q =

(t, [a, b]) = {t, w}w∈BRC, where BRC is the best range cover of range [a, b]. An update query
u = (t, op, (v, bs)) = {t, op, (w, bs)}w∈PT(v), where t is the timestamp, PT contains all keywords
in the path from the leaf node of v to the root, op is the update operation and bs denotes a
list of file identifiers to be updated. For a list of search queries Q, we define a search pattern
sp(q) = {t : (t, w)}w∈BRC, where t is a timestamp and q ∈ Q. The search pattern leaks the
repetition of search queries on q. Denote a result pattern rp(q) = bs, where bs represents all
file identifiers that match the range query q. Note that, after a search query, we implicitly
assume that the server knows the final result bs, since the client may retrieve the file identi-
fiers represented by bs which is not described in this chapter. Moreover, the server can infer
if a range query contains other range queries or not by looking at bs.

5.4 Forward and Backward Privacy for Our Range Queries

To support range queries, we incorporate the binary tree data structure (see Section
5.2.2 for details). For an update with a value v, we need to update every node (keyword)
in the path from the corresponding leaf node to the root node, where the value v is within
the boundaries of the current binary tree. For the update with a value v, we need to issue
several updates (all keywords from the leaf to the root). Hence the number of updates (the
number of levels of the binary tree) is leaked.

5.4.1 Forward Privacy

Informally, for any adversary who may continuously observe the interactions between
the server and the client, forward privacy guarantees that an update does not leak informa-
tion about the newly added files that match the previously issued queries. The definition
given below is taken from [20]:

59

Definition 8. A L-adaptively-secure DSSE scheme is forward-private if the update leakage function
LUpdate can be written as

LUpdate(op, in) = L′(op, {(fi, µi)}),

where fi is the identifier of the modified file, µi is the number of keywords corresponding to the updated
file fi.

Remark. For our range query, the leakage function will be LUpdate(op, v, bs) = L′(op, bs, `+ 1),
where `+ 1 is the number of levels of the full binary tree BT.

5.4.2 Backward Privacy

Given a time interval in which two search queries for the same range occur. Backward
privacy ensures that there is no leak of information about the files that have been previously
added and later deleted. Note that information about files leak if the second search query is
issued after the files are added but before they are deleted. In [63], Zuo et al. formulated a
stronger level of backward privacy named Type-I− for single keyword queries. To deal with
range queries, we map a range query to several keywords. For our range queries, to update
a value, we need to update every keyword, which contains this value. Hence the update
leaks the number of keywords corresponding to the value, which is the number of levels of
the binary tree `+ 1. This type of backward privacy is called Type-R.

• Type-R: Given a time interval between two calls issued for a range query q. Then it
leaks the files that currently match q, and the total number of updates and the time of
each update for each w, where w ∈ BRC. The update of a leaf (value v) leaks the number
of keywords corresponding to the value.

To define Type-R formally, we need to introduce Time. For a range query q, Time(q) lists the
timestamp t of all updates corresponding to eachw, wherew ∈ BRC. Formally, for a sequence
of update queries Q′:

Time(q) = {t : (t, op, (w, bs))}w∈BRC.

Definition 9. A L-adaptively-secure DSSE scheme is Type-R backward-private iff the search and
update leakage function LSearch,LUpdate can be written as:

LUpdate(op, v, bs) = L′(op, `+ 1),

LSearch(q) = L′′(sp(q), rp(q), Time(q)),

where L′ and L′′ are stateless, `+ 1 is the number of levels of the full binary tree BT.

60

5.5 Forward and Backward Private DSSE for Range Queries

Now, we are ready to give our forward and backward private DSSE for range queries.
We call it FBDSSE-RQ and it is defined by Algorithm 12. Our DSSE is based on the frame-
work of [63], a simple symmetric encryption with homomorphic addition Π = (Setup, Enc,

Dec, Add), and a keyed PRF FK with key K. The scheme is defined by the following algo-
rithm and two protocols:

Algorithm 12 FBDSSE-RQ

Setup(1λ)
Client:

1: K
$←− {0, 1}λ, n← Setup(1λ)

2: CT, EDB← empty map
3: Set the range boundary d.
4: return (EDB, σ = (n, d,K,CT))

Update(v, bs, σ;EDB) . 0 ≤ v < d
Client:

1: BT← TGen(d)
2: PT← TPath(v, BT)
3: for w ∈ PT do
4: Kw||K ′w ← FK(w), (STc, c)← CT[w]
5: if (STc, c) =⊥ then
6: c← −1, STc ← {0, 1}λ
7: end if
8: STc+1 ← {0, 1}λ
9: CT[w]← (STc+1, c+ 1)

10: UTc+1 ← H1(Kw, STc+1)
11: CSTc ← H2(Kw, STc+1)⊕ STc
12: skc+1 ← H3(K ′w, c+ 1)
13: ec+1 ← Enc(skc+1, bs, n)
14: Send (UTc+1, (ec+1, CSTc)) to the

server.
15: end for
Server:
16: Upon receiving (UTc+1, (ec+1, CSTc))
17: Set EDB[UTc+1]← (ec+1, CSTc)

Search(q, σ,EDB) . q = [a, b], where
0 ≤ a < b < d.
Client:

1: BT← TGen(d)
2: BRC← TGetCover(q, BT)
3: for w ∈ BRC do

4: Kw||K ′w ← FK(w), (STc, c)← CT[w]
5: if (STc, c) =⊥ then
6: return ⊥
7: end if
8: end for
9: Send {(Kw, STc, c)}w∈BRC to the server.

Server:
10: Sum← 0
11: for each (Kw, STc, c) do
12: Sume ← 0
13: for i = c to 0 do
14: UTi ← H1(Kw, STi)
15: (ei, CSTi−1

)← EDB[UTi]
16: Sume ← Add(Sume, ei, n)
17: Remove EDB[UTi]
18: if CSTi−1

=⊥ then
19: Break
20: end if
21: STi−1 ← H2(Kw, STi)⊕ CSTi−1

22: end for
23: EDB[UTc]← (Sume,⊥)
24: Sum← Add(Sum, Sume, n)
25: end for
26: Send Sum to the client.
Client:
27: Sumsk ← 0
28: for w ∈ BRC do
29: for i = c to 0 do
30: ski ← H3(K ′w, i)
31: Sumsk ← Sumsk + ski mod n
32: end for
33: end for
34: bs← Dec(Sumsk, Sum, n)
35: return bs

• (EDB, σ = (n, d,K,CT)) ← Setup(1λ): The algorithm is run by a client. It takes
the security parameter λ as input. Then it chooses a secret key K and an integer n,

61

where n = 2y and y is the maximum number of files that this scheme can support.
Moreover, it sets the range query boundary d, two empty maps EDB and CT, where
R = {0, · · · , d − 1} is set of values for our range queries and the two maps are used
to store the encrypted database as well as the current search token STc and the cur-
rent counter c (the number of updates) for each keyword w ∈W, respectively. Finally,
it outputs encrypted database EDB and the state σ = (n, d,K,CT). The client keeps
(d,K,CT) secret.

• (σ′,EDB′) ← Update(v, bs, σ;EDB): The protocol runs between a client and a server.
The client inputs a value v (v ∈ R), a state σ and a bit string bs3. The client updates
each keyword w ∈ PT. For each keyword w, he/she encrypts the bit string bs by using
the simple symmetric encryption with homomorphic addition to get the encrypted bit
string e. To save the client storage, the one time key skc is generated by a hash function
H3(K ′w, c), where c is the counter. Then he/she chooses a random search token and
use a hash function to get the update token. He/She also uses another hash function
to mask the previous search token. After that, the client sends the update token, e and
the masked previous search token C to the server and update CT to get a new state σ′.
Finally, the server outputs an updated encrypted database EDB′.

• bs ← Search(q, σ;EDB): The protocol runs between a client and a server. The client
inputs a range query q and a state σ, and the server inputs EDB. Firstly, the client gets
BRC. For each keyword w ∈ BRC, he/she gets the search token corresponding to the
keyword w from CT and generates the Kw. Then he/she sends them to the server.
The server retrieves all the encrypted bit strings e corresponding to w. To reduce the
communication overhead, the server adds them together by using the homomorphic
addition (Add) of the simple symmetric encryption to get the final result Sume and
sends it to the client. Finally, the client decrypts it and outputs the final bit string bs,
which can be used to retrieve the matching files. Note that, in order to save the server
storage, for every search, the server can remove all entries corresponding to w and
store the final result Sume corresponding to the current search token STc to the EDB.
Moreover, the client does not need to re-encrypt the final result bs, which makes our
scheme more efficient than the one in [62].

5.6 Security Analysis

In this section, we give the security proof of our proposed scheme.

Theorem 4. (Adaptive forward and Type-R backward privacy of FBDSSE-RQ). Let F be a secure
PRF, Π = (Setup, Enc, Dec, Add) be a perfectly secure simple symmetric encryption with homomor-
phic addition, andH1,H2 andH3 be random oracles. We defineLFBDSSE-RQ = (LSearchFBDSSE-RQ,L

Update
FBDSSE-RQ),

3Note that, we can update many file identifiers through one update query by using bit string representation
bs.

62

whereLSearchFBDSSE-RQ(q) = (sp(q), rp(q), Time(q)) andLUpdateFBDSSE-RQ(op, v, bs) = L(`+1). Then FBDSSE-RQ
is LFBDSSE-RQ-adaptively forward and Type-R backward private.

Proof. Similar to the proof from [63], we formulate a sequence of games from DSSEREAL to
DSSEIDEAL. We show that every two consecutive games are indistinguishable. Finally, we
simulate DSSEIDEAL with the leakage functions defined in Theorem 4.

Game G0: G0 is exactly same as the real world game DSSEREALFBDSSE-RQA (λ). So we can
write that

Pr[DSSEREALFBDSSE-RQA (λ) = 1] = Pr[G0 = 1].

Game G1: Instead of the generation of a key for keyword w using F , we choose the key
at random and with uniform probability. The key and the corresponding keyword are stored
in the table Key. If a keyword has been queried, then the corresponding key is fetched from
the table Key. Assuming that an adversaryA is able to distinguish between G0 and G1, then
we can build an adversary B1 to distinguish between F and a truly random function. More
formally,

Pr[G0 = 1]− Pr[G1 = 1] ≤ AdvprfF,B1(λ).

Game G2: The game is described in Algorithm 13. For the Update protocol, an update
token UT is picked randomly and is stored in the table UT. When the Search protocol is
called, the random tokens are generated by the random oracle H1 such that H1(Kw, STc) =

UT[w, c]. The value (Kw, STc) is stored in table H1 for future queries. If an entry (Kw, STc+1)

already in table H1, then we cannot obtain the requested equalityH1(Kw, STc+1) = UT[w, c+1]

and the game aborts. Now, we show that the abortion possibility is negligible. As a search
token is chosen randomly, the probability of a correct guess for search token STc+1 by the
adversary is 1/2λ. If Amakes polynomial number p(λ) of queries, then

Pr[G1 = 1]− Pr[G2 = 1] ≤ p(λ)/2λ

Game G3: We model the H2 as a random oracle which is similar to H1 in G2. So we can
write

Pr[G2 = 1]− Pr[G3 = 1] ≤ p(λ)/2λ

Game G4: Again, we model the H3 as a random oracle. If the adversary does not know
the key K ′w, then the probability of guessing the right key is 1/2λ (we set the length of K ′w to
λ). Assuming that A makes polynomial number p(λ) of queries, the probability is p(λ)/2λ.
So we have

63

Algorithm 13 G2 for FBDSSE-RQ

Setup(1λ)
Client:

1: K
$←− {0, 1}λ, n← Setup(1λ)

2: CT, EDB← empty map
3: Set the range boundary d.
4: return (EDB, σ = (n, d,K,CT))

Update(v, bs, σ;EDB) . 0 ≤ v < d
Client:

1: BT← TGen(d)
2: PT← TPath(v, BT)
3: for w ∈ PT do
4: Kw||K ′w ← Key(w)
5: (ST0, · · · , STc, c)← CT[w]
6: if (STc, c) =⊥ then
7: c← −1, STc ← {0, 1}λ
8: end if
9: STc+1 ← {0, 1}λ

10: CT[w]← (ST0, · · · , STc+1, c+ 1)
11: UTc+1 ← {0, 1}λ
12: UT[w, c+ 1]← UTc+1

13: CSTc ← H2(Kw, STc+1)⊕ STc
14: skc+1 ← H3(K ′w, c+ 1)
15: ec+1 ← Enc(skc+1, bs, n)
16: Send (UTc+1, (ec+1, CSTc)) to the

server.
17: end for
Server:
18: Upon receiving (UTc+1, (ec+1, CSTc))
19: Set EDB[UTc+1]← (ec+1, CSTc)

Search(q, σ,EDB) . q = [a, b], where
0 ≤ a < b ≤ d− 1.
Client:

1: BT← TGen(d)
2: BRC← TGetCover(q, BT)
3: for w ∈ BRC do
4: Kw||K ′w ← Key(w)

5: (ST0, · · · , STc, c)← CT[w]
6: if (STc, c) =⊥ then
7: return ⊥
8: end if
9: for i = 0 to c do

10: H1(Kw, STi)← UT[w, i]
11: end for
12: end for
13: Send {(Kw, STc, c)}w∈BRC to the server.
Server:
14: Sum← 0
15: for each (Kw, STc, c) do
16: Sume ← 0
17: for i = c to 0 do
18: UTi ← H1(Kw, STi)
19: (ei, CSTi−1

)← EDB[UTi]
20: Sume ← Add(Sume, ei, n)
21: Remove EDB[UTi]
22: if CSTi−1

=⊥ then
23: Break
24: end if
25: STi−1 ← H2(Kw, STi)⊕ CSTi−1

26: end for
27: EDB[UTc]← (Sume,⊥)
28: Sum← Add(Sum, Sume, n)
29: end for
30: Send Sum to the client.
Client:
31: Sumsk ← 0
32: for w ∈ BRC do
33: for i = c to 0 do
34: ski ← H3(K ′w, i)
35: Sumsk ← Sumsk + ski mod n
36: end for
37: end for
38: bs← Dec(Sumsk, Sum, n)
39: return bs

Pr[G3 = 1]− Pr[G4 = 1] ≤ p(λ)/2λ

Game G5: We replace the bit string bs by the string of all zeros (its length is y). If the
adversary A is able to distinguish between G5 and G4, then we can build a reduction B2 to
break the perfect security of the simple symmetric encryption with homomorphic addition
Π. So we have

64

Algorithm 14 Simulator S for FBDSSE-RQ
S.Setup(1λ)

1: n← Setup(1λ)
2: Set the range boundary d.
3: CT, EDB← empty map
4: return (EDB,CT, n, d)

S.Update(`+ 1)
Client:

1: for 0 to ` do
2: UT[t]← {0, 1}λ
3: C[t]← {0, 1}λ
4: sk[t]← {0, 1}λ
5: e[t]← Enc(sk[t], 0s, n)
6: Send (UT[t], (e[t],C[t])) to the server.
7: t← t+ 1
8: end for
S.Search(sp(q), rp(q), Time(q))
Client:

1: q̂ ← min sp(q)
2: ˆBRC← q̂
3: for w ∈ ˆBRC do
4: Kw||K ′w ← Key(w)
5: (STc, c)← CT[w]

6: Parse rp(q̂) as bs.
7: Parse Time(w) as (t0, · · · , tc), where

Time(w) ∈ Time(q̂) .
8: if (STc, c) =⊥ then
9: return ⊥

10: end if
11: for i = c to 0 do
12: STi−1 ← {0, 1}λ
13: Program H1(Kw, STi)← UT[ti]
14: Program H2(Kw, STi) ← C[ti] ⊕

STi−1

15: if i = c and w is the last keyword
in ˆBRC then

16: Program H3(K ′w, i) ← sk[ti] −
bs

17: else
18: Program H3(K ′w, i)← sk[ti]
19: end if
20: end for
21: end for
22: Send {(Kw, STc, c)}w∈ ˆBRC to the server.

Pr[G4 = 1]− Pr[G5 = 1] ≤ AdvPSΠ,B2(λ).

Simulator Now we can replace the searched range query q with sp(q) in G5 to sim-
ulate the ideal world in Algorithm 14, it uses the first timestamp q̂ ← min sp(q) for the
range query q. We ignore a part of Algorithm 13 which does not influence the view of the
adversary.

We are ready to show that G5 and Simulator are indistinguishable. For Update, it is
obvious since we choose new random strings for each update in G5. For Search, the simula-
tor starts from the current search token STc and choose a random string for previous search
token. Then it embeds it to the ciphertext C through H2. Moreover, S embeds the bs to the
STc of the last keyword in BRC and all 0s to the remaining search tokens through H3. Finally,
we map the pairs (w, i) to the global update count t. Then we can map the values in the
table UT, C and sk that we chose randomly in Update to the corresponding values for the
pair (w, i) in the Search. Hence,

Pr[G5 = 1] = Pr[DSSEIDEALFBDSSE-RQA,S (λ) = 1]

65

Finally,
Pr[DSSEREALFBDSSE-RQA (λ) = 1]− Pr[DSSEIDEALFBDSSE-RQA,S (λ)

= 1] ≤ AdvprfF,B1(λ) + AdvPSΠ,B2(λ) + 3p(λ)/2λ

which completes the proof.

5.7 Experimental Analysis

In this section, we evaluate the performance of our schemes using a testbed of one work-
station. This machine plays the roles of the client and server. The hardware and software of
this machine are as follows: Mac Book Pro, Intel Core i7 CPU @ 2.8GHz RAM 16GB, Java
Programming Language, and macOS 10.13.2. Note that we use the bitmap index to denote
file identifiers. We use the “BigInteger” with different bit lengths to denote the bitmap index
with different sizes, which act as the database with different numbers of files. The relation
between the i-th bit and the actual file is out of our scope. The update time includes the
client token generation time and server update time. The search time includes the token
generation time, the server search time, and the client decryption time. Note that the result
depends on the maximum number of files supported by the system (the bit length) only.

103 104 105 106 107

Bit length

100

T
im

e
(m

s)

0.23 0.24 0.25

0.82

7.24

0.26 0.25

0.42

0.85

7.43
d=128
d=256

Figure 5.3: The update time of FBDSSE-RQ for different bit lengths and the parameter d

Fig. 5.3 shows the update time of our scheme for different bit lengths and the parameter
d. The bit length refers to y, which is equal to the maximum number of files supported by
the system. The parameter d refers to the boundary of our range query. We update one time
for each value. We get the total update time for all values and divide it by the number of
values, so we get the average update time for each value. As the bit length increases, the
update time grows (see Fig. 5.3). There is an exception when the bit length jumps from 103 to

66

104 (see the line for d = 256). This is due to the fact that modulo addition does not contribute
too much when the bit string is smaller than 104. We also observe that the average update
time for d = 256 is larger than the time for d = 128. This is because, when d = 256, the binary
tree has more levels, which means it needs more updates than the one for d = 128.

0 50 100 150 200 250
Range [0,b]

101

102

T
im

e
(m

s)

 4.06

154.06

307.28

548.82
440.94

549.48

Figure 5.4: The search time of FBDSSE-RQ for different ranges (d = 256, bit length is 107)

We evaluate the search time of our scheme for different ranges ([0, 0], [0, 50], [0, 100], [0, 150],

[0, 200], [0, 250]), where d = 256 and bit length is 107. The results are given in Fig. 5.4. It can
be seen that, in general, a larger range requires a larger search time. However, this is not
always true. The search time depends on the number of keywords in BRC of a range. The
search time for the range [0, 150] is larger than the search time for the range [0, 200] because
of the number of keywords in BRC for the range [0, 150]. In addition, with the increase of the
bit length, the search time increases.

Theoretically, the bit string can be of an arbitrary length, but a larger n (e.g., ` = 223)
significantly increases the time needed for modulo additions. To mitigate this problem, we
can divide a large bit string into several shorter ones as in the multi-block setting [63]. We
refer readers to [63] for details.

5.8 Conclusion

In this chapter, we propose a forward and backward private DSSE for range queries
(named FBDSSE-RQ), which requires only one roundtrip. In other words, for every search,
it does not require re-encryption of the matching files, which makes our scheme more effi-
cient. Moreover, we refine the construction of the binary tree from [54]. Names of nodes are
derived from their leaf nodes, rather than from the order of node insertion [54]. In addition,
we define a new backward privacy notion for our range queries called Type-R. For our range
query, to update a file with value v, it leaks the number of keywords that have been updated

67

due to the binary tree data structure. From the security and experimental analyses, we can
see that our proposed scheme achieves claimed security goals and is efficient.

68

Chapter 6

Future Directions

In this chapter, we are going to give the possible research directions that related to
dynamic searchable symmetric encryption (DSSE).

• Mulit-client DSSE. Most existing (D)SSE schemes are based on the two party model
(the data owner and the sever), which may not suitable for the scenario where there
are many users. In 2006, Curtmola et al. [11] introduced the multi-client SSE. Later,
many schemes in this area have been proposed [34, 35, 37]. In the future, we will try to
extend our schemes to the multi-client setting.
• Verifiable DSSE. In this thesis, we assume the server is semi-honest, where the server

will honestly execute all the procedures while it may be curious about the underlying
encrypted data. However, in the real world, the server may try to save computation
and bandwidth to return the incomplete results. To tackle this, verifiable searchable
symmetric encryption schemes have been proposed [32, 33]. Later, Wang et al. [68] pro-
posed a verifiable DSSE scheme with forward privacy. By investigating their scheme,
we will try to make our schemes supporting verifiability.
• Forward and backward private DSSE with small client storage. To achieve forward

privacy, most DSSE schemes deployed the framework of Bost et al. [20], which relies
on the one-wayness of the search trapdoors. However, at the client side, these schemes
need to store a counter for each keyword in the database. This increases client storage
(especially for the database with large numbers of keywords). Then how to save the
client storage without losing the forward and backward privacy may be another inter-
esting research direction.
• Secure DSSE supporting range queries. As mentioned in Chapter 2, many researchers

[29–31] leverage the access pattern 1 to recover the values of range queries. To circum-
vent this problem, in the future, we will try to hide the access pattern of our DSSE
schemes supporting range queries.

1Note that, this is the ”standard” leakage that first formally introduced by Curtmola et al. [11].

69

Chapter 7

Conclusion

This thesis shows how to build forward/backward private DSSE schemes supporting
range queries and a DSSE with forward and stronger backward privacy. To achieve stronger
backward privacy, we introduce the bitmap index and the simple symmetric encryption
with homomorphic addition. The stronger backward privacy we achieve, named Type-I−,
is somewhat stronger than Type-I. To achieve range queries, we refine the construction of
the binary tree from [54]. For our binary tree, we label all nodes by keywords. Names of
nodes are derived from their leaf nodes rather than from the order of node insertion. We
also modify algorithms for the binary tree. Moreover, we define a new backward privacy
for our range queries named Type-R. Compared with single keyword queries, range queries
introduce more leakages. We map a range query into several keywords that are assigned
to nodes of our binary tree. For a range search query [a, b], a query leaks the number of
keywords, the total number of updates and update time for each keyword, the repetition of
these keywords and the final results for the range query, and for the update with value v, it
leaks the number of keywords that have been updated (the number of levels of the binary
tree). Moreover, we introduce DSSE schemes with forward/backward privacy. Then we
propose DSSE schemes with forward and Type-I− backward privacy. After that, we present
a forward and Type-R backward private DSSE for range queries. Finally, the security and
experimentation evaluations demonstrate our schemes are secure and efficient.

70

References

[1] Google drive. https://www.google.com/drive/.
[2] Dropbox. www.dropbox.com.
[3] Cong Wang, Qian Wang, Kui Ren, Ning Cao, and Wenjing Lou. Toward secure and

dependable storage services in cloud computing. Services Computing, IEEE Transactions
on, 5(2):220–232, 2012.

[4] Cong Wang, Sherman SM Chow, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-
preserving public auditing for secure cloud storage. Computers, IEEE Transactions on,
62(2):362–375, 2013.

[5] Facebook–cambridge analytica data scandal. https://en.wikipedia.org/wiki/
Facebook%E2%80%93Cambridge_Analytica_data_scandal.

[6] Michael T Goodrich and Michael Mitzenmacher. Privacy-preserving access of out-
sourced data via oblivious ram simulation. In International Colloquium on Automata,
Languages, and Programming, pages 576–587. Springer, 2011.

[7] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia.
Privacy-preserving group data access via stateless oblivious ram simulation. In Pro-
ceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages
157–167. Society for Industrial and Applied Mathematics, 2012.

[8] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with
constant communication rate. In International Colloquium on Automata, Languages, and
Programming, pages 803–815. Springer, 2005.

[9] Sergey Yekhanin. Private information retrieval. Communications of the ACM, 53(4):68–
73, 2010.

[10] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for
searches on encrypted data. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000
IEEE Symposium on, pages 44–55. IEEE, 2000.

[11] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric
encryption: improved definitions and efficient constructions. CCS06, pages 79–88, 2006.

[12] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin Roşu,
and Michael Steiner. Highly-scalable searchable symmetric encryption with support
for boolean queries. In Advances in Cryptology–CRYPTO 2013, pages 353–373. Springer,
2013.

[13] Sky Faber, Stanislaw Jarecki, Hugo Krawczyk, Quan Nguyen, Marcel Rosu, and
Michael Steiner. Rich queries on encrypted data: Beyond exact matches. In European
Symposium on Research in Computer Security, pages 123–145. Springer, 2015.

[14] Cong Zuo, James Macindoe, Siyin Yang, Ron Steinfeld, and Joseph K. Liu. Trusted
boolean search on cloud using searchable symmetric encryption. In Trustcom, 2016
IEEE, pages 113–120. IEEE, 2016.

[15] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable encryption in very-
large databases: Data structures and implementation. In NDSS, volume 14, pages 23–
26. Citeseer, 2014.

[16] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks
against searchable encryption. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 668–679. ACM, 2015.

[17] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable sym-
metric encryption. In Proceedings of the 2012 ACM conference on Computer and communi-

71

https://www.google.com/drive/
www.dropbox.com
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal

cations security, pages 965–976. ACM, 2012.
[18] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are

belong to us: The power of file-injection attacks on searchable encryption. In USENIX
Security Symposium, pages 707–720, 2016.

[19] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic search-
able encryption with small leakage. In NDSS, volume 71, pages 72–75, 2014.

[20] Raphael Bost.
∑

oϕoς : Forward secure searchable encryption. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages 1143–1154.
ACM, 2016.

[21] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. Forward and backward private
searchable encryption from constrained cryptographic primitives. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages 1465–
1482. ACM, 2017.

[22] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 223–238. Springer, 1999.

[23] Eu-Jin Goh. Secure indexes. IACR Cryptology ePrint Archive, 2003:216, 2003.
[24] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches

on remote encrypted data. In Applied Cryptography and Network Security, pages 442–455.
Springer, 2005.

[25] Shangqi Lai, Sikhar Patranabis, Amin Sakzad, Joseph K. Liu, Debdeep Mukhopadhyay,
Ron Steinfeld, Shi-Feng Sun, Dongxi Liu, and Cong Zuo. Result pattern hiding search-
able encryption for conjunctive queries. In Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 745–762, 2018.

[26] Yu Zhang, Yin Li, and Yifan Wang. Conjunctive and disjunctive keyword search over
encrypted mobile cloud data in public key system. Mobile Information Systems, 2018,
2018.

[27] Zhiqiang Wu and Kenli Li. Vbtree: forward secure conjunctive queries over encrypted
data for cloud computing. The VLDB Journal, 28(1):25–46, 2019.

[28] Chengyu Hu, Xiangfu Song, Pengtao Liu, Yue Xin, Yuqin Xu, Yuyu Duan, and
Rong Hao. Forward secure conjunctive-keyword searchable encryption. IEEE Access,
7:35035–35048, 2019.

[29] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill. Generic attacks
on secure outsourced databases. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1329–1340, 2016.

[30] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Improved reconstruc-
tion attacks on encrypted data using range query leakage. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 297–314. IEEE, 2018.

[31] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Learning
to reconstruct: Statistical learning theory and encrypted database attacks. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 1067–1083. IEEE, 2019.

[32] Qi Chai and Guang Gong. Verifiable symmetric searchable encryption for semi-honest-
but-curious cloud servers. In Communications (ICC), 2012 IEEE International Conference
on, pages 917–922. IEEE, 2012.

[33] Raphael Bost, Pierre-Alain Fouque, and David Pointcheval. Verifiable dynamic sym-
metric searchable encryption: Optimality and forward security. IACR Cryptology ePrint
Archive, 2016:62, 2016.

[34] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In
International Conference on the Theory and Application of Cryptology and Information Secu-
rity, pages 577–594. Springer, 2010.

72

[35] Emiliano De Cristofaro, Yanbin Lu, and Gene Tsudik. Efficient techniques for privacy-
preserving sharing of sensitive information. In International Conference on Trust and
Trustworthy Computing, pages 239–253. Springer, 2011.

[36] Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel Rosu, and Michael Steiner.
Outsourced symmetric private information retrieval. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, pages 875–888. ACM, 2013.

[37] Shi-Feng Sun, Joseph K. Liu, Amin Sakzad, Ron Steinfeld, and Tsz Hon Yuen. An
efficient non-interactive multi-client searchable encryption with support for boolean
queries. In European symposium on research in computer security, pages 154–172. Springer,
2016.

[38] Ronald Cramer and Victor Shoup. Signature schemes based on the strong rsa assump-
tion. ACM Transactions on Information and System Security (TISSEC), 3(3):161–185, 2000.

[39] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based en-
cryption. In Security and Privacy, 2007. SP’07. IEEE Symposium on, pages 321–334. IEEE,
2007.

[40] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In Proceedings of the 13th ACM
conference on Computer and communications security, pages 89–98. Acm, 2006.

[41] Javier Herranz, Fabien Laguillaumie, and Carla Ràfols. Constant size ciphertexts in
threshold attribute-based encryption. In Public Key Cryptography–PKC 2010, pages 19–
34. Springer, 2010.

[42] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deligian-
nakis, and Minos Garofalakis. Practical private range search revisited. In Proceedings of
the 2016 International Conference on Management of Data, pages 185–198. ACM, 2016.

[43] Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk. Dynamic search-
able symmetric encryption schemes supporting range queries with forward (and back-
ward) security. In European Symposium on Research in Computer Security, pages 228–246.
Springer, 2018.

[44] Shabnam Kasra Kermanshahi, Joseph K. Liu, and Ron Steinfeld. Multi-user cloud-
based secure keyword search. In Australasian Conference on Information Security and
Privacy, pages 227–247. Springer, 2017.

[45] Yunling Wang, Jianfeng Wang, Shifeng Sun, Joseph K. Liu, Willy Susilo, and Xiaofeng
Chen. Towards multi-user searchable encryption supporting boolean query and fast
decryption. In ProvSec 2017, volume 10592 of Lecture Notes in Computer Science, pages
24–38. Springer, 2017.

[46] Kee Sung Kim, Minkyu Kim, Dongsoo Lee, Je Hong Park, and Woo-Hwan Kim. For-
ward secure dynamic searchable symmetric encryption with efficient updates. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 1449–1463. ACM, 2017.

[47] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order preserv-
ing encryption for numeric data. In Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, pages 563–574. ACM, 2004.

[48] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’neill. Order-
preserving symmetric encryption. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 224–241. Springer, 2009.

[49] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-preserving encryp-
tion revisited: Improved security analysis and alternative solutions. In Annual Cryptol-
ogy Conference, pages 578–595. Springer, 2011.

[50] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zim-
merman. Semantically secure order-revealing encryption: Multi-input functional en-

73

cryption without obfuscation. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 563–594. Springer, 2015.

[51] Nathan Chenette, Kevin Lewi, Stephen A Weis, and David J Wu. Practical order-
revealing encryption with limited leakage. In International Conference on Fast Software
Encryption, pages 474–493. Springer, 2016.

[52] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Chan, Elaine Shi, Emil Stefanov, and
Yan Huang. Oblivious data structures. In CCS 2014, pages 215–226. ACM, 2014.

[53] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. Tworam: Efficient
oblivious ram in two rounds with applications to searchable encryption. In Annual
Cryptology Conference, pages 563–592. Springer, 2016.

[54] Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk. Dynamic search-
able symmetric encryption schemes supporting range queries with forward/backward
privacy. CoRR, abs/1905.08561, 2019.

[55] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou, and Ra-
sool Jalili. New constructions for forward and backward private symmetric searchable
encryption. In CCS 2018, pages 1038–1055. ACM, 2018.

[56] Shi-Feng Sun, Xingliang Yuan, Joseph K. Liu, Ron Steinfeld, Amin Sakzad, Viet Vo,
and Surya Nepal. Practical backward-secure searchable encryption from symmetric
puncturable encryption. In CCS 2018, pages 763–780. ACM, 2018.

[57] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Kerschbaum,
and Ahmad-Reza Sadeghi. Hardidx: Practical and secure index with sgx. In IFIP An-
nual Conference on Data and Applications Security and Privacy, pages 386–408. Springer,
2017.

[58] Ghous Amjad, Seny Kamara, and Tarik Moataz. Forward and backward private search-
able encryption with sgx. In Proceedings of the 12th European Workshop on Systems Secu-
rity, page 4. ACM, 2019.

[59] Vivek Sharma. Bitmap index vs. b-tree index: Which and when? Oracle
Technical Network, 2005. http://www.oracle.com/technetwork/articles/
sharma-indexes-093638.html.

[60] Claude Castelluccia, Einar Mykletun, and Gene Tsudik. Efficient aggregation of en-
crypted data in wireless sensor networks. 3rd intl. In Symposium on Modeling and Opti-
mization in Mobile, Ad Hoc, and Wireless Sensor Networks, Italy, 2005.

[61] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Stoc, volume 9,
pages 169–178, 2009.

[62] Jiafan Wang and Sherman S. M. Chow. Forward and backward-secure range-searchable
symmetric encryption. IACR Cryptology ePrint Archive, 2019:497, 2019.

[63] Cong Zuo, Shi-Feng Sun, Joseph K. Liu, Jun Shao, and Josef Pieprzyk. Dynamic search-
able symmetric encryption with forward and stronger backward privacy. In European
Symposium on Research in Computer Security, pages 283–303. Springer, 2019.

[64] David Cash and Stefano Tessaro. The locality of searchable symmetric encryption. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 351–368. Springer, 2014.

[65] Ian Miers and Payman Mohassel. Io-dsse: Scaling dynamic searchable encryption to
millions of indexes by improving locality. In NDSS, 2017.

[66] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deligian-
nakis, Minos Garofalakis, and Charalampos Papamanthou. Practical private range
search in depth. ACM Transactions on Database Systems (TODS), 43(1):2, 2018.

[67] Ghous Amjad, Seny Kamara, and Tarik Moataz. Forward and backward private search-
able encryption with sgx. In Proceedings of the 12th European Workshop on Systems Secu-
rity, page 4. ACM, 2019.

74

http://www.oracle.com/technetwork/articles/sharma-indexes-093638.html
http://www.oracle.com/technetwork/articles/sharma-indexes-093638.html

[68] Zhongjun Zhang, Jianfeng Wang, Yunling Wang, Yaping Su, and Xiaofeng Chen. To-
wards efficient verifiable forward secure searchable symmetric encryption. In Computer
Security – ESORICS 2019, pages 304–321. Springer International Publishing, 2019.

75

	Abstract
	Declaration
	Publication during enrollment
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Research Questions
	Contributions
	Dynamic Searchable Symmetric Encryption Schemes Supporting Range Queries with Forward/Backward Privacy
	Dynamic Searchable Symmetric Encryption with Forward and Stronger Backward Privacy
	Forward and Backward Private DSSE for Range Queries

	Organization

	Related Work
	Searchable Encryption
	Searchable Symmetric Encryption

	Dynamic Searchable Symmetric Encryption Schemes Supporting Range Queries with Forward/Backward Privacy
	Introduction
	Related Work
	Organization

	Preliminaries
	Trapdoor Permutations
	Paillier Cryptosystem
	Notations

	Dynamic Searchable Symmetric Encryption (DSSE)
	Security Definition

	Constructions
	Binary Tree for Range Queries
	Binary Database
	DSSE Range Queries - Construction A
	DSSE Range Queries - Construction B

	Security Analysis
	Forward Privacy
	Construction A
	Backward Privacy
	Construction B

	Conclusion

	Dynamic Searchable Symmetric Encryption with Forward and Stronger Backward Privacy
	Introduction
	Related Work
	Organization

	Preliminaries
	Simple Symmetric Encryption with Homomorphic Addition
	Notations

	DSSE Definition and Security Model
	DSSE Definition
	Security Model
	Forward Privacy
	Backward Privacy

	Our Construction
	Overview
	DSSE with Forward and Stronger Backward Privacy
	Multi-block Extension for Large Number of Files

	Security Analysis
	Experimental Analysis
	Conclusion

	Forward and Backward Private DSSE for Range Queries
	Introduction
	Related Work
	Organization

	Preliminaries
	Simple Symmetric Encryption with Homomorphic Addition
	Binary Tree
	Notations

	DSSE definition and Security Model
	DSSE Definition
	Security Model

	Forward and Backward Privacy for Our Range Queries
	Forward Privacy
	Backward Privacy

	Forward and Backward Private DSSE for Range Queries
	Security Analysis
	Experimental Analysis
	Conclusion

	Future Directions
	Conclusion
	References

