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Abstract

Drought is a stochastic natural hazard and an inherent part of climate variability. The

evolution of drought occurs over various time scales from sub-seasonal to multi-decadal,

which has led to drought being subdivided into different types. In order to comprehen-

sively assess each type and its characteristics, a multitude of drought indices have been

developed. Those indices are based on indicators that use land surface and atmospheric

variables that identify drought, such as precipitation, soil moisture and evapotranspira-

tion (ET). Due to the complexity of drought development, the lack of long term, widely

available soil moisture data and difficulties in estimating ET, those indices include uncer-

tainties in their representation of drought due to the construction of the drought index,

and because of the uncertainties in the data used to construct the index. However, these

drought indices have not been evaluated on the global scale.

This thesis examined how precipitation and evapotranspiration based indices repre-

sent drought in observations and global climate models and if an inclusion of evapo-

transpiration in a drought index is beneficial. The focus was on agricultural drought, a

drought type emerging when precipitation deficits lead to a depletion of soil moisture on

seasonal to annual time scales; and flash drought, which is a rapid onset and intensifi-

cation of agricultural drought within a few weeks. The highly dynamic nature of flash

drought as well as the strong land-atmosphere coupling associated with flash drought,

present a unique challenge for the prediction and monitoring of this particular type of

drought.

This thesis first examined how drought indices represent agricultural drought in ob-

servations, given their inherent uncertainties in the data used to calculate them. A

number of data sets from different commonly-used sources were procured to compute
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the drought indices based on precipitation, ET, or both. Their skill in identifying agri-

cultural drought on time scales from three to twelve months was measured using two

soil moisture levels from global land surface models. The research found that in many

cases the uncertainties in the variations of the drought indices to the choice of input

data were larger in magnitude than the differences between the indices themselves.

The representation of flash drought based on precipitation and ET based indices was

assessed using a suite of six global climate models. The performance of the indices

relative to soil moisture in the top 10 cm on a 1-month time scale was evaluated in

terms of event frequency, rate of change and predictive skill. The results showed that

all indices were able to identify flash drought sufficiently within the model’s climatology.

However, the climate models showed different levels of skill in the detection of flash

drought depending on the drought index applied. This was because of differences in the

partitioning of energy fluxes from the land surface, highlighting fundamental differences

in land-atmosphere interactions within each model.

The analysis from the global climate models were contrasted with observations over

Australia. The results showed differences in flash drought frequency in ET-based esti-

mates in the observations compared to the models, as well as in the skill of the concurrent

detection of flash drought. These differences in skill were associated with differences in

land-atmosphere coupling between global climate models and the observations result-

ing in different response times of energy and moisture fluxes, which ultimately lead to

different representations of flash drought dynamics. The lagging or leading relationship

of ET and precipitation to soil moisture resulted in an advanced, concurrent or delayed

detection skill with onset in the soil moisture.

Overall this thesis quantified the uncertainties in estimating drought on various time

scales and advocates a combination of indices to predict and monitor agricultural and

flash drought.
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Chapter 1

Introduction

Drought is an inherent part of climate variability affecting most regions on Earth and

is recognized as an environmental disaster (IPCC, 2012; Sheffield and Wood, 2011). In

broad terms, drought is the persistence of extreme negative moisture anomalies over a

specific region and an extended period of time typically on the order of months or longer

(Wilhite and Glantz, 1985; Dracup et al., 1980). This is in contrast to aridity, which is

a permanent feature of the climate (Wilhite, 1992). The spatial and temporal extent of

drought can vary significantly. They can be short seasonal, intense droughts confined

to a small region, for example, the drought in the mid-west of the United States in

the summer of 2012 (Rippey, 2015). Yet, drought can also last long and past decadal

droughts have covered large parts of a country or region. For example, the ”Dust Bowl”

drought in the 1930s in the US (Schubert et al., 2004) or the ”Millennium Drought” in

South East Australia in the beginning of the 21st Century (Van Dijk et al., 2011). The

impacts of drought encompass a wide variety of natural and economic sectors such as

social security, agriculture, water, energy, tourism, ecosystems, and basic human welfare.

These impacts are often significant for a long period making drought one of the most

devastating natural disasters on human society (Sheffield and Wood, 2011; Crausbay

et al., 2017; Pulwarty and Sivakumar, 2014; Haile et al., 2019). Hence, early warning

and detection is crucial to mitigate drought impacts (Pulwarty and Sivakumar, 2014).

Unlike for other natural hazards such as floods, hurricanes and heatwaves, the timing
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1.1. The Concept of Drought 1. Introduction

of onset and cessation of drought is hard to capture. This is because its development

is comparatively slow by nature and the concepts of onset and cessation of drought are

nebulous (Wilhite, 1992), though it has been recently recognised that drought can occur

rapidly, within a few weeks (Svoboda et al., 2002; Otkin et al., 2018; Pendergrass et al.,

2020). The processes modulating drought development are complex interactions between

the land surface and the atmosphere, which alter water fluxes including precipitation,

evaporation, and evapotranspiration (ET) (Hobbins et al., 2017). Changes of these

components can be amplified by multiple natural, climatic and anthropogenic drivers

such as climate variability/change and land-use changes (Kiem and Franks, 2004; Mishra

and Singh, 2010; Sheffield et al., 2012; Seneviratne et al., 2013; Dai and Zhao, 2016;

Mukherjee et al., 2018).

The complexity of drought processes and interactions means that drought is, ar-

guably, the least predictable climatic hazard (Mishra and Singh, 2010). However, our

understanding and ability to predict drought is also complicated by the myriad of types

and definitions. In order to understand the complexity of drought, one must look at

their numerous driving mechanisms and their impacts. These features can help to define

drought and lead to a multitude of indices to communicate drought levels, depending

on the impact of interest (Heim Jr., 2002; Zargar et al., 2011; Mishra and Singh, 2010).

Here, we address the concept of drought by discussing a number of topics. We start

with the physical processes of drought development including the hydrological cycle as

well as its driving energy and water balances. This is followed by a discussion of the

definitions of drought before introducing the research aims of this thesis. The structure

of this thesis is outlined at the end of this chapter.

1.1 The Concept of Drought

1.1.1 Drought Types

Unlike many other natural hazards, difficulties arise in terms of defining drought. This is

because drought evolves over multiple time scales and its modulating mechanisms stem

from complex interactions of atmospheric, land surface and oceanic processes (Mishra

and Singh, 2010). While drought is in essence a moisture deficiency, it leads to different

impacts on the environment and society over time.
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Therefore, Wilhite and Glantz (1985) split drought into four different types cascading

through the hydrological cycle. From the shortest (months) to longest (multiple years)

time scales, the types of drought have been described as follows and are shown in

Figure 1.1. The first sign of drought is a strong shortfall in precipitation in regards to

the location’s long-term climatology and is termed meteorological drought. Persistent

rainfall deficiencies and accompanying clear skies with higher than normal irradiation and

temperatures lead to a drying of the root-zone layer. Once, soil moisture in this layer is

depleted and crops suffer under water stress reducing the biomass and yield the next stage

of drought is reached, agricultural drought or sometimes termed soil moisture drought.

The depletion of water in the ground continues into deeper levels with ongoing negative

precipitation anomalies and reduces drainage and streamflow to larger water bodies such

as rivers, lakes and reservoirs. As runoff and water storage is directly affected, this type

is termed hydrological drought. With decreasing levels in reservoirs, the water supply

is at some point unable to meet the water demand of the population and industry any

Figure 1.1: Evolution of drought with time. From Zargar et al. (2011).
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more, which leads to economic and social impacts. Far reaching environmental impacts

continue to worsen. This fourth type is termed socio-economic drought.

These four main drought types have been continuously extended over the past two

decades and can be seen as subtypes. For example, Crausbay et al. (2017) introduced

the ecological drought, an episodic deficit in water availability that drives ecosystems

beyond thresholds of vulnerability. Others are groundwater drought (Van Lanen and

Peters, 2000), impacts on groundwater recharge, discharge and levels, and stream health

drought, which Esfahanian et al. (2016) describe as a period of time when stream flow

deficiency causes irreversible impacts on aquatic/riverine ecosystems.

Another type of drought, which has recently been described is termed “flash drought”

(Doyle, 2018, 2019; Nguyen et al., 2019). The term flash drought was first introduced

by Svoboda et al. (2002) to describe drought that has features including a rapid onset

and intensification in the order of weeks, with substantial impacts on agriculture. The

rapidity of flash drought is in contrast to the natural slow development of drought, which

usually occurs over months to years. Thus, flash drought classifies as a subseasonal scale

drought, posing a new challenge for sub-seasonal to seasonal (S2S, weeks to few months)

prediction (Pendergrass et al., 2020). In essence, a location showing no sign of drought

can find itself in the midst of an agricultural drought within several weeks through the

rapid depletion of soil moisture from coinciding negative precipitation and above average

evaporation. Otkin et al. (2018) and Pendergrass et al. (2020) specify a comprehensive

framework for future research on flash drought, suggesting the use of suitable drought

indices that reflect the rapidity of flash drought onset within a few weeks.

The rapid intensification of drought conditions during a flash drought has a partic-

ularly detrimental effect for the agricultural industry due to the inability to prepare for

it; whether it is additional irrigation or delayed seeding of crops or adaptation measures

for livestock (Nguyen et al., 2019). Past flash droughts have been accompanied with

significant economic damage such as the 2012 drought in the Midwest US, which had

an estimated loss of US$30 billion (Rippey, 2015), or the 2018 flash drought event in

South Queensland, Australia, with a high mortality in livestock (Nguyen et al., 2019).

To classify as a flash drought, the root zone layer soil moisture (≈40-100cm) has

to be affected (Otkin et al., 2018). As with other drought types, different definitions

have been proposed over the last couple of years. Soil moisture is the primary proxy for
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flash drought. Ford and Labosier (2017) proposed a definition whereby root-zone soil

moisture has to decline from above the 40th to below the 20th percentile within 20 days.

Their percentiles are based on the “non- drought” and “moderate drought” conditions

according to the United States Drought Monitor (USDM, Svoboda et al., 2002, https:

//droughtmonitor.unl.edu). The USDM is a weekly operational product displaying

the magnitude and spatial extent of drought in the United States based on a blend

of metrics from observations and empirical inputs from regional observers and expert

judgement evaluations (Svoboda et al., 2002).

While a precipitation deficiency is required for all types of drought to occur, the

accelerated drying of the upper layer soil moisture can be driven additionally by other

atmospheric anomalies during flash drought (Hobbins et al., 2017). Surface moisture

imbalance associated with drought can be primarily precipitation driven, primarily evap-

oration (ET) driven or both (Zargar et al., 2011). Low humidity, high winds and tem-

peratures and little cloud cover all increase evaporation which contributes to the rapid

drying of the soil layer (Hobbins et al., 2017).

Recent work has highlighted the importance of evapotranspiration for some types of

drought like flash drought (Ford and Labosier, 2017; Otkin et al., 2013; Hobbins et al.,

2016; McEvoy et al., 2016). However, other studies suggest that precipitation remains

the dominant driver and evapotranspiration is a contributor for flash drought (Mo and

Lettenmaier, 2015, 2016; Koster et al., 2019). Studies from Mo and Lettenmaier dis-

tinguish between two types of flash drought: precipitation driven (Mo and Lettenmaier,

2016) and heatwave driven flash drought (Mo and Lettenmaier, 2015), where the latter is

defined by a rapid increase of ET rather than a sudden reduction in precipitation. Mo and

Lettenmaier used for their studies a decline in soil moisture to below the 40th percentile

threshold over a 5-day period to classify flash drought. Even though Otkin et al. (2018)

argue that this threshold is not dry enough to quantify as flash drought, their separation

highlights the two important drivers for flash drought. While the use of soil moisture

is favourable as a direct measure of flash drought and has been used locally in the US

(Ford et al., 2015; Ford and Labosier, 2017), its sparse spatial and temporal availability

makes flash drought examination challenging on a continuous larger scale. Therefore,

atmospheric-based and other land-based variables have been procured to quantify flash

drought leading to varying definitions between studies.
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Pendergrass et al. (2020) proposed two definitions for operational use, research and

prediction. First, for the United States only, a two-category decrease in the USDM

over two weeks and sustained over two more weeks. The second definition for global

application employs the Evaporative Demand Drought Index (EDDI, Hobbins et al.,

2016), an index estimating the moisture demand in the atmosphere. It is required to

increase by 50 percentile within two weeks and also show sustained drought conditions

for the following fortnight to fulfil the second definition. Studies from Anderson et al.

(2007); Otkin et al. (2013) use anomalous changes in the satellite-derived evaporative

stress index, the ratio of actual and potential evapotranspiration (ESI, Anderson et al.,

2007), while Nguyen et al. (2019) calculates the ESI from land surface model outputs.

Noguera et al. (2020) identifies flash drought through defined anomalous changes in

the water balance using the Standardised Precipitation Evapotranspiration Index (SPEI,

Vicente-Serrano et al., 2010). Otkin et al. (2014, 2015) developed the Rapid Change

Index (RCI) from the ESI to capture the accumulated magnitude of moisture stress

changes. Koster et al. (2019) uses reanalysis data to examine flash drought in the

Northern Hemisphere but develops their own individual index based on precipitation

deficit and excess evapotranspiration.

The variety of definitions and indices shows that there is no consensus yet on what

flash drought actually is, other than a rapid intensification of drying. So far, McEvoy

et al. (2016) provides the only study which compares different drought indices, namely

EDDI, ESI and standardised forms of soil moisture (SSI) and precipitation (SPI, McKee

et al., 1993) in a flash drought context. However, this is done for a hand full of flash

drought cases in the US without any prescribed conditions to be met. The suitability of

those indices in global context and/or with a set definition for flash drought has yet to

be examined.

Without relief via widespread precipitation, drought severity increases further and

transitions from one type to the next, although each type is not mutually exclusive (i.e.

an area can experience more than one type of drought at once). In this thesis, we restrict

the scope to the investigation of meteorological and agricultural drought.
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1.1.2 Drought Characteristics

Drought can be characterised by different features such as intensity, duration, magnitude,

severity and spatial extent (Mishra and Singh, 2010). These characteristics are framed

by the drought onset and cessation (Dracup et al., 1980). Both, onset and cessation are

usually determined by a statistical value representing a threshold under which drought

conditions start or end. This threshold can be altered to reflect different levels of drought

severity. Figure 1.2 from Mishra and Singh (2010) shows an example of a drought proxy

over time, denoted as Xt. The threshold to identify drought (X0) intersects the drought

proxy in those places where the onsets (ti) and cessations (te) occur. Based on these,

the drought characteristics can be determined. The duration (Dd) is the time between

onset and cessation during which the drought proxy remains under the threshold (longest

for drought 2 in Figure 1.2). This can be months, years or even decades. Drought

severity (Sd) is the cumulative deficiency of the drought proxy over the duration period

(highest for drought 1 in Figure 1.2), e.g. in mm for precipitation, while the intensity

(Id) describes the maximum deviation of the drought proxy from X0 at a given time

(highest for drought 3 in Figure 1.2). Given the variety of impacts that drought can

have, especially over longer time scales, the environment might need several months

of above normal precipitation to recover from a drought. Consequently, long lasting

Figure 1.2: Drought characteristics . From Mishra and Singh (2010). D = duration, S =
severity, I = intensity, ti = onset, te= cessation, X = drought proxy.
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droughts can be interspersed by periods of near-normal, or sometimes above normal,

rainfall (e.g. due to seasonality) without breaking the drought (Mpelasoka et al., 2008;

Gallant et al., 2013).

1.1.3 Drought Indices

The different definitions of drought as well as its characteristics, described above, make

it challenging to compare and contrast droughts across regions and time. In fact, more

than 150 drought indices have been developed to describe drought (Zargar et al., 2011).

Indices are based on indicators that use variables influenced by drought such as pre-

cipitation, temperature, evaporation, soil moisture, vegetation water content, stream

flow/runoff and reservoir storage (Heim Jr., 2002; Zargar et al., 2011). Conveyed as

single numeric values, drought indices simplify the complex relationships between these

variables and drought in order to evaluate periods of dryness (Dai, 2011b; Mishra and

Singh, 2010; Zargar et al., 2011).

Through the incorporation of different meteorological and hydrological variables,

drought indices describe different regions or drought characteristics and types, and thus

differ on spatial-temporal scales. Therefore, each drought index, whether it is univariate

or multivariate, has its strengths and weaknesses as comparisons of several indices in

numerous studies reveal (Guttman, 1998; Heim Jr., 2002; Keyantash and Dracup, 2002;

Dai et al., 2004; Tsakiris and Vangelis, 2005; Mpelasoka et al., 2008; Zargar et al., 2011;

Hao and Singh, 2015; Raible et al., 2017).

Soil moisture deficiency is considered ’truth’ for agricultural drought but the difficulty

in measuring it accurately across large scales means that meteorological indices are more

commonly used. Some drought indices have become well established in climate research

such as the Palmer Drought Severity Index (PDSI, Palmer, 1965), which incorporates

both precipitation and evapotranspiration variables and the Standardised Precipitation

Index (SPI, McKee et al., 1993), which is based on precipitation alone. Using different

drought indices to examine the same drought can lead to disagreement in its character-

istics, e.g. timing of onset or its duration (Mishra and Singh, 2010). This would occur

if, for example, one index defined a drought based on a threshold of precipitation deficit

and another used a threshold of soil moisture scarcity. Soil moisture is associated with

both precipitation and evapotranspiration (Seneviratne et al., 2010). Some argue that
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reliable drought assessment using only precipitation based drought indices is not possible

and an extension with evapotranspiration is needed to consider the antecedent precipi-

tation conditions via soil moisture memory, the rate of drying and global warming (e.g.

Tsakiris and Vangelis, 2005; Vicente-Serrano et al., 2012). As a result, studies that have

directly examined the characteristics of drought found that using a drought index based

on soil moisture or evaporation will change characteristics such as drought duration and

intensity compared to using an index based on precipitation alone (Mpelasoka et al.,

2008; Gallant et al., 2013).

Several studies have compared individual or a subset of drought indices to evaluate

their reliability on the quest of the universal drought index (Guttman, 1998; Heim Jr.,

2002; Keyantash and Dracup, 2002; Mishra and Singh, 2010; Khalili et al., 2011; Zargar

et al., 2011; Vicente-Serrano et al., 2012; Halwatura et al., 2017; Leelaruban et al.,

2017; Raible et al., 2017). Those comparisons were performed with in situ or remotely

sensed soil moisture observations, stream flow, wells and/or soil moisture estimates

from land surface models (LSM), revealing their strength and weaknesses, whether it is

their simplicity/complexity, data requirements or being confined and specifically designed

for certain areas. Despite the existence of numerous drought indices for each drought

category, none of them receives universal acceptance (Hayes et al., 2011). Only the

SPI has been promoted as the reference index for meteorological drought by the World

Meteorological Organization (WMO) (WMO, 2012).

The complexity of the employed algorithms and their implicit approximations in a

drought index provide a source of uncertainty. The estimations are necessary to capture

processes between the land surface and the atmosphere. Methods incorporated in in-

dices trying to resolve these physical processes without measuring them directly to suit a

global application are based on parametrisations. An example is the estimation of poten-

tial evapotranspiration, for which various methods exist (McMahon et al., 2013), such

as the Penman-Monteith method (Monteith, 1965), described later in Chapter 2.2.1.

Consequently, differences between those methods yield a source of uncertainty that is

embedded in the drought indices (Trenberth et al., 2014; Dai and Zhao, 2016; Zhan

et al., 2016). The reason why different parametrisations and estimates are attempted in

the first place is the lack of good in situ observational data that delivers a clear state of

drought. The following section discussed the issues with in situ data and its alternatives.
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1.1.4 Data for the Analysis of Drought

The quality of drought indices relies on the quality of the input data itself. Hence, reliable,

long-term observational data of the specific indicator variable is crucial (Van Loon, 2015).

These indicator variables not only encompass measures of the hydrological cycle such

as precipitation, evapotranspiration, soil moisture content, stream flow and discharge

but also parameters driving physical processes within the cycle such as temperature and

radiation. Each of those have a different observational history and as a result, there is

a wide range in the quality of the data between different variables.

Drought indices based on soil moisture measurements are ideal since the impacts

of agricultural drought are felt by deficiencies of moisture in the root zone. However,

in reality, direct soil moisture measurements are rarely employed in drought indices.

This is because in situ soil moisture observations are sparse in space and time. While

considerable efforts are made to expand the soil moisture network and combine stations

worldwide to an international soil moisture network (ISMN, Dorigo et al., 2011), it will

take time to achieve a network of dense, long lasting records for statistical analyses.

Besides drought monitoring, another important purpose of this network is to validate

other soil moisture products such as those from satellite observations and land surface

models.

Satellite observations of soil moisture are global and several different products exist

today but their spectral bands typically capture soil moisture in the first few centimetres

of soil only (Karthikeyan et al., 2017). This shallow layer is not necessarily sufficient

for capturing drought as it is not necessarily representative of soil moisture storage

throughout the root zone. Additionally, calibration techniques and physical limitations,

e.g. cloud cover or dense vegetation, leave room for uncertainties (Van Loon et al.,

2017).

Land surface models (LSMs) estimate terrestrial water and energy states and fluxes by

employing a conceptualization of the physics underlying earth system processes (Pitman,

2003). During recent decades, LSMs have developed from simple, idealized parametrisa-

tions to complex, high resolution models able to simulate complex phenomena between

the atmosphere and land surface with explicit representations of vegetation and soil

types. In operational use, they are either uncoupled and forced by observation-based

meteorological fields or are coupled to atmospheric general circulation models (AGCM)
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(Koster et al., 2009a). LSMs have been extensively evaluated in their capability to re-

flect water and energy fluxes (Koster and Suarez, 2001; Dirmeyer, 2011; Prudhomme

et al., 2011; Best et al., 2015; Holgate et al., 2016). While LSMs present a globally

consistent estimate of soil moisture and show coherent time variability (Koster et al.,

2009a; Yuan and Quiring, 2017), being a model, systematic biases persist (Abramowitz

et al., 2007). This has especially been found at the dry end of the spectrum where they

misrepresent the partitioning of available energy into sensible and latent heat as well

as the response of vegetation to water-limited conditions leading to an overestimation

of drought (De Kauwe et al., 2015; Ukkola et al., 2016a,b; Milly and Dunne, 2017).

Similarly, coupled to AGCMs, systematic biases in evapotranspiration have been identi-

fied across the globe in the Coupled Model Intercomparison Project Phase 5 (CMIP5)

simulations (Guo et al., 2006; Mueller and Seneviratne, 2014). These are linked to differ-

ent model parametrisations and model climates causing differences in land-atmosphere

coupling (Guo et al., 2006; Ukkola et al., 2018b). The limitations in land-atmosphere

processes leads to shortcomings in the models’ simulated drought, for example for soil

moisture drought intensities (Ukkola et al., 2018a), overamplification of heat extremes

(Ukkola et al., 2018b) and a trend towards more severe droughts (Dirmeyer et al., 2013;

Seneviratne et al., 2013).

In the absence of a dense, long-running network of soil moisture gauges many drought

indices have been developed that are based on other variables that can act as a proxy for

soil moisture, for example, precipitation or some combination of precipitation and evap-

otranspiration. For instance, precipitation has been measured widely for a long time and

thus a global network of rain gauges with long-lasting records has been developed (e.g.

Chen et al., 2002; Schneider et al., 2014). Similar for temperature records dating back

to over a century (Cowtan and Way, 2014). However, uncertainties remain in precipita-

tion and temperature networks associated with the number of long-running stations and

aspects of regional coverage, and the level of quality control and interpolation methods.

Each play an important role in the accuracy of drought indices (Dai et al., 1997; Stahl

et al., 2006; Jones et al., 2009, 2012; Sun et al., 2018).

Problems arise when evapotranspiration is considered for drought evaluation. Not

only is it challenging to measure in nature, which is usually done on flux tower sites

or using lysimeter, but evaporation and evapotranspiration is also complex to estimate.
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Consequently, several methods exist for this purpose (McMahon et al., 2013). Basic

approaches, such as the Thornthwaite (Thornthwaite, 1948) approximation, require only

temperature to estimate potential evaporation. However, the method has been deemed

as too sensitive to increasing global temperatures and overestimates drying (Hobbins

et al., 2008). The FAO56 reference crop evapotranspiration is a physical method based

on the Penman-Monteith parameterization (Monteith, 1965) for potential evaporation

and adopts the characteristics of a well watered hypothetical reference crop. The FAO56

formulation has been widely accepted in drought research (Allen et al., 1998). However,

the Penman-Monteith method requires a diverse array of input data, including tempera-

ture, precipitation, wind speed, solar radiation and humidity (Allen et al., 1998). Many of

these variables are not reliably and widely measured over long periods of time (McVicar

et al., 2008; Samani, 2000; Bandyopadhyay et al., 2008; Jones et al., 2009).

Given the data limitations, described above, we provide novel, further efforts to test

drought indices for global application, and for the newly emerging subtypes of drought,

namely flash drought. This thesis aims to compare the benefits in including evapotran-

spiration in drought indices for agricultural drought detection given the uncertainties

associated with parametrisations and data quality associated with estimating evapora-

tion. We build on previous studies of regional drought by focusing on uncertainties in

the representation of drought on the global scale. Whether these uncertainties, which

can stem from different input data, override the benefits of the inclusion of evapotran-

spiration in a drought index is an aim of this thesis.

Only few studies exist that have quantified the value of drought indices to identify

flash drought (Otkin et al., 2013; Mo and Lettenmaier, 2015; Otkin et al., 2015; Hobbins

et al., 2016; Mo and Lettenmaier, 2016; McEvoy et al., 2016; Koster et al., 2019; Nguyen

et al., 2019). These studies are limited to a regional scale and have explored flash drought

using observations or reanalysis data only. Therefore, investigating flash drought in

global climate models globally using common flash drought indices and evaluating them

by comparing them to soil moisture in the models will help to understand if the physical

processes in those models are correctly represented. Using the conceptual idea from

before, procuring precipitation and evapotranspiration based indices will also shed some

light on the driving processes of flash drought in the models and whether a simple index

can provide a sufficient detection skill.
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1.2 Research Aims

This thesis focuses on agricultural and flash drought and how precipitation and evapo-

transpiration based drought indices represent those in observations and climate models.

In summary, the research of this thesis aims to answer the following questions:

1. What are the differences in the representation of soil moisture droughts using

drought indices based on E-P balance versus those using precipitation only?

2. How sensitive are drought indices to their input data? How does this sensitivity

vary between precipitation-only indices and E-P balance indices?

3. How do different drought indices represent flash drought in a climate model?

4. How well do climate models represent flash drought in Australia?

1.3 Thesis Outline

This thesis uses a variety of drought indices to tackle the research questions introduced

above. These indices, and the associated data used to compute them, are described in in

Chapter 2. The fundamental physical processes of evapotranspiration during the devel-

opment of drought are also described in the same chapter to gain a deeper understanding

how drought indices involving ET operate.

The first and second research questions are answered in Chapter 3 which is based on

Hoffmann et al. (2020). For this, we procure a number of data sets from different sources

for all necessary variables to compute the drought indices PDSI and SPI. Their skill to

identify agricultural drought on time scales from three to twelve months is compared to

two soil moisture levels from a global land surface model (LSM).

Multiple drought indices, based on precipitation and/or evaporation are used to ex-

amine flash drought in climate models in Chapter 4. Here, soil moisture provides the

reference as flash drought is a rapid evolving agricultural drought. Using a suite of six

global climate models, the performance of the indices relative to the models’ soil mois-

ture on a 1-month time scale is evaluated in terms of event frequency, rates of change

and prediction skill.
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The results from Chapter 4 are contrasted with quasi-observations from observations

integrated into an offline LSM in Chapter 5, over the Australian continent. Differences

between the representation of flash drought in global climate models and observations are

discussed and potential discrepancies in the physical processes leading to flash drought

are highlighted. This chapter also analyses the observed drought indices’ performance

using a deeper soil moisture layer, which was not available for the global climate mod-

els. The thesis concludes in Chapter 6 with an overall summary and a discussion of

implications and remaining uncertainties and future work.
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Chapter 2

Data and Methods

2.1 Data

Several data sources are employed throughout this thesis to calculate drought indices

and evaluate them. They include observational and reanalysis data as well as data from

offline land surface models and global coupled climate models (GCMs). The following

section describes the procured data. The variables obtained are summarised in Table

2.1. Descriptions of data processing associated with the analyses in Chapters 3, 4 and

5 is provided in the relevant chapter.

2.1.1 Observational Data

Observational data refers to measurements of atmospheric and land surface variables.

Those observations can be in situ, e.g. weather station on the ground, or remotely

sensed via satellite or radar. These measurements can be in their original form or, more

commonly for climate use, many observational networks have been interpolated onto

regular grids. Over the past decades the network of measurement stations has grown

significantly in number and diversity of variables measured. Due to the relatively straight

forward technique, precipitation and temperature are the most frequent and long-term

measured variables (Chen et al., 2002; Schneider et al., 2014; Cowtan and Way, 2014).
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Correct and reliable observational data is essential for weather forecasts, climate

prediction and evaluation of any kind of model trying to reproduce the climate system.

However, due to aspects of regional coverage and the number of stations included, the

level of quality control, interpolation methods and algorithm imperfections in satellite

estimates a multitude of datasets for individual variables has been made available over

the past decades (Sun et al., 2018). For this thesis, the following observational datasets

have been procured to calculate drought indices and investigate their sensitivity to data

input. The datasets are listed in Table 2.1.

2.1.1.1 GPCC

The Global Precipitation Climatology Centre (GPCC) collects and analyses rain gauge

data from round 67,200 stations all over the world, mainly from national meteorological

agencies (Schneider et al., 2014). The GPCC database covers more than 200 years but

the data set requires a minimum of ten uninterrupted years at each station as a quality

criterion for the background climatology. The result is the GPCC Full Data version 7

used in this thesis and covers the period from 1901 to the present in monthly increments.

2.1.1.2 CRU TS

The Climate Research Unit (CRU) data set v4.01 comprises a time series (TS) encom-

passes six climate variables, including temperature and precipitation as used in this thesis

(Harris et al., 2014, 2020). The principal sources used for construction of the CRU are

monthly CLIMAT messages, exchanged internationally between World Meteorological

Organisation (WMO) countries (≈2400 stations), obtained as quality-controlled files via

the UK Met Office; Monthly Climatic Data for the World (MCDW) summaries (≈2600

stations, obtained from the US National Oceanographic and Atmospheric Administration

(NOAA) via its National Climate Data Centre (NCDC, ≈1700 stations); and updates of

minimum and maximum temperatures for Australia, obtained from the Bureau of Mete-

orology (BOM, ≈100 stations) (Harris et al., 2014, 2020). Due to receiving processed

data from these meteorological the CRU TS dataset itself is not homogenised, prompting

caution of its use for trend analysis (Harris et al., 2014, 2020).
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2.1.1.3 UDEL

The University of Delaware (UDEL) has published a fourth version of a high spatial

resolution data set which consists of precipitation and temperature (v4.01) and both

variables are used in this thesis (Matsuura and Willmott, 2015). The data set employs

station data from a number of sources including a recent version of the Global Historical

Climatology Network (GHCN) data set (GHCN2); a version of the Daily GHCN (GHCN-

Daily); an Atmospheric Environment Service/Environment Canada archive; data from

the Hydrometeorological Institute in St. Petersburg, Russia; Greenland Climate Network

data; daily records from the Global Surface Summary of the Day; the National Center

for Atmospheric Research (NCAR) daily India data; Nicholson’s archive of African pre-

cipitation data; Webber and Willmott’s South American monthly precipitation station

records; and the Automatic Weather Station Project’s Greenland station records. Part

of the background climatology is taken from Legates and Willmott (1990) unadjusted

archive (Matsuura and Willmott, 2015; Sun et al., 2018). Using a combination of spa-

tial interpolation methods, monthly station data averages are interpolated to gridded

fields. An important point is that the stations in dataset were not corrected to mitigate

rain-gauge under-catch bias (Matsuura and Willmott, 2015).

2.1.1.4 GPCP

The GPCP precipitation product was first released in 1997 (Huffman et al., 1997) and

version 2 was released in 2002 (Adler et al., 2003). It is a merged analysis that in-

corporates a combination of low-orbit satellite microwave, geosynchronous-orbit satellite

infra-red, and surface rain gauge observations. The multi-satellite field is merged with

rain gauge analyses (over land) by adjusting the satellite estimates to the gauge bias and

then combining the (adjusted) satellite and gauge fields to achieve full global coverage

and improved quality compared to the individual data sources. With the microwave

satellite era starting 1987, the GPCP dataset was extended backward to 1979 using

infrared-only satellite data and gauge observations (Adler et al., 2003).

2.1.1.5 CMAP

The Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) is in its

approach similar to GPCP but differs in its merging technique. CMAP merges seven in-
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dependent sources with different characteristics including gauge observations, estimates

inferred from a variety of satellite observations, and the NCEP–NCAR reanalysis data.

These sources from satellite and reanalysis are linearly combined and blended in a second

step with gauge-based analyses to remove possible biases (Xie and Arkin, 1997).

2.1.1.6 AWAP

In contrast to all other datasets above, the dataset from the Australian Water Availability

Project (AWAP) is confined to the Australian continent (Jones et al., 2009). It com-

prises a high-resolution spatial climate dataset including precipitation, vapour pressure

and temperature using topography-resolving analysis methods and an anomaly-based

approach to combine in situ observations and to achieve a high spatial resolution of

0.05o × 0.05o. The network coverage of available stations is good with up to 7000

stations for precipitation but declines substantially back in time and is still sparse in the

interior of the continent where the accuracy of dataset is limited. This is also due to

the deliberate choice of using in situ observations only for the analysis as homogeneity

issues from including satellite data may cause the dataset to be less applicable to climate

change analysis (Jones et al., 2009).

2.1.2 Reanalysis Data

The basic idea of reanalysis is to combine assimilated observations and hindcasts to

produce a spatially and temporally consistent product. To do so, unchanging (”frozen”)

state-of-the art analysis/forecast systems are fed with all available observations every

few hours to produce forecasts. Both, observations and forecast can then be combined

to one dataset considering the errors of both products using several statistical methods,

such as three and four-dimensional variational data assimilation (3D-Var, 4D-Var) and

the Kalman filer. The resulting reanalysis of the state of the atmosphere at a particular

instant in time is seen as the best estimate. Errors are nested in the forecast models from

parametrisations and in observations from changing sources producing artificial variability

and trends. Yet, while uncertainties in reanalysis need to be considered carefully when

interpreting results, they reflect inter-annual variability in coherence with independent

observations for many variables (Kistler et al., 2001). The benefit of reanalysis is the

abundance of space and time consistent variables originating for the forecast models in
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sub-daily time steps (Kalney et al., 1996; Dee et al., 2011; Sun et al., 2018). For some

variables, reanalysis is the only globally coherent dataset available.

Several reanalysis datasets have been developed and are available for use. The

ERA Interim (Dee et al., 2011) and NCEP-NCAR Reanalysis I (Kalney et al., 1996)

datasets procured for this thesis were designed by the European Center for Medium-

Range Weather Forecast (ECMWF) and the National Center for Atmospheric Research

(NCAR) and the National Centers for Environment Prediction (NCEP), respectively.

Though many other reanalysis products exist, these were chosen as they are widely used.

The ERA Interim reanalysis (ERAI) is produced with the ECMWF IFS forecast model

with three fully coupled components for the atmosphere, land surface, and ocean waves

in 60 vertical levels. Observations assimilated from radiosondes, wind profilers, pilot

balloons, aircrafts, ships, drifting buoys, land stations and in majority from satellites

are fed into the atmospheric 4D-Var analysis in 12-hour cycles. ERAI spanning from

1979 to 2018 is the successor of ERA-40 and has improved low-frequency variability and

stratospheric circulation (Dee et al., 2011).

NCEP-NCAR Reanalysis I (NCEP I) is a first-generation reanalysis product using

the NCEP global spectral weather prediction model from 1995 with 28 vertical levels

and 3D-Var scheme for spectral statistical interpolation. Observation sources include a

similar variety of those in ERA Interim. In contrast to ERAI, NCEP I is still continued

and dates back to 1948, although there were fewer upper-air observations in the first

decade (Kistler et al., 2001). NCEP I was used to construct the Princeton Meteorological

Dataset (Sheffield et al., 2006) which in turn forces the GLDAS v2 land surface model

(see Section 2.1.3.1). Therefore, although NCEP I has a successor, it was procured for

this thesis.

Procured variables from these datasets are monthly minimum and maximum temper-

ature (ERAI), mean temperature (NCEP I), solar insolation, specific humidity and wind

speed (both) as listed in Table 2.1.
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Table 2.1: Utilized Data from ranalysis and observations to calculate drought indices.

Data
Data
length

Variables used Type Resolution Reference Data Source

ERA-Interim
1979-
2016

u/v wind speed [m/s]

Reanalysis
0.75o×
0.75o

Dee et al. (2011)

This data was provided by
ECMWF on their Web site
at https://apps.ecmwf.
int/datasets/ [Accessed
15 February 2017]

Specific humidity [kg/kg]

Downward shortwave solar radi-
ation [W/m2]

Max/min temperature [K]

NCEP
Reanalysis I

1948-
2017

u/v wind speed [m/s]

Reanalysis
0.75o×
0.75o

Kalney et al. (1996) This data provided by the
NOAA/OAR/ESRL PSD,
Boulder, Colorado, USA,
from their Website at
https://www.esrl.noaa.

gov/psd/ [Accessed
Febraury 2017 – March
2017]

Specific humidity [g/kg]

Downward shortwave solar radi-
ation [W/m2]

Mean temperature [K]

GPCP v2.3
1979-
2015

Precipitation [mm/day]
Merged rain-
gauge and
satellite obs

2.5o × 2.5o Adler et al. (2003)

GPCC v7
1900-
2015

Precipitation [mm/month]
Station obser-
vations

2.5o × 2.5o
Schneider et al.
(2014)

CMAP v1706
1979-
2017

Precipitation [mm/day]
Merged rain-
gauge and
satellite obs

2.5o × 2.5o
Xie and Arkin
(1997)

UDel AirT and P
v4.01

1901-
2014

Mean temperature [oC]
Precipitation [cm/month]

Compiled sta-
tion data. See
ref for details.

0.5o × 0.5o
Matsuura and Will-
mott (2015)

CRU TS v4.01
1901-
2016

Precipitation [mm/month]
Min/max temperature [oC]

Station obser-
vations

0.5o × 0.5o
Harris et al. (2014,
2020)

of East Anglia Climatic Re-
search Unit et al. (2017) [Ac-
cessed 21 April 2018]

AWAP
1975-
2019

Daily precipitation totals [mm]
Station obser-
vations

0.05o ×
0.05o

Jones et al. (2009)
Australian Bureau of Mete-
orology [Accessed November
2019]
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2.1.3 Land Surface Model Data

As described in the introduction, long-running in situ soil moisture measurements are

not available worldwide and satellite measurements of soil moisture are confined to the

top few centimetres of soil. Outputs from land surface models (LSM) provide global,

gridded estimates of water and energy fluxes and states at the land surface layer for

several decades. The procured LSMs in this thesis are now described. The procured

variables from the following LSMs are summarised in Table 2.3.

2.1.3.1 GLDAS

NASA’s Global Land Data Assimilation System (GLDAS) is a fully physical, global,

high-resolution land surface modelling framework that integrates observation-based data

products from multiple sources to estimate terrestrial water and energy states and fluxes

(Rodell et al., 2004; Rui, 2017). These sources include a number of products from ground

and satellite based observational datasets. GLDAS consists in total of four different land

surface models, the Community Land Model (CLM), the Mosaic Land Surface Model,

NOAH Land Surface model, and the Variable Infiltration Capacity model (VIC) (Rodell

et al., 2004). Each model has a different vertical resolution in terms of depth and

number/thickness of layers for which details are provided in Rodell et al. (2004) and

Table 2.2.

The first version of GLDAS (v1) was forced by multiple datasets. From 1979 to 1993

the models were forced with bias-corrected reanalysis data from European Center for

Medium-Range Weather Forecasts (ECMWF); from 1994 to 1999 with bias-corrected

reanalysis data from the National Center for Atmospheric Research (NCAR); in 2000

with NOAA/GDAS atmospheric analysis fields and from 2001 to the present day with

a combination of NCEP’s Global Data Assimilation System (GDAS), CMAP and Air

Force Weather Agency datasets (Rui, 2017). Due to inconsistencies in the forcing data

sources, which were switched several times in GLDAS v1 and resulted in unnatural

trends in 1995-1997, a second generation GLDAS (v2) emerged to improve upon that

(Rui, 2018).

The second generation of GLDAS consists of two parts (v2.0 and v2.1) and is only

available for the NOAH model. GLDAS v2.0, hereafter NOAHv20, spans from 1948

to 2010 and is forced entirely with the Princeton meteorological dataset, a combined
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suite of global observation-based datasets with the NCEP–NCAR Reanalysis I (Sheffield

et al., 2006). Other changes made in GLDASv2 include a model version upgrade for

NOAH from 2.7 to 3.3, switching to MODIS-based land surface parameter data sets,

and initialization of soil moisture over desert (Rui, 2018). The GLDAS v2.1 simulation,

hereafter NOAHv21, starts on 1st January 2000 with conditions from NOAHv20 and

is updated frequently. In contrast, NOAHv21 is forced with fields from three different

datasets which are atmospheric fields from the National Oceanic and Atmospheric Ad-

ministration (NOAA)/Global Data Assimilation System (GDAS), precipitation from the

disaggregated GPCP and radiation from the Air Force Weather Agency’s AGRicultural

METeorological modelling system (AGRMET) (Rui, 2018). Due to the initialization of

NOAHv21 with conditions of NOAHv20 they can be used as a continuous time series.

The simplest way to merge them is to transition from 2.0 to 2.1 either in 2000 or in

2010. Due to different forcing data sets in both versions this simple merging procedure

would create some climatological differences so that bias corrections with scaling or CDF

matching may be necessary depending on the sensitivity of the application. According

to Matthew Rodell (NASA, personal communication) these differences between GLDAS

v2.0 and v2.1 are not as large as the differences caused by varying datasets within GLDAS

v1.0.

However, to remove those artificial discontinuities caused by those different forcing

products a re-scaling method was applied, similar to that described in Hurrell et al. (2008)

who applied their methods to sea surface temperature analysis products. We scaled

the datasets by re-scaling the NOAHv20 anomalies relative to the mean climatology of

NOAHv20 and then adding those monthly anomaly fields onto the NOAHv21 climatology

for the same base period of 2000-2010. By comparing anomalies, rather than raw soil

moistures, the biases due to the different forcing data sets are removed. The scaled

NOAHv20 product was then merged with NOAHv21 in January 2000 to a continuous

time series and is further referred to as NOAHv2 (Figure 2.1).

Monthly 1-degree 0-10 cm and 10-40 cm average layer soil moisture output from

1979 to 2016 from the NOAH (GLDASv1 and v2) and CLM (GLDASv1) land surface

model are used in this thesis to represent the depth where the majority of total roots from

agricultural crops grow (Fan et al., 2016). While NOAH offers those levels individually,

the closest layers in CLM to those depth were accumulated as stated in Table 2.2. The
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layer depths available for VIC and MOSAIC do not offer these levels in any combination

and were therefore not used.

GLDAS has been used in multiple studies to examine changes in terrestrial water

storages (Syed et al., 2008; Yang et al., 2013; Mo et al., 2016) and to evaluate drought

in regional areas (Spennemann et al., 2015; Agutu et al., 2017; Van Loon et al., 2017;

Hameed et al., 2018)
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NOAHv1 10cm
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NOAHv2 40cm scaled

NOAHv2 10cm unscaled
NOAHv2 40cm unscaled

Figure 2.1: Global mean soil moisture content climatology for 0-10 and 10-40cm soil layers
of CLMv1 and NOAHv1 as well as the scaled and unscaled times series of NOAHv2. The
scaling follows the methodology in Hurrell et al. (2008) explained in the Methods section.
Serious discontinuity issues in GLDAS v1 and data quality issues in both versions after 1990 as
pointed out by Wang et al. (2016b) over China are expected to occur elsewhere, too, leading
to periodically big deviations between the LSMs shown above.

Table 2.2: Native levels and length of time series of GLDAS CLMv1, NOAHv1 and NOAHv2.
Blue shading is the selection/ aggregation for the 0-10cm layer, red shading for the 10-40cm
layer.

LSM
Data
Length

Layer
1 2 3 4 5 6 7 8 9 10

GLDASv1
CLM 2.0

1979-
2017

0-
0.018

0.018-
0.045

0.045-
0.091

0.091-
0.166

0.166-
0.289

0.289-
0.493

0.493-
0.829

0.829-
1.383

1.383-
2.296

2.296-
3.433

GLDASv1
NOAH 2.7

1979-
2017

0-
0.1

0.1-
0.4

0.4-
1.0

1.0-
2.0

– – – – – –

GLDASv2
NOAH 3.3

1948-
2017

0-
0.1

0.1-
0.4

0.4-
1.0

1.0-
2.0

– – – – – –

2.1.3.2 AWRA-L

The Australian Bureau of Meteorology (BOM) has developed the Australian Water Re-

source Assessment Landscape (AWRA-L, currently version 6) model fed with station

and satellite-based observational data to generate those fluxes on a high spatial and

temporal resolution (Frost et al., 2018). While the data set is model-based, the data is

generated using observations applied to a land surface model and can be seen as ’quasi

observations’.
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AWRA-L is a one-dimensional, biophysical, 0.05o grid based water balance model,

currently in its sixth version (Frost et al., 2018). It was developed by the Commonwealth

Scientific and Industrial Research Organisation (CSIRO) and the BOM in order to deliver

comprehensive water accounting information across the country. The model is semi-

distributed, meaning that the basins are broken down into sub-basin for which the water

balance estimates are calculated between the atmosphere, soil, groundwater and surface

water stores (Figure 2.2). Each grid cell is divided into three soil layers, top (0-10cm),

shallow (10-100cm) and deep (100-600cm), each with a spatially varying maximum water

holding capacity.

The water balance is calculated for two hydrological response units (HRU). Those

represent the landscape dynamics within an AWRA grid and are, shallow-rooted and

deep-rooted vegetation, which differ in their aerodynamic control of evaporation, their

interception capacities and in their degree of access to different soil layers limited by their

prescribed rooting depth down to 1m and 6m respectively. The HRU is fed with daily

climate data sets consisting temperature and precipitation from the Australian Water

Availability Project (AWAP, Jones et al., 2009) as well as with remotely sensed solar

Figure 2.2: Conceptual AWRA-L grid cell with key water stores and fluxes shown. From Frost
et al. (2018).
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radiation since 1990 and site-based wind observations since 1975. Prior to that, a daily

varying climatology value was used for radiation (Weymouth and Le Marshall, 2001)

and wind speed (McVicar et al., 2008). Daily gridded outputs are provided from 1911

onwards in real-time. We limit the time period to 1975 to 2018 due to the use of the

wind climatology in earlier years.

AWRA-L v5 has been evaluated by comparing it to data from flux tower sites and

soil moisture estimates from in-situ networks and has been found to strongly agree with

those in-situ measurements for the top 10cm soil layer (Holgate et al., 2016) as well as

for the deeper 0-100cm soil layer (Frost et al., 2015).

In this study, the AWRA-L (version 6) water storage values from the top (0–10 cm)

and shallow (10-100cm) layer have been utilised. Furthermore, crop reference evapotran-

spiration (PET) as a direct output from AWRA-L and the ESI, a product calculated only

from AWRA-L output data as used in Nguyen et al. (2019) are also used and provided

by the Australian Bureau of Meteorology (BOM).

Table 2.3: Utilized data from off-line land surface models.

LSM
Data
length

Variables used
Reso-
lution

Reference Data Source

CLMv1
/NOAHv1

1979-
2018

Average layer soil mois-
ture [kg/m2]

1o× 1o
Rodell et al.
(2004)

Rodell et al. (2007) [Acc. 26
February 2017]

NOAH
v20

1948-
2010

Average layer soil mois-
ture [kg/m2]

1o× 1o
Rodell et al.
(2004)

Beaudoing et al. (2015) [Acc.
25 September 2018]

NOAH
v21

2000-
2017

Average layer soil mois-
ture [kg/m2]

1o× 1o
Rodell et al.
(2004)

Beaudoing et al. (2015) [Acc.
25 September 2018]

AWRA-L
v6

1975-
2019

Fraction of soil moisture
fullness [%] 0.05o×

0.05o
Frost et al.
(2018)

This data provided by the
BOM [Acc. July 2019 –
January 2020]

Reference PET [mm]
ESI [unitless]

2.1.4 General Circulation Model Data

The Coupled Model Intercomparison Project (CMIP) was developed to provide and im-

prove the state of knowledge concerning the science of climate change that were used by

the Intergovernmental Panel on Climate Change (IPCC) in its current Fifth Assessment

Report (AR5). Simulations used in this thesis are from the 5th phase of CMIP, formally

known as CMIP5 (Taylor et al., 2012). It is a collaborative framework with contribu-

tions of atmosphere-ocean general circulation models (AOGCMs) from more than 20

modelling groups worldwide and builds on the previous phases of CMIP. These models
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include components that simulate the coupled atmosphere, ocean, land, and sea ice. Im-

provements over the climate models in previous phases include much greater biological

and chemical details. CMIP5 is divided into three categories which define the experiment

suites. These are (i) Decadal Hindcasts and Predictions simulations; (ii) ”long-term”

simulations; and (iii) ”atmosphere-only” simulations (Taylor et al., 2012).

The objectives are to evaluate how realistic the models are in simulating the re-

cent past, studying unforced variability, climate change over the historical period, and

projected climate change to the end of the century and beyond. Several different ex-

periments are embedded in these categories such as natural forcings, volcanic eruptions,

abrupt and gradual CO2 increases, future projections until 2300 with varying CO2 emis-

sion scenarios and changes to sea surface temperatures or land use to name a few. For

this thesis the ’historical run’ from the ”long-term” simulations is chosen to evaluate and

explore flash drought. The historical run is forced by observed atmospheric composition

and solar input changes and includes time-evolving land cover to reproduce the climate

and variability therein for the period from the industrial revolution starting in 1850 until

2005 (Taylor et al., 2012).

While there are more than 50 models employed in CMIP5, the choice of models is

limited by the necessary variables needed for this study. Daily soil moisture output for

the length of the historical run caused most constraints leaving only the six models listed

in Table 2.4 from the entire CMIP5 models. These models are the Second Generation

Canadian Earth System Model (CanESM2), the Commonwealth Scientific and Indus-

trial Research Organisation Mark, version 3.6.0 model (CSIRO Mk3.6.0), the Model for

Table 2.4: Procured CMIP5 models with their spatial resolution and variables used with their
output variable names in square brackets.

Model
Resolution
(lat x lon)

Variables

CanESM2 2.8o × 2.8o 10cm soil moisture [mrsos]
Max air temperature [tasmax]
Min air temperature [tasmin]
Surface wind speed [sfcWind]
Humidity [huss]
Surface pressure [psl]
Downward shortwave solar radiation [rsds]
Latent heat flux [hfls]
Precipitation [pr]

CSIRO-Mk3-6-0 1.9o × 1.9o

GFDL-CM3

2.5o × 2.0oGFDL-ESM2G

GFDL-ESM2M

MIROC5 1.4o × 1.4o
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Interdisciplinary Research on Climate, version 5 (MIROC5) and three models from the

Geophysical Fluid Dynamics Laboratory, which are the Earth System Model with Gener-

alized Ocean Layer Dynamics component (GFDL-ESM2G), the Earth System Model with

Modular Ocean Model 4 component and the Climate Model, version 3 (GFDL-CM3).

One major caveat of all CMIP5 models is that soil moisture on a daily time scale is only

available for the 0-10cm layer and thus is not fully representing the root-zone soil layer.

However, the highly dynamic changes in moisture availability during the development of

a flash drought makes a daily time scale an inevitable necessity. Other procured variables

are shown in Table 2.4, and are maximum and minimum air temperature, surface wind

speed, humidity, surface pressure, downward short-wave solar radiation, latent heat flux

and precipitation. All data is from the historical run providing a common time period of

139 complete years (1867-2005).

2.2 Methods

2.2.1 Drought and Evapotranspiration

This section outlines the common methods used throughout this thesis. The analysis

methods that are specific to each chapter will be described within that chapter.

Drought is defined as a deficiency in moisture at the surface, which can be examined

by looking at the water balance. The water balance is driven by precipitation and

evapotranspiration (P-ET). Precipitation is straightforward as it is directly measured,

but ET is more complicated as direct measurements typically involve computing fluxes

of water vapour to the atmosphere. Consequently, to examine the balance we first need

to look at how we can estimate ET given the lack of observations.

Evaporation is the process of water removal from the land surface to the atmosphere.

It is made up of evaporation from the soil, evaporation from intercepted water and evapo-

ration through the stomates of leaves (transpiration). The combination of these is called

evapotranspiration (ET). ET is an important process that cannot be neglected during

drought development as it is a significant process depleting water in the soil moisture

layer alongside runoff (Hobbins et al., 2017). In fact, besides a small contribution from

sublimation, ET is the only way to return water into the atmosphere.

Quantifying ET is challenging due to its various modulating processes from the atmo-
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sphere, vegetation and land surface characteristics. To overcome these complications,

estimates of ET and the potential ET (PET), similar to evaporative demand E0, in

combination with moisture availability from a subset of moisture sources is often used in

LSMs (Pitman, 2003). E0 is defined as the maximum rate of ET with unlimited mois-

ture availability. Many techniques have evolved over the years to compute best estimates

of E0 with significantly varying accuracy (McMahon et al., 2013; Swann et al., 2016;

Hobbins et al., 2017). The consensus is that it is best to use a fully physical function

of radiative and meteorological forcings to compute ET (Allen et al., 1998; McMahon

et al., 2013; Hobbins et al., 2017), as in Equation 2.1 (Hobbins et al., 2017) as follows,

E0 = f{T, q, Rn, Uz, Pa}. (2.1)

Equation 2.1 states that evaporative demand (E0) is a function of temperature, T ,

specific humidity, q, net radiation, Rn , wind speed, Uz , and atmospheric surface

pressure, Pa. This framework is commonly employed. For example, the standardized

crop reference ET formulation by the American Society of Civil Engineers (ASCE) and

the Food and Agriculture Organization of the United Nations (FAO) have provided a

widely used estimate of E0 that is derived from the Penman-Monteith equation (Allen

et al., 2005) as in Equation 2.2,

E0 =
0.408∆(Rn −G) + γ Cn

T+273
u2(es − ea)

∆ + γ(1 + Cdu2)
, (2.2)

where E0 (mm day−1) is atmospheric evaporative demand; ∆ (kPa oC−1) is the slope

of the saturated vapour pressure–temperature curve at the 2-m air temperature (oC); γ

(kPa oC−1) is the psychrometric constant; U (m s−1) is the wind speed (here specified

at a 2-m height); Rn (MJ m−2 day−1) is the net incoming radiation; G (MJ m−2

day−1) is the downward ground heat flux; es (kPa) and ea (kPa) are the saturated

and actual vapour pressures, respectively; Cn (kg m−3 s day−1) and Cd (s m−1) are

the “numerator constant” and “denominator constant”, respectively, depending on the

reference type and calculation time step with values defined in Allen et al. (2005); and

the 0.408 term (kg MJ−1) represents the inverse of the latent heat of vaporization

converting E0 to daily depth units.

The relation between ET and E0 under drought is pictured in Figure 2.3. When
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moisture availability is plentiful the maximum rate of ET is controlled by the E0 of the

atmosphere, reflecting an energy-limited environment and shown on the left-hand side

of the figure. ET increases proportionally with E0, for example, with increases in wind

speed, radiation or temperature. With continuing negative precipitation anomalies and

ongoing high ET soil moisture becomes insufficient to sustain the rate of ET at the

same rate as E0. Consequently, ET becomes constrained by moisture availability. From

there on ET and E0 start to diverge, reflecting a water-limited environment (Seneviratne

et al., 2010). As the sensible heat flux increases, E0 continues to rise, while ET declines

due to a reduction in moisture availability. With time, the rate of drying slows due to

a higher water retention in the soil matrix associated with the reduction of ET due to

lack of water availability (Seneviratne et al., 2010). The interaction between ET and E0

is linked across the land surface–atmosphere interface, particularly in drought (Hobbins

et al., 2017).

Arguably, the inclusion of ET or an estimate thereof can be useful to monitor and

detect agricultural drought. ET provides the second part of the P-ET balance which

determines the level of surface moisture.

Figure 2.3: Relationship of evapotranspiration (ET) and evaporative demand (E0) during
the development of drought starting from wet conditions (energy-limited) on the left and
proceeding into dry conditions (water-limited) to the right. From Pendergrass et al. (2020).
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2.2.2 Drought Indices

Drought is manifest in different ways and can be identified by atmospheric variables like

precipitation, land surface variables such as evaporation or soil moisture, a combination

of the two, or on the subsequent effects on the land’s surface e.g. vegetation health.

Drought indices represent a simplification of these variables, or combinations of variables,

to provide a quantifiable estimate of the state of drought. The drought indices used to

identify agricultural and flash drought in this thesis are now described.

2.2.2.1 The Palmer Drought Severity Index (PDSI)

The Palmer Drought Severity Index (PDSI, Palmer, 1965) is a well-established drought

index. The PDSI was designed to capture meteorological droughts by measuring the

departure of moisture balance from normal conditions by using a model of cumulative

imbalance of moisture supply and demand at the land surface (Mishra and Singh, 2010).

Its hydrological accounting system includes a two-layer bucket model for soil moisture

calculations, taking ET, recharge to soils (R), runoff (RO), water loss to the soil layers (L)

and their potential values into account. These fluxes are calculated using precipitation

and estimates of ET as model inputs. The water-balance coefficients are then determined

for each month, i, using the average of those water fluxes over the calibration period

resulting in the ratio of the long term mean values between a water flux and its potential

value as in Equation 2.3,

αi =
ETi

PETi
βi =

Ri

PRi

γi =
ROi

PROi

δi =
Li

PLi
(2.3)

Where ‘P’ in the denominator part of each term stands for its potential value. Introduced

by Palmer (1965), the climatically appropriate for existing conditions (CAFEC) values

describe the conditions needed to maintain normal soil moisture level for a given time.

They defined as the product of the potential water flux and its corresponding coefficient

from equation 2.3, e.g. αiPET for CAFEC evapotranspiration. The sum of all CAFEC

water flux values determines the CAFEC precipitation which is the precipitation needed

to maintain normal soil moisture levels:

P̂ = αiPET + βiPR + γiPRO + δiPL. (2.4)
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Equation 2.4 then allows users to estimate precipitation excesses and deficiencies, D, by

subtracting P̂ from the observed precipitation value P ,this is, D = P − P̂ . To account

for the different meanings of D at different locations and times, D was multiplied by a

climatic characteristic constant K for month i, which was defined using data from the

central United States in Kansas and Iowa:

Ki = KoK
′

i =
17.67∑12
i=1DiK

′
i

K
′

i (2.5)

where K
′
i in Equation 2.5 is defined as

K
′

i = 1.5log10

 PETi+Ri+ROi
Pi+Li

+ 2.8

Di

+ 0.5. (2.6)

The moisture anomaly index Z is then the product of the precipitation excesses and

deficiencies D and the climatic characteristic constant K (Z = DK). In a last step Z

is used to calculate the PDSI for time t (Xt):

Xt = pXt−1 + qZt = 0.897Xt−1 + Zt/3 (2.7)

where Xt−1 is the PDSI for the previous month. p and q in Equation 2.7 are the duration

factors, which determine how sensitive the PDSI is to the monthly moisture anomaly Zt

and the magnitude of the autocorrelation in the PDSI. Palmer (1965) derived the values

of p = 0.897 and q = 1/3 using the linear slope between the length and severity of the

most extreme droughts that he studied in Kansas and Iowa (Dai, 2011a).

The original PDSI employed the Thornthwaite equation to calculate ET (Thornth-

waite, 1948). However, the Thornthwaite method uses only temperature and has been

criticised as this overestimates PET (Hobbins et al., 2008). Sheffield et al. (2012) have

shown that the PDSI using the Thornthwaite method responds incorrectly to increas-

ing global temperatures in recent decades and overestimates drought in future climate

projections. Being constrained by temperature only, PET increases with increasing tem-

perature (Sheffield et al., 2012). It has been well established that temperature does not

uniquely determine the evaporative flux (Penman, 1948; Roderick et al., 2007; Hobbins

et al., 2008; Donohue et al., 2010) and studies have shown regional declines in evapora-

tive demand despite generally increasing regional temperatures (Roderick et al., 2009).
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Consequently, most applications of the PDSI to date substitute the calculation of PET

with the Penman-Monteith formulation, which applies multiple variables to compute

PET that are described below (Monteith, 1965).

The PDSI is a complex drought index requiring multiple datasets and various assump-

tions. As such, standard tools have been developed and are available for use. Jacobi

et al. (2013) from the University of Vanderbilt in Tennessee provides several scripts for

the individual steps (water balance, PET, Z-Index, etc.) and a main script to select

compulsory data for input. However, it only includes the Hamon and Thornthwaite

methods to determine the evapotranspiration. Ficklin et al. (2015) improved the tool by

incorporating the more accurate method from Penman-Monteith and provided access to

their code (https://github.com/cageo/Ficklin-2015; Ficklin, personal communi-

cation). Their embedded formulation for PET is the same as in Equation 2.2. Using

this tool for this thesis, the required input variables are therefore precipitation, temper-

ature, wind speed, humidity and shortwave solar radiation. Moreover, a field constant

of available water capacity for the two-layer bucket model needs to be provided for each

grid cell.

2.2.2.2 The Evaporative Demand Drought Index (EDDI)

The described relationship between ET and drought in the beginning of this chapter is

the basis on which the Evaporative Demand Drought Index (EDDI) is built (Hobbins

et al., 2016). The index relies on the Penman-Monteith formulation (Eq. 2.2) only and

calculates anomalies of E0. Assuming that E0 spikes during the development of drought

when the latent heat flux reduces due to diminishing water availability, strong posi-

tive values represent this drying process. EDDI is standardised using a non-parametric

approach, in which empirically derived probabilities are obtained through an inverse nor-

mal approximation to achieve index inter-comparability (Farahmand and AghaKouchak,

2015; Hobbins et al., 2016). This is done by first determining the probabilities of E0

(P (E0i)) dependent on the rank (i) of E0 in the historical time series (i = 1 for minimum

E0) and the number of observations (n) using the empirical Tukey plotting position:

P (E0i) =
i− 0.33

n+ 0.33
. (2.8)
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Subsequently, the inverse normal approximation is applied to achieve standardised EDDI

values:

EDDI = W − C0 + C1W + C2W
2

1 + d1W + d2W 2 + d3W 3
, (2.9)

where W depends on the value of P (E0i). If W is ≤ 0.5, then

W =
√
−2ln[P (E0i)], (2.10)

otherwise, for P (E0i) > 0.5, [P (E0i)] in equation 2.10 is substituted with [1− P (E0i)]

and the sign of EDDI is reversed. The remaining constants are C0 = 2.515517, C1 =

0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308. Similar

to other multiscale drought indices such as the SPI (described below), the EDDI can be

calculated for an arbitrary time scale prior to standardisation, e.g. 1, 3 or 12-months by

aggregating over the time scale of interest so that the value for each month is determined

from the previous months. EDDI is used operationally as a drought index in the US and

has successfully identified a flash drought in several cases in the US (McEvoy et al.,

2016) and diagnosed water stress in west-central Wyoming (McNeeley et al., 2018) .

2.2.2.3 The Standardised Precipitation Index (SPI)

The SPI (McKee et al., 1993) explicitly specifies drought time scales i for, typically 3 to

48 months, by comparing precipitation with its multi-year average. This makes the SPI

very versatile to investigate short and long-term drought. Hydrological drought caused

by long lasting precipitation deficiencies can be examined using the SPI on long time

scales such as 24-month while the SPI can also be adapted to just a few months to

investigate soil moisture drought (Mishra and Singh, 2010). It is the simplest of all the

drought indices applied in this thesis as it only requires precipitation. To calculate the

SPI, a location’s long-term precipitation record is smoothed with a moving average over

a specified time scale so that the value for each month is determined from the previous

i months. The resulting frequency distribution of the time series is then fitted to a

two-parameter gamma probability density function:

g(x) =
1

βαΓ(α)
xα−1e

−x
β , (2.11)
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where Γ(α) is the gamma function, x is the precipitation accumulation and α and β the

scale parameters of the gamma distribution, which are determined using the maximum

likelihood approach (Edwards, 1997). From this, an incomplete cumulative gamma

distribution function is derived assuming t = x
β

as in Equation 2.12,

G(x) =
1

Γ(α)

∫ x

0

tα−1e−tdt (2.12)

The fact that Equation 2.12 is invalid for zero precipitation makes an extension necessary

to account for that, which is q + (1 − q), where q and 1 − q are the probabilities of

zero (x = 0) and non-zero (x > 0). The resulting complete cumulative probability

distribution is then expressed as in Equation 2.13,

H(x) = q + (1− q)G(x). (2.13)

Different probability distribution types have been employed in various studies. The

most commonly applied are two-parameter gamma and Pearson Type III (Mishra and

Singh, 2010). We use the gamma distribution as originally proposed by McKee et al.

(1993). The inverse normal approximation is used in a last step to convert the cumu-

lative probability to the standard normal random variable, the SPI, using equations 2.9

and 2.10. The result is a normal distribution with a mean SPI of zero for a specific

location and the SPI values representing the number of standard deviations from the

mean (McKee et al., 1993). The length of the precipitation record available influences

the calculated SPI values considerably due to changes in the shape and scale parameters

of the gamma distribution (Wu et al., 2005). Therefore, we have ensured that the pre-

cipitation time series is longer than 30 years, which McKee et al. (1993) recommends as

the minimum length. The SPI calculated in the presented way was used in Chapter 3.

Instead of the parametric approach, a non-parametric standardised index can be de-

rived using the empirical probability. This can be applied to other drought variables than

precipitation too, to obtain inter-comparable indices (Farahmand and AghaKouchak,

2015; Hao and Singh, 2015). Instead of using the Gringorten plotting position as pro-

posed by Farahmand and AghaKouchak (2015), we apply the Tukey plotting position as

done by Hobbins et al. (2016) in his formulation of the EDDI. Consequently, the calcula-

tions to achieve the non-parametric SPI follow exactly the ones of EDDI in the previous
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section after precipitation was averaged over a specified window. This type of the SPI

is used in chapters 4 and 5. We used slightly different formulations for two reasons.

i) to keep the original formulation from McKee et al. (1993) when comparing to the

PDSI with monthly data as done in other studies (e.g. Guttman, 1998; Vicente-Serrano

et al., 2012) and ii) to have inter-comparable indices for flash drought examination as

recommended by Farahmand and AghaKouchak (2015). The time series in Figure 2.4

shows that the differences between them are minor.
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Figure 2.4: Area-averaged 3-month SPI over Australia calculated from monthly GPCC pre-
cipitation data (Schneider et al., 2014) using the original two-parameter gamma probability
density function as in McKee et al. (1993) (blue) and the non-parametric empirical probability
density function as in Farahmand and AghaKouchak (2015) (orange). Reference period is the
entire length of the data set from 1979 to 2013. Shown is the time series from 1990 to 2010.

2.2.2.4 The Standardised Precipitation Evapotranspiration Index (SPEI )

The SPEI (Vicente-Serrano et al., 2010) is in its methodology based on the SPI. However,

instead of specifying drought by just precipitation it looks at the difference (D) between

precipitation (P ) and PET for month i as per Equation 2.14:

Di = Pi − PETi. (2.14)

The original formulation from Vicente-Serrano et al. (2010) uses the Thornthwaite

method (Thornthwaite, 1948) to estimate PET. Here, PET is calculated using Equation

2.2 for consistency among the procured drought indices. Di values are aggregated over

different time scales depending on the drought type or hydrological process of interest.

Instead of using a two-parameter gamma distribution as commonly applied on the SPI,

the SPEI needs a three-parameter distribution. Precipitation has a lower boundary of
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0, whereas the Di can be negative when PET exceeds P. Vicente-Serrano et al. (2010)

have tested several probability density functions to standardise the D series and found

the three-parameter log-logistic to be the most suitable one due to a better fit for low

values. It is expressed as:

f(x) =
β

α

(
x− γ
α

)β−1
[

1 +

(
x− γ
α

)β]−2

, (2.15)

where α, β, and γ are scale, shape, and origin parameters, respectively, for D values in

the range (γ > D <∞) and are obtained by Equations 2.2.2.4 to 2.17:

β =
2w1 − w0

6w1 − w0 − 6w2

, (2.16)

γ =
(w0 − 2w1)β

Γ(1 + 1/β)Γ(1− 1/β)
, (2.17)

γ = w0 − αΓ

(
1 + 1

β

)
Γ

(
1− 1

β

)
, (2.18)

where Γ(β) is the gamma function of β. ws represents the probability-weighted moments

(PWM) of order s as per Equation 2.19:

ws =
1

N

N∑
i=1

(
N−i
s

)
Di(

N−i
s

) , (2.19)

where N is the number of data points. Equation 2.19 is the updated version from

Begueŕıa et al. (2014) who use unbiased PWMs in contrast to the original plotting-

positions PWMs in (Vicente-Serrano et al., 2010).

The probability distribution function of the D series is given by Equation 2.20:

F (x) =

[
1 +

(
α

x− γ

)β]−
1. (2.20)

The standardised values of the SPEI are then derived using equations 2.9 and 2.10. The

result is, just like the SPI, a normal distribution with a mean SPEI of zero for a specific

location and the SPEI values representing the number of standard deviations from the

mean. The SPEI has been found to be very similar to the SPI for periods with no

PET anomalies, but sensitive to increasing temperatures (Vicente-Serrano et al., 2010).
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Due to that Vicente-Serrano et al. (2012) identified a slightly higher skill for drought

detection in the boreal summer with abnormal temperature anomalies such as during the

2003 European heat wave event. The SPEI has also lately been used to replicate flash

drought using a 1-month time scale (Noguera et al., 2020).

2.2.2.5 The Evaporative Stress Index (ESI)

The SPI, SPEI and EDDI describe atmospheric conditions. While the SPI measures the

moisture supply to the land surface, the EDDI gives an estimate of how much moisture

the atmosphere demands. The SPEI measures the difference between both. However,

neither of them directly estimate the direct response of the land surface.

The ESI (Anderson et al., 2007) aims to do this. The ESI incorporates PET, indi-

cating atmospheric demand, but also includes actual ET, which is moisture supply from

the land’s surface. The ESI is defined as the standardised anomaly of the ratio of actual

ET to PET (rET ) as in Equation 2.21,

rET =
ET

PET
, (2.21)

Studies, e.g. Otkin et al. (2013) and Nguyen et al. (2019) have standardised the ESI

using Equation 2.22,

ESI =
rET − 〈rET 〉
δ(rET )

, (2.22)

where 〈rET 〉 is the climatology of rET and δ(rET ) its standard deviation over a baseline

period. Here, we unify the standardisation process across the indices used in chapters

4 and 5, the ESI is standardised using equations 2.8 to 2.10 so that all indices used in

those chapters are comparable.

The ESI calculates both components of rET from thermal remote sensing data with

the Atmosphere-Land Exchange Inverse model (ALEXI). Alternatively, other measures

can be procured for PET and actual ET inputs to retrieve the ESI. This will be described

in the methodology of the relevant chapters. As SPI and EDDI, rET in Equation 2.21

can be computed over an arbitrary time scale.

For flash drought analyses in chapters 4 and 5, SPI, ESI and EDDI were translated

into categories based on their percentile ranks according to the EDDI guidelines (Lukas

et al., 2017) shown in Table 2.5, classifying dry (ED, ”EDDI dry”) and wet (EW, ”EDDI
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Table 2.5: Wetness and drought categories according to the EDDI guidelines stated in Lukas
et al. (2017). EDDI is inverted in comparison to SPI, ESI and SSI due to its reciprocal
relationship to them. A high evaporative demand and thus positive values correspond to dry
conditions for EDDI while e.g. low precipitation and thus negative index values correspond to
dry conditions for SPI. The drought categories of EDDI are based on the US Drought Monitor
(Svoboda et al., 2002).

Category
Percentile

ESI/SPI/SSI
Percentile

EDDI
USDM

Intensity

Wetness
categories

EW4 >98% <2%

EW3 >95% <5%

EW2 >90% <10%

EW1 >80% <20%

EW0 >70% <30%

None

Drought
categories

ED0 <30% >70% abnormally

ED1 <20% >80% moderate

ED2 <10% >90% severe

ED3 <5% >95% extreme

ED4 <2% >98% exceptional

wet”) conditions. We use these categories to define a consistent state of each index

during the onset of a flash drought.
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Chapter 3

Uncertainties in Drought from Index

and Data Selection

3.1 Preface

This section is a reproduction of the paper “Uncertainties in drought from index and

data selection” in press in Journal of Geophysical Research - Atmospheres by Hoffmann

et al. (2020), with section and figure numbers changed to fit the thesis structure. Most

of the supplementary material of Hoffmann et al. (2020) is now included in the main

text.

This study compares various drought indices, the Palmer Drought Severity Index

(PDSI), the Standardized Precipitation Evapotranspiration Index (SPEI), and the Stan-

dardized Precipitation Index (SPI), and the uncertainties in each to the input data from

which they are derived. The abilities of the PDSI, SPEI and SPI to capture drought

periods are assessed through a comparison with soil moisture estimates from two gener-

ations of the Global Land Data Assimilation System (GLDAS). This comparison shows

that the skill with which a drought index represents variations in soil moisture does not

necessarily improve when evapotranspiration is included (i.e. PDSI/SPEI rather than

SPI), though this depends on location and the time scale of the drought. The differ-

ences in the abilities of the drought indices to represent soil moisture are also compared
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to the magnitude of the uncertainty in each index arising from the choice of input data.

In many cases, the uncertainties in the variations of the PDSI, SPEI and SPI to the

choice of input data are larger in magnitude than the differences between the indices

themselves, particularly when considering the dry tails of the distribution. The results

show that no one drought index outperforms the others during drought conditions.

3.2 Introduction

Drought is an inherent part of climate variability and affects most regions on Earth

(IPCC, 2012; Sheffield and Wood, 2011). In broad terms, drought is the persistence of

extreme negative moisture anomalies over a specific region and an extended period of

time typically on the order of months or longer (Mishra and Singh, 2010; Zargar et al.,

2011).

Unlike many other natural hazards, difficulties arise in terms of defining drought (see

Chapter 1). This is because drought is a slowly evolving phenomenon (Mishra and Singh,

2010) whose modulating mechanisms stem from complex interactions of atmospheric,

land surface and oceanic processes. Moreover, drought is manifest in different ways and

can be identified by atmospheric variables like precipitation, land surface variables such

as evaporation or soil moisture, a combination of the two, or on the subsequent effects

on the land’s surface e.g. vegetation health. The broad interpretations of drought into

meteorological, agricultural, hydrological and socioeconomic (Wilhite and Glantz, 1985)

have led to a multitude of approaches to classify and monitor droughts in terms of their

characteristics and hundreds of drought indices have been developed for this purpose

(Heim Jr., 2002; Zargar et al., 2011). Each drought index has its unique strengths and

weaknesses as comparisons of several indices in numerous studies reveal (Dai et al., 2004;

Guttman, 1998; Heim Jr., 2002; Keyantash and Dracup, 2002; Mishra and Singh, 2010;

Mpelasoka et al., 2008; Zargar et al., 2011).

A common application of these drought indices is in identifying drought that has

an agricultural impact, typically on time scales of 1–12 months. Thus, drought indices

based on soil moisture measurements are ideal. However, in reality, direct soil moisture

measurements are rarely employed in drought indices. This is because in situ soil moisture

observations are sparse in space and time. Satellite observations of soil moisture are
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global but their spectral bands typically capture soil moisture in the first few centimetres

of soil only (Karthikeyan et al., 2017). This shallow layer is not necessarily sufficient for

capturing drought as it is not necessarily representative of soil moisture storage through

deeper soil layers, including the root zone. In the absence of a dense, long- network of

soil moisture gauges many drought indices have been developed that are based on other

variables that can act as a proxy for soil moisture, for example, precipitation or some

combination of precipitation and evaporation.

Among the most well-established indices used in climate research are the Palmer

Drought Severity Index (PDSI, Palmer, 1965), the Standardized Precipitation Index (SPI,

McKee et al., 1993) and more recently the Standardized Precipitation Evapotranspiration

Index (SPEI, Vicente-Serrano et al., 2010). The SPI estimates drought from precipita-

tion only and is calculated at a location using a distribution of precipitation that has

been transformed to a standard normal distribution (i.e. a mean of 0 and standard

deviation of 1). The SPEI is mathematically similar to the SPI but estimates drought

using water balance, calculated as precipitation minus evapotranspiration. Both indices

are multi-scalar, meaning that the time interval on which they are calculated can be

adjusted relative to different drought types (e.g. 3, 6 or 12 months). The PDSI employs

a simple water balance model, which estimates soil moisture as the difference between

precipitation and evapotranspiration. All approaches have their advantages and limita-

tions but their differences can lead to disagreement in some characteristics of drought,

e.g. timing of onset or duration (Mishra and Singh, 2010; Zargar et al., 2011).

Mishra and Singh (2010) provide a brief review of the differences in the detection of

drought between the PDSI and SPI. Their review suggests that the SPI provides a better

representation of soil wetness and is a better indicator of crop production compared to

the PDSI. However, Tsakiris and Vangelis (2005) argue that reliable drought assessment

is not possible using meteorological drought indices like the SPI and evaporation must

be included in order to consider the antecedent water deficit in soil moisture memory.

Some argue that temperature is necessary to evaluate changing drought conditions in

the future when potential evapotranspiration is likely to increase (Vicente-Serrano et al.,

2010). Hence, Vicente-Serrano et al. (2010) developed the SPEI to combine the multi-

scalar character of the SPI with the influence of evapotranspiration.

Several studies have compared the PDSI, SPEI and SPI with in situ soil moisture
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observations and/or soil moisture estimates from land surface models (LSM) to evaluate

their reliability. Narasimhan and Srinivasan (2005) compared SPI and PDSI with other

soil moisture and evapotranspiration based indices for two watersheds in Texas and

found a good positive correlation of around 0.6. Dai et al. (2004) correlated the PDSI

with observed soil moisture over several regions worldwide and found good correlations of

0.5–0.7 for those sites. Spennemann et al. (2015) used the SPI to compare it to modelled

soil moisture over south eastern South America and found high correlations (> 0.7) for

longer time scale SPIs in deeper soil layers with seasonal dependencies. Vicente-Serrano

et al. (2012) compared PDSI, SPEI and SPI to soil moisture from the international soil

moisture network and found that both SPI and SPEI have superior skill over the PDSI

to monitor agricultural drought impacts due to their adjustable time scale as found by

other studies (e.g. Zhao et al., 2017). They found that the SPEI performed marginally

better than the SPI in the summer season, concluding that the influence of ET cannot

be neglected in drought evaluation. Raible et al. (2017) came to the same conclusion

for the Mediterranean region when they evaluated the performance of derivates of SPI,

PDSI and SPEI to model simulations over Europe. In contrast Raible et al. (2017) have

shown that the SPI is sufficient for Central Europe.

Most studies have evaluated the performance of drought indices to LSM outputs due

to globally sparse and temporally short time series of reliable soil moisture observations.

As pointed out by Spennemann et al. (2015) and shown by Ukkola et al. (2016b) uncer-

tainty in the soil moisture estimates from LSMs is high and so the evaluation of which

“better” represents soil moisture is difficult. In this study, we set the LSMs as the ref-

erence for comparison. Despite the LSM’s own implicit biases and errors, which we will

discuss later on, a comparison still provides a benchmark for estimating the uncertainty

of drought indices to input data. Koster et al. (2009a) pointed out that LSMs, unless all

of them are entirely wrong, can “capture the time variations of real-world soil moisture”

when forced with realistic meteorological data.

One distinct advantage of the SPI over the SPEI and PDSI is its ease of calculation

requiring precipitation as its only variable. These data are available worldwide and are

of high veracity. Precipitation data span long periods of time and station networks in

most places are relatively dense, providing a good record for the purposes of agricultural

drought detection and examining variability and change in drought. The PDSI and SPEI
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require additional variables to estimate the ET component via the Penman-Monteith

method (Monteith, 1965), formulated as the crop reference ET by the United Nations

Food and Agriculture Organisation (FAO) (Allen et al., 1998). The variables employed

are namely temperature, solar insolation, humidity and wind speed. Some of these

variables are not well measured and globally available. A past criticism of the PDSI

was that it was inappropriate to apply the index in regions with extreme variability in

rainfall (Mishra and Singh, 2010; Zargar et al., 2011). However, Wells and Hayes (2004)

introduced a self-calibrating method for the PDSI to remove fixed climate characteristic

coefficients that were based on empirically-derived constants for the United States and

this has improved PDSI estimates of drought outside that region. The Penman-Monteith

method requires multiple datasets and various assumptions that introduce uncertainties

into the PDSI (Dai and Zhao, 2016; Sheffield et al., 2012; Trenberth et al., 2014).

There are distinct differences in how the SPI, SPEI and PDSI represent soil moisture.

There are also relative advantages and disadvantages to the calculation of each due to

uncertainties in the measurements being used to calculate each index (Dai and Zhao,

2016; Trenberth et al., 2014), as has been outlined above. Whether or not using an

index such as the PDSI or SPEI is advantageous for examining drought over a simpler

metric like SPI has not been examined in the context of the uncertainty in the data

used to compute each index. Therefore, this study highlights the sensitivity of the PDSI,

SPEI and SPI to their input data.

The research presented here provides an indication of the uncertainty of three com-

monly used drought indices to their input data, and compares this to the differences in

the way each index detects drought. To do this, we compare the SPI, the SPEI and the

PDSI, computed using input data from a number of different sources, including both

observations and reanalysis, with multiple modelled global soil moisture products. Given

the scarcity of in situ soil moisture observations globally, we treat LSMs here as the

reference to benchmark the PDSI, SPEI and SPI. The following data section describes

them and the obtained soil moisture estimates in detail. The methodology is explained

in the third section along with the SPI, SPEI and PDSI methods and the selection of

soil depth layers. Results are then provided, divided into sensitivity of indices to input

data and soil moisture estimates for two soil depths. Finally, the results are discussed in

section 5 and summarised afterwards.
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3.3 Data

The accuracy of the data sets used to generate the drought indices determines their

efficacy. There can be substantial differences between the individual products derived

from satellites, weather stations, combinations of the two and from reanalysis products.

To assess the sensitivity of the SPI, SPEI and PDSI to their input data sets we computed

each drought index from the datasets shown in Table 2.1. These data are now described.

3.3.1 Input variables for the SPI, SPEI and PDSI

Monthly precipitation totals are used for the calculation of all three indices. The PDSI

and SPEI further require inputs of mean or minimum and maximum monthly tempera-

ture, solar insolation, specific humidity and wind speed. These data were sourced from

a variety of observational and reanalysis products that are also listed in Table 2.1 and

described in detail in Section 2.1. In order to estimate soil moisture content the PDSI

also requires the available water capacity (AWC), which is unique for each location, and

was obtained from Webb and Rosenzweig (1993).The AWC is a constant, but all other

datasets were examined over the period 1979 – 2013.

3.3.2 Soil moisture estimates

As described in the introduction, long-running in situ soil moisture measurements are

not available worldwide. Further, satellite measurements of soil moisture are confined

to the top few centimetres of soil. This can be limiting for drought analysis as these

top levels of soil moisture can be too responsive to the atmosphere and less indicative

of changes in soil moisture throughout the root zone (Entekhabi et al., 1996).

Instead, for a comparison of drought indices, we employ data from NASA’s Global

Land Data Assimilation System (GLDAS), which drives four offline land surface models

(VIC, NOAH, MOSAIC, CLM) with ground and satellite observation based datasets to

estimate terrestrial water and energy states and fluxes (Rodell et al., 2004; Rui, 2017).

The NOAH LSM is also available for the second generation GLDAS which consists of

two parts (2.0 and 2.1). The difference to the first generation is an updated NOAH

model (2.7 to 3.3) and changes in the forcing data sets due to inconsistencies discovered

in GLDAS 1.0. Further details about GLDAS and the merging procedure of the two
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GLDAS 2.x parts are outlined in Section 2.1. The second generation GLDAS NOAH

LSM is from here on referred as NOAHv2.

For this study, we used monthly 1-degree 0-10 cm and 10-40 cm average layer soil

moisture output from 1979 to 2016 from the NOAH and CLM land surface model, from

here on referred to as NOAHv1/2 and CLMv1 (Table 2.2). The layer depths available

for VIC and MOSAIC do not offer these levels and were therefore not used.

3.4 Methods

This study examines differences between the PDSI, SPEI and SPI in their representation

of soil moisture from GLDAS LSMs and compares the magnitude of these differences to

the uncertainties of the indices to the input data used to calculate the drought indices.

Here we look at time variations in soil moisture rather than the magnitude in absolute

values to correlate them with SPI and PDSI. In this case, LSMs show very similar

information about soil moisture variability over time, despite their large differences in

absolute values (Koster et al., 2009a), with similar results found across the three LSMs

used in this study (CLMv1, NOAHv1/2) (Figure 3.1). This gives us confidence to use

LSMs as an estimated representation of real-world soil moisture and a reference for

benchmarking. However, there are shared parametrisations across these three models

meaning they are not fully independent.
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Figure 3.1: Mean correlation of three independent LSM pairings (CLMv1, NOAHv1,
NOAHv2) using the 1979-2013 time period and afterwards averaged. Stippling shows sta-
tistically significant correlations at the 95% level.

As previously described, the SPI fits a precipitation time series to a probability distri-

bution from which a standard normal density distribution is derived (McKee et al., 1993).

Here, we compute the SPI on 3, 6, 9 and 12 month time scales to assess seasonal to
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annual and inter-annual droughts (McKee et al., 1993).

The SPEI is mathematically very similar to the SPI and is computed for the same time

scales. Instead of using only precipitation, its input is the water balance of precipitation

minus potential evapotranspiration (Vicente-Serrano et al., 2010).

The PDSI estimates the water supply and demand to restore normal moisture con-

ditions based on the water balance within a two-layer bucket soil model and includes

estimates of rainfall, evapotranspiration and soil moisture (Palmer, 1965). Here, the

evapotranspiration in the PDSI is computed using the Penman-Monteith method (Mon-

teith, 1965; Allen et al., 1998) which was added by Ficklin et al. (2015) to a Matlab

tool developed by Jacobi et al. (2013) (code access via GitHub, https://github.com/

cageo/Ficklin-2015). More details on the calculation of those indices is presented in

Chapter 2.2.

While LSMs consider a variety of soil properties and vegetation types which are

important for the rate of soil moisture changes, the indices considered here focus on

meteorological drought and either do not account for those characteristics at all (SPI

and SPEI) or only for soil properties in a simplistic hydrological model by using prescribed

values for water-holding capacity (PDSI).

A comparison between the PDSI, SPEI and SPI and soil moisture is presented in

Section 3.5.1. The sensitivity of the verification of the drought indices to the choice of

LSM is examined by fixing the input data to the PDSI, SPEI and SPI and comparing

these indices to the LSMs described in Section 3.3. The permutation of input data used

to calculate the PDSI, SPEI and SPI is fixed to the GPCC for precipitation and the

NCEP II reanalysis for the remaining parameters (Table 2.1), which gave the highest

global mean correlation of all permutations. The correlations between the PDSI, the

SPI and SPEI on a 3, 6, 9 and 12-month time scale and soil moisture are computed at

the grid point scale. Soil moisture in the LSMs is approximated for 0-10cm (layer 1)

and 10-40cm (layer 2). These are slightly different for each model due to differences in

their native levels and are shown in Table 2.2. As the PDSI, SPEI, SPI and soil moisture

data are calculated on different scales and have different units, skill is measured using a

Pearson correlation.

We use all gridded products in this analysis and to enable comparison all data are

bilinearly interpolated to the coarsest common grid of 2.5o × 2.5o (Table 2.1). We
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removed the seasonal cycle from GLDAS and small spatial or temporal data gaps were

closed with nearest neighbour values. The spatial domain was limited to 76oN and 58oS

because drought indices do not perform well in high latitudes and where data coverage

is poor (Contractor et al., 2019; Zargar et al., 2011). As the start and thus the length

of the first and second GLDAS LSM generation varies between 1948 and 1979, only the

common period from 1979 onwards was used. The PDSI was calculated and calibrated

for this period only as some input data such as ERA Interim also start in this year. For

the SPI, a long-term record of more than thirty years is needed by definition (McKee

et al., 1993). Thus, the 1979–2013 base period was used for the SPI and SPEI to be

consistent with the PDSI.

In Section 3.5.2 the sensitivity of the PDSI, SPEI and SPI to the input data from

which they are calculated is examined. The input data are precipitation for the SPI and

precipitation, solar insolation, humidity, wind speed and temperature for the PDSI and

SPEI. We apply different permutations of these input data sets from different sources

listed in Table 2.1 and re-examine the skill of each index in its ability to simulate soil

moisture variability by comparing to a soil moisture estimate, the GLDAS NOAHv2 LSM.

Hence, statements about the performance of each index indicate how different they are

and are relative to the LSM’s estimate of soil moisture fluctuations. Given the inherent

uncertainties in these soil moisture estimates discussed earlier, we also test the sensitivity

by comparing the index values themselves.

In total, there are five permutations of input data possible for the SPI and twelve

for the PDSI and SPEI. To account for these differences for the comparison, the PDSI

samples were bootstrapped using the same number of replicates as the SPI sample

size. This resampling method was performed 1000 times. From this, max/min/mean

correlations and spread were computed for the individual indices.

The comparisons between the SPI, SPEI, PDSI and LSM were performed both on the

entire dataset and for a subset of drought periods. The drought periods were defined

when PDSI and SPI/SPEI values fell below a certain threshold, set at -2.0 and -0.8

respectively. These thresholds were chosen according to the classification of a “moderate

drought” from the US Drought Monitor (Svoboda et al., 2002).
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3.5 Results

This study assesses the effect of uncertainties on the skill of drought indices to ap-

proximate modelled soil moisture by a two-stage test. i) testing the uncertainty of the

skill of the drought index to soil moisture estimates (Section 3.5.1) and ii) testing the

uncertainty of the skill of the drought index to the choice of input data used in the

computation of the drought index (Section 3.5.2). The magnitudes of each source of

uncertainty are then compared (Section 3.5.3). Sections 3.5.1 and 3.5.2 focus on the

differences between PDSI and SPI only as these two indices show the largest contrast.

3.5.1 Sensitivity of the skill of Drought Indices to Soil Moisture

Product

The skill that each drought index has in capturing variability in soil moisture reanalysis

and satellite products is first tested by correlating the drought indices with soil moisture

at two levels from the GLDAS products described in Section 3.3. The correlations were

performed for each GLDAS LSM individually and the mean of those results is presented

here. While these results are relative to modelled soil moisture, comparison to real-world

observations can differ and thus the results need to be interpreted with care.

The data sources used to compute the drought indices remain fixed as the GPCC for

precipitation and NCEP Reanalysis II for all remaining variables. Those were selected as

they have the highest correlation to LSMs. The correlations were produced using the

entire sample of PDSI, SPI and soil moisture data (i.e. both wet and dry conditions)

as well as only for the lower tails only PDSI and SPI smaller or equal to –2.0 and –0.8

respectively, equating to drought conditions.

3.5.1.1 The sensitivity of drought index skill for upper soil profile (0-10cm)

Figure 3.2 shows the mean correlations between the GLDAS soil moisture products and

the SPI-3, 6 and 12 or PDSI, globally for the 0–10cm soil layer. Note, that we have

omitted the SPI9 panels for correlation coefficient for space considerations. Maps a)

– d) display correlation coefficients (r) and significance stippling (p < 0.05) for the

entire sample of PDSI and SPI with soil moisture data while maps e) – h) only consider

drought conditions. Absolute r between the soil moisture estimate and drought index
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reach their maximum around r ≈ 0.7 in the subtropical latitudes for the entire sample

(Figure 3.2a-d).

For drought conditions, r is globally weaker in the magnitude of 0.2 – 0.3 compared

to the previous scenario with no correlation at all in many places (Figure 3.2e-h). In

both cases, the SPI on the shortest time scale of three months (SPI3) has the strongest

correlations which are statistically significant at the 95% level in eastern Australia and

eastern US. Overall, the SPEI shows similar correlations to the SPI (Figure 7.1).
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Figure 3.2: Mean and zonal correlations of varying LSMs for PDSI (a/e), SPI3 (b/f), SPI6
(c/g) and SPI12 (d/h) for whole data distribution (a-d) and drought periods (e-h) of the 0-
10cm layer. The zonal average is shown to the right of each plot. Stippling shows statistically
significant correlations at the 95% level

Figure 3.3 shows the difference in the variance explained in the GLDAS soil moisture

products by the PDSI and the SPI-n for the 0–10 cm layer of soil, again for all data

(a-d) and during drought periods only (e-h). Positive (negative) values indicate that the

SPI-n (PDSI) explains a larger amount of variance in the soil moisture product compared
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to the PDSI (SPI-n). The stippling shows where the r2 values show consistency in the

sign of the difference regardless of soil moisture product. That is, the SPI (PDSI) index

always shows larger r2 values than the PDSI (SPI) in black (red).

 

Figure 3.3: Explained variance differences of PDSI minus SPI3 (a/e), SPI6 (b/f), SPI9 (c/g)
and SPI12 (d/h) calculated with fixed input data from GPCC and NCEP with GLDAS CLMv1,
NOAHv1 and NOAHv2 0-10cm for whole distribution (a-d) and drought periods (e-h) defined
as PDSI < -2.0 and SPI < -0.8 (1979-2013). Black stippling show where all correlations
of the SPI-n with GLDAS are higher than those of the PDSI. Red stippling shows where all
correlations of the PDSI and GLDAS LSMs are higher than those of the SPI-n with GLDAS
LSMs.

Focussing on the whole data distribution (Figure 3.3a–d), the skill of the SPI versus

PDSI changes with the time scale on which the SPI is computed. When the SPI is

computed on a three-month time scale, it tends to show better skill than the PDSI

in its representation of shallow, modelled soil moisture (0–10 cm) across most of the

globe (60%) with the exception of central Asia. In particular, soil moisture variability in

drought prone regions in the subtropics such as the southwestern US, Australia and the
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Sahel zone are best represented by the SPI3. However, these differences are not robust

against the choice of soil moisture model for most locations.

As the time step over which the SPI is computed increases, the skill of the SPI

decreases compared to the PDSI, particularly on longer time scales of 9 and 12 months,

reducing its global coverage to 21% and 11% respectively. The increase in red stippling in

Figures 3.3c and 3.3d indicates that the increase in skill in the PDSI becomes increasingly

robust to the choice of reanalysis. In some regions, the PDSI explains an average of

over 25% more variance in soil moisture variations compared to the SPI12 (Figure 3.3d).

These results show that the inclusion of ET in the drought index is able to better capture

long-term soil moisture memory than one based on long-term precipitation variations

alone.

The differences in skill decay substantially when drought periods only are examined.

Figure 3.3e–h show that the skill of the PDSI and SPI are indistinguishable during

drought on longer time scales (e.g. 9 and 12 months, Figure 3.3g and h). Globally,

the SPI3 typically shows larger r2 values than the PDSI that are robust to the choice

of LSM as indicated by the black stippling in Figure 3.3e. The differences between the

SPI-n and PDSI become smaller when the SPI is computed on the 6, 9 and 12-month

time scale (Figure 3.3f, g and h).

3.5.1.2 The sensitivity of drought index skill for the deeper soil profile (10-

40cm)

For the deeper 10-40cm soil layer the absolute correlations between soil moisture and

drought indices are slightly weaker than for the shallow soil layer, but are still moderate

(r ≈ 0.5) and statistically significant (p < 0.05) in the subtropics. During drought

conditions, they are mainly not significantly correlated (Figure 3.4e-h). The SPEI shows

very similar correlations to the SPI (Figure 7.2).

Compared to the 0–10 cm layer, there are more distinct regional differences between

the r2 values for the 10–40 cm soil layer (Figure 3.5). The PDSI becomes increasingly

more skilful with 68% of global land areas showing stronger correlations compared to

all SPI indices. When the SPI time scale is increased from 3-months to 12-months the

pattern of differences is reversed across much of the globe. That is, where the PDSI

was most skilful (Figure 3.5a), now the SPI12 shows the greater skill (Figure 3.5d) and
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Figure 3.4: Mean and zonal correlations of varying LSMs for PDSI (a/e), SPI3 (b/f), SPI6
(c/g) and SPI12 (d/h) for whole data distribution (a-d) and drought periods (e-h) of the 10-
40cm layer. The zonal average is shown to the right of each plot. Stippling shows statistically
significant correlations at the 95% level.

vice versa.

For drought periods, the land area, where the PDSI shows superior skill decreases

to ≈46% but it shows a markedly stronger skill compared to the SPI3 and SPI6 with

the exceptions of eastern USA, western Europe and parts of South America and far east

Asia. For longer droughts (SPI9 and SPI12), the differences between the PDSI and SPI

become small and stippling decreases.

We have shown that the sensitivity of skill for both PDSI and SPI heavily depends

on time scale and region for both soil layer depths. In terms of the shallow 0-10cm

soil layer, the SPI3 has consistently more skill than the PDSI for combined wet and dry

periods. However, neither of each drought indices has substantially more skill than the

other when considering drought periods only. Robustness in comparison to the LSMs
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Figure 3.5: Explained variance differences of PDSI minus SPI3 (a/e), SPI6 (b/f), SPI9 (c/g)
and SPI12 (d/h) calculated with fixed input data from GPCC and NCEP with GLDAS CLMv1,
NOAHv1 and NOAHv2 10-40cm for whole distribution (a-d) and drought periods (e-h) defined
as PDSI < -2.0 and SPI < -0.8 (1979-2013). Black stippling show where all correlations of
the SPI-n with GLDAS are higher than those of the PDSI with GLDAS, red stippling where all
correlations of the PDSI with GLDAS are higher than those of the SPI-n with GLDAS LSMs.

is mainly present for drought periods, with regional differences. The skill of the PDSI

increases in comparison to the SPI3 for both drought conditions and the entire wet and

dry distribution for the deeper 10-40cm layer. In contrast, the SPI increases in skill for six

month and longer time scales but with the robustness to the choice of LSM decreasing

for both indices.

The differences in timing of drought, expressed as an overlap of drought periods

for PDSI and SPI on different time scales (3-, 6-, 9-, 12-month, Figure 3.6), are now

examined. Here, drought is defined by the lowest 10th percentile for each of the PDSI

and SPI-n in order to have the same sample size for each index. The ratio of overlap
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explains how many time steps identified as drought by the SPI were also found in the

time series of the PDSI.

The SPI3 shows the least consistency in the detection of drought months compared

to the PDSI (Figure 3.6a). This is consistent with previous findings that the PDSI is

most representative of drought on near-annual timescales (McKee et al., 1993; Burke

and Brown, 2008). Fewer than approximately 60% of the droughts detected by the SPI3

are identified as drought by the PDSI. However, as n increases for the SPI-n there is

a retention of the low frequency signal, which better reflect the slower response of soil

moisture discharge and recharge (Burke and Brown, 2008). Figure 3.6c and d show

the concurrent occurrence of drought values for the SPI9 and SPI12 exceeding 60% for

much of the globe.

Figure 3.6: Overlap of drought periods between PDSI and SPI-n from 1948 to 2013 showing
the number of months for which the PDSI and SPI both indicate drought expressed as a
percentage. GPCC precipitation data used for SPI and remaining variables for the PDSI are
procured from NCEP Reanalysis II.

3.5.2 Sensitivity of the Skill of Drought Indices to Index Input

Datasets

We now test the sensitivity of the skill of the drought indices to the choice of input data

that is used to compute the index. The PDSI, SPEI and SPI are computed using multiple

permutations of input data from Table 2.1. The PDSI has been standardised for ease

of comparison with other indices. For all indices and regions the intra-index root mean
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squared error (RMSE) was computed using all permutations with differing input data.

Figure 3.7 provides a global overview of the standardised range between each indices’

permutations with higher values indicating greater sensitivity to input data.
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Figure 3.7: Standardised range of PDSI (a), SPI12 (b) and SPEI12 (c) permutations. First,
the range of all permutations at each time step was calculated and afterwards averaged over
time.

3.5.2.1 Regional Differences in the Sensitivities of the SPI, SPEI and PDSI

to Input Datasets

Based on the findings from the overlap of drought periods, Figure 3.8 shows the sensitiv-

ity of SPI12, SPEI12 and PDSI to precipitation input data using examples from drought

prone regions around the world, which highlight regional variability. These regions have

been guided by those defined by Giorgi and Francisco (2000). All results are smoothed

with a 12-month running mean so that the differences can be more readily identified.

The regions selected can be classified by dense or sparse coverage of ground based

observations (e.g. Contractor et al., 2019). Those regions with dense data coverage

for those variables used to compute the SPI and PDSI show little sensitivity to the

choice of data set, for example, the Mediterranean (MED), Western North America

(WNA) and Southern Australia (SAU). Those regions with sparse coverage of ground

based observations such as East Africa (EAF), the Amazon (AMZ) and East Asia (EAS)

show a stronger dependence on the choice of data set. Some sensitivities are present
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Figure 3.8: PDSI (left), SPEI (middle) and SPI (right) calculated with different precipitation
data inputs as listed in Table 2.1 averaged over six different regions defined by Giorgi and
Francisco (2000) from 1979 to 2013 (WNA = West North America, AMZ = Amazon, MED
= Mediterranean, EAF = East Africa, EAS = East Asia, SAU = South Australia). SAU is
modified to include the southern half of Australia only. Data are smoothed with a 12-month
running-mean for all indices. PDSI and PET are standardised. The root mean squared error
for each region and index is shown in the top left of each time series.The PDSIGPCC and
SPIGPCC shown as a solid line represent the ones used for the analyses in Section 3.5.1.
PDSI, SPEI and SPI are unitless.
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throughout the entire time period whereas other vary only periodically, suggesting that

an increase in data coverage over time might act to dampen sensitivity over time.

The largest deviations between the precipitation datasets used to compute the SPI

are associated with the CMAP and UDel data set. Both the SPEI and PDSI have more

potential sources of uncertainty as they are computed from multiple variables, hence,

they show a larger standardised range globally (Figure 3.7).

Those regions where the PDSI is most sensitive to precipitation data are the same

as those that are most sensitive for the SPI. However, despite having the same number

of input variables as the PDSI, the SPEI has the lowest RMSE of all three indices and

the PDSI the highest, with the SPI between the two. When testing the sensitivity of

the indices to precipitation, one might expect weaker variability in those indices that are

constrained by both evapotranspiration and precipitation. This result suggests that the

differences between the SPEI and PDSI are the result of the construction of the water

balance model and/or the order of operations of the index.

Although precipitation is a significant source of sensitivity for all indices, the choice of

temperature data set also contributes to the sensitivity of SPEI and PDSI (Figure 3.9).

However, the PDSI is less sensitive to varying temperature data sets and the RMSE is

lower than for precipitation for all regions. For the SPEI in MED, WNA and SAU, the

temperature input induces a higher sensitivity in the drought index than precipitation,

resulting in a higher RMSE. The greater sensitivity of the SPEI to temperature and the

fact that the RMSE of the PDSI is typically smaller than for the SPEI indicates that more

weight is given to evapotranspiration in the SPEI drought index compared to the PDSI.

Wind speed, specific humidity and downward solar radiation were combined and used

from reanalysis data only (NCEP and ERA, not shown) and show only little difference

between the two data sets.

3.5.2.2 The sensitivity of drought index skill for shallow soil profile (0-10cm)

The skill that each drought index has in capturing variability in soil moisture reanalyses

is now tested by correlating the drought indices with a fixed soil moisture product at two

levels, using the NOAHv2 from the GLDAS described in Section 3.3.

Figure 3.10 shows the mean correlations between the GLDAS NOAHv2 soil moisture

product and the SPI-n or PDSI permutations, globally for the 0–10cm soil layer split
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Figure 3.9: PDSI (left), SPEI (middle) and PET (right) calculated with different temperature
data inputs as listed in Table 2.1 averaged over six different regions defined by Giorgi and
Francisco (2000) from 1979 to 2013 (WNA = West North America, AMZ = Amazon, MED
= Mediterranean, EAF = East Africa, EAS = East Asia, SAU = South Australia). SAU is
modified to include the southern half of Australia only. Data are smoothed with a 12-month
running-mean for all indices. PDSI and PET are standardised. The root mean squared error
for each region and index is shown in the top left of each time series. The PDSINCEP and
SPEINCEP shown as a solid line represent the ones used for the analyses in Section 3.5.1.
PDSI and SPEI are unitless.

into the entire sample of PDSI and SPI with soil moisture data in maps a) – d) and

drought periods only in e) – h). Absolute r values between the soil moisture estimate and

drought index reach their maximum around r ≈ 0.7 in the subtropical latitudes for the

entire sample (Figure 3.10a-d). During drought conditions, r values are overall weaker

by 0.2 – 0.3 with no significant correlation (Figure 3.10e-h) except for parts of the US
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and eastern Australia. The analyses for the SPEI shows again very similar correlations

to the SPI (Figure 7.3).
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Figure 3.10: Mean and zonal correlations of varying input data for PDSI (a/e), SPI3 (b/f),
SPI6 (c/g) and SPI12 (d/h) for whole data distribution (a-d) and drought periods (e-h) of
the 0-10cm layer. The zonal average is shown to the right of each plot. Stippling shows
statistically significant correlations at the 95% level.

Figure 3.11 displays the difference in the variance explained in the GLDAS NOAHv2

soil moisture product by the permutations of PDSI and the SPI-n for the 0–10cm layer

of soil. The SPI3 shows the strongest skill for the largest proportion of global land area

(70%) and is robust to the choice of input data in various regions across the globe (black

stippling). As in Section 3.5.1, the skill decreases as n for SPI-n increases when the whole

data distribution is considered (Figure 3.11a-d). This results in gains of robustness for

the PDSI in regards to all input data permutations (red stippling).

As before in Section 3.5.1, the correlations of both SPI-n and PDSI with soil moisture

weaken globally when drought periods only are considered. The correlations during
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Figure 3.11: Explained variance differences of PDSI minus SPI3 (a/e), SPI6 (b/f), SPI9
(c/g) and SPI12 (d/h) with varying input data permutations with NOAHv2 0-10cm for whole
distribution (a-d) and drought periods (e-h) defined as PDSI < -2.0 and SPI < -0.8 (1979-
2013). Black stippling show where all correlations of the SPI-n with NOAHv2 are higher than
those of the PDSI with NOAHv2, red stippling where all correlations of the PDSI with NOAHv2
are higher than those of the SPI-n with NOAHv2.

drought periods remain highest for the SPI3 (67%) compared to longer SPIs and the

PDSI (Figure 3.11e-h). Red stippling indicating that the PDSI has consistently a stronger

skill independent of input data compared to the SPIs is rare and mainly limited to East

Asia and Sahel Africa. This implies that the sensitivities of the SPI and PDSI to input

data are larger when compared to the differences in skill between the indices.

3.5.2.3 The sensitivity of drought index skill for deeper soil profile (10-40cm)

For the deeper 10-40cm soil layer drought index with the best skill is not as easily deter-

minable. The absolute correlations between soil moisture and drought indices increase

for the longer SPI time scales compared to the shallow soil layer (0-10cm) with the
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strongest correlations (r ≈ 0.7) in the subtropics for all indices(Figure 3.12a-d). As

before, correlations weaken to mainly insignificant values for drought conditions (Figure

3.12e-h). Again, very similar correlations to are observed for the SPEI compared to the

SPI (Figure 7.4).
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Figure 3.12: Mean and zonal correlation coefficients (r) of varying input data for PDSI (a/e),
SPI3 (b/e), SPI6 (c/f) and SPI12 (d/g) with GLDAS NOAHv2 for whole data distribution
(a-d) and drought periods (e-g) of the 10-40cm layer. The zonal average is shown to the right
of each plot. Stippling shows statistically significant correlations at the 95% level.

The differences in explained variance between the PDSI and SPI-n change when look-

ing at the 10-40cm soil layer (Figure 3.13a-d). They become partially smaller and/or

change sign over North Africa, Eastern Asia and Australia for SPI9 and SPI 12 versus

PDSI. An increase is observed over similar parts for SPI3 versus PDSI. Increased differ-

ences show that both are more sensitive to the input data for the indices compared to

the choice of soil moisture product. Whether the SPI or PDSI is more skilful in captur-

ing soil moisture fluctuations is heavily regionally dependent and can differ significantly
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by ≈20-25% explained variance between both indices, especially when comparing PDSI

with SPI3 and SPI12.

 

Figure 3.13: Explained variance differences of PDSI minus SPI3 (a/e), SPI6 (b/f), SPI9
(c/g) and SPI12 (d/h) with varying input data permutations with NOAHv2 10-40cm for
whole distribution (a-d) and drought periods (e-h) defined as PDSI < -2.0 and SPI < -0.8
(1979-2013). Black stippling show where all correlations of the SPI-n with NOAHv2 are higher
than those of the PDSI with NOAHv2, red stippling where all correlations of the PDSI with
NOAHv2 are higher than those of the SPI-n with NOAHv2.

This continues for differences between PDSI and SPI during drought conditions (Fig-

ure 3.13e-h). The spatial pattern as well as the amplitude in differences of explained

variance differ marginally from the 10-40cm drought condition results for varying LSMs.

However, the noticeable lack of stippling shows the absence of robust skill of each index

and consequently a higher sensitivity to their input data.
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3.5.3 Sensitivity to Input Data versus Choice of Drought Index

The skill of each index in representing soil moisture fluctuations is now assessed using

a metric that is defined by the absolute rmax of any permutation for each of SPI and

PDSI, presented in Sections 3.5.1 and 3.5.2 and, additionally, SPEI. Time scales of 3-,

6- and 12-month were selected for both SPI and SPEI since the 9-month time scale

showed mostly the weakest skill and is generally an uncommon time scale to use.

The metric was computed for the 0–10cm (Figure 3.14) and 10–40cm soil layers

(Figure 3.15) using the whole sample (a and c) and drought conditions (b and d).

Results are combined in each of the figures showing the sensitivity to LSMs in panels

a) and b) and the sensitivity to input data in c) and d) respectively. The stippling in

each plot shows where the index associated with rmax is the same as the index that

produces the highest mean r based on all permutations of input data and LSMs. This

is regardless of the variance for that index as big deviations between permutations can

still have a higher mean r than another index with smaller variance. Nevertheless, we

will call this instance a lower uncertainty for easier differentiation. For those instances

where no stippling is present, the mean r from all permutations using either different

input data or LSMs is lower than for other indices. Here, despite having the highest

overall correlation for one permutation the variance within all permutations is so big

that the rmean is relatively low compared to another index. All percentages describe the

land mass for which the index has the highest correlation compared to other indices.

Figure 3.14 focusses on the shallower 0-10cm soil layer. Here, the PDSI ranks first

for the whole data distribution recording the highest skill for 28% of the land mass in

regards to sensitivity to LSMs (Figure 3.14a) followed by SPI3 and SPEI3 with each

23%. However, this decreases to 16% when testing the sensitivity to input data (Figure

3.14c) showing a higher skill for SPI3 (29%) and SPEI3 (23%). Seventy-one percent

of the area for LSM sensitivity (Figure 3.14a) is overlaid with stippling implying smaller

uncertainties due to the choice of index compared to the choice of LSM.

Due to poorer data quality and/or coverage in some regions (e.g. North Africa,

equatorial South America and northern Asia) the uncertainty associated with varying

the input data leads to robust results for sixty-six percent of the land area as shown by

the lack of stippling (Figure 3.14c). Regardless of the sensitivity to LSMs or input data,

the SPI3 and SPEI3 generally have the highest skill from the tropics to the mid-latitudes
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with the exception of NW North America, South Africa and parts of Asia where the

PDSI is best correlated. Throughout, the longer 6- and 12-month time scales of SPI and

SPEI covers the least area (3-10%) with some stippling, mainly limited to high northern

latitudes where correlations are weak in general.

Limiting the sample to drought conditions defined by values below or equal to -2.0

and -0.8 for PDSI and SPI/SPEI respectively, changes the pattern of the best correlated

index to an inhomogeneous mixture of all indices (Figure 3.14c and d). There are very

few uniform areas where a single index or time scale clearly has the strongest skill.

Exceptions are South East Australia with the SPI3 and East Asia with the PDSI having

the highest skill for both rmean and rmax. Fluctuations in soil moisture during drought

conditions are best represented by different SPI and SPEI time scales rather than by the

PDSI, which only covers around 17% of the land area for both instances.

The SPI is the only index that covers a greater area with the highest skill for drought

identification than for the whole data distribution compared to PDSI and SPEI. Here,

the simplicity of the SPI overcomes the ET estimation in the modelled upper layer

soil moisture for identifying drought by adjusting its temporal resolution. For drought

conditions, uncertainties from varying input data are larger for 48% of the land area

(Figure 3.14d) compared to the choice of index, while the uncertainty decreases to 25%

 

Figure 3.14: Best correlated indicator for whole distribution with varying LSM (a) and varying
input data (c) and drought periods with varying LSM (b) and varying input data (d) of the
0-10cm layer. Stippling indicates where the underlying index is robust against the others,
meaning that its max correlation coefficient as well as its mean correlation coefficient is higher
than those of the other indices.
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of the land area for LSM sensitivity (Figure 3.14b).

Figure 3.15 shows the most highly correlated index for the deeper 10-40cm soil

layer. The results for the whole data distribution (Figure 3.15a and c) are similar to

the upper soil layers, previously described. Both SPI and SPEI show more land area

where these indices have the strongest correlations (SPI 33%, SPEI 41% for LSMs; SPI

35%, SPEI 44% for input data), compared to the PDSI (26% for LSMs; 21% for input

data). Those areas where the PDSI and SPEI showed the strongest skill in the 0-10

cm layer remain mostly unchanged for the 10-40 cm layer. This indicates that ET is an

important contributing factor for soil moisture variability in both layers in these regions.

Stippling remains unchanged for varying LSMs (Figure 3.15a) and input data (Figure

3.15c) compared to the shallower layer (Figure 3.14a).

 

Figure 3.15: Best correlated indicator for whole distribution with varying LSM (a) and varying
input data (c) and drought periods with varying LSM (b) and varying input data (d) of the
10-40cm layer. Stippling indicates where the strength of the correlation of the index is robust
to varying the input data and LSM.

The PDSI is noticeably more skilful in the 10-40 cm layer when compared to the

0–10 cm layer for drought conditions, increasing to 21% of land area coverage for LSMs

(Figure 3.15b) and input data (Figure 3.15d). However, the SPI12 is similarly the most

skilful index, with 23% of global land area showing the strongest skill in this index with

varying LSMs (Figure 3.15b). For the variability in input data (Figure 3.15d), the SPEI12

is ranked first covering 23% of the land mass.

As for the shallow soil layer, the SPI is the only index that shows an increase in grid

points where it is the most skilful compared to other indices during drought conditions.
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However, it is on par with the SPEI (both 40%) showing that both ET and precipitation

are important for drought development in the deeper soil layer. With stronger skill par-

ticularly for the 12-month time scale, the SPI is likely integrating land surface feedbacks

over time. Stippling for the robustness of the best correlated index remains effectively

unchanged with 77% (Figure 3.15b) and 52% (Figure 3.15d) of global land coverage for

the two LSMs. Assuming that the NOAHv2 LSM represents soil moisture reasonably,

our results show that greater uncertainties stem from the input data rather than from

the LSMs to which the indices are compared.

Using a 6- or especially 9-month time scale neither covers seasonal nor annual

changes, regardless of drought or non-drought conditions and cover consequently the

least area. The inclusion of ET seems to be more important for assessing indices using

the entire data distribution, and precipitation becomes increasingly important for when

assessing periods of drought.

3.6 Discussion

The ultimate goal of this study is (i) to assess the sensitivity of meteorological drought

indices to input data and (ii) to examine how well each index represents soil moisture

variability in respect to the LSMs capabilities, especially in drought periods, given this

uncertainty.

As described in Section 3 the PDSI and SPEI uses a number of meteorological

variables to calculate the rate of evapotranspiration and water balance while the SPI

uses only precipitation. We showed that the PDSI is most sensitive to variations in

temperature and precipitation, which is consistent with Guttman (1991) in Mishra and

Singh (2010) who showed seasonal dependence on sensitivity of the PDSI to temperature

and precipitation. Differences in the sensitivity between PDSI and SPEI are explained

by the construction of the index and its order of operations.

Uncertainties are present in all observational, satellite and reanalysis data sets. The

sensitivity of the drought indices to these observational uncertainties is sometimes differ-

ent between non-drought and drought conditions. This sensitivity yields a larger range of

possible correlations between soil moisture estimates and drought indices in regions with

poorer observational data coverage, such as Africa and Asia. Although the uncertainties
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due to input data are smaller in data rich areas like Europe, North America and Australia,

uncertainties are still non-zero and must be considered when employing drought indices.

Past studies have highlighted strong similarities in drought index variations for indices

that both include and exclude evapotranspiration (Vicente-Serrano et al., 2012; Raible

et al., 2017). However, we have shown that an additional consideration is whether

these differences are significant given the uncertainties in data sources used to generate

those indices. The fact that the ET calculations have significantly more variables that

are associated with their calculation as compared to temperature, suggests that the

uncertainty associated with all variables is likely to be higher than for the SPI, which

uses precipitation only. However, this could not be tested here due to a lack of data sets

for radiation, wind speed etc.

The PDSI and SPEI include ET, but vary in the complexity of their calculations. Some

inferences can be made from the correlations of PDSI and SPI using fixed input data

with the GLDAS LSMs. Both indices showed weaker correlations to soil moisture during

drought periods, and both showed the highest skill in the subtropics. Correlations for

the SPEI yield a very similar picture. This climate zone is usually characterised by a high

variability in seasonal rainfall to which all drought indices seem to be very sensitive. High

rates of ET due to the high amount of incoming solar radiation and warm temperature

create a stronger connection between the upper soil layers and the overlying atmosphere

(Entekhabi et al., 1996). Lack of rainfall leads to a drying of the soil and is eventually

accelerated by the evaporative demand of the air mass above and the level of dryness

of the soil layer below, making this environment seemingly more advantagous for the

PDSI and SPEI. When precipitation occurs, the top centimetres are saturated first and

composed with the more rapid drying just mentioned these hydrological fluxes happen

on a relatively short time scale of weeks to a few months. Our results show that this

high frequency in comparison to deeper soil layers is best represented by the SPI3 and

SPEI3. The SPEI generally shows better skill in regions with a more variable ET, where

changes between water- and energy-limited conditions occur, such as Europe, SE Asia

and parts of North and South America. The SPI in contrast has a higher skill in dry

regions where water-limited conditions dominate, such as Australia, SW United States,

South Africa and across the Middle Eastern regions to the Indian sub-continent. The

water-limited conditions during drought are therefore often better represented by the
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SPI in all regions across the globe as shown in the results. However, all indices have

little or no inclusion of land surface features such as soil permeability and vegetation,

which are important for agricultural and hydrological drought development. The PDSI

considers soil properties in a simplistic way by its hydrological accounting system based

on a two-layer bucket-type model and relative to field water holding capacity (Palmer,

1965; Webb and Rosenzweig, 1993).

Soil moisture variability in the underlying, deeper 10-40cm layer is dampened as it

is less coupled to the atmosphere (Entekhabi et al., 1996). Here, the PDSI would be

expected to improve in skill because it applies an approximation of soil moisture balance

and soil properties. However, the SPEI and, unexpectedly the SPI on 3-, 6- and 12-month

time scales often showed similar or higher skill compared to the PDSI. The adaptation

of the SPEI and SPI to diverse environments using different time scales makes them

flexible indices. During drought conditions the SPI, predominantly on longer time scales,

has the highest skill of any drought index. However, the SPI, as SPEI and PDSI, often

lacks robustness to the data uncertainty. Yet, these results suggest that the complexity

and/or lack of the multi-scalar characteristic of the PDSI has little advantage over the

simplicity of the SPI using precipitation distribution as the only input. Regional studies

on SPI correlation with GLDAS (Spennemann et al., 2015; Wang et al., 2015) and river

discharge observations (Du et al., 2012) on a much smaller spatial scale support these

findings. The inclusion of ET in the SPEI does not show a marked improvement over

the SPI for drought conditions in the shallow soil moisture layer. However, the inclusion

of ET seems to become increasingly important for deeper layer soil moisture. These

considerations must be balanced with the additional uncertainties introduced by the

input data associated with the inclusion of ET.

The uncertainties associated with choice of input data in drought indices are sig-

nificant. However, those uncertainties associated with LSMs must also be considered.

Non-linear and site-specific connections of soil-specific water retention characteristics

that control soil moisture deficiency vary considerably between environments (Wang

et al., 2015). Higher water retention “affects the number, depth and timing of periods

of soil moisture shortage” (Halwatura et al., 2017). The rate of soil moisture variability is

also tightly bound to the soil matrix and thus reacts differently to ET (Seneviratne et al.,

2010). Replicating this in a LSM such as GLDAS can only be an estimate and has to
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be considered when interpreting the results. Additionally, to those LSM specific caveats,

the assimilated input data driving those models exhibit their own biases as shown in this

study by uncertainties using three GLDAS LSMs. (Wang et al., 2016a) have identified

serious discontinuity issues over China with temperature and precipitation forcing data

when they evaluated GLDAS NOAH v1 and v2 with GRACE terrestrial water storage,

which is a remotely sensed, satellite based product. Bias correction in the second version

of GLDAS reduces the bias but has a larger mean absolute error than before and both

versions face a decline in data quality after 1990. We highlight again that the indica-

tions drawn from our analysis are based on modelled soil moisture only. Even though

LSMs are able to replicate real-world soil moisture variability to some extent, applying

our methods to actual soil moisture observations will most likely lead to slightly different

results.

3.7 Summary

In this study, we examined the sensitivity of the Palmer Drought Severity Index (PDSI),

the Standardised Precipitation Evapotranspiration Index (SPEI) and the Standardised

Precipitation Index (SPI) to input data and soil moisture estimates from the GLDAS

CLMv1 and NOAHv1 and v2. The aims of the study were two-fold; i) to examine the

sensitivity of each index to input data and the associated uncertainty for comparison with

soil moisture estimates, and ii) given i), examine the differences between the indices for

drought identification. We showed that the choice of input data changes the skill of the

drought index such that the differences between the SPI, SPEI and PDSI for drought

identification purposes become small in light of the uncertainties. In many cases, the

precipitation-only index (SPI) showed greater skill relative to the uncertainty associated

with input data when compared to the PDSI and SPEI. This was because of the larger

number of inputs needed to compute the ET component of the PDSI, which increased

the uncertainty associated with the choice of data set to use as inputs. However, both

ET-based indices, PDSI and SPEI can improve their skill for deeper layer soil moisture.

The magnitude of the uncertainty from different input data sets is modulated by

the coverage, quality and length of available observations which is typically poor in less

developed regions. However, regions associated with good data coverage such as Europe
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and North America are not immune to uncertainties. Whether this is regulated by the

number of input variables required to compute the individual index remains unclear due to

a lack of independent data sources for variables other than precipitation and temperature.

The uncertainty in the choice of LSMs also played a significant role in uncertainties in

the skill of the drought index. Global evaluation of drought indices remains challenging

in the absence of high-quality, long-running, spatially well distributed “true” values of

deep soil moisture for examining drought. Hence, we emphasize that our study should

be seen as a framework for future evaluation of drought index and data selection.
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Chapter 4

Flash Drought in CMIP5 Models

4.1 Preface

Drought is a natural hazard occurring near globally. The evolution of drought occurs over

various time scales from sub-seasonal to multi-decadal. The variety of time scales has led

to drought being subdivided into different types. A newly emerging term, ‘Flash drought’

describes the rapid onset of drought on a sub-seasonal to seasonal time scale (S2S). It is

of particular interest for agriculture as it can rapidly deplete soil moisture for crop growth

within several weeks. To better understand the driving processes of flash drought, we

evaluate the importance of evaporative demand by comparing three different drought

indices that estimate this hazard using meteorological and hydrological parameters from

the CMIP5 suite of models. We apply the Standardised Precipitation Index (SPI), which

is a popular drought index due to its simplicity; the Evaporative Demand Drought Index

(EDDI), which provides an estimate of the rate of drying; and the Evaporative Stress

Index (ESI), which connects atmospheric and soil moisture conditions by taking the

ratio of actual and potential evapotranspiration (ET). Results show moderate to strong

relationships (r2 > 0.5) between drought indices and soil moisture, especially in drought-

prone regions. We found that all indices are able to identify flash drought sufficiently

within the model’s climatology. However, there is significant inter-model spread of the

flash droughts identified.
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4.2 Introduction

Drought describes the persistence of extreme negative moisture anomalies over a specific

region and an extended period of time from sub-seasonal to multi-decadal time scales

(Mishra and Singh, 2010). The impacts on such different time scales vary broadly and

affect the hydrological cycle, landscape, society and economy. This makes it challeng-

ing to provide a uniform definition which applies to all circumstances. Consequently,

drought has been categorised into five different types which develop over time as mois-

ture deficiency intensifies. From the shortest (months) to longest (multiple years) time

scales, the types of drought have been described as follows. Meteorological, a strong

shortfall in precipitation in regards to the location’s long term climatology; agricultural,

drying soil moisture affecting plant heath; hydrological, reduced groundwater, river and

reservoir levels; economic, when water supply cannot meet water demand of industry

and population (Wilhite and Glantz, 1985); and, ecological drought, an episodic deficit

in water availability that drives ecosystems beyond thresholds of vulnerability (Craus-

bay et al., 2017). Without relief via widespread precipitation, drought severity increases

further and transitions from one type to the next, although each type is not mutually

exclusive (i.e. an area can experience more than one type of drought at once).

Recently, a sixth drought type has been proposed to the scientific community, named

”flash drought” (FD) and is described as drought with a rapid onset and intensification

(Otkin et al., 2018; Svoboda et al., 2002). This is classified as a sub-seasonal scale

drought and poses a new challenge for sub-seasonal to seasonal (S2S, weeks to few

months) prediction (Pendergrass et al., 2020). Flash drought has been described in

detail in Chapter 2. Essentially, it is characterised by the rapid intensification of drought

conditions in the root-zone soil layer (Otkin et al., 2018).

As with other drought types, difficulties arise in establishing a definition for FD

identification. Soil moisture is the primary proxy for FD. Ford and Labosier (2017)

proposed a definition whereby root-zone soil moisture has to decline from above the

40th to below the 20th percentile within 20 days. Studies from Mo and Lettenmaier

distinguish between two types of FD: precipitation driven (Mo and Lettenmaier, 2016)

and heatwave driven FD (Mo and Lettenmaier, 2015), where the latter is defined by a

rapid increase of ET rather than a sudden reduction in precipitation. Even though Otkin
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et al. (2018) argue that these percentile based thresholds for soil moisture (below 40th

prctl over a 5-day FD) are not dry enough, this separation highlights the two important

drivers for FD. Pendergrass et al. (2020) proposed two definitions for operational use,

research and prediction. First, for the United States only, a two-category decrease

in the United States Drought Monitor (USDM, https://droughtmonitor.unl.edu/

AboutUSDM/WhatIsTheUSDM.aspx) over two weeks and sustained over two more weeks.

The second definition is for global application and requires a 50 percentile increase in

the Evaporative Demand Drought Index (EDDI, Hobbins et al., 2016) within two weeks

and also sustained drought conditions for the following fortnight. Other studies do not

specifically define thresholds but are rather based on standard anomalies or rates of

change within a given period of the individual index used (McEvoy et al., 2016; Nguyen

et al., 2019; Otkin et al., 2018).

Based on the above, drought indices that account for those processes responsible for

drying conditions have been used to examine flash drought in several regional studies

in the US (Otkin et al., 2013; Hunt et al., 2014; Ford et al., 2015; McEvoy et al.,

2016; Otkin et al., 2016; Ford and Labosier, 2017), China (Wang et al., 2016a; Zhang

et al., 2017) and Australia (Nguyen et al., 2019). Those used in this study are briefly

summarised here, with more detail provided in section 2.2.2.

The simplest index and widely used in drought research is the Standardised Precipi-

tation Index (SPI, McKee et al., 1993). The SPI compares precipitation to its climato-

logical average. However, the SPI ignores the ET component which is described as being

responsible for the rapid onset and intensification of a flash drought (Otkin et al., 2018;

Pendergrass et al., 2020). In contrast, the Evaporative Demand Drought Index (EDDI,

Hobbins et al., 2016) calculates the evaporative demand of the atmosphere (E0), an

estimate of the crop reference evapotranspiration or potential evapotranspiration (ET0).

It incorporates influences from temperature, radiation, wind speed and humidity and

thus only accounts for the moisture demand. Another index, which seem to overcome

the caveats of both EDDI and SPI and combines both moisture fluxes is the Evapora-

tive Stress Index (ESI; Anderson et al., 2007). By incorporating ET0 it is connected to

atmospheric drying conditions, yet also takes the surface moisture supply into account

by using actual ET. The ESI is simply defined as the standardised anomaly of the ratio

of actual ET to ET0. McEvoy et al. (2016) showed that EDDI identifies drought over
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the southern continental US and is consistent with identification from the SPI, ESI and

a standardised soil moisture index (SSI).

However, whether the connection between low precipitation (e.g. SPI), actual ET

(ESI) and ET0 (EDDI) is replicated globally is unknown. Nguyen et al. (2019) noted

in their observational study over Australia that certain regions can be strongly affected

by factors other than rainfall and temperature such as soil memory and water capacity

as well as plant types, vapour pressure and wind speed. It is important to know the

regions where this relationship is apparent. The outcome from a global ET and non-

ET based index comparison will show the importance of ET for FD on a sub-seasonal

time scale. No study has yet achieved this globally, nor has any study examined FD

in coupled climate models globally. Especially in terms of FD frequency and seasonal

distribution, with the known caveat that land-atmosphere interactions are not necessarily

well represented in those models (Lorenz et al., 2016; Seneviratne et al., 2013; Ukkola

et al., 2018a,b; Yuan and Quiring, 2017). CMIP5 models can give us an idea of the

relationships between precipitation, ET and soil moisture and how each of the models

handles this. There is an urgent need to evaluate climate models to help constrain future

projections of FD (Pendergrass et al., 2020).

This chapter examines the occurrence of FD in coupled climate models from the

Coupled Modelled Inter-comparison Project phase five (CMIP5, Taylor et al., 2012)

which are described in the next section. To do so, we first define FD based on percentiles

in 4.4 and apply those percentiles to the upper layer soil moisture to produce a global

climatology of FD event frequency, shown in 4.5. Drought index values at the onset of

a FD detected in the soil moisture and their rates of change prior to that will provide

information on how sensitive the chosen drought indices are to soil moisture variability.

Additionally, we apply the same definition on the drought indices themselves. From

this we calculate the detection skills for each index to infer their prediction capabilities.

Looking at the inter-model spread provides insight as to how the individual CMIP5

models differentiate from another in terms of FD frequency, sensitivity and detection

skills. The findings from these analyses are discussed in 4.6 and summarised in 4.7.
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4.3 Data

The model outputs from six CMIP5 (Taylor et al., 2012) models listed in Table 2.4 in

Section 2.1 were analysed as they provide all necessary data for this study on a daily time

scale to calculate the drought indices on a global scale. Several variables are required to

calculate, however, daily soil moisture output was the limiting factor for the selection of

CMIP5 models listed. One major caveat of all CMIP5 models is that soil moisture on a

daily time scale is only available for the 0-10cm layer and thus is not fully representing

the root-zone soil layer. However, the highly dynamic changes in moisture availability

during the development of a FD makes a daily time scale an inevitable necessity. All

data is from the historical run providing a common time period of 139 complete years

(1867-2005).

4.4 Methods

As introduced before, the SPI, EDDI and ESI are used for this study. Potential evapo-

transpiration (PET), which is an equivalent to evaporative demand (E0), for both EDDI

and ESI is based on the crop reference evaporation formulation from Allen et al. (1998).

PET requires input data of minimum and maximum temperature, radiation, wind speed

and humidity. The actual evaporation needed for the ESI was derived from the latent

heat flux directly output from the model. Evaporation expresses the amount of water

lost from a surface in units of water depth (m) and can also be expressed in terms of

energy received per unit area (Wm−2) (Allen et al., 1998). Hence, latent heat flux can

be directly converted into water depth per time unit (here m s−1) using Equation 4.1:

E =
LE

λρw
, (4.1)

where LE is the latent heat flux, λ the latent heat of vaporisation and ρw the density

of water. Both λ and ρw are set as constants using 2.45 MJ kg−1 and 1000 kg m−3.

No data processing was needed for the SPI input as it only uses precipitation. We use

all data in daily resolution to compute the indices.

As daily rainfall, evaporative demand and actual evaporation undergo naturally strong

fluctuations on short time scales, their input data is aggregated (SPI and EDDI) or
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averaged (ESI) over 30 days to achieve a 1-month time scale. Strong daily fluctuations

are also present in the top 10cm soil moisture layer as exemplified by the brown line in

figure 4.1 for SE Australia. This can be limiting for our analysis as this top level can be

too responsive to the atmosphere and less indicative of changes in soil moisture in the

root zone layer at a depth of ≈1m (Entekhabi et al., 1996). Additionally, the bulk of root

matter in a mature corn field is typically below 10cm (Fan et al., 2016). The agricultural

impacts from a 0-10cm flash drought are therefore considerably smaller compared to one

in 40cm or 1m depth. Depending on the soil type and quantity of precipitation as well

as the partitioning into run-off and percolation, the lag between top and root-zone layer

soil moisture can vary significantly and the signal is dampened (Ford and Quiring, 2014).

Deep soil moisture variations are shown for MIRCO5 monthly 1.5m soil moisture as a red

line in figure 4.1. Consequently, soil moisture was also aggregated over the same time

period of 30 days as EDDI and SPI to achieve a more similar variability to the root-zone

layer soil moisture as displayed by the dark red line.

Figure 4.1: Time series example of standardised MIROC5 daily 0-10cm soil moisture (SSI,
brown), daily aggregated 0-10cm soil mositure over 30 days (dark red) as used in our analyses
and monthly root-zone layer soil moisture content up to 1.5m depth (red). The grid cell
selected is located in South East Australia at 35.72oS and 143.4oE. Dashed lines correspond
to the data’s 10th and 40th percentile.

All drought indices are standardised and we further apply the standardisation to

soil moisture values to generate a Standardised Soil moisture Index (SSI). We use a

non-parametric approach by Farahmand and AghaKouchak (2015) to achieve inter-

comparable indices. The resulting values were then translated into drought categories

according to the EDDI guidelines (Lukas et al., 2017), which is based on the USDM

(Svoboda et al., 2002) to quantify their severity and to simplify comparisons with other

studies. The categories and their criteria are listed in Table 2.5 and range from ”ED4”
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- exceptionally dry to ”EW4” - exceptionally wet with ”None” representing normal con-

ditions. FD events in soil moisture are treated as “truth” and are detected using a

percentile definition, defined next.

As a FD is an extreme event, its occurrence should be relatively rare in a time

series analysis. To establish an appropriate definition, we initially use that from Ford

and Labosier (2017), who define FD as ”periods when the pentad-average 0–40 cm

volumetric water content declines from at least the 40th percentile to below the 20th

percentile in 4 pentads [20 days] or less”. Their percentiles are based on the “non-

drought” and “moderate drought” conditions according to the USDM (Svoboda et al.,

2002).

However, some adjustments to this definition were necessary for this study as flash

drought frequency exceeded more than ten FD events per decade in each season for much

of the global domain, which is too frequent compared to observational studies. Although

we attempted to imitate the dynamics of deeper layer soil moisture using CMIP5 10cm

soil moisture content by smoothing the time series with a four week running mean, Figure

4.1 shows that the variability in the SSI is still overestimated compared to the deeper soil

layers. Thus, the high frequency of FD events is likely associated with the responsiveness

of the upper 10cm soil moisture to the atmospheric layer above (Entekhabi et al., 1996).

Consequently, we adjusted the FD definition by lowering the percentile defining the onset

of an FD to the 10th (USDM ”severe drought”) and the time period in which the rapid

decline has to occur to 14 days, which is closer to the proposed definition for operations

in the United States by Pendergrass et al. (2020), requiring a two-category change in

the US Drought Monitor in two weeks.

This resulted in most locations registering a few FD events per decade, which is

closer to what is expected from the regional observational studies (Koster et al., 2019;

Zhang et al., 2018; Ford and Labosier, 2017). The FD terminates once soil moisture

is restored to the 40th percentile or above.These thresholds were derived empirically as

there is no previous study which applied the Ford and Labosier (2017) formulation on

a top 10cm soil moisture level. Additionally, only FD events with a duration longer

than four weeks were examined since shorter events in the upper layer do not necessarily

penetrate deeper into the soil profile on shorter time scales (Ford and Quiring, 2014).

Effectively, the root zone layer soil moisture (≈40-100cm) has to be affected for a FD
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to happen (Otkin et al., 2018).

In order to examine differences of flash drought dynamics within the CMIP5 model

group, we look at the inter-model spread. The inter-model spread is defined as the

ratio of ensemble standard deviation to ensemble mean. A value << 1 implies that the

inter-model differences are much smaller than the mean and vice versa for >> 1. This

measure was applied to the co-variability of drought indices to soil moisture and the FD

event frequency and will provide information to what extent the models agree or disagree

on their relationship between soil moisture, precipitation and ET.

Once the time series of FD events have been created for all drought indices, the

ability of the index to detect flash drought was assessed. This was achieved using a

contingency table commonly used to assess the accuracy of weather forecasts. The

statistical measures of false alarm ratio (FAR) and hit rate (HR) were determined. The

HR represents the success of the index to capture flash drought events. The higher

the HR the more events are correctly detected by the particular index. The FAR in

contrast shows the proportion of times the indices failed to predict flash drought, that

is when the index yields a flash drought but it doesn’t occur in the soil moisture. A high

percentage value shows that the index detects many flash droughts that do not occur

in the soil moisture. A contingency table (Table 4.1) gives the required parameters to

calculate those skills, which is a 2x2 matrix of forecast/event pairs for the dichotomous

non-probabilistic verification situation.

Table 4.1: Contingency table.

Observations (SSI)

Yes No

Forecast
(EDDI,ESI,SPI)

Yes a b a+b Marginal
totals

forecastNo c d c+d

a+c b+d n=a+b+c+d

Marginal totals
observations

Here, EDDI, ESI and SPI are treated as the event forecast while SSI represents

the event observation. ‘Yes’ and ‘No’ dictate whether an FD event was observed. As

atmospheric drying conditions precede the drying signal in the soil profile, a tolerance

time window of eight weeks prior to the FD detected in the soil moisture is applied for
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the drought indices. From the contingency table, HR and FAR are defined as follows:

FAR =
b

a+ b
(4.2)

HR =
a

a+ c
, (4.3)

where a is the number of occurrences when the forecast index correctly detected a FD

within the four/eight weeks prior to a FD in the observations, b when the forecast index

detected a FD but none were observed and c when the forecast index did not detect a

FD which was actually observed.

4.5 Results

4.5.1 Representation of Flash Drought in Drought Indices

The SSI represents the “true” occurrence of FDs in the CMIP5 models and the ESI,

EDDI and SPI are tested as proxies for capturing these events. Correlating the latter

three indices with the SSI using a global Pearson correlation indicates the relationship

between them during all conditions, not just drought. The correlations were computed

as cross-correlations where each drought index was moved along the time axis relative

to the soil moisture from -14 to +14 days in two day increments.

Figure 4.2 shows the maximum explained variance while figure 4.3 displays its cor-

responding lag or lead. The CMIP5 ensembles of all proxies represent the soil moisture

fluctuations very well with explained variances of 0.4 to 0.8 with the ESI having generally

the strongest relationship. This mainly encompasses regions from the subtropics to the

mid/high latitudes where variability in precipitation and ET are largest and environments

are often water-limited. Natural seasonal variations in soil moisture, such as a frozen

state, affect the correlations across the northern higher latitudes (45 − 60oN) whereas

subtropical regions, especially in the Southern Hemisphere have a far more consistent

relationship between soil moisture and precipitation/ET throughout the year.

The inter-model spread of the six CMIP5 models is significant, predominantly in

arid regions for SPI and EDDI and in the tropics and higher latitudes for ESI (Figure

4.2 bottom row). This suggests that the correlations between drought indices and soil

moisture vary largely between the individual models causing the high inter-model spread
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and consequently a weak overall correlation for the ensemble mean.

The high correlations of the ESI are often associated with a lag time of -2 to -10

meaning that its signal is delayed in regards to the SSI and the ESI responses to changes

in the soil moisture. EDDI often has a small lead time of 2-4 days in significant correlated

regions but is also sometimes lagging the soil moisture changes behind, e.g. Southern

Australia in MAM. Precipitation shows a lead time of 2 to 12 days for the SPI with the

longer lead occurring during the colder season. The inter-model spread in the bottom

row of figure 4.3 highlights further discrepancies in the CMIP5 models in additional to

differences in correlations outlined above. The lead time of precipitation is consistent

within the CMIP5 model suite as indicated by an inter-model spread of 0 to 0.4 for the

global domain. In contrast, huge differences exist for the EDDI in subtropical regions in

the Southern Hemisphere and especially for the ESI exceeding an inter-model spread of

two. This means that the difference between the models is twice as large as the mean.

Figure 4.2: CMIP5 ensemble mean of seasonal explained variance of EDDI (top row) , ESI
(middle) and SPI (bottom) with 0-10cm SSI over the entire historical run length of 138 years.
Statistically significant correlations on the 95% level are marked with hatching. The lag/lead
at which this highest correlation was detected is shown in figure 4.3. The bottom row shows
the annual inter-model spread in the CMIP5 models.
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Figure 4.3: Lag at which the maximum explained variances shown figure 4.2 occured for EDDI
(top row), ESI (middle) and SPI (bottow). Stippling marks where the explained variances are
significant at the 95% level. The bottom row shows the annual inter-model spread in the
CMIP5 models.

The large inter-model spread highlights the discrepancies in land-atmosphere pro-

cesses in CMIP5 models as outlined in the introduction. To which degree the inter-model

spread is confined to the partitioning and timing of energy fluxes which drive potential

and actual ET remains unknown since issues with pedo-transfer functions in land surface

models are well known (Pitman, 2003; Van Looy et al., 2017) and contribute to the

inter-model spread.

The climatology of FD events in the CMIP5 ensemble mean was produced using the

SSI (Fig. 4.4m-p). The FD events are fairly evenly distributed across the globe and

can theoretically happen in almost all environments throughout the year, predominantly

during the warm seasons when evaporation is naturally higher and precipitation less

variable than during the cold season. Seasonal hot spots are present in South Africa,

South America and Australia during the austral summer season while SE Asia, Africa’s

Sahel zone and parts in Northern North America are more affected by FD during the

boreal spring. Koster et al. (2019) have identified a similar pattern but with slightly lower
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frequency of FD events in the Northern Hemisphere due to using a different definition

during the April to September 1980-2017 period using MERRA-2 reanalysis data of root-

zone soil moisture. The similarity between our climatology and that from Koster et al.

(2019) provides some confidence that the definition we have set is reasonable. The

differences in soil moisture depth of 10cm in our data versus 100cm in Koster’s prohibits

us from simply applying their definition.

Next, we applied the FD thresholds that were established using the SSI to the times

series of the other indices to create an FD climatology for each index (Fig. 4.4a-l) and

compare them to the SSI.

Generally, the ESI shows a similar event frequency to SSI. Yet, it has some incongru-

ences in the NH around 40−50oN where it detects a high event frequency in comparison

to the rest of the global domain, especially during the winter season. Tropical regions

between 10oN/S are characterised by a low event frequency, presumably because rain-

fall in the tropics is always relatively reliable. Subtropical regions have the highest event

frequency (Fig. 4.4i-l).

The SPI FD frequency is a factor of 2.5 larger than the SSI. The EDDI shows only

relatively few areas with fewer than eight events/decade and exceeds 12 events/decade in

North Africa and high latitudes. This means that a flash drought occurs on average once

every year. Both the SPI and EDDI show similar climatologies of FDs for all seasons and

even detect many FDs in the high latitudes during the winter season which counteracts

the reasoning for a lower SSI FD frequency before. The high FD frequencies of EDDI and

SPI are in contrast to the ESI which barely detects flash droughts in the high latitudes

in any model as the frozen ground does not release moisture for evaporation and the

environment is energy-limited with ET and ET0 in a parallel interaction. Generally, FD

event frequency shows a similar range in the EDDI, ESI and SPI climatology but with

different base values where the climatology for FD events is highest for EDDI, lowest for

ESI and SPI between them.

The FD event frequency can vary considerably between the CMIP5 models, shown

as the inter-model spread in Figure 4.5. Inter-model spread is defined as the ratio of

model ensemble mean to ensemble standard deviation. A value > 1 means that the

inter-model differences are larger than the ensemble mean. For example, a spread of

2 would mean that the difference between the models is twice as large as the mean.
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Regionally, the spread exceeds the number of events of the ensemble mean for ESI and

SSI, highlighting large inter-model differences compared to mean number of events. The

discrepancies in arid regions and high latitudes are most prominent, with a spread of 2-3

events per decade. This is mainly driven by the fact that here, less than 50% of the

models detected a FD at all. Slightly better model agreement is present in the subtropics

and mid-latitudes where hatching is present. The inter-model spread for EDDI is more

homogeneous and slightly lower with around 0.8 compared to hatched regions (>50%

of models show flash drought here) in the ESI and SSI with around 1.2. While the

spread in ESI and SSI is driven by differences between all models of similar magnitudes,

the spread for EDDI is heavily weighted by a significantly higher FD event frequency

(by a factor of four) in the CanESM2. The frequency is more similar, but still higher,

compared to the SPI FD frequency if CanESM2 is excluded. Of all indices the SPI has

the fewest differences between models across the global domain and seasons, implying

that a significant source of the spread is coming from the land surface models or land-

atmosphere coupling. Another possibility is that the inter-model spread is caused by

those atmospheric variables (e.g. humidity, wind etc) that are used to generate PET.

However, the inter-model spread in the EDDI is less than for ESI and flash drought,

suggesting that atmospheric variables make less contribution to the spread than land

surface variables.

The coincidence of the FDs in the climatologies of EDDI, ESI and SPI with those

detected in the soil moisture shows whether the index is appropriate for FD monitoring

and detection. We examined this by picking the flash droughts identified in the soil

moisture by the SSI, our reference, and looked at the representation of these events by

EDDI, ESI and SPI in a two-fold way. First, the index value at the onset of the FD,

which is when the 10th percentile in soil moisture is surpassed and second, the rate of

change (RoC) in the drought index 2-6 weeks prior to the onset. Figure 4.6 shows the

first metric for SPI, ESI, and EDDI as absolute values for each season. A category of

ED2 (”severe drought”) corresponds to the 10th (90th for EDDI) percentile which is

observed for all indices across the globe and all seasons where FD is detected by the SSI.

Here, the SPI shows the highest sensitivity to flash droughts in the soil moisture,

shown as the strongest negative values for both the RoC and index value at the onset.

This is consistent throughout all seasons. While EDDI and ESI also show a consistent
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Figure 4.6: Index values by season according to the USDM at the time of flash drought
onset in the SSI for SPI (left column), EDDI (middle) and ESI (right). A category of <=ED2
correspond to the ESI’s and SPI’s 10th and the EDDI’s 90th percentile respectively. Hatching
indicates where at least 50% of the CMIP5 models listed in Table 2.4 identified a FD.

Figure 4.7: Rates of change (RoC) per week from two weeks prior to the onset of FD in the
SSI for SPI (left column), EDDI (middle) and ESI (right). Hatching indicates where at least
50% of the CMIP5 models listed in Table 2.4 identified a FD.
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Figure 4.8: Rates of change (RoC) per week from as in Figure 4.7 but for four weeks prior
to the onset of FD in the SSI.

Figure 4.9: Rates of change (RoC) per week from as in Figure 4.7 but for six weeks prior to
the onset of FD in the SSI.
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Figure 4.10: Rates of change (RoC) per week from as in Figure 4.7 but for eight weeks prior
to the onset of FD in the SSI.

strong decline (increase for EDDI) of close to one category per week in the two weeks

prior to the FD onset in the soil moisture, their absolute values at the onset itself are

regionally much weaker than those of the SPI. This includes subtropical regions where FD

is an imminent threat to agriculture, for example Australia and Eastern South America.

Overall, this implies that all indices capture FD identified by soil moisture. Yet, in

conjunction with the lag/lead times in the correlation, it seems that FDs are primarily

driven by precipitation and the signal in the evaporation does not occur until later.

The RoC shows how quickly the drying intensifies several weeks before the onset of a

FD. Figure 4.7 displays that change over the two weeks prior to the onset. The change

of each index per week over the two week period is compared to the change over four

(Fig. 4.8), six (Fig. 4.9) and eight weeks (Fig. 4.10). Again, the SPI has consistently

stronger changes prior to the onset of the FD event than ESI and EDDI. These changes

are highest for all indices from two weeks to the onset and decay when longer periods

are considered. This indicates that the movement into a flash drought is rapid in the

models, with the greatest drying in the two weeks prior to drought onset. While the

RoC is consistently negative across all models, showing a drying signal in all indices,

the actual index values for ESI and EDDI are regionally on the wet side, especially for

the GFDL models in subtropical regions of the Southern Hemisphere, which modifies
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the ensemble mean accordingly to weaker values. Here, the land atmosphere coupling

between GFDL models and CSIRO-Mk3-6-0, CanESM2 and MIROC5 differs the most

when it comes to the timing of the ET response signal to the soil moisture.

4.5.2 Detection skills of Drought Indices

Using the FD climatologies from all indices, we estimate the event detection skill for

each of EDDI, ESI and SPI with the contingency table described in section 4.4. Panel A

of Figure 4.11 shows the HR for each index split into seasons with an 8-week tolerance

window prior to the observed FD event applied. The hatching shows where at least 50%
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Figure 4.11: Hit rate (HR, panel A) and false alarm ratio (FAR, panel B) for SPI (left column),
EDDI (middle) and ESI (right). The tolerance window for valid detection is from eight weeks
prior to the onset of a flash drought in the soil moisture. Hatching indicates where at least
50% of the CMIP5 models listed in Table 2.4 identified a FD in the SSI.
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of the CMIP5 models have marked a FD in the SSI. Only these regions are discussed.

The SPI consistently showed the highest HR globally throughout all seasons with

around 60% to 80% of flash droughts detected in the SSI, also detected by the SPI.

The EDDI and ESI have a significantly weaker HR with 40% to 60% and around 20%

respectively. The larger HR for the SPI could be the result of the high responsiveness

of the top soil layer to rainfall. Deeper soil layers might reveal differences in the HR

between the SPI and the two evaporation based indices. However, as previously outlined,

this data is not available at the temporal resolution required for analysis.

The high HR for the SPI is consistent across all models. The EDDI HR is generally

weaker in the CanESM2, despite its gross overestimation of EDDI FD frequency. Theo-

retically, an overestimation of the frequency should increase the chances of an FD in the

EDDI coinciding with one from the SSI, but this is not the case. This suggests that many

high RoC in the EDDI (i.e. sudden, high PET) are not coinciding with similarly rapid

soil moisture depletion. Instead, they must occur during times when soil moisture is not

showing severe drying conditions illustrating issues with the land-atmosphere coupling in

extreme conditions for this particular model. For the ESI, the HR is very low in all GFDL

models contributing to the overall low HR in the ensemble mean given that the GFDL

models represent 50% of the ensemble (3/6 models). CanESM2, CSIRO-Mk3-6-0 and

MIROC5 generally show HRs of greater than 50% for the ESI.

Consequently, the above results are also embodied in the FAR (Fig. 4.11 panel B)

as a high HR usually means a low FAR and vice versa. However, with a significantly

higher detection of FD events in the index than in the soil moisture a high HR will come

at the cost of a high FAR. While FAR for EDDI are very similar to the ones of the SPI

(around 40%), the FAR of the ESI is considerably weaker with around 80% in hatched

areas. The FAR for EDDI is largely driven by the high departures of FD frequency in

CanESM2. The seasonally varying FAR for SPI and EDDI are caused by their relatively

uniform distribution of FDs over all seasons, whereas FDs in the soil moisture mainly

occur during the warm season. During the colder season EDDI and SPI might still detect

the soil moisture FD but their event frequency in general is too high. The over detection

of FD in the cool season is less apparent in the HR and FAR for the ESI. Even though

the FD frequency identified in the ESI is very similar to the SSI and would yield a low

FAR if the HR was good, but they tend to happen slightly after the FD occurred in
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Figure 4.12: As previous Figure 4.11 but the tolerance window has been extend to two weeks
after flash drought onset in the soil moisture.

the soil moisture for which the high responsiveness in top 10cm soil layer is likely to

be responsible. As a result, both detection skills are very weak. However, this varies

between the individual CMIP5 models more than HR and FAR for EDDI and SPI.

The results for the ESI improve when the detection window is extended to two weeks

after the flash drought occurred in the soil moisture (Fig. 4.12). This time, flash

droughts detected in the ESI are a result of a flash drought in the SSI, and thus showing

a lag, are captured as well. ESI HRs improve by approximately 20 to 30% for the CMIP5

ensemble (right column), again showing the highest HRs in CanESM2, CSIRO-Mk3-6-0

and MIROC5. Similarly, there is a concurrent drop in the FAR. EDDI also improves its

HR by about 10 to 20% but there are no differences for the SPI due to its continuous
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leading signal. While the ESI’s HR now closely matches the one of EDDI, both are still

weaker than the SPI’s HR. The markedly improving skill for the ESI, and to some extent

for the EDDI, for the two week extension of the detection window to post SSI FD onset

implies that both indices are less skilful for FD prediction but are rather useful for FD

monitoring. For the top 10cm soil moisture, the SPI is the best index for FD prediction.

4.6 Discussion

The goal of this chapter was to examine the occurrence of flash drought in CMIP5

models and to evaluate how well various drought indices represent FDs in comparison to

the models’ soil moisture.

The characteristics found in EDDI, ESI and SPI provide information about the pro-

cesses related to FD in the upper 10cm soil moisture level. Of those three indices, the

ESI showed the closest flash drought event frequency to the SSI. As the ESI uses the

latent heat flux, it has a direct link to the available moisture since it is a measure for

evaporation from the land surface. When available moisture in the land surface depletes,

incoming energy from shortwave radiation is increasingly partitioned into sensible heat,

which increases the atmospheric temperature and tends to increase ET0. Over time, this

can create a water-limited condition in the absence of significant rainfall (Hobbins et al.,

2016). This is when the ESI starts to decrease as actual evaporation cannot match ET0

anymore. As long as available moisture is sufficient in an energy-limited condition, ESI

cannot decrease because ET is defining the upper limit of ET0 (Anderson et al., 2007).

Therefore, ESI detects FD frequency similarly to the SSI. However, the response in the

ESI is delayed as an increase in ET0 caused by increasing temperature (e.g. advection)

initially results in an increase of ET due to their parallel relation during energy-limited

conditions (Hobbins et al., 2017). The lag in the cross-correlation as well as the weak

rates of change are evident for this delay.

The EDDI should be coupled to available moisture as well due to the immanent

relation between ET0 and ET. The initial response of ET0 to changing synoptic condi-

tions leading to higher temperatures and lower humidity is again amplified by an increase

in sensible heat flux during the development of a drought. This is especially the case

in regions of high net radiation and where seasonal changes between water-limited and
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energy-limited regimes exist (Koster et al., 2009b). On the other hand, high ET0 caused

by an increased forcing parameter such as wind speed, can also occur without increasing

the risk of drought as long as soil moisture supply is sufficient, which can offset the

increased moisture demand (Otkin et al., 2018). EDDI is also less reliable in energy-

limited environments where ET and ET0 are positively correlated (McEvoy et al., 2016).

As a result of different driving mechanisms, EDDI shows the highest frequency for the

occurrence of flash drought.

Precipitation alone, represented by the SPI, sits between EDDI and ESI in terms of

event frequency. A sharp decrease in precipitation may not necessarily lead to a flash

drought, especially not during the cold season when ET is low or when a surplus in

precipitation was received prior to the decline. The SPI can produce large oscillations

on short time scales of just a few days due to the episodic nature of rainfall. Thus each

prominent drop in precipitation will likely result in a flash drought event even though the

environmental conditions are not showing any sign of drought. Since both, precipitation

deficiency and high anomalies of ET can occur independently without causing the soil

moisture to decline significantly (Otkin et al., 2018), especially in the root-zone layer

for which CMIP5 does not provide a daily measure, the absolute number of FD events

is overestimated by SPI and EDDI.

The strong negative values expressed in categories according to the USDM and

strong RoC indicates that severe and ongoing negative precipitation anomalies cause

flash drought events. This ascribes that precipitation has a primary role for priming a

flash drought, as shown by the SPI. Arguably, a precipitation deficiency is a common

feature in all drought types and might not be unique enough to characterise a FD (Otkin

et al., 2018), also indicated by the overestimation of FD in the SPI itself. While this

just represents the overall picture suggesting that precipitation is the primary driver for

FD, the RoC for those indices can vary for individual FD events. This is consistent with

findings from Koster et al. (2019) who ascribed the importance of ET to the develop-

ment of FD but identified its overall contribution as “small relative to the contribution

of precipitation deficits”. It would also support the separation into heatwave- and pre-

cipitation driven FD (Mo and Lettenmaier, 2016, 2015), whereas FDs primarily caused

by a precipitation deficit would occur more frequently.

The relationship of precipitation, ET0 and ET with the top 10cm soil moisture as
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discussed above dictates their utility for flash drought prediction. Precipitation as the

moisture supply is closely correlated with top 10cm soil moisture variability and can

practically not lag the soil moisture signal. Consequently, the prediction skill of the

SPI is highest, which achieved an HR of around 70% in regions where at least half of

the CMIP5 models detected a FD in the soil moisture. EDDI detects only half of the

soil moisture FD (HR ≈50%), showing the primary contribution of precipitation to the

development of FD and the longer response time of increasing ET0 from the sensible

heat flux.

The weak skill of the ESI of around 30%, limits its initial positive impression based on

the very similar FD event frequency and co-variability to the SSI. However, extending the

detection window to two weeks after the FD onset in the SSI showed an increase in the

HR of the ESI. This suggests that the ESI is rather a tool for flash drought monitoring

than early warning which is inconsistent with what is found in the literature of observed

case studies. Nguyen et al. (2019) detected a lead time of about one month for the ESI,

and similar lead times were described in studies from Otkin et al. (2013, 2015). The

HR for EDDI also increases, yet not as much as for the ESI. In contrast, a lead time

of up to two months was shown for the EDDI to detect FD in the summer of 2012 in

the US (McEvoy et al., 2016). The difference to the studies from Nguyen et al. (2019),

Otkin et al. (2013, 2015) and McEvoy et al. (2016) is that the here applied definition is

stricter. Signals in the indices might occur sooner when simply examining times series

but they might just not hit our threshold one or two months in advance.

However, the fact that we are limited to the upper 10cm soil layer shortens the

response time of the soil moisture signal to atmospheric conditions and hinders the

comparison with these studies, which either focus on the root-zone layer of around 1m

depth or deeper or only investigate specific FD cases and do not determine detections

skills explicitly. Consequently, the lead of EDDI and ESI in reference to the deeper soil

layers is offset by the fast response of the upper most soil layer. Moreover, the flash

droughts in the upper 10cm do not necessarily penetrate deep enough into the ground to

affect the root zone layer. Our chosen minimum duration of 30 days is purely arbitrary

and might be too short.

The results described here need to be seen in the light of CMIP5 models and their

underlying limitations as mentioned in the introduction (4.2). The CMIP5 analysis must
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be considered with the imposed land surface model for each of the climate models in

mind. Their formulations will have geographically- and seasonally-varying biases depen-

dent on the land fluxes and states they produce. The overall lowest spread for SPI and

EDDI FD event frequency in comparison to ESI and SSI confirms again the model’s

discrepancies in land-atmosphere interaction to reflect the latent heat flux and available

moisture correctly compared to atmospheric conditions such as precipitation. The con-

sistent higher frequency occurrence of FD identified by the EDDI (Fig. 4.4 e-h) might

also be indicative of an overestimation of ET0 caused by an excessive sensible heat flux.

An overestimation of evaporative droughts similar to our findings has been observed in

LSMs by Ukkola et al. (2016a). Their results show that LSMs systematically miscal-

culate the partitioning of sensible and latent heat flux. An overestimation of sensible

heat would directly lead to an increased ET0 causing EDDI to increase more rapidly. An

underestimated latent heat flux, and thus ET, during water-stressed conditions would in

turn decrease the ESI unproportionally but slow down the drying pace of the soil mois-

ture. The first case would also yield a FD more rapidly in the ESI whereas the second

case does not in the SSI. A comparison of CMIP5 to regional land surface reanalysis

data in the next chapter will show if the overestimation of PET is also present in an

offline LSM.

4.7 Conclusion

This chapter has examined the flash drought event frequency globally in CMIP5 models

using three drought indices. Flash droughts were identified using soil moisture and

the detection of flash droughts was compared using indices that measure precipitation,

evaporative demand and evapotranspiration as included in the SSI, SPI, EDDI and ESI

respectively. This analysis determined the detection capabilities of the indices. We

provided information on the use of these indices as an early warning tools for flash drought

detection, based on the improvement in our metrics using leads and lags between the

indices and the SSI. The analyses were performed using a suite of six CMIP5 models,

which included a range of representations in land-atmosphere feedbacks.

Our findings show that the SPI and EDDI overestimate flash drought event frequency,

while the ESI shows a similar frequency to those flash droughts detected in modelled soil
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moisture directly. The data from the CMIP5 models show less agreement in the results

of event frequency for SSI and ESI which is caused by the models’ flaw of different

land-atmosphere interactions as shown in other studies. Consequently, the results show

that the ESI, while a useful index for the detection and monitoring of flash drought,

cannot provide an early warning capability. On the other hand, SPI and to some extent

EDDI are capable of early detection in the models at lead times of over a week in some

cases. However, they also have relatively high false alarm rates associated with their

overestimation of FD event frequency. The results vary between the individual models,

especially for the ESI, highlighting that these results might be a function of the different

land surface models and coupling.

The results presented here are for the top 10cm layer of soil only. Being confined to

the upper 10cm soil layer due to the daily time scale available from the selected CMIP5

models limits the result’s application to actual FD events which are defined by the impact

on the root-zone layer soil moisture (Otkin et al., 2018). However, as described in Section

4.3, soil moisture for the deeper layers was not available at the daily time step necessary

for the analysis of flash drought. Future CMIP generations with more frequent root-zone

layer soil moisture outputs would help to investigate this further. All thresholds and time

periods specified for FD identification in this study were empirically derived after testing

the definition from Ford and Labosier (2017) as not suitable for the top 10cm layer.

Consequently, modifying them based on a newly published FD perspective paper from

Pendergrass et al. (2020) could lead to more comprehensive results at least for the EDDI,

which was used as a reference in that publication. As our study is a first in identifying

FD in CMIP5 models, our approach will serve as an example for future studies. Further

investigation is urgently needed using observational data in order to determine whether

the detection capabilities of ESI, EDDI and SPI in the CMIP5 models are representative

of reality.
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Chapter 5

Flash Drought Detection in Models

and Observations over Australia

5.1 Preface

Flash droughts, defined as a rapid decline in soil moisture from non-drought to severe

drought conditions in a matter of weeks, are a potential threat for Australia because

of their high agricultural impacts. Vulnerability to flash drought is largely due to the

continent’s large variability in precipitation and high evaporation rates. Understanding

the physical processes causing flash drought is key for developing a suitable tool for

flash drought detection and early warning. The highly dynamic nature and strong land-

atmosphere coupling of flash drought present a unique challenge for the prediction and

monitoring of this particular type of drought. In models, characteristics of the land

surface schemes such as soil water retention capabilities characterised by soil type and

vegetation cover, play an important role in soil moisture variability and the development

of flash drought but are highly localised. Consequently, these characteristics can only be

parametrised in a model. Chapter 4 has shown that CMIP5 models show different levels

of skill in flash drought detection using different drought indices based on partitioning

of energy fluxes from the land surface, highlighting fundamental differences in land-

atmosphere interactions between different models. Here, we compare those results to
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the same metrics derived from the Bureau of Meteorology’s land surface observational

reanalysis data, computed from the water balance model AWRA-L. The results show

differences in flash drought frequency and in the skill of the detection of flash drought

using the SPI, EDDI and ESI indices. These differences in skill are associated with

differences in land-atmosphere coupling in CMIP5 and the observations/reanalysis. This

leads to different response times of energy and moisture fluxes, which ultimately lead to

different representations of flash drought dynamics. Due to the limitations of available

soil moisture data in CMIP5 to the daily 0-10cm soil layer only, we use daily 0-10cm

and 0-100cm root-zone level soil moisture of AWRA-L in a second analysis to examine

the differences and similarities between both layer depths. For the root-zone layer soil

moisture, the skill of flash drought detection in ET-based indices increases markedly

compared to the shallow soil layer while precipitation remains a strong early indicator for

flash droughts.

5.2 Introduction

Drought has always been particularly challenging for monitoring and prediction due to

the complexity of its causal mechanisms and land-atmosphere interactions (Mishra and

Singh, 2010; Pulwarty and Sivakumar, 2014). Prediction is particularly challenging for

so-called “flash drought” (Svoboda et al., 2002) because of its sudden onset and rapid

intensification over as few as a couple of weeks. This sub-seasonal time scale is challeng-

ing for research as well as current drought-coping mechanisms implemented in policies

(Pendergrass et al., 2020). In order to improve prediction, a better understanding of

the compound and cascading physical processes associated with flash drought is needed,

especially with the likely increase in drought with a warming future climate (Seneviratne

et al., 2012). Global coupled models offer some insight into drought processes and how

they are represented by particular models. The results from six CMIP5 (Taylor et al.,

2012) models in the previous chapter show that they differ widely in their representa-

tion of flash drought, possibly caused by differences in the interactions and feedbacks of

land-atmosphere processes (Koster et al., 2004; Guo et al., 2006).

In this chapter, we use the results found in the CMIP5 models (Chapter 4) and

compare them to observational and reanalysis data over Australia using common drought
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indices, which are discussed in the previous chapter and presented in more detail in

Section 2.2.2. We use the term reanalysis for some data, as they are still based on

modelled data that are fed with observations as no direct observations are available (see

Section 5.3).

While drought can affect most regions on Earth (Mishra and Singh, 2010), regions

in the subtropical high-pressure belt, such as Australia, are of particular interest for

flash drought due to their high variability in rainfall and high evaporative rates year-

round (Seneviratne et al., 2010). Drought is a reoccurring characteristic in Australia’s

climate and has been well investigated in terms of characteristics, climate drivers and

variability (Verdon-Kidd and Kiem, 2009; Ummenhofer et al., 2011, 2009; Mpelasoka

et al., 2008; van Dijk et al., 2013; Gallant et al., 2013). However, there have been few

studies on Australian flash drought (Nguyen et al., 2019), making them an under-studied

phenomenon in Australia. Nguyen et al.’s case-specific research examined the January

2018 flash drought in South Queensland using the ESI; the standardized anomaly of the

actual evapotranspiration to potential evapotranspiration ratio (see Section 2.2). They

showed that the ESI might be a capable tool for flash drought monitoring as its change

anomalies tend to lead the event by up to one month.

Comparing the CMIP5 models to observation hland reanalysis provides information

on the efficacy of the models and on flash drought dynamics. Section 5.3 provides a

brief description of the land surface model and the procured inputs. Section 5.4 discusses

some details of the drought indices computations and how they differ for this particular

study from the previous chapter. The results are presented in Section 5.5, separated into

flash drought in AWRA-L and the comparison to CMIP5. Additional analyses concerning

the root-zone layer is discussed in section 5.6, followed by concluding remarks in section

5.7.

5.3 Data

The procured CMIP5 models and corresponding outputs used to calculate the indices

are identical to those used in Chapter 4 and listed in Table 2.4. For the comparison with

results from AWRA-L and AWAP data, the domain was simply cropped to the extent of

the Australian continent.
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The Australian Bureau of Meteorology (BOM) has developed the Australian Water

Resource Assessment Landscape (AWRA-L, currently version 6, see Chapter 2.1 for

details) model fed with station- and satellite-based observational data to generate ET

fluxes on a high spatial and temporal resolution (Frost et al., 2018). While this is

practically still model-based, the data is generated using observations from AWAP, a

high-resolution spatial climate dataset using in situ observations from gauges spread

across Australia (Jones et al., 2009, see Chapter 2.1 for details), applied to a land

surface model. The model output was compared with AWRA-L data interpolated to a

common grid of 2.5o × 2.5o over all Australian land points.

AWRA-L v5 has been evaluated by comparing it to data from flux tower sites and

soil moisture estimates from in-situ networks and has been found to strongly agree with

those in-situ measurements for the top 10cm soil layer (Holgate et al., 2016) as well as

for the deeper 0-100cm soil layer (Frost et al., 2015).

In this study, the AWRA-L (version 6) water storage values from the top (0–10 cm)

and shallow (10-100cm) layer have been utilised. Furthermore, crop reference evapo-

transpiration (PET), precipitation and the ESI, as used in Nguyen et al. (2019) were

provided by the BOM. The ESI uses the sum of evaporation and transpiration for ET

and PET from the AWRA-L model output to calculate their ratio.

5.4 Methods

The methods employed to calculate SPI and EDDI are explained in detail in Chapter

2. Essentially, the SPI solely requires precipitation from which it simply compares it to

its multi-year average. The same methodology is applied to soil moisture to calculate

the standardised soil moisture index (SSI). EDDI is calculated from potential ET (PET),

which has been calculated by the BOM using the Penman-Monteith equation as stated

in Allen et al. (1998) and was introduced in Section 2.2.1. While EDDI, SSI and ESI

use output from AWRA-L, the SPI is calculated from AWAP precipitation.

Daily SPI, ESI, EDDI and SSI outputs from the CMIP5 models and AWRA-L/AWAP

have been smoothed with a moving average over 28 days to reduce the noise from strong

daily fluctuations, especially in precipitation and PET. This smoothing also makes the

data directly comparable to the ESI computed by Nguyen et al. (2019), who computed
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daily running means of ET and PET over 4-week windows before standardisation. All

data were then standardised using a non-parametric approach by Farahmand and AghaK-

ouchak (2015) to make all indices inter-comparable (see Section 2.2.2.2). Those were

then translated into categories based on the percentile ranks according to the EDDI

guidelines shown in Table 2.5, Section 2.2, classifying dry (ED, ”EDDI dry”) and wet

(EW, ”EDDI wet”) conditions. We use these categories to define a consistent state of

each index during the onset of a flash drought.

The definition for a flash drought remains the same as in Chapter 4 and is explained

in more detail in Section 4.4 of that chapter. That is a decrease in the soil moisture

(SSI) from above the 40th to below the 10th percentile within 14 days, which is a

modification of a definition from Ford and Labosier (2017) and corresponds to a two-

category change in EDDI categories as proposed in a definition by Pendergrass et al.

(2020) for operational use in the United States. This definition is applied to the daily

0-10cm AWRA-L soil moisture level. Additionally, we look at the flash drought results

in the AWRA-L data using the deeper 0-100cm soil layer. Otkin et al. (2018) describe

this layer as needing to be affected for a flash drought to occur. An AWRA-L based

comparison using two definitions on different soil depths will show how the detection

skill of the drought indices change and will give implications if the top 10cm can be

sufficient to detect flash drought. For the deeper layer, we can also make use of the

original flash drought definition from Ford and Labosier (2017), which is a decrease in

root-zone layer soil moisture from above the 40th to below the 20th percentile within 20

days. The thresholds differ to account for the delayed propagation of precipitation into

deeper soil layers which dampens the signal (Entekhabi et al., 1996) (Figure 5.1).

The result is a flash drought climatology for each index from which we derive the flash

drought event frequency per decade for each season in the same way as was achieved

for the CMIP5 models in Chapter 4. The SSI from the AWRA-L is used as the reference

variable for flash drought. Using those climatologies, we determine the category of each

of EDDI, ESI and SPI at the onset of a flash drought as defined using the SSI as well as

the rates of change for two, four, six and eight weeks prior to the onset. The change in

categories per week identifies the time period in which the specific index decreases the

most.

Flash droughts defined using each of the drought indices were compared using the
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Figure 5.1: Time series of daily 0-10, 0-100 and 10-100cm soil moisture expressed in unitless
values of the standardised soil moisture index (SSI) for a grid cell in south Queensland. The
flash drought observed in this area in January 2018 was subject of Nguyen et al. (2019)’s
study. The dashed line represents the 40th (top), the dotted line the 20th (middle) and the
dash-dotted line the 10th (bottom) percentile index values. Data was smoothed with a 30
days running mean before standardisation.

same dichotomous forecast metrics as in Chapter 4. False alarm rate (FAR) and hit

rate (HR) are computed from the parameters of a contingency table (Table 4.1) using

equations 4.2 and 4.3 respectively. Results from AWRA-L and CMIP5 were compared

in terms of their FD event frequency, representation of soil moisture flash droughts in

EDDI, SPI and ESI and rates of change as well as detection skills of those indices.

The additional analyses of the 0-100cm AWRA-L soil layer is handled independently but

compared to AWRA-L’s 0-10cm soil layer in regard to the mentioned metrics. The flash

drought of January 2018 in southern Queensland as discussed by Nguyen et al. (2019)

will serve as an example.

We compare AWRA-L v6 and CMIP5 on a grid-cell basis. Therefore, all AWRA-L,

AWAP and ESI are bilinearly regridded from their native fine resolution grids of 0.05o ×

0.05o to 2.5o × 2.5o to match the common grid size of CMIP5 before we conduct the

analysis.

5.5 Results

First, the event frequency of flash drought using AWAP observations and AWRA-L re-

analysis over the Australian domain are examined. The results are then compared to

those from CMIP5 models shown in Chapter 4. An AWRA-L and AWAP internal com-

parison of top (0-10cm) versus shallow (10-100cm) soil moisture levels based on a flash

drought case study from January 2018 are then presented.
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5.5.1 Flash drought in AWRA-L

5.5.1.1 Representation of SSI flash drought in EDDI, ESI and SPI

The variance explained (r2) between the AWRA-L EDDI, ESI and SPI with the top 10cm

SSI at the grid point level was computed for each season and is presented in Figure 5.2.

Overlaid stippling shows where r2 shows significant similarities at the 95% level. Across

seasons, the SPI displays the highest r2 values of around 0.7 to 0.9, meaning that

soil moisture in the top 10cm is heavily dependent on precipitation variability. Both

the EDDI and ESI have weaker co-variability with the SSI and vary more between the

seasons than the SPI, which only loses some skill in the north of the continent in the

winter season (JJA), which is the climatologically dry time of the year with no or very

little rainfall. During this time of year, ESI and EDDI also have their weakest skill and

only show significant correlations in a band between around 30oS and 20oS. Moving

into the spring season (SON), the correlations increase towards the south while the

north is still in the dry season. During the summer (DJF), most of the continent shows

Figure 5.2: Seasonal explained variance of EDDI (top row) , ESI (middle) and SPI (bottom)
with 0-10cm SSI for 1976 to 2018. Stippling marks where the explained variances are significant
at the 95% level. The lag/lead at which this highest correlation was detected is shown in figure
5.3.
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statistically significant similarities between all three indices and the SSI. Subsequently,

the skill slightly decreases again during the autumn season (MAM). Generally, the ESI

has a slightly better skill over southern Australia, than the EDDI.

The correlations in Figure 5.2 show the maximum cross-correlation when each drought

index was moved along the time axis relative to the SSI from -14 to +14 days in two

day increments. Figure 5.3 shows the lag at which the maximum correlation in Figure

5.2 occurred. A negative lag means that the signal in the particular index is delayed, a

positive lag that it is leading the SSI signal. Obviously, soil moisture cannot respond to

the precipitation before it occurs, hence, a negative lag for SPI is not possible. However,

as the top soil layer receives the precipitation directly and loses its moisture quickly when

rain eases, there is also little to no lead time and most of the domain has a lag of zero

days. For the EDDI, the response in the SSI is also typically concurrent with exception

of the southern half of the continent during MAM and JJA, where a small delay of 2-4

days is observed. Here, ET is less sensitive to changes in soil moisture and the shallow

top soil layer might lose its water mostly through runoff than through evaporation. The

ESI is in a stark contrast to EDDI and SPI as it shows a lag of 4 to 14 days to the top

Figure 5.3: Lag at which the maximum explained variances shown figure 5.2 occured for EDDI
(top row), ESI (middle) and SPI (bottom). Stippling marks where the explained variances are
significant at the 95% level.
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10cm soil moisture level. This persists throughout all seasons with a slightly smaller lag

of 4-8 days during spring. The ESI’s actual ET from AWRA-L also takes plant condi-

tions into account. This means that ET being modulated not only from atmospheric

conditions, but also from plant roots accessing deeper level moisture and so continuing

transpiration, regardless of the upper level soil moisture.

Figure 5.4 shows the frequency of flash drought events per decade for each season

and index in the upper 10cm soil moisture level when the condition of a decrease from

above the 40th to below the 10th percentile within 14 days is applied to each grid cell of

the indices’ time series. It is noticeable that the ESI in the third column of the figure

identified the fewest flash droughts with many grid cells remaining empty. It is followed

by the EDDI which yields mostly between 0.5 to 2 events per decade for each season with

little variability throughout the year. The EDDI tends to identify more flash droughts

Figure 5.4: Seasonal FD event frequency expressed as events per decade for SPI (first column),
EDDI (second), ESI (third) and SSI (fourth) over the 39 years of the time period from 1976
to 2018.
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in the west and south of Australia with few in the northeast and east. Flash droughts

in the SPI are generally more frequent with up to 3.5 events per decade for some grid

cells but also present a stronger seasonality. In the SPI, flash drought events are more

frequent in DJF and MAM and least in SON, with a north-south gradient. In fact, of all

indices the distribution and pattern of event frequency of the SPI is closest to the SSI

based on the top 10cm of soil, particularly for SON and DJF. This is particularly the

case for SON and DJF. Flash droughts do not occur north of 25oS in the dry season in

the SSI but they do in the SPI and EDDI. However, assessing those in the dry season

would be inappropriate.

The coincidence of flash droughts in soil moisture and the EDDI, ESI and SPI provide

an indication of their skill for flash drought monitoring and detection. We examined this

by selecting the flash droughts identified in the soil moisture using the SSI. We then

compared how the events in the SSI were represented by the EDDI, ESI and SPI in a

two-fold way. First, by comparing the index category (Table 2.5) at the onset of the

flash drought in the SSI, which is when the 10th percentile in soil moisture is surpassed

represented by a drought category of ED2; and second, the rate of change (RoC) in the

drought index 2-6 weeks prior to the onset of the flash drought as defined by the SSI.

Figure 5.5 displays the mean drought category in the SPI, EDDI and ESI on the day

of flash drought onset in the SSI. The indices are masked by the occurrence of flash

droughts in the SSI as only those instances can be examined. The aforementioned lag of

the ESI means that it descends into dry conditions later than in the SSI. In fact, the ESI

is typically still in neutral to wet categories on the day the flash drought was detected in

the SSI (bottom row). These results are independent of the season. The EDDI mostly

reaches ED0 (abnormally dry) to ED1 (moderately dry) with the exception of JJA where

slightly more neutral conditions are observed in the south of the country. Due to its

strong co-variability with the SSI, the SPI shows consistently dryer categories than ESI

and EDDI. These are mainly ED2 (severely dry), which correspond to the lower 10th

percentile of the index and thus qualify as a flash drought. Based on this, the SPI shows

the best representation of flash drought in the upper level soil moisture when looking at

the onset values. This applies across all seasons.

Figure 5.6 displays the RoC per week of each index from 14 days prior until the onset

of the flash drought in the top 10cm soil moisture. A strong, negative RoC indicates
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Figure 5.5: Index categories at the time when a flash drought was detected in the soil moisture
(SSI). The values shown are the average of all instances in each season and for each index,
SPI (top row), EDDI (middle) and ESI (bottom), over 43 years from 1976 to 2018. White
grid cells did not experience soil moisture flash droughts.

rapidly changing conditions towards drying. With the very dry conditions shown by the

SPI at the onset of the flash drought, it is no surprise that it also shows the strongest

RoC per week in comparison to EDDI and ESI. However, all indices show their strongest

decline in the two weeks prior to flash drought onset. The average RoC magnitude

is smaller when longer time periods, such as four, six and eight weeks are considered

(Figures 5.7, 5.8, 5.9), showing that the intensification in drying in all indices is most

prominent in the two weeks prior to flash drought onset. This means that all indices

capture the rapid intensification of dry conditions. Again, there are few differences

between seasons.

Using the flash drought climatologies from each of the EDDI, ESI and SPI, we

estimate the event detection skill using the contingency table (Table 4.1) described in

Section 4.4 of Chapter 4. We calculated the ratio of instances when an index yields a

flash drought in the eight weeks before the flash drought was detected in the SSI. This

gives us the hit ratio (HR). The false alarm rate (FAR) is determined by the ratio of

instances when the index yields a flash drought but none was observed in the SSI in the
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Figure 5.6: Rates of change (RoC) expressed in ”categories per week” for each index in each
season. The are calculated as the difference between the index’s category at the onset of a
flash drought in the soil moisture and the value two weeks prior to that. The result is divided
by the number of weeks to achieve a ”per week” change unit. The values shown are the
average of all instances in each season and for each index, SPI (top row), EDDI (middle) and
ESI (bottom), over 43 years from 1976 to 2018.

eight weeks following flash drought onset in the index. Panel A of Figure 5.10 shows the

HR for each index split into seasons while panel B presents the FAR. Ideally, the index

should have a high HR and a low FAR in order to be a capable flash drought prediction

tool. This is represented by a darker colour for each detection skill metric in Figure 5.10.

The good agreement between SPI and SSI found previously, supports the result in

Figure 5.10 that the SPI has the highest HR and lowest FAR in comparison to the EDDI

and ESI. However, the magnitude of the skill metrics change across the country and there

are also seasonal variations. For example, while the HR in some parts of the southeast

of Australia is around 70% in JJA, MAM and to some extent in DJF, its magnitude

halves in these regions during SON. The austral spring season is generally characterised

by a weaker skill over the whole Australian domain. The EDDI and ESI both have

significantly weaker HRs and much higher FARs compared to the SPI in all seasons, with

around 0-10% and 60-100% respectively. The strong delay of the ESI in regards to the
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Figure 5.7: As figure 5.6 but for four weeks prior to the onset of flash drought in the SSI.

Figure 5.8: As figure 5.6 but for six weeks prior to the onset of flash drought in the SSI.
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Figure 5.9: As figure 5.6 but for eight weeks prior to the onset of flash drought in the SSI.

top 10cm SSI shows that flash droughts in the upper level of soil cannot be detected

in the ESI before they are detected in the SSI. This is due to the modulation of ET

in the ESI from plants accessing deeper soil moisture. Additionally, the flash drought

event frequency as computed from the ESI is extremely low across the entire domain

and events in the ESI are absent in many places hindering any detection. The EDDI is

able to predict a low fraction of 20% of the soil moisture flash drought in the east of

Australia during DJF and MAM. Here, despite the low HR, the FAR is comparatively

low due to the index’s low flash drought event frequency in this area.

Extending the tolerance window for detection to within two weeks after the FD onset

in the SSI shows few changes (Figure 5.11). In some instances, across the Australian

domain the HR of the EDDI improves by approximately 20-30% during DJF and SON.

However, improvements in flash drought detection in the ESI are limited to only a

hand full of grid cells, with the increase in HR reaching a maximum of around a 20%

improvement. The modest improvements are because there is a long lag in the ESI of

more than two weeks on average, meaning that even with a larger tolerance window of

2 weeks, flash droughts are still not detected at time of onset in the SSI. Further, the
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Figure 5.10: Hit rate (HR, panel A) and false alarm ratio (FAR, panel B) for SPI (left
column), EDDI (middle) and ESI (right). Hatching indicates where the SSI identified a flash
drought as seen in figure 5.4. Only here are values for HR and FAR possible. Detection rates
were determined using a time window around the flash drought detected in the soil moisture
of eight weeks prior to the onset in which the indices can yield a hit.

Figure 5.11: As described in figure 5.10 above but the time interval is extend by two weeks
after the flash drought onset in the SSI happened.
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ESI event frequency is small compared to the SSI, restricting the HR because of the

differences in the sample sizes of the events from each index.

Expanding the tolerance window to 2 weeks post-flash drought onset in the SSI did

not markedly improve the HR and FAR for the EDDI, despite its short lag of 0 to 6 days

with the SSI. This suggests that ET is not necessarily the dominant first order effect

leading to drying in the top 10cm layer and suggests that other processes, e.g. runoff

and percolation, play a significant role.

Interestingly, with the increased tolerance to include the 2 weeks post-onset, the HR

of the SPI increases and its FAR decreases. However, there was no temporal lag for the

cross-correlation between the SSI and SPI. This suggests that some FDs in the SSI can

occur in situations when there is strong persistence in a precipitation time series. Here,

while the SSI has dried sufficiently to induce a flash drought, the change in the SPI is

coincidentally larger post-FD onset, rather than prior to the FD onset due to persistence

of low rainfall anomalies. These few occasions could be accompanied with the strong

increasing rates of PET and hence, the occasions when EDDI was a strong contributor

to the FD.

Our results show that the SPI has the highest skill for the prediction and early

detection of flash drought in the top 10cm soil layer. The results show that the EDDI

and ESI underestimate flash drought event frequency when compared to events computed

directly from the SSI. Further, any signal that is apparent in the EDDI and ESI lags the

SSI signal.

5.5.2 Comparison between CMIP5 and AWRA-L/AWAP

5.5.2.1 Relationships between soil moisture and drought indices

In this section, we show a comparison between the AWRA-L/AWAP analysis in 5.5.1

and the CMIP5 analysis in Chapter 4 to evaluate the representation of flash drought

in coupled climate models. All of the following figures show the area average of each

metric for Australia. This is calculated by taking the mean of each metric, e.g. the

mean of the explained variance in all grid cells over the Australian continent. First, the

direct and lag correlations between the top 10cm soil moisture and each of SPI, EDDI

and ESI are examined.
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Figure 5.12 visualises the cross-correlation between the SSI and each index averaged

over the Australian domain. The lags and leads are offsets from -14 to + 14 days. The

graphs show the magnitude of the co-variability on the y-axis and the lead or lag time of

the co-variability with the SSI on the x-axis. There are distinct inter-model differences

between the CMIP5 models and also between the between CMIP5 models and the AWRA-

L/AWAP. The differences within the CMIP5 models have been discussed in the previous

chapter. Here, we focus on the differences between models and observations/reanalysis.

In AWAP (last column in Figure 5.12), the cross-correlation for the SPI spikes at a lag of

0 and falls sharply with non-zero leads/lags. Its shape remains unchanged and reaches

the highest explained variance of all indices with correlations of 0.7 to 0.8 throughout

the year. These correlations show the strong relationship between precipitation and soil

moisture in the upper 10 cm of soil. Both the ESI and EDDI show much lower explained

variances of 0.3 to 0.5 and 0.1 to 0.3 respectively. The lag at which the EDDI correlates

best with the SSI is less obvious than for the SPI, while the ESI shows a maximum over

several lag times with no distinct spike. The ESI reaches its highest correlation at lag

times of 7 (SON) to 14 days (DJF, MAM).

The characteristics in the observations/reanalysis, just described, show stark differ-

Figure 5.12: Cross-correlations for individual CMIP5 models listed in Table 2.4 (columns 1-6),
CMIP5 ensemble mean (column 7) and AWRA-L (columns 8). Explained variances are in the
y-axis and corresponding lag in days on the x-axis. Graphs are showing the spatial mean of
the Australian domain. Positive lag means that the individual index is leading the top 10cm
soil moisture while a negative lag means that the index’s sign is delayed.
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ences to the CMIP5 ensemble mean (second last column in Figure 5.12). Both ET driven

indices, the EDDI and ESI, have higher explained variances than the observations in all

seasons. The EDDI reaches 0.3 (SON) to 0.55 (DJF, MAM) with a mostly unchanged

lag of -2 to 0 days. The ESI reaches maximum correlations of 0.55 to 0.65. However,

in contrast to the observations, the ESI has a lag of around a couple of days at most

in CMIP5, which is comparable to the EDDI in the models. The ESI is also better

correlated to the SSI than the SPI in JJA and SON. The SPI computed from the CMIP5

data shows a weaker correlation to soil moisture when compared to the observations in

all seasons. The distinct peak at 0 days also changes to a more flattened curve and has

been shifted towards positive leads of 4 to 8 days.

To account for the subtropical climate in the north and the temperate climate in the

south of Australia and hence potentially different processes for flash drought, we split the

continent in two halves at 27oS latitude (Alexander and Arblaster, 2009). Figure 5.13

shows the area average of explained variance of the northern and southern domain as

solid and dashed lines respectively. The AWRA-L/AWAP data have a stronger coupling

(by >0.1 larger r2) of the SPI and ET with the SSI in the south during JJA/SON and

SON respectively, compared to the north of Australia. In contrast, the CMIP5 model

average shows stronger couplings of all indices with the SSI during DJF in the north

than in the south. A stronger response is also visible in the south during JJA and SON

Figure 5.13: As figure 5.12 but for southern and northern domains of Australia split at the
27oS latitude. Dashed lines represent area averages of explained variances in the south while
those for the north are displayed as solid lines.
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for the SPI. Only minor changes in r2 (<0.1) are observed in other seasons. However,

larger variations are present for the individual models, even showing changes between

north and south in opposite directions. For example, while CanESM2 and MIROC5

indicate stronger coupling of all indices but especially ET with SSI in the south during

all seasons, all other models only agree with that change in DJF but are showing the

opposite change from MAM to SON. The lag and lead times remain mostly unchanged

for all models and observations/reanalysis.

The above provides some insight to the CMIP5 models. The first is that the response

of ET to the soil moisture compared to AWRA-L of ET is overestimated in CMIP5 while

the direct effect of precipitation on the upper 10cm soil layer is underestimated as

indicated by differing lag/lead times and explained variances in comparison to AWRA-

L. The lag in the CMIP5 models is shorter and the relationship is stronger between

soil moisture and ET while the lead is longer for precipitation but weaker related to

soil moisture compared to AWRA-L/AWAP. This could be caused by drizzle every day

leading to an underestimation of precipitation variability. In this case ET becomes more

”important” because the soil is always a bit damp implying that the modulation in

soil moisture is coming more from ET than from precipitation.These results show the

relative differences between CMIP5 models and AWRA-L in the importance of ET and

precipitation without implying right or wrong.

5.5.2.2 Differences in flash drought event frequency

The above differences between the AWRA-L and CMIP5 models show fundamental dif-

ferences in precipitation and surface fluxes driving soil moisture variability. Consequently,

the differences in the representation of the processes fundamental to flash drought are

manifest as differences in flash drought event frequency between the models and the

AWRA-L reanalysis. The area averaged flash drought event frequency over Australia is

shown in 5.14 for each index and model, with the corresponding 90th confidence inter-

val displayed by the black line. Only grid cells with at least one flash drought in the

climatology were considered, and the confidence interval is computed as the range from

the 5th to 95th percentile of frequencies at the grid box level. Taking the mean of all

grid cells, rather than mandating they must have at least one flash drought, yields much

lower values for ESI and SSI in those instances, where the majority of the grid cells never
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Figure 5.14: Area average of Australia of flash drought event frequency per decade for each
of EDDI, ESI, SPI and SSI split into season and listed for each CMIP5 model (third to bottom
row), CMIP5 ensemble (second row) and AWRA-L/AWAP (first row). Grid cells without any
flash droughts occurring were masked out. Black lines represent the 90th percentile confidence
interval.

experienced a flash drought. Including all grid cells, the median across the continent is

zero (see Figure 7.5 in the appendix).

As shown in Chapter 4 and also identified by Mueller and Seneviratne (2014), CMIP5

models overestimate evaporative drought, meaning that they misrepresent the partition-

ing of energy fluxes from the land surface and ascribe too much weight to the sensible

heat flux driving PET. This is reflected in the CMIP5 ensemble’s flash drought event

frequency for the EDDI, for which there are 2-3 events per decade, which is double to

three times higher than what is found in the AWRA-L reanalysis (Figure 5.14). The

CMIP5 ensemble mean is heavily modulated by the CanESM2, which detects almost six

events per decade in each season. However, half of the models exceed the EDDI flash

drought frequency in AWRA-L by some degree with the exception of the GFDL models

in JJA.

Similarly, the event frequency for the ESI is less than 0.5 events per decade in the
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AWRA-L reanalysis, but is larger in the CMIP5 ensemble – around 0.5 to 1 events

per decade. However, the differences between the models and observations/reanalysis

are considerably smaller for the ESI than the EDDI. Considering all grid cells, the area

averaged ESI event frequency drops to close to zero for AWRA-L reanalysis because

most grid cells in Australia do not experience a flash drought (Figure 7.5). However,

this is not the case for CMIP5 models and flash droughts are identified by the ESI over

a larger geographical extent.

The area average of the event frequency of the SSI in the CMIP5 ensemble is less

than half that of the AWRA-L reanalysis. This suggests that the discharge of moisture

in the top 10cm soil layer happens on shorter time scales in the AWRA-L compared to

the CMIP5 models. Reasons for the higher discharge could be from a higher moisture

flux into deeper soil layers or an increased moisture uptake from vegetation compared to

CMIP5 models.

The flash drought frequency computed from the SPI is similar in magnitude for the

CMIP5 and AWRA-L data, and is around 1.5 to 2 events per decade. However, while

the area average is fairly similar, the 90th confidence interval for CMIP5 models is larger

than in AWRA-L/AWAP, represented by the black lines in Figure 5.14, suggesting much

higher rainfall variability in the observations compared to the models. This larger spatial

variability in rainfall is also apparent in the confidence intervals for the SSI (Figure 5.14),

again highlighting the strong connection between soil moisture and rainfall.

Splitting the Australian continent into a northern and southern domain along the

27oS latitude shows that slightly more flash drought events are identified in the south

but the spatial variability remains similar (see Figs 7.6 and 7.7 in the appendix).

While there is relatively good agreement in precipitation flash drought between

CMIP5 and observations, there are clear differences in flash drought event frequency

in the ESI and especially SSI and EDDI due to the way the models represent land sur-

face coupling.

5.5.2.3 Differences in flash drought onset and rate of change

The lags associated with the times of maximum correlation between the EDDI, ESI and

SPI, and soil moisture determines their magnitude at the onset of a flash drought, where

the flash drought is defined using the SSI. The median value in each index at the time
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of onset of flash drought (i.e. the median as computed from all flash drought events) is

calculated for all grid cells independently, when at least one flash drought was detected

in the SSI. The median was taken due to the small sample size of flash drought events

in many regions for most models and AWRA-L reanalysis and hence to avoid potential

skewness (see Figure 7.8 in appendix). The bars shown in Figure 5.15 represent the area

average category of those values according to Table 2.5. A more neutral to wet category,

e.g. >ED0, implies that the index has not progressed to abnormally dry conditions at

the time of onset of flash drought in the SSI. This could be because the response in the

index is lagging the soil moisture, or that soil moisture is not strongly coupled to the

index. The latter would mean that, for example, ET is not a significant cause of the

rapid depletion of soil moisture associated with a flash drought.

A category of ED2 – ED4 represents values below the 10th percentile for SPI and

ESI and above the 90th percentile for EDDI and qualifies as a flash drought onset in

the index itself. However, this does not mean that the particular index identified a flash

drought for all instances as this metric does not consider the rapidity of change in the

index. Equally, large spatial variability can modify the area average value. Therefore, the

90th percentile confidence interval is shown as black lines for each bar, where a short line

indicates that the category of most grid cells are around the median value. Long lines

show the opposite, for example that the indices in some areas are closely coupled to soil

moisture in some or are lagging behind more than in others, reflecting largely different

categories across the domain.

The CMIP5 models shows some similarities between particular groups of models.

The first group encompasses the GFDL models and the second all other models, namely

MIROC5, CSIRO-Mk3 and CanESM2. The latter group mainly shows categories of ED1

and drier for all indices with SPI often surpassing ED2. In other words, all indices show

a strong drying associated with a lack of precipitation or increased PET. In contrast,

the GFDL group only shows the SPI in moderate to severe dry conditions (ED1 to

ED2). Both the EDDI and especially the ESI are mostly around the neutral position

(None), or slightly leaning towards dryness, represented by a None to ED0 category.

For SON, the ESI and partially the EDDI for all GFDL are even on the wet side of the

distribution.This indicates that in the GFDL models ET is less important in lowering soil

moisture compared to the other models. However, the large range of the 90th percentile
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confidence interval in the ESI and EDDI, spanning form ED2 to EW2 indicates that

there are very large differences across the Australian domain.

The differences in the median onset categories between the different models becomes

more evident when splitting the continent into a northern and a southern domain along

the 27oS latitude line. All GFDL models show vastly different onset categories for

EDDI and ESI across all seasons in the northern domain compared to the southern

domain. While both indices reside on the dry side of the distribution during DJF and

Figure 5.15: Area mean across Australia as a whole of index value in dryness/wetness cat-
egories from table 2.5 for each of EDDI, ESI, SPI and SSI at the onset of a flash drought
in the soil moisture. Split into season and listed for each CMIP5 model (third to last row),
CMIP5 ensemble (second row) and AWRA-L/AWAP (first row). Error bars show the standard
deviations across the Australian domain.

Figure 5.16: As Figure 5.15 but for the northern domain of Australia from 27oS to 9oS.

119



5.5. Results
5. Flash Drought Detection in Models

and Observations over Australia

Figure 5.17: As Figure 5.15 but for the southern domain of Australia from 44oS to 27oS.

JJA for the northern domain, SON is characterised by abnormally wet conditions at

the onset of a flash drought in the soil moisture (Figure 5.16). The opposite applies

to the southern domain (Figure 5.17). ESI onset categories show wet conditions in

DJF and around neutral in all other seasons. Despite the split into north and south,

large confidence intervals still indicate sizeable differences in onset categories across

the domains. Here, the GFDL models seem to overestimate the influence of ET for

some regions and underestimate it for others. All other models and AWRA-L/AWAP

observations show only little differences between domains.

Comparing the AWRA-L and AWAP for all of Australia shows that the observations

and reanalysis have some similarities to both groups of CMIP5 models. The SPI in

AWAP shows an area average category of ED2 in all seasons implying a strong lack in

precipitation at the onset of a flash drought in the soil moisture. This result aligns well

with those found in MIROC5, CanESM2 and CSIRO-Mk3-6-0. In contrast to the SPI

and the suite of these three CMIP5 models, both EDDI and ESI of AWRA-L reanalysis

shown only weak drying signals with area average categories for the EDDI of around

ED0 and neutral conditions (None) for the ESI. As seen in Figure 5.6 in section 5.5.1

almost no grid cells show a significant drying of the ESI and are between ED0 and EW0

during all seasons resulting in an area average of around None and thus making it almost

invisible in Figure 5.15. Here, AWRA-L has similarities to the GFDL model suite, which

also ascribe a subordinate role to ET at the onset of a flash drought in soil moisture.

The relatively small confidence interval in comparison to the GFDL models indicates this
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smaller spatial variability across the Australian domain. The shorter lag for EDDI results

in slightly drier values for this index. However, the EDDI categories still do not represent

flash drought at the time of onset. Only the SPI resembles a category of ED2 that

represents flash drought onset. The SPI also has the least spatial variability, implying

that precipitation is the main driver for flash drought in most regions of Australia. The

split into north and south changes only vary little for all indices in AWRA-L/AWAP (Figs.

5.16 and 5.17).

The rate of change (RoC) within a certain period leading to flash drought onset

highlight the changes in the SPI, EDDI and ESI associated with the rapid drying of

soil moisture. This is represented by the reference curve in figure 5.18 showing a two

category decline per two weeks. This is, at eight weeks prior to the onset the RoC will be

0.5 and at four weeks prior it will be one. At two weeks prior to the flash drought onset

in the soil moisture the RoC reaches two categories in accordance to our flash drought

definition. If the curves for EDDI, ESI and SPI are lying on or below this reference, their

RoC would meet the criteria for flash drought detection at the same time as the soil

moisture. An earlier detection would shift the curve to the left while a delayed response

would shift it to the right.

All of those scenarios are present in Figure 5.18. Again, splitting the models in the

Figure 5.18: Area average of rates of change (RoC) in units of categories per two-weeks for
EDDI, ESI and SPI for 8, 6, 4, and 2 weeks prior to the onset of a flash drought in the soil
moisture. Split into season (rows) and ordered for each CMIP5 model (first to sixth columns),
CMIP5 ensemble (seventh column) and AWRA-L/AWAP (eighth column).
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GFDL and non-GFDL models highlights different characteristics. In the GFDL models,

the neutral to only slightly dry categories for EDDI and ESI at the time of flash drought

onset in the SSI are linked to slow RoCs (columns 3-5). This suggests that the con-

tribution of increasing ET to flash drought in the GFDL models is small. Instead, only

the curves for SPI show rapid drying, suggesting that precipitation is the main driver of

flash drought in these models. While the strong changes in the SPI are also present in

CanESM2, CSIRO-Mk3-6-0 and MIROC5, those models also show a stronger RoC for

EDDI and ESI with their curves much closer to the reference line or below. Thus, ET is

a more important component for flash droughts in the non-GFDL models.

Differences between northern and southern domains are displayed in Figure 5.19 are

generally small, however, some models show some distinct differences. That is, for

example, the GFDL model suite, which manifests greater RoCs for all indices during JJA

but smaller ones during DJF and MAM in the south compared to the north. Yet, only

the SPI lies entirely below the reference line in both domains and all seasons. Another

distinct difference between north and south is observed in the CSIRO model. While

mostly all indices for both domains lay underneath the reference line indicating a strong

drying that qualifies for a flash drought yield in the index, this is not the case for the

northern domain in JJA. Here, SPI, EDDI and ESI are above the reference line and hence

only indicate insufficient drying for a flash drought. In this case, flash drought in the soil

moisture would not be detected by any of the indices.

The Australia averaged RoCs for EDDI and ESI are weakest in the reanalysis and

observations of AWRA-L and AWAP compared to all models. (Figure 5.18). The long lag

of the ESI with soil moisture in the reanalysis, discussed previously, suggests that the ESI

intensifies towards a stronger negative change much later than in the soil moisture and

that it significantly lags the onset of flash drought in the SSI. Interestingly, the change in

the SPI in the observations is much stronger than in any of the models with the exception

of MIROC5 in DJF and SON, reaching a decrease of more than three categories in each

season. This adds to the body of evidence that in AWRA-L, precipitation is a more

important factor driving flash drought as compared to ET. Differences between the

northern and southern domain in the observations/reanalysis are even more subtle than

for any of the CMIP5 models (Figure 5.19). In both domains, precipitation is the main

contributor to flash drought in the top 10cm soil moisture level.

122



5.5. Results
5. Flash Drought Detection in Models

and Observations over Australia

Generally, the dynamics found in the observations and reanalysis are not fully repre-

sented by any model. While the onset values of EDDI, ESI and SPI in the GFDL models

are relatively close to those in the observations and reanalysis, their spatial distribution

and progression of the indices differ considerably.

5.5.2.4 Differences in flash drought detection skills

The results described thus far provide valuable information about the skill of the indices

in their detection of flash drought as defined from soil moisture. The results from most

CMIP5 models and from AWRA-L/AWAP, suggest that precipitation is the strongest

driver of flash drought, supporting Koster et al. (2019). Thus, our evidence shows that

the SPI would be able to provide the earliest detection of a flash drought in the upper

10 cm of soil moisture. The slight lag in the EDDI and more prominent delay in the ESI

limit their capabilities for prediction and early detection, and this is especially true in the

AWRA-L data.

The skill of flash drought detection in terms of Hit Rate (HR) and False Alarm Rate

(FAR) at the time of flash drought onset, as defined using soil moisture, is shown in

Figure 5.20. The bars display the area-averaged HR and FAR over Australia where at

least one flash drought was detected in the soil moisture, taking the average of the values

Figure 5.19: As Figure 5.18 but results are shown for southern and northern domains of
Australia separated at the 27oS latitude. Dashed coloured lines represent area averages of
explained variances in the south while those for the north are displayed as solid lines.
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over all grid cells. The error bars indicate the variability in magnitude of the HR and

FAR across the domain as the 90th percent confidence interval. Thus, the spread shows

that the skill of each index varies widely between regions when the error bar is large, and

only small differences in the skill are detected across the domain when the error bar is

small. Both HR and FAR can sum to more than 100% due to an overestimation in the

flash drought event frequency by the SPI, ESI or EDDI index.

Most noticeably in Figure 5.20 is that the FAR is consistently higher than the HR

for all models and in the AWRA-L/AWAP data. There are only some exceptions for SPI

in CanESM2 during DJF, JJA and SON when the HR exceeds the FAR. In general, the

early detection rate of flash drought in the top 10cm soil moisture is highest for the SPI,

exceeding 50%. The ESI and EDDI only detect about a quarter to a third of events.

However, the comparatively high HR for EDDI and ESI in MIROC5 with 50% to 60% is

on par with the SPI and suggests that the response of ET to the soil moisture is quicker

Figure 5.20: Spatial mean of hit rate (HR, lighter colours) and false alarm ratio (FAR, darker
colours) in percent for EDDI (yellow/gold), ESI (light/dark green) and SPI (light/dark blue).
Split into season (columns) and listed for each CMIP5 model (first to sixth row), CMIP5
ensemble (seventh row) and AWRA-L/AWAP (eighth row). Detection rates were determined
using a time window around the flash drought detected in the soil moisture of eight weeks
prior to the onset in which the indices can yield a hit.
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Figure 5.21: As figure 5.20 but the time window around the flash drought detected in the
soil moisture is extended to two weeks after the onset.

in this than in other models.

The comparison to AWRA-L/AWAP shows that the response time of ET to soil

moisture levels is too short in CMIP5 since the HR in the observations/reanalysis is very

low with only around 10% for EDDI and less than 5% for ESI confirming the findings

of the previous chapter. Yet, the results from AWRA- L have to be considered with its

underlying water balance model in mind. The delay in the detection of ET-based indices

in CMIP5 can be improved by extending the detection window to two weeks after the flash

drought occurred in the soil moisture (Figure 5.21). Expanding the detection window

improves the skill most noticeable for ESI in MIROC5 and CanESM2 during DJF and

JJA. However, the skill for the ESI still remains low in AWRA-L since the average delay

for ESI to the soil moisture is two weeks or longer and the flash drought event frequency

is significantly lower than the SSI. Despite a very short lag of only a couple of days, the

HR and FAR did not improve markedly for the EDDI because of its similarly low event

frequency.

When compared to AWRA-L/AWAP, the skill values of flash drought detection by
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the EDDI and the ESI are too high in the CMIP5 models due to the stronger land-

atmosphere coupling in the CMIP5 models, and hence an overestimation of ET. However,

the overestimation of the strength of the coupling varies between the individual models.

There is a stronger consensus between the CMIP5 models and AWAP observations when

the SPI is used for flash drought detection. This consensus, and the fact that the HR

is highest and FAR lowest for most models and for the observations, suggests that the

SPI is the most suitable tool for flash drought detection in the upper 10cm soil layer in

a predictive sense. That is, the SPI registers a flash drought much earlier and closer to

true flash drought onset as compared to the ET-based indices. The following section

will show if this holds when using the deeper 0-100cm soil moisture layer.

5.5.3 Flash drought in AWRA-L using root-zone layer soil mois-

ture

The major caveat of the analyses above and in Chapter 4 is that we were only able to

consider the top 10cm soil moisture for flash drought identification since CMIP5 only

offers this layer on a daily time scale. Monthly values of deeper layer soil moisture cannot

be examined using current flash drought definitions that are based on strong changes

over just two weeks. Past flash drought studies only used the root-zone layer with depths

up to 50-100cm to shape definitions (Ford and Labosier, 2017; Otkin et al., 2018) or

use it as a measure for reported flash droughts (Otkin et al., 2016; Nguyen et al., 2019).

Consequently, other studies to compare our results to, computed using near-surface soil

moisture, do not exist.

In order to compare our findings in a meaningful way and to determine if the top 10cm

soil layer might be sufficient for flash drought evaluations, we conducted the analysis

just presented in 5.5.2 on the total 0-100cm root-zone layer soil moisture content from

AWRA-L. This is first performed using the 40th to <10th percentile drop within 14 days

for a direct comparison to the above findings, hereafter called Definition 1. Subsequently,

we use the proposed definition from Ford and Labosier (2017) with a more gentle decline

from 40th to <20th in 20 days is used for comparison with previously published research,

hereafter called Definition 2.
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5.5.3.1 Flash drought frequency in the root-zone layer soil moisture

Applying Definition 1 to the SSI calculated from the 0 - 100cm soil moisture level reduces

the event frequency from 1 - 3 events per decade to 0.5 - 1.5 events per decade in each

season with the majority of the Australian domain remaining without any registered

events (Figure 5.22). Values for EDDI, ESI and SPI do not change but are shown again

in the figure for convenience. The very low sample size shows that Definition 1 is too

strict for the lower level soil moisture. Thus, our modified definition is not applicable

to the root zone soil moisture as the fluctuations are damped in comparison to the top

10cm soil layer as seen in Figure 5.1.

We then applied Definition 2, which is consistent with past studies (Ford and La-

Figure 5.22: Seasonal FD event frequency expressed as events per decade for SPI (first
column), EDDI (second), ESI (third) and SSI (fourth) over the 39 years of the time period
from 1976 to 2018. Values for EDDI, ESI and SPI have not changed to Figure 5.4 as the same
definition is used. Flash droughts are defined as a decrease from above the 40th to below the
10th percentile in 14 days. The SSI is calculated using the 0-1m soil layer.
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bosier, 2017). Figure 5.23 shows changes to the event frequency not only for the SSI

but also for EDDI, ESI and SPI since the threshold for the lower percentile and the rate

of change has been altered, as described previously. The gentler decline over a longer

time yields more flash droughts in all indices.

Figure 5.23 shows significant increases in flash drought event frequency of about 50

to 400% when Definition 2 is applied. The previously sparsely distributed flash drought

events in the ESI in Figure 5.22 are now present in almost all grid cells with a frequency

of 1-4 events per decade. This is about the same range that is observed in the SSI.

Fewer events during the dry season in the north of the country (JJA) and more during

the wet season (DJF) as well as a higher frequency in the SE in autumn (MAM) agree

well between ESI and the SSI. Flash drought event frequency in the EDDI and SPI is a

Figure 5.23: Seasonal FD event frequency expressed as events per decade for SPI (first
column), EDDI (second), ESI (third) and SSI (fourth) over the 39 years of the time period
from 1976 to 2018. Flash droughts are defined as a decrease from above the 40th to below
the 20th percentile in 20 days. The SSI is calculated using the 0-1m soil layer.
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factor of 1.5 to 2 higher than in the ESI and SSI reaching around 2-5 events per decade

for much of the domain. The spatial patterns of the EDDI and SPI also correspond

less with the pattern described for ESI and SSI. From this initial analysis, it seems that

the ESI is the most promising index for flash drought detection, though coincidence of

events has not yet been established. The skill in the ESI has also been shown for the

United States by Otkin et al. (2013, 2015) who compared the ESI with the top 2m soil

moisture profile, precipitation and crop condition data during flash drought periods.

The close relation between ESI and soil moisture based on the flash drought event

frequency is supported by a very high explained variances of around 0.7 to 0.8 displayed

in 5.24. This is about 0.4 higher compared to the top 10cm layer 5.2. The strong

correlations prevail for the whole domain throughout the year and only eases to ≈ 0.3

during JJA and SON in the NW and far SE. In contrast to the increased co-variability

for the ESI, the SPI shows weaker correlations with values of around 0.5, which is 0.3 to

0.4 weaker compared to the 0-10cm soil layer. However, the SPI still shows significant

correlations for much of the domain except for the North in JJA (which corresponds

to the dry season there). Interestingly, the co-variability between EDDI and SSI does

Figure 5.24: Seasonal explained variance of EDDI (top row) , ESI (middle) and SPI (bottom)
with 0-100cm SSI for 1976 to 2018. Values above 0.2 are statistically significant on the 95%
level and marked with hatching.
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not change markedly between the 0-10cm and 0-100cm soil layers. The pattern remains

unchanged with higher actual explained variances of 0.5 in the North and East during

DJF and MAM and in the E/SE in SON and only significant correlations between 20o

and 30oS.

The explained variances shown are the strongest found in a cross-correlation which

displaces the time series of the drought indices 0 to 14 days in each direction relative

to the SSI time series. This is done in two day increments to achieve a test for lag and

lead times. The lag/lead times at which the presented explained variances were detected

are displayed in Figure 5.25. The lags and leads shown are relative to the soil moisture,

meaning that the index leads soil moisture if a positive number occurs and vice versa

the particular index is lagging soil moisture in the case of a negative number.

The EDDI shows similar lags/leads for the 0-100 cm soil layer as for the 0-10 cm

shallow soil layer shown in Figure 5.3. However, the EDDI’s displacement in time relative

to the SSI changes slightly from a slight lag of 2-4 days to 0 or a lead of around 2-4

days. The maximum correlation of the SPI with SSI develops to a long lead of 6-12

days of the SPI as compared to the shallow soil layer, which had a near-zero lead/lag.

Figure 5.25: Lag at which the maximum explained variances shown figure 5.24 occured
for EDDI (top row), ESI (middle) and SPI (bottom). Stippling marks where the explained
variances are significant at the 95% level.

130



5.5. Results
5. Flash Drought Detection in Models

and Observations over Australia

This shows that the signal of precipitation at the surface takes on the order of a week

to permeate through to deeper soil layers. Similarly, the long lag of ESI in the shallow

soil layer changes to a weaker, but seasonally and regionally dependent, lag. The lag

of the ESI to SSI is zero for most of the domain from MAM to SON with exception of

the west and south in MAM and JJA. A lag of around one week is still present in DJF,

except in the southeast.

These results highlight that the dynamics in the deeper layer soil moisture are more

closely related to the ESI than SPI or EDDI (Otkin et al., 2013, 2018). The contribu-

tion of the transpiration rate from plants included in the actual ET of the ESI delivers

information about the soil moisture level in this 0-100cm soil layer as the plants access

the soil moisture in that depth. Flash drought may be defined defined using soil mois-

ture, but in reality is denoted by agricultural or ecological impacts (Nguyen et al., 2019;

Pendergrass et al., 2020), to which ESI may be better tuned.

The different relationships between the indices and soil moisture in the deeper part of

the soil column have an effect on the rates of change of each index prior to the onset of

a flash drought in the soil moisture. Due to the long lead time of the SPI’s relationship

with deeper soil moisture content, the SPI shows a strong RoC earlier than two weeks

before flash drought onset in the SSI, reaching an Australia-wide average of -0.4 at

two weeks, -0.5 at four and -0.45 categories per week at six weeks prior to the onset.

However, regional and seasonal differences in RoC between indices increase the closer

they approach flash drought onset (Figure 5.26). As only droughts were selected that

last for at least 30 days, the SPI category is still very low with ED1 to ED2 at the onset

of flash drought in the SSI, reflecting the lowest 20th and 10th percentile respectively

despite its long lead time. However, neither the RoCs nor the onset values are as strong

as they were for the top 10cm layer, which is unsurprising given the closer connection of

the upper level of soil moisture to the overlying atmosphere.

For the EDDI, there are few changes to the value at onset and the RoC prior to

onset when compared to the 0-10cm soil layer. Flash drought values at the onset in the

SSI are still mostly ED0 to ED1 indicating only abnormally to moderately dry conditions

(first column in Figure 5.27). However, the EDDI changes little in the lead up from two

to eight weeks before the onset with around 0.1 to -0.6 categories per week (positive

change for EDDI as it is inverted to ESI and SPI).
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The RoC in the ESI intensifies in the two weeks prior to the onset of flash drought,

which is not observed in the EDDI and SPI. The ESI’s relatively weak category of ED0

or even None at the onset of the flash drought in the SSI (first column in Figure 5.28)

shows only abnormally dry or average conditions and highlights the lag in the index

compared to soil moisture content.

Comparing the onset values of EDDI, ESI and SPI using Definition 2 for flash drought

in the 0-100 cm soil layer with those using Definition 1 for the 0-10 cm soil layer means

that a direct comparison is not possible. Therefore, we concentrated on comparing the

RoC in the SPI, EDDI and ESI prior to flash drought onset in the SSI. In the 0-100 cm

soil layer, the strong negative changes in the SPI earlier on signal a strong decline in

moisture supply from precipitation, while the later intensifying ESI implies a shortage

in transpiration. The EDDI sits somewhere in the middle of both showing a consistent

Figure 5.26: Index categories of SPI at the time when a flash drought was detected in the
soil moisture (SSI) are in the first column. Columns two to five show rates of change (RoC)
expressed in ”categories per week” for each season. They are calculated as the difference
between the index’s category at the onset of a flash drought in the soil moisture and the value
two weeks prior to that. The result is divided by the number of weeks to achieve a ”per week”
change unit. All values shown are the seasonal average of all instances over 43 years from
1976 to 2018.
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negative trend in ET. The differences in flash drought event frequency due to the change

in flash drought definition, and the representation of the events in the deeper layer soil

moisture by EDDI, ESI and SPI, have an inevitable impact on their forecast skill metrics.

5.5.3.2 Skill metrics for early flash drought detection and monitoring

When applied to the deeper soil layer, the ability of the indices to detect a flash drought

before it occurs in the soil moisture changes most noticeably for the EDDI (Figure 5.29).

During DJF and SON, the hit rate (HR) of the EDDI increases from an area-average

of around 8% to 31% for flash droughts computed from the shallow and deeper soil

layers respectively. The changes in the HR of the SPI for the deeper soil layer are mixed.

While the HR for the SPI generally improves over the whole domain in DJF from an area

average of approximately 45% to 60%, the SPI’s HR decreases in MAM and JJA to less

than 30% in the interior of the continent. During MAM and JJA, the Australia-wide area

average HR of the SPI decreases from 50% to 40% between the upper and total column

soil layers respectively. The FAR remains at a similar level to the shallow soil layer for

Figure 5.27: As described in figure above but for the EDDI.

133



5.5. Results
5. Flash Drought Detection in Models

and Observations over Australia

Figure 5.28: As described in figure above but for the ESI.

the EDDI and SPI with an Australia wide average of 85% and 70% respectively. The

HR of the ESI improves for only some grid cells, showing that its lag, even though it is

shorter than for the shallow soil layer, prohibits flash drought detection concurrently with

0-100 cm soil column. Improvements are limited to the southeast coast in all seasons

and western Australia in SON resulting in an increase of the area-average HR from 1%

to 14%. Consequently, the ESI’s FAR is still very high and ranges between approximately

70% to 100% (90% confidence interval) for flash drought detection in the 1m soil layer.

We test the sensitivity to our definition of flash drought onset by relaxing the time

interval in which we define onset. This is, we define flash drought onset as the 2 week

period after the SSI first falls below the required threshold for a flash drought. This

relaxed criteria will show if the lag in the EDDI and ESI are able to provide skilful

detection of events near to their commencement. A small delay could still be useful for

management and decisions making purposes.

Figure 5.30 displays the HR and FAR with this extended definition of ‘onset’ applied.

It is immediately evident that the detection skill for the ESI markedly improves. In DJF,
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Figure 5.29: Hit rate (HR, panel A) and false alarm ratio (FAR, panel B) for SPI (left column),
EDDI (middle) and ESI (right). The time interval in which the either the indices can yield a
flash drought for a valid hit is within eight weeks prior to the flash drought onset in the soil
moisture. Hatching indicates where the SSI identified a flash drought as seen in figure 5.23.
Only here are values for HR and FAR possible.

Figure 5.30: As described in figure 5.29 above but the time interval is extend by two weeks
after the flash drought onset in the soil moisture happened.
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the HR reaches values that are similar to the SPI, detecting around 60% of the flash

droughts in the SSI on average. During JJA and MAM, the HR of the ESI exceeds

that of the SPI by about 15% on average also reaching around 55% on average, even

around 85% (90th percentile value) in some areas in the southeast. Further, the ESI

often outperforms the EDDI and SPI when the extended definition of ‘onset’ is applied.

This is because there are also comparatively low FAR values for the ESI, decreasing from

an area-average of previously 90% in all seasons to 60% in JJA and only 30% in DJF.

Both the SPI and EDDI have FAR values of 60% to 85% due to little improvements in

the HR with the two week extension.

Here, we show that the climatological frequency of flash drought in the ESI was most

similar to the SSI in the 0-100cm soil layer. The low FAR values of the ESI confirm that

the flash droughts detected by the ESI are mostly the same as those in the SSI. This

makes the ESI a reliable index for monitoring. However, though there is high skill, the

lag in the ESI shows that it is less suitable for the early detection of flash drought as

it does not highlight the event until around 2 weeks or longer after its onset in the soil

moisture.

The results presented here show that the SPI is the most suitable index for early

detection because of its high HR and the fact that it leads the SSI by around a week.

However, the SPI also has a high FAR over much of Australia. Thus, a multi-index

approach to detection and monitoring would be most appropriate. For example, deter-

mining flash drought risk using the SPI, but following a potential onset via monitoring

using the ESI.

5.5.3.3 Case study – southern Queensland, January 2018

To further examine the utility of the various indices for flash drought detection and mon-

itoring, we apply them to a known flash drought that occurred in southern Queensland

in January 2018 (Nguyen et al., 2019).

Figure 5.31 shows the development of the SSI for 0-10cm (brown) and 0-100cm (dark

red) from November 2016 until December 2018 with their respective 40th (black dot-

dashed) and 20th (black dashed) percentiles for a single grid cell that is representative of

the area (26oS, 144oE). Markers shown in the same colour represent the onset of a flash

drought in each of the layers when the decline between the two percentile thresholds,
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previously defined in section 5.5.3, was achieved within 20 days. The evolution of the

SSIs are characterised by dry and wet cycles with the dry conditions showing more

extreme negative anomalies.

The blue, orange and green markers in Figure 5.31 represent the flash drought onset

in SPI, EDDI and ESI respectively. Figure 5.32 shows the SSIs for the two soil depths

as in Figure 5.31, but with the time series of EDDI, ESI and SPI added. In the period

encompassed by the figure (December 2016 to December 2018), four flash droughts

were identified in both the upper and deeper level soil moisture. There were three events

recorded in both soil moisture levels, Feb-Mar 2017, Jun-Jul 2017, Jan 2018. Additional

events were recorded independently in each level, namely May 2018 for SSI 1m and Aug

2018 for SSI 0.1m.

Figure 5.31: Times series for 0-10cm (brown) and 0-100cm (darkred) SSI from November
2016 to December 2018 for the location 26oS and 144oE that was affected by a flash drought
in that time period according to Nguyen et al. (2019). Markers show timing of flash drought
onset for SSIs, SPI, ESI and EDDI. The dot-dashed line represents their 40th and the dashed
line their 20th percentile. Light grey shaded area covers an eight week time period prior to the
onset of a flash drought in the 1m SSI. Dark grey shaded area two week time period after the
event onset.

Figure 5.32: As figure 5.31 above but with markers removed and time series of SPI, EDDI
and ESI added.
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Figures 5.31 and 5.32 show that both EDDI and ESI register all four flash droughts

that are detected in the 1m SSI. However, only the flash drought in May 2018 is suc-

cessfully predicted by the ESI prior to its onset in the 1m SSI. In contrast, for all except

the May 2018 flash drought, the EDDI displays a flash drought signal three to six weeks

prior to the onset registered by the 1m SSI. The SPI detects three of the four flash

droughts in the 1m soil layer prior to the onset as defined using the 1m SSI, but also

raises two false alarms. Of these, one false alarm is associated with a flash drought in

the top 10cm soil layer, but none of the ESI or EDDI flag this as an event.

This case study highlights the potential benefits and limitations of using the SPI,

EDDI and ESI for early detection and/or monitoring. The SPI is not as reliable as

EDDI and ESI for flash drought in the 1m soil layer. Yet, the ESI is not useful for

early prediction due to its significant lag behind flash drought identification in the soil

moisture. However, this does make the index useful for flash drought monitoring (Otkin

et al., 2013, 2018; Nguyen et al., 2019). In this case, the EDDI seems to be the more

capable tool for early flash drought detection in the relevant 1m soil layer. While these

results for southeast Queensland are consistent with the results previously presented,

this could vary for other locations. For example, the interior of southern Queensland is

characterised by persistently hot and dry conditions with only little rainfall and EDDI has

proven to be more reliable in those water-limited environments (McEvoy et al., 2016).

However, the spatially consistent results presented in section 5.5.3.1 suggest that this

framework is applicable Australia wide.

5.6 Discussion

In this chapter, we have examined the occurrence of flash drought in observations and

reanalysis over Australia and compared the results to those from the CMIP5 models from

Chapter 4. This comparison provides further insight into flash drought dynamics, their

representation in the models, and thus, the utility of the drought indices as a tool for

detection and monitoring compared to the ”real world”. We further used the root-zone

layer soil moisture level from 0-100cm from AWRA-L to determine how the detection

performance of EDDI, ESI and SPI change when flash drought is defined by soil moisture

depletion in deeper soil layers.
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The results show differences between observations/reanalysis and global coupled cli-

mate models in; i) the flash drought event frequency of ESI, EDDI, SPI and SSI and ii)

the coupling of soil moisture to drought indices. This leads to the conclusion that the

processes responsible for starting and continuing flash drought in AWRA-L and CMIP5

are different. The differences in the processes means that each data set provides dif-

ferent information utility of the various indices as tools for flash drought prediction and

monitoring. Consequently, the models have serious limitations in the way they simulate

flash droughts which can be caused by a too strong land-atmosphere coupling compared

to the reanalysis from AWRA-L.

About twice as many flash droughts are observed in the top 10cm soil layer of AWRA-

L using the same definition as the CMIP5 models in Chapter 4. Further, there are stark

differences in how each of the SPI, EDDI and ESI represented flash drought. The SPI

computes a similar event frequency to the SSI in the AWRA-L/AWAP data for the

upper level soil moisture (0-10cm). In contrast, both EDDI and ESI register fewer flash

droughts in AWRA-L than in the climate models. The higher frequency of flash drought

in the ET-based indices in the CMIP5 models suggests that the land-atmosphere coupling

of the surface to atmosphere moisture flux is too strong in the models compared to the

reanalysis (Seneviratne et al., 2013; Ukkola et al., 2016b, 2018b).This is shown in the

timing of the strongest responses between precipitation, ET and PET to soil moisture

between models and observations/reanalysis. The results show shorter response times

for the SPI to the top 10cm soil layer in the observations/reanalysis than the models.

The AWRA-L and AWAP data represent physical processes realistically as past studies

show that the top 10cm layer receives precipitation without any delay (Ford and Quiring,

2014). The response of EDDI and ESI is mostly lagging soil moisture and the lag is longer

in the model data than in the AWRA-L reanalysis.

The reanalysis show that ET continues to occur even when soil moisture in the top

layer is almost completely depleted. This is due to transpiration from plants which access

available moisture from deeper soil layers Seneviratne et al. (2010). Consequently, ET

does not decline rapidly in AWRA-L to fulfil our definition of a flash drought. Current

global coupled climate models also include a biophysical land surface model, which con-

siders a canopy, distinction into multiple soil layers and accounts for the main physical

processes relevant for vegetation and soil (Pitman, 2003). However, on-going uncertain-
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ties exist regarding parametrisations and representations of geographical details for soil

and vegetation parameters, such as water holding capacity, vegetation feedbacks and

rooting depth (Seneviratne et al., 2006, 2010; Anders and Rockel, 2009; Pitman et al.,

2009). Differences in these parameters impact the water and energy fluxes under water

stressed conditions (Ukkola et al., 2016a; De Kauwe et al., 2017; Mu et al., 2020). For

example, Huang et al. (2016) found a large spread of model sensitivity to extreme dry

events when investigating drought response of modelled gross primary production in nine

CMIP5 models. They concluded that this largely stems from differences in the water

stress function, moisture availability for plants or both.

These known issues in model representation of land surface characteristics, described

above, are represented in our results when comparing CMIP5 to AWRA-L and AWAP. An

earlier onset of decreasing ET when vegetation is water stressed could explain the shorter

response time of ET to soil moisture found in the models. This impacts EDDI to some

extent since the energy for the latent heat flux now goes into PET as sensible heat flux

and EDDI spikes, ultimately leading to a strong overestimation of EDDI flash drought

in many CMIP5 models, especially CanESM2. As described in the previous chapter, the

GFDL models behave differently to the rest of our ensemble suite. These models do not

show such large overestimations of ET, which is closer to the observations/reanalysis.

However, there is still an overestimation and so the GFDL models also substantially

underestimate the drying of the upper layer soil moisture.

The differences in land surface models, and their coupling to the atmosphere, have an

inevitable effect on the detection skill of each of EDDI, ESI and SPI for flash drought.

In dry regions the models’ ET is strongly controlled by soil moisture (Koster et al.,

2004). Since Australia is dominated by a dry climate, the lag in the ESI in particular,

over the EDDI (which has a smaller lag) indicate that ET is changing in response to

depleting soil moisture. Due to ET being a response to a reduction in soil moisture in

a coupled system, there is a lag in the detection of flash drought by the ESI and EDDI.

The potential of EDDI for flash drought early warning is manifested by strong, transient

meteorological and radiative changes, which drive PET (Hobbins et al., 2016). The

EDDI is able to do so in some occasions, which could be referred to heatwave driven

flash drought as characterised by Mo and Lettenmaier (2015). The overly strong land

atmosphere coupling in CMIP5 ascribes both indices more skill than in the AWRA-L
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reanalysis. The SPI on the other hand shows some skill in early detection for both

models and observations. However, the SPI also suffers from a high false alarm rate in

its detection of flash drought.

The results from the observations and reanalysis show that the top 10cm soil layer

is not necessarily indicative of flash drought in the deeper soil moisture layer. Different

processes are important in the different layers and this provides information on the

predictability of flash drought in each layer. For example, the stronger atmospheric

coupling in the upper layer means that the SPI has the highest forecast skill there (Ford

and Quiring, 2014). In the deeper soil layer, rapid depletion of soil moisture can be

caused by increased plant transpiration due to an enhancement in PET (Otkin et al.,

2018). This is best represented by the ESI. However, there is still a lag in the timing

of flash drought in the ESI, suggesting it is a response to a reduction of soil moisture,

not a cause, which makes the index best for monitoring rather than prediction. The

complementary relationship of ET and PET could mean that EDDI can be used as a

predictor of flash drought (Hobbins et al., 2016; Otkin et al., 2018). The skill of the

EDDI indeed increases slightly for the deeper layer, yet, precipitation remains the most

important driver also for root-zone layer flash drought (Koster et al., 2019). The SPI

is good for early detection in both layers, however, is accompanied by high FARs. The

results suggest that a range of indices would be useful for different purposes and that

any forecast/monitoring tool would require a multi-variate approach, for example SPI

to flag flash drought risk and then onto monitoring by the ESI to determine whether

its consolidated into a true flash drought. Such an approach is used in the US drought

monitor (Svoboda et al., 2002).

It is important to highlight that the soil moisture and ET data in AWRA-L we are

referring to are also outputs from a LSM that is driven by observations interpolated

onto a high resolution grid spanning the Australian domain (Frost et al., 2018). Even

though AWRA-L is highly correlated to in situ measurements of ET and soil moisture

observations from flux towers (Holgate et al., 2016), the results presented here need to

take the uncertainties associated with the AWRA-L data into consideration. Particular

scrutiny needs to be given to remote, inner continental regions of Australia that have only

a few monitoring sites and so AWRA-L and AWAP data are deemed to be less reliable

here (Jones et al., 2009). Also, a lot of information is lost through the interpolation to
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CMIP5s’ common grid cell resolution of 2.5o× 2.5o which is much coarser than AWRA-

L’s native resolution of 0.05o × 0.05o. Future analyses on the native resolution would

provide more information about the spatial distribution of flash drought event frequency

and the regional predictive or monitoring skill of ESI, EDDI and SPI.

5.7 Conclusion

This chapter has examined the flash drought event frequency in Australia using reanalysis

and observational data from AWRA-L and AWAP. Flash droughts were identified in a

shallow soil layer (0-10 cm) and total column soil moisture (0-100 cm) from AWRA-L.

Flash droughts detected from an index using soil moisture were compared with flash

droughts detected from drought indices based on precipitation, evaporative demand and

the ratio of evapotranspiration and evaporative demand. The ability of the indices to

detect flash droughts in the shallow soil layer were compared to the results from Chapter

4 where the same analyses were performed using data from CMIP5 models. The results

from the total column soil moisture could not be compared to CMIP5 data as soil

moisture data is not provided for deeper layers at daily resolution, only monthly. The

analyses of the total column soil moisture showed different dynamics at play between

the different soil layers. There was a weaker relationship with precipitation due to a less

erratic variability compared to the upper soil layer but in turn a stronger relationship to

ET making the ESI markedly more skilful for flash drought monitoring in the deeper soil

layer.

Our results show that the LSMs in CMIP5 are systematically overestimating evapo-

ration in flash drought. This supports previous findings that CMIP5 models overestimate

evaporative droughts on monthly time scales (Ukkola et al., 2016a,b). The overestima-

tion is manifested in the up to three-fold higher flash drought event frequency in the

EDDI and ESI in the CMIP5 models as compared to the AWRA-L. The excessive evapo-

ration does not stem from an accelerated drying of the land’s surface since flash drought

frequency in the top 10cm soil layer is, in contrast, underestimated in the CMIP5 models.

Rather, the CMIP5 models underestimate the component of transpiration from vegeta-

tion accessed by deeper layer soil moisture, which, in reality, slows down the transition

from an energy-limited to a water-limited environment during the transition to drought
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conditions. This leads to an overestimation of the sensible heat flux and eventually to

an increase in PET resulting in a misrepresentations of flash drought in EDDI and ESI

(Ukkola et al., 2016a,b).

The CMIP5 models and AWRA-L/AWAP also show differences in response times of

land-atmosphere interactions. The shorter response time of ET to changes in the top

10cm soil moisture layer shows that the land-atmosphere coupling is too strong in the

CMIP5 models when compared to reanalysis. Although there are clearly problems with

the representation of ET in CMIP5 LSMs, and the associated land-atmosphere coupling,

the relationship between top layer soil moisture and precipitation is well represented in

the CMIP5 models. This is reflected in a similar flash drought event frequency in the

SPI between CMIP5 and AWAP.

The lagging or leading relationship of the drought indices to soil moisture is also

embedded in their detection skills. The SPI is in both models and observations the

index with the highest predictive skill in flash drought early warning, followed by the

EDDI, though with significantly lower skill. However, both are accompanied by a high

false alarm ratio caused by their high frequency variability. The ESI is not suitable as a

predictive tool due to the delayed response of ET to decreasing soil moisture. Instead,

it shows a strong potential for flash drought monitoring with high skill in the deeper soil

layer and a low FAR. In regards to the top 10cm soil moisture layer, the SPI provides

the skill to detect flash droughts in this layer in advance, while both ESI and EDDI

are able to do so in some CMIP5 models but do not have this predictive skill in the

observations/reanalysis.

Therefore, this study advocates a multi-variate approach for flash drought identifi-

cation, where a combination of SPI and EDDI serve to flag a potential development of

a flash drought. The ESI can then be used to monitor the development closely and help

to determine whether the drying signal consolidates into a true flash drought.
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Chapter 6

Discussion and Conclusions

6.1 Thesis Summary

This thesis aimed to evaluate how precipitation and evapotranspiration based drought

indices represent agricultural and flash drought in observations, reanalysis and climate

models. This was explored by investigating different drought indices and evaluating their

skill in comparison to soil moisture for both observations and climate models.

thesis focuses

We first investigated how three drought indices, one based on precipitation only

(SPI) and another two based on a combination of ET and precipitation (PDSI and

SPEI) represented agricultural drought and whether including ET had an impact. Soil

moisture was in two different layer depths of 0-10 and 10-40cm from the GLDAS LSM

were used as the benchmark for this assessment. Our results in Chapter 3 indicate that

there are instances where there is no significant improvement in correlation through the

inclusion of an estimate of ET in a drought index (i.e. PDSI or SPEI rather than SPI)

relative to the modelled soil moisture reference. However, note that this assessment

was of drought occurrence only, and not for other characteristics of agricultural drought,

such as duration or severity.

We then tested the sensitivity of the drought indices to the choice of data sets
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used to compute them. The magnitudes of the uncertainties associated with the choice

of data set was then compared to magnitude of the differences between the drought

indices. The choice of input data changes the skill of the SPI, PDSI and SPEI such that

the differences between them for drought identification purposes become small. These

findings highlight that the choice of drought index may be less important than the choice

of data used to compute the index.

Chapter 4 examined how different drought indices represent flash drought in a climate

models. Here, we used six models from the CMIP5 suite of models to compare the

estimation of flash drought using three different drought indices, namely the SPI, EDDI

(based on evaporative demand) and ESI (based on the ratio of actual ET to evaporative

demand). The soil moisture from each model served as the reference. However, daily

soil moisture values were only available for the top 10cm soil layer on a daily basis, which

limited extensive comparisons with past observational studies that used deeper soil layers

to compute flash drought (e.g. Ford et al., 2015; Otkin et al., 2016; Koster et al., 2019).

Our results showed moderate to strong relationships between the variations in drought

indices and soil moisture, especially in drought-prone regions of the sub-tropics and mid-

latitudes. All indices were able to identify flash drought sufficiently within the models’

climatology. However, there was significant inter-model spread in the detection of flash

drought, which is likely due to issues with land-atmosphere interactions. The differences

in the coupling strength between land and atmosphere led to differences in the capacity of

the drought indices’ to predict (i.e. skill with the index leading soil moisture) and monitor

(i.e. skill concurrent with or lagging soil moisture) flash drought. Despite the inter-model

differences, the SPI and to a lesser extent, the EDDI, were consistently capable of early

flash drought detection in the models. The ESI had little predictive capacity indicating it

is not overly useful for early flash drought detection. However, there was skill in detecting

flash drought occurrence following the onset in soil moisture, suggesting it is more useful

for drought monitoring. However, all indices were accompanied by a high false alarm

ratio, showing that there are many instances where the indices show a progression that

is similar to that of flash drought onset, but that do not result in flash drought.

Chapter 5 examined how well climate models represent flash drought in Australia by

comparing the results from Chapter 4 to those computed using AWRA-L reanalysis and

AWAP observations over Australia for the upper 10cm soil moisture layer. The results
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confirmed that the coupling between land and atmosphere was too strong in the CMIP5

models compared to AWRA-L reanalysis. This led to the overestimation of flash drought

in the models in the EDDI and ESI but to fewer flash drought events in the soil moisture.

For the SPI, the skill of the models and observations in capturing flash drought mainly

agreed. Compared to the CMIP5 models, AWRA-L showed a longer response time of ET

to decreasing soil moisture. This resulted in longer lags between flash drought detection

in the soil moisture in the AWRA-L. In particular, the ESI had very little skill in flash

drought detection in the upper 10cm soil layer and EDDI was only slightly better.

The results from the deeper root-zone soil moisture layer showed that the skill of

ET-based drought indices markedly increased compared to the shallow 10cm soil mois-

ture layer, especially when the detection window was extended to two weeks post-flash

drought onset. With this extension, the ESI showed strong skill for flash drought de-

tection. Further, the ESI also had a low false alarm ratio that was considerably lower

than other indices. However, the lag between soil moisture and the ESI was still present,

indicating that even in the deeper soil layers, the ESI had little skill in the early detection

of flash drought. Instead, the SPI remained the index with the highest predictive skill

and the EDDI showed some predictive skill. However, the false alarm rate for both the

SPI and EDDI remained high in the deeper soil layer. Our results suggest that decision

making based solely on drought indices could be maximised by combining information

from the EDDI and SPI for warning of a heightened risk of flash drought, followed by

close monitoring of flash drought development using the ESI.

6.2 Discussion and Implications

The research presented in this thesis has wide ranging implications for drought research.

Although only a fraction of the available drought indices and drought types were exam-

ined, some conclusions can be drawn based on the consistency in the results. Therefore,

the results from this research represent valuable information about the representation of

drought in observations and climate models.
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6.2.1 Drought indices incorporating ET

Drought indices are an important tool to predict and monitor the development of a

dry spell. ET is an important part of water balance at the land’s surface and is thus

argued to be a necessity for drought indices (Tsakiris and Vangelis, 2005; Vicente-Serrano

et al., 2010). However, we have shown in Chapter 3 that there can be considerable

uncertainties in ET associated with the data used to calculate it. The magnitude of

these uncertainties is often comparable to the differences between rainfall-only based

indices, and those indices incorporating both rainfall and ET. However, our research

only focused on the occurrence of drought and this analysis should be extended to

other characteristics of drought which may benefit from the additional ET component.

Regardless, our results demonstrate that in some instances, the use of simpler and less

sensitive precipitation-only drought indices might provide information that is as good

as more complex drought indices that use P-E balance. In this sense, Chapter 3 shows

that increasing the complexity of the index to capture more of the physical processes

associated with drought development does not necessarily lead to an improvement in

skill and can lead to an increase in uncertainty due to data quality. Our results are

congruous with other studies (e.g. Heim Jr., 2002), that conclude precipitation is the

key variable in determining drought onset, duration and cessation on seasonal to annual

time scales.

We have shown that the choice of input data for the computation of the SPI, SPEI

and PDSI alters the representation of drought characteristics. Thus, it is imperative to

know the limitations of any data set used to calculate these indices. Issues with the

quality of precipitation datasets have already been outlined by Trenberth et al. (2014)

showing different trends in precipitation time series from different datasets, including

some of those used in this thesis, that lead to changes in the representation of drought

using the same index. It is apparent that those uncertainties in precipitation data are

also applicable to the SPI. Trenberth et al. (2014) examined the influence of different

PET methods in the calculation of the PDSI. Here, we have provided a complementary

analysis by looking at the uncertainties in the PDSI associated with the input data set

while using a consistent method to calculate PET. Hu and Willson (2000) have shown

that that the PDSI is equally affected by changes in temperature anomalies as it is by

precipitation which implies that care should be taken when selecting the input data for
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future drought predictions in a non-stationary climate. In fact, the PDSI has often been

used for this purpose (Burke and Brown, 2008; Dai, 2011b; Zhao and Dai, 2015). Our

work shows that the uncertainty from the input data has the capacity to overcome any

benefits yielded by including ET, making the PDSI no more skilful than the simpler SPI.

Hence, our results suggest that the simple SPI is a sufficient tool for identifying seasonal

to annual time scale droughts, with ET adding little additional value. However, note

that we limit this conclusion to the identification of drought in observations and these

conclusions do not reflect the potential utility of P-E balance indices (e.g. PDSI) in

other frameworks (e.g. climate models).

Flash drought has been described as a type of drought where the role of ET is

more important than precipitation (Hobbins et al., 2016; Otkin et al., 2018). This

type of drought is characterised on sub-seasonal time scales. In Chapters 4 and 5, we

examined flash drought using indices based on precipitation or evaporation, rather that

P-E balance. According to (Hobbins et al., 2016) the main driver for changes in PET

during flash drought development is warm air advection as it occurs during the heat or

warm waves that typically accompany flash droughts, but also due to increased sensible

heat coming from a drying land surface. However, the low hit rate of EDDI to detect

flash drought in the soil moisture identified in Chapters 4 and 5 suggests that PET on

its own is not a major contributor to flash drought development. In contrast, the high

hit rate of the SPI and its rapid rate of change in the weeks prior found in this research

support the findings in Koster et al. (2019), who said that precipitation is the main

contributor to flash droughts in both shallow and deep soil layers. However, the SPI also

had a high false alarm rate showing that not all rapid declines in precipitation end in

flash drought conditions. Actual ET changes if plant-available soil moisture approaches

the wilting point (i.e., water-limited conditions) (Hunt et al., 2014). With the increases

in PET, the ET/PET ratio, as included in the ESI, significantly decreases. As such, it is

good indicator for soil moisture conditions at depth, as has been shown by past work (e.g.

Otkin et al., 2013; Hunt et al., 2014; Otkin et al., 2015) and through comparison with

the root-zone soil layer in the AWRA-L data in Chapter 5. The ESI is less appropriate

for the upper soil layer (top 10 cm), which is far more responsive to rainfall. While PET

can be estimated comprehensively using the Penman-Monteith approximation, for which

reliable global data is difficult to obtain, actual ET is much harder to estimate because
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of additional factors that must be represented, including highly spatially heterogeneous

soil and plant properties. With this in mind, the ESI might be the most appropriate

variable to represent flash drought, but the complex estimation of ET and access to the

necessary data makes it less suitable for operational use. In contrast, the SPI has proven

to be a useful index for flash drought detection with its easy calculation and good skill.

Overall, the results from this thesis have shown that a precipitation-based drought

index with an adjustable time scale such as the SPI can be sufficient for subseasonal to

annual drought detection and more robust when using different input sources on a global

scale. However, the extension of a drought index with ET or based on ET alone can be

beneficial for estimating soil moisture conditions at depth and for examination of other

drought characteristics than onset.

6.2.2 Indices for the prediction and monitoring of drought

Drought indices serve different purposes. They are used for drought identification

(Nguyen et al., 2019), but also for operational drought prediction and monitoring (Svo-

boda et al., 2002) or to evaluate changes in future drought development in a warming

climate (Dai and Zhao, 2016). The predictive and monitoring capacities of a drought

index are tightly bound to its representation of drought’s physical processes and were

subject of Chapters 4 and 5.

Naturally, precipitation leads soil moisture content with an increasing lead time for

deeper soil layers (Ford and Quiring, 2014). A lack of precipitation over time will result in

a decline in soil moisture content. Identifying this deficiency over subseasonal to seasonal

time scales provides information that can be used for early warning. We showed that

the SPI has skill as a predictive drought index for the upper 10cm soil layer regardless of

whether modelled or observed data was employed. The skill of the SPI decreased slightly

for the root-zone layer soil moisture. However, the predictive skill remained higher than

the EDDI and ESI. The high predictive skill of the SPI was accompanied by high false

alarm ratio, showing that most rapid dry spells do not result in a flash drought in soil

moisture, especially when PET is very low or soil water retention high.

PET, as used in the EDDI, is a precursor for drought development when warm air

is advected. PET can also increase as a response to drying soil due to an elevated

sensible heat flux increasing the ambient temperature. Which of these processes is more
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prevalent will influence the predictive skill of the EDDI. Proposed as a tool for flash

drought early warning in Hobbins et al. (2016); Otkin et al. (2018); Pendergrass et al.

(2020), we have found only a limited capability of the EDDI to detect soil moisture flash

drought in real time for the upper 10 cm soil layer (i.e. exactly concurrently with the

soil moisture flash drought). The skill improved slightly for the root-zone layer in the

AWRA-L reanalysis but detected no more than half of the identified soil moisture flash

droughts. However, relaxing the timing of the detection to within two weeks of onset in

the soil moisture suggests that the increase in PET is mainly a response to drying soil,

rather than the cause of the initial, rapid drying. In addition, the EDDI came with a

similarly high false alarm ratio as the SPI, since not all regions experiencing abnormally

high PET will enter drought conditions (Otkin et al., 2018).

During times of sufficient moisture availability and elevated PET, plants increase

their rate of ET, which additionally accelerates root zone soil moisture depletion. The

enhanced rate markedly decreases when water-limited conditions set in. The tight cou-

pling of actual ET to soil moisture and interaction with PET is expressed in the potential

ET fraction (ET/PET) in the ESI (Anderson et al., 2007). As actual ET is a response

to soil moisture, flash drought in the ESI naturally lags flash drought in soil moisture.

Therefore, the ESI is not a suitable index for flash drought prediction or early detection.

Despite the identified potential capabilities of early warning from Otkin et al. (2013)

and Nguyen et al. (2019), our analysis showed that the ESI’s skill remained very low for

the root-zone layer in the AWRA-L at the concurrent onset of flash drought in the soil

moisture when compared to the other drought indices of the SPI and EDDI. In contrast,

the detection skill of the ESI drastically increased when the detection interval was ex-

tended to two weeks post flash drought onset in the soil moisture, highlighting the ESIs

potential as a monitoring tool. The additional low false alarm ratio makes it also a far

more reliable index for regions where a flash drought has already developed.

Based on the results of this thesis, none of the indices procured are able to identify

flash drought sufficiently when used as a stand-alone tool. We identified that rapid

changes in evaporation, either PET or ET, appear to be a response or second order

contributor to flash drought, rather than the primary cause. Our evidence shows that

a sudden, rapid shut-off in precipitation that is the ultimate cause of flash droughts.

However, a sudden and rapid decline in precipitation is not necessarily sufficient for a
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flash drought to occur i.e. not all rapid declines result in a flash drought. The identified

strengths and limitations of the SPI, EDDI and ESI suggest that a multi-variate approach

is most appropriate. This is similar to the operational US Drought Monitor (Svoboda

et al., 2002). Otkin et al. (2018) already suggests a combination of the EDDI and ESI

for drought monitoring and prediction due to their complementary nature. However,

these were suggestions only and no study has been undertaken to examine this in more

detail. We support their view but provide evidence that their approach would benefit

from incorporating the SPI due to its high predictive skill. Our evidence shows that, for

prediction, both EDDI and SPI can be used to flag regions experiencing both unusually

negative precipitation anomalies and positive PET anomalies. Subsequently, the ESI can

be used track those locations where a flash drought ultimately results. Visual signs of

flash drought in deteriorating vegetation health might still not be visible at the point when

the ESI flags a flash drought, since soil moisture is not completely depleted according

to our definition with the lowest 10th percentile as the onset threshold. Using such a

framework would help to target an initial response for flash drought mitigation measures

and prevent excessive crop loss by, for example, allowing agriculturalists to alter irrigation

schedules.

6.2.3 The limitations of LSMs for drought research

Since the analysis within this thesis is primarily on the global and continental scale, the

use of LSMs is inevitable as observational data of land variables is inadequate for the

purposes required here (discussed in detail in Chapter 1). Two LSMs from the GLDAS

were used in Chapter 3 to evaluate the performance of SPI, PDSI and SPEI. Different

LSMs are embedded in the CMIP5 models procured for the flash drought analyses in

Chapter 4. Even on smaller domains, e.g. Australia, soil moisture observations are

sparse and don’t cover long time periods. Thus, for Chapter 5 outputs from AWRA-L

were used, which is, like GLDAS, a model driven by observations. All their outputs,

mainly soil moisture, serve as the reference in this thesis against which the drought

indices are evaluated. Though there is no targeted investigation of the efficacy of LSMs

in this thesis, there are some implications about their efficacy from our results.

Offline LSMs such as NOAH and CLM from GLDAS and AWRA-L are widely used to

assess the performance of drought indices. Obviously, the LSMs cannot provide an exact
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representation of the diversity of soil and plant properties and will miss highly localised

features. However, Koster et al. (2009a) argue that while the absolute values of the

output variables of LSMs might differ between different models, they show very similar

information about soil moisture variability to observations. Droughts are an inherent part

of this variability and as long as the timing of troughs and peaks of the LSMs coincide

each LSM will show drought conditions within its own climatology. LSMs have also been

extensively evaluated against in situ soil moisture and energy fluxes where possible and

can be seen as a best estimate of real-world conditions, e.g. Liu et al. (2009); Wang

et al. (2016b) for GLDAS and Frost et al. (2015); Holgate et al. (2016) for AWRA-L.

Therefore, their use for benchmarking drought indices on a global scale is justified.

The LSMs within the six global climate models from the CMIP5 suite showed large

inter-model spread in their flash drought representation, and differences to the AWRA-

L reanalysis. These differences are associated with both the LSM and the coupling

to the atmospheric model within the GCM. Within the range of different models and

observations/reanalysis we procured in Chapters 4 and 5, the largest uncertainties in flash

drought detections are associated with ET. Due to a stronger coupling between land and

atmosphere, GCMs show a higher skill for ET based drought indices EDDI and ESI than

they should when compared to AWRA-L, where both have a much weaker skill than

the SPI. Within the model suite some models were performing worse than others. An

ensemble mean could not represent the land atmosphere coupling strength in AWRA-L

either. Hence, using CMIP5 models to evaluate changes in past and future flash drought

scenarios would need further evaluation against a global observed climatology of flash

drought to truly determine the biases in the GCMs. Additionally, this would likely be

amplified by the increasing PET in a warming climate (Milly and Dunne, 2016). These

biases would also depend on how the drought indices are computed, either using offline

model output for the input variables or using outputs from coupled models, e.g. latent

heat flux. The former method would be subject to the biases in all those variables,

whereas the latter will be internally consistent and a much better approach.

A major caveat of using CMIP5 models for flash drought research is the limitation of

daily data to the upper 10cm soil layer. Deeper layers are available on a monthly time

scale, but this is too temporally coarse considering a flash drought definition that is based

on just two or three weeks. Compared to the root-zone layer, flash droughts happen
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five to ten times more often in the upper 10cm in AWRA-L when applying the same

definition. Consequently, using the upper 10cm as an indicator for flash droughts in the

deeper layers proves to be unreasonable. Additionally, the physical processes relating to

the development of ET in the lead-up to the onset of flash drought are not represented

well by the upper 10cm soil layer. This was made clear by the larger correlations between

the ESI and soil moisture in the root zone layer in Chapter 5. The ET/PET fraction is

an indicator of water stress and hence, ET continues from the deeper soil even when the

moisture in the upper 10cm is nearly completely depleted. Furthermore, the top soil layer

will always dry out first before the deeper layers follow. This means that those indices

more sensitive to variability at the surface (i.e. the SPI and EDDI) would naturally have

a higher hit rate (i.e. correctly indicating) a flash drought. However, as we showed in

Chapter 5, this sensitivity inevitably also has a high false alarm rate since the top soil

layer moisture is often restored before the drying penetrates further into the ground. For

these reasons, the shallow soil layer is less useful for flash drought research compared to

deeper layers in the root zone.

6.3 Future Work

It is our hope that the results from this thesis prove useful for future drought research

in the area of prediction and monitoring. For example, our results could be used to

help guide the creation of a multi-variate tool for drought prediction and monitoring

that can help to mitigate impacts from this natural hazard. Although many interesting

results were found in this research many questions and research avenues remain. For

example, if the output were obtainable, using root-zone layer soil moisture from global

climate models and testing the procured indices SPI, EDDI and ESI on it should be the

first extension of this study. The newest phase of the Coupled Model Intercomparison

Project Phase 6 (Eyring et al., 2016) provides soil moisture content for various layers

on a daily basis. Thus, further investigations regarding details of the underlying LSMs

in CMIP6 and its components can be conducted for a deeper understanding of flash

drought development in those models.

The sheer amount of drought indices available only allows to test a fraction of them.

For this thesis, the most popular ones for either seasonal to annual or sub-seasonal time
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scales have been chosen. Testing other indices could broaden the knowledge of suitable

drought indices for flash drought. For example, recently, Noguera et al. (2020) has used

the Standardised Precipitation Evapotranspiration Index (SPEI, Vicente-Serrano et al.,

2010) to evaluate characteristics and trends of flash droughts in Spain, however these

were not compared to soil moisture. Incorporating a larger suite of drought indices could

help to develop a multi-variate tool not only for flash drought but for prediction and

monitoring of drought on all time scales.

Further, there have been definitions and metrics developed that could be employed.

Otkin et al. (2014) has specifically designed the rapid change index (RCI) based on the

ESI to ”to highlight areas undergoing rapid changes in moisture stress”. Pendergrass

et al. (2020) proposed a definition for international operation, prediction and research,

which is based on a 50% increase in EDDI. However, the index itself should reach a

certain drought threshold, otherwise the rapid change could also occur on the wet side

of the distribution from anomalously wet to average conditions. While this thesis has

adjusted and used the definition from Ford and Labosier (2017), using a certain change

within a certain time frame and reaching a specific drought threshold, it is likely not

the perfect definition for flash drought globally. Local adjustments to the time periods

in which the rapid change has to occur, or to the drought threshold, could be done to

closer represent different evaporative regimes.

Conducting the analyses on a higher spatial resolution than the 2.5o×2.5o used in the

entire thesis to match either the grid dimensions of observational data sets (Chapter 3)

or the coarsest CMIP5 model (Chapters 4 and 5), would likely provide more information

about regional differences. Interpolating to a coarse common grid generalises information

that would otherwise provide potentially highly localised features. Especially the very

high native resolution of AWAP/AWRA-L of 0.05o × 0.05o could be useful to further

distinguish flash drought frequency and usefulness of the drought indices in different

environments.

6.4 Conclusion

This thesis has investigated drought indices incorporating precipitation or ET or both and

has shown how they represent sub-seasonal, seasonal and annual-scale drought in models
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and observations. The results from this thesis show that a significant lack of precipitation

is the main contributor to drought development on the time scales examined. The

simplicity of an index like the SPI and the availability of, dense, long term precipitation

records have proven be equally or even more skilful than its counterparts including ET

and make it an attractive index for the ongoing study of drought. However, the use

of precipitation for detecting drought is not flawless as it is uncoupled to land surface

conditions. It is unquestionable that ET also contributes to drought development and

this is particularly true for flash drought. However, our results show that the inclusion of

ET in drought indices tends to be more useful for monitoring drought due to its response

to drying soil moisture, than for the prediction of drought onset. In that sense, we have

shown that different drought indices are useful for different aspects of a drought. For

example, for flash drought, we provide evidence that the SPI and EDDI could be useful

for predicting flash drought risk, but that the ESI is more appropriate for monitoring

the development of a flash drought once it has onset. Additionally, this thesis has

shown that the source of input data for drought indices, whether from observations,

reanalysis or climate models, play a significant role in the efficacy of a drought index.

Consideration of the data sets employed when computing drought indices, and their

associated uncertainties, is paramount for drought research.
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Figure 7.1: Mean and zonal correlation coefficients (r) of varying GLDAS LSMs for SPEI3
(a/d), SPEI6 (b/e) and SPEI12 (c/f) for whole data distribution (a-c) and drought periods
(d-f) of the 0-10cm layer. The zonal average is shown to the right of each plot. Stippling
shows statistically significant correlations at the 95% level.
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Figure 7.2: Mean and zonal correlation coefficients (r) of varying GLDAS LSMs for SPEI3
(a/d), SPEI6 (b/e) and SPEI12 (c/f) for whole data distribution (a-c) and drought periods
(d-f) of the 10-40cm layer. The zonal average is shown to the right of each plot. Stippling
shows statistically significant correlations at the 95% level.
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Figure 7.3: Mean and zonal correlation coefficients (r) of varying input data for SPEI3 (a/d),
SPEI6 (b/e) and SPEI12 (c/f) with GLDAS NOAHv2 for whole data distribution (a-c) and
drought periods (d-f) of the 0-10cm layer. The zonal average is shown to the right of each
plot. Stippling shows statistically significant correlations at the 95% level.

157



7.1. Appendix Chapter 3 7. Appendix

135°W 90°W 45°W 0° 45°E 90°E 135°E60°S

30°S

0°

30°N

60°N

(a)

Mean correlation SPEI3s and NOAHv2 40cm stipples: p < 0.05

0.0 0.5

zonal avg

135°W 90°W 45°W 0° 45°E 90°E 135°E

(b)

Mean correlation SPEI6s and NOAHv2 40cm stipples: p < 0.05

0.0 0.5

zonal avg

135°W 90°W 45°W 0° 45°E 90°E 135°E60°S

30°S

0°

30°N

60°N

(c)

Mean correlation SPEI12s and NOAHv2 40cm stipples: p < 0.05

0.0 0.5

zonal avg

135°W 90°W 45°W 0° 45°E 90°E 135°E

(d)

Mean correlation SPEI3s and NOAHv2 40cm (drought) stipples: p < 0.05

0.0 0.5

zonal avg

135°W 90°W 45°W 0° 45°E 90°E 135°E60°S

30°S

0°

30°N

60°N

(e)

Mean correlation SPEI6s and NOAHv2 40cm (drought) stipples: p < 0.05

0.0 0.5

zonal avg

135°W 90°W 45°W 0° 45°E 90°E 135°E

(f)

Mean correlation SPEI12s and NOAHv2 40cm (drought)stipples: p < 0.05

0.0 0.5

zonal avg

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
correlation coefficient (r)

Figure 7.4: Mean and zonal correlation coefficients (r) of varying input data for SPEI3 (a/d),
SPEI6 (b/e) and SPEI12 (c/f) with GLDAS NOAHv2 for whole data distribution (a-c) and
drought periods (d-f) of the 10-40cm layer. The zonal average is shown to the right of each
plot. Stippling shows statistically significant correlations at the 95% level.
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7.2 Appendix Chapter 5

Figure 7.5: Area median over all of Australia of flash drought event frequency per decade
for each of EDDI, ESI, SPI and SSI split into season and listed for each CMIP5 model (top
to sixth row), CMIP5 ensemble (seventh row) and AWRA-L/AWAP (eighth row). Black lines
represent the 90th percentile confidence interval.

159



7.2. Appendix Chapter 5 7. Appendix

Figure 7.6: Area average of north Australia (< 27oS) of flash drought event frequency per
decade for each of EDDI, ESI, SPI and SSI split into season and listed for each CMIP5 model
(top to sixth row), CMIP5 ensemble (seventh row) and AWRA-L/AWAP (eighth row). Grid
cells without any flash droughts occurring were masked out. Black lines represent the 90th

percentile confidence interval.
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Figure 7.7: As Figure 7.6 but for south Australia (> 27oS)

Figure 7.8: Total count of soil moisture flash drought events longer than 30 days for each
season and CMIP5 model/AWRA-L observations. Grid cells with not a single flash drought
occurrence are masked out.
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